
Chapter 5
Riemannian Geometry

In the previous chapters, we studied non-gravitational phenomena in inertial refer-
ence frames, and often we limited our discussion to Cartesian coordinate systems.
Now we want to include gravity, non-inertial reference frames, and general coor-
dinate systems. The aim of this chapter is to introduce some mathematical tools
necessary to achieve this goal. We will follow quite a heuristic approach. The term
Riemannian geometry is used when we deal with a differentiable manifold equipped
with ametric tensor (seeAppendixC for the definition of the concept of differentiable
manifold).

5.1 Motivations

As we will see better in the next chapter, gravity has quite a special property: for the
same initial conditions, any test-particle1 in an external gravitational field follows
the same trajectory, regardless of its internal structure and composition. To be more
explicit, we can consider the Newtonian case. Newton’s Second Law readsmi ẍ = F,
where mi is the inertial mass of the particle. If F is the gravitational force on our
particle generated by a point-like body with mass M , we have

F = GN
Mmg

r2
r̂ , (5.1)

where mg is the gravitational mass of the particle (and we are assuming that mg �
M). In principle, mi and mg may be different, because the former has nothing to do
with the gravitational force (it is well defined even in the absence of gravity!) and

1A test-particlemust have a sufficiently smallmass, size, etc. such that itsmass does not significantly
alter the background gravitational field, tidal forces can be ignored, etc.
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the second is the “gravitational charge” of the particle. For instance, in the case of an
electrostatic field, the force is given by the Coulomb force, which is proportional to
the product of the electric charges of the twoobjects. The electric charge is completely
independent of the inertial mass of a body. On the contrary, the ratio between the
inertial and the gravitationalmasses,mi/mg , is a constant independent of the particle.
This is an experimental result! We can thus choose units in which mi = mg = m,
where m is just the mass of the particle. At this point, Newton’s Second Law reads

ẍ = GN
M

r2
r̂ , (5.2)

and the solution is independent ofm and the internal structure and composition of the
particle: any test-particle follows the same trajectory for the same initial conditions.

The trajectory of a particle can be obtained byminimizing the path length between
two events of the spacetime.We can thus think of writing an effectivemetric such that
the equations of motion of the particle take into account the effect of the gravitational
field. The example below can better illustrate this point.

In Newtonian mechanics, the Lagrangian of a particle in a gravitational field
is L = T − V , where T is the particle kinetic energy, V = mΦ is the gravitational
potential energy, andΦ is the gravitational potential; see Sect. 1.8. As seen inChap. 3,
in special relativity, for small velocities T is replaced by Eq. (3.11). The Lagrangian
of a non-relativistic particle in a Newtonian gravitational field is thus

L = −mc2 + 1

2
mv2 − mΦ . (5.3)

Since

mc2 � 1

2
mv2 , −mΦ , (5.4)

we can rewrite Eq. (5.3) as

L = −mc
√
c2 − v2 + 2Φ , (5.5)

and the corresponding action as

S = −mc
∫ √(

1 + 2Φ

c2

)
c2 − ẋ2 − ẏ2 − ż2dt

= −mc
∫ √−gμν ẋμ ẋνdt , (5.6)

where we have introduced the metric tensor gμν defined as
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||gμν || =

⎛

⎜⎜
⎝

− (
1 + 2Φ

c2
)
0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟
⎠ . (5.7)

Ifwe apply theLeastActionPrinciple to the action inEq. (5.6),we obtain the geodesic
equations for the metric gμν . They are equivalent to the Euler–Lagrange equations
for the Lagrangian in (5.3) by construction. So we can describe the gravitational field
as a geometrical property of the spacetime.

With this simple example, we see howwe can “absorb” the gravitational field into
the metric tensor gμν . The particle trajectories provided by the geodesic equations
for the metric gμν are not straight lines, because gμν takes gravity into account. Note
that gμν cannot be reduced to the Minkowski metric in the whole spacetime with a
coordinate transformation and we say that the spacetime is curved. On the contrary,
if we can recover theMinkowski metric ημν in the whole spacetime with a coordinate
transformation, the spacetime is flat. In this second case, the reference frame inwhich
the metric is not ημν either employs non-Cartesian coordinates or is a non-inertial
reference frame (or both).

5.2 Covariant Derivative

The partial derivative of a scalar is a dual vector and it is easy to see that it transforms
as a dual vector under a coordinate transformation

∂φ

∂xμ
→ ∂φ

∂x ′μ = ∂xν

∂x ′μ
∂φ

∂xν
. (5.8)

The partial derivative of the components of a vector field is not a tensor field. Let
V μ be a vector and xμ → x ′μ a coordinate transformation. We have

∂V μ

∂xν
→ ∂V ′μ

∂x ′ν = ∂xρ

∂x ′ν
∂

∂xρ

(
∂x ′μ

∂xσ
V σ

)

= ∂xρ

∂x ′ν
∂x ′μ

∂xσ

∂V σ

∂xρ
+ ∂xρ

∂x ′ν
∂2x ′μ

∂xρ∂xσ
V σ . (5.9)

If the relation between the two coordinate systems is not linear, we have also the
second term on the right hand side and we see that ∂V μ/∂xν cannot be a vector. The
reason is that dV μ is the difference between two vectors at different points. With the
terminology of Appendix C, vectors at different points belong to different tangent
spaces. dV μ transforms as
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dV μ → dV ′μ = V ′μ(x + dx) − V ′μ(x)

=
(

∂x ′μ

∂xα

)

x+dx

V α(x + dx) −
(

∂x ′μ

∂xα

)

x

V α(x) . (5.10)

If ∂x ′μ/∂xα in front of V α(x + dx) were the same as that in front of V α(x), then we
would have

dV ′μ = ∂x ′μ

∂xα

[
V α(x + dx) − V α(x)

] = ∂x ′μ

∂xα
dV α . (5.11)

However, in general this is not the case: ∂x ′μ/∂xα in front of V α(x + dx) is evaluated
at x + dx , that in front of V α(x) is evaluated at x . In this section wewant to introduce
the concept of covariant derivative, which is the natural generalization of partial
derivative in the case of arbitrary coordinates.

5.2.1 Definition

We know that dxμ is a 4-vector and that the 4-velocity of a particle, uμ = dxμ/dτ

is a 4-vector too, since dτ is a scalar. However, we know from Eq. (5.10) that duμ is
not a 4-vector.

In Sect. 1.7, we introduced the geodesic equations. Since uμ = dxμ/dτ , we can
rewrite the geodesic equations as

duμ

dτ
+ Γ μ

νρu
ρ dx

ν

dτ
= 0 , (5.12)

and also as

Duμ

dτ
= 0 , (5.13)

where we have defined Duμ as

Duμ = duμ + Γ μ
νρu

ρdxν =
(

∂uμ

∂xν
+ Γ μ

νρu
ρ

)
dxν . (5.14)

Wewill now show that Duμ is the natural generalization ofduμ for general coordinate
systems and that the partial derivative ∂μ generalizes to the covariant derivative ∇μ.
In the case of a 4-vector like uμ, we have Duμ = (∇νuμ)dxν , where ∇ν is defined
as

∇νu
μ = ∂uμ

∂xν
+ Γ μ

νρu
ρ . (5.15)
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First, we check that the components of ∇νuμ transform as a tensor. The first term
on the right hand side in Eq. (5.15) transforms as

∂uμ

∂xν
→ ∂u′μ

∂x ′ν = ∂xα

∂x ′ν
∂

∂xα

(
∂x ′μ

∂xβ
uβ

)

= ∂xα

∂x ′ν
∂x ′μ

∂xβ

∂uβ

∂xα
+ ∂xα

∂x ′ν
∂2x ′μ

∂xα∂xβ
uβ . (5.16)

The Christoffel symbols transform as

Γ μ
νρ → Γ ′μ

νρ = 1

2
g′μσ

(
∂g′

σρ

∂x ′ν + ∂g′
νσ

∂x ′ρ − ∂g′
νρ

∂x ′σ

)

= 1

2

∂x ′μ

∂xα

∂x ′σ

∂xβ
gαβ ∂xγ

∂x ′ν
∂

∂xγ

(
∂xδ

∂x ′σ
∂xε

∂x ′ρ gδε

)

+ 1

2

∂x ′μ

∂xα

∂x ′σ

∂xβ
gαβ ∂xγ

∂x ′ρ
∂

∂xγ

(
∂xδ

∂x ′ν
∂xε

∂x ′σ gδε

)

− 1

2

∂x ′μ

∂xα

∂x ′σ

∂xβ
gαβ ∂xγ

∂x ′σ
∂

∂xγ

(
∂xδ

∂x ′ν
∂xε

∂x ′ρ gδε

)
. (5.17)

Since the calculations become long, we consider the three terms on the right hand
side in Eq. (5.17) separately. The first term is

1

2

∂x ′μ

∂xα

∂x ′σ

∂xβ
gαβ ∂xγ

∂x ′ν
∂

∂xγ

(
∂xδ

∂x ′σ
∂xε

∂x ′ρ gδε

)

= 1

2

∂x ′μ

∂xα

∂x ′σ

∂xβ
gαβ ∂xγ

∂x ′ν
∂2xδ

∂x ′τ ∂x ′σ
∂x ′τ

∂xγ

∂xε

∂x ′ρ gδε

+1

2

∂x ′μ

∂xα

∂x ′σ

∂xβ
gαβ ∂xγ

∂x ′ν
∂xδ

∂x ′σ
∂2xε

∂x ′τ ∂x ′ρ
∂x ′τ

∂xγ
gδε

+1

2

∂x ′μ

∂xα

∂x ′σ

∂xβ
gαβ ∂xγ

∂x ′ν
∂xδ

∂x ′σ
∂xε

∂x ′ρ
∂gδε

∂xγ

= 1

2

∂x ′μ

∂xα

∂x ′σ

∂xβ
gαβ ∂2xδ

∂x ′ν∂x ′σ
∂xε

∂x ′ρ gδε + 1

2

∂x ′μ

∂xα
gαβ ∂2xε

∂x ′ν∂x ′ρ gβε

+1

2

∂x ′μ

∂xα
gαβ ∂xγ

∂x ′ν
∂xε

∂x ′ρ
∂gβε

∂xγ
. (5.18)

For the second term we have
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1

2

∂x ′μ

∂xα

∂x ′σ

∂xβ
gαβ ∂xγ

∂x ′ρ
∂

∂xγ

(
∂xδ

∂x ′ν
∂xε

∂x ′σ gδε

)

= 1

2

∂x ′μ

∂xα
gαβ ∂2xδ

∂x ′ν∂x ′ρ gδβ + 1

2

∂x ′μ

∂xα

∂x ′σ

∂xβ
gαβ ∂xδ

∂x ′ν
∂2xε

∂x ′ρ∂x ′σ gδε

+1

2

∂x ′μ

∂xα
gαβ ∂xγ

∂x ′ρ
∂xδ

∂x ′ν
∂gδβ

∂xγ
. (5.19)

Lastly, the third term becomes

− 1

2

∂x ′μ

∂xα

∂x ′σ

∂xβ
gαβ ∂xγ

∂x ′σ
∂

∂xγ

(
∂xδ

∂x ′ν
∂xε

∂x ′ρ gδε

)

= −1

2

∂x ′μ

∂xα

∂x ′σ

∂xβ
gαβ ∂2xδ

∂x ′ν∂x ′σ
∂xε

∂x ′ρ gδε − 1

2

∂x ′μ

∂xα

∂x ′σ

∂xβ
gαβ ∂xδ

∂x ′ν
∂2xε

∂x ′ρ∂x ′σ gδε

−1

2

∂x ′μ

∂xα
gαβ ∂xδ

∂x ′ν
∂xε

∂x ′ρ
∂gδε

∂xβ
. (5.20)

If we combine the results in Eqs. (5.18)–(5.20), we find the transformation rule for
the Christoffel symbols

Γ μ
νρ → Γ ′μ

νρ = ∂x ′μ

∂xα

∂xδ

∂x ′ν
∂xε

∂x ′ρ
1

2
gαβ

(
∂gβε

∂xδ
+ ∂gδβ

∂xε
− ∂gδε

∂xβ

)

+ ∂x ′μ

∂xα

∂2xδ

∂x ′ν∂x ′ρ g
αβgδβ

= ∂x ′μ

∂xα

∂xδ

∂x ′ν
∂xε

∂x ′ρ Γ α
δε + ∂xα

∂x ′ν∂x ′ρ
∂x ′μ

∂xα
. (5.21)

We see here that the Christoffel symbols do not transform as the components of a
tensor, so they cannot be the components of a tensor.

Let us now combine the results in Eqs. (5.16) and (5.21). We find

∂uμ

∂xν
+ Γ μ

νρu
ρ → ∂u′μ

∂x ′ν + Γ ′μ
νρ u

′ρ = ∂xα

∂x ′ν
∂x ′μ

∂xβ

∂uβ

∂xα
+ ∂xα

∂x ′ν
∂2x ′μ

∂xα∂xβ
uβ

+ ∂x ′μ

∂xα

∂xβ

∂x ′ν
∂xγ

∂x ′ρ Γ α
βγ

∂x ′ρ

∂xδ
uδ

+ ∂2xα

∂x ′ν∂x ′ρ
∂x ′μ

∂xα

∂x ′ρ

∂xβ
uβ

= ∂xα

∂x ′ν
∂x ′μ

∂xβ

∂uβ

∂xα
+ ∂xα

∂x ′ν
∂2x ′μ

∂xα∂xβ
uβ

+ ∂x ′μ

∂xα

∂xβ

∂x ′ν Γ α
βγ u

γ

+ ∂2xα

∂x ′ν∂x ′ρ
∂x ′μ

∂xα

∂x ′ρ

∂xβ
uβ (5.22)
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Note that

∂xα

∂x ′ν
∂x ′μ

∂xα
= δμ

ν ,

∂

∂xβ

(
∂xα

∂x ′ν
∂x ′μ

∂xα

)
= ∂

∂xβ
δμ
ν ,

∂2xα

∂x ′ν∂x ′ρ
∂x ′ρ

∂xβ

∂x ′μ

∂xα
+ ∂xα

∂x ′ν
∂2x ′μ

∂xβ∂xα
= 0 , (5.23)

and therefore

∂2xα

∂x ′ν∂x ′ρ
∂x ′ρ

∂xβ

∂x ′μ

∂xα
= − ∂xα

∂x ′ν
∂2x ′μ

∂xβ∂xα
. (5.24)

We use Eq. (5.24) in the last term on the right hand side in Eq. (5.22) and we see that
the second and the last terms cancel each other. Equation (5.22) can thus be written
as

∂u′μ

∂x ′ν + Γ ′μ
νρ u

′ρ = ∂xα

∂x ′ν
∂x ′μ

∂xβ

(
∂uβ

∂xα
+ Γ β

αγ u
γ

)
, (5.25)

and we see that ∇νuμs transform as the components of a tensor of type (1, 1).

5.2.2 Parallel Transport

As it was pointed out at the beginning of this section, the partial derivative of a
vector computes the difference of two vectors belonging to different points and for
this reason the new object is not a tensor. The sum or the difference of two vectors is
another vector if the two vectors belong to the same vector space, but this is not the
case here. Intuitively, we should “transport” one of the two vectors to the point of the
other vector and compute the difference there. This is what the covariant derivative
indeed does and involves the concept of parallel transport.

Let us consider the example illustrated in Fig. 5.1. We have a 2-dimensional
Euclidean space and we consider both Cartesian coordinates (x, y) and polar coor-
dinates (r, θ). The vectorV is at point A = xA = {xμ}. Its components are (V x , V y)

in Cartesian coordinates and (V r , V θ ) in polar coordinates. If we think of “rigidly”
transporting the vector V from point A to point B = xB = {xμ + dxμ}, as shown in
Fig. 5.1, the Cartesian coordinates do not change

(V x , V y) → (V x , V y) . (5.26)

However, the polar coordinates change. This operation is called parallel transport
and in what follows we want to show that the components of the parallel transported
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Fig. 5.1 The vector V at xμ

is parallel transported to the
point xμ + dxμ. While the
vector V does not change
under parallel transport, its
components change in
general

vector are given by

V μ

A→B = V μ

A − Γ μ
νρ(xA)V

ν
Adx

ρ . (5.27)

First, the relations between Cartesian and polar coordinates are

x = r cos θ , y = r sin θ , (5.28)

r =
√
x2 + y2 , θ = arctan

y

x
. (5.29)

If the vector V has Cartesian coordinates (V x , V y), its polar coordinates (V r , V θ )

are

V r = ∂r

∂x
V x + ∂r

∂y
V y = cos θV x + sin θV y ,

V θ = ∂θ

∂x
V x + ∂θ

∂y
V y = − sin θ

r
V x + cos θ

r
V y . (5.30)

Ifweparallel transport the vectorV from the point (r, θ) to the point (r + dr, θ + dθ),
we have the vector V|| in Fig. 5.1. The radial coordinate V r

|| is

V r
|| = cos (θ + dθ) V x + sin (θ + dθ) V y

= (cos θ − sin θdθ) V x + (sin θ + cos θdθ) V y . (5.31)

where we have neglected O(dθ2) terms
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cos (θ + dθ) = cos θ cos dθ − sin θ sin dθ

= cos θ − sin θdθ + O(dθ2) ,

sin (θ + dθ) = sin θ cos dθ + cos θ sin dθ

= sin θ + cos θdθ + O(dθ2) . (5.32)

For the polar coordinate V θ
|| , we have

V θ
|| = − sin (θ + dθ)

(r + dr)
V x + cos (θ + dθ)

(r + dr)
V y . (5.33)

Since

sin (θ + dθ)

(r + dr)
= sin θ

r
+ cos θ

r
dθ − sin θ

r2
dr + O(dr2, drdθ, dθ2) ,

cos (θ + dθ)

(r + dr)
= cos θ

r
− sin θ

r
dθ − cos θ

r2
dr + O(dr2, drdθ, dθ2) , (5.34)

Equation (5.33) becomes

V θ
|| =

(
− sin θ

r
− cos θ

r
dθ + sin θ

r2
dr

)
V x

+
(
cos θ

r
− sin θ

r
dθ − cos θ

r2
dr

)
V y . (5.35)

In polar coordinates, the line element reads

dl2 = dr2 + r2dθ2 . (5.36)

As we have seen in Sect. 1.7, the Christoffel symbols can be more quickly calculated
from the comparison of the Euler–Lagrange equations for a free particle with the
geodesic equations. The Lagrangian to employ is

L = 1

2

(
ṙ2 + r2θ̇2

)
. (5.37)

The Euler–Lagrange equation for the Lagrangian coordinate r is

dṙ

dt
− r θ̇2 = 0 ,

r̈ − r θ̇2 = 0 . (5.38)

For the Lagrangian coordinate θ , we have
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d

dt

(
r2θ̇

) = 0 ,

θ̈ + 2

r
ṙ θ̇ = 0 . (5.39)

If we compare Eqs. (5.38) and (5.39) with the geodesic equations, we see that the
non-vanishing Christoffel symbols are

Γ r
θθ = −r , Γ θ

rθ = Γ θ
θr = 1

r
. (5.40)

Now we want to see that, if we parallel transport the vector V from point A to
point B, the coordinates of the vector at B are given by

V μ

A→B = V μ

A − Γ μ
νρ(xA)V

ν
Adx

ρ . (5.41)

For the radial coordinate we have

V r
A→B = V r

A + rV θ
Adθ

= cos θV x + sin θV y + r

(
− sin θ

r
V x + cos θ

r
V y

)
dθ

= (cos θ − sin θdθ) V x + (sin θ + cos θdθ) V y . (5.42)

For the polar coordinate we have

V θ
A→B = V θ

A − 1

r
V r
Adθ − 1

r
V θ
Adr

= − sin θ

r
V x + cos θ

r
V y − 1

r

(
cos θV x + sin θV y

)
dθ

− 1

r

(
− sin θ

r
V x + cos θ

r
V y

)
dr

=
(

− sin θ

r
− cos θ

r
dθ + sin θ

r2
dr

)
V x

+
(
cos θ

r
− sin θ

r
dθ − cos θ

r2
dr

)
V y . (5.43)

We thus see that we recover the results in Eqs. (5.31) and (5.35).
When we compute the covariant derivative of a vector V μ we are calculating

∇νV
μ = ∂V μ

∂xν
+ Γ μ

νρV
ρ

= lim
dxν→0

V μ(x + dx) − V μ(x) + Γ μ
νρV

ρdxν

dxν
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= lim
dxν→0

V μ

x+dx→x (x) − V μ(x)

dxν
, (5.44)

that is, we calculate the difference between the vector V μ(x + dx) parallel trans-
ported to x and the vector V μ(x). Note that now the sign in front of the Christoffel
symbols is plus because we are transporting a vector from x + dx to x , while in
Eq. (5.41) we have the opposite case.

5.2.3 Properties of the Covariant Derivative

From the discussion above, it is clear that the covariant derivative of a scalar reduces
to the ordinary partial derivative

∇μφ = ∂φ

∂xμ
. (5.45)

Indeed a scalar is just a number and the parallel transport is trivial: φA→B = φA.
The covariant derivative of a dual vector is given by

∇μVν = ∂Vν

∂xμ
− Γ ρ

μνVρ . (5.46)

Indeed, ifwe consider any vectorV μ and dual vectorWμ,V μWμ is a scalar. Enforcing
Leibniz’s rule for the covariant derivative, we have

∇μ (V νWν) = (∇μV
ν
)
Wν + V ν

(∇μWν

)

= ∂V ν

∂xμ
Wν + Γ ν

μρV
ρWν + V ν

(∇μWν

)
. (5.47)

Since ∇μ becomes ∂μ for a scalar function

∇μ (V νWν) = ∂V ν

∂xμ
Wν + V ν ∂Wν

∂xμ
, (5.48)

and therefore, equating Eqs. (5.47) and (5.48), we must have

∇μWν = ∂Wν

∂xμ
− Γ ρ

μνWρ . (5.49)

The generalization to tensors of any type is straightforward and we have

∇λT
μ1μ2...μr
ν1ν2...νs

= ∂

∂xλ
Tμ1μ2...μr

ν1ν2...νs
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+Γ
μ1
λσ T σμ2...μr

ν1ν2...νs
+ Γ

μ2
λσ Tμ1σ...μr

ν1ν2...νs
+ ... + Γ

μr
λσ Tμ1μ2...σ

ν1ν2...νs︸ ︷︷ ︸
r terms

−Γ σ
λν1

Tμ1μ2...μr
σν2...νs

− Γ σ
λν2

Tμ1μ2...μr
ν1σ...νs

− ... − Γ σ
λνs

Tμ1μ2...μr
ν1ν2...σ︸ ︷︷ ︸

s terms

(5.50)

It is worth noting that the covariant derivative of the metric tensor vanishes. If we
calculate ∇μgνρ , we find

∇μgνρ = ∂gνρ

∂xμ
− Γ κ

μνgκρ − Γ κ
μρgνκ

= ∂gνρ

∂xμ
− 1

2
gκλ

(
∂gλν

∂xμ
+ ∂gμλ

∂xν
− ∂gμν

∂xλ

)
gκρ

− 1

2
gκλ

(
∂gλρ

∂xμ
+ ∂gμλ

∂xρ
− ∂gμρ

∂xλ

)
gνκ (5.51)

Since gκλgκρ = δλ
ρ and gκλgνκ = δλ

ν , we obtain

∇μgνρ = ∂gνρ

∂xμ
− 1

2

∂gρν

∂xμ
− 1

2

∂gμρ

∂xν
+ 1

2

∂gμν

∂xρ

− 1

2

∂gνρ

∂xμ
− 1

2

∂gμν

∂xρ
+ 1

2

∂gμρ

∂xν
= 0 . (5.52)

5.3 Useful Expressions

In this section we will derive a number of useful expressions and identities involving
the metric tensor, the Christoffel symbols, and the covariant derivative.

We indicate with g the determinant of the metric tensor gμν and with g̃μν the
cofactor (μ, ν). The determinant g is defined as

g =
∑

ν

gμν g̃μν (no summation overμ) . (5.53)

The cofactor g̃μν can be written in terms of the determinant g and of the inverse of
the metric tensor as

g̃μν = ggμν . (5.54)

Indeed, if we have an invertible square matrix A, its inverse is given by

A−1 = 1

det(A)
CT , (5.55)
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whereC is the cofactor matrix andCT is the transpose ofC (the proof of this formula
can be found in a textbook on linear algebra). If we apply Eq. (5.55) to the metric
tensor, we recover Eq. (5.54). If we plug Eq. (5.54) into (5.53), we find g = g, which
confirms that Eq. (5.54) is correct.

With the help of Eq. (5.54) we can write

∂g

∂gμν

= g̃μν = ggμν . (5.56)

as well as

∂g

∂xσ
= ∂g

∂gμν

∂gμν

∂xσ
= ggμν ∂gμν

∂xσ
. (5.57)

This last expression will be used later.
Let us write the formula for Christoffel symbols

Γ κ
νσ = 1

2
gκλ

(
∂gλσ

∂xν
+ ∂gνλ

∂xσ
− ∂gνσ

∂xλ

)
. (5.58)

We multiply both sides in Eq. (5.58) by gκμ and we get

gκμΓ κ
νσ = 1

2

(
∂gμσ

∂xν
+ ∂gνμ

∂xσ
− ∂gνσ

∂xμ

)
. (5.59)

We rewrite Eq. (5.59) exchanging the indices μ and ν

gκνΓ
κ
μσ = 1

2

(
∂gνσ

∂xμ
+ ∂gμν

∂xσ
− ∂gμσ

∂xν

)
. (5.60)

We sum Eq. (5.59) with (5.60) and we obtain

∂gμν

∂xσ
= gκμΓ κ

νσ + gκνΓ
κ
μσ . (5.61)

Now we can multiply both sides in Eq. (5.61) by ggμν and employ Eq. (5.57)

∂g

∂xσ
= ggμν

(
gκμΓ κ

νσ + gκνΓ
κ
μσ

) = g
(
Γ ν

σν + Γ μ
σμ

) = 2gΓ μ
σμ . (5.62)

We rewrite Eq. (5.62) as

∂

∂xσ
ln

√−g = 1

2g

∂g

∂xσ
= Γ μ

σμ . (5.63)
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With the help of Eq. (5.63), the covariant divergence of a generic vector Aμ can
be written as

∇μA
μ = ∂Aμ

∂xμ
+ Γ μ

σμA
σ = ∂Aμ

∂xμ
+ Aσ ∂

∂xσ
ln

√−g

= 1√−g

∂

∂xμ

(
Aμ

√−g
)

. (5.64)

In the case of a generic tensor Aμν of type (2, 0), we can write

∇μA
μν = ∂Aμν

∂xμ
+ Γ μ

σμA
σν + Γ ν

σμA
μσ

= 1√−g

∂

∂xμ

(
Aμν

√−g
) + Γ ν

σμA
μσ . (5.65)

Note that, if Aμν is antisymmetric, namely Aμν = −Aνμ,Γ ν
σμA

μσ = 0, andEq. (5.65)
simplifies to

∇μA
μν = 1√−g

∂

∂xμ

(
Aμν

√−g
)

. (5.66)

5.4 Riemann Tensor

5.4.1 Definition

We know that if the first partial derivatives are differentiable then the partial deriva-
tives commute, i.e. ∂μ∂ν = ∂ν∂μ; see e.g. [1]. In general, covariant derivatives do
not. We can introduce the Riemann tensor Rλ

ρνμ as the tensor of type (1, 3) defined
as

∇μ∇ν Aρ − ∇ν∇μAρ = Rλ
ρνμAλ , (5.67)

where Aμ is a generic dual vector. Rλ
ρνμ is a tensor because ∇μ∇ν Aρ and ∇ν∇μAρ

are tensors.
In order to find the explicit expression of the Riemann tensor, first we calculate

∇μ∇ν Aρ

∇μ∇ν Aρ = ∇μ

(
∂Aρ

∂xν
− Γ λ

νρ Aλ

)

= ∂

∂xμ

(
∂Aρ

∂xν
− Γ λ

νρ Aλ

)
− Γ κ

μρ

(
∂Aκ

∂xν
− Γ λ

κν Aλ

)
− Γ κ

μν

(
∂Aρ

∂xκ
− Γ λ

κρ Aλ

)

= ∂2Aρ

∂xμ∂xν
− ∂Γ λ

νρ

∂xμ
Aλ − Γ λ

νρ

∂Aλ

∂xμ
− Γ κ

μρ

∂Aκ

∂xν
+ Γ κ

μρΓ λ
κν Aλ
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− Γ κ
μν

∂Aρ

∂xκ
+ Γ κ

μνΓ λ
κρ Aλ . (5.68)

The expression for ∇ν∇μAρ is

∇ν∇μAρ = ∂2Aρ

∂xν∂xμ
− ∂Γ λ

μρ

∂xν
Aλ − Γ λ

μρ

∂Aλ

∂xν
− Γ κ

νρ

∂Aκ

∂xμ
+ Γ κ

νρΓ
λ
κμAλ

−Γ κ
νμ

∂Aρ

∂xκ
+ Γ κ

νμΓ λ
κρ Aλ . (5.69)

We combine Eqs. (5.68) and (5.69) and we find

∇μ∇ν Aρ − ∇ν∇μAρ =
(

∂Γ λ
μρ

∂xν
− ∂Γ λ

νρ

∂xμ
+ Γ κ

μρΓ
λ
κν − Γ κ

νρΓ
λ
κμ

)

Aλ . (5.70)

We can now write the Riemann tensor Rλ
ρνμ in terms of the Christoffel symbols as

follows

Rμ
νρσ = ∂Γ μ

νσ

∂xρ
− ∂Γ μ

νρ

∂xσ
+ Γ λ

νσΓ
μ
ρλ − Γ λ

νρΓ
μ
σλ . (5.71)

It is also useful to have the explicit expression of Rμνρσ . From Eq. (5.71), we
lower the upper index with the metric tensor

Rμνρσ = gμλR
λ
νρσ

= gμλ

(
∂Γ λ

νσ

∂xρ
− ∂Γ λ

νρ

∂xσ
+ Γ κ

νσΓ λ
ρκ − Γ κ

νρΓ
λ
σκ

)

, (5.72)

The first term on the right hand side in Eq. (5.72) can be written as

gμλ

∂Γ λ
νσ

∂xρ
= gμλ

∂

∂xρ

[
1

2
gλκ

(
∂gκσ

∂xν
+ ∂gνκ

∂xσ
− ∂gνσ

∂xκ

)]

= 1

2
gμλ

∂gλκ

∂xρ

(
∂gκσ

∂xν
+ ∂gνκ

∂xσ
− ∂gνσ

∂xκ

)

+ 1

2
gκ

μ

(
∂2gκσ

∂xρ∂xν
+ ∂2gνκ

∂xρ∂xσ
− ∂2gνσ

∂xρ∂xκ

)

= −1

2

∂gμλ

∂xρ
gλκ

(
∂gκσ

∂xν
+ ∂gνκ

∂xσ
− ∂gνσ

∂xκ

)

+ 1

2

(
∂2gμσ

∂xρ∂xν
+ ∂2gνμ

∂xρ∂xσ
− ∂2gνσ

∂xρ∂xμ

)

= −Γ λ
νσ

∂gμλ

∂xρ
+ 1

2

(
∂2gμσ

∂xρ∂xν
+ ∂2gνμ

∂xρ∂xσ
− ∂2gνσ

∂xρ∂xμ

)
. (5.73)
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We use Eq. (5.61) to rewrite ∂gμλ/∂xρ and Eq. (5.73) becomes

gμλ

∂Γ λ
νσ

∂xρ
= 1

2

(
∂2gμσ

∂xρ∂xν
+ ∂2gνμ

∂xρ∂xσ
− ∂2gνσ

∂xμ∂xρ

)

− gμκΓ
λ
νσΓ κ

λρ − gκλΓ
λ
νσΓ κ

μρ . (5.74)

In the same way, we can rewrite the second term on the right hand side of Eq. (5.72)

gμλ

∂Γ λ
νρ

∂xσ
= 1

2

(
∂2gμρ

∂xσ ∂xν
+ ∂2gνμ

∂xσ ∂xρ
− ∂2gνρ

∂xμ∂xσ

)

− gμκΓ
λ
νρΓ

κ
λσ − gκλΓ

λ
νρΓ

κ
μσ . (5.75)

With Eqs. (5.74) and (5.75) we can rewrite Rμνρσ as

Rμνρσ = 1

2

(
∂2gμσ

∂xν∂xρ
+ ∂2gνρ

∂xμ∂xσ
− ∂2gμρ

∂xν∂xσ
− ∂2gνσ

∂xμ∂xρ

)

+ gκλ

(
Γ λ

νρΓ
κ
μσ − Γ λ

νσΓ κ
μρ

)
. (5.76)

The Riemann tensor Rμνρσ is antisymmetric in the first and second indices as well
as in the third and forth indices, while it is symmetric if we exchange the first and
second indices respectively with the third and fourth indices:

Rμνρσ = −Rνμρσ = −Rμνσρ = Rρσμν . (5.77)

Note that, if Rμ
νρσ = 0 in a certain coordinate system, it vanishes in any coordinate

system. This follows from the transformation rule of tensors

Rμ
νρσ → R′μ

νρσ = ∂x ′μ

∂xα

∂xβ

∂x ′ν
∂xγ

∂x ′ρ
∂xδ

∂x ′σ Rα
βγ δ . (5.78)

In particular, since in flat spacetime in Cartesian coordinates the Riemann tensor
vanishes, it vanishes in any coordinate system even if theChristoffel symbolsmay not
vanish. So in flat spacetime all the components of the Riemann tensor are identically
zero. Note that such a statement is not true for the Christoffel symbols, because they
transform with the rule in Eq. (5.21), where the last term may be non-zero under a
certain coordinate transformation.

5.4.2 Geometrical Interpretation

Here we want to show that the result of parallel transport of a vector depends on the
path. With reference to Fig. 5.2, we have the vector V at point A = xA = {xμ}. The
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vector has components

V μ

A = V μ . (5.79)

Let us now parallel transport the vector to point B = xB = {xμ + pμ}, where pμ is
an infinitesimal displacement. After parallel transport, the components of the vector
are

V μ

A→B = V μ − Γ μ
νρ(xA)V

ν pρ . (5.80)

Lastly, we parallel transport the vector to point D = xD = {xμ + pμ + qμ}, where
qμ is an infinitesimal displacement too. At point D the components of the vector are

Vμ
A→B→D = Vμ

A→B − Γ μ
νρ(xB)V ν

A→Bq
ρ

= Vμ − Γ μ
νρ(xA)V ν pρ −

[
Γ μ

νρ(xA) + ∂Γ
μ
νρ

∂xσ
(xA)pσ

] [
V ν − Γ ν

τυ(xA)V τ pυ
]
qρ

= Vμ − Γ μ
νρ(xA)V ν pρ − Γ μ

νρ(xA)V νqρ − ∂Γ
μ
νρ

∂xσ
(xA)pσ V νqρ

+ Γ μ
νρ(xA)Γ ν

τυ(xA)V τ pυqρ , (5.81)

where we have neglected terms of order higher than second in the infinitesimal
displacements pμ and qμ.

Let us now do the same changing path. We start from the vector V at point A
and we parallel transport it to point C = xC = {xμ + qμ}, as shown in Fig. 5.2. The
result is the vector VA→C . We continue and we parallel transport the vector to point
D, where the vector components are

V μ

A→C→D = V μ − Γ μ
νρ(xA)V

νqρ − Γ μ
νρ(xA)V

ν pρ − ∂Γ μ
νρ

∂xσ
(xA)q

σV ν pρ

+Γ μ
νρ(xA)Γ

ν
τυ(xA)V

τqυ pρ . (5.82)

If we compare Eqs. (5.81) and (5.82), we find that

V μ

A→B→D − V μ

A→C→D =
(

∂Γ μ
τρ

∂xυ
− ∂Γ μ

τυ

∂xρ
+ Γ μ

νυΓ ν
τρ − Γ μ

νρΓ
ν
τυ

)

x=xA

V τqυ pρ

= Rμ
τυρV

τqυ pρ . (5.83)

The difference in the parallel transport between the two paths is regulated by the
Riemann tensor. In flat spacetime, the Riemann tensor vanishes, and, indeed, if we
parallel transport a vector from one point to another the result is independent of the
choice of the path.
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Fig. 5.2 If the vector VA at
A = {xμ} is parallel
transported to point
B = {xμ + pμ} and then to
point D = {xμ + pμ + qμ},
we obtain the vector
VA→B→D . If VA is parallel
transported to point
C = {xμ + qμ} and then to
point D = {xμ + pμ + qμ},
we obtain the vector
VA→C→D . In general,
VA→B→D and VA→C→D
are not the same vector

5.4.3 Ricci Tensor and Scalar Curvature

From the Riemann tensor, we can define the Ricci tensor and the scalar curvature
after contracting its indices. The Ricci tensor is a tensor of second order defined as

Rμν = Rλ
μλν = ∂Γ λ

μν

∂xλ
− ∂Γ λ

μλ

∂xν
+ Γ κ

μνΓ
λ
κλ − Γ κ

μλΓ
λ
νκ . (5.84)

The Ricci tensor is symmetric

Rμν = Rνμ . (5.85)

Contracting the indices of the Ricci tensor we obtain the scalar curvature

R = Rμ
μ = gμνRμν . (5.86)

With the Ricci tensor and the scalar curvature we can define the Einstein tensor
as

Gμν = Rμν − 1

2
gμνR . (5.87)

Since both Rμν and gμν are symmetric tensors of second order, the Einstein tensor
is a symmetric tensor of second order as well.
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5.4.4 Bianchi Identities

The Bianchi Identities are two important identities involving the Riemann tensor.
The First Bianchi Identity reads

Rμ
νρσ + Rμ

ρσν + Rμ
σνρ = 0 , (5.88)

and it can be easily verified by using the explicit expression of the Riemann tensor
in Eq. (5.71). Indeed we have

Rμ
νρσ + Rμ

ρσν + Rμ
σνρ = ∂Γ μ

νσ

∂xρ
− ∂Γ μ

νρ

∂xσ
+ Γ λ

νσΓ
μ
ρλ − Γ λ

νρΓ
μ
σλ

+ ∂Γ μ
ρν

∂xσ
− ∂Γ μ

ρσ

∂xν
+ Γ λ

ρνΓ
μ
σλ − Γ λ

ρσΓ
μ
νλ

+ ∂Γ μ
σρ

∂xν
− ∂Γ μ

σν

∂xρ
+ Γ λ

σρΓ
μ
νλ − Γ λ

σνΓ
μ
ρλ

= 0 . (5.89)

The Second Bianchi Identity reads

∇μR
κ
λνρ + ∇νR

κ
λρμ + ∇ρR

κ
λμν = 0 . (5.90)

The first term on the left hand side in Eq. (5.90) can be written as

∇μR
κ
λνρ = ∇μ

(
∂Γ κ

λρ

∂xν
− ∂Γ κ

λν

∂xρ
+ Γ σ

λρΓ
κ
νσ − Γ σ

λνΓ
κ
ρσ

)
. (5.91)

If we choose a coordinate system in which the Christoffel symbols vanish at a certain
point (this is always possible, see Sect. 6.4.2), at that point Eq. (5.91) becomes

∇μR
κ
λνρ = ∂2Γ κ

λρ

∂xμ∂xν
− ∂2Γ κ

λν

∂xμ∂xρ
, (5.92)

because in the case of vanishing Christoffel symbols the covariant derivative reduces
to the partial one. The second and third terms on the left hand side in Eq. (5.90) read,
respectively,

∇νR
κ
λρμ = ∂2Γ κ

λμ

∂xν∂xρ
− ∂Γ κ

λρ

∂xν∂xμ
, (5.93)

∇ρR
κ
λμν = ∂Γ κ

λν

∂xρ∂xμ
− ∂Γ κ

λμ

∂xρ∂xν
. (5.94)

The Second Bianchi Identity can thus be written as
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∇μR
κ
λνρ + ∇νR

κ
λρμ + ∇ρR

κ
λμν = ∂2Γ κ

λρ

∂xμ∂xν
− ∂2Γ κ

λν

∂xμ∂xρ

+ ∂2Γ κ
λμ

∂xν∂xρ
− ∂Γ κ

λρ

∂xν∂xμ

+ ∂Γ κ
λν

∂xρ∂xμ
− ∂Γ κ

λμ

∂xρ∂xν

= 0 . (5.95)

Since the left hand side is a tensor, if all its components vanish in a certain coordinate
system they vanish in any coordinate system, and this concludes the proof of the
identity.

From the Second Bianchi Identity we find that the covariant divergence of the
Einstein tensor vanishes.Aswewill see in Sect. 7.1, this is of fundamental importance
in Einstein’s gravity. If we multiply the Second Bianchi Identity in Eq. (5.90) by gν

κ

and we sum over the indices κ and ν, we find

gν
κ

(∇μR
κ
λνρ + ∇νR

κ
λρμ + ∇ρR

κ
λμν

) = 0 ,

∇μ

(
gν

κ R
κ
λνρ

) + gν
κ∇νR

κ
λρμ − ∇ρ

(
gν

κ R
κ
λνμ

) = 0 ,

∇μRλρ + ∇κ R
κ
λρμ − ∇ρRλμ = 0 . (5.96)

We multiply by gλρ and we sum over the indices λ and ρ

gλρ
(∇μRλρ + ∇κ R

κ
λρμ − ∇ρRλμ

) = 0 ,

∇μ

(
gλρRλρ

) − ∇κ

(
gλρgκσ Rλσρμ

) − ∇ρ

(
gλρRλμ

) = 0 ,

∇μR − ∇κ R
κ
μ − ∇ρR

ρ
μ = 0 ,

∇κ

(
gκ

μR − 2Rκ
μ

) = 0 . (5.97)

This is equivalent to

∇μG
μν = 0 . (5.98)

Problems

5.1 Write the components of the following tensors:

∇μAαβ , ∇μA
αβ , ∇μA

α
β , ∇μA

β
α , (5.99)

5.2 Write the non-vanishing components of the Riemann tensor, the Ricci tensor,
and the scalar curvature for the Minkowski spacetime in spherical coordinates.

5.3 Check that the Ricci tensor is symmetric.
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