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1 Introduction

Linear regression model is one of the most widely used statistical techniques having
large scope of application in business and industry. While this technique was pri-
marily built for understanding how the response variable depends on the predictor
variables it is now widely used to predict the value of the response based on known
values of the predictor variables. A linear relation between the response variable and
the predictor variables is postulated and the unknown constants are estimated based
on the given data. In this chapter, we discuss the linear regression method keeping
the prediction task in focus. The excellent book by Montgomery et al. (2012) give a
detailed account of linear regression analysis and the reader may consult the same
for further details and proofs.

The chapter is structured as follows: In Sect. 2, we briefly discuss the linear
regression model and two popular approaches to parameter estimation; in Sect. 3,
we discuss both point and interval prediction using the linear regression model; in
Sect. 4, we discuss hidden extrapolation, which is an important point of concern
when using linear regression for prediction purpose; in Sect. 5, we discuss measures
of prediction accuracy; in Sect. 6, we discuss the usefulness of dividing the data
into training, validation and test datasets and discuss some possible approaches to
correction of prediction bias; and in Sect. 7, we suggest how to use Shewhart control
chart to monitor the predictive performance.
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2 Linear Regression Model

The main idea behind linear regression modelling is to connect the response variable
Y to a set of predictor variables X1, . . . , Xk using a linear function. The proposed
model is

Yi � β0 + β1X1i + · · · + βk Xki+ ∈i ,

where (Yi , X1i , . . . , Xki ) is the ith observation, i � 1, . . . , n. The random variables
∈i are uncorrelated with E(∈i ) � 0 and Var(∈i ) � σ 2. Thus, we have

E(Yi |X1 � x1i , . . . , Xk � xki ) � β0 + β1x1i + · · · + βk xki

and

Var (Yi |X1 � x1i , . . . , Xk � xki ) � σ 2.

Usually, the random variables ∈i are assumed to follow a normal distribution.
This implies ∈i ’s are independent, and the conditional distribution of Yi given
X1 � x1i , . . . , Xk � xki is normal. In applications, the unknown parameters
β0, β1, . . . , βk, σ need to be estimated from the data.

Ordinary least squares (OLS) is a popular approach for estimation of these param-
eters. In this approach, the estimates of the parameters β0, β1, . . . , βk are obtained
by minimising the sum of squared deviations between Yi and β0 +β1x1i + · · ·+βk xki ,
i.e. we solve the problem

min
β0,...,βk

n∑

i�1

(yi − β0 − β1x1i − · · · − βk xki )
2.

The resulting estimates β̂0, β̂1, . . . , β̂k are unbiased, i.e. E
(
β̂i

)
� βi for all

i � 1, 2, . . . , k.
An unbiased estimate of σ 2 is σ 2

UE � 1
n−k−1

∑n
i�1

(
yi − ŷi

)2
where

ŷi � β̂0 + β̂1x1i + · · · + β̂k xki , i � 1, . . . , n

are the fitted values.
An alternative is to use the maximum likelihood (ML) approach. Assuming that

(x1i , . . . , xki ) are non-random for all i � 1, . . . , n, we get the likelihood as

L
(
β0, β1, . . . , βk, σ 2

) �
n∏

i�1

1√
2πσ

e− 1
2σ2

(yi−β0−β1x1i−···−βk xki )2 .
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The MLEs of β0, β1, . . . , βk, σ are obtained by maximising this likelihood.
Simple calculations show that theMLEs of β0, β1, . . . , βk are same as that obtained
using the OLS approach. However, the MLE of σ 2 is σ̂ 2

ML � 1
n

∑n
i�1 (yi − ŷi )

2,
which is different from the unbiased estimator σ̂ 2

UE given above.

3 Prediction Using Linear Regression Model

Suppose we are required to predict the value of the response for a new case for which
the values of the predictors are known. Let xnew1 ,…, xnewk be the known values of the
predictors. The predicted value of the response is ŷ0 � β̂0 + β̂1xnew1 + · · · + β̂k xnewk .
However, to state the formula for obtaining 100(1 − α)%prediction interval we need
the matrix notation.

In the matrix notation, the linear regression problem is written as

Yn×1 � Xn×(k+1)β(k+1)×1+ ∈n×1 where ∈n×1∼ Nn
(
0n×1, σ 2 In×n

)
.

where Nn
(
0n×1, σ 2 In×n

)
is the n-dimensional multivariate normal distribution with

mean 0n×1 and variance-covariance matrix σ 2 In×n

The least squares estimate (which is also the MLE) is

β̂(k+1)×1 � (
XT

(k+1)×n Xn×(k+1)
)−1

XT
(k+1)×nYn×1.

For a new observation having predictor values X1 �xnew1 ,…,Xk �xnewk we predict
the value of Ynew as Ŷ new � β̂0 + β̂1xnew1 + · · · + β̂k xnewk . A 100(1 − α)% prediction
interval for Ynew is

(
Ŷ new − t α

2 ,n−k−1

√
σ̂ 2
UE (1 + f ), Ŷ new + t α

2 ,n−k−1

√
σ̂ 2
UE (1 + f )

)

where f � xT0,1×(k+1)(X
T
(k+1)×n Xn×(k+1))−1x0,(k+1)×1 and xT0,1×(k+1) �(

1, xnew1 , . . . , xnewk

)
and t α

2 ,n−k−1 is the 100
(
1 − α

2

)
percentile of the t-distribution

with n − k − 1 degrees of freedom.

4 Hidden Extrapolation

While predicting a new response one should be careful about extrapolation which
can lead to large prediction errors. In some situations, it may happen that the values
of the predictors fall outside the region determined by the data points based on which
the regression coefficients have been estimated. This leads to extrapolation which at
times may not be apparent to the user giving rise to the term ‘hidden extrapolation’.
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The smallest convex set containing all the n data points (x1i , . . . , xki ), i �
1, . . . , n is called the regressor variable hull (RVH). Hidden extrapolation hap-
pens when

(
xnew1 , . . . , xnewk

)
lies outside the RVH. This can be detected by

checking if f > hmax , where hmax is the largest diagonal element of Hn×n �
Xn×(k+1)(XT

(k+1)×n Xn×(k+1))−1XT
(k+1)×n , and f is defined in Sect. 3. It may be men-

tioned here that f ≤ hmax does not imply that the predictors of the new observation
is inside the RVH but it assures that it is close to the RVH so that the extrapolation
(if it happens) is minor.

5 Prediction Accuracy

Prediction accuracy is of utmost concern when a linear regression model is used for
prediction. A useful measure for understanding the prediction accuracy of a regres-
sion model is the PRESS statistic (where PRESS is an acronym for prediction error
sum of squares) where PRESS � ∑n

i�1

(
yi − ŷ(i)

)2
in which ŷ(i) is the predicted

value of the response of the ith observation using a model which is estimated based
on the (n − 1) data points excluding the ith data point. A low value of the PRESS
statistic indicates that the linear regression model is appropriate for the given data
and can be used for prediction. The R2

prediction statistic is an R2-like statistic which

is based on the PRESS statistic. It is defined as R2
prediction � 1 − PRESS

SST where

SST � ∑n
i�1 (yi − y)2. A value of R2

prediction close to 1 indicates the suitability of
the linear regression model for the prediction task.

6 Use of Validation and Test Data

While R2
prediction gives us an idea about the overall predictive ability of the linear

regression model, it does not allow us to make any comment about the nature of the
prediction errors.An alternative approach is to divide the available data randomly into
three parts ‘training’, ‘validation’ and ‘test’. The ‘training’ data is used for building
the linear regression model, the ‘validation’ data is used to evaluate the model’s
predictive performance and do possible bias correction, if felt necessary, and finally,
the ‘test’ data is used to evaluate the predictive performance of the final regression
model and obtain the statistical characteristics of the prediction error which may be
used to track the model performance over time.

Let D denote the Training data. Then note that

E
(
Y new − Ŷ new|D

)

� E((β0 − β̂0) + (β1 − β̂1)x
new
1 + · · · + (βk − β̂k)x

new
k + ∈new |D)

� E((β0 − β̂0) + (β1 − β̂1)x
new
1 + · · · + (βk − β̂k)x

new
k |D) + E(∈new |D)
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� (β0 − β̂0) + (β1 − β̂1)x
new
1 + · · · + (βk − β̂k)x

new
k

since given D the first term is a constant and since ∈new is independent of D the
second term is 0.

� Bias
(
xnew1 , . . . , xnewk

)
.

(The above result should not be confused with the fact that the unconditional

expectation E
(
Y new − Ŷ new

)
� 0.)

Again,

E((Y new − Ŷ new)2|D)

� E(((β0 − β̂0) + (β1 − β̂1)x
new
1 + · · · + (βk − β̂k)x

new
k + ∈new)2|D)

� E(((β0 − β̂0) + (β1 − β̂1)x
new
1 + · · · + (βk − β̂k)x

new
k )2|D) + E((∈new)2|D)

� ((β0 − β̂0) + (β1 − β̂1)x
new
1 + · · · + (βk − β̂k)x

new
k )2 + σ 2

� (Bias(xnew1 , . . . , xnewk ))2 + σ 2.

Thus, the average of the residuals (r̄) obtained when the estimated regression
equation is applied on the observations in the validation data set is an estimate of the

‘mean bias’ (MB) and the average of the squared residuals
(
r2

)
estimate σ 2 plus

the ‘mean squared bias’ (MSB). An estimate of MSB can be obtained by subtracting

σ̂ 2
UE from

(
r2

)
. Moreover, an estimate of the variance of the bias (VB) over the

validation data set can be obtained as
(
r2

)
− σ̂ 2

UE − r̄2. MB and VB together give

an indication about the performance of the estimated regression model when used
for prediction purpose. A large MB or a large VB indicates that the linear regression
model may not perform well when used for prediction purpose.

If MB is large, a simple approach to reduce prediction error is to apply a ‘bias
correction’ such as using Ỹ new � Ŷ new +MB for estimating Y new. Another approach
to bias correction could be to update the coefficients of the regression equation based
on the errors observed in the validation data set. To see how this can be done, let us
suppose that there arem observations in the validation data set. We randomly sample
(with replacement) t observations from validation data set and compute the average
error (err1), average value of X1 (m11), average value of X2 (m21), …, and average
value of Xk (mk1). Note that

E(err1) � (β0 − β̂0) + (β1 − β̂1)m11 + · · · + (βk − β̂k)mk1.

Writing β j − β̂ j � c j , we get E(err1) � c0 + c1m11 + · · ·+ ckmk1. Repeating this
process k times more, we get a system of (k+1) equations in (k+1) unknowns c0,
…, ck as given below
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E
(
errq

) � c0 + c1m1q + · · · + ckmkq , q � 1, . . . , k + 1.

Now using errq as an estimate of E
(
errq

)
, we get (in matrix notation)

err(k+1)×1 � M(k+1)×(k+1)c(k+1)×1,

where errT1×(k+1) � (
err1, . . . , err(k+1)

)
, cT1×(k+1) � (c0, . . . , ck) and the qth row

of the matrix M is
(
1, m1q , . . . , mkq

)
. Solving the system of equations, we get

ĉ(k+1)×1 � M−1
(k+1)×(k+1) err(k+1)×1.

We can then update the regression coefficients β̂ j with β̂ j � β̂ j + ĉ j and use the
same in the regression equation for prediction purpose.

Let rvali denote the residuals obtained after applying the regression equation to the
validation data set. A third approach to bias correction could be to regress the rvali
on the predictor variables to obtain the regression coefficients ċ j which can then be
used to update the training data regression coefficients β̂ j with β̇ j � β̂ j + ċ j .

Among the four prediction approaches discussed above it is found through limited
simulation experiments that the first two approaches, i.e. (a) using the linear predictor
with coefficients estimated using the training data and (b) addingMB to the prediction
obtained in (a) are performing better than the other two when applied to test data.
However, among these two approaches, no clear winner could be identified. It may
be mentioned here that the simulation experiments were done when all the linear
regression model assumptions were met. The other two approaches may turn out to
be useful in situations where there is a violation of the regression model assumptions
or there is overfitting.

7 Tracking Model Performance

As mentioned earlier the characteristics of prediction errors obtained in the test data
set can be used for tracking the model performance when the regression model is
deployed operationally. A simple approach is to use a Shewhart mean control chart
for individuals.Montgomery (2008) gives a detailed account of various control charts
and their application.

For monitoring the predictive performance we can construct a Shewhart mean
control chart for individuals with the central line (CL) equal to the average of the
prediction errors (APE) obtained in the test data and the LCL and UCL are set at
APE − 3 SDPE and APE+3 SDPE, respectively, where SDPE denotes the standard
deviation of the prediction errors in the test data. In many situations (such as in
sales forecasting) the true value of the response becomes known after some time
and the prediction error can be computed. These prediction errors can be plotted on
the control chart in chronological order. When the model is performing well, it is
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expected that the prediction errors will lie within the LCL and UCL. If at some time
point it is seen that the prediction error either falls above the UCL or below the LCL,
it indicates a need to check the model thoroughly and if needed update the model
with more recent data.
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