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Abstract
Bioremediation and biodegradation processes in environmental studies involve a
high degree of nonlinearity owing to the multiple and complex physical,
biological, and chemical reactions. This chapter attempted to represent different
modeling and statistical techniques that have been recently employed for describ-
ing the environmental systems that cover carbonaceous removal, nitrification,
denitrification, and other microorganism activities. Activated sludge models
(ASMs), viz., ASM1, ASM2, ASM2d, and ASM3, were used for an adequate
description of biological treatment processes including nitrogen and phosphorus
removals, as well as the degradation of organic carbons. In addition, Langmuir,
Freundlich, Dubinin-Radushkevich, and Temkin models were developed to dem-
onstrate the adsorption of metal ions from aqueous solutions onto solid materials.
Moreover, statistical analysis, e.g., principal component analysis, clustering,
dendrogram, and decision trees, were used for assessment of water quality in
aquatic environments. Furthermore, the chapter included artificial intelligence
methods such as artificial neural network and fuzzy inference system for simula-
tion, prediction, and control of the treatment processes and environmental
systems. These modeling tools were supported with literature cases that
employed innovative methods within the field of bioremediation and
biodegradation.
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7.1 Introduction

Increased concern about environmental issues has encouraged specialists to focus
their efforts toward developing modeling tools that can describe bioremediation and
biodegradation processes (Nasr and Ismail 2015). These methods involve a high
degree of nonlinearity regarding physical, biological, and chemical reactions, as well
as a large number of microorganisms (Gernaey et al. 2004). In addition, some
aquatic systems are subjected to significant variations of wastewater flow rate,
concentration, and composition, which require highly complex models to define
them (Nasr et al. 2012). The biological treatment of wastewater is also modeled to
carry out multiple activities of carbonaceous removal, nitrification, and denitrifica-
tion (Henze et al. 1987). The term “modeling” is used to express a particular system
using mathematical language containing a set of equations and variables (Nasr et al.
2017a). The developed models should simulate, predict, and control the complex
environmental systems, as well as the mechanisms of microbial processes with
reasonable accuracy (Jeppsson 1996). In addition, modeling of the treatment process
is used to maintain the effluent quality within regulation-specified limits. Hence,
modeling of environmental systems is considered an attractive and essential point of
the study.

Any environmental system can be described by either a white-box model (also
known as deterministic models) or a black-box model (i.e., due to lacking process
knowledge) (Dreiseitl and Ohno-Machado 2002). For example, a white-box system
can be used to describe activated sludge models, viz., ASM1, ASM2, ASM2d, and
ASM3, in which the process variables are translated into a set of differential
equations (Gernaey et al. 2004). However, this type of model has some limitations
concerning the validity of assumptions, availability of data for calibration, and
prediction accuracy (Dreiseitl and Ohno-Machado 2002). Black-box models use
only input-output data when process knowledge is insufficient to develop a white-
box model (Yurtsever et al. 2015). For instance, artificial intelligence (AI) such as an
artificial neural network (ANN) and fuzzy inference systems (FISs) can be used as a
black-box model to provide accurate predictive tools for nonlinear and nonstationary
processes (Fawzy et al. 2016). Practically, AI methods and white-box models can be
combined in a hybrid scheme to provide a more reliable description of an individual
system. AI tools can maximize the information obtained from data and operator
experience, and then this knowledge is applied to enhance the system performance.
For example, ANN was employed to model the errors between simulated responses
from the white-box model and the corresponding experimental data (Cote et al.
1995). Multivariate analysis forms another appropriate black-box modeling tool that
is used as a statistical technique for process monitoring, assessment, recognition, and
isolation (Molaie et al. 2014).

Other modeling methodologies such as stochastic gray-box and hybrid models
are useful in bioremediation applications for estimation of biomass activities and
prediction of effluent quality parameters (Hijosa-Valsero et al. 2011). In addition,
Box-Jenkins models were employed for the prediction of primary settler perfor-
mance in a WWTP (El-Din and Smith 2002). Multiple models such as hydraulic
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model, oxygen transfer model, and clarifier model can interact with the process
knowledge included in white-box models to provide an accurate description of a full-
scale WWTP. Several simulator environments, viz., AQUASIM, EFOR, GPS-X,
MATLAB/Simulink, SIMBA, STOAT, and WEST, can be used to allow for a
reliable simulation of a wastewater treatment process (Nasr et al. 2011).

An accurate model can be constructed by following these steps: objective identi-
fication (e.g., design, simulation, control, etc.), model selection (activated sludge
model, hydraulic model, settler model, etc.), data collection and processing, calibra-
tion of the model parameters, model validation, and scenario evaluations (Khataee
et al. 2010a, b). An incomplete understanding of the system behavior can be related
to a multiple sources including influent and effluent data, physical properties,
operational settings, system performance, and model structure (Jeppsson 1996).
Model calibration is an iterative step employed to represent an acceptable explana-
tion of a certain set of data (i.e., improve fit) by adjustment of the model parameters
(Alves et al. 2014). The default parameters from the literature can be set as a starting
point for calibration. The model learning is affected by several factors including the
composition of influent wastewater, the degree of inhibition by toxic compounds,
operational conditions, plant configuration, and population dynamics (Nasr and
Ismail 2015). The number of inputs and outputs and initial conditions for state
variables should be defined as they might influence the model parameters during
calibration. In validation, a different data set (i.e., that is not used for calibration) is
compared with the responses of the developed model to obtain reliable predictive
solutions (Alves et al. 2014).

Hence, the objective of this chapter was to cover different white-box and black-
box models that have been recently employed for environmental bioremediation and
biodegradation. Activated sludge models and adsorption isotherm studies were
presented as white-box systems. On the other side, multivariate statistical analysis
and artificial intelligence were introduced as black-box models.

7.2 Biological Activity in Environmental Bioremediation

An adequate model of a biological treatment process is essential to provide a
predictive tool that can minimize the operation costs and sustain the environmental
balance (Gernaey et al. 2004). In biological treatment processes, microorganisms,
mainly bacteria, are adapted to consume organics (substrate) in wastewater for their
nutrition and metabolism (Eq. 7.1).

Substrateþmicrobial cells ! biomass growthþ energy production
þ byproducts ð7:1Þ
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7.3 Growth of Bacterial Population

Figure 7.1 shows a batch processing system that contains an initial substrate
concentration, So, and a biomass concentration, X. The system is operated under a
completely mixed and aerobic condition, and thus, the dissolved oxygen (DO) level
is not a limiting factor for microbial growth. Microbial cells utilize substrate for
biomass growth, energy production, and by-product formation (Nasr et al. 2014a).
Hence, during the course of an experiment, the substrate decreases (negative dS/dt)
along with an increase in the biomass concentration (positive dX/dt).

As displayed in Fig. 7.2, a plot of biomass concentration against time results in a
growth curve that is composed of five distinct phases. These stages can be defined as
follows (Nasr et al. 2017b):

1. The lag phase that occurs directly after inoculation of bacteria, and it remains
until the cells are adapted (acclimated) to the new environment.

Fig. 7.1 Substrate utilization
and biomass growth in a
completely mixed batch
reactor supplied with oxygen

Fig. 7.2 Typical growth
curve for a batch system
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2. The exponential phase, in which the biomass concentration increased steadily
describing the period of the optimum growth state.

3. The stationary phase that happens when essential substrates, nutrients, or
dissolved oxygen are depleted to certain limits, and thus, the population is neither
growing nor declining.

4. The death phase, where some cells are destroyed due to lysis, and thus, the net
growth of biomass becomes negative.

7.4 Monod-Type Expression

Monod equation (Eq. 7.2) is a kinetic model used to simulate the microbial growth as
a functional correlation between the specific growth rate and substrate concentration
(Rieger et al. 2001). The model can also be employed to predict the amount of
substrate removal in treatment plants.

μ ¼ μmax
S

Sþ KS

� �
ð7:2Þ

where μ is the specific growth rate constant (d�1), μmax is the maximum specific
growth rate (d�1), S is the limiting substrate concentration (mg L�1), and KS is the
half saturation constant given at μ ¼ 0.5 μmax (mg L�1). Once the relationship
between μ and S is determined, the bio-kinetic growth constants (i.e., μmax and KS)
can be computed statistically or graphically.

As seen in Eq. 7.3, the Monod formula can also be employed to estimate the
bacterial growth rate (Gujer et al. 1999).

dX
dt

¼ μX ð7:3Þ

where dX/dt is the biomass growth rate (mg L�1 d�1) and X is the concentration of
mixed liquor volatile suspended solids (mg L�1).

The stoichiometry between the utilized substrate and generated biomass can be
expressed in Eq. 7.4 (Nasr and Ismail 2015).

dX
dt

¼ Y
dS
dt

� kdX ð7:4Þ

where Y is the cell yield coefficient (dimensionless) and kd is the endogenous decay
rate (d�1).

As seen in Eq. 7.5, a plot of μ versus U should give a linear line with a slope of
Y and an intercept of kd.
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μ ¼ Y � U � kd ð7:5Þ
where U is the specific substrate utilization rate (d�1).

7.5 Activated Sludge Models

In activated sludge processes, aerobic microorganisms are used to convert a signifi-
cant portion of organic compounds into inorganic components, carbon dioxide,
nitrogen, and new cells (Henze et al. 1999). The biomass consumes organic matters
as a substrate in the presence of oxygen or other types of electron acceptors (e.g.,
nitrate). A portion of the precipitated suspended solids in the secondary settler is
recycled to the bioreactor, while the remaining percentage is disposed of as waste
sludge. An earlier study by Jeppsson (1996) has presented a review of the historical
development of the activated sludge system.

7.5.1 Activated Sludge Model No. 1

Activated sludge model no. 1 (ASM1) was established as a simple mathematical tool
to simulate, predict, and control the biological activities in wastewater treatment
systems (Henze et al. 1987). The model includes the processes of carbon oxidation,
nitrification, and denitrification, and it can be used to present a good description of
the sludge production. The carbonaceous organic matter in ASM1 is defined as
COD, and it is classified into biodegradable, non-biodegradable, and biomass (Gujer
et al. 1999).

The biodegradable COD is divided into a readily biodegradable substrate (SS) and
slowly biodegradable substrate (XS). The microorganisms can directly metabolize
the soluble molecules of SS for cellular growth and maintenance. However, the
complex organic molecules of XS involve enzymatic breakdown before assimilation
and utilization (Cote et al. 1995). Practically, the XS may be soluble although it is
incorporated into the model as a colloidal component.

The non-biodegradable COD is divided into soluble inert COD (SI) and particu-
late inert COD (XI). These components are deemed to be unaffected by the biological
activities of microorganisms. The SI escapes from the biological system as untreated
effluent, whereas the XI is enmeshed in the biomass and then disposed of the system
as excess sludge.

The active biomass is divided into heterotrophic biomass (XB,H) and autotrophic
biomass (XB,A). Based on the death-regeneration model, the products resulting from
microorganism decay are termed as inert particulate (XP).

Hence, the total COD balance of ASM1 can be presented as Eq. 7.6.

CODtot ¼ SI þ SS þ XI þ XS þ XB,H þ XB,A þ XP ð7:6Þ
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The nitrogen components in ASM1 are divided into nitrate and nitrite (SNO),
ammonia nitrogen (SNH), soluble biodegradable organic nitrogen (SND), and partic-
ulate biodegradable organic nitrogen (XND). Dissolved oxygen (SO) and alkalinity
(SALK) are other components described in ASM1. XB,A consumes SO (i.e., during
their aerobic growth) for the oxidation of SNH to SNO, whereas XB,H can grow under
both aerobic and anoxic conditions. The aerobic and anoxic conditions are modeled
through the uptake of SO and SNO as electron acceptors, respectively.

7.5.2 Activated Sludge Models No. 2 and 2d

Activated sludge model no. 2 (ASM2) was established for the improvement of
ASM1 by adding the phosphorus removal mechanism (Henze et al. 1995). ASM2
added a new group of biomass known as phosphorus-accumulating organisms
(PAOs), which are capable of accumulating and storing phosphorus in their cells.
Hence, the model can be used to simulate the performance of biological nutrient
removal in activated sludge systems. Activated sludge model no. 2d (ASM2d) is
based on ASM2, but it addresses the ability of XPAO to utilize the products of internal
cell organic storage for denitrification (Henze et al. 1999). Hence, ASM2d allows for
a better explanation of the dynamics of phosphate and nitrate, and it can be
successfully used to simulate the biological phosphorus removal with a simultaneous
nitrification-denitrification process.

7.5.3 Activated Sludge Model No. 3

Activated sludge model no. 3 (ASM3) added some updates to ASM1, such as the
inclusion of storage polymers in the heterotrophic-activated sludge conversions, and
the use of the growth-endogenous respiration model to represent the biomass decay
(Gujer et al. 1999). ASM3 assumes that the readily biodegradable substrate (SS) is
stored into an internal cell structure as, XSTO, followed by biomass growth. ASM3
can predict oxygen consumption, nitrification, denitrification, and sludge production
of activated sludge systems. In addition, the ASM3 model can be extended for
simulation of biological phosphorus removal (Rieger et al. 2001).

7.6 Adsorption in Environmental Bioremediation

Adsorption is related to physicochemical studies that use a solid material to uptake
metal ions from aqueous solution. The adsorption process can be described by the
following models:
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7.7 Langmuir Adsorption Isotherm

Langmuir isotherm is used to quantitatively describe the transfer of metal ions
between the solid phase and liquid phase at an equilibrium state. Langmuir equation
has been formulated based on the following assumptions (Langmuir and Waugh
1940): (1) maximum monolayer coverage, i.e., a single layer of adsorbate is formed
on the outer surface of the adsorbent; (2) the surface of solid phase contains a finite
number of vacant sites, and each site occupies only one molecule; (3) the surface of
solid is homogeneous, i.e., adsorption sites are identical with equal size and shape,
and they have similar affinity for adsorbate molecules; (4) after adsorption, no
transmigration of adsorbate in the plane of the surface, and no interaction between
adsorbate atoms; and (5) coverage-independent binding energy, i.e., the heat of
adsorption is the same (uniform) for each site.

As seen in Eq. 7.7, a linear plot of Ce/qe versus Ce provides a slope of 1/qm and an
intercept of 1/(KLqm).

Ce

qe
¼ 1

qm

� �
Ce þ 1

KLqm
ð7:7Þ

where Ce is the equilibrium concentration of adsorbate (mg L�1), qe is the amount
of metal adsorbed per gram of the adsorbent at equilibrium (mg g�1), qm is the
maximum monolayer coverage capacity (mg g�1), and KL is the Langmuir isotherm
constant (L mg�1).

Based on the Langmuir-type adsorption process, the isotherm shape can be
classified by a dimensionless constant separation factor (Eq. 7.8)

r ¼ 1
1þ KLCo

ð7:8Þ

where r is a dimensionless separation factor,KL is the Langmuir constant (L mg�1),
and Co is the initial concentration (mg L�1).

The factor “r” describes the shape of the isotherm according to the following
classification: r > 1 “unfavorable,” r ¼ 1 “linear,” 0 < r < 1 “favorable,” and r ¼ 0
“irreversible.”

7.8 Freundlich Adsorption Isotherm

Freundlich model is based on the adsorption process for a single solute system on
heterogeneous surfaces (Freundlich 1906). The model describes the distribution of a
solute between the solid phase and aqueous phase at equilibrium (Ng et al. 2002).
The model presumes an exponential variation in site energies, and that the surface
adsorption is not a rate-limiting step (Mattson and Mark 1971). In addition,
Freundlich model does not follow Henry’s Law of ideal dilute solutions. As seen
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in Eq. 7.9, a plot of log(qe) versus log(Ce) gives a linear form with a slope of (1/n)
and an intercept of log(KF).

log qeð Þ ¼ 1
n

� �
log Ceð Þ þ log KFð Þ ð7:9Þ

whereKF is Freundlich’s constant corresponded to the adsorption capacity (mg g�1)
and 1/n describes the adsorption intensity or surface heterogeneity (L g�1).

The Freundlich exponent “1/n” indicates the type of isotherm; i.e., the isotherm is
favorable at 0 < 1/n < 1, irreversible at 1/n ¼ 0, and unfavorable at 1/n > 1 (Saruchi
and Kumar 2016). In addition, the value 1/n < 1 implies the chemisorption process,
whereas 1/n > 1 indicates a cooperative process. Moreover, if 1/n is close to zero, the
sorbent surface is more heterogeneous; otherwise, the more homogeneous the
surface, the closer 1/n value is to unity.

7.9 Dubinin-Radushkevich (D–R) Isotherm Model

The D–R isotherm corresponds to the Gaussian energy distribution multiplied by the
first power of the adsorption energy (Rudziński et al. 1974). The model expresses
overall adsorption isotherm in the sub-monolayer coverage region for a variety of
heterogeneous surfaces. This isotherm is temperature dependent, and it is valid for
physical adsorption processes involving van der Waals forces (Boparai et al. 2011).
As observed in Eq. 7.10, a linear plot of ln(qe) vs. ε2 gives a slope of -β and an
intercept of ln(qo).

ln qeð Þ ¼ ln qoð Þ � βε2 ð7:10Þ
where qo is the D–R constant related to the saturation capacity (mg g�1), β is the
activity coefficient (mol2 kJ�2), and ε is the Polanyi potential (dimensionless).

The value of ε is calculated from Eq. 7.11.

ε ¼ RTln 1þ 1
Ce

� �
ð7:11Þ

where R is the gas constant equivalent to 8.314 J mol�1 K�1 and T is the temperature
(K).

The value of β is used to determine the mean sorption energy, as seen in Eq. 7.12.

E ¼ 1ffiffiffiffiffi
2β

p ð7:12Þ

where, E is the mean sorption energy (kJ mol�1).
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7.10 Temkin Isotherm Model

The Temkin isotherm model describes the interaction effect of adsorbent–adsorbate
(Temkin 1941). The Temkin isotherm presumes that the heat of adsorption would
decrease linearly rather than logarithmically while ignoring extremely low and very
high concentration values (Aljeboree et al. 2014). In addition, the model suggests
that adsorption is characterized by a uniform distribution of binding energies, up to a
maximum binding energy. As seen in Eq. 7.13, the linear plot of qe vs. ln(Ce) obtains
a slope of RT/b and an intercept (RT/b)ln(A) (Boparai et al. 2011).

qe ¼
RT
b

ln Að Þ þ RT
b

ln Ceð Þ ð7:13Þ

where b is the Temkin constant corresponded to the heat of adsorption (J mol�1) and
A is the equilibrium constant associated with the maximum binding energy (L g�1).

7.11 Pseudo-First-Order Kinetic

The formula of Eq. 7.14 expresses the linear curve of the pseudo-first-order model. A
plot of ln(qe – qt) against t gives a straight line with a slope of k1 and an intercept of ln
(qe) (Ho and McKay 1999).

ln qe � qtð Þ ¼ �k1 � t þ ln qeð Þ ð7:14Þ
where qe and qt are the amounts of adsorbed solute at equilibrium and at time t,
respectively, and k1 is the pseudo-first-order rate constant.

7.12 Pseudo-Second-Order Kinetic

The applicability of pseudo-second-order model designates that the adsorption
process follows a chemical interaction, also known as chemisorption (Atkins
1995). The linear form of the pseudo-second-order model can be expressed as
Eq. 7.15 (Fawzy et al. 2016). The values of t/qt were computed from the kinetic
data and plotted against time, which will then provide a straight line with a slope and
an intercept of 1/qe and 1/(k2.qe

2), respectively.

t

qt
¼ t

qe
þ 1
k2 � q2e

ð7:15Þ

where k2 is the pseudo-second-order kinetic rate constant.
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7.13 Statistical Analysis in Environmental Bioremediation

7.13.1 Design of Experiments

The design of experiments is a statistical technique used to determine the effects of
several input factors on a response. Experimental design can be classified into three
approaches, namely, one-factor-at-a-time, full factorial, and fractional factorial
(Khataee et al. 2010a, b). In one-factor-at-a-time, only one factor or variable varies
with time while holding other inputs constant. On the contrary, a factorial design is
performed to examine two or multiple factors simultaneously. The factorial design is
developed for an optimization purpose, as it describes the effect of each factor on the
response as well as the interaction effects between factors (Nasr et al. 2017a). Hence,
this method has the ability to reduce the number of experiments, save time and cost,
and obtain accurate outputs.

A full factorial design with n-factors and m-levels for each factor is noted as a mn

factorial experiment (Elhalil et al. 2016). For example, a full factorial design denoted
as 23 identifies three number of factors, and each factor has two levels; i.e., hence the
number of experiments is 23 ¼ 8. Similarly, a 32 factorial design has two-factors,
each with three-levels, and 32 ¼ 9 experimental runs. In this context, a full factorial
design describes all possible combinations of factors in a single experiment, and it
can build a response surface.

The fractional factorial experiment includes the most relevant combinations of the
variables (Cristóvão et al. 2015). This approach is useful when the number of factors
is large; i.e., it allows to obtain information about all main effects and interactions
while finding the minimum number of experiments for the purpose. The design of
experiment can also be performed using central composite, Box-Behnken, Plackett-
Burman, and Taguchi.

Results from the design of experiment can be graphed using a box plot, which
describes each variable by four components as follows (Nasr et al. 2012): (1) a
central line in each box is the sample median that represents 50th percentile of the
data; (2) a box representing variability around the average, where the tops and
bottoms of each box are the 25th and 75th percentiles of the sample, respectively;
(3) the whiskers are lines situated above and below each box, which express the
range of the variable; and (4) outliers of aþ sign extended beyond the top or bottom
of the whisker length, where its value is over 1.5-fold the interquartile range.

Cristóvão et al. (2015) employed a 32 factorial design to determine the effect of
hydraulic retention time (HRT) and initial dissolved organic carbon (DOCi) on DOC
removal by activated sludge treatment. The input factor of HRT has three levels of
4.20 h (�1), 6.15 h (0), and 8.10 h (þ1), whereas the three levels of DOCi were
200 mg L�1 (�1), 500 mg L�1 (0), and 800 mg L�1 (þ1). Results from the factorial
design revealed that the optimum HRT and DOCi were 6.42 h and 406.2 mg L�1,
respectively, which achieved DOC removal of 88.0%. The proposed model achieved
r2-value: 0.98463 and adj-r2: 0.95902.

Elhalil et al. (2016) developed a 24 full factorial experimental design to estimate
effects of four-factors, viz., malachite green dye (10 and 20 mg L�1), Fe2+ (5 and

7 Modeling Applications in Environmental Bioremediation Studies 153



10 mm), H2O2 (25.6 and 51.2 mm), and temperature (27 and 40 �C), on the
degradation of dye by a Fenton process. Results from the factorial design indicated
that the optimummalachite green dye, Fe2+, H2O2, and temperature were 10 mg L�1,
10 mm, 25.6 mm, and 40 �C, respectively, which attained a removal efficiency of
93.83%. The model validity and practicability were confirmed by computing r2-
value: 0.986 and adj-r2: 0.889.

A study by Khataee et al. (2010a, b) developed a central composite design (CCD)
to determine the influences of operational factors on biological dye removal in the
presence of Chara culture. Their study indicated that the optimum condition that
achieved the maximum decolorization efficiency was initial pH 6.8, dye concentra-
tion 9.7 mg L�1, algae weight 3.9 g, and contact time 75 min. The predicted results
were in good agreement with experimental data (r2: 0.982 and adj-r2: 0.966).

7.14 Clustering

Clustering analysis attempts to classify a set of records into a number of important
groups (Ferati et al. 2015). A reliable cluster result produces a high similarity
between the observation inside the same cluster and a small similarity between the
data in different groups. Kohonen networks, also known as self-organizing feature
maps (SOFMs), are used to realize maximum separation between the data in
different clusters using nonlinear activation functions (Kuo et al. 2005). K-means
clustering is another algorithm used to split data points into a fixed number (k) of
clusters based on the centroid of each cluster. Recently, clustering analysis has been
employed for monitoring and assessment of environmental studies including natural
resource management (e.g., agriculture, fisheries, and forests) and pollution risks to
living organisms.

Kamble and Vijay (2011) applied cluster analysis for assessment of water quality
in the coastal region of Mumbai, India. Six water quality parameters, i.e., turbidity,
DO, BOD, NH3-N, PO4, and FC, were measured at 17 sampling sites during post-
monsoon, winter, and pre-monsoon. The sampling areas were classified into three
major groups, viz., cluster-I “less polluted sites,” cluster-II “moderately polluted
sites,” and cluster-III “highly polluted sites.” Based on seawater standards, Mahim
was the worst-affected beach because of an incoming organic load from the Mithi
River, and thus, it was grouped in cluster-III.

Ferati et al. (2015) applied cluster analysis to handle a large data of eight heavy
metals, i.e., As, Cd, Cr, Co, Cu, Ni, Pb, and Zn, collected from six locations at
Trepça and Sitnica rivers during April – July 2014. Water and sediment samples
were collected from each site and analyzed for heavy metal concentrations. Cluster
analysis specified two major distinct clusters with three groups suggesting that the
metal contamination resulted from anthropogenic sources.
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7.15 Decision Trees

The decision tree is a hierarchical model used to represent classifications from a set
of independent variables (called attributes) by following a structure of nodes,
branches (links), and leaves (D’heygere et al. 2003). Decision trees are also flexible
in handling both categorical and numerical data by finding the set of decision rules.
A decision tree signifies each input attribute as a node, where the branches going
downward from each node are the possible values that the data can be assigned
(Hijosa-Valsero et al. 2011). A root node is the topmost decision node in the tree,
which has no incoming edges. Leaf nodes, also known as terminal nodes, are
situated at the bottom of the tree, and they predict outcomes expressed as class
labels.

D’heygere et al. (2003) built a decision tree model to predict the absence or
presence of benthic macroinvertebrate taxa in the non-navigable watercourses of
Flanders using independent variables of 15 physical-chemical, structural, and eco-
toxicological variables. The study found that conductivity and dissolved oxygen
were the most relevant variables in the input attributes by placing them at the top of
the tree.

Hijosa-Valsero et al. (2011) applied a decision tree method to predict the removal
efficiency of pharmaceuticals and personal care products (PPCPs) and organics from
wastewater using constructed wetlands. Their study indicated that DO, temperature,
pH, conductivity, and redox potential influenced the removal of the investigated
matters.

7.16 Artificial Intelligence in Environmental Bioremediation

7.16.1 Artificial Neural Network

Artificial neural network (ANN) is a computer-based system proposed to mimic the
learning process of nerve cells in the human brain (Nasr and Zahran 2014). ANN is
quite robust since it can achieve a high degree of prediction accuracy even when it
receives erroneous and noisy datasets. It can also be employed to organize, classify,
and summarize data sets, owing to its ability to solve nonlinear functions and to
capture complex relationships (Yurtsever et al. 2015). ANN contains a large number
of interconnected neurons (also called nodes), which is organized in layers including
first (input) layer, hidden layers, and last (output) layer. Adaptive weights, biases,
and transfer functions are used to interconnect the neurons and layers within a
network (Yurtsever et al. 2015). The predicted output is obtained by examining
the ANN through multiple steps of training, validation, and test. The optimal number
of neurons, layers, and adjusted network parameter (weights and biases) is computed
according to the minimum mean squared error (MSE) of the training and validation
sets (Nasr et al. 2012).

Recently, several articles have attempted to apply ANNs for modeling the
biological reactions in the area of environmental engineering. For example, Khataee
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et al. (2009) used an ANN model to predict the removal efficiency of BG4 dye using
inputs of dye concentration (2.5–15.0 mg L�1), temperature (5–45 �C), pH (2–11),
reaction time (0–420 min), and algal concentration (1.5� 106–9.0� 106 mg L�1).
The study used a three-layered feed forward back propagation NN with a structure of
5 – 16 – 1. The proposed ANN provided a reasonable predictive performance with a
coefficient of determination of r2: 0.979.

Khataee et al. (2010a, b) developed a three-layer ANN with a back-propagation
algorithm to predict the biological degradation efficiency of Malachite Green (MG).
The input factors were reaction time (0–420 min), pH (1.5–8.5), temperature
(5–45 �C), dye concentration (2.5–17.5 mg L�1), and algae dosage (0.5–6.0 g),
whereas the output was dye removal efficiency (0–100%). Their study found that the
network (5 – 12 – 1) succeeded to attain a coefficient of determination r2: 0.970,
indicating that the model was reliable to predict the dye removal efficiency.

Prakash et al. (2008) applied ANN to predict the biosorption efficiency of
sawdust for the removal of Cu(II)-ions. The input attributes were Cu(II)-ion concen-
tration, 50–80 mg L�1; pH, 3–6; temperature, 25–40 �C; and particle size,
50–200 μm, while the output parameter was the percent of sorption efficiency. The
network used a simple back-propagation recurrent algorithm with three hidden
layers, equivalent to a structure of 4 – 50 – 40 – 27 – 1. The ANN model notably
tracked the experimental data and achieved average MSE of 0.002139579.

Yurtsever et al. (2015) employed a fast ANN to predict Cd(II)-ion adsorption rate
using six inputs: initial pH, temperature, agitation speed, particle size, Cd
(II) concentration, and reaction time. The model architecture was composed of
four layers (6 – 25 – 5 – 1), viz., an input layer, first hidden layer with 25 neurons,
second hidden layer with five neurons, and an output layer. The resulting model
achieved an accurate prediction of Cd(II)-ion removal with r2-value of 0.999. In
addition, the proposed ANN model was found to be more promising for modeling
the Cd(II) adsorption when compared to conventional isotherm and kinetic studies.

7.17 Fuzzy Inference System

A fuzzy inference system (FIS) is used to represent a nonlinear relation mapping of
an input space to an output space (Zadeh 1997). A FIS is composed of four major
parts: i.e., fuzzification, “If-then” rules, inference engine, and defuzzification. The
engine that handles these components can be Mamdani fuzzy inference, Sugeno
fuzzy inference, or Tsukamoto fuzzy inference (Alalm et al. 2016). Figure 7.3
displays the general architecture and components of the FIS, which can be illustrated
as follows (Nasr et al. 2014b):

A crisp set of input data is collected, prepared, and further converted into a fuzzy
set using linguistic variables and terms and membership functions. These steps are
recognized as fuzzification, in which a crisp (numeric) value is converted into a
fuzzy input (Giusti and Marsili-Libelli 2010). For example, a fuzzy variable (e.g.,
temperature) can be defined in terms of linguistic concepts such as low, medium,
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high, etc. Each linguistic concept is expressed graphically as a membership function,
like linear, Gaussian, and trapezoidal fuzzy sets.

Subsequently, an inference engine is organized using a set of “If-then” rules. A
single fuzzy “If-then” rule has the form “If x is A Then y is B.” Assume x and y are
the variables “temperature” and “dissolved oxygen,” respectively, and A and B are
linguistic variables “low” and “high,” respectively, then the “If-then” rule will have
the form “If Temperature is Low Then Dissolved Oxygen is High.” Note that
aggregation of rules may be used when the rule-based system contains more than
one “If-then” rule (Fawzy et al. 2016).

Finally, defuzzification step is used to convert the resulting fuzzy output into a
single crisp number. There exist several defuzzification methods available in the
literature, such as Max-membership, center of gravity, weighted average, mean-max,
and center of sums (Gupta et al. 2017).

Giusti and Marsili-Libelli (2010) developed a Sugeno fuzzy model to control the
maximum in cycle temperature (output) by adjusting airflow (input) in a composting
process. The model consisted of three fuzzy rules corresponding to three possible in
cycle temperature trends (varied between mesophilic and thermophilic phases).
Results from their study revealed that the proposed model could elucidate 95.46%
of the observed variance, indicating a good agreement with the studied cycles.

Gupta et al. (2017) employed a FIS to predict the extraction yields of lipids,
carbohydrates, and proteins from microalgae using input factors of specific growth
rate, carrying capacity, and physiological health. The study used Sugeno-type FIS,
and eight IF-THEN rules, in addition, the membership functions of input and output
variables were Gaussian and linear, respectively. The fuzzy model provided a high
coefficient of determination r2-values >0.98, and it was concluded that an increase in
microalgae concentrations resulted in higher lipid and carbohydrate extractions but
lower protein yields.

Nasr et al. (2014b) employed a fuzzy logic control (FLC) to maintain the
dissolved oxygen level in the last aerobic tank of Benchmark model.1 that comprises
anoxic/aerobic tanks at the level of 2 mg L�1. The study used a fuzzy inference
system with Mamdani’s method that was constructed based on five IF-THEN rules.
The input variable of soluble oxygen had five fuzzy linguistic sets, viz., very low,
low, medium, high, and very high. The model output (i.e., oxygen transfer

“If-then” rules

Inference engineFuzzification DefuzzificationCrisp inputs Crisp outputs

Fuzzy input set Fuzzy output set

Fig. 7.3 A fuzzy inference system
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coefficient) was classified into close-fast, close-slow, no-change, open-slow, and
open-fast. Results revealed that the fuzzy model was able to handle variations in the
influent wastewater characteristics. In addition, FLC was able to self-adapt the
aeration supply, and hence, low aeration energy was consumed. The effluent waste-
water characteristics were within the allowable limits of BOD �10 mg L�1, COD
�100 mg L�1, ammonium �4 mg L�1, and total nitrogen �18 mg L�1.

7.18 Conclusions

This chapter presented several modeling and statistical methods that have been
recently applied in environmental engineering studies. Activated sludge models
(i.e., ASM1, ASM2, ASM2d, and ASM3) used for prediction of biological nitrogen
and phosphorus removals, besides degradation of organic carbon matters, were
covered. The application of adsorption isotherm models such as Langmuir,
Freundlich, Dubinin-Radushkevich, and Temkin for the removal of metal ions
from aqueous solutions was also demonstrated. In addition, this chapter included
multivariate analysis, viz., principal component analysis, clustering, dendrogram,
and decision trees, for evaluation and assessment of water quality in aquatic
environments. Artificial intelligence such as ANN and fuzzy logic was also
introduced as a black-box model for prediction of the treatment performance.
Finally, this work included literature studies that have performed innovative
methods within the field of modeling environmental processes. Future studies should
be focused on the applications of stochastic gray-box and hybrid models for predic-
tion of the treatment and bioremediation performances, as well as for estimation of
microorganism activities.
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