
Chapter 8
Schwarzschild Spacetime

The Einstein equations (7.6) relate the geometry of the spacetime, encoded in the
Einstein tensorGμν , to thematter content, described by thematter energy-momentum
tensor T μν . If we know the matter content, in principle we can solve the Einstein
equations and find the spacetime metric gμν in some coordinate system. However, in
general it is highly non-trivial to solve theEinstein equations, because they are second
order non-linear partial differential equations for ten components of themetric tensor
gμν . Analytic solutions of the Einstein equations can be found when the spacetime
has some special symmetries.

The Schwarzschildmetric is a relevant example of an exact solution of the Einstein
equations with important physical applications. It is the only spherically symmetric
vacuum solution of the Einstein equations and usually it can well approximate the
gravitational field of slowly-rotating astrophysical objects like stars and planets.

8.1 Spherically Symmetric Spacetimes

First, we want to find the most general form for the line element of a spherically sym-
metric spacetime. Note that at this stage we are not assuming the Einstein equations,
which means that the same form of the line element holds in any theory of gravity
in which the spacetime geometry is described by the metric tensor of the spacetime.
To achieve our goal, we choose a particular coordinate system in which the metric
tensor gμν clearly shows the symmetries of the spacetime.

As our starting point, we employ isotropic coordinates (ct, x, y, z), we choose
the origin of the coordinate system of the 3-space x = y = z = 0 at the center of
symmetry, and we require that the line element of the 3-space, dl, only depends on
the time t and on the distance from the origin. dl2 should thus have the following
form
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dl2 = g
(
t,

√
x2 + y2 + z2

) (
dx2 + dy2 + dz2

)
, (8.1)

where g is an unknown function of t and
√
x2 + y2 + z2. Note that, in general,√

x2 + y2 + z2 is not the proper distance from the origin. However, points with the
same value of

√
x2 + y2 + z2 have the same proper distance from the origin, which

is enough for us because we have not yet specified the function g.
We move to spherical-like coordinates (t, r, θ, φ) with the following coordinate

transformation

x = r sin θ cosφ ,

y = r sin θ sin φ ,

x = r cos θ . (8.2)

The line element of the 3-space is now

dl2 = g(t, r)
(
dr2 + r2dθ2 + r2 sin2 θdφ2

)
. (8.3)

Let us now construct the form of the 4-metric gμν . For dt �= 0, ds2 should be
separately invariant under the following coordinate transformations

θ → θ̃ = −θ , φ → φ̃ = −φ , (8.4)

which implies gtθ = gtφ = 0. The line element of the 4-dimensional spacetime can
thus be written as

ds2 = − f (t, r)c2dt2 + g(t, r)dr2 + h(t, r)dtdr + g(t, r)r2
(
dθ2 + sin2 θdφ2

)
, (8.5)

where f and h are unknown functions of t and r only.
The expression in Eq. (8.5) can be further simplified. We can still consider a

coordinate transformation

t → t̃ = t̃(t, r) , r → r̃ = r̃(t, r) , (8.6)

such that

r̃2 = g(t, r)r2 , gt̃r̃ = 0 . (8.7)

Note that the coordinate r̃ has a clear geometricalmeaning. It corresponds to the value
of the radial coordinate defining the 2-dimensional spherical surface of area 4π r̃2.
Note also that, in general, r̃ does not describe the real distance from the center r̃ = 0
(see Sect. 8.3 later). Eventually, the line element of the spacetime can be written as

ds2 = − f (t, r)c2dt2 + g(t, r)dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (8.8)
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Since we are interested in gravitational fields generated by a matter distribution
with a finite extension, the spacetime must be asymptotically flat, namely we must
recover the Minkowski metric at large radii. The boundary conditions are thus

lim
r→∞ f (t, r) = lim

r→∞ g(t, r) = 1 . (8.9)

Aswe have already stressed at the beginning of this section, the expression in (8.8)
is the most general form for the line element of a spherically symmetric spacetime.
If we assume to be in Einstein’s gravity, we can solve the Einstein equations with the
ansatz in (8.8) to find the explicit form of the functions f and g in Einstein’s gravity
for a certain matter distribution.

8.2 Birkhoff’s Theorem

Birkhoff’s theorem is an important uniqueness theorem valid in Einstein’s gravity.

Birkhoff’s Theorem. The only spherically symmetric solution of the vacuum
Einstein equations is the Schwarzschild metric.

Let us first prove the theorem and then discuss its implications. We have to solve
the Einstein equations with the ansatz (8.8) for the metric tensor and with T μν = 0
on the right hand side. Since we are in vacuum, the scalar curvature vanishes, R = 0,
and the Einstein equations reduce to Rμν = 0, see Eq. (7.10). The strategy is to
calculate the Christoffel symbols and then the Ricci tensor from the formula

Rμν = ∂Γ λ
μν

∂xλ
− ∂Γ λ

μλ

∂xν
+ Γ λ

μνΓ
ρ
λρ − Γ λ

μρΓ
ρ
νλ . (8.10)

The calculationsmaybe somewhat long andboring, but they canbe agood exercise
to better understand the formalism of general relativity. The fastest way to calculate
the Christoffel symbols is to write the geodesic equations from the Euler–Lagrange
equations of the Lagrangian1

L = − f

2

(
dt

dλ

)2

+ g

2

(
dr

dλ

)2

+ r2

2

(
dθ

dλ

)2

+ 1

2
r2 sin2 θ

(
dφ

dλ

)2

, (8.11)

1In these calculations we ignore the dimensional difference between t and the space coordinates
and we do not write the speed of light c to simplify the equations. This is equivalent to employing
units in which c = 1, which is a convention widely used among the gravity and particle physics
communities.
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where λ is the particle proper time (for time-like geodesics) or an affine parameter
(for null geodesics). For xμ = t , the Euler–Lagrange equation is

d

dλ

(
− f

dt

dλ

)
+ ḟ

2

(
dt

dλ

)2

− ġ

2

(
dr

dλ

)2

= 0 ,

f
d2t

dλ2
+ ḟ

(
dt

dλ

)2

+ f ′ dt
dλ

dr

dλ
− ḟ

2

(
dt

dλ

)2

+ ġ

2

(
dr

dλ

)2

= 0 ,

d2t

dλ2
+ ḟ

2 f

(
dt

dλ

)2

+ f ′

f

dt

dλ

dr

dλ
+ ġ

2 f

(
dr

dλ

)2

= 0 , (8.12)

where here and in what follows we use the dot˙to indicate the derivative with respect
to the time t , i.e.˙= ∂t , and the prime ′ to indicate the derivative with respect to the
radial coordinate r , namely ′ = ∂r . If we compare the geodesic equations with the
last expression in (8.12), we see that the only non-vanishing Christoffel symbols of
the type Γ t

μν are

Γ t
t t = ḟ

2 f
, Γ t

tr = Γ t
r t = f ′

2 f
, Γ t

rr = ġ

2 f
. (8.13)

For xμ = r , the Euler–Lagrange equation is

d

dλ

(
g
dr

dλ

)
+ f ′

2

(
dt

dλ

)2

− g′

2

(
dr

dλ

)2

− r

(
dθ

dλ

)2

− r sin2 θ

(
dφ

dλ

)2

= 0 ,

g
d2r

dλ2
+ ġ

dt

dλ

dr

dλ
+ g′

(
dr

dλ

)2

+ f ′

2

(
dt

dλ

)2

− g′

2

(
dr

dλ

)2

−r

(
dθ

dλ

)2

− r sin2 θ

(
dφ

dλ

)2

= 0 ,

d2r

dλ2
+ f ′

2g

(
dt

dλ

)2

+ ġ

g

dt

dλ

dr

dλ
+ g′

2g

(
dr

dλ

)2

− r

g

(
dθ

dλ

)2

− r sin2 θ

g

(
dφ

dλ

)2

= 0 , (8.14)

and we find that the only non-vanishing Christoffel symbols of the type Γ r
μν are

Γ r
tt = f ′

2g
, Γ r

tr = Γ r
r t = ġ

2g
,

Γ r
rr = g′

2g
, Γ r

θθ = − r

g
, Γ r

φφ = −r sin2 θ

g
. (8.15)

For xμ = θ we have
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d

dλ

(
r2

dθ

dλ

)
− r2 sin θ cos θ

(
dφ

dλ

)2

= 0 ,

r2
d2θ

dλ2
+ 2r

dr

dλ

dθ

dλ
− r2 sin θ cos θ

(
dφ

dλ

)2

= 0 ,

d2θ

dλ2
+ 2

r

dr

dλ

dθ

dλ
− sin θ cos θ

(
dφ

dλ

)2

= 0 , (8.16)

and the non-vanishing Christoffel symbols of the type Γ θ
μν are

Γ θ
rθ = Γ θ

θr = 1

r
, Γ θ

φφ = − sin θ cos θ . (8.17)

Lastly, for xμ = φ the Euler–Lagrange equation reads

d

dλ

(
r2 sin2 θ

dφ

dλ

)
= 0 ,

r2 sin2 θ
d2φ

dλ2
+ 2r sin2 θ

dr

dλ

dφ

dλ
+ 2r2 sin θ cos θ

dθ

dλ

dφ

dλ
= 0 ,

d2φ

dλ2
+ 2

r

dr

dλ

dφ

dλ
+ 2 cot θ

dθ

dλ

dφ

dλ
= 0 , (8.18)

and we find

Γ
φ
rφ = Γ

φ
φr = 1

r
, Γ

φ
θφ = Γ

φ
φθ = cot θ . (8.19)

Now that we have all the Christoffel symbols, we can calculate the non-vanishing
components of the Ricci tensor Rμν . The t t-component is

Rtt = ∂Γ t
t t

∂t
+ ∂Γ r

tt

∂r
− ∂

∂t

(
Γ t
t t + Γ r

tr

) + Γ t
t t

(
Γ t
t t + Γ r

tr

)

+Γ r
tt

(
Γ t
r t + Γ r

rr + Γ θ
rθ + Γ

φ
rφ

)
− Γ t

t tΓ
t
t t − Γ t

trΓ
r
tt − Γ t

trΓ
r
tt − Γ r

trΓ
r
tr

= ∂Γ r
tt

∂r
− ∂Γ r

tr

∂t
+ Γ t

t tΓ
r
tr + Γ r

tt

(
Γ r
rr + Γ θ

rθ + Γ
φ
rφ

)
− Γ t

trΓ
r
tt − Γ r

trΓ
r
tr

= f ′′

2g
− f ′g′

2g2
− g̈

2g
+ ġ2

2g2
+ ḟ

2 f

ġ

2g

+ f ′

2g

(
g′

2g
+ 1

r
+ 1

r

)
− f ′

2 f

f ′

2g
− ġ

2g

ġ

2g

= f ′′

2g
− f ′

4g

(
f ′

f
+ g′

g

)
+ f ′

rg
+ ḟ ġ

4 f g
+ ġ2

4g2
− g̈

2g
. (8.20)

The tr -component of Rμν is given by
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Rtr = ∂Γ t
tr

∂t
+ ∂Γ r

tr

∂r
− ∂

∂r

(
Γ t
t t + Γ r

tr

) + Γ t
tr

(
Γ t
t t + Γ r

tr

)

+Γ r
tr

(
Γ t
r t + Γ r

rr + Γ θ
rθ + Γ

φ
rφ

)
− Γ t

t tΓ
t
r t − Γ t

trΓ
r
r t − Γ r

ttΓ
t
rr − Γ r

trΓ
r
rr

= ∂Γ t
tr

∂t
− ∂Γ t

t t

∂r
+ Γ r

tr

(
Γ t
r t + Γ θ

rθ + Γ
φ
rφ

)
− Γ r

ttΓ
t
rr

= ḟ ′

2 f
− f ′ ḟ

2 f 2
− ḟ ′

2 f
+ ḟ f ′

2 f 2

+ ġ

2g

(
f ′

2 f
+ 1

r
+ 1

r

)
− f ′

2g

ġ

2 f

= ġ2

rg
. (8.21)

The rr -component is

Rrr = ∂Γ t
rr

∂t
+ ∂Γ r

rr

∂r
− ∂

∂r

(
Γ t
r t + Γ r

rr + Γ θ
rθ + Γ

φ
rφ

)

+Γ t
rr

(
Γ t
t t + Γ r

tr

) + Γ r
rr

(
Γ t
r t + Γ r

rr + Γ θ
rθ + Γ

φ
rφ

)

−Γ t
r tΓ

t
r t − Γ t

rrΓ
r
r t − Γ r

r tΓ
t
rr − Γ r

rrΓ
r
rr − Γ θ

rθΓ
θ
rθ − Γ

φ
rφΓ

φ
rφ

= ∂Γ t
rr

∂t
− ∂Γ t

r t

∂r
− ∂Γ θ

rθ

∂r
− ∂Γ

φ
rφ

∂r
+ Γ t

rrΓ
t
t t + Γ r

rr

(
Γ t
r t + Γ θ

rθ + Γ
φ
rφ

)

−Γ t
r tΓ

t
r t − Γ t

rrΓ
r
r t − Γ θ

rθΓ
θ
rθ − Γ

φ
rφΓ

φ
rφ

= g̈

2 f
− ḟ ġ

2 f 2
− f ′′

2 f
+ f ′2

2 f 2
+ 1

r2
+ 1

r2
+ ġ

2 f

ḟ

2 f
+ g′

2g

(
f ′

2 f
+ 1

r
+ 1

r

)

− f ′

2 f

f ′

2 f
− ġ

2 f

ġ

2g
− 1

r2
− 1

r2

= − f ′′

2 f
+ f ′

4 f

(
f ′

f
+ g′

g

)
+ g′

rg
− ḟ ġ

4 f 2
− ġ2

4 f g
+ g̈

2 f
. (8.22)

The θθ -component reads

Rθθ = ∂Γ r
θθ

∂r
−

∂Γ
φ
θφ

∂θ
+ Γ r

θθ

(
Γ t
r t + Γ r

rr + Γ θ
rθ + Γ

φ
rφ

)
− Γ r

θθΓ θ
θr − Γ θ

θrΓ
r
θθ − Γ

φ
θφΓ

φ
θφ

= ∂Γ r
θθ

∂r
−

∂Γ
φ
θφ

∂θ
+ Γ r

θθ

(
Γ t
r t + Γ r

rr + Γ
φ
rφ

)
− Γ θ

θrΓ
r
θθ − Γ

φ
θφΓ

φ
θφ

= − 1

g
+ rg′

g2
+ 1 + cot2 θ − r

g

(
f ′
2 f

+ g′
2g

+ 1

r

)
+ 1

r

r

g
− cot2 θ

= 1 − 1

g
+ r

2g

(
g′
g

− f ′
f

)
. (8.23)
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The φφ-component is

Rφφ = ∂Γ r
φφ

∂r
+ ∂Γ θ

φφ

∂θ
+ Γ r

φφ

(
Γ t
r t + Γ r

rr + Γ θ
rθ + Γ

φ
rφ

)
+ Γ θ

φφΓ
φ
θφ

−Γ r
φφΓ

φ
φr − Γ

φ
φrΓ

r
φφ − Γ θ

φφΓ
φ
φθ − Γ

φ
φθΓ

θ
φφ

= ∂Γ r
φφ

∂r
+ ∂Γ θ

φφ

∂θ
+ Γ r

φφ

(
Γ t
r t + Γ r

rr + Γ θ
rθ

) − Γ
φ
φrΓ

r
φφ − Γ

φ
φθΓ

θ
φφ

= − sin2 θ

g
+ r sin2 θg′

g2
+ sin2 θ − cos2 θ − r sin2 θ

g

(
f ′

2 f
+ g′

2g
+ 1

r

)

+ 1

r

r sin2 θ

g
+ sin θ cos θ cot θ

= sin2 θ

[
1 − 1

g
+ r

2g

(
g′

g
− f ′

f

)]
, (8.24)

and it is equal to the θθ -component multiplied by sin2 θ .
The other components of the Ricci tensor vanish. This can be seen noting that the

transformations in (8.4) have the following effect:

Rθμ → Rθ̃μ = ∂θ

∂θ̃

∂xν

∂xμ
Rθν = −Rθμ (for μ �= θ) ,

Rφμ → −Rφμ (for μ �= φ) . (8.25)

Since the metric is invariant under such transformations, the components of the Ricci
tensor should be invariant too, and therefore they must vanish.

Eventually, we have four independent equations

Rtt = f ′′

2g
− f ′

4g

(
f ′

f
+ g′

g

)
+ f ′

rg
+ ḟ ġ

4 f g
+ ġ2

4g2
− g̈

2g
= 0 , (8.26)

Rtr = ġ2

rg
= 0 , (8.27)

Rrr = − f ′′

2 f
+ f ′

4 f

(
f ′

f
+ g′

g

)
+ g′

rg
− ḟ ġ

4 f 2
− ġ2

4 f g
+ g̈

2 f
= 0 , (8.28)

Rθθ = 1 − 1

g
+ r

2g

(
g′

g
− f ′

f

)
= 0 , (8.29)

From Eq. (8.27) we see that g = g(r). Equation (8.29) can be written as

f ′

f
= 2g

r
− 2

r
+ g′

g
, (8.30)
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and we thus see that f ′/ f is a function of r only. This means that f can be written
as

f (t, r) = f1(t) f2(r) . (8.31)

With the following coordinate transformation

dt → dt̃ = √
f1(t)dt , (8.32)

we can always absorb f1(t) in the temporal coordinate. Eventually, the line element
of the spacetime can be written in the following form

ds2 = − f (r)c2dt2 + g(r)dr2 + r2
(
dθ2 + sin2 θdφ2

)
, (8.33)

which shows that the metric is independent of t .
We combine Eqs. (8.26) and (8.28) in the following way

gRtt + f Rrr = 0 , (8.34)

and we find

f ′′

2
− f ′

4

(
f ′

f
+ g′

g

)
+ f ′

r
− f ′′

2
+ f ′

4

(
f ′

f
+ g′

g

)
+ f g′

rg
= 0 ,

f ′

r
+ f g′

rg
= 0 ,

1

rg

d

dr
( f g) = 0

f g = constant . (8.35)

Imposing the condition in Eq. (8.9), which is necessary because far from the source
we want to recover the Minkowski spacetime, we find

g = 1

f
. (8.36)

We can now rewrite Eq. (8.29) in terms of f (r) only and solve the new differential
equation

1 − f + r f

2

(
− f

f ′

f 2
− f ′

f

)
= 0 ,

1 − f − r f ′ = 0 ,

d

dr
(r f ) = 1 ,
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f = 1 + C

r
, (8.37)

where C is a constant. The constant C can be inferred from the Newtonian limit.
From Eq. (6.14), we know that

gtt = − f = −
(
1 + 2Φ

c2

)
. (8.38)

For a spherically symmetric distribution of mass, the Newtonian potential reads

Φ = −GNM

r
, (8.39)

where M is the mass of the body generating the gravitational field. We thus find
C = −2GNM/c2 and the line element of the spacetime reads

ds2 = −
(
1 − 2GNM

c2r

)
c2dt2 + dr2

1 − 2GNM
c2r

+ r2
(
dθ2 + sin2 θdφ2) . (8.40)

This concludes the proof of the theorem. The solution is called the Schwarzschild
metric. It is remarkable that M is the only parameter that characterizes the spacetime
metric in the exterior region; that is, the gravitational field in the exterior region
is independent of the internal structure and composition of the massive body. As
shown in Appendix F, M can be associated to the actual mass of the body only
in the Newtonian limit. As discussed in Sect. 3.7 within the framework of special
relativity, the total mass of a physical system is lower than the sum of the masses of
its constituents because there is also a binding energy. The same is true here.

Note that the Schwarzschildmetric has been derived only assuming that the space-
time is spherically symmetric and solving the vacuum Einstein equations. The fact
that the metric is independent of t is a consequence, it is not an assumption. This
implies that the matter distribution does not have to be static, but it can move while
maintaining the spherical symmetry, for example pulsating, and the vacuum solution
is still described by the Schwarzschild metric. This implies that a spherically sym-
metric pulsating distribution of matter does not emit gravitational waves (this point
will be discussed better in Chap. 12).

8.3 Schwarzschild Metric

In the Schwarzschild metric, the coordinates (ct, r, θ, φ) can assume the following
values

t ∈ (−∞,∞) , r ∈ [r0,∞) , θ ∈ (0, π) , φ ∈ [0, 2π) , (8.41)
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Table 8.1 Mass M , Schwarzschild radius rS, and physical radius r0 of the Sun, Earth, and a proton

Object M (g) rS r0

Sun 1.99 · 1033 2.95 km 6.97 · 105 km
Earth 5.97 · 1027 8.87 mm 6.38 · 103 km
Proton 1.67 · 10−24 2.48 · 10−39 fm 0.8 fm

where r0 is the radius of the body. The Schwarzschild metric is indeed valid in the
vacuum only, namely in the “exterior” region. A different solution will describe the
“interior” region r < r0, where T μν �= 0. Note that the metric is ill-defined at the
so-called Schwarzschild radius rS

rS = 2GNM

c2
. (8.42)

This requires r0 > rS. In general, this is not a problem: as shown in Table 8.1, the
Schwarzschild radius is typically much smaller than the radius of an object.

The relation between the temporal coordinate of the Schwarzschild metric, t , and
the proper time of an observer at a point with fixed (r, θ, φ) is

dτ =
√
1 − rS

r
dt < dt . (8.43)

The relation between the space coordinates and the proper distance is more tricky.
For simplicity, we consider the case of a distance in the radial direction. For a light
signal, ds2 = 0, and therefore in the case of pure radial motion we have

dt = ±1

c

dr

1 − rS
r

, (8.44)

where the sign is + (−) if the light signal is moving to larger (smaller) radii. Instead
of the temporal coordinate t , we rewrite Eq. (8.44) in terms of the proper time of an
observer at a point with fixed (r, θ, φ)

dτ = ±1

c

dr√
1 − rS

r

. (8.45)

We can thus define the infinitesimal proper distance dρ as

dρ = dr√
1 − rS

r

> dr . (8.46)
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This is indeed the infinitesimal distance along the radial direction measured by an
observer at that point with the help of a light signal. The proper distance between
the point (r1, θ, φ) and the point (r2, θ, φ) is obtained by integrating over the radial
direction

Δρ =
∫ r2

r1

dr√
1 − rS

r

≈
∫ r2

r1

(
1 + 1

2

rS
r

)
dr

= (r2 − r1) + rS
2
ln

r2
r1

. (8.47)

In the case of theMinkowski spacetime, rS = 0, andwe recover the standard distance
r2 − r1. For rS �= 0, there is a correction proportional to rS.

Note that dτ → dt and dρ → dr for r → ∞, which can be interpreted as the
fact that the Schwarzschild coordinates correspond to the coordinates of an observer
at infinity.

8.4 Motion in the Schwarzschild Metric

Let us now study the motion of test-particles in the Schwarzschild metric. The La-
grangian of the system is (for simplicity, we set m = 0, 1 the mass of, respectively,
massless and massive particles)

L = 1

2

(− f c2 ṫ2 + gṙ2 + r2θ̇ + r2 sin2 θφ̇2) , (8.48)

where here the dot ˙ indicates the derivative with respect to the proper time/affine
parameter λ and

f = 1

g
= 1 − rS

r
. (8.49)

The Euler–Lagrange equation for the θ coordinate is equal to that in Newton’s gravity
met in Sect. 1.8.Without loss of generality, we can study the case of a particlemoving
in the equatorial plane θ = π/2. The Lagrangian (8.48) thus simplifies to

L = 1

2

(− f c2 ṫ2 + gṙ2 + r2φ̇2
)

. (8.50)

There are three constants of motion: the energy (as measured at infinity) E , the
angular momentum (as measured at infinity) Lz ,2 and the mass of the test-particle.

2As in Sect. 1.8, we use the notation Lz because this is also the axial component of the angular
momentum (since θ = π/2) and we do not want to call it L because it may generate confusion with
the Lagrangian.
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The conservation of the energy of the test-particle follows from the fact that the
Lagrangian (8.50) is independent of the time coordinate t3

d

dλ

∂L

∂ ṫ
− ∂L

∂t
= d

dλ

∂L

∂ ṫ
= 0 ⇒ pt = 1

c

∂L

∂ ṫ
= − f cṫ = − E

c
= constant . (8.51)

The Lagrangian (8.50) is also independent of the coordinate φ, and we thus have the
conservation of the angular momentum

d

dλ

∂L

∂φ̇
− ∂L

∂φ
= d

dλ

∂L

∂φ̇
= 0 ⇒ pφ = ∂L

∂φ̇
= r2φ̇ = Lz = constant . (8.52)

The conservation of the mass comes from the equation

gμν ẋ
μ ẋν = − f c2 ṫ2 + gṙ2 + r2φ̇2 = −kc2 , (8.53)

where k = 0 (for massless particles) and k = 1 (for massive particles).
From Eqs. (8.51) and (8.52) we find, respectively,

ṫ = E

c2 f
, φ̇ = Lz

r2
. (8.54)

We plug these expressions of ṫ and φ̇ into Eq. (8.53) and we find

gṙ2 + L2
z

r2
− E2

c2 f
= −kc2 . (8.55)

If we multiply Eq. (8.55) by f/2 and we write the explicit form of f and g, we
obtain

1

2
ṙ2 +

(
1 − rS

r

) L2
z

2r2
− 1

2

E2

c2
= −1

2

(
1 − rS

r

)
kc2 . (8.56)

This equation can be rewritten as

1

2
ṙ2 = E2 − kc4

2c2
− Veff , (8.57)

where

3Note that for a massive particle we choose λ = τ the particle proper time. In such a case, for a
static particle at infinity we have ṫ = 1 and E = c2 (because we are assuming m = 1, otherwise
we would have E = mc2); that is, the particle energy is just the rest mass. For a static particle
at smaller radii, E < c2 because the (Newtonian) gravitational potential energy is negative. Note
also that pt = −E/c is conserved while the temporal component of the 4-momentum, pt , is not a
constant of motion. The same is true for pφ and pφ : only pφ is conserved.
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Fig. 8.1 Comparison
between the effective
potential in Eq. (8.58) for
k = 1 valid in the
Schwarzschild metric (red
solid line) and the effective
potential in Eq. (1.92) valid
in Newton’s gravity for the
gravitational field generated
by a point-like massive body
(blue dashed line). We
assume GNM = 1,
Lz = 3.9, and c = 1
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Equation (8.57) is the counterpart of Eq. (1.91) in Newton’s gravity. The effective
potential Veff in Eq. (8.58) can be compared with the Newtonian effective potential
in Eq. (1.92). For k = 1, we see that the first and the second terms on the right hand
side in Eq. (8.58) are exactly those in Eq. (1.92). The third term is the correction to
the Newtonian case and becomes important only at very small radii, because it scales
as 1/r3. Figure 8.1 shows the difference between the effective potential in Eq. (8.58)
and that in Eq. (1.92).

Let us now proceed as we did in Sect. 1.9 for the derivation of Kepler’s Laws. We
write

dr

dλ
= dr

dφ

dφ

dλ
= Lz

r2
dr

dφ
, (8.59)

and we remove the parameter λ in Eq. (8.57)

L2
z

2r4

(
dr

dφ

)2

− k
GNM

r
+ L2

z

2r2
− GNML2

z

c2r3
= E2 − kc4

2c2
. (8.60)

We introduce the variable u = u(φ)

r = 1

u
, u′ = du

dφ
. (8.61)

Equation (8.60) becomes

u′2 − k
2GNM

L2
z

u + u2 − 2GNM

c2
u3 = E2 − kc4

c2L2
z

. (8.62)
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We derive this equation with respect to φ and we obtain

2u′
(
u′′ − k

GNM

L2
z

+ u − 3GNM

c2
u2

)
= 0 . (8.63)

The equations of the orbits are thus

u′ = 0 , (8.64)

u′′ − k
GNM

L2
z

+ u − 3GNM

c2
u2 = 0 . (8.65)

From Eq. (8.64), we find circular orbits as in the Newtonian case from Eq. (1.100).
Equation (8.65) is the relativistic generalization of Eq. (1.101).

8.5 Schwarzschild Black Holes

The Schwarzschild metric can describe the exterior region of a massive body, namely
the region r > r0, where r0 > rS is the radius of the object. A different metric holds
in the interior region r < r0. As already discussed in Sect. 8.3, for typical bodies
r0 	 rS and therefore it is irrelevant that the metric is not well-defined at r = rS. If
this is not the case and there is no interior solution, we have a black hole and the
surface r = rS is the black hole event horizon. We will see in Sect. 10.5 how a similar
object can be formed.

From Eq. (8.51), we can write

dt = E

c2 f
dλ = E

c2 f

dλ

dr
dr = E

c2 f

dr

ṙ
. (8.66)

From Eq. (8.57), we have

1

ṙ
= − c√

E2 − kc4 − 2Veffc2
, (8.67)

where the sign − is chosen because we are interested in a particle moving to smaller
radii. We replace 1/ṙ in Eq. (8.66) with the expression on the right hand side in
Eq. (8.67). In the case of amassive particle (k = 1)with vanishing angularmomentum
(Lz = 0), we find

dt = −1

c

E

1 − rS
r

dr√
E2 − c4 + rSc4

r

, (8.68)
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which describes the motion of a massive particle falling onto the massive object with
vanishing angular momentum. If we integrate both the left and the right hand sides
in Eq. (8.68), we find that, according to our coordinate system corresponding to that
of a distant observer, the particle takes the time Δt to move from the radius r2 to the
radius r1 < r2

Δt = 1

c

∫ r2

r1

E

1 − rS
r

dr√
E2 − c4 + rSc4

r

. (8.69)

For r1 → rS, Δt → ∞ regardless of the value of E (for an explicit example, we can
consider the case E = c2 corresponding to a particle at rest at infinity); that is, for
an observer at very large radii the particle takes an infinite time to reach the radial
coordinate r = rS.

Let us now calculate the timemeasured by the same particle. The relation between
the proper time of the particle, τ , and its radial coordinate, r , can be inferred from
Eq. (8.57), since ·r = dr/dτ . We have

dτ = − cdr√
E2 − c4 − 2Veffc2

.

For Lz = 0, we have

dτ = − cdr√
E2 − c4 + rSc4

r

.

Integrating we find

Δτ =
∫ r2

r1

cdr√
E2 − c4 + rSc4

r

.

For r1 → rS, Δτ remains finite; that is, the particle can cross the surface at r = rS,
but the coordinate system of the distant observer can only describe the motion of the
particle for r > rS.

The radius r = rS is the black hole event horizon and causally disconnects the
black hole (r < rS) from the exterior region (r > rS). A particle in the exterior region
can cross the event horizon and enter the black hole (indeed it takes a finite time to
reach and cross the surface at r = rS) but then it cannot communicatewith the exterior
region any longer (this point will be more clear in the next section).

Note that the metric is ill-defined at r = rS, but the spacetime is regular there. For
instance, the Kretschmann scalar (as a scalar, it is an invariant) is

K ≡ Rμνρσ Rμνρσ = 48G2
NM

2

c4r6
= 12r2S

r6
, (8.70)

and does not diverge at r = rS.
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The singularity of themetric at r = rS depends on the choice of the coordinate sys-
tem and can be removed by a coordinate transformation.4 For instance, the Lemaitre
coordinates (cT, R, θ, φ) are defined as

cdT = cdt +
(rS
r

)1/2 (
1 − rS

r

)−1
dr ,

dR = cdt +
(
r

rS

)1/2 (
1 − rS

r

)−1
dr . (8.71)

In the Lemaitre coordinates, the line element of the Schwarzschild metric reads

ds2 = −c2dT 2 + rS
r
dR2 + r2dθ2 + r2 sin2 θdφ2 , (8.72)

where

r = (rS)
1/3

[
3

2
(R − cT )

]2/3

. (8.73)

The Schwarzschild radius r = rS in the new coordinates is

3

2
(R − cT ) = rS , (8.74)

and the metric is regular there. The Lemaitre coordinates can well describe both the
black hole region 0 < r < rS and the exterior region r > rS.

The maximal analytic extension of the Schwarzschild spacetime is found when
we employ the Kruskal–Szekeres coordinates. In these coordinates, the line element
reads

ds2 = 4r3S
r

e−r/rS(−dt̃2 + dr̃2) + r2dθ2 + r2 sin2 θdφ2 , (8.75)

where t̃ and r̃ are (dimensionless) coordinates defined as

t̃ =
⎧⎨
⎩

(
r
rS

− 1
)1/2

er/(2rS) sinh
(

ct
2rS

)
if r > rS ,(

1 − r
rS

)1/2
er/(2rS) cosh

(
ct
2rS

)
if 0 < r < rS .

r̃ =
⎧⎨
⎩

(
r
rS

− 1
)1/2

er/(2rS) cosh
(

ct
2rS

)
if r > rS ,(

1 − r
rS

)1/2
er/(2rS) sinh

(
ct
2rS

)
if 0 < r < rS .

(8.76)

4Note that the metric is ill-defined even at r = 0, which is a true spacetime singularity and cannot
be removed by a coordinate transformation. The Kretschmann scalar diverges at r = 0.
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The Schwarzschild solution in Kruskal–Szekeres coordinates includes also a white
hole and a parallel universe, which are not present in the Schwarzschild spacetime
in Schwarzschild coordinates. This will be briefly shown in the next section.

8.6 Penrose Diagrams

Penrose diagrams are 2-dimensional spacetime diagrams particularly suitable to
studying the global properties and the causal structure of asymptotically flat space-
times. Every point represents a 2-dimensional sphere of the original 4-dimensional
spacetime. Penrose diagrams are obtained by a conformal transformation of the orig-
inal coordinates such that the entire spacetime is transformed into a compact region.
Since the transformation is conformal, angles are preserved. In this section, we em-
ploy units in which c = 1 and therefore null geodesics are lines at 45◦. Time-like
geodesics are inside the light-cone, space-like geodesics are outside. Amore detailed
discussion on the topic can be found, for instance, in [1, 2].

8.6.1 Minkowski Spacetime

The simplest example is the Penrose diagram of the Minkowski spacetime. In spher-
ical coordinates (t, r, θ, φ), the line element of the Minkowski spacetime is (c = 1)

ds2 = −dt2 + dr2 + r2dθ2 + r2 sin2 θdφ2 . (8.77)

With the following conformal transformation

t = 1

2
tan

T + R

2
+ 1

2
tan

T − R

2
,

r = 1

2
tan

T + R

2
− 1

2
tan

T − R

2
, (8.78)

the line element becomes

ds2 =
(
4 cos2

T + R

2
cos2

T − R

2

)−1 (−dT 2 + dR2
)

+ r2dθ2 + r2 sin2 θdφ2 . (8.79)

Note that the transformation in (8.78) employs the tangent function, tan, in order to
bring points at infinity to points at a finite value in the new coordinates.

The Penrose diagram for theMinkowski spacetime is shown in Fig. 8.2. The semi-
infinite (t, r) plane is now a triangle. The dashed vertical line is the origin r = 0.
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Every point corresponds to the 2-sphere (θ, φ). There are five different asymptotic
regions. Without a rigorous treatment, they can be defined as follows5:

Future time-like infinity i+: the region toward which time-like geodesics ex-
tend. It corresponds to the points at t → ∞ with finite r .

Past time-like infinity i−: the region from which time-like geodesics come.
It corresponds to the points at t → −∞ with finite r .

Spatial infinity i 0: the region toward which space-like slices extend. It
corresponds to the points at r → ∞ with finite t .

Future null infinity I +: the region toward which outgoing null geodesics
extend. It corresponds to the points at t + r → ∞ with finite t − r .

Past null infinityI −: the region from which ingoing null geodesics come.
It corresponds to the points at t − r → −∞ with finite t + r .

These five asymptotic regions are points or segments in the Penrose diagram.
Their T and R coordinates are:

i+ T = π , R = 0 .

i− T = −π , R = 0 .

i 0 T = 0 , R = π , (8.80)

and

I + T + R = π , T − R ∈ (−π;π) .

I − T − R = −π , T + R ∈ (−π;π) . (8.81)

8.6.2 Schwarzschild Spacetime

Penrose diagrams become a powerful tool to explore the global properties and the
causal structure of more complicated spacetimes.

Let us now consider the Schwarzschild spacetime in Kruskal–Szekeres coordi-
nates. The line element is given in Eq. (8.75). With the following coordinate trans-
formation

5The symbol I is usually pronounced “scri”.
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Fig. 8.2 Penrose diagram
for the Minkowski spacetime

t̃ = 1

2
tan

T + R

2
+ 1

2
tan

T − R

2
,

r̃ = 1

2
tan

T + R

2
− 1

2
tan

T − R

2
, (8.82)

the line element becomes

ds2 = 32G3
NM

3

r
e−r/(2GNM)

(
4 cos2

T + R

2
cos2

T − R

2

)−1 (−dT 2 + dR2
)

+ r2dθ2 + r2 sin2 θdφ2 . (8.83)

Figure 8.3 shows thePenrose diagram for themaximal extensionof theSchwarzschild
spacetime with its asymptotic regions i+, i−, i 0, I +, and I −. We can distinguish
four regions, indicated, respectively, by I, II, III, and IV in the figure.

Region I corresponds to our universe, namely the exterior region of the
Schwarzschild spacetime in Schwarzschild coordinates. Region II is the black hole,
so the Schwarzschild spacetime in Schwarzschild coordinates has only regions I and
II. The central singularity of the black hole at r = 0 is represented by the line with
wiggles above region II. The event horizon of the black hole at r = rS is the red line
at 45◦ separating regions I and II. Any ingoing light ray in region I is captured by
the black hole, while any outgoing light ray in region I reaches future null infinity
I +. Null and time-like geodesics in region II cannot exit the black hole and they
necessarily fall to the singularity at r = 0.

Regions III and IV emerge from the extension of the Schwarzschild spacetime.
Region III corresponds to another universe. The red line at 45◦ separating regions II
and III is the event horizon of the black hole at r = rS. Like in region I, any light ray in
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Fig. 8.3 Penrose diagram for the maximal extension of the Schwarzschild spacetime

region III can either cross the event horizon or escape to infinity. No future-oriented
null or time-like geodesics can escape from region II. Our universe in region I and
the other universe in region III cannot communicate: no null or time-like geodesic
can go from one region to another.

Region IV is a white hole. If a black hole is a region of the spacetime where
null and time-like geodesics can only enter and never exit, a white hole is a region
where null and time-like geodesics can only exit and never enter. The red lines at 45◦
separating region IV from regions I and III are the horizons at r = rS of the white
hole.

Problems

8.1 Let us consider a massive particle orbiting a geodesic circular orbit in the
Schwarzschild spacetime. Calculate the relation between the particle proper time
and the coordinate time t of the Schwarzschild metric.

8.2 Let us consider the Penrose diagram for the Minkowski spacetime, Fig. 8.2.
We have a massive particle that emits an electromagnetic pulse at t = 0. Show the
trajectories of the massive particle and of the electromagnetic pulse in the Penrose
diagram.

8.3 Let us consider the Penrose diagram for the maximal extension of the
Schwarzschild spacetime, Fig. 8.3. Show the future light-cone of an event in re-
gion I, of an event inside the black hole, and of an event inside the white hole.



References 161

References

1. C.W. Misner, K.S. Thorne, J.A. Wheeler, Gravitation (W. H. Freeman and Company, San Fran-
cisco, 1973)

2. P.K. Townsend, gr-qc/9707012


	8 Schwarzschild Spacetime
	8.1 Spherically Symmetric Spacetimes
	8.2 Birkhoff's Theorem
	8.3 Schwarzschild Metric
	8.4 Motion in the Schwarzschild Metric
	8.5 Schwarzschild Black Holes
	8.6 Penrose Diagrams
	8.6.1 Minkowski Spacetime
	8.6.2 Schwarzschild Spacetime

	References




