Chapter 5 ()
Riemannian Geometry oo

In the previous chapters, we studied non-gravitational phenomena in inertial refer-
ence frames, and often we limited our discussion to Cartesian coordinate systems.
Now we want to include gravity, non-inertial reference frames, and general coor-
dinate systems. The aim of this chapter is to introduce some mathematical tools
necessary to achieve this goal. We will follow quite a heuristic approach. The term
Riemannian geometry is used when we deal with a differentiable manifold equipped
with a metric tensor (see Appendix C for the definition of the concept of differentiable
manifold).

5.1 Motivations

As we will see better in the next chapter, gravity has quite a special property: for the
same initial conditions, any test-particle' in an external gravitational field follows
the same trajectory, regardless of its internal structure and composition. To be more
explicit, we can consider the Newtonian case. Newton’s Second Law reads m;X = F,
where m; is the inertial mass of the particle. If F is the gravitational force on our
particle generated by a point-like body with mass M, we have

M
iy (5.1)

F=G
NT S
where my is the gravitational mass of the particle (and we are assuming that m, <
M). In principle, m; and m, may be different, because the former has nothing to do
with the gravitational force (it is well defined even in the absence of gravity!) and

1 A test-particle must have a sufficiently small mass, size, etc. such that its mass does not significantly
alter the background gravitational field, tidal forces can be ignored, etc.
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the second is the “gravitational charge” of the particle. For instance, in the case of an
electrostatic field, the force is given by the Coulomb force, which is proportional to
the product of the electric charges of the two objects. The electric charge is completely
independent of the inertial mass of a body. On the contrary, the ratio between the
inertial and the gravitational masses, m; /m., is a constant independent of the particle.
This is an experimental result! We can thus choose units in which m; = m, = m,
where m is just the mass of the particle. At this point, Newton’s Second Law reads

M
X = Gyt (5.2)
r

and the solution is independent of m and the internal structure and composition of the
particle: any test-particle follows the same trajectory for the same initial conditions.

The trajectory of a particle can be obtained by minimizing the path length between
two events of the spacetime. We can thus think of writing an effective metric such that
the equations of motion of the particle take into account the effect of the gravitational
field. The example below can better illustrate this point.

In Newtonian mechanics, the Lagrangian of a particle in a gravitational field
is L =T — V, where T is the particle kinetic energy, V = m@® is the gravitational
potential energy, and @ is the gravitational potential; see Sect. 1.8. As seen in Chap. 3,
in special relativity, for small velocities T is replaced by Eq. (3.11). The Lagrangian
of a non-relativistic particle in a Newtonian gravitational field is thus

1
L=—mc*+ 5mv2 —md. (5.3)
Since
2 L,
mc” > Emv , —m®, 5.4)

we can rewrite Eq. (5.3) as

L=—-mcyc?—v24+2P, (5.5)

and the corresponding action as

2@
S:—mc/\/<l+—2>cz—x2—j}2—22dt
c

= —mc/w/—gw)'c“)'c”dt, (5.6)

where we have introduced the metric tensor g, defined as
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||g//.v|| = (57)

If we apply the Least Action Principle to the action in Eq. (5.6), we obtain the geodesic
equations for the metric g,,,. They are equivalent to the Euler-Lagrange equations
for the Lagrangian in (5.3) by construction. So we can describe the gravitational field
as a geometrical property of the spacetime.

With this simple example, we see how we can “absorb” the gravitational field into
the metric tensor g,,. The particle trajectories provided by the geodesic equations
for the metric g, are not straight lines, because g,,,, takes gravity into account. Note
that g, cannot be reduced to the Minkowski metric in the whole spacetime with a
coordinate transformation and we say that the spacetime is curved. On the contrary,
if we can recover the Minkowski metric 7,,, in the whole spacetime with a coordinate
transformation, the spacetime is flat. In this second case, the reference frame in which
the metric is not 7,,, either employs non-Cartesian coordinates or is a non-inertial
reference frame (or both).

5.2 Covariant Derivative

The partial derivative of a scalar is a dual vector and it is easy to see that it transforms
as a dual vector under a coordinate transformation

¢ ¢ ox¥ 0¢
_— = .
axH ax’* ax'* 9xV

(5.8)

The partial derivative of the components of a vector field is not a tensor field. Let
V*# be a vector and x* — x* a coordinate transformation. We have

hA%e V'K dx” 0 axt
— — | —V
axV ax’v ax’ dxP \ 0x°

IxP XM IVe  dxP 3xM
= + — V. (5.9
dx’"v 9x° JxP dx"V dxPox®

If the relation between the two coordinate systems is not linear, we have also the
second term on the right hand side and we see that 9 V*/dx" cannot be a vector. The
reason is that d V# is the difference between two vectors at different points. With the
terminology of Appendix C, vectors at different points belong to different tangent
spaces. d V# transforms as
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dV*F = dV'* = V*(x +dx) — V'*(x)
dx dx
=( a ) V"‘(x—i—dx)—( a ) VeR).  (5.10)
x+dx X

0x* 0x*

If 9x™"/9x% in front of V*(x 4 dx) were the same as that in front of V¥(x), then we
would have

V' ox™ d "
V= —|V¥x + - Ve =
T [Vt dn) = V] = S

xC{

ave. (5.11)

However, in general this is not the case: dx™* /dx® in front of V¥ (x + dx) is evaluated
atx + dx, thatin front of V¥ (x) is evaluated at x. In this section we want to introduce
the concept of covariant derivative, which is the natural generalization of partial
derivative in the case of arbitrary coordinates.

5.2.1 Definition

We know that dx* is a 4-vector and that the 4-velocity of a particle, u”* = dx"/dt
is a 4-vector too, since dt is a scalar. However, we know from Eq. (5.10) that du* is
not a 4-vector.

In Sect. 1.7, we introduced the geodesic equations. Since u* = dx" /dt, we can
rewrite the geodesic equations as

ey (5.12)
—_ u =0, .
dr P dt
and also as
bt (5.13)
dr ’
where we have defined Du* as
ut
Du" =du" + Iju’dx" = | — + Iu” | dx". (5.14)
v daxV ve

We will now show that Du* is the natural generalization of du** for general coordinate
systems and that the partial derivative 9,, generalizes to the covariant derivative V,,.
In the case of a 4-vector like u*, we have Du* = (V,u*)dx", where V, is defined
as

u

Vout = Py + F]f;u”. (5.15)
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First, we check that the components of V,u* transform as a tensor. The first term
on the right hand side in Eq. (5.15) transforms as

out ou'™ ox* 9 ax'™ P
— = u

axV ax" ax" ax« \ 9xP
Ix® IxM JuPf  9x® 9ix* 5

= ox7 9xP 9xe | ox oxeanh (5.16)
The Christoffel symbols transform as
s 1 =6 (ot + e vt
_ 1 9x™ 9x'° o axY 9 9x® 9x¢
= 2 9P 8 37 ax7 (8x“’ ax—/pgsa>
laxmﬁgaﬁﬂi <8x3 Egs )
2 9x® 9xP 9x'? 9x7 \ 9x gx/o °%
1 0x"* 9x'° s ax’ 9 9x® 9x®
T2 9x 9xP 8 9xo axv (max—,pgsg> (5.17)

Since the calculations become long, we consider the three terms on the right hand
side in Eq. (5.17) separately. The first term is

lax’“ ax’ g ax” i ( Ax® B_x’“’g(S )
2 9x« dxP° gx” dxv \ dxo dxr O
_Lox™ox" op 0X7 9%x%  9x'T 9x®
T 2 0x 9xP S 9x 9xTox 9xv x®
Lox"™ 9x'” g 0x” ax®  9%xf ox’"
2 x@ E)x_ﬁg AxV 9x'° dx'Tdx'P dxV
10x™ 0x"° o 0%V dx® 9x® dgse
2 dx@ E)x_ﬁg XV X' dx'P IxV

8se

8se

_Lox™ox” g 3%x®  9xf n Lox™ g 3%x®

T 2 0xe axP 8 axvoxe axe T 2 a8 Gxmax 8P
1ax™  9x” dx° @
_O0X LupOX X 08pe (5.18)
2 0x® ox’v ax’P oxv

For the second term we have
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1 9x™ 0x'® ax” 9 axd axe
= g“ﬂ—— - 8%
2 9x® 9xP ax’P 9x¥ \ ax" ax'°

1 axt 3%x? n 1 9x™* 0x" p axt 9%t

T 2oxe® xmoxe 8P T 2k 9xB 8 Gxm gxroxo 8%

1 9x* ax?” 9x% 9
OX " Lap OXT X 08 (5.19)

2 9x x'P dx” dxv
Lastly, the third term becomes

1 9x™* 9x® p ax” 0 ax® 9x¢
-5 g — T8
2 9x« 9xP ax’e dxv \ dx’v 0x'P
1 9x™ ox'® 3%x% 9xt 1 9x™™ 0x’° axd  92%x¢
=—3 gaﬁ 88 — % _gaﬁ T
2 9x% 9xP AxVIx'e 9x'P 2 9x® 9xP X" 9x'Pox’°
1 ox™ ax? 9xt dgs.
I gop 0% 9X 08 (5.20)

T2 xS 9x ax axP
If we combine the results in Egs. (5.18)—(5.20), we find the transformation rule for

the Christoffel symbols

8se

dx 3x® xt 1 <8g,35 0gss 3855>

7,
B = 1w = 5o ox2 ax> | oxt  oxP
ax’* 9%x? p
0x% 8x’”8x’ﬂg Sop
Ax™ ax® 9x¢ ax®  ox'H
- o (5.21)

9x® dx dx’P % 9xox’P 9x*

We see here that the Christoffel symbols do not transform as the components of a

tensor, so they cannot be the components of a tensor.
Let us now combine the results in Egs. (5.16) and (5.21). We find

Juh Ju't axe ax™ oub Ix®  2x™
oy, 0 - - - -
Py +vau — Fyen +Fupl/t 9% 9xB i@ 9xv 8xa3xﬁu

ax™ axP dx o 09X
— I ——u
ax® gx” ax'r PV gxd
9Zx®  Jx™ 9x'P 5
ax"Vox'? 9x® dxP
Ix® Ax™ quPf  9x® 9rx'*
ax" 9xP 9x* = 9x’” 9x*oxP
dx’* dxP
0 pa gy
Ixe 9x’v By
9Zx®  Jx* 9x’P 5
g A, (5.22)
axvox'? 9x® JxP

u
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Note that

ax® ox'*

ax’V ox¥
0 ax%® 9x'H 0

22 = e,

axP \ ax"v 9x“ oxp

9ZxY  9x'P Ix'™ Px¥ PExM

=5k,

—_— — =0, 5.23
Ax"ox'® dxP dx¢ + ax" dxPIx ( )
and therefore
9Zx®  9x’P dx'H _ _8x°‘ 92x'H . (5.24)
ax"ox'® dxP dx¢ ax"v dxPox>

We use Eq. (5.24) in the last term on the right hand side in Eq. (5.22) and we see that
the second and the last terms cancel each other. Equation (5.22) can thus be written
as

ou'™ Ix® ax™ [ouf
ax" YOI T gxv xB

+ IPy'? = +rfur), (5.25)
8xo¢ ay

and we see that V,,u"s transform as the components of a tensor of type (1, 1).

5.2.2 Parallel Transport

As it was pointed out at the beginning of this section, the partial derivative of a
vector computes the difference of two vectors belonging to different points and for
this reason the new object is not a tensor. The sum or the difference of two vectors is
another vector if the two vectors belong to the same vector space, but this is not the
case here. Intuitively, we should “transport” one of the two vectors to the point of the
other vector and compute the difference there. This is what the covariant derivative
indeed does and involves the concept of parallel transport.

Let us consider the example illustrated in Fig. 5.1. We have a 2-dimensional
Euclidean space and we consider both Cartesian coordinates (x, y) and polar coor-
dinates (r, 6). The vector V is at point A = x4 = {x*}. Its components are (V*, V)
in Cartesian coordinates and (V”, V%) in polar coordinates. If we think of “rigidly”
transporting the vector V from point A to point B = xp = {x" 4+ dx"}, as shown in
Fig. 5.1, the Cartesian coordinates do not change

(V5 VY — (V5 V). (5.26)

However, the polar coordinates change. This operation is called parallel transport
and in what follows we want to show that the components of the parallel transported
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Fig. 5.1 The vector V at x*
is parallel transported to the
point x* 4+ dx". While the ——
vector V does not change
under parallel transport, its
components change in
general

vector are given by
Vig=Vy-— Ly (xa)Vyidx” . (5.27)
First, the relations between Cartesian and polar coordinates are
x=rcosf, y=rsinf, (5.28)

r=+x?+y?, 6 =arctan Y (5.29)
X

If the vector V has Cartesian coordinates (V*, V), its polar coordinates (V", v?)
are

or or .

Vi=—V'"+ —VY=cosOV* +sinfV”,
ax ay

g 00 . 00 sinf . cosf

Vie—V'4+ —V'=——-V'4+ —VV. (5.30)
ax dy r r

If we parallel transport the vector V from the point (7, 0) to the point (» + dr, 6 + df),
we have the vector V) in Fig. 5.1. The radial coordinate V] is

V

| =cos(0+dO) V" +sin(0 +dO) VY

= (cos @ — sinOdO) V* + (sin6 + cos60dO) V. (5.31)

where we have neglected O(d6?) terms
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cos (6 + df) = cosf cosdb — sin 0 sindf
= cosf — sinHdo + 0(db?),
sin (6 + df) = sinf cos d6 + cos 6 sin db
= sin6 + cos 0dO + O (d6?). (5.32)

For the polar coordinate V‘?, we have

sin(0 +d0) . cos(0 +db)

V) =— 5.33
| (r +dr) (r+dr) 633
Since
sin (6 + dO) sinf  cos6 sin 0 ) )
= + do — dr + O(dr~,drd6,do"),
(r +dr) r r r2
0 +do 0 in 6 0
cos(O+df) _ cosb _sinb €SO L owr?. drd. de?) . (5.34)
(r +dr) r r r2
Equation (5.33) becomes
Ve = (_sin@ B COSQd@ n Sinfdr) v
r r r
0 in 0 0
+ (COS -0 - = dr) vy (5.35)
r r r
In polar coordinates, the line element reads
di* = dr® + r?do*. (5.36)

As we have seen in Sect. 1.7, the Christoffel symbols can be more quickly calculated
from the comparison of the Euler—Lagrange equations for a free particle with the
geodesic equations. The Lagrangian to employ is

L= (F+r%6%). (5.37)

N =

The Euler-Lagrange equation for the Lagrangian coordinate r is

dr .,
— —r6?>=0,

dt

F—r>=0. (5.38)

For the Lagrangian coordinate 6, we have
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d .

— (r29) =0,

dt

. 2.

0+ —-r8=0. (5.39)
r

If we compare Egs. (5.38) and (5.39) with the geodesic equations, we see that the
non-vanishing Christoffel symbols are

1
Ferez_r’ I—;%:F(fr:; (540)

Now we want to see that, if we parallel transport the vector V from point A to
point B, the coordinates of the vector at B are given by

Vi s =Vi —Tl(xa)Vsidx’. (5.41)

For the radial coordinate we have

Vi e =Vi4+rvide

in 6 0_
=cosOV* +sinfV> +r <—&VX + cos V’) do
r
= (cos® —sinfdO) V* + (sin6 + cosHdO) V. (5.42)

For the polar coordinate we have

1 1

sin 6 cosf
+

1 !
VY — = (cosOV* +sin0V”) do
r

r r
1 in 6 0
1 (_ sinf | cos Vy> i

r r

sinf® cos@ sin 0
= - — do + dr | V*
,

r r2

Y 0
+ (COS _ M7 e - & dr> vy (5.43)

r r r?

We thus see that we recover the results in Egs. (5.31) and (5.35).
When we compute the covariant derivative of a vector V* we are calculating

G
Vo Vi = —— + TLVP

oxY
) VE(x +dx) — V*(x) + Fv’;Vpdx”
= lim

dx"—0 dxV
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— lim Vxl:-dx—m(x) - V/L(x)

T a0 dxV

, (5.44)

that is, we calculate the difference between the vector V*(x + dx) parallel trans-
ported to x and the vector V*(x). Note that now the sign in front of the Christoffel
symbols is plus because we are transporting a vector from x + dx to x, while in
Eq. (5.41) we have the opposite case.

5.2.3 Properties of the Covariant Derivative

From the discussion above, it is clear that the covariant derivative of a scalar reduces
to the ordinary partial derivative

9
Vb = ax_(i , (5.45)

Indeed a scalar is just a number and the parallel transport is trivial: ¢4, p = P4.
The covariant derivative of a dual vector is given by

v,
T 9xk

V.V, —IhV,. (5.46)

Indeed, if we consider any vector V* and dual vector W, V# W, is a scalar. Enforcing
Leibniz’s rule for the covariant derivative, we have

V. (VW) = (V. V)W, + VY (VW)
VY

= S Wt DL VIW, VY (V. W,) . (5.47)

Since V,, becomes 9,, for a scalar function

avy ow,
V,(V'W,)) = —W,+ V" , 5.48
u ( ) o eV o (5.48)
and therefore, equating Eqs. (5.47) and (5.48), we must have
ow,
v, W, = P F,fu w,. (5.49)

The generalization to tensors of any type is straightforward and we have

0
M2y — HIp2. [y
V)LT\J]VZWUJ "= ax)‘ Tvl V2. Vg '
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+1—~ALlTau2m;L, +FM2T/“0”'H’ +...+FM"TM1M2'"G

Ao TVIV.LLYg Ao TV Ao vy

rterms

O UL O UL O DL
—Iy, T, r—IP,T, F— =TT, r (5.50)

o).V V10...Vg V2.0

§ terms

It is worth noting that the covariant derivative of the metric tensor vanishes. If we
calculate V, g,,, we find

ag‘) K K
VMgUP = W: - I—V;ngK,O - F,,LngK
— dgvp _l . (08w + 081 . 08w
axr 2 AxH oxV ax* kP
Lo (080 | 98 08
- = - « 5.51
28 <8x” T T e ) B D)

Since g*g,, = &) and g**g,, = &}, we obtain

98vp . lagpv 1 9gup lag/w

axt 2 9xk 2 9x¥ | 2 axP
19dg., 19gu 10g,,

- - — =0. 5.52
2 dxH 2 0xP 2 0xV ( )

Viu&vp =

5.3 Useful Expressions

In this section we will derive a number of useful expressions and identities involving
the metric tensor, the Christoffel symbols, and the covariant derivative.

We indicate with g the determinant of the metric tensor g,, and with g,, the
cofactor (u, v). The determinant g is defined as

g= Z 8uv&uw (no summation over u) . (5.53)

v

The cofactor g, can be written in terms of the determinant g and of the inverse of
the metric tensor as

glw = gg’” . (5.54)

Indeed, if we have an invertible square matrix A, its inverse is given by

-1 _ 1 T
A7 = cT, (5.55)
det(A)
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where C is the cofactor matrix and C7 is the transpose of C (the proof of this formula
can be found in a textbook on linear algebra). If we apply Eq. (5.55) to the metric
tensor, we recover Eq. (5.54). If we plug Eq. (5.54) into (5.53), we find g = g, which
confirms that Eq. (5.54) is correct.

With the help of Eq. (5.54) we can write

ag . v

= 8w = 88 (5.56)
g "
as well as
d g 98y 08w
8 _ 98 T8 _ ouv 8y (5.57)
0x°  0guy 0x° 0x°
This last expression will be used later.
Let us write the formula for Christoffel symbols
1 agla 8guk 881}0
rec =—g¢ — . 5.58
v =28 <8x” T T (5-58)
We multiply both sides in Eq. (5.58) by g, and we get
1 (084 08y  08vo
r. == — . 5.59
gKlL vo 2 < dxV + 9x° dxk ( )
We rewrite Eq. (5.59) exchanging the indices ¢ and v
1 (080 aguv 88#0
I == — . 5.60
Sevine =3 < oxH + x° dxV (5.60)
We sum Eq. (5.59) with (5.60) and we obtain
aglﬂ) K K
9o =gulyy + gkvrmf . (5.61)

Now we can multiply both sides in Eq. (5.61) by gg"” and employ Eq. (5.57)

g
0x°

= 28" (2eu T + 8wf,fa) =g(I)+ F;‘M) =2gT}, . (5.62)

We rewrite Eq. (5.62) as

Iny—g=——"=Th. (5.63)

0x° 2g 0x° aH
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With the help of Eq. (5.63), the covariant divergence of a generic vector A* can
be written as

0AH* dAH 0
\Y AM = FM AG - AU 1 -
" axu+" oy T gyo VT8
1
- J=z axu ( M‘/_) (5.64)

In the case of a generic tensor A*” of type (2, 0), we can write

aaAl;v —i—I—'M Aqv+FV A/,L(T
X

I 0

= g (VTR + T (5:65)

Note that, if A*” is antisymmetric, namely A*" = —A*, FG"MA’“’ = 0,and Eq. (5.65)
simplifies to

V, AR

VAR = ai (A"y/=g) . (5.66)

ﬁ%

5.4 Riemann Tensor

5.4.1 Definition

‘We know that if the first partial derivatives are differentiable then the partial deriva-
tives commute, i.e. 9,0, = 9,0,; see e.g. [1]. In general, covariant derivatives do

not. We can 1ntroduce the Riemann tensor R* vy as the tensor of type (1, 3) defined
as

VoA, —V,V, A, =R: A, (5.67)

pViL
where A, is a generic dual vector. R*,  is a tensor because V,,V,A, and V,V, A,
are tensors.

In order to find the explicit expression of the Riemann tensor, first we calculate
V.V,A,

94p _ 1
VuVuA, =V, —IhAs

3 v
9 (04, . 8AK . o A,
=5 (axv rvaA> — I (Gor — T ) = T (o0 — T
32A ary 9A dA.
= 2P R R Ly

Axldxy  gxh VP TP gy
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34y A
- Iy, P + Iy Ty A - (5.68)

The expression for V,V, A, is

3%A, ary, , 0A; L 0A, I
VoVud, = dxvaxih  axv L M gxv TV gxn Ll
K aAP K A
- FV/J. ax,( + FVMFKpA)u . (569)

We combine Egs. (5.68) and (5.69) and we find

aFAfp aFV):U K A K A
V.VyA, =V, VA, = | —LL — + T8 —rsrk | A,. (5.70)

ox’ oxh up* kv vp K

We can now write the Riemann tensor R* = in terms of the Christoffel symbols as

un
follows

ary  oarl
Ry = 220 = M:’ + I — Ty (5.71)

It is also useful to have the explicit expression of R,,,,,. From Eq. (5.71), we
lower the upper index with the metric tensor

A
R;wpa = g;L)LR vpo

orx  oary . -
= 8ur oxrP B 0x° + FW’ FPK - vaFaK ) (572)

The first term on the right hand side in Eq. (5.72) can be written as

g aFu}; =g i lgh( agKU+agVK _agva
HA o X moxe | 2 ax’ | 9x°  ox~

1 ogh <8gm g agm>

28#/\ oxP \ 0xV dx°% 0x*
1 az Ko az K 82 vo
2 dxPaxY 0xPax° dxPaxk

_ _laguk A 38;«7 + agwc o agva
2 dxP

axY 0x° dx“
1 ( %80 3%gu %8s )

+ 2 \9xPdx? ' 9xPax®  dxPaxh
I aguk l( azg;w azgvp. _ azgva

YO 9xP 2 \ 0xPOxY  0xPIx®  OxPOxM

) . (5.73)
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We use Eq. (5.61) to rewrite dg,,,/0x” and Eq. (5.73) becomes

ary, l( 3280 328wy 32806 )

S e T 2\ Gxrox® | axraxc  axkaxe
—gu Tl Iy — gl ry,. (5.74)

In the same way, we can rewrite the second term on the right hand side of Eq. (5.72)

arv);i _l( azgup + azgvu _ azgvp )

Ewaxe T2\ oxvax T 9x79xP  axiaxe
— gue Ly T — 8T Ty - (5.75)

With Eqgs. (5.74) and (5.75) we can rewrite R ,,,; as

1 Bzglw Bzgvp Bzgﬂp Bzgm
Ryvpe = 3 + - -
2 \ dxVoxr 0xHox® 0xV0x° oxHaxe
+8a (LT — T T,) - (5.76)

The Riemann tensor R,,,,, is antisymmetric in the first and second indices as well
as in the third and forth indices, while it is symmetric if we exchange the first and
second indices respectively with the third and fourth indices:

R/wpa = _Rvupa = _R;wop = R,oa/u) . (577)

Note that, if R ,, = Oina certain coordinate system, it vanishes in any coordinate

system. This follows from the transformation rule of tensors

ax™* axP axv 9x?
m mwooo_ a
R vpo - R vpo IxY 9x’ Ix'P 9x'° R Byd - (5.78)

In particular, since in flat spacetime in Cartesian coordinates the Riemann tensor
vanishes, it vanishes in any coordinate system even if the Christoffel symbols may not
vanish. So in flat spacetime all the components of the Riemann tensor are identically
zero. Note that such a statement is not true for the Christoffel symbols, because they
transform with the rule in Eq. (5.21), where the last term may be non-zero under a
certain coordinate transformation.

5.4.2 Geometrical Interpretation

Here we want to show that the result of parallel transport of a vector depends on the
path. With reference to Fig. 5.2, we have the vector V at point A = x4 = {x*}. The
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vector has components
VEh=VE, (5.79)

Let us now parallel transport the vector to point B = xg = {x* 4 p"}, where p* is
an infinitesimal displacement. After parallel transport, the components of the vector
are

Vi = Ve = Thx)V'p”. (5.80)

Lastly, we parallel transport the vector to point D = xp = {x* + p" + g*}, where
g" is an infinitesimal displacement too. At point D the components of the vector are

w I3 ) v P
Visssp = Vasg — L, (xB)Va_pa

ark, }
VE — Tl (xa)V'pP — [FJ;m) + axff (xA)p”] (V"= IxaVTpY]q”

ark
VI — T () VY p? — TV g — axff (xp)p° Vi
+ L ) I, (x )V pPg” (5.81)

where we have neglected terms of order higher than second in the infinitesimal
displacements p* and g*.

Let us now do the same changing path. We start from the vector V at point A
and we parallel transport it to point C = x¢ = {x* 4 ¢"}, as shown in Fig. 5.2. The
result is the vector V4, ¢. We continue and we parallel transport the vector to point
D, where the vector components are

n
Vieop =V =Tlhxa)V'q” — TV p’ — axf,” (xa)q” V' p*
+ I (xa) I, (xa)Vig p” . (5.82)
If we compare Eqs. (5.81) and (5.82), we find that
ort arr ) ) )
VX_)B_)D_VAL_)C_)D - (3xvp _ax_rf"—i_Fv/trrp_Fv/;Fru) Viq©p”®
=x4
=R, V'q"p". (5.83)

The difference in the parallel transport between the two paths is regulated by the
Riemann tensor. In flat spacetime, the Riemann tensor vanishes, and, indeed, if we
parallel transport a vector from one point to another the result is independent of the
choice of the path.
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Fig. 5.2 1If the vector V4 at
A = {x"*} is parallel Vascan
transported to point

B = {x" 4+ p"} and then to
point D = {x* + p/ + g"},
we obtain the vector

Vo p—p. If V4 is parallel
transported to point

C = {x"* + g"} and then to
point D = {x* + p* + g*},
we obtain the vector
Vi—c—p. In general,
Vaspspand Vacop
are not the same vector

5.4.3 Ricci Tensor and Scalar Curvature

From the Riemann tensor, we can define the Ricci tensor and the scalar curvature
after contracting its indices. The Ricci tensor is a tensor of second order defined as

ar:, — ark
Ryw=R,, = # — ﬁ + IS5 =TT (5.84)

The Ricci tensor is symmetric
Ruv = Ry . (5.85)
Contracting the indices of the Ricci tensor we obtain the scalar curvature
R=R =g""Ry . (5.86)

With the Ricci tensor and the scalar curvature we can define the Einstein tensor
as

1

G, =Ry, — Eg,wR. (5.87)

Since both R, and g, are symmetric tensors of second order, the Einstein tensor
is a symmetric tensor of second order as well.
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5.4.4 Bianchi Identities

The Bianchi Identities are two important identities involving the Riemann tensor.
The First Bianchi Identity reads
RM + RM

vpo pov

+RE =0, (5.88)

ovp T

and it can be easily verified by using the explicit expression of the Riemann tensor
in Eq. (5.71). Indeed we have

art ory
le)pa+th)av+ %vpzﬁ_ﬁ-’_rforlﬁ»_rﬁ)[x&
ort ort
pv po A oM A 13
M—U—WJFF,WFM—FMFM
Mg, AL o o
W_ﬁ—i_raprvk_ravrpx
=0. (5.89)

The Second Bianchi Identity reads

VMRKAVp + VvRKAp;L + VPRKMLV =0. (590)

The first term on the left hand side in Eq. (5.90) can be written as

V,RS =V Ly 00, + I —rere (5.91)
HEY dvp 1% dxV dxP ot vo ' po N .

If we choose a coordinate system in which the Christoffel symbols vanish at a certain
point (this is always possible, see Sect. 6.4.2), at that point Eq. (5.91) becomes

VRS, = b, Gt 5.92
wR Ao T G ngxy gxkdxr (5-92)

because in the case of vanishing Christoffel symbols the covariant derivative reduces
to the partial one. The second and third terms on the left hand side in Eq. (5.90) read,
respectively,

azrfﬂ ary,

V,R = — , 5.93

MR 9xvdxP  dxVoxh ( )
orx ary

V,RY == v L 5.94

PEAY T GxPdx 9xPOxXY ( )

The Second Bianchi Identity can thus be written as
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LURE = Iy, R
mT xHaxY | axkoxP
9°ry, ary,
IxvaxP  dx’oxh
aF)LKv aF)tKM
AxPIXH  xPIxY

=0. (5.95)

V,. R

Mp—l—VR

AP

Since the left hand side is a tensor, if all its components vanish in a certain coordinate
system they vanish in any coordinate system, and this concludes the proof of the
identity.

From the Second Bianchi Identity we find that the covariant divergence of the
Einstein tensor vanishes. As we will see in Sect. 7.1, this is of fundamental importance
in Einstein’s gravity. If we multiply the Second Bianchi Identity in Eq. (5.90) by g;
and we sum over the indices « and v, we find

(V RK/\VP—}—V Rxpu—}—V RMV) =0,
V (gK Avp) + gl(v RK)\.ﬂ[l. - V (gl( RK)\U[L) = 0’
VR + VRS, — V, Ry = 0. (5.96)

We multiply by g’ and we sum over the indices A and p

8" (VuRip + VRS, — VoR;,) =0,
VM ( R)Lp) (gkpg {TR)\.O'pM) - vp (g)LpR)»M) =0 5
VuR = ViR, —V,R; =0,
Ve (g5R —2R;) =0. (5.97)
This is equivalent to
v, G =0. (5.98)

Problems

5.1 Write the components of the following tensors:

Vilap. VAP, VA% VAL

o

(5.99)

5.2 Write the non-vanishing components of the Riemann tensor, the Ricci tensor,
and the scalar curvature for the Minkowski spacetime in spherical coordinates.

5.3 Check that the Ricci tensor is symmetric.
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