
A Framework for Performance Analysis
of Various Load Balancing Techniques
in a Software-Defined Networking
Environment

Patrick Von Angelo V. Atienza and William Emmanuel S. Yu

Abstract Load balancer is an essential part of a computer network. Its primary
purpose is to distribute incoming traffic across multiple target servers. There are
numerous load balancing techniques and each of them excels on specific network
topology and server capability. However, due to vendor dependency, implement-
ing a quintessential load balancer requires additional hardware cost and knowl-
edge in vendor-specific configurations. Using software-defined networking (SDN)
approach, testing of various load balancing techniques becomes easier and cheaper
than traditional hardware-based approach. Despite the promising advantages of
SDN, the novel approach is still unstable. Hence, in this experiment, perfor-
mances of five different load balancing techniques—namely, random, round-robin
(RR), weighted round-robin (WRR), least-connections (LC), and weighted least-
connections (WLC)—were tested. The experiment was done on a single-switch
topology. Mininet and POX controller were used to setup the network environment.
The load balancers were also tested in two types of network conditions: with and
without TCP SYN floods. After several iPerf tests, results in both network conditions
indicated that RR and LC load balancers were both more than twice as fast as the
one without load balancing implementation and moderately faster than random load
balancer. LC and WLC were slightly faster than RR and WRR without SYN floods
while RR and WRR were slightly faster with SYN floods. Future works, like test-
ing the framework on other types of network topologies or low-level load balancing
techniques, could strengthen the substantiation of stability of using SDN approach.

Keywords Software-defined networking · Load balancing ·Mininet
POX controller · Openflow

P. V. A. V. Atienza (B) · W. E. S. Yu
Ateneo de Manila University, Loyola Heights, Quezon City, Philippines
e-mail: patrick.atienza@obf.ateneo.edu

W. E. S. Yu
e-mail: wyu@ateneo.edu

© Springer Nature Singapore Pte Ltd. 2019
K. J. Kim and N. Baek (eds.), Information Science and Applications 2018,
Lecture Notes in Electrical Engineering 514,
https://doi.org/10.1007/978-981-13-1056-0_7

67

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-1056-0_7&domain=pdf


68 P. V. A. V. Atienza and W. E. S. Yu

1 Introduction

The main goal of software-defined networking (SDN) is to separate the control layer
from the infrastructure layer to make the control layer programmable by end-users.
With this emerging architecture, the network can be manipulated programmatically
without touching the physical devices [1]. It also offers flexible, fast and cost-effective
solution to continuously changing business requirements [1]. In traditional network-
ing, it is impossible to split the infrastructure layer from the control layer. There-
fore, end-users had to rely on the vendor for software network configurations and
additional features. SDN tries to change that dependence in networking to an open
networking system [2]. In SDN, a centralized controller manages the network flows
that passes through network switches. SDN is developed to handle large networks
like WANs, cloud computing networks and virtual networks. With the growth in
today’s network, data loss and degradation are highly susceptible; thus, an efficient
algorithm that can handle large amount of load is necessary [2].

Load balancing is a method to distribute workload across multiple servers or
other resources to achieve maximized throughput, minimized latency, and overload
avoidance [3]. Using multiple components with load balancing, instead of a single
component, may increase reliability through redundancy. Load balancing is one of
the initial steps of Quality of Service (QoS) networking. Depending on the specifi-
cations of each server, the load balancer can direct the flow of each request based on
the type of request it receives. Studies, like in the research of Chato and Yu, success-
fully split network flows of HTTP and media streaming requests in an SDN network
using various QoS mechanisms [4]. Load balancers can also be used as a first line
of defense of DDoS attacks. It can reroute the network flow of all of the suspected
packets to a single node or drop the packet completely. Guevara et al. success-
fully implemented the detection and dropping of suspected packet using an intrusion
detection and prediction system over a software-defined network [5]. Load balancers
are very handy with SDN because the network flow of each network switch can be
guided programmatically by the control layer [3, 6]. In this research, wewill compare
five basic load balancing techniques, namely, round-robin, weighted round-robin,
random, least-connections, and weighted least-connections. This research seeks to
answer the following research questions:

1. What is the advantage of implementing a load balancer in the controller pane
compare to forwarding the network flow to a single server?

2. Will each tested load balancingmethod can handle its stability in TCP SYNflood
attacks? Which of the load balancing methods will perform the best?

3. Will all the load balancers perform well in terms of accuracy and throughput?
Which of the load balancing methods will perform the best?



A Framework for Performance Analysis of Various Load Balancing … 69

2 Theoretical Background

2.1 Load Balancing Techniques

Load balancers can be split up in two types: static load balancers and dynamic load
balancers. In static load balancing, processes do not depend on the current state of
the network and processes are assigned prior to the execution of the network. On the
other hand, in dynamic load balancing, processes change from time to time and the
system needs to be recalibrated in order to distribute load equally through servers.
Below are the most common static and dynamic load balancing techniques:

Round-robin Load Balancing. RR is a static load balancing technique and it is
one of the simplest methods for network flow distribution. Going down the list of
servers in the group, the round-robin load balancer forwards a client request to each
server turn by turn. When it reaches the end of the list, the load balancer returns
back to the initial server and do the method again [3, 6]. The method of selecting
a server can operate with the worst-case time complexity of O(1) since the details
of the last selected server can be stored. Weighted Round-robin Load Balancing.
In WRR, a weight is assigned to each server depending on its network capability,
its traffic-handling capacity, or its power of processing the received data [8]. The
higher the weight, the larger the proportion of client requests the server receives.
WRR is also a static load balancing technique. This is useful for servers that have
different specifications [3, 6]. This technique can also achieve the same worst-case
time complexity as the ones in RR. Least-Connections Load Balancing. When a
virtual server is configured to use LC, the load balancer selects the server with the
fewest active connections. LC is a dynamic load balancing technique and one of
the default methods in load balancing, because, in most circumstances, it provides
the best performance [3]. The method of selecting a server has a worst-case time
complexity of O(n) with n as the number of servers. The reason is that the load
balancers should check all the active connections of each server. Weighted Least-
Connections Load Balancing. WLC is almost the same as the non-weighted one
with an exception all servers are beingweighted depending on their network handling
capabilities or their own performances of processing received packets. This technique
can also achieve the same worst-case time complexity as the ones in LC.

2.2 OpenFlow, Mininet, and POX Controller

OpenFlow is one of the early standards of SDN. As defined in the paper of the
McKeown et al., the main feature of OpenFlow is to have a full control of all data
packets roaming around the network [7]. The movements of the data packets, or
“flows” as commonly referred to it, are controlled through user-defined rules and
protocols. The details of each flow entry can be recorded in a flow table which can
be also controlled programmatically [7, 8]. Each flow entry has three fields: (1) the



70 P. V. A. V. Atienza and W. E. S. Yu

Fig. 1 The network topology to be set up using the Mininet network emulator

packet header that defines the flow or the “rule”, (2) the action that the packets
are process or the “action”, and (3) the flow and port statistics or the “stats”. An
action can be also classified into four basic types: (1) forwarding packet to ports, (2)
forwarding and encapsulation of packets to controllers, (3) dropping of packets, and
(4) forwarding packet to normal processing pipeline [7, 8].

Mininet is a network emulator that creates a virtual network of Layer 2 and Layer
3 switches, controllers, and hosts. The switches that offered by Mininet are Open
vSwitches which support OpenFlow. Mininet is often used in research and develop-
ment, prototyping, testing and debugging, and other tasks that needs an experimental
network simulation. It runs on Unix/Linux environment [9].

POX controller is one of the most common frameworks for simulating SDN
controllers. It is patterned from the NOX controller and it is written in Python. The
main advantage of POX is that it is easy to use and does not require a steep learning
curve [10, 11]. The disadvantage is that it is slow compare to other controllers like
OpenDayLight, and Floodlight. That is why POX controllers are often used for
educational purposes [10].

3 Methodology

3.1 Network Topology

The single-switch topology consisted of a single Open vSwitch (S1) connected to
eight hosts (h1, h2, h3, h4, h5, h6, h7, h8) with two hosts (h1, h2) as servers and six
hosts (h3, h4, h5, h6, h7, h8) as clients (Fig. 1). A switch was controlled by a remote
POX controller. Each data link had a bandwidth of approximately 1000 megabits per
second and 0 ms latency. An additional client host added in the network topology for
the latter part of the experiment which tested the performance of the network during
TCP SYN floods. The additional host acted as a persistent bot host.



A Framework for Performance Analysis of Various Load Balancing … 71

3.2 Mininet and POX Controller Configurations

The network topology can be created programmatically in Python. However,Mininet
has already terminal line commands on creating various types of networks based on
network topologies such as single-switch topology.

sudo mn ––topo single,8 ––controller = remote,port =
6633 ––link tc,bw = 1000,delay = 0 ms

The POXcontroller has an event called PacketIn. It triggers every time a packet
is received by the controller. The packet can be identify as TCP if it returns a value in
packet.find(‘tcp’) command. If the source IP address of the TCP packet is
a client IP address, the controller performs the load balancing method. On the other
hand, if the source IP is a server IP address, then the controller forwards the TCP
packet with the ACK response to the destination client. As explained by Peña and
Yu, flow entries could be installed and modified by sending a ofp_flow_mode()
message that matched the attributes of the packet [8].

As for the random load balancer, the controller picked a random IP address of
a live server. The POX controller already had a configuration of random balancer
which could be used anytime. As for the RR load balancer, the controller picked a
live server with the lowest IP address in the array of live servers and saved the index
of the server in thememory.Whenever a packet from a newTCP connection had been
received, the controllerwould pick the succeeding live server and its IP addresswould
be also saved. The process repeated after the controller picked the live server with
the highest IP address. As for the LC load balancer, FlowStatsReceived event
was used to determine active flows in the flow table. Each live server had a number of
connections that could be incremented if it had the least value. All TCP connections
established by client hosts had unique source port numbers. The controller saved that
port number, with selected live server’s IP address, to the memory. Using a polling
function, the controller checked each port if it still existed in the flow stats. If the
port number did not exist in the flow stats, the port number would be deleted in the
memory and the corresponding live server’s connections will be decremented. As
for the WRR, the index will be set a float value and it will be incremented by 1
divided by the weight of previously picked server. As a basic rule of programming
languages, if a float value is parsed to an integer, the result would be the floor value
of the float variable. By these, using the integer-parsed value of the index would get
the corresponding live server that can be picked by the controller. As for the WLC
load balancer, the number of connections of each live server will be also set as a
float value. Each connection that will be added to a live server must incremented to
1 divided the weight of the chosen live server.



72 P. V. A. V. Atienza and W. E. S. Yu

4 Results

The Mininet-based network was tested on five load balancing algorithms. Each host
transferred 1000MB (or approximately 8388.608 megabits) of data to the server and
this was done in iPerf 2.0.5 As for the weighted load balancers, h1 had a weight of 2
and host h2would have aweight of 1; however, the host servers still retained the same
specifications as the ones with non-weighted load balancers. Each load balancer was
tested 10 times and the result of each test was averaged.

As shown in Table 1, The network with no implemented load balancer only
uses an average of 87.53% of the total bandwidth. In contrast to the networks with
non-weighted load balancers, the throughput of the non-load balanced network is
extremely lower. The LC load balancer is more efficient than both RR and random
load balancers with throughputs 1.53% and 11.25% higher respectively. Even in
weighted load balancers, WLCwas 1.79% faster and had a 0.85% higher throughput
thanWRR load balancer. LC andWLCwere faster than RR andWRR in this scenario
since the controller could pinpoint the best server for every initiated connection.

As for the part where TCP SYN floods were included, an additional host was
added to continuously send 6 parallel TCP requests to the network. As shown in
Table 2, the network without an implemented load balancer was significantly slower
because all of the load of the TCP flood attacks was carried by only one host. The
non-load balanced network had the least network throughput as it only used 39.85%
of the total bandwidth. The RR load balancer had the fastest transfer time amongst
all load balancers. RR and WRR were slightly better than the LC and WLC as they
finished the whole transfer process 3% faster for non-weighted and 4.5% faster for
weighted. One of the main reasons why LC and WLC were slower than RR and
WRR in this scenario was because a single controller handled the decision making
of all initiated connections including those that initiated by bot host. Since RR and
WRR had better worst-cast time complexity than LC and WLC, the overhead of

Table 1 iPerf results of all load balancing techniques without TCP SYN flood

Load balancing
method

Number of
connections

Transfer time (s) Transfer rate
(Mbits/s)

% throughput

None h1: 6,
h2: –

h1: 57.5,
h2: –

h1: 875.33,
h2: –

h1: 87.53%,
h2: –

Random h1: 3,
h2: 3

h1: 26.8,
h2: 31.4

h1: 939.02.
h2: 801.46

h1: 93.90%,
h2: 80.15%

RR h1: 3,
h2: 3

h1: 25.9,
h2: 26.9

h1: 971.65,
h2: 935.53

h1: 97.17%,
h2: 93.55%

LC h1: 3,
h2: 3

h1: 25.6,
h2: 26.4

h1: 983.04,
h2: 953.25

h1: 98.30%,
h2: 95.33%

WRR h1: 4,
h2: 2

h1: 39.7,
h2: 17.6

h1: 845.20,
h2: 953.25

h1: 84.52%,
h2: 95.32%

WLC h1: 4,
h2: 2

h1: 39.0,
h2: 17.6

h1: 860.37,
h2: 953.25

h1: 86.04%,
h2: 95.32%



A Framework for Performance Analysis of Various Load Balancing … 73

Table 2 iPerf results of all load balancing techniques with TCP SYN flood

Load balancing
method

Number of
connections

Transfer time (s) Transfer rate
(Mbits/s)

% throughput

None h1: 6,
h2: –

h1:126.3,
h2: –

h1: 398.51,
h2: –

h1: 39.85%,
h2: –

Random h1: 2.5,
h2: 3.5

h1: 34.6,
h2: 58.7

h1: 484.89,
h2: 571.63

h1: 48.49%,
h2: 57.16%

RR h1: 3,
h2: 3

h1: 45.4,
h2: 53.3

h1: 554.31,
h2: 472.15

h1: 55.43%,
h2: 47.22%

LC h1: 3,
h2: 3

h1: 40.2,
h2: 54.9

h1: 626.02,
h2: 458.39

h1: 62.60%,
h2: 45.84%

WRR h1: 4,
h2: 2

h1: 57.8,
h2: 26.2

h1: 580.53,
h2: 640.35

h1: 58.05%,
h2: 64.04%

WLC h1: 4,
h2: 2

h1: 60.4,
h2: 27.8

h1: 555.54,
h2: 603.50

h1: 55.55%,
h2: 60.35%

establishing each connection was less. It was evident that the penalty of the overhead
was more prevalent than the benefit of the precise decision making of LC and WLC.

5 Conclusion and Future Works

The load balancers are successfully implemented in the POXcontroller. As the results
show, implementing a load balancer within the control layer exceedingly increase
the throughput of the network flow and decrease the transfer time by a hugely large
amount. The results also show that the LC and RR load balancers are similarly
efficient in terms of their throughput. However, a straightforward LC approach can
be inefficient in terms of TCP requests because of the TIME_WAIT state of the TCP
protocol that usually lasts around 2 min or less depending on its configuration. This
can be problematic in a busy network and may possibly lead to an unstable load
balancer.

This experiment is made to show the capability of an SDN controller to balance
the requests of all clients. Most of the load balancing techniques are difficult to
implement in a lower level network switched if SDN is not applied on the network
topology. Futureworks like testing the performance of load balancers in other types of
network topology or other types of low-level load balancing techniques, like Source
IP Hashing and Least Packets, could strengthen the substantiation of the stability
of using the software-defined networking approach. Implementing a testbed with
a distributed controller system instead of a single controller could also avoid the
bottleneck of the network.



74 P. V. A. V. Atienza and W. E. S. Yu

References

1. Kreutz D, Ramos F, Verissimo P, Rothenburg C, Azodolmolky S, Uhlig S (2015) Software-
defined networking: a comprehensive survey. Proc IEEE 103(1):14–76

2. Xia W, Wen Y, Foh CH, Niyato D, Xie H (2015) A survey of software-defined networking.
IEEE Commun Surv Tutor 17(1):27–51

3. Bhandarkar S, Khan KA (2015) Load balancing in software-defined network (SDN) based on
traffic volume. Adv Comput Sci Inf Technol (ACSIT) 2(7):72–76

4. ChatoO,YuW (2016)An exploration of various quality of servicemechanisms in anOpenFlow
and software defined networking environment in terms of latency and performance. In: 3rd
international proceedings on information science and security (ICISS). IEEE, pp 1–7

5. Guevara AG, Domingo MA, Yu W (2017) Enhancing intrusion detection and prevention sys-
tems using software defined networking in a distributed topology. In: 17th proceedings on
philippine computing science congress. CSP, Quezon City, Philippines, pp 219–228

6. Kaur S, Kumar K, Sing J, Ghumman N (2015) Round-robin based load balancing in software
defined networking. In: 2nd international proceedings on computing for sustainable global
development (INDIACom), IEEE, pp 2136–2139

7. OpenFlow Switch Specification. https://www.opennetworking.org/wp-content/uploads/2014/
10/openflow-switch-v1.5.1.pdf. Accessed 17 Jan 2018

8. Peña JG, YuW (2014) Development of a distributed firewall using software defined networking
technology. In: 4th International Proceedings on Information Science and Technology (ICIST),
IEEE, pp 449–452

9. Lantz B, Handigol N, Heller B, Jeyakumar V (2018) Introduction to Mininet. https://github.c
om/mininet/mininet/wiki/Introduction-to-Mininet. Accessed 17 Jan 2018

10. McCauley M (2018) POX Wiki. https://openflow.stanford.edu/display/ONL/POX+Wiki.
Accessed 17 Jan 2018

11. Prete L, ShinodaA, Schweitzer C, deOliveira R (2014) Simulation in an SDNnetwork scenario
using the POX controller. In: Proceedings on communications and computing (COLCOM).
IEEE, pp 1–6

https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://github.com/mininet/mininet/wiki/Introduction-to-Mininet
https://openflow.stanford.edu/display/ONL/POX%2bWiki

	A Framework for Performance Analysis of Various Load Balancing Techniques in a Software-Defined Networking Environment
	1 Introduction
	2 Theoretical Background
	2.1 Load Balancing Techniques
	2.2 OpenFlow, Mininet, and POX Controller

	3 Methodology
	3.1 Network Topology
	3.2 Mininet and POX Controller Configurations

	4 Results
	5 Conclusion and Future Works
	References


