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Abstract Using information from multiple surveys to produce better pooled esti-
mators is an active research area in recent days. Multiple surveys from same target
population is common in many socioeconomic and health surveys. Often all the
surveys do not contain same set of variables. Here we consider a standard situation
where responses are known for all the samples frommultiple surveys but the same set
of covariates (or auxiliary variables) is not observed in all the samples. Moreover, in
our case we consider a finite population set up where samples are drawn from multi-
ple finite populations using same or different probability sampling designs. Here the
problem is to estimate the parameters (or superpopulation parameters) of underlying
regression model. We propose quadratic inference function estimator by combining
information related to the underlying model from different samples through design
weighted estimating functions (or score functions). We did a small simulation study
for comprehensive understanding of our approach.

Keywords Model-design based approach · Multiple surveys · Superpopulation
Quadratic inference function

1 Introduction

Drawing inference on super population parameters by combining data from different
surveys is of considerable recent interest (Citro 2014; Kim and Rao 2012; Gelman
et al. 1998) to the survey practitioners. For an up to date and comprehensive review of
the methods, we refer to Lohr and Raghunathan (2016). The central idea behind any
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suchmethod is to use information fromdifferent sources effectively for enhancing the
efficiency of the estimators. In this paper, we propose a method for combining data
based on quadratic inference function (QIF) (Lindsay and Qu 2003) in the context
of linear regression analysis. To the best of our knowledge, use of QIF has not been
considered before in the survey sampling literature.

For the methodological development in this paper, we consider model-design-
based randomization approach to inference discussed in Roberts and Binder (2009),
Graubard and Korn (2002), and Godambe and Thompson (1986). Specifically, we
consider two finite populations P1 = {(yi , x1i , x2i ) : i ∈ U1} and P2 = {(yi , x1i ) :
i ∈ U2} of sizes N1 and N2, respectively, where U1 and U2 are index sets of the
population units in P1 and P2, respectively. Notice that P1 and P2 can be considered
as random samples from a superpopulation. We assume:

(i) The study variables in each finite population are independent realizations of
the random variables (y, x1, x2), where x1 and x2 are exogenous, and y is a
continuous endogenous variable. Also, given x1 and x2, y is generated by a
linear regression model y = β0 + β1x1 + β2x2 + ε, where ε is the error term
independent of x1 and x2, and has mean 0 and variance σ 2. However, in P2

observations on x2 are missing.
(ii) A probability sample is selected fromeach resulting finite population using either

the same or different sampling designs.

The above theoretical set-up may represent an important practical situation that
often arises in survey sampling. Suppose in a survey with a relatively small sample
size, the data are collected on a comprehensive set of exogenous variables; whereas
in a different survey from the same populationwith a considerably larger sample size,
the data are collected on a smaller subset of the same set of exogenous variables. The
problem is to combine these independent samples effectively to get a better estimator.

Clearly, the problem stated above may be considered as a missing data problem
where for someunits in the bigger sample the data ononeormore exogenous variables
aremissing.Multiple imputation is anoftenusedmethod (Rendall et al. 2013;Gelman
et al. 1998; Rubin 1986) in such situation, but how does it tide over the omitted
variable bias is not quite clear. On the other contrary, the QIF based methodology
that we propose here, recognizes and takes into account the omitted variable bias
explicitly. Although the proposed methodology is applicable for combining data
from any number of surveys in the set-up described above, we restrict our discussion
to two surveys simply for ease of exposition.

The paper is organized as follows. In Sect. 2, we briefly discuss the estimation
methodology based on QIF in a general setting, keeping in view the context of our
application. In Sect. 3, we propose design-weighted QIF estimators of the regression
coefficients using data from multiple surveys. Our methodology explicitly takes
into account the omitted variable bias. In Sect. 4, we report the results of a limited
simulation study. As expected, the simulation results show that the design-weighted
QIF estimators based on the combined sample are substantially more efficient than
the standard least squares estimators based on the sample with more covariates.
Concluding remarks are given in Sect. 5.
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2 Quadratic Inference Function

In this section we briefly introduce QIF based estimation methodology in a gen-
eral setting. Supposeb(x, θ) = (b1(x, θ), b2(x, θ), ..., bq(x, θ))T is a q-dimensional
vector of distinct score functions, where θ = (θ1, θ2, ..., θp)

T is a p-dimensional
vector of parameters. The score functions are also called estimating functions and
moment conditions in statistics and economics literature, respectively. Application
of QIF based estimation methodology makes sense only if q is greater than p.

Suppose Fθ is the semi- parametric model defined by the parameter θ and the
score equations

EFb(X, θ) = 0, (1)

such that if a distribution F ∈ Fθ , then (1) is satisfied and vice versa. On the other
hand, if the true F /∈ Fθ , and EFb(X, θ) = δ(θ) �= 0, where δ(θ) is said to represent
the vector of discrepancy between the model and the true distribution F .

The quadratic distance function (QDF) between the true distribution F and the
semi-parametric model Fθ as determined through the basic scores is then defined as

d(F,Fθ ) = δ(θ)T�−1
θ δ(θ), (2)

where �θ = Var(b(X, θ)). For an arbitrary F , the value of θ for which the basic
scores are closest to mean 0 is then given by

θ(F) = argminθ d(F,Fθ ). (3)

For making data based inference on θ , the QDF in (3) needs to be replaced by its
empirical analogue, called quadratic inference function. Suppose X1, X2, ..., Xn are
independently and identically distributed random variables following the distribu-
tion F , then a natural estimator of EFb(X, θ) = δ(θ) is b̄(θ) = n−1 ∑n

i=1 b(Xi , θ).
Suppose further, �̂ is a suitably chosen estimator of Var(b̄(θ)), the QIF is then given
by

Q(θ) = b̄(θ)T �̂−1b̄(θ). (4)

The choice of �̂−1 is an important issue. We refer to Lindsay and Qu (2003) for a
detailed discussion on it. The QIF estimator of is given by

θ̂ = argminθ Q(θ). (5)

If F ∈ Fθ , θ̂ is consistent for the true value of θ , otherwise it is consistent for the
nonparametric functional θ(F) (cf.(3)). For a discussion on the optimum properties
of θ̂ , we refer to Lindsay and Qu (2003).
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3 Design-Weighted QIF Estimator

Let us now consider the estimation of the regression parameter β = (β0, β1, β2)
T of

the superpopulation model introduced in Sect. 1. First, we introduce some important
notations. Suppose S1 = {(yi , xi1, xi2) : i ∈ I1 ⊂ U1} and S2 = {(yi , xi1, xi2) : i ∈
I2 ⊂ U2} represent the probability samples of sizes n1(< N1) and n2(< N2) drawn
from the populationsP1 andP2 using sampling designs p1(.) and p2(.), respectively,
where I1 and I2 are index sets of selected sample units.

As stated at the outset, we adopt the model-design based randomization approach
(Roberts and Binder 2009) to the estimation of the superpopulation parameters. Like
Chen and Sitter (1999), we propose a two-step design weighted QIF estimator of
β that could be used for complex surveys. First, we define QIF of β, say, QU (β),
assumingP1 andP2 to be known.At the second step,we estimate QU (β) by replacing
the population based entities with its design-based estimators based on the samples.
We denote it by Q̃U (β). Finally, the estimator of β is obtained byminimizing Q̃U (β)

with respect to β. We now describe the two steps in detail.
Assuming P1 to be known, and represents a random sample from the superpopu-

lation, the basic score vector for β is given by:

b1(y, x,β) = (Y − β0 − β1x1 − β2x2)x, (6)

where x = (1, x1, x2)T . Also, the assumed regression model of y given x1 and x2
entails Eβb1(Y,X,β) = 0. However, for P2, the basic score function for β(1) =
(β0, β1)

T is given by:

b∗
2(y, x

(1),β(1)) = (Y − β0 − β1x1)x(1), (7)

where β(1) = (β0, β1)
T and x(1) = (1, x1)T . But omitted variable bias leads to

Eβb∗
2(Y,X(1)β(1)) = δ(β2), where δ(β2) = (0, β2σ12)

T , and σ12 = Cov(x1, x2).
Assuming σ12 to be known for the time being, we define a modified score function
for β that explicitly takes into account the omitted variable bias as follows:

b2(y, x(1),β) = (y − β0 − β1x1)x(1) − δ(β2). (8)

Thus, by definition, we have Eβb2(Y,X(1),β) = 0. The population version of QIF
are thus based on the basic score functions given by (6) and (8).

Let us define b̄1(β) = N−1
1

∑
i∈U1

b1(yi , xi ,β), b̄2(β) = N−1
2

∑
i∈U2

b2(yi ,

x(1)
i ,β), and b̄(β) = (b̄1(β), b̄2(β))T . Let �̂1β , �̂2β , and �̂β be suitable finite popu-
lation based estimators ofVar(b1(Y,X,β)) = �1β ,Var(b2(Y,X(1),β)) = �2β and
Var(b(Y,X,β)) = �β , respectively,whereb(y, x,β) = (b1(y, x,β),b2(y, x(1),β))T .

Then the first-step QIF of β is given by

QU (β) = W1b̄1(β)T �̂−1
1β b̄1(β) + W2b̄2(β)T �̂−1

2β b̄2(β), (9)
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where, Wk = NkN−1, k = 1, 2, and N = N1 + N2.

Let us now define the second step QIF, Q̃U (β), an estimator of QU (β), based
on the samples S1 and S2. Suppose πik = Pk(i ∈ Ik |i ∈ Uk)(> 0) denotes the
inclusion probability of the i − th unit of the k−th population in the sample
Sk , where Pk(.) is the probability measure corresponding to the sampling design
pk(.) for i = 1, 2, ..., Nk, k = 1, 2. The design weights are then given by dik =

π−1
ik∑

i∈Sk π−1
ik
, for i ∈ Ik, k = 1, 2. Defining, b̃i1(β) = b1(yi , xi ,β) for i ∈ I1, b̃i2(β) =

b1(yi , x
(1)
i ,β) for i ∈ I2, b̃1(β) = ∑

i∈I1 di1b̃i1(β), b̃2(β) = ∑
i∈I2 di2b̃i2(β), and

�̃kβ = ∑
i∈Ik dik (̃bik(β) − b̃k(β))(̃bik(β) − b̃k(β))T for k = 1, 2, we obtain

Q̃U (β) = W1b̃1(β)T �̃−1
1β b̃1(β) + W2b̃2(β)T �̃−1

2β b̃2(β). (10)

The design-weighted QIF estimator of β is then given by

β̂ = argminβ Q̃(β). (11)

Notice that throughout the development we assume σ12 to be known. It may be a
reasonable assumption if the information on x1 and x2 are available at the population
level while the values of (y, x1, x2) are known for the sample only. In this case, the
design-weighted QIF estimators lead to a huge improvement over the standard least
squares estimators. In case, it is not known, we plug in its estimate from the sample
in Q̃U (β). The latter also shows some improvement as is evident from the numerical
studies reported in the next section.

4 Numerical Studies

We present the results of a limited simulation study comparing the performances of
design-weighted quadratic inference function estimator (QIFE) with that of design-
weighted least square estimator (LSE).

Suppose the covariate vector (x1, x2)T has a bivariate normal distribution with
mean vector (0, 0)T and covariance matrix �(2 × 2). Given (x1, x2), y has a nor-
mal distribution with mean 1 + 0.5x1 + 0.25x2 and variance 0.25. We consider two
superpopulation models M1 and M2 corresponding to two choices of�, say,�1 and
�2, respectively, where

�1 =
(
0.5 0.5
0.5 1.0

)

and
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�1 =
(

0.5 0.14
0.14 1.0

)

.

Notice that for model M1 the correlation coefficient between x1 and x2 is 0.7 while
for M2, it is 0.2.

Following are the steps of the simulation study:
Step 1: We generate finite populations U1 and U2 of sizes N1 and N2 using the

above superpopulation model. First, we randomly generate a value of x = (x1, x2)T ,
and then generate a value of y given x using the conditional distribution of y given
x. The finite populations U1 and U2 then comprise N1 and N2 such observations
on (y, x1, x2) generated independently. Next, by simple random sampling without
replacement (SRSWOR), we select L samples of sizes n1(= f1N1) and n2(= f2N2)

fromU1 andU2, respectively,where f1 and f2 are the sampling fractions. The selected
samples from U1 and U2 are denoted by S(l)

1 and S(l)
2 , l = 1, 2, ..., L respectively.

Step 2: Based on S1 we compute usual design-weighted LSE of β. Also based on
S1 and S2, we compute design-weighted QIFE from (11).

Step 3: We repeat the Step 1 R times. At the r -th (r = 1, 2, ..., R) replication, let
the populations generated be U (r)

1 and U (r)
2 . For each r , the selected samples from

U (r)
1 and U (r)

2 are denoted by S(rl)
1 and S(rl)

2 , l = 1, 2, ..., L , respectively. For each r
and l, following Step 2, we compute the LSE and QIFE of β j , j = 0, 1, 2, say, β̂(rl)

j (LS)

and β̂
(rl)
j (QI F), respectively.

Step 4: For each estimator of β j , say, β̂
(rl)
j (a generic notation) we compute the

relative bias (RB) ([(RL)−1 ∑
r,l β̂

(rl)
j − β j ]/|β j |) and relative root mean squared

error (RRMSE) (
√

(RL)−1
∑

r,l(β̂
(rl)
j − β j )2/|β j |).

For our simulation study, we consider (N1, N2): (1000, 2000), (1000, 5000),
R = L = 100 and f1 = f2 = 0.10. In Table1, we report the RRMSE values for the
LSE’s and QIFE’s of β j , j = 0, 1, 2. The RB values are not shown. However, it
has been observed that for n1 = 100, n2 = 500, i.e., when the second sample size
is relatively large compared to the first, the relative biases of both the estimators
are comparable. For n1 = 100, n2 = 200 the relative bias of QIFE is slightly higher
than LSE. This is expected as LSE is unbiased while QIFE is not. What is interesting
to observe, that with increase in the relative magnitude of N2 compared to N1,
the performances of QIFE’s of β j , j = 0, 1 improve over the LSE’s substantially.
Also the improvement is more if the correlation between x1 and x2 increases. The
performances of QIFE and LSE of β2 are more or less same.

5 Concluding Remarks

In this article we propose quadratic inference function estimator of the superpopula-
tion parameters using information from multiple samples from the same superpop-
ulation that incorporates the design weights. For illustrative purpose, in this paper,
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Table 1 RRMSE of the least
squares (LS) and quadratic
inference function (QIF)
estimators of the
superpopulation parameters
for models M1 and M2

Regression
coefficient

Model M1 Model M2

LSE QIFE LSE QIFE

N1 = 1000 N2 = 2000

β0 502 316 507 313

β1 2004 1810 1470 1051

β2 2845 2902 2063 2092

N1 = 1000 N2 = 5000

β0 507 223 511 226

β1 2046 1712 1485 928

β2 2827 2898 2113 2147

we have considered linear regression superpopulation model. Our design-adjusted
QIF estimator is appealing in the sense that it can be applied for complex survey
designs. The simulation study shows encouraging results in situations where size of
the sample containing observations on subset of covariates is very high. In future we
plan to investigate the asymptotic properties of the proposed QIF estimator under
complex survey designs.
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