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Chapter 1
Introduction

McKenzie Ritter, Yin Yao, and Andrew Collins

Abstract  This chapter presents an overview of the current genomic field and 
highlights each of the ten chapters, which have been collected into this book. The 
critical concepts illustrated by the authors are also pointed out through logical 
connections between different chapters.

1.1  �Overview

With the recent use of both large and multidimensional data, a demand has been 
created for the development of new tools that can properly analyze it. Applied sta-
tistical genomics methodologies have been developed to handle just that. This book 
presents various analyses that deal with such complex data, which contrasts from 
previous analyses used in the field, such as linkage and segregation analyses. With 
the more common use of large data, analyses such as sequencing are extremely 
important to the field. The goal of this book is to present these various examples of 
analyses in order to provide other researchers with the tools to utilize and apply 
them to their own genomic data.

This is an exciting time for human geneticists focusing on the mechanisms 
underlying complex traits including cancer, mental health disorders, cardiovascular 
diseases, diabetes, and immune disorders. The current excitement stems from three 
main technological and analytical developments: (1) the advent of next-generation 
sequencing (NGS) techniques, including whole exome sequencing (WES) and 
whole genome sequencing (WGS), (2) the development of bioinformatics tools 
which improves the efficiency and infrastructure for data management, and (3) the 
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development of more powerful statistical tools to analyze large and complex data 
sets. Despite the technical and conceptual challenges involved in integrating these 
advances, researchers have already applied NGS approaches to identify disease-
causal genetic variants and demonstrated functional roles via experimental efforts, 
involving careful validations across various research groups within ethnically 
diverse samples and, at times, through animal models. Most importantly, these new 
developments provide many new opportunities for investigators with fresh knowl-
edge to develop novel approaches and conceptual models to incorporate progress in 
molecular genetics, bioinformatics, and next-generation phenotyping.

This book is focused on the application of these sequencing technologies and 
places them in the context of techniques, such as genome-wide association studies 
(GWAS), family-based linkage analyses, candidate gene-based approaches, and 
case-control-based association analyses. There are numerous situations where these 
alternative strategies are closely linked, for example, in the case of family-based 
analyses using data generated on WES or WGS platforms. There are already plenti-
ful successful examples where researchers have taken advantage of WES or WGS 
and found casual variants in cancer as well as several Mendelian disorders. Some of 
these findings have underpinned a depth of research probing disease etiology and, 
more excitingly, the development of novel tools for personalized medicine, enabling 
earlier diagnosis and targeted cancer treatment. The increasing application and 
development of sophisticated analytical techniques provide a clear route toward 
greatly improved clinical application of these new sources of data. It is widely rec-
ognized that, in the next few decades, data integration will play an increasingly 
important role in understanding genome-environment interactions involved in the 
development of human disorders and the way measured factors modify the function 
and expression of genes in the genome.

1.2  �Overview of Chapter Contents

This book has 11 chapters, each of which stands alone as a thoughtful mini-review 
of a specific tool, study design, or broader coverage of a research field. The book is 
structured in the following way: this chapter serves as an introduction to the current 
status of the genomic field and provides highlights of the ten chapters. The chapters 
are linked through the cohesive nature of both technological development and sta-
tistical knowledge, which must work together to progress understanding. Human 
genetics (or genomics) has experienced many difficulties to approach the point 
where the information generated by different platforms can be integrated in an 
appropriate manner and the learned knowledge translated into therapeutic interven-
tions or enhanced prediction tools. However, translational computational biology as 
a field is still young. The need for appropriate integration of data from various plat-
forms including GWAS, WES, WGS, and gene expression arises in a wide spectrum 
of clinical applications. We hope this book opens a door to the important statistical 
tools used by researchers in the field of human genetics, clinical science, and poli-
cymaking and attracts graduate students who are interested in translational research 
and are willing to contribute to this promising field.

M. Ritter et al.
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Below, we provide an overview of individual chapters. In Chap. 2, the methodol-
ogy and results of a whole genome analysis on the overlap between attention deficit 
hyperactivity disorder (ADHD) and obsessive-compulsive disorder (OCD) are dis-
cussed. A GWAS, meta-analysis, polygenic risk score analysis, protein-protein link 
evaluation, and expression quantitative trait locus (eQTL) analysis are conducted on 
the two data sets to search for overlapping genetic variants that may point to the 
susceptibility of the two disorders. Each of these analyses is discussed, as well as 
the results from each of the analyses. This chapter is based on a previously pub-
lished manuscript (Ritter et al. 2017).

In Chap. 3, a complete review of the most important concepts in genetic epide-
miology is provided. This chapter moves beyond the traditional risk factors defined 
by epidemiologists and reviews breakthroughs in genomics in recent years. A pre-
cise definition for complex traits is provided, as well as a thorough introduction to 
genetic epidemiology as a tool for pinpointing the role of genetic factors, as well as 
environmental factors. The definitions of family studies, twin studies, adoption 
studies, and migration are also reviewed, as well as issues relevant to the various 
designs are considered. The chapter illustrates the need for a unified framework for 
studies of both genetic and environment factors, using narcolepsy as an example. 
This work provides a strong foundation for the remainder of the book.

The in-depth statistical framework for rare variants analysis can be found in 
Chap. 4, in which all currently analytical strategies on rare variant hunting are dis-
cussed. The idea of “collapsing” is explained and then provides mathematical algo-
rithms on all methods including weighted sum association method (WSM) (Feng 
et  al. 2011), pooled association tests for rare variants, data-adaptive aSUM test, 
alpha test (Han and Pan 2010), sequence kernel association test (SKAT) (Wu et al. 
2011), and odds ratio weighted sum statistic (ORWSS) (Price et  al. 2010). 
Furthermore, a description for a general framework developed by Lin and Tang 
(2011) for the purpose of detecting disease associations with rare variants in 
sequencing studies is provided.

Chapter 5 discusses a whole genome association analysis on the treatment 
response of individuals with OCD. This chapter is based on an analysis that was 
conducted and published previously (Qin et al. 2015). Up to 30% of individuals suf-
fering from OCD are treatment resistant to serotonin reuptake inhibitors (SRIs). 
Thus, this analysis sought to identify genetic predictors of treatment response. The 
enrichment analysis indicated that two pathways were significant: the glutamatergic 
neurotransmission pathway and serotonergic neurotransmission pathway. This was 
the first GWAS to examine treatment response of OCD.

Chapter 6 serves as an introduction to eQTL studies and thoroughly discusses the 
implication of successful eQTL mapping. It is known that gene expression levels 
vary among individuals and can be analyzed like other quantitative phenotypes, 
such as height and body mass index. The author summarizes a number of interesting 
findings from eQTL analysis on human post-mortem brains based on publications, 
which appeared between 2007 and 2012. It is concluded that although eQTL map-
ping in the human brain is in its early stages, as a tool, QTL has the potential to 
identify important disease intermediate phenotypes, as well as a route to further 
understanding complex diseases. Furthermore, the author describes several com-
monly used experimental platforms and analytical procedures related to eQTL 

1  Introduction
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studies. All literature is also reviewed on mQTL, in which DNA methylation levels 
at specific CpG sites are considered as quantitative traits. More importantly, a list of 
databases is included for QTL mapping results that were built by scientists who col-
lectively have collated basic scientific knowledge, enabling the advancement of per-
sonal medicine.

Chapter 7 examines research progress in a specific rare disorder. This disease is 
nasopharyngeal carcinoma (NPC). A thorough review of all candidate genes related 
to NPC was conducted (note, this was limited to work published in English), as well 
as commentary on the findings provided by two GWAS efforts, one by a research 
group in Taiwan and the other by a group located in Guangzhou, China. Very inter-
estingly, the overlap of genetic markers across all studies was extremely limited, 
making a meta-analysis of most NPC data sets effectively impossible. However, two 
GWAS reports gave similar results in terms of the location of the “significantly 
associated” variants despite the striking differences in sample sizes in the two dif-
ferent studies (less than 300 cases and controls in Taiwan and approximately 1500 
cases and 1500 controls in Guangzhou). This observation supports the rationale of 
conducting GWAS in two high-risk areas for NPC even though the population struc-
ture for Taiwanese and Cantonese is quite different. We predict that a meta-analysis 
conducted using these two data sets may reveal novel association signals. 
Conclusions can be drawn but questions remain. One obvious conclusion is that the 
HLA region is important. But the question remains: Which haplotype(s) are specifi-
cally related to the risk of developing NPC? Given our thoughts on the ethnicity 
difference, we can also speculate that there might be two different haplotypes which 
“cause” the NPC phenotype in each population. We suspect that WGS may provide 
an answer to this question and are eager to see more studies carried out that probe 
the joint effects of gene and environment involved in development of NPC.

Chapter 8 discusses a method that tests for nonlinear dependence of two continu-
ous variables. This was termed CANOVA and is named so because of its basis from 
ANOVA but differs in its use of continuous variables. This method was previously 
developed and published (Wang et al. 2012). The proposed method was compared 
to six other existing methods through the use of simulation data and RNA-seq kid-
ney cancer data. The CANOVA method held up against the other six methods it was 
compared to but does have some limitations. It would be a good idea to test this 
method further using other real data.

Chapter 9 expresses the view that exome sequencing in a relatively small number 
of individuals showing “extreme” phenotypes or more familial subtypes of complex 
disease may be productive. It is also stated that WES and WGS both offer the poten-
tial to interrogate the cumulative impact of the numerous rare variants presumed to 
underlie a substantial proportion of complex disease susceptibility. On the other 
hand, it is noted that both WES and WGS will yield enormous amounts of data and 
pose many analytical challenges. While the cutting-edge sequencing technologies 
provide high-resolution measurements of biological quantities, these new biotech-
nologies also raise novel statistical and computational challenges in areas such as 
image analysis, base calling, and read mapping in initial analysis together with peak 
finding. Furthermore, the main statistical methods that can be used to analyze both 
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rare variants and CNVs are introduced. Readers who are eager to grasp analytical 
concepts relating to de novo variants, the behaviors of rare variants in families ver-
sus large cohorts, and technical details related to sequencing alignment and variant 
calling, as well as data management, will find this chapter useful.

Chapter 10 provides a brief introduction to machine learning. Additionally, the 
applications of machine learning in the context of genomic data are discussed. 
Machine learning can be used for both disease prediction and disease prognosis. 
The limits of machine learning as well as the hopes of its applications for the future 
are mentioned.

The last chapter, Chap. 11, covers a very important area of human genetics, 
which is the history and progression of genetic analyses. The progression of the 
field is discussed, beginning with segregation analyses and then discussing linkage 
analyses, GWAS, and meta-analyses. Each of the analyses is explained and then 
placed in the context of OCD with results discussed from published studies in each 
of the mentioned analyses. The future of OCD genomics is also discussed, which 
includes the use of rare variants, large sample sizes, and more precise phenotype 
classification. This chapter wraps up by summarizing the most common analyses in 
the field and also looks to the future and suggests several focuses to increase the 
power and clarity of the studies.
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Chapter 2
Exploring Polygenic Overlap Between  
ADHD and OCD

McKenzie Ritter and Yin Yao

Abstract  Attention deficit hyperactivity disorder (ADHD) and obsessive-
compulsive disorder (OCD) are neurodevelopmental disorders that onset during 
childhood. They are two of the most common psychiatric disorders affecting 
pediatric populations. ADHD and OCD share a common sub-phenotype, so it was 
thought that they may also share common risk alleles. Previously, ADHD and OCD 
had not been compared on a genome-wide association study (GWAS) or meta-
analysis platform. Thus, a GWAS and meta-analysis were conducted for ADHD and 
OCD. The clinical overlap between the two disorders is also discussed in depth. 
Further research using larger sample sizes are warranted to increase power.

2.1  �Introduction

Attention deficit hyperactivity disorder (ADHD) and obsessive-compulsive disor-
der (OCD) are pediatric neuropsychiatric disorders that commonly affect individu-
als worldwide. ADHD is characterized by recurring obsessions and/or compulsions, 
which affect approximately 5% of the population worldwide (Simon et al. 2009). 
ADHD is characterized by inattention, hyperactivity, and impulsivity (Polanczyk 
et  al. 2007). OCD is characterized by recurring obsession and/or compulsions, 
where obsessions are unwanted thoughts, ideas, and impulses occurring more than 
once and compulsions are repetitive behaviors driven by obsessions (American 
Psychiatric Association 2016).

ADHD and OCD comorbidity has been recorded and found to range from 10% 
to 50% (Geller et al. 1996; Masi et al. 2006; Brem et al. 2014; Abramovitch et al. 
2015). Previously recorded high comorbidity rates could have resulted because 
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ADHD often presents with features of inattention and distractibility, which ulti-
mately could be misdiagnosed as OCD (Geller et al. 2002).

Several studies have been conducted that examined the overlapping sub-
phenotypes between ADHD and OCD. Specifically, Sheppard et al. (2010) found 
that ADHD and OCD both have symptoms of inattention and distractibility that 
co-segregate in families. Additionally, Park et  al. (2016) reported that hoarding, 
which is most commonly associated with OCD, may also be linked to executive 
functioning deficits in ADHD. It has also been noted that individuals with ADHD 
and OCD are thought to share diminished inhibitory control, conveyed as impulsiv-
ity in ADHD and poor control of obsessions and compulsions in OCD (Norman 
et al. 2016). Due to the previously reported clinical overlap between ADHD and 
OCD, the genetic link between the two disorders was also of interest.

A meta-analysis was performed between ADHD (N = 3351) and OCD (N = 5415). 
The ADHD sample consisted of 2064 trios, 896 cases, and 2455 controls. The OCD 
sample contained 2998 individuals from nuclear families. In addition to the meta-
analysis, polygenic risk score (PRS) analyses were completed to test the hypothesis 
that multiple genes of small effect jointly contribute to the susceptibility of ADHD 
and OCD. An additional analysis was completed to examine protein-protein interac-
tions to look for potential overlapping pathways between the two disorders using 
DAPPLE (http://www.broadinstitute.org/mpg/dapple/dapple.php). Then, an expres-
sion quantitative trait locus (eQTL) analysis was conducted to identify nonrandomly 
occurring genes associated with the prefrontal cortex region. The nominated genes 
from the eQTL and DAPPLE analysis were then used to explore the potential over-
lap between the two gene lists.

2.2  �Polygenic Risk Score Analyses

Polygenic risk score (PRS) analyses summarize the genetic effects of a group of 
single-nucleotide polymorphisms (SNPs) that individually do not reach significance 
within an association study (Dudbridge 2013). The risk score was calculated as a 
sum of SNP alleles associated with a specific trait for an individual (Howie et al. 
2009). The score was weighted by effect sizes estimated from a genome-wide asso-
ciation study (GWAS). These scores served to examine the genetic relationship 
between ADHD and OCD.

ADHD served as the discovery sample because the sample size was larger, and 
only summary statistics were available for this analysis. OCD was then used as the 
target dataset, and the PRSice (http://prsice.info/) software was used to calculate 
these scores. PRSice was designed to automate the steps of the PRS analyses by 
using both PLINK (http://zzz.bwh.harvard.edu//plink/) (Purcell et al. 2007) and R 
(https://www.r-project.org/) (R Core Team 2015). Linkage disequilibrium (LD) 
pruning was completed through PRSice using p-value thresholds of p < 0.01, 0.1, 
0.2, 0.3, 0.4, and 0.5. Within each of the LD thresholds, p-value significance thresh-
olds were determined, and R2 values were calculated based on how well the regres-
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sion fits the data (Fig.  2.1). For each of the p-value significance thresholds, 
quantitative polygenic scores were calculated for each individual within the target 
data. The scores were calculated by multiplying the number of risk alleles for each 
SNP (0, 1, or 2) by the score for that SNP, estimated from the discovery sample.

The created polygenic risk model was tested on the target sample to obtain the 
PRS for each individual. Logistic regression was then conducted to examine the 
relationship between risk score and the case-control status of the target data. PRSice 
automated the percentage of phenotypic variance that could be explained by the risk 
score (Fig. 2.2).

The R2 value indicates how well the logistic regression approximates the data 
based on the p-value thresholds. The threshold of 0.15 had an R2 value of 0.0834%. 
This means that approximately 0.08% of the data overlapped between the ADHD 
and OCD data.

Fig. 2.1  Quantile-quantile 
(QQ) plot for p-values of 
the meta-analysis. QQ 
plots compare the observed 
vs. expected test statistic 
distributions. The shading 
indicates the 95% 
confidence intervals. The 
inflation factor λ is 1.008

Fig. 2.2  PRSice bar plot 
for linkage disequilibrium 
(LD) threshold of 0.1. The 
tallest bar indicates the 
best fit polygenic risk score 
(PRS) for the ADHD PRS 
predicting OCD

2  Exploring Polygenic Overlap Between ADHD and OCD
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2.3  �Protein-Protein Link Evaluation

The DAPPLE (http://www.broadinstitute.org/mpg/dapple/dapple.php) software 
was used to conduct a protein-protein analysis to examine the connectivity between 
potential associated proteins (Rossin et al. 2011). DAPPLE seeks to find significant 
physical connectivity between proteins encoded by the genes found in the loci asso-
ciated with the disease. The protein-protein interactions are based on reported bio-
logical information between proteins in InWeb, a database of 169,810 high-confidence 
pairwise interactions involving 12,793 proteins (Rossin et al. 2011). To test for the 
nonrandomness of the protein connections, DAPPLE was used to create random 
protein interaction networks with a within-degree node-label permutation method. 
Random networks each hold the same size, number of edges, and number of pro-
teins with the same number of connections as the original network. Protein names 
in the random networks are randomly reassigned to proteins of equal protein con-
nectivity, allowing for the evaluation of nonrandomness in the original network 
based on protein binding degree (Rossin et al. 2011).

The SNP’s with a p-value <0.001 were included in the analysis to investigate 
whether any protein(s) associated with the disorders would give a statistically sig-
nificant p-value. A total of 123 genes were included based on the before mentioned 
criterion. Six direct protein-protein interactions were identified and included ten 
total proteins (CHMP4B, EIF2S2, EIF3I, FGF10, FGFR2, ITCH, PIK3C2B, SELE, 
SELL, and UQCC; Fig. 2.3).

The direct connections from the analysis are shown in Table 2.1.
The overall direct connections protein interaction network had a p-value of 

0.0879 (Fig. 2.3). Additionally, 543 indirect connections contributed to the network 
that linked the 6 direct protein interactions. None of the indirect connectors were of 
known biological relevance based on our current understanding of the diseases. A 
similar dapple analysis was conducted previously on an ADHD sample that resulted 
in no direct connections (Zayats et al. 2015).

2.4  �Expression Quantitative Trait Locus (eQTL) Analysis

For the expression quantitative trait loci (eQTL) analysis, a p-value threshold of 
p < 1.00 × 10−4 was used in order to examine the relationship between the candidate 
SNPs and relevant eQTLs, using the eEQLAnalysis (http://hongbaocao.gousinfo.
com/Software4Download.html) software. eEQLAnalysis can be used to conduct an 
eQTL analysis for the selected SNP list based on the BrainCloud (http://braincloud.
jhmi.edu/) dataset (GSE30272). The BrainCloud dataset contains both SNP and 
gene expression data from 268 healthy subjects. The software includes three 
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Fig. 2.3  Protein-protein 
interaction network built 
from proteins from the 
SNPs from the meta-
analysis. The colored 
circles represent the 
proteins, while the 
different colors are 
associated with different 
regions. The gray lines 
represent the direct 
connections between the 
proteins

Table 2.1  Results of the protein-protein link evaluation in Disease Association Protein-Protein 
Link Evaluator (DAPPLE), direct connections

Protein Region
Uncorrected 
p-value

Corrected 
p-value

Binding 
protein/s Function

FGF10 G70 0.00199 0.00199 FGFR2, 
FGF10, 
UQCC

Fibroblast growth factor 10

FGFR2 G75 0.01394 0.01394 CHMP4B Fibroblast growth factor receptor 
2 ubiquinol-cytochrome C 
reductase complex

UQOC G13 0.08598 0.08598 FGFR2 Assembly factor 1
EIF3I G81 0.11629 0.11629 EIF2S2 Eukaryotic translation initiation 

factor 3
SELL G59 0.11629 0.11629 SELL Selectin E
EIF2S2 G58 0.16079 0.16079 EIF3I Eukaryote translation initiation 

factor 2
SELL G36 0.15529 0.15529 SELE Selectin L
CHMP4B G94 0.18442 0.18442 FGFR2 Charged multivesicular body 

protein 4A
PIK3C2B G25 0.16444 0.16444 ITCH Phosphatidylinositol-4-

phosphate 3-kinase
ITCH G60 0.24461 0.24461 PIK3C2B Itchy E3 ubiquitin protein ligase

2  Exploring Polygenic Overlap Between ADHD and OCD
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modules: eQTL Map Generation, Permutation for Selected eQTLs, and report gen-
eration. The input requires a list of nominated SNPs. The outputs include the “sig-
nificant SNPs” and associated statistics including eQTL p-values and 
permutation-based p-values. For more information about the software, please refer 
to http://hongbaocao.gousinfo.com/Software4Download.html.

SNPs with a p-value <1.00 × 10−4 from the genome-wide association tests were 
included in the eQTL analysis. This analysis was conducted in order to compare the 
results with the proteins identified from DAPPLE. The top SNPs associated with the 
prefrontal cortex are shown in Table 2.2.

2.5  �Meta-analysis

The ADHD and OCD datasets were combined in order to conduct the meta-analysis. 
METAL (http://csg.sph.umich.edu/abecasis/Metal/) was used to conduct the analy-
sis. Two thousand nine hundred ninety-eight OCD samples and 5415 ADHD sam-
ples were included in the analysis. A Manhattan plot and quantile-quantile (QQ) 
plot show the association p-values from the meta-analysis (Figs.  2.4 and 2.5, 
respectively).

2.6  �Discussion

Psychiatric disorders, such as ADHD and OCD, are very complex and thus, clini-
cally heterogenous. However, it has been previously reported that ADHD and OCD 
may potentially have overlapping sub-phenotypes. For example, Palumbo et  al. 
(1997) suggested that ADHD, OCD, and autism have overlapping etiologies and 

Table 2.2  Results of the expression quantitative trait locus (eQTL) analysis in eEQLAnalysis, top 
genes

Gene name
Chromosome 
number eQTL p-value Permutation p-value

LINC00314 21 1.461E-08 0.0039
CXCR2 2 5.934E-08 0.0029
ASB17 1 6.149E-07 0.0088
SELE 1 6.561E-07 0.0000
ACOT7 1 8.591E-07 0.0003
PRPS1L1 7 1.324E-06 0.0004
ZBF580 19 1.431E-06 0.0027
TAS2R41 7 1.663E-06 0.0049
ADAMTS20 12 1.710E-06 0.0027
WDFY3 4 2.136E-06 0.0041
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thus are interrelated. In addition, Anholt et al. (2010) found that inattention plays a 
key role in obsessive-compulsive symptoms, which could further link ADHD and 
OCD. Even though the clinical overlap between ADHD and OCD has been reported, 
the genetic overlap found in this study was limited. It is possible that the association 
signals were diluted in the meta-analysis due to the heterogeneity of the samples.

Overall, a meta-analysis was conducted between ADHD and OCD. Though not 
significant, the SNP rs10989904 had the strongest association signal with a p-value 
of 1.65  ×  10−4. This SNP falls in an intergenic region but is located near the 
LOC100127962 pseudogene. None of the other SNPs hit in the analysis were of any 
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Fig. 2.4  Manhattan plot of all the genotyped and imputed SNPs for p-values of the meta-analysis 
between the attention deficit hyperactivity disorder (ADHD) and obsessive-compulsive disorder 
(OCD) studies

Fig. 2.5  Quantile-quantile 
(QQ) plot for p-values of 
the meta-analysis. QQ 
plots compare the observed 
vs. expected test statistic 
distributions. The shading 
indicates the 95% 
confidence intervals. The 
inflation factor λ is 1.008
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known biological relevance. In addition, the GWAS conducted on the ADHD 
Psychiatric Genomics Consortium data found the strongest signal on the CDH13 
gene (Neale et al. 2010).
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Chapter 3
Concepts of Genetic Epidemiology

Kathleen Ries Merikangas

Abstract  The major aim of this chapter is to provide an overview of the field of 
genetic epidemiology and its relevance to the identification of the causes and risk 
factors for human diseases. The most important goal of the methods of genetic epi-
demiology is to elucidate the joint contribution of genes and environmental expo-
sures to the etiology of complex diseases. The key study designs used to achieve this 
goal including family, twin, adoption, and migration studies are summarized. The 
field of genetic epidemiology is expected to have increasing importance with 
advances in molecular genetics.

Keywords  Genetics · Epidemiology · Family studies · Twin studies · Adoption 
studies · Migration studies

3.1  �Introduction: Genetic Epidemiology

Genetic epidemiology is defined as the study of the distribution of and risk factors 
for diseases and genetic and environmental causes of familial resemblance. Genetic 
epidemiology focuses on how genetic factors and their interactions with other risk 
factors increase vulnerability to, or protection against, disease (Beaty 1997). Genetic 
epidemiology employs traditional epidemiologic study designs to explain aggrega-
tion in groups as closely related as twins or as loosely related as migrant cohorts. 
Epidemiology has developed sophisticated designs and analytic methods for identi-
fying disease risk factors. With increasing progress in gene identification, these 
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methods have been extended to include both genetic and environmental factors 
(MacMahon and Trichopoulos 1996; Kuller 1979). In general, study designs in 
genetic epidemiology either control for genetic background while letting the envi-
ronment vary (e.g., migrant studies, half siblings, separated twins) or control for the 
environment while allowing variance in the genetic background (e.g., siblings, 
twins, adoptees/nonbiological siblings). Investigations in genetic epidemiology are 
typically based on a combination of study designs including family, twin, and adop-
tion studies.

3.1.1  �Family Studies

Familial aggregation is generally the first source of evidence that genetic factors 
may play a role in a disorder. The most common indicator of familial aggregation is 
the relative risk ratio, computed as the rate of a disorder in families of affected per-
sons divided by the corresponding rate in families of controls. The patterns of 
genetic factors underlying a disorder can be inferred from the extent to which pat-
terns of familial resemblance adhere to the expectations of Mendelian laws of inher-
itance. The degree of genetic relatedness among relatives is based on the proportion 
of shared genes between a particular relative and an index family member or pro-
band. First-degree relatives share 50% of their genes in common, second-degree 
relatives share 25% of their genes in common, and third-degree relatives share 
12.5% of their genes in common. If familial resemblance is wholly attributable to 
genes, there should be a 50% decrease in disease risk with each successive increase 
in degree of relatedness, from first to second to third and so forth. This information 
can be used to derive estimates of familial recurrence risk within and across genera-
tions as a function of population prevalence ( l ) (Risch 1990b). Whereas l tends to 
exceed 20 for most autosomal dominant diseases, values of l derived from family 
studies of many complex disorders tend to range from 2 to 5. Diseases with strong 
genetic contributions tend to be characterized by 50% decrease in risk across suc-
cessive generations. Decrease in risk according to the degree of genetic relatedness 
can also be examined to detect interactions between several loci. If the risk to sec-
ond- and third-degree relatives decreases by more than 50%, this implies that more 
than a single locus must contribute to disease risk and that no single locus can 
largely predominate.

The major advantage of studying diseases within families is that disease mani-
festations are more likely to result within families than they are across families from 
the same underlying etiologic factors. Family studies are therefore more effective 
than between family designs in examining the validity of diagnostic categories 
because they more accurately assess the specificity of transmission of symptom pat-
terns and disorders. Data from family studies can also provide evidence regarding 
etiologic or phenotypic heterogeneity. Phenotypic heterogeneity is suggested by 
variable expressivity of symptoms of the same underlying risk factors, whereas etio-
logic heterogeneity is demonstrated by common manifestations of expression of 
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different etiologic factors between families. Moreover, the family study method per-
mits assessment of associations between disorders by evaluating specific patterns of 
co-segregation of two or more disorders within families (Merikangas 1990).

3.1.2  �Twin Studies

Twin studies that compare concordance rates for monozygotic twins (who share the 
same genotype) with those of dizygotic twins (who share an average of 50% of their 
genes) provide estimates of the degree to which genetic factors contribute to the 
etiology of a disease phenotype. A crude estimate of the genetic contribution to risk 
for a disorder is calculated by doubling the difference between the concordance 
rates for monozygous and dizygous twin pairs. Modern genetic studies employ path 
analytic models to estimate the proportion of variance attributable to additive genes, 
common environment, and unique environment. There are several other applica-
tions of the twin study design that may inform our understanding of the roles of 
genetic and environmental risk factors for disease. First, twin studies provide infor-
mation on the genetic and environmental sources of sex differences in a disease. 
Second, environmental exposures may be identified through comparison of discor-
dant monozygotic twins. Third, twin studies can be used to identify the genetic 
mode of transmission of a disease by inspection of the degree of adherence of the 
difference in risk between monozygotic and dizygotic twins to the Mendelian ratio 
of 50%. Fourth, twin studies may contribute to enhancing the validity of a disease 
through inspection of the components of the phenotypes that are most heritable. The 
twin family design is one of the most powerful study designs in genetic epidemiol-
ogy because it yields estimates of heritability but also permits evaluation of multi-
generational patterns of expression of genetic and environmental risk factors.

3.1.3  �Adoption Studies

Adoption studies have been the major source of evidence regarding the joint contri-
bution of genetic and environmental factors to disease etiology. Adoption studies 
either compare the similarity between an adoptee and his or her biological versus 
adoptive relatives or the similarity between biological relatives of affected adoptees 
with those of unaffected or control adoptees. The latter approach is more powerful 
because it eliminates the potentially confounding effect of environmental factors. 
Similar to the familial recurrence risk, the genetic contribution in adoption studies 
is estimated by comparing the risk of disease to biological versus adoptive relatives 
or the risk of disease in biological relatives of affected versus control adoptees. 
These estimates of risk are often adjusted for sex, age, ethnicity, and other factors 
that may confound the links between adoption status and an index disease.

3  Concepts of Genetic Epidemiology
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With the recent trends toward selective adoption and the diminishing frequency 
of adoptions in the USA, adoption studies are becoming less feasible methods for 
identifying genetic and environmental sources of disease etiology (National 
Adoption Information Clearinghouse 2007). However, the increased rate of recon-
stituted families (families comprised of both siblings and half siblings) may offer a 
new way to evaluate the role of genetic factors in the transmission of complex dis-
orders. Genetic models predict that half siblings should have a 50% reduction in 
disease risk compared to that of full siblings. Deviations from this risk provide 
evidence for either polygenic transmission, gene-environment interaction, or other 
complex modes of transmission.

3.1.4  �Migration Studies

Migrant studies are perhaps the most powerful study design to identify environmen-
tal and cultural risk factors. When used to study Asian immigrants to the USA, this 
study design demonstrated the significant contribution of the environment to the 
development of many forms of cancer and heart disease (Kolonel et al. 2004). One 
of the earliest controlled migrant studies evaluated rates of psychosis among 
Norwegian immigrants to Minnesota compared to native Minnesotans and native 
Norwegians (Ödegaard 1932). A higher rate of psychosis was found among the 
immigrants compared to both the native Minnesotans and Norwegians and was 
attributed to increased susceptibility to psychosis among the migrants who left 
Norway. It was found that migration selection bias was the major explanatory fac-
tor, rather than environmental exposure in the new culture. The application of 
migration studies to the identification of environmental factors is only valid if 
potential bias attributed to selection is considered. Selection bias has been tested 
through comparisons of factors that may influence a particular disease of interest in 
a migrant sample and a similar sample that did not migrate.

3.2  �Applications of Genetic Epidemiology to Gene 
Identification

There is a widespread consensus among geneticists and epidemiologists on the 
importance of epidemiology to the future of genetics and on the conclusion that the 
best strategy for susceptibility risk factor identification for common and complex 
disorders will ultimately involve large epidemiologic studies from diverse 
populations(Peltonen and McKusick 2001; Khoury and Little 2000; Yang and 
Khoury 1997; Merikangas 2003; Merikangas and Risch 2003; Risch 1990a). It is 
likely that population-based association studies will assume increasing importance 
in translating the products of genomics to public health. There are several reasons 
that population-based studies are critical to current studies seeking to identify genes 
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underlying complex disorders. First, the frequency of newly identified polymor-
phisms, whether SNPs or other variants such as copy number variations (CNVs), 
especially in particular population subgroups, is not known. Second, current knowl-
edge of genes as risk factors is based nearly exclusively on clinical and nonsystem-
atic samples. Hence, the significance of the susceptibility alleles that have been 
identified for cancer, heart disease, diabetes, and other common disorders is 
unknown in the population at large. In order to provide accurate risk estimates, the 
next stage of research needs to move beyond samples identified through affected 
individuals to the population as a whole. Third, identification of risk profiles will 
require large samples to assess the significance of vulnerability genes with rela-
tively low expected population frequencies. Fourth, similar to the role of epidemiol-
ogy in quantifying risk associated with traditional disease risk factors, applications 
of human genome epidemiology can provide information on the specificity, sensi-
tivity, and impact of genetic tests to inform science and individuals (Khoury and 
Little 2000).

3.2.1  �Samples

The shift from systematic large-scale family studies to linkage studies has led to the 
collection of families according to very specific sampling strategies (e.g., many 
affected relatives, affected sibling pairs, affected relatives on one side of the family 
only, and availability of parents for study) in order to maximize the power of detect-
ing genes according to the assumed model of familial transmission. Despite the 
increase in power for detecting genes, these sampling approaches have diminished 
the generalizability of the study findings and contribute little else to the knowledge 
base if genes are not discovered. Future studies will attempt to collect both families 
and controls from representative samples of the population so that results can be 
used to estimate population risk parameters and to examine the specificity of endo-
phenotypic transmission, and so results can be generalized to whole populations.

3.2.2  �Selection of Controls

The most serious problem in the design of association studies is the difficulty of 
selecting controls that are comparable to the cases on all factors except the disease 
of interest (Wacholder et al. 2000; Ott 2004). Controls should be drawn from the 
same population as cases and must have the same probability of exposure (i.e., 
genes) as cases. Controls should be selected to ensure the validity rather than the 
representativeness of a study. Failure to equate cases and controls may lead to con-
founding (i.e., a spurious association due to an unmeasured factor that is associated 
with both the candidate gene and the disease). In genetic case-control studies, the 
most likely source of confounding is ethnicity because of differential gene and 
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disease frequencies in different ethnic subgroups. The matching of controls to cases 
on ethnic background is largely based on self-report; several methods are used to 
screen for and exclude subjects with substantial differences in ancestry.

3.2.3  �Risk Estimation

Because genetic polymorphisms involved in complex diseases are likely to be non-
deterministic (i.e., the marker neither predicts disease nor non-disease with cer-
tainty), traditional epidemiologic risk factor designs can be used to estimate the 
impact of these genetic polymorphisms. Increased attention to alleles as a part of 
risk equations in epidemiology will likely resolve the contradictory findings from 
studies that have generally employed solely environmental risk factors, such as diet, 
smoking, and alcohol use. Likewise, the studies that seek solely to identify small 
risk alleles will continue to be inconsistent because they do not consider the effects 
of nongenetic biological parameters or environmental factors that contribute to the 
diseases of interest.

There are several types of risk estimates that are used in public health. The most 
common is relative risk, defined as the magnitude of the association between an 
exposure and disease. It is independent of the prevalence of the exposure. The abso-
lute risk is the overall probability of developing a disease in an individual or in a 
particular population (Gordis 2000). The attributable risk is the difference in the 
risk of the disease in those exposed to a particular risk factor compared to the back-
ground risk of a disease in a population (i.e., in the unexposed). The population 
attributable risk relates to the risk of a disease in a total population (exposed and 
unexposed) and indicates the amount the disease can be reduced in a population if 
an exposure is eliminated. The population attributable risk depends on the preva-
lence of the exposure or, in the case of risk alleles, the allele frequency. Genetic 
attributable risk would indicate the proportion of a particular disease that would be 
eliminated if a particular gene or genes were not involved in the disease. For exam-
ple, the two vulnerability alleles for Alzheimer’s disease include the very rare but 
deterministic alleles in the β-amyloid precursor, presenilin-1, and presenilin-2 
genes, which signal a very high probability of the development of Alzheimer’s dis-
ease, particularly at a young age, and the susceptibility allele ε4 in the apolipopro-
tein-E gene (APOE ε4) (Tol et al. 1999). The apolipoprotein-Εε4 (APOE ε4) allele 
has been shown to increase the risk of Alzheimer’s disease in a dose-dependent 
fashion. Using data from a large multiethnic sample collected by more than 40 
research teams, Farrer (Farrer et  al. 1997) reported a 2.6–3.2 greater odds of 
Alzheimer’s disease among those with one copy and 14.9 odds of Alzheimer’s dis-
ease among those with two copies of the APOE ε4 allele. Moreover, there was a 
significant protective effect among those with the ε2/ε3 genotype. As opposed to the 
deterministic mutations, the APOE ε4 allele has a very high population attributable 
risk because of its high frequency in the population. The APOE ε4 allele is likely to 
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interact with environmental risk and protective factors (Kivipelto et  al. 2001; 
Kivipelto et al. 2002). The population risk attributable to these mutations is quite 
low because of the very low population prevalence of disease associated with these 
alleles. This model of combination of several rare deterministic alleles in a small 
subset of families and common alleles with lower relative risk to individuals but 
with high population attributable risk is likely to apply to many other complex dis-
eases as well. Genome-wide association studies have now identified genes for more 
than 300 diseases and traits, such as coronary artery disease, Crohn’s disease, rheu-
matoid arthritis, and type 1 and type 2 diabetes (Wellcome Trust Case Control 
Consortium 2007), with 1291 publications by the end of 2011 ( www.genome.gov/
gwastudies). Those genetic variants appear to confer only modest increases in dis-
ease risk (ORs between 1.2 and 1.5) compared to other established risk factors for 
common chronic diseases.

3.2.4  �Identification of Environmental Factors

In parallel with the identification of susceptibility alleles, it is important to identify 
environmental factors that operate either specifically or nonspecifically on those 
with susceptibility to complex disorders in order to develop effective prevention and 
intervention efforts. Langholz et al. (1999) describe some of the world’s prospective 
cohort studies that may serve as a basis for studies of gene-disease associations or 
gene-environment interactions. There is increasing evidence that gene-environment 
interaction will underlie many of the complex human diseases. Some examples 
include inborn errors of metabolism, individual variation in response to drugs 
(Nebert 1999), substance use disorders (Heath et al. 2001; Rose et al. 2000), and the 
protective influence of a deletion in the CCR5 gene on exposure to HIV (Michael 
1999). In prospective studies, however, few environmental exposures have been 
shown to have an etiologic role in complex disorders (Eaton 2004). Over the next 
decades, it will be important to identify and evaluate the effects of specific environ-
mental factors on disease outcomes and to refine measurement of environmental 
exposures to evaluate the specificity of effects. Study designs and statistical meth-
ods should focus increasingly on the nature of the relationships between genetic and 
environmental factors, particularly epistasis and gene-environment interaction 
(Yang and Khoury 1997; Ottman 1990; Beaty and Khoury 2000). For example, 
recent breakthroughs in identifying the mechanisms for hypocretin deficiency as the 
causal mechanism in narcolepsy occurred through a convergence of epidemiologic 
studies that documented a recent surge in incidence among those exposed to H1N1 
virus or vaccine, successful application of genome-wide association studies that 
implicated specific autoimmune mechanisms (i.e., the T-cell receptor α polymor-
phism), and specificity of the findings for the phenotype of narcolepsy with cata-
plexy rather than narcolepsy alone (Kornum et al. 2011).
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3.3  �Applications, Impact, and Future Directions

The advances in bioinformatics and statistical methods described in the following 
chapters will be critical to translation of progress in molecular genetics to human 
diseases. Genetic epidemiologic approaches, particularly the family study design, 
will have renewed importance in facilitating integration between methodological 
developments and human diseases. Despite the long history of information provided 
by family studies regarding the genetic architecture of Mendelian diseases as well 
as heterogeneity of complex diseases such as breast cancer (Claus et al. 1993) and 
diabetes (Hawa et al. 2002), the family study approach has largely been abandoned 
in psychiatry in favor of very large case-control studies of diagnosed patients from 
clinical samples or registries. Yet, family studies still have an essential role in iden-
tifying cross-generational transmission of phenotypes and genotypes. Family-based 
studies will be even more valuable with application of advances in molecular biol-
ogy to inform interpretation of sequencing data and to distinguish de novo from 
heritable structural variants. Based on increasing awareness of the neglect of family 
studies for risk prediction, even in the absence of specification of disease genetic 
architecture, the US surgeon general has launched a national public health cam-
paign to encourage all American families to learn more about their family health 
history (http://www.hhs.gov/familyhistory/). A positive family history remains a 
more potent predictor of disease vulnerability than nearly all other risk factors com-
bined (Meigs et al. 2008). Moreover, since genetic factors, common environmental 
exposure, and sociocultural factors have been shown to jointly contribute to disease 
etiology, family history may ultimately have greater explanatory power than genes 
in predicting risk, particularly if genetic influences are weak.

Progress in genomics has far outstripped advances in our understanding of many 
of the complex multifactorial human disorders and their etiologies. Technical 
advances and availability of rapidly expanding genetic databases provide extraordi-
nary opportunities for understanding disease pathogenesis. Over the next decade, 
increasing understanding of the complex mechanisms through which genetic risk 
factors influence disease should enhance the clinical utility of genetics. The above 
issues regarding sampling, complexity of the links between genes and environmen-
tal factors in multifactorially determined complex diseases, and phenotypic 
heterogeneity also highlight the complexity of etiology of complex human diseases. 
This work demonstrates that predictions that human genomics would lead to a radi-
cal transformation of medical practice were overly optimistic. In fact, Varmus 
(2002) concluded that despite the journalistic hyperbole, the sequencing of the 
human genome is unlikely to lead either to a radical transformation of medical prac-
tice or even to an information-based science that can predict with certainty future 
diseases and effective treatment interventions. Therefore, despite the extraordinary 
opportunity for understanding disease pathogenesis afforded by the technical 
advances and availability of rapidly expanding genetic databases, it is unlikely that 
we will soon experience the light speed progress of genomics in understanding, 
treating, or preventing many of the multifactorial complex human diseases.
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The chasm between genetic information and clinical utility should gradually 
close as we develop new methods and tools in human genetic and clinical research 
to maximize the knowledge afforded by the exciting advances in genomics. Increased 
integration of advances in basic sciences and genomics along with information from 
population-based studies and longitudinal cohorts; innovations in our conceptual-
izations of the disease etiology, particularly the role of infectious agents; and the 
identification of specific risk and protective factors will lead to more informed inter-
vention strategies. As we learn more about the role of genes as risk factors, rather 
than as the chief causes of common human diseases, it will be essential to provide 
accurate risk estimation and to inform the public of the need for population-based 
integrated data on genetic, biological, and environmental risk factors.

The goal of genomics research is ultimately prevention, the cornerstone of public 
health. An understanding of the significance of genetic risk factors and proper interpre-
tations of their meaning for patients and their families will ultimately become part of 
clinical practice. Clinicians will become increasingly involved in helping patients to 
comprehend the meaning and potential impact of genetic risk for complex disorders. 
As our knowledge of the role of genetic risk factors advances, it will be incumbent 
upon clinicians to become familiar with knowledge gleaned from genetic epidemio-
logic and genomics research. In the meanwhile, the use of recurrence risk estimates 
from family studies best predicts the risk of the development of complex disorders.
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Chapter 4
Rare Variant Analysis in Unrelated  
Individuals

Tao Feng and Xiaofeng Zhu

Abstract  Although the genome-wide association studies, which are based on com-
mon disease-common variants (CDCV) hypothesis, have great success in dissecting 
the genetic architecture of human diseases, their limitation of explaining the miss-
ing heritability motivated researchers to test the hypothesis that rare variants con-
tribute to the variation of common diseases, that is, common disease/rare variant 
(CDRV) hypothesis. The fast developed high-throughput next generation of 
sequencing technologies has made the studies of rare variants practicable. Statistical 
approaches to test associations between a phenotype and rare variants are rapidly 
developing. Overall, the key idea of these methods is to test a set of rare variants in 
a defined region or regions by collapsing or aggregating rare variants. To improve 
the statistical power, several weighting strategies to the rare variants and/or adding 
the informative covariates in the model have been published. In this chapter, some 
of these methods which can use unrelated individuals and family members are 
introduced.

Keywords  GWAS · Common disease-common variants · Common disease rare 
variants · SNPs · Haplotype · Collapsing · Aggregation

4.1  �Introduction

Genome-wide association studies (GWAS) have revealed significant evidence that 
specific common DNA sequence differences among people influence their genetic 
susceptibility to more than 60 different common diseases and created novel hypoth-
eses for biological mechanism underlying complex diseases or traits.
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However, it also raises some important questions on the roles of rare variants in 
human complex disease. The statistical methods commonly used in GWAS are typi-
cally underpowered to detect any effects of rare variants. In this review, we mainly 
focus on the rapidly developing methods to improve the statistical power for rare 
variant analysis; in particular, we described the methods with great details in the 
context of next-generation sequencing data.

4.1.1  �Success of GWAS and Its Limitation

With many investigators’ effort in the last decades, our understanding of the genetic 
basis of disease risk has been improved greatly through genome-wide association 
studies (GWAS). The purpose of the GWAS is to uncover the connection between 
specific genes and their expression and then to expedite the identification of genetic 
risk factors for the development or progression of disease. To date, hundreds of 
GWAS have been performed to uncover the associate between particular genetic 
variations and diseases, such as hypertension, bipolar disease, coronary artery dis-
ease, diabetes, and cancer (Birney et al. 2007; Consortium WTCC 2007; Heid et al. 
2010; Lango Allen et  al. 2010). These eminent studies have successfully found 
thousands of genes which highly associate with hundreds of traits. As of second 
quarter 2011, the US National Human Genome Resource Institute (NHGRI) 
GWAS catalogue lists 1449 genome-wide significant associations with 237 traits 
and diseases spread across all auto chromosome except the Y chromosome 
(Hindorff et al. 2011).

Originally, GWAS were designed as a genetic association study to capture a large 
proportion of the common variation in the human genome in a population by using 
the high-throughput genotyping technologies, and it was believed that the number 
of genotyped samples can provide sufficient power to detect variants of modest 
effect. However, GWAS, which is dominated by the simply statistical hypothesis 
common disease-common variants (CDCV), have challenged the missing heritabil-
ity problem that the genetic variants identified by GWAS only account a small frac-
tion of heritability observed in family studies (Manolio et al. 2009). For example, 
height is known to be a heritable trait with estimated heritability around 0.8 from 
family or twin studies, which implies about 80% of the individual variation and is 
attributable to genetic factors. Although the three GWAS in 2008 (Gudbjartsson 
et al. 2008; Lettre et al. 2008; Weedon et al. 2008) identified 40 previously unknown 
variants, each one only explains 0.3–0.5% of the phenotypic variance. The results 
from GWAS suggest that there must be genetic factors contributing to common 
complex diseases that are simply not amenable to detection via the GWAS strategy 
(Pritchard 2001 ). Some researchers argue that the missing heritability may be 
accounted for by many rare variants with relatively large effective sizes, or interac-
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tions, such as gene-gene or gene-environment interactions (Bansal et  al. 2010; 
Manolio et al. 2009; Zuk et al. 2012).

4.1.2  �Detecting Rare Variants

There has been growing debate over the nature of the genetic contribution to indi-
vidual susceptibility to common complex. Comparing with the CDCV, common 
disease rare variant (CDRV) argues that multiple rare DNA sequence variants are 
major contribution of genetic susceptibility to common disease. Differing from that, 
a common variant usually has modest or low disease penetrance; a rare variant has 
relatively large disease penetrance. With the new sequencing technologies and pub-
lication of 1000 Genomes Project (2010), we are at the era that can test the CDRV 
hypothesis. By directly testing many rare variants on candidate genes, these studies 
have identified collections of rare variants associated with phenotypic variation, 
such as multiple functional variants in IFIH1, NPC1L1, PCSK9, SLC12A3, 
SLC12A1, and KCNJ1 associated with type I diabetes, sterol absorption, plasma 
levels of LDL-C, and blood pressure (Cohen et  al. 2005, 2006; Ji et  al. 2008; 
Nejentsev et al. 2009).

In the following section, we will introduce statistical methods for testing rare 
variant association that can be applied for unrelated individuals.

4.2  �Data Description and Methods

Below we first (in Sect. 4.2.1) describe the data structure of any genetic variants 
either located in a candidate gene or a genomic region and clearly define the rele-
vant parameters. We then exhaustively review all of the previously published meth-
ods focusing on statistical collapsing (between Sects. 4.2.2.1 and 4.2.2.11).

4.2.1  �Data Describe

Assume we test the association of genetic variants and disease status in a candidate 
gene or region, which includes L SNPs in it, and total N unrelated individuals with 
either quantitative traits or binary traits being collected. Further, let yi denote the 
quantitative trait or binary trait and use Aj and aj to denote the two alleles of jth SNP, 
in which Ai always refers to the rare allele and has an allele frequency pi. Furthermore, 
let code xij = 0, 1, or 2 be the number of minor alleles at the jth SNP carried by the 
ith individual, where i = 1,…, N and j = 1,…, L.

4  Rare Variant Analysis in Unrelated Individuals
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4.2.2  �Methods

Between Sects. 4.2.2.1 and 4.2.2.11, we will provide mathematical details for each 
method illustrated and will also provide our insights of specific merits and limita-
tions of each method.

4.2.2.1  �Collapsing Method

In contrast to common variants, the power of traditional statistical methods to detect 
rare variant association is usually poor and requires large sample sizes due to the 
small minor allele frequencies (MAF) of rare variants. Although a rare variant indi-
vidually may make only a tiny contribution to a phenotypic variation, collectively 
rare variants may uncover a substantial proportion of missing heritability (Gibson 
2010; Manolio et al. 2009). Based on this principle, collapsing method has been 
proposed to improve statistical power for a binary trait. To do this, we define an 
indicator variable Gi for the ith individual as Gi = 1 if rare variant(s) is(are) present, 
otherwise as Gi = 0 . The detection of an association of multiple rare variants is 
transformed into a test of whether the proportions of individuals with rare variants 
in cases and controls differ. Then any single-SNP association test that is applied in 
GWAS can be applied here, such as a chi-squared test for a contingence table or a 
regression analysis. In 2006, Cohen et al. suggested a method to compare the num-
ber of rare variants unique to either cases or controls using Fisher’s exact test (Cohen 
et al. 2006). This method is simple and fast, but it has its limitation. If the number 
of SNPs in a considered region is large, it has more chance that variable Gi will be 
coded as 1, and then there will be little difference between cases and control, result-
ing poor statistical power. One way to improve this method is considering the num-
ber of rare variants presented in an individual rather than simply coding 1 or 0 for 
the individual. Another way is partitioning the region into several small regions and 
then use multivariate test proposed by Li and Leal (2008).

4.2.2.2  �Combined Multivariate and Collapsing

To take advantage of both the multiple marker tests and the collapsing method, Li 
and Leal (2008) considered an extension of the collapsing method, which they 
termed the combined multivariate and collapsing (CMC) method. For a considered 
region, they first divide the markers (e.g., SNPs) within the region into groups 
according to certain criteria (e.g., allele frequencies) and then collapse the rare vari-
ants within each group using the method described in Sect. 4.2.2.1. To analyze the 
groups of collapsed rare variants, a multivariate test such as Hotelling’s T2 test is 
applied.

The shortcoming of this method is that the power will decrease when the number 
of subgroups increases. The criteria of the partition also can affect the power of the 
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test. Furthermore, collapsing method assumes that each rare variant has the same 
contribution to the disease susceptibility and this may not be true in reality.

4.2.2.3  �Weighted Sum Association Method (WSM)

Madsen and Browning (2009) proposed a statistic for testing a prespecified col-
lapsed set of variants that weights each variant by its frequency, thus allowing one 
to include variants of any frequencies into the collapsed set. This approach proceeds 

by defining the genetic score of individual i as g i
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suggested that the MAF pj is estimated by controls only. Thus, for individual i, γi 
represents a single core that is obtained by combining information from all the L 
variants in the region of interest. An association test is performed by testing this 
score rather than testing the individual variants. Madsen and Browning (2009) sug-
gest using a nonparametric Wilcoxon’s test for the association test and calculating 
the p-value using a permutation approach.

When the interesting region includes multiple common variants, Feng et  al. 
(2011) suggest the power of WSM will decrease. Although Madsen and Browning 
(2009) did not suggest using a threshold model, a predefined threshold α, such that 
the weight will be 0 if a variant with MAF > α and this SNP will be exclude from 
the test, can often improve the power when only rare variants are associated with a 
disease status. However, it is difficult to select an optimal threshold in practice. 
Price et al. (2010) proposed a variable-threshold approach for testing rare coding 
variants to solve this problem.

4.2.2.4  �Pooled Association Tests for Rare Variants

To obtain the optimal MAF threshold α for which variants with a MAF below α are 
substantially more likely to be functional than are variants with an MAF above α, a 
data-driven z-score z(α) for each allele-frequency threshold α is computed, and the 
maximum z-score across different values of α is defined as zMax. Then a permuta-
tion procedure is used to assess the statistical significance of zMax, allowing zMax 
in the permuted data to be attained at values of α different from those in un-permuted 
data to ensure the validity of the permutation test. We refer the reader to Price et al. 
(2010) for details about the calculation of the z-scores and for testing the statistical 
significance of the variants using this method.

Besides finding the optimal cutoff of MAF α, Price et al. also proposed using the 
functional relevance of the individual variants to define the weights. They suggest 
using the PolyPhen-2 scores (Ramensky et al. 2002; Adzhubei et al. 2010), which 
evaluate the possible functional effect of an SNP by calculating the distributions of 
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PolyPhen-2 probabilistic scores for neutral and damaging amino acid changes. We 
refer the reader to Price et al. (2010) for details about this method.

4.2.2.5  �A Data-Adaptive Sum Test (Consider the Direction)

Han and Pan (2010) proposed a data-adaptive modification to sum test and aimed to 
strike a balance between utilizing information on multiple markers in linkage dis-
equilibrium and reducing the cost of large degrees of freedom or of multiple testing 
adjustment. For the rare variants, the logistic regression model
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is applied to test any possible association between the disease and SNPs. Under null 
hypothesis H0: βc = 0, the test statistics has an asymptotic χ2 distribution with 1 
degree of freedom (DF). The main advantage of this sum test is that because it tests 
on only one parameter βc, there will be no power loss due to large DF or multiple 
testing adjustments. However, the test may have reduced power with a small b̂c , the 
maximum likelihood estimate of βc, when the SNPs have different directions of 
contribution, that is, some of variants in the region are harmful, and others are ben-
eficial. The data-adaptive sum test (aSum) adapts the coding xij of each SNP j by 
adding a sign based on the estimated coefficient of logistic regression of SNP j.

Furthermore, they modify aSum test to combine the rare variants into one group 
and the common variants into another group by summing over their genotypic cod-
ing, then test on the two corresponding regression coefficients in a logistic regres-
sion model (termed aSumC test). There are two potential advantages of this method. 
First, this test can overcome the problem with different association directions of the 
functional variants, from which both the CMC and the WSM tests suffer with pos-
sibly significant power loss. Second, with only two groups, the aSumC may have a 
much smaller number of DF and thus higher power than the CMC test.

Hoffmann and Witte (Hoffmann et al. 2010) proposed a general framework of 
the aSum test by adding the weight wi in the logistic regression, that is, 

g y w xi
j

L

j ij( ) = +
é
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ê

ù

û
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=
åa g0

1

, where g is the link function and the weight wj is define by 

1 1/ p pj j-( ) , similar as the Madsen and Browning’s weight.

4.2.2.6  �Alpha Test

C-alpha is a well-established and powerful test for the presence of a mixture of 
biased and neutral coins (Neyman and Scott 1966; Zelterman and Chen 1988). 
Neale et al. (2011) tailored the C-alpha score test and applied it to test a set of rare 
variants for association. Under the assumption that the rare variants are distributed 
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at random across the subjects, the binomial (n, p) distribution evaluates the proba-
bility of observing a particular variant y times in the cases out of n total. Under the 
balanced sample of cases and controls, in other word that p = 0.5, the y to be 0,1, 
and 2 for n = 1 is expected with probability 0.25, 0.5, and 0.25, respectively. If some 
variants are causal, the higher proportion of doubletons with y = 2 and/or y = 0 is 
expected. Due to each variant that cannot provide sufficient information to draw a 
firm conclusion about the association, the C-alpha test was applied to detect a pat-
tern across the full set of rare variants in the target region.

In detail, for the jth variant, assume yj is a binomial (nj , pj) if the rare variants 
were observed nj times. Under the null hypothesis, pj = p0 (say 0.50 if cases and 
controls are equal in number), and under the alternative hypothesis, pj follows a 
mixture distribution across the L variants with some variants detrimental (pj > p0), 
some neutral, and some protective (pj < p0). The C-alpha test statistic
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contrasts the variance of each observed count with the expected variance. The vari-
ance of T is derived by
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where m(n) is the number of variants with n copies and f (u | n, p0) denotes the prob-
ability of observing u copies of the ith variant assuming the binomial model. The 

resulting test statistic is defined as Z
T

c
N= ~ ( )01, . The null hypothesis will be 

rejected when Z is larger than expected based on a one-tailed standard normal 
distribution.

The C-alpha test is a non-burden-based test and is hence robust to the direction 
and magnitude of effect, and this allows the C-alpha test to have improved power 
over other burden-based tests, especially when the effects are in different directions. 
But the covariate is not easier to be adjusted in the C-alpha. Also, the C-alpha test 
uses permutation to obtain a p-value when linkage disequilibrium is present among 
the variants and the approach also has not been generalized to analysis of quantita-
tive trait.

4.2.2.7  �Sequence Kernel Association Test (SKAT)

Wu and Lin (Wu et  al. 2011) introduced the kernel function into the regression 
model and combine the SNPs in the considered region with linear or nonlinear 
weights. The sequence kernel association test (SKAT) extends kernel machine- 
based tests for rare variants with more accurate asymptotic approximations in the 
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tail distribution. This method is supervised for the joint effects of multiple variants 
in a region on a phenotype; it is flexible and computationally efficient to test for 
association between genetic variant in a region and a continuous or dichotomous 
trait while easily adjusting for covariates.

The SKAT test starts with a linear model

	 yi i= + + +¢ ¢a e0 aa bbZ Xi i 	

when the phenotype are continuous traits and the logistic model

	
logitP yi =( ) = + +¢ ¢1 0a aa bbZ Xi i , 	

when the phenotype are binary traits (e.g., y = 0/1 for case or control). Here, Zi = (zi1, 
zi2 ,…, zim) denotes the covariates, Xi = (xi1 , xi2 ,…, xiL) denotes the genotypes for the 
L variants within the region, α0 is an intercept term, α′ = [α1, …, αm]′ is the vector of 
regression coefficients for m covariates. β′ = [β1, …, βL]′ is the vector of regression 
coefficients for the L observed gene variants in the region, and for continuous phe-
notypes, εi is an error term with a mean of zero and a variance of σ2 .

Under the null hypothesis H0: β = 0 or β1 = β2 = ⋯ = βL = 0, the standard L-DF 
likelihood ratio test has little power. Given the additional assumption that each βi 
follows an arbitrary distribution with a mean of zero and a variance of wjτ , where τ 
is a variance component and wj is a prespecified weight for variant j, the SKAT can 
improve the power by testing H0 :τ = 0. To do the test, the variance-component 
score statistic

	
Q u u= -( ) -( )¢

y K yˆ ˆ
	

is applied. In the above formula, K = XWX’, û  is the predicted mean of y under H0, 
that is, ˆ ˆ ˆu =a a0Z  for continuous traits and ˆ ˆ ˆu = +( )-logit 1

0a aZ  for dichotomous 
traits, and â0  and â are estimated under the null hypothesis by regressing y on the 
covariates X only. Here, X is an N × L matrix with the (i, j)th element being the 
genotype of jth variant in ith individual, and W  =  diag(w1,…, wL) contains the 
weights of the L variants. K is an N × N matrix with the (i,i′)th element equal to 

K w X Xi i j

L

j ij i jX X, ¢ ¢=
( ) = å 1

. K(•,•) is called the weighted linear kernel function, and 

K(Xi, Xi′) measures the genetic similarity between individual i and i′ in the region 
via the L markers. An attractive feature of SKAT is the ability to model the epistatic 
effects of sequence variants on the phenotype within the flexible kernel machine-
regression framework. To do so, the term β′Xi was replaced by a more flexible func-
tion f (Xi) in the linear and logistic model f (Xi) that allows for the interactions of 
rare variant by rare variant or common variant by rare variant. For the purpose of 
rare variant analysis, the weighted quadratic kernel can be chosen as 

K w X Xi i j

L

j ij i jX X, ¢ ¢=
( ) = +( )å1

1

2

or the weighted identity by state (IBS) kernel 

K w X Xi i j

L

j ij i jX X, IBS ,¢ ¢=
( ) = ( )å 1

. A question is how to choose wj in the kernel 
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function, which can affect statistical power. Wu et  al. (2011) suggested 

w a aj j~ ( )Beta MAF ;, ;,1 2 , the beta distribution function with prespecified param-

eters a1 and a2 evaluated at the sample MAF using both cases and controls for the 
jth variant in the data. The setting a1 = 1 and a2 = 25 was suggested because it 
increases the weight of rare variants while still putting decent nonzero weights for 
variants with MAF 1–5%. When the outcome is dichotomous, no covariates are 
included and all wi = 1; the SKAT test statistic Q is equivalent to the C-alpha test 
statistic T. Hence, SKAT can be seen as a generalized C-alpha test that does not 
require permutation but calculates the p-value analytically, allows for covariate 
adjustment, and accommodates either dichotomous or continuous phenotypes.

4.2.2.8  �A General Framework for Detecting Disease Associations 
with Rare Variants in Sequencing Studies

Lin and Tang (2011) also proposed a so-called general framework for association 
testing with rare variants by combining mutation information across multiple vari-
ant sites within a gene and relating the enriched genetic information to disease phe-
notypes through appropriate regression models. This framework in theory covers all 
major study designs (i.e., case-control, cross-sectional, cohort and family studies) 
and all common phenotypes (e.g., binary, quantitative, and age at onset), and it 
allows the incorporation of arbitrary covariates (e.g., environmental factors and 
ancestry variables).

Using the predefined notation, the logistic regression model logit 
P(yi = 1) = α′Zi + β′Xi is applied here, where vector Zi = (1, zi1, zi2,…, zim) denotes 
the m covariates. Let β = τξ, where τ is a scalar constant and ξ = β/τ. Then the logis-
tic regression model becomes

	
logit Pr ,y Si i=( ) = + ¢1 t gg Zi 	

where Si = ξ′Xi. Note that ξ = (ξ1 ,…, ξL)′ is a L × vector of weights and that Si is a 
weighted linear combination of xi1 , xi2 ,… xiL with xij receiving the weight ξj . Here, 
ξ is referred as the weight function. The score statistic for testing the null hypothesis 
H0 :τ = 0 takes the form
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where ĝ  is the restricted maximum likelihood estimator of γ and solves the equa-

tion 
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. The variance of U is estimated by
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. Under H0 the test statistic T = U/V1/2 is asymptotically stan-

dard normal. In the absence of covariates,
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N
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=å1

1
.

Since the setting of weight function ξ = (ξ1,…,ξL)′ is unknown and must be deter-
mined biologically or empirically, several considerations were discussed:

	1.	 If the choice of weight function ξ or the limit of the estimate of ξ is proportional 
to β, then the statistic T is the most powerful among all valid tests. Otherwise, U 
is no longer the score statistics. But it can be proved that statistic T is asymptoti-
cally standard normal under H0 regardless how ξ is chosen.

	2.	 This method allows not only for multiple allele-frequency thresholds but 
also for different types of weight functions. It can be shown that for K 
choices of ξ, which could correspond to different thresholds or different 
types of weight functions or both, the maximum of the absolute test statis-
tics T T

k K
kmax

, ,
max=
= ¼1

 is applied, where the test statistics T U Vk k k= / /1 2  is 

defined for the kth choice of ξ. The score statistics Uk and its variance in 
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denoted by Ski. If tmax would be the observed value of Tmax, then the p-value 

is given by

	
Pr Pr ,max max max maxT t T t T tk>( ) = - < ¼ <( )1 1 , ,

	

which is evaluated by treating (T1,…,TK)′ as a K-variant normal random vector 
with mean 0 and a covariance matrix of {rkl ; k,l = 1,…, K}, where rkl = Vkl/(VkkVll)1/2, 
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The H0 will be rejected if the p-value is smaller than the nominal significance 

level α .
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	3.	 If set ξj = 1(j = 1,…, L) , then statistic T is a burden test. If it is sure that common 
variants are not associated with the phenotype, then setting xj = 0 if MAF of jth 
SNP pj > c , where c is a prespecified threshold (such as c = 0.02 or 0.01). If set-
ting ξj = {pj(1 − pj)}−1/2(j = 1, …L), then the weight function is the same as that 
of Madsen and Browning. Differing from the Madsen and Browning’s and Price 
et  al. method, this method does not need permutation when sample is large 
enough. This method can also accommodate covariates, and the result holds for 

all phenotypes. In addition, the SKAT statistic can be written as Q U
j

L

j j=
=å 1

2x , 

here Uj is the jth component of the score statistic for testing the null hypothesis 
β = 0  in the above defined logistic regression model. The C-alpha statistic of 
Neale et al. (2011) is a special case of Q with ξj = 1 for binary traits without 

covariates. If statistic U is rewritten as 
j

L

j jU
=å 1
x , Han and Pan (2010) statistic 

is a special case of U (for binary traits without covariates) in which ξj = −1 if 
x̂ j < 0 , and the corresponding p-value <0.1 and ξj = 1 otherwise.

4.2.2.9  �Haplotype-Based Collapsing Test

Besides directly using the genotype to collapse the rare variants, comparing haplo-
type frequencies between cases and controls (Zhu et al. 2010; Guo and Lin 2009; Li 
et al. 2010; Zhu et al. 2005, 2010 ) is another way to analyze the rare variants. These 
methods assume that the haplotypes created by the common and rare variants are 
able to tag multiple rare ungenotyped variants. Since very rare variants are usually 
not well tagged by common variants (Durbin et  al. 2010), the haplotype-based 
methods may only work for identifying rare variants with MAF>0.5% (Li et  al. 
2010).

We introduce the two-stage approach here. At the first stage, a set of susceptibil-
ity haplotypes is identified by comparing their frequencies between cases and con-
trols using a subset of samples. At the second stage, the cumulative susceptibility 
haplotype frequencies are compared using the rest of samples. In detail, assume the 
total N individuals of whom nu are unaffected (controls) and the remaining N – nu 
are affected (cases). At stage 1, we randomly select n (< nu) unaffected and m (< 
N – nu) affected individuals. We assume that the disease is rare and that the unaf-
fected individuals are representative of the general population. Assume there are k 
different haplotypes h1, h2,…, hk with observed haplotype frequencies p1, p2,…, pk 
in the selected cases. Correspondingly, the ith haplotype has haplotype frequency 
p0 in the controls. Then the risk haplotype set is defined as
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where λ = 1.28 or 1.64 is a predefined number that affects the misclassification rate 
and power.

It has been demonstrated that rare risk haplotypes can be enriched in affected 
sibpairs (Zhu et al. 2010), and this information can be used to define risk haplotype 
as using unrelated individuals. When we have affected sibpairs available, we can 
define risk haplotype set using affected sibpairs. Assume there are M affected sib-
pairs and the haplotypes have been inferred, and then the rare risk haplotype set for 
affected sibpairs can be defined by
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where h, p, and p0 are the haplotype, its frequency in affected sibpairs, and controls, 
respectively, and γ is defined as before. Here we used 3M because there are only 3M 
independent haplotypes in M sibpairs under the null hypothesis.

At the second stage, we test association of the risk set of haplotypes defined at 
stage 1 using the remaining nu – n unaffected individuals and the N – nu – n affected 
individuals. We compare the sum of the risk haplotype frequencies in the cases and 
controls by Fisher’s exact test. The weighted sum test, which is an extension of the 
two-stage method, was studied by Li et al. (2010).

To apply haplotype-based methods, haplotype phases have to be inferred, which 
add a substantial computational burden. However, since we only need to infer the 
haplotype phases once in any data analysis, the computation is still within feasible 
limits. When risk variants are extremely rare (<0.5%), the power of haplotype-based 
methods can be low.

4.2.2.10  �Odds Ratio Weighted Sum Statistic (ORWSS)

Price et al. (2010) demonstrated that the weights by Madsen and Browning (2009) 
are proportional to the log odds ratio for a variant. In addition, a coefficient in a 
logistic regression is equivalent to the logarithm of the corresponding odds ratio. 
Feng and Zhu (Feng et  al. 2011) proposed a method, for the binary trait, which 
directly uses the odd ratio of a variant as the weight for that variant, rather than the 
variance estimated in controls. That is, the odds ratio between allele A at the jth SNP 
and a disease status using a 2 × 2 table was calculated. Since only rare variants are 
interested in and the corresponding 2 × 2 table may consist of entries with 0 obser-
vation, the amended estimator of the odds ratio by adding 0.5 to each cell was 
applied. It has been suggested that the amended estimator of the odds ratio behaves 
well (Agresti 2002). Then, let γj denote the logarithm of the amended odds ratio 
testing for the association of allele A at the jth SNP using all the cases and 
controls.
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If yi is a quantitative trait, the estimated coefficient γj of a linear regress model 
yi = γ0 + xij γj + εi can be used as the weight for the jth variant. In detail, the weight 

of the jth SNP is defined as ĝ j j j j
i
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, where x and y  

are the mean of jth SNP and quantitative trait Y, respectively.
For the rare variants, the estimated coefficient ĝ j  may vary widely if the sample 

size is not large enough. Based on this consideration, the weight can be defined by 
ĝ j

sd
, where sd is the standard error of ĝ j .

The power of the existing rare variant methods is dependent on the threshold 
used to define a rare variant, which can result in misspecification of risk variants by 
either including neutral variants or excluding risk variants (Zawistowski et al. 2010). 
Price et al. (2010) addressed this issue via a variable MAF threshold at the cost of 
more computation. This problem can be worse for these pooling methods when both 
common and rare variants contribute to disease risk. When the MAF threshold is 
increased, many common neutral variants are also included – resulting in a dilution 
of association evidence. To overcome this limitation, the weight for the jth SNP is 
defined as
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where σ is the standard deviation calculated from γj , j = 1,…L, c = 1.64 or 1.28 is a 
parameter, and g  is the mean. After defining the weight in this way, a same test 
procedure as Madsen and Browning’s can be applied for the association test.

4.2.2.11  �Combining Related and Unrelated Individual Together to Detect 
Rare Variants

Previously, it was demonstrated that rare risk variants will be enriched in ascer-
tained families such as affected sibpairs (Zhu et al. 2010). Here, we illustrate how 
to use families, such as affected sibpairs or discordant sibpairs, to define the weights. 
Then a same test procedure as Madsen and Browning’s test can be applied to do the 
association test. This method was called sibpair-based weighted sum statistic test 
(SPWSS), and it has been shown that with the same size of genotype effect, using 
family data can greatly increase statistical power in detecting rare risk variants 
(Feng et al. 2011). Here, the assumption that a minor allele is either a risk allele or 
neutral was made, but the similar methods can be applied to detect protective 
variants.
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	1.	 Affected Sibpair Design

Assume there are Nsib affected sibpairs and L SNPs in the region. Further assume 
a SNP has two alleles A and a and A always refers to the minor allele for all the 
SNPs as defined before, and let ~ represent either the A or a allele at any SNP. Denote 
the ith sibpair’s genotypes of the L SNPs as gi = ((gi11, gi21), (gi12, gi22), …,(gi1L, gi2L)) 
where (gi1j, gi2j) refers to the jth SNP’s genotypes for the ith sibpair. There is no need 
to differentiate the first or second sib here. The idea here is that if A at the jth SNP 
is a risk allele, the weight for this allele A should be proportional to the ratio of the 
risk from both affected sibpairs carrying A to that in general population. If this is the 
case, the weight will only depend on the alleles carried at the jth SNP. To do this, 
two scenarios are considered. First, if both affected sibs carry A at the jth SNP, the 
weight of A at this SNP is proportional to
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where ϕ1 = Pr ((gi1j, gi2j) = (A ~, A ~)). Second, if one sib carries A at the jth SNP and 
the other does not, the weight of A is dependent on how many other sites have an A 
allele carried by the other affected sib. That is, the weight is proportional to
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where ϕ2 = P[(gi1j, gi2j) = (A ~, aa), A present at other sites of sib 2]. In the above 
equation, we always assume the first sib carries allele A when one of the two sibs 
carries allele A at the jth marker for easy description.

Based on above equations, a genotype score for each SNP in a sibpair can be 
defined. To do so, the genotype score of the jth SNP carried by ith affected sibpair 
was defined as
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In the above equation, the second term was divided by two because either one of 
the sibs may carry the A~ genotype at the jth SNP. The formulas for calculating ϕ1 
and ϕ2 are given by
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and
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where pj is the A allele frequency at the jth SNP which is estimated only in controls. 
There is also an assumption that all SNPs are in linkage equilibrium for obtaining 
ϕ2. This may not be a reasonable assumption in the real data. However, simulations 
suggest that this assumption has little effect on the testing results (Feng et al. 2011).

For the jth SNP, we then calculate g j
i

N

ijN
g=

=
å1

1sib

sib

 , which is the average of the 

genotype scores across whole affected sibpairs. Under the alternative hypothesis, in 
which only a subset of variants are risk variants, we would expect these variants to 
be outliers. We thus define the weight for the jth SNP to be
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where g and σ are the mean and standard deviation calculated from γj, j = 1,…L and 
c is a prespecified parameter. The power of the test later should be dependent on the 
choice of c, which is usually set 1.28 or 1.64.

	2.	 Discordant Sibpair Design

For discordant sibpairs, assume the first sib is always chosen to be affected and 
the second is always unaffected, and there are Nsib discordant sibpairs. The weight 
of allele A at the jth SNP should be proportional to

	

P g g A aa
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i j i jsibs areaffected andsib isnot , ,
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1 2
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1 4= ( ) = ~( )( ) = -( ) -( )P g g A aa p p pi j i j j j j, . For the ith discor-

dant sibpair and the jth SNP, the genotype score is
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In the same way as for affected sibpairs, the weights for discordant sibpairs can 
be defined.

4.3  �Discussion

Although there is a heat debate about the hypotheses of CDCV and CDRV, the iden-
tification and characterization of the effects of rare variants on common disease will 
play central parts in the future genetic studies. The contribution of the rare variants 
to complex diseases has already been reported for type 2 diabetes (Bonnefond et al. 
2012 ), and rare variants will undoubtedly uncover some missing “heritability.” 
However, more robust and powerful statistical methods for analyzing rare variants 
are still needed. The statistical methods discussed here will still need to be evaluated 
in practice. It should not be doubted that a better understanding of the genetic archi-
tecture and the underlying biology of complex diseases will help us to develop more 
powerful statistical methods to detect disease variants.
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Chapter 5
Whole-Genome Association Analysis of 
Treatment Response from Obsessive-
Compulsive Disorder

McKenzie Ritter and Haide Qin

Abstract  Up to 30% of individuals with obsessive-compulsive disorder (OCD) dis-
play an inadequate response to serotonin reuptake inhibitors (SRIs). Genetic predic-
tors of OCD treatment response have not been efficiently examined using a 
genome-wide association study (GWAS). In order to identify genetic variations that 
could potentially influence SRI response, a GWAS with 804 OCD patients contain-
ing information on SRI response was conducted. SRI response was used based on 
self-reported data and characterized as “response” (N  =  514) or “non-response” 
(N = 290). The more powerful quasi-likelihood score (MQLS) test was used to con-
duct a genome-wide association test correcting for relatedness. An adjusted logistic 
model was then used to examine the effect size of the variants in probands. The most 
significant SNP found was rs17162912 (P = 1.76 × 10−8), which is near the gene 
DISP1 on 1q41–q42, a microdeletion region that has been implicated in neurologi-
cal development. Six other SNPs showed evidence of association (P  <  10−5): 
rs9303380, rs12437601, rs16988159, rs7676822, rs1911877, and rs723815. Two of 
the SNPs in strong linkage disequilibrium, rs7676822 and rs1911877, are located 
near the PCDH10 gene and had p-values of 2.86 × 10−6 and 8.41 × 10−6, respec-
tively. The 35 other variations with a p-value <10−4 are involved with multiple genes 
expressed in the brain, including BRIN2B, PCDH10, and GPC6. The enrichment 
analysis suggested that there may be genes that play a role in the glutamatergic neu-
rotransmission system (FDR = 0.0097) and the serotonergic system (FDR = 0.0213). 
The results of this study could provide new insights into genetic mechanisms under-
lying treatment response in OCD, but studies with larger sample sizes and more 
detailed information on drug dosage, as well as treatment duration, are needed.
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5.1  �Introduction

Approximately 1–3% of the US population has obsessive-compulsive disorder 
(OCD), which is a neuropsychiatric disorder characterized by recurrent obsession 
and/or compulsions that cause distress and impairment (American Psychiatric 
Association 1994). OCD tends to aggregate in families, and segregation analyses 
and twin studies support a genetic influence (Nestadt et al. 2010). A genome-wide 
linkage study found several OCD susceptibility loci (3q, 7p, 1q, 15q, and 6q) 
(Shugart et al. 2006). Several variants were previously found to be associated with 
OCD, including SLC1A1 (Shugart et  al. 2009), SLC6A (Voyiaziakis et  al. 2012; 
Murphy and Lesch 2008), and GRIN2B as potential loci (Arnold et al. 2004; Stewart 
et al. 2007; Alonso et al. 2012). Previously, association studies found a set of candi-
date genes that were inconsistently reported to be associated with OCD (Taylor 
2013). As of recent, the shift in genome-wide association studies revealed genes 
PTPRD, DLGAP1, CDH10, and GRIK2 as potential OCD susceptible loci (Stewart 
et al. 2013; Mattheisen et al. 2014).

Typical treatment for OCD includes a combination of exposure response preven-
tion (ERP) and medication. Serotonin reuptake inhibitors (SRIs) are most com-
monly used for OCD. Unfortunately, up to 30% of patients treated with SRIs show 
either poor or no treatment response to the medication or cannot handle the adverse 
effects of the SRIs (Ferguson. 2001). The current literature on genetic predictors of 
SRI treatment response in OCD is scarce (Di Bella et al. 2002; Brandl et al. 2012, 
2014). Therefore, further research on the genetic variants influencing treatment 
response is warranted.

SRIs inhibit the reuptake of serotonin by presynaptic cells, thus increasing extra-
cellular levels of serotonin in the synaptic cleft, allowing serotonin to more easily 
bind to the postsynaptic receptor (Murphy and Lesch 2008; Sangkuhl et al. 2009). 
Over 60 proteins are known to play a role in the serotonin signaling pathway. Among 
these proteins, the serotonin transporter gene, SLC6A, could impact SRI response 
(Murphy and Lesch 2008). Additionally, genetic variants in other genes (CYP2D6, 
SLC1A1, SLC6A4, HTR1B receptor, 5-HT2A receptor, and BDNF) have been 
reported to influence SRI response in OCD (Brandl et al. 2012). Several of these 
studies had small sample sizes and a limited number of known genetic variations in 
candidate genes. In addition, analytical approaches vary widely among different 
studies, which could have led to the inconsistency of the results. For example, in 
2012, Tansey et al. reported results from the first GWAS of SRI response in major 
depression (2012). All of the findings reported in this chapter were based on a previ-
ously published manuscript (Qin et al. 2015). Therefore, an important research 
question is whether genetic variations influence SRI treatment response in OCD. To 
address this question, a whole-genome association analysis was performed on the 
response to SRIs in 804 OCD cases using a novel, more powerful quasi-likelihood 
score (MQLS) test to correct for relatedness. This chapter is based on a previously 
published manuscript (Qin et al. 2015).
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5.2  �Material and Methods

The samples used in this study were originally recruited as a part of the OCD 
Collaborative Genetics Association Study (OCGAS). The detailed methods of 
recruitment have been previously recorded (Samuels et  al. 2006; Nestadt et  al. 
2010). A detailed description of the data and scales used for diagnosis are docu-
mented in the complete manuscript (Qin et al. 2015).

Treatment response was dichotomized into “response” and “non-response” for 
the analyses. Genotyping and quality control measures were then completed, which 
can be found in the complete manuscript as well (Qin et al. 2015).

5.3  �Statistical Methods

The MQLS test was conducted to complete association tests and correct for their 
relatedness coefficients (based on identity-by-descent). A logistic model adjusted 
for sex and age was used to evaluate effect size in the probands using PLINK 
(Purcell et  al. 2007). The association test has the potential to underestimate true 
signals of association with SRI response due to limited statistical power, all varia-
tions with MQLS test p-values <10−4 with a large effect size (odds ratio ≥ 1.50 for 
the risk allele) were reported. All statistical analyses were conducted using in-house 
R scripts on a GentOS-based cluster computer.

SNP annotation was completed using SNP-NEXUS based on dbSNP135/hg19 
(Chelala et  al. 2009). Cross references to other GWAS association studies were 
explored using the NHGRI GWAS catalogue (Hindorff et al. 2013). Neurobiological 
evidence was also examined through peer-reviewed publications in the PubMed 
database. Additionally, LD plots were completed using the LocusZoom software 
based on 1000 genome CEU population data (hg19/1000 Genomes Mar 2012 EUR) 
(Pruim et al. 2010).

5.4  �Results

Table 5.1 lists the demographic and clinical characteristics of the samples. After qual-
ity control of the data, 5597,847 SNPs (81.8% of the SNPs attempted in the array) 
were genotyped successfully. A total of 804 individuals with informative drug effect 
data (514 responders and 209 non-responders) had a call rate of 99.9%. Figure 5.1a 
shows a QQ plot. Of the 42 SNPs with a p-value <10−4, one SNP met the genome-
wide significance level (p = 1.76 × 10−8) for SRI treatment response. Additionally, six 
SNPS showed suggestive evidence of association with a p-value <10−5, and 35 SNPs 
showed signals of association at the level of p < 10−4 (Fig. 5.1b and Table 5.2).

5  Whole-Genome Association Analysis of Treatment Response…
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The most significant SNP, rs17162912, is located in proximity (distance of 
~13 kb) to the DISP1 gene (p = 1.76 × 10−8; OR = 0.39 [95% CI 0.26–0.58] (Table 5.2 
and Fig. 5.2a left panel). Since there were no nearby markers with complete LD with 
rs17162912, genotypes in the left and right regions flanking that SNP were imputed 
(up to 250 kb), as well as an association test. The results showed that SNPs in strong 
LD with rs17162912 also presented suggestive association signals (Fig. 5.2a right 
panel). The integrated ENCODE regulation databases were explored, and it was 
found that rs17162912 is close to a peak (approximately 13 kb) of the H3K27AC 
protein-binding score, suggesting that this region encompasses the promoter of 
DISP1. DISP1 encodes a 12-transmembrane domain protein that is required for long-
range sonic hedgehog (Shh) secretion and transport. This is important in the estab-
lishment of cell-cell contact and spinal cord development (Etheridge et al. 2010).

rs7676822 and rs1911877 were SNPs with suggestive signals, which are located 
near the PCDH10 gene (distance = 1818 kb and 1772 kb, respectively), and showed 
p-values of 2.86 × 10−6 (OR = 0.65 [95% CI o.51–0.83]) and 8.41 × 10−6 (OR = 0.66 
[95% CI 0.52–0.84]), respectively (Fig.  5.2b). The LD relationship between 
rs7676822 and rs1911877 means that the two SNPs should be considered as one hit. 
It is worth mentioning that PCDH10 belongs to a protocadherin gene family that 
consists of the largest subgroup of the cadherin superfamily, which mediates cell-
cell adhesion and intracellular signaling. Most PCDHs (protocadherins) are pre-
dominantly expressed in the central nervous system and have been suggested to play 
crucial roles in both the formation and maintenance of synaptic functioning (Kim 
et al. 2007).

Table 5.1  Characteristics of OCD participants

Group Subgroup Count (N = 804) Frequency

Sex
Male 312 0.39
Female 492 0.61

Agea

7–9 19 0.02
10–19 189 0.23
20–29 170 0.21
30–39 173 0.22
40–49 159 0.20
50–78 94 0.12

Age at onset of OC symptoms
5–9 518 0.64
10–19 237 0.30
20–44 118 0.06

SRI responseb

“No response” 290 0.36
“Response” 514 0.64

aAge unknown for five participants
b“Couldn’t tolerate” and “unknown” were excluded from data analysis
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To comprehensively evaluate the role of some known pathways in the nervous 
system, an enrichment analysis was conducted. This was done to test whether there 
were any genes that were significantly enriched in various neuron signaling pathways. 
It was found that both the glutamatergic neurotransmission pathway and serotoner-
gic neurotransmission pathways displayed more than a twofold enrichment. The glu-
tamatergic pathway had the highest enrichment score of 3.38, as well as the best 
false discovery rate (FDR) of 0.0097. The serotonergic pathway had the second best 
enrichment score of 2.39, with an FDR or 0.0213 (Table 5.3 and Fig. S1).

Fig. 5.1  Genome-wide association study of genetic variations and treatment response. (a) Q-Q 
plot for the association test of genetic variations. (b) Manhattan plot for the association test of 
genetic variations and SRI response. MQLS test was performed to test the association of variants 
associated with drug response. A red line indicates genome-wide significance (5 × 10−8); a blue 
line indicates the level of suggestive evidence for association (1 × 10−5)

5  Whole-Genome Association Analysis of Treatment Response…



50

Ta
bl

e 
5.

2 
To

p 
lo

ci
 a

ss
oc

ia
te

d 
w

ith
 tr

ea
tm

en
t r

es
po

ns
e 

in
 O

C
D

 p
at

ie
nt

s

SN
P

C
hr

. p
os

iti
on

A
1/

A
2a

R
es

p.
b

N
on

-r
es

p.
b

Pc
O

R
(9

5%
C

I)
d

R
eg

io
n

N
ea

re
st

 g
en

e 
(d

is
ta

nc
e/

bp
)

rs
17

16
29

12
1

22
29

74
92

6
C

/T
0.

06
0.

15
1.

76
 ×

 1
0–

8
0.

39
(0

.2
6–

0.
58

)
In

te
rg

en
ic

D
IS

P1
(1

35
05

)
rs

93
03

38
0

17
54

11
74

92
A

/G
0.

03
0.

07
1.

03
 ×

 1
0–

6
0.

37
(0

.2
1–

0.
64

)
In

te
rg

en
ic

A
N

K
FN

1(
11

33
44

)
rs

12
43

76
01

15
98

68
73

30
C

/T
0.

09
0.

03
1.

66
 ×

 1
0–

6
4.

07
(2

.1
6–

7.
66

)
In

te
rg

en
ic

A
R

R
D

C
4(

17
02

62
)

rs
16

98
81

59
21

32
72

76
53

C
/T

0.
3

0.
42

2.
48

 ×
 1

0–
6

0.
57

(0
.4

5–
0.

73
)

In
tr

on
ic

T
IA

M
1

rs
76

76
82

2
4

13
22

52
35

5
G

/T
0.

28
0.

39
2.

86
 ×

 1
0–

6
0.

65
(0

.5
1–

0.
83

)
In

te
rg

en
ic

PC
D

H
10

(1
81

81
15

)
rs

72
38

15
6

52
51

92
03

A
/C

0.
2

0.
11

3.
50

 ×
 1

0–
6

2.
06

(1
.4

6–
2.

9)
In

te
rg

en
ic

L
O

C
73

01
01

(9
99

6)
rs

19
11

87
7

4
13

22
98

23
9

C
/T

0.
3

0.
4

8.
41

 ×
 1

0–
6

0.
66

(0
.5

2–
0.

84
)

In
te

rg
en

ic
PC

D
H

10
(1

77
22

31
)

rs
80

81
61

1
17

48
13

36
5

C
/T

0.
12

0.
05

1.
40

 ×
 1

0–
5

2.
59

(1
.6

–4
.1

9)
In

te
rg

en
ic

C
H

R
N

E
(6

99
6)

rs
79

72
96

3
12

66
64

61
99

T
/G

0.
08

0.
14

1.
50

 ×
 1

0–
5

0.
54

(0
.3

7–
0.

78
)

U
T

R
3

IR
A

K
3

rs
17

25
37

38
13

94
87

40
89

A
/G

0.
14

0.
21

2.
13

 ×
 1

0–
5

0.
59

(0
.4

3–
0.

82
)

In
tr

on
ic

G
PC

6
rs

27
06

65
2

11
12

28
90

58
A

/G
0.

42
0.

33
2.

30
 ×

 1
0–

5
1.

5(
1.

18
–1

.9
2)

In
te

rg
en

ic
M

IC
A

L
2(

37
27

)
rs

79
72

21
1

12
14

26
99

86
G

/A
0.

16
0.

23
2.

71
 ×

 1
0–

5
0.

65
(0

.4
9–

0.
87

)
In

te
rg

en
ic

G
R

IN
2B

(1
36

96
4)

rs
31

89
82

11
13

14
15

26
7

T
/C

0.
21

0.
29

2.
82

 ×
 1

0–
5

0.
65

(0
.5

–0
.8

6)
In

tr
on

ic
N

T
M

rs
69

18
91

8
6

52
51

50
78

T
/C

0.
22

0.
13

3.
17

 ×
 1

0–
5

1.
94

(1
.4

–2
.6

8)
In

te
rg

en
ic

L
O

C
73

01
01

(1
41

21
)

rs
11

02
20

29
11

11
80

63
17

C
/T

0.
13

0.
2

3.
18

 ×
 1

0–
5

0.
65

(0
.4

8–
0.

87
)

In
te

rg
en

ic
U

SP
47

(5
66

53
)

rs
88

14
99

7
30

97
60

64
C

/T
0.

25
0.

36
3.

58
 ×

 1
0–

5
0.

55
(0

.4
2–

0.
72

)
In

te
rg

en
ic

A
Q

P1
(1

09
33

)
rs

90
56

90
3

68
72

52
95

T
/C

0.
35

0.
26

3.
79

 ×
 1

0–
5

1.
56

(1
.2

–2
.0

2)
In

te
rg

en
ic

FA
M

19
A

4(
55

62
0)

rs
12

56
15

32
13

52
10

89
78

G
/A

0.
06

0.
12

3.
81

 ×
 1

0–
5

0.
48

(0
.3

2–
0.

72
)

In
te

rg
en

ic
M

IR
47

03
(1

77
47

)
rs

95
16

36
9

13
94

86
85

84
G

/A
0.

14
0.

21
4.

38
 ×

 1
0–

5
0.

61
(0

.4
4–

0.
84

)
In

tr
on

ic
G

PC
6

rs
72

14
77

6
17

48
11

61
5

C
/T

0.
12

0.
06

4.
39

 ×
 1

0–
5

2.
4(

1.
51

–3
.8

3)
In

te
rg

en
ic

C
H

R
N

E
(5

24
6)

rs
93

65
31

9
6

16
21

14
70

7
T

/C
0.

13
0.

21
4.

49
 ×

 1
0–

5
0.

57
(0

.4
2–

0.
77

)
In

tr
on

ic
PA

R
K

2
rs

70
04

83
3

8
11

84
00

11
G

/A
0.

05
0.

1
4.

53
 ×

 1
0–

5
0.

47
(0

.3
–0

.7
5)

In
tr

on
ic

D
E

FB
13

5
rs

47
68

16
5

12
40

02
50

34
A

/G
0.

25
0.

34
4.

79
 ×

 1
0–

5
0.

66
(0

.5
1–

0.
85

)
In

tr
on

ic
C

12
or

f4
0

rs
60

05
45

1
22

27
85

21
83

C
/T

0.
09

0.
16

4.
85

 ×
 1

0–
5

0.
53

(0
.3

7–
0.

75
)

In
te

rg
en

ic
M

N
1(

29
20

82
)

rs
10

89
43

96
11

13
13

26
03

5
A

/G
0.

41
0.

29
4.

91
 ×

 1
0–

5
1.

72
(1

.3
4–

2.
22

)
In

tr
on

ic
N

T
M

M. Ritter and H. Qin



51
SN

P
C

hr
. p

os
iti

on
A

1/
A

2a
R

es
p.

b
N

on
-r

es
p.

b
Pc

O
R

(9
5%

C
I)

d
R

eg
io

n
N

ea
re

st
 g

en
e 

(d
is

ta
nc

e/
bp

)

rs
22

93
22

3
2

10
30

35
46

8
T

/C
0.

15
0.

24
4.

92
 ×

 1
0–

5
0.

6(
0.

44
–0

.8
)

In
tr

on
ic

IL
18

R
A

P
rs

14
03

55
2

2
10

30
88

77
7

A
/G

0.
15

0.
24

5.
00

 ×
 1

0–
5

0.
59

(0
.4

4–
0.

79
)

U
ps

tr
ea

m
SL

C
9A

4
rs

11
15

83
47

14
61

93
06

78
A

/G
0.

33
0.

21
5.

18
 ×

 1
0–

5
1.

83
(1

.3
9–

2.
41

)
In

tr
on

ic
PR

K
C

H
rs

77
06

44
7

5
11

65
13

16
4

C
/A

0.
04

0.
1

5.
83

 ×
 1

0–
5

0.
36

(0
.2

3–
0.

59
)

In
te

rg
en

ic
L

O
C

72
83

42
(2

38
04

4)
rs

11
61

11
19

12
40

16
62

57
C

/T
0.

35
0.

26
5.

83
 ×

 1
0–

5
1.

59
(1

.2
2–

2.
07

)
In

tr
on

ic
SL

C
2A

13
rs

45
96

49
8

6
13

95
40

10
3

A
/G

0.
24

0.
16

6.
36

 ×
 1

0–
5

1.
73

(1
.2

6–
2.

36
)

In
te

rg
en

ic
T

X
L

N
B

(2
10

96
)

rs
75

65
96

6
2

17
97

42
23

2
C

/T
0.

45
0.

33
6.

69
 ×

 1
0–

5
1.

63
(1

.2
8–

2.
08

)
In

tr
on

ic
C

C
D

C
14

1
rs

12
97

40
44

19
42

36
86

29
G

/A
0.

37
0.

27
7.

07
 ×

 1
0–

5
1.

56
(1

.2
–2

.0
2)

In
tr

on
ic

R
PS

19
rs

13
95

31
22

41
67

61
76

G
/A

0.
3

0.
2

7.
07

 ×
 1

0–
5

1.
69

(1
.2

8–
2.

24
)

In
tr

on
ic

R
A

N
G

A
P1

rs
14

71
65

9
3

12
68

12
57

7
G

/A
0.

11
0.

17
7.

74
 ×

 1
0–

5
0.

61
(0

.4
3–

0.
85

)
In

te
rg

en
ic

PL
X

N
A

1(
56

34
2)

rs
49

33
95

8
10

85
82

10
27

C
/T

0.
29

0.
21

8.
04

 ×
 1

0–
5

1.
56

(1
.1

8–
2.

05
)

In
te

rg
en

ic
G

H
IT

M
(7

81
58

)
rs

10
01

38
18

4
44

29
34

09
T

/C
0.

26
0.

18
8.

34
 ×

 1
0–

5
1.

6(
1.

19
–2

.1
5)

In
tr

on
ic

K
C

T
D

8
rs

38
91

61
6

13
94

86
68

49
C

/A
0.

14
0.

2
8.

39
 ×

 1
0−

5
0.

63
(0

.4
6–

0.
87

)
In

tr
on

ic
G

PC
6

rs
72

26
65

20
85

08
60

4
C

/T
0.

4
0.

29
8.

47
 ×

 1
0−

5
1.

61
(1

.2
5–

2.
08

)
In

tr
on

ic
PL

C
B

1
rs

22
95

39
4

14
93

41
27

43
P/

C
0.

04
0.

08
8.

55
 ×

 1
0−

5
0.

48
(0

.2
9–

0.
79

)
N

A
N

A
rs

35
10

98
4

13
24

09
02

9
T

/C
0.

22
0.

3
8.

77
 ×

 1
0−

5
0.

67
(0

.5
1–

0.
86

)
In

te
rg

en
ic

PC
D

H
10

(1
66

14
41

)
rs

12
53

25
45

7
14

18
75

26
7

A
/C

0.
17

0.
25

9.
21

 ×
 1

0–
5

0.
63

(0
.4

8–
0.

84
)

In
tr

on
ic

L
O

C
10

01
24

69
2

A
bb

re
vi

at
io

ns
: C

hr
 c

hr
om

os
om

e 
nu

m
be

r, 
A

1/
A

2 
O

R
 o

dd
s 

ra
tio

, C
I 

co
nfi

de
nc

e 
in

te
rv

al
, M

Q
L

S 
a 

m
or

e 
po

w
er

fu
l q

ua
si

-l
ik

el
ih

oo
d 

sc
or

e 
te

st
a A

1/
A

2,
 in

 w
hi

ch
 “

A
1”

 is
 m

in
or

 a
lle

le
 a

nd
 “

A
2”

 is
 m

aj
or

 a
lle

le
b R

es
p.

 m
in

or
 a

lle
le

 s
eq

ue
nc

e 
(M

A
F)

 f
or

 th
e 

pa
tie

nt
, r

es
po

ns
e 

to
 S

SR
Is

; n
on

-r
es

p.
, M

A
F 

fo
r 

th
e 

pa
tie

nt
s 

no
n-

re
sp

on
se

 to
 S

SR
Is

c M
Q

L
S_

ro
bu

st
 p

-v
al

ue
, c

ut
of

f 
p-

va
lu

e 
th

re
sh

ol
d 

w
as

 s
et

 1
 ×

 1
0−

4  f
or

 th
e 

ri
sk

 a
lle

le
d L

og
is

tic
 r

eg
re

ss
io

n 
m

od
el

 w
as

 p
er

fo
rm

ed
 o

n 
pr

ob
an

ds
, a

dj
us

te
d 

by
 s

ex
 a

nd
 a

ge
. C

ut
of

f 
th

re
sh

ol
d 

w
as

 s
et

 a
t O

R
 ≥

 1
.5

 f
or

 th
e 

ri
sk

 a
lle

le

5  Whole-Genome Association Analysis of Treatment Response…



52

The glutamatergic pathway contained the SNP rs7972211 near the GRIN2B 
gene, which is an important component of the glutamatergic neurotransmission sys-
tem. This SNP showed a signal of association with SRI response with a p-value of 
2.71  ×  10−5 (OR  =  0.65 [95% CI 0.49–0.87]) (Table  5.2). Additionally, GPC6, 
another gene of the glutamatergic transmission system, had three SNPs (rs17253738, 
rs9516369, rs3891616) that exhibited association signals with p  =  2.13  ×  10−5 
(OR = 0.59 [95% CI 0.43–0.82]), p = 4.38 × 10−5 (OR = 0.61 [95% CI 0.44–0.84]), 
and p = 8.39 × 10−5 (OR = 0.63 [95% CI 0.46–0.87]), respectively (Table 5.2 and 
Fig. 5.2c). There is tight LD that exists among these three SNPs and thus serves as 

Fig. 5.2  Regional association plot with LD illustrated for significant SNPs. (a) SNAP plot of 
rs17162912 for the association test (left) and for the association test after the imputed SNPs was 
included (right). (b) SNAP plot of rs7676822, rs17253738 (c), and rs722665 (d)
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one hit. GPC6 is known to promote the glutamate receptor clustering and receptiv-
ity and also induces the formation of postsynaptic signaling in the synapses of the 
central nervous system. Exhaustion of GPC6 significantly reduces its function in 
inducing postsynaptic activity (Allen et al. 2012). Interestingly, both DLGAP1 and 
DLGAP2 support the enrichment (Fig. S1a). DLGAP1 has recently been suggested 
as an OCD susceptibility gene (Stewart et al. 2013).

Two within LD (R2 = 0.6) variants (rs722665 and rs2423366) of the serotonergic 
system in the PLCB1 gene showed an association at p = 8.47 × 10−5 (OR = 1.83 
[95% CI 1.39–2.41]) (Table 5.2 and Fig. 5.2d). Several other well-established genes 
including HTR2A and SLC6A4 appeared to support the enrichment (Fig. S1b).

5.5  �Discussion

The association between genetic variations and treatment response in OCD was 
tested in this study. Replication is warranted, but this study adds to the comprehen-
sion of how low genetic variants could contribute to drug response in OCD treat-
ment. The top SNP hit from the GWAS was rs17162912, which is located near the 
DISP1 gene. Additionally, the enrichment analysis indicated roles of genes in the 
glutamatergic neurotransmission system (FDR = 0.0097) and the serotonergic sys-
tem (FDR = 0.0213).

The DISP1 gene is located in the 1q41–q42 locus, which has a microdeletion 
related to a syndrome with symptoms of significant mental retardation, behavioral 
problems, seizures, as well as characteristic dysmorphic features (Jun et al. 2013). 
Even though rs17162912 does not fall within gene regulators, it is within close 
proximity to a promoter of the DISP1 gene in ENCODE databases.

Another gene that plays a role in cell-cell contact, PCDH10, is an autism spec-
trum disorder (ASD)-related gene (Morrow et al. 2008). This gene had a suggestive 
level of association with SRI response. Other GWAS have shown that several PCDH 
genes are associated with various neuropsychiatric disorders, including autism, 

Table 5.3  Enrichment analysis results in ten neurologically relevant pathways

Pathways examined Genes enriched Enrichment score P-value FDR

Glutamatergic signaling 14 3.38 0.0009 0.0097
Serotonergic signaling 11 2.39 0.0047 0.0213
Long-term potentiation 6 1.55 0.0058 0.0213
Neurotrophin signaling pathway 8 1.54 0.0120 0.0330
Long-term depression 4 1.04 0.0280 0.0512
GABAergic signaling 7 1.12 0.0340 0.0512
Dopaminergic synapse 7 1.02 0.0346 0.0511
Retrograde endocannabinoid signaling 6 0.88 0.0372 0.0512
Cholinergic signaling 4 0.67 0.5720 0.6292
Synaptic vesicle cycle 3 0.34 0.9280 0.9281
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Supplementary Figure S1  Illustration of genes enriched in glutamatergic system and serotoner-
gic system. (a) The serotonin signaling pathway. (b) The glutamate signaling pathway. Note: the 
ovals indicate the molecules in the synaptic transmission. The brown ovals were used to highlight 
the genes with p-value <0.001
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bipolar disorder, and schizophrenia (Redies et al. 2012). An OCD GWAS found that 
cadherin 10, type 2 (CDH10) was reported as the second strongest association sig-
nal for OCD susceptibility (Mattheisen et al. 2014). Together, these findings suggest 
that cell-cell contact molecules may be involved in SRI response in OCD patients. 
Although, it should be mentioned that due to the lack of adequate biological evi-
dence in OCD to support this, further study is needed.

A gene in the glutamatergic neurotransmission system, GRIN2B, an N-methyl-
D-aspartate glutamate receptor, was one of the genes relevant to OCD and SRI 
response with other significant SNPs. Three previous genetic studies reported a sig-
nificant association between a variant in GRIN2B and OCD (Arnold et al. 2004; 
Stewart et al. 2007; Alonso et al. 2012). Volumetric magnetic resonance imaging 
suggested that genetic variations of GRIN2B are associated with volumetric brain 
abnormalities in OCD (Arnold et al. 2009). It was also found that GRIN2B varia-
tions interact with the variations in SLC1A1, which is the susceptibility gene consis-
tently replicated in OCD. Our GWAS analysis did not provide strong evidence for a 
single-variant association in the glutamatergic or serotonergic neurotransmission 
systems contributing to SRI response.

The enrichment analysis did indicate that multiple genes in the glutamatergic and 
serotonergic neurotransmission systems may jointly contribute to SRI treatment in 
OCD (Table 5.3 and Fig. S1). More of the nominated genes occur in the glutamater-
gic pathway than the serotonergic pathway (Fig. S1). We do recognize that our 
study is underpowered in detecting all neuropathic SNPs for enrichment.

Even though one genome-wide significance hit and two suggestive pathway 
enrichment scores were found, some potential imitations of this study should be 
mentioned. Firstly, drug response was based on a retrospective self-report. Second, 
since large OCD samples with drug information are rare, the analysis was based on 
a limited sample. Last, there was a lack of detailed information on both the dosage 
and duration of SRI medication, as well as the receipt of behavioral therapy. For 
future studies, it would be important to include measures of treatments in greater 
detail with response including reliable measures of symptom reduction within the 
first few months of treatment.

Several strengths of the study should be mentioned as well. First, the rigorous 
semi-structured clinical examination and diagnostic best-estimation procedures 
support phenotypic reliability. Second, given the clinical and genetic heterogeneity 
of OCD, the OCGAS sample attempted to increase homogeneity by targeting OCD-
affected individuals with an early age of onset.

Up to 30% of OCD patients show minimal clinical improvement with treatment, 
which could indicate the biological heterogeneity of OCD phenotypes. Thus, it 
would be worthwhile to consider subgroups of OCD patients defined by their drug 
response. This could potentially provide a relatively more homogenous population 
(Davis et al. 2002). It is also worth noting that the study participants came from two 
studies, one of which was a family-based linkage study and the other was a trios-
based association study. Relatedness may confound association tests and odds ratio 
estimation; the MQLS test offers a better way to conduct a test that corrects for the 
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relatedness coefficient with pedigrees, using a kinship matrix (identity by descent) 
from genotype data (Thornton et al. 2007).

Further research is needed to replicate the current findings on genetic variations 
related to SRI response in individuals affected by OCD. It is anticipated that next-
generation sequencing methods, which facilitate the analysis of multiple genes, 
including the effects of both common and rate variants, will provide further under-
standing of OCD mechanisms of treatment response and lead to more effective 
forms of treatment for OCD (Korf and Rehm 2013).
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Chapter 6
QTL Mapping of Molecular Traits  
for Studies of Human Complex Diseases

Chunyu Liu

Abstract  Genetic mapping of quantitative trait loci (QTL) offers a powerful and 
efficient approach to discover putative regulatory regions of traits and to define 
novel functional implications of genetic variants. Here we reviewed recent progress 
on QTL mapping of molecular traits, including gene expression, DNA methylation, 
as well as protein expression, metabolites. QTL mapping of molecular traits has 
better chance to succeed in relatively small sample size study as fewer nongenetic 
factors or gene-gene interactions may involve. Knowledge derived from QTL 
mapping will help us to uncover understanding of biology in complex traits and 
diseases and enhance power of genetic association study. In the context of study of 
complex diseases, we focused on expression QTL and methylation QTL, presenting 
major findings and technique considerations, including experimental platform, 
sample quality, size, and heterogeneity, as well as analytical procedure and 
significance criteria. Lastly, we discussed the current and future use of QTL data in 
study of complex diseases.

Keywords  Complex diseases · DNA methylation · eQTL · mQTL · pQTL

6.1  �Introduction

Complex diseases, such as diabetes, Crohn’s disease, asthma, and many neuropsy-
chiatric diseases, have multiple genetic and environmental factors involved. 
Although genetic contribution is apparent, transmission in families do not obey the 
Mendelian rules of inheritance. High prevalence in population, strong heterogene-
ity, incomplete penetrance, and complex spectrum of phenotypes are frequently 
observed for these diseases. Identification of their genetic factors promises to bring 
us better understanding of the disease etiology, new treatment, and most importantly 
personalized medicine. But the path reaching this goal is not easy. Actually, it is 
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much more difficult than study of rare Mendelian disorders. Prior to 2005, genome-
wide linkage and association studies were thought to be the silver bullets to nail 
down all the common risk genes. Unfortunately, the reality showed us the complex-
ity beyond what we have expected.

6.1.1  �Genome-Wide Association Study and Its Limitation

Genome-wide linkage and association studies made full use of the gradually 
improved genetic map of human genome. With millions of genetic variants, particu-
larly single nucleotide polymorphisms (SNPs) identified throughout human genome, 
Affymetrix and Illumina provide affordable SNP microarray or BeadChip for 
“unbiased,” hypothesis-free, genome-wide association test for study of any com-
mon diseases or traits.

Since 2005, with thousands even tens of thousands of samples recruited in each 
study, genome-wide association studies (GWAS) have made significant progress. 
NHGRI Catalog of Genome-Wide Association Studies (http://www. genome.gov/
gwastudies) has collected more than 1100 GWASs of more than 590 diseases or 
traits by the end of 2011. Except for a few diseases like age-related macular degen-
eration (ARMD, (Klein et al. 2005)), most of the diseases only have weak-effect 
loci revealed with odds ratio less than 2. “Missing heritability” has been the most 
complaint heard about GWAS (Manolio et al. 2009; Eichler et al. 2010). Actually, 
“missing biology” may be more problematic: Most of the discovered associations 
linking to SNPs do not have obvious biological functions as they are frequently 
located in intronic or noncoding regions. One example is the GWAS signal identi-
fied for the bipolar disorder as summarized in Table 6.1. Most of the associated 
SNPs are in intronic or intergenic regions with no obvious function.

Meanwhile, with the linkage disequilibrium (LD), a SNP association frequently 
cannot really pinpoint to a specific gene in a genomic region. Only until we have 
one specific gene and its causal functional variants actual being identified, we will 
be able to put together the puzzle pieces of the disease biology. The disease gene 
and biological pathway can then be revealed and followed-up.

One example is the synonymous coding variant in PBRM1 gene, rs2251219, 
which was reported to be associated with bipolar and major depression by McMahon 
et al. (2010). It was replicated in bipolar but not in major depression (Breen et al. 
2011). rs2251219 has a nearby nonsynonymous (V355 M) variant, rs2289247, in 
the gene GNL3 (GTPase nucleostemin), which was involved in proliferation of stem 
cells, especially in the central nervous system. Our analysis showed that rs2251219 
is associated with expression of GNL3 at both exon and transcript level, in both 
cerebellum and parietal cortex. Therefore, we propose that GNL3 may be the actual 
risk bipolar disorder gene rather than PBRM1, although rs2251219 is 142 Kb away 
from rs2289247. This example also shows that an eQTL could be located right 
inside another gene. Different genes may share not only exons but also regulatory 
elements. Current SNP annotation using only physical location could be function-
ally misleading.
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While researchers are still working hard to collect more samples to improve sta-
tistical power of GWAS, aiming to identify more weak-effect risk genes, integrating 
knowledge of biological functions of genetic variants into GWAS might be an 
important alternative approach to enhance GWAS power so that weak-effect risk 
genes can be discovered without increasing sample size.

Study of biological function of genetic variants will benefit both recovering 
missing biological mechanism and discovering of novel weak-effect risk genes.

6.1.2  �Functionality of Genetic Variants

Genetic variants could have their functions defined at various biological levels, from 
molecular functions such as gene expression, protein and lipid level, cellular func-
tions such as cell structure and nerve excitability, to tissue and organ functions such 
as brain activity, till high-order functions such as human cognitive and emotion 
behaviors. In general, the higher level the function is, the more genetic and environ-
mental factors can be involved. Although some high-level functions could be prod-
ucts of relatively simple genetic variants, majority of the high-level functions such 
as human behaviors will have many genetic and environmental factors interplayed, 
consequently, have weaker correlations with genetic variants than gene expression 
measures do. It is natural to assume that many higher level functions are built upon 
organization of lower level functions. Therefore, study of biological functions at 
molecular level, which are in scope of many -omics, such as genomics and epig-
enomics, deemed to be more fruitful as bigger effect size of genetic variants is 
expected for those traits. These studies will also be essential for understanding of 
higher level phenotypes.

Here, we will focus on reviewing recent studies of SNP functions measured by 
genomic and epigenomic methods. Genetic mapping is making more and more con-
tributions to the study of these functionalities, as it can discover novel functions of 
genetic variants more efficiently than traditional biochemical or mutagenesis, trans-
genic animal experiments. Certainly, similar to all other association tests, genetic 
mapping reveals the statistical correlation between measure of a quantitative trait 

Table 6.1  Bipolar disorder GWAS signals reaching genome-wide significance

Study Gene SNPs Locations

PGC (Sklar et al. 2011) CACNA1C, ODZ4 rs4765913;rs12576775 Intronic
Cichon et al. (2011) NCAN rs1064395 3′UTR
McMahon et al. (Baum et al. 2008) PBRM1 rs2251219 Cds-synon
Wang et al. (2010) ASTN2, GABRR1 rs11789399 Intergenic
Huang et al. (2010a) ADM rs6484218 Intergenic
Liu et al. (2011) CACNA1C rs1006737 Intronic
Ferreira et al. (2008) ANK3 rs10994336 Intergenic
Baum et al. (2008) DGKH rs1012053 Intronic
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and a genomic region. The correlation can only suggest but never prove a causal 
relationship. The actual biology, cause-consequence relationship has to be estab-
lished through follow-up experiments.

6.1.3  �QTL Mapping and Genetic Variants

A quantitative trait can be recorded as a continuous variable in a population. The 
earliest study of a quantitative trait was enzyme activity (Schwartz 1962). Genetically 
mapping quantitative traits, or quantitative trait loci (QTL), began in the 1980s since 
DNA markers were introduced.

Mapping of QTLs, just like other genetic traits, can use both linkage and associa-
tion methods. Linkage includes variance components analysis, regression, and non-
parametric methods. Association test can be either family-based test or 
population-based test. In general, successful association studies produce better res-
olution than successful linkage studies. This chapter focuses on GWAS mapping of 
QTL in human. QTL mapping can be performed in animal or other model species, 
like mouse or yeast. They are not covered here.

A very fruitful practice of QTL mapping so far is the mapping of gene expression 
quantitative traits loci (eQTLs). eQTL mapping started about 15 years ago (Damerval 
et al. 1994). After GWAS was implemented, eQTL mapping study bloomed. Other 
molecular QTL including gene methylation QTL (mQTL), protein QTL (pQTL), 
and others gradually have also been presented. Creative use QTL mapping is open-
ing a broad venue toward understanding of biology and complex traits.

6.2  �QTL Mapping of Molecular Traits

Molecular traits are defined as phenotypes that can be assessed, mostly quantita-
tively, at molecular level in contrast to morphological phenotypes and behavioral, 
psychological measures. Molecular traits include most of the molecules that are 
currently measured by biochemical and molecular biological methods, such as gene 
expression, DNA methylations, histone modifications, enzyme activity, hormones, 
and metabolites. Most of them are the causes also the products of gene-environment 
interaction at different levels (Fig. 6.1).

6.2.1  �eQTL

An eQTL refers to a genetic variant in which the genotypes are associated with dif-
ferential gene expression. Through an eQTL mapping study, we can identify poten-
tial regulatory regions in the genome for expression of a specific gene. The simplest 
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model is that the genetic variant is either located in a regulatory element or in LD 
with a variant in the element so that the DNA sequence change could affect tran-
scription or degradation efficiency. And one needs to bear in mind that the actual 
causal relationship or regulatory machinery will not be apparent without additional 
experiments.

With millions of SNPs genotyped, a genome-wide eQTL study is normally per-
formed by partitioning the tests into cis- and trans-tests (Fig. 6.2). cis- (or local) 
association is between expression level of one gene and a nearby SNP, one located 
within an arbitrarily defined distance such as 500 Kb or 1–2 Mb. Trans- (or distal) 
associations include all non-cis-pairs. The trans- can be associations between the 
expression of a gene on one chromosome and a SNP located on another 
chromosome.

HapMap lymphoblastoid cell lines (LCLs) have been the mostly studied samples 
for eQTL mapping (Monks et al. 2004; Morley et al. 2004; Stranger et al. 2005, 
2007; Cheung et al. 2005; Storey et al. 2007; Veyrieras et al. 2008; Zhang et al. 
2008). The other human tissues that have been studied include liver (Schadt et al. 
2008), kidney (Wheeler et  al. 2009), blood and subcutaneous adipose tissue 
(Emilsson et  al. 2008), whole blood (Fehrmann et  al. 2011), brain (Myers et  al. 
2007; Heinzen et al. 2008; Webster et al. 2009; Liu et al. 2010), omental adipose, 
subcutaneous adipose, and liver (Dobrin et al. 2011). LCLs from asthma patients 
(Dixon et al. 2007; Moffatt et al. 2007) and from twins (Min et al. 2011) have also 
been studied for eQTL.

Several review articles have summarized part of the past eQTL studies (Cheung 
and Spielman 2009; Cookson et al. 2009; Liu 2011). An updated list of brain eQTL 
studies is shown in Table 6.2.

Fig. 6.1  Molecular traits link DNA/RNA to environment and high-order phenotypes

6  QTL Mapping of Molecular Traits for Studies of Human Complex Diseases
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Brain has been the most intensively studied tissue next to the HapMap LCLs. 
These two tissues represent two extreme of eQTL mapping in terms of complexity. 
LCL has relatively uniform cell type, with many environmental influences washed 
out during culture. Brain tissue block could contain hundreds or more different cell 
types and may be affected by lifetime and postmortem environmental influences. 
Different brain regions are structurally and functionally different. LCL sample can 
be prepared freshly and easily. Human brain is rarely accessible alive. Because of 
the complexity and very limited access of brain, eQTL mapping in human brain is 
at its early stage.

Most of the published eQTL mapping studies were limited to the summarized 
measure of transcripts, averaging all the splicing forms of each gene. But it is esti-
mated that 42–73% of human genes are alternatively spliced (Modrek et al. 2001; 
Johnson et al. 2003; Clark et al. 2007). Human brain carries even more tissue-specific 
alternative splice forms than other tissue (Xu et al. 2002; Johnson et al. 2009).

The heritability of splicing isoforms was first investigated in CEPH LCLs (Kwan 
et al. 2007) (Nembaware et al. 2008). Splicing eQTLs were also studied in CEPH 
LCLs using RNA-Seq (Pickrell et al. 2010; Montgomery et al. 2010). Hundreds of 
eQTLs for quantification of exon or whole gene transcripts were identified by these 
two studies. There are more eQTLs for exons detected than for whole transcripts.

Many factors determine the number of eQTLs that can be discovered. They 
include (1) experimental platform, (2) RNA quality, (3) sample heterogeneity, (4) 
sample size, (5) covariates, (6) data analytical procedures, and (7) significance 
criteria.

Fig. 6.2  Model of SNPs presenting eQTL in cis-association. SNP1 is located inside regulatory 
element1 (RE1). Its A allele has strong binding affinity to transcription factor1 (TF1). Its G allele 
does not bind TF1 well and consequently leading to reduced expression. SNP2 is in linkage dis-
equilibrium with SNP1. Therefore, genotypes of both SNP1 and SNP2 show correlation with 
expression. TSS transcription start site

C. Liu
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6.2.1.1  �Experimental Platforms

There are three technologies measuring mRNA expression, including microarray or 
BeadChip, real-time quantitative PCR (qPCR), and RNA-Seq.

Illumina, Affymetrix, and Agilent are the major vendors of microarray technol-
ogy. Although they all designed array to probe the 30,000 human genes, different 
microarray designs have pros and cons for their use of different numbers of probes 
on each transcript or exon, for the different lengths of oligo probes, and for their 
signal detection methods. Expense is certainly another important factor in the option 
of platform. One major selling point of Affymetrix Human Gene or Exon 1.0 ST 
array is that they provide decent coverage of individual known exons so that expres-
sion of specific splicing isoforms can be assayed and evaluated for eQTL 
mapping.

All microarray technology share built-in limitations due to being hybridization 
based. The oligonucleotide probes may hybridize to duplicated or repeat sequence 
or hit genomic regions with SNPs in populations (Alberts et al. 2007; Duan et al. 
2008; Gamazon et al. 2010), which will affect hybridization efficiency. In turn, false 
positives and false negatives can be produced. Ideally, all the probes containing 
SNPs should be excluded from analysis. We established a database for the list of 
expression microarray probes containing common SNPs at http://bioinfo.psych.uic. 
edu/ArrayGenes/SNPsInProbes.jsp. Additionally, detection of the fluorescence sig-
nals has a limited dynamic range so that the measure will not be accurate at the low 
or high ends or out of, the linear correlation (dynamic) range. Lastly, microarray can 
only measure the expression of known targets. Novel transcripts and exons will be 
the blind spot to microarray.

The qPCR method has a wider dynamic range but may still be affected by SNPs 
in primers or in TaqMan probe-binding sites. Therefore, the results have potential to 
be false because of a poor primer or probe design. Like microarray, qPCR is also 
limited to known targets.

With a high price tag, RNA-Seq has significant advantages over traditional 
expression microarrays and the qPCR method. The dynamic range of RNA-Seq is 
reported to be at least 8000-fold, a vast improvement over the 60-fold of DNA 
microarrays (Nagalakshmi et  al. 2008). Montgomery SB et  al. have found that 
approximately ten million reads of sequence can provide a comparable dynamic 
range as a microarray (Montgomery et al. 2010). RNA-Seq’s measure of expression 
will not be affected by SNPs. Instead, allelic expression can be directly measured as 
sequence variants detected in the transcripts (Heap et  al. 2010). Most uniquely, 
RNA-Seq allows the identification of novel transcripts and splicing isoforms. 
Several investigations (Marioni et al. 2008; Wang et al. 2009) have demonstrated the 
feasibility of using RNA-Seq to profile gene expression in eQTL mapping. The first 
two RNA-Seq-based eQTL studies used HapMap LCLs (Pickrell et  al. 2010; 
Montgomery et  al. 2010) and identified over 100 novel putative protein-coding 
exons and over 1000 genes with eQTLs at gene or splice variant expression levels. 
Majewski J. and Pastinen T. had a thorough review of RNA-Seq application in 
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eQTL mapping (Majewski and Pastinen 2011). As the costs of next-generation 
sequencing gradually decrease, RNA-Seq is expected to be used more in eQTL 
mapping studies.

6.2.1.2  �RNA Quality

RNA quality is critical for eQTL as it affects accuracy of measurement of expres-
sion. RNA degrades rapidly, and tissues need to be quickly collected and processed 
carefully. For this reason, studies utilizing tissues collected from living body or 
cultured cells should produce higher quality data in general than using postmortem 
tissues. RNA integrity number (RIN) is a frequently used index of RNA quality 
(Schroeder et al. 2006).

6.2.1.3  �Sample Heterogeneity

Sample heterogeneity involves several levels. One tissue may contain many differ-
ent cell types. Different tissues or cell types could have different gene expression 
profiles. Many eQTLs are thus tissue or cell type specific. Study showed that LCL 
and whole blood have distinct eQTL profile (Powell et  al. 2011). As discussed 
above, brain is a particularly complex tissue while thousands of cell types blended 
in the “soup.” Some tissues such as leukocyte could be more accessible and 
homogeneous.

In the Multiple Tissue Human Expression Resource (MuTHER) study, three tis-
sues (156 LCL, 160 skin, and166 fat) from the same individuals of healthy female 
twins were used for cis-eQTL analysis. This study demonstrates that 30% of eQTLs 
are shared among tissues, while 29% are exclusively tissue-specific. Even for shared 
eQTLs, 10–20% have significant tissue differences (Nica et al. 2011).

Genetic heterogeneity is another layer of complexity investigators have to deal 
with in eQTL mapping. Population structure, difference of minor allele frequency 
in different ethnic populations, could affect eQTL mapping like all other GWASs. 
Hsiao et al. carefully evaluated the effects in their study (Hsiao et al. 2010).

Mixing heterogeneous samples into one study could lead to increased power to 
detecting shared eQTLs after carefully controlling the population structure issue, 
but it will overestimate power for detecting population-unique eQTLs.

6.2.1.4  �Sample Size

Sample size is an obvious determining factor for statistic power in eQTL mapping. 
The more samples used, the more eQTLs can be detected, assuming the other fac-
tors are fixed. Based on published studies, one needs less than 100 samples to 
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identify those very strong cis-eQTLs. When thousands of samples are recruited for 
eQTL mapping, we can expect that most of the transcripts in human genome will 
reveal their eQTLs.

Trans-eQTLs require larger sample collection. With 1469 unrelated blood sam-
ples, high-quality trans-associations were detected and replicated in a different set 
of tissues and sample collections (Fehrmann et al. 2011).

6.2.1.5  �Covariates

Covariates may impact on association tests. Lab experiments are subject to batch 
effects, which are systematic, nonbiological variations among experimental batches. 
Since eQTL mapping requires relatively large sample size, measures of expression 
data of all samples in one batch is practically infeasible. In order to minimize batch 
effects, universal technical replicates could be used in all batches to evaluate batch 
effects. Each batch should contain both cases and controls for analysis involving 
case–control comparison to minimize the confounding bias. A number of algo-
rithms are available for removing potential batch effects from expression data, and 
our systematic evaluation (Chen et al. 2011a) has found ComBat (Johnson et al. 
2007) to be the best.

Both sample demographic information and clinical measures are important 
covariates, as they may influence gene expression. In study of brain eQTL, postmor-
tem interval (PMI) and brain pH are important covariates. Study of cultured cell line 
may have some advantages as many environmental factors, covariates, could be 
washed off during the culture. Study of 47 monozygotic twin pairs did not detect 
significant contribution of 14 blood biochemical traits and cell count on gene 
expression in whole blood and LCL culture (Powell et  al. 2011). The covariates 
should be evaluated carefully before putting them aside.

6.2.1.6  �Analytical Procedures

In data analysis, quality control is the first important thing to do for obtaining reli-
able results. Having discussed above, removing probes that might be affected by 
common SNPs, or nonspecific binding from the analysis, controlling batch effects 
and covariates are important. Surrogate Variable Analysis (SVA) (Leek and Storey 
2007) is a good software to regress out both known and unknown covariates so that 
the residues can be used for eQTL mapping as two studies have used (Liu et al. 
2010; Colantuoni et al. 2011). It could be considered to be a method to obtain robust 
eQTL mapping in samples confounded with other covariates, like affection status, 
and brain pH. New method has been developed and to be test in actual eQTL study 
(Listgarten et al. 2010).

Since genotypic data is used in the study, population stratification should also be 
considered in the association tests in a more serious manner when heterogeneous 
population is used.
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6.2.1.7  �Significance Criteria

Significance criteria are important for reducing false calling of eQTLs. Because of 
simultaneous tests of large amount of associations, multiple testing may lead to 
false positives without proper correction. Bonferroni correction, permutation, or 
false discovery rate (FDR) has been commonly used. In our own study, we defined 
two levels of significance: region-wide or genome-wide significance referring to the 
adjusted p for controlling all the SNPs tested for cis- or trans-association tests, 
respectively. Phenotype-wide significance refers to the adjusted p after additional 
control for the number of expression traits studied.

It is worth mentioning that the significance in replicate study could be relaxed 
depending on the number of positive findings in the initial discovery studies. The 
direction of association is also very important. Findings that can be replicated in 
multiple datasets will be more credible.

6.2.2  �mQTL

DNA methylation is an important epigenetic modification on DNA nucleotides 
without changing the actual sequence. It normally occurs at the CpG site changing 
cytosine to 5-methylcytosine (5mC). DNA methylation is classically considered as 
a major gene expression regulator: Higher methylation represses gene expression. 
This simple relationship is gradually being broken down by the recent findings after 
the research studies extended into non-promoter regions (Jones 1999; Deng et al. 
2009; Ball et al. 2009; Rauch et al. 2009). Studies showed that highly expressed 
genes tend to have extensive gene-body methylation and minimal promoter meth-
ylation, whereas the bodies of weakly expressed genes are less methylated (Deng 
et al. 2009; Ball et al. 2009).

Three studies have shown that DNA methylation level at specific CpG sites are 
quantitative traits that can be located by QTL mapping too, as summarized in 
Table  6.3. The methylation level is quantified as percentage of methylation at a 
specific CpG site, with values ranging from 0 to 1.

Figure 6.3 shows an example of mQTL converging with eQTL for IRF6. This is 
one of the very few examples that genotype-expression-methylation has a three-way 
correlation fitting the classical model of gene expression regulation.

Only the Illumina Infinium Human Methylation27 and Methylation450 arrays 
are available for accurate measure of DNA methylation at many CpG sites across 
genome. They assay 27 K and 480 K CpG sites in the genome, respectively. A study 
by Chen et al. discovered that about 3000 probes in the Meth27 array may cross-
hybridize to more than one genomic region, and several hundreds of probes carry 
SNPs (Chen et al. 2011b). We analyzed their data and identified 58 probes carrying 
common SNPs (MAF ≥ 0.05). A list of these “affected” probes is also provided 
through our website (http://bioinfo.psych.uic.edu/ArrayGenes/SNPsInProbes.jsp).
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Besides these two Infinium BeadChips, DNA methylation level can also be accu-
rately measured by pyrosequencing but with a much smaller throughput. Methylome 
sequencing is expected to provide better coverage through the genome. But the cost 
is still prohibitively high today for a population-based study.

It should be noted that DNA methylation may be a more complicate biological 
process than we expected. 5-Hydroxylmethylcytosine (5hmC) was discovered to be 
abundant in brains (Kriaucionis and Heintz 2009) and embryonic stem cells 
(Tahiliani et al. 2009). The function of 5hmC remains largely unknown. It may be 
an intermediate step of DNA demethylation. It may have its own specific binding 
proteins. MeCP2 and other major methyl-CpG-binding proteins will not bind 5hmC 
(Valinluck et al. 2004; Jin et al. 2010).

The presence of 5hmC may interfere the measure of 5mC.  Some enzymatic 
digestion methods and bisulfite-based methods including Infinium or pyrosequenc-
ing method cannot differentiate 5hmC from 5mC (Huang et  al. 2010b). So the 
BeadChip results should be a measure of combined 5hmC and 5mC.

Table 6.3  Methylation QTL mapping studies

Authors Samples Platforms Findings

Zhang 
et al. 
(2010)

153 cerebellum cortex, 
Caucasian

Affymetrix 5.0 array for 
genotyping; Infinium 
HumanMethylation27 
BeadChips

736 CpG sites showed 
phenotype-wide 
significant cis-association 
with 2878 SNPs (after 
permutation correction 
for all tested markers and 
methylation phenotypes)
Trans-associations of 12 
CpG sites and 38 SNPs 
remained significant after 
phenotype-wide 
correction

Gibbs 
et al. 
(2010)

Four human brain 
regions each: 
cerebellum, frontal 
cortex, temporal cortex, 
and pons regions from 
150 individuals (600 
samples total) 
(European descent)

Infinium HumanHap550 
Beadchips; Infinium 
HumanMethylation27 
BeadChip

7966–12,081 cis-mQTLs, 
2893–4653 trans-mQTLs 
(permutation for SNPs 
tested, FDR for traits 
tested)

Bell 
et al. 
(2011)

77 HapMap YRI cell 
lines

HapMap release 27 genotype 
data were obtained for 3.8 M 
autosomal SNPs; Illumina 
HumanMethylation27 DNA 
analysis BeadChip

180 CpG sites in 173 
genes that were 
associated with nearby 
SNPs (putatively in cis, 
usually within 5 kb) at a 
false discovery rate of 
10%

Note: All these studies used methylation27 chip, which targets 27,000 CpG sites. The numbers of 
SNPs tested varied
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In genome-wide assessment of gene expression-DNA methylation correlation, 
we see many incidence of poor correlations between methylation and expression, or 
positive correlation. 5hmC may partially play a role in that discrepancy. Jin et al. 
reported that in human brain, 5hmC in gene bodies were more positively correlated 
with gene expression than 5mC (Jin et al. 2011). Eventually, mQTL mapping will 
need to be differentiated into mQTL for 5mC and hmQTL for 5hmC. But the tech-
nology is not there yet.

Another interesting observation is that mQTL and eQTL seem to be largely inde-
pendent. SNPs associated with DNA methylation are not the one showing associa-
tion with expression level. Very few SNPs affect both expression and CpG.

methylation at the same time (Gibbs et al. 2010). Possible explanations include 
the following: some of the genetically regulated methylations, regardless of 5mC, 
5hmC difference, do not affect gene expression significantly or the correlations 
were not detected due to limited statistical power or those regulations were not cap-
tured by the current technology. If the methylation does not affect expression, would 
it likely to be functional? The answer is “yes” as it will be discussed below, which 
showed the mQTL SNPs were enriched in disease GWAS signals. Our hypothesis-
to-be-tested today is that DNA methylation has function beyond regulating gene 
expression. It is known that DNA methylation is also regulating DNA stability 
(Lorincz et  al. 2002), repressing retrotransposons (Kuhlmann et  al. 2005), and 
imprinting (Li et al. 1993). Anything else ought to be discovered in the future. Better 
technology and larger sample size study will improve our understanding of regula-
tion of both gene expression and DNA methylation.

Boxplots of Methylation and Expression Residuals with SNP rs2235375
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Fig. 6.3  DNA methylation and gene expression of IRF6 is correlated with genotypes of rs2235375. 
DNA methylation and gene expression are negatively correlated. (From Zhang et al. 2010)
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6.3  �Other Types of Quantitative Traits

Many other molecular measures, such as protein and lipid level, enzyme activity, 
and metabolites, can be used for QTL mapping. A few examples are summarized 
below.

Melzer et al. studied levels of 42 proteins in 1,200 fasting individuals for their 
associations with about half a million SNPs, to map protein quantitative trait loci 
(pQTLs). Eight cis-associations were detected with effect sizes ranging from 0.19 
to 0.69 standard deviations per allele. A trans-association was observed but failed to 
be replicated (Melzer et al. 2008).

GWAS of plasma liver-enzyme in 12,419 individuals revealed six regulatory loci 
reaching genome-wide significance (Yuan et al. 2008).

Study of 363 metabolites in serum of 284 male participants did not detect asso-
ciation that can survive the most conservative multiple testing correction, but two 
loci reach genome-wide significance with p < 4e–8 (Gieger et al. 2008).

Metabolic/metabolite quantitative trait locus was also called mQTL. In a study of 
approximately 200 individuals for 526 metabolite traits, concentrations of four 
metabolites, including trimethylamine, 3-amino-isobutyrate, an N-acetylated com-
pound, and dimethylamine, measured in urine or plasma exhibited significant and 
replicable QTLs (Nicholson et al. 2011). The mapped QTLs can explain 40–64% of 
variations.

GWAS mapping of lipid phenotypes in 1,087 individuals using a 100 K genotyp-
ing array failed to produce convincing result (Kathiresan et al. 2007).

Thirty-three traits and forty-three matched ratios of circulating sphingolipid, 
including sphingomyelin (SM), dihydrosphingomyelin (Dih-SM), ceramide (Cer), 
and glucosylceramide (GluCer) single lipid species, were studied in European pop-
ulations for 4,400 subjects. Thirty-two SNPs in five distinct loci reach genome-wide 
significance (p < 1e–10) (Hicks et al. 2009).

6.4  �Software and Algorithm for QTL Mapping

Linear regression is the most frequently used method in QTL mapping. Plink 
(Purcell et al. 2007) (http://pngu.mgh.harvard.edu/~purcell/plink/) is widely used 
for that. Other software like R/eMap (http://www.bios.unc.edu/~wsun/software/ 
eMap.pdf) and Matrix eQTL (http://www.bios.unc.edu/research/genomic_soft-
ware/ Matrix_eQTL/) also can do the job. Matrix eQTL claimed to have the most 
efficient algorithm. Most of the software provides methods for multiple testing 
correction.

In concern of the non-normal distribution of the data, nonparametric methods 
such as Spearman Rank correlation test (Montgomery et  al. 2010) and Kruskal-
Wallis test (Schadt et al. 2008) were also used. But the covariate and power issue 
may limit the use of those nonparametric methods.
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A different method, VBQTL, uses a probabilistic approach for eQTLs mapping. 
It jointly models contributions from genotype as well as known and hidden con-
founding factors to achieve better power. (Stegle et al. 2010)

Microsoft Linear Mixed Models (LMM-EH-PS) (Listgarten et al. 2010) (http:// 
research.microsoft.com/en-us/um/redmond/projects/MSCompBio/MSLMM/) uses 
linear mixed-effects models to model hidden confounders in association studies. It 
aims to control experimental batch effects and population structure and other pos-
sible confounding factors altogether. It was shown to outperform other methods 
including Inter-sample Correlation Emended (ICE) (Kang et al. 2008) and Surrogate 
Variable Analysis (SVA) (Leek and Storey 2007) for better calibrated p-values and 
maximum power. All these new methods need more careful comparative evaluations 
to find their best-fits in actual studies.

6.5  �Applications of QTL Mapping in Genetic Studies 
of Complex Diseases

Although statistical associations between SNPs and those molecular traits reached 
significance level, question could still be raised: Are those QTL SNPs truly infor-
mative or directly involved in complex diseases at all? At least three studies showed 
that the disease-associated SNPs from GWASs are significantly more likely to be 
eQTL SNPs (eSNPs) than to be other random minor allele frequency (MAF)-
matched SNPs from high-throughput GWAS platforms or from the HapMap 
(Nicolae et al. 2010; Richards et al. 2012; Gamazon et al. 2012). Signals from the 
NHGRI GWAS catalog were shown to be enriched for eQTLs detected in HapMap 
LCLs (Nicolae et al. 2010). Schizophrenia GWAS SNPs with p < 0.5 were enriched 
with eSNPs detected in brain originally reported by Myers et al. (2007) and Webster 
et al. (Richards et al. 2012). Bipolar disorder GWAS signals with p < 0.001 or < 
0.0001 were all enriched with eQTL and mQTL SNPs detected in cerebellum 
(Gamazon et al. 2012).

GWAS of complex diseases have been restrained by the multiple testing problem 
when millions of SNPs are tested. If we can limit the tests to functional SNPs, num-
ber of tests may be greatly reduced. Our study using only mQTL SNPs detected in 
cerebellum has proved that it is a fruitful practice. A novel bipolar disorder associa-
tion was discovered for SNP rs12618769, which can survive the lowered genome-
wide significance threshold coming with the reduced number of tests (Gamazon 
et al. 2012). This association is replicated in three datasets, including the largest 
bipolar collection from Psychiatric Genomics Consortium (PGC, 11,974 cases and 
51,792 controls) with p = 0.0031. SNP rs12618769 is a cis-mQTL of INPP4A.

In a Crohn’s disease (CD) study, after confirming overrepresentation of cis-
eQTLs in the known CD-associated loci, association studies of eSNPs identified 
two likely novel risk genes: UBE2L3 and BCL3 for CD (Fransen et al. 2010).
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Several other GWASs of psychiatric diseases have also incorporated brain eQTL 
data to enhance the statistical powers, leading to identification of novel risk genes.

We are moving into the era of next-generation sequencing (NGS). NGS is 
expected to be fruitful for the purpose of complex disease association mapping. 
Individuals are likely to carry tens of millions of DNA variants, and testing all the 
variants for disease association unselectively would be a statistical nightmare, 
requiring impossibly large sample sizes. Limiting the studies to functional variants 
or the most likely relevant genes will be the optimal and probably the only choice. 
QTL mapping of molecular traits will be one efficient approach discovering those 
functional variants. Meanwhile, this need will push the QTL mapping to the use of 
NGS to replace SNP array as many of the variants detected in NGS cannot be tested 
in SNP array.

6.6  �Database or QTL Mapping Results

While QTL mapping studies are blooming, several databases have been created for 
collecting and sharing those results. A number of databases have dedicated for shar-
ing eQTL data, including Scandb (http://www.scandb.org/newinterface/about.
html), Genevar (GENe Expression VARiation, http://www.sanger.ac.uk/resources/
software/genevar/), and eQTL Browser (http://eqtl.uchicago.edu/help.html).

Scandb provides rich annotation for both SNP and gene (Gamazon et al. 2010). 
eQTL data used those from the HapMap data. A unique feature of this database is 
that it incorporates LD information among SNPs. CNV is also included.

Genevar allows researchers to investigate eQTL associations within a gene locus 
of interest in real time. It currently contains gene expression and genotype data from 
three cell types (fibroblast, LCL, and T cell) of 75 Geneva GenCord individuals 
(Dimas et al. 2009) and three tissue types (166 adipose, 156 LCL, and 160 skin 
samples) from healthy female twins of the MuTHER resource (Nica et al. 2011).

eQTL Browser collected seven eQTL datasets and provided interface similar to 
HapMap browser: Liver eQTL by Schadt et al. (2008); brain eQTL by Myers et al. 
(2007); HapMap LCL by Stranger et  al. (2007), Veyrieras et  al. (2008), Pickrell 
et al. (2010), and Montgomery et al. (2010); and monocyte eQTL by Zeller et al. 
(2010).

NCBI GTEx (Genotype-Tissue Expression, http://www.ncbi.nlm.nih.gov/gtex/ 
GTEX2/gtex.cgi) eQTL Browse now carries seven datasets of LCL, brain, and liver 
from four studies (Stranger et al. 2007; Schadt et al. 2008; Montgomery et al. 2010; 
Gibbs et al. 2010).

Phenotype-Genotype Integrator (PheGenI, http://www.ncbi.nlm.nih.gov/gap/ 
PheGenI) merges NHGRI genome-wide association study (GWAS) catalog data 
with several databases housed at the National Center for Biotechnology Information 
(NCBI), including Gene, dbGaP, OMIM, GTEx, and dbSNP.
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PharmGKB (http://www.pharmgkb.org/) provide SNPs associated with drug 
response along with curated data of pharmacogenomics literature. Most of the data 
were not reviewed in this chapter.

So far, no single database integrated all the QTL mapping studies that have been 
published. Existing databases could be considered as good prototypes of an ideal 
database that can facilitate the studies of complex diseases. We hope that, with bet-
ter comprehensive data integration, more risk genes of complex diseases will be 
discovered.

Summary, new experimental platform will ensure better coverage and more accu-
rate measure of all the molecular traits. Larger sample size study of all the disease-
relevant tissues or their proxies will be investigated for QTL mapping. These studies 
will provide rich functional annotation of human genetic variants. They will serve 
as important disease intermediate phenotypes and a venue approaching understand-
ing of complex disease.
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Chapter 7
From Family Study to Population Study: 
A History of Genetic Mapping 
for Nasopharyngeal Carcinoma (NPC)

Haide Qin and Yin Yao

Abstract  Nasopharyngeal carcinoma (NPC) has a unique global distribution pat-
tern – Southeast Asia and some other localized regions of the eastern hemisphere – 
that suggests risk is largely driven by a combination of environmental exposures 
and specific genetic factors. Earlier linkage analysis has implicated loci in the 
human leukocyte antigen (HLA) gene region, thus suggesting a role for immuno-
logical mechanisms in NPC resistance. Nevertheless, the implications of the HLA 
associations remain enigmatic. More recent association studies have sought to 
advance our understanding of the genes important to NPC risk. Reviewed here are 
recent epidemiologic studies that have addressed the genetics of NPC risk, and the 
implications of their collective findings are discussed. The primary focus is on the 
latest candidate-gene association studies (CGAS) and genome-wide association 
studies (GWAS), and attempts are made to harmonize their findings and resolve 
discrepancies. Taken together, the studies support the importance of the HLA loci, 
but also implicate non-HLA genes both inside and outside the HLA region, and sug-
gest that the mechanisms of NPC risk go beyond immunology. Finally, recommen-
dations are made to coordinate future CGAS and GWAS to maximize their 
information content and make best use of the limited number of available NPC 
study populations.
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7.1  �Introduction

Current understanding of cancer etiology suggests both genetic factors and environ-
mental exposures play important roles in causation. A major goal of cancer research 
has been to characterize the interplay between these genetic and environmental 
causes. In this regard, nasopharyngeal carcinoma (NPC) is of great interest because 
its unique global distribution pattern suggests that risk is largely dependent upon a 
combination of specific genetic factors and distinct environmental exposures. For 
this reason, NPC can be considered a paradigm for cancer genetics (Simons 2011) 
and provides a unique opportunity to inform our understanding of the mechanisms 
of human carcinogenesis.

Regarding environmental risk factors, the strongest associations have been made 
with Epstein-Barr virus (EBV) infection and consumption of salt-preserved fish. 
Much weaker associations have been made with tobacco smoke and alcohol. The 
epidemiological literature on these environmental NPC risk factors is vast, and sev-
eral earlier reviews comprehensively summarize the findings (Brennan 2006; Chang 
and Adami 2006; Gallicchio et al. 2006; Jeyakumar et al. 2006; Wei et al. 2010a; 
Cao et al. 2011).

There is nearly 40  years of evidence suggesting that genetic factors are also 
major drivers of NPC risk. Immigrants from high- to low-risk NPC areas maintain 
their high NPC risk (Parkin and Iscovich 1997). Also, family, twin, and segregations 
studies support genetic factors as strong determinants of NPC risk (Gajwani et al. 
1980; Zeng and Jia 2002; Jia et al. 2005; Ng et al. 2009). More specifically, there are 
multiple reported associations between NPC and loci linked to the regions of the 
genome where human leukocyte antigen (HLA) genes reside, yet the implications 
of the HLA allelic associations remain enigmatic. And the importance of other asso-
ciated loci both within and outside the HLA regions has not been thoroughly inves-
tigated. There also is limited understanding of how the major environmental risk 
factors interact with the genotypes.

In this review, we summarize the more recent genetic epidemiology reports (i.e., 
last 15 years) regarding NPC risk. We also attempt to identify patterns of evidence 
within and among studies that bolster the findings. Further, we discuss the implica-
tions of the genetic aspects in relation to the environmental risk factors. We 
concentrate mainly on the latest candidate-gene association studies (CGAS) and 
genome-wide association studies (GWAS) and attempt to harmonize their findings 
and provide potential justifications for any discrepancies. Finally, we suggest new 
avenues for future investigations.

7.2  �The Working Model

Virtually all NPC tumors express EBV proteins, while normal nasopharyngeal tis-
sues do not. And the tendency to reactivate latent EBV virus is highly correlated 
with NPC risk – so much so, that measurement of EBV reactivation is often used as 

H. Qin and Y. Yao



83

an early cancer biomarker in NPC endemic regions (Li et al. 2010). Yet, EBV infec-
tion is highly prevalent and pandemic, while NPC incidence is low in most parts of 
the world. Nevertheless, in Southeast Asia and some other localized regions of the 
eastern hemisphere, NPC incidence is high and tends to be clustered in families. 
Thus, EBV infection seems to be a necessary but insufficient component of the NPC 
causal mechanism. This has led to the proposition that certain individuals carry 
genetic variants that predispose them to the carcinogenic transforming potential of 
EBV and that these variants are relatively common among the people in NPC 
endemic regions.

This is a useful working model of NPC carcinogenesis since the molecular 
mechanisms of EBV reproduction and infection are well known, and the mecha-
nisms of EBV carcinogenic transformation have been intensively investigated in the 
laboratory (Rowe 1999; Hatzivassiliou and Mosialos 2002; Liu et al. 2006; Martin 
and Gutkind 2008; Pang et al. 2009). Thus, this model identifies a number of spe-
cific host genes that may interact with EBV, and these genes constitute promising 
candidates for investigation in candidate-gene association studies (CGAS).

Genes with potential relevance to NPC and their biochemical functions were the 
subject of a review by Chou and coworkers (2008). These genes can be clustered 
into biochemical pathways with specific functions, and this has allowed a pathway-
based approach to both define the universe of potentially associated genes and facil-
itate the analytical process (Jorgensen et al. 2009; Thomas et al. 2009a). EBV-related 
host genes have been the favored genes for interrogation in most of the more recent 
CGAS. We will, therefore, primarily focus on these candidate genes here but will 
also consider genes from other pathways potentially related to NPC.

7.3  �Candidate-Gene Association Studies

The CGAS approach has several advantages, the biggest one being that having a 
strong prior probability reduces the number of variant alleles that must be assessed 
and, thereby, preserves statistical power that would otherwise be reduced due to the 
statistical corrections needed to account for multiple comparisons. The increased 
power is particularly important for interrogations of smaller populations with lower 
case numbers. Below we review, by metabolic pathway, recent CGAS investigations 
of NPC (<15 years) that have at least 45 cases and were published in English.

7.3.1  �Apoptosis and Cell Cycle Arrest Pathways

Apoptosis – a programmed cell death that eliminates transformed cells – is thought 
to be downregulated in many types of tumors, including NPC. The genes that regu-
late apoptosis often overlap with the regulatory genes for cell cycle arrest – a protec-
tive response to DNA damage that allows cells time to repair damage before cell 
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replication proceeds – since apoptosis is often a consequence of faulty arrest. EBV 
is known to inhibit apoptosis by a mechanism that is thought to involve expression 
of viral transforming protein LMP1 (Xiong et al. 2004; Grimm et al. 2005; Zheng 
et al. 2007a; Chew et al. 2010), and also to concurrently inhibit cell cycle arrest 
(Pokrovskaja et al. 1999; O’Nions and Allday 2003). Therefore, although apoptosis 
and cell cycle arrest represent very different functions, promoting either cell death 
or survival, respectively, the genes for each pathway will be discussed here collec-
tively. The central player of cell cycle arrest and apoptosis functions is the TP53 
gene, which codes for the p53 protein. This protein governs both DNA damage-
dependent cell cycle arrest and apoptosis. EBV nuclear antigen 3C is thought to 
modulate cellular apoptosis by inhibiting transcription of p53 (Saha et al. 2009; Yi 
et al. 2009 ), and thus may contribute to carcinogenesis. Five (Tsai et al. 2002b; 
Tiwawech et al. 2003; Sousa et al. 2006; Hadhri-Guiga et al. 2007; Xiao et al. 2010) 
of the eight apoptosis and cell cycle arrest CGAS (Deng et  al. 2002; Tsai et  al. 
2002a, b; Tiwawech et al. 2003; Cao et al. 2006; Sousa et al. 2006; Hadhri-Guiga 
et al. 2007; Xiao et al. 2010) looked at p53, and four of these reported significant 
associations between TP53 alleles and NPC (Tsai et al. 2002b; Sousa et al. 2006; 
Hadhri-Guiga et al. 2007; Xiao et al. 2010). Four studies that specifically looked at 
a nonsynonymous SNP in codon 72 (Tsai et al. 2002b; Tiwawech et al. 2003; Sousa 
et al. 2006; Hadhri- Guiga et al. 2007) were included in a meta-analysis of codon 72 
and NPC risk (Zhuo et al. 2009b). [A fifth study that we omitted here due to its low 
case number (i.e., 20 cases) (Yung et al. 1997) was also incorporated into this meta-
analysis.] Meta-analysis results indicated significantly elevated risk associated with 
the codon 72 proline allele relative to the arginine allele (P < 0.0003).

There were also significant associations reported for FAS (Cao et al. 2010b) and 
MDM2 (Xiao et al. 2010) – genes that are important to apoptosis. Taken together 
with the meta-analysis for TP53, an upstream regulator of apoptosis, the CGAS 
reports support a role for DNA damage-induced apoptosis, and possibly cell cycle 
arrest, in NPC risk.

7.3.2  �Carcinogen Metabolism and Detoxification Pathways

Studies have shown that cytochrome P450 metabolic pathway is important to resis-
tance to cancer (Rodriguez-Antona et  al. 2009), including nasopharyngeal carci-
noma (Hou et  al. 2007), particularly among EBV seropositive individuals 
(Hildesheim et al. 2001 ). It has further been demonstrated that the carcinogenic 
activity of nitrosamines requires bioactivation by cytochrome P450 2E1 (CYP2E1) 
(Yang et  al. 1990). N-nitrosamines are among the known components of salt-
preserved foods and tobacco (Haorah et al. 2001) – both environmental risk factors 
for NPC.  In particular, nitrosamine metabolism-related DNA adducts have been 
linked to NPC (Dodd et al. 2006). Furthermore, the metabolites of these carcino-
gens can generate reactive oxygen species (ROS), which in turn produce base dam-
age, single-strand breaks, and double-strand breaks in DNA (Frenkel 1992). For 

H. Qin and Y. Yao



85

these reasons, CYP2E1 and other P450 enzymes have been considered prime candi-
date genes for association with NPC, and a number of studies have focused on the 
cytochrome P450 genes (Table 7.1). In addition, the glutathione transferase genes, 
which are important for recycling glutathione – an extremely important intracellular 
scavenger of ROS – have also been the focus of studies.

There were a total of 11 studies focusing on carcinogen metabolism and detoxi-
fication genes (Hildesheim et al. 1995, 1997; Nazar-Stewart et al. 1999; Cheng et al. 
2003; Jiang et al. 2004; Tiwawech et al. 2005; Tiwawech et al. 2006; Guo et al. 
2008; He et al. 2009; Jia et al. 2009; Guo et al. 2010), but significant associations 
were only found for GSTM1, CYP2A6, and CYP2E1. Of the three, the evidence for 
CYP2E1 was strongest. One report showed a relatively high overall risk of 2.6 
(95%CI = 1.2, 5.7), but there was no interaction with smoking or alcohol consump-
tion (Hildesheim et al. 1997 ). Another showed elevated risk only among smokers 
(Jia et al. 2009). Nevertheless, seven different loci within the gene were statistically 
significantly associated with NPC, with P values ranging from 0.014 to 0.0001 (Jia 
et  al. 2009). Furthermore, the false-positive report probability for six SNPs was 
<0.015, suggesting that the associations were unlikely to be false.

For the glutathione transferase genes, a meta-analysis of deletion alleles for 
GSTM1 and GSTT1 was conducted (Zhuo et al. 2009a ). It included eight studies, 
but four were of small size or written in a language other than English. So only four 
of the studies met our criteria for inclusion here. The meta-analysis indicated a sig-
nificant association only for GSTM1 (OR = 1.42; 95%CI = 1.21, 1.66).

7.3.3  �DNA Repair Pathways

DNA repair processes are known to be dysregulated in NPC tumor cells (Cheung 
et al. 2006; Dodd et al. 2006; Sckolnick et al. 2006). And EBV has been shown to 
both promote DNA damage and interfere with its repair (Liu et  al. 2004, 2005; 
Iwakawa et al. 2005; Bailey et al. 2009; Gruhne et al. 2009; Wu et al. 2009). In addi-
tion, it is long established that normal DNA repair capacity is important to cancer 
resistance (Berwick and Vineis 2000). It has also recently been reported that DNA 
repair genes may affect seroreactivation of EBV (Shen et al. 2011), which is highly 
correlated with increased NPC risk (Tam and Murray 1990; Ji et al. 2007). Therefore, 
DNA repair genes represent good candidates for NPC association studies.

There were eight (Cho et al. 2003; Yang et al. 2007, 2008, 2009; Zheng et al. 
2007b, 2011; Cao et al. 2006; Qin et al. 2011) studies of DNA repair genes, encom-
passing a total of 90 different genes. Significant associations were reported for only 
four genes (XRCC1, XPC, ERCC1, and RAD51L1). One of these genes, XRCC1, 
was reported to be significantly associated in three different studies (Cho et  al. 
2003; Yang et al. 2007; Cao et al. 2006 ). And in one of those studies, XRCC1 sig-
nificance survived even after Bonferroni correction for multiple comparisons (Cao 
et al. 2006 ). However, the same variant allele (194Trp; rs1799782) was reported to 
be associated with risk (OR homozygous variant = 4.79; 95%CI = 1.48,15.52) in 
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one study (Yang et al. 2007), while associated with protection (OR homozygous 
variant = 0.48; 95%CI = 0.27,0.86) in another (Cao et al. 2006 ). A third study (Cho 
et al. 2003) reported a protective association for a different allelic variant of XRCC1 
(280His, rs25489), but this failed to validate in one of the other two studies (Yang 
et al. 2007). And a recent study that genotyped 13 haplotype-tagging SNPs across 
the entire XRCC1 gene (Qin et al. 2011) failed to detect any significant associations 
with NPC (see below). These differences in qualitative and quantitative association 
findings for XRCC1, some for the exact same alleles, raise doubts about biological 
relevance of these statistically significant associations. So despite the three separate 
reports of XRCC1 variant alleles being associated with NPC, a role of XRCC1 in 
NPC risk remains questionable.

In a recent investigation of 88 DNA repair genes, including XRCC1, XPC, and 
ERCC1, multiple haplotype-tagging SNPs were used to cover the entire sequence of 
each gene (Qin et al. 2011). Seven SNPs within three different genes (RAD51L1, 
BRCA2, TP53BP1) were found to be significantly associated with NPC in the dis-
covery stage (cases/controls  =  755/755). However, in the subsequent validation 
stage in a separate study population (cases/controls = 1568/1297), only two SNPs 
that were in strong LD with each other (r2 = 0.7) maintained significance. These 
SNPs were both within the RAD51L1 gene, which codes for a protein important for 
regulation of homologous recombinational DNA repair. Interestingly, a recent 
three-stage GWAS of breast cancer (cases/controls = 9770/10,799) mapped the sus-
ceptibility locus to RAD51L1 (Thomas et al. 2009b), supporting a very important 
role for this DNA repair gene in carcinogenesis. Conversely, the well-characterized 
homologous recombinational DNA repair and familial breast cancer risk gene, 
BRCA2, had two SNPs that associated with NPC in the discovery stage of this study; 
however, both failed to validate. Nevertheless, these similar genetic findings for the 
two cancers suggest a potential commonality in the etiology of NPC and breast 
cancer, at least in terms of DNA repair, and support the notion that dysfunctional 
homologous recombinational DNA repair promotes cancer risk.

7.3.4  �Cytokines and Growth Factors

Various cytokines stimulate cell growth and proliferation and are thought to play 
important roles in the carcinogenic phenotype for several cancers, and cytokines are 
known to interact with EBV-infected cells (Mosialos 2001; Kis et al. 2006). VEGF 
and EGF have been reported to be modulated by EBV infection (Miller et al. 1995; 
Tao et al. 2004; Stevenson et al. 2005; Krishna et al. 2006; Kung et al. 2011), and 
these have received some attention in NPC studies.

There were four studies of cytokines and growth factors (Wei et al. 2007c; Gao 
et al. 2008; Nasr et al. 2008; Wang et al. 2009a). Two studies reported significant 
associations between NPC and VEGF (Nasr et al. 2008; Wang et al. 2009a), but both 
had only marginal significance (P < 0.030 and P < 0.029), and neither was corrected 
for multiple comparisons, which would have extinguished their significant. A study 
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of TNF-beta1 showed associations with NPC at two different loci with similar point 
estimates (1.63 and 1.70, respectively) and P values (0.009 and 0.006, respectively) 
(Wei et al. 2007c). But none of these studies have been validated.

7.3.5  �Cell Adhesion

Proteins that play a role in cell adhesion often contribute to immunological func-
tion, stem cell differential, and tumor metastasis (Hirohashi and Kanai 2003; 
Crowson et al. 2007; Madson and Hansen 2007; Watt et al. 2008; Florian and Geiger 
2010). Two association studies focused on the possible association of cell adhesion 
genes with NPC.  In one study, the promoter region of the dendritic cell-specific 
intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) – a pathogen 
recognition receptor that plays an important role in the susceptibility to various 
infectious diseases – was sequenced in 444 NPC patients and 464 controls (Xu et al. 
2010). Results showed a highly significant protective haplotype (OR  =  0.69; 
P < 0.0002) that retained significant after 1000 permutation test runs (P < 0.001). 
This suggests that expression of the DC-SIGN gene may affect NPC susceptibility, 
possibly by modifying resistance to EBV infection.

In another study, the frequency of a variant of the E-cadherin gene promoter that 
had been demonstrated to modify gene expression during in vitro cell transfection 
assays (i.e., proved to be functional) was compared in 162 cases and 140 controls 
(Ben Nasr et al. 2010). Significantly increased risk of NPC for the variant carriers 
was observed (OR = 2.02; P < 0.008). There was also a stronger association for 
NPC with the variant for early-onset (≤30 years old) NPC – OR = 3.86; P < 0.001 – 
which is consistent with genetically based risk (Hemminki et al. 2004).

7.3.6  �Tumor Suppressor Genes and Oncogenes

Tumor suppressor genes and oncogenes are carcinogenesis genes, and they are 
always prime candidates for cancer association studies. TP53 is the most well-
characterized tumor suppressor gene, and it plays well-described roles in both apop-
tosis and cell cycle arrest. For this reason, NPC association studies of TP53 were 
reviewed in the apoptosis and cell cycle arrest section above. But apart from TP53, 
three other studies investigated potential associations between carcinogenesis genes 
(FUS2, DCL-1, and Tx) and NPC (Duh et al. 2004; Ren et al. 2005; Feng et al. 
2008). Of these genes, a significant association was only reported for a variant of the 
Tx gene (P < 0.007) (Ren et al. 2005). The Tx gene is a transforming gene that was 
isolated from an NPC cell line by DNA transfection and cloning techniques (Li 
et al. 2001). Bioinformatics approaches have shown the transforming gene to be an 
aberrant immunoglobulin kappa light chain gene containing a constant region, five 
intact joining regions, and five recombination signal sequences, but lacking the 
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normal variable regions. The fact that this alternative in vitro screening approach 
has identified a gene with immunological function as a novel NPC tumor suppressor 
gene supports the notion that immune genes may affect NPC risk (see below). 
Nevertheless, the CGAS that reported the NPC risk association for Tx was quite 
small (82 cases/80 controls) and has not yet been validated.

7.3.7  �DNA Methylation

A number of studies have suggested that epigenetic factors influence gene expres-
sion in NPC (Lo and Huang 2002; Fendri et al. 2009, 2010; Niller et al. 2009; Wang 
et al. 2009b, 2010a). Furthermore, promoter methylation is thought to be an impor-
tant epigenetic mechanism for controlling gene expression in most cancers 
(Watanabe and Maekawa 2011), and EBV has been shown to interact with cellular 
DNA methylation processes (Niller et al. 2009). Nevertheless, only one study has 
looked at the DNA methylation pathways for candidate NPC genes (Cao et  al. 
2010a). That study revealed a highly significant association between an allele of the 
methylenetetrahydrofolate reductase (MTHFR) gene and NPC (p < 0.0006). There 
also was an indication of an interaction with smoking. MTHFR plays an important 
role in converting folate into a donor for DNA methylation, and thus could dysregu-
late DNA methylation patterns. However, these reported associations with NPC 
have not yet been validated.

7.3.8  �Immunological Functions

HLA class I genes reside in a highly polymorphic gene region on chromosome 6 
(6p21.3) and encode the proteins responsible for presenting foreign antigens to the 
immune system. As early as 1974, HLA variants were implicated in NPC risk 
(Simons et al. 1974), and in 1990 an HLA-linked loci was reported to be associated 
with a 21-fold increase in risk (Lu et al. 1990). Because of the connection between 
NPC and EBV infection, the notion of host immunological genes affecting NPC 
risk has been considered mechanistically plausible and etiologically attractive, and 
many studies have focused on HLA associations. But there have been some obsta-
cles to their interpretation. Although, certain HLA class I alleles have been consis-
tently shown to be associated with NPC risk, the reported associations are often 
race, ethnicity, or geographic region dependent. In addition, the HLA region has 
been disproportionately interrogated relative to the rest of the genome, suggesting 
that there might be elevated false-positive rates due to multiple comparisons, and 
likely some publication bias. Lastly, the HLA alleles associated with NPC are in LD 
with other genes, both immunological and nonimmunological, inside and outside 
the HLA region. For the reasons above, definitive conclusions about the role of HLA 
genes in NPC have been elusive.
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There are two recent comprehensive reviews of the findings from HLA studies 
(Hassen et al. 2009; Li et al. 2009), so those studies are not reviewed here. But we 
address below whether the recent CGAS and GWAS support an association between 
immunological genes and NPC, and whether they inform our understanding of the 
role of immunologic genes in general, or HLA genes in particular, in NPC risk.

A total of 19 CGAS have looked at various immune pathway genes (Tsai et al. 
2002a; Hirunsatit et al. 2003; Jalbout et al. 2003; Ho et al. 2006; Pratesi et al. 2006; 
Song et al. 2006; Zhou et al. 2006; Ben Nasr et al. 2007; Hassen et al. 2007; He et al. 
2007; Wei et al. 2007a, b, 2010b; Farhat et al. 2008; Zhu et al. 2008; Gao et al. 2009; 
Nong et al. 2009; Xiao et al. 2009; Sousa et al. 2010), and 15 different immune 
genes were studied. The interleukin genes were the largest group of immunological 
genes investigated. Nine studies looked at a total of six interleukin genes (IL-1B, 
IL-2, IL-8, IL-10, IL-16, IL-18), and all of the genes were reported to be associated 
with NPC in at least one study (Table  7.1). However, only one gene, IL-8, was 
reported to be associated with NPC in two separate studies (Ben Nasr et al. 2007; 
Wei et al. 2007b).

The Toll-like receptors (TLRs) were another group of immunological genes that 
received attention. TLRs play an essential role in initiating the immune response 
against pathogens and can recognize a wide variety of pathogen-associated molecu-
lar patterns from bacteria, viruses, and fungi (de la Barrera et al. 2006). For this 
reason, TLRs were considered candidate genes. To date, three different TLR genes 
(TLR-3, TLR-4, TLR-10) were investigated in three different studies (Song et  al. 
2006; Zhou et al. 2006; He et al. 2007), and all were reported to be associated with 
NPC. In contrast, the TNFA gene was investigated in four studies, but only one study 
found a significant association (Sousa et al. 2010), and even that association was 
marginal (P < 0.047).

The most highly significant association for an immunological gene was reported 
for the PIGR gene (P < 0.00001), which also had the largest reported effect size 
(OR = 2.71; 95%CI = 1.72, 4.23). The PIGR gene is part of the immunoglobulin 
superfamily and encodes a poly-Ig receptor that binds to polymeric immunoglobu-
lin molecules at the basolateral surface of epithelial cells (Brandtzaeg 2009). Once 
bound, the complex is then transported across the cell to ultimately be secreted at 
the apical surface. PIGR has a role in maintaining mucosal immunity, including 
mucus tissues of the nasopharynx. So it is possible that PIGR can modify suscepti-
bility to EBV infection, and this may support a role for HLA genes, although a 
direct connection between HLA genes and PIGR has not been established.

Another study took a somewhat different candidate-gene approach. These inves-
tigators interrogated 15 genes within the 6p21.3 chromosomal region, regardless of 
their putative function. They found highly associated SNPs in three genes from this 
region – GABBR1, HLA-A, and HCG9 – with relatively low Bonferroni- corrected 
P values (0.0004, 0.0005, 0.0017, respectively). These findings strongly support the 
notion that the 6p21.3 region associates with NPC. But, because of high LD across 
the region, it is not clear whether these genes are in the NPC causal pathway or just 
represent good markers for a still unknown causative locus within the region.
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In conclusion, the 19 CGAS that focused on immunological genes provide some 
supportive evidence for associations of immunological genes with NPC. However, 
with the possible exceptions of IL-8 and PIGR, which had duplicate reports and a 
very low P value, respectively, the evidence is not very compelling. Few of the 19 
studies corrected for multiple comparisons, nor did any validate their findings. And 
none investigated a possible interaction between the allegedly associated gene and 
EBV infection or exposure. Also, significant associations between NPC and genetic 
markers in genes selected because of their location within the 6p21.3 region further 
support the importance of this chromosomal region to NPC development, but do not 
inform us on the importance of their specific gene function to NPC. Taken together, 
these studies of immunological gene associations neither supported nor detracted 
from the proposition that HLA genes influence NPC risk.

7.4  �Genome-Wide Association Studies

Two GWAS have focused on NPC endemic populations – one Taiwanese (Tse et al. 
2009) and the other Southern Chinese (Bei et al. 2010). The Taiwanese study had 
288 NPC cases and 297 controls, while the larger Cantonese study had 1583 cases 
and 1897 controls (in the discovery stage). Despite the differences in sample sizes, 
both studies identified their most significant signal in the HLA region (6p21) 
(Fig. 7.1).

The Taiwanese GWAS (Tse et al. 2009) were the first investigation to identify 
GABBR1 at 6p21.31 as a promising candidate gene. Furthermore, the difference in 
the expression levels GABBR1 between NPC tumors and the adjacent normal epi-
thelial tissues suggested an importance of GABBR1 in development of NPC. More 
interestingly, when the GABBR1 transcript and protein levels in NPC cell lines were 
examined, downregulation of GABBR1 protein in two NPC cell lines (AA genotype 
at rs29232) was observed compared with the immortalized nasopharyngeal epithe-
lial cell line NP69 (AG genotype at rs29232). The risk allele of rs29232 was “A,” 
and thus the homozygous carrier of A allele exhibited a lower protein level than the 
heterozygous carrier. On the other hand, the Taiwanese study did not compare the 
GABBR1 transcript and protein expression levels between normal and cancer cell 
lines. Therefore, more work is needed to elucidate the relationship between the car-
riers of the “A” allele and levels of gene expression. In a follow-up study carried out 
by another group (Li et  al. 2011), there was shown to be a downregulation of 
GABBR1 transcripts in NPC tumors, which may suggest that downregulation of 
GABBR1 expression is one of the tumorigenic mechanisms. However, GABBR1 
encodes a G-protein-coupled subunit of the gamma-aminobutyric acid (GABA) B 
receptor 1. Its ligand – gamma-aminobutyric acid (GABA) – is the main inhibitory 
neurotransmitter in central nervous system and is not known to have a role in non-
neuronal tissue. So it is difficult to envisage how the GABBR1 gene might affect 
NPC risk. Nevertheless, in tissue expression comparisons, T and B lymphocytes 
have the next highest levels of GABBR1 expression after neuronal tissues (Burren 
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Fig. 7.1  GWAS showing evidence for the association of HLA and nasopharyngeal carcinoma risk. 
Panel a. Manhattan plot of the genome-wide P values of association for the mainland GWA study 
in Southern China (Bei et al. 2010). Panel b. Manhattan plot of the genome-wide P values of asso-
ciation for the GWA study in Taiwan (Tse et al. 2009)
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et al. 2010; T1DBase team 2011), suggesting a role for GABBR1 in immune func-
tion. Regardless of its mechanism, GABBR1’s possible involvement in NPC etiol-
ogy warrants further research.

The Cantonese study (Bei et al. 2010) also found an association within the HLA 
region on 6p21. Further, they reported three novel NPC susceptibility loci on 3q26, 
9p21, and 13q12 and identified several novel risk genes: TNFRSF19 (tumor necro-
sis factor receptor superfamily, member 19), MDS1-EVI1 (a zinc-finger DNA-
binding transcription activator), and the CDKN2A-CDKN2B gene cluster 
(cyclin-dependent kinases involved in cell cycle arrest). All of these genes have 
previously been shown to be involved with leukemia, supporting their role in carci-
nogenesis. And it has been shown that NPC patients are at higher risk of developing 
leukemia (Scelo et al. 2007), so it can be hypothesized that NPC and leukemia may 
share common genetic risk factors. But it is possible as well that EBV infection is a 
risk factor for both NPC and leukemia (Tedeschi et al. 2007). It is also notable that 
the CDKN2A-CDKN2B gene cluster is deleted in about 40% of NPC tumors, sug-
gesting a potential tumor suppressor function at this locus (Lo and Huang 2002).

7.5  �Discussion

There have been multiple CGAS of NPC that have used pathway-based approaches 
to select candidate genes for interrogation, and a number of SNP variants have been 
reported to be statistically significantly associated with NPC. Most of these associa-
tions have had small effect sizes and marginal statistical significance, which might 
be expected based on what we already know about SNP associations with disease 
and the statistical power needed to detect those associations (Park et  al. 2010). 
Nevertheless, it is the prevalence of these variants in the population, rather than the 
magnitude of the effect sizes, which drives their potential relevance to the attribut-
able risk of NPC. Of more concern is the fact that few of the reported gene variant 
associations have been validated in a second study population, and very few have 
been shown to be biologically functional or in LD with any functional locus, leaving 
most reported associations unconfirmed and inconclusive.

Earlier family studies have linked HLA loci with NPC risk, and this has precipi-
tated a large number of CGAS that have focused on genes involved in immunological 
functions both inside and outside of the HLA region. Although these studies have 
reported some associations between immunological gene variants and NPC, they can-
not be considered independent confirmations of immunologically based risk, because 
the immunological genes have been disproportionately interrogated relative to the 
rest of the genome, so there is an oversampling bias for immune genes. Also, there has 
not been any obvious patterns of association for the immunological genes, and the 
reported variants are often synonymous coding variants, or in introns or other non-
coding sequences. This suggests that they must be in LD with an unidentified func-
tional variant in neighboring sequences, if they are truly associated with NPC risk.
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In contrast, GWAS have independently confirmed an association between the 
HLA region and NPC risk but have shed no further insight on mechanisms. The 
associated GWAS markers are unlikely to directly impact function themselves, 
again suggesting that they are in LD with yet to be identified functional loci. None 
of the genes with CGAS reports of associations have turned up in the GWAS, and 
the genes that have been found to be associated with NPC by GWAS were not inter-
rogated in any of the CGAS reports. Thus, there have been no cross confirmations 
between CGAS and GWAS. Failure for GWAS to confirm associations reported by 
CGAS does not invalidate the CGAS findings, since a variety of factors can influ-
ence the sensitivity of GWAS to detect any particular associated SNP.  Thus far, 
GWAS investigations of various diseases have only been successful in confirming 
those candidate-gene associations that had very large effect sizes (Siontis et  al. 
2010). A contributing factor to the paucity of confirmations by GWAS is that CGAS, 
unlike GWAS, do not use standardized platforms and procedures, making direct 
comparisons between GWAS and CGAS difficult. Nevertheless, the lack of confir-
mation with GWAS is disheartening.

As for the NPC-associated genes identified by GWAS, only a couple seems to be 
involved in the major candidate pathways, and it is not immediately obvious how 
their known or proposed functions directly modify NPC risk. Thus, they do not 
appear to inform our current understanding of the carcinogenic mechanisms of 
NPC. Again, the gene function associated with the genetic marker needs to be iden-
tified and characterized in order to capitalize on the discovered association with 
NPC, even if the association findings are valid.

Regarding GWAS confirmation of NPC’s association with the HLA locus, this 
finding is gratifying but anticipated. The previous association with HLA found 
through family studies is so strong and reproducible (Li et al. 2009) that it is hard to 
see how this strong association would not be seen with GWAS. But the GWAS find-
ings do not provide us with any higher resolution of the disease region than the 
linkage analyses do. So GWAS do not bring us any closer than before to the risk 
gene in the HLA region. Also, it is not even clear that risk associated with the HLA 
region has anything to do with HLA genes. This region of the genome is rich in 
genes and rich in diseases that associate with it, including multiple sclerosis, epi-
lepsy, schizophrenia, Hodgkin and non-Hodgkin lymphomas, chronic lymphocytic 
leukemia, and breast cancer (McKnight et al. 2009; Hawthorn et al. 2010; Meng 
et al. 2010; Slager et al. 2010; Vrzalova et al. 2010; Wang et al. 2010b; Zollino et al. 
2010; McElroy and Oksenberg 2011; Moutsianas et al. 2011), and most of these 
diseases are not thought to be primarily due to an HLA dysfunction. With the advent 
in whole-genome sequencing technology, we anticipate that there will be better 
definitions for NPC-relevant haplotypes in the HLA region, and further biological 
mechanism related to NPC will be clarified with the emergence of reliable haplo-
types and adequate sample sizes in future studies.

It may be that our knowledge of NPC disease etiology is too imperfect to reliably 
identify likely biochemical pathways for risk modification. In the advent of GWAS 
of NPC, perhaps the best use of the candidate-gene approach is to perform high-
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density SNP interrogations within genomic regions of interest as identified by 
GWAS. This is the approach taken in two NPC association reports (Guo et al. 2006; 
Li et al. 2011). One of these (Li et al. 2011) was able to confirm in a different popu-
lation the association of NPC with the GABBR1 gene that was discovered in an 
earlier GWAS (Tse et al. 2009). This association withstood even Bonferroni correc-
tion for multiple comparisons and is, therefore, quite robust despite the modest 
effect size (OR = 1.67; 95%CI = 1.48, 1.88) of the original GWAS report.

Another value of validation by CGAS is that it can typically be achieved in a dif-
ferent and smaller study population. These smaller populations are much more 
likely to have complete and useful environmental exposure data, which in turn pro-
vides the potential to assess possible gene-environment interactions. Although it 
should also be possible to explore gene-environmental interactions with GWAS, 
there is seldom adequate exposure information for these larger, often pooled, study 
populations. Environmental exposure data allow for adjustments for the environ-
mental risk factors and also for assessment of gene-environment interactions in a 
way that is typically not achievable in large GWAS. Controlling for environmental 
risk factors may have the added advantage in that it may boost the power to detect 
the genetic associations. This would be particularly relevant for NPC, where mul-
tiple environmental risk factors are known and there are geographic pockets of 
populations at risk. Nevertheless, few of the CGAS to date have utilized environ-
mental data in their analytical design. Doing so could significantly augment the 
value of the CGAS approach for NPC.

Clearly, GWAS have provided an avenue for evaluation of the association 
between common genetic variants and human diseases. However, most variants 
identified by GWAS seem to be merely markers rather than being causal for disease, 
and this is undoubtedly the case for NPC. We also know that for the diseases with 
large heritability estimates (i.e., 60–80%) such as NPC, only 5–10% of that herita-
bility has been found by GWAS.

The main limitations of GWAS are the following: (1) Low power due to the issue 
of multiple testing. To increase the power, populations with large sample sizes might 
help to solve these problems. Although the cost of genotyping has been reduced 
dramatically with the advances of technology, collecting large numbers of patients 
will still be an obstacle. In addition, the power of an interaction study in for GWAS 
dataset is typically low, and analyzing large number of variables in various combi-
nations becomes computationally challenging. (2) Population differences. Some 
SNPs that are tightly associated with a disease in one population may be only weakly 
associated with the same disease in other populations. Since many GWAS are based 
on case–control designs, the effect of population admixture could be substantial, 
and the association, to a large extent, may depend on ethnicity-related factors. (3) 
GWAS are mainly focused on single-nucleotide variations. Copy number variations 
(CNVs), structural variations (SVs), and deletions have received less attention, and 
(4) gene-gene interactions and gene-environment interactions have often been 
neglected. In most GWAS, due to the small effect sizes of common SNPs, methods 
used for detecting potential interactions are typically underpowered. Large sample 
sizes and improved analytical techniques might ease these problems. The limita-
tions of GWAS compel epidemiologists and geneticists to further consider the con-
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tributions of CNVs, SVs (Bansal et  al. 2010), gene-gene and gene-environment 
interactions, and, in particular, the joint contribution of rare variants (frequency less 
than 1%) to human diseases (Bansal et al. 2010). The advent of revolutionary high-
throughput sequencing technology (also called “next-generation” sequencing or 
NGS, paralleled sequencing) has paved a way for a better understanding of the ori-
gins of human cancer. As a superior model to study HLA and virus infection and 
environment-virus-gene interaction, it is plausible to conduct genetic study on NPC 
using next-generation sequencing. The interpretation of carcinogenesis of NPC 
might largely depend on acquiring genetic information from both virus and the host, 
and also the elucidation of their interactions with environmental risk factors.

Finally, causal variants for NPC will only be found by complete genomic 
sequencing of cases and controls. Currently, we still need to rely on the CGAS and 
GWAS to identify smaller genomic regions where we can focus our sequencing 
efforts. To achieve this goal, CGAS, GWAS, and NGS need to be harmonized with 
each other in order to extract the most information possible from the limited number 
of populations available for study. In this regard, the power limitations of GWAS 
due to multiple-comparison corrections should be taken into account, and some 
consideration should be afforded even to nonsignificant multiple-comparison-
adjusted SNPs if their effects sizes are large or if the findings are supportive of an 
earlier reported CGAS association. Likewise, CGAS should incorporate the current 
GWAS platform markers, in order to validate reported GWAS associations. If this is 
not possible, then analyzing highly correlated SNPs may still allow informative 
cross comparisons between CGAS, GWAS, and NGS results.

In short, GWAS should not be viewed as superseding CGAS in the search for 
NPC-associated genetic variants, since both approaches have their strengths and 
weaknesses. However, it is relatively easier to replicate findings in independent 
GWAS than in CGAS. CGAS findings are often harder to be replicated due to the 
difference in platforms, imperfect tagging in some of the studies, and impact of 
population stratification. (In CGAS, researchers do not typically have a large enough 
number of SNPs to correct for potential population stratification.) Still, the two 
approaches should be viewed as complementary to each other and preliminary to 
direct sequencing. In the advent of GWAS technology, the best use of CGAS may 
be to confirm GWAS findings by blanketing the region of interest with high-density 
SNP coverage, and thereby validating the GWAS association, while also setting the 
stage for subsequent validation by deep sequencing.

The biggest challenge ahead for NPC is likely to be the characterization of gene-
environmental interactions. In light of the very high prevalence of EBV infection 
within the high-risk populations, it may be difficult to achieve the power necessary 
to demonstrate interactions between EBV and genetic factors, unless the interac-
tions are very strong. Unfortunately, the potential strength of interactions is some-
thing that cannot either be assessed or predicted, based on current data from either 
CGAS or GWAS, and statistical methodologies for quantifying and assessing inter-
actions have not yet been validated. Given the presumed necessity that persons at 
genetic risk of NPC avoid environmental NPC exposure risks, the importance of this 
information to targeting public health prevention interventions cannot be overstated 
and is an area that warrants further scientific attention.
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Chapter 8
Efficient Test for Nonlinear Dependence 
of Two Continuous Variables

McKenzie Ritter, Yi Li, Yi Wang, Yin Yao, and Li Jin

Abstract  A new method to test nonlinear dependence between two continuous 
variables (X and Y) is proposed. This is achieved by using continuous analysis of 
variance (CANOVA). The software is available at https://sourceforge.net/projects/
canova. First, a neighborhood for each data point related to its X value was defined. 
Then, the variance of the Y value within the neighborhood was calculated. Last, 
permutations to evaluate the significance of the observed values within the 
neighborhood variance were conducted. To examine the strength of CANOVA 
compared to six other methods, extensive simulations were completed to examine 
the false-positive rates and statistical power. Both simulation and real datasets 
(kidney cancer RNA-seq data) were used. From these analyses, it was concluded 
that CANOVA is efficient as a method in testing nonlinear correlation and has 
several advantages for real data application.

8.1  �Background

Any statistical relationship between two random variables or sets of data is known 
as dependence. In contrast, correlation is any broad class of statistical relationships 
that include dependence. Correlation is typically useful in indicating a predictive 
relationship. Several methods exist that measure this degree of correlation. For 
example, the Pearson correlation coefficient is the most commonly used method. It 
is only sensitive to linear correlations, but several other methods exist that are more 
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robust for the use of nonlinear correlations (Croxton and Cowden 1939; Dietrich 
1991; Aitken 1942). The Pearson correlation coefficient ranges from −1 to 1, devel-
oped by Karl Pearson from a related idea of Francis Galton’s (1877, 1886; Lockyer 
1885; Pearson 1895; Stigler 1989). The Pearson correlation coefficient is the covari-
ance of two variables divided by the product of their standard deviations. Even 
though Pearson’s correlation is widely used, several negative effects are associated 
with it. These include a non-robust Pearson’s r sample statistic (Horn 1998) and the 
potential for misleading values when outliers are present (Devlin et al. 1975; Huber 
2011). The alternative hypothesis for the Pearson correlation test is the linear cor-
relation between two variables X and Y.

The two most common nonlinear rank-based correlation coefficients are 
Spearman’s rank correlation and Kendall’s rank correlation. Spearman’s rank cor-
relation coefficient (or Spearman’s rho) is a nonparametric measure of statistical 
dependence between two variables. It is defined as the Pearson correlation coeffi-
cient between the ranked variables (Myers et al. 2010). The Kendall rank correlation 
coefficient (or Kendall’s tau) is used to test the coefficient between two measured 
variables (Kendall 1938). This test is nonparametric because it does not rely on any 
assumption of the distribution of X or Y. The alternative hypothesis for both 
Spearman’s and the Kendall correlation test states that the correlation between vari-
ables X and Y corresponds to a monotonic function.

There are other commonly used methods that measure the correlation between 
random variables that include distance correlation, Hoeffding’s independence test, 
Maximal information coefficient (MIC), Hilbert-Schmidt Information Criterion 
(HSCI), and Heller-Heller-Gorfine distance (HHG). The distance correlation is a 
measure of statistical dependence between two arbitrary variables or random vec-
tors. It was developed by Gabor J.  Szekely in 2005 to address the deficiency of 
Pearson’s r (which can be equal to zero-dependent variables). The initial results for 
distance correlation were published in 2007 and 2009 (Székely et al. 2007; Kosorok 
2009). The distance correlation is zero if the random variables are statically indepen-
dent. If the distance correlation is one, the dimensions of the linear spaces spanned 
by X and Y are almost equal, and Y is a linear function of X. Hoeffding’s indepen-
dence test is based on the population measure of deviation from independence. A 
sample-based version of this measure was described with a calculation under the 
null distribution in 2008 (Wilding and Mudholkar 2008). If the continuous joint 
distribution and marginal probability densities of two random variables exist, the 
Hoeffding’s independence test will be efficient. MIC is a measure of the degree of 
linear or nonlinear association between two random variables. This is a nonparamet-
ric method based on maximal information theory (Reshef et al. 2011). This method 
uses binning to apply mutual information to continuous random variables. Binning 
previously was used to apply mutual information to continuous distributions. MIC is 
a method for selecting the number of bins and finding a maximum over possible 
grids. Even though there are merits of MIC, there are several limitations of this 
method. Specifically, the approximation algorithms with better time-accuracy trad-
eoffs should be used (Reshef et al. 2013). The hypothesis of MIC has a wide range 
of associations. HSIC contains an independence criterion based on the eigenspec-
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trum of covariance operators in reproducing kernel Hilbert spaces (RKHSs) that 
consist of an empirical estimate of the Hilbert-Schmidt Independence Criterion 
(Gretton et al. 2005). HHG is a powerful test that is applicable to all dimensions, 
consistent against all alternatives, and easy to implement (Heller et al. 2012).

We will focus on the alternative hypothesis, which says “similar X values lead to 
similar Y values,” or more formally, Y = f(x) + e, e ~ N(0, s), s > 0, where f is a non-
constant smooth function. A novel nonlinear correlation measure method named 
continuous analysis of variance (CANOVA) test is proposed. The traditional analy-
sis of variance (ANOVA) uses categorical factors, which were used as a base for 
CANOVA (Scheffe 1999). ANOVA tests whether the variance either within or 
between categories is smaller or greater than what is randomly expected. When 
encountering continuous response with continuous factors, a generalization of the 
“within category variance” is needed for ANOVA. Thus, with the use of CANOVA, 
a neighborhood of each data point according to its X value is defined, and then the 
variance of Y is calculated within that neighborhood. A permutation test is then 
conducted to determine the significance of the observed “within neighborhood vari-
ance.” CANOVA was compared to six other methods using simulated data. The 
false-positive rate (Burke et  al. 1988) and statistical power (Cohen 1988) for 
CANOVA, as well as the other size methods, were checked using both simulated 
and real datasets (RNA-seq data on kidney cancer) (Jiang et al. 2014; The Cancer 
Genome Atlas Research Network 2013). This chapter is based on a previously pub-
lished manuscript (Wang et al. 2015).

8.2  �Methods

The two random variables X and Y are denoted Xi and Yi for the ith observation. The 
within neighborhood sum square statistics are defined as:

	

W Y Y j i rank X rank X K
i j

i j i j= -( ) < ( ) - ( ) <å
,

, ,
2

	

(8.1)

where K is an integer constant provided by the user. It should be noted that 
|rank(Xi) − rank(Xj)| < K defines the neighborhood of the dataset. Again, the alterna-
tive hypothesis for CANOVA states that “similar or neighboring X values will lead 
to similar Y values.” So, when X and Y are correlated, the W statistics tend to be 
smaller than what would randomly be expected. To evaluate the significance of the 
observed W, a permutation test is performed (Good 2000). When the X values are 
equal (tie), the rank of the tied X values are randomly shuffled with each permuta-
tion. For example, if the data were X = 1, 1, 2, 3 and Y = 2, 1, 7, 4, X has two ones, 
so the sorting of the data points is not unique. The algorithm randomly chooses a 
sorting pattern, which could be X = 1, 1, 2, 3; Y = 2, 1, 7, 4; or X = 1, 1, 2, 3; Y = 1, 
2, 7, 4. The algorithm is implemented by the CANOVA software in the Linux 
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system (available at httpys://sourceforge.net/projects/canova/). The CANOVA algo-
rithm (pseudocode) is summarized as:

sort data points according to X value

for (i = 0; i < #tie_shuffle; i + +) {

shuffle Y of tied X values

calculate observed Wi using observed Y}

Observe W = average (Wi)

Count = 0;

for(i = 0; < #permutations; i + +)

{ calculate random W using random shuffled Y

if (random W < observed W) count + +}

return p – value = count/#permutations

When calculating W, we take advantage of the fact that Xi is sorted. Thus, the 
algorithm complexity is O(nlogn + np), where n is the sample size and p is the num-
ber of permutations. When testing many Xs against one Y, only one permutation of 
Y is needed that can be reused for all Xs.

8.3  �Simulation Study

Nine simple functions were simulated and added the Gaussian noise (mean = 0, 
variance = 1) to the Y value of each function (Table 8.1). This included constant 
functions (i.e., a linear function of the form y  =  b, where b is a constant and 
b = 0 in Table 8.1), linear functions, quadratic functions, sine functions, and cosine 
functions. The Gaussian noise levels were varied (mean = 0; variance = 1/9, ¼, 4, 
and 9) for the simulations. The power was then reported across the noise levels 
(which can be found in additional file 1 from the original manuscript) (Wang et al. 
2015). The six other methods were benchmarked, which included Pearson correla-
tion coefficient, Spearman’s rank correlation coefficient, Kendall’s rank correla-
tion coefficient, distance correlation, Hoeffding’s independence test, and the 
maximal information coefficient. The simulation was repeated 1000 times to cal-
culate the false-positive rate and statistical power. Fifty were chosen as the sample 
size (N = 50), with x as the independent variable, which was uniformly distributed 
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in (−1, 1) and y as the dependent variable. K is the only parameter of CANOVA, 
and its value was assigned from the positive integer collection (K = 2, 4, 8, 12). To 
note, MIC also has a similar bias/variance parameter (“alpha” parameter in the 
Minerva implementation), which is the maximum allowed resolution of any grid 
(Reshef et al. 2011). Reshef et al. also found that the different parameter setting 
(α = 0.55, c = 5) is faster than default and does not appear to significantly affect 
the performance (2013). To simplify things, the default parameters of MIC were 
used (α = 0.6, c = 15).

8.4  �Applications on Real Data

The proposed CANOVA method was applied to an RNA-seq kidney cancer dataset 
and was then compared to the results generated by the other six methods. The kid-
ney cancer data used contained 604 samples, which included 20,531 genes (Jiang 
et al. 2014; The Cancer Genome Atlas Research Network 2013). The correlation 
between genotype data X (20,531 gene expression data) and phenotype data Y (kid-
ney cancer or not) were tested. The significance after Bonferroni correction was set 
to 2.435342e-06. An X–Y plot and grid search (like, K = (10, 20, 30, 40, 50)) were 
used to choose the best K, which was K = 30 for CANOVA based on statistical 
power. The other methods used their default parameters (i.e., MIC, α = 0.6, c = 15). 
Table 8.2 lists the results, as well as the comparisons of these methods.

8.5  �Results

8.5.1  �Results from the Simulation Study

As shown in Table 8.1, when the constant function of y = 0 was used, the false-
positive rate of the six different methods using alpha = 0.05 as the significance level 
was used. CANOVA, using different K values (CANOVA2, CANOVA4, CANOVA8, 
CANOVA12), Pearson’s correlation coefficient, Spearman’s rank correlation coef-
ficient, Kendall’s rank correlation coefficient, and the Maximal information coeffi-
cient, all had false-positive rates around 0.05, which indicates correct results. The 

Table 8.2  Power comparison in kidney cancer dataset (the significance level α = 0.05/20531)

Kidney cancer dataset CANOVA Kendall Pearson Spearman Hoeffding Distance MIC

Significant gene number 5901 11,569 8239 11,629 4953 10,946 8081
Competing time 
(seconds)

24 65 32 32 44 ~106 114

The bold means the first place result of all methods compared
*~* means about or approximately
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distance correlation’s false-positive rate fell slightly below 0.05, and Hoeffding’s 
independence test’s false-positive rate was a little above 0.05. It is important to note 
that the significant variables in Hoeffding’s independence test have the potential to 
be false positives and the actual significant variables may not have been detected by 
the distance correlation.

In terms of power for the nonconstant correlations (Table  8.1), the following 
were seen: (1) when the correlation is linear, the Pearson correlation coefficient is 
the most powerful. CANOVA is less powerful than Pearson but does not fail 
(power > 0.5). (2) With nonlinear correlation, CANOVA is the best, especially when 
the correlation is highly oscillating/nonlinear. (3) The power of CANOVA4 is the 
best single nonlinear test and more powerful than MIC with sine and cosine 
functions.

The power comparison for nonconstant correlations yielded results that can be 
found in additional file 1 from the original manuscript (Wang et  al. 2015). The 
results are as follows: (1) when the Gaussian noise levels were low (Gaussian vari-
ance = 1/9, ¼), most of the methods had higher power, specifically with simple 
linear relationships. CANOVA2 and CANOVA4 were two of the better methods 
with high power in most of the nonconstant functions. (2) When the Gaussian noise 
levels were high (Gaussian variance = 4, 9), most of the methods had low power, 
while CANOVA4 had higher power in simple linear relationship functions. Thus, 
when the correlation between the two random variables is linear, Pearson correla-
tion coefficient would be best to use to increase the statistical power. When there is 
a nonlinear or complicated correlation, CANOVA with parameter K is a good 
method to explore the data’s correlation structure.

8.6  �Results from the Kidney Cancer Study

Table 8.2 compares power and computing time for the kidney cancer data (Jiang 
et al. 2014; The Cancer Genome Atlas Research Network 2013). In order to com-
pute time comparison, the number of permutations of CANOVA was set at 
10,000,000 (Table 8.2). Table 8.3 shows the genes that were detected only by the 
CANOVA methods (not detected by the other methods). The genes only detected by 
other methods are listed in additional file 2, which can be found in the original 
manuscript (Wang et al. 2015). To explore the relationships found through CANOVA, 
the scatterplot and probability density distributions for gene expressions between 
the cases and controls were examined (Fig. 8.1). All of the CANOVA results were 
completed in the C++ environment (Stroustrup 1995), and the six other methods 
were calculated using the R package “energy” (Székely and Rizzo 2013), “Hmisc” 
(Hmisc, Harrell Miscellaneous), and “Minerva” (Albanese et  al. 2013). The 
CANOVA results were parallelly (fully using all 8 CPU cores) calculated using a 
PC with an AMD FX-8320 CPU and 32GB memory. In addition, all of the R code 
was parallelly computed using the package “snow” (Tierney et al. 2009).

8  Efficient Test for Nonlinear Dependence of Two Continuous Variables
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By using the kidney cancer RNA-seq data, Table  8.2 showed that Spearman 
detected the greatest number of significant genes (α = 0.05/20, 531) and CANOVA 
was the fastest method while using the desktop PC. In order to further explore the 
biological relevance of the genes that were detected and to compare the features of 
each of the methods, the uniquely “significant” genes from each method were used 
as the target gene set. A literature review for validation of each gene was then 
completed. The uniquely significant genes detected by CANOVA, as well as the 
corresponding p-values of each of the methods, can be seen in Table 8.3. The genes 
reported in PubMed (indicating the presence of abstracts discussing a relationship 
between kidney cancer and the gene) are listed in bold. The uniquely significant 
genes from the other methods can be found in additional file 2 in the original manu-
script (Wang et al. 2015).

Of the unique set of genes detected by CANOVA, a few were of significance to 
kidney cancer/disease (Table  8.3): FAH, MCM3, and UGT1A9. Specifically, a 
defect in FAH results in the accumulation of FAA, which can lead to both oxidative 
stress and severe liver and kidney disease (Li et al. 2012; Dieter et al. 2003). The 
MCM3 gene was overexpressed in various cancers, which included kidney cancer 
(Ha et al. 2004). The UGT1A9 gene was found to be a major contributor to glucoro-
nidation in the liver and kidney (Grosse et al. 2013).

MCM3 and FAH in Fig. 8.1 show that if the normal group distribution is bimodal 
and the level of expression is mild, then an individual is more likely to have kidney 
cancer. For FAH specifically, the mean kidney cancer distribution approaches nor-
mal, indicating the linear relationship is close to zero (Pearson R’s p-value is 

Fig. 8.1  The scatterplot and probability density distribution of three gene expressions (FAH, 
MCM3, and UGT1A9) between kidney cancer and normal groups

8  Efficient Test for Nonlinear Dependence of Two Continuous Variables
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approximately 0.5 in Table 8.3). If the distribution is not bimodal, CANOVA can 
provide sufficient power if the two distributions have the same mean, but differing 
variances. For example, if the control group has a wider distribution (lower peaks), 
it will have a thicker tail on the left and right sides. Thus, higher or lower expression 
induces protection from the disease, like in UGT1A9 (Fig. 8.1).

The only unique gene detected by the distance method (reported in PubMed as 
well) is 1IGF1R. IGF1R was found to be indirectly associated with kidney cancer 
tumor growth (Zhang et al. 2013). A single gene was detected by the MIC method 
(reported in PubMed too), GIPC2. GIPC2 was reported to be downregulated in both 
kidney and colorectal tumors (Krikoshi and Katoh 2002). The only genes unique to 
the Pearson method (reported in PubMed) were EGR2 and COMT. EGR2’s upregu-
lation results in an overexpression of embryonic kidney cells in humans, which are 
indirectly associated with Wilms’ tumors (Natrajan et al. 2006). The COMT poly-
morphism was found to be associated with renal cell cancer (Tanaka et al. 2007). It 
also should be noted that neither the Hoeffding or Kendall methods detected any 
unique genes.

8.7  �Discussion

The proposed CANOVA method can be seen as an extension of ANOVA for con-
tinuous variables. The neighborhood is defined first and the within neighborhood 
variance is calculated. This is analogous to ANOVA’s within treatment variance. 
The alternative hypothesis of CANOVA is that “similar X values lead to similar Y 
values.” By calculating the variance of the Y values of similar or neighbor X values, 
the proposed hypothesis can be tested against the null.

Local regression is a method that is closely related to CANOVA because both 
estimate the local residual (Clevland et al. 1988). The statistical power would be 
expected to be similar. Specifically, if we took a moving average of every K point 
and then computed the R2 between the estimated regression function and data, with 
this condition, two issues must be considered: (1) when K is an even number, a 
special treatment of the regression expectation on each data point is needed. (2) For 
the boundaries’ data points, some special treatment is needed in order to calculate 
the unbiased regression expectation. The K nearest neighbor (kNN) regression is 
another type of local regression that is analogous to CANOVA (Altman 1992). 
CANOVA uses K as the parameter that defines the nearest neighbor of each of the 
data points. CANOVA tests the fitness of the neighborhood model, similar to 
kNN. Because Pearson’s correlation coefficient can be seen as the model fitness test 
for a linear regression model, and CANOVA can be seen as analogous to the model 
fitness test of the kNN model, when using CANOVA, the permutation of one Y vari-
able can be conducted, and then the association tests against numerous (i.e., 20,000) 
X variables can be completed with limited time. For kNN, the generated neighbor-
hood for each X variable is different, so we must perform a permutation test for 
every combination of X and Y, potentially making kNN a slower method than 
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CANOVA. Also, CANOVA has the advantage of using direct independence testing, 
rather than having to use the regression step. Since the regression function does not 
need to be estimated, CANOVA is simpler and more elegant and thus preferred over 
local regression.

The W statistics distribution is unknown. For the simplest case, where K = 2, 
Y ~ N (0, 1), and W2 = ∑i > 1 (Yi – Yi−1)2, we know that the mean (W2) = 2 N − 2 
and var. (W2) = 12 N − 16 (calculated by Maple), where N is the sample size. In 
recognition of this, W does not follow a familiar distribution. A permutation test 
was used to assess the significance level. It only takes several seconds for a few 
hundred samples with 106 permutations on a desktop PC, with AMD FX-8320 
CPU and 32 GB memory. CANOVA is even faster than Pearson’s when testing 
the correlation between thousands of features and the one response variable Y. 
This elevated speed is because (1) CANOVA is implemented with C++ code, 
while Pearson’s uses relatively slow R and (2) CANOVA is paralleled and uses all 
CPU cores, resulting in an 8X speed up on the AMD 8 core CPUs. (3) When test-
ing 20,000 X variables against one Y variable, only one permutation test on the Y 
is needed, and then the permutation results for all X variables can be reused. The 
computational complexity is O(np + #Xnlog(n)), where p is the number of permu-
tations, #X is the number of X variables, and n is the sample size. This allows the 
framework to have potential applications for big data.

A parameter K is needed for CANOVA before beginning the test. It is up to the 
discretion of the user to pick a reasonable K. A large K gives more power for slow-
varying functions, while a smaller K has more power for quick-oscillating func-
tions. Thus, it is important that the user has prior knowledge of the function that is 
being tested. An X–Y plot would be useful to examine the data before testing. It is 
suggested that K = sample size/20 be used as a guide. The significance level must be 
preset (0.05/feature numbers), and then a grid search is used (such as K = (2, 30, 40, 
80, 100, 200)) to choose the best K based on corresponding statistical power. 
Another method could be used, such as Pearson’s or MIC, so one could get a better 
idea of the data. This information would allow one to choose a reasonable K for 
CANOVA.

CANOVA and MIC can be used to test nonlinear correlation, but CANOVA has 
specific advantages. While MIC tests all types of nonrandom correlations, CANOVA 
tests the alternative hypothesis, which says “similar X values lead to similar Y val-
ues.” CANOVA’s hypothesis is Y = f(X) + e, e~N(0,s), s > 0, and f is a nonconstant 
smooth function. If the X and Y relationship cannot be written as Y =  f(X), then 
CANOVA could potentially fail. For example, for the relationship, X2  +  Y2  =  1, 
CANOVA will fail, but MIC will work. CANOVA serves a purpose of offering a test 
of independence. The maximal information coefficient is used primarily as a mea-
sure of effect size and provides similar scores for relationships of similar strength, 
regardless of the relationship type (Reshef et al. 2011). Measurements of effect size 
can be used to test for independence (using a null hypothesis of zero effect size), but 
the reverse of this statement is not true. Justin B. Kinney and Gurinder S. Atwal 
indicated that the MIC method does not have the property of “equitability” and the 
simulation results contain artifacts (2014). Although, Reshef et  al. (2014) and 
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Murrell et al. (2014) have speculated about the Kinney and Atwal’s methodology. 
This work led to an overall better understanding of equitability and MIC, allowing 
researchers in this field to move forward.

The CANOVA method is less powerful than Pearson’s in terms of linear correla-
tion. This is a tradeoff between the hypothesis space and the statistical power. 
Pearson’s has a very specific alternative hypothesis space (linear correlation), while 
the alternative hypothesis for CANOVA is more general. Many correlations are lin-
ear or approximately linear, making Pearson, Spearman, and Kendall correlation 
quite powerful.

The results of the kidney cancer analysis are shown in Table 8.3. Even though 
CANOVA was not able to detect the largest number of unique significant genes, it 
did find the largest number (three) of genes that were also found to be relevant to 
kidney cancer which was previously found in the literature.

The results of these three gene expressions (FAH, MCM3, and UGT1A9) showed 
that CANOVA could detect the special nonlinear relationships (Fig. 8.1, Table 8.3), 
which other methods could not find. The three genes were also reported to be bio-
logically relevant in kidney cancer development (Li et al. 2012; Dieter et al. 2003; 
Ha et al. 2004; Grosse et al. 2013; Zhang et al. 2013).

It is known that each method has their own advantages, so the results of the dif-
ferent methods are often correlated. The results of the simulation indicated that 
using linear correlation (Pearson, Spearman, or Kendall), as well as a nonlinear 
correlation (CANOVA, MIC, Hoeffding, or Distance), could increase the odds of 
detecting biologically significant signals. In conclusion, based on our analyses, 
CANOVA seems to be efficient at testing nonlinear correlations and is applicable 
with real data.

8.8  �Availability of Supporting Data

The kidney RNA-seq data was downloaded from the TCGA datasets (level 3 in the 
TCGA datasets: http://cancer-genome.nih.gov/).
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Chapter 9
Analytical Approaches for Exome  
Sequence Data

Andrew Collins

Abstract  Sequencing the 1% of the genome coding for proteins (the exome) offers 
a powerful and often cost-effective route to identifying genetic mutations underly-
ing Mendelian disease. It is possible that exome sequencing in a relatively small 
number of individuals showing ‘extreme’ phenotypes or more familial subtypes of 
complex disease may also be productive. Larger-scale exome and whole genome 
sequencing studies offer the potential to interrogate the cumulative impact of the 
numerous rare variants presumed to underlie a substantial proportion of complex 
disease susceptibility. Exome and, particularly, whole genome sequencing studies 
yield enormous amounts of data and pose many analytical challenges. Aside from 
issues concerning the production of high-quality sequence reads and the manage-
ment and manipulation of huge databases, a major concern, in the early stages of 
analysis, is the reliable alignment of the short sequence reads against a reference 
genome. A wide range of algorithms and software tools for alignment have been 
developed and implemented for this most critical step in every analysis ‘pipeline’. 
A similarly rich set of platforms and analytical tools are available to facilitate the 
reliable calling of DNA variants. Given the excellent resources now available, the 
production of a well-characterised database cataloguing novel and known variants 
in an individual exome is achievable. However, the difficulty of teasing out causal 
variants from the vast amount of neutral or irrelevant variation presents the greatest 
challenge. I review here the techniques and tools that have been developed and 
applied for the analysis of exome data. Exome mapping of genes involved in 
Mendelian disease has met with considerable success thus far, while applications to 
complex traits look promising given analysis of sufficiently large numbers of case 
and control exomes.

Keywords  Complex disease · Exome sequencing · Mendelian disease · Sequence 
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9.1  �Introduction

Thousands of genetic variants for both Mendelian diseases and complex traits have 
been identified as causal or associated with disease phenotypes in recent years. 
These have usually been identified through linkage mapping, in the case of 
Mendelian disease, and candidate gene studies or genome-wide association studies 
(GWAS), in the case of complex traits. For complex diseases the majority of the 
implicated single nucleotide polymorphism (SNP) variants are associated indirectly 
with disease, usually to a genomic region. Because these regions can be large and/
or inter-genic, GWAS associations may or may not indicate whether a specific gene 
is compromised and involved in disease. In contrast, sequencing enables the identi-
fication of all variants in a genome or genomic region such that an individual variant 
can, in favourable circumstances, be firmly identified as causal. For this reason 
exome sequencing and whole genome sequencing are already revolutionising the 
way genetic studies are undertaken.

Recent years have seen dramatic changes in the development and application of 
DNA sequencing technology. The traditional Sanger sequencing method employing 
capillary electrophoresis remains the ‘gold standard’ in terms of the length of the 
reads and the accuracy of the sequence (Harismendy et al. 2009). However, ‘next-
generation sequencing’ (NGS) methods generate 3 or 4 orders of magnitude more 
sequence at greatly reduced cost compared to the Sanger approach. These methods 
sequence DNA molecules spatially separated in flow cell and attached to a solid 
surface. The process employs optical imaging to record the sequential addition of 
nucleotides in the sequencing reaction. This enables millions of sequencing reac-
tions to take place in parallel. The first massively parallel NGS platform was 
launched in 2005 (Majewski et al. 2011). NGS radically overcomes the problem of 
limited scalability of the Sanger approach (Reis-Filho 2009; Lander 2011) and is 
capable of generating hundreds of mega- to giga-base pairs (bp) of nucleotide 
sequence in a single run. Millions of overlapping sequence reads are then aligned 
and compared to a reference genome to identify differences (polymorphisms). 
Targeted sequencing of genomic regions of particular interest, of which the most 
important is undoubtedly the entire exome (the protein-coding exons of all genes), 
has benefits with respect to reduced cost, data management and increased sequence 
coverage (for a given quantity of DNA). Exome sequencing typically involves 
sequencing the ends of fragments from the sheared sample DNA – either one end 
(single-end sequencing) or both ends (paired-end sequencing) of the fragments. The 
sequence read lengths are typically in the range of 35–150 bp for Illumina platforms 
(http://www.illumina.com/applications/sequencing/targeted_resequencing.ilmn) 
and ~400 base pairs for the Roche 454 sequencer (http://www.roche.com/products/
product-list.htm?type=researchers&id=4). The exome comprises only ~1% of the 
genome (~30 Mb), so an average ‘depth’ of coverage of the exome of 75 can be 
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achieved with 3 Gbp of sequence, whereas 90 Gbp would be required for 30-fold-
depth coverage of the whole genome (Majewski et al. 2011; Bainbridge et al. 2010).

The exome is the best understood component of the genome for relating sequence 
to function and, similarly, to directly link genetic variants with disease causality 
(Kumar et al. 2011). For Mendelian disorders, exome sequencing offers a powerful 
route to identifying the underlying allelic variants since the majority of this class of 
disease genes are known to disrupt protein-coding sequences. Kryukov et al. (2007) 
have shown that most rare non-synonymous (missense) alleles are likely to be del-
eterious, unlike the majority of noncoding sequences. The exome is therefore par-
ticularly enriched for variants underlying Mendelian traits. There is also increasing 
evidence that exome sequencing offers a route to understanding complex disease. 
For example, it has been shown that rare variants are over-represented in genes 
already identified (usually by GWAS) as containing common variants involved in 
complex disease. Johansen et al. (2010) determined a significant burden (‘mutation 
skew’) of 154 rare missense or nonsense variants in 438 individuals with hypertri-
glyceridemia, compared to a significantly lower burden in controls, within four 
genes known to contain common variants for this condition. Support for the obser-
vation of rarer alleles with potentially higher disease penetrance residing within 
genes implicated by GWAS comes from the study by Rivas et al. (2011). Working 
on the inflammatory bowel disease (IBD) phenotypes, the authors identified novel 
rare variants which contribute a greater component to the population risk variance 
than the known common IBD variants in the CARD9, NOD2, CUL2 and IL18RAP 
genes. Lehne et al. (2011) questioned whether missing the regulatory elements that 
may impact disease phenotype, but are situated outside the exome sequence regions, 
would reduce the value of applying exome sequencing to complex disease. For most 
of complex diseases examined, the authors found that most of the association signal 
from ‘suggestive’ common variants was found within the coding regions rather than 
introns. Although they did not consider rare variation directly, the work supports 
exome sequencing as a strategy to search for genetic variation associated with com-
plex disease.

Despite its evident advantages and early successes, exome sequencing has a 
number of disadvantages and problems, aside from the obvious lack of information 
from the bulk of the noncoding genome. Exon capture requires the use of comple-
mentary nucleic acid ‘baits’ to trawl sequence reads from specific exons. Since these 
are ‘small’ targets, this can result in uneven coverage of exonic regions, and the baits 
themselves are only as complete as the information derived from gene annotation 
and other reference databases. There is also a degree of low-depth hybridisation 
away from the targets in non-exonic regions although the overlap of sequence reads 
extending a short distance either side of the bait probes provides some information 
on adjacent regions. There is a trend towards increasing the coverage of exonic and 
adjacent regions in the newer products. Perhaps more important than concerns about 
coverage are a wide range of data analytical considerations, reviewed here.
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9.2  �Strategies for Exome Projects

The strategy chosen for an exome sequencing study depends on the known, expected 
or hypothesised genetic mode of inheritance. The costs and analytical challenges of 
sequencing hundreds of exomes to pursue the complete spectrum of rare variation 
underlying complex disease are likely to be prohibitive for all but large consortia for 
the foreseeable future. At the other end of the spectrum, highly successful studies 
focussed on a small number of related individuals have been achieved for Mendelian 
diseases. Between these two extremes is perhaps the most intriguing prospect: 
sequencing a small number of affected relatives showing relatively strong familial 
patterns for a complex trait and/or focussing on a distinct disease subtype or indi-
viduals showing an ‘extreme’ phenotype of a common disease might identify 
important rare variation. Success depends on the existence of forms of complex 
disease closer to the Mendelian end of the disease spectrum, and strategies include 
focus on individuals with particularly severe forms of a disease and/or markedly 
early onset. For complex diseases there remains a substantial degree of uncertainty 
about how best to design such studies, but I consider here some of the findings to 
date.

9.2.1  �Mendelian Disorders

Fewer than half of the allelic variants underlying monogenic diseases showing a 
Mendelian pattern of inheritance have been identified. The difficulty with finding 
many of these genes arises from the rarity of affected cases or case families, the 
existence of similar phenotypes determined by independent mutations (locus het-
erogeneity) and the reduced reproductive fitness limiting the further analysis of key 
pedigrees. Many of these more difficult diseases arise as de novo mutations and are 
not therefore amenable to linkage analysis. However, exome sequencing offers a 
route to progress and initial applications, focussed on a number of Mendelian disor-
ders, have identified high-penetrance genes through sequencing a very small num-
ber of affected family members. Ng et al. (2009) were the first to demonstrate the 
utility of exome sequencing to identify Mendelian disease variants. As proof of 
principle, the authors sequenced the exomes of four unrelated cases with Freeman-
Sheldon syndrome, a disease for which the causal variant was known, and eight 
control samples. The authors filtered out common and presumed unimportant varia-
tion identified in HapMap and dbSNP and demonstrated that disease variants could 
be mapped solely by exome sequencing of a few cases. The gene for Miller syn-
drome (Ng et  al. 2010a) was the first example of a gene found for a disease of 
unknown cause. The DHODH gene was mapped using four affected cases in three 
independent pedigrees, data filtered against public SNP variant databases, and veri-
fied by Sanger sequencing in three additional Miller families. To maximise the 
chance of identifying the gene, the authors considered a dominant model with at 
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least one novel non-synonymous SNP, splice variant or coding indel. Their reces-
sive model required genes with at least two novel variants which were either in the 
same position (homozygous) or in different positions (as a possible compound het-
erozygote but conditional on, unknown, phase). The success of this enterprise 
depended to a large extent on the choice of disease. Miller syndrome is a very rare 
Mendelian disease, and so causal variants were unlikely to be present in reference 
databases or control exomes. Mapping a rare recessive gene is easier than a domi-
nant gene because fewer genes within the affected individual’s exome will have two 
novel or rare non-synonymous variants. The lack of genetic heterogeneity in the 
sample of individuals studied was also advantageous, and the authors emphasise the 
importance of ethnic uniformity in the ancestry of affected cases (Europeans in this 
case) reducing the likelihood of genetic heterogeneity.

Strategies that might accelerate the mapping of Mendelian disorders in the future 
include, for recessive models, identifying genes within shared tracts of homozygos-
ity to reduce the pool of potential candidate variants for further consideration. 
Krawitz et al. (2010) introduced identify-by-descent filtering to map the recessive 
gene for hyperphosphatasia mental retardation syndrome (HPMRS or Mabry syn-
drome) in a family with three affected siblings. They developed a hidden Markov 
model to identify regions with shared identical, maternal and paternal haplotypes 
but not necessarily derived from a common ancestor. They were then able to identify 
whether each sibling had the same (identity by descent = 2) homozygous or hetero-
zygous genotype. This process reduced the pool of candidate genes with mutations 
in all three sibs from 14 to 2 and led to the identification of the PIGV gene as causal.

9.2.2  �De Novo Variants

F or ‘sporadic’ disease sequencing of unaffected parents may facilitate rapid identi-
fication of important de novo mutations involved in disease. Girard et al. (2011) 
sequenced exomes and parents of 14 schizophrenia probands with no previous fam-
ily history and identified 15 de novo mutations in eight probands. This is a higher de 
novo mutational burden than the ‘background’ mutation rate as indicated by the 
1000 Genomes Project. Four of the 15 mutations were predicted to lead to a prema-
ture stop codon in genes hypothesised to have a role in the disease.

9.2.3  �Cancer Germline and Tumour Studies

A route to further understand the genetic basis of cancer is offered by the exome 
sequencing in both germline and tumour DNA from the same patient and searching 
(by subtraction of the germline variants) for novel somatic mutations. An early suc-
cess for this approach is described by Tiacci et al. (2011) who exome-sequenced 
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germline and tumour DNA from an index patient with hairy-cell leukaemia (HCL). 
The findings included a somatic heterozygous mutation in the BRAF gene which 
was known to produce an oncogenic protein. Remarkably, the same variant was 
identified by Sanger sequencing as present in all 47 additional HCL patients they 
were screening but in none of their 195 patients with other forms of peripheral 
B-cell lymphoma or leukaemia. The power of this approach to identify recurrent 
somatic mutations driving further downstream somatic changes was clearly demon-
strated. The findings also support BRAF mutation screening as a diagnostic tool to 
distinguish HCL from other B-cell lymphomas and identify HCL as a clinically 
distinct entity from other ‘HCL-like’ disorders.

9.2.4  �Rare Variants in Families: Extreme Phenotypes

Feng et al. (2011) consider strategies for mapping rare variants in complex disease 
in the context of family data. The authors recognise the critical issues which reduce 
power, namely, locus heterogeneity (McClellan and King 2010), allelic heterogene-
ity (2000 pathogenic mutations have been reported in BRCA2), problem of pheno-
copies (affected individuals in a family that do not share the predisposing mutations) 
and apparent oligogenic patterns of inheritance due to segregation of many common 
moderate-risk loci. Nevertheless, Cirulli and Goldstein (2010) argue that family-
based designs, particularly for families showing phenotypes from the extremes of a 
trait distribution, are most likely to achieve success for complex traits until the costs 
of sequencing reduce sufficiently to favour very large case-control designs. 
Simulations support a two-stage design with sequencing of two affected individuals 
per pedigree that are not too closely related to generate an excessive number of 
false-positive genes or too distantly related to increase the risk of including a phe-
nocopy in the comparison.

9.2.5  �Rare Variants in Large Cohorts: Mutational Load

Cooper and Shendure (2011) consider the interpretive challenge of the ‘multiple 
hypothesis testing’ problem presented by the enormous number of variants identi-
fied in genome sequences and the abundance of false discoveries. They argue that 
experimental or computational approaches to assess variant function can provide 
estimates of the prior probability that a given variant is phenotypically important, 
thereby boosting discovery power. Such empowering classifiers include SIFT scores 
that use ‘evolution as the best measure of deleteriousness’, the observation that 
sequences not removed by natural selection are likely to be important. Application 
of a comprehensive range of functional and predictive tools is likely to be required 
for complete characterisation of important low-frequency variation identified in 
large cohorts of patients with common forms of disease. Evolutionary models 
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predict that rare deleterious mutations spread across a large number of genes may 
have a cumulative effect (mutational load) to increase susceptibility to complex 
disease.

In this scenario a given mutation may be present in only a few individuals and 
have a negligible effect on trait variation, but, in combination with many similar 
variants, the burden of mutation may underlie causality (Howrigan et  al. 2011). 
Pooled association tests and collapsing methods (Price et  al. 2010; Dering et  al. 
2011) provide routes to testing mutational burden in large-scale genetic studies.

9.3  �Exome Data

Data from a sequencer are typically presented in FASTQ format in which there are 
four lines per read comprising sequence identification labels, raw sequence and 
quality scores for each of the bases in the sequence (http://en.wikipedia.org/wiki/ 
FASTQ_format). The quality score represents, as a single ASCII character, the 
probability (p) that the base call it refers to is incorrect. The Sanger version of the 
Phred quality score is Qsanger = −10 log10p. Two such FASTQ files are generated 
for paired-end sequencing with sequential entries corresponding to the sequenced 
ends of each DNA fragment. Li et al. (2009a) describe the now standard ‘sequence 
alignment/map’ (SAM) format for storing short read alignments and mapping coor-
dinates against a reference sequence. A software package (SAMtools) is used for 
processing such files and has options for positional sorting, indexing, format con-
version and calling and viewing variants. The standardised format allows for effi-
cient capture of read and alignment information by defining codes that characterise 
aligned sequences and identified variations from the reference sequence. These 
include, for example, codes to represent matches and mismatches, insertions, dele-
tions and sequences with ‘soft’ and ‘hard’ clipping to represent non-matched 
sequences which are either present or missing from the alignment. Their CIGAR 
format provides a compact way of storing good alignments and also representing 
bases misaligned to the reference genome. The SAM format has a binary equivalent 
file (BAM file) which improves processing performance by supporting more rapid 
retrieval of aligned sequences in specific genomic regions.

9.3.1  �Sequence Alignment

Accurate alignment of short read sequences against a reference genome is the most 
critical step towards cataloguing the polymorphisms represented in a sample. The 
process requires a reliable reference genome with known sequence and millions of 
short reads from the sample genome. Many algorithms have been developed to align 
sequence reads against the reference genome. Li and Homer (2010) and Ruffalo 
et al. (2011) survey the range of sequence alignment packages. Short read alignment 
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packages include Bowtie (Langmead et  al. 2009), BWA (Li and Durbin 2009), 
MAQ (Li et al. 2008 ), mrsFAST (Alkan et al. 2009), Novoalign (http://www.novo- 
craft.com/main/index.php), SHRiMP (Rumble et al. 2009) and SOAPv2 (Li et al. 
2009b). Of these, BWA is one of the most frequently used aligners. It exploits 
indexing built using the Burrows-Wheeler transformation (Burrows and Wheeler 
1994) which enables fast searching and generates a quality score that can be used to 
reject poorly supported alignments. Ruffalo et  al. undertook a simulation-based 
comparison and noted that the different approaches trade off speed and accuracy to 
optimise detection of different variant classes. Some algorithms were more efficient 
at different stages in the alignment process. For example, BWA and SOAP were 
found to align genomes quickly but required significant time to index the genome, 
whereas Novoalign required less time for indexing time but performance showed 
greater dependence on the number of reads. Novoalign offers high sensitivity and 
specificity with respect to accuracy of alignments and uses information on base 
qualities at all stages in the alignment (Li and Homer 2010) although this impacts 
on speed of the alignment. However, higher performance can be achieved by run-
ning the message passing interface (MPI) version on a computer cluster and exploit-
ing multithreading.

9.3.2  �Variant Calling

Given an aligned set of reads, it is essential to identify and ‘mark’ duplicate reads so 
that they do not influence variant calling. Tools to achieve this include PICARD 
(http://sourceforge.net/apps/mediawiki/picard/index.php?title=Main_Page) and 
SEAL (Pireddu et  al. 2011), an alignment tool which combines BWA with the 
detection and removal of duplicate reads. Duplicates are likely to be PCR artefacts 
from the library preparation stage or optical duplicates from the sequencer. 
Duplicates are most simply defined as those reads that map to exactly the same loca-
tions. Other quality control preprocessing includes base quality score recalibration 
(applied to a BAM file) (http://www.broadinstitute.org/gsa/wiki/index.php/Base_
quality_score_recalibration). This procedure recalibrates the scores to more accu-
rately reflect the probability of mismatching the reference genome. The Genome 
Analysis Tool Kit (GATK) provides quality score recalibration which targets not 
only overall base quality inaccuracy but identifies higher quality subsets of bases by 
accounting for decline in base quality known to occur towards the ends of sequence 
reads.

Tools such as GATK and SAMtools are capable of identifying short indels in 
exome data, but accurate characterisation of indels in exome data is challenging. For 
example, short indels tend to occur in the vicinity of tandem repeats, but accurate 
alignment in these regions is difficult. Furthermore, where an indel is present, it may 
create local misalignments against the reference sequence which can generate false 
SNP calls. Therefore, local realignment around indels is required to minimise the 
number of mismatching bases (http://www.broadinstitute.org/gsa/gatkdocs/
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release/org_broadinstitute_sting_gatk_walkers_indels_IndelRealigner.html). Local 
realignment aims to resolve regions with misalignments caused by indels into clean 
reads, prior to applying tools to identify the variant content of the exome. Calling 
variants while using the information from more than one exome simultaneously 
increases the quality of variant calls. GATK’s UnifiedGenotyper module employs a 
Bayesian genotype likelihood model to derive the most likely genotypes as applied 
to multiple samples simultaneously. The program also generates a posterior proba-
bility for a segregating variant allele as well as genotype at each locus.

VarScan (Koboldt et  al. 2009, http://varscan.sourceforge.net/) is designed for 
identifying SNPs and indels in NGS data and is particularly suited to filtering in 
tumour-normal (tumour-germline) paired samples. Given such paired data, VarScan 
tests the somatic status of each variant and classifies them as germline, somatic or 
loss of heterozygosity by comparing the read counts between samples. VarScan uses 
the ‘pileup’ files of variant output from the SAMtools program from the germline 
and tumour DNAs simultaneously. Variant positions shared between both files 
meeting the minimum read depth coverage are compared and variants classified 
accordingly. Filtering against a germline sample of variants has obvious benefits in 
terms of reducing variant volume and complexity in the expectation of identifying 
recurrent ‘driver’ mutations that underlie the disease.

9.3.3  �Filtering and Identifying Disease Susceptibility Genes

Sets of variant calls from an exome sequence include a large number of false posi-
tives. Suggested quality control filters, as implemented, for example, in the GATK 
program, include removal of variants at sites with low mapping quality scores and 
removal of apparent heterozygotes in which one allele is supported by less than 30% 
of sequence reads, variants not supported by reads mapping to both strands (strand 
bias). A significant difference of NGS from traditional Sanger sequencing is that the 
error rates for the called bases are markedly higher. This underlies the importance 
of obtaining high coverage ‘depth’ (the number of independent sequence reads 
aligned at one location). For this reason the removal of variants supported by only 
low read depth (e.g. 10 reads or less) is an important QC step.

Even given robust quality control throughout the analytical pipeline, the result-
ing file of SNPs and indels will contain many thousands of variants. The most press-
ing issue is how to determine the relationship (if any) of specific variants identified 
to the disease phenotype(s). Annotation of variants and filtering to identify and 
remove ‘unimportant’ variation can be achieved by tools such as Annovar (Wang 
et  al. 2010) which enables local download of all variants in genomic databases 
(1000 genomes, dbSNP, etc.) and provides tools for flexible filtering to remove 
common variation unlikely to be involved in disease. This is not straightforward 
since a number of these databases, such as recent versions of dbSNP, contain known 
rare and disease-causing variants which might be relevant to the phenotype under 
investigation. However, reduction in complexity of voluminous data at this stage is 
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essential since an individual exome is likely to carry ~10,000 amino acid altering 
SNPs (Ng et al. 2010b). A (probably small) proportion of these are likely to nega-
tively impact health, but the majority simply contribute to the large diversity of 
proteins and have little or no deleterious impact. For Mendelian diseases it is likely 
that the rare high-penetrance variants involved are private to affected individuals 
fully supporting the value of filtering out the common variation represented in 
genomic databases. Efficient filtering reduces the pool of potential disease influenc-
ing variants enabling cost-effective follow-up of a much smaller number of genes 
and/or variants. Studies of Mendelian disorders assume a single highly penetrant 
coding mutation is sufficient to cause disease and that mutation is very rare and 
probably restricted to affected individuals. The volume of variation can be much 
reduced by only considering variants that change the protein sequence (non-
synonymous), coding indels and splice acceptor and donor site changes. However, 
for non-Mendelian traits, it is known, from GWAS studies, that common intronic, 
regulatory and synonymous variation has an impact on disease, and so filtering is 
likely to lose information. Even after filtration against common variant databases, 
and after considering only protein-changing variants, the high number of variants in 
an individual exome is large enough to challenge further progress. In silico 
approaches computationally evaluate potential disease severity of variants by mak-
ing multispecies comparisons and using models of molecular evolution (Kumar 
et al. 2011). The degree of conservation at individual positions and databases of 
permitted substitutions indicates the potential impact of a given change. It is known 
that disease-associated SNPs are over-represented at locations in the genome that 
have changed to only a limited degree over evolutionary time. Variants at locations 
conserved throughout vertebrates are more likely to be involved in Mendelian dis-
ease, and the same has been found to be true for the locations of somatic variation 
in cancers. Intense purifying selection against damaging variants at these locations 
is likely to occur through a reduction in reproductive fitness. For this reason molec-
ular evolutionary predictions are considered less useful for complex disease where 
later onset has limited impact on fecundity. However, there is a spectrum of genetic 
disease from single-gene Mendelian disorders to complex traits. Therefore, in silico 
prediction may be valuable for more ‘extreme’ forms of complex disease (e.g. early 
onset, more severe disease subtypes, familial cases). Ranking variants by their pre-
dicted or known effect on protein function and their degree of conservation using 
tools, such as SIFT (Kumar et al. 2009), PolyPhen2 (Adzhubei et al. 2010), LRT 
(Chun and Fay 2009) and MutationTaster (Schwartz et  al. 2010), and composite 
databases of functional predictions such as dbNSFP (Liu et al. 2011) is an important 
further step towards reducing data depth and complexity. The various algorithms 
output scores which quantify the extent to which a non-synonymous variant is likely 
to be deleterious. Such an approach has already been used with success to prioritise 
novel variants for follow-up in Mendelian disease studies (Ng et al. 2010a). SIFT 
(‘Sorting Tolerant From Intolerant’, http://sift.bii.a-star.edu.sg/) predicts the effect 
on protein function of single amino acid changes. The SIFT algorithm works by 
searching for similar sequences that are likely to have matching functions, generates 
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an alignment of those sequences and computes probabilities for all possible substi-
tutions from the alignment. Those with p < 0.05 are classified as deleterious muta-
tions or, otherwise, tolerated. PhyloP (Pollard et  al. 2010) similarly provides a 
conservation score highlighting locations that are conserved from invertebrates to 
humans in which substitutions are highly likely to disrupt critical protein function. 
PolyPhen2 (http://genetics.bwh.harvard.edu/pph2/) also predicts the impact of an 
amino acid substitution on protein structure and function. The algorithm uses 
sequence and structural features to evaluate the impact of amino acid replacements 
within a multiple sequence alignment of homologous proteins, the extent of modifi-
cation of the resultant protein and whether the substituted allele originated at a 
particularly mutable site. The alignment process uses the set of homologous 
sequences and employs clustering to construct and refine their multiple alignment. 
The functional significance of a substitution is predicted from the set of features by 
a naive Bayes classifier (Adzhubei et  al. 2010). Chun and Fay (2009) develop a 
likelihood ratio test (LRT, http://www.genetics.wustl.edu/jflab/lrt_query.html) 
which compares the null model of neutral codon evolution to the alternative model 
that the codon has evolved under negative selection. Deleterious mutations are con-
sidered to be the non-synonymous SNPs that significantly disrupt the constrained 
codons defined by the LRT. The LRT generates a p-value for the likelihood ratio test 
of codon constraint. The test is developed from data for 32 vertebrate species. Chun 
and Fay (2009) found, however, a disturbingly low degree of overlap between pre-
dictions made by the LRT, SIFT and PolyPhen with 76% of predictions unique to 
one of the three methods and only 5% of predictions made by all three. With this in 
mind Liu et al. (2011) argue that, because the various alternative algorithms have 
their own strengths and weaknesses, it is useful to construct a consensus prediction. 
This is presented in their dbNSFP database (http://sites.google.com/site/
jpopgen/dbNSFP) which contains functional predictions from multiple algorithms 
compiling predicted scores for non-synonymous variants from SIFT, PolyPhen2, 
LRT, MutationTaster and PhyloP.

9.3.4  �Collapsing Methods for Rare Variants in Large Samples

Rarer variants are likely to be enriched for alleles with functional disease impact 
and may show larger effect sizes than common alleles as a consequence of purifying 
selection. However, the penetrance of most of these variants is likely to be compara-
tively low (Bodmer and Bonilla 2008). Therefore, for most complex disease pheno-
types, the cumulative impact of many rare variants is likely to contribute significantly 
to the disease phenotype. However, the power to detect such alleles is low due the 
relatively low penetrance, the small number of copies of a given variant present and 
the need for stringent correction for the number of variants tested. For this reason 
analytical approaches for large samples have been developed that test for the com-
bined effects of a set of rare variants, thereby greatly reducing the number of 
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statistical tests while maximising power. Such a ‘collapsing’ approach requires 
prior specification of the set of variants to be combined to make the test. Li and Leal 
(2008) point out that misclassification resulting from the collapsing of nonfunc-
tional variants with functional sites adversely affects the power of the test. 
Misclassification can arise when non-causal variants are included and when func-
tional variants are excluded because they either have not been sequenced or have 
incorrectly been classified as nonfunctional by bioinformatics tools. In contrast 
multiple-marker methods which test several sites for their influence on phenotype 
simultaneously are more robust to misclassification, but potentially less powerful 
than collapsing methods. Li and Leal’s combined multivariate and collapsing 
(CMC) method aims to maximise power while being robust to misclassification. 
This and related tests are reviewed by Dering et al. (2011). The collapsing method 
defines an indicator variable X for the jth case individual to define whether or not 
that subject carries any rare variant in the target of interest (e.g. a gene) such that 
Xj = 1 when a rare variant is present and 0 when absent with Yj similarly defined for 
controls. The test made is for association of multiple rare variants in which the pro-
portion of rare variants in cases and controls differ. This is a fixed allele-frequency 
threshold approach for which power was investigated by Price et al. (2010). The 
authors examined different thresholds at which to define a variant as ‘rare’ (their T1 
and T5 models representing 1 and 5% allele-frequency thresholds, respectively). 
They also describe a version of the test which weights (under the null hypothesis of 
no association) the contribution of each SNP by the inverse square root of the 
expected variance, based on allele frequencies computed from controls. This 
approach gives much higher weights to very rare variants. Price et al. propose a vari-
able threshold approach which assumes an unknown threshold T for which variants 
with a MAF below the threshold are more likely to be functionally important than 
those above. The authors compute the maximum test statistic over a wide range of 
values of T to obtain the maximum of the threshold specific test statistics. The p-
values are determined (as in all collapsing methods) by permutation tests.

An important addition to the range of collapsing approaches incorporates pre-
dicted functional information that improves the statistical test. Price et al. (2010) 
incorporated PolyPhen2 probabilistic scores for neutral and deleterious amino acid 
changes as weights in the regression. In their simulation study, setting the signifi-
cance level to p = 0.05, power was higher at 60 and 69% for the variable threshold 
and variable threshold with PolyPhen scores models, respectively, compared to 55, 
50 and 54% for the T1, T5 and weighted threshold models, respectively.

Luo et al. (2011) point out some of the limitations of collapsing methods, noting 
that variants at different genome locations may have different effect sizes which are 
unlikely to be determined only by their frequencies and collapsing without assign-
ing weights that are functions of variant frequencies cannot fully exploit informa-
tion of genetic effect sizes; multiple rare variants may be correlated, so grouping 
them needs to take this into account. They develop functional principal component 
analysis (FPCA)-based statistics for which they determine higher power to detect 
association with rare variants and enhanced ability to filter out sequence errors.
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9.3.5  �Copy Number Variant (CNV) and Loss of Heterozygosity 
Analysis

Test for structural variation has been typically undertaken using array comparative 
genome hybridisation (CGH) which tests up to one million probes and can detect 
variants in the size range of 10–25 kilobases. But much higher resolution can be 
achieved from sequence data, and Yoon et al. (2009) develop methods for detecting 
CNVs in whole genome sequences. However, similar application to exome sequence 
data presents difficulty because the read sequence distribution is not random or 
unbiased and the read depths do not follow a normal distribution from which devia-
tions suggest the presence of a copy number variant. However, if the biases are 
controlled, exome sequencing data present the opportunity to detect structural vari-
ants at much higher resolution and extend the utility of the data beyond the identifi-
cation of single nucleotide variants and small indels. The problems presented by the 
discrete nature of the exome read distribution are considered by Sathirapongsasuti 
et al. (2011) who describe a method to detect copy number variations (CNVs) and 
loss of heterozygosity (LOH) in exome data. The approach uses normalised depth 
ratios in paired samples (such as tumour/germline) that have been processed in a 
similar way, including library preparation, and share similar average depth of cover-
age. This approach was shown to identify CNVs as small as 120 pb representing 
single exons with higher than average coverage. The read depth data can be more 
flexibly used in non-matched exome samples, for example, by using data from a 
pool of control exomes to serve as, effectively, a matched control sample (since the 
average copy number is likely to be two given a sufficiently large number of control 
exomes).

9.3.6  �Strategies for Efficient Analysis and Data Management

The alignment of short sequence reads has been regarded as a major bottleneck in 
the analysis of NGS data (Li and Homer 2010). However, improving the algorithms 
and the development of tools which exploit distributed processors has reduced this 
bottleneck, at least for exome sequence. Important developments include platforms 
which automate pipelines and provide integration of bioinformatics tools to facili-
tate exome analysis. An example is Galaxy (Goecks et al. 2010, http://galaxy.psu.
edu/) which provides a web-based platform to facilitate accessibility of NGS data 
analysis, exploiting the latest informatics tools, while tracking data provenance and 
ensuring reproducibility of analysis pathways undertaken. Galaxy is intended to 
free users from the necessity to develop computer code and the need to learn the 
implementation details of individual software packages. Galaxy offers a framework 
for performing exome studies which enables reconstruction of the analysis path-
ways undertaken by capturing details of analyses performed through a web 
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interface. Perhaps most significant, given that that exome sequencing will shortly be 
superseded by far more challenging whole genome sequencing, is the development 
of a cloud computing enabled version (http://www.genomeweb.com/
informatics/galaxy-joins-host-bioinformatics-projects-embracing-cloud-infrastruc-
ture-option). Cloud computing, in which computation is offered as a service, pro-
vides access to much greater computational power and storage than is available to 
an individual lab. Cloud computing is therefore regarded as a route to reducing 
some of the concerns about the management and analysis from the ongoing and 
developing NGS ‘data deluge’.

9.4  �Conclusions

A range of strategies are being employed to exploit exome sequencing for the iden-
tification of rarer variation underlying Mendelian disease and complex traits. 
Genotyping a small number of affected individuals in families showing strongly 
Mendelian patterns of inheritance has already proven to be a highly successful strat-
egy with several important genes identified. Such an approach relies on the sharing 
of underlying causal variant(s) between family members. With higher penetrance 
variants, it is possible to combine evidence from linkage in these scenarios to reduce 
the list of potential causal targets. Thus, targeted follow-up can focus on the variants 
identified in these regions. For more complex phenotypes, strategies include inves-
tigating cases with ‘extreme’ or otherwise unusual phenotypes (e.g. early onset dis-
ease, well-defined disease subtypes). Such an approach assumes that a relatively 
small number of moderate-penetrance variants might emerge as contributory to dis-
ease. In this situation family-based designs, where possible, are likely to reduce the 
overall complexity and number of targets for follow-up. Extensive filtration based 
on known or predicted gene function further delimits variants for greater consider-
ation. From the study of cancer genomes, novel somatic variation can be identified 
by filtering out germline variation.

With respect to all studies involving complex disease in unrelated individuals, 
statistical analysis is plagued by low power and one strategy is to combine rare vari-
ants for analysis using some form of ‘collapsing’ approach.

In the longer term whole genome sequencing will replace exome sequencing and 
provides a range of new problems. The most obvious of these arises from the fact 
that it is now possible to produce DNA sequence more quickly and cheaply than the 
computing infrastructure can be developed to manage it (Stein 2010). Indeed the 
cost of sequencing is now decreasing much faster than the cost of storage of the 
data, and storage costs are likely to exceed the cost of production in the near future. 
Further development of novel strategies including cloud computing, in which hard-
ware, runtime and data storage are effectively rented for specific projects, offers a 
credible way forwards. The Galaxy package has been implemented successfully on 
the Elastic Compute Cloud (EC2) web service offered by Amazon and provides a 
comprehensive range of cloud-enabled tools for NGS analysis. Such developments 
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are promising although, as Stein (2010) points out, there remain major obstacles 
with respect to the network bandwidth and the transfer of huge volumes of data on 
and off networks. It is clear that the future development and application of NGS 
offers both great promise and major challenges.
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Chapter 10
Machine Learning Approaches: Data 
Integration for Disease Prediction 
and Prognosis

Andrew Collins and Yin Yao

Abstract  Machine learning (ML) is an analytical approach that has been on 
increasing importance in this field. In this chapter, we would like to highlight the 
use of ML for disease risk prediction and prognosis to identify the scope of 
successful applications to date. Despite the enthusiasm, we feel that the evaluation 
of ML methods in real data sets has been limited thus far. We also feel that machine 
learning approaches can serve as methods of choice for the integration of the ever 
more complex data sets being generated in the era of next-generation sequencing.

10.1  �Applications of Machine Learning

Enormous volumes of genomic data encompassing diverse data types (including 
gene expression, genetic polymorphisms, structural mutations, DNA methylation, 
eQTLs, and proteomic data) can be collected relatively cost-effectively for a large 
number of patient samples. For inherited disease research, data integration is 
focused on improving power and accuracy to underpin new discoveries. Integration 
strategies include meta-analysis where evidence from independent, but essentially 
similarly structured (homogeneous) data sets is combined across studies. Meta-
analysis has been employed successfully in the context of GWAS (Zeggini et al. 
2008) that resulted in increased power and consequent novel discoveries.

In a more clinical setting, the integration of genomic, proteomic, and phenotypic 
data becomes increasingly important as a route to facilitate diagnosis, enhance treat-
ment, and establish prognosis. ML methods are particularly powerful for integrating 
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heterogeneous data sets in both research and clinical settings. ML is an artificial 
intelligence approach involving a range of statistical and optimization approaches in 
which computers “learn” from “training” data sets to enable predictions about out-
comes in further samples. Applications within a clinical setting include numerous 
examples, which have a focus on defining and refining disease diagnosis. In the 
context of cancer, ML tools have been developed to identify, classify, detect, or 
distinguish tumors (Cruz and Wishart 2006). However, developing applications for 
ML include disease prediction and prognosis (prediction of disease risk, disease 
recurrence, and survivability) which forms part of the translational research empha-
sis towards personalized medicine. This field is, however, still in relative infancy 
and extensive bioinformatics development, validation, and demonstrably robust 
application is required to achieve translational impact. Haskin Fernald et al. (2011) 
defined the analytical bioinformatics challenges faced in the field of personalized 
medicine as four main areas: processing voluminous, robust, genome data; interpre-
tation of functional impacts of genome variation; integration of data to establish 
gene and phenotype relationships in their full complexity; and translation of discov-
eries into medical practice. ML methods have the potential to become the tools of 
choice for addressing these challenges as they are demonstrably powerful for inte-
grating voluminous data, refining tools for predicting functional impacts, modeling 
genotype and phenotype relationships, and for integrating genomic and clinical data 
in a translational manner.

ML methods are particularly useful for large, often noisy and heterogeneous data 
sets.

A range of alternative approaches include multifactor-dimensionality reduction 
(MDR, Ritchie et al. 2001), neural networks (Motsinger et al. 2008), random forest 
(Bureau et al. 2005), and support vector machines (SVM, Cortes and Vapnik 1995). 
Alternative methods have a variety of strengths and weaknesses, which are often 
application-specific (Upstll-Goddard et al. 2012). Within heterogeneous and com-
plex data sets, ML enables inferences that cannot otherwise be established using 
conventional statistics, which require variable independence and typically include 
multivariate models based on linear combinations of variables. However, although 
they are often invaluable in the context of nonlinear systems where there is a degree 
of variable interdependence, ML methods are subject to important limitations. 
Careful modeling and evaluation is required to avoid drawing incorrect inferences. 
A critical limitation is the relationship between the number of variables (features) 
measured and the number of samples tested. A sample to feature ratio of at least 
5–10:1 (Somorjai et al. 2003) is recommended for a robust model. The problem is 
typified as the “curse of dimensionality”; the number of features characterizing the 
data is “too large” and “the curse of dataset sparsity”; the number of samples on 
which these features are measured is “too small” (Somorjai and Nikulin 1993). 
Somorjai et al. noted that even when the sample to feature ratio is increased to the 
recommended level, sparsity of the dataset can still generate misleading results. 
Similarly, training data sets need to be based on a sufficiently large and representa-
tive sample of the whole data set to avoid “overtraining.”
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Support vector machines (SVMs) are state-of-the-art ML methods used for 
“supervised learning” to establish training vectors to subsequently classify test sam-
ples. Depending on the number of features tested (two or more), the SVM classifier 
identifies the line, plane, or hyperplane that maximally separates two clusters (the 
“maximum margin”). The distance between the hyperplane and the closest data 
points on each side (support vector) is maximized. For example, the genotypes at 
two or more single nucleotide polymorphisms could be used in a classifier related 
to good and poor patient survival. Nonlinear classifications are achieved using a 
“kernel” (which may be a linear, polynomial, sigmoid, or radial basis function) 
which transforms the data into a high-dimensional space. Such kernels can dramati-
cally improve the success of a classifier. For data points that are not readily sepa-
rated in the model, there is a parameter which reflects the trade-off between 
minimizing misclassification and maximizing the margin.

SVMs are increasingly being applied in disease prediction and prognosis mod-
els. Some recent applications, focusing on refining clinical counseling and treat-
ment pathways, integrate epidemiological data and biomarker expression profiles. 
For example, Yu et al. (2010) developed a classifier for diabetes based on 14 clinical 
epidemiological risk measures to predict cases of diabetes and pre-diabetes in a US 
population. Wan et al. (2012) tested 97 cases with nasopharyngeal carcinoma (NPC) 
against tissue molecular biomarkers from specific signaling pathways and designed 
SVM models to refine prognosis measures with 5-year follow-up. The authors 
established high power for classifying prognosis with potential to direct future ther-
apy. Wang et  al. (2015) developed survival classifiers for NPC cases based on 
expression profiles of 18 tumor-associated biomarkers. The powerful classifier is 
focused on facilitating counseling and individualized patient management. Schulte 
et al. (2010) used SVM to predict survival for neuroblastomas based on expression 
profiles of 430 miRNAs and found highly accurate and independently validated 
survival prediction. Among the studies that have employed ML with genetic vari-
ants as predictors, Listgarten et al. (2004) developed SVM modeling using three 
SNPs to discriminate breast cancer cases from controls (with 69% predictive power). 
Jiao et  al. (2012) employed ML methods to predict severity of autism spectrum 
disorder (ASD) based on 29 SNPs from 9 ASD-related genes.

The low penetrance and small effect sizes of most “common” disease variants 
identified through GWAS currently limit the applicability of this information for 
disease prediction and prognosis (Moore et al. 2010). To date, hundreds of suscep-
tibility loci for more than 70 diseases have been reported by GWAS. Most variants 
have modest relative risks, in the range of 1.1–1.2, making them very poor disease 
classifiers and questioning their utility in personalized medicine (Moore and 
Williams 2009). However, Moore et al. (2010) argued that GWAS analyses have 
ignored the full complexity of disease pathobiology, and the linear modeling frame-
work employed considers individual SNPs in isolation from their genomic and envi-
ronmental context. A more holistic approach recognizes genotype-phenotype 
relationships in their full complexity and encompasses genetic heterogeneity, 
gene-gene and gene-environment interactions. These complex interactions are 
likely to comprise much of the underlying genetic architecture. ML methods have 
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the capability to model this complexity but remain poorly optimized in this context. 
A particular issue is the development of practical routes for feature selection because 
it is neither feasible nor desirable to test millions of genomic variants and their 
higher-order interactions. Moore et al. describe “filter” and “wrapper” strategies for 
addressing this problem in the context of GWAS data. The hugely voluminous data 
sets now being established by next-generation sequencing make the further devel-
opment of optimal ML analysis strategies even more pressing if this information is 
to have translational impact (Szymczak et al. 2009).
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Chapter 11
OCD Genomics and Future Looks

McKenzie Ritter and Yin Yao

Abstract  Obsessive compulsive disorder (OCD) has been studied using various 
genetic analyses over the years. It has been of interest to identify potential risk 
genes that point to the susceptibility of the disorder. Segregation analyses were the 
initial methods to study these genes. Linkage analyses were then used and slowly 
replaced segregation analyses in the genomics field. Now, genome-wide association 
studies (GWAS) and meta-analyses are commonly used to study OCD, as well as 
other psychiatric disorders. All previous research on OCD has focused on common 
variants, and the hope is to shift toward studying rare variants in the future. This 
chapter discusses each of these methodologies in the context of OCD, as well as a 
look into what the future of OCD statistical analyses may hold.

11.1  �Introduction

Obsessive compulsive disorder (OCD) is a neurodevelopmental disorder that most 
commonly onsets in childhood. OCD is characterized by obsessions, which are per-
sistent and unwanted thoughts, as well as compulsions, or repetitive behaviors that 
are done in response to the obsessions (Bokor and Anderson 2014). It is well docu-
mented that OCD is a highly heritable disorder, so it has been of interest in the field 
of statistical genomics (Davis et al. 2013; Katerberg et al. 2010).

The goal of these genetic analyses is to better understand the risk factors for the 
susceptibility of the disorder. Segregation analyses were used to study OCD, as well 
as other disorders. The analysis is not able to isolate specific regions or genes that 
act as risk factors for the inheritance of the disorder. Segregation instead seeks to 
identify the pattern of inheritance for a specific phenotype of the disorder (Elston 
1981). This analysis requires the use of family structured data. There then was a 
shift in the field to linkage analyses.
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The shift to linkage was important because this analysis uses genetic markers. 
These genetic markers can be identified as potential risk factors for the disorder 
being studied. This analysis, like segregation, requires the use of family data. 
Linkage analyses are able to identify regions of these markers, but much of the 
genome is missing in the analysis. Linkage is named so because genes that are 
physically close to one another on a chromosome remain linked during meiosis 
(Pulst 1999). The results of this analysis are region specific and do not have the 
specificity of identifying at the single nucleotide polymorphism (SNP) level. The 
available genetic markers are fewer in number than at the genome-wide association 
analysis (GWAS). Thus, linkage analyses shifted toward using GWAS.

Using the GWAS method is preferable to the previous three mentioned because 
it does not require the use of family data. Data can be in the form of cases and con-
trols, meaning the cases are individuals affected by the disorder, and controls are 
individuals without the disorder. With the switch to GWAS also came a complete 
genome. As mentioned, linkage analyses did not have the ability to utilize genetic 
markers from the entire genome, while GWAS is able to get a clearer picture. 
GWAS’s seek to determine if specific SNPs are associated with a trait/phenotype of 
a disorder (Bush and Moore 2012). The GWAS method of analysis is still widely 
used, especially in the realm of psychiatric disorders (Ripke et al. (2017); Power 
et al. 2017; Ritter et al. 2017). Within the use of GWAS, meta-analyses are also 
being used to pool GWAS data from multiple analyses and analyze it collectively. 
The progression of these molecular frameworks can be seen in Fig.  11.1. This 

Fig. 11.1  The progression 
of molecular frameworks
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chapter will discuss each of the above mentioned statistical methods in the context 
of OCD, as well as provide future insights to the direction of OCD analyses.

11.2  �Segregation Analyses

Segregation analyses seek to determine the pattern of inheritance of the disorder by 
analyzing family data. Complex segregation analyses can be conducted using the 
S.A.G.E. software (Case Western 1997). A regressive logistic model is used and 
various variables of interest are included (i.e., age of onset). The developed model 
then tests for the presence of a major susceptibility locus. Several Mendelian mod-
els are used to try and fit the data to determine the mode of inheritance of the disor-
der. These models usually include a Mendelian codominant model, Mendelian 
dominant model, Mendelian recessive model, and a Mendelian additive model 
(Hanna et al. 2005a). The models of unrestricted and no mode of transmission are 
also commonly included in the analysis.

Several segregation analyses were conducted for OCD. Hanna et al. found that 
the Mendelian dominant model best fit the data (2005A). It was also documented 
that among families with OCD, there was evidence of a major susceptibility locus 
when age of onset was included in the model (Hanna et al. 2005a). Previous to this 
study, age of onset had not been used in OCD models. This analysis used pediatric 
probands, and with the combined use of age of onset, it is possible they contributed 
to the detection of a major effect. This is because of the high probability of OCD 
occurring in relatives of the probands that presented with an early age of onset of 
OCD (Pauls et al. 1995; Nestadt et al. 2000a; Hanna et al. 2005b).

Another segregation analysis conducted by Cavallini et al. found too that the best 
fit model was the dominant mode of transmission for Cavallini et al. (1999). Even 
though the dominant model was supported by the data, there was potential for the 
presence of genetic heterogeneity (Cavallini et al. 1999). Two different phenotypes 
were used, which included: (1) OCD; (2) OCD plus Tourette’s syndrome (TS)/
chronic motor tics (CMT). When only OCD families were used, the dominant model 
was best, but when the phenotype was extended to include OCD, TS, and CMT, the 
unrestricted model of transmission was found to be the best fit. It was found that 
there was recurrence of TS in OCD families, as well as OCD in TS families, but 
there was not enough evidence to determine the existence of a bidirectional pathway 
between them. This suggested that OCD is clinically heterogeneous and further 
research should be done to examine the phenotypes of the disorder.

Lastly, a segregation analysis conducted by Nestadt et  al. also found that the 
Mendelian dominant model was the best fit of the OCD data (2000B). There was 
evidence of heterogeneity of the families separated by male and female probands. 
Because of this, separate segregation analyses were conducted separated by sex. 
The families with a male proband found that a Mendelian major-locus model was 
supported, but the specific type of Mendelian model was unclear because each of 
them fit as well as the general model (Nestadt et al. 2000b). Using the families with 
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the female proband, the results were similar to that of the total sample. Neither the 
dominant nor codominant model could be rejected, but using the AIC, the dominant 
model was chosen (Nestadt et al. 2000b).

Segregation analyses are beneficial in that they can help determine which mode 
of transmission is most likely for a disease, but they cannot identify genetic markers 
that may contribute to this heritability. Segregation can only say that there is evi-
dence of a major susceptibility locus or gene for that mode of transmission. The 
transition to linkage analyses helped to specify heritability in that regions of genetic 
markers could be identified as contributing to the inheritance of that disorder.

11.3  �Linkage Analyses

Linkage analyses are able to identify regions of markers that may contribute to the 
heritability of a certain disorder. Most commonly, Morgan (http://www.stat.wash-
ington.edu/thompson/Genepi/MORGAN/Morgan.shtml) and Merlin (http://www.
sph.umich.edu/csg/abecasis/Merlin/index.html) software are used to complete these 
analyses. Morgan is able to analyze very large pedigrees, but the number of markers 
is limited and they must all be in linkage equilibrium (Mathews et al. 2012). Merlin 
controls for the effects of linkage disequilibrium between the markers, but all indi-
viduals cannot be used because of both the size and complexity of large families 
(Mathews et al. 2012). The regions are measured based on a heterogeneity loga-
rithm of odds score (HLOD), which estimates whether two loci are located close 
enough together on a chromosome to be inherited together. An HLOD score of ≥1.5 
is a threshold commonly used to identify an area of interest.

Mathews et al. conducted a linkage analysis on families affected by OCD and 
found 11 chromosomal regions with HLOD scores ≥1.5 and 5 with a HLOD score 
>2 (2012). Chromosome 1p36 contained a region with the highest HLOD scores of 
2.96 under the dominant model using Merlin and 2.66 under the dominant model 
using Morgan (Mathews et al. 2012). The linkage region from 1p35.33 to 1p36.32 
met genome-wide criteria for suggestive linkage, which was the strongest finding. 
The 1p36 region has been implicated in a deletion syndrome (1p36 syndrome) that 
is characterized by intellectual disability, as well as multiple system abnormalities 
(Battaglia et al. 2008).

Another linkage analysis conducted on Costa Rican families found the strongest 
LOD score on chromosome 15q14 with a score of 3.13 (Ross et al. 2011). Eleven 
chromosomal regions had LOD scores ≥1.5 and four with a score >2 (Ross et al. 
2011). Chromosome 15q14 was previously implicated in studies of compulsive 
behavior in mice (Kas et al. 2010). Shugart et al. also implicated 15q14 as a region 
of interest for Shugart et al. (2006).

The Shugart et al. linkage analysis used Kong and Cox logarithm of odds scores 
(KAC LOD) (2006). The strongest signal was found on chromosome 3 at D3S1262 
with a KAC LOD of 2.67 (Shugart et al. 2006). Suggestive linkage signals were also 
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found on chromosomes 3q27-28, 6q, 7p, 1q, and 15q. As mentioned, the 15q chro-
mosome has been linked to compulsive behavior in mice (Kas et al. 2010).

Linkage analyses are able to identify regions of markers, but genome-wide asso-
ciation studies (GWAS) can isolate specific SNPs that can be linked back to genes 
that may contribute to the susceptibility of a disorder. The use of GWAS resulted 
because of increased specificity of the results.

11.4  �Genome-Wide Association Studies and Meta-analysis

Genome-wide association studies (GWAS) seek to establish an association between 
a specific disorder and genetic variants to determine which variants affect suscepti-
bility of that disease. The gold standard for the genome-wide significance level is 
5.0 × 10−8. PLINK (http://zzz.bwh.harvard.edu//plink/) is used for quality control to 
remove poorly genotyped SNPs as well as individuals as a whole. PBAT (https://
www.hsph.harvard.edu/pbat/download2/) is then used to conduct the association 
analysis when dealing with complex family structures. A meta-analysis can also be 
included with a GWAS if several results combined and then analyzed together. 
METAL (http://csg.sph.umich.edu/abecasis/metal/download/) is the software used 
to conduct the meta-analysis.

A GWAS and meta-analysis were completed on the OCD Collaborative Genetics 
Association Study (OCGAS) data (Mattheisen et al. 2015). After quality control via 
PLINK, PBAT was used to compute p-values for autosomal markers and the within 
and between family information (Mattheisen et al. 2015). These computed p-values 
were combined and analyzed in METAL for the meta-analysis. None of the SNPs 
reached genome-wide significance. The most significant SNP was rs4401971, 
which is located near the PTPRD gene, with a p-value of 4.13 × 10−7 (Mattheisen 
et al. 2015). Pre-synaptic PTPRD promotes the differentiation of glutamatergic syn-
apses (Dunah et al. 2005; Woo et al. 2009; Kwon et al. 2010; Takahashi et al. 2011). 
It also interacts with Slit and NTRK-like family member 3 (SLITRK3), which is a 
postsynaptic adhesion molecule. Molecules in the same family (SLITRK5 and 
SLITRK1) have been associated with TS as well as OCD (Abelson et  al. 2005; 
Shmelkov et al. 2010). This study had a large overlap of signals with the IOCDF-GC 
study (Stewart et al. 2013). Twelve of the 15 strongest signals from the Stewart et al. 
study overlapped with the results of the Mattheisen et al. study (Stewart et al. 2013; 
Mattheisen et al. 2015).

The Stewart et al. study used trio data and the most significant SNP was rs6131295 
with a p-value of 3.84 × 10−8 (2013). The top two SNPs from the case control meta-
analysis (rs6131295 and rs10165908) are found within the DLGAP1 genes, which 
influences glutamate signaling. Several of the other top SNPs from the combined 
trio-case-control meta-analysis are found in or near genes that have been implicated 
with other psychiatric disorders, which include ADCY8 (Potkin et  al. 2009; de 
Mooij-van Malsen et al. 2009; Kantojarvi et al. 2010), ARHGAP18 (International 
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HapMap C 2005), and JMJD2C (Rivière et al. 2009) in bipolar disorder, schizo-
phrenia, and autism spectrum disorders, respectively (Stewart et al. 2013).

GWAS and meta-analyses are still widely used in the field. All of the previous 
analyses have focused on common variants, and the hope for the future is to con-
tinue sequencing in order to have access to rare variants for further analysis.

11.5  �Future Looks

Current OCD genetic analyses utilize common variants and the next step will be to 
switch to analyzing rare variants. Additionally, the use of larger sample sizes is 
needed to identify many of the rare variants. We expect that the contribution of rare 
variants, as well as larger samples sizes, will help to further identify risk factors for 
OCD, as well as other disorders. A meta-analysis combining two OCD consortiums 
(International Obsessive Compulsive Disorder Foundation Genetics Collaboration 
(IOCDF-GC) and OCD Collaborative Genetics Association Studies (OCGAS)) 
found that even though a large sample size was used through the combination of the 
two datasets, the study was still underpowered. Thus, both national and interna-
tional collaborations are warranted.

Phenotypically, more funding should be placed in research efforts to collect data 
on OCD cases that contain more precise and accurate phenotypes, given that the 
disorder is clinically complex. OCD is both genetically and clinically heteroge-
neous, which makes defining a group of cases all as having strict OCD difficult. The 
heterogeneity of OCD may play a role in both the underpowered results and a lack 
of signals showing up in GWAS and meta-analyses.

With further research efforts focusing on both sequencing of rare variants and 
collecting OCD cases with precisely defined phenotypes, the hope is to find more 
concrete genetic markers that contribute to the susceptibility of OCD.

References

Abelson JF, Kwan KY, O’Roak BJ, Baek DY, Stillman AA, Morgan TM, et al. Sequence vari-
ants in SLITRK1 are associated with Tourette’s syndrome. Science. 2005;310(5746):317–20. 
[PubMed: 16224024]

Battaglia A, Hoyme HE, Dallapiccola B, Zackai E, Hudgins L, McDonald-McGinn D, et  al. 
Further delineation of deletion 1p36 syndrome in 60 patients: a recognizable phenotype and 
common cause of developmental delay and mental retardation. Pediatrics. 2008;121:404–10.

Bokor G, Anderson P. Obsessive-compulsive disorder. J Pharm Pract. 2014;27(2):116–30. https://
doi.org/10.1177/0897190014521996.

Bush WS, Moore JH.  Chapter 11: genome-wide association studies. PLoS Comput Biol. 
2012;8(12):e1002822. https://doi.org/10.1371/journal.pcbi.1002822.

Cavallini MC, Psaquale L, Bellodi L, Smeraldi E. Complex segegation analysis for obsessive com-
pulsive disorder and related disorders. Am J Med Genet Neuropsychiatr Genet. 1999;88:38–43.

M. Ritter and Y. Yao

https://doi.org/10.1177/0897190014521996
https://doi.org/10.1177/0897190014521996
https://doi.org/10.1371/journal.pcbi.1002822


149

Davis LK, Yu D, Keenan CL, Gamazon ER, Konkashbaev AI, Derks EM, et al. Partitioning the 
heritability of Tourette syndrome and obsessive compulsive disorder reveals differences in 
genetic architecture. PLoS Genet. 2013;9(10):e1003864. https://doi.org/10.1371/journal.
pgen.1003864.

de Mooij-van Malsen AJ, van Lith HA, Oppelaar H, Hendriks J, de Wit M, Kostrzewa E, et al. 
Interspecies trait genetics reveals association of Adcy8 with mouse avoidance behavior and a 
human mood disorder. Biol Psychiatry. 2009;66(12):1123–30. [PubMed: 19691954]

Dunah AW, Hueske E, Wyszynski M, Hoogenraad CC, Jaworski J, Pak DT, et al. LAR receptor 
protein tyrosine phosphatases in the development and maintenance of excitatory synapses. Nat 
Neurosci. 2005;8(4):458–67. [PubMed: 15750591]

Elston RC. Segregation analysis. In: Harris H, Hirschhorn K, editors. Advances in human genetics 
11. Boston: Springer; 1981.

Hanna GL, Fingerlin TE, Himle JA, Boehnke M.  Complex segregation analysis of obsessive-
compulsive disorder in families with pediatric probands. Hum Hered. 2005a;60(1):1–9. https://
doi.org/10.1159/000087135.

Hanna GL, Himle JA, Curtis GC, Gillespie BW. A family study of obsessive-compulsive disorder 
with pediatric probands. Am J Med Genet Neuropsychiatr Genet. 2005b;134B:13–9.

Kantojärvi K, Onkamo P, Vanhala R, Alen R, Hedman M, Sajantila A, et al. Analysis of 9p24 and 
11p12-13 regions in autism spectrum disorders: rs1340513 in the JMJD2C gene is associated 
with ASDs in Finnish sample. Psychiatr Genet. 2010;20(3):102–8. [PubMed: 20410850]

Kas MJ, Gelegen C, van Nieuwerburgh F, Westenberg HG, Deforce D, Denys D. Compulsivity in 
mouse strains homologous with chromosomes 7p and 15q linked to obsessive-compulsive dis-
order. Am J Med Genet B Neuropsychiatr Genet. 2010;153B(1):252–9. [PubMed: 19514050]

Katerberg H, Delucchi KL, Stewart SE, Lochner C, Denys DA, Stack DE, et  al. Symptom 
dimensions in OCD: item-level factor analysis and heritability estimates. Behav Genet. 
2010;40(4):505–17. https://doi.org/10.1007/s10519-010-9339-z.

Kwon SK, Woo J, Kim SY, Kim H, Kim E. Trans-synaptic adhesions between netrin-G ligand-3 
(NGL-3) and receptor tyrosine phosphatases LAR, protein-tyrosine phosphatase delta 
(PTPdelta), and PTPsigma via specific domains regulate excitatory synapse formation. J Biol 
Chem. 2010;285(18):13966–78. [PubMed: 20139422]

Mathews CA, Badner JA, Andresen JM, Sheppard B, Himle JA, Grant JE, et al. Genome-wide link-
age analysis of obsessive-compulsive disorder implicates chromosome 1p36. Biol Psychiatry. 
2012;72(8):629–36. https://doi.org/10.1016/j.biopsych.2012.03.037.

Mattheisen M, Samuels JF, Wang Y, et al. Genome-wide association study in obsessive compulsive 
disorder: results from the OCGAS. Mol Psychiatry. 2015;20:337–44. [PubMed: 24821223]

Nestadt G, Samuels J, Riddle M, Bienvenu OJ III, Liang K-Y, LaBuda M, Walkup J, Grados 
M, Hoehn-Saric R. A family study of obsessive-compulsive disorder. Arch Gen Psychiatry. 
2000a;57:358–63.

Nestadt G, Lan T, Samuels J, Riddle M, Bienvenu O, Liang K, et  al. Complex segregation 
analysis provides compelling evidence for a major gene underlying obsessive-compulsive 
disorder and for heterogeneity by sex. Am J  Hum Genet. 2000b;67(6):1611–6. https://doi.
org/10.1086/316898.

Pauls DL, Alsobrook JP II, Goodman W, Rasmussen S, Leckman JF. A family study of obsessive-
compulsive disorder. Am J Psychiatry. 1995;152:76–84.

Potkin SG, Turner JA, Fallon JA, Lakatos A, Keator DB, Guffanti G, et al. Gene discovery through 
imaging genetics: identification of two novel genes associated with schizophrenia. Mol 
Psychiatry. 2009;14(4):416–28. [PubMed: 19065146]

Power RA, Tansey KE, Buttenschon HN, Cohen-Woods S, Bigdeli T, Hall LS, et al. Genome-wide 
association for major depression through age at onset stratification: major depressive disorder 
working group of the psychiatric genomics consortium. Biol Psychiatry. 2017;81:325–35.

Pulst SM.  Genetic linkage analysis. Arch Neurol. 1999;56(6):667–72. https://doi.org/10.1001/
archneur.56.6.667.

11  OCD Genomics and Future Looks

https://doi.org/10.1371/journal.pgen.1003864
https://doi.org/10.1371/journal.pgen.1003864
https://doi.org/10.1159/000087135
https://doi.org/10.1159/000087135
https://doi.org/10.1007/s10519-010-9339-z
https://doi.org/10.1016/j.biopsych.2012.03.037
https://doi.org/10.1086/316898
https://doi.org/10.1086/316898
https://doi.org/10.1001/archneur.56.6.667
https://doi.org/10.1001/archneur.56.6.667


150

Ripke S, Group SW, O’Donovan M.  Current status of schizophrenia GWAS.  Eur 
Neuropsychopharmacol. 2017;27:S415. https://doi.org/10.1016/j.euroneuro.2016.09.460.

Ritter ML, Guo W, Samuels JF, Wang Y, Nestadt PS, Krasnow J, et  al. Genome wide associa-
tion study (GWAS) between attention deficit hyperactivity disorder (ADHD) and obsessive 
compulsive disorder (OCD). Front Mol Neurosci. 2017;10(83). https://doi.org/10.3389/
fnmol.2017.00083.

Rivière JB, Xiong L, Levchenko A, St-Onge J, Gaspar C, Dion Y, et al. Association of intronic 
variants of the BTBD9 gene with Tourette syndrome. Arch Neurol. 2009;66(10):1267–72. 
[PubMed: 19822783]

Ross J, Badner J, Garrido H, Sheppard B, Chavira DA, Grados M, et al. Genomewide linkage 
analysis in Costa Rican families implicates chromosome 15q14 as a candidate region for 
OCD. Hum Genet. 2011;130(6):795–805. https://doi.org/10.1007/s00439-011-1033-6.

S.A.G.E. (Statistical Analysis for Genetic Epidemiology), version 3.1. Computer program pack-
age, available from the Department of Epidemiology and Biostatistics, Case Western Reserve 
University, Cleveland. 1997.

Shmelkov SV, Hormigo A, Jing D, Proenca CC, Bath KG, Milde T, et al. Slitrk5 deficiency impairs 
corticostriatal circuitry and leads to obsessive-compulsive-like behaviors in mice. Nat Med. 
2010;16(5):598–602. 591p following 602

Shugart YY, Samuels J, Willour VL, Grados MA, Greenberg BD, Knowles JA, et al. Genomewide 
linkage scan for obsessive-compulsive disorder: evidence for susceptibility loci on chromo-
somes 3q, 7p, 1q, 15q and 6q. Mol Psychiatry. 2006;11(8):763–70. https://doi.org/10.1038/
sj.mp.4001847.

Stewart SE, Platko J, Fagerness J, Birns J, Jenike E, Smoller JW, et  al. A genetic family-
based association study of OLIG2  in obsessive-compulsive disorder. Arch Gen Psychiatry. 
2013;64(2):209–14. [PubMed: 17283288]

Takahashi H, Arstikaitis P, Prasad T, Bartlett TE, Wang YT, Murphy TH, et al. Postsynaptic TrkC 
and presynaptic PTPsigma function as a bidirectional excitatory synaptic organizing complex. 
Neuron. 2011;69(2):287–303. [PubMed: 21262467]

The International HapMap C.  A haplotype map of the human genome. Nature. 
2005;437(7063):1299–320. [PubMed: 16255080]

Woo J, Kwon SK, Choi S, Kim S, Lee JR, Dunah AW, et al. Trans-synaptic adhesion between 
NGL-3 and LAR regulates the formation of excitatory synapses. Nat Neurosci. 2009;12(4):428–
37. [PubMed: 19252495]

Web Resources

http://www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml
http://www.sph.umich.edu/csg/abecasis/Merlin/index.html
http://zzz.bwh.harvard.edu//plink/
https://www.hsph.harvard.edu/pbat/download2/
http://csg.sph.umich.edu/abecasis/metal/download/

M. Ritter and Y. Yao

https://doi.org/10.1016/j.euroneuro.2016.09.460
https://doi.org/10.3389/fnmol.2017.00083
https://doi.org/10.3389/fnmol.2017.00083
https://doi.org/10.1007/s00439-011-1033-6
https://doi.org/10.1038/sj.mp.4001847
https://doi.org/10.1038/sj.mp.4001847

	Contents
	Contributors
	Chapter 1: Introduction
	1.1 Overview
	1.2 Overview of Chapter Contents
	References

	Chapter 2: Exploring Polygenic Overlap Between ADHD and OCD
	2.1 Introduction
	2.2 Polygenic Risk Score Analyses
	2.3 Protein-Protein Link Evaluation
	2.4 Expression Quantitative Trait Locus (eQTL) Analysis
	2.5 Meta-analysis
	2.6 Discussion
	References
	Web Resources


	Chapter 3: Concepts of Genetic Epidemiology
	3.1 Introduction: Genetic Epidemiology
	3.1.1 Family Studies
	3.1.2 Twin Studies
	3.1.3 Adoption Studies
	3.1.4 Migration Studies

	3.2 Applications of Genetic Epidemiology to Gene Identification
	3.2.1 Samples
	3.2.2 Selection of Controls
	3.2.3 Risk Estimation
	3.2.4 Identification of Environmental Factors

	3.3 Applications, Impact, and Future Directions
	References

	Chapter 4: Rare Variant Analysis in Unrelated Individuals
	4.1 Introduction
	4.1.1 Success of GWAS and Its Limitation
	4.1.2 Detecting Rare Variants

	4.2 Data Description and Methods
	4.2.1 Data Describe
	4.2.2 Methods
	4.2.2.1 Collapsing Method
	4.2.2.2 Combined Multivariate and Collapsing
	4.2.2.3 Weighted Sum Association Method (WSM)
	4.2.2.4 Pooled Association Tests for Rare Variants
	4.2.2.5 A Data-Adaptive Sum Test (Consider the Direction)
	4.2.2.6 Alpha Test
	4.2.2.7 Sequence Kernel Association Test (SKAT)
	4.2.2.8 A General Framework for Detecting Disease Associations with Rare Variants in Sequencing Studies
	4.2.2.9 Haplotype-Based Collapsing Test
	4.2.2.10 Odds Ratio Weighted Sum Statistic (ORWSS)
	4.2.2.11 Combining Related and Unrelated Individual Together to Detect Rare Variants


	4.3 Discussion
	References

	Chapter 5: Whole-Genome Association Analysis of Treatment Response from Obsessive-Compulsive Disorder
	5.1 Introduction
	5.2 Material and Methods
	5.3 Statistical Methods
	5.4 Results
	5.5 Discussion
	References

	Chapter 6: QTL Mapping of Molecular Traits for Studies of Human Complex Diseases
	6.1 Introduction
	6.1.1 Genome-Wide Association Study and Its Limitation
	6.1.2 Functionality of Genetic Variants
	6.1.3 QTL Mapping and Genetic Variants

	6.2 QTL Mapping of Molecular Traits
	6.2.1 eQTL
	6.2.1.1 Experimental Platforms
	6.2.1.2 RNA Quality
	6.2.1.3 Sample Heterogeneity
	6.2.1.4 Sample Size
	6.2.1.5 Covariates
	6.2.1.6 Analytical Procedures
	6.2.1.7 Significance Criteria

	6.2.2 mQTL

	6.3 Other Types of Quantitative Traits
	6.4 Software and Algorithm for QTL Mapping
	6.5 Applications of QTL Mapping in Genetic Studies of Complex Diseases
	6.6 Database or QTL Mapping Results
	References

	Chapter 7: From Family Study to Population Study: A History of Genetic Mapping for Nasopharyngeal Carcinoma (NPC)
	7.1 Introduction
	7.2 The Working Model
	7.3 Candidate-Gene Association Studies
	7.3.1 Apoptosis and Cell Cycle Arrest Pathways
	7.3.2 Carcinogen Metabolism and Detoxification Pathways
	7.3.3 DNA Repair Pathways
	7.3.4 Cytokines and Growth Factors
	7.3.5 Cell Adhesion
	7.3.6 Tumor Suppressor Genes and Oncogenes
	7.3.7 DNA Methylation
	7.3.8 Immunological Functions

	7.4 Genome-Wide Association Studies
	7.5 Discussion
	References

	Chapter 8: Efficient Test for Nonlinear Dependence of Two Continuous Variables
	8.1 Background
	8.2 Methods
	8.3 Simulation Study
	8.4 Applications on Real Data
	8.5 Results
	8.5.1 Results from the Simulation Study

	8.6 Results from the Kidney Cancer Study
	8.7 Discussion
	8.8 Availability of Supporting Data
	References

	Chapter 9: Analytical Approaches for Exome Sequence Data
	9.1 Introduction
	9.2 Strategies for Exome Projects
	9.2.1 Mendelian Disorders
	9.2.2 De Novo Variants
	9.2.3 Cancer Germline and Tumour Studies
	9.2.4 Rare Variants in Families: Extreme Phenotypes
	9.2.5 Rare Variants in Large Cohorts: Mutational Load

	9.3 Exome Data
	9.3.1 Sequence Alignment
	9.3.2 Variant Calling
	9.3.3 Filtering and Identifying Disease Susceptibility Genes
	9.3.4 Collapsing Methods for Rare Variants in Large Samples
	9.3.5 Copy Number Variant (CNV) and Loss of Heterozygosity Analysis
	9.3.6 Strategies for Efficient Analysis and Data Management

	9.4 Conclusions
	References

	Chapter 10: Machine Learning Approaches: Data Integration for Disease Prediction and Prognosis
	10.1 Applications of Machine Learning
	References

	Chapter 11: OCD Genomics and Future Looks
	11.1 Introduction
	11.2 Segregation Analyses
	11.3 Linkage Analyses
	11.4 Genome-Wide Association Studies and Meta-analysis
	11.5 Future Looks
	References
	Web Resources



