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Abstract
Agroecosystem is often confronted with a variety of pollutants. The application of
plant-microbe interactions in remedying the ecosystem is called
phytoremediation. Within the rhizosphere, plant roots interact with
microorganisms and the soil, and plants usually secrete substances which affect
microbial growth. Some plant-microbe relationships are beneficial to the plant
while others are not. However, these interactions largely ensure a healthy plant
growth while eliminating plant pathogens from the soil either by separate or
combined activities of the plant exudates and beneficial microbes. The nature of
microbes associated with each plant is apparently related to the exudates and
signal molecules emanating from the plant and the interactive signals of the
microbes. Sometimes, the soil is contaminated either deliberately or inadvertently
by a variety of chemicals and heavy metals. To control or eliminate these
contaminants, chemical and physical means have largely been applied. Unfortu-
nately, some of these control measures introduce their own contaminants thereby
causing secondary contamination. This necessitates the need and application of
eco-friendly and sustainable solar-driven technology, viz., phytoremediation, to
restitute the soils. Microbe-plant interactions sometimes improve the absorptive
capacity of the plant for contaminants. Some microbes modify soil contaminants
by using organic acids, redox reactions, producing siderophores, metal chelators,
biosurfactants, causing bioleaching, biosorption, and bioexclusion. These
microbes-contaminants interactions boost the reduction of toxicity and elimina-
tion of contaminants via various phytoremediation processes, viz.,
phytostimulation, phytodegradation, phytoextraction/phytoaccumulation,
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phytostabilization, phytovolatilization, and rhizofiltration. Nevertheless,
phytoremediation faces certain major challenges as regards to its commercial-
scale application in the field. To overcome these limitations, it is essential to have
a better understanding of the relationships among plant microbes, soil types,
chemicals, and heavy metal contaminants within an agroecosystem. Besides, it
is important to develop phyto-hyper-accumulators and super microbial
solubilizers, for various soil types.

4.1 Introduction

The agroecosystem is construed as a coherent functional unit of interactions that
exist between living and nonliving components of the environment as well as their
activities (Jalloh et al. 2012). The release of prevalent chemical contaminants into
the environment due to increased anthropogenic activities has been on elevated
levels. Chemical contaminants, such as polycyclic aromatic hydrocarbons (PAHs),
petroleum hydrocarbons (PHCs), pesticides, halogenated hydrocarbons, metals,
salts, and solvents, have been prompting stress on the ecosystem and human health
(Gerhardt et al. 2009; Meagher 2000). The continuous discharge of pollutants into
the environment poses a great threat to the microbiota, to flora and fauna, and also to
human and animal health, as these chemicals are transferred down the food chain in
the ecosystem (Esedafe et al. 2015). The pressure on production and application of
agrochemicals either for yield improvement or insect and weed control has also
caused perpetual stress and distortions in the ecosystems (Singh 2015; Vimal et al.
2017). The turnover of chemical contaminants in the ecosystem is a function of the
viability and coherence of the functional interactions of the participating organisms
in that environment. In-depth understanding of the processes involved in plant-
microbe interactions will make the management of contaminated agroecosystems
quite efficient (Fester et al. 2014). Some of these contaminants are recalcitrant and
can persist for longer periods in the environment. Traditional methods of remedia-
tion employ the chemical or physical approaches which involve extraction of the
contaminants onsite or removal of the contaminated soil. However, beneficial
microbes and plants with tendencies for hyper-accumulation of metals have been
identified as a promising approach for the cleanup of contaminants in the environ-
ment through phytovolatilization, phytostabilization, or phytoextraction processes
(Glick 2010; Lebeau et al. 2008) (see Fig. 4.1).

Naturally, plants depend on soil, air, and water as essential ingredients for growth
and development. They also interact with myriads of unicellular and multicellular
organisms in mutualistic, pathogenic, or parasitic relationships (Ahmad et al. 2008;
Lau and Lennon 2011; Siebers et al. 2016), which are triggered by exchange of
molecular information when a microbial invader comes into contact with a host plant
(Siebers et al. 2016). Microbes interacting with plant hosts can be found in the
rhizosphere, root tissues, rhizoplane, and root nodules of leguminous plants (Antoun
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and Prévost 2005). Microbes such as fungi, bacteria, actinomycetes, algae, and
protozoa have been identified in close interactions with plants roots and
demonstrated proven characteristics of enhancing growth and development of
plant (Bhattacharyya and Jha 2012; Hayat et al. 2010; Saharan and Nehra 2011).
The plant growth-promoting rhizobacteria (PGPR), including members of the genera
Bacillus, Enterobacter, Pseudomonas, Klebsiella, Azospirillum, Variovorax,
Burkholderia, Azotobacter, Alcaligenes, Rhizobium, Xanthomonas, Proteus,
Flavobacterium, Erwinia, Arthrobacter, and Serratia, constitute the rhizosphere
microbiota producing noticeable impacts on host plants (Kaymak 2010; Nadeem
et al. 2014; Prasad et al. 2015). Other than bacterial species abundance, fungi also
constitute a large proportion of the rhizosphere microflora valuable for enhanced
plant growth. Fungal symbiotic mycorrhizae are fundamental at increasing the
surface area of the root, which invariably results in more effective water and nutrient
uptake from the soil (Prasad et al. 2017). Ecto- and endo-mycorrhizae are known to
associate with a host of plant species. Other than facilitating water and mineral
uptake, mycorrhizae also provide the host plant with protection from certain abiotic
stress factors (Miransari 2010).

In their coevolutionary history, plants and microbes interact in either beneficial or
detrimental manner for survival, a relationship that is inevitable for their individual
existence. Exudates produced from these interactions greatly enhance movements of
nutrients and metals by (1) enzymatic transfer of electrons in the rhizosphere,
(2) acidification and formation of complexes due to released proton (H+) molecule,
and (3) indirect enhancement of microbial activity in the rhizosphere, resulting in
effective phytoremediation (Pérez-Esteban et al. 2013; Sessitsch et al. 2013).
Phytoremediation of heavy metal-contaminated soil is a promising relatively new
technology that is eco-friendly, solar-driven, and potentially cost-effective. The
technology aims at managing the agroecosystems by exploiting the healthy interac-
tion between soil, plant roots, and microbes in the rhizosphere to rid the soil of heavy
metals. The effectiveness of phytoremediation depends on soil temperature, mois-
ture, nutrients, microorganisms, and herbivory as well as contaminant distribution,
soil type, soil pH, soil texture, variety of plant roots, and metal uptake capacity
(Vangronsveld et al. 2009).

4.2 Beneficial Plant-Microbe Interactions

In nature, the interactions between plants and microbes are diverse and dynamic due
to their coevolutionary pressures (Chaparro et al. 2013). Beneficial plant-microbe
interactions in the environment have been severally reported as one of the major
drivers of a functional ecosystem (Nadeem et al. 2014; Rashid et al. 2016; Singh
et al. 2016). These interactions significantly alter the microbiological, biochemical,
and physicochemical parameters of the rhizosphere as it is evident that the microbial
population in the root environment is usually more enriched than the surrounding
environment. The beneficial plant-microbe relationship is a critical factor that helps
to determine and improve plant health and fertility of the soil (Hayat et al. 2010) and
root growth and development (Gamalero et al. 2004) and promote resistance to
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environmental stress factors (Glick 2004). Plants are naturally capable of determin-
ing their root microbiota from the soil environment, and the microbiota species
abundance is typical of each plant species (Hartmann et al. 2009), a feature that can
be attributed to the composition of the root exudates and the characteristics of the
rhizosphere soil (Chaparro et al. 2013; Ma et al. 2016). Some of these organic
chemicals released from the plant roots function as effective signaling molecules
that foster effective communications between the plant and its microbial associates
(Bulgarelli et al. 2013; Doornbos et al. 2012; Drogue et al. 2012). It may also dictate
the order of interactions among the participating microbial partners in the rhizo-
sphere. Signaling molecules in plant-microbe interactions show reciprocal effects on
the partners involved. The plant signals are perceived by the microbial partners,
while the microbial signal molecules affect the plant physiology (Nadeem et al.
2014).

The root exudates of plants are composed of diverse organic compounds which
have been classified into three major classes: (1) high molecular weight compounds,
(2) low molecular weight compounds, and (3) volatile organic compounds (VOCs).
The bulk of the root exudates are the low molecular weight compounds which
contain organic acids, sugars, phenolics, vitamins, amino acids, and certain second-
ary metabolite compounds. Compounds such as aldehydes, alcohols, carbon diox-
ide, mucilage and proteins, and various secondary metabolites constitute the high
molecular weight compounds (Badri and Vivanco 2009; Schulz and Dickschat
2007). Cultivated plants on phosphate-deficient soil or polluted soil with high
aluminum concentration often demonstrate increased exudation of certain organic
acids such as malic acid, citric acid, and oxalic acids (Lopez-Bucio et al. 2000;
Neumann and Römheld 1999). These exudate organic molecules may function as
chemical attractants to microbes and also as carbon source for enhanced microbial
proliferations in the rhizosphere (Ortíz-Castro et al. 2009). The rhizosphere is a
dynamic component of plant-microbe interactions that promotes plants growth and
productivity. The ecological, physical, and biochemical features of the rhizosphere
remain a function of the type and nature of exudates released and the timing for the
release. About 20–40% of fixed carbon has been estimated to be released back into
the rhizosphere. These events make the rhizosphere a significant integral component
for enhanced processes such as water and nutrient uptake and promotion of benefi-
cial microbial interactions (Badri and Vivanco 2009; Bais et al. 2004). Malic acid
exuded from the root attracts the beneficial soil bacteria, B. subtilis, in an interaction
that confers protection against Pseudomonas syringae, the foliar pathogen
(Rudrappa et al. 2008). As well, root colonization by rhizobacteria and mycorrhizal
fungi was increased in alfalfa and tobacco plants genetically manipulated to over-
produce malic acid. Invariably, malic acid plays a significant role in plant-microbe
interaction, and root exudates of plant contribute in determining the rhizosphere
structure and composition of the soil. This presents a great potential to be exploited
for biotechnological advancement of the rhizosphere and its application in agricul-
tural productions.

Interactions between plant and arbuscular mycorrhizal fungi (AMF) help to
confer resistance to the plant against biotic and abiotic factors, resulting in improved
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plant health (Nadeem et al. 2014). The water relations of plants can be affected by
AMF through mechanisms such as regulation of host stomatal organelle, increase in
absorption of water by extending hyphae, enhanced phosphorus uptake, and antioxi-
dant enzyme activity (Birhane et al. 2012; Habibzadeh et al. 2013; Younesi et al.
2013). The activity of antioxidant enzymes (peroxidase and catalase) was found to
increase compared to uninoculated plants in a study on wheat-AMF interactions
under stressed environment (Khalafallah and Abo-Ghalia 2008; Nadeem et al.
2014). However, other than enhancing phosphorus uptake, AMF facilitate the
availability of micro- and macronutrients such as Zn, Cu, N, Mg, and K in
absorbable forms from the soil (Meding and Zasoski 2008). In addition, the AMF
functions to maintain the stability of the soil structure and also the performance of
the plant under environmental stress conditions (Smith et al. 2010).

Plant-microbe interactions can be beneficial to all participating partners of the
association. The mutualism can occur between plant-microbe and microbe-microbe
with effects on both partners involved. These synergies generate positive impacts
and beneficial coexistence toward promoting each other’s proliferation (Nadeem
et al. 2014; Richardson et al. 2009). For example, Pseudomonas spp. produced
certain antifungal secondary metabolite which was nontoxic to its fungal counter-
part, Glomus mosseae; however when applied in combination with the fungus, the
bacteria enhanced the fungal hyphae to colonize the roots (Barea et al. 1998). The
exopolysaccharides produced by the PGPR are important at facilitating effective
attachment of bacterial cells to mycorrhizal roots of plants (Bianciotto et al. 2009).
Furthermore, while mycorrhizae facilitate nitrogen fixation and improved phospho-
rus solubilization (Linderman 1992), the bacteria promote fungal hyphal prolifera-
tion by enabling plant root permeability for ease of fungal hyphal penetration
(Jeffries et al. 2003). For PGPMs, fungi offer better comparative advantage over
bacteria by being capable of extending their mycelia to spread long distances in the
soil and rhizosphere environments. Usually, plant growth promotion by fungi is
achieved through mechanisms such as antibiotic production, competition with
invading fungal pathogens, and invocation of host defense reactions. Additionally,
certain beneficial fungi possess the ability to successfully parasitize the conidia,
hyphae, or sclerotia of phytopathogens thereby enabling biocontrol of pathogens.
Mycoparasitism is preceded by the fungal ability to sense a suitable host, toward
which the hyphae grow. This is followed by the ability of the fungi to recognize,
penetrate, and degrade the encountered host. Degradative enzymes such as the
proteinases, chitinases, and glucanases are important integral components of the
biocontrol activity (Harman et al. 2004).

Trichoderma species are beneficial fungi which are found as free-living soil
inhabitants or in association with plant roots in the rhizosphere. Although they are
known mycoparasites in nature, many strains are capable of colonizing plant roots
for improved growth and development. Plant-Trichoderma interactions are usually
beneficial with no harmful effects (Harman et al. 2004). Colonization by the fungus
results in induced localized and systemic resistance due to the secretion of a protein
elicitor called small protein 1 (Sm1). Sm1 is nontoxic to plants and microbes. The
native purified form is able to stimulate the production of reactive oxygen species
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(ROS) in cotton and rice seedlings and trigger both localized and systemic defense-
like gene expression (Djonović et al. 2006; Ortíz-Castro et al. 2009). However, for
plant growth enhancement, Trichoderma species including T. atroviride and
T. virens employ mechanisms such as the production of indole-3-acetic acid (IAA)
and some forms of auxin-like compounds (Contreras-Cornejo et al. 2009).

4.3 Harmful Plant-Microbe Interactions

Despite the myriad growth-promoting advantages conferred by the PGPR, there also
exist harmful effects of these interactions in the ecosystem (Saharan and Nehra
2011). These harmful effects may be attributed to certain unique conditions and
some specifically endowed traits (Nadeem et al. 2014). For example, cyanide
produced by some Pseudomonas species plays dual role of plant growth promotion
as well as a growth inhibition. Though the cyanide produced plays the role of
biological control of certain phytopathogens for enhanced plant growth (Martínez-
Viveros et al. 2010), it has been reported to demonstrate some harmful effects on
plant growth (Bakker and Schippers 1987). The production of auxin, a plant
hormone, by PGPR can impact negatively on plant growth (Vacheron et al. 2013),
depending on its concentration. Auxins at low concentrations promote plant growth
(Patten and Glick 2002), but at a much higher concentrations, and affect root growth
(Xie et al. 1996). Similarly, Bradyrhizobium elkanii produces a secondary metabo-
lite called rhizobitoxine, which plays dual role: inhibits ethylene production in order
to reduce the effect on nodulation in legumes (Vijayan et al. 2013) or functions as a
plant toxin that stimulates chlorosis in soybeans (Xiong and Fuhrmann 1996). In
another perspective, it was observed that, though the PGPR are nonpathogenic, their
combined application with fungi can trigger pathogenicity among partners (Dewey
et al. 1999). This may be attributed to horizontal gene transfers within the gene pool
of the rhizosphere. This could be possible due to the continuous microbial activity
around the plant root environment under optimum conditions.

4.4 The Role of Plant Signal Molecules in Plant-Microbe
Interactions

Cuticular waxes formed due to plant-microbe interactions create a physical bridge on
epidermal cell layers, regulate host-microbe communications, function as signaling
molecules and affect pathogen proliferation, or modulate the recognition of pathogen
invasion by elicitor molecules. Elicitors serve as signal-inducing molecules and also
as recognized components of the innate immune defense system of the host. They
can be produced by both beneficial and pathogenic microorganisms. Usually, elicitor
molecules such as microbe-associated molecular patterns (MAMPs), derived from
beneficial microbes, or pathogen-associated molecular patterns (PAMPs), derived
from pathogenic microbes in interactions with host plant, can elicit the immune
reaction of the host. The recognition of these elicitor molecules is mediated by the
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transmembrane pattern-recognition receptors (PRRs), and pathogens can only pro-
liferate inside the host when these responses are suppressed (Jones and Dangl 2006;
Siebers et al. 2016). Basically, plant-stimulated roots exude different varieties of
organic compounds than non-stimulated ones. For example, when defense signaling
molecules (DSM) such as methyl, jasmonate, salicylic acid, and nitric oxide were
exogenously applied on plants, the formation of diverse secondary metabolites such
as phytoalexins, alkamides, and indole glucosinolates was induced which is critical
in enhancing effective microbial communications (Zhao et al. 2005). Thus, the role
of plant metabolites in determining the microbial structure of the rhizosphere is
based on the ability of the host to selectively secrete organic compounds that signal
the presence of either bacteria or fungi (Ortíz-Castro et al. 2009).

Flavonoids exuded from plant roots are vital signaling molecules in different
plant-microbe interactions such as the legume-rhizobia symbiotic interactions and
mycorrhiza formation (Steinkellner et al. 2007). Flavonoids stimulate the prolifera-
tion of host-specific rhizobacteria and also act as chemoattractants which can
regulate the nod gene to stimulate nodule formation during synthesis of the Nod
factor (lipochitin oligosaccharide) signaling molecule (Ma et al. 2016; Mandal et al.
2010). Exuded flavonoids from plant roots can be recognized by the transcriptional
regulator molecules, the nodD proteins which are fundamental at determining the
synthesis and transport of the nod gene. Other than inducing the expression of nod
genes, flavonoids greatly impact on bacterial chemotaxis and multiplication (Bais
et al. 2006), a characteristic that pairs rhizobia to root hairs of their ideal plant hosts.
Isoflavonoids and plant flavone are effective inducers of nod gene expression in
rhizobia (Zhang et al. 2007). In plant-AMF interactions, flavonoids play key role as
effective activators of conidial germination, growth of hyphae, plant root coloniza-
tion, and sporulation (Mandal et al. 2010). However, the role of flavonoids on AMF
growth is significantly relative as it can be of negative or neutral effect depending on
the fungal species involved in the symbiotic mycorrhizal interactions (Scervino et al.
2005).

4.5 Role of Microbial Signal Molecules in Plant-Microbe
Interactions

During plant-microbe interactions, communications between interspecies and intra-
species can occur within the rhizosphere either through direct cell-cell interactions or
via chemical signaling molecules (Badri et al. 2009). In nature, microbes involved in
interactions with plants are capable of transforming the chemical composition of
plant root exudates to alter its physiology by way of secretion of certain signal
molecules such as the Nod factors, Myc factors, volatile organic compounds
(VOCs), exopolysaccharides, and microbe-assisted molecular patterns (MAMPs)
(Goh et al. 2014; Ma et al. 2016). VOCs are defined as organic compounds of
high vapor pressure and can vaporize into the atmosphere under certain conditions.
They are low molecular weight (usually ˂300 g/mol�1) compounds such as
aldehydes, alcohols, ketones, and hydrocarbons (Ortíz-Castro et al. 2009). VOCs
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of bacterial origin such as 2,3-butanediol and acetoin can stimulate host defense and
enhance growth of host plant through a mechanism that enables the plant to thrive on
soil depleted of essential nutrients like sulfur and iron (Bailly and Weisskopf 2012).
VOCs produced and secreted by PGPMs can function as (1) phytostimulators,
stimulate the various hormonal networks required for signals to any given stimulus;
(2) bioprotectants, provoke induced systemic resistance in plants (ISR); and
(3) biopesticides, kill plant vectors (Ma et al. 2016). The positive effects of VOCs
can enhance plant growth promotion for effective phytoremediation. For example,
the VOCs produced by Bacillus B55 improved sulfur uptake by Nicotiana attenuata
(Hofmann 2013). VOCs produced and secreted by Bacillus amyloliquefaciens and
B. subtilis activated the ISR of Arabidopsis seedlings compromised by the phyto-
pathogen, Erwinia carotovora (Ryu et al. 2004). As well, other bacterial VOCs such
as hydrogen cyanide, ammonia, phenazine-1-carboxylic acid, butyrolactones, and
certain alcohols affect fungal conidial sporulation and mycelial mat formations (Kai
et al. 2009). This implies that VOCs can function as an effective signaling molecule
between the prokaryotes and the eukaryotes colonizing the plant roots (Ma et al.
2016). Furthermore, the AM fungus Glomus intraradices is able to produce a variety
of lipochito-oligosaccharides (LCOs) containing both sulfated and non-sulfated
derivatives (Myc factors), signaling molecules similar to the Nod factors of rhizobia.
The Myc factor and the Nod factor signaling molecules are important in determining
plant root organization such as development of lateral roots and stimulation of
organogenesis (Maillet et al. 2011; Oláh et al. 2005). Plants have developed
mechanisms to initiate non-specific immunity against phytopathogens via the activ-
ity of elicitor molecules such as the MAMPs (Newman et al. 2013). Novel MAMPs,
rhamnolipids produced by Pseudomonas aeruginosa, have been shown to effec-
tively confer resistance to grapevine plant against the phytopathogen, Botrytis
cinerea (Varnier et al. 2009). In addition, MAMPs isolated from three PGPBs
including P. fluorescens, Chryseobacterium balustinum, and Stenotrophomonas
maltophilia were found to stimulate germination in Papaver somniferum (Bonilla
et al. 2014).

4.6 Bacterial Quorum-Sensing Signals

Quorum sensing (QS) is a genetic mechanism that regulates the functioning and
structure of a bacterial community (Bhattacharyya and Jha 2012). It is a communi-
cation process that occurs during bacterial cell to cell interactions, thereby monitor-
ing population growth and density, while signaling molecules produced by
individual cells control the expression and alteration of genes in the community
(Daniels et al. 2004; Ma et al. 2016). The discovery and understanding of the role of
bacterial signaling molecules have enabled the identification of two principal
mechanisms of interference in microbial QS signaling, the enzymatic and the
nonenzymatic microbial signal interferences which possess the ability of regulating
QS signaling (Zhang and Dong 2004) and preventing microbial biofilm formation
(Ren et al. 2001). Individual cell to cell QS communication signals are usually
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activated by certain autoinducer molecules that regulate bacterial actions. The
N-acyl homoserine lactones (AHLs) are the most reported signaling autoinducers
(von Bodman et al. 2003). AHLs possess the ability to promote or inhibit various
phenotypes of either pathogenic or beneficial bacteria (Ortíz-Castro et al. 2009). The
production of AHL signaling molecule is sacrosanct for the establishment of quorum
sensing among Gram-negative bacteria such as Pseudomonas aeruginosa, Erwinia
carotovora, and Rhizobium radiobacter. Production of AHLs signaling has been
observed among PGPBs including Gluconacetobacter diazotrophicus and
Burkholderia graminis (Cha et al. 1998) and also among strains of Agrobacterium,
Pectobacterium, and Chromobacterium (Chernin et al. 2011). It has been observed
recently that AHLs of bacterial origin can be well recognized by plants, to regulate
gene expression in tissues, host defenses, and homeostatic balance (Daniels et al.
2004). It was recently shown that related types of AHLs (including N-octanoyl
homoserine lactone, the 3-oxo and 3-hydroxy derivatives) secreted by members of
the Rhizobia, R. sullae, R. rhizobium, and Sinorhizobium fredii mediated effective
interactions with their legume host plant (Pérez-Montaño et al. 2011). Interaction
between Arabidopsis thaliana root and N-hexanoyl-DL-homoserine-lactone
(C6-HSL) resulted in obvious transcriptional alterations in roots and shoots systems
(von Rad et al. 2008). However, higher plants possess the ability to produce certain
AHLs mimic compounds which play critical role in the structure composition of the
microbe community population density. For example, mimic compounds such as
furanones secreted by plants such as soybean, barrel clover, and rice are able to
interfere with or manipulate bacterial QS behaviors (Pérez-Montaño et al. 2013). The
AHL mimic molecules can interfere structure-wise with the bacterial AHLs by
binding to bacterial AHL receptors to antagonize its signaling (Bauer and Mathesius
2004). In addition, the flavonoids and genistein components of plant root exudates
play critical role in QS communication among bacteria, considering their ability to
act as chemoattractants of rhizobia to colonize and regulate the expression of genes
responsible for nodulation in legumes (Loh et al. 2002). However, in spite of the
biological significance of QS, bacterial VOCs are known to exhibit quorum-
quenching effect on bacterial cell to cell communications during QS network
(Chernin et al. 2011; Dong et al. 2001).

4.7 Management of Contaminants in Agroecosystem

Under the stress of an agroecosystem contamination, growth-enhancing nutrients
become a limiting factor to plant. Essential nutrients like phosphorus may be lacking
either due to total absence from the soil or due to the antagonistic effect of other
nutrients (Nadeem et al. 2014). However, the inoculation of microbial consortia into
contaminated environments is capable of restoring deficient nutrients for enhanced
plant growth. For example, a saline-stressed environment was restored via the
application of PGPR and AMF. The application of a combination of PGPR and
AMF significantly elevated uptake of essential nutrients by sunflower (Helianthus
annuus L.) (Shirmardi et al. 2010). Also, the interactions between the PGPR and
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AMF significantly improved nutrient and water absorption by the roots of barley
plant (Najafi et al. 2012). These interactions aided better colonization of barley plant
roots and increased grain yields. Both traditional and conventional bioremediation
techniques are essential requirements in the management of contaminated
agroecosystem. The emerging technology of phytoremediation by using heavy
metals hyper-accumulating or genetically modified plants is also an immense pallia-
tive toward agroecosystem restitution.

4.8 Advances in Microbial Bioremediation

Bioremediation is the technology that harnesses the natural ability of living
organisms to breakdown toxic chemical materials in the environment. Traditionally,
the remediation of pollutant-contaminated soils was done by excavating and
transporting the contaminated soil off-site for treatments such as thermal alkaline
dechlorination, incineration, solvent extraction, or landfilling (Campanella et al.
2002). But because of the possible damages, cost implications, and the extent of
contaminations in the environment, the method is considered cumbersome, rather
cost-effective approaches based on plants and microbes are being developed
(McCutcheon et al. 1995). Living organisms are constantly faced with the challenges
of toxic chemical contamination from allelochemicals (natural toxic chemicals) or
xenobiotics (man-made toxic chemicals) (see Tables 4.1 and 4.2), leading to
supposedly avoidable environmental deterioration. These contaminations could
sometimes result from intentional disposal or unintentional discharge due to the
pressures of expanding societal development (Srivastava et al. 2014; Van Aken et al.
2010). The bioaccumulation of heavy metals and its toxicity on animals, humans,
plants, and microbes constitute a global concern for the health and safety of the

Table 4.1 Ranking of
substances that pose
significant threat to human
health due to their toxicity
and threat of exposure
according to the US
Department of Health and
Human Services (2015)

Rank Substance

1 Arsenic

2 Lead

3 Mercury

4 Vinyl chloride

5 Polychlorinated

6 Benzene

7 Cadmium

8 Benzo(a)pyrene

9 Polycyclic Aromatic Hydrocarbons (PAHs)

10 Benzo(b)fluoranthene

11 Chloroform

12 Aroclor 1260

13 DDT, P,P

14 Aroclor 1254

15 Dibenzo(a,h)anthracene
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environment (Mani and Kumar 2014). Bioremediation is the widely practiced
approach for the natural attenuation of chemical contaminants of human and envi-
ronmental health concerns (Abhilash et al. 2012; Fester et al. 2014); and the methods
often focus on the use of either single microbial species, single microbial gene,
microbial consortia, or interactions such as in phytoremediation (Fester et al. 2014).

The biodegradation of these pollutant materials in the soil is well enhanced in the
rhizosphere. Root exudates are released to encourage the rapid proliferation of
microbial biomass which in turn affects the growth of the plant (Kloepper et al.
1989). The consequence of the nutrients released as exudates from the plant root is
the elevation in microbial concentration in the root environment compared to the
nearby vicinity. For bacteria, the population in the rhizosphere is often 10- to 1000-
fold higher compared to the population in the soil vicinity. The degradative potential
of some rhizosphere microbes enables them to degrade (rhizodegradation or
phytodegradation) organic or inorganic pollutants in the vicinity (Kuiper et al.
2004). In dealing with contaminants in the environment, microorganisms utilize
them as sources of carbon and energy via co-metabolism with any suitable
substrates. For example, the carbon material exuded from the plant root plays a
significant role in the co-metabolism of certain pollutant materials. Under this
condition, certain electron-donating contaminants get oxidized under both aerobic
and anoxic conditions. Additionally, halogen-containing (halogenated) organic
compounds can function as terminal electron acceptors to support
de-halorespiration in microbes, or they are de-halogenated for lack of enzyme
specificity during the co-metabolism processes. However, these organic
contaminants (growth-supporting and co-metabolized) can be broken down to

Table 4.2 List of common environmental contaminants

Type of contaminant Example

Metals and metalloids Cr, Ni, Cd, Hg, Pb, Mn, etc.

Petroleum
hydrocarbons

Benzene, toluene, hexane, naphthalene, xylenes, etc.

Organic pollutants Dioxins, aldrin, chlordane, dieldrin, heptachlor, endosulfans, toxaphene,
chlordecone, mirex, PCB, HCB, DDT, PCDF, etc.

Organophosphate
insecticides

Dimethoate, parathion, chlorpyrifos, dichlorvos, phenthoate, parathion-
methyl, phorate, etc.

Herbicides Atrazine, 2,4-D, glyphosate, simazine, etc.

Carbamate
insecticides

Carbofuran, aldicarb, carbaryl, aminocarb, methomyl, fenoxycarb,
methiocarb, etc.

Radionuclides Uranium, plutonium, thorium, cesium, strontium, etc.

Nanoparticles Carbon nanotubes, metal phosphates, TiO2, SiO2, aluminosilicates,
fullerenes, ZnO nanoparticles, silver nanoparticles, etc.

New and emerging
pollutants

Antibiotics, anti-inflammatories, antiepileptics, analgesics, lipid
regulators, psychostimulants, diuretics, beta-blockers, cosmetics,
disinfectants, plasticizers and phthalates, antidepressants, paint
additives, wood preservatives, etc.
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yield carbon dioxide and water (Fester et al. 2014). Table 4.2 shows the common
environmental contaminants, which includes inorganic as well as organic sources.

Fungi are endowed with the capacity to break down environmental organic
pollutants in order to alleviate the environment from the risks commonly associated
with these chemical contaminants either through structural modifications or
facilitating their bioavailability for degradation (Harms et al. 2011). During plant-
fungal symbiotic interactions, ectomycorrhizae (ECM) are known to demonstrate
high levels of efficiency in the degradation of chemical contaminants. For example,
chemicals such as the explosive, 2, 4, 6-tinitrotoluene (TNT), polycyclic aromatic
hydrocarbon (PAH), and certain chloro-aromatics have been reported to be success-
fully degraded by axenic cultures of ECM. However, AMF, though are less studied
for bioremediation purposes, possess the ability to scale up the dissipation of atrazine
and PAH in soils (Harms et al. 2011). A few investigations have shown the ability of
AMF to colonize plant roots and elevate PAH uptake by a plant via its roots (Gao
et al. 2010; Sun et al. 2012). Nevertheless, not all mycorrhizal interactions are
capable of enhancing pollutants degradation during phytoremediation (Joner et al.
2006). However, endophytic fungi have also been implicated as beneficial agents of
pollutants degradation, through efficient removal of chemical contaminants in soils
(Cruz-Hernández et al. 2013). During phytoremediation, endophytic fungi also
metabolize and detoxify plant defense materials secreted around the root environ-
ment, as well as express enzymes with efficient specificity for contaminants degra-
dation (Zikmundova et al. 2002).

Microbial biodegradation has mostly been practiced as an effective biotechno-
logical approach for environmental restitution (Biswas et al. 2015; Srivastava et al.
2014). The application of microbes for the degradation of environmental
contaminants was due to the ability of microbes to acclimatize and proliferate at
environmental extremes. However, these adaptations should not be seen only at the
level of the microbial cells but also at the level of enzymes secreted and the
metabolites released in these extreme environments (Srivastava et al. 2014).

Remarkable advances have been made in biotechnological techniques for biore-
mediation of contaminated ecosystems. Approaches like the use of renewable plant,
live and dead microbial biomass, immobilization in the roots of plants (phyto-
stabilization), synthesis of certain minerals by biological systems
(bio-mineralization), uptake, translocation and concentration of metals or organic
pollutants on plant tissues (hyper-accumulation), stimulation for increase in micro-
bial population (bio-stimulation), stimulation of algal bloom (cyano-remediation),
cultivation of crops in contaminated ecosystems (dendro-remediation), stimulation
of fungal proliferation (myco-remediation), and stimulation of gene expression for
remediation of contaminants (geno-remediation) (Mani and Kumar 2014). Con-
certed integration of these advances with the existing traditional approaches will
greatly enhance effective ecosystem restitution.
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4.9 Advances in Phytoremediation

The technology that employs plants and their microbial symbionts for the treatment
and restoration of groundwater and contaminated soils is referred to as
phytoremediation. This technology relies heavily on the performance and
contributions of plant-associated microbes to achieving desired results (Van Aken
et al. 2010). The idea of applying phytoremediation technology for environmental
restitution was conceived some decades ago when plants were found to possess the
ability to metabolize certain toxic pollutants such as benzopyrene and 1,1,1-
trichloro-2,2-bis-(40-chlorophenyl) ethane (DDT) (Castelfranco et al. 1961). The
ability of plants to metabolize toxic chemical contaminants has been likened to the
capability of the mammalian liver to metabolize and detoxify injurious chemicals, a
phenomenon referred to as “green liver” for plants (Coleman et al. 1997;
Sandermann 1994; Van Aken 2008). Although phytoremediation is considered as
an efficient technology for the degradation of chemical contaminants, the difficulty
surrounding its extensive large-scale applications for the restitution of contaminated
fields negates its known significance (Eapen et al. 2007).

Plants determine to a large extent the diversity of a microbial community of
highly contaminated soil. They possess elaborate enzyme systems that enable them
to degrade contaminating organic pollutants. However, the driving force behind
phytoremediation of organic contaminants may largely be the symbiotic microbes
with which they coexist (Fester et al. 2014; van Loon 2016). On the contrary, plants
lack the required catabolic machineries for total metabolism of organic pollutants of
high recalcitrance (Eapen et al. 2007); nevertheless, the degradation of chemical
pollutants around the root environment may be by enzymes secreted as natural
defense mechanisms against allelochemicals (Gerhardt et al. 2009). Plant roots
produce certain substance generally referred to as root exudates; and the
phytoremediation of organic compounds occurs around the root environment
because of the high turnover rate (Gerhardt et al. 2009). These are organic metabolite
substances released by plant roots as critical metabolic components during the
developmental stages of the plant. These organic chemicals play some critical
roles in phytoremediation by enhancing the adjustment and survival of plants
under stressed conditions by way of allelopathy or detoxification. The organic acid
components of root exudates are good sorption vehicles of metals for enhanced
solubility, bioavailability, and mobility in the soil (Luo et al. 2014a, b; Ma et al.
2016). Oxalic and citric acid components of root exudates of Echinochloa crus-galli
can function as effective chelating agents which promote effective translocation and
bioavailability of heavy metals (Pb, Cu, and Cd), signifying their importance in
phytoextraction (Kim et al. 2010). The formation of metal complexes was observed
during the release of oxalate (a low molecular weight organic acid) by mycorrhizal
interactions with Scots pine seedlings which facilitated metal immobilization
(Johansson et al. 2008). However, not all organic chemicals of the plant root
exudates exert effects on the bioavailability or translocation of metals within the
rhizosphere (Zhao et al. 2001).
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Some endophytes are heavy metal resistant and effective degraders of
contaminants. The use of endophyte-facilitated phytoremediation has long been
reported as a viable technology for in situ restoration of contaminated soils. The
effectiveness of the endophytes in aiding phytoremediation is attributed to their
resistance to heavy metal toxicity, their ability to alter metal uptake and accumula-
tion, and also their growth-promoting capability (Li et al. 2012). Organic pollutants
such as the TNT explosives are successfully degraded by naturally occurring
bacterial endophytes (Van Aken et al. 2004). For example, a genetic construct of
an endophytic strain of Burkholderia cepacia bearing the plasmid pTOM from a
strain of the same species, known for colonizing plant roots, was able to successfully
degrade toluene. The genetically modified endophyte neutralized toluene
phytotoxicity with less amount evatranspirated (Barac et al. 2004). Similarly, min-
eralization of toluene occurred when Populus trichocarpa and Populus deltoides
were treated with separate toluene-degrading strains of B. cepacia (Taghavi et al.
2005). Phytoremediation has been applied in constructed wetlands (water-logged
soils in basins) for the management of organic contaminants (Vymazal 2011), as
well as for the elimination of pollutants from groundwater (Seeger et al. 2011).
Phytoremediation in comparison with other remediation approaches confers
advantages such as low cost of establishment and maintenance and less or no
negative impact on the environment, enabling carbon sequestration and its utilization
for biofuel production as well as providing the ecstatic beauty of green technology
(Gerhardt et al. 2009; Van Aken 2008). However, the technology is faced with
drawbacks such as the slow rate of degradation and the inability of plants to achieve
complete metabolism for lack of established biochemical machineries required for
mineralization of pollutants (McCutcheon et al. 1995). Because plants are autotro-
phic in nature, phytoremediation is capable of ensuring the return of accumulated
chemical contaminants into the ecosystem upon death of the plant that can be
evaporated into the atmosphere or be transferred down the food chain putting stress
on the health of man and the ecosystem (Arthur et al. 2005; Eapen et al. 2007; Pilon-
Smits 2005). The time length required for a plant to attain maturity also forms an
important drawback to the phytoremediation technology (McCutcheon et al. 1995).

4.10 Relevance of Plant-Microbe Interactions to Agroecosystem

Plant growth-promoting microorganisms (PGPMs) confer better advantages over
chemical conditioning for phytoremediation. This is because the metabolites they
produce are easily biodegradable and of less toxicity (Rajkumar et al. 2012). Metal-
resistant PGPMs have been evaluated for tendencies toward enhanced plant growth
and development, reduced metal toxicity, as well as immobilization, mobilization,
and transformation of metal contaminants in the soil (Rajkumar et al. 2012).
Arbuscular mycorrhizal fungi (AMF) occurring in a heavy metal-contaminated
environment have demonstrated the ability to enhance plant growth (Orłowska
et al. 2013) and modification of the soil pH to affect metal availability (Rajkumar
et al. 2012), improve nutrient and mineral uptake (Guo et al. 2013), influence metal
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translocation (Jianfeng et al. 2009), and affect induced metal toxicity (Meier et al.
2011). The AMF are important ecological organisms found in obligate symbiotic
interactions with the roots of plants in the terrestrial ecosystems. During interactions,
plant supplies the needed carbon for fungal cell development as well as benefit from
enhanced nutrient uptake and resistance to abiotic stress factors and phytopathogens
(Smith and Read 2010). AMF possess the ability to influence ecological community
processes and plant community dynamics through the distribution of essential
resources such as carbon (C), nitrogen (N), and phosphorus (P) required for effective
interactions (Rashid et al. 2016; Smith et al. 2011). In P-deficient soils, AMF are able
to facilitate a large supply of P for uptake by the plant roots (Cavagnaro et al. 2015)
and liberate other essential (macro and micro) nutrients such as N, magnesium (Mg),
potassium (K), zinc (Zn), and copper (Cu) from the ores or less soluble forms (Smith
and Read 2010). AMF external hyphae have also been shown to liberate about 10%
of K, 25% of N and Zn, and 60% of Cu (Hodge and Storer, 2015). Certain AMF
members such as Glomus mosseae, G. caledonium, and G. intraradices enhance the
performance of plant under drought and salt conditions (Hashem et al. 2015; Ortiz
et al. 2015) and help to remedy heavy metal-induced stress (Zhipeng et al. 2016;
Zong et al. 2015).

Plant growth-promoting rhizobacteria (PGPR) and mycorrhizal fungi are effec-
tive at promoting plant growth and development even in stressed environments
(Bach et al. 2016; Nadeem et al. 2014; Singh 2015; Prasad et al. 2015). During
interactions with their plant counterparts, the PGPR play three fundamental roles:
(1) synthesizing essential compounds, (2) enhancing plant nutrient uptake, and
(3) promoting plant defense against disease and its etiological agents (Hayat et al.
2010). The growth promotion and development of plants can occur through direct or
indirect mechanisms based on the interactions involved. PGPR can also initiate
indirect inhibition against phytopathogens by producing cell wall-degrading
enzymes (β-1,3-glucanases and chitinases) that act against fungi and can also
produce hydrogen cyanide for toxicity against intruding pathogens. The direct
plant growth promotion mechanisms can be mediated by plant-associated PGPR
via the production of plant growth hormones (such as gibberellins, auxins,
cytokinins, abscisic acid, and ethylene), indole-3-acetic acids (IAA), or indole-3-
ethanol. Some PGPR are able to hydrolyze the ethylene precursor
1-aminocyclopropane-1-carboxylate (ACC) into ammonia and α-ketoglutarate
which enhance root development by regulating the concentration of ethylene in
the rhizosphere. They can also facilitate organic phosphates and nutrient mineraliza-
tion, improve soil aggregation and structure, and elevate the organic matter content
of the soil (Bhattacharyya and Jha 2012; Hayat et al. 2010; Kurepin et al. 2015; Ma
et al. 2016; Nadeem et al. 2014). The soil aggregation and structure are also
improved by AMF due to the production of glomalin, an insoluble glycoprotein
(Gadkar and Rillig 2006) which functions to stabilize the soil (Rillig et al. 2003;
Sharma et al. 2017).
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4.11 Plant-Microbe Interactions in Management
of Phytopathogens

Plants basically defend themselves from pathogen invasion through the production
of antimicrobials, phytoalexins, hydrolytic enzymes, hypersensitive reactions, and
defense barriers such as lignin and suberin polymers (González-Teuber et al. 2010).
Other defense mechanisms against pathogens include production of certain defense
proteins and secondary metabolites (Ashry and Mohamed 2012; Castro and Fontes
2005). The phytohormone auxin apparently plays an important role in defense
against phytopathogenic bacteria (Spaepen and Vanderleyden 2011). In the event
of attack by phytopathogens, the plant immune system is elicited by pathogen-
derived molecules produced by certain functional membrane receptors. Immune
response can also be elicited through direct or indirect pathogen effector protein
molecules when they interact with the nucleotide oligomerization domain (NOD)-
like cytoplasmic receptors of a plant host. Similarly, the reorganization of the host
skeleton and secretory functions is another principal approach to plant immune
response (Spanu and Panstruga 2017). The microbial partners of the association
are also vital at ensuring plant health and viability. Other than promoting plant
growth through phosphate solubilization, nitrogen fixation, and production of ACC
deaminase and phytohormones, the microbial partners facilitate antagonistic
response through the production of substances such as siderophores, hydrolytic
enzymes, and a spectrum of antibiotics (Bach et al. 2016; da Costa et al. 2014),
outcompeting the phytopathogen or its physical displacement (Glick and Bashan
1997). The bacterial species such as Paenibacillus riograndensis, Bacillus cepacia,
and B. mycoides extensively demonstrate defining biocontrol features such as
motility, root colonization, production of biosurfactants, antifungal metabolites,
and hydrolytic enzymes (which degrade cell walls of invading phytopathogens)
(Bach et al. 2016). For the management of phytopathogens, mycorrhizal fungi
play principal role in maintaining ecological balance for improved ecosystem viabil-
ity. Plant-AMF interactions have been beneficial in the reduction of soil-borne
phytopathogens. The AMF, G. intraradices and G. mosseae, enhanced nutrient
uptake in wheat plant, resulting in improved tolerance against pathogens (Bach
et al. 2016). Besides, the high presence of fungal biomass colonizing plant roots is
highly beneficial in the aspect of competition with phytopathogens. These
interactions have been perceived as the mechanism by which phytopathogens
abundance is abated by AMF in the rhizosphere (Vimal et al. 2017).

Plant growth hormones are essential ingredients of plant-microbe interactions
toward pathogen management (Chagnon and Bradley 2015). The organic
compounds exuded from the rhizosphere of tomato AMF (involving
G. intraradices and G. mosseae) were reported to be possibly modified by AMF
to inhibit the phytopathogen, Phytophthora nicotianae (Lioussanne et al. 2009). The
application of the AMF, G. mosseae, for biocontrol activity against nematodes has
been reported (Vos et al. 2012). The fungus demonstrated systemic resistance to two
nematode species Pratylenchus penetrans and Meloidogyne incognita which were
found in association with the tomato Lycopersicon esculentum (Table 4.3). The
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Table 4.3 Studies on plant-microbe interaction for the management of phytopathogens

Microbe Plant host Pathogen Effect Reference

G. mosseae,
G. intraradices

Lycopersicon
esculentum

Phytophthora
nicotianae

Enhanced plant
resistance via
modification of
exuded root
substances

Lioussanne
et al. (2009)

T. harzianum,
G. mosseae

Nicotiana
tabacum

R. solanacearum Improved
systemic
resistance,
nutrient uptake,
and biomass

Saifei Yuan
et al. 2016

G. mosseae Lycopersicon
esculentum

Pratylenchus
penetrans,
Meloidogyne
incognita

Inhibited
phytopathogenic
nematodes
infection

Vos et al.
(2012)

G. mosseae,
G. intraradices,
G. clarum,
Gigaspora
gigantea,
G. margarita

Phaseolus
vulgaris

Fusarium solani Enhanced
nutrients uptake,
phenolic content,
and activities of
defense-related
enzymes
resulting in
decreased

Al-Askar
and Rashad
(2010)

G. mosseae,
G. intraradices,
G. claroideum,
G. geosporum,
G. etunicatum

Senecio vernalis,
Senecio
inaequidens,
Inula conyza,
Conyza
Canadensis,
Solidago
virgaurea,
Solidago
gigantea

Pythium ultimum Promotion of
plant growth and
pathogens
inhibition

Del Fabbro
and Prati
(2014)

G. clarum,
T. harzianum

Helianthus
tuberosus

Sclerotium rolfsii Reduced
incidence of the
disease, southern
stem rot

Sennoi
et al. (2013)

G. mosseae Hordeum
vulgare

Gaeumannomyces
graminis

Formation of
high mycorrhizal
colonization
network that
inhibited root
infection

Khaosaad
et al. (2007)

G. monosporus,
G. clarum,
G. deserticola

Phoenix
dactylifera

Fusarium
oxysporum

Reduced
incidence of
disease,
improved plant
growth, and
alters defense-
related enzymes
activity

Jaiti et al.
(2007)
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resistance induced by the mycorrhizal fungus was determined by the significant
depreciation of the nematode species around the roots, 45% in the case of
Meloidogyne incognita and 87% for Pratylenchus penetrans (Vos et al. 2012).
Similarly, when T. harzianum-amended bioorganic fertilizer (BOF) or the AMF
G. mosseae were separately applied in the rhizosphere of the plant, remarkable
decrease occurred in the incidence of tobacco bacterial wilt (TBW) caused by
Ralstonia solanacearum (Saifei Yuan et al. 2016). However, combined application
of the mycorrhiza gave the highest inhibition of the pathogen. This could infer that
the greater the mycorrhizal complexity, the more robust the benefits derived by the
plant host in terms of systemic resistance, improved nutrient, and biomass yield. See
Table 4.3 for some other important reports on the impact of plant-fungal association
against phytopathogens.

4.12 Plant-Microbe Interactions for Enhanced
Phytoremediation of Contaminants

Over the years, soil pollution by heavy metals has been tremendously amplified
through increased anthropogenic activities such as urbanization, industrialization,
and exploration. These activities are often characterized by inadequate waste
disposals resulting in heavy metal pollution of agriculture soils and distortion in
the functioning of the ecosystem and its food chain, effects on human and animal
health through possible bio-magnification (McMichael et al. 2015; Zhipeng et al.
2016). Plants which grow in soil with high levels of metal contamination are
naturally endowed with diverse microbial partners that tolerate metal contamination
and also remedy the soil environment for plant growth (Rajkumar et al. 2012). Most
vascular plants enter into a beneficial mutual relationship with mycorrhizal fungi for
increased nutrient yield and its uptake (Hashem et al. 2015), a relationship which
benefits the agroecosystem in the following ways: (1) enhanced nitrogen fixation in
the rhizosphere (Krapp 2015), (2) osmoregulation of the rhizosphere environment
for improved productivity, (3) production of bioactive secondary metabolites
(Goicoechea et al. 1997), (4) increased phosphatase enzyme activity (Liu et al.
2015a, b), (5) enhanced photosynthesis (Hashem et al. 2015; Ruíz-Sánchez et al.,
2011), (6) elevated resistance against stress factors (biotic and abiotic) (Del Fabbro
and Prati 2014; Saifei Yuan et al. 2016), and (7) an improved metal detoxification
(Amir et al. 2013; Nadeem et al. 2014; Zong et al. 2015). However, the effectiveness
of these mechanisms remains a function of plant-AMF interactions and the plant and
soil factors (Nadeem et al. 2014). Mycorrhizae-assisted phytoremediation has been
applied for the restitution of contaminated soils for agriculture production purposes.
Hyper-accumulating plant AMF-assisted phytoremediation via phytodegradation,
phytoextraction, phytostabilization, phytovolatilization, and rhizofiltration (see
Fig. 4.1) has been employed for efficient restoration of contaminated soils based
on their unique abilities (Mohammad Miransari 2011). Fungal cell wall consists of
certain free radicals, amino acids, and other functional groups with free binding sites
to adsorb certain trace elements. The microbe-metal interaction enables the plant
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host to survive metal-contaminated soils (Vimal et al. 2017; Zhipeng et al. 2016).
Liu et al. (2015a, b) observed an increased P uptake and growth in the cadmium (Cd)
hyper-accumulator, Solanum nigrum, even under high Cd concentrations when
G. versiforme was inoculated, suggesting AMF enhancement of plant growth,
resistance to heavy metal toxicity, metal bioavailability, and uptake by plants.
Moreover, G. claroideum obtained from Cu-contaminated soil has been suggested
for the remediation of contaminated soils due to its ability to alleviate Cu toxicity
(Meier et al. 2012a, b). For ECM, the formation of fungal mantle and Hartig net is
essential for interaction with plant. The mycelia of the ECM fungus, Tricholoma
vaccinum, form a structure called the Hartig net on the root apoplast of the host,
Picea abies, which serves as the interface for the exchange of nutrients between the
plant and the fungus (Henke et al. 2015). Nutrients for uptake are transported via the
Hartig net and translocated unto the roots where they are released for uptake through
the aid of plant metal transporters (Luo et al. 2014a, b). ECMs play critical role in the
sequestration and detoxification of heavy metals from contaminated soils (Henke
et al. 2015), as well as the organic compounds exuded from plant roots (Meier et al.
2012a, b). Similarly, the growth and performance of the Japanese red pine, Pinus
densiflora, and the oak, Quercus variabilis, on copper mine tailings were attributed
to effective nutrient uptake when inoculated with ECM fungi, Pisolithus spp. and
Cenococcum geophilum (Zong et al. 2015). Thus, plant-microbe interactions are
essential for the biogeochemical cycling of metal contaminants and can be applied in
phytoremediation (Ma et al. 2016). Metal-stressed agricultural plants are capable of
producing certain compounds, LMWOAs such as malic, succinic, citric, and oxalic
acids which are essential at neutralizing metal phytotoxicity (Meier et al. 2012a, b;
Songhu Yuan et al. 2007). In the ecosystem, plants strive for adaptation, uptake of
nutrients, and growth when confronted with the challenge of pollution. The myriads
of organic compounds produced in interactions serve as essential drivers for
enhanced tolerance and resistance to metals or organic pollutants in agroecosystems.
Some of these organic compounds that can be harnessed and applied to sustain a
balance in the rhizosphere environment include organic acids, siderophores, metal
chelators, and bacterial biosurfactants.

4.12.1 Organic Acids

Organic acids are carbohydrate-based natural compounds which are usually
identified by the presence of carboxyl groups (Jones and Edwards 1998). Organic
acids form complexes with metal ions in the soil in order to make them bioavailable
for uptake by plants. The endophytic diazotroph Gluconacetobacter diazotrophicus
produced 5-ketogluconic acid, a gluconic acid derivative which enhanced effective
solubility of zinc compounds [ZnO, ZnCO3, and Zn3(PO4)2] (Saravanan et al. 2007).
Similarly, airborne bacteria isolated from the tannery surrounding air, such as a
strain of P. aeruginosa, effectively solubilized both zinc oxide (ZnO) and zinc
phosphate [Zn3(PO4)2] in the presence of glucose carbon source. The solubilization
of zinc compound by the bacterium was attributed to its ability to produce
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2-ketogluconic acid (Fasim et al. 2002). Delvasto et al. (2009) observed that
Burkholderia caribensis isolated from high-phosphorus iron ore demonstrated
high level of phosphate mobilization from the phosphate-rich ores. The mobilization
of phosphate by B. caribensis was possible due to its formation of dense biofilm and
production of gluconic acid and exopolymeric compounds (Table 4.4). Similarly,
rhizobacteria obtained from the rhizosphere of Sedum alfredii, a Cd/Zn hyper-
accumulator, were able to solubilize Zn and Cd. The mobilization of these metals
showed positive correlations with the production of organic acids such as tartaric
acid, formic acid, oxalic acid, acetic acid, and succinic acids (Li et al. 2010).
Mycorrhizal fungi are also able to secrete organic metal chelators into the rhizo-
sphere for enhanced metal mobilization (Martino et al. 2003). The mycorrhizal
strains of Oidiodendron maius were able to solubilize zinc compounds via the
production of malic and citric acids. Similarly, the soilborne entomopathogen,
Beauveria bassiana, produced oxalic acid molecules which enhanced the dissolution

Table 4.4 Microbial metabolites and their significance on heavy metals activity in contaminated
ecosystem

Metabolites of
microbial origin Microbe

Effects on metal transformation/
assimilation by plant References

Organic acids

2-Ketogluconic
acid

P. aeruginosa Enhanced solubility of ZnO and
Zn3(PO4)2

Fasim et al.
(2002)

5-Ketogluconic
acid

G. diazotrophicus Solubilize zinc compounds ZnO,
ZnCO3 and Zn3(PO4)2

Saravanan
et al. (2007)

Gluconic acids and
exopolymeric
compounds

B. caribensis Phosphorus mobilization Delvasto et al.
(2009)

Malic and citric
acids

O. maius Solubilize zinc compounds [ZnO,
ZnCO3 and Zn3(PO4)2]

Martino et al.
(2003)

Oxalic B. bassiana Solubilize Zn3(PO4)2 Fomina et al.
(2004)

Biosurfactants
Lipopeptide Bacillus spp. Elevated uptake of Cd into above

ground plant tissues
Sheng et al.
(2008)

Rhamnolipids P. aeruginosa Mobilization of Cu for uptake by
plants

Venkatesh
and
Vedaraman
(2012)

Siderophore

Pyochelin and
pyoverdine

P. aeruginosa Enhanced Pb and Cr
bioavailability and assimilation

Braud et al.
(2009)

Catecholate S. luteus,
R. luteolus, and
S. verrucosm

Production of various forms of
metal chelators for enhanced metal
bioavailability

Machuca
et al. (2007)

Desferrioxamine B
and C and
coelichelin

S. tendae F4 Facilitated increased Cu uptake Dimkpa et al.
(2009a, b)
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of pyromorphite and Zn3(PO4)2 during acidolysis (Fomina et al. 2004). In addition,
the fungus, A. brasiliensis, effectively mobilized large volumes of lead (Pb) and P
from pyromorphite due to its elaborate production of organic acids, making these
metals bioavailable for plant uptake. This feature substantiates the potential for the
application of A. brasiliensis in phytoextraction for ecosystem restitution. Also,
plant-associated microbes are known to secrete essential organic acids which pro-
mote plant root absorption of metal ions including Zn and Cd (Li et al. 2010;
Rajkumar et al. 2013), Cu (Chen et al. 2005), and Pb (Sheng et al. 2008).

Nevertheless, organic acids can either be neutral or negative in effects against the
mobilization of metals in contaminated environments (Rajkumar et al. 2012). For
instance, no significant mobilization of metals (including Cu and Pb) occurred in a
contaminated agricultural soil bio-augmented with the efficient organic acid-
producing strain of B. subtilis (Braud et al. 2006). As well, LMWOAs (tartaric,
oxalic, and citric acids) failed to facilitate the phytoextraction of Pb from
contaminated soil even when applied in high amounts (Evangelou et al. 2006).
The high rate of its biodegradation vis-à-vis the low mobility and bioavailability
of Pb may explain its failure.

Most plant-associated microbes produce siderophores, the iron chelator
molecules secreted in response to stress factors encountered in the rhizosphere
(Das et al. 2007). Iron is an essential nutrient required in almost all forms of life.
Other than few species of lactobacilli, all other microbes require iron as an essential
nutrient for growth activity (Neilands 1995). Iron basically occurs as Fe3+ under
aerobic conditions and as such can easily form insoluble hydroxides and
oxyhydroxides, making it less accessible to both microbes and plants (Rajkumar
et al. 2010). Bacteria secrete siderophores chelators which possess high affinity
constants for complexing iron molecules. Other than iron, siderophores are capable
of forming stable complexes with other heavy metals such as Cd, Al, Ga, In, Zn, and
Pb and also with radionuclides including Np and U (Kiss and Farkas 1998; Neubauer
et al. 2000). Siderophores have been classified based on solubility in water and
functional groups. Based on solubility in water, siderophores are classed into
extracellular and intracellular siderophores (Khan et al. 2009). As regards functional
groups, siderophores are classified into three groups, namely, the hydroxamates
(e.g., desferrioxamine B and C, ferrichrome, ornibactin, rhodoturolic acid, etc.),
catecholates (e.g., enterobactin, bacillibactin, and vibriobactin), and (α-hydroxy)
carboxylate (e.g., aerobactin) (Dimkpa et al. 2009a, b; Rajkumar et al. 2010). In
both Gram-positive and Gram-negative bacteria, the iron (Fe3+) component of Fe3+

siderophore complexed on the membrane is reduced to Fe2+ for onward delivery into
the cell through a gating mechanism that connects both the outer and inner
membranes. The reduction process can result in the siderophore being destroyed
or recycled (Ahemad and Kibret 2014; Rajkumar et al. 2010). Because siderophores
possess the ability to enhance metal solubility from their ores, microbes inhabiting
the rhizosphere are believed to impact greatly on the phytoextraction of heavy metals
(Rajkumar et al. 2010). The siderophores, pyochelin and pyoverdine, produced by
P. aeruginosa enhanced the bioavailability of Pb and Cr in the rhizosphere for easy
uptake by maize plant (Braud et al. 2009), while siderophores from a strain of
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Streptomyces tendae F4 significantly elevated the uptake of Cd by the sunflower
plant (Table 4.4) (Dimkpa et al. 2009a, b). This implies that bacterial siderophores
are essential organic substances that are capable of alleviating stress factors includ-
ing heavy metals from contaminated soils (Ahemad and Kibret 2014). Siderophores
have also been produced by mycorrhizal fungi (Goodell et al. 1997; Machuca et al.
2007). For example, hydroxamate and catecholate siderophores were produced by
the ECM fungi Suillus luteus, Rhizopogon luteolus, and Scleroderma verrucosum
isolated from Pinus radiata fruiting bodies (Machuca et al. 2007).

However, plants utilize different mechanisms for the assimilation of microbial
siderophores. These mechanisms include the direct uptake of siderophore-Fe
complexes, chelate and release of iron, or ligand exchange reaction (Ahemad and
Kibret 2014; Schmidt 1999; Das et al. 2007). For instance, Crowley and Kraemer
(2007) described an iron transport process in oats that is siderophore mediated and
deduced that siderophores originating from rhizospheric microbes effectively deliver
iron to oats, which possess the mechanisms for Fe-siderophore complex utilization
in iron-deficient soil conditions. Additionally, the formation of Fe-pyoverdine com-
plex by P. fluorescens strain C7 was successfully assimilated by A. thaliana resulting
in elevated iron accumulation in the plant tissues and growth (Vansuyt et al. 2007).
Furthermore, Sharma et al. (2003) assessed the role of siderophores produced by
Pseudomonas strain GRP3 on the nutrition of Vigna radiata and observed a reduced
chlorotic symptoms and an elevated level of chlorophyll in the plant after 45 days.
However, chlorophyll a, chlorophyll b, and total chlorophyll content increased
significantly compared to the control. Nevertheless, there are emerging arguments
that the mobilization and uptake of metals in the rhizosphere are reduced by the
presence of siderophore-producing microbes (Rajkumar et al. 2012). For example,
Sinha and Mukherjee (2008) reported that the efficient siderophore-producing
P. aeruginosa strain KUCd1 caused a reduction in Cd assimilation in the tissues
of Brassica juncea and Cucurbita pepo. Moreover, Tank and Saraf (2009) observed
a reduced Ni uptake when a species of a Ni-resistant siderophore-producing species
of Pseudomonas was applied on chickpea plants. In addition, it has been observed
that siderophore-producing microbes do not facilitate any increased assimilation of
heavy metals by plants (Kuffner et al. 2010; Kuffner et al. 2008). The existing
contrasts on the role of siderophores on metal uptake by plants may be attributed to
variation in plants’ ability to effectively assimilate heavy metals, which indirectly
depends on the bioavailability of the metal, the plant type, and the system of heavy
metal transport to their tissues (Dakora and Phillips 2002; Jones et al. 2003).

4.12.2 Biosurfactants

Biosurfactants are amphiphilic molecules containing a hydrophilic head and a
hydrophobic tail. The hydrophilic moiety consists of mono-, oligo-, or
polysaccharides, peptides, or proteins, whereas the hydrophobic group consists of
saturated, unsaturated, and hydroxylated fatty alcohols or fatty acids (Rajkumar et al.
2012). Microbial biosurfactants can undergo complexation with heavy metals and
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their ions on the surface of the soil. The formed complex enables metal desorption
from the soil matrix into readily soluble and bioavailable forms for plant uptake.
Evidence shows that biosurfactant-producing microbes are capable of elevating
metal mobilization in contaminated soils (Juwarkar and Jambhulkar 2008; Sheng
et al. 2008). Biosurfactant rhamnolipids from P. aeruginosa have been shown to
efficiently remove 71% and 74% of Cu from contaminated soil with initial Cu
concentration of 474 and 4484 mg kg�1, respectively, when applied at 2%
(Venkatesh and Vedaraman 2012). Thus, biosurfactants can be applied as a cost-
effective, environment-friendly, and specific metal bioremediation alternative to
conventional chemicals. Also, live cells of biosurfactant-producing strain of Bacillus
sp. significantly enhanced the mobilization and uptake of Cd from the contaminated
soil compared to the control soil with dead bacterial cells (Sheng et al. 2008).
Although existing studies reveal the significance of microbial biosurfactants on
metal bioremediation and uptake by plants, a more elaborate understanding of the
chemistry between plants and their biosurfactant-producing microbial partners is
desirable.

The application of plant-microbe interactions for ecosystem management is a
complex phenomenon. Both partners in the relationship employ diverse mechanisms
for adaptation, resistance, and persistence in the face of stress factors. Plants are
known to demonstrate resistance to metal contamination in agroecosystems through
various mechanisms, such as (1) active efflux pump system, (2) metal sequestration,
(3) biosorption and precipitation of metals, (4) metal chelate exclusion, and (5)
enzyme-catalyzed redox reaction (Ma et al. 2016). Other ways by which plant-
microbe interactions can be applied for the management of contaminated
agroecosystems include bioaccumulation/biosorption, bioexclusion, and
bioleaching.

4.12.3 Bioaccumulation/Biosorption

The role of the microbial partner in the plant-microbe interactions is enormous.
Bioaccumulation refers to the phenomenon of intracellular accumulation of metals
(Ma et al. 2016), whereas biosorption is defined as the adsorption of metals by
microbial cells through passive, metabolism-independent and active metabolic pro-
cesses (Ma et al. 2011). The bioaccumulation of metals is one significant way by
which associated microbes contribute to metal resistance. Two major mechanisms
through which these occur include biosorption (toxic metals being concentrated in
the biomass of nonliving microbial cell) and bioaccumulation (concentration of
poisonous compounds in the living microbial cell) (Ma et al. 2011; Rajkumar
et al. 2012). The process of bioaccumulation involves two principal stages, viz.,
metabolism-dependent biosorption (e.g., metal ion exchange, physical and chemical
adsorption, surface complexation, chelation, coordination, and micro-precipitation)
and metabolism-dependent active bioaccumulation (e.g., endocytosis, carrier-
dependent ion pumps, and metal assimilation and complex permeation) (Chojnacka
2010). Bioaccumulation processes in various microbes have been shown to reduce
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metal uptake and toxicity on their plant partners (Ma et al. 2011; Mishra and Malik
2013). More complex processes are required in bioaccumulation than in biosorption.
These involve metabolic processes of living cells such as extracellular precipitation,
intracellular sequestration, metal accumulation, and formation of complexes (Gadd
2004). Biosorption and bioaccumulation of heavy metals (Fe, As, Cr, Co, and Hg) by
living cells of B. sphaericus and biosorption by dead cells of the bacterium showed
that the living cells had higher degrees of biosorption and accumulation of these
metals than the dead cells (Velásquez and Dussan 2009). The disparity in the
biosorption and bioaccumulation levels of these metals was attributed to the lack
of active metabolic machineries in the dead cells. It has been shown that biosorption
of metals by microbial cells reduced uptake in plant. For example, inoculation of
Burkholderia sp. andMagnaporthe oryzae caused a reduction in the accumulation of
Cd and Ni in tomato plant (Madhaiyan et al. 2007). Similarly, reduction of Zn
accumulation occurred when a strain of Brevibacillus sp. was introduced in Trifo-
lium repens. The reduction in Zn concentration in the plant was traced to the
biosorption capability of the bacterium (Vivas et al. 2006).

Recently, Ma et al. (2015) reported that the Bacillus sp. strain SC2b demonstrated
extensive resistance to heavy metals such as cadmium (Cd), zinc (Zn), and lead
(Pb) by mobilizing high concentration of the metals from the soil through different
biosorption processes. Other than mobilization and biosorption of heavy metals, the
strain expressed some PGP features such as P solubilization, production of
siderophore and IAA, and utilization of 1-aminocyclopropane-1-carboxylate. How-
ever, no specific correlations exist between tolerance and biosorption of the metals,
chromium (Cr) and Cd, among the filamentous fungi, Rhizopus and Aspergillus,
isolates from metal-contaminated soil (Zafar et al. 2007). The mycelial network of
mycorrhizae can function to effectively inhibit heavy metal translocation to plant
tissues. A marked reduction has been observed in the translocation of Zn, Cd, and Pb
by the mycelia of the ECMF, Lactarius rufus, Amanita muscaria, and Scleroderma
citrinum with pine seedlings (Krupa and Kozdrój 2007). Metal biosorption by the
fungal mycelia was reflected in the reduction of metal concentrations. Although
plants and their associated microbial symbionts may vary in their tendencies to
enhance metal bioavailability and uptake, the proliferation, survival, and coloniza-
tion of the rhizosphere greatly affect the abundance of heavy metals in an environ-
ment and its accumulation in plants growing on such a soil. This is because
biological processes in the rhizosphere are capable of causing such alterations
(Rajkumar et al. 2012).

4.12.4 Bioexclusion

Bioexclusion mechanisms in microbes include the efflux pump system and active
transport process. The efflux pump system and the active transport mechanisms
responsible for ejecting toxic materials from microbial cytoplasmic enclosures are
critical components of resistance to metals (Ma et al. 2016). The exclusion of
inorganic metal ions through the microbial efflux pump system is a function of
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certain membrane proteins and the activity of ATPases, whereas ATPase efflux
system forms an essential component of active transport of some required metal
ions (Bruins et al. 2000).

4.12.5 Bioleaching

The solubilization of metals from ores in acid environments by certain group of
microorganisms is termed bioleaching. Acidophilic microbes are mainly responsible
for the bioleaching of metals from their ores most often resulting in acid mine
drainage (AMD) which causes severe negative environmental effects. Usually,
trapping of metal ions by metal chaperones and the efflux pump system are
recognized mechanisms employed by bacteria to resist high levels of metals in
contaminated environments (Navarro et al. 2013). Microbes, such as the iron-
oxidizing bacteria (Acidithiobacillus ferrooxidans and Leptospirillum) and sulfur-
oxidizing bacteria (A. thiooxidans, A. albertis, and A. caldus) (Wong et al. 2004),
thermophiles (e.g., Sulfobacillus thermosulfooxidans, Archaeans sp., S. brierleyi,
S. ambivalens, and Thiobacter subterraneus) (Kletzin 2007), heterotrophs
(Arthrobacter, Acetobacter, Pseudomonas, and Acidophilum), as well as fungi
(Fusarium, Aspergillus, Trichoderma, and Penicillium) (Mulligan and Galvez-
Cloutier 2003), are capable of bioleaching metals from their ores in sediments,
soils, and sludge. These microorganisms neutralize the ore’s phytotoxic effects on
plants through direct or indirect metabolic processes such as complexation, oxida-
tion, adsorption, dissolution, and reduction, respectively (Pathak et al. 2009). The
endowed potential of microbes to bioleach heavy metals is species dependent.
However, acidophiles are more efficient at bioleaching of metals from their ores
than their neutrophilic counterparts (Navarro et al. 2013). Heavy metals such as Cd,
Cu, Fe, Cr, Zn, and Pb were successfully bioleached by the acidophilic bacteria,
A. thiooxidans, under acidic conditions (Kumar and Nagendran 2009).

4.12.6 Oxidation and Reduction of Metals

The redox reaction pathway has been successfully exploited by some microbial
symbionts of plant to influence the bioavailability and mobility of heavy metals in
agricultural fields. The phytoextraction of metals from contaminated rhizosphere is
often a function of microbial metal oxidation. For example, sulfur-oxidizing bacteria
in the rhizosphere enable the mobilization of Cu and its uptake by the plant tissues
from a contaminated soil (Shi et al. 2011). This reflects the ability of the bacteria to
reduce the ambient pH within the rhizosphere by way of converting the reduced
sulfur into sulfate, to make the Cu ions bioavailable for uptake by plants (Rajkumar
et al. 2012). One other mechanism adopted by microbial plant symbionts is to
immobilize metals in the rhizosphere through reduction process (Rajkumar et al.
2012). For instance, metal-resistant strain of Cellulosimicrobium cellulans isolated
from a waste canal harboring industrial effluents exhibited remarkable reduction of

88 F. F. Umaru and C. I. Owuama



Cr under aerobic conditions. The bacterial strain reduced greatly the uptake of this
heavy metal by the chili test plant, through reducing the phytotoxic Cr (VI) to a
nontoxic Cr (III) within the rhizosphere (Chatterjee et al. 2009). Similarly, selenite-
resistant bacterium, Stenotrophomonas maltophilia, from the selenium hyper-
accumulator legume, Astragalus bisulcatus, efficiently reduced the toxic selenite
(IV) into the nontoxic elemental form Se (0) (Di Gregorio et al. 2005). These features
explain the processes utilized by microbes in the rhizosphere to either mobilize,
immobilize, or make bioavailable heavy metals that ordinarily could be of high
phytotoxicity. In addition, microbes in synergistic interactions have been jointly
applied to ameliorate heavy metal-contaminated agro-soils. The utilization of
Fe-reducing and Fe-/S-oxidizing bacterial consortia enhanced greater heavy metal
solubility than when separately applied for the same metal treatment (Beolchini et al.
2009).

4.13 Conclusion

Chemical contamination of soils and water is a serious environmental problem. The
application of physical and chemical remedial methods is limited by their high cost,
damages to microflora and microfauna in the soil, and potential creation of second-
ary pollution in the ecosystem. Thus, the need to consider solar-driven, eco-friendly
phytoremediation technology derives from the interaction of plant roots and
microbes to remedy hazardous chemical contaminations in agroecosystem. Bacterial
roots and symbiotic mycorrhizal interactions modify soil pH; affect metal availabil-
ity; improve nutrient and mineral uptake within the rhizosphere and plant growth-
promoting microorganisms (PGPMs), particularly metal-resistant PGPMs; and pro-
duce easily biodegradable metabolites important for nutrient and mineral uptake that
supports plant growth. Also, microbes contribute remarkably to phytoextraction of
metals from contaminated rhizosphere through microbial metal oxidation and extrac-
tion of heavy metals, removing and detoxifying the contaminants in the soil. As well,
biosurfactant-producing microbes and bacteria-secreting siderophore chelators are
particularly involved in bioleaching, redox reaction and solubilization, bioavailabil-
ity, and heavy metal mobility.

Plant exudates enhance root-microbes association and contribute to pathogen
management. Besides, the association of plant and arbuscular mycorrhizal fungi
boosts plant growth, resistance to heavy metal toxicity, and metal bioavailability and
uptake by plants as well as encourages soil phytoremediation via phytostimulation,
phytodegradation, phytoextraction, phytostabilization, phytovolatilization, and
rhizofiltration. Although phytoremediation is considered a relatively cheap,
eco-friendly technology for the restitution of contaminated fields, it is still
challenged by the difficulty surrounding its extensive large-scale applications.
Hence, further work is required for better understanding of the relationships
among plant root microbes, soil types, chemicals, and heavy metal contaminants
within the rhizosphere, so as to fully exploit the potential in phytoremediation of
agroecosystems. Therefore, it is important to develop phyto-hyper-accumulators and
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super microbial solubilizers for various soil types either by conventional breeding
techniques, other methods of hybridization (e.g., spheroplast fusion), or genetic
modifications (transgenic plants), to improve on desirable plant traits (such as
appropriate root exudates, efficient metal uptake, translocation, sequestration, and
high tolerance) and enhance their soil remedying capabilities.
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