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Abstract
Increasing water crisis across the globe, farmers are forced to use marginal quality
water for agricultural activities mainly for crop production. Marginal quality
water contains lots of contamination load, i.e. microbial population, heavy
metals; and caused a range of diseases through food chain contamination. The
long- term application of contaminated water accumulate significant amount of
heavy metals mostly in industrial regions as well as peri-urban area in developing
countries. Use of various phytoremediation technologies for the removal of
organic and inorganic pollutant from soil and water are used across the earth
boundaries. Among all, bioremediation is a cheaper and more viable technology
for the removal of contaminants from contaminated sites. Phytoremediation is a
viable, low cost and green technology having a slow process of metal remediation
and affecting by the climatic conditions of a particular region. In this regards, use
of soil microbial biomass for the decontamination of heavy metals and other
contaminated load from soils. The plant-microbe- modulated phytoremediation
enhancing the heavy metal remediation, detoxification and mediated the plant
nutrient dynamics in a sustainable manner. The soil organic matter decomposition
and biogeochemical cycles of plant nutrients are mainly governed by the
rhizospheric biomass of the soil. Microbial assisted phytoremediation is a holistic
novel approach for the remediation of contaminants. It can use for the location
specific contaminant, easy to operate, eco-friendly in nature. In this chapter,
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described the role and interaction effect of plant assisted microbes in heavy metal
removal from contaminated soils.

16.1 Introduction

Increasing the production from limited land is forced the farmers to over exploitation
of natural resources. These resources, natural resources, i.e. land, water are having its
optimum productivity levels and also observed decline rate in agricultural produc-
tivity. It is a clear indication of over exploitation of natural resources (Budnuka et al.
2015; Singh et al. 2017). Most of the developing countries are using poor quality of
resources with quantum growth in population (Dotaniya et al. 2016a, 2017c). This
situation will be worst in the coming year. A huge volume of industrial and
household effluent is generating and contaminating water bodies and land (Saha
et al. 2017a). Poor quality water is used for the cultivation of crops; accumulated
significant amount of metals in soil (Bingham et al. 1986; Dotaniya et al. 2014g;
Singh et al. 2016b) and reached to human and animal body via food chain contami-
nation (Hapke 1996; Fischer 2005; Rajendiran et al. 2015; Coumar et al. 2016a, b).
Heavy metals are toxic in nature and having an atomic density greater than 5 g cc�1

or atomic number more than calcium (Singh 2002; Emamverdian et al. 2015;
Rajendiran et al. 2018). In most of the cases trace metals (chromium-Cr, cad-
mium-Cd, arsenic-As, lead-Pb, mercury-Hg, selenium-Se, aluminum-Al; and essen-
tial plant nutrients zinc-Zn, copper-Cu, manganese-Mn) are causing various types of
malfunctions in biological system and extreme side caused death (Hapke 1991;
Dotaniya et al. 2014d; Lenka et al. 2016; Saha et al. 2017b). The toxicity depends
on the type and concentration present in ecosystems (Tchounwou et al. 2012; Saha
et al. 2017c). As per the guidelines issued by the Commission of the European
Community regarding the heavy metal permissible limit in dry agricultural soils,
i.e. Hg (1–1.5 mg kg�1), Pb (50–300 mg kg�1) and Zn(150–300 mg kg�1) (CEC
1986). In plants, poor growth with toxicity symptoms and in soil reduced the soil
biological diversity by the heavy metals (Singh et al. 2011). Application of Cr more
than 20 mg kg�1 reduced the germination, root and shoot growth in wheat (Dotaniya
et al. 2014a) and pigeonpea (Dotaniya et al. 2014c). Increasing concentration of Cr
reduced the C mineralization rate and enzymatic activities in Vertisol of central India
(Dotaniya et al. 2017d). The enzymatic activities are showing the good bioindicators
against reflecting the human disturbance in soil ecology (Hinojosa et al. 2004). It is
easy to measure soil quality via soil enzymatic activities in cheaper cost (Khan et al.
2007). These toxicity symptoms are well acknowledged by various researchers in
different ecosystems (Malley et al. 2006; Oliviera and Pampulha 2006; Wang et al.
2008; Saha et al. 2017c). Many researchers were described the heavy metal toxicity
in term of ED50 value, means the metal concentration that inhibited 50% reaction
rate of enzymes (Huang and Shindo 2000).
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Remediation of heavy metals from the soil for the sustainable crop production is a
demand of the present situation to combat food shortage for a burgeoning population
(Dotaniya et al. 2018c). Most of the countries across the world are more focusing on
safe utilization of poor resources for mitigating the food, fodder and related demand
(Emamverdian et al. 2015; Saha et al. 2017a). Use of different remediation methods,
i.e. physical, chemical and biological; among all, biological method is cheaper and
eco-friendly (Dotaniya et al. 2014d). Phytoremedition process using green plants for
removing heavy metals from soil water bodies. In which, plant performed various
process metabolic and physiological process to decontaminate or removal of process
(Singh and Fulekar 2012). Plant secreted a range of low molecular organic acids,
which degraded the toxic compounds, immobilized, convert toxic to non- toxic,
enhanced uptake are pattern of metals (Dotaniya et al. 2013a, b, d; Dotaniya and
Meena 2013). The plant also converted few metals into volatile compounds and
release into the environment (Razzaq 2017). In this line, plant associated micro-
organisms are also performing a valuable place in remediation of metals (Mandal
et al. 2017). Plant secreted organic compounds are the source of food for the
microbial population of soil. It enhances the microbial count and diversity in soil
and accelerates the remediation process (Dotaniya and Meena 2017). It also secreted
various types of plant growth promoting substances, and enhanced the growth of the
plant in adverse conditions. Plant secreted phytosiderophores are also enhancing the
Fe and Zn concentration in soil under deficiency conditions (Dotaniya et al. 2013a).
These situations are more favorable for the biological remediation of metals from
soil and water bodies. Microbes reduce the toxicity of metal by decomposition or
immobilizing the metals from the soil (Abou-Shanab et al. 2003; Seshadri et al.
2015). In this chapter, most of the microbial assisted phytoremedition mechanisms
are described for remediation of metal to enhance the sustainable crop production.

16.2 Heavy Metals Toxicity and the Environment

Heavy metals are metal and metalloid having the high atomic density and trace
concentration caused adverse effects on plant, animal and human system
(Table 16.1). In recent years, metal toxicity pays more attention towards public
health and its remediation from ecosystems. The metal toxicity rose due to geogenic
and anthropogenic origin and the second one playing more drastic effect on soil and
water contamination (SrinivasaGowd et al. 2010). The point source of metal toxicity
is from mining and extracting of metals, smelting, industrial use and foundries
(Fergusson 1990; Bradl 2002; He et al. 2005). Several ways contaminants affected
the soil-plant-human continuum on earth and caused toxicity symptoms. Environ-
mental contaminations deteriorate the quality of the environment and affect the
ecological process and services (Wenzel et al. 1999). Most of the contamination
due to atmospheric dry and wet depositions, soil erosion and leaching of heavy metal
ions, evaporation of metals via volatilization compounds, trace metal corrosion, auto-
mobile exhausts, sewage sludge application and direct contribution from the geogenic
origin of metals (Nriagu 1989; Khan et al. 2007; Yang et al. 2002, 2006; Kamal et al.
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2010). Increasing the application of metal contaminants in soil or water bodies
enhanced the metal concentration in a system. Chromium is the twenty-first most
abundant element in the earth’s crust, and one of the toxic metals in the environment
(Eliopoulos et al. 2013). Land and water pollution by Cr is a worldwide issue. In
Western Europe, 1,400,000 sites were affected by heavy metals, of which, over
300,000 were contaminated, and the estimated total number in Europe could be
much larger, as pollution problems increasingly occurred in Central and Eastern
European countries specially Cr pollution. In the USA, there are 600,000 brown fields
which are contaminated with heavy metals and need reclamation (Bahafid et al. 2013).
In India, Cr pollution emerged as a challenge to remediate it. It mainly occurs in
tannery and paint industries locations. It occurs in nature in bound forms that constitute
0.1–0.3 mg kg�1 of the earth’s crust (Dotaniya et al. 2014d). It has several oxidation
states ranging from Cr (�II) to Cr (+VI). It exists predominantly in the Cr+3 and Cr+6

oxidation states (Dotaniya et al. 2017c). The most stable oxidation state of Cr is +III,
and under most prevailing environmental conditions Cr (VI) is rapidly reduced to Cr
(III) (Dotaniya et al. 2014d). The intermediate states of +IV and +V are metastable and
rarely encountered (Lokhande et al. 2011). Application of tannery industrial effluent

Table 16.1 Source and effect of heavy metals on human health

Metals Major source Effect on human health

As Geogenic process, smelting operations,
thermal power plants, agricultural inputs
(pesticides, fungicides)

It is having chemical structure similar to
phosphorus and affect the cell activities,
mediated ATP process, bronchitis, skin
allergy, poisoning

Cd Zn smelting, paint industries, e-waste,
welding, electroplating, pesticides,
fertilizers, batteries industries etc

Carcinogenic, renal dysfunction,
mutagenic, Ca imbalance, long-term
anemia, lung cancer, kidney damage,
gastrointestinal disorder, enzymatic
disorder

Pb Lead acid batteries, paints industrial
effluent,coal based thermal power plants,
automobile industries ceramics, bangle
industries, agricultural chemicals

More toxic to infants, poor development
of mental in children, damage nerve
system, long exposure caused liver,
kidney, gastrointestinal cancer, cardio-
vascular disease

Hg Chlor-alkali industries effluent,
pesticides, fluorescent lamps, batteries,
medical waste, paper industry, electrical
appliances.

Fatigue, hair fall, tremors, memory loss,
damage kidney and lungs, damage to
nervous system, protoplasm poisoning

Cr Leather industries, industrial coolants,
mining, wooden industries

Hair fall, vomiting, fatigue, skin
irritation, damage to the nervous system,
eye irritation, long exposure caused
cancer

Zn Agriculture fertilizers, sewage sludge,
smelting, electroplating, brass
manufacture, plumbing

Vomiting, damage to nerve system, skin
irritation, weakness

Cu Cu mining, pesticide formulations,
sulphuric acid plant, chemical industry,
metal piping, smelting operations

Brain, liver and kidney damage, chronic
anemia, stomach irritation, fatigue
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for crop production accumulated Cr concentration 25–30 times more compared to tube
well irrigated fields (Dotaniya et al. 2014g). Such types of studies showing the metal
toxicity due to anthropogenic activities and its toxicity effect on soil and plant system.
Immobilization of Cr in the plant vacuole of plant roots are the main reasons of Cr
concentration higher in plant root than shoot (Oliveira 2012; Nematshahi et al. 2012).
Similar type higher concentration of Ni in soil reduced the uptake mechanism of Fe and
Zn; and showed chlorosis symptoms on leaves (Khan and Khan 2010). In plant, metal
toxicity affects the plant nutrient mineralization rate and release kinetics in soil and
ultimately reduced the plant growth (Singh et al. 2016a). Crop plant looks like brushes
and crop yield decline drastically. Heavy metal contamination reduced the soil enzy-
matic activities and carbon mineralization rate (Dotaniya et al. 2017d). Increasing
concentration of Cd (2 mg kg�1), in more than 100 mg kg�1 Cr contaminated soil;
reduce the Cr uptake in spinach crop (Dotaniya et al. 2017a). Zinc toxicity caused
induces chlorosis due to deficiency of Fe and Mn in plant (Sivasankar et al. 2012). The
deficiency and toxicity of a metal also affected by soil texture, organic matter, soil pH,
and concentration of other metals in soil (Bucher and Schenk 2000; Broadley et al.
2007; Aref 2011; Dotaniya et al. 2014d, 2017a). Most of cationic heavy metals are
more available in lower pH conditions (Dotaniya and Meena 2013). Higher concentra-
tion (150–300 mg kg�1) of plant essential Zn behaves like toxic metal and reduced the
plant growth (Yadav 2010).

16.3 Mechanism of Metal Tolerance in Plants

Application of heavy metals produced stress on plant and plant react adversely to
counter the negative effect of heavy metal. In this condition secreted various types of
secondary metabolites and avoid the harmful effects. It is difficult to measure the
signal transduction effect of a plant under stress conditions. Heavy metal toxicity
affected the plant physiological and biochemical process and reduces the growth and
yield. Singh et al. (2016b) described the toxicity of metals and the plant responds in
following ways:

1. Sensing of external stress stimuli.
2. Signal transduction and transmission of a signal information into the cell.
3. Triggering suitable precaution measures for counter the adverse effect.

Metal toxicity reduces the plant mitosis and root elongation process (Hossain
et al. 2012a, b; Thounaojam et al. 2012). Some of the metals are analogs of plant
essential nutrients, and plant uptake mechanism cannot identify the metal and reach
into plant parts (Sivasankar et al. 2012). To avoid the toxicity, the plant having self
mechanism and survive in contaminated soils in following ways:

16 Microbial Assisted Phytoremediation for Heavy Metal Contaminated Soils 299



16.3.1 Physical Barrier

A sophisticated and inter-related network of self defense mechanism in plant playing
a vital role to avoid metal negative effect under stress. Physical barriers are the first
line on defense mechanism, in which cell wall, trichomes, and various types of plant-
microbial associations are reducing the metal toxicity in plants (Hall 2002; Wong
et al. 2004; Harada et al. 2010). Most of the cases trichomes accumulated the heavy
metal orproducing the many types of secondary metabolites to detoxification of
metals in plants (Lee et al. 2002; Hauser 2014). If the metal pass through the physical
barrier and reached to a cell site, than biosynthesis of different cellular biomolecules
are acting as a potential heavy metal neutralizer. During the metal entry into the root,
and transfer to the shoot part (mostly in hyperaccumulators) and avoid the metal
toxicity by deposing metals in vacuoles (Fahr et al. 2013).

16.3.2 Uptake by Hyperaccumulators

Hyperaccumulator are those plants having higher capacity of metal absorption
without affecting growth activities (Ma et al. 2001). It has extraordinary capacity
to absorb the metal ion concentration from contaminated sites (Yang et al. 2002).
Nowadays plant based metal removal is not in practice due to slow process and
limited bioavailability of metals and greatly influenced by the climatic conditions of
the regions (Mandal et al. 2016). Hyperaccumulator plants are not accumulated
higher amount of metal in different part due to novel genes, but due to differential
expression of genes (Verbruggen et al. 2009). A complete mechanism of heavy
metal uptake by hyperaccumulator and non-hyperaccumulator are described in
Fig. 16.1. Most of the cases plant interact with the heavy metals and affected due
to, (1) absorption of plant nutrient, for example, some of the heavy metals are
analogs of essential plant nutrients As for P, and Cd for Zn; (2) direct interaction
with functional protein groups, i.e. sulfhydryl group (-SH); (3) generation of reactive
oxygen species (ROS), it damages the plant cell (DalCorso et al. 2013).
Sundaramoorthy et al. (2010) reported that Cr (VI) extended the cell cycle, and
leads inhibitor effect on cell division and reduced the growth of the paddy plant.
Later on, Yuan et al. (2013) evaluate the toxic effect of Cd and found that, it affected
the cell elongation and meristem zones by modifying the auxin distribution via
protein and reduce the primary root elongation process. Most of the cases toxic
metals affected the functions of each other metals in harmful ways in biological
systems.

16.3.3 Role of Metal Analog and Protein

Some of the metals having similar type of physico-chemical properties and plant
could not identify the essential plant nutrients or competitive environment reduce the
metal uptake by plants. Increasing the application of sulfur (S) reduced the uptake
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pattern of Se in Brassicaceae family plants (Galeas et al. 2007). Increasing concen-
tration of Zn reduces the uptake of Fe and Mn (Sivasankar et al. 2012); Ni toxicity
induces Zn deficiency in plants (Khan and Khan 2010). Increasing concentration of
Zn reduced the Cd uptake in T. caerulescens, due to control of ZIP gene on Zn
(Assuncao et al. 2010). The heavy metal uptake from the soil and transported to plant
parts via xylem with the help of various proteins, i.e. Heavy metal transporting
ATPases (or CPx-type, P1B-type), Natural resistance-associated macrophage
proteins (Nramp), Cation diffusion facilitator (CDF) family proteins, Zn–

Fig. 16.1 Mechanism of heavy metal uptake and defense mechanisms. (Adopted from Singh et al.
2016b)
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Fepermease (ZIP) family proteins, and MATE (Multidrug And Toxin Efflux) protein
family. All the proteins are having a specific role in metal tolerance by various
plants. The CPx-type ATPases involved in transportation of metal such as Cu, Zn,
Cd and Pb (Williams et al. 2000); whereas, P1B ATPases type protein regulates
metal tolerance and homeostasis in hyperaccumulators (Axelsen and Palmgren
1998). Similar type other protein like CDF involved in regulating cytoplasmic cation
activities (Maser et al. 2001).

16.3.4 Soil Enzyme Mechanism

Soil enzymes are the key factors for the determination of any anthropogenic distur-
bance in soil fertility. These are more sensitive to metal toxicity and affect the plant
nutrient dynamics in soil. Soil enzymes make a temporary complex with metal and
enhance the availability to plants (Segel 1975). Most of the cases in the soil, enzyme
inhibitor (reduce the reaction rate) and activators (increasing the reaction rate) are
found and determined the level of soil enzymes. The effect of metals on enzyme
functions are a complex mechanism and may also affected by soil (type of soil, pH,
EC, organic matter, texture), plant (metal bioaccumulation, transfer ratio, plant type
and cultivar), metal (type concentration, mode of action) and also by enzymatic
properties (type and sensitivity, structural inhibition) (Tabatabai 1994; Karaca et al.
2009, 2010, 2011; Dotaniya et al. 2017d, 2018a). The soil enzyme reaction rate
controlling by the inhibitor and activator is described in Fig. 16.2 (Voet and Voet
1995). Most of the cases, metal characteristics are playing a crucial role; however,
Cd affected more negatively than Pb due to its greater mobility and lower affinity
with soil colloids (Khan et al. 2007). Another study conducted by Shen et al. (2005)
found a negative correlation between Zn and Cd metals due to sorption and exchange
sites in the soil.

E+Activator Enzyme

E+Inhibitor

KmA

Vo

Km Kml [S]

Fig. 16.2 Effect of metal
toxicity on enzyme activity
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16.4 Mechanism of Metal Tolerance in Microbes

Microbes are the scavenger of contaminants and reduce the metal toxicity in soil
towards plants (Saha et al. 2017a). It is responsible for the nutrient dynamics in soil-
plant system that affects the soil to soil solution and also solution to plant-roots
movement/availability (Dotaniya et al. 2013c, 2014b, e, 2015, 2016a; Dotaniya and
Datta 2014). These are also responsible for plant growth regulators/promoters
secretion in plants under metal stress condition to protect them from the stress
(Dotaniya et al. 2016a). Immobilization of nutrients and metals from soil by
microbes is also widely accepted (Dotaniya et al. 2014f, 2016c). The researchers
are isolated specific type of soil microorganism for the degradation of toxic metals.
Microorganisms are omnipresent in nature and engage in nearly all biological
processes of life (Singh et al. 2016a). Metal toxicity occurs in any ecosystem by
either natural or anthropogenic enrichment or by both the means. Higher amount of
metals in the environment is harmful to microbes, plant, animal and human. Due to
increasing and enlarging area under urbanization and industrial activities, proportion
of metals use tremendously increased nowadays and resulted in higher accumulation
of metals in ecological habitats (Rajkumar et al. 2012). Occupation of metals in
native binding sites of microbial cells that is specifically for essential nutrients or
metals and through ligand interactions result in metal toxicity in microbes (Bruins
et al. 2000). For instances, Hg2+, Cd2+ and Ag2+are likely to bind with SH groups of
some sensitive enzymes and hinter the function of the enzymes (Nies 1999). But at
higher concentration whether be a essential or non-essential metals can damage the
membranes of microbial cell wall and interrupt the function of the cells by damaging
DNA structure and altering enzyme specificity (Bruins et al. 2000). However, some
of heavy metal resistant microbes are adaptive to heavy metal rich environments.
The possible mechanisms of metal resistance systems in microbes are identified and
are elimination through permeability barrier; enzymatic reduction; capturing and
sequestering in the cell (either intra- or extra-cellular means); active efflux pumps;
and diminution in the sensitive cellular targets to metal ions (Bruins et al. 2000; Nies
1999; Rensing et al. 1999). These mechanisms responsible for microorganisms to
overcome metal toxicity and help them function well enough in contaminated
environments (Dotaniya et al. 2018d). The energy-dependent active efflux of toxic
metal ions is mostly recognized in the largest group of metal resistance microbes.
Further, many plasmids and chromosomal responsible metal tolerance mechanisms
in bacteria have also been documented.

Biosorption of metals by the bacterial cells is mostly characterized by
non-enzymatic process such as, adsorption. Increasing the amount of crop residue
in the soil, provide the food material to soil biota that enhance the microbial
population and their diversity as well as activity and improve nutrient
bio-availability in the soil (Rajendiran et al. 2012; Dotaniya 2013; Dotaniya and
Kushwah 2013; Dotaniya et al. 2013b). Mineralization and release of various types
of C substrate during the decomposition of crop residue act as a biosorption for
metals in soil (Kushwah et al. 2014; Prajapati et al. 2014, 2016) and siliceous
material also provide immunity to crop plant (Meena et al. 2013). Polysaccharides
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and proteins associated with cell surface or extracellular surfaces are involved in
adsorption of metals and this is a non-specific binding process (Rajkumar et al.
2010). However, it can be, depending upon the microbial species, either active or
passive process and/or both. In addition to chitosan and glucans, chitin present in the
cell wall of microbes believed to be effective biosorbent. For instances, the cell walls
of fungi, yeasts, and algae, are also reported to be an efficient metal biosorbents.
Bioaccumulation of metals in microbial cells is an metabolic energy dependent
active process (Martino et al. 2003). Potential metal bioaccumulation mechanisms
in the bacterial cell membranes include carrier mediated transport, ion pumps and
channels, complex permeation, endocytosis, and lipid permeation. These
mechanisms are generally involved in transport of metals like Hg, Pb, Ag, Cd and
Ni. The bacterial detoxification of arsenic is often carried out through the chemios-
motic gradient and the intracellular As concentration can be reduced by the active
export mechanism through simple As3+ efflux systems (Rensing et al. 1999).
However this system is not involves in transport of As5+. Therefore, As5+ is
converted to As3+ by the arsenate reductase enzymes which enables microbes to
detoxify both the As species. Similarly, Pb resistance also based on metal ion efflux
system, i.e. through zinc and cadmium specific pumps in bacterial cells and also
Pb-phosphate precipitation within the cells of metal tolerant bacterial species (Nies
1999; Rensing et al. 1999). Microbial transformation of metals through oxidation
and reduction and methylation and demethylation also considered as important
resistance mechanisms in microbes. For example, microbes can acquire energy
through oxidation of Fe, S, Mn and As (Santini et al. 2000). On the other hand,
microbes during anaerobic respiration can convert the metals into its reduced state/
form through dissimilatory reduction. With this process metal can act as a terminal
electron acceptor. Oxyanions of As, Cr, Se and U are the terminal electron acceptors
used by the microbes during anaerobic respiration process (Turpeinen et al. 2002).
Moreover, reduction process performed by the microbes is not mainly linked to
respiration, but to impart metal resistance. Aerobic and anaerobic reduction of Cr6+

to Cr3+, Se6+to Se0, U6+to U4+ and Hg2+to Hg0 are generally carried out by the
microbes to detoxify them.

Biomethylation of metals becomes resulted in formation of volatile compound of
metal. In case of mercury, Hg(II) can be transformed into methylmercury by
different group of bacterial species (e.g. Bacillus sp., Clostridium sp., Escherichia
sp. and Pseudomonas sp.) and methyl mercury is volatile in nature, easily absorbed
and accumulated an also highly toxic Hg species. In the same way, As is transformed
into arsines, selenium is converted to to dimethyl selenide and Pb to dimethyl Pb
(Gao and Burau 1997; Pongratz and Heumann 1999; Dungan and Frankenberger
2000). In addition to above phenomenons, high concentrations of As, Cd, Cu, Co, Ni
and Zn are leached out from contaminated areas by acidophilic iron- and sulfur-
oxidizing bacteria (Groudev et al. 2001). Moreover, sulfate-reducing bacteria, on the
other hand, can precipitate metals into sparingly soluble metal sulfide compounds
through metabolic processes (Lloyd and Lovely 2001). In another study, the resis-
tance against copper by Pseudomonas syringe has been reported and it is mainly due
to the Cu accrual and compartmentalization in the cell’s outer membrane and the
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periplasm (Cooksey 1993). Either microbs can increase the bioavailability of metals
by solubilizing and mobilizing the insoluble metals become potentially toxic or
reduce their bioavailability by immobilization processes. These kinds of
bio-transformation processes of metals are major components of the metals biogeo-
chemical cycles to maintain the proper ecosystem functioning. The microbes
involved in metal decontamination processes can be further exploited in remediation
of contaminated environments.

16.5 Microbe-Plant-Metal Interaction

Plants and microbes are generally coexisting in nature at any given ecosystems and
they may symbiotic or compete with one another for their survival. Microbes and
plant root exudates play a major role in functioning of rhizosphere ecology and
influence the bioavailability of metals and nutrients in rhizosphere soil. Microbes
help in stimulating plant root exudation and the root exudates are generally rich in
carbon can be used as food and energy sources by microbes. Cohesive plant-microbe
associations can play a very important role in adapting to metal rich environments
can be focused further to advance microbe-mediated phyto-remediation. The metal
mobility and availability can be influenced and phytoremediation efficiency of plant
enhanced by root exudates through (1) proton (H+) release mediated change in soil
pH or formation of organo-metal complexes; (2) binding compounds present in the
cell (e.g., organic acids, phytochelatins, and amino acids); (3) influencing redox
potential of rhizosphere soil through enzyme mediated e� transfer and (4) enhanced
microbial activity in the rhizosphere (Sessitsch et al. 2013). In this connection, Kim
et al. (2010) have reported that translocation and bioaccumulation of metals are
significantly enhanced by citric and oxalic acid and suggesting that these acids can
be used as natural chelating agents for better phytoextraction. Further,
microorganisms particularly growth promoters (PGPMs) like some beneficial fungi
and bacteria can involve in reducing phytotoxicity of metal by indirectly improving
plant growth through stimulating defence mechanisms in opposition to
phytopathogens and directly through generation of growth promoting substances,
enzyme secretion and mineral nutrients solubilization of (N, P, K, Fe, etc.). Microbes
induce or enhance phytoremediation of plant by improving its biomass growth and
influencing metal availability and facilitate for bioaccumulation from soil -root and
translocation from root-shoot (Ma et al. 2013).

To recruit the beneficial microorganisms and to make better plant-microbe
interrelationship plant roots selectively exudates plant metabolites (organic
compounds) that are effectively signals bacteria and fungi for its association. Each
plant species has its characteristic group of associated microbes and able to link up
with them by selection from surrounding soil environments for creating its own root
microflora (Hartmann et al. 2009). This mechanism is directly associated with the
type and amount of root exudates produced as well as rhizosphere soil features. In
rhizospheric zone, microbes can establish proficient symbiosis with plants through
triggering host functional signals (chemotaxis and colonization) and plants can well
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communicate with their adjoining soil microorganisms by signals or root exudates
(Bulgarelli et al. 2013). Besides chemotaxis, rhizo-bacterial colonization can be
initiated by electric gradients (electrotaxis) created by plant roots believed to be a
possible mechanism (Lugtenberg and Kamilova 2009).

Presently, results from number of studies have revealed that beneficial microbes
mediate plants to acquire sufficient mineral nutrients (such as N, Ca, Fe, Mg, and P)
in metal contaminated soils, thus, establishment of highly developed and thriving
root system in the initial crop growth stages is highly advantageous in
phytoremediation of metal polluted soils (Ahemad and Kibret 2014). For instance,
N fixing bacterial groups like Rhizobium, free living bacterial species in rhizosphere
and endophytic bacteria can improve the soil fertility polluted areas resulted in
enhancing plant growth and N concentration in roots and shoots (Wani et al.
2007). Similarly, in zinc/lead mine tailings arbascular mycorrhizal fungi that absorb
and mobilize nutrients helped plant growth and nutrient uptake by leguminous trees
grown on the contaminated tailings (Harris and Lottermoser 2006). Moreover,
microbes transform highly insoluble metal sulphides to readily available form that
enables the hyper-accumulator plants to remove toxic metals from soil solution. This
will provide additional attractive options for microbes to improve metal resistance
ability per se (Sharma et al. 2000). Furthermore, siderophores and H+ are specifically
generated by soil microorganisms under iron (Fe) deficiency conditions. Of late the
role of siderophore producing microbes (SPMs) such as bacteria and fungi involved
in Fe acquisition of different plant species and related mechanisms behind their
promotion of Fe acquisition has been extensively studied (Gaonkar and Bhosle
2013). Even under stress conditions, phytohormones produced by plant associated
microbes such as IAA, cytokinins, GA, ABA and others, can govern the hormonal
balance in plants as a response to stress (Ullah et al. 2015; Ma et al. 2016). Also,
Arbascular mycorrhizal fungi colonization in the plant root zones also has construc-
tive effects on plant cell growth and division because of fungal hormones production
(Yao et al. 2005). The alteration in endogenous phytohormones levels are also
accountable for morphological changes encouraged by AMF inoculation.

Apart from the above beneficial mechanisms, soil microbes involve in initiation
of synthesis of ethylene inhibitors to support plant growth under stress conditions,
(Glick 2014), antimicrobial enzymes (Saima et al. 2013) and polysaccharides
(Naseem and Bano 2014). These play a major role and enable plants to overcome
or copeup with the negative impact of both biotic (fungi or harmful insects) and
abiotic stresses (such as waterlogging, drought, salt stress, and metals toxicity;
Fig. 16.3). Production of ACC deaminase by plant growth promoting bacteria is
one among the key traits which hydrolyses ACC, plant ethylene precursor, to NH3

and ketobutrate (Glick 2014). In spite of above, plant growth and biomass improve-
ment through root modification by inoculating efficient fungal and bacterial species
under compatible environment of plant-microbe-site combinations. This can be
envisaged through advanced biotechnological applications in phytoremediation. In
general, plant associated microorganisms can promote plant growth and develop-
ment by resorting to any one or more of the above mechanisms. For that reason,
PGPM can be effective utilized in stressful environments for phytoremediation of
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metals. Apart from inherent capabilities, the usefulness of PGPM for higher plant
growth is mainly associated with intimate interaction with host plant and soil
characteristics. However, in future, contribution of genes in relation to phyto-
beneficial traits and occurrence of preferential symbiosis needs to be studied
in-depth to harness the benefit of plant-microbe interactions.

16.6 Can Heavy Metal Uptake Mediated by Climate Change?

Climate change effect on crop productivity and water use efficiency are clearly
observed by the various researchers (Amrawat et al. 2013; Jajoria et al. 2014;
Meena et al. 2016, 2017b). In major crops, increasing temperature enhances the
respiration rate and reduces the crop yield (Dotaniya 2015; Dotaniya et al. 2018b).
This situation is more pathetic in tropical and sub-tropical countries like India, Sri
Lanka etc. (Kundu et al. 2013; Meena and Dotaniya 2017). Increasing the green-
house gases concentration in the atmosphere and elevated the temperature due to
more absorbance of shortwave radiations, generate global warming effect (Dotaniya
et al. 2017b; Meena et al. 2017a). Increasing the temperature slightly enhanced the
photosynthesis activity in temperate regions where temperature acts as a limiting
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Fig. 16.3 Pictorial outline of the plant-microbe-metal interactions for heavy metal decontamina-
tion of polluted soils
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factor (Bharti et al. 2017). Direct effects of climate change on heavy metal uptake by
the plant are even sparser (Wijngaard et al. 2017). Heavy metal update pattern
indirectly affected by the climate change effect. Increasing the root exudates as
low molecular organic acids mediated the availability of heavy metals in soil
(Dotaniya et al. 2016b). However, increasing the root exudates enhance the micro-
bial count and diversity in the soil. Increasing the microbe’s population accelerates
the decontamination process in the soil and reduces the toxicity. The soil enzyme
activities in soil, increase and decrease by the metal type, speciation, availability and
toxicity (Shen et al. 2005; Yang et al. 2006; Khan et al. 2007; Karaca et al. 2010).
Extracellular enzyme like phosphatases and dehydrogenase enzyme activities
accelerated the decomposition of organic matter (Bell et al. 2010; Dotaniya 2015)
and enhanced the metal availability in soil solution or appear toxicity in plants.
Dhillon et al. (1996a, b) reported that under elevated CO2 concentration extracellular
enzymatic activities increased due to microbial demand for N and P. Rate of
microbial immobilization can also increase (Mikan et al. 2000) or decrease
(Berntson and Bazzaz 1997) with elevated CO2concentration. Increasing global
precipitation accelerated the metal mobility via biogeochemical cycles and also
enhances the metal availability and uptake by plants (Carillo-Gonzáles et al. 2006;
Reeder et al. 2006). These processes also accumulate heavy metals in soil and
sediment, due to sorption mechanisms (Foster and Charlesworth 1996). Increasing
the precipitation rate can dissolve the heavy metals from contaminated area and
transported into a new region; it acts as a base for metal uptake. Larger amount of
heavy metals moved from various parts of contaminated sites to uncontaminated
areas and accumulate in the upper soil furrow (Rozemeijer and Broers 2007; Bonten
et al. 2012). Use of marginal quality water is an alternative water management
strategy for combating the adverse effect of climate change. Increasing wastewater
use in water scarceareas for the cultivation of crops in the developing countries is
more prone to contamination of toxic metals via food chain contamination (Meena
et al. 2015). The repeated irrigation with poor quality water accumulated more
amounts of heavy metals in soil and enhances the metal uptake by plants.

16.7 Future Line of Research

• Effect of climate change on heavy metal dynamics with respect to plant
metabolites.

• The interaction effect of various metals on each other dynamics and its toxicity
effect on soil microbial population.

• Genetic engineering assisted phytoremedition and its effect on root exudations.
• Plant metal uptake pattern in various crops with respect to water and soil

conditions.
• Soil organic carbon dynamics and its effect with root exudates on metal

dynamics.
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16.8 Conclusions

Soil water pollution is the challenging task to remediate for the sustainable agricul-
tural crop production. Increasing population forced per hectare more food grain,
which is limited by the potential capacity of natural resources. Increasing use of poor
quality natural resources, enhance the metal toxicity in human beings via food chain
contamination. Most of the peri-urban areas of metropolitan cities are using indus-
trial or sewage water for cultivation of crops specially vegetable production.
Repeated application of metal contaminated effluent for agriculture purpose
accumulated huge amount of heavy metal in the field. The Bioremediation is a one
of the low cost technology for the heavy metal remediation. In which, bio-agent
(plant or microbe) are using for minimizing of metal toxicity from the soil and plant
environments. Microbes secreted various types of organic acids, reduced or convert
toxic metal to non toxic. However, it improved the soil physico-chemical properties
and increases the crop sustainability in contaminated soils. Use microbial assisted
phytoremediation can reduce the contamination level in soil; it is a low cost,
eco-friendly and more viable than phytoremediation techniques.

Acknowledgement Authors are highly thankful to Dr. Kuldeep Kumar, ICAR-Indian Institute of
Soil and Water Conservation, RS, Kota, India for the needful corrections and valuable suggestions
during the writing of the manuscript.
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