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Foreword

Educate a child according to his way:
even as he grows old he will not depart from it.

Proverbs 22, 6

In the era of data deluge, people are no longer passive recipients of data-based
reports. They are becoming active data explorers who can plan for, acquire, man-
age, analyse, and infer from data. The goal is to use data to understand and describe
the world and answer puzzling questions with the help of data analysis tools and
visualizations. Being able to provide good evidence-based arguments and critically
evaluate data-based claims are important skills that all citizens should have and,
therefore, that all students should learn as part of their formal education.

Statistics is therefore such a necessary and important area of study. Moore
(1998) suggested that it should be viewed as one of the liberal arts and that it
involves distinctive and powerful ways of thinking. He wrote: “Statistics is a
general intellectual method that applies wherever data, variation, and chance
appear. It is a fundamental method because data, variation, and chance are omni-
present in modern life” (p. 134). Understanding the powers and limitations of data
is key to active citizenship and to the prosperity of democratic societies. It is not
surprising therefore that statistics instruction at all educational levels is gaining
more students and drawing more attention. Today’s students need to learn to work
and think with data and chance from an early age, so they begin to prepare for the
data-driven society in which they live. This book is therefore a timely and important
contribution in this direction.

This book provides a useful resource for members of the mathematics and
statistics education community that facilitates the connections between research and
practice. The research base for teaching and learning statistics and probability has
been increasing in size and scope, but has not always been connected to teaching
practice nor accessible to the many educators teaching statistics and probability in
early childhood and primary education. Despite the recognized importance of
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developing young learners’ early statistical and probabilistic reasoning and con-
ceptual understanding, the evidence base to support such a development is rare.

By focusing on this important emerging area of research and practice in early
childhood (ages 3–10), this publication fills a serious gap in the literature on the
design of probability and statistics meaningful experiences into early mathematics
teaching and learning practices. It informs best practices in research and teaching by
providing a detailed account of comprehensive overview of up-to-date international
research work on the development of young learners’ reasoning with data and
chance in formal, informal, and non-formal education contexts.

The book is also an important contribution to the growth of statistics education
as a recognized discipline. Only recently, the first International Handbook of
Research in Statistics Education has been published (Ben-Zvi, Makar, & Garfield,
2018), signifying that statistics education has matured to become a legitimate field
of knowledge and study. This current book provides another brick in building the
solid foundation of the emerging discipline by providing a comprehensive survey of
state-of-the-art knowledge, and of opportunities and challenges associated with the
early introduction of statistical and probabilistic concepts in educational settings.

By providing valuable insights into contemporary and future trends and issues
related to the development of early thinking about data and chance, this publication
will appeal to a broad audience that includes not only mathematics and statistics
education researchers, but also teaching practitioners. It is not often that a book
serves to synthesize an emerging field of study while at the same time meeting clear
practical needs: educate a child during his early years with powerful ideas in
statistics and probability even at an informal level, and even as he grows old he will
not depart from it.

It is a deep pleasure to recommend this pioneering and inspiring volume to your
attention.

Haifa, Israel Dani Ben-Zvi
The university of Haifa
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Preface

Introduction

New values and competencies are necessary for survival and prosperity in the
rapidly changing world where technological innovations have made redundant
many skills of the past. The expanding use of data for prediction and decision-
making in almost all domains of life has made it a priority for mathematics
instruction to help all students develop their statistical and probabilistic reasoning
(Franklin et al., 2007). Despite, however, the introduction of statistics in school and
university curricula, the research literature suggests poor statistical thinking among
most college-level students and adults, including those who have formally studied
the subject (Rubin, 2002; Shaughnessy, 1992).

In order to counteract this and achieve the objective of a statistically literate
citizenry, leaders in mathematics education have in recent years being advocating a
much wider and deeper role for probability and statistics in primary school math-
ematics, but also prior to schooling (Shaughnessy, Ciancetta, Best, & Canada,
2004; Makar & Ben-Zvi, 2011). It is now widely recognized that the foundations
for statistical and probabilistic reasoning should be laid in the very early years of
life rather than being reserved for secondary school level or university studies
(National Council of Teachers of Mathematics, 2000).

As the mathematics education literature indicates, young children possess an
informal knowledge of mathematical concepts that is surprisingly broad and
complex (Clements & Sarama, 2007). Although the amount of research on young
learners’ reasoning about data and chance is still relatively small, several studies
conducted during the past decade have illustrated that when given the opportunity
to participate in appropriate, technology-enhanced instructional settings that sup-
port active knowledge construction, even very young children can exhibit well-
established intuitions for fundamental statistical concepts (e.g. Bakker, 2004;
English, 2012; Leavy & Hourigan, 2018; Makar, 2014; Makar, Fielding-Wells &
Allmond, 2011; Meletiou-Mavrotheris & Paparistodemou, 2015; Paparistodemou
& Meletiou-Mavrotheris, 2008; Rubin, Hammerman, & Konold, 2006). Use of
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appropriate educational tools (e.g. dynamic statistics software), in combination with
suitable curricula and other supporting material, can provide an inquiry-based
learning environment through which genuine endeavours with data can start at a
very young age (e.g. Ben-Zvi, 2006; Gil & Ben-Zvi, 2011; Hourigan & Leavy,
2016; Leavy, 2015; Leavy & Hourigan, 2015, 2018; Paparistodemou &
Meletiou-Mavrotheris, 2010; Pratt, 2000). Through the use of meaningful contexts,
data exploration, simulation, and dynamic visualization, young children can
investigate and begin to comprehend abstract statistical concepts, developing a
strong conceptual base on which to later build a more formal study of probability
and statistics (Hall, 2011; Ireland & Watson, 2009; Konold & Lehrer, 2008; Leavy
& Hourigan, 2016, 2018; Meletiou-Mavrotheris & Paparistodemou, 2015).

Edited Volume Objectives

The edited volume will contribute to the Early Mathematics Learning and
Development Book Series, a volume focused on the development of young chil-
dren’s (ages 3–10) understanding of data and chance, an important yet neglected
area of mathematics education research. The goal of this publication is to inform
best practices in early statistics education research and instruction through the
provision of a detailed account of current best practices, challenges, and issues, and
of future trends and directions in early statistical and probabilistic learning world-
wide. Specifically, the book has the following objectives:

1. Provide a comprehensive overview of up-to-date international research work on
the development of young learners’ reasoning about data and chance in formal,
informal, and non-formal education contexts;

2. Identify and publish worldwide best practices in the design, development, and
educational use of technologies (mobile apps, dynamic software, applets, etc.) in
support of children’s early statistical and probabilistic thinking processes and
learning outcomes;

3. Provide early childhood educators with a wealth of illustrative examples, helpful
suggestions, and practical strategies on how to address the challenges arising
from the introduction of statistical and probabilistic concepts in preschool and
school curricula;

4. Contribute to future research and theory building by addressing theoretical,
epistemological, and methodological considerations regarding the design of
probability and statistics learning environments targeting young children; and

5. Account for issues of equity and diversity in early statistical and probabilistic
learning, so as to ensure increased participation of groups of children at special
risk of exclusion from math-related fields of study and careers.

This timely publication approaches an audience that is broad enough to include all
researchers and practitioners interested in the development of children’s under-
standing of data and chance in the early years of life. Early childhood educators can
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access a compilation of best practices and recommended processes for optimizing
the introduction of statistical and probabilistic concepts in the mathematics cur-
riculum. Mathematics and statistics education researchers interested in exploring
and advancing early probabilistic and statistical thinking can be informed about the
latest developments in the field and about relevant research projects currently being
implemented in various formal and informal educational settings worldwide.
Academic experts, learning technologists, and educational software developers can
become more sensitized to the needs of young learners of probability and statistics
and their teachers, supporting the development of new methodologies and tech-
nological tools. National and transnational education authorities responsible for
setting mathematics curricula and educational policies can get useful information
regarding current developments and future trends in statistics education practices
targeting young learners. Teacher education institutions can utilize the book for
further improvement of their teacher preparation programmes. Finally, the book can
also be useful to professionals and organizations offering parent training pro-
grammes in early mathematics education.

Edited Volume Contents

The edited volume has compiled a collection of knowledge on the latest develop-
ments and approaches to probability and statistics in early childhood and primary
education (ages 3–10). It has collected incisive contributions from leading
researchers and practitioners internationally, as well as from emerging scholars, on
the development of young children’s understanding of data and chance in the
prior-to-school and early school years. The contributions address a variety of theo-
retical aspects underpinning the development of early statistical and probabilistic
reasoning and their related pedagogical implications. The authors identify current
best practices, place them within the overall context of current trends in statistics
education research and practice, and consider the implications both theoretically and
practically. The majority of the chapters report on original, cutting-edge empirical
studies, which demonstrate validated practical experiences related to early statistical
and probabilistic learning. Chapters presenting interim results from innovative,
ongoing projects have also been included. The volume also contains conceptual
essays which will contribute to future research and theory building by presenting
reflective or theoretical analyses, epistemological studies, integrative and critical
literature reviews, or forecasting of emerging learning technologies and tendencies.

The book includes 17 chapters that cover a broad range of topics on early
learning of data and chance in a variety of both formal and informal education
contexts. The chapters have been organized into three parts covering the following
themes: (a) Part I: Theory and Conceptualization of Statistics and Probability in the
Early Years; (b) Part II: Learning Statistics and Probability in the Early Years;
(c) Part III: Teaching Statistics and Probability in the Early Years. Each section
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includes chapters that discuss the above from both research and innovative practice
perspectives.

Part I: Theory and Conceptualization of Statistics and Probability
in the Early Years

Chapters included in Part I focus on theoretical, epistemological, and method-
ological considerations related to early statistics education.

In Chap. 1, Katie Makar argues that conventional approaches to early statistics
education tend to undervalue young children’s capacity by adopting incremental
approaches (from simple to complex) that isolate and disconnect statistical concepts
from purposeful activity and their structural relations with other key statistical
ideas, thus making them less coherent from students’ perspective. The author
theorizes how contextual experiences can be a powerful scaffold for young children
to engage informally with powerful statistical ideas. She introduces the theoretical
notion of statistical context structures, which characterize aspects of contexts that
can expose children to key statistical ideas and structures (concepts with their
related characteristics, representations, and processes). The author claims that use of
statistical context structures to create repeated opportunities for children to expe-
rience informal statistical ideas has the potential to strengthen their understanding
of core concepts when they are developed later. A classroom case study involving
statistical inquiry by children in their first year of schooling (ages 4–5) is included
in the chapter to illustrate characteristics of age-appropriate links between contexts
and structures in statistics.

Chapter 2, authored by Zoi Nikiforidou, focuses on probabilistic thinking in
preschool years. It provides a critical review of key theories and models on the early
development of probabilistic thinking and highlights a number of pedagogical
implications while introducing probabilistic concepts in the early years. The first
part of the chapter contrasts findings from the first systematic explorations of the
origins of probabilistic thinking conducted by Piaget and Inhelder (1975) that had
indicated young children’s difficulties in differentiating between certainty and
uncertainty, to the findings of more recent studies which support pre-schoolers’
capacity for sophisticated informal understanding of probability concepts. The
second part reviews important curriculum-related aspects in embedding probabili-
ties in the early childhood classroom so as to set foundations for probability lit-
eracy. The argument is made that early years practice should use young children’s
personal experiences with probabilistic situations and their initial understandings as
stepping stones for a spiral curriculum that gradually builds probabilistic thinking
and reasoning through meaningful tasks and collaborative learning environments.

Part II: Learning Statistics and Probability

Part II includes chapters which explore issues pertaining to learner and learning
support in the early classroom, from both research and innovative practice
perspectives.
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In Chap. 3, Sibel Kazak and Aisling M. Leavy explore early primary school
children’s emergent reasoning about uncertainty from the three main perspectives
on the quantification of uncertainty: classical, frequentist, and subjective. Their
focus is on children’s subjective notion of probability which, although being closely
related to what people commonly use for everyday reasoning, is either neglected or
has minimal mention in school curriculum materials. Combining a critical literature
review with an analysis of empirical data arising from small group clinical inter-
views with children, the authors investigate the ways in which young children
reason about the likelihood of outcomes of chance events using subjective proba-
bility evaluations before and after engaging in experiments and simulations, and the
types of language they use to predict and describe stochastic outcomes.

Chapter 4 by Jane Watson describes a study which explored primitive under-
standings of variation and expectation by seven 6-year-old children in their
beginning year of formal schooling. Children worked through four interview pro-
tocols which sought to present them with meaningful contexts that would allow
them to display their naïve understandings. Across the contexts, students were
asked to make predictions and to create or manipulate representations of data. At no
time were the words “variation”, “expectation”, or “data” used with the children.
Collected videos, transcripts, and written artefacts were analysed to document
demonstration of understanding of the concepts of expectation and variation in
relation to data. Findings support Moore’s (1990) and Shaughnessy’s (2003) view
that appreciation of variation is the foundation of all statistical enquiry and the
starting point for children’s engagement with the practice of statistics. The
6-year-olds in the study had virtually no trouble recognizing and discussing vari-
ation in data, despite not always being able to explain its origin. Evidence of
appreciation of variation in children occurred much more frequently than evidence
of appreciation of expectation. This confirms Watson’s (2005) claim that, in con-
trast to the traditional order of introduction of measures of centre and spread in the
school curriculum, dealing with variation generally develops before the ability to
express meaningful expectation related to that variation.

Chapter 5, by Celi Espasandin Lopes and Dana Cox, discusses the learning of
probability and statistics by young children, centred on culturally relevant teaching
and solving problems with themes derived from the children’s culture and their
daily life context. This chapter is part of a qualitative longitudinal research project
that methodologically explores the temporal dimension of experience, in order to
discern human action and take into account the social practices, the subjective
experiences, identity, beliefs, emotions, values, contexts, and complexity of the
participants. Using some of the data collected through the longitudinal study, Lopes
and Cox identify structural elements and triggers of mathematical and statistical
learning from activities, based on probabilistic and statistical content, prepared by
the teachers who are responsible for the learners in the class. They also identify
indicators of the development of different forms of combinatorial, probabilistic, and
statistical reasoning that children acquire throughout their second and third year of
primary school (ages 7–8).
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The next chapter (Chap. 6), by Aisling M. Leavy and Mairéad Hourigan, builds
on previously conducted research on young children’s statistical reasoning when
engaged in core components of data modelling. It describes a study which inves-
tigated young children’s approaches to collecting and representing data in a data
modelling environment. The investigation involved 26 primary school children
aged 5–6 years in interpreting and investigating a context of interest and relevance
to them. The children engaged in four 60-min lessons focusing on data generation
and collection, identification of attributes, structuring and representation of data,
and making informal inferences about the results. The authors focus on the out-
comes of the first lesson which engaged children in generating and collecting data
arising from a story context. They use the Worthington and Carruthers (2003)
taxonomy of mathematical graphics to categorize the repertoire of inscriptions or
marks used by children to track and record the appearance of their data values, and
explore the justifications children provided for their invented inscriptions. They
conclude that when the focus of statistical investigation is on reasoning about and
understanding meaningful situations, the variety of marks young children make
become both a record of and an abstraction for the real event and thereby serve an
important communicative function in their efforts to make sense of and commu-
nicate statistical situations.

The aim of the design-based research study described in Chap. 7 by
Jill Fielding-Wells was to investigate the ways in which a statistical inquiry could
be facilitated in the early statistics classroom. The study insights emerged from
observation and analysis of teacher–student interactions as an experienced teacher
of inquiry scaffolded a class of 5–6-year-old students to engage with ill-structured
statistical problems. The chapter details the framework employed in the study for
introducing statistical inquiry to these young students and then provides an over-
view of the study findings. Sufficient detail of the classroom context is provided to
enable the reader to envisage the learning. Implications and suggestions for edu-
cators are addressed.

Chapter 8, authored by Gilda Guimarães and Izabella Oliveira, examines young
students’ (aged 5–9) and their teachers’ knowledge regarding activities involving
classification, in the context of a statistical investigation. The chapter presents the
results of three different studies conducted by the authors’ research group, which
involved students and/or teachers of the earliest school years. The first study
involved 20 kindergarten children (aged 5), the second study 48 Grade 3 children
(aged 8) and 16 early grade teachers, and the third study 72 Grade 4 children (aged
8–9). Findings of these studies demonstrate that people are able, from a very young
age, to classify based on a previously defined criterion and to discover a classifi-
cation criterion, but that they have difficulties in creating criteria to carry out a
classification. The authors justify the reasons behind children’s difficulties and
make suggestions as to how instruction could utilize kindergarten children’s ability
to classify in different situations using pre-defined criteria to help them build skills
in producing their own classification criteria.
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Parts III–V: Teaching Statistics and Probability: Curriculum Issues, Tasks
and Materials, and Modelling

Parts III–V focuses on issues related to statistics and probability teaching and on
providing insights on how to support teachers and other educators in the adoption
of the new pedagogical approaches that are needed for successful statistics
instruction in the early years. The part is further divided into the following three
subparts: (i) Curriculum Issues, (ii) Tasks and Materials, and (iii) Modelling.

Curriculum Issues

In Chap. 9, Randall E. Groth unpacks implicit disagreements among various early
childhood standards for probability and statistics regarding the roles of
student-posed statistical questions, probability language, and variability in young
students’ learning. He considers several different sources of disagreement including
beliefs about students’ abilities, beliefs about teachers’ abilities, robustness and
influence of the research literature, and priorities for early mathematics education in
the early grades. The aim of the author is to define a space in which disagreements
about curriculum standards for early childhood and primary statistics are made
explicit and then respectfully analysed. In considering the different sources of
disagreement, Groth makes suggestions for directions that could be taken by the
field so as to provide high-quality statistics education for all young learners.
Suggestions are made for ways to move towards a greater degree of consensus
across standards documents. At the same time, steps that could be taken to support
early statistics teaching and research in absence of consensus on curriculum stan-
dards are also highlighted. Specifically, Groth suggests the use of boundary objects,
which allow related communities of practice to operate jointly despite the existence
of disagreement.

In Chap. 10, Carmen Batanero, Pedro Arteaga, and María M. Gea argue that
statistical graphs are complex semiotic tools requiring different interpretative pro-
cesses of the graph components in addition to the entire graph itself. Based on this
argument and on hierarchies proposed in previously conducted research, they
analyse the content related to statistical graphs of the Spanish curricula, textbooks,
and external compulsory examinations taken by 6–9-year-old children. Batanero
et al. investigate the types of graphs introduced in the curriculum, the type of
activity demanded, the reading levels required from children, as well as the graph
semiotic complexity and the task context. This analysis leads the authors to the
conclusion that the expected progression in young children’s learning of statistical
graphs as reflected in the Spanish current curricular guidelines, the textbooks, and
the external assessment is in accord with contemporary research literature recom-
mendations for the teaching of graphs. Curricular materials introduce a rich variety
of different types of graphs, activities, tasks, and contexts, with reading levels being
adequately ordered in progressive difficulty in the different grades as described by
Curcio (1989) and Shaughnessy, Garfield and Greer (1996), and with the graph
semiotic complexity (Batanero, Arteaga & Ruiz, 2010) being age-appropriate.
Nonetheless, Batanero et al. caution that, in some of the textbooks, an excessive
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emphasis is being placed on computation with the graph data, resulting in a very
high percentage of reading between the data (level 2) activities when compared to
reading beyond the data (level 3) and reading behind the data (level 4) activities.
Due to this and other important differences between textbooks observed, Batanero
et al. highlight the responsibility of teachers when selecting the most adequate book
for their students.

Tasks and Materials

Chapter 11, authored by Virginia Kinnear, explores the dual role that picture sto-
rybooks can play in contextualizing a statistical problem for investigation through
the provision of both an engaging context for the task and of the context knowledge
children can use to find a solution to the problem. The chapter presents the results of
a small study conducted with fourteen 5-year-old children in a public school in
Australia. The study’s theoretical perspective, Models and Modeling (Lesh &
Doerr, 2003), provided a theoretical framework for task design principles. Three
picture storybooks were used to initiate three separate and consecutively imple-
mented statistical problems (as data modelling activities). The study investigated
the role of the picture storybooks in initiating children’s interest in the statistical
context of the problem and in handling the data to solve the statistical problem. The
chapter identifies the characteristics of the books that interested children and dis-
cusses how knowledge of these characteristics could be used to inform educators’
selection of picture storybooks, so as to stimulate students’ interest in statistical
problem-solving activities. The unique challenges in identifying books for con-
textualizing statistical problems are also discussed.

Chapter 12 by Efi Paparistodemou and Maria Meletiou-Mavrotheris presents a
study which investigated early childhood teachers’ planning, teaching, and reflec-
tion on stochastic activities targeting young children (4–6-year-olds). Five early
childhood teachers (all females) participated in this research, which was organized
in three stages. In Stage 1, the teachers were engaged in lesson planning. They
selected a topic from the national mathematics curriculum on probability and
statistics and developed a lesson plan and accompanying teaching material aligned
with the learning objectives specified in the curriculum. In Stage 2, they imple-
mented the lesson plans in their classroom, with the support of the researchers.
Once the classroom implementation was completed, in Stage 3, teachers were
interviewed and prepared and submitted a reflection paper, where they shared their
observations on students’ reactions during the lesson, noting what went well and
what difficulties they faced and making suggestions for improvement. The
researchers analysed the design of each lesson, observed teachers implementing
their lesson, and interviewed them while they reflected on their instruction. The
study has provided some useful insights into the varying levels of attention teachers
paid to different kinds of activities during their lesson implementation, and into the
different types of instructional material they used. Findings indicate that the early
childhood teachers in this study appreciated the importance of using tools and
real-life scenarios in their classrooms for teaching stochastics. They had rich ideas
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about the context, but needed extra effort to understand the stochastical ideas hidden
in the tasks. Moreover, the findings also show that early childhood teachers’
attention to different aspects of probability tasks can be developed through a
reflective process on their teaching.

The next chapter, by Daniel Frischemeier, addresses the following two ques-
tions: in what manner is it possible to introduce early statistical reasoning elements
(in regard to analysing large data sets) in German primary school? In what manner
is it possible to lead Grade 4 students to fundamental statistical activities such as
group comparisons? The first part of the chapter describes the design and imple-
mentation of a teaching unit on early statistical reasoning for German primary
school students in Grade 4. The teaching unit was designed and developed using the
design-based research approach (Cobb, Confrey, diSessa, Lehrer, & Schauble,
2003), and it incorporated key elements of the Statistical Reasoning Learning
Environment (Garfield & Ben-Zvi, 2008): focus on central statistical ideas (group
comparisons), use of real and motivating data sets (class and school data), use of
engaging classroom activities (cooperative learning environments), employment of
multiple representation levels (enactive, ikonic, symbolic), integration of appro-
priate technological tools (TinkerPlots) for analysing large and real data sets and
comparing groups. The second part of the chapter presents results of an empirical
study which investigated how a class of 11 (n = 11) Grade 4 students compared
groups before and after experiencing the teaching unit described in part 1 of the
chapter. The results show the potential of engaging young students’ sophisticated
statistical reasoning with some pedagogical support at an early stage and provide
some design ideas for instructional sequences to lead young children to group
comparisons.

In Chap. 14, Soldedad Estrella focuses on the challenging process of repre-
senting (modelling) for pupils in the first years of school. She makes a teaching
proposal which involves the exploration of a set of raw data before young children
can then go on to build their own representations to reveal and provide evidence
of the behaviour of the data, its patterns, and relationships. Estrella first describes
some concepts that support the teaching proposal and its aim to develop statistical
thinking: meta-representational competence (MRC), some components of repre-
sentation, transnumeration, statistical thinking, and data sense. She then goes on to
detail the experiences of three 5-year-old preschool students (from a class of
27 students) and two 7-year-old primary pupils (from a class of 38 pupils) that
participated in an open-ended data organization lesson. In both classes, the lesson
was jointly designed by teachers in the school (a group of four preschool teachers
and a group of four second Grade 4 teachers) that participated in a professional
development course on statistics education which adopted the lesson study
approach. Findings from the study indicate that strengthening teachers’ reflections
in lesson study groups promotes the connection between theory and teaching
practice, enabling teachers to innovate in the statistics classroom and to get children
involved in resolving exploratory data analysis situations. The richness of partici-
pating students’ productions provided evidence of essential components of data
representations and of increased understanding of data behaviour acquired by the
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children when freely developing their own representations. The chapter presents the
diverse data representations produced by the children, details components (statis-
tical, numerical, and geometric) of the different representations, and identifies
transnumeration techniques they used, which helped them to gain deeper under-
standing of the characteristics of a data set and its relationships.

The intent of Chap. 15 authored by Lucía Zapata-Cardona was to explore young
children’s counting combinatorial strategies and to reflect on how these strategies
could orient teachers’ actions in the classroom when teaching combinatorics in the
early years. To address this goal, a convenience sample of three young children
(ages 6–8) were interviewed in a home setting while solving a combinatorial task
centred on the process of combinatorial counting. The task was presented in verbal
form and was accompanied by some manipulatives to help children visualize,
explore, model, and solve the combinatorial task. Zapata-Cardona provides a
thorough description of the combinatorial counting strategies the young children
activated when solving the task, so as to illustrate the kind of questions and
strategies that researchers and teachers could use to challenge young children’s
combinatorial reasoning and make them go beyond their initial strategies. One
of the main ideas revealed through the investigation of the young children’s
strategies was the close relationship between their combinatorial reasoning and
multiplicative reasoning, leading Zapata-Cardona to the conclusion that combina-
torial reasoning could be stimulated from the moment children begin to work with
multiplication rather than waiting for formal combinatorial instruction which usu-
ally occurs in secondary education. The author argues that teachers’ strategies to
support young children’s combinatorial reasoning need to be grounded upon the
parallel development of multiplicative reasoning; i.e. they should support young
children’s exploration of combinatorial counting processes through solving differ-
ent formats of multiplicative situations. The chapter ends by presenting and dis-
cussing some strategies for teachers to support and challenge young children’s
combinatorial reasoning as drawn from the current study and the existing research
literature on combinatorial development in the early years. These strategies include
interesting tasks which to children to deal with combinatorial counting situations in
a playful, attractive, and familiar way, manipulatives to support the modelling and
exploration of combinatorial situations, and probing questions by the teacher to
focus children’s attention and to challenge their reasoning.

Modelling

In Chap. 16, Maria Meletiou-Mavrotheris, Efi Paparistodemou, and Loucas
Tsouccas explore the educational potential of games for enhancing statistics
instruction in the early years. Acknowledging the crucial role of teachers in any
effort to bring about change and innovation, the authors conducted a study aimed at
equipping a group of in-service primary teachers with the knowledge, skills, and
practical experience required to effectively exploit digital games as a tool for fos-
tering young children’s motivation and learning of statistics. The study took place
within a professional development programme focused on the integration of games
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within the early mathematics curriculum (Grades 1–3; ages 6–9), which was
designed based on the Technological, Pedagogical and Content Knowledge
(TPACK) framework (Mishra & Koehler, 2006) and was attended by six (n = 6)
teachers. Following the TPACK model and action research procedures, the study
was carried out in three phases: (i) familiarization with game-based learning;
(ii) lesson planning; and (iii) lesson implementation and reflection. Each of the three
phases supported teachers in strengthening the connections among their techno-
logical, pedagogical, and content knowledge. At the same time, various forms of
data were collected and analysed in order to track changes in teachers’ TPACK
regarding game-enhanced statistics learning in the early years. Findings illustrate
the usefulness of TPACK as a means of both studying and facilitating teachers’
professional growth in the use of games in early statistics education. They indicate
that the TPACK-guided professional development programme had a positive
impact on all three perspectives of the participants’ experiences examined: (i) atti-
tudes and perceptions regarding game-enhanced learning; (ii) TPACK competency
for using digital games; and (iii) level of transfer and adoption of acquired TPACK
to actual teaching practice.

In Chap. 17, Lyn D. English describes two investigations which revealed
8-year-olds’ statistical literacy in modelling with data and chance. These two
investigations, one dealing with statistics and the other with probability, were
implemented during the first year of a 4-year longitudinal study being conducted
across grades 3 through 6 in two Australian cities. This was the participating
students’ first exposure to modelling with data. Children’s responses to both
investigations were explored in terms of how they identified variation, made
informal inferences, created representations, and interpreted their resultant models.
The responses indicate that these young students were developing important
foundational components of statistical literacy. Using their understanding of vari-
ation as a foundation, they were able to make predictions based on their findings
and to draw informal inferences, as well as generate and interpret a range of
representational models to display data. This, English argues, points to the need for
early statistics education to provide more opportunities for children to engage in
modelling involving data and chance in order to capitalize on, and advance, their
learning potential.

Concluding Remarks

Despite the importance of developing young learners’ early statistical and proba-
bilistic reasoning, the evidence base to support such development is scarce. An
urgent need exists for scholarly publications, and a broader research agenda aimed
at investigating the infiltration of probability and statistics into early mathematics
teaching and learning practices and experiences. Thus, by focusing on this
important emerging area of both research and practice, this publication fills a sig-
nificant gap in the early mathematics education literature. To the best of our
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knowledge, this is the first international book to provide a comprehensive survey of
state-of-the-art knowledge, and of opportunities and challenges associated with the
early introduction of statistical and probabilistic concepts in educational settings,
but also at home. While there are several manuscripts covering various aspects of
early mathematics education, no other book focuses specifically on the disciplinary
particularities of early statistics learning. With contributions from many leading
international experts, this book provides the first detailed account of the theory and
research underlying early statistics learning. It gives valuable insights into con-
temporary and future trends and issues related to early statistics education,
informing best practices in mathematics education research and teaching practice.

Limerick, Ireland Aisling Leavy
Nicosia, Cyprus Maria Meletiou-Mavrotheris
Latsia, Nicosia, Cyprus Efi Paparistodemou
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Chapter 1
Theorising Links Between Context
and Structure to Introduce Powerful
Statistical Ideas in the Early Years

Katie Makar

Abstract Recent literature in the early years has emphasised the benefits of intro-
ducing children to powerful disciplinary ideas. Powerful ideas in statistics such as
variability, aggregate, population, the need for data, data representation and statis-
tical inquiry are generally introduced in the later years of schooling or university
and therefore may be considered too difficult for young children. However, at an
informal level, these ideas arise in contexts that are accessible to young children.
The aim of this chapter is to theorise important relations between children’s contex-
tual experiences and key structures in statistics. It introduces the notion of statistical
context–structures, which characterise aspects of contexts that can expose children
to important statistical ideas. A classroom case study involving statistical inquiry by
children in their first year of schooling (ages 4–5) is included to illustrate charac-
teristics of age-appropriate links between contexts and structures in statistics. Over
time, engaging children in significant activities that rely on statistical context–struc-
tures can provide children with multiple opportunities to experience statistics as a
coherent and purposeful discipline and develop rich networks of informal statisti-
cal concepts well before ideas are formalised. For teachers and curriculum writers,
statistical context–structures provide a framework to design statistical inquiries that
directly address learning intentions and curricular goals.

1.1 Introduction

Researchers have long argued that powerful mathematical ideas are accessible to
young children (e.g. Alexander, White, & Daugherty, 1997; English & Mulligan,
2013; Greer, Verschaffel, & Mukhopadhyay, 2007; Perry & Dockett, 2008). Yet
many approaches to teaching young children undervalue their capacity—and there-
fore limit their opportunities—to access powerful statistical ideas. Content is often
disconnected from purposeful activity, and learning sequences tend to focus on small
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4 K. Makar

increments building from simple to complex. Incremental approaches tend to isolate
and disconnect statistical ideas from their rich contextual and structural relationswith
other key ideas, making them less coherent from the students’ perspective (Bakker
& Derry, 2011).

Addressing the gap between the conviction that children can benefit from access
to powerful statistical ideas and the operationalisation of this conviction is critical.
How does one design age-appropriate learning experiences with complex content?
In this paper, I theorise how the context of a problem can be a powerful scaffold for
children to engage informally with powerful statistical ideas. The paper introduces
the theoretical notion of statistical context–structures, which characterise aspects
of problem contexts that can expose children to key statistical ideas and structures
(concepts with their related characteristics, representations and processes). Using
statistical context–structures to create repeated opportunities for children to experi-
ence informal statistical ideas has the potential to strengthen their understanding of
core concepts when they are developed later. Exposure to informal concepts across
a variety of problem contexts highlights their relationships to other core concepts,
develops coherence of how statistical ideas work together, assists students to recog-
nise contexts in which the ideas are appropriate and potentially useful, and improves
the sense of relevance of statistical ideas.

The aim of this paper is to illustrate how a teacher in an early years classroom
(children aged 4–5 years) used a personal problem context to informally introduce,
scaffold and develop informal yet powerful statistical content. Over the course of two
lessons, she used an inquiry approach and a context familiar to students to leverage
initial conceptions of variability, aggregate, population, a need for data and the value
of representation to record, analyse and communicate ideas about data.

1.2 Literature Review and Theoretical Framework

Statistical concepts that are isolated become atomistic and impoverished (Bakker &
Derry, 2011). To develop rich statistical understandings, studentsmust see how statis-
tical concepts and structures are related to one another, to practices and conventions,
to their prior knowledges and experiences, and their utility for solving problems.
The focus of this literature review is on understanding links between students’ rea-
soning in problem contexts and their reasoning about key structures in the discipline
(mathematics or statistics).

Literature on informal learning environments has begun to establish how rea-
soning in context can strengthen students’ valuing of mathematics and relationships
between concepts. There has long been acknowledgement of a gap between students’
formal and informal knowledge and reasoning (Confrey & Kazak, 2006; Raman,
2002; Sadler, 2004). Much of this is the result of teaching formal concepts before
students have developed understanding of both their usefulness for solving problems
and their connections to students’ prior knowledge and belief structures. Because
“mathematical ideas are fundamentally rooted in action and situated in activity”
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Table 1.1 Mapping of statistical context–structures in Makar (2014)

Context entity Statistical structures Statistical context–structure
and reasoning

Height data The measure of how tall a
person is can be collected and
recorded as height (cm) data

Height of a child Single data point A child is associated with their
height data

Heights of students in the class Aggregate Collectively, the heights of the
children in the class can be
considered as an entity to
investigate

Heights of children in the class
differed

Variability Because all heights in the class
were not the same, the
children had to grapple with
how to manage the variability
of the height data

Organised heights clumped in
the middle

Distribution shape When children invented ways
to record and organise the
data, they noticed that most
heights were in the middle and
fewer heights were high or low
in value; this feature was
stable across both classes

Typical height Average To find the typical height,
children invented a point
estimate to capture the most
common height (mode) and an
interval estimate to capture
where “most” heights
clumped. They used these
estimates to predict (with
uncertainty) the typical heights
of children in other classrooms

Height of very tall child Outlier One child was substantially
taller than the others and they
considered this student to have
atypical height. They reasoned
that it was unlikely to see this
height in other classes

(continued)
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Table 1.1 (continued)

Context entity Statistical structures Statistical context–structure
and reasoning

The heights of children in
another class were collected
and compared to their class

Sampling variability Their surprise that the data in
the class next door were
similar to but different than
their own class data prompted
discussions about what aspects
of their data were likely or
unlikely to be encountered in
other classes (e.g. similar
values but different
frequencies of each height;
similar but possibly not
exactly the same typical
height)

The typical height of the
children in one class was used
to predict the typical height of
children in another class and
across Australia

sample-population inference One Vietnamese child argued
that her mother was considered
short in Australia, but was of
typical height in Vietnam. This
prompted students to clarify
that their classroom was not
representative of other
countries and that data would
need to be collected from a
country to find the typical
heights there

(Confrey & Kazak, 2006, p. 322), learning concepts first informally as they are
situated in problems allows students to build experiences over time with rich math-
ematical structures. These experiences with informal ideas also develop students’
sense of the utility of mathematical ideas before their formalisation. “People extract
information about the world more often than they are aware and that this knowledge
exists in tacit form, influencing thought and behaviour while itself remaining mostly
concealed from conscious awareness” (Litman & Reber, 2005, p. 440). For example,
social practices (including mathematical conventions) can become adopted without
the learner being conscious of what is being learned. Boekaerts and Minnaert (1999)
argue that the active, non-threatening and explorative nature of informal learning
can assist to develop and sustain students’ learning in line with social goals and
expectations elicited by the context, since “most informal learning contexts are more
powerful for developing criteria for success, progress, and satisfaction, which are in
accordance with the students’ own need structure” (p. 542). Boekaerts and Minnaert
further contend that informal learning can heighten students’ valuing and learning
goals because they perceive learning to be natural and spontaneous.

The theoretical framework in this chapter develops the idea of statistical con-
text–structures. Statistical structures maintain consistent patterns (invariances),
despite statistics being a field of variability. Statistical context–structures are concep-
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tualised as amapping between a connectedwebof statistical structures (conceptswith
their related characteristics, representations and processes) and contextual entities
that stand in for the statistical structures, with relationships between the contextual
entities corresponding to the relationships between the statistical structures. Rea-
soning about the contextual entities is analogous to reasoning about the statistical
structures.

For example, the typical height of children in a classroom is a contextual entity
that would allow students to reason about the concept of central tendency without
explicitly learning about the statistical mean. Students’ reasoning about the mean as
a representative measure of Year 3 students’ heights is still possible even though they
have not formally learned what a mean is or how to calculate it. A key benefit is that
their reasoning can include the relationship of the mean to other statistical concepts.
A study by Makar (2014), for example, highlighted how Year 3 children (aged 7–8)
reasoned about variability, distribution (shape, spread, centre, outliers) and sample-
population inference as theywrestledwith how to find the “typical height” of the chil-
dren in their classroom. In the process, they invented and critiqued iterations of data
displays of increasing sophistication resulting in a graph similar to a histogram. In this
example, the children encountered multiple statistical context–structures (Table 1.1).
None of the statistical structures they encountered were formalised, but by repeat-
edly reasoning about the context, the students gained important experiences with
informal versions of advanced statistical structures on which they could later map
onto the formal ideas (McGowen & Tall, 2010), while formally addressing the con-
tent for their own year level.1 The role of the teacher was critical here to scaffold
student learning through engineering learning experiences and using questioning to
guide students’ ideas. For example, the heights of the children in the class differed
(see column 1, Table 1.1). Children were not formally taught the statistical structure
“variability” (e.g. the concept of variability with its related terminology, characteris-
tics, representations, measures and relationships with other statistical structures such
as “distribution”), as this would not be appropriate content for 7–8-year-olds. Even
without formally learning the statistical structure “variability” (see column 2), the
children were able to work with variability in the context of managing the differing
heights of the children in their class (see column 3). When children had to predict the
typical height of Year 3 students in the class next door, they had to grapple with the
variability of the height data in their class. Reasoning about differing heights in that
context was analogous (and more age-appropriate) to reasoning about variability.
The characteristics, representations and processes related to variability were, to the
children, the characteristics, representations and processes needed for making sense
of the differing heights.

In contrast, themean is often taught as a calculation of a set of numbers towork out
the “average” of that set. Multiple studies have highlighted how this approach has
created an impoverished conceptualisation of central tendency as students neither

1In the Year 3 curriculum in Australia (Australian Curriculum:Mathematics, 2016), students would
be expected to be able to identity an issue/question and relevant data to collect (ACMSP068), carry
out a simple data investigation (ACMSP069) and interpret and compare data displays (ACMSP070).
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see the mean as a representative value of a data set nor link it to related ideas of
distribution, sampling or inference (Bakker & Derry, 2011; Konold et al., 2002;
Mokros & Russell, 1995; Watson, 2006). Bakker and Derry (2011) have argued that
an atomistic approach to learning in statistics, where ideas are taught in isolation,
has resulted in a lack of coherence in students’ statistical thinking. They contend that
this has been one of the key challenges in statistics education. However, within rich
well-engineered contexts, there are multiple and diverse ways and opportunities to
work informally with foundational relationships among statistical structures.

1.3 Methodology

This article is based on a case study of a classroom of young children in the first
year of schooling (called Foundation or Prep in Australia). Case study is beneficial
to generate insights through “the complexities and contradictions” (Flyvbjerg, 2006,
p. 237) of narrative as a problem is played out in practice. It creates opportunities
for the researcher to wrestle with a theoretical problem through issues that arise,
including serendipitously, in empirical details of the case.

As an account of practice, explained analytically, case study is a valuable methodology for
the research of educational practice, particularly given the scope for the representation of
complex practice with multiple and bundled trajectories. Thus, while on the one hand the
case attempts to represent complex practice; the case study is the analytical explanation,
constructed and crafted to recount, analyse and generate … new ways of understanding
complex practices. (Miles, 2015, pp. 315–316)

The case reported in this article used a retrospective analysis of data collected from
a larger study that aimed to understand teachers’ experiences over time in teach-
ing mathematics through inquiry (e.g. Makar, 2012). At the time the lessons were
conducted, the teacher and researcher were interested more generally in how young
children respond to and are guided in inquiry. The retrospective analysis of the two
lessons captured in this article allowed the researcher to study these lessons anew to
seek insight into the way that the teacher and students utilised the problem context
of the inquiry to scaffold the children’s thinking about statistical concepts, repre-
sentations and processes. In order words, the retrospective analysis was used by the
author to identify the use of statistical context–structures and how the teacher used
them to guide students’ statistical reasoning.

1.3.1 Participants and Lessons

The participants in the case study were in a prep class (about 20–25 children, aged
4–5 years old) in a suburb of a major city in Australia (prep is equivalent to kinder-
garten in most countries). The teacher was highly experienced in teaching with
inquiry but this was her first time teaching this age of class (previously she taught
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Year 3, ages 7–8 years). The data in this paper relied on classroom videos from two
40 min lessons taught on consecutive days at the end of the second month of the
school year (in Australia, the school year runs from late January to mid-December).
In the first lesson, the teacher introduced the question, “Do most students in Prep L
have blue eyes?” and as a class the students sought a method to find out. Iterations
of investigation and discussion were used to build on children’s experiences and
resulting ideas, scaffolded by the teacher. Children individually followed methods
that made sense to them, observed their peers’ work and discussed their ongoing
progress with the teacher and/or as a class. In the second lesson, children contin-
ued their progress towards answering the inquiry question using iterative cycles of
investigation work and whole class discussion. The lesson wrapped up by counting
children with each eye colour.

1.3.2 Data Collection and Analysis

Video data are not objective, nor do they capture all of what is happening in a class
(Roschelle, 2000). The choice of placement is deliberate and depends on the research
aims. In this study, there were two key placements of the camera—stationary or rov-
ing. In either case, the choices that were made were based on seeking insights into
students’ ideas and the teacher’s interaction with them. The camera was used in a sta-
tionary mode (on the tripod) if the focus was on the whole class, for example, during
sessions when students were seated altogether on the carpet (e.g. when lessons were
introduced or during sharing sessions). This allowed for the researcher to gain both
general context for the timeline of events and also captured individual contributions
by the teacher and students. In particular, this was a critical aspect of data collec-
tion to focus on the teacher’s questions and how she guided the learning, as well as
students’ articulation of their thinking at a particular stage of the lesson. Together,
this focus on the teacher and students’ sharing allowed for the evolution of ideas to
be traced to when they were first introduced. The camera was in roving mode (on or
off the tripod) when students were working at their tables. During working sessions,
the camera either followed the teacher as she interacted with students or it captured
students working at one of the tables.

The data were analysed retrospectively using a video analysis process adapted
from Powell, Francisco and Maher (2003). The process included seven stages: (1)
intent viewing, (2) describing the video data, (3) identifying critical events, (4) tran-
scribing, (5) annotating, (6) constructing a storyline and (7) composing narrative
(p. 413). In the initial three stages, the videoed lessons were observed and a video
log was created with timestamps, screen-captured images and short-running descrip-
tions of what was happening. Critical events were marked in the video log as rich
segments for potential analysis to help focus the observation. These first three stages
provided an overall picture of the lesson to ensure that the data were fit for purpose to
move to the fourth stage (transcription). The transcriptwas used to select and annotate
excerpts and construct a preliminary (but disjointed) storyline. The author met with
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the teacher of the lesson to discuss the storyline, clarify the researcher’s observations
and focus the direction of the narrative. The resulting narrative was developed by
iteratively reviewing, editing and elaborating the initial storyline including a second
consultation with the teacher.

1.4 Results

The results section will use data from a prep class (ages 4–5) as they investigated
the question, Do Most Children in Prep L have Blue Eyes? This question came from
a comment made in the class by one of the children during an activity about their
own eye colour. In setting up this question, the teacher used this problem context
to informally introduce five key statistical ideas and structures: (1) acknowledging
variability as an issue to resolve; (2) recognising that the individual and the aggre-
gate are related, but not the same; (3) distinguishing what the population is for the
investigation; (4) being aware of the need for data and evidence; and (5) valuing rep-
resentations as ways to record, analyse and communicate results from data in solving
problems. The data across the two lessons are presented chronologically in order to
illustrate the development of students thinking over the lessons, although the entirety
of the lessons is not presented. The critical role that the teacher played is highlighted
to scaffold and progress reasoning using the statistical context–structures.

1.4.1 Informally Introducing Variability, Aggregate
and Population

In introducing the inquiry question, the teacher Ms Louarn asked students to express
their initial thoughts about whether most students in the class had blue eyes. Because
this question is about a characteristic of the class as a whole, it is a question about
the aggregate. Ms Louarn encouraged students to share their ideas and emphasised
when students observed that there were different eye colours in the class (variability).
At the same time, she nudged their anecdotal comments towards thinking about the
aggregate.
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Oliver: Some people have green eyes too.

Ms Louarn: They certainly do. So, do you think that more people in prep would have
green eyes or blue eyes?

Oliver: Green eyes.

Ms Louarn: You think lots of people would have green eyes. What do you think, Kai? …

Kai: The lessest have green eyes

Ms Louarn: Less. Is that what you’re saying? So you think fewer people in prep have
green eyes than blue eyes. [Lesson 1; starting at video timestamp 1:04]

Oliver’s response could either have been an observation, or perhaps a counter-
example to the question. That is, his point that “Some people have green eyes too”
may have been an answer to the investigation question (Do most students in Prep
L have blue eyes) using anecdotal evidence. To encourage Oliver to think about
the aggregate question, Ms Louarn incorporated his response into the investigation
question to ask him again. His response, again green eyes, was acknowledged before
she moved on to another response. The teacher emphasised two key points: first,
that there was variability in the class in relation to eye colour (linking difference
between individuals with the variability of the aggregate), and second, that there was
a lack of consensus about which eye colour in the class was the most common (an
aggregate question). This second point suggested a need for evidence (data), a point
Ms Louarn would return to. The problem under investigation allowed for students to
reason about variability because not all eye colours were the same. It also allowed
them to reason about characteristics of the aggregate (whether the majority of the
class had blue eyes) as opposed to individuals, giving them experience reasoning
about the aggregate.

As students continued to share, the opportunity arose to clarify the population
under investigation when students mentioned their parents’ eye colours.

Ava: I think most of the people in this class, they have brown eyes.

Ms Louarn: Do you know anybody with brown eyes?

Ava: … Um, my mum does, my dad doesn’t.

Ms Louarn: Are your mum and dad in prep?

Ava: No.

Ms Louarn: It’s great to know mum and dad’s eyes. Let’s just think about children in prep
at the moment. … Kai?

Kai: My dad has green eyes.

Ms Louarn: Yes, so sometimes our parents have different eyes from us, and obviously you
have got brown eyes and you’re saying your dad has got green eyes. We are
just going to talk about people in prep at the moment. [1:56]
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Ava introduced a third eye colour, brown, as a possible answer to the inquiry
question. She also went further to bring in others she knew, like her mother, who
had brown eyes. This allowed Ms Louarn to press further to informally clarify the
population that was the target of their inquiry. The response from Kai suggested
that this point was not yet acknowledged by the children. Note, however, that the
variability of eye colour was a tacit assumption within the problem space.

By this stage, early in the lesson, the children had begun to experience several
statistical context–structures through discussing the question, Do most students in
Prep L have blue eyes? Four statistical structures that they encountered at an infor-
mal level (recognised by adults as data, variability, aggregate, population) were not
experienced in isolation, and they were experienced by the children within the prob-
lem context (their personal context), as context–structures. That is, when children
reasoned about “eyes”, they were reasoning about “data”. As context–structures, the
statistical structures were considered in relation to one another (e.g. different colours
of eyes created a challenge to consider a question about “eyes” as an aggregate; the
aggregate in question did not include their parents, who were outside the popula-
tion). Variability, aggregate and population were also considered in relation to the
statistical idea that data are evidence, which is the focus in the next section.

1.4.2 Suggesting a Need for Data

Throughout the sharing session, the teacher guided the discussion within the
familiarity of the context, while concurrently and informally emphasising statistical
relationships. It would have been possible for her not to emphasise these aspects
by exploring, for example, children’s eye colours in relation to their parents or
encouraging general sharing about people who children knew had various eye
colours. Ms Louarn also could have curtailed the discussion above by asking the
children to sort their eye colour drawings into categories or stacking them like a bar
graph. However, the teacher instead used the investigation to begin to informally
develop statistical ideas, the need for evidence and the important role that data play
in answering a statistical question.

Following the discussion above, Ms Louarn moved to elicit from the children an
approach to address the inquiry question. Some of the seeds of this investigation had
already been sown: the lack of consensus about which eye colour was most common,
discussions of evidence (individual anecdote and aggregate) and suggestion of the
population of focus. Students shared their ideas as Ms Louarn recorded them. Most
children focused on initially just looking at their peers’ eyes. For example, Will
said, “We, um, we could go and look at eyes. We should go and look in the eyes”.
After this idea was repeated by other children, the teacher confirmed with a show of
hands that most in the class agreed that they would go around and look at everyone’s
eyes in the class.

At this point, the children had (with assistance) suggested that in order to find
out whether most children in the class had blue eyes, they would need to look at the
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eyes of the children in their class. Although this may seem obvious to an adult, this
was an initial and tentative link between the question and a suggestion that evidence
was needed to check if this claim was true. At this age, they were not yet thinking
about how just looking at everyone’s eyes could help them to answer the inquiry
question. They were yet to recognise a need for data: to record their observations as
they looked at eyes or to analyse their recordings to determine an answer.

Ms Louarn: Who’s got a different idea?

Mila: I will look at, um, um, everyone’s colours eyes, and I will, um, um, make a
picture.

Ms Louarn: Ah! Mila has got an interesting thing, she says she is going to look at
everybody’s eyes and then she is going make a picture. What sort of picture
you would make Mila?

Mila: (unintelligible) then I’m gonna to paint all of the eyes and then, I am gonna,
um, um, and then I’m gonna put them in my, and then I’m going to make my
own shop, and then I am gonna make lots of different colours of friends!

Ms Louarn: So, I think this what you said. That are going to find out what colour eyes
everybody’s got and you’re going to draw a picture of their eyes. Is that what
you said? (Mila smiles and nods) That’s a really an interesting idea. I’d like to
think about that. (To the class) Do you think that might help us remember,
whose eyes that we’ve got?

Students: yes

Ms Louarn: That’s a great idea. We go and look at everybody’s eyes and then we draw a
picture, so that we can remember the colour of everybody eyes. Thank you
Mila, I like that idea. [7:57]

Mila’s mention of a drawing gave Ms Louarn an opportunity to reframe her sug-
gestion as away of recording their observations, emphasising the benefit of recording
as a way to remember and keep track of whose eyes were observed. Sienna built on
Mila’s idea and suggested using the drawings to find out what everyone’s eye colours
were (and they’d be done).

Ms Louarn: Ah! So you are suggesting that if we look at the pictures of ourselves that we
could find out from them what colour eyes people have got. That’s a good
idea too. And what you would do after that? So you would look at ourselves
over there, and then what would you do?

Sienna: Then you look if you’re right and if they’re right. And you can see that they
are right. [10:33]

Using Sienna’s mention of their drawings, Ms Louarn privileged Sienna’s idea to
emphasise the benefit of using representations (rather than just “looking” at eyes);
she further elaborated to suggest to students that these recorded drawings would still
require another step. Jack further built on Sienna’s idea, suggesting how having the
drawings would allow them to go further to count.
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Ms Louarn: Yes, Jack?

Jack: Look at everybody’s eyes, look at my eyes and see if umm, count how many
eyes is blue or not.

Ms Louarn: Well, Jack just said something very interesting. So he is going to look at eyes
as well, but then, then we can count the eyes when we make a picture, that is
good idea! [11:31]

Three tentative statistical ideas were initiated in the discussion, ideas to build
on over the course of the lessons: (1) a need for data (e.g. Will: “look at eyes”)
to answer the inquiry question; (2) the benefit of recording (e.g. Mila: “make a
picture”) to remember; and (3) recording was not enough, there was a need to analyse
the data (e.g. Jack: “count how many eyes are blue or not”). These three ideas,
in context, maintained a coherence of experiencing data as a statistical structure,
with its characteristics (as an observation), representation (recording for memory)
and processes (data collection was not enough; analysis was needed to answer the
question).

1.4.3 Recording and Analysing the Data

The teacher decided to let them begin even though their plan was only partially
constructed. Several children walked around and observed their peers’ eyes and
reported to Ms Louarn. Her response was to emphasise a need to record.

Thanh: I found 8 blue eyes.

Ms Louarn: You found 8 blue eyes! How are you going to remember that next time?

Thanh: Try and remember?

Ms Louarn: You’re going to try and remember. And so do you think if you found 8 blue
eyes, do you think more people in prep have blue eyes? (Student shakes head
no and then shrugs shoulders.) [15:26]

After a few minutes, most children were at least looking at eyes. For some, they
saw this as collecting evidence, and for others theywere likelymimicking their peers.

A few children drew pictures of children’s eyes, their own and/or others’, with
eyes coloured (Fig. 1.1). For students who were colouring only eyes (and not other
facial features), they appeared to have moved towards an image of the eyes as the
relevant aspect of the context to record (as opposed to other facial features). This
abstraction of the eyes suggested a move towards seeing the recording as data. Even
if only one child did so purposefully, others often followed. The discussions then
became important to connect these practices to their utility in solving the problem.
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Fig. 1.1 Children’s
recordings of eye colours in
the class

Ms Louarn temporarily stopped the class as they were working and reiterated the
problem, “We’re going to find if it is true that most people in prep have blue eyes”.
She suggested a number of options that students were undertaking to find out. After
another 10 min, Ms Louarn asked students to bring their ideas back to the circle on
the carpet, including drawings if they had them.

Ms Louarn: [Children] did what they said they were going to do: Look at the eyes, some
people said make a picture of the eyes, and some people said counting the
eyes. So some people have done that. Would someone like to put their hand up
and tell us what they found out about our question? What did you do Aisha?

Aisha: Um I didn’t get to do the Bec’s hair. (She shows her drawing with two
people’s faces including hair, nose, eyes and mouth).

Ms Louarn: … So you’ve got two people there. Are you going to draw a picture of
everybody in the class and a picture of their eyes?

Aisha: I don’t know if I will be able to fit them on here.
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Ms Louarn: But is that your idea? (Aisha nods) I think that is a really clever idea. Aisha
would draw a picture of everybody in the class and she would draw the colour
of their eyes and that’s a good way of making a picture isn’t it? Tomorrow
when we come back she will be able to remember it all. Thank you Aisha I
think that is a really clever idea. You’re right it might take a little while … but
it’s a great idea. [30:48]

Other students shared who had drawn the full face, hair and eyes of one or more
people. Sienna had drawn eyes and numbers next to them (Fig. 1.2).

Fig. 1.2 Sienna’s representation of eye colours
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Ms Louarn: What have you got there Sienna? Show everybody what you’ve done. And
can you tell us all about that.

Sienna: It’s a list about people who have brown eyes and blue eyes and green eyes. Um
most people do have the same colour eyes. I couldn’t draw everyone’s eyes.

Ms Louarn: Why was that? Did you run out of time?

Sienna: Yes.

Ms Louarn: Is that what happened you ran out of time. (Sienna nods) So how many have
you done so far? How many people have blue eyes?

Sienna: (Sienna counts each individual blue eye and the teacher asks clarification if it
is 12 eyes or 12 people. She counts again) … 1, 2, 3, 4, 5, 6 …

Ms Louarn: So you got 6 people with blue eyes. … Whose eyes have you got there
Sienna? (Sienna recalls the names.) Right, Sienna tomorrow that’s going to be
my first question so I want you to have a think between now and tomorrow,
what can you do on your drawing—which is sensational by the way—to
remember whose eyes they are? [35:01]

An emphasis throughout the lesson was on enculturating students into an expecta-
tion of representing and providing evidence of their investigation towards addressing
the inquiry question,Domost students in PrepL have blue eyes?This consistent focus
allowed students to enrich the connection between the problem context (respond-
ing to the inquiry question using their everyday knowledge) and relevant statistical
structures (evidence which relied on data, representation, aggregate and analysis).
For example, slowly through the lesson, more students adopted the practice of using
eyes (rather than entire drawings) labelled with names to represent the students in
the class. This strengthened the relationship between children’s eyes (context) and
structures (eyes as data, moving towards aggregate).

Sienna’s acknowledgement showed emerging awareness that the drawings of eyes
were contextual representations of data. This context–structure link allowed her to
discuss “eyes” as “data”. Ms Louarn recapped the ideas that had been presented
and encouraged the other students to think about some of these ideas as they con-
tinued working towards addressing the inquiry question. The pattern continued the
following day, periods of working interspersed with sharing; through iteration, most
children adopted practices of drawing people or eyes recorded as data, as the teacher
continually emphasised the benefits of observing, recording and counting to focus
on the aggregate question.

1.5 Discussion

The focus of this paper was to examine the use of problem context as a proxy for
working with statistical structures in a class of young children. It was not to provide
evidence of individual success in understanding the links between the context and
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the statistics, but at an informal level provide children with a low-stakes opportunity
to be exposed to and engage in reasoning with powerful statistical structures.

In the lessons presented, Australian children in Foundation Year (also called
“Prep”, which is similar to kindergarten, ages 4–5) sought to evaluate a peer’s claim
that most children in the class had blue eyes. The key structural elements of statistics
that were informally introduced—variability, aggregate, population, data and repre-
sentation—are critical as foundations for understanding any statistical concepts and
practices. As these ideas were informally introduced, they became part of the prob-
lem space in subsequent discussions. The familiarity of the shared context of eye
colour gave the children a way to reason about concepts—concretely and informal-
ly—through the context of the problem. The focus on data as evidence throughout the
lessons allowed for discussion of informal versions of several statistical structures
by allowing the context to stand in for those structures. This reasoning was similar to
what would be done in later years using the more abstract statistical structures as part
of that discussion. One mapping is given in Table 1.2 of the contextual elements that
students experienced through the familiar context and the related statistical structure.

Although the statistical structures themselves and the links between the context
and the related statistical structures were unknown to the children, their reasoning
about the context (or emerging reasoning, or mimicking) paralleled more formal
statistical reasoning that would be developed over time. For example, focusing on
only considering the eye colours of the children in the classroom (rather than their
parents) was explained in relation to the inquiry question about eye colour in their
class. Their classmates were the population relevant to the inquiry, and the children’s
reasoning about their classmates’ eye colours was analogous to reasoning more
abstractly about a population. The statistical structures encountered by the children
were not limited to this specific context. That is, although statistics is a field based on
variability, the patterns and invariances within variability expose important statistical
structures within the field. For example, relationships between data and population
hold regardless of the context.

The context of the problem was content-rich and complex, allowing for multi-
ple statistical concepts, relationships, tools and structures that had analogies in the
context to be used not in isolation, but in relation to each other (holistically) and pur-
posefully to solve a problem (cf. Bakker & Derry, 2011). Furthermore, it provided
opportunity to enculturate the children in statistical practices.MsLouarn, the teacher,
played a key role in her questioning and privileging of focus ideas. She used the chil-
dren’s ideas to generate, build on and challenge their emerging strategies. Asking
questions and critiquing ideas were also seen as valued practice (not the emphasis of
this paper). The norms that were developed in the classroom allowed for productive
interactions as children became accustomed to what was valued and normalised as
part of the classroom culture. For example, in publicly sharing their ideas, children
influenced peers to shift inefficient practices (e.g. drawing an entire person), pro-
vided ideas when others were stuck and generated opportunities for feedback (e.g.
comparing one’s own drawing with those shared in the circle).

Being aware of statistical context–structures is a valuable framework for teachers.
By identifying elements of the problem context that stand in for statistical structures,
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Table 1.2 Mapping statistical context–structures in the lessons

Context element Related statistical structure Links between contexts and
context–structures

Eye colour Data It was necessary to observe
children’s eye colours to
answer the inquiry question

Multiple eye colours Variability The variability of eye colour
was the problem to be
managed (otherwise no
investigation would be needed)

Children in the class Population The eye colours of people
outside of the class, like
parents, were not relevant

Drawing of self Single data point Children drew themselves or a
friend; these drawings
represented a single data point

Drawings of eyes Data representation The need to record eye colour
(and not hair colour) as
evidence focused children on
salient aspects to represent or
ignore

Counting eyes Data analysis Counting provided a way to
compare groups (blue- vs.
brown-eyed children) to
answer the inquiry question

Drawings of collections of
eyes

Collection of data points When students drew
collections of eyes, their
drawing represented collection
of data points

Questions about the class Focus on aggregate The inquiry question required
students to look beyond single
or multiple individuals to
consider collective qualities of
the aggregate

teachers can become sensitised to problems that would likely engage in content
aligned with the teacher’s goals. This is often a challenge in inquiry when it can
appear as though the content cannot be determined in advance. This will also assist
the teacher in developing questions that will emphasise (through privileging and
revoicing) or develop (through questioning) desired content out of children’s ideas.
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Chapter 2
Probabilistic Thinking and Young
Children: Theory and Pedagogy

Zoi Nikiforidou

Abstract Over the last decades, there has been a lot of interest in exploring young
children’s early probabilistic thinking, considering educational, cognitive and math-
ematical dimensions in children’s learning and development. Today, probability is
incorporated inmanymathematical and statistical curricula and the ongoing research
on children’s probabilistic competencies has produced remarkable and educationally
valuable conclusions. The aim of this chapter is to critically review key theoretical
models of probabilistic thinking that cover the period of early childhood and to
highlight a number of pedagogical implications while introducing probabilistic con-
cepts in early childhood educational contexts. The traditional Piagetian claim that
children during the preoperational period find it difficult to differentiate certainty
and uncertainty seems to be replaced by findings that support children’s capacity to
engage with notions of probability. Recent research underlines how intuitions and
experience, informal mathematical knowledge, probability literacy as well as cur-
riculum development and task design play a significant role in shaping and enhancing
preschoolers’ probabilistic thinking, not onlywhile they are young but with a lifelong
perspective.

2.1 Setting the Scene: Probability, Literacy and Children

From early in life, children experience and interact with the world around themwhile
making sense of the possible, randomand impossible. They develop their understand-
ing of the world through causal and statistical reasoning (Gopnik & Schulz, 2007),
by making connections and using information and cues from around them, in order
to predict and expect outcomes, when possible. Learning about the world requires
learning about probabilistic relationships (Yurovsky, Boyer, Smith, & Yu, 2013) in
framing what is likely and what is not. On many occasions, children through expe-
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rience and cognitive processing develop an understanding of probabilities as part of
the development of their scientific, mathematical and social knowledge.

The nature of probability has three main approaches. The classical interpretation
of probability is simply the fraction of the total number of possibilities in which
the event occurs. Laplace (1814, 1951: 6–7) noted: ‘The theory of chance consists
in reducing all the events of the same kind to a certain number of cases equally
possible, that is to say, to such as we may be equally undecided about in regard
to their existence, and in determining the number of cases favorable to the event
whose probability is sought’. The second interpretation is the frequentist, where the
possibilities of events may be assigned unequal weights and probabilities can be
computed a posteriori. In this case, probability is based on the long-run behaviour of
randomoutcomes (Konold, 1991). The third approach is subjective probabilitywhere
probability tends to be ‘a degree of belief’, where biases, heuristics and intuitions
interplay. ‘Probability does not consist of mere technical information and procedures
leading to solutions. Rather, it requires a way of thinking that is genuinely different
from that required bymost schoolmathematics. In learning probability, studentsmust
create new intuitions’ (Fischbein & Schnarch, 1997, p. 104). Thus, probability can
become very complex and sophisticated and embraces a way of thinking in enabling
us to cope with randomness, uncertainty and unpredictability through computational
and subjective ways.

Gal (2005) highlights that many school curricula focus on the classical and/or fre-
quentist views of probability instead of considering the big picture. He puts forward
the notion of probability literacy, as ‘the ability to access, use, interpret, and commu-
nicate probability-related information and ideas, in order to engage and effectively
manage the demands of real-world roles and tasks involving uncertainty and risk’
(Gal, 2012, 4). His model suggests that five knowledge bases as well as supportive
dispositions form probability literacy. Gal (2005) lists the five knowledge elements
of probability literacy as the exploration of big ideas, like, variation, randomness,
predictability/uncertainty; the estimation of probabilities; the use of language to com-
municate chance; the understanding of the contextwhere probabilities are applied and
the consideration of critical questions when dealing with probabilities. Nevertheless,
according to Gal (2005) the dispositional elements are equally important building
blocks of probabilistic literacy. These are: critical stance; beliefs and attitudes and
personal sentiments regarding uncertainty and risk.

Similarly, Borovcnik (2016) defines probability literacy as ‘the ability to use rele-
vant concepts and methods in everyday context and problems’ (p. 1500). Probability
literacy is essential in modern times, and recently, there has been growing inter-
est in identifying ways and approaches in incorporating probabilities in education.
Batanero et al. (2016) confirm the recognition of probability literacy by educational
authorities globally, but also encourage more attention towards practical and peda-
gogical issues in implementing probability in curricula. The main aim of including
probability in schools relates to its usefulness for daily life, its instrumental role in
other disciplines and its important role in decision-making as a skill for competent
and knowledgeable future citizens (Gal, 2005; Fisk, Bury, & Holden, 2006). Most
studies focus on school-aged children and adolescents, but there is limited investi-
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gation capturing early experiences during preschool years. In this direction, the aim
of this chapter is twofold: to present an overview of key theories and models on
the development of probabilistic thinking, with an emphasis on early childhood, and
to address pedagogical factors while implementing probabilities in early years. The
first part identifies key characteristics and concepts that young children engage with
at ages 3–7, based on theory and research, and the second part reviews important
curriculum-related aspects in embedding probabilities in early years practice.

2.2 Children’s Probabilistic Thinking: From Piaget
and Fischbein to Contemporary Studies

The development of probabilistic thinking was traditionally and systematically
explored by Piaget and Inhelder (1975). Within the Piagetian theory of cognitive
development, it is recognised that the evolution of the idea of chance and probabil-
ities is ‘a kind of synthesis between operations and the fortuitous’ (p. 216). In the
book ‘The origin of the idea of chance in children’ (1951), Piaget recognised that all
occurrences in our daily lives are complex and proposed three developmental stages
of the idea of chance. The first stage, which relates to early childhood, the preoper-
ational period before the age of 7 or 8, is characterised by prelogical reasoning and
limited cognitive capacity to understand irreversibility, deduction, random mixing
and random distribution. Through a number of studies, Piaget concluded that chil-
dren during this period do not distinguish the possible from the necessary and mark
the development of the idea of chance during the second stage, when more advanced
logical and arithmetical operations appear.

During this first stage, children base their judgements regarding random draws
on phenomenism, passive induction and egocentrism. In a heads and tails game
(with crosses and circles), where 10–20 counters were thrown at once, children
were asked to predict the outcomes. Piaget would substitute the counters with fixed
counters showing a cross on both sides aiming at recording children’s reactions.
Children in stage I would accept what they saw (phenomenism) as possible, whereas
children in stage II would refuse to accept the coincidence of all counters showing
a cross. Children also at stage I would try to justify this occurrence as part of their
subjective and personal beliefs in that, for example, one can get crosses only if they
toss the counters in a certain way (egocentrism). Also, young children would judge
the outcome based on the immediately preceding facts (passive induction); if crosses
came out previously, then crosses are likely to come out again.

For Piaget, children at the preoperational stage find it difficult to combinemultiple
interactions of phenomena as well as their irreversibility or independence. He tested
this through another task, with the use of a rectangular box based on a sloping pivot
and equal numbers of two sets of coloured balls. The two sets of balls are separated
by a divider at one end of the box, and then children would be asked to predict after a
number of tippings of the box the position and arrangement of the balls. Children in
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stage I would initially expect the balls after the first tipping to land in their original
positions, and even if there was an element of mixture (one white ball ending up in
the other coloured set of balls), they would seek for uniformities. This indicates that
children at these ages have difficulty in understanding the idea of irreversibility and
randomness.

Fischbein (1975) provided a more educational approach to probabilistic think-
ing in children and emphasised the role of intuitions in developing understandings
of probabilistic notions. He focused on the importance of the intuitive endowment
of the child and defined intuitions as ‘forms of immediate cognition in which the
justifying elements, if any, are implicit’ (p. 5). He underlined that when facing prob-
abilistic events our behaviour requires specific intuitions, in the sense of predictions
and responses ‘guessed at’ that are characterised by immediacy, globality, extrap-
olative capacity, structurality and self-evidentness. These intuitions are long-verified
mechanisms, stabilised by social learning and personal experience. Fischbein (1975)
provided different categories of intuitions and proposed that there should be separa-
tion between the concept of probability as an explicit, correct computation of odds
and the intuition of probability, as a subjective, global evaluation of odds. He agreed
that there is a developmental pattern in the emergence of probabilistic thinking in that
through age and experience children develop more profound understandings. There-
fore, he recommended the necessity to ‘train, from early childhood, the complex
intuitive base relevant to probabilistic thinking’ (p. 131).

Primary intuitions are cognitive acquisitions formed by experience before system-
atic instruction and are found in the preschool child. Secondary intuitions are formed
by scientific instruction, mainly through school and formal education and transfer
social experience to scientific truth. Another dichotomy in intuitions, proposed by
Fischbein (1975), is between affirmatory and anticipatory intuitions. Affirmatory
intuitions are based on the feeling of certitude of events; thus, anticipatory intuitions
are global views on the solution to a situation which precede the problem-solving
process. After several studies, Fischbein (1975) reached the conclusion that, in con-
tradiction to Piaget, the intuition of chance is present before the age of 6–7. He
argued that young children can indicate the capacity to evaluate chance and estimate
the odds in a probabilistic manner, as they develop their primary and preoperational
intuitions through daily experiences and subjective or perceptual considerations. This
is confirmed in cases where the number of possibilities is small, where the nature of
the problem is clear, where rewards for correct answers are present and where prior
instruction in the concepts of chance and probability is enhanced. Thus, intuitions
are key in the learning process and construction of probabilistic knowledge.

On a number of occasions, there has been a misinterpretation in that Piaget and
Fischbein were contradictory. This is not the case; instead, they attempted to study
and explore the development of probabilistic thinking in young children through
different lenses. Piaget had a more developmental approach focusing on the role
of intellectual ability, while Fischbein emphasised the role of intuitive thinking and
pedagogy. More recently, and particularly over the last 20 years, there has been an
ongoing interest in exploring the characteristics of young children’s probabilistic
thinking in formal and informal contexts of learning.
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Jones et al. (1997) were pioneers in proposing a framework for assessing and nur-
turing children’s thinking in probability from early ages. The aim of their framework
was to provide aspects of children’s probabilistic thinking in a comprehensive way
that would support curriculum designers and pedagogues to implement probabili-
ties in mathematical curricula and instruction. They examined four core constructs:
sample space, probability of an event, probability comparisons and conditional prob-
ability.

Sample space: The sample space, �, is a key construct in understanding randomness
(Nunes et al. 2014) and is about the set of all possible outcomes in a given situation.
For example, the sample space (�) for rolling an ordinary dice would be �� (1, 2,
3, 4, 5, 6).
Probability of an event: The probability of an event A is the likelihood that event will
occur P (A). With young children, this construct could be explored through guessing
in a set task what is more or less likely to occur and reasoning why. For example,
what is more likely to come up, if you turn over a card from a set of 6 hidden cards,
where 5 are red and 1 is yellow?
Probability comparisons: Probability comparisons reflect the capacity to determine
and justify: a. which probability situation is most likely to produce the desired out-
come and b. whether two or more probability situations offer the same or a fair
chance for the desired outcome. For example, if green wins, which of the following
two spinners should I choose to increase the likelihood of winning: the one with ¾
in blue and ¼ in green or the one with ¼ blue and ¾ green?
Conditional probability: Conditional probability provides a way to reason about the
outcome of an experiment, based on partial information or on additional information;
the probability for an event A given B is denoted by P(A | B). For example, in a box,
there are 4 black and 2 white bears. If we shake the box and a bear is drawn, what
colour is it likely to be? If this bear is not repositioned in the box and there is a second
draw, what colour is this second bear likely to be?

Through observations and interviews with children at different ages, Jones et al.
(1997; 1999) proposed 4 levels of probabilistic thinking. They defined as probabilis-
tic thinking ‘children’s thinking in response to any probability situation’ (Jones et al.,
1999, p. 488). By probability situation, or a situation involving uncertainty, they con-
sider an activity or random experiment where more than one outcome is possible;
thus, the actual outcome cannot be predetermined but only inferred. In detail, Level
1 is associated with subjective thinking; here, children make intuitive judgements
based on their imagination or personal preferences, consistent with reasoning that is
subjective or influenced by irrelevant aspects. Level 2 is transitional between subjec-
tive and naive quantitative thinking, where students often make inflexible attempts
to quantify probabilities. Level 3 involves the use of informal quantitative thinking
in that students use more generative strategies in listing the outcomes of two-stage
experiments and in coordinating and quantifying thinking about sample space and
probabilities. Finally, Level 4 incorporates numerical thinking and students demon-
strate the use of valid numerical measures to describe the probabilities.
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Table 2.1 Jones et al. (1997) framework for assessing probabilistic thinking—Level 1: Subjective

Concept Type of response

Sample space • lists an incomplete set of outcomes for one-stage experiments

Probability of an event • predicts most/least likely event based on subjective judgements
• distinguishes ‘certain’, ‘impossible’, possible events in a limited
way

Probability comparisons • compares the probability of an event in two different sample
spaces, usually based on various subjective or numeric judgements

Conditional probability • following a particular outcome, predicts consistently that it will
occur next time, or alternatively that it will not occur again
(overgeneralises)

Level 1 is age-related to early childhood (Table 2.1). In the same direction, Way
(2003) recorded that around 5 years and 8months, during the non-probabilistic think-
ing stage that she proposed, children show minimal understanding of randomness
and are strongly reliant on visual comparisons. Children under 6 years may pos-
sess intuitive notions of probability, but these are unstable. Likewise, Nikiforidou
and Pange (2010) found that 4-year-olds rely on visual comparisons and distinguish
‘impossible’ and ‘possible’ events in a limited way. Also, Sobel et al. (2009) found
that children’s probabilistic inferences develop into early elementary school, but
preschoolers might also have some understanding of probability when reasoning
about causal generalisation.

Examples from recent studies confirm that preschoolers have a sophisticated
understanding of probability concepts. For example, Kushnir and Gopnik (2005)
found in their study that children aged 4–6 apply the probabilistic element of the fre-
quency of co-occurrence when developing causal relationships. Boyer (2007) used a
computerised decision-making task to find that 5–6-year-olds select the more prob-
able outcome by demonstrating intuitive sensitivity to probability. Girotto and Gon-
zalez (2008) found through three different studies that when preschoolers, around
5 years old, are faced with uncertain events, they are able to integrate a new piece
of information in making inferences and as such indicate adaptation to posterior
probability. Fisk et al. (2006) found that children aged 4–5 would commit the con-
junction fallacy while participating in tasks involving choice between themore likely
of two events, a single event and a joint event (conjunctive or disjunctive). More-
over, Girotto et al. (2016) found that in probabilistic choice tasks, 5-year-olds made
optimal choices, whereas 3–4-year-olds based their responses on randomness and/or
superficial heuristics. Such studies, as well as others, provide insights on preschool-
ers’ probabilistic reasoning in diverse probabilistic situations. These, in turn, can
inform practice and ways of fostering children’s probabilistic literacy in educational
contexts.
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2.3 Probability in Early Childhood Educational Practice

2.3.1 Curriculum Design: Constructivism and Proposed
Instructional Models

Early years education provides the foundation for fundamental conceptual under-
standing, knowledge and dispositions needed for further learning. In his idea of the
spiral curriculum, Bruner (1960) addresses the role of probability and underlines: ‘If
the understanding of number,measure, and probability is judged crucial in the pursuit
of science, then instruction in these subjects should begin as intellectually honestly
and as early as possible in a manner consistent with the child’s forms of thought. Let
the topics be developed and redeveloped in later grades’ (pp. 53–54). He emphasises
the necessity of introducing the equally important concepts of number, measure and
probability as early as possible, in a way that relates to the child’s cognition. These
can then be revisited and reconstructed through time and progression.

Cobb (2007) agrees that mathematical learning is an interactive as well as a con-
structive process. It is a process where prior knowledge and experiences are used as
the foundation for constructing and reorganising conceptual and theoretical ideas. In
a similar direction, Sharma (2014) believes that probabilistic thinking can be devel-
oped slowly and systematically through carefully designed activities in appropriate
learning environments. She favours the learning context that challenges students to
explore and reflect on any discrepancies they observe and the one that facilitates
evaluations and justifications in both verbal and representational modes.

Jones et al. (1999) took a socio-constructivist position in their study, supporting
that probability knowledge can arise from students’ attempts to solve problems, to
build on and reorganise their informal knowledge, and to resolve conflicting points
of view. Under this position, social processes are important mechanisms through
which participants negotiate meaning and co-construct knowledge in collaborative
learning environments (Cobb, 2007). The instructional sequence argued begins with
the presentation of a meaningful task or problem and continues with an invitation
to solve that problem in multiple ways, which leads to the sharing, justifying and
discussing of those problem-solving strategies in small or large group discourses
(Garfield & Ben-Zvi, 2009). This links to the predict–observe–explain (White &
Gunstone, 1992) strategy that probes understanding, especially in science education.
First, the students must predict the outcome of some event and reason about their
prediction; then they must describe what they see happening; and finally, they must
reconcile any conflict between prediction and observation.

Likewise, Sharma (2014) proposes a possible teaching sequence to explore prob-
ability, based on the example of a die rolling game:

1. Posing a task: introduce the task in a meaningful context
2. Making predictions: individually and next in pairs encourage students to discuss

and record their predictions
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3. Playing the game: encourage students in pairs/small groups to interact with the
game and record the actual outcomes

4. Planning explorations: the whole class shares and discusses their ideas
5. Data collection and analysis: in groups, students collect and record data
6. Further exploration: representation of dice outcomes in various ways (i.e. tree

diagrams, tables) (pp. 81–82).

Constructivist approaches to teaching and learning consider intuition and prior
knowledge as a starting point for further learning (Gelman & Brenneman, 2004).
Nikiforidou et al. (2013) found that the linkage between informal and formal prob-
ability learning in the preschool classroom can be enabled if the subject content
and the cognitive capacity of children match. Young children not only know some
mathematics before reaching formal schooling, but they are ready and eager to learn
more of it (Greenes, 1999). Children encounter probabilistic judgements and rela-
tionships in their daily routines and develop an informal understanding of what is
likely, possible, uncertain or random. It is these initial understandings and personal
experiences that can be the stepping stone in instruction. As a matter of fact, children
learn through physical and social interactions, before school, and formulate infor-
mal knowledge and understanding (Ginsburg, Lee, & Boyd, 2008). HodnikČadež
and Škrbec (2011) propose that the probability contents in the preschool and early
school period should be related to using everyday probability language, answering
probability or likelihood questions about specific data, answering probability or like-
lihood questions about specific situations and collecting and reflecting on empirical
data.

2.3.2 Aspects of Instruction and Task Design in Probability
Learning

Manipulatives play a key role in children’s mathematical understanding as
they offer ways of connecting mathematical ideas to real-world experiences
(McNeil & Jarvin, 2007). Manipulatives, both concrete and virtual, enable
children to experience consciously and unconsciously mathematical thinking
through their senses (Swan & Marshall, 2010); through exploration, manipulation,
interaction and observation. Their design and how they are introduced in practice
are key in children’s meaning-making and reasoning. However, their presence only
is not adequate for meaningful learning to occur. Instead, their effectiveness depends
on how they are embedded in comprehensive, well-planned activities (Sarama &
Clements, 2009), which gradually build on more advanced knowledge through play,
exploration, repetition and stimulation (DeVries, Zan, Hildebrandt, Edmiaston,
& Sales 2002). Falk et al. (2012) support that children’s implicit probabilistic
knowledge can be strengthened by devising hands-on educational measures and
interactions through a playful way. Furthermore, HodnikČadež and Škrbec (2011)
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agree that concrete experiences and experimentation are key in teaching probabilistic
concepts in preschool children.

An example of such experiences can originate from picture story books. Picture
books have been found to can act as means for the construction of knowledge and
higher understanding in mathematics instruction (Elia, van den Heuvel-Panhuizen,
&Georgiou, 2010). They provide opportunities for meaningful connections between
young children’s prior knowledge and the content presented. Kinnear (2013) in her
study on children’s statistical reasoning used picture books as a task and data context,
with children aged 5. She found that children responded to the uncertainty created
by an unresolved problem in the story and by making predictions if the book gener-
ated personal interest either through the illustrations, the characters or the mystery
presented.

In probability learning, manipulatives, concrete and technological, could be dice,
spinners, cards, board games, tinker cubes, urns, boxes or bags composed by vari-
ant ratios and proportions of items, stories and scenarios, visual stimuli, props and
tools, toys. Batanero et al. (2016) observe that as these physical devices can be acted
upon, they are increasingly used in probability education aiming to induce chance
events (e.g. by rolling, spinning, choosing) and the development of key probabilis-
tic concepts. Some examples are presented in Table 2.2. However, as Pratt (2011)
recommends, more research is needed in exploring the role of these artefacts in the
development of new curricula and the linkage between probability and real-world
phenomena. He mentions: ‘…it is debatable whether there is much advantage in
maintaining the current emphasis on coins, spinners, dice and balls drawn from
a bag… now that games take place in real time on screens, probability has much
more relevance as a tool for modelling computer-based action and for simulating
real-world events and phenomena’ (Pratt, 2011, p. 892).

Falk et al. (2012) emphasise that the structure of the problem is a key learn-
ing factor when using probabilistic tasks. They found that young children from
the age of 4 can be introduced to probability through playful ways. Furthermore,
Schlottmann and Wilkening (2012) underline that task complexity, in relation to
linguistic, memory and meta-cognitive demands, can define children’s probabilistic
thinking. Skoumpourdi et al. (2009) supported that the important factors in the nature
and structure of the particular probabilistic task or problem situation for preschoolers
are: a meaningful context, the manipulation of concrete materials, the facilitation of
rich discussions, the reflective process and children’s informal knowledge of proba-
bility. Thus, if there is a play element, materials, discourse and simplicity in the task,
children can interact with probabilistic notions.

Another important pedagogical factor when introducing probability in early child-
hood relates to the significance of questions initiated by the teacher. According to
Sharma (2014), the teacher plays an important role in posing questions that prompt
students’ thinking and reasoning. Through open-ended questions, students get the
opportunity to deepen their perceptions and share themwith others. Similarly, accord-
ing to Friel et al. (2001, p. 130), the questions have to ‘provoke students’ understand-
ing of the deep structure of the data presented’. Sharma (2014) also recommends
the use of some sentence beginners to help students write/express their responses.
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Table 2.2 Examples of probabilistic tasks for preschoolers

Materials Task Key concept

– a bag/box
– different sums of items

After introducing children to
the materials, we ask them to
place the items in the bag and
mix them up. Without seeing,
we ask them ‘If one item is
selected (either by themselves,
or a puppet) what do you think
will come out?’ Children can
record their answers in 2
stages: prior to the draw (their
predictions) and after the draw
(actual outcome). Discussion
can be facilitated in comparing
and analysing the data.
Variations to the distribution
of the sample space are
encouraged

– sample space
– likelihood of events

– discs with variations in the
sample space

After introducing children to
the materials, we ask them the
following questions: ‘If I want
to bring orange, which spinner
should I choose?’, ‘If I want to
bring blue for the next 5 times,
which spinner should I
choose?’ Again, children can
record their predictions and
actual outcomes for further
discussion

– probability comparisons
– sample space
– likelihood of events

These could be, for example, ‘From the table it can be seen that… because…’. Way
(2003) also noticed that teachers may build awareness of the relationship between
the sample space and the likelihood of events through the repetition of games and
the use of guiding questions.

Technology and its role in statistics and probability education is a growing field of
interest (Batanero et al., 2016; Tishkovskaya&Lancaster, 2012). Chance et al. (2007)
discuss how recent and ongoing developments in using technology in teaching statis-
tics correlate with changes in course content, pedagogical methods and instructional
formats. Batanero et al. (2016) agree that technology provides a big opportunity for
probability education, andBorovcnik andKapadia (2009) underline that probabilistic
software offers more efficient, graphically oriented possibilities to supply experience
with randomness. For example, Paparistodemou et al. (2008) examined the strategies
through which children aged 5.5 and 8 years engaged in constructing a fair spatial
lottery game. They found that the microworld enhanced children’s deterministic and
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stochastic thinking when exploring fairness and randomness. Haworth et al. (2010)
found that in designing digital games, additional visual representations like decision
trees that represent probabilistic reasoning support children’s thinking processes. In
another study, Paparistodemou et al. (2002) built a probability game to study young
children’s understanding of random mixture. Children as young as six could make
sense of random mixtures in this game-like environment. Nowadays, the discussion
has moved beyond technology itself, towards ways in which technological programs
and tools can support the teaching and learning process of probability.

2.4 Conclusion

Probability can be approached not only through mathematical calculations but also
through subjective intuitions. Children, from a really young age, through experi-
ence and experimentation construct knowledge and dispositions towards probabilis-
tic concepts. They encounter situations where uncertainty and randomness apply. It
was initially Piaget and Fischbein who explored the origins of probabilistic thinking
in young children, and subsequent research has revealed ways through which chil-
dren think and act within probabilistic contexts. Developmentally, children as young
as four show engagement with notions of probabilistic thinking, and it is argued that
the early childhood classroom can set foundations for probability literacy.

In this direction, it is proposed that there are some pedagogical implications to be
considered when implementing probability in the preschool setting. These implica-
tions derive from both more generic approaches characterising early childhood ped-
agogy and more specific features applying to probabilistic thinking and reasoning in
young children. Prior knowledge, intuitions, meaningful tasks in connection to chil-
dren’s personal worlds are important. Simple concepts of probability can be explored
through discussion, groupwork, collaborative learning, concrete experiences and co-
construction of knowledge. The concepts presented in this chapter (sample space,
probability of an event, probability comparisons and conditional probability) are
based on the framework proposed by Jones et al. (1997).

These concepts can be approached through instructional sequences, like pre-
dict–observe–explain. In these, children can engage with problem-solving situa-
tions underpinned by possibilities and probabilities. The learning experience can be
enriched through a number of ways; the use of manipulatives (like dice, spinners,
boxes), scenarios and story picture books (that encourage inferencing about spe-
cific data and situations), technological tools and software (like microworlds, digital
games), discourse (like the use of open-ended questions), repetition and collabora-
tion. However, further research is needed to investigate in more detail approaches
through which probabilistic thinking can be fostered in a child-centred way. In par-
ticular, the role of manipulatives, physical and virtual, as transitional objects that
enable doing and thinking—action and perception—needs more exploration. Other
possible directions for future research could involve the role of the practitioner, the
role of technology, the connection of probability to statistics and other fields.
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To sum up, children’s probabilistic competence is more profound than previously
thought. The early childhood classroomcanbe the starting point of a spiral curriculum
that introduces probability, aiming at probability literate future citizens.
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Part II
Learning Statistics and Probability



Chapter 3
Emergent Reasoning About Uncertainty
in Primary School Children with a Focus
on Subjective Probability

Sibel Kazak and Aisling M. Leavy

Abstract The classical, frequentist and subjective interpretations of probability are
the three main perspectives on the quantification of uncertainty. While the first two
are emphasised in most school curriculum materials, the subjective notion of prob-
ability either is neglected or has minimal mention. Yet, it is closely related to what
people commonly use for everyday reasoning. In this chapter, we combine a critical
literature review of children’s reasoning about uncertainty from both qualitative and
quantitative perspectives with an analysis of empirical data. We explore the types of
language 7–8-year-old children use to predict and describe outcomes and how they
reason about the likelihood of outcomes of chance events using subjective probability
evaluations before and after experiment and simulation. Data show that children used
chance language relatively accurately to describe the likelihood of chance events and
most of them had a quantitative understanding of equal likelihoods. Modifying pre-
dictions based on experiment and simulation results seemed to be intuitive for young
children.

3.1 Theoretical Perspective

Articulation of uncertainty is an essential component of the statistical thinking pro-
cess in which decisions and predictions are made on the basis of data in everyday
context. Probability is the measurement we use to quantify the uncertainty about an
outcome. The classical, frequentist and subjective interpretations of probability are
the three main perspectives on the quantification of uncertainty. Classical probability
refers to the ratio of the number of favourable cases in an event to the total number of
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equally likely cases. This ratio is called theoretical probability in mathematics text-
books and computed based on an analysis of sample space. The frequentist approach
defines probability of an event as the limiting value of its relative frequency in a
large number of trials. In school curricula, this is often called experimental probabil-
ity, which is estimated based on observed results from an experiment or simulation.
Subjective probability is considered as a personal degree of belief (or strength of
judgment) and changes based on personal judgment and information available about
a given outcome. While the first two conceptions of probability are emphasised in
school curriculum materials, the subjective notion of probability either is neglected
or has minimal mention despite it being closely related to what people commonly
use for everyday reasoning.

Our understanding of children’s ideas of probability has been informed greatly
by the work of Piaget and Inhelder (1975) who argued that children’s conception of
probability depended on their understandings of part–whole relationships. They also
indicated that children’s quantitative reasoning about probabilities developed with
their understanding of the sample space and the combinatorial operations according
to their developmental stages. Prior to the formal operational period, children tend to
evaluate the likelihood of events on the basis of subjective judgments based on prior
experiences or personal beliefs (Jones, Thornton, Langrall & Tarr, 1999). On the
other hand, Fischbein (1975) considered children’s intuitions based on individual
experiences important as their development of formal conceptions of probability
could be mediated through specific instruction and social interactions. While his
approach offers insights into the development of children’s probability estimates
with the appropriate instructional support, we are particularly interested in subjective
probability estimates.

The importance of chance language is reflected in its inclusion in international cur-
riculum documents. Where probability is introduced in the primary curriculum, the
emphasis is on describing events and discussing likelihoods using chance language.
TheAustralian Primary curriculum forYear 1 (ages 6–7) recommends students ‘iden-
tify outcomes of familiar events involving chance and describe them using every-
day language such as ‘will happen’, ‘won’t happen’ or ‘might happen” (Australian
Curriculum, Assessment and Reporting Authority [ACARA], 2014). Similarly in
grades 3–4 (ages 9–10) in Ireland, the curriculum emphasises using the vocabulary
of uncertainty and chance (possible, impossible, might, certain, not sure, chance,
likely, unlikely, never, definitely), ordering events in terms of likelihood of occur-
rence, and identifying and recording outcomes of simple random processes (NCCA,
1999). In contrast, countries that delay the introduction of probability until secondary
education commence with a focus on numerical probabilities and may or may not
focus on language. TheUKcurriculum forKeyStage 3 (ages 11–14) suggests that stu-
dents ‘record, describe and analyse the frequency of outcomes of simple probability
experiments involving randomness, fairness, equally and unequally likely outcomes,
using appropriate language’ (DoE, 2013). However, the Common Core Standards in
the USA delay the introduction of probability until grade 7 (ages 12–13) and make
no reference to the language of chance (Common Core Standards Initiative, 2010).
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Within this chapter, we combine critical literature review of these three different
perspectives on children’s reasoning about uncertainty with qualitative analysis of
empirical data in order to understand their ways of reasoning about uncertainty from
a subjective probability point of view. The research questions are:

(1) What types of language do 7–8 year olds use to predict and describe outcomes?
(2) How do children reason about the likelihood of outcomes of chance events using

subjective probability evaluations before and after experiment and simulation?

3.2 Review of the Literature

3.2.1 Children’s Use of Chance Language

Comprehension of chance language is an important aspect of statistical literacy.
While not exposed to formal quantitative measures of chance until themiddle grades,
children interact with the language of chance in their everyday lives. For example,
they frequently refer to fairness and chance in schoolyard games and in computer
games.

Watson and Moritz (2003) identify the lack of research on children’s abilities to
evaluate and determine chance phrases. The few studies carried out with school-
age children reveal that older children show greater facility in interpreting chance
language (Green, 1982; Mullet & Rivet, 1991). The latter study of 9–15 year olds
demonstrated their ability to discriminate different probability terms such as “cer-
tain”, “likely” and “doubtful” with older children producingmore accurate numerical
estimates. This supports the finding of Hoffner, Cantor, and Badzinski (1990) that
older children (grade 4) were able to differentiate between similar probability terms
(e.g. “probably” and “definitely”) better than younger children (pre-K and grade 1). A
common finding among several studies is the difficulty that children of all ages have
differentiating between the terms ‘unlikely’ and ‘cannot happen’ (Green, 1982) and
delineating between ‘very likely’, ‘moderately likely’ and ‘certain’ (Green, 1982).
The work of Fischbein, Nello and Marino (1991) also reveals difficulties with the
terms “impossible”, “possible” and “certain”. This research challenges assumptions
around the complexities of the term ‘possible’ and suggests that understandings of
possible occur earlier than understandings of certainty. Furthermore, the tendency
to equate ‘rare’ with ‘impossible’ and ‘highly frequent’ with ‘certain’ is highlighted
alongside the caution that children ‘tend to substitute mathematical meanings with
subjective expectations’ (Fischbein et al., 1991, p. 528).

Children demonstrate difficulty interpreting equal likelihoods. Some equate equal
likelihood with the presence of uncertainty (Watson, 2005), whereas others interpret
it as a lack of preciseness as indicated by their selection of statements such as ‘It may
happen or may not’ (Green, 1982). Children also use the term equal likelihoods to
refer to the chance of any outcome considered probable (Amir & Williams, 1999).
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Moreover, individuals using causal reasoning with the aim of predicting outcome of
a single trial—called as outcome approach (Konold, 1989), tend to interpret equal
likelihoods (50% chance) as meaning ‘I don’t know’.

3.2.2 Children’s Reasoning About Uncertainty

With regard to articulating uncertainty quantitatively, Piaget and Inhelder (1975)
argued that the ability to relate the part (favourable outcomes) with the whole (all
possible outcomes) was essential to children’s development of the probability con-
cept. Accordingly, research with young children considered understanding proba-
bility as ratio crucial for the conception of probability. In probability comparison
tasks involving alternative choices, Falk (1982) conjectured that children (from ages
5–6) begin to make a choice based on ‘more target elements’, move to focus on ‘less
non-target elements’ and then attempt to combine both quantities by considering
‘greater difference in favour of target outcome’. Referring to the limitations of tasks
using the simple choice paradigm, Acredolo, O’Connor, Banks and Horobin (1989)
investigated children’s (ages of 7, 9 and 11) probability estimations for different
sets of tasks as they rated the likelihood of a target event on a non-numerical scale.
They argued that even young children could use both numerator and denominator
information to estimate probabilities in given tasks.

As earlier research on probability learning focussed primarily on the classical
notion of probability, we have still little or minimal understandings of young chil-
dren’s conceptions of probability from the frequentist and subjective approaches. In
a study using a model-based approach to reasoning about uncertainty (Horvath &
Lehrer, 1998), young children (ages 7–8) engaged in aspects of experimental prob-
ability, but the focus was on relating the sample space with experimental outcomes,
which was apparently difficult for most of these children without appropriate instruc-
tional support. When predicting the most and least likely outcomes of rolling two
dice, children tended to rely on previously obtained empirical outcomes rather than
use a model of sample space. In another study, it was suggested that experimental
data could promote the development of children’s probabilistic thinking (Kafoussi,
2004). For example, when making a prediction in a probability comparison problem,
a group of children (aged 5) conducted an experiment and used the empirical out-
comes to resolve different views, in particular concerning a non-probabilistic idea,
i.e., “The blue color [is easiest to come out], because this is higher up in the bag.”
(p. 36). Kafoussi also found that in equally likely situations young children could
spontaneously make their judgments without the need for an experiment. More-
over, Jones et al. (1999) pointed out that children tend to place “too much faith in
small samples of experimental data when determining the most or least likely event”
(p. 150) in early levels of probabilistic reasoning and tend to recognise the need for
larger sample as they begin to develop informal quantitative reasoning.

While Jones et al. (1999) described both experimental and theoretical probabili-
ties in their framework, subjective probability was not addressed as a construct. They
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used the term ‘subjective judgement’ as an early notion before quantitative reason-
ing used in predictions or probability comparisons. In relation to the development
of ideas related to subjective probability, Huber and Huber (1987) demonstrated
the emergence of ability in using personal knowledge or beliefs in comparisons of
subjective probabilities starting from age 5.Moreover, Acredolo et al. (1989) consid-
ered the relations between children’s subjective probability estimates and theoretical
probabilities. However, there was no opportunity for posterior evaluation of these
probability estimates with new information, such as experiment results. The research
described below is intended to address this gap.

Next, we explain the method of the study we conducted with children; present
and discuss the findings in relation to previous studies; and state our conclusions.

3.3 Methodology

3.3.1 Participants

Participantswere 16 children (8 boys, 8 girls) froman Irish primary school. Theywere
third-grade students aged 7–8 and had not studied probability in school mathematics.
Children came from a variety of socio-economic and ethnic backgrounds and six of
them were second language English speakers.

3.3.2 The Jellybean Task

The task was adapted by the researchers from a study by Acredolo et al. (1989). Each
pair of children was read a scenario:

A teacher celebrated her class’s good behaviour by offering every child a jellybean. To keep
children from fighting for their favourite colours, she decided that each would have to take a
jellybean from a well-shaken bag without looking. Erin’s favourite colour jellybean is green.
We are going to try and see what chance Erin has of taking a green jellybean from the bag
of jellybeans. But, Erin isn’t allowed to look!

Before being presented with jellybeans, the ‘happy face scale’ was introduced
(see Fig. 3.1) as a tool to determine what children believe the likelihood of drawing
a green jellybean from a specific bag is without requiring any calculation. Instead
of a probability scale with fractions, decimals or percentages, a non-numerical one
was preferred for subjective probability estimates due to the age of the children. A
protocol was developed to explain the use of the scale:

This is a happy face scale. If we think something will definitely happen we mark the happy
face [point to happy face]. If something will definitely not happen we mark the sad face
[point to sad face]. Sometimes things can be in the middle – that is when we are not sure. It
might happen or it might not [point to neutral face].



42 S. Kazak and A. M. Leavy

Practice was provided using the scale. A bag of white jellybeans was presented
and children asked: What is the chance of Erin taking a white bean from the bag of
white jellybeans? Can you mark it on the happy face scale? What is the chance of
Erin drawing a red bean from the bag of white jellybeans? Can you mark it on the
happy face scale?

Working in pairs, children were then asked to determine the likelihood of a green
jellybean being drawn from different transparent sandwich bags of green and pink
jellybeans. The total number of jellybeans in each bag remained constant for each
pair; however, it differed between pairs so that each pair got a selection of bags of
6, 8 or 10 jellybeans (see Table 3.1). For each bag, the children were asked to mark
their predicted likelihood on the ‘happy face scale’ (see Fig. 3.1).

3.3.3 Setting and Procedure

The settingwas a university teaching room. Children worked in pairs andwere seated
at a table with two pre-service teachers. One pre-service teacher took the role of
interviewer and was responsible for asking questions using a pre-prepared interview
protocol. The other recorded children’s responses on the task. The researcher was
present during all interviews and observed the application of correct protocols. All
tasks were completed in approximately 30 min.

3.3.3.1 The Jellybean Task: Providing Estimates

Bags of jellybeans were presented in random order. For example, pair 7 who were
assigned bags of 10 beans received them in the order: Bag 1 (2G8P), Bag 2 (3G7P),
Bag 3 (1G9P), Bag 4 (4G6R), Bag 5 (5G5R) and Bag 6 (9G1R). For each bag
presented, the following questions were posed:

Protocol questions for estimations:

Fig. 3.1 ‘Happy face scale’ to record the predicted likelihood of a green jellybean occurring

Table 3.1 Sample combinations of green (G) and pink (P) jellybeans in an assortment of bags

Bag of 6 Bag of 8 Bag of 10

Bag 1 2G 4P 2G 6P 2G 8P

Bag 2 3G 3P 3G 5P 3G 7P

Bag 3 1G 5P 1G 7P 1G 9P

Bag 4 4G 2P 4G 4P 4G 6P
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• How many jellybeans are there altogether?
• How many green jellybeans are there? How many pink jellybeans are there?
• What is the chance of Erin getting a green jellybean?
• How would you feel if you were Erin? Why would you feel like this?
• Where would you mark the happy face scale? Explain why you marked it here
[pointing to the mark made by child]. Why did you not mark it here [pointing
lower] or here [pointing higher]?

• What words would you use to describe the chances of picking a green jellybean?
• Is it impossible that Erin gets a green jellybean? Is it certain that Erin gets a green
jellybean? Why? Why not?

3.3.3.2 The Jellybean Task: Carrying Out Experiments

The following was read:

Let’s pretend we are Erin and see what happens if we actually try getting a bean from the
bag of jellybeans. Let’s see if we get a green jellybean. But, we cannot look! We are going
to take a jellybean out (without looking). Then we’ll record the colour on this page. We’ll
put the jellybean back in the bag and shake the bag. We are going to do this 24 times and
see how many green jellybeans Erin gets! Will you help me?

Two bags of jellybeans were identified for use in experiments. For each bag, the
jellybeans were removed from the transparent sandwich bag and placed in a brown
paper bag (to prevent children seeing the jellybeans).One child picked a jellybean and
the other child marked the colour on a graph; the bean was replaced. The experiment
was carried out 24 times and the outcome recorded for each draw. Children were
asked what they noticed about the graph they constructed. Referring to the outcomes
of the experiment (as illustrated on the graph), the same series of questions as those
posed in the ‘protocol questions for estimations’ (see Sect. 3.3.3.1) were presented.
The second bag of jellybeans was selected and the experiment repeated. Thus for
both experiments, children were given the opportunity to update their probability
estimates (on the happy face scale) based on the evidence collected.

3.3.3.3 The Jellybean Task: Carrying Out Simulations

The following was read:

We have this really cool computer programme that can pretend to pull jellybeans from the
bag of jellybeans. Look – here is the bag with 1 green bean and the rest are pink. [point to
image on screen]. The computer has a button called ‘run’ [point to button] and it makes the
computer pull the beans out 1000 times really fast. Just like running really fast. It puts its
hand in and out of the bag 1000 times. It shows us what it gets each time [point to the table].
Then it makes this really pretty graph over here that show us howmany green and howmany
pink jellybeans Erin would get if we did it 1000 times.

Two simulations were run on laptops using TinkerPlots (Konold &Miller, 2011),
for the same two bags of jellybeans as each pair had in the previous experiments,
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and the ensuing graphs discussed. Children were directed to examine the graph
constructed by TinkerPlots. Reminded that the graph represented the 1000 times the
computer pretended to pull out jellybeans, the same series of questions as those posed
in the ‘protocol questions for estimations’ (see Sect. 3.3.3.1) were presented.

3.4 Results and Discussion

We first present children’s use of chance language and then describe their reasoning
about uncertainty as they articulated their subjective probability estimations on the
happy face scale. In describing the results, we will focus on three pairs of students:
Fred and Dillon (bags of 10), Ken and Deniz (bags of 6), Katia and Narin (bags of
8).

3.4.1 Children’s Use of Chance Language

3.4.1.1 Children’s Use of Specific Chance Language

In their estimations, Fred andDillon used terms such as ‘teency bit’, ‘sort of a chance’
and ‘bad/terrible chance’ to refer to low probability situations (2G8P, 1G9P). Their
language shifted to ‘might’ when the likelihood of a green increased (3G7P, 4G6P).
The use of comparative language revealed their tendency to compare likelihoods
between different bags of jellybeans. For example, when they were first presented
with 2G8P and then 3G7P, Fred stated that there was a ‘bit more of a chance’ of
getting a green in the second bag. Again, when 4G6P followed 1G9P, Dillon stated
there was ‘more of a chance’ on this occasion. Ken and Deniz also used chance
language in their estimations. They used ‘slight chance’ (2G4P), ‘good chance’
(3G3P, 4G2P) and ‘really small chance’ (1G5P) to refer to the chance of getting
green. When engaging in experiments, Fred and Dillon’s use of chance language to
compare outcomes was evident. Dillon stated that Erin would be ‘happier’ with the
3G7P situation (resulting in 13 pink and 11 green) than the 2G8P situation (resulting
in 15 pink and 9 green) as ‘the last time she got 9 and this time she got 11’. This
was qualified by Fred who stated Erin would be ‘just really happy not super happy’
based on his observation that there were ‘still more pinks than greens’. We can see
the positioning of ‘super happy’ as an indication of greater likelihood than ‘really
happy’ signalling the ability to use qualifiers to discern likelihoods within one end of
the probability continuum (in this case >50%). A similar effort was made by Ken to
differentiate between likelihoods within the lower end of the probability continuum.
When describing how Erin would feel as a result of the 1G5P experiment (resulting
in 5 green and 19 pink), he said ‘she is sad but not the saddest because there is a
small chance of getting a green’.
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Katia and Narin, both non-native English speakers, used the term ‘chance’ less
frequently than other children. Katia used ‘maybe’ in each of her four estimations;
however, its use ceased in the experiments and simulations. When presented with
the 2G6P situation, she stated that ‘maybe’ green could occur but there was a ‘small
chance’. When presented with 3G5P, she thought that ‘maybe pink’ because there
were more pink. Her language when presented with 1G7P revealed her consideration
of the small possibility of a green occurring when she said ‘no chance.…Maybe but
maybe not, I think not’. It was not until asked to estimate the equal likelihood scenario
(4G4P) that she used ‘maybe’ to refer to both colours occurring when she stated
‘equal chance—maybe green and maybe pink’. Hence for Katia, ‘maybe’ may have
also referred to the possibility of one event occurring over the other. Interestingly,
once discussing the outcomes from experiments and simulations, Katia no longer
used ‘maybe’ and increased her use of the term ‘chance’ to refer to the possibility of
a green jellybean occurring. In the experiments, she referred to the ‘tiny chance’ (#P
�19, #G �11) and ‘really good chance’ (#P �10, #G �15) of a green occurring;
similarly, she stated ‘chances are small’ (2G6P and1G7P) and ‘equal chance’ (4G4P)
of a green occurring in the simulations.

Narin is a contrast as she did not make estimates of the likelihood of a green
jellybean being drawn. On each occasion, she stated that she was ‘not sure’ and
‘we don’t know’ (2G6P), ‘maybe she could [get a green] maybe not, I don’t know’
(3G5P), ‘not impossible’ (1G7P) and ‘I don’t know’ (4G4P). While she did not
know the chance of getting a green, she was very focused on the happiness levels
of Erin in relation to the constitution of the bags of jellybeans. Interestingly, similar
to her partner Katia, her language changed during the experiment and simulation
situations. In these situations, Narin immediately used chance language to refer to
‘very small’ and ‘little chance’ arising from the experiment (P �19, G �11). In
the simulations, she described the possibility of drawing a green as ‘not impossible’
(3G5P) and ‘equal chance cause it’s the best bag’ (4G4P).

3.4.1.2 Understandings of Terms “Impossible”, “Possible”
and “Certain”

Analysis of the language provides additional insights into the findings of Fischbein
et al. (1991) regarding difficulties of childrenwith the terms “impossible”, “possible”
and “certain”.

The situations presented always involved some combination of green and pink
jellybeans, and hence, there was not a situation where a jellybean was ‘certain’ or
‘impossible’ to occur. Analysis of the transcripts from Narin and Katia reveals that
they did not spontaneously use ‘certain’ or ‘impossible’ to describe the possibility of
getting a pink or green jellybean. However, Narin’s use of the term ‘not impossible’
to refer to the chance of getting a green jellybean when providing an estimation
(1G7P) and describing a simulation (3G5P) indicates she understood the meaning
of ‘impossible’ and possibly used it as an anchor to situate the rest of her language.
Responses when asked if certain colours were certain or impossible to occur revealed
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understandings of these chance terms. When asked if the occurrence of a green bean
was impossible, Katia stated ‘no there’s 2 in the bag’ (2G6P) and ‘no there’s 3 in the
bag but more pink’ (3G5P). Similarly, when asked if it was certain that a green would
be drawn (1G7P), Katia replied ‘No, not at all!’ The following transcript arising from
the simulation for 1G7P provides insights into their relatively rich understandings
of the terms certain and impossible:

Teacher: From the 1000 times around how many times did Erin get a green jellybean?

Katia: Tiny, this small [uses fingers to show a tiny space]

Teacher: So where might you mark on the happy face scale? [Both Katia and Narin
mark the sad face]

Teacher: Katia why did you mark the sad face?

Katia: Because there are so many pink! Erin would be sad

Teacher: What about you Narin why did you mark the sad face?

Narin: Because she would be so so sad, it’s awful

Teacher: But is it impossible to get a green?

Narin: No

Katia: No. You might but there’s only one in the bag

Teacher: So are you really really sad or are you somewhere in between?

Narin: Really really sad! No chance of getting that one green!

Teacher: So are you certain it will be a pink bean?

Narin: Em …

Teacher: What does ‘certain’ mean?

Narin: I will [get a green]!

Teacher: Excellent, so is it certain you will get a pink?

Narin: Maybe one chance of green, maybe!

The responses of Deniz, however, may provide some support for Fischbein et al.’s
(1991) observation of the tendency to equate ‘rare’ with ‘impossible’ and ‘highly
frequent’ with ‘certain’. Deniz spontaneously used the terms ‘no chance of green’
(1G5P), ‘definitely get a green’ (4G2P), ‘impossible to get a green’ (1G5P experi-
ment resulting in 5G and 19P) and ‘definitely get a green’ (4G2P experiment result-
ing in 19G and 7P). While his judgments were always in the correct direction of the
probability continuum, he appeared to discount the presence of the lesser appearing
colour, even when engaged in experiments. One possible explanation for his use of
such definitive language may be that he was drawing on his use of these terms from
real-world contexts. For example, ‘impossible’ in child parlance may imply extreme
difficulty or ‘rareness’ of an event occurring, rather than the probabilistic meaning
(children say it is ‘impossible’ to get to a higher level of a computer game as it
took days to advance; or, that they have no chance of winning a game). This finding
may provide support for the contention that children ‘tend to substitute mathematical
meanings with subjective expectations’ (Fischbein et al., 1991, p. 528).
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3.4.1.3 Understandings of Equal Likelihoods

Katia did not demonstrate difficulty describing equal likelihood situations and
referred to ‘equal chance…because there are equal amounts’ (4G4P) and her partner
Narin also used the term ‘equal chance’. Katia justified her selection of the middle
value on the happy face ‘because there are the same amounts of each, she can pick
maybe green and maybe pink’. Thus, for Katia, we can see that her use of ‘maybe’
does not indicate uncertainty or a lack of preciseness as found in studies by Watson
(2005) and Green (1982). The discussion between Katia and Narin explaining why
they marked the neutral face arising from the 4G4P simulation (Fig. 3.2) indicates
their ability to coordinate the possibility of getting both a pink and a green and utilise
chance language:

Teacher: Katia why did you mark the neutral face?

Katia: There are four and four, so Erin might be happy with what she gets and she
might be sad

Teacher: Narin why did you mark the neutral face?

Narin: Because we don’t know what she will get, it’s somewhere in between

Teacher: So is it impossible to get a green?

Narin: No

Katia: No. You might but there’s equal chance

Teacher: Do you think it’s certain?

Narin: No it’s not, and not impossible either

While Ken and Deniz marked their estimates for the 3G3P bag of beans at the
neutral position, their description ‘very small chance’ (Deniz) and ‘an okay chance’
(Ken) does not indicate a rich understanding of equal likelihood. Following the 3G3P
simulation, Ken stated ‘there is a good chance of her getting a green, it is almost the
same chance as her getting a pink’. Again, they both marked the neutral position on
the happy face scale. This may indicate while both may quantitatively understand
the notion of equal likelihood (as expressed by their marks on the scale), they may be
still developing the associated chance language to describe equal likelihoods. There
was no equal likelihoods situation presented for Fred and Dillon.

Fig. 3.2 Katia and Narin’s marks to show their probability estimations based on the simulation
results (n �1000) for 4G4P
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Fig. 3.3 Probabilities estimated by Narin (in blue) and Katia (in red) following conversion to a 0–1
scale and true probabilities (in black)

3.4.2 Children’s Reasoning About Uncertainty

3.4.2.1 Children’s Initial Probability Estimations

In the initial estimations of probability of getting a green jellybean in four different
bags (2G6P, 3G5P, 1G7P, 4G4P presented in this order), the markings of Katia
and Narin on the happy face scale were not necessarily consistent with the true
probabilities (Fig. 3.3). When presented with the 2G6P situation (bag1), Katia and
Narin overestimated the probability of getting a green jellybean.

In the following dialogue, Katia noted that there were more pink jellybeans than
green ones and associated the term “maybe” with the neutral face (probability 0.5).
Narin, on the other hand, focused on the possibility of getting a green jellybean from
the bag and marked the happy face (probability 1).

Teacher: Why did you choose there Katia?

Katia: Because two green and more pink, maybe he can pick the pink

Teacher: Very good and what about you Narin?

Narin: She can get green so she will be happy

Next in the 3G5P situation (bag2), Katia underestimated the probability (Fig. 3.3)
as she focused on the number of pink jellybeans (“Because there’s too many pink,
Erin will be sad when she picks out a pink.”). Narin’s estimation was close to the
true probability but she marked the neutral face (probability 0.5) because “I felt like
picking it. I don’t know why”. She did not seem to have a reasonable explanation
for her prediction. In general, Narin’s estimations tended to be higher than Katia’s
estimations with an exception of the 1G7P situation (bag3) in which both children
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marked the sad face (probability 0), very close to the true probability (P(G)�0.13).
While Katia mentioned only the number of green jellybeans (“Because there’s only
one of the green ones. Erin will feel like there’s no chance of getting it”), Narin used
the expression “sad” because there was “one green and more pink”. In the situation
of equal probability (4G4P), Katia marked the neutral face (probability 0.5) because
“there are equal amounts”, whereas Narin interpreted the equal amounts differently
when she said “She can get green so she will be happy because there are equal
amounts”. Narin seemed to focus on the possibility of getting a green jellybean and
thought “there’s a big chance of picking the green”.

Deniz and Ken’s subjective probability evaluations were overall consistent with
the true probabilities (Fig. 3.4). With the exception of Deniz’s equal estimations
for bags 1 and 2 (probability 0.5), they assigned higher estimates as the number of
green jellybeans in the bag increased. In the case of small probability (1G5P, bag3),
both children’s estimations were very close to the true probability (P(G)�0.17)
because Deniz believed that there was a “very small chance” and Ken explained that
“there is one green so definitely one chance”. When there was one more green in
the bag (2G4P, bag1), they predicted a higher probability and marked the neutral
face (probability 0.5) because they thought “there is a chance she might get a pink”.
Ken also said “Maybe she could get a green”. When there was an equal probability
(3G3P, bag2), they did not pay attention to the equal amounts of green and pink
jellybeans in the bag. Even though Deniz marked the middle in the scale (probability
0.5), his reason was related to having a “slight chance of getting a green” rather than
equal chances. Ken on the other hand believed that there was “a good chance, better
than the last” when he marked next to the neutral face (probability 0.6). When there
was more green jellybeans than pink ones (4G2P), Ken considered that there were
still two purple ones as he marked halfway between the neutral and happy faces
(probability 0.75). However, Deniz was more confident that Erin would get a green
because “it’s easy, hardly any pinks” when he marked the happy face (probability 1).

Fred and Dillon’s subjective probability evaluations were both quite consistent
with and very close to the true probabilities as seen in Fig. 3.5. As the number of green
jellybeans in the bag increased, they assigned higher estimates, except for Dillon’s
equal estimations for bags 1 and 2 (probability 0.5). Their qualitative descriptions
of the chances for each bag were also consistent with the assigned probabilities:
“bad/terrible chance” for 1G9P, “a teency bit/sort of a chance” for 2G8P, “a bit more
of chance” for 3G7P and “more of a chance” for 4G6P. Both children’s estimations
were the same as the true probability (P(G)�0.1) in the 1G9P situation. This could
be due to the number of green jellybeans (1) in a bag of ten and the happy face scale
divided into ten equal parts because Dillon said “it’s bad of a chance for her because
there’s only one green” and chose the first marking after the sad face (probability 0).

Although some children’s subjective probability estimates tended to be close to the
true probabilities, they were mostly based on intuitions rather than on the part–whole
relationship as expected in relation to previous research findings (Piaget & Inhelder,
1975; Falk, 1982).
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Fig. 3.4 Probabilities estimated by Deniz (in blue) and Ken (in red) after converted to a 0–1 scale
and true probabilities (in black)

Fig. 3.5 Probabilities estimated by Dillon (in blue) and Fred (in red) after converted to a 0–1 scale
and true probabilities (in black)

3.4.2.2 Children’s Probability Estimations After the Experiment
and the Simulation

When engaging in subjective probability evaluations, children tended to use data,
collected from physical experiments (n �24) and computer simulations (n �500 or
1000) of randomly drawing a jellybean out of a specific bag, to update their previous
probability estimations. For instance, after drawing 24 jellybeans from bag2 (3G7P)
Fred and Dillon changed their initial probability estimates considerably based on the
results shown in the student generated dot plot in Fig. 3.6 (#P �13, #G �11) due to
the high number of green jellybeans froma small sample. This is consistentwith Jones
et al.’s (1999) observation of children’s belief in representativeness of small samples.
When the sample size increase to 500 using TinkerPlots (TP), both children updated
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Fig. 3.6 On the left, Fred and Dillon’s probability estimations marked on the scale (red arrow
shows the true probability) for 3G7P; on the right dot plot of experiment results at the top and TP
plot of simulation results at the bottom

Deniz: Not a great chance that she will get a green 

Ken: Not a great chance but not a very bad one either

Fig. 3.7 Ken and Deniz’s estimations on the scale before (red arrow shows the true probability)
and after TP simulation results for 2G4P and their description of simulation results

their probability estimates towards to the true probability value (slightly below the
neutral face, probability 0.5) based on the results shown on the TP plot in Fig. 3.6.
Children seemed able to use the visual proportion of green and pink jellybeans on
the plot without any computation to update their probability estimations.

Analysis of the transcripts from Ken and Deniz reveals that the two children
responded quite differently based on the data. While Ken tended to adjust his prob-
ability estimates relatively reasonably after new information, Deniz had a tendency
to make extreme estimations, except for the equal probability situation (3G6P). For
example, while both children marked the neutral face (probability 0.5) initially for
2G4P, with the simulation results Deniz chose to mark the sad face (probability
0) and Ken’s marking was also at the lower end (probability 0.2) but closer to the
true probability (Fig. 3.7). Their descriptions of simulation results also indicate the
contrasting probability evaluation.

In the 4G4P situation (bag 4), Katia had already noticed the ‘equal amounts’ of
green and pink jellybeans in the bag in her initial estimation (marking neutral face,
probability 0.5). Similarly, children in Kafoussi’s (2004) study could spontaneously
make judgements about equally likely cases. After the experiment results (#P �10,
#G �14), Katia again used the bag content to explain her marking (neutral face):
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“because there is still the same amount of each colour in the bag so Erin could get
either a pink or a green”. After seeing the simulation results from 1000 trials, she
remarked “That’s good, equal amounts!” and explained why she marked the neutral
face again: “there are four and four, so Erin might be happy with what she gets and
she might be sad”. On the other hand, Narin’s initial estimation was marked at happy
face (probability 1) because “there’s 4 green and I love green”. She did not revise
her probability estimation since there were more green jellybeans than pink ones in
the experiment results. After seeing TP simulation results, Narin eventually changed
her estimation to the neutral face (probability 0.5) by saying “there’s equal chance”.
However, her reasoning, “Because we don’t know what she will get, it’s somewhere
in between”, seems to be consistent with the outcome approach (Konold, 1989),
rather than based on equal proportions of two colours in the data.

3.5 Conclusions

Our analyses of both children’s use of chance language and probability estimates on
a non-numerical scale in the presented tasks provided new insights into children’s
reasoning about uncertainty from a subjectivist probability point of view.While chil-
dren used chance language relatively accurately to describe the likelihood of chance
events, there was also evidence of the influence of real-world use of chance lan-
guage for some children (e.g. Dillon and Deniz). We observed a similar finding of
the tendency to equate ‘rare’ with ‘impossible’ and ‘highly frequent’ with ‘certain’
(Fischbein et al., 1991) when some children (Narin, Katia and Deniz) were inclined
to quantify their subjective estimate of probabilities as 0 for the least/less likely out-
comes with bags 1G7P and 3G5P and as 1 for the high likely outcome with bag
4G2P. A quantitative understanding of equal likelihoods was evident (for most) as
in Kafoussi’s (2004) study in which young children could evaluate the likelihood
of equally likely events without experimenting. However, for some the associated
probabilistic language to describe equal likelihoods was in the early stages of devel-
opment (Ken and Deniz).

In children’s initial probability estimations, the quantification of very small and
equal likelihoods tended to be more consistent with the true probabilities in general
even though they were not able to relate the part with the whole, which is considered
essential for understanding of probability by Piaget and Inhelder (1975). This shows
the importance of building on children’s intuitions (Fischbein, 1975) when devel-
oping the formal conception of probability. However, some children were inclined
to mark the neutral position (probability 0.5) when they were not sure about the
outcome (e.g. Ken, Katia, Narin). This seems to be consistent with associating ‘50%
of chance’ with ‘I don’t know’ as seen in the outcome approach (Konold, 1989).

Modifying predictions based on previous results appeared to be intuitive for young
children. In our analysis, we examined the change in children’s estimations when
presented with additional data arising from the experiment and simulation results.
We observed stable estimations when probabilities are very small or equal.Wewould
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argue that in other cases, small sample data couldmislead children as theywere likely
to believe in small samples of experimental data (Jones et al., 1999). Our focus on
both children’s probability estimates and chance language also suggested a close link
between the updated estimates and the use of chance language.

One instructional recommendation is the use of comparison situations (i.e. would
you prefer Bag A or Bag B of jellybean) as Fred and Dillon demonstrated rich use
of probabilistic language when they compared bags when constructing estimates. In
probability teaching at early years, we should start encouraging children to link their
qualitative reasoning about uncertainty to the quantitative reasoningwith appropriate
tools for subjective estimates of probability. There is already the potential to develop
children’s conception of probability in that area but it is often neglected in school
curricula. The happy face scale used in this study is a useful tool that can bridge
these two ways of reasoning about uncertainty. For its effective use in both teaching
and research, we suggest asking children to articulate why they marked that specific
location on the scale initially and to explain why they updated their estimates on
the scale after collecting some data. Children’s subjective evaluations of likelihood
of random events should not be ignored or seen as simply an obstacle. Rather these
intuitions should be developed into more powerful ideas with appropriate learning
tasks. More research is needed to examine whether trials and simulations support
development of children’s reasoning about uncertainty and the revision of probability
estimates.

In the task design, we considered events for which other types of probability
estimates (classical and frequentist) were possible to be used. Since these children
had not fully developed the concept of ratio yet, they primarily relied on their intu-
itive understanding of the relationship between the favourable and unfavourable out-
comes, or their personal beliefs to make their subjective estimates. In view of Huber
and Huber’s (1987) and our findings, this task design based on the urn model (i.e.
drawing from a jellybean from a bag) has potential to provide a concrete situation
for studying young children’s subjective probability estimates with some stability.
Further research is needed to examine the stability of the probability estimates of
young children in problems where it is impossible or impractical to calculate a true
probability.
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Chapter 4
Variation and Expectation
for Six-Year-Olds

Jane Watson

Abstract Watson (2005) made the claim that contrary to the traditional order of
introduction in the school curriculum, where measures associated with expectation
(e.g. mean) were introduced years before measures associated with variation (e.g.
standard deviation), children began to develop the concept of variation before that
of expectation. This study explores the primitive understanding of the two ideas by
seven 6-year-olds as they worked through four interview protocols devised for older
students. The protocols included drawing ten lollies from a container of 100, 50 of
which were red, creating a pictograph from concrete materials to show how many
books some children had read; interpreting fromamovable bar chartwith information
on how children travel to school; and explaining maximum daily temperatures for
their city. These contexts were then used to ask the students to make predictions,
for example related to the number of red lollies out of 10, who would most want
a book for Christmas, how a new child would come to school, and the highest
maximum temperature for a year. Across the contexts, students were asked to create
or manipulate representations of information (data). At no time were the words
“variation”, “expectation”, or “data” used with the children. Videos, transcripts, and
written artefacts were analysed to document demonstration of understanding of the
two concepts in relation to data. Evidence of appreciation of variation occurredmuch
more frequently than evidence of appreciation of expectation.

4.1 Introduction and Background

The history of statistics as part of the school mathematics curriculum is relatively
short compared with topics related to geometry and algebra. Approximately
30 years ago, the National Council of Teachers of Mathematics (NCTM) published
its Curriculum and Evaluation Standards for School Mathematics (1989), including
statistics and probability at all grade levels from kindergarten. In introducing what
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might be termed the “practice of statistics” for grades K-4, the NCTM suggested
the inclusion of experiences for students to

• collect, organize, and describe data;

• construct, read, and interpret displays of data;

• formulate and solve problems that involve collecting and analyzing data;

as well as to

• explore concepts of chance. (p. 54)

At about the same time,Moore (1990)wrote his seminalmanuscript on “uncertain-
ty”. Among themany significant points advancedwere three that provide background
for this chapter. In recognising the importance of the new curriculum (NCTM, 1989),
he said, “However, because of the emphasis that these recommendations place on
data analysis, it is easy to view statistics in particular as a collection of specific
skills (or even as a bag of tricks)” (p. 95). Second, although not the first to see the
importance of context to the field of statistics, as Rao (1975) had made the point
earlier, Moore amplified the word “data”, which was key in the NCTM’s Standards
(1989). Moore emphasised that “… data are not merely numbers, but numbers with
a context …Teachers who understand that data are numbers in a context will always
provide an appropriate context when posing problems for students” (p. 96). Third,
in summing up his message about uncertainty, Moore (1990) focussed on the funda-
mental concept underlying data and data analysis: variation. “The core elements of
statistical thinking” were

1. The omnipresence of variation in processes …

2. The need for data about processes …

3. The design of data production with variation in mind …

4. The quantification of variation …

5. The explanation of variation. (p. 135)

Shortly after this, Green (1993) started asking questions related toMoore’s claims for
variation: “What do students understand of variability and how does this originate?”
and “What are the essential experiences needed to develop a full appreciation of
variability?” (pp. 227–228).

Furthering the issues raised by the questions of Green (1993), Shaughnessy
(1997), echoing the opinion of Moore (1990) above, suggested that one of the prob-
lems associatedwith the lack of focus on variability in the classroomwas the procedu-
ral nature of teaching combined with the complex computations needed to calculate
the standard deviation, which was the measure of variation used by statisticians.
Because the belief was common that a “measure” was needed for every concept in
mathematics, variation had to wait for the standard deviation, which required, for
example, the square root. In the meantime, the arithmetic mean was obtained by a
simple procedure using addition and division, and hence, expectation became the
focus of the curriculum.
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Expectation arises out of the variation in data when data are summarised, perhaps
with a measure of centre or a measure of association. Konold and Pollatsek (2002)
used themetaphor of “signalswithin noisy processes” to characterise expectation and
variation. Both sets of terms also apply when considering trials of random processes
related to probability models. Often in authentic settings, expectations are materi-
alised as predictions of outcomes from data in a context involving variation. In other
settings, however, stated expectations or predictions may be the catalyst leading to
consideration of the variation creating them.

Shaughnessy (1997) followed his supposition about the cause of the delay in
focussing on variation in the curriculum with a call to “investigate students’ concep-
tions of variability and try some research approaches that uncover what our students
can do in problem solving in chance and data, rather than merely documenting what
they are unable to do” (p. 18).

More recently, the Guidelines for Assessment and Instruction in Statistics Edu-
cation (GAISE) Report (Franklin et al., 2007) brought variation to the forefront in
its description of the four steps of statistical problem-solving.

I. Formulate Questions, Anticipating Variability—Making the Statistics Question Dis-
tinction

II. Collect Data, Acknowledging Variability—Designing for Difference

III. Analyse Data, Accounting of Variability—Using Distributions

IV. Interpret Results, Allowing for Variability—Looking beyond the Data. (pp. 11–12)

The nature of variability that GAISE sees as relevant at Level A (the lowest of three
levels across the school years) includes measurement variability, natural variability,
and induced variability but it only sees these considered within a data set at Level A
(p. 15).GAISE also speaks of the helping young children distinguish variability from
error and how these notions are used to explain outliers, gaps, and clusters (p. 33).
Although the Common Core State Standards for Mathematics (Common Core State
Standards Initiative, 2010) recognises variability as an essential starting point for the
study of statistics, statistics and probability are not included in the curriculum until
Grade 6.

The most recent Australian Curriculum: Mathematics (Australian Curriculum,
Assessment and Reporting Authority [ACARA], 2016) recognises both variation
and expectation in its early years, Foundation to Year 2. In these years, “[c]hildren
have the opportunity to access mathematical ideas… by developing an awareness of
the collection, presentation and variation of data and a capacity to make predictions
about chance events” (p. 8). This chapter expands on this extract by considering both
variation and prediction (i.e. expectation) for both “data” and “chance”. Further,
reflecting Moore (1990), it is the uncertainty created by data, whether collected from
surveys, experiments, or random devices, which means that a prediction made from
the results of the data collected must be expressed with a corresponding degree of
uncertainty. Statisticians may express this uncertainty in confidence intervals or p
values, but the goal for young children is to use the evidence they have collected or
the information available to them to express informally how confident they are in
their concluding expectation.
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Although research on school students’ understanding of the practice of statistics
has grown rapidly since it was introduced in curriculum documents, the focus has
been on older students (e.g. Konold & Pollatsek, 2002; Lehrer, Kim, & Schauble,
2007;Watson, Callingham, &Kelly, 2007). This focus is likely to reflect the assump-
tions associated with the requirements to draw conventional graphs and calculate
statistical measures. Research on young children’s statistical understanding has been
relatively sparse. Recently, the work of English (2010, 2012), Hourigan and Leavy
(2015), and Kinnear (2013) has focussed on representations created to model situ-
ations based on picture books. In particular, English (2012) and Kinnear and Clark
(2014) engaged children in activities based on picture books in the context of recy-
cling and rubbish collection that brought attention to variation in contexts leading
to making predictions. In this very concrete, yet imaginary context, children were
able to consider variation in the data presented and make predictions, that is, state
expectations, that were reasonable. In considering the relationship of variation and
expectation across the grades Watson (2005) claimed that appreciation of variation
developedbefore expectation, opposite to the focus of curricula suggested byShaugh-
nessy (1997). In continuing to consider the relationship of variation and expectation
in detail, this study gathers more evidence to investigate this claim for quite young
children.

In the light of the evolving appreciation of the importance of introducing statistical
and probabilistic notions in early childhood, of using meaningful contexts in which
to do so, and of developing a foundation based on understanding variation, this
chapter presents the outcomes of interviews with seven 6-year-old children in their
beginning year of formal schooling. The interviews sought to present the children
with meaningful contexts that would allow them to display their naïve understanding
of data, variation, and expectation. How would the students respond to the data
presented to them or imagined? Would they recognise or create variation and how
would they deal with it? Would their predictions reflect meaningful expectations
from the data and variation experienced?

4.2 Methodology

4.2.1 Interview Protocols

As a part of previous projects focussing on the statistical understanding of students
in Grades 3–9, four interview protocols had been developed, three related to the data
section of the curriculum and one to the chance section (Watson & Kelly, 2005;
Watson & Moritz, 1999, 2001). Three of the protocols included the use of concrete
manipulative materials. The first was based on a container containing 100 lollies of
different colours, of which 50 were red. The lollies questions used with students are
shown in Fig. 4.1. The second involved creating a pictograph to show how many
books some children had read using cut-out images of books and of the named
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Fig. 4.1 Lollies interview protocol

children. The books questions are shown in Fig. 4.2. The third protocol employed a
largemoveable bar chart, which could bemanipulated to show the number of children
who arrived at school by four different means of transport. The transport questions
are shown in Fig. 4.3. The fourth protocol involved speculating about the maximum
daily temperature in their city given the information that the average daily maximum
temperature for the year was 17 °C. The weather questions are shown in Fig. 4.4. The
materials used in the first three protocols are shown in Fig. 4.5: the container with
100 lollies of which 50 were red, 30 green, and 20 yellow; the images of books and
named children; and the moveable bar chart with the bars set for the initial question
asked.

The results of analysing the responses to these protocols have been published
for older children based on other research questions, at times including some of the
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Fig. 4.2 Books interview protocol

responses of the 6-year-old children (e.g. Kelly & Watson, 2002; Watson & Kelly,
2005;Watson &Moritz, 1999, 2001). The data reported in this chapter are a compre-
hensive summary of all exchanges with the 6-year-old children in the four contexts
to gauge the starting points for their appreciation of variation and expectation.

Table 4.1 summarises the focus of the protocols on the relationship of variation
and estimation in the four contexts for the data in the context. Some contexts were
expected to bemore difficult, and the protocolswere ordered as presented in Table 4.1
because of the increasingly complex contexts associated with decreasing concrete
hands-on contact with materials. Two of the protocols (books and weather) were
shortened from use with older children by eliminating more complex explanations
of representations at the end of the protocols. The lollies protocol was exactly as
developed (e.g. Shaughnessy, Watson, Moritz, & Reading, 1999) and the transport
protocol had one extra question, c), added near the beginning.
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Fig. 4.3 Transport interview protocol

Table 4.1 Data, variation, and expectation in the protocols

Protocol Data Initial encounter Subsequent link

Lollies Number of reds in a
draw of ten [actual
lollies]

Expectation
(prediction)

Variation (in
prediction, in data
collected)

Books How many books
students had read
[physical
representations]

Variation (in data) Expectation
(predictions from data
representation)

Transport How many students
travel by four modes
to school [graphical
representation]

Variation (in data) Expectation
(predictions when data
conditions change)

Weather Single value of
average temperature
[no representation]

Expectation (implied
in context and
average)

Variation [predictions
of variation in data to
fit expectation
(average)]

4.2.2 Participants

The seven children (five boys and two girls) were in a preparatory class (before
Grade 1) in a government school with a teacher who had implemented an innovative



62 J. Watson

Fig. 4.4 Weather interview protocol

Fig. 4.5 Materials for the protocol for lollies (left), books (centre), and transport (right)

mathematics programme but who had not yet introduced material related to chance
and data that year. The children were chosen by the teacher, from a class of 25,
as articulate and willing to talk with “visitors from the university”. Each interview
took place individually in a quiet room for approximately 45 min, including all
protocols. Students showed interest in all questions and did not appear to experience
fatigue. Parental permission was obtained and the interviews were video-recorded,
from which transcripts were produced.



4 Variation and Expectation for Six-Year-Olds 63

4.2.3 Analysis

For the purpose of this chapter, the data from the interviews were reanalysed specif-
ically with respect to three aspects of the students’ developing understanding:

• DATA—the children’s interaction with the data related to the contexts presented
in the protocols;

• VARIATION—the children’s capacities to (a) recognise and/or describe variation
in data presented or created and (b) include acknowledgement of variation within
predictions made; and

• EXPECTATION—to use the variation implicit or explicit in the context to make
predictions that reflect meaningful expectations.

At this age and lack of experience, it was not the aim to classify the responses
to the protocol questions hierarchically but to document the interaction of the basic
concepts of variation and expectation in the contexts exposing the students to data.
Following the example of Russell (1990) in exploring how “children construct their
ideas about data” (p. 158), the analysis goes beyond the data to explore how children
use data to construct ideas about variation and expectation. A descriptive account is
presented to illustrate how children are capable at quite young ages to engage with
these big ideas intuitively, although often without the ability to provide statistical
justifications. The terminology of “data”, “variation”, and “expectation” was not
used during the interviews, and the language suggested in Figs. 4.1, 4.2, 4.3, 4.4 was
closely followed.

4.3 Results

The results are presented for each protocol with a summary at the end for the three
aspects of student understanding explored across the protocols: data, variation, and
expectation.

4.3.1 Lollies Protocol

Expectation was the main contextual motivation in the lollies protocol (Figs. 4.1 and
4.5) with interest in the contribution variation made in the predictions of students
or in their explanations of the outcomes they obtained from their trials. All of the
students understood the setting and the drawing out of the lollies that created the data
with which they worked, although the word “data” was not used. Most of the ques-
tions were based on predictions of outcomes of drawing lollies from the container,
although the questions were posed in a manner to allow recognition of variation in
the outcomes.
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Given the contents of the container, the initial expectations for the number of reds
in ten draws (no replacement) were reasonable: 4, 5, or 6, with qualifications of “or
more”, “about”, or “maybe” for four responses, recognising potential variation. The
reasons, however, were not based on proportional reasoning:

• There are some reds on top and bottom—in the corner.

• 5+5�10, 5 of one colour and 5 of another.

• 5+5�10, one more makes 6, and 4 is 10.

One student appeared to have an intuition about the proportion but did not have the
language to express it: “Because there’s 50, and 5… like 10”. All students said either
“No” or “Don’t know” when asked if repeated draws would produce the same result.
Responses reflected appreciation of variation in sampling, for example, “Might get
a different number every time” or “If it’s mixed up I might get 4 yellow, 3 red, and 3
green”. When asked how many reds would be a surprise, five said a higher number
such as “maybe 10”, with two saying “6” or “6 or 5”. Justification for these answers
generally reflected other possibilities or “don’t know”with the response for “6” being
“it’s my favourite number”.

When asked to predict the outcomes for the number of reds in six separate trials,
six of the seven responses contained no repeated numbers of reds, whereas one had
“4” listed twice. Four predictions were consistent with a mean of 5 reds, with two
sets considered high and one set low. In terms of variation, four were judged as wide
and three as reasonable.1 Only one set of values was both centred on 5 and with
reasonable variation.

Asked which of five outcomes of six draws (see Fig. 4.1) would best describe the
most likely outcome, four chose the best response, “3, 7, 5, 8, 5, 4”, whereas one
each chose “all 10s”, “all 5s”, and “2, 3, 4, 3, 4, 2”. The four reasons for the best
response were similar to “Mixed up, different amounts” with only one specifically
mentioning “5”. The reasoning for “all 10s” was “you could get the same number”,
whereas for “all 5s” it was “there are more red”. Asked which set described the
likely outcomes least well, students either replied “all 5s” or “all 10s” with intuitive
reasoning reflecting the list (“it’s got heaps of 10s”) or the contents of the container
(“not enough 10s”).

When asked the range of outcomes for six trials, responses varied from “0–10”
to “2–8” and “3–9” with five responses including “10”. Reasons were generally
idiosyncratic, for example, “I can fit 10 in my hand” or “2+8�10”, or reflecting
single outcomes, for example, “I might grab them all from the red part”.

Asked to show a way to record the results from many trials, six displays are
shown in Fig. 4.6. An oral response of the other student was “ask everyone—get a
clipboard”. Drawings (ii), (iii), and (vi) represented the setting of the trials, whereas
(i) and (v) recorded numbers for the outcomes. Drawing (iv) was accompanied by
the explanation, “write each number up to 8 and then write the number of people
next to each of the numbers that got that many”.

1Criteria for categorising the predictions and type of variation are given in Shaughnessy et al. (1999).
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Fig. 4.6 Representations for data collection for lollies protocol

When provided with grid paper and asked to show how many reds 40 students
might draw from the container, five appeared to understand the task as they were
colouring in the squares, although they did not necessarily fill the squares from the
bottom of the grid. None were urged to complete the task for all 40 students. Two
students explicitly said they had not seen a graph like the grid before. Two graphs are
shown in Fig. 4.7. The choices of squares to fill reflected either “possible” outcomes
or “numbers I like”, with no further explanation.

4.3.2 Books Protocol

The books protocol (Figs. 4.2 and 4.5) gave students the opportunity to use concrete
materials to represent a data set. Of interest was how they used their displays to
show the variation in the data and ultimately how they would make predictions about
implications from within or outside the data displayed.
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Fig. 4.7 Grids filled in for number of reds in repeated draws of ten lollies for “other” students

When presented with the cards for the books and the characters, six of the seven
students could distribute the cards next to the characters in such a way that the
numbers of books read could be compared for the characters. Two students distributed
the books to one side of the character, two students distributed the books vertically
below the character, and two students distributed the books around the character
(non-overlapping). The remaining student ignored the data information and piled
cards on top of each other next to the character. When asked what someone new
to the room could tell from their displays, some responses repeated the information
displayed or said “she could tell by counting”. One student made up a story about
the girl with the most books “winning” and if “someone came along and stole one
of her books she’ll only have 3 left”.

When Andrew, having read five books, and Jane, having read four books, were
introduced, all students added the characters and their books as before, including
the student who put the books in piles. Given a card for Ian with no books, one
student puts him to the side, whereas the others put him with the other characters
(with no books). When asked to show an additional library book for each character,
all students added a book to each character but those with books scattered around
the character had trouble keeping track of which had received an extra book and the
student with piles of books got confused about which character owned which book
and missed out one character.

Asked what a new visitor could now tell from the display, responses varied widely
from “people are reading books”, to “did you put one more on each person?”, to
again reading a count of how many books each character had read. Asked who likes
reading the most, all said Lisa because she had the most books; none expressed
any uncertainty in the suggestion. Asked how they could tell how many books the
characters had read altogether, some just said “count them”, whereas others tried to
do so, with mixed success and only one reaching the correct total of 33. Asked who
was most likely to want a book for Christmas, again five students said Lisa because
she “reads the most” or “likes reading”. The remaining two students gave different
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imaginary accounts, “Ian, because he’s only got one book” and “Terry, he’s got 5
books—dinosaur one, a skeleton one, and a giraffe one and he wants one on plants
so he can see how they grow”.

Finally, students were asked to predict how many books two new students, Paul
and Helen, might have read. Responses were quite varied. One boy would not predict
for either new character saying, “Don’t know, my sister always makes me guess, I
have to put up with it!” The rest made predictions, including “0, because it was his
first time in the library and he doesn’t know how to choose books”, “10, I just think
he would”, and “3, because one of my sisters is 3”. None of the responses used the
information in the display (data) to make a prediction about the new students.

4.3.3 Transport Protocol

At the beginning of the transport protocol (Fig. 4.3), four of the students said they
had seen a bar graph like the moveable bar graph in Fig. 4.5 before; three had not.
Initial questions checked if students could read the graph and distinguish the variation
presented. Two students required initial help in reading the graph, but then all said
that “most” children came by bus. When asked how many came by car, six replied
“6” and one who had trouble initially said “5”. The two questions requiring basic
mathematical calculations caused difficulty. Five of the students worked out that 4
more of Mr. Smith’s class came by bus than car with two counting the lines between
the bars and two justifying their answer with “3+4�7”. Only one student, however,
obtained the total of 18 children in the class, by counting on his fingers. Others
required help and one responded, “Just go down there [to the class] properly and
count and the ones I count can stand up and when I go back down they can sit down”.
One student suggested 10 because that was the largest number on the vertical axis
of the bar graph.

Asked to predict how a new child would come to school, students provided a
wide range of responses and explanations, as shown in Table 4.2. Only one response
was based on the bar graph, whereas the others were based on the students’ own
experiences or imagined scenarios in the context.

Students were then asked to predict how Mr. Smith’s class would arrive if there
were no bus and to move the bars on the graph to show their predictions. One student
pushed bus down to zero and moved car to 7, bike to 7, and walking to 5 for the total
of 18. Others required help to make the adjustments necessary to adjust for the 7 in
the bus.

After returning the bar graph to its original position (Fig. 4.5), students were asked
to adjust the graph again to show how Mr. Smith’s class would get to school if it
were raining tomorrow. Again this was not an easy task for the students, with none
making all of the adjustments for the correct total without prompts. Two students
adjusted car and bus upward appropriately but did not initially move bike and walk
to zero. Two others moved bike and walk to zero but had difficulty adjusting car and
bus upward by the correct numbers, one agreeing that some of Mr. Smith’s class did
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Table 4.2 How a new child would come to school

ID Transport (g) Why?

Prep1 Bus Most people come on the bus

Prep2 He would just do one of these (points to
modes) and if I was coming to school I
might go in the car or bus

If I walk it might take too long and if I
ride my bicycle I could have an accident
and go on the road and a car is coming and
the bicycle might get wrecked to pieces

Prep3 Car I think by car because they had never been
to high school before … [I: Supposing
they had been to school for several
months now, how do you think they will
come to school now?] By bus. [I: Why?]
Because they have learnt where the bus
stop is at the school and they have learnt
where the bus stop is at their home and
then they just go in the bus down to
school from their home

Prep4 Bus I reckon about bus … Because its mum
probably goes to work and stuff … And
her dad too probably

Prep5 (Pushes the car up one) I come to school by car

Prep6 Car Because if you went on a bike you might
get hit and walking you might get hit, and
those two the safest (car/bus)—[I: So,
how would the new kid get to school?] I
catch the bus and I think the new kid
catches the bus

Prep7 Walk Because they might not want to go with
their mum

not come to school that day. Adjusting the variation in the data to fit the prediction in
this context was very difficult, even with the concrete representation of the bar graph
to help.

4.3.4 Weather Protocol

The weather protocol was the most difficult for the 6-year-old students, and many
parts used with older students were not included for these students. The initial ques-
tion (see Fig. 4.4), worded for the possible suggestion of variation by the students,
only elicited one response about the temperature that appeared to acknowledge vari-
ation, “it’s a little bit cold, lower than today”. Two responses in the context reflected
an interpretation of the expectation: “quite hot at 17 °C” and “going to be hot for the
whole year”. Other responses commented on the TV news and it being wrong with
the weather. One student was “not sure” what the average temperature meant.
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When asked the more explicit question about all days of the year having 17 °C
as the highest temperature, five said “no”, one said “sometimes”, and one said “yes,
maybe”. Explanations included the following, acknowledging variation.

• No. The temperature always changes.

• No. You get summer, spring, winter, autumn, and summer again. You get hot, mild/cool,
cold, mild/cool, and hot again.

• No. One day it might be cold, the next day it might be colder.

• No. Every single thing is different, so they do different things every single day.

• Sometimes. Sometimes it’s raining.

Predicting the temperatures for six different days of the year revealed an acknowl-
edgement of variation but not necessarily appropriate values for temperatures in the
city. Three of the responses were within ranges reasonable for the city, for example
“11–30” ( °C), whereas three others had maxima of “70” °C or higher and one had a
range of “5–10” °C (too low for the city). Similar responses were given for January
and July.

Only four students were asked to draw a representation of the temperature over a
year. Their representations are shown in Fig. 4.8. Figure 4.8a represents the variation
from a sunny day and to a rainy day, in Fig. 4.8b the circle represents “the land with
how hot it would be written on it” (perhaps from seeing a weather map on television),
Fig. 4.8c shows a beach and the student described how “hot it is when we go to the
beach”, and Fig. 4.8d shows a picture of the student in the sun and she explained
what she wore “when it was hot or cold”. Figure 4.8a, d, and perhaps Fig. 4.8b, and
the accompanying explanations, recognise the variation present in the weather.

4.3.5 Summary

Students’ familiarity with the context within which the data were presented or cre-
ated influenced their ability to comprehend the questions asked. Lollies, books, and
transport contexts were all quite familiar, with weather related to temperature less
so. For lollies, the “data” were based on the actual sweets in a container; for books,
the data were cards representing books and children in a one-to-one match with the
context; for transport, the data were represented in a moveable bar chart, although
never individually; and for weather, no data were presented and hence they needed
to be created by the students.

For the lollies protocol, students appreciated the variation in outcomes but did
not have the language to explain random behaviour. Only one student used the same
number twice in reporting the number of red lollies in six different trials. For the
others, this may reflect a naïve view that the numbers were being “used up” as they
were chosen, or because the students were given a choice, they would be “fair”
in choosing as many different numbers as possible. A similar tendency appeared
for Grade 3 in a related study with 56% of students not including repeated values,
whereas this decreased to 27% for older students (Kelly & Watson, 2002). In a
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Fig. 4.8 Representations for the temperature over a year

different context of predicting outcomes following the presentation of the data in
a table, Kinnear and Clark (2014) found 5-year-olds more likely to reuse numbers
from the table.

For the books protocol, when asked tomake predictions about the characters based
on the data visible in their displays, six students could do sowith reasons based on the
data (e.g. “most” and “least”). When asked about characters outside those visible,
however, they did not use the visible data to inform a prediction. In the transport
protocol, predicting how a new child outside of the data displayed would come to
school, posed a similar difficulty as for predicting how many books a new character
would have read. In the weather context, students clearly understood about changes
in weather conditions but struggled with actual numerical temperatures, which is not
surprising at their age. Working backward from a specific expectation expressed as
an “average”, however, was very difficult in the context.

4.4 Discussion

The four protocols, initially devised for older students, helped distinguish the limits
of understanding of variation and expectation for these 6-year-olds. The results sup-
port the view that recognising and discussing variation in data in their experience are
very natural to 6-year-olds, even though they may not be able to explain its origin.
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Dealing with variation also generally develops before the ability to express meaning-
ful expectation related to that variation. In the two protocols that began with variation
(books and transport), students’ expectations, expressed as predictions, were often
not based on reasoning associated with the data but instead with imaginary situa-
tions, within or outside the context. In the two protocols initiated with expectation,
the lollies task was easier because the concrete materials were in front of the stu-
dent and the prediction was based on “visible” data. Being presented with the fixed
expectation in the weather protocol was more difficult because it was a single value
associated with a less familiar context (temperature). For lollies, there was variation
in the predictions made, based on variation in the lollies seen in the container. The
predictions had well-understood boundaries (0–10 red), whereas for weather, the
variation was in the data without boundaries as such, and with which students had
much less familiarity. This made the task more difficult but the students understood
enough about the context to suggest numbers for temperatures.

In Kinnear’s (2013) study, the responses where students gave predictions or expla-
nations based on the context of the protocol but not based on the data presented were
called abductive reasoning. In her study, the context was a picture book including
a plot, which some of her 5-year-old students used to make predictions, rather than
examining the actual data provided in the context. Similar examples from the current
protocols include discussing where red lollies may be in the container or how many
would fit in the hand, suggesting that a character is not familiar with the library for
selecting a book, discussing the amount of time it takes to reach school or familiarity
with bus routes, and providing general characteristics of weather and seasons. For
these protocols, however, there were also other responses that were based completely
on imagination, not context, such as, “my sister is 3” or choosing “numbers I like”.
Studies such as these with young children suggest there is a progression in thinking
from what might be called imaginary reasoning outside of the context presented, to
abductive reasoning using only the context presented, to the beginning of statisti-
cal (or inferential) reasoning using the data within the context in decision-making
(Ben-Zvi, Aridor, Makar, & Bakker, 2012; Makar & Rubin, 2009). Asking for pre-
dictions for books read or transport to school for children outside of the visible data
set could be considered precursors to introducing samples and populations, elements
of inferential reasoning. Ben-Zvi et al. and Makar and Rubin, however, were work-
ing with students in Grades 4–6 and also focussing on acknowledging uncertainty
in decision-making. Students in this study were not questioned about the certainty
of the responses given, although the impression gained from some answers was that
they were guesses, indicating that certainty was not an issue. More research with
young children should shed light on this suggested pathway and propose ways of
scaffolding children into the practice of statistics.

The predominance of variation throughout the interviews, which students had
virtually no trouble recognising or creating, supports the views of Moore (1990) and
Shaughnessy (2003) that variation is in fact the foundation of all statistical enquiry.
In terms of expectation, it is variation that either creates the prediction or provides
supporting evidence that the expectation is reasonable, supporting Watson’s (2005)
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claim that appreciation of variation is the starting point for children’s engagement
with the practice of statistics.

Acknowledgements These studentswere interviewed as part ofAustralianResearchCouncilGrant
A00000716, “The development of school students’ understanding of variation”. Ben Kelly assisted
with the interviews. Thank you to the teacher, Denise Neal, for creating a classroom environment
where the children were very happy to talk to “visitors from the university”.

References

Australian Curriculum, Assessment and Reporting Authority. (2016). Australian curriculum, ver-
sion 8.2. Sydney, NSW: ACARA.

Ben-Zvi, D., Aridor, K., Makar, K., & Bakker, A. (2012). Students’ emergent articulations of uncer-
tainty while making informal statistical inferences. ZDM Mathematics Education, 44, 913–925.

Common Core State Standards Initiative. (2010). Common core state standards for mathematics.
Washington, DC: National Governors Association for Best Practices and the Council of Chief
State School Officers. Retrieved from http://www.corestandards.org/assets/CCSSI_Math%20St
andards.pdf.

English, L.D. (2010).Young children’s earlymodellingwith data.Mathematics EducationResearch
Journal, 22(2), 24–47.

English, L.D. (2012).Datamodellingwithfirst-grade students.Educational Studies inMathematics,
81, 15–30. https://doi.org/10.1007/s10649-011-9377-3.

Franklin, C., Kader, G., Mewborn, D., Moreno, J., Peck, R., Perry, M., & Scheaffer, R. (2007).
Guidelines for assessment and instruction in statistics education (GAISE) report: A preK-12
curriculum framework. Alexandria, VA: American Statistical Association. Retrieved from http://
www.amstat.org/education/gaise/.

Green, D. (1993). Data analysis:What research do we need? In L. Pereira-Mendoza (Ed.), Introduc-
ing data analysis in the schools: Who should teach it? (pp. 219–239). Voorburg, The Netherlands:
International Statistical Institute.

Hourigan, M., & Leavy, A. (2015). A meaningful driving question motivates kindergartners to
engage in all five stages of the PPDAC data cycle. Teaching Children Mathematics, 22(5),
283–291.

Kelly, B. A., & Watson, J. M. (2002). Variation in a chance sampling setting: The lollies task. In
B. Barton, K. C. Irwin, M. Pfannkuch, & M. O. J. Thomas (Eds.), Mathematics education in
the South Pacific (Proceedings of the 26th Annual Conference of the Mathematics Education
Research Group of Australasia, Vol. 2, pp. 366–373). Sydney, NSW: MERGA.

Kinnear, V. (2013). Young children’s statistical reasoning: A tale of two contexts. Doctoral dis-
sertation, Queensland University of Technology. Retrieved from http://eprints.qut.edu.au/6349
6/.

Kinnear, V. A., & Clark, J. A. (2014). Probabilistic reasoning and prediction with young children. In
J. Anderson, M. Cavanagh, & A. Prescott (Eds.), Curriculum in focus: Research guided practice
(Proceedings of the 37th Annual Conference of the Mathematics Education Research Group of
Australia, Sydney, July, 2014, pp. 335–342). Adelaide, SA: MERGA.

Konold, C., & Pollatsek, A. (2002). Data analysis as the search for signals in noisy processes.
Journal for Research in Mathematics Education, 33, 259–289.

Lehrer, R., Kim,M., & Schauble, L. (2007). Supporting the development of conceptions of statistics
by engaging students in measuring and modeling variability. International Journal of Computers
for Mathematical Learning, 12, 195–216.

http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf
https://doi.org/10.1007/s10649-011-9377-3
http://www.amstat.org/education/gaise/
http://eprints.qut.edu.au/63496/


4 Variation and Expectation for Six-Year-Olds 73

Makar, K., & Rubin, A. (2009). A framework for thinking about informal statistical inference.
Statistics Education Research Journal, 8(1), 82–105. Retrieved from http://iase-web.org/docum
ents/SERJ/SERJ8(1)_Makar_Rubin.pdf.

Moore, D. S. (1990). Uncertainty. In L. A. Steen (Ed.),On the shoulders of giants: New approaches
to numeracy (pp. 95–137). Washington, DC: National Academy Press.

National Council of Teachers of Mathematics. (1989). Curriculum and evaluation standards for
school mathematics. Reston, VA: Author.

Rao, C. R. (1975). Teaching of statistics at the secondary level: An interdisciplinary approach.
International Journal of Mathematical Education in Science and Technology, 6, 151–162.

Russell, S. J. (1990). Counting noses and scary things: Children construct their ideas about data.
In D. Vere-Jones (Ed.), Proceedings of the 3rd International Conference on the Teaching of
Statistics. Voorburg, The Netherlands: International Statistical Institute. Retrieved from http://ia
se-web.org/documents/papers/icots3/BOOK1/A2-6.pdf.

Shaughnessy, J. M. (1997). Missed opportunities in research on the teaching and learning of data
and chance. In F. Biddulph & K. Carr (Eds.), People in mathematics education (Proceedings of
the 20th annual conference of the Mathematics Education Research Group of Australasia, Vol.
1, pp. 6–22), Waikato, New Zealand: MERGA.

Shaughnessy, J. M. (2003). Research on students’ understandings of probability. In J. Kilpatrick,
W. G.Martin, &D. Schifter (Eds.), A research companion to Principles and Standards for School
Mathematics (pp. 216–226). Reston, VA: National Council of Teachers of Mathematics.

Shaughnessy, J. M., Watson, J., Moritz, J., & Reading, C. (1999, April). School mathematics stu-
dents’ acknowledgment of statistical variation. In C. Maher (Chair), There’s more to life than
centers. Presession Research Symposium, 77th Annual National Council of Teachers of Mathe-
matics Conference, San Francisco, CA.

Watson, J. M. (2005). Variation and expectation as foundations for the chance and data curriculum.
In P. Clarkson, A. Downton, D. Gronn, M. Horne, A. McDonough, R. Pierce, & A. Roche (Eds.),
Building connections: Theory, research and practice (Proceedings of the 28th annual conference
of the Mathematics Education Research Group of Australasia, Melbourne, pp. 35–42). Sydney:
MERGA. Retrieved from https://www.merga.net.au/documents/practical2005.pdf.

Watson, J. M., Callingham, R. A., & Kelly, B. A. (2007). Students’ appreciation of expectation and
variation as a foundation for statistical understanding. Mathematical Thinking and Learning, 9,
83–130.

Watson, J. M., & Kelly, B. A. (2005). The winds are variable: Student intuitions about variation.
School Science and Mathematics, 105, 252–269.

Watson, J. M., & Moritz, J. B. (1999). Interpreting and predicting from bar graphs. Australian
Journal of Early Childhood, 24(2), 22–27.

Watson, J. M., & Moritz, J. B. (2001). Development of reasoning associated with pictographs:
Representing, interpreting, and predicting. Educational Studies in Mathematics, 48, 47–81.

http://iase-web.org/documents/SERJ/SERJ8(1)_Makar_Rubin.pdf
http://iase-web.org/documents/papers/icots3/BOOK1/A2-6.pdf
https://www.merga.net.au/documents/practical2005.pdf


Chapter 5
The Impact of Culturally Responsive
Teaching on Statistical and Probabilistic
Learning of Elementary Children

Celi Espasandin Lopes and Dana Cox

Abstract The objective of this chapter is to explore the impact of culturally respon-
sive teaching on statistical and probabilistic learning of elementary children. In this
study, the learning of mathematics and statistics is centred on solving problems with
themes derived from the children’s culture and the context in which they live. We
also aim to understand and describe indicators of the development of different forms
of combinatorial, probabilistic and statistical reasoning that young children acquire
throughout their second and third year of schooling. The data presented in this chapter
emerged during a longitudinal research exploring the temporal dimension of experi-
ence. The methodology chosen generates rich detail and allows for the segmentation
of data, while focusing on the act of listening to those who are willing to express their
reasoning. This enables the researcher to discern human action and take into account
the social practices, the subjective experiences, identity, beliefs, emotions, values,
contexts and complexity of the participants. The results of the research include the
description of the thought processes that emerge as children engage in using mathe-
matics and statistics during their second and third year of elementary school showing
that children need to experience problematizing activities involving diverse situations
for development of probabilistic and statistical reasoning.

5.1 Introduction

Research on what and how probability and statistics should be taught and learned
in childhood is still limited in Brazil, the USA and elsewhere in the international
arena. In particular, there is a need to better describe and understand children’s ways
of knowing related to probability and statistics and how children reason about data.
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The objective of this chapter is to explore the impact of culturally responsive teaching
(Gay, 2010) on statistical andprobabilistic learningof elementary children.Culturally
responsive teaching is defined as using the cultural characteristics, experiences, and
perspectives of diverse students as conduits for teaching them more effectively. In
this chapter, we consider data collected in the context of a larger longitudinal study.
In the course of that study, teachers began making modifications to the standard
curriculum to respond to children’s gesture, reasoning and lived mathematics related
to probability and statistics. We had an opportunity to study the impact of these
modifications and identify structural elements and triggers for mathematical and
statistical learning.

Specifically, the present study aims to understand and describe indicators of the
development of different forms of reasoning that children acquire throughout their
second and third years of schooling in relation to the generation of possibilities, ideas
of chance, and the process of data collection, tabulation and representation.

The results evidenced that children need to experience problematizing activities
involving diverse events so that their observations can lead them to the beginning
of the development of probabilistic reasoning. Solving problems to learn the enu-
meration process is crucial so that they can perceive in an event what is most likely
or less likely to happen. In relation to statistics, we observed that children need to
go through a research cycle in order to problematize a topic, collect, tabulate and
represent data about this problem in order to develop statistical reasoning.

5.2 Combinatorial, Probabilistic and Statistical Thinking
in Childhood

We understand that thinking is brought to existence through intellectual activity.
We can say that it can arise through rational activities of the intellect or through
abstractions of the imagination. Thinking may imply a series of rational operations,
such as analysis, synthesis, comparison, generalization and abstraction. On the other
hand, we must take into account that thinking is both determined by and reflected
in language; as we try to convey concepts or judgments in our mind, those thoughts
inevitably change.

There are different types of thinking. Deductive thinking goes from the general
to the particular and inductive thinking moves from the particular to the general.
Analysis consists of the separation of the whole into parts, which are identified or
categorized while synthesis looks across the parts in search of unifying themes.
Systemic thinking reveals a complex view of multiple elements with their various
interrelationships; and critical thought evaluates created knowledge.

Reasoning is a logical, discursive, and mental operation. It can also be considered
as an integral part of the mechanisms of higher cognitive processes for the formation
of concepts and for the solution of problems. The human intellect uses one or more
propositions to conclude, by mechanisms of comparisons and abstractions, which
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are the data that lead to true, false, or probable answers. From the premises, we
arrive at conclusions. It was through the process of reasoning that the development
of the mathematical method occurred, which is considered a purely theoretical and
deductive instrument and dispenses with empirical data (Lopes, 2012).

Reasoning is, therefore, a thought process throughwhich one can justify or defend
a specific conclusion from a set of premises: if a specific fact causes admiration, one
seeks to explain it; if one fears some event, one seeks to infer its consequences; if
there are doubts regarding a specific observation, one seeks to verify; if it is necessary
to ensure that there is an equivalence, one seeks to show the validity of such a
claim. When reasoning, there are no accurate premises that lead to the execution
of an action; in this case, reasoning is likely located in the realm of the probability
(Leighton, 2004). All these forms of reasoning—explanation, inference, verification,
demonstration—enable us to establish relations of consequence among judgments.

This diversity of forms of reasoning is essential for the learning of statistics and
probability. Statistics is the science that provides tools to describe variability in
data and, based on this description, enable decision making. In statistical thinking,
variability is a key concept in statistics because it is at the core of the process of
finding relations about the problem investigated, and designing the construction and
analysis of data.

Variability that is present in data necessitates a form of reasoning that requires a
combination of ideas, which points to an intersection between combinatorial, proba-
bilistic and statistical thinking. It allows data to be collected, displayed, summarized,
examined and interpreted to discover patterns and deviations from these patterns.
Quantitative data can be described in terms of its main features: measures of shape,
centre and dispersion.

Similarly, the randomness is an important phenomenon to the development of
statistical and probabilistic reasoning. The uncertainty and the random nature of
data distinguish statistical investigation from the more precise and finite nature that
characterizes mathematical explorations. Campos,Wodewotzki, and Jacobini (2011)
argue that such principles cause statistics to break away from the deterministic aspect
of mathematics, and favour reflexive knowledge, which is enabled by the develop-
ment of statistical thinking and provides “the ability to see the statistical problem in
a global way, with its interactions and whys, understand its several relations and the
meaning of variations” (p. 61). Therefore, mathematical concepts and procedures
are used, in part, to solve statistical problems, but are not limited by them.

Therefore, to reason statistically is to be able to understand and explain statistical
processes, as well as interpret their results. This requires understanding of how and
why statistical investigations are conducted. It includes recognizing and compre-
hending the investigative process as a whole, from the elaboration of a query and the
selection of tools, to the gathering, analysis, and interpretation of data. This form of
reasoning is fundamental for making decisions and predictions, which are usually
based on large amounts of data in contexts involving many variables.

All this process still requires the contributions of combinatorial and probabilistic
reasoning that are connected to each other, since after enumerating the possibili-
ties one can analyse the odds and make predictions. All this process still requires the
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contributions of combinatorial and probabilistic reasoning that are connected to each
other, since after enumerating the possibilities one can analyse the odds and make
predictions. These forms of reasoning are essential to construct data from a prob-
lem, which leads to statistical reasoning and allows the understanding of statistical
information that involves linking one concept to another (e.g. median and mean) or
enables combining ideas about data and facts.

While probabilistic reasoning aims at structuring our thinking through models, statistical
reasoning tries to make sense of observed data by searching for models that may explain the
data. Probabilistic reasoning usually starts with models, investigates various scenarios and
attempts to predict possible realizations of random variables based on these models. The
initial points of statistical reasoning are data and suitable models are fitted to these data as
a means to gain insight into the data producing process. (Batanero, Chernoff, Engel, Lee, &
Sánchez, 2016, p. 12)

These relationships between combinatorial, probabilistic and statistical reasoning
should be considered in early years statistical education through exploration of the
intuitive ideas of children; this will bring them closer to the ideas of randomness
and variability. The intuitive ideas of children about fundamental concepts of chance
enable them “to use probability as a tool to compare likelihood of different events in
a world filled with uncertainty” (Batanero et al., 2016, p. 3).

Thus, developing such forms of reasoning in childhood requires an intercon-
nectedness between statistics education and mathematics education. The imbricated
approach of mathematical and statistical concepts and procedures, in childhood edu-
cation, will enable children to have a broader understanding of the situations and
problems that they encounter and thereby gain a better understanding of the world
in which they live.

5.3 Reasoning in a Culturally Responsive Classroom

Culturally responsive pedagogy allows children to maintain their personal per-
spective when learning. This includes a child’s cultural knowledge, prior experi-
ences, frames of reference and performance styles (Gay, 2010), maintaining student
strengths as a foundation for learning. Beginning with the mathematics of a child, a
culturally responsive educator will create a nurturing and cooperative environment
where power is shared, not held (Morrison, Robbins, & Rose, 2008). This requires
reshaping the prescribed curriculum.

We were interested in studying the ways local teachers reshaped the prescribed
curriculum in the areas of probability and statistics. Our data stems from activities
developed by local teachers in response to observed probabilistic reasoning related
to enumeration of elements, analyse possibilities, idea of chance, collection, organi-
zation and representation of data.

Beforewe tell the story ofwhat happened as a result of this reshaping,wemust first
position the type of reasoning we observed as being both in line with mathematical
reasoning and also separate from it. The lessons we documented occurred in the
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larger context of a mathematics classroom, but were centred around probabilistic
and statistical ways of knowing. We will share here our assumptions about early
childhood learning and different forms of reasoning.

We begin with the assumption that mathematics education requires an approach
that is developmentally appropriate. Childhood is a time of play and spontaneity
as well as forms of expression that children engage in that are different from those
of adults: their multiple languages and creative terminology, the relationships they
establish in the construction and creation of games and playful interactions, and the
methods of play and what playing means to them (Prado, 1999).

Mathematical and statistical education during childhood should go beyond the use
of algorithms, rules, or conventions. Children are entitled tomathematical knowledge
that is present in their imaginary world, and in their real world. As their lives unfold,
children are entitled to reason and to establish mathematical habits and patterns
based on lived experience. Children construe the world and question what they see.
They need educational spaces where they can express their doubts and socialize their
hypotheses and solutions. Culturally responsive pedagogy encourages children to
bring their whole selves to class and engage publically in these certainties and doubts.

This is a reflexive paradigm, which postulates education as investigation, through
which students and teachers question each other. It should be noted that “education
for reasoning results in the development of higher thinking”. Higher thinking is “a
combination of critical thinking and creative thinking” (Lipman, 1995, p. 100).

This form of reasoning can be promoted during childhood education, provided
that those involved realise how much a child’s world is marked by imagination and
creativity. To consider such a notion in childhood education is to help children over-
come possible manipulations, for when we begin to explore the paths of childhood
activities, we are immediately confronted with the concentration of power in the
hands of very few, and increasingly, of large corporations that serve a capitalist mar-
ket and manipulate children by means of advertising and incentive relating to the
consumption of toys, electronics, clothes and shoes.

Children are affected by the economic system under which they live (Kasser
& Linn, 2016). The current system, corporate capitalism, has the focus on profit
and power not safeguarding the most humane values in the education of children.
Marketing to children is a practice known to be associated with a variety of negative
outcomes for children as corporations are completely free to produce almost any kind
of lucrative childhood cultural entity (Steinberg & Kincheloe, 2001). Schools must
promote education that allows children to have experiences that are in opposition to
the “aggressions” perpetratedon childhoodculture,which rob childrenof the pleasure
of discovery, observation about the movements of nature, of lifetime relationships
with peers, of the joy of imagining and creating, of acting differently. In this way,
teaching can be critical and can advocate for issues of social justice central to even
very young children (Gay, 2013).

This points to a perspective in which

Problem solving, used as a means to teach mathematics, points towards the design of a plan
for mathematics education that encompasses the social experiences of students. Teaching
through problem solving starts with an investigation of students’ social interactions and
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invites them to formulate problems derived from such situations. The classroom becomes
a place for questioning, contextualizing and formulating problems, instead of dealing with
ready-made questions and predictable answers. School activities focused on problem solving
enable the development of citizens who are equipped to deal with uncertainty, possibilities,
anddecision-making, thus contributing to their independence and autonomy. (Lopes,Grando,
& D’Ambrosio, 2017, p. 254).

While exploring social relations, manipulating objects and interacting with other
people, children are able to formulate ideas, test them, and accept or reject what they
learn. Children construct meaning from their efforts to discover or invent.

5.4 Methodology

The opportunity to better understand the impact of culturally responsive teaching
on statistical and probabilistic learning of elementary children led us to collect data
with children at two different years of schooling (second and third year of elementary
school). The activities discussed here were prepared by researchers in partnership
with teachers from the assumption that the learning of mathematics and statistics is
centred on solving problems with aspects of children’s culture.

The development these activities with children gave rise to different forms of data.
First, activities conducted with children were documented with video and audio
recordings. For the construction of this chapter the data from four activities were
transcribed and analysed.

Second, field notes from meetings with teachers as well as students were kept
by the researchers. These field notes recorded direct observations of activity and
conversation, but also contain evidence of the impressions of these observations on
the researcher.

Third, in-depth interviews, of a semi-open nature, were carried out with teachers
and students. These interviews are characterized by flexibility, enabling a more bal-
anced analysis of the development of students’ probabilistic and statistical reasoning.

Byworking to braid together these three formsof data,wewere able to capture how
children generate mathematical and statistical meaning and describe the conditions
that support the development of probabilistic and statistical reasoning of students
during problem-solving.

The current work requires close partnership with the teachers and the children
themselves. As D’Ambrosio and Kastberg (2012) have pointed out, listening to stu-
dents is essential. The authors advocate the importance of listening to the children
to understand their different ways of thinking and they warn that

It should not be confused with “giving kids reasons,” meaning to explain things to a learner
in the hope that they will absorb the teacher’s explanations. In mathematics teaching, giving
reason to the learner would mean considering the mathematics learner as a mathematical
thinker with system of knowledge that is internally consistent. (p. 22)
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In this sense, in order to conduct this research, it was necessary to include the
voices of the children and their teachers, thus adopting a collaborative perspective
focused on the processes of classroom interviews and observation.

5.5 The Study

The research project that gave rise to the present article stems from the premise that
“children have the right to an educational space in which they are stimulated to
express their thinking using language; they need to invent and narrate their own
stories to colleagues. This education should focus on children’s culture” (Lopes,
2012, p. 163).

5.5.1 Goals

The objective of our study was to discuss structural elements and triggers of mathe-
matical and statistical learning from activities, based on probabilistic and statistical
content, prepared by the teachers who are responsible for the learners (aged 7–8) in
the class. This research also aims to understand and describe indicators of the devel-
opment of different forms of combinatorial, probabilistic and statistical reasoning
that children acquire throughout their second and third year of schooling.

5.5.2 Context and Participants

The research that gives rise to the discussions brought in this chapter is being devel-
oped in the city of Valinhos, state of São Paulo, which is located at a distance of 90 km
from the state capital, and has a population of approximately 125,000 inhabitants. In
2016, Valinhos stood out in the economic data as the city with the highest income
per capita in the interior of the state.

The municipal school EMEB Cecília Meirelles was chosen for the study because
it is located in a low-income neighbourhood, and it takes only children aged 7–8.
The children begin attending EMEB Cecília Meirelles in their second year of ele-
mentary school, and remain in the same school until the conclusion of the fifth year.
There are no significant levels of student drop-out or failure. This institution has
a tenured administrative and teaching staff, but needs to improve its rating in the
Índice de Desenvolvimento da Educação Básica—IDEB (Basic Education Develop-
ment Index), which is an indicator created by the Brazilian government to assess the
quality of education in public schools.

In Brazil, the mathematics curriculum for children (6–8 years old) recommends
that reading and interpreting information be expressed through symbols, signs and
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codes in different situations and in different configurations (graphs, tables, labels,
advertisements). Also, it is suggested that children can formulate questions that gen-
erate research and observations to collect quantitative and qualitative data. Students
should collect, organize and construct their own representations to communicate
what is collected. It is recommended that in this phase of childhood, children read
and interpret simple tables, double entry tables, and graphs, especially in terms of
pictorial representations. It is also proposed that children produce texts from the
interpretation of graphs and tables, and also problematize and solve problems from
the information contained in tables and graphics. They should recognize and differ-
entiate deterministic and probabilistic situations, as well as, identify the greater or
lesser chance of an event occurring.

5.5.3 Methods

In this context, we sought to examine the mathematical and statistical practice of the
children while they engaged in problem posing and problem-solving activity, and
to infer the conditions considered useful for the development of their probabilistic
and statistical reasoning. Data used in the study included recorded interviews with
students and class observations, in order to register mannerisms and speech, which
are essential to the analysis process. Furthermore, monthly meetings were held with
the teachers. At these meetings, the teachers reported on activities that they had
developed with the students both orally and in writing. Through discussion, teachers
and researchers worked together to analyse the activity and design new curriculum.
The aim was to gather data that shows the relationship between problem solving and
mathematical and statistical reasoning at each moment of the teaching and learning
process, making it possible to detect children’s reflections and interactions. The
interviews and classroom activities were conducted by researchers and teachers. The
children always worked in groups.

5.5.4 The Episodes

Four episodes were selected to describe the ways in which the children in our study
reasoned during the conduct of probabilistic and data analysis experiments. We are
going to share four episodes. Each episode has three distinct components. First, we
will share a catalyst for curricular change. In each episode, there is a moment where
students shared a conception, cultural story, or perspective onwhich curriculumcould
be built. Second, an activity was built by the local teacher in response that catalyst.
We will describe these activities in detail. Third, we will present the result of the
activity. The first two episodes occurred in the context of face-to-face interviews
between a researcher and the children. The other two episodes were reported by the
teachers, recalling the activity they had planned and implemented in the classroom.
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5.5.4.1 Episode 1: Guessing Card Colours

Before starting the activity with the children, we asked them:

Researcher: Do you know what chance is?

Suellen: I don’t know.

Yasmin: It’s when we choose some food.

Researcher: Suellen, do you think it may rain today?

Suellen: Not today.

Maria Eduarda: Rain is impossible now.

(Researcher’s record)

This activity involved drawing a card out of a bag in which there were two blue
cards and one yellow card. The children were supposed to bet on the colour that
would be picked and write down the result. Each child of the group drew cards three
times. Then they recorded the colours which were drawn in a column graph and
discussed the results. Even after this procedure, the children did not realize that the
chance of drawing a blue card was higher. In this first year of work, it could be
observed that the children were betting on their favourite colour, or on the colour of
the card that had been placed in the bag first, because they believed that this would
be the one which would be drawn, according to a determined sequence.

Researcher: Jennifer, why did you bet on blue?

Jennifer: Because that’s the sequence.

Researcher: What sequence?

Jennifer: That was the card that was put into the bag first.

Researcher: Then, let’s see what happens.

(Researcher’s record)

When the card was drawn, it was blue. Jennifer reacted by stating “I said it would
be a blue one”. From Jennifer’s insights, other situations were worked out that would
lead children to observe random movements in order to allow them to break their
personal preferences. In this way, it was developed during the first-year activities
that involved the idea of chance, and the children started to realize that possibilities
of occurrence of an event can be higher or lower.

In the second year of work, activities that involved statistics and probability in
an articulated way were developed and integrated into the mathematics curriculum
planned by the school. After this regular work done by the teachers, the researcher
returned to school and we asked Jennifer about the same situation.

Researcher: Why did you bet on blue? Is it your favourite colour?

Jennifer: No, my favourite colour is pink. I bet on blue because blue has a higher chance of
being drawn.

Researcher: Why do you think so?

Jennifer: Because you put more blue cards. There is only one yellow card.

(Researcher’s record)
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We noticed in this exchange that the children, including Jennifer, were not yet used
to dealing with the idea of chance and confused it with preferences. That provoked
the teachers to consider another activity, the Peek Box.

5.5.4.2 Episode 2: Peek Box

The peek box was another activity carried out during the first year. Seven green
marbles and three white marbles were placed in a small box, totalling 10 marbles.
The children were asked to carry out the experiment by shaking the box ten times and
checking what colour they could see through a hole drilled on the box. They recorded
the colours they saw, and the result was that green marbles were seen eight times
and white marbles were seen twice. Then we asked the children about the contents
of the box.

Researcher: How many marbles do you think there are in the box?

Suellen: 10 marbles.

Researcher: What colour marbles?

Maria Eduarda: Green and white.

Jennifer: But there are more green ones than white ones.

Researcher: Why, Jennifer?

Jennifer: Because we saw eight green marbles and two white ones.

Researcher: Then, how many green marbles must there be in the box?

Maria Eduarda: Eight green marbles

Jennifer: And two white ones.

Researcher: Let’s check!

(Researcher’s record)

During the discussion, the children presented several possibilities that were not
articulated by the results of the withdrawals. The researcher provoked, through ques-
tioning, a methodological observation of the colours that appeared. The children
began to compare how many times the green marble and white marble had been
seen. They realized through repeated and systematic observation that there should
be manymore greens than white. Thus, when we opened the box and found that there
were seven green marbles and three white ones, we discussed the fact that although
they saw eight green marbles, that did not necessarily match the contents of the box.

In the second year of work, we carried out the same activity, but this time we
changed the number of marbles in the box: we placed four white marbles and sixteen
green ones in the box. The children looked 20 times to see the colours that appeared
in the hole drilled onto the box, and recorded that green marbles came up thirteen
times and white marbles seven times. Then we asked:

Researcher: How many marbles do you think there are in the box?

Maria Eduarda: I think that now there are twenty because the box is heavier.

Suellen: Yes! And the other time we saw the colour ten times.
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Rayssa: Now we recorded twenty times.

Researcher: And what colour were the marbles in the box?

Maria Eduarda: They are still green and white.

Kerollyn: But there are still more green marbles than white ones.

Researcher: Why, Kerollyn?

Kerollyn: Because now we saw thirteen green marbles and only 7 white ones.

Researcher: Jennifer, how many green marbles must there be in the box?

Jennifer: I don’t know, but there are more green ones, many more.

Maria Eduarda: I think there must be around fifteen green marbles.

Rayssa: Yes! There are few white ones.

Researcher: Suellen, how many white marbles do you think there are in the box?

Suellen: If there are twenty marbles, then there must be fourteen green ones and six white
ones, because the other time I remember that there was one more marble than we thought.

(Researcher’s record)

We observed that the children no longer related the number of times the colour
had been seen and could estimate that there would be more green marbles. However,
they still did not relate the results to a numerical perception.

5.5.4.3 Episode 3: Discovering the Favourite Game

In May 2016, the teacher designed an activity whose purpose was to draw a graph
of the group’s favourite games. The children selected five games. They collected,
tabulated and represented the data on a column graph. Then they discussed the results
and recorded their conclusions considering the graphical representation.

The children had never conducted an opinion poll or drawn graphs before. This
was the first time they developed a procedure of statistical investigation. First of all,
the teacher asked the students to select five games and they listed: catch, soccer,
tug-of-war, flag-pick and tablet games. Then they recorded the frequencies relating
to each selection: one vote for catch, eight votes for soccer, two votes for tug-of-war,
five votes for flag-pick and no votes for tablet games.

The teacher needed to use graph paper to keep the proportion when developing
the graph. She needed to instruct the children about the entire data entry procedure,
since they had no idea how to group the records. They also had difficulties developing
the graph, as they had never in the past used this type of representation. Even with
punctual guidance by the teacher, we noticed that it was difficult for them to consider
the origin in the Cartesian plane.

In May 2017, we asked the teacher of Grade 3, who had this very same group
of students in Grade 2, to carry out a similar procedure with the children differing
only by topic, which was changed to the children’s favourite animal. They selected
dogs, cats, turtles, horses and bears. The children signalled that they had already
made graphs the year before and made the data entry and representation of the graph
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with greater skill. This time they had no difficulty in determining the origin of the
Cartesian plane, but they still needed to use graph paper to ensure proportionality
between columns.

5.5.4.4 Episode 4: Raising Possibilities, Analysing the Least and Most
Probable While Casting Dice

Another activity, reported and carried out by the teachers of the same group when
theywere inGrades 2 and 3, involved casting dice to check the probability of different
sums resulting from two dice. The questions proposed to the group were as follows:

1. When I cast two dice, what sums can I get?
2. Bet on the sum that you think will occur most often.
3. Each one of you, cast the dice three times and write down the numbers that

appear.
4. Make a graph [the class as a whole] with the number of times that each sum

occurred.
5. Who won the bet?
6. What are the sums that might occur when tossing two dice? What are the sums

that have the greatest chance of occurring?And,what sums have the least chance?

In the second year of project development, in September 2016, the children needed
to project only how numbers from 1 to 6 might occur while throwing dice. There
were children who were not familiar with dice. These children had difficulty placing
bets because, before betting, they had to list the sums that were possible when casting
two dice. After writing down the possible sums, they made their bets but were unable
to list the possibilities. The choices took place in several ways: they either chose the
greatest or the smallest sum, or the number they likedmost. After casting the dice and
writing down the results, they were still not able to perceive the other possibilities.

At the end of the second year of our study, the same activity was conducted
with the same group of students, who were now in Grade 3. The improvement in
children’s performance was noticeable. They were able to correctly figure out the
greatest and the smallest possible sums. Although they still had no perception of
which sums would be the least probable, they were able to notice that the sums 6,
7 and 8 occurred more often than the rest of the possible sums. This perception
occurred after the teacher wrote down on the blackboard the winners of the bets who
had chosen such numbers.

5.6 Discussion and Conclusions

The exploration of the impact of culturally responsive teaching in the learning process
of statistics and probability of primary children revealed through the four episodes
the importance of fostering children’s understanding about phenomena that are not
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deterministic. The impact of this study should not be interpreted as a call to incor-
porate the specific activity documented by this study in the education of all children.
Rather, the impact of this study should be a call to respond to students aswhole beings
with existing intellectual, emotional, social and physical knowledge and forms of rea-
soning. If we intend to honour students as human, we should give them agency and
voice and curriculum should be grounded in their realities rather than our own adult
ways of knowing.

Supporting the statistical education of children requires increasing awareness
of the presence and impact of randomness. The improvement in children’s ability
to solve problems involving random events and data analysis situations that were
witnessed from one year to the next, points to the need of offering young learners
opportunities for conducting systematic probability and statistics studies.

Breaking away from the idea that there are only deterministic factors is critical
when understanding the situations the children experience in their social environ-
ment. For this reason, it is necessary to promote the study of probabilistic ideas
centred on the development of the notion of randomness, so that students can under-
stand that certain events are sure to happen, other events are impossible and other
events are probable. It is essential to provide children with opportunities to inves-
tigate and draw conclusions about school and family events involving chance; this
allows them to build a sample space and analyse possible outcomes of a random
phenomenon.

Therefore, we advocate for culturally responsive statistics instruction that takes
into consideration students’ life context (see the context of activities presented to
children in Chap. 3) as an important arena to explore the ideas of probability and
statistics. It must also include work with games (such as the tasks and activities
in Chaps. 3 and 4), which comprise the origins of probabilistic ideas, and analysis
of data about investigations developed by the children themselves, so that they can
verify variability within data. Providing children with moments of reflection about
random phenomena will enable them to develop their probabilistic and statistical
reasoning.

The approach to probabilistic and statistical concepts and procedures proposed
by the current study is not tied to the use of complex algorithms and solutions with a
significant level of abstraction.Weconsider that probabilistic reasoning and statistical
reasoning have similarities and differences between each other, and therefore are
prone to be approached intrinsically.

For significant probabilistic and statistic learning to take place in childhood, a
pedagogical environmentmust be createdwhere the student can be heard and actively
participate in an investigation process about authentic topics and situations.

The development of the research reported in this chapter wasmade possible by the
close relationship of the researchers with the teachers and students, and the extended
length of time they spent in the school setting in order to be immersed directly
in planning for and enacting classroom activity. This chapter has exposed some of
the benefits and challenges of this work, as well as the need for future research to
investigatemore questions about the development of combinatorial, probabilistic and
statistical reasoning in childhood. It is still necessary to investigate the aspects of
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statistical and probabilistic training that should be emphasized in the early childhood
mathematics curriculum. This cannot be done from afar or without immediate inter-
rogation of children’s mathematical activity and reasoning as well as the teachers’
intentional pedagogy and planning. This work can only be accomplished by working
directly and empathetically with children and teachers in the context where learning
occurs.
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Chapter 6
Inscriptional Capacities
and Representations of Young Children
Engaged in Data Collection During
a Statistical Investigation

Aisling M. Leavy and Mairéad Hourigan

Abstract Recent research has provided important insights into young children’s
statistical reasoning when engaged in core components of data modelling, namely
attribute selection, data representation and metarepresentational competence. The
research described in this chapter, however, explores the stage prior to attribute
selection—the collection of data. We describe young children’s inscriptions when
collecting data within the context of a four-day statistical investigation. The inves-
tigation involved 26 children aged 5–6 years in interpreting and investigating a
context of interest and relevance to them. The context involved decision making
around the design of a zoo. We describe the repertoire of inscriptions that children
used to track the appearance of zoo animals and explore their justifications for their
invented inscriptions. The rationale for and genesis of inscriptions ranged from aes-
thetic considerations, ease and simplicity, to contextually driven decisionmaking and
approaches motivated by efficiency and by efforts to distinguish between repeated
data values and different instances of the same attribute. We argue that when task
interest is high the context provides affordances that support authentic data inquiry
and data-based reasoning. Moreover, when the focus of the statistical investigation
is on having children reason about and understand situations, what emerges are rela-
tively sophisticated approaches to data inscription arising from efforts to make sense
of and communicate statistical situations.
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6.1 Introduction

Most educators agree that young children start school with powerful mathemati-
cal ideas developed from informal experiences acquired in home and play settings.
However, there is growing recognition that in order to maximize the mathemati-
cal development of young children we need to recognize the ways in which these
preschool experiences contribute to their mathematical development. The field of
statistics education has shown great promise in recognizing the nascent abilities of
young children to engage in statistical thinking and reasoning through broadening
what counts as evidence of statistical thinking in the early years. For example, recent
studies of young children engaging in data handling activities have sought ways
to create conditions in formal school settings to support and foster children’s con-
tinued meaningful engagement in and development of statistical thinking (English,
2010, 2012; Kinnear, 2013; Leavy & Hourigan, 2018). Our study builds on previous
research by exploring the knowledge and understandings that young children bring
when collecting and tracking the appearance of data within the context of a data
handling task. Specifically, we identify the different inscriptions or marks children
use to record the appearance of data values and explore the justifications children
provide for the decisions they make. Thus, we hope to address the concern of van
Oers (2010) that ‘not paying attention to these events (related to children’s graphical
marking) means that educators may neglect important and stimulating early events
for the promotion of mathematical thinking’ (p. 32).

6.2 Theoretical Perspective

6.2.1 Representations in Early Childhood Mathematics

There are many definitions of ‘representation’. Most simply stated, a representation
is something that stands for something else. In mathematics, representations can
be thought of as internal or external. Internal representations are usually abstrac-
tions of mathematical ideas or internal cognitive schema that the learner creates.
External representations take many forms such as verbal/gestural, enactive (manip-
ulatives), visual/iconic (pictures, graphs) and symbolic/abstract (equations and for-
mulas); these forms are external manifestations of concepts which communicate
meaning and support the development of understanding. The process of concept
development involves interaction between both internal and external representations
which mutually reinforce, support and influence each other (Pape & Tchoshanov,
2001).

Perkins andUngers (1994) define representations tomean ‘symbols in any symbol
system (formal notations, language, picturing, etc.) that serve to denote or exemplify’
(p. 2). The important role of representations in the development of mathematical
thinking is acknowledged in research and in national curriculum frameworks inmany
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countries. While earlier work in representations focused on college-level learners,
there is growing awareness of the richness of young children’s representations.
Research indicates that the mathematical underpinnings and communicative func-
tion of early representations are often overlooked resulting in a missed opportunity
for harnessing and promoting young children’s emerging mathematical potential
(Worthington & Carruthers, 2003; van Oers, 2010). This has led to interest in the
representations young children make when moving from informal preschool mathe-
matical experiences into the more formal abstract symbolism of school mathematics.

There is ample evidence that young children can understand one thing as repre-
senting another. Prior to entering school, children understand the representational
qualities of pictures and video images (DeLoache, 2004) and by the age of four
have constructed a wide range of inscriptional techniques (Karmiloff-Smith, 1992;
diSessa, 2004). Much of the research on children’s representations focuses on the
graphic marks of very young children aged 0–3 (Lancaster, 2007) and on chil-
dren’s representations of number (Hughes 1986). A seminal study by Hughes (1986)
explored the efforts of ninety-six children (ages 3–7)when asked to represent onpaper
the number of blocks on a table. Four different categories of responses emerged:
idiosyncratic (lacking meaning), pictographic (representing the appearance of the
blocks—shape/colour/orientation), iconic (discrete marks to represent blocks) and
symbolic (conventional symbols). A larger study by Worthington and Carruthers
(2003) of what they term the ‘mathematical graphics’ of 700 samples of young chil-
dren’s work resulted in the development of a taxonomy of mathematical graphics.
Thiswork extended that ofHughes (1986) to include twonewcategories of ‘dynamic’
and ‘written’. Representations categorized as ‘dynamic’ capture some form of action
and are used by children to represent quantities that are not counted. Representations
categorized as ‘written’ refer to efforts to use words or letter type marks. The pres-
ence of a ‘transitional period’, which refers to representations that combine two
categories of response, was also uncovered by Worthington and Carruthers (2003)
and this period ‘may be important as children move towards the abstract forms of
mathematics’. The authors of both these studies argue that even in situations where
the meaning of children’s marks did not make sense to others, the marks have mean-
ing for the children themselves and serve a communicative function. Indeed van Oers
(2009) argues that a process of interactional construction of mathematical meaning
between children and educators will ‘finally yield meaningful mathematical symbols
that may turn out to bemore functional for the development of mathematical thinking
than conventional symbols imposed onto the child’s mind’ (p. 33).

Research has uncovered factors which support the construction of representa-
tions. A Vygotskian view on early education emphasizes the critical role played by
the educator in clarifying and interpreting children’s marks and in promoting and
stimulating meaning making (Vygotsky, 1978). Other factors include prior knowl-
edge of the learner, the nature of the task, purpose for creating the representations,
the learners’ own internal representations of concepts (Pape & Tchoshanov, 2001),
and the interaction of the learner with the social and material setting of the activity
(Meira, 1995). Representations play an important role in the learning ofmathematics,
and it is important that students ‘learn to usemultiple forms of representation in com-
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municating with one another’ (Greeno & Hall, 1997, p. 363). While representations
serve an important communicative role in the early years, their function is greater
than that. Representations themselves serve as cognitive tools that help organize
thinking, reduce demands on memory and cognitive load and support argumentation
and discussion (Greeno & Hall, 1997; Pape & Tchoshanov, 2001).

6.2.2 Use of Representations in Statistics Education

Statistics education, as a discipline, has becomemore responsive to the challenges and
pitfalls of introducing young learners to formal statistical symbolism, conventions
and representations.We are now aware that a focus on teaching statistical procedures
isolated from the broader view of the statistical inquiry leads to the absence of
meaningful and connected understandings for learners.

Thus, what has emerged from recommendations and approaches to teaching
school-level statistics is an awareness of the importance of opportunities to engage
in a cycle of statistical investigation (Wild & Pfannkuch, 1999), and in particular, a
focus on data modelling experiences for young children (Leavy, 2008). Studies have
shown that in data modelling situations, when focusing on graphical representations,
the task is to create a representation that reveals and displays patterns in the data.
In these situations, children often created their own inscriptions or used and mod-
ified inscriptions with which they were already familiar such as letters, drawings,
diagrams and symbols. In turn, the construction and use of inscriptions by children
has lead to the development of metarepresentational competence and knowledge
relating to representations (Lehrer & Lesh, 2003; diSessa 2004; diSessa, Hammer,
Sherin, & Kolpakowski, 1991). This work has been further facilitated by the devel-
opment and use of technologies and software which have provided much of the
needed support to authentically engage school-age children in the collection, man-
agement, representation and analysis of data (Ben-Zvi, Gil, & Apel, 2007; Hancock,
Kaput & Goldsmith, 1992; Cobb, McClain & Gravemeijer, 2003; Paparistodemou
& Meletiou-Mavrotheris, 2008).

However, engaging very young children in datamodelling activities is challenging
due to a variety of factors such as their limited ability to use technology, to work
with large quantities (numbers) and to reason abstractly. Recent studies, however,
which have incorporated design features specifically to support young children in data
modelling, have shown great promise. In her study of the data modelling processes
of six-year olds, English (2010, 2012) revealed how children’s representations and
inscriptions changed over time and reported on the metarepresentational competence
displayed by children. When representing data, the majority of groups on their first
effort constructed pictographs to communicate aspects of the data. When asked to
consider whether their attributes and representations should be changed all but two
groups, who moved from using pictograms to more formal bar graphs, continued
to use pictograms. Interestingly, however, in response to this prompt they made
one or more changes to their pictograms involving changes to inscriptions, paper
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orientation, attributes, orientation of column/row data on the pictogram and used
a mix of names and drawings. This and other studies indicate that young children
have the ability to communicate data in appropriate representational forms (English
2010, 2012). However, there is evidence that some children tend to show a lack of
awareness of the viewer in their selection of novel and esoteric design features and
the concomitant neglect of design features that communicate meaning more clearly
(Lehrer & Schauble, 2007).

These recent studies have provided critical insights into young children’s statisti-
cal reasoning when engaged in core components of data modelling (English, 2010,
2012; Leavy & Hourigan, 2018), namely attribute selection, data representation and
metarepresentational competence. Efforts to gauge the representational competence
of children have focused primarily on children’s inscriptions when constructing rep-
resentations of data rather than the collection and tracking of data. The research
reported in this chapter is an effort to address this gap by exploring children’s repre-
sentations in the very early stages of data modelling—when tracking and recording
data.

6.3 Methodology

6.3.1 Participants

This study explores young children’s (ages 5–6) approaches to collecting and rep-
resenting data collected as part of a 4-day data modelling investigation. Participants
were an intact multi-grade class of 26 primary school children. The 26 children
engaged in four 60-min lessons focusing on data generation and collection, iden-
tification of attributes, structuring and representation of data and making informal
inferences about the results. This chapter focuses on the outcomes of the first les-
son which engaged children in generating and collecting data arising from a story
context.

6.3.2 Procedure

The children were shown a purpose-made video of a fictitious zookeeper named
Zach. Zach stated:

Hi everyone. My name is Zach and I wonder if you can help me today. I am designing a new
zoo and I want to get some friendly animals for my zoo. But I am not sure which animals
to pick. I need you to help me. I am going to read you a story ‘A walk through the zoo’. It
is about some pictures I took one day when I walked through a zoo. I want you to help me
figure out which animals are the friendliest. I think the friendly animals are the ones that
came out during my walk.
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The pages of the story (and the associated images) were projected onto a large
interactive whiteboard in the classroom. As the pages on the story changed, new
animals appeared on screen. Each child was given responsibility for tracking the
appearance of one specific animal during the story. Childrenwere instructed to follow
along as the teacher read the story and use their page to ‘make a mark’ whenever
they saw their animal. Children were told that marks could take any form, and the
teacher was careful not to provide any examples in case they influenced children’s
approaches to mark making.

In order to aid memory, each child was given a blank page that had an image of
their animal at the top of the page. Each child had the opportunity to track the data
twice; this provided the opportunity to assess the stability of representations used by
children across two data collection cycles (called cycles 1, 2). Cycle 1 was explained
to children as an opportunity to ‘practice’; in cycle 2, children were assigned a
different animal to track. At the completion of each cycle, in order to gain insight
into the meanings attributed to their marks, children were questioned (based on a
protocol of pre-designed questions) about their choice of mark(s).

We were interested in the approaches children took when provided with some
‘degree of freedom’ (van Oers, 2009) in their choices around tools and representa-
tions. Hence, rather than teaching the formal convention of tallying, we encouraged
children to select their own representations to track the occurrence of data values.

6.3.3 Data Collection and Analysis

The lesson was designed by two teacher educators (authors of this chapter) in con-
junction with five pre-service elementary teachers. It was the first of four lessons that
engaged children in a cycle of statistical inquiry modelled broadly on the PPDAC
cycle (Wild & Pfannkuch, 1999). Each pre-service teacher was assigned to a group
of 5–6 children and took the role of ‘facilitator’ with their group. Their role was
primarily to pose a selection of pre-designed questions in an effort to reveal chil-
dren’s reasoning and justification for the selection of marks when collecting data.
They did not provide any feedback or support in the selection of marks or in the
decision making around the choice of marks made. Conversations within the groups
were audio recorded and transcribed.

Data were analysed by both researchers, and the Worthington and Carruthers
(2003) taxonomy ofmathematical graphicswas used to categorize responses as either
dynamic, pictographic, iconic, written, symbolic or transitional. Drawing from the
taxonomy, responses that captured some form of action were coded ‘dynamic’ and
those that represented the appearance of the animal were identified as ‘pictographic’.
The use of discrete marks was classified as ‘iconic’ (Figs. 6.1, 6.2, 6.3, 6.4, and 6.5)
and the use of words/letters was considered ‘written’. The use of numbers was coded
as ‘symbolic’ (Fig. 6.6), and responses that combined two categories of representa-
tions were identified as ‘transitional’ (Fig. 6.7a).
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Fig. 6.1 a Use of checkmarks to represent patterns in the frequency of occurrence of data. b Use
of tallies to represent patterns in the frequency of occurrence of data

Fig. 6.2 Barbara’s use of pictures of food to represent the occurrence of animals
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Fig. 6.3 Paul’s use of pictures of food to represent the occurrence of animals

Fig. 6.4 Kate’s use of
different icons to facilitate
accuracy in counting
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Fig. 6.5 Polina’s use of circles to represent (lack of) variability

Fig. 6.6 Use of numbers (symbols) to represent the occurrence of data

6.4 Findings and Discussion

The data examined the nature of the representations children usedwithin and between
cycles. Table 6.1 summarizes the categorization of responses during the first and
second data cycles.
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Fig. 6.7 a Transitional representation in cycle 1 of data collection. b Iconic representation in cycle
2 of data collection

Table 6.1 Classification of representations used to record data

Cycle Dynamic Pictographic Iconic Written Symbolic Transitional

#1 23 2 1

#2 23 3

None of the approaches was classified as dynamic or pictographic. When asked
about the meanings of the marks, analysis of the children’s responses indicated they
understood that a mark symbolised the appearance of an animal.

Teacher When you look at that mark you made Eva,
what does it tell you?

Eva It means I saw a lion.

Teacher How many times did you see the elephant
Laura?

Laura 3 times.

Teacher
Laura

How do you know?
Cause I can count the marks. They are kind of
like circles.
Look 1, 2, 3. 3 times.
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6.4.1 Iconic Representations

The tendency of children to use iconic representations (Figs. 6.1, 6.2, 6.3, 6.4, and
6.5) to record data is evident from Table 6.1. During cycle 1, 23 children used
marks that were categorized as iconic. These marks demonstrated an understanding
of one-to-one correspondence as the child placed one mark each time the animal
appeared. While the children used what Hughes (1986) refers to as ‘marks of their
own devising’ (p. 58), there were some general patterns and trends in the types of
marks they made. The researchers further classified iconic representations as: tallies,
check marks and pictures. The latter of these iconic representations, pictures, were
classified as discrete images/illustrations that were drawn to index each occurrence of
the appearance of an animal (see Figs. 6.2 and 6.3). While tallying, check marks and
pictures were equally prevalent in cycle 1, the second cycle brought about changes
in the types of iconic representations children used (Table 6.2).

6.4.1.1 Tallying and Checkmarks

Theuse of checkmarkswas very prevalent and accounted for 33% (n�8) of responses
initially and dropped to 12% (n �4) on the second data collection round (Fig. 6.1a).
With the exception of two children, checkmarks were recorded in a horizontal line.
Responses that resembled the traditional convention of tallying, consisting of vertical
lines to represent the occurrence of each value, were classified as belonging to this
category (Fig. 6.1b). None of the children grouped the tallies in groups of 5 through
the conventional use of a diagonal line. In cycle 1, tallying was very common and
accounted for 33% of responses. While on almost all occasions tallies were recorded
in a horizontal line, Cornelia, organized her tallies vertically down the page during
both cycles of data collection. The prevalence of tallying decreased significantly in
cycle 2, and it became the least prevalent approach used by 8% (n �2) of children.

When asked to explain why they used tallies and checkmarks, many of the
responses related to ease and simplicity. Justifications for using tallies were ‘they
are easy to make and easy to count at the end’ (Tomi) and ‘they are nice and tidy’
(Ayesha). Similarly, checkmarks were described as ‘simple to do’ (Sheena) and ‘easy
to count’ (Mia). In the following conversation with Matthew he was asked why he
used tallies during both cycles of data collection.

Table 6.2 Types of iconic
marks used across both data
cycles

Cycle #1 Cycle #2

Tallies 8 2

Checkmarks 8 3

Pictures 7 14
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Teacher Matthew, you used these same marks for when
you saw the hippo and the elephant. Can you
tell me about the marks?

Matthew They are lines.

Teacher Why did you pick lines?

Matthew Lines make me count properly and help me.

6.4.1.2 Pictures

The pictures drawn by children were categorized as iconic as each image represented
the occurrence of one data value/event. Thus, pictures in this study differ from the
categorization of marks identified as ‘pictographic’ used by Hughes (1986) and
Worthington and Carruthers (2003). In the aforementioned studies, the picture was
merely a rendering of the object in front of the children, whereas in our study, each
picture was drawn to represent a reoccurrence of the data value (i.e. the animal being
tracked) and is more akin to an ‘illustrative tally mark’.

The use of pictures was particularly interesting for a number of reasons. Firstly,
the influence of the task (counting the appearance of animals) and the image colour
was evident in the pictures. Both Paul and Barbara made marks to represent the food
their selected animal ate. In cycle 1, Barbara tracked the appearance of the giraffe
and drew bananas to represent the frequencies (Fig. 6.2). When asked why she chose
bananas, she stated ‘giraffes like bananas as much as monkeys do. And giraffes are
yellow like bananas’. During cycle 2, she tracked the elephant and drew peanuts as
her marks (Fig. 6.2) and justified it as ‘I’ll draw nuts to feed the elephant’. Similarly,
Paul appeared to be influenced by both the context (animals) and the colour. On both
occasions, he drew pears to feed the elephant and hippo. During cycle 1, he had a
colour copy and his selection of pear was influenced by the colour as he said ‘Well
the elephant is green in this picture and pears are green’. However, on the second
occasion he had a black and white picture of a hippo and he selected a pencil to draw
black pears (Fig. 6.3).

Analysis of conversationswith children revealed that in a small number of cases (n
�5) pictures were used to distinguish ordinality and facilitate accuracy in counting.
While in most situations, the pictures drawn were the same for each occurrence
(a banana or peanut each time, Fig. 6.2), there were five occasions where children
chose to represent each occurrence of an animal with a different mark. The following
excerpts provide insights into the children’s reasoning.

Hence, we can see that for Laura the different marks could also be used to reg-
ister the ordinality of the event, whereas for Kate it facilitated accuracy in counting
(Fig. 6.4). For some children, the reason was aesthetic as is evident inMia’s response
justifying why she drew different pictures for each data value as ‘I wanted to make
a design’.
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Teacher What marks did you make Kate?

Kate I used a happy face, love hearts, stars and
triangles.

Teacher And why did you make all different marks?

Kate So when I count them, I know I counted one
and I won’t count it again. I count them better.

Teacher Tell me about your marks Laura. Why are they
different?

Laura They are all different sizes. And they remind
me of when I saw the animal.

Teacher
Laura

What do you mean?
Well that one [pointing to one mark] was the
last time I saw him.

6.4.2 Changes in Use of Iconic Representations Across Data
Cycles

The use of pictures as a method to record data became more prevalent in cycle 2 (see
Table 6.2). Six children who used pictures in cycle 1 continued to use pictures in
cycle 2 and two changed to using tallies. However, eleven children who used tallying
and check marks in cycle 1 changed to using pictures in cycle 2.

Analysis of the data showed that clusters of children who sat together in groups
moved from using tallies and checkmarks to using pictures; hence, there may have
been a social effect. Some of these children appeared to have observed and been
influenced by the pictures a child in their group had drawn in cycle 1. For example,
Leah was in the same group as Paul and Barbara (Figs. 6.2, and 6.3); she had used
checkmarks in cycle 1 andmoved to using tufts of grass in cycle 2. She explained her
use of grass because ‘he looks really sad, I wanted to give the lion some grass to eat’.
Another group of children who were sitting together (Tomi, Caitlyn, Hannah) had all
used tallies in cycle 1 and changed to using pictures (hearts and stars) in cycle 2. This
move to the use of pictures may also be attributed to these young children’s focus on
the aesthetic dimensions of their work. Several children were asked to explain why
they changed their marks to pictures during cycle 2, and they explained ‘to make it
look better’ (Sian), ‘it looked good’ (Kate) and ‘tomake the page look nice’ (Darren).
It is important to note that while the type of icon changed, the function remained the
same.
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6.4.3 Efforts to Convey Meaning in Iconic Representations

In five instances, the marks used were intended to convey information beyond fre-
quencies of occurrence of data values. These efforts were quite sophisticated and
appeared to arise out of effort to communicate information relevant to the task con-
text.

Polina used a series of small circles to represent the occurrence of her animal.
She stated ‘they are all circles. They are the same size so we would know we are
still counting the same animal’. Hence, the circles represented the frequency of
occurrence but also had the potential to record variability in data values using size
as an indicator (Fig. 6.5).

There were some examples of interesting strategies used when collecting data on
monkeys. With the exception of the monkeys who appeared in pairs on 5 occasions,
there was never more than one of the same animal appearing on any one page of
the story. Five children recorded the monkeys, and two of these, Darren and Aidan,
made efforts to differentiate between occasions where just one monkey appeared and
occasions when two appeared together. Darren used a tally mark when there was just
one monkey and an apple when the second monkey occurred in close proximity to
the other (Fig. 6.1a). He explained it as ‘Every time I saw a monkey I used a tick but
I drew an apple when the monkey had a friend’. Darren correctly recorded 2 of the 5
occasions when both monkeys appeared together. Aidan used a different strategy and
referred to the fact that monkeys appeared in pairs and tried to have his ‘lines’ appear
in groups of two—hence physical proximity of the tallies was used to communicate
pairs. He said ‘I always get them in pairs’, and ‘the animals come in 2 s’ (Fig. 6.1b).

6.4.4 Symbolic Representations

A small number of children favoured the use of numerals as a strategy to record data;
their justifications were based on ease of use and efficiency. Peter stated that he used
numbers because ‘it would be easier to see what you have’ (Fig. 6.6). Sian made an
implicit reference to cardinality when she said she used numbers because ‘I don’t
have to count how much the giraffe came up. I just see the last number and that’s the
answer’ (Fig. 6.6).

6.4.5 Changes in Representations

As there were two data collection cycles, it provided an opportunity to explore the
stability of representations used by children. Table 6.3 reveals that 20 children used
the same type of representation across cycles 1 and 2. One child used symbolic
representations in both cycles, and 19 used iconic representations across both cycles.
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Table 6.3 Changes in strategy across events

No change in representation Iconic -> Iconic 19

Symbolic ->Symbolic 1

Change in representation Iconic -> symbolic 2

Transitional -> Iconic 1

However, as discussed in the previous section, there was movement between the
different types of iconic representation used in both cycles. Four children showed
movement between representations. Two moved from iconic to symbolic, one from
symbolic to iconic and one children who was identified as transitional used an iconic
representation on the second cycle.

As mentioned in the previous section, one child was classified as transitional
during cycle 1. During the first cycle, he used a combination of check marks and
symbols to track the appearance of the giraffe thereby combining aspects of more
than one category of response (Fig. 6.7a). This was a relatively complex response,
which suggests he was moving from iconic towards more symbolic and abstract
representation forms. It was somewhat a surprise then, when during the second cycle
he used marks classified as iconic and no longer used symbols. Examination of
Fig. 6.7b reveals the use of three very different and somewhat complex images,
to represent the appearance of the lion, and no effort to use symbolic forms. One
possibility to account for the change in approach is that he may have been influenced
by other children in the group, the majority of whom drew pictures in cycle 2.

6.4.6 Reasoning About the Context

Aschildrenwere looking at the data and tracking the appearance of animals, theywere
engaged in thinking about the driving question which motivated the data collection,
i.e. What animals are friendliest? When discussing the friendliest animals, while not
required to do so, they frequently referred to factors that may have influenced the
frequency of appearance of different animals. Some of these factors were contextual
and based on knowledge of the animal kingdom. Knowledge of the contexts within
which problems are set was also found to be a support for 6-year old children in the
research described by Jane Watson in Chap. 4 of this book. In her chapter, Watson
reports that when the data were presented in familiar contexts (such as lollipops and
books), as compared to less familiar contexts (weather in this case), that it influenced
children’s ability to comprehend the questions asked. To take one example from our
research in this chapter, children were very eager to discuss why the lion appeared
only 3 times; the following statements point to the importance of the context in
supporting children’s reasoning.

Other suggestions to account for the frequency of appearance of animals were
based on patterns that were observed within the data. For example, in reference to
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Peter The lion must be minding her babies, that’s
why we only saw her 3 times.

Melios He must be hibernating.

Cornelia The lion wasn’t here much. He is afraid of
people.

Kate I only saw the lion 3 times. He’s asleep.

the monkeys, Polina explained the high frequency of appearance as ‘because there’s
two monkeys in each picture—when it shows one monkey there’s another monkey
next to it’.

6.5 Conclusion

This study reveals insights into the inscriptions young children make when collect-
ing data in a data-modelling environment. Conversations with children around their
choice of inscriptions uncovered the multiple meanings they incorporate into the
marks they make. Analysis of the data confirmed that once the child embarks on
making marks, these marks become both a record of and an abstraction for the real
event. For these children, the marks stimulate an image of and support recall of
the event that motivated the collection of data. In this way, this study supports the
finding of van Oers (2010) that for young children inscriptions serve a communica-
tive function and represent the beginnings of abstract thought. Thus, we argue that
when the focus of the statistical investigation is on having children reason about
and understand situations, what emerges are relatively sophisticated approaches to
data inscription arising from efforts to make sense of and communicate statistical
situations.

Children’s justifications for inscriptions ranged from aesthetic considerations,
ease and simplicity, to contextually driven decision-making and approaches moti-
vated by efficiency and by efforts to distinguish between repeated data values and
different instances of the same attribute. These explanations indicate that their rep-
resentations were more than a record of frequencies and served in some cases as
cognitive tools (Greeno & Hall, 1997; Pape & Tchoshanov, 2001) to help orga-
nize thinking. This was evident in Laura’s efforts, which she justified as keeping an
account of ordinality, in Polina’s use of same-sized circles to communicate variabil-
ity and in the efforts of both Darren and Aidan to convey the structure of the data.
The variety of approaches used to index and describe the data may be an indicator of
the meaningfulness of the task; this influence of the task context on the creation of
meaningful representations has also been a finding of other studies (Vellom & Pape,
2000). The levels of interest displayed by the children in the task (recording the
appearance of animals) and the larger context (the zoo), we believe, provided affor-
dances that supported these young learners in authentic data inquiry and in data-based
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reasoning. Children were motivated and on-task throughout the activity and eagerly
discussed reasons for the different frequency of occurrences of animals. Thus, the
context both maintained interest and in some cases informed the choice of represen-
tations to use when collecting data. This critical role played by context was also a
feature in data modelling studies with young children using story (English, 2010,
2012; Hourigan & Leavy, 2016; Kinnear, 2013) and technology (Paparistodemou &
Meletiou-Mavrotheris, 2008).

The large repertoire of inscriptions used by children were similar to those iden-
tified by Hughes (1986) and Worthington and Carruthers (2003). The absence of
responses categorized as dynamic or pictographic attests to the understanding on
the part of the children that the inscription was an abstraction of the real event, i.e.
represented the occurrence of a specified data value. Iconic inscriptions were by far
the most popular approach to record data. Understandings of one-to-one correspon-
dence and the consideration of frequencies were apparent in inscriptions classified as
iconic. The stability of iconic responses across both tasks was indicative of children
of this age and also resulted in accurate recording of the occurrence of data values.
While the absence of formal tallying (in groups of 5) was not surprising as it is a
schoolmathematics practice, the abundance of informal tallies ties in with other stud-
ies where tally marks appear very frequently in the spontaneous representations of
children as young as 3 and 4 years old (Hughes, 1986; Lehrer & Schauble, 2000). The
relationship between tallies and finger counting, evidenced in the accounts reported
by historians of mathematics, may account for the prevalence of informal tallies.
Indeed, Hughes (1986) following an overview of the written number systems of
other cultures refers to the ‘extremely fundamental nature of tallying’ (p. 83) over
thousands of years.

An interesting, and somewhat unexpected finding, was the fluidity in the types of
iconic responses used across both cycles of data collection. Children moved between
tallies, check marks and pictures to record events and were influenced by the efforts
of others. In particular, there was amove to using pictures to record data in the second
cycle of data collection; this did not reduce the accuracy of children’s responses. This
change in representation may have been motivated by the possibilities to use colour
and the aesthetic dimensions of thework. Alternatively, as this was their second effort
at collecting data, the children may have had more cognitive resources available to
themduring the second cycle thus enabling them to concentrate on the construction of
pictures. The absence of a transitional periodwherein children’s inscriptions combine
aspects from more than one category of response distinguishes these findings from
those of Worthington and Carruthers (2003). This may be due to the similarity in
ages of the children in this study as compared to the research by Worthington and
Carruthers (2003) which looked at children across a wide span of ages.

While the constructions of representations within the context of data collec-
tion serves a more confined purpose than representation use in later years’ math-
ematics; these representations are important nonetheless. They form a commu-
nicative role (Greeno & Hall, 1997) in conveying the frequency of occurrence
of a data value. Moreover, they serve as antecedents to more formal and stan-
dard representational forms for which children will later have to negotiate meaning
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(diSessa et al., 1991). When we open up opportunities for young children to partici-
pate in statistical activities in ways that make sense to them, we provide opportunities
for children themselves to construct meaning and promote genuine developmentally
appropriate learning. The representations produced by the young children in this
study attest to the quality of their participation in the data modelling environment.

The research has a number of limitations. Firstly, this is a case study of one
class of 5–6-year olds; hence, the results of this study cannot be generalized to all
children of this age.However, there is potential for further study to examine additional
age groups in a variety of educational settings. The second limitation relates to the
relatively short time the children engaged with the task. The extension of the study
over a longer duration would facilitate more thorough analysis and reap interesting
findings where the nature of children’s inscriptions could be tracked over a number
of years.
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Chapter 7
Scaffolding Statistical Inquiries
for Young Children

Jill Fielding-Wells

Abstract Statistics in the early years is often limited to the construction and ‘read-
ing’ of simple data representations as distinct from employing statistical inquiries
that engage students with data in more authentic and meaningful contexts. One
of the challenges of engaging with data inquiries is the extent to which students
struggle with the lack of structure and direction, thus requiring additional support,
or scaffolding. This chapter details the framework used for introducing statistical
inquiry to young students and then provides insights that emerged from observation
and analysis of a class of 5–6 year olds engaged in their own data investigation to
illustrate. The findings suggest that considerable teacher scaffolding is required to
progress students through inquiries and this was largely achieved through question-
ing employed to focus students on both the inquiry process and the statistical content
to be addressed.

7.1 Introduction

Statistics is most commonly taught at the early childhood level in a surface and
procedural fashion. A characteristic example is the teacher asking the students what
their favourite fruit is. Students are provided with fruit cutouts to place on a pre-
prepared picture graph as modelled by the teacher. If the students are slightly older,
there may be somemodelling of tallying first as each child selects their favourite fruit
from a pre-populated, limited list of common fruits. In both examples, any questions
asked of students will be simple, literal comprehension questions about the graph:
What is the most popular fruit? How many more people like oranges than apples?
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This commentary is not intended to diminish the requirement for children to learn
to construct and read data representations, but to do so in this way removes the
reality of statistics from the classroom: gone is decision making about problems,
consideration of the data that is needed, planning for obtaining data and so on.
Activities of this nature also remove the inherent messiness of data by artificially
restricting the data to be ‘workable’.

In real life, problems requiring the application of statistics are not neatly packaged
in this way. Students need, from an early age, to develop an appreciation of the
dynamics of statistical inquiry—suchas the formulationof problems andappreciation
of issues associated with planning andmeasurement—rather than a focus only on the
collection, organization and conclusions that could be drawn from data sets (Wild &
Pfannkuch, 1999).

To provide a contrast to the example, consider what might have happened had
the students been asked to engage with an inquiry, ‘What are the best fruits for a
class fruit platter?’. Left to their own planning, students may not have pre-defined
potential responses (apple, banana and so on) and then had to deal with the potential
for 20 different fruits to be named as ‘favourite’. Such messiness would have led
to many opportunities to enhance statistical thinking and decision-making, as well
as providing a valuable lesson in the planning of data collection/surveys. Another
potential benefit of an investigation is in considering the role that context plays.
Students may have further considered the authentic purpose of such an investigation:
‘We will have to narrow the choices to fruits that are readily available and in season
now’.

While an inquiry approach clearly supports more authentic engagement with sta-
tistical understandings, the ill-structured nature of inquiry problems means that stu-
dents do not immediately or intuitively see how to address them. As inquiry is not
widespread in classrooms, it isn’t surprising that students struggle with the unaccus-
tomed lack of structure and direction, and require additional structured support, or
scaffolding to engage with them. So, what supports work?

The aim of the research described in this chapter was to provide insight into
the ways in which a statistical inquiry could be facilitated with very young children.
These insights emerged from observation and analysis of teacher-student interactions
as an experienced inquiry teacher immersed a class of 5–6-year-old students in their
first data inquiry. Sufficient detail of the classroom context has been provided to
enable the reader to envisage the learning. Implications and suggestions for educators
have been addressed.

7.2 Statistical Inquiries and Investigations

Simplistically, statistical investigations can be considered activities inwhich students
engage with a genuine, contextualized problem they can apply statistical methods to,
in order to lead to a data-based solution. As distinct from approaches often seen in
schools—inwhich students are given neat, organized, convenient problems—investi-
gations address the complexities and difficulties inherent in more genuine problems;
thus, apprenticing students into the discipline of statistics.
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Statistical inquiries and statistical investigations can be viewed along a continua of
problem structure from well-defined to ambiguous, with inquiry problems lying fur-
ther towards the ill-structured end of the continua. Ill-structured problems are those
which have multiple potential solutions and solution paths: they ‘contain uncertainty
about which concepts, rules and principles are necessary for the solution’ (Chin
& Chia, 2006, p. 47). One of the essential components of addressing ill-structured
problems is that students must engage in discussion to establish the elements of
the problem; that is, they must first interpret the problem in its context and con-
sider how data could address it (Allmond & Makar, 2010). Thus, investigative and
inquiry problems develop a need for additional stages of statistical investigation to be
addressed—refining of problems and planning of approaches (Shaughnessy, 2007;
Wild and Pfannkuch, 1999)—in turn providing genuine opportunities for address-
ing these complexities and engaging in authentic statistical decision-making and
reasoning. Shaughnessy argues:

If students are given only pre-packaged statistics problems, in which the tough decisions
of problem formulation, design and data production have already been made for them, they
will encounter an impoverished, three-phase investigative cycle and will be ill-equipped to
deal with statistics problems in their early formulation stages. (Shaughnessy, 2007, p. 963).

One commonly used model for statistical investigation is the investigative cycle, or
‘PPDAC’ due to the model acronym, as adapted by Wild and Pfannkuch (1999):

Problem The deconstruction, negotiation and refining of the problem in conjunc-
tion with context familiarization

Plan The identification of the data needed to address the problem and con-
sideration of effective collection, recording and analysis of that data

Data Data collection, recording and cleaning
Analysis Organizing, manipulating, representing, and interpreting data to iden-

tify trends or patterns and provide evidence with which to address the
problem; and

Conclusion Reflecting upon the evidence identified in the analysis stage and linking
it back to the initial problem to provide a response to that problem

This cycle is useful in identifying and describing the stages of investigation, in
enabling teachers to plan investigations, and in providing students with structure by
displaying this cycle for them.

Existing research supports the capacity of young children to engage in statistical
inquiries (Fielding-Wells, 2010; Fielding-Wells & Makar, 2013; McPhee & Makar,
2014), but little research has been undertaken into how teachers scaffold young stu-
dents in their initial inquiries. Fielding-Wells (2016) suggests there are three domains
of knowledge that are drawn upon in inquiry: knowledge of the context; knowledge
of [mathematical and statistical] content; and, knowledge of [statistical] inquiry.

The shift from a view of early childhood statistics practice from data collection,
display and literal interpretation, to a rich inquiry approach is complex and requires
a significant shift in teaching and learning practices from one which is teacher-led,
to one in which the children are following a complex, ‘messy’ practice. Previous
research has demonstrated that many teachers struggle with such a shift (Makar &
Fielding-Wells, 2011).
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7.3 Scaffolding

Scaffolding was first introduced by Wood et al. (1976) as a building metaphor to
describe the expert support that could enable learners to reach goals considered
beyond their reach (1976, p. 90). Scaffolding extends from Vygotsky’s Zone of
Proximal Development (ZPD),

the distance between the actual developmental level as determined by independent problem-
solving and the level of potential development as determined through problem solving under
adult guidance, or in collaboration with more capable peers. (1978, p. 86)

The scaffolds used to support the learner are then gradually withdrawn until the goals
can be achieved unaided. To be considered scaffolding, supports are required to meet
the criteria of contingency (the type, timing and strength of supports must be respon-
sively adapted to the student’s current level of performance), fading (supports should
be gradually withdrawn, or faded, as the student develops increased confidence and
competence), and transfer of responsibility (accountability for performance should
be progressively shifted to the learner) (van de Pol, Volman, & Beishuizen, 2010).
This definition of scaffolding has been adopted in this chapter, as distinct from the
informal notion of general ‘support’.

Research into scaffolding has predominantly focussed on one-to-one or small
group scaffolding due to the ZPD underpinning, as whole class scaffolding can be
complex due to the nature of the numerous student ZPD’s involved (van de Pol, et al.,
2010). However, the practicalities of classrooms require whole class instruction;
therefore, in practice, a teacher must work with group ZPD as well as consider
individual learner’s ZPD (Smit, van Eerde, & Bakker, 2013).

7.3.1 Scaffolding Framework

Wood et al. (1976, p. 98) identified six functions or intentions of the expert scaffolder
from observation of young children being taught to perform a repetitive, mechanical
task. These categories are provided below, but it is worth noting that modelling is
often regarded in the literature as a means, rather than function, of scaffolding (van
de Pol, et al., 2010):

1. Recruiting the learner: engaging the problem solver’s interest in the task require-
ments.

2. Reducing the degrees of freedom: reducing the number of component processes
or performances required to achieve a solution.

3. Maintaining student direction: maintaining the learner’s focus and motivation.
4. Marking critical features: noting and drawing attention to the specific and relevant

features of the task to identify discrepancies in production.
5. Frustration control: dealing with the affective state of the learner.
6. Demonstration: modelling a solution to a task for imitation.
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The mechanistic task was chosen to enhance opportunities for the researchers to
identify mastery but potentially reduces the applicability of the framework to tasks
requiring higher cognitive and metacognitive regulation—tasks such as the solving
of ill-structured problems (Shin, Jonassen, & McGee, 2003).

While Wood et al. (1976) focused on the functions or intentions of scaffolding,
Tharp and Gallimore (1988) focused their attention on ‘how’ the expert assists the
performance of the learner. They identified six ways that learners were supported
in one-to-one interactions between an expert and the learner: modelling, contingent
rewards and punishments, feeding back, instructing, questioning, and cognitive struc-
turing. Again, this framework has reduced applicability for whole-class research as
children in a classroom setting are less likely to work on an individual basis with a
teacher and more likely to engage in group or whole class activities. To address the
need to work with entire classes, van de Pol et al. (2010) built upon the work of these
two seminal studies to tackle the issue of analysing scaffolding intentions and means
in a natural classroom setting, deriving categories of feedback, hints, instructing,
modelling, questioning, explaining and miscellaneous. These categories were used
as a starting point for the research reported in this chapter.

7.3.2 Research Question

The question specifically addressed by this exploratory research was: What insight
can be gleaned into scaffolding of statistical inquiry through observing a teacher as
she worked to support young learners new to addressing ill-structured problems?

7.4 Method

The aim of the research described in this chapter was to ascertain how an experienced
teacher of inquiry supported young learners to engage with an ill-structured problem.
The classroom and lesson sequence, that is the focus of this chapter, was a single
iteration of a larger design-based research (DBR) study. DBR was adopted as a
methodology as DBR suits the intent of this research: to develop theory [about the
process and scaffolding of learning during the teaching of statistical inquiry], to
undertake highly interventionist research [teacher and researcher seeking together to
implement and study classroom interactions during inquiry], and to have a practical
focus and application [the support of young students engaging in statistical inquiry].
These principles underpin design-based research (Cobb, Confrey, diSessa, Lehrer,
& Schauble, 2003).
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The class participating in this research was a Year 1 class (5–6 years old) from a
large suburban, mid-range socio-economic school in Australia. The teacher, Miss O,
was an early career teacher with two years of experience in using inquiry pedagogies
to teach mathematics. The unit was implemented in the third quarter of the school
year, with a focus on data gathering, representation and analysis based on informal
measurement of area. This was the students’ first experience with statistical inquiry.

The ill-structured question that drove this inquiry was, ‘How big are most Year
1 feet?’. This problem lacked structure in that both ‘big’ and ‘most’ are ambiguous
words. The formermay refer to length, height, volume, area, mass and so on, whereas
the lattermightmean themost in our class, school, state, country orworld. The teacher
deliberately chose a context that would be familiar to all students in the class (their
feet), and the measurement concepts included had been addressed previously with
these students. Thus, the use of measurement for data collection served to reinforce
previous work these children had undertaken.

Each lesson was videotaped and transcribed in full. All non-relevant speech was
removed prior to coding (e.g. requests for bathroom breaks). The remaining teacher
discourse was then coded using the thematic framework described below. Coding
was undertaken concurrently with the viewing of the videotape to ensure alterations
to meaning, for example because of an interrogative inflection, were not overlooked
as may have been the case if relying on transcript alone.

Thematic codes were taken from van de Pol et al. (2010) as described in the scaf-
folding framework section above. These originally included feedback, hints, instruct-
ing, modelling, questioning, explaining and miscellaneous. After an initial pass, the
need for additional codes became apparent to distinguish purpose or intent of ques-
tioning asmost teacher interactionswere of that nature. To address this, the categories
were re-coded to reflect both the scaffolding means/purpose and the linguistic sen-
tence type. The sentence types identified were as follows: interrogative [Q]—those
which aim to elicit information; declarative [D]—those that provide information; or
imperative [I]—those that convey a command or request (Brinton & Brinton, 2010).
The codes are provided in Table 7.1 with the added categories marked with *. To
illustrate, a code ofQ-AMS is an interrogative [question] that serves to draw attention
to a mathematical or statistical concept: similar to the marking of critical features
as identified by Wood et al. (1976), with the difference that there was no intent to
highlight discrepancies in performance, but rather, to highlight important concepts
or understandings. Two category codes drawn from van de Pol et al. (2010) were not
noted during the period of the inquiry: explaining and modelling. By the definitions
of these category codes, these means of scaffolding address more explicit interac-
tions—explicit showing or explicit telling. Explaining might include an explanation
of the purpose of a column graph, whereas modelling might include step-by-step
demonstration of how to create one.
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Table 7.1 Code guide for analysing classroom discourse

Means Code Description Example

Feedback F Direct evaluation of the
work of the student

Yes, we could definitely use
something to measure it

Hints H Provision of a hint but
without providing whole
solution

… we have been learning a
little bit about the space in
between things, haven’t
we?

Instructing I Provision of information so
the student knows what to
do/how to do it

So, here’s an idea, why
don’t you go back over and
have as little gaps as you
can and for the space where
it doesn’t fit

Explaining E Provision of information on
why to do something or
content information

No instance

Modelling M Demonstration of
behaviour for imitation

No instance

Extending EX* Prompting of student to
think of/provide greater
depth of reaction/response

Does anybody have another
idea why tracing our feet is
a good idea?

Clarifying C* Prompting students to
explain their thinking or
ideas more coherently.

Why do you think that is a
good idea?

Revisit R* Reiterating/revisiting a
question that did not elicit
an adequate response after
additional input (rewording,
hint, etc.)

Alright so now I have got to
think about how am I going
to represent that? (Q)
How am I going to put that
on the board so we can see
it and work out how big
most year one feet are?
(QR)

Attending inquiry AI* Drawing students’ attention
to important aspects of the
inquiry process—explicitly
or implicitly

So, what we’re going to do
today, how are we going to
find this out? How big are
year one feet?

Attending mathematical or
statistical knowledge

AMS* Drawing students’ attention
to important aspects of the
mathematical of statistical
content—explicitly or
implicitly

There’s a little space here,
though isn’t it? And that’s
not quite enough for one is
it and a bit would be
overhanging

Attending to the context AC* Drawing students’ attention
to important aspects of the
context—explicitly or
implicitly

What are we going to have
to do in order to show so we
know Katie’s foot is
probably one of the
smallest in the class?

Miscellaneous O Other OK hands on heads. Hands
in laps
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7.5 Illustrations from the Classroom

The final pass coding count from the entire unit is provided in Table 7.2 (interrogative
interactions), Table 7.3 (declarative interactions) and Table 7.4 (imperative interac-
tions). These have been included for demonstrating the highly disproportionate pro-
file of the interactions: over two-thirds of all teacher dialogue being questioning and
an almost complete absence of directives (imperatives).

There was also a significant distribution of questions towards the latter end of the
cycle. This was only of interest in that the students engaged in less overall discussion
during the early parts of the inquiry. This was likely because the problem was posed
by the teacher as she was aware of the difficulties novice students have in question
posing (Allmond & Makar, 2010).

More generally, there is a consistent pattern of interaction in this classroom. The
teacher, Miss O, spent timewith the children, talking through what students had done

Table 7.2 Total number of
interrogative [question]
interactions from teacher by
stage of inquiry

Code Stage of statistical cycle Total

P P D A C

QAC 2 2

QAI 2 1 3 8 3 17

QAMS 2 1 9 7 8 27

QC 1 2 3

QEX 3 1 4

QH 1 1

QR 2 2

Total Q 4 3 17 20 12 56

Table 7.3 Total number of
declarative interactions from
teacher by stage of inquiry

Code Stage of statistical cycle Total

P P D A C

DAI 1 1

DE 1 1 1 3

DF 3 6 2 3 1 15

DI 1 1

DM 1 1

Total D 4 6 3 4 4 21

Table 7.4 Total number of
imperative interactions from
teacher by stage of inquiry

Code Stage of statistical cycle Total

P P D A C

II 1 1 1 3

IO 1 1

Total I 1 1 1 1 4
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and then discussing ways to move forward. The children carried out the next stage
of the inquiry in their group or pairs before the teacher drew them back to the whole
group for discussion. While the students were working in groups, the teacher spent
time circulating and working with students as needed: challenging, providing hints,
clarifying and so forth.

The following sectionwill guide the reader through the inquiry from start to finish.
While the PPDAC cycle has been used as the organizer, and the unit thus presented
chronologically, only sample excerpts have been included to illustrate the activi-
ties and interactions. Whole class discussions are prominent to highlight scaffolding
means. The sequential numbering is provided only to enable discussion, with dia-
logue missing between sections but not within a section. Elipses (…) represent short
pauses with long pauses indicated as [pause].

7.5.1 Problem

The teacher commenced by posing the question, drawing the students into a dis-
cussion that quickly engaged them. The excerpt below shows the initial whole-class
conversation, demonstrating the students becoming excited about the topic in a rel-
atively brief time. The teacher involved the students in narrowing the focus of the
inquiry to aspects of measurement and data, both making the inquiry manageable
and directing the students towards desired curriculum foci of measurement and area.

In this first interaction with the students, the teacher can be seen to be marking
those features which are critical to statistical inquiry by focusing attention on impor-
tant aspects: the problem posed [1] and the need for evidence [3]. Once these ideas
were planted, she quickly moved to the planning phase.

1. Miss O: OK. How big are most Year 1 feet? How big do you think they are? Q-AI

2. Katie: About this big? [holding hands close together]

3. Miss O: Seems about right D-F

but we’ve got to prove that right? Q-AI

4. Kylie: I think this big. [holding hands an extended distance apart]

5. Miss O: You think this big? I think Miss O’s feet aren’t as big as that!
[smiling]

D-F

6. Students: [calling out] This big, this big

7. Miss O: OK hands on heads. Hands in laps. Still waiting…. I-O
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7.5.2 Planning

The teacher intentionally limited the student involvement in the posing of the ques-
tion; however, she wanted students to become more involved in the planning phase
to begin to envisage the data collection process. By using predominantly questioning
and extensive feedback, the teacher guided the conversation and language use and
thus the planning.

8. Miss O: So, what we’re going to do today, how are we going to find this
out? How big are year one feet?
How are we going to find out what the space of the bottom of our
feet are?

Q-AI

Q-AMS

9. Students: Draw around them.

10. Miss O: Draw around our feet? Yep, we definitely could do that. D-F

Why do you think that’s a good idea? Q-EX

11. George: Because it’s the shape of our feet.

12. Miss O: Yes, because it gets the whole shape of our feet, that’s pretty good.
Good explanation!

D-F

Does anybody have another idea why tracing our feet is a good
idea? James what do you reckon?

Q-AMS

13. James: Because then we can get some stuff to move around our feet.

14. Miss O: Yes, we definitely could use something to measure our feet. Yep? D-F

15. Harry: Tells us how big our feet are?

16. Miss O: Yes, it could tell us about how big our foot is if we trace it. Yes,
that’s another good reason.

D-F

17. Tanya: We can use something to measure it.

18. Miss O: Yes, we could definitely use something to measure it. Yes Jessica? D-F

19. Jessica: You could write the number inside if you draw around it like the
number inside it.

20. Miss O: Do you mean once you’ve traced the foot you could actually write
the measurement is that what you mean?

Q-C

Alright well let’s find out a little more about it. We’re going to get
on with it because that’s the fun part.

D-I

The students could now see away forward and required little assistance to envision
data collection. They proceeded to collect materials and trace around their feet before
measuring using whatever informal unit of measure they wished (these included
dominoes, unifix cubes, tangram pieces and so on). The teacher did not lead the
students to consider uniform units as she wished this to arise naturally through
observation.
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7.5.3 Data Collection

During data collection, the teacher initially focused on accuracy [as is valued by
the discipline] before discussing other aspects of ‘fair’ data collection more broadly.
This was a precursor to understanding sources of variability as due to either natural
variation or error. The teacher worked individually with students to discuss their
approaches at a level appropriate for the child. In the excerpt below, the teacher has
the students consider the spaces on the foot outline (the ‘yellow’ in [21]) that are not
covered by the unit of measurement, that is, ‘gaps’:

21. Miss O I’m looking and I’m thinking that’s pretty good [the student’s
tiling] but I am also looking and I can see a lot of your yellow.

D-F

What do you think that might mean for your measurement? Q-AMS

22. Alex There’s gaps

23. Miss O Yes, there’s gaps, so if there’s gaps on your foot is that going to
give you a correct measurement?

Q-AMS

24. Alex No

The second opportunity the teacher orchestrated was to establish a need for accu-
rate measurement to enable fair comparison. By allowing students to choose their
own unit of measure, the students were led to see that this did not enable the data to be
meaningfully compared. In the excerpt below, the students had measured their foot
outline, recorded their data on the outline and were then discussing the results. One
student, Peter, tried two different units, and the teacher took the opportunity to draw
out the issue of ‘fairness’ to address variation that would be caused by measurement
discrepancy (error), using the context of the inquiry to develop appreciation of the
need for similar units [33].

25. Miss O: You used dominoes and unifix did you? Which one did you use first
Peter?

Q-EX

26. Peter: Dominoes.

27. Miss O: And how did you find that? Did it work? And what was the
measurement of your dominoes?

Q-EX

28. Peter: 10

29. Miss O: It was 10 dominoes and what was the measurement with your
unifix cubes?

Q-EX

30. Peter: 24

31. Miss O: 24. Um, why was the unifix cubes a bigger number? Q-AMS

32. Peter: Because they [unifix] are smaller.
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33. Miss O: So, while Seth has a bigger foot, his measurement shows if we
looked at that, that his foot is actually smaller but what I am saying,
yeah, but the units told us differently didn’t it? What are we going
to do then?

Q-AC
Q-AMS

Let’s go back to our question, ‘How big are year one feet?’. What
do we need to make it a fair test?
What are we going to have to do in order to show so we know
Katie’s foot is probably one of the smallest in the class? Probably
[stressed]. And Seth probably has one of the bigger feet?

Q-AI

Q-AC

What are we going to do? Amanda? What could we do? Q-AMS

34. Amanda: Use um the same units.

The students elected to use unifix cubes as a comparative unit. These data were
collected, and results are recorded by students, along with their name, on the outline
of their feet. Giving students opportunities to plan and collect the data established
connections between context and data: students could see the natural variation that
was inherent as they made connections between what they observed in each other’s
foot sizes and the data as they were recorded. The questioning by the teacher [33]
suggested the familiarity of context enabled her to facilitate appreciation of variation
resulting from erroneous data collection while the students were recognizing that
natural variation in data also occurs.

7.5.4 Analysis of Data

During data analysis, the teacher’s purpose was to have students focus on the type
and range of the data to organize themmeaningfully. The teacher was supporting the
students to experience the decision making inherent in dealing with raw data. Harry
suggested focusing on the value of the tens in the measurements taken [35–39], and
the teacher effectively privileged that suggestion. Binning the data, as Harry sug-
gested, may somewhat mask the shape of the data; however, it was a valid and, for
his age, sophisticated means of organization. From [39] on, the teacher tried persis-
tently to establish, through questioning, how Harry’s idea could be represented. It
would have been far easier to create a bar graph of ‘bins’ at this point for the students;
however, this would not have given them the experience of grappling with the issue
themselves and resolving it. Throughout this discussion, the teacher preferenced
responses of order and organization: characteristics of effective graphing.
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35. Miss O: What are we all looking for to answer this question ‘How big
are most Year one feet?’.

Q-AI

Now we know that we had to collect all our information that
we have right now.

Q-AI

What’s the information I am looking for? Q-AMS

36. Harry: The first number of the two numbers. [Harry is referring to the
digit in the tens place on the measured feet, that is, if the foot
was 24 blocks in area then the first of the two numbers is a
2—representing two tens].

37. Miss O: What do you mean by that Harry? Q-C

38. Harry: Like if the person had two and a number or if they had
something different… if most have 2 and something then …
then 20’s is the most …more than 30 …

39. Miss O: So, let me just clarify what you’re saying. Are you saying that
we need to collect the numbers and we’re finding out if it’s a
teens number, something in the 20s, something in the 30s,
something in the 40s, is that what you’re saying? So, collecting
the measurements?
[Henry indicates assent]

Q-C

Alright so now I have got to think about how am I going to
represent that?

Q-AI

How am I going to put that on the board so we can see it and
work out how big most year one feet are?
[waits]

Q-R

So, we need some ideas now and you’re going to help me to
display the data and find out what we are going to do with all
that information we have collected over the last couple of days.
How are we going to figure this out?
[waits]

Q-R

If you just call numbers out at me we’re probably not going to
get a good idea, are we?

Q-H

Because they’re just numbers going all over the place inside
our brains, outside our brains and we’re going to lose all of that
information so we need to figure out a way to display it on our
whiteboard.

D-E

So, does anyone have an idea? Q-AMS,
Q-AI

40. Matt: We could [stick] um this onto the whiteboard so we know what
the number is and who it is.

41. Miss O: OK we could do that ok that’s not a bad idea. D-F

Well what will I do though will I just get all of these feet and
just [stick] them wherever?

Q-AMS,
Q-AI

42. Students: No.

43. Miss O: Why isn’t that going to work? Q-AMS

44. Peter: Because they wouldn’t be in order.
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45. Miss O: OK you’re saying then that we need some kind of order to put
the…

Q-AMS,
Q-AI

46. Peter: [interrupting] Columns.

47. Miss O: Columns? That’s an interesting word. Alright so you’re
thinking, ‘how about we put them in columns’.

D-F

What am I going to do? Put all the blue ones in a column, all
the green ones in a column, the orange ones in a column, the
yellow ones in a column.

Q-AMS

48. Jenny: All the ones that are 20 in columns

49. Miss O: All the ones that are 20 in a column. Ok is everybody agreeing
with that? Does everybody think that might be a good idea to
display our ideas?

Q-AMS,
Q-AI

50. Students: Yes.

The teacher proceeded to work with the students, through questioning, to deter-
mine what each column should represent and how these columns could be labelled.
There were several instances [as in 47] where she provided the students with an
incorrect process to ascertain understanding. This setting up of ‘adversary’ state-
ments was a popular approach with this teacher. If the students argued, and corrected
her, she would move on. This dialogic movement served (and this was confirmed by
the teacher) to assess student knowledge ‘on the fly’ to monitor understanding and
enabled her to adapt contingently.

7.5.5 Conclusions

The final stage of the statistical investigation was to provide a conclusion derived
from data. The students were seated on the floor in front of the whiteboard looking at
the image seen in Fig. 7.1. In the exchange below, the teacher supported and guided
student appreciation of the investigative cycle by drawing attention to the need for
a conclusion [51] and for that conclusion to be linked to evidence and drawn from
such [53, 55]. In doing so, the teacher privileged the key features of the students’
data representation [66] to enhance their interpretation. Finally, the teacher used
questioning heavily to draw the students to a conclusion.
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Fig. 7.1 ‘Binned’ representation of the students’ feet

51. Miss O: Can we answer our question from the data we’ve collected and
represented on the board? Can we answer it?

Q-AI

How big are most year one feet or at least in this classroom?

How can we answer it? Who can tell me?

52. Bethany: The 20s, the most biggest because lots of people have… [tails
off]

53. Miss O: Well, how do you know? [pause] Q-AI

Have you checked? [drawing focus to data] Q-AI

54. Students: Yeah

55. Miss O: How am I going to tell exactly? Because you are telling me
there’s lots of feet in there but there’s lots of feet in the 30s too.
But how are you going to tell me? How do I know, how do you
know that there is the most in the 20s?

Q-AMS

56. Bethany: There’s lots of space there and there’s not much space in the
20s. [meaning absence of data]

57. Miss O Well that’s true but I could make less space by doing this.
[Moving all the feet together]. But that’s not answering it really
because now I’ve got lots of space in here too. How do you
know for sure?

D-F
Q-EX

It’s not about space in those columns, [waits] D-H

but how do you know for sure? That the answer is the 20s
James?

Q-AMS

58. James: The 20s have 14 because I counted and the 30s have 8.
[the students continue to count all items in each column]
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59. Miss O: So, can I answer my question? Who can answer my question?
Who can answer my question that we have been trying to
answer for the past two days?

Q-AI

I’m hoping everybody has their hands up? How big are year
one feet? William?

Q-AMS

60. William: 20’s

61. Miss O: Ah in the 20s’s. So when I say How big are most year one feet?
We could all say because the data shows us, all the
measurements we took over the last couple of days and all the
information we collected tells that—Year one feet are mostly in
the 20s.

D-M
D-AI

7.6 Discussion and Conclusion

The aim of this research was to develop insight into how a teacher familiar with
inquiry scaffolded her students to engage with the complexities of addressing ill-
structured statistical problems. To begin, the first question was whether the teacher
was in fact providing scaffolded support. Returning to van de Pol et al.’s (2010)
requirement that scaffolding meet the requirements of contingency, fading and trans-
fer of responsibility offers a structure to explore this.

Contingency addresses the need for the type, timing and strength of the supports
to be responsive to the learner. The strength of the response is important as the teacher
must have knowledge of the students’ current level of understanding to respond. A
teacher needs to assess and consider both class and individual ZPD in order to make
contingent responses, and this is quite complex and difficult a requirement. Here, we
saw the teacher exploring the degree of support required: in exchanges with students
[eg. 39], she provided a question prompt, and thenworked to reformulate the question,
and eventually provided aminor hint to establish what the students needed in order to
continue. The teacher neither ‘told’ students nor ‘rescued’ them but rather provided
the minimum of progressive assistance. The practice of offering minimal support
and building on it served to address class ZPD but may be problematic in terms of
building up future capability. The teacher was experienced at inquiry and had some
experience in teaching early childhood: this poses the question of howwe can ‘bottle’
this approach to assist novice teachers. The contrasting argument is that should the
teacher have chosen to provide stronger scaffolds, or more direction, earlier, the task
challenge may have been overly reduced and the benefits of the statistical inquiry
lost. Obtaining a balance is a challenge.

The second requirement of scaffolding is the fading of supports (van de Pol et al.,
2010). Unfortunately, the examination of a single unit of work to develop a complex
understanding of the statistical inquiry process does not provide a realistic measure
of fading as students have only had the opportunity to cycle through the process once.
It is thus impossible to demonstrate fading sufficiently without a longitudinal study.

Finally, transfer of responsibility deemed a necessary component of scaffolding
(van de Pol et al., 2010). Again, a longitudinal study would be of more benefit in



7 Scaffolding Statistical Inquiries for Young Children 125

ascertaining the effectiveness of transfer. The purpose of implementing statistical
investigation is to develop students capable of engaging as apprentice statisticians,
and therefore, the aim of the process is to use the PPDAC cycle (Wild & Pfannkuch,
1999) as a scaffold via a learnt process. With this goal in mind, increased adoption
of responsibility and decreased support would be target outcomes, at least in terms
of students developing the process of statistical inquiry. It is likely that support for
the content being developed would alter and deepen as students progressed through
schooling, and therefore, the scaffolding specific to the contentmay be of an ongoing,
changing nature.

A second aim of this study was to ascertain the means of support or scaffolding.
In observing the overall pattern of class interaction, there were several strategies
or means of scaffolding that were employed by this teacher for specific and clear
purposes. The predominant means of scaffolding was the use of questioning, so
much so that multiple sub-categories were needed to assist with the classification
of interrogative interactions. The purpose of these questions was largely to draw
students’ attention to one of three identified knowledge categories: knowledge of the
statistical inquiry process; knowledge of themathematics and statistics content areas;
and knowledge of context (Fielding-Wells, 2016). While the latter was familiar to
students, the teacher’s specific linking of results to context served to allow the context
to support statistical ideas.

In supporting the statistical inquiry process, the teacher focused on the broader
objectives: the need to address a question; the need to plan, gather and organize the
data; and the need to provide a data-based conclusion which addressed the initial
question. By leading the students through this cycle, she explicitly and implicitly
demonstrated the valuing of the process to the students. Simultaneously, she guided
students through the ‘discovery’ of statistical understandings essential to students’
appreciation of the ‘big ideas’ of statistics (e.g. Watson, 2006): variation (error and
natural, within group), distribution and centre (implicitly).

7.7 Implications for Teaching and Research

The results of this study have implications for both teaching practice and future
research studies. In terms of classroom teaching practice, the findings suggest that
considerable teacher scaffolding is required to guide young students with little expe-
rience in engaging in statistical inquiries. To enact a shift from more traditional data
activities that utilize neat, organized data sets to learning that involves the ‘messi-
ness’ of more realistic data investigations is complex. Such a shift requires that
teachers have a solid grounding in the process of statistical inquiry, have the con-
ceptual knowledge of statistics to guide and draw out key statistical concepts and be
willing to relinquish the control they might have otherwise had of the learning pro-
cess. Beyond this, a shift to statistical inquiry also requires facility with scaffolding
students through the process. This research suggests that the predominant supports
that were beneficial to young children came in the form of questioning and feedback.
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Questioning supports that draw students’ attention to both the process of statisti-
cal inquiry and the underpinning knowledge of statistics/mathematics was required,
and this reinforces the importance of teachers having underpinning understanding of
these statistical and inquiry knowledge domains.

In consideration of future research, further studies that provide insight into the
scaffolding of statistical inquiry are needed; in particular, studies that address engag-
ing children of varied ages and levels of experience with statistical inquiry and also
longitudinal studies that focus on the extent to which the crucial scaffolding require-
ments of fading and transfer of responsibility can be more adequately addressed. A
second area of future focus needs to be the identification of mechanisms for assisting
teachers to identify class ZPD accurately so as to provide the least amount of support
necessary to progress students. In this way, students can be engaged as authentically
as possiblewith the inquiries, while not exceeding the class ZPDand therefore requir-
ing explicit instruction or direction which may undermine their ability or interest in
making their own judgements.
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Chapter 8
How Kindergarten and Elementary
School Students Understand the Concept
of Classification

Gilda Guimarães and Izabella Oliveira

Abstract Teaching statistics has been increasingly valued in recent years. To under-
stand the physical and social world that surrounds us, knowing how to systematize
information and/or understand the informationmatched is fundamental. Thus, know-
ing how to classify data is a fundamental skill. This article aims to analyse what
students between 5 and 9 years old and teachers who teach those grades know and
can learn about activities involving classification. To this end, we present the results
of three different studies conducted with elementary school children and teachers.
The results reveal that children are able to classify from a previously defined crite-
rion and to discover a classification criterion, but experience more difficulties when
creating criteria to classify. We believe this may be explained, partially, by the lack
of familiarity with this type of activity both in everyday life and at school, as they are
generally asked to classify from pre-defined criteria instead of producing their own.
However, since kindergarten children are already able to classify in different situa-
tions and, most importantly, they are able to learn easily the skills needed to classify,
we believe that if they have instruction that leads them to reflect about classification,
they learn easily, thereby evidencing the important role of the school.

Keywords Classifying · Kindergarten · Elementary school · Statistics
One of the phases of an investigative cycle is data classification. Only with classi-

fied data is it possible to interpret the situation and obtain conclusions. We consider
it fundamental that people are able to create criteria so that they can organize the
information from the goals defined by them.
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Fig. 8.1 Example of a student using two criteria (colour and means of locomotion)

8.1 What Is Classification?

Classification is a natural activity that begins very early for humans. From a very
early age, children classify objects according to analyses based on similarities and
differences (Vergnaud, 1991). Piaget and Inhelder (1983) defined classification as a
procedure that enables the individual to assign all the elements of a certain collection
to a category, according to certain criteria. For them, a classification is correct when
the exhaustiveness and exclusivity criteria are met. Exhaustiveness implies that all
elements are classified, and exclusivity implies that each element can only be part
of one of the classes or groups. In other words, categories must be able to exhaust
and, at the same time, be mutually exclusive. In the following example, the child
used two different criteria (colour and means of locomotion) when trying to classify
the nine cartoon figures. The child verbally explains that “they are the yellow ones”
(SpongeBob, Tweety, Garfield), “they are the ones who swim” (Shrek, Nemo, and
LittleMermaid), “are the oneswhofly” (OddParents,Monica, Superman, and Spider-
Man). In this case (Fig. 8.1), it did not meet the exclusivity criterion.

On the other hand, it is fundamental to point out that there is more than one way
to classify. The same elements may be classified in different manners one at a time
or in hierarchical classifications.

For example, animals may be classified according to their origin: in cooking, we
might divide them into seafood and red meat. We can classify animals as carnivorous
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or herbivorous, according to an ecological classification in their natural habitats.
These same elements may also be classified as echinoderms and mollusks, according
to a zoological classification based on their biological evolution (Lecointre, 2004).
Is there a hierarchy among these criteria? No. So, which of them should be used
for classification? The choice depends on the purpose of who classifies. Different
objectives suggest different classifications. Within a zoology laboratory, the term
“seafood” is meaningless. Similarly, referring to echinoderms and mollusks in a
kitchen makes no sense. These differences go beyond the vocabulary used; it is the
specific objectives of the context of a kitchen or a zoology laboratory that determine
the coherence and pertinence of a classification. Therefore, it is of fundamental
importance to use a classification system that is related to the established goals and
the context in which they are stipulated. Classifications are not neutral operations.
Thus, it is important to point out that the objective of a classification is to understand
a set of data and/or information. The onewho classifies chooses the criteria according
to his/her needs.

We would further point out that the classification criteria adopted depend on the
context in which the classifications take place, including the historic moment and
the person’s needs. Thus, it is possible to find as many classification systems as there
are classifiers.

Classifying is part of people’s daily lives, and activities that involve classification
can provide children and adults with models for organizing things in the real world,
such as putting blocks away or setting the table for dinner.

Ware (2017) and Kalénine and Bonthoux (2006) state that categorization is a
fundamental aspect of cognition and a critical task of child development that helps
children to organize experience and understand relations between entities. Classi-
fications may be based on thematic, causal, functional, temporal, perceptual and
relational criteria, among others. Bonthoux and Kalénine (2007) state that children
classify based on different aspects and that their choices depend on development,
context, and individual factors.

8.2 The Investigative Cycle as a Means of Developing
Statistical Reasoning

One way to develop statistical literacy is to carry out an investigative cycle. The
investigative cycle relates to the way an individual thinks and acts during an investi-
gation (Wild & Pfannkuch, 1999). Statistics can be considered an important tool for
carrying out projects and investigations in various areas, used for planning, data col-
lection, and analysis, and in inferences for decision-making with the intent to support
statements in various areas, such as health, education, science, and politics. When
students carry out an investigation, they may reflect autonomously and consequently
be capable of interpreting reality through their own data systems or of interpreting
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the data systems of others critically (see this chapter). Therefore, statistics plays a
fundamental role in education for citizenship.

An investigative attitude must necessarily include a concern for developing ques-
tions; elaborating hypotheses; defining samples; collecting, classifying, and organiz-
ing information in graphical or table representations; analysing and reaching possi-
ble conclusions to solve the proposed problem; and making decisions based on said
information (Gattuso, 2011).

In this sense, we believe that statistical investigation must be the main axis in
students’ and teachers’ statistical education from the earliest grades through every
educational level. Research must be an essential element in teachers’ education and
practice, since it allows a reflective attitude in teaching and requires teachers to
master the procedures of scientific investigation (Guimarães & Borba, 2007).

However, to understand fully how statistical investigation is developed, students
must participate in it from its very beginning to its conclusion, experiencing every
phase (Gal & Garfield, 1997; Ponte, Brocardo, & Oliveira, 2003; Batanero & Diaz,
2005; Ben-Zvi &Amir, 2005;Makar &Rubin, 2009; Fielding-Wells, 2010; Leavy&
Sloane, 2017; among others). It is in these situations that students are able to perceive
the function of statistical concepts.

Having statistical investigation as a structural axis of statistical learning and teach-
ing, it is fundamental to consider that this canhappen throughout awhole investigative
research cycle, as well as reflect on each of its phases. So, one of the phases of the
investigative cycle is data classification.

More precisely, in this chapter, we are interested in discussing the development
of understanding about creating criteria to classify.

8.3 What Is the Importance of Classification
in the Statistical Investigative Cycle?

One way to organize statistical thinking is the realization of the research cycle.
Wild and Pfannkuch (1999) argue that the investigative cycle concerns the way the
individual acts and thinks during an investigation. In this sense, Silva and Guimarães
(2013) propose different phases of an investigative cycle (Fig. 8.2).

This diagram presents the different stages of the investigative cycle. Each of these
elements contributes to the development of students’ investigative skills. Even though
they are all important, this chapter will deal with classification.

To reflect on this relationship, we begin by presenting an example. Luanna, a
teacher, asked her fourth-grade students (aged 9) to build a bar graph based on a
list of items bought at a supermarket. To build the graph, students first had to create
criteria to organize the products. One student created the criteria “storage place”, with
the categories freezer, fridge, cupboard, open air. Accordingly, he built a database
withwhich he could check if all the products had been classified and that none of them
was in more than one category, meeting the criteria of exhaustivity and exclusivity.
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Fig. 8.2 Investigative cycle proposed by Silva and Guimarães (2013)

Graphs and tables are ways of representing these classifications when we deal with
quantitative data.

The ability to build and interpret a graph also depends on understanding the
categories that are represented. In a bar graph, for instance, each bar represents one
category of a variable or the criterion analysed. Thus, classifying data is an important
ability in the development of statistical literacy.

As previouslymentioned, the ability to interpret a graph depends on understanding
the categories involved. In this sense, categorizing data is an important ability for the
development of statistical literacy. If interpreting a graphor table requires a significant
level of understanding, representing statistical data is evenmore complex. According
to the type of data obtained from a classification, students may choose various types
of representation: a hierarchical classifications tree, sets, tables, and graphs.

8.4 Errors in Classification Carried Out by Children

Piaget and Inhelder (1983) identify that people present different understandings in
their attempts to learn the ability to classify: figure collections, grouping elements in
pairs, not classifying every element, dichotomous forms of classification, classifying
without specifying the criteria, and adequate classification. We point out that these
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performances do not take place in any given order, since the same subject may try to
organize the elements in pairs and later classify them dichotomously.

Collections of figures are when the student puts together a triangle and a square to
draw a house. When a student groups elements in pairs, he/she is seeking a relation
of resemblance, but is not relating these elements to the whole group.

Another type of strategy used by the student is not exhausting all the elements to
classify, since they used criteria that did not involve all the elements. In a dichotomous
classification, the subject chooses a property and analyses whether the element has
that property or not. For example, he/shemay classify the ones that are blue and those
that are not. This type of classification is also called a binary classification. Some
subjects are able to classify, but not to specify the criteria. They classify their toys
as wooden, plastic, or metal, but are unable to explain that the criterion chosen was
the type of material the toys are made of. Lastly, subjects classify by anticipation,
explicitly stating a criterion (such as size) and using said criterion to classify.

According to Gitirana (2014), classifying must follow well-defined criteria, as
well as keep in mind that every object can belong to one or various classes. Every
concept, in and of itself, is a class, and once we define it, we have one of the necessary
characteristics for an element to be part of that class (concept). It is exactly the use
of these characteristics that allows us to decide whether a given object is part of a
given class or not.

Thus, the importance of classification work reinforces the need for systematic
work, with interesting, challenging activities that encourage students to think for
themselves. In this sense, it is essential to discuss which abilities related to classifi-
cation children need to develop.

8.5 Research on the Ability to Classify

In general, we have found several studies that investigate how adults and children
build concepts based on classifications (Deák & Bauer, 1995; Nguyen & Murphy,
2003; among others), aswell as studieswith very young children or babies on the rela-
tion between thought and language (Mareschal & French 2000; Vieillard & Guidetti
2009; among others).

Besides these, Clements (2003) and Rodrigues (2016), among others, state that
most of the studies of children’s mathematical classification concern geometric
shapes, progressively making possible their access to the process of shape classi-
fication based on the characteristics and properties of the simple geometric shapes,
which allows them to identify and recognize inclusive types of classifications.

In this same sense, Amorim and Guimarães (2017), upon analysing Brazilian
math textbooks for students aged 6–8, observed an almost complete lack of activ-
ities that involve classification, and when such activities were proposed, they also
involved teaching geometric concepts. In these situations, students are not led to cre-
ate classification criteria. The objective is to see whether students are able to classify
the shapes based on defined criteria for existing categories. According to Gitirana
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(2014), although essential to the development of concepts, schools have given little
importance to the logical procedure of building criteria.

Other research suggests that reasoning about data classification is encouraged
when students are invited to invent and revisemodels (Hancock,Kaput,&Goldsmith,
1992). Thus, teachers need to know how to propose situations that develop creation,
critique, and revision of data classification.

The objective of this chapter is to analyse what students between 5 and 9 years
old and teachers of those grades know and can learn about activities involving clas-
sification.

In the following section, we present, in detail, three studies carried out in Brazil
involving students and/or teachers of the earliest school years. The first study was
done with 20 kindergarten children (age 5); the second, with 48 third-grade children
(age 8) and 16 early grade teachers; and the third, with 72 fourth-grade children (age
8–9).

8.6 Method and Data Analysis

This chapter presents the outcomes of three different studies. The results were
obtained from the three studies conducted by the GREF team—Grupo de Estudo em
Educação Estatística no Ensino Fundamental (Study Group on Statistical Education
in Elementary Education). The first two (diagnostic) studies were carried out based
on an individual Piagetian clinical interview, in which the researcher has a script
that is modified depending on the student’s answers, in order to allow the researcher
to investigate how the student is thinking about the question. The third study is an
experimental study, in which a pretest, two different intervention situations, and a
post-test were performed to verify the learning from the interventions.

From the students’ answers during the interviews, a qualitative and quantitative
analysis was carried out in order to identify the students’ understanding of classi-
fication, considering the types of answers identified by Piaget and Inhelder (1983).
Thus, a hit-and-error analysis was initially performed. Then, a qualitative analysis of
the types of errors and hits was performed. The categorization of strategies was per-
formed according to the types of responses observed by Piaget and Inhelder (1983)
and in the studies previously presented in this chapter.

In the following sections, we will present each of the studies that have contributed
to our reflection on the understanding that kindergarten and elementary school stu-
dents have about classification.

Study 1—What do kindergarten students understand about classification?

In this study, Barreto and Guimarães (2016), upon identifying the scarcity of activ-
ities that request that children create classification criteria, both in textbooks and in
classrooms, decided to investigate what students understand about classification. To
this end, they carried out Piagetian clinical interviews with 20 children (age 5) from
three schools in Recife, Brazil. The authors chose to work with different schools to
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Fig. 8.3 Activity based on a given criterion

avoid similar results due to teaching methods or curricular organization of a given
school.

Each childwas asked, individually, to respond to three types of activities involving
different classification situations. The order in which the activities were presented
was established based on how familiar the children were with the activities. They
began with the most common activities in school and in textbooks, followed by an
activity that was done rarely, and finally an activity which requested them to create
criteria. The interviews were conducted in a support room in the school and lasted
approximately half an hour. The activities were:

Based on a given criterion

In this type of activity, the criterion is presented and the student must identify which
objects belong in each group. This activity used 11 cutout pictures and a sheet of
paper (Fig. 8.3).

Each child was told: “I’d like you to organize these pictures based on what they’re
made of. Here are objects made of metal, plastic, glass, and paper.” The researcher
always asked the student to justify their answer.

Identifying the classification criterion

In this activity (Fig. 8.4), the children had to do the inverse operation of the previous
activity, since in this one the groups are already formed. Students had to discover
which criterion was used for the classification. The researcher reads the statement
presented in the activity.

When a child did not understand the command, the researcher would explain, “A
boy organized his books in these two baskets because he thought not all the books
were the same. So I want to know what he might have thought to organize them
this way; why did he put these here and these here?” (pointing while giving this
explanation).
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Fig. 8.4 Activity for identifying the classification criterion. (Observe the images below, and dis-
cover the criteria used to organize children’s books in each basket.)

Fig. 8.5 Activity for creating a classification criterion. (It is time to pack the toys. Cut out the toys
from the next page. Stick on the same shelf the toys that you think should stick together)

Creating a classification criterion

In this type of activity (Fig. 8.5), the objects are presented and the child is asked to
create a criterion to classify the elements in the way they think best. For this activity,
the children received eight cutout pictures to come up with an organization criterion
to divide the pictures into three groups. The children would then glue the pictures
on the three shelves. “These objects need to be organized. You will see which ones
are similar and that belong together. You are going to organize these toys in three
groups and put them on the shelves”.

Once again, as the child was doing the activity, the researchers asked questions,
trying to understand what the child was thinking upon gluing each picture. The
childrenwere asked: “Why are you putting these pictures together? Could this picture
go somewhere else?”
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Table 8.1 Percentage of
correct answers in each
activity

Activity Quantitative of successful
students (%)

Classify from a given criterion 95

Identify classification criteria 20

Create classification criteria 35

8.7 Results Study 1

Table 8.1 represents the percentage of correct answers the children gave in each
activity. We see great variety in the percentage of correct answers. This result shows
that the activity of classifying based on a given criterion had a high percentage of
correct answers, as was expected, since this activity is frequently found in textbooks
and classrooms. On the other hand, few children were able to identify or create
classification criteria, activities that are less frequent in textbooks.

In the activity of identifying classification criteria, we found students gave dif-
ferent types of answers: they either identified correctly the classification criteria; or
described the themes of the books; or used more than one criterion in their attempts
to classify. In these cases, the children would group the books as this example: giraffe
and dragon books/family, dolls, and fairy tale or horror books (theme)/“girl” books
(gender). We point out the difficulty, but not impossibility, of early schoolchildren
doing this task, since four children were able to answer adequately. They classified
the books as animal books/fairy tale books, dinosaur books/princess books.

In the activity to create classification criteria, seven children were able to classify
correctly, but only three were able to explain the criteria (dolls, musical instruments,
games). The others distributed the pictures randomly among the shelves. We always
asked the students to explain how they had made their classifications, just as Lehrer
and Schauble (2000) did in their study. We considered it important to investigate
students’ metacognitive ability to explain how they classified.

However, based on this study, we can conclude that children from early childhood
education have shown that they understand classification activities, and in the first
place, they are capable of creating certain sorts of classification. Thus, if they are
able to create criteria to classify, they will be able to conduct research, collect data,
and classify responses so that conclusions can be drawn.

Study 2—How elementary school students and their teachers created classification
criteria.

Guimarães, Luz, and Ruesga (2011) investigated how elementary school students’
and their teachers created classification criteria. Forty-eight students (aged 8) in the
third grade of elementary school and 16 teachers of this same level of education
participated in the research.
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The author carried out Piagetian clinical interviews, during which they handed
subjects nine cutout pictures and asked the students/teachers to create a criterion to
classify them. Half of the participants were asked to create two groups, and the other
half three groups.

Since context has been shown to be a determining factor in classification, the
authors used two groups of pictures (toys and cartoons) which were familiar to the
participants. Although the pictures were familiar, there is no type of classification
commonly used neither in everyday life nor in school.

8.8 Results Study 2

The results show that most of participants performed poorly on this task (only 33%
of the students and 44% of the teachers succeeded in the task). This result is very
important because it shows that the teachers present a difficulty similar to that of their
students. In this way, two points should be taken into account: how can teachers lead
their students’ learning about creating classification criteria if they themselves do
not know how to do it? Second, it is evident that the life experience of adult teachers
participating in this study has not been enough to lead all of them to learn how to
classify in some situations.

In face of the importance of knowing how to classify, it is fundamental that
teachers learn to create classification criteria and that they provide their students
with activities that will guide them to learn it also.

Once again, in their attempts to classify, the participants (56% of students and
teachers) would usemore than one criteria when asked to create a criterion to classify
a group of figures (Fig. 8.6). In this example, the teacher does not seem to realize
that all the pictures have shapes (which can be the same or different) and that a game
always leads to a competition.

However, it is important to point out that some children carried out this activity
successfully, both in two groups and in three, showing once again that children can
create classification criteria correctly.

In Fig. 8.7, we present an example of a student who appropriately classifies into
three groups. Although he wrote the name of the first figure in each group, when he
was asked how he had classified it, he explained that “these (referring to the Shrek
group) I watch a lot, these (referring to the Garfield group) I sometimes watch, and
these (referring to the Monica group) I don’t watch”.

Few participants wrote the name of the criterion (29% of students and 44% of
teachers). Furthermore, in several cases where the participants wrote the name of the
criterion, they do not fit into the classification used. Vieillard and Guidetti (2009)
had already observed that adults and children would name the groups and not the
criterion they had used.
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Fig. 8.6 Response of a teacher upon request to classify into three groups
(shapes/games/competition)

Fig. 8.7 Example of a correct classification of a child in three groups

The results obtained on this type of activity are similar to those found by
other authors (Leite, Cabral, Guimarães & Luz, 2013; Lehrer & Schauble, 2000;
Guimarães, Gitirana, & Roazzi, 2003), in which they identified the difficulty expe-
rienced by children and adults present when classifying.

For example, Lehrer and Schauble (2000) researched classrooms of students and
their teachers (first, second, fourth, and fifth grades) in the task of classification.
The authors observed that the youngest children evolved systems of attributes that
described their categories in a post hoc fashion, but failed to regard those rules as a
model to guide classification. In contrast, fourth and fifth graders considered their
category systems as models that logically constrained the members admitted into
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categories, although many continued to include redundant or foreign information.
They incorporated and discussed a variety of kinds of decision rules, and they had
the opportunity to see the intellectual work performed by practices of data mod-
elling. Also, Guimarães and Oliveira (2014) investigated how 113 future teachers
in Recife, Brazil; Quebec, Canada; and Burgos, Spain, created criteria to classify
and used these criteria in a free classification activity. Although most students man-
aged to reach a correct classification in two groups, when the activity required three
groups, the performance was significantly weaker (x2 �13.717, gl 1, p ≤ .000). Only
those who defined a descriptor were successful in their classification. Thus, knowing
how to classify appears not to be an ability learned solely through life experience.
This difficulty faced by both students and teachers can be partially explained by the
absence of any systematic schoolwork on classification.

In this way, we can conclude that some elementary school students and their
teachers have difficulties in creating classification criterion. This conclusion needs
to be drawn very carefully, since, despite the difficulty of some, others are able to
create criteria to classify. More than that, some children are able to create classifica-
tion criteria in an appropriate way since kindergarten, as evidenced by Barreto and
Guimarães (2016). Thus, we believe that the difficulties we met can be explained by
an absence of reflections from teachers and students on how to create classification
criteria. Thus, we believe it is essential that teachers understand the importance of
knowing how to classify and how to propose that kind of learning for their students.

Study 3—Learning about classification

Since studies have found that children can create classification criteria since kinder-
garten, we present a study in which the researchers sought to work with classes of
students that were expected to learn to create classification criteria.

Cabral (2016) investigated 72 students (9 years) of six classes of fourth-grade
students from three different schools. This study involved three phases: a pretest,
sequences of activities, and a post-test. During the pretest phase, each student was
asked, individually, to classify nine pictures, with the purpose of determining if they
were capable of creating an adequate criterion for classification.

To carry out the intervention processes, different types of activities were used
involving the ability to classify proposals in textbooks and previous research: (1)
classifying based on a given criterion, (2) discovering the criterion used in a classi-
fication, (3) presenting the criterion and asking students to analyse the pertinence of
the classes, (4) listing properties of the elements, (5) analysing whether elements in
a class belong or not, (6) identifying classes based on a criterion, and (7) creating
a classification criterion. For the accomplishment of the sequence of activities, the
students were divided into three groups. Two classes (G1) participated in a sequence
of teaching activities that involved understanding only one criterion, based on situ-
ations 1, 2, and 3. Another two classes (G2) participated in a sequence of teaching
activities that involved an understanding of element, class, and criteria, based on
situations 4, 5, and 6. Two classes (G3) had no teaching activities, thus serving as
control group. The sequences of activities were carried out in class during regular
class time, involving all the students, over 2 days, for approximately two hours each
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Fig. 8.8 Percentage of
correct answers in each
group in the pre- and
post-tests

day. After students had done the activities, they were organized in pairs, and together
with the teacher, the whole groups would once again analyse their answers, reflecting
on how appropriate they were.

During the post-test, the students were asked once again to classify another nine
pictures that did not present an explicit or common criterion. The purpose was to
identify whether the students had learned to create a criterion and classify correctly.

8.9 Results

In the pretest, the performance of students in all three groups when creating a clas-
sification criterion was very weak, and no group presented significantly different
performance from the others F[(2.71)�0.419, p �0.659] through an analysis of
variance.

In Fig. 8.8, we present the percentage of correct answers in each group in the pre-
and post-tests. We can see that the performance of groups G1 and G2, which took
part in the sequences of learning activities, improved quite a bit between the pre-
and post-tests. Albeit much lower, G3 also presented improvement F[(2.71)�4.702,
p �≤0.012]. We believe these results to be quite important, since they show how
easy it seems for children to learn how to classify when they are systematically
stimulated to do so.

In this way, the two sequences of activities allowed learning, emphasizing that
systematic work with students on what it means to classify is possible and funda-
mental. It is also possible to affirm that the two intervention proposals led to learning
and that there is no significant difference between them; that is, both types of activity
allowed an advancement in understanding what it is to create classification criteria.

The variety of criteria used by students in the post-test is also interesting (Fig. 8.9).
We stress that it is our intent that students create criteria and not use the habitual
classifications. Why is this so important? If we want students to be able to research,
collecting data to answer their questions, it is fundamental that they know how to
organize the information they collect. Knowing how to create classification criteria
will allow them to group answers according to their objectives and thus develop
answers.
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Fig. 8.9 Variety of criteria used by students in the same task (a group that has foot/group that has
no foot; b home/hair stylist; c light/heavy; d no energy/with energy)

In this type of activity, the majority of the students (83%) presented an excellent
performance.

In another study, Leite et al. (2013) investigated the knowledge of 30 third (aged 8)
and fifth (aged 10) grade elementary school students creating categories to classify,
and a potential improvement in performance based on a teaching intervention. This
intervention was carried out over 2 days, during which it was proposed that students,
in pairs, classify groups of pictures, then present these to the class, and, together
with the teacher, reflect on the criteria used. The results show that students in both
grades had difficulty classifying; however, the reflections in class allowed significant
improvement in their understanding of classifying, showing the possibility of quick
learning.

Thus, we observe the importance of proposing trajectory of work to promote
the understanding of classification through different activities. We can also say that
the activities imply different abilities, since the performance was different for the
students. However, it is the set of them that supports the development of students’
knowledge of classification. For the construction of knowledge, a variety of situations
involving different skills is necessary. Finally, it is important tomention that the work
of the teacher plays a fundamental role in understanding the classification of students.
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8.10 Conclusions

In this chapter, our aim was to analyse what students between 5 and 9 years old and
teachers of those school years know and can learn about activities involving classi-
fication. For this, we present three research studies our research group published.

These studies demonstrate the difficulty people with different educational back-
grounds have in creating criteria to carry out a classification.We believe this difficulty
can be explained, at least partially, by the lack of familiarity with this type of ability,
both in everyday life and at school, since students are generally asked to classify
from pre-defined criteria, instead of creating the criteria themselves. However, from
a very young age, people interact with a world that is organized hierarchically in
classes and subclasses.

From kindergarten, some children are already able to classify into different situa-
tions (Barreto and Guimarães, 2016; Guimarães et al., 2011) and, most importantly,
they are able to learn with ease (Cabral, 2016). However, some teachers we investi-
gated presented difficulties in solving these same tasks. This result needs to be studied
carefully because it is rather surprising that young children show better results than
adults do. Perhaps, children are more likely to create criteria because they feel freer
to create categories that are not standardized. Adults, in some situations, use com-
mon categories in schools and textbooks. Guimarães and Gitirana (unpublished)
observed that some graduate students in mathematics education also presented dif-
ficulties in creating classification criteria. Thus, studies on how to promote adult
learning (teachers or others) need to be carried out so that this issue can be better
analysed. Probably, if children and adults have opportunities that lead them to think
about the classification, they learn easily, thereby showing the important role of the
school.

Thus, the results provide evidence of the possibility of stimulating the learning of
students when encouraged to reflect on classification. In addition, we believe that the
different types of activities presented here will allow teachers to diversify classroom
work by seeking to develop their students’ ability to classify.

If current teachers have difficulty classifying, how will they be able to teach their
students? The process of training teachers needs to lead them to systematic reflection
that allows them to learn to create criteria to classify a given group of objects, respect-
ing both exhaustiveness and exclusiveness. It needs to go beyond activities in which
classes are already defined and where the student is only expected to distribute the
elements. Developing students’ independence in creating classifications will allow
them to classify and analyse whatever data they wish, be it in school or in their daily
lives, in a relevant manner.

It is fundamental to citizenship that everybody knows how to analyse the criteria
chosen for a classification and how to create criteria to classify a set of data they
wish to analyse. Knowing to create classification criteria will allow the children
to participate in the universe of research, making it possible for them to become
autonomous decision makers.
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Teaching Statistics and Probability:

Curriculum Issues



Chapter 9
Unpacking Implicit Disagreements
Among Early Childhood Standards
for Statistics and Probability

Randall E. Groth

Abstract Numerous recent curriculum documents around the world recommend
that children begin to develop understanding of probability and statistics during
early childhood and primary school. Although there is widespread agreement that
such learning should occur, standards documents are not uniform in their specific
recommendations. In particular, there are implicit disagreements about the roles
of student-posed statistical questions, probability language, and variability in chil-
dren’s learning. Unpacking these implicit disagreements is in the interest of teachers,
researchers, and curriculum developers because it can stimulate thought and debate
about the proper emphasis for the concepts in standards documents. This chapter
will help define the space for such thought and debate by summarizing how some
key concepts are addressed differently in various early learning standards for prob-
ability and statistics. Defensible interpretations of the research literature are consid-
ered. Strategies teachers and curriculum developers can use to cope with situations
in which standards documents conflict with desirable learning goals for children
are also described. Boundary objects, which allow related communities of practice
to operate jointly in absence of consensus, are discussed as a means for advancing
teaching and research despite the existence of disagreement. Suggestions forworking
toward a greater degree of consensus across early childhood standards for statistics
and probability are also offered.

9.1 Introduction

Statistics is relatively new to early childhood and primary curricula. The first recom-
mendations to include statistics in school mathematics appeared in the first half of
the twentieth century and focused on secondary school; it was not until the second
half of the twentieth century that statistics appeared in curriculum recommendations
for early childhood and primary level students as well (Jones & Tarr, 2010). The
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standards documents of the National Council of Teachers of Mathematics (NCTM,
1989, 2000) were groundbreaking in recommending specific statistical concepts for
study during the early years of school. At the outset of the twenty-first century, it is
now unusual for school mathematics standards documents not to include statistics
in the course of study for the youngest students.

With the proliferation of standards documents that include statistics, implicit dis-
agreements have arisen in the concepts recommended for study and their sequencing.
These disagreements can be seen as one compares standards from various nations
(Jones, Langrall, & Mooney, 2007) or even those within a single nation such as
the USA (Dingman, Teuscher, Newton, & Kasmer, 2013). Such disagreements can
be counterproductive because they may make research and development efforts in
statistics curriculum and instruction more difficult. Research and curricula from one
setting may have limited use in another if the learning standards governing each set-
ting differ. Hence, disagreements among standards documents have some negative
aspects.

Although disagreements are often seen in a negative light, they do not have to
be. Discourse devoted to respectfully expressing and unpacking disagreements can
lead to deeper examination of different positions even if consensus is not obtained
(Matusov, 1996). Since standards documents are usually written by separate groups
that do not always have direct contact with one another, discourse about curricular
disagreements can be limited. In this chapter, I aim to create a space in which dis-
agreements about curriculum standards for early childhood and primary statistics
are made explicit and then respectfully analyzed. I also consider steps that can be
taken to support early statistics education in the absence of consensus on curriculum
standards.

9.2 Scope of the Chapter

This chapter is not an exhaustive treatment of all points of disagreement among all
curriculum documents. Instead, it deals with three salient issues at the foundation
of early statistics education: the posing of statistical questions, the development of
probability language, and the study of variation. In order to illustrate the nature
of disagreement in regard to each issue, I compare recommendations from several
standards documents (Table 9.1), including: Principles and Standards for School
Mathematics (PSSM, NCTM, 2000), Guidelines for Assessment and Instruction
in Statistics Education (GAISE, Franklin et al., 2007), Common Core State Stan-
dards for School Mathematics (CCSSM, Common Core State Standards Initiative
(CCSSI), 2010b), Turnonccmath.net bridging standards (Confrey et al., 2012), the
New Zealand Curriculum (Ministry of Education, 2014), the Australian Curricu-
lum (Australian Curriculum, Assessment, & Reporting Authority (ACARA), 2015),
and the National Curriculum in England (Department for Education (DfE), 2013).
Although this sample is not inclusive of all curriculum standards around the world,
these documents collectively bring to light the important differences in approaches to
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early childhood and primary statistics. Several of these differences are summarized
in Table 9.2 and subsequently explored in this chapter.

9.3 Statistical Questions

All of the curriculum standards documents shown in Tables 9.1 and 9.2 recommend
the posing of statistical questions during the early years of school. However, they
differ in regard to the types of questions students are to pose. Some documents
prescribe specific types of questions to be posed, whereas others are more open.
The documents also differ in their portrayal of the nature and purpose of statistical
questioning.

Some standards documents espouse a relatively narrow perspective on posing
statistical questions in the early grades. TheCCSSM include just one explicitmention
of student-posed statistical questions in the measurement and data strand for Grades

Table 9.1 Standards documents considered in this chapter and their sections for early statistics

Document sections for early
statistics education

Explanation of section content

PSSM (NCTM, 2000) Grades Pre-K-2 data analysis
and probability standard

Recommendations for
children younger than 5
(Pre-K) through
approximately age 8 (Grade 2)

GAISE (Franklin et al., 2007) Level A Beginning level in GAISE
Pre-K-12 report; precise grade
levels/ages not specified

CCSSM (CCSSI, 2010b) Grades K-5 measurement and
data strand

Recommendations for children
approximately 5 years old (K)
through approximately age 11
(Grade 5)

Turnonccmath.net bridging
standards (Confrey et al.,
2012)

Grades K-5 elementary data
and modeling

Written to enhance the
teaching of the CCSSM
Grades K-5 Measurement and
Data strand

New Zealand Curriculum
(Ministry of Education, 2014)

Years 1–3 statistics strand of
mathematics and statistics
learning area

Learning objectives to be
accomplished after 1, 2, and
3 years in school

Australian Curriculum
(ACARA, 2015)

Foundation Year—year 2
statistics and probability
strand of mathematics learning
area

Proficiencies to be attained by
children approximately
5–8 years of age

National Curriculum in
England (DfE, 2013)

Key Stage 1—years 1–2
statistics portion (starting year
2) of mathematics program of
study

Prescribed program of study
for children approximately
5–7 years of age
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Table 9.2 Summary of recommendations across standards documents

Statistical questions Probability language Variability

PSSM (NCTM, 2000) Teachers encourage
children to ask
questions about their
experiences and
develop ways to gather
data (data analysis and
probability standard)

Earliest emphasis on
distinguishing among
likely, unlikely, more
likely, and less likely
(Pre-K-2 data analysis
and probability
standard)

No explicit
recommendations for
the types of variability
to be encountered
during first years of
school

GAISE (Franklin et al.,
2007)

Children pose questions
about contexts of
interest with teachers’
help (Level A)

Development of a
continuum from
impossible to certain,
with less likely, equally
likely, and more likely
lying in between (Level
A)

Children’s early
experiences should
encompass
measurement, natural,
and induced variability
(Level A)

CCSSM (CCSSI,
2010b)

Children ask questions
about the total number
of points in a data set,
how many in each
category, and how
numbers in categories
compare (Grade 1
measurement and data
standard)

No explicit
recommendations for
development of
probability language

Variability is not
explicitly mentioned
until Grade 6, where the
focus is on quantifying
it with formal statistical
measures

Turnonccmath.net
bridging standards
(Confrey et al., 2012)

Children pose questions
of interest to launch
statistical investigations
(Grade 1)

No explicit
recommendations until
Grade 7

In Grades 2 and 3,
children should work
with natural,
experimental, and
measurement-related
variation

New Zealand
Curriculum (Ministry
of Education, 2014)

Children engage in
statistical enquiry cycle,
which includes
statistical questions,
with support in years
1–3

Children describe
likelihoods with
everyday language in
Year 2, language such
as most likely and least
likely used in Year 3

No explicit
recommendations for
the types of variability
to be encountered
during first years of
school

Australian Curriculum
(ACARA, 2015)

Children pose simple
questions of interest;
emphasis on categorical
variables through year 3

In Year 1, children use
will happen, won’t
happen, and might
happen; In Year 2,
likely, unlikely, certain,
and impossible are used

No explicit
recommendations for
the types of variability
to be encountered
during first years of
school

National Curriculum in
England (DfE,
Department for
Education 2013)

Children ask questions
that require counting
and comparing the
numbers of objects in
different categories
(Key Stage 1, Years
1–2)

No explicit
recommendations at
Key Stages 1 and 2

No explicit
recommendations for
types of variability to
be encountered during
first years of school
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K-5. It appears in Grade 1, where students are to, “Organize, represent, and interpret
data with up to three categories; ask and answer questions about the total number
of data points, how many in each category, and how many more or less are in one
category than in another” (CCSSI, 2010b, p. 16). TheNationalCurriculum inEngland
takes a similar approach, stating that children should “ask and answer questions about
totaling and comparing categorical data” (DfE, 2013, p. 16) during Key Stage 1.

Other standards documents put less limitations on the types of statistical questions
young children are to pose. The Australian Curriculum, for example, is more restric-
tive only during the Foundation Year, stating that children should “answer yes/no
questions to collect information and make simple inferences” (ACARA, 2015, p. 9).
It prescribes work with categorical variables during Years 2 and 3, but it does not
specify the types of questions children are to ask about the data after the Foundation
Year. PSSM, GAISE, and the Turnonccmath.net bridging standards are even more
open in their recommendations. These three documents emphasize the importance
of having children choose questions of interest. Although children’s questions may
often involve categorical variables, there is no recommendation to limit their ques-
tions to those types of variables. GAISE does, however, emphasize the importance
of teacher guidance in helping students select appropriate questions for investigation
during level A.

In some cases, standards documents portray the posing of statistical questions as
part of an iterative investigative cycle that includes activities such as gathering data,
constructing representations, drawing inferences, and perhaps revising the original
question. All of the recommendations in the GAISE document are situated within
this type of cycle. The Turnonccmath.net bridging standards and New Zealand Cur-
riculum situate questioning within a statistical inquiry cycle as well. These types of
documents characterize question-posing as part of an overall process for conducting
statistical investigations. Participating in this process brings the work students do
in the classroom closer to what statisticians do during the course of professional
practice.

Reviewing the range of recommendations for statistical question-posing, some
readers might be inclined to criticize overly restrictive curriculum standards that do
not prioritize students’ interests and do not situate question-posing within an inves-
tigative cycle. Before making such judgments, however, it is important to consider
what is known about children’s tendencies in posing questions and teachers’ abilities
to support them.When prompted to pose questions about a given situation, children’s
initial questions may be too ambiguous to yield useful data; in such cases, they often
need help to make the questions more precise (Russell, Schifter, & Bastable, 2002).
It takes considerable skill for teachers to help students transform such questions into
manageable ones. Research suggests that such skill may be elusive for teachers, as
they can exhibit many of the same statistical difficulties as younger students (Groth,
2007) and may have trouble formulating interesting statistical questions of their own
(Heaton & Mickelson, 2002). Given these circumstances, one might argue that it is
appropriate to constrain the types of classroom questions to those which teachers
and students are likely to be able to manage.
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On the other hand, if one believes that standards documents should set forth aspira-
tional goals rather than those that may be more immediately achievable, then setting
ambitious goals for the range of questions to be asked and situating question-posing
within a close approximation of statistical practice are advisable. In general, it is
best to avoid the tendency to impose ceilings on young children’s thinking, as they
frequently show the ability to exceed adults’ expectations (Moss, Bruce, & Bobis,
2016). Additionally, prompting students to pose enticing questions about a context of
interest can encourage them to persevere through all phases of a statistical investiga-
tion (Konold&Higgins, 2003). As children pose questions, teachers need to be ready
to help them form questions that can be addressed with data and avoid those that are
too broad, inadequate, or produce too much data (English, 2014). Preparing teachers
to support statistical question-posing in such a manner is a non-trivial task (Franklin
et al., 2015), so standards for children’s learning should not be developed without
considering teacher preparation. Teachers must learn to focus children’s attention
on both the process of inquiry and the statistical content to be addressed to scaffold
children’s abilities to pose statistical questions (Fielding-Wells, this volume). Ide-
ally, teacher preparation and standards documents for students would be developed
and supported in tandem so that the written curriculum set forth in ambitious stan-
dards documents has a greater chance of becoming the enacted curriculum (Stein,
Remillard, & Smith, 2007) in classrooms.

9.4 Probability Language

Standards documents can be separated into two broad groups in their recommenda-
tions for young children’s development of probability language. One group makes
no explicit recommendations for probability language development, and the other
group does. In the latter group, there is not uniform agreement about how probability
language should initially be developed. The lack of agreement across documents
raises a number of issues to consider.

The CCSSM, the National Curriculum in England, and the Turonccmath.net
bridging standards exemplify documents that contain no explicit recommendations
for young children’s development of probability vocabulary. The Turnonccmath.net
bridging standards do address the development of probability vocabulary starting
in Grade 7, but do not speak to the issue in the earlier grades. In the Turnoncc-
math.net bridging standard for Grade 7, students are to learn language to express
certain events, impossible ones, and those whose probabilities lie in between. In
the same grade level, they are to learn to quantify probabilities. The bridging stan-
dard is intended to help students prepare to succeed in their work with the CCSSM
probability content standards, which also first appear in Grade 7.

PSSM and the New Zealand Curriculum take the approach of focusing on initially
developing young children’s use of everyday language to describe probabilities. In
the Pre-K-2 portion of PSSM, this includes developing children’s use of likely as a
standalone word to describe the chance of an event and adding qualifiers to form
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everyday phrases such as more likely and less likely. Children are also to encounter
impossible events and describe them as such. In PSSM, the use of everyday terms
is to precede quantification of probabilities. PSSM recommend that calculations of
exact probabilities occur in the later grades.

GAISE and the Australian curriculum also seek to leverage children’s experi-
ences with everyday language to describe probabilities, but take a slightly different
approach. The earliest levels in both of these documents explicitly refer to everyday
language that can be used to describe both ends of the probability scale (0 and 1) as
well as terms in between. According to GAISE, at Level A, “Events should be seen
as lying on a continuum from impossible to certain, with less likely, equally likely,
and more likely lying in between” (Franklin et al., 2007, p. 33). Level A students are
also to informally assign numerical probabilities to events corresponding to these
terms. The Australian curriculum is also designed to help young children begin to
think about both ends of the probability scale, but includes a scaffold not present in
GAISE. During Year 1, Australian children are to use will happen, won’t happen,
andmight happen to describe events. During Year 2, these terms certain, impossible,
likely, and unlikely come to the forefront, presumably under the assumption that will
happen is more understandable than certain, and won’t happen more so than impos-
sible. Terms associated with these key points on the probability scale continuum are
included in other curriculum documents as well, but not necessarily at the earliest
levels.

Examining the disparate recommendations for probability language development
in light of existing literature is informative. One of the robust findings of research is
that vocabulary learning tends to take place over multiple word encounters (Leung,
2005) and even several high-quality encounters with words do not ensure learning
(McKeown, Beck, Omanson, & Pople, 1985). Everyday encounters with probability
vocabulary are not necessarily of high quality. The word certain, for example, has
a colloquial use of describing something that is very likely to occur (Certain, n.d.,
n.p.). This use in the everyday register differs from the more precise meaning in
the mathematical register. One might conjecture that the more encounters one has
with the word in the everyday register, the more difficult it becomes to incorporate
the meaning from the mathematical register into existing cognitive structures. If
this is, in fact, the case, then postponing explicit attention to probability vocabulary
until the later grades is not advisable. Young students need multiple opportunities to
distinguish colloquial meanings of probability words from mathematical ones.

The literature contains multiple examples of how students at times struggle to
use probability vocabulary in a manner resonant with conventional mathematical
discourse. In one study, Fischbein, Nello, and Marino (1991) found that some stu-
dents used the word possible to describe events that were certain to occur, and that
many used rare to describe impossible events. Nacarato and Grando (2014) reported
students’ use of less probable to describe events that cannot occur, and their use of
improbable to describe events that occur frequently. In some studies, students have
used the phrase 50–50 chance to describe events they believe to be possible (Watson,
2005) or to describe outcomes that do not have the sameprobability of occurring (Tarr,
2002). Givenwell-documented examples of this nature, teachersmayfind themselves
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trying to counteract meanings students bring to school for probability terms rather
than leveraging them as an intermediary step toward quantifying probabilities. Early
attention to the mathematical meanings of vocabulary heard in everyday language
could help counteract this problem,making it difficult to defend standards documents
that include no explicit early attention to probability vocabulary development.

Even among standards documents that do include attention to early probabil-
ity language development, there are issues to resolve. The most pressing of these
appears to be deciding on the most appropriate way to scaffold children’s learning
of the probability scale continuum. Different sections of the continuum may require
different amounts and types of scaffolding. For example, Fischbein et al. (Fischbein
et al. 1991) found that students were more successful using impossible than certain
in a mathematical manner. Such a finding seems to support the PSSM approach of
drawing students’ attention to impossible events in Grades Pre-K-2 and delaying
formal work with certain until Grades 3–5. The Australian Curriculum presents an
interesting alternative, however, having students first work with will happen and
won’t happen rather than impossible and certain immediately. Under the Australian
progression, children may come to see certain as a synonym for will happen and
impossible as a synonym for won’t happen with teachers’ guidance. The extent to
which the progression achieves this goal, and in the process counteracts students’
difficulties dealing with certain, is an empirical question awaiting investigation.

In general, the discrepancies in recommendations for supporting children’s learn-
ing of probability vocabulary suggest an array of questions in need of systematic
research attention, such as:

• To what extent does explicit attention to probability vocabulary in the early grades
contribute to probability learning in later years?

• How does children’s learning of words and phrases representing the parts of the
probability continuum generally progress?

• How might informal outside-of-school encounters with probability vocabulary
interfere with or support formal learning?

• Which approaches to introducing probability vocabulary, reflected in different
curriculum documents, are the most effective?

As investigations of such questions take place, perhaps a greater degree of uni-
formity will be achieved across documents.

9.5 Variability

Standards documents can be grouped in two categories in regard to their treatment
of statistical variability: those that explicitly identify variability as an object of study
for young children and those where experiences with variability may be incidental
to work with other standards. Attending to the manner in which variability is treated
is a core consideration in teaching statistics. A primary reason statistics exists as
a discipline is to study the variability we see in everyday life. Snee (1999) stated,
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“If there was no variation, there would be no need for statistics and statisticians”
(p. 257). Likewise, Cobb andMoore (1997) argued that the need for statistics “arises
from the omnipresence of variability” (p. 801). Variability is pervasive in data and
distinguishes the study of statistics from the study of mathematics.

GAISE and the Turnonccmath.net bridging standards identify variability as a core
object of study for young children and specify the types of variability they should
encounter. GAISE recommends structuring curricula so that children encounter three
types of variability at LevelA: natural,measurement, and induced.Natural variability
is encountered as children measure the same quantity across individuals, such as
height, weight, or arm length, and observe that these measurements vary from one
individual to the next. Measurement variability occurs when repeated measurements
of the same thing vary due to characteristics of the measuring device or because of
the system being measured. Induced variability occurs when intentional changes are
made to a system to observe their effects. For example, planting one crop in a sunny
area and another in a shady area may produce variability in yield from each one.
The Turnonccmath.net bridging standards closely mirror GAISE in their treatment
of variability, recommending the same three types of experiences starting in Grade
2. In both GAISE and the Turnonccmath.net bridging standards, priority is placed on
having children work with the recommended types of variability but not necessarily
learning the names for each type immediately.

GAISE and the Turnonccmath.net bridging standards are unusual in identifying
specific types of variability students should encounter. Theother standards documents
shown in Table 9.1 do not explicitly identify types of variability to be studied by
young children. For example, the word “variability” is not mentioned at all in the
GradesK-5CCSSM. Instead, theK-5CCSSMdata andmeasurement standards focus
on constructing line plots, picture graphs, and bar graphs. After constructing these
displays, students are to perform tasks such as finding the difference between the
highest and lowest observation and determining howmanymore or less one category
may contain than another. Although such activities may allow students to encounter
different types of variability incidentally, the systematic treatment of different types
of statistical variability is not prioritized.

Because variability is a core concept in statistics, it is worth considering how
children whose curricula are not guided by documents such as GAISE might still
have rich experiences with different types of variability. Although explicit mention
of statistical variability might ultimately occur across more curriculum documents in
the future, it is likely a long-term aspirational goal rather than somethingmore readily
attainable. Since standards documents are often criticized for containing too much
content (Schmidt, McKnight, & Raizen, 1997), there is a natural tendency to resist
adding to prescribed curricula. The content that ultimately does make its way into a
standards document will also reflect the values and beliefs of the document writers. In
some cases, standards documentwriters are driven by the desire to emphasize number
and operation to a greater extent during the early years. This is sometimes done at the
expense of de-emphasizing statistics. The first page of theCCSSM, for example, cites
Ginsburg and Leinwand’s (2009) argument that mathematics curriculum standards in
higher achieving countries include less emphasis on data analysis in the early grades
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in favor of more attention to number, measurement, and geometry. This citation helps
explainwhy statistics is de-emphasized in the early portions of the document, shifting
much of the load to a compressed timeframe in the middle grades.

9.6 Boundary Objects

Given the lack of agreement about the content important for young children to study,
creative ways to ensure rich variability experiences are needed. One theoretical con-
struct that can be of assistance in this endeavor is the notion of boundary object (Star
& Greismer, 1989). Boundary objects help different communities of practice operate
collectively in the absence of consensus. In some cases, instructional plans can serve
as boundary objects. For example, when teaching elementary students whose cur-
riculum was driven by CCSSM, I created lessons that included the different types of
variability identified in GAISE as they addressed the statistical graphing standards
included inCCSSM (Groth, 2015). Careful attention to the contexts inwhich students
produced graphs required in CCSSM helped ensure they would experience the dif-
ferent types of variability described in GAISE without adding requirements or extra
time to the curriculum. Proponents of both CCSSM-like curricula and GAISE-like
curricula can be satisfied with such a lesson sequence, even though their standards
for early statistics differ substantially. As proponents of these different types of cur-
ricula discuss boundary objects like this lesson sequence, the prospects for greater
consensus about early experiences in statistical variability may improve.

Boundary objects can also play roles in addressing the earlier-identified standards-
related dilemmas for probability language and statistical questions. One possible
approach to resolving these dilemmas is to look to content areas other than mathe-
matics. For example, the teaching of probability vocabulary has natural connections
to the language arts. Although it is not reasonable to expect language arts instruction
to be guided by statistics standards, statistics educators can position themselves to
collaborate on the design of lessons that meet elementary language arts standards
such as, “Use precise language and domain-specific vocabulary to inform about or
explain the topic” (CCSSI, 2010a, p. 20). Lessons that use words such as certain and
likely as examples of domain-specific vocabulary could promote probability profi-
ciency without adding extra language arts standards to the curriculum. In science,
it is natural to pose questions that generate investigative cycles. Statistics educa-
tors can collaborate with science teachers to design classroom investigations that
satisfy many existing science standards and simultaneously are motivated by rich
statistical questions. Such collaborations with language arts and science teachers
could ultimately provide avenues to expand the teaching of statistics and probability
significantly beyond mathematics classes.
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9.7 Conclusion

Disagreements about statistics standards for young children have a variety of sources.
To conclude, I consider several sources of disagreement discussed in this chapter:
beliefs about students’ abilities, beliefs about teachers’ abilities, robustness and influ-
ence of the research literature, and priorities for mathematics education in the early
grades. In considering these sources, I also propose directions the field might take
in order to provide high-quality statistics education for all young children even in a
climate of disparate curricular recommendations.

Knowledge of students’ and teachers’ abilities should, to an extent, drive curricu-
lum recommendations. For instance, recommendations to have students focus on
categorical data when first posing statistical questions are reasonable from the stand-
point that these may be among the most accessible types of questions for students in
the early grades. However, including language only about categorical variables in a
standard can have the effect of putting a ceiling on children’s activities, even if the
standard is meant only to be a minimum expectation. Because high-stakes assess-
ments are often attached to standards, and there are many standards to address over
the course of a school year, teachers tend to limit instruction to what is prescribed in
the required standards (Breault, 2014). The highest priority for professional develop-
ment then becomes learning to help students attain what is in the text of the standards,
essentially putting a ceiling on teachers’ growth as well.

To avoid putting ceilings on students’ and teachers’ growth, writers of standards
documents can take a number of steps. One step would be to carefully phrase stan-
dards in a manner that identifies essential content but also encourages deeper study
as opportunities arise. The PSSM document does so in its recommendations for chil-
dren’s posing of statistical questions, saying that such questions should arise from
students’ curiosity about the world around them. Of course, open recommendations
of this nature put a greater burden on the teacher, who must skillfully handle unusual
or unwieldy questions that students may pose. The presence of this greater burden
suggests the desirability of forming standards for students and standards for teacher
preparation in tandem, so that teachers might be better prepared to handle challenges
that may come about as a result of more ambitious standards for students. At present,
the two types of standards documents are usually written by separate groups and/or
at different points in time; greater success might be realized by writing the two
simultaneously.

Although more ambitious standards documents are desirable, simply having the
goal of writing ambitious standards is not enough. The research community has
considerable work to do to help guide the process. This is vividly illustrated by the
current situation with standards for learning probability language. The disagree-
ments in this area suggest a number of research questions in need of investigation,
including: (i) To what extent does early instruction focused on probability language
help improve students’ probabilistic thinking and discourse throughout their years
of school? (ii) How should children’s experiences with probability language be
sequenced? (iii) What kinds of scaffolding should teachers be prepared to furnish
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as children begin to distinguish between colloquial and technical meanings of
probability vocabulary words and phrases? Answers to questions of this nature
can help guide the formation of learning expectations for students and professional
development goals for teachers. Along with conducting such studies, researchers
need to be conscious of presenting their findings in venues and formats likely to be
accessed and understood by writers of standards documents.

Of course, research studies will not resolve all disagreements because research is
invariably interpreted in different ways by different individuals (Sierpinska & Kil-
patrick, 1998). Some differences in interpretation and use of research stem from
different priorities and beliefs about what is important in early childhood mathe-
matics education. Overcoming such philosophical differences may ultimately prove
to be the greatest challenge in providing quality early childhood experiences in
regard to statistical questions, probability language, and variability. Achieving uni-
form consensus is not likely. However, boundary objects (Star & Greismer, 1989)
allow groups with different beliefs to operate collectively even in absence of consen-
sus. As noted earlier, one promising direction for the creation of boundary objects
is designing lesson sequences and tasks that satisfy multiple standards documents
simultaneously without over-burdening the curriculum. Designing, implementing,
and analyzing such lessons can provide space for collective work among those hold-
ing different beliefs about the appropriate focus for the early study of statistics. Even
if this collective work does not move individuals toward complete consensus, it can
prompt deeper consideration of the beliefs and positions they hold (Matusov, 1996).
As beliefs and positions are re-examined, a foundation is formed forwell-constructed
recommendations for children’s and teachers’ statistical learning.
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Chapter 10
Statistical Graphs in Spanish Textbooks
and Diagnostic Tests for 6–8-Year-Old
Children

Carmen Batanero, Pedro Arteaga and María M. Gea

Abstract Statistical graphs are complex semiotic tools requiring different inter-
pretative processes of the graph components, in addition to the entire graph itself.
Taking this assumption and hierarchies proposed in previous research as a starting
point, in this chapter we analyse the content related to statistical graphs of the Spanish
curricula, textbooks and external compulsory tests taken by 6–9-year-old children.
We examine the types of graphs presented to the children, the activity demanded,
the reading levels required from them, as well as the graph semiotic complexity
and the task context. The examples and analysis will help understand the expected
progression of children’s learning of statistical graphs.

10.1 Introduction

Statistical graphs play an important role in summarising and communicating infor-
mation and are widely used in the media and different curricular topics. Being able
to read, interpret and detect biases in these graphs, as well as accurately constructing
elementary graphs is considered a part of contemporary statistical literacy (Watson,
2006), which is the union of two related competences: (a) interpreting and critically
evaluating statistically based information from a wide range of sources, and (b) for-
mulating and communicating a reasoned opinion about such information (Gal, 2002).

In order to develop these skills in children, curricular guidelines include this
content from the lower levels of primary school in many countries (e.g. National
Governors Association Center for Best Practices & Council of Chief State School
Officers, 2010; MECD, 2014; NCTM, 2000). One important step in the transfor-
mation from the intended curriculum—as stated in curricular guidelines—to the
curriculum implemented in the classrooms is the written curriculum reflected in the
textbooks, which often guides teachers in their final decisions about the activities
carried out in the classroom. Another important factor influencing teaching is exter-
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nal assessment, which is compulsory for Spanish children at specific school levels.
Consequently, in this chapter we analyse the content related to statistical graphs of
the Spanish curricula, textbooks and external compulsory tests in order to inform us
about the expected progression in the learning of graphs by 6–8-year-old children.

10.2 Theoretical Framework

Bertin (1967) described a graph as a complex semiotic object: The graph itself and
every component of the same are made up of signs that require a semiotic activity
by those who interpret them. When reading the graphs, several translation activities
between the graph as a whole, and each part of the graph should be performed. Each
piece of information (numerical, pictorial, verbal or statistical information) obtained
from a graph requires us to establish a correspondence between elements, subsets or
sets of this graph. A reader has to perform three successive operations to extract the
information in the graph:

• External identification, to find the conceptual and real-world referents that support
the information contained in the graph (which components are being represented).

• Internal identification of relevant dimensions of variation in the graph pictorial
content and the correspondence between the visual and conceptual dimensions
and scales (which components are mapped to which visual variable).

• Perception of the correspondence, bywhich the reader uses the levels of each visual
dimension to draw conclusions about the levels of each conceptual dimension.

Cleveland and McGill (1984) argue that the information in a graph is encoded (e.g.
using position or size) and the person that reads the graph should decode that informa-
tion, through a process of graphical perception, consisting of “visually decoding the
information encoded in a graph” (p. 531). The authors identified the following basic
graphic perception tasks that are carried out during the visual information decoding
process: (a) determining the position of a point or element along a common scale; (b)
determining the position when using two scales, for example, in the scatter plot; (c)
determining length, direction and angle; (d) estimating an area; and (e) estimating a
volume or curvature. In addition to the above competences, Bertin (1967) described
the following levels of understanding in the critical reading of graphs:

• Extracting data or direct reading of the data represented on the graph. For example,
in a bar graph, reading the frequency associated with a value of the variable.

• Extracting trends: being able to perceive a relationship between two subsets of
data that can be defined a priori or visually in the graph. For example, visually
determining the mode of a distribution in a bar graph.

• Analysing the data structure: comparing trends or clusters andmaking predictions.
For example, in a grouped bar graph, analysing the differences in mean and range
of two distributions.
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A related classification was presented by Curcio (1989), who termed the three levels
defined by Bertin as: reading the data (literal reading of the graph without inter-
preting the information contained in it), reading between the data (interpreting and
integrating the data in the graph) and reading beyond the data (making predictions
and inferences from the data to information that is not directly reflected in the graph).
Shaughnessy, Garfield and Greer (1996) expanded the above classification by defin-
ing a new level of reading behind the data, which consists of judging the method
of data collection, and assessing data validity and reliability, as well as the possible
generalization of findings (see also Shaughnessy, 2007).

10.2.1 Graph Semiotic Complexity

When producing a graph, we need to perform a series of actions (such as deciding
the particular type of graph or, fixing the scale), and therefore, we implicitly use
some concepts (such as variable, value, frequency, range) and properties (e.g. pro-
portionality between frequencies and length of bars in the bar graph) that vary in
different graphs. We therefore should not consider the different graphs as equiva-
lent representations of one same mathematical concept (the data distribution) but as
different configurations of interrelated mathematical objects that interact with that
distribution. Bertin (1981, pg. 15) suggested that, “the efficacy of a graphic construc-
tion is revealed by the level of question that receives an immediate response” and,
therefore, considers a graph to be more effective when more complex questions can
be answered from the same. Inspired by these ideas, Batanero, Arteaga, and Ruiz
(2010) defined different levels in graphs semiotic complexity, as follows:

L1. Representing only individual results. When, in spite of having a complete data
set, only a few cases are represented while other data are excluded from the graph.
For example, the teacher provides a data set with information of all the children in
the classroom and a child only displays his/her own data. In these graphs, we do not
use the ideas of statistical variable or distribution.
L2. Representing all the individual values for one or several variables, without form-
ing the distribution. When data on a graph are represented individually, without an
attempt to order the data or to combine identical values. Consequently, on reading
the graph these students neither need to interpret the frequency of the different values
nor explicitly use the idea of distribution.
L3. Only one distribution in a graph. The graph represents a frequency distribution
for only one variable; then, the ideas of frequency and distribution are used.
L4. Producing a joint graph for both distributions. This level corresponds to graphs
representing the distributions for two or more variables. These graphs are the most
complex, since they represent two different variables in the same frame.
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10.3 Curricular Guidelines Related to Statistical Graphs
and External Compulsory Assessment

In Spain, the study of statistics starts in the second cycle of kindergarten (4–5 year
olds) in relation to the area “Knowledge of your environment”, where mathematical
abilities are included (MEC, 2007). For example in Andalusia, curricular guidelines
at this level recommend selecting problem situations that interest children, in an
effort to motivate the collection and organisation of data and reflect on the results of
their analysis in order to come to a solution (Consejería de Educación de la Junta de
Andalucía, p. 33, 2008).

Statistical graphs are included from the first grade of primary education in Spain
(MECD, 2014), which propose compulsory content, assessment criteria and learning
standards, for the entire period (grades 1–6, 6–11-year-old children), with no spec-
ification of the particular grade in which they should be applied. According to the
learning standards related to statistical graphs in these documents, children should
be able to:

– Identify and collect qualitative and quantitative data in everyday situations.
– Build and interpret simple graphs: bar graphs, line graphs and pie chart with
familiar data.

– Carry out a critical analysis of the information presented in statistical graphs
(p. 19393).

One main goal is that children value the benefits provided by statistical knowledge
in decision-making and discover the usefulness of mathematics to solve everyday
problems. This decree is interpreted by the different Spanish regional governments.
For example, in Andalusia (Consejería de Educación, Cultura y Deporte de la Junta
de Andalucía, 2015), the following content related to graphs is suggested for 6–9-
year-old children:

– First cycle (6–7 year olds): Building and interpreting simple graphs: bar graphs;
Using elementary techniques to collect and order data from everyday contexts.
Oral description of the procedures used to collect data, interpret graphs and solve
the problems. Attention and care in recording information and in graphical repre-
sentation (p. 300).

– Second cycle (8–9 year olds): Statistical graphs: bar graph, line graph. Collecting
and classifying quantitative information using surveys, observation and measure-
ment. Use and interpretation of bar graphs and line graphs. Verbal description
of elements in simple graphs in family contexts Attention and care in recording
information and graphical representation (p. 303).
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10.3.1 External Compulsory Assessment

An important approach to quality control within the educational system is provided
by the external compulsory diagnostic tests in mathematics, science and language
that are given to every child at specific educational levels.

Firstly, an initial test is administered (since 2010) to children in the second
semester of grade 2 with the aim of evaluating their learning and correct any possible
major problems. The test (scale) is a global questionnaire that is completed individ-
ually by each child in a standard form where the children write their responses. This
test is not specific for mathematics, but assesses simultaneously written language,
reading comprehension and knowledge of the social and natural environment. A few
familiar contextual situations (e.g. shopping, going to the zoo, sports) are proposed
to the children who read a short story and give some answers regarding the situation.
After examining the scale tests proposed in Andalusia in the period 2011–2016, we
observed that the whole questionnaire comprises of 15 questions, each of them with
4 items; only six of the questions are aimed at assessing the child’s mathematics
competence and only one of these six is related to statistical graphs.

The task consists of completing a bar graph in which a first bar is drawn (see
Fig. 10.1, an adaptation of the task presented in 2012). The data set includes the
frequencies for 4–5 different categories of a familiar variable and the vertical scale
needed to represent the frequencies is given in the graph using either lines (like in the
example) or small squares; generally, all the values in the data set correspond to one
of the labels in the vertical scale. The categories for the variable are also represented
on the horizontal scale. Therefore, the first competence requested from the child is
understanding the problem and establishing a correspondence between each category
in the table and the corresponding category on the horizontal scale (establishing an
external correspondence, according to Bertin, 1967); then, the child should establish
a second correspondence between the frequency corresponding to each category and
the corresponding position on the vertical scale (internal correspondence, according
to Bertin). Finally, the child should draw a bar of adequate length for each category
(correspondence between the contextual and visual dimensions, according to Bertin).

A second external test (diagnostic test) for each of the topics’ language, mathe-
matics and science is given to all the children since 2007 following completion of
grade 3. The exact points where the tests are given have slightly changed in the past
years: until 2013, the children took the tests in the first semester of grade 4 (9 years
old), while starting from 2014 they take the tests in the second semester of grade
3 (8 years old). The diagnostic tests for mathematics take into account the mathe-
matical content, the reasoning processes and the mathematical competence needed
to solve the different items proposed. Statistical graphs appear linked to the math-
ematical content dealing with information, chance and probability, as well in other
mathematical content, such as geometry or number sense, where data in some items
are provided in graphical format.

A detailed analysis of themathematics diagnostic tests proposed inAndalusia over
six years (2007–2012) provided the following results: Globally, 24 items (22.6% of



168 C. Batanero et al.

These are the data of books read in the library in May:
Adventure Fairy tales Plants Animals

20 25 15 10

Represent in this bar graph all the data. Use a different colour for each bar.

Fig. 10.1 Adapted example of a task similar to one proposed to grade 2 children in the scale test
(2012)

the items proposed in all the tests in the period) involved some statistical content;
more specifically, the number of items containing statistical information or questions
varied between 2 and 6 from a total of 18 items in each test, and, therefore, the weight
given to the topic is not homogeneous in the different years. The graphical content
of the 20 items (18.8%) that assess graphical competence will be analysed in the
following sections.

10.4 Graphs in the Spanish Textbooks and External
Assessment Tests

Usually, each school selects the textbooks from a given editor for all the different
grades. The statistical graphs’ curricular content has been interpreted in different
ways by the authors of the textbooks and the type of tasks proposed in relation to
these graphs is quite varied.

In a previous comparative study of the textbooks produced for all the primary
education grades (1st to 6th grades) in Chile and Andalusia in the period 2008–2011
(Díaz-Levicoy, Batanero, Arteaga, & Gea, 2016), we studied the distribution of the
following variables in the graphs activities included in these textbooks: type of graph,
reading levels, graph complexity and activity requested to the children. Below, we
analyse the same variables, as well as the task context of all the activities related to
statistical graphs in some recent textbooks published for grades 1–3 by four editors,
as well as in the diagnostic tests given to children at the end of this school period.
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The aim is to identify the expected progression in children’s learning, as well as the
correspondence between the curricular guidelines, textbooks and external assess-
ment. The list of textbooks analysed is presented in the Appendix; these editors were
selected because of their long tradition and good reputation in Spain.

10.4.1 Method

We performed a content analysis for each task and the expected solution to the same
in order to identify the categories for each variable. This technique helps divide a text
in analysis units that could be classified into a reduced number of categories, using
underlying variables that help in making inferences about its content (Krippendorff,
2013). Starting from the categories identified in Díaz-Levicoy et al., (2016) and using
an inductive and cyclical procedure, we coded and analysed the data to produce
frequency tables that helped us to draw conclusions about the distribution of these
categories in each variable and to compare results by grade and in the different editor
series. We also selected specific examples of tasks translated from the textbooks or
diagnostic test that are presented alongside the chapter in order to clarify the definition
of the categories, the activity description and questions. Reliability of coding was
ensured through independent coding of the data by two researchers; in the few cases
of disagreement, the situations were discussed and consensus reached.

10.4.2 Type of Graph

The books usually start with schematic simple bar graphs in grade 1 representing
small data sets related to a qualitative variable. In these graphs, the bars are not
continuous, but consist of a grid constituted by identical rectangles, where each
coloured rectangle represents a case. This facilitated children in interpreting the
scale (they only need to count the number of coloured rectangles for each category
to find the frequency for that category).

These schematic graphs are progressively turning into more abstract bar graphs
with frequencies represented by the bar length in grade 2 (Fig. 10.2), where the
variable is still qualitative, but the bars are continuous, the squares in the vertical axe
do not appear and the rectangles in the graph framework are substituted by parallel
lines.

In grade 2, we found some rudimentary pie charts, where a circle is divided into a
small number of equal area sectors each of them indicating a case. Pictograms where
the icon size (Fig. 10.3) or number of icons (Fig. 10.4) represent the frequencies
of different categories are also introduced in this grade. Notice that the icons in
Fig. 10.3 are not correctly displayed, since they do not only vary in length but also
in area, which can be misleading for the children. In Fig. 10.4, each icon represents
three units, which increases the difficulty for the children in reading the graph. In
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Look at the bar graph of favourite meal of a group of children.

1. How many children prefer potatoes--- fish-- meat –? 
2. Order the meals from most to less preferred. 

Fig. 10.2 Interpretation of a bar graph (adapted from a similar task in EDEBE, grade 2, p. 102)

In the school we were asked 
what activity we like the best 
(adding, painting, reading and 
solving problems).
1. How many children prefer 

to add?
2. How many children prefer 

to paint? 
3. How many prefer solving 

problems?
4. How many prefer to read? 
5. Which is the activity 

preferred by more 
children?

Fig. 10.3 Interpretation of a pictogram (adapted from EDEBE, grade 1 p. 172)

this grade, we also found some grouped bar graphs (Fig. 10.5) where children are
requested to compare two or more distributions. Finally, in grade 3 line graphs are
also introduced, although the majority of graphs are still bar graphs. See an example
in Fig. 10.6 representing a list of values of a quantitative variable.

In Table 10.1, we classify the activities found in the different grades (collapsing
the activities from different editors), and the 20 items containing statistical graphs
in the external assessment, by the type of graph. In Table 10.2, we classify the type
of graphs presented in the three grades presented by the different editors.

Usually, the activities are based on bar graphs, which appear in 60%of the items in
the external assessment and are the most common graph in the textbooks, while line
graphs appear in a quarter of the activities in grade 3. Pictograms (not recommended
in the curricular guidelines) are also found fromgrade 1 in the different grades and pie
charts (included in the curricular guidelines) sporadically appear. Occasionally, we
found a few maps, which children use in their social studies lessons, in the external
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Fig. 10.4 Comparing two pictograms (EDEBE, grade 2, p. 159)

Look at the following grouped bar graphs that show which hand, right (R) or left (L) a group of 
children use for different activities. Can you figure out a question that can be answered with these 
diagrams?

Fig. 10.5 Creative activity on a grouped bar graph (adapted from EDEBE, grade 2, p. 127)

tests, where colours or icons are used to represent a qualitative variable. Therefore,
the graphs suggested in the curricular guidelines bar graphs for grades 1 and 2 and
line graphs for grade 3 appear in the textbooks and external tests, as well as some
additional graphs that are not considered in the mathematical curriculum. Finally,
we analysed the distributions of types of graphs presented by the four editors and
most notably Anaya presented only bar graphs, while all the other series include a
variety of graphs.



172 C. Batanero et al.

Number of books sold in a shop along a week

• How many books were sold each day? Can you tell from the graph?
• On which days did the bookshop sell more than 80 books?
• On which days did the number of books sold increase in relation to the previous 

day? 

Fig. 10.6 Interpretation of a line graph (adapted from Santillana, grade 3, p. 200)

Table 10.1 Percentage of
activities according to the
type of graph in the different
grades and external tests

Graph Grade 1
(n = 22)

Grade 2
(n = 39)

Grade 3
(n = 41)

External tests
(n = 20)

Bar chart 86.4 74.4 53.7 60.0

Pictogram 9.1 25.6 19.5 15.0

Maps 10.0

Line
graph

26.8 5.0

Pie chart 4.5 10.0

Table 10.2 Percentage of
activities according type of
graph by editor

Graph Anaya
(n = 12)

Edebé
(n = 41)

Santillana
(n = 24)

SM
(n = 25)

Bar chart 100 65.9 66.7 60.0

Pictogram 24.4 12.5 28.0

Line graph 7.3 20.8 12.0

Pie chart 2.4

10.4.2.1 Reading Levels

In the three grades, the textbooks pose questions at different reading levels ofCurcio’s
(1989) classification. For example, the first question in the activity reproduced in
Fig. 10.2 requests the child to read from the graph the number of children with
different preferences for meal. The child only has to recognise on the horizontal axis
the label that corresponds to each meal (e.g. that corresponding to meat) and then
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Table 10.3 Percentage of activities according to reading levels in the different grades and external
tests

Reading level Grade 1
(n = 22)

Grade 2
(n = 39)

Grade 3
(n = 41)

External
tests
(n = 20)

Level 1. Reading the data 18.2 33.3 22.0 42.0

Level 2. Reading between the data 81.8 64.1 63.4 58.0

Level 3. Reading beyond the data 2.6 9.8

Level 4. Reading behind the data 4.9

read on the vertical scale the frequency of children with that particular preference.
Consequently, this question only requires Level 1 (reading the data) activity on the
part of the children and involves determining the position of an element along a
common scale (Cleveland & McGill, 1984).

The second question posed in Fig. 10.2 (ordering the meals according to fre-
quency) requires that the child first makes a direct reading of the frequency that
corresponds to each meal (reading the data) and then compares the frequencies cor-
responding to the different meals to find out which are the most and least frequent
categories; this requires that the child interprets and integrates the data in the graph,
an activity that corresponds to the second level (reading between the data) in the
Curcio (1989) classification.

In Fig. 10.5, we find an example of activity where children can reach the reading
levels 3 and 4. Since the activity suggests that the children invent some questions
about the graph, their question may just be reduced to one of the previous levels;
however, children may ask a question related to a comparison of the two graphs, and
in this case, they will work at level 3 (comparing trends). When the child questions
the generalization of findings or the data collection, he would be working at the
Shaughnessy et al. (1996) level of reading behind the data.

In Table 10.3, we classify the activities found in the different grades and the
external assessment items according to the reading levels requested from the student
and can observe that the most common reading level is level 2, where children do
not only make a literal reading of the graphs, but need to compute, order or compare
some of the graph data. Level 1 (literal reading) is the second most frequent level and
the other two levels only appear on isolated items. These reading levels are reflected
in the external assessment that only considers the two first levels with a frequency
that approximately reproduces that of textbooks. We compare this variable by editor
in Table 10.4 observing few differences between the editors (i.e. Level 2 is the most
frequent level among editors with level 1 being the second most frequent level of
questioning).
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Table 10.4 Percentage of activities according to reading levels by editor

Reading level Anaya
(n = 12)

Edebé
(n = 41)

Santillana
(n = 24)

SM
(n = 25)

Level 1. Reading the data 16.7 26.8 16.7 36.0

Level 2. Reading between the data 83.3 65.9 79.2 52.0

Level 3. Reading beyond the data 7.3 4.2 4.0

Level 4. Reading behind the data 8.0

10.4.2.2 Graph Semiotic Complexity

We classified the activities presented to children according to the graph complexity
in the classification by Batanero et al. (2010) and discovered examples of activities in
the three upper levels. An activity based on a level 2 graph is displayed in Fig. 10.6,
where a list of isolated values of a quantitative variable is represented, but there is
no need to group the data or work with the frequency distributions.

Most graphs introduced in the previous figures correspond to Level 3, where the
distribution for only one variable is displayed. For example, in Fig. 10.2 the graph
corresponds to the distribution of a qualitative variable; in these graphs, the children
have to distinguish between the variable (type of meal) and the frequency in each
category; therefore, implicitly the idea of distribution is used in the graph.

Level 4 graphs are also included in both the books and the external assessment
tests. For example, in Fig. 10.4 two different distributions (time to get up and time on
weekdays and on Sunday) are represented in the two pictograms. The interpretation
or building of these graphs is more complex as children should first interpret each
separate graph and then compare the two distributions.

In Table 10.5, we classify the activities found in the different grades and the
external assessment according to graph complexity. Surprisingly, the most common
complexity in the graph is level 3, representing a distribution and therefore, children
are expected to work (at least implicitly) with the idea of distribution. The frequency
of this level decreases in grade 2 and 3, since in these grades the introduction of
attached bar graphs lead to representing two or more distributions in the same graph
(level 4). Moreover, in grade 3 line graphs are introduced and then the frequency
of representation of lists of data, for which line graphs are a natural representation,
increases in this grade. Again, the three upper levels of graph complexity are taken
into account in the external test with a frequency that parallels that of textbooks.

When examining this variable across different editors (Table 10.6), we observe
that level 4 (representing two or more distribution) is not considered in SM. These
same editors, however, are the only ones to include a level 1 graph activity.
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Table 10.5 Percentage of activities according to graph complexity in the different grades and
external tests

Graph complexity Grade 1
(n = 22)

Grade 2
(n = 39)

Grade 3
(n = 41)

External tests
(n = 20)

Level 1. Representing isolated data 2.6

Level 2. Representing a list of data 27.3 15.4 36.6 50.0

Level 3. Representing a
distribution

72.7 53.8 36.6 33.3

Level 4. Representing two or more
distributions

28.2 26.8 16.7

Table 10.6 Percentage of activities according to graph complexity by editor

Graph complexity Anaya
(n = 12)

Edebé
(n = 41)

Santillana
(n = 24)

SM
(n = 25)

Level 1. Representing isolated data 4.0

Level 2. Representing a list of data 25.0 19.5 37.5 28.0

Level 3. Representing a
distribution

41.7 56.1 29.2 68.0

Level 4. Representing two or more
distributions

33.3 24.4 33.3

10.4.3 Context of the Task

The context of a task refers to the part of the students’ world in which the tasks
are placed or according to Roth (1996, p. 491) “a real-world phenomenon that can
be modelled by mathematical form”. Context makes mathematics significant to the
child, since it helps the student understand and value the applications of mathemat-
ics in everyday life. Moreover, students might connect the context to their experi-
ences and, as a result, they might add some informal strategies to their mathematical
knowledge in order to solve the problem. Taking into account this consideration, we
classified the activities in the textbooks and external assessment according to the
PISA contexts (OECD, 2015). We took into account the following types of contexts:

• Personal—Tasks classified in the personal context category focus on activities of
the child, his or her family or the group of children in the classroom. Contexts that
may be considered personal include those involving books or food preference, fur-
niture, school work or materials, school elections, games, physical measurement,
sports or transport.

• Occupational—Tasks classified in this category are focused on the world of work
and may involve such things as commerce, measuring and classifying materials,
building, architecture, communications or other job-related activities.

• Societal—The focus on this category is the child’s community (whether local,
national or global). They may involve voting systems, public transport, shows or
museums, sport competitions, government, demographics, advertising or surveys.
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Although children are also involved in these activities in their everyday life, the
societal context category focuses on the community perspective.

• Scientific—Activities in this category relate to the application of mathematics to
the natural world and issues and topics related to science and technology. Partic-
ular contexts might include weather, animals, biology, medicine, space science,
genetics, measurement and the world of mathematics itself.

In Table 10.7, we note that personal context tasks (which are more frequent in grades
1 and 2) are replaced by societal contexts tasks in grade 3 and external tests. These
societal context tasks become the most frequent context with the possible intention
of showing children the utility of statistics in the whole society. All the contexts
considered in our classification are included in the books, although some differences
are evident in Table 10.8 across different editors.

10.4.3.1 Activity Requested

Usually for any one graph,more than one question is posed; each requiring a different
activity from the child. We classified these activities according to the following
categories that were identified by Arteaga (2011) and Díaz-Levicoy et al. (2016):

• Building or completing a graph using the information given in a data list or in a
table. The child is given a list or a table with data and is requested to build a graph,
where usually the title and scales are already represented. Other times, the graph
is partially built. The children should identify the frequency that corresponds to
each category or the value for a given list of values and draw a given element of
the graph (e.g. a bar, one or more icons) to represent the data.

• Reading or interpreting the graph. In these activities, a graph is presented to the
child who is asked to read specific elements (e.g. the frequency corresponding

Table 10.7 Percentage of
tasks according to context in
the different grades and
external tests

Context Grade 1
(n = 22)

Grade 2
(n = 39)

Grade 3
(n = 41)

External tests
(n = 20)

Personal 54.5 71.8 29.3 37.5

Societal 4.5 20.5 39.0 54.2

Occupational 9.1 2.6 17.1

Scientific 31.8 5.1 14.6 8.3

Table 10.8 Percentage of
tasks according to context by
editor

Context Anaya
(n = 12)

Edebé
(n = 41)

Santillana
(n = 24)

SM
(n = 25)

Personal 58.3 41.5 58.3 56.0

Societal 25.0 29.3 20.8 20.0

Occupational 16.7 7.3 16.7 4.0

Scientific 22.0 4.2 20.0
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Table 10.9 Percentage of activities in the different grades and external tests

Grade 1
(n = 32)

Grade 2
(n = 67)

Grade 3
(n = 78)

External tests
(n = 48)

Complete 18.8 10.4 3.8 31.3

Build 18.8 10.4 17.9 2.1

Read and interpret 43.8 35.8 29.5 35.4

Order or compute 12.5 28.4 21.8 31.3

Translate the data to a graph
or table

6.0 7.7

The graph is only used as an
example

3.0 9.0

Invent questions or describe
the graph

4.5 9.0

Collect data 6.3 1.5 1.3

to a category, the title or the scale), compare several elements in the graphs (e.g.
finding the most frequent value) or discuss a sentence referring to the graph. Some
examples are presented in Figs. 10.2 and 10.5.

• Order the data or perform some computation. In this activity, a small data set is
given to the child who is requested to perform some computations (e.g. finding the
total or the difference between two variables, like in Fig. 10.6). In this category,
we also included activities where the student has to order the data according to
the numerical order (Fig. 10.2, second question). In these two activities, the main
goal is practising arithmetic competence; however, the student still has to be able
to read the graph correctly.

• Translating the data represented in a graph to a different graph or to a table, for
example, changing the data represented in a bar graph to a bar graph.

• Other activities include Using the graph as an example (e.g. to explain how a
particular graph is built), Inventingaquestion that canbe answeredwith a particular
graph, Describing the graph or Collecting some data, as part of the process of
building the graph.

While the external tests usually request to complete or read the graph or perform
computations with the graph data (Table 10.9), we discovered a variety of other
activities in the books; in particular, building the complete graph while in the tests a
part of the graph is given to the child who only has to complete it. There is not much
difference in the activities in the different grades or in the different editor versions
(Table 10.10) apart from the more creative activities, such as inventing a question
that neither appears in grade 1 nor in Anaya.
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Table 10.10 Percentage of activities by editor

Anaya
(n = 21)

Edebé
(n = 71)

Santillana
(n = 42)

SM
(n = 43)

Complete 14.3 1.4 16.7 11.6

Build 9.5 26.8 2.4 11.6

Read and interpret 38.1 29.6 45.2 30.2

Order or compute 33.3 18.3 21.4 25.6

Translate the data to a graph or
table

4.8 5.6 4.8 7.0

The graph is only used as an
example

7.0 4.8 4.7

Invent questions or describe the
graph

8.5 2.4 7.0

Collect data 2.8 2.4 2.3

10.5 Implications for Research and Teaching

In our analysis, we observed a change in comparison to our previous study (Díaz-
Levicoy et al., 2016) in that pictograms, which are not explicitly recommended in
the curricular guidelines, are now introduced in grade 1, instead of waiting until
grade 3. This change may be positive, given that the icons used to represent the
data in these graphs help children understand what is represented. Moreover, Cruz
(2013) analysed the interpretation of pictograms by 21 children in grade 3 of Primary
Education in Lisbon after a teaching process and obtained 95% correct answers to
Level 1 questions and 77.3% to Level 2 questions in Curcio’s (1989) classification.
However, research by Cruz (2013) found that the construction of pictograms was
extremely difficult for grade 3 children, suggesting that the building of these graphs be
postponed;moreover, we needmore research to evaluate the graphical competence of
children before recommending the reading of pictograms since grade 1.We therefore
recommend the reading of pictograms from grade 3 with the caution of making the
area of icons proportional to each category frequency, and ensuring that equally sized
icons represent only one case in order to not mislead the children.

A positive change observed is the presence of some level 3 reading beyond the
data activities from grade 2 and level 4 reading behind the data in grade 3 that were
not found for these levels in our previous research. In these reading levels, children
do not only perform computations or comparisons with the data, but they use their
statistical reasoning to make some predictions or inferences about information not
directly reflected in the graph (level 3) or question the information presented in the
graph (level 4); consequently, these activities will reinforce the children’s statistical
reasoning. Finally, there is not much difference in the graph complexity or activities
presented and the task contexts were not analysed in the previous study.

Our conclusion is that the development of graphical competence in the Spanish
current curricular guidelines is reflected and favoured by the textbooks and external
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assessment with a variety of tasks that take into account the research literature rec-
ommendations for the teaching of graphs. These curricular materials introduce a rich
variety of type of graphs, activities and context (according to those considered by
the OECD, 2015). The reading levels described by Curcio (1989) and Shaughnessy
et al. (1996), as well as the graph semiotic complexity, (Batanero et al., 2010) are
adequately ordered in progressive difficulty in the different grades, which no doubt
will favour children’s acquisition of graphical competence.

A warning is that some editors put too much emphasis on computation with the
graph data, which is shown in the high percentage of reading between the data (level
2) when compared with other levels. In these activities, children should compare
different data in the graph or performcomputationswith the graph data, and therefore,
indirectly they are oriented to reinforce the child’s arithmetic knowledge.Although in
the lower levels of education, this is a reasonable goal, more interpretative activities
should be included in order to develop the child’s statistical literacy and reasoning.
A second concern is that we also found important differences in the textbooks as
regards the different variables analysed in our study, and therefore, we highlight
the responsibility of teachers when selecting the most adequate book for his or her
students.
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Chapter 11
Initiating Interest in Statistical
Problems: The Role of Picture Story
Books

Virginia Kinnear

Abstract This chapter presents results of a study that explored children’s interest in
picture story books that were used to contextualise and initiate statistical problems
and statistical problem solving. The chapter presents the results of a small study
conducted with 5-year-old children in a public school in Australia and identifies
the characteristics of the books the children were interested in. It discusses the role
of picture story books in initiating interest in the data context and task context of a
statistical problem, and the unique challenges in identifying books for contextualising
statistical problems.

11.1 Introduction

How can educators stimulate children’s interest and engagement in statistical prob-
lem solving? Advocates for engaging young children in statistical learning at school
argue that school-based, everyday practices with statistical investigation are essential
for critical, flexible reasoning with data (Franklin et al., 2007; Lehrer & Schauble,
2002). Young children possess many conceptual resources and can move towards
more sophisticated reasoning with appropriately designed and implemented learn-
ing experiences (Perry, Dockett & Harley, 2012). In statistics learning, familiarity
with the context of a problem is known to influence data analysis and interpreta-
tion (Gal, 2005), and knowledge of the context is known to support and influence
determining the relevance of data in problem solving (Pfannkuch & Wild, 2004).
In statistical investigations, it is the design of a task and the real-world context it
provides that impacts children’s statistical learning (Kinnear, 2013). The use of pic-
ture story books to contextualise a statistical problem for investigation can therefore
play a dual role in providing the context for the task that invites interest and shapes
statistical engagement, and also provide the context knowledge children can use to
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find a solution to the problem. In this dual role, the choice of picture story book used
to stimulate statistical problems becomes an important one for educators to make.

This chapter presents the results of a small study conducted with 5-year-old chil-
dren in a public school in Australia. One aspect of the study examined the role of
picture story books in initiating children’s interest in a statistical problem, and in
the role that the picture story book played in providing the context for that problem.
The study’s theoretical perspective, Models and Modelling (Lesh & Doerr, 2003),
provided a framework for task design principles used in the design of the statistical
problems which were developed as data modelling activities, aimed at providing
young children with access core statistical concepts and processes. Three different
picture story books were used, and study evaluated their role in initiating children’s
interest in the statistical context of the problem and in handling the data to solve
the statistical problem. This chapter reports on the identified characteristics of the
books children were interested in, and how knowledge of these characteristics could
be used to inform the selection of picture story books to initiate interest in statistical
problem-solving activities.

11.2 Connecting to Statistics: Real-World Problem Solving
as Task and Data Context

Statistical problems are by definition realworld, as statistics is used to solve, describe,
measure and understand real-world problems (Scheaffer, 2006). Real-world prob-
lems therefore provide the impetus for and end point of a statistical investigation,
supply the setting (as context) for the problem and at the same time, engaging the
problem-solver’s real-world knowledge of that setting when finding a solution. The
interdependence of real-world context and statistics is captured by Langrall, Nisbet
and Mooney’s (2006) definition of statistical context as “real world phenomena, set-
tings or conditions fromwhich data are drawn or aboutwhich data pertain” (p. 1). The
definition highlights that as a statistical problem is based in the real-world context, all
data needed to solve the problem pertains to, and is drawn from that context. A core
concept in statistics, and therefore a core consideration for engaging young children
in statistical problem solving, is the context a statistical problem is embedded in,
the data context. In this study, picture story books provided the data context for the
statistical problem children were to solve.

The context of a statistical problem is inextricably linked to solving a prob-
lem drawn from it (Pfannkuch, 2011). When data are collected in order to solve
a problem, our knowledge of their context is engaged in order to understand and
interpret it (Moore, 1990). When young children are finding a solution to a statis-
tical problem, they engage their existing knowledge and experience of the problem
setting, the data context, including knowledge of the way data have been created,
defined and measured (Pfannkuch, 2011). The data context provides meaning for
the data, and so becomes the framing structure for data analysis and reasoning
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(Garfield & Ben-Zvi, 2007). The data context of a statistical problem therefore influ-
ences statistical sense making and reasoning processes.

The data context chosen for a statistical investigation and how it is presented
introduces the role of context in the statistical problem-solving task. Task context is
therefore “the presentation of data or the way they are encountered” (Langrall, Nis-
bet, Mooney, & Jansem, 2011, p. 50). The task context influences the way data are
approached, engaged, analysed and interpreted and therefore how statistical prob-
lems are reasoned and what knowledge is engaged to find a solution (Kinnear, 2013).
The multiple dimensions of task context and the data context therefore influence
statistical analysis and reasoning. Pfannkuch (2011), drawing from the work of
Herschkowitz, Schwartz and Dreyfus (2001), made distinctions between “data con-
text” and “learning-experience-contexts” in informal inferential reasoning. Task con-
text, as part of the learning-experience-context included “task sequence and moti-
vating story” (p. 28) and was identified as a key influence in facilitating statistical
reasoning. The story and sequence of a story in a task context therefore has a role in
children’s task perception, and can influence their engagement and reasoning (Lan-
grall et al., 2006). The interrelationship between the data context and the task context
in statistical reasoning and problem solving is therefore pivotal to bringing children
into statistical contexts, concepts and processes when problem solving. The study
therefore investigated the role picture story books played in initiating interest in the
data context and the data modelling problem that was drawn from its context.

11.3 Engaging Data Contexts Through Task Design

11.3.1 Picture Story Books: Real-World Contexts as Task
and Data Context

Children should encounter data inways that support their interactionwith, not on, data
(Makar & Rubin, 2009), therefore the task design for a statistical problem must be
mindful of the impact of the task’s context in the presentation of the problem and the
way children perceive, approach and work with it to find a solution. In mathematics,
picture story books have been found to provide a stimulus andmotivation for children
to investigate problems by offering a meaningful framework for active construction
of mathematical knowledge (Elia, van den Heuvel-Panhuizen, & Georgiou, 2010).
There are opportunities to make meaningful connections with young children’s prior
knowledge through the contents of a book, and a book can create a real issue for a
child that needs to be addressed. Picture story books can therefore offer a context
that supports young children’s interest in, and emotional connection to mathematics,
and present problems to be investigated or solved (Van den Heuvel-Panhuizen &
van den Boogaard, 2008). They can provide a familiar and accessible framework for
children, with “cognitive hooks” (Lovitt & Clarke, 1988, p. 439) for exploring the
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relationship between pieces of information and garnering children’s interest in the
problem at hand.

Research and pedagogical attention in recent decades has shifted attention to the
potential for picture story books to support children’s engagement with, and learning
in, mathematics. There is still, however, limited empirical evidence for principles
that can support educators in selecting picture books for use in mathematics teaching
(Flevares & Schiff, 2014), and none for the selection of books for contextualising
statistical problems. The limited literature and research that is available suggests that
mathematics learning is successful when depicted in picture story books as a familiar
part of everyday life and within contexts that are meaningful for children (Casey,
Erkut, Ceder, & Young, 2008; Hong, 1996; Moyer, 2000; Whitin & Wilde, 1995).
Books need to be of interest to children.

Interest is a principal concern for task design in the Models and Modelling per-
spective as it is a means of realising amatch between the goals of the educator and the
child in ways that move a child to engage in the task (Lesh &Doerr, 2003). An aim of
Models and Modelling activities is to facilitate a child’s interest in a task through its
design in a way that places the child “squarely within the activity” (Middleton, Lesh,
& Heger, 2003, p. 415). In Models andModelling, interest begins with initiation into
the modelling task, termed the elicitation stage, with designed experiences that aim
to challenge children with the need to develop a model to solve a problem (Lesh &
Doerr, 2003). Whatever is chosen as the initiating stimulus for the problem context
is the stimulation for interest in the modelling activity itself. It is in this framework
that picture story books have the potential to both provide the context for a statistical
problem (as a data modelling problem) and initiate children’s interest in the problem
they are to solve (the task that requires the development of a model to solve the prob-
lem). The potential dual role a picture story book can play in stimulating interest in,
and providing contextual knowledge for solving a statistical problem, means that its
role differs from that of a book specifically chosen for use in mathematics learning.

11.3.2 Choosing Picture Story Books for Statistical Problems

The differences between statistics and mathematics as disciplines impact on the role
of the content of a picture story book, as the concepts, processes and outcomes of
statistics and mathematics differ (Moore, 1998). As a result, one of the difficulties in
choosing books for initiating and contextualising statistical learning arises from the
nature of the discipline itself; the context that stimulates the driving question (Leavy
& Hourigan, 2015) and demands a solution also supplies the setting for the problem
and at the same time, engages the problem-solver’s knowledge of that setting in
finding a solution. Picture story books have the capacity to provide a meaningful
context for a statistical problem and act as a cognitive lure for young children’s
statistical learning. Statistical problem solving is, however, a contextualised activity,
and until or unless elements of the picture story book are drawn on by the children,
the statistical content of the book as data context is largely unknown. It is only in
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finding a solution to the problem that the “statistical content” of the book, that is,
the knowledge children choose to employ to problem solve, is visible. Trying to
choose picture story books for statistics by examining comparable research on the
use of children’s literature and mathematical learning is problematic for two reasons.
First, with the exception of English (2009b; 2010; 2011, 2013), Kinnear (2013) and
Hourigan and Leavy (2015), children’s picture story books have not been used to
initiate statistical problem solving or data modelling activities in published research.
Second, research that evaluates young children’s responses to the characteristics for
classifying picture story books that initiate interest in and contextualise statistical
problems has not been undertaken.

There have been a number of classification schemes developed to provide criteria
for selecting published children’s literature for teaching and learning mathematics
(e.g. Hellwig, Monroe, & Jacobs, 2000; Hunsader, 2004; Marston, 2010; Nesmith
& Cooper, 2010; Schiro, 1997; Van den Heuvel-Panhuizen & Elia, 2012; Whitin
& Whitin, 2004). Although helpful in providing a range of book characteristics,
the statistical role of a picture story book is not readily supported by these frame-
works. They principally focus on “trade books” written specifically for mathematics
teaching, or on identifying known mathematical concepts that are visible, clearly
identifiable, or where the potential for mathematics specific concepts to be drawn
out or used as a springboard for other mathematical learning is readily apparent.
Published texts to support teachers’ selection of mathematical fiction books offer
few or no recommended texts for handling or analysing data (e.g. Burns & Sheffield,
2004; McKenney & Revves, 2012; Whitin & Whitin, 2004). Some work in story-
telling in mathematics has considered how narrative can spark interest or pose, make
sense of problem situations for problem solving (e.g. English, 2010; Skoumpourdi
& Mpakopoulou, 2011; Zazkis & Liljedahl, 2009). The issue remains, however, that
criterion for identifying content for supporting children’s learning of statistical con-
cepts and processes is not accommodated by existing classification frameworks for
selecting books for mathematics teaching. Picture story books that are used to con-
textualise statistical problems play a crucial role in statistical problem solving, as
they act as a source of contextualised data knowledge for children to use in statistical
problem solving, and stimulate interest in engaging with the problem in the first
place. A book stimulus needs to encourage children to make sense of a problem-
solving situation and move them to recognise the need for a statistical model to be
developed to solve the problem (Lesh & Doerr, 2003).

11.4 The Study

In the study, picture story books fulfilled two contextual roles. First, each book pro-
vided the data context that stimulated the statistical problem and bound the data that
were available and able to be used to solve the problem. As a result, the narrative
and picture content of the book had the potential to influence the knowledge the chil-
dren drew from and the reasoning they used when working to find a solution to the
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problem. Second, as an integral part of the task context, each book initiated the
children into the statistical problem and had the potential to influence the children’s
interest in, and connection to it. In the study, three picture story books were used to
initiate three separate and consecutively implemented statistical problems (as data
modelling problems). The books were chosen to support a recycling theme under-
pinning the data modelling problems. Prior to engaging with the statistical problem,
the children were read the story so that they could focus on enjoying the picture story
book as literature (Hunsader, 2004). The children’s spontaneous responses to ques-
tions and comments about the picture story book on this first reading were captured
as data.

This study proceeded on the same assumptions as the studies conducted by
Moschovaki andMeadows (2005), Van denHeuvel-Panhuizen and van denBoogaard
(2008), and Van den Heuvel-Panhuizen and Elia (2013), using similar methods to
capture children’s spontaneous responses however it is distinguished in two ways.
In the initial reading by the teacher of the picture story book, the whole class was
grouped informally and seated on the floor, and the teacher did not ask questions
or make remarks about the story or illustrations. As the book was read, the children
responded spontaneously with comments. Immediately following the reading, the
children were invited to ask questions or to provide comments about the story. Ques-
tions or comments were written onto the classroom whiteboard with the name of the
child who proposed the question or comment noted next to it. The children were then
invited to answer any questions that had been raised. The children’s responses were
extended beyond their initial spontaneous comments or questions to include ques-
tions or comments the children initiated immediately following the book reading.
Findings emerged from the thematic analysis of the children’s spontaneous responses
and questions and comments for each of the three picture books. This chapter presents
these findings and discusses the characteristics of the picture story book that were
found to be of interest to the children.

11.4.1 Study Participants, Data Collection and Analysis

The study participants were members of one class of 14 children, comprised of
five girls and nine boys aged from 5 years to 5 years 3 months (mean age 5 years
2 months) in their first term of their first year of formal schooling in a State gov-
ernment primary school in South Australia. A qualitative design-based research
methodology, informed by the Models and Modelling perspective (Lesh & Doerr,
2003), underpinned the study which was conducted over a 10-week school term.
The data collection for the findings for this chapter was collected as whole class
digital video-taping episodes that were then transcribed by the researcher from the
audio recordings that were embedded in the video recording. The transcriptions
included descriptions of visual information gleaned from the video. The use of
video enabled multiple aspects of the children’s interaction to be captured, such
as the children’s facial expressions and body movements, vocal emphases when
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speaking, silences, and other non-verbal communications (Lesh & Lehrer, 2000)
that would indicate interest. Further data were provided by teacher and researcher
meetings and researcher recorded personal reactions and reflections to the data
collection process. These multiple data were used to support the ongoing eval-
uation of the data collection process and future analysis (Neuman, 2003). The
data were systematically reviewed and worked through (Cobb, Confrey, diSessa,
Lehrer, & Schauble, 2003) enabling “evidenced-based claims and results to be
examined in concert with the underlying design theory” (Wang & Hannafin, 2005,
p. 11).

11.4.2 Picture Books and the Data Modelling Activities

The three data modelling activities implemented in the study used the following
picture story books. A brief synopsis, the data modelling focus and problem for each
data modelling activity are described in Table 11.1 in order to frame the picture book
reading and purpose. The data relating to the children’s use of the picture story books
content in their statistical problem solving are not presented in this chapter.

11.5 Children’s Spontaneous Responses, Questions
and Comments

11.5.1 Baxter Brown’s Messy Room (English, 2009a)

The children listened attentively as the picture book was read, and their interest
was sustained and consistent. During the story reading, spontaneous reactions were
visible as the children asked questions, pointed to the illustrations, laughed as the plot
unfolded, and used gestures such as bringing a hand to the mouth during a moment
of tension in the story. The picture story book was written in a style reminiscent of
familiar children’s “lift the flap” books, for example, the “Spot the Dog” series (Hill,
1983, 1994, 2003). In lift the flap books, a question is posed in the book and the picture
answer is found when a paper flap is lifted. The children reacted spontaneously as
a group to the questions posed about where Baxter Brown might be, sometimes in
improbable places as in the following example:

Teacher One morning, Mr and Mrs Brown noticed that Baxter Brown was missing.
Is he sleeping in the washing machine?

Children (laughing) no!

There was some excitement on his discovery under the rubbish in his room:

Teacher It was a tail! Was it Baxter Brown’s tail? It looks like we have to wade
through all this junk to find out, thought Mr and Mrs Brown. They stepped
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Table 11.1 Summary of book synopsis, data modelling focus and problem for each data modelling
activity

Book Plot synopsis Data modelling
problem

Data modelling focus

Baxter Brown’s
Messy Room
(English, 2009a).
Written specifically to
support data
modelling research

Baxter Brown is a
white fluffy dog with a
room that is so messy
from all the rubbish he
has collected that he is
lost in it. Baxter
Brown has to solve his
rubbish problem and
at the end of the story
the question “What do
you think Baxter
Brown should do?” is
asked

To help Baxter Brown
clean up his room, the
children were asked to
sort real objects into
pre-determined task
categories of recycle,
reuse and throw away.
Next using pictures,
they worked out what
objects in his messy
room could be
recycled, or reused or
what could be thrown
and represented their
solution in a data
display

Generating and
selecting attributes
and organising,
displaying and
representing data

Michael Recycle
(Bethel, 2008).
A commercial
publication

Michael Recycle is a
caped superhero
whose mission is to
save planet earth. He
flies into towns that
are messy and teaches
the people about
recycling so they can
clean up where they
live. The story is
written in rhyme

Michael Recycle
needed help to sort a
group of real objects
he had found.
Children drew
pictures of the objects
would be sorted these
into categories

Identifying and
displaying pictorial
data in a more abstract
form

Litterbug Doug
(Bethel, 2009).
A commercial
publication

Litterbug Doug is a
lazy, messy character
who does not recycle
and has rats for
friends. His enormous,
smelly piles of
rubbish are upsetting
the town folk, until
Michael Recycle
arrives to teach him
how to recycle and
clean himself up. As a
result, on the last page
of the story, Litterbug
Doug becomes the
Litter Police, cleaning
up the town park

Litterbug Doug, in his
new role as the Litter
Police, had tidied up
the town by collecting
rubbish in the park. A
data table represented
how much rubbish
Litterbug Doug had
collected in the town’s
park on three days;
Monday, Tuesday and
Wednesday. The
children were asked to
predict what Litterbug
Doug collected on the
fourth day, Thursday,
which was left blank
on the data table

Reading, interpreting
and extending data
represented in an
abstract format (a data
table) to make
predictions
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over bones, apple cores, newspapers, cereal packets, old toys, biscuits,
old shoes, empty drink cans, milk cartons and plastic bags. All that junk!
Finally, Mr and Mrs Brown reached the long, thick, white tail that was
waving above the rubbish. Is that you Baxter Brown?

Ted (gasps audibly and quickly points) aah! Yes it is!
Teacher The tail kept swaying, we have to remove some of this rubbish to see if it

is him!
Blake (kneels up) it is!
Lee (looks anxiously at Blake) yes or no?

The spontaneous responses, questions and comments offered by the children showed
persistent interest in the problem revealed in the plot and the illustrations which
focused on the problem that was revealed. The children were concerned about the
dilemma Baxter Brown was in—how it arose and how it might be resolved, with
speculative comments such as; “why did he, I know why he didn’t clean up, because
um, he just didn’t think he might get lost in it”. Some children hypothesised about
why he had not taken action before he got himself into such a mess; “maybe he was
going to have a real rest then he forgot that he had all that rubbish”. The question of
what Baxter Brown should do to solve his rubbish problem was posed at the end of
the story when he “What should I do?” and the story narrator asking of the reader
“What do you think Baxter Brown should do?” There was an immediate response to
the question with multiple suggestions such as; “he should throw it away!”, “he has
to clean his room up!” and “he should put all the stuff in the bin”, as the children
enthusiastically suggested solutions to Baxter Brown’s problem.

11.5.2 Michael Recycle (Bethel, 2008)

When Michael Recycle (2008) was read, generally the children listened quietly;
however, a few children began to fiddle with their clothing and turn their head to
noise distractions outside of the classroom. In contrast to the initial reading of Baxter
Brown’s Messy Room (2009), none of the children responded by pointing, laughing
or using body movements that might indicate interest, such as moving forward or
leaning towards the book. Some children began to lie back or roll to their side as the
story came to an end. The only spontaneous responses evidenced were as the picture
story book was introduced and the title read, with one child stating; “They rhyme.
Michael Recycle!” When invited to offer questions or comments about the picture
story book, the children’s responses revealed interest in the character’s altruistic
behaviour, evidenced by comment such as: “he helps people”, and questions such
as; “how come he tries to, um how come he helps people?” indicating an interest
in the “goodness” of the character and his motivations. The principal interest the
children displayed, however, was in the gender identity of themain character, interest
initiated by one child’s use of the personal pronoun she,which immediately generated
animated debate among the children, moving to point to the book, rising up on their
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knees and leaning forward to listen. Children’s reasoning relied on the illustrations
in the book as evidence to support their decisions about gender.

11.5.3 Litterbug Doug (Bethel, 2009)

During the reading ofLitterbug Doug (2009), the children listened quietly and calmly.
They spontaneously responded to descriptions of the objects Litterbug Doug had
collected, indicating disgust and enjoyment, evidenced through responses such as
“yuk” and “ooh!” to the illustrations of rubbish piles, toilets and rats. The character
Michael Recycle was immediately recognised when he appeared in the plot and
illustrations, and several children pointed excitedly, shuffled forward, and the pitch
of their voice rose as they called out “Michael Recycle!”

Teacher But then something happened, that none could explain, it wasn’t a bird
and it wasn’t a plane. A green caped crusader stupendously swooped,
descending to earth with a great loop the loop.

Children (unanimous statements) Michael, Michael Recycle!
Mia (pointing to the book) there’s Michael Recycle!
Ted Coming to tell him

The children’s interest in the arrival of Michael Recycle contrasted with their disin-
terested response to the reading earlier that week of theMichael Recycle picture story
book, which may be explained by recognition of what was now a familiar character
and the character’s anticipated role in the story.

When invited to offer questions or comments about the picture story book, the
children’s responses showed that they were interested in the resolution of Litterbug
Doug’s rubbish problem. They were curious about how Litterbug Doug had got into
the problem he had, his failure to “be good”, and how he was reformed, asking:
“why did he, didn’t he clean up his rubbish?”; “how did he get all that rubbish?”
and “how did he like, um, how did he be good in the end?” The children’s responses
and questions also suggested that they considered the problem was his, and he had
failed to clean up because he was messy, tired, lazy and needed help. Reasons for
these judgements included “because Michael Recycle didn’t help him and he was
too tired”; “he doesn’t clean up his room and he doesn’t like cleaning up his house
and he likes being messy”; and “because he was lazy and too tired because he was,
he needed help”. There was significant interest also in how Litterbug Doug was able
to “become good” and that “being good” resulted from recycling, being physically
clean, taking responsibility and learning how to recycle.

Analysis of the findings revealed characteristics of affective and cognitive interest
to the children. The importance of the children’s interest is twofold. First, stimulating
interest in a problem is an expressed aim of designingmodelling activities and begins
with initiation into the modelling task (Lesh &Doerr, 2003). Effective use ofModels
andModelling design principles of personalmeaningfulness, andmodel construction
are pivotal for initiating amodelling activity (Lesh&Doerr, 2003). Second, initiating
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tasks are designed to encourage children to make sense of the situation based on
their personal knowledge and experiences and stimulate the need for a model to
be constructed, modified or refined (Lesh & Harel, 2003). The use of picture story
books aimed to stimulate both interest in the data context and the task context of the
modelling activities (for this study, a statistical problem) and to provide a source of
context knowledge for all the children that could be drawn onwhen finding a solution
to the problem.

11.6 Characteristics of Picture Story Books that Stimulate
Interest in the Data Context

The unique role of picture story books in contextualising statistical problems is
not accommodated by existing classification schemes for picture story books for
mathematics teaching; however, the following categories of interest were generated
from the findings.

11.6.1 Limiting and Misdirecting Interest

The children’s lack of interest in the plot in the picture story book Michael Recycle
(Bethel, 2008) was unique in the study, and contrasted with the interest generated
by the other two picture story books [Litterbug Doug (Bethel, 2009) and Baxter
Brown’s Messy Room (English, 2009a)]. The book failed to generate any responses
that indicated enjoyment of the plot, which reached a climax that was fully resolved
by the characters as the story concluded; Michael Recycle cleaned up the village
successfully, and without fuss. The lack of spontaneous responses suggests that
the story did not stimulate mental processing (Moschovaki & Meadows, 2005; Van
den Heuvel-Panhuizen & van den Boogaard, 2008) or provide information that was
interesting or personally meaningful to engage the children’s attention (De Young
& Monroe, 1996). The story had a predictable story line, and it is possible that this
failed to provide an authentic connection for the children (Nesmith & Cooper, 2010).

Interest was visible in the animated debate about whether the main character was
male or female, debate that was sustained and fuelled by the children’s perceived
ambiguity in the book’s illustrations. Illustrations have an informational function
(Van den Heuvel-Panhuizen & Elia, 2013) and are part of the whole picture book.
They can represent story-related components, so they have the potential to cogni-
tively engage and interest children (Elia et al., 2010). The illustrations in Michael
Recycle may have tapped into core questions young children have about gender
identity, and their responses highlight the importance of the relationship between
text and illustration. Pictures with a representational function have been found to
evoke mathematical thinking and utterances (Van den Heuvel-Panhuizen & Elia,
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2013). Ambiguity between text and illustration may be a useful tool for stimulating
discussion; however, such ambiguity in the illustrations could serve tomisdirect chil-
dren’s attention away from other elements of the story designed to generate interest
in the context of a statistical problem.

11.6.2 Capturing Interest: Uncertainty and the Unresolved
Problem

In contrast toMichael Recycle (Bethel, 2008), the responses toBaxter Brown’s Messy
Room (English, 2009a, b) revealed that the children enjoyed the element of uncer-
tainty in the plot. The mystery of where Baxter Brown could be hiding was followed
by relief and excitement when he was discovered, visible in physical responses that
provided information not expressed in speech (Broaders, Cook, Mitchell, & Goldin-
Meadow, 2007). Enjoying uncertainty is in keeping with elements of an interesting
and engaging story (De Young & Monroe, 1996). The children responded to the
unresolved problem in Baxter Brown’s Messy Room which was partially but not
fully resolved when he was found. The rubbish problem in the plot was presented
as one left hanging at the end of the story itself, inviting the children to solve it.
The unresolved climax at the end of the story challenged the children to work out
how could Baxter Brown’s problem be resolved, and this served as a springboard
to the data modelling problem. The only incidences of spontaneous comments or
questions generating predictive solutions to Baxter Brown’s problem were found in
the children’s responses to Baxter Brown’s Messy Room (English, 2009a).

Stories with elements such as uncertainty such as not knowing how a story will
end, achieve interest through the cognitive challenges in prediction or anticipation
that this created (De Young & Monroe, 1996). Baxter Brown’s unresolved problem
is in contrast to the other two picture story books Michael Recycle (Bethel, 2008)
and Litterbug Doug (Bethel, 2009), where the main character’s problem was neatly
solved by the end of the book. Events in a good narrative story have the power to
impact affective responses and stimulate mental acts such as guessing and supposing
(Fisher, 2005). The findings indicate that the childrenwere sensitive to and responded
to the cognitive challenge brought by uncertainty, and that this feature generated pre-
dictions. The findings for Baxter Brown suggest that a story that arouses spontaneous
interest in an unresolved problem in the plot may stimulate interest in the statistical
problem itself as well as the data context.

11.6.3 Capturing Interest: Personal Connection

The findings further suggest that Baxter Brown was a meaningful story for the chil-
dren. Ainley (2006) points to the prominence in younger children of a range of
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affective emotional interest responses such as enjoyment and concern that help form
coordinated relationships between interest as affect, motivation and cognition. Inter-
est is also supported when a child identifies with a character, and personalising a
storyline to connect to the audience’s prior knowledge makes it engaging and enjoy-
able (De Young &Monroe, 1996). Baxter Brown elicited personal connections with
the children by experiencing a problem that is a common one for young children;
a love of collecting objects that leads to a need to tidy one’s room. Baxter Brown’s
Messy Room (English, 2009a) therefore combined the elements of uncertainty and
personal connections for the children in a way that stimulated interest. The picture
story book was written in a familiar genre style, so interest may have been generated
by the children finding connections to the story character and plot.

11.6.4 Capturing Interest: The Resolved Problem
and the Role of the Character

In contrast to Baxter Brown’s Messy Room, the children did not spontaneously
respond to the resolved problems presented in the two picture story books, Litterbug
Doug (Bethel, 2009), andMichael Recycle (Bethel, 2008). These books differed both
in the way that the problem in the plot was presented and resolved. In each story,
the plot reached a climax that was fully resolved by the characters within the story
itself; Michael Recycle cleaned up the village successfully, and Litterbug Doug was
reformed and became a litter policeman. The resolution of a dilemma or problem
within the story is in keeping with the core elements of a fictional story for engag-
ing young children (De Young & Monroe, 1996). Although a fictional story may
resolve the problem by the last page, this may not be a feature that best fits a pic-
ture story book that initiates a statistical problem, where interest is requisite to the
developing a problem solution. The children’s failure to find interest in a resolved
problem, however, was alleviated to an extent by their interest in how a problem was
resolved, particularly when the character affected by the problem was of interest, as
the character Litterbug Doug was found to be.

A significant finding from the children’s responses to Litterbug Doug (Bethel,
2009) was that he was a worrisome character for them, messy, lazy and forgetful,
he needed to be taught how to “be good”. The children did not respond to Litterbug
Doug’s reformed role as the litter police but focused on the characteristics that con-
cerned and interested them which was twofold; first, the problematic behaviour that
had led him to be living in piles of rubbish with rats for friends and second, how
he was reformed in the story. The children directed their attention by asking ques-
tions to find out more about Litterbug Doug, and to work out how his problem had
been solved. They reasoned that Litterbug Doug’s rubbish problem was the result of
his own actions. The children had ongoing concern for the “goodness” of Litterbug
Doug’s character: his failure to be good, his “coming good” and the consequences
for both. Characterisation is an element of engaging stories identified by De Young
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and Monroe (1996), and the findings as to the children concerns for Litterbug Doug
indicate that they identifiedwith the character as one they could care about and follow
through the story.

A focus on the moral dimension of the character is important and ties to research
on the moral concerns of young children (Nucci, 2001). This element of the pic-
ture story book appears to have tapped into matters that children care deeply about.
Their concern for Litterbug Doug’s reform, as a problem resolved within the story,
contrasted with the interest in the unresolved problem that was generated by Baxter
Brown. Unlike Baxter Brown where problem resolutions were predicted, the reso-
lution of Litterbug Doug’s problem was explained within the story. The children’s
responses indicate that their interest was in how resolution had occurred. Interest in
the worrisome Litterbug Doug’s problem resolution contrasts further with the chil-
dren’s lack of interest in the virtuous Michael Recycle, who as an “already good”
super hero, flew in and reformed Litterbug Doug into a litter policeman. Both the pic-
ture story books Litterbug Doug and Michael Recycle had the plot problem resolved
in the story. The difference in the children’s interest between the two books appears
to be one of whether the problem is one that involves a character of interest.

11.7 Stimulating Interest in Statistical Problems

Statistics is an effective tool to investigate everyday problems; however, finding
suitable literature to support statistical investigations has already been identified as
problematic for teachers and researchers whowish to consciously use children books
to support children’s statistical learning (Hourigan&Leavy, 2015). From a statistical
perspective, the children’s interests in this study highlight some possible insights
into children’s data context interests which can be fruitful in initiating interest in
a task context and the subsequent need to use the data context to support finding
a solution to the statistical problem it generated. Research reveals that personal
interest and connection to the context of a problem, that is, the task design, activates
children’s interest in the task (Clarke & Roche, 2009; Paparistodemou & Meletiou-
Mavrotheris, 2010). Research highlights that educators need to be able to assess of the
quality of books used in teachingmathematics (LeSage, 2013), and that literature can
support the development of driving question for statistical investigations (Hourigan
& Leavy, 2015). What is needed is further research on the characteristics of picture
story books that stimulate interest in the data context and initiate interest in the
task context. Questions that remain unanswered are what characteristics of picture
story books stimulate children’s interest in a data context, and how can these be best
utilised by researchers and educators when selecting books that aim to bring children
into meaningful statistical engagement with statistical problems. This small study
provides a starting point.
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Chapter 12
Teachers’ Reflection on Challenges
for Teaching Probability in the Early
Years

Efi Paparistodemou and Maria Meletiou-Mavrotheris

Abstract The present research focuses on the early childhood teachers’ reflection
on designing and implementing probability tasks. Five early childhood teachers par-
ticipated in this research, which was organized in three stages: design of lesson
plan, classroom implementation and reflection. The researchers analysed the design
of each lesson, observed teachers implementing their lesson and interviewed them
while they reflected on their instruction. Teachers discussed critical incidents that
occurred through their teaching, and they reflected on challenges for teaching proba-
bility. An initial analysis of the collected data indicates that early childhood teachers
appreciated the importance of using tools and real-life scenarios in their classrooms
for teaching stochastics. The study also provided some useful insights into the vary-
ing levels of attention that teachers paid to different kinds of activities during their
lesson implementation, and into the different types of instructional material they
used. Moreover, the findings also show that early childhood teachers’ attention to
different aspects of probability tasks can be developed through a reflective process
on their teaching.

12.1 Introduction

Although the pedagogical and mathematical understanding of teachers both in pri-
mary and secondary education has been widely explored and appreciated (Mason,
1998), this is not the case in early childhood. It can be argued that the underlying
assumption is that mathematical activity, and tasks in these early years are trivial,
simple and playful. Tasks are usually based on the use of materials and hands-on
experience, something that is perceived as ‘fun maths’ rather than as ‘real maths’
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(Moyer, 2001). This distinction has important connotations for early childhood edu-
cation since the mathematics taught at this level is often concealed both due to its
intuitive nature (Paparistodemou, Noss & Pratt, 2008) and the context in which it is
used. Pre-primary teachers need to recognize the mathematical meaning underlying
different tasks and develop such pedagogical competences that will allow them to
facilitate children’s mathematical learning.

The development of students’ stochastical literacy has become an overarching
goal of statistics education internationally. This broadening of the curriculum to
encompass statistical literacy, reasoning and thinking has put considerable demands
on teachers (Hannigan, Gill & Leavy, 2013). In particular, they must design lessons
with engaging contexts (Chick & Pierce, 2008), focus on conceptual understanding
(Watson, 2001) and pose critical questions (Reston, Jala, & Edullantes, 2006). In
statistics education, there is a need to foster children’s ability to reason inferentially
by introducing them to a reasoning process in which multiple statistical concepts
are used as arguments to support an inference (Makar & Rubin, 2009; Paparis-
todemou & Meletiou-Mavrotheris, 2008; Watson, 2001). Makar and Rubin (2009)
introduced a framework for conceptualizing inferential reasoning, in which the use
of non-deterministic language constitutes an important component. Nonetheless, the
literature on teacher education and statistics education shows that teachers are not
really inclined to include probabilistic concepts in their instruction (e.g. Paparistode-
mou, Potari, & Pitta, 2006).

This paper aims to investigate the way early childhood teachers conceive stochas-
tics education in the early years. Specifically, the research question we address is as
follows:

– What do teachers attend to when they design, implement and reflect on probability
tasks in early childhood education?

12.2 Theoretical Perspective

12.2.1 Learning and Teaching Probability in the Early Years

Statistics education research suggests that enhancing teachers’ subject matter knowl-
edge about uncertainty and statistical inference must be given high priority. Building
teachers’ knowledge of pedagogical structures and tools by itself is not sufficient.
Lee and Mojica (2008), for example, found that although a group of middle school
teachers involved their students in authentic statistical inquiry that included use of
simulation tools, they missed the chance to develop students’ understanding of the
frequentist approach to probability because of limited subject matter knowledge.
Deep understanding of probability is also needed for identifying student errors and
implementing effective teaching practices (Maher & Muir, 2014; Paparistodemou,
Potari, & Pitta, 2006). Such understanding can be developed through well-designed
professional development. For example, Theis and Savard (2010) helped high school
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teachers design and implement a technology-based instructional intervention. They
found that the use of simulation software within the intervention allowed teachers to
adopt more inquiry-oriented strategies and to begin to incorporate frequentist prob-
ability for teaching probabilistic concepts rather than relying solely on theoretical
probability.

Although subject matter knowledge is necessary for effective teaching of uncer-
tainty, it is not sufficient. Leavy (2010) worked with a group of prospective teachers
who demonstrated relatively strong subject matter knowledge about informal infer-
ence. However, they had trouble using this knowledge to develop pedagogical con-
texts for advancing children’s learning. In particular, they had difficulty choosing
sufficiently complex data, creating engaging contexts, handling unexpected student
responses and scaffolding children’s thought processes. In other studies, gaps in
pedagogical content knowledge have been framed as contributing factors to teach-
ers’ failure to emphasize important probability concepts when writing lesson plans
(Chick & Pierce, 2008) and designing productive learning environments for students
(Groth, 2010). Consequently, statistics education researchers have, in recent years,
engaged in professional development efforts aimed at facilitating the development
of both subject matter knowledge and pedagogical content knowledge of teachers
(e.g. Groth, Kent, & Hitch, 2015; Leavy, 2010; Serradó, Meletiou-Mavrotheris, &
Paparistodemou, 2014).

Mathematical activity is not only characterized by the content knowledge, but
requires a broader view of knowledge like the mathematical know-how, how to teach
themathematical concept or procedure (Boaler, 2003, 2009). Noss andHoyles (1996)
andHoyles (2002) claim thatmathematical activity is designed to fostermathematical
meanings through construction, interaction and feedback, while students can also
scaffold their own thinking through communicating with tools. However, tools are
often considered in early years more as a means to motivate children rather than
to challenge them mathematically. One reason could be that the teachers have not
constructed the flexiblemathematical knowledge required to be able to plan activities
that will encourage young children’s mathematical activity. Moreover, they may
lack the knowledge required to consider children’s ideas and intuitions both in their
planning and in their actual teaching. Shulman (1986) defines this knowledge as
‘pedagogical content knowledge’, while Ball and Bass (2000) argue that teaching
mathematics entails work with microscopic elements of mathematical knowledge in
order to make sense of a child’s apparent errors or to appreciate a child’s insights.

The importance of introducing probability tasks in the early mathematics class-
room is related to the idea of constructing stochastical knowledge based on children’s
intuitions. Nowadays, probability and statistics have an important role to play in
everyone’s daily life and particularly in children’s lives where most of the games
they engage with include the idea of chance. Jones et al. (1999) gave a framework
for assessing probabilistic thinking. They concluded that there are four levels for
each of the following probabilistic concepts: sample space, probability of an event,
probability comparisons and conditional probability. Moreover, research on learning
stochastics (Paparistodemou & Noss, 2004) has shown that young children use
spatial representations for expressing stochastic ideas. Research (Paparistodemou &
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Noss, 2004; Pratt, 2000) also shows that the design of activities targeting children
aged 4–8 is critical for them to be able to express their probabilistic ideas. Kilpatrick
(2001) defines mathematical proficiency by identifying five aspects: conceptual
understanding, procedural fluency, strategic competence, adaptive reasoning and
productive disposition. These aspects of mathematical proficiency are equally
important to the development of students’ reasoning about the stochastic. A neces-
sary area of investigation is the role of the teacher: if we consider the necessity of
educating students who are used to thinking stochastically, it is necessary to rethink
the role of the teacher in the teaching/learning process. Keeping in mind that teachers
have an important role in designing and implementing stochastical tasks, Petocz and
Reid (2002) indicate the importance of developing learning environments that can
engage students’ interest, broaden their understanding of statistics and help them
enrich their own lives. They suggest that the development of learning environments
must be ‘total’ and that the learning of stochastics should be less focused on the
curriculum itself and certainly less focused on the traditional concern of material
to be ‘covered’ or ‘examined’. Rather, the focus should move towards supporting
students to develop ‘holistically’. Boaler (2003) argues that a rich mathematical
activity ought to include elements such as creativity, inquisitiveness, making of
connections and a dynamic view of mathematical representations.

The above analysis indicates that stochastical activity is a complex activity, which
extends beyond the notionof stochastical knowledge, and requires students to develop
holistically, through their involvement in a number of tasks focused on the different
components of stochastical reasoning.

12.2.2 Mathematics Teaching and Reflection

We consider pedagogical activity as the means that can support children’s stochasti-
cal activity. It includes classroom management, taking into account children’s con-
tributions both to planning and to actual teaching, curriculum issues or classroom
interaction. We conceive pedagogical activity as being integrated in stochastical
activity, an approach that has been found effective in mathematics teacher education
(Cooney, 1999; Tripp, 2012; Vandercleyen, Boudreau, Carliera, &Delens, 2014) and
in the analysis of classroom teaching (Potari & Jaworski, 2002). Several different
approaches have been used in teacher education to promote reflection. One approach,
which is relevant to our study, is the identification and description of critical incidents
by the teachers (Goodwell, 2006;Hanuscin, 2013).When following this approach, the
researchers also offered teachers critical incidents they observed for further discus-
sion. The approach is similar to the one described by Scherer and Steinbring (2006)
who argued that the joint reflection between teachers and researchers on concrete
classroom situations is of major importance for teacher development. Mason (1998)
considered that the key notions underlying real teaching are ‘the structure of attention
and the nature of awareness’. Schön (1987) named this knowledge as knowing-in-
action. However, he highlighted that this knowledge is not adequate on its own
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for teaching and that teachers need to evolve through a progression from knowing-
in-action to reflecting-on-action to reflecting-in-action. Reflecting-on-action occurs
when the teacher starts looking critically at events after they have occurred while
reflecting-in-action appears while teaching or planning for teaching. These stages
involved a metacognitive awareness in which knowledge and action are linked. For
analysing the complexity of teaching mathematics, Potari and Jaworski (2002) used
the teaching triad (management of learning, mathematical challenge, and sensitivity
to students) as an analytical device and as a reflective agent for teacher professional
development. Management of learning describes the teacher’s role in the constitu-
tion of the classroom-learning environment, for example in the planning of tasks
and activities. Mathematical challenge describes the challenges offered to students
to engender mathematical thinking and sensitivity to students describes the teacher’s
knowledge of students and attention to their needs.

The present research focuses on teachers’ planning, teaching and reflection on
young children’s (4–6 year old) stochastic activities. It concentrates on the way in
which teachers realize the activity in terms of the mathematical challenge it offers
and the development of children’s stochastic ideas (Potari & Jaworski, 2002).

12.3 Methodology

12.3.1 Research Design: Participants and Context of Study

Five early childhood teachers (all females) participated in this research, which was
organized in three stages: Stage 1—lesson planning, Stage 2—lesson implementation
and Stage 3—reflection. In Stage 1, the teachers were engaged in lesson planning.
They selected a topic from the national mathematics curriculum on probability and
statistics and developed a lesson plan and accompanying teaching material aligned
with the learning objectives specified in the curriculum. The lesson plans were shared
with the researchers for comments and suggestions and were revised based upon
received feedback. In Stage 2, the teachers implemented the lesson plans in their
classroom, with the support of the researchers. Once the classroom implementation
was completed, in Stage 3, teachers were interviewed and prepared and submitted
a reflection paper, where they shared their observations on students’ reactions dur-
ing the lesson, noting what went well and what difficulties they faced and making
suggestions for improvement.

12.3.2 Instruments, Data Collection and Analysis Procedure

Multiple forms of data were collected:

(i) Observations and artefacts collected during Stage 1: early childhood teachers’
submitted work (students’ entry slips-student’s responses on pre-knowledge
tasks, lesson plans, etc.), researchers’ observations and field notes;
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(ii) Observations and artefacts collected during Stage 2: each early childhood
teacher intervention that took place lasted for 80 min (two teaching periods).
Researchers were present, observing closely and videotaping the lesson, keep-
ing field notes and collecting samples of student work.

(iii) Individual interviews and reflection reports during Stage 3: upon completion
of Stage 2, the researchers conducted semi-structured interviews with each of
the teachers. Qualitative data were also obtained from the reflection papers
prepared by the teachers.

For the purpose of analysis, we did not use an analytical framework with pre-
determined categories to assess how teachers’ perceptions evolved. We identified,
through careful reviewing of the transcripts, reports, and other data collected during
the study, recurring themes or patterns in the data. To increase the reliability of the
findings, the activities were analysed and categorized by the researchers. Inter-rater
discrepancies were resolved through discussion.

12.4 Results: The Existence of Randomness

Findings concerning the study research question on what early childhood teachers
attend to when designing, implementing and reflecting on probability tasks will be
discussedwith regards to one of the three elements of the teaching triad:mathematical
challenge, which we call here ‘stochastical challenge’.

The learning objectives included in all five teachers’ lesson plans and did refer to
challenges for teaching probability like the probabilistic concepts of certain, impossi-
ble and probable events. Moreover, the lesson plans included activities that involved
children in authentic statistical inquiry. Nonetheless, similarly to researchers such
as Lee and Mojica (2008), we also found that teachers missed the opportunity to
develop their students’ understanding of the randomness due to limited subject mat-
ter knowledge. The activities included in their lesson plans indicated that they tended
not to recognize the concept of randomness, as it appeared difficult for them to see
the stochastical idea underlying tasks (the context).

In presenting the main insights from our study, we focus on three of the five
participating teachers (Alice, Miranda, Sally),1 as they are the more typical cases in
the study referring to the existence of randomness.

12.4.1 Stage 1: Lesson Planning

In Alice’s case, the aim of the lesson plan she designed was for ‘children to make
predictions based on impossible, possible and certain events’. She decided to use the
context of children making hats for a party:

1All the names are pseudonyms.
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Alice You know, children need an everyday scenario… I decided to ask them
to make hats with dots. The dots will be blue and/or red… they [the
children] will select a spinner, make a prediction as to whether it would
be possible for the hat to have blue dots or not, mark it on their board
and then make their hat…

Researcher So, will they use their spinners?
Alice If they like to…yes. I know that some students will know beforehand

how to make their hat …But… maybe it is not necessary…

The other activities included in Alice’s lesson plan also indicated lack of attention
to the concept of randomness. Alice was focusing only on children making decisions
on what might have happened and what not. We had a discussion with Alice to find
out why she did not ‘allow’ children to spin the spinners. She referred tomanagement
issues, but after we pointed out the importance of children experiencing randomness,
Alice decided to ask children to spin the spinner ten times, record the colour coming
up each time and then to make their hat based on the recorded outcomes. Figure 12.1
shows how Alice organized her classroom based on the above task. We can see that
children had different hats of blue and red dots based on their recorded outcomes.

In Miranda’s case, there was confusion between predicting and guessing. She
decided to give some pictures to the children and to ask them to make a guess as to
whether these pictures were taken from a forest, a sea or a field. Similarly to Alice,
Miranda’s aim was also for children to use the term possible. However, students
were not directed in this activity towards the stochastical connotation of the term,
since the element of randomness was totally missing from the lesson. Thus, although
children might have wondered about where each picture was taken, they did not
really approach the idea of probability. In the following conversation, the researcher
asked Miranda to explain how she perceived the concept of probability:

Researcher What does the concept of probability mean to you?
Miranda You know that something is certain or not or something is possible.
Researcher What does it mean when we say that something is possible?

Fig. 12.1 Material used in Alice’s task
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Fig. 12.2 Children playing with a spinner in Sally’s task

Miranda You are not sure about something…but someone else might know…
Researcher So you guess what the other person knows?
Miranda You mean that in this activity I know and children do not know. But, is

this probability?
Researcher Is randomness somewhere there?
Miranda So…maybe this task is not about the concept of probability?

We can argue here that the idea of probability was confused with ‘what something
may be’ instead of ‘what may happen’. Miranda appeared not to realize that prob-
ability is related to the likelihood of an event occurring, and she instead related it
with the likelihood of something being a fact. We identified some ‘apprehension’ in
Miranda’s words.We could argue that the teacher has based her definition on her own
intuitions and has not been able to identify the stochastical meaning of probability.

12.4.2 Stage 2: Lesson Implementation

In Sally’s case, we recognized an awareness of the concept of randomness. Sally
was very specific in her two aims for the lesson, which were the following: ‘Children
should be in a position to select the appropriate sample spaces for certain, impossible
and fair events’, and ‘Children should experience the concept of randomness’.

At the beginning of Sally’s lesson, children selected their favourite flavour of ice
cream. They had this selection stacked on their chair and were given a ‘fair’ spinner
with three flavours. They worked in pairs, with one child spinning the spinner and
the other one comparing the flavour that had come up in the spinner with his/her
favourite flavour (Fig. 12.2).

While children were working in pairs, Sally had the following conversation with
them:

Sally So, did you get your favourite flavour?
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Child 1 No, I didn’t.
Sally Why was that?
Child 1 I only turned the spinner once.
Child 2 Can we turn it many times?
Sally Do you think you will get your favourite flavour like this?
Child 2 I might.
Sally Turn it to find out!

It was good to see Sally letting the children experience randomness. Another
activity she planned and implemented was to show children different spinners, which
had different sample spaces (e.g. whole brown (as a chocolate flavour), whole red
(as a strawberry flavour), whole white (vanilla flavour), ¼ brown-3/8 red-3/8 white).
Children were asked questions such as: ‘Which spinner should you use in order to
get your favourite flavour? Why? If I spin this spinner will I get strawberry? Why or
why not?’

The interesting point here is that Sally used the ‘why’ question and her activitywas
addressing the aims of the lesson. She seemed to be very aware of the epistemological
characteristics of the stochastical activity in her lesson plan. In the planning of the
activity, she stated that children would experience the concept of randomness and she
tried in various ways to achieve this, although at some instances during her lesson,
she presented the spinners to the children and just asked themwhat colour theywould
get without having them spin any of the spinners. Sally often asked the question why,
but her questions were sometimes phrased in such a way that they provoked specific
answers. For example, ‘For getting strawberry should we use this spinner?’ Posing
such type of questions resulted in children providing yes or no answers rather than
using words like certain, impossible, possible.

12.4.3 Stage 3: Reflection

Sally’s case is interesting from the point of view that although we recognized from
her lesson plan an awareness of stochastic activities, we can see from her teaching
that she put a lot of effort in understanding the probability concept and the presence
of randomness in her activities. On this point, in her interview she stated:

Sally This activity was aimed at children seeing different sample spaces and
making decisions with regard to which colour would win. It is not an
easy task. Well, I thought that it was easy but this idea has something
different from other concepts. You don’t know from the beginning what
will be the answer, so you have to be ‘alert’. It was a lesson where I
had to make a discussion with them….It wasn’t like the one I did with
numbers…I had to know well my lesson plan and what I aimed to
achieve, and then be able to change the plan while teaching…

Researcher What did you want children to learn?



210 E. Paparistodemou and M. Meletiou-Mavrotheris

Sally Certain, Possible, Different sample spaces…Well, the activity went
well. It was not difficult for them… and I think children built a good
understanding of the idea of randomness….

Researcher What was the difficult for you?
Sally You know, I spent a lot of time to design the lesson…finding the

scenario, making the materials…but the ‘key’ was for me to under-
stand…you know…to feel confident that I know…this subject [proba-
bility] seems easy but it is not so easy to teach… you need to know.

Researcher What was it that you needed to know?
Sally There were many times that in order to continue teaching I had to grasp

from their predictions, continue with having the experience and then
find a way lets say…giving them [to the children] a chance to ‘control’
this ‘uncontrolled idea’ [randomness]… For example, Dani was sure
that he would get brown in a fair spinner…that was not the case…At
that point I had to be able to give him an experience of randomness and
also help him build his new prediction…

Sally seemed able to recognize some critical incidents in her lessons and to reflect
on them. She paid particular attention to the provision of opportunities for children
to experience randomness, something that was critical in building on children’s
intuitions.

Similarly, Alice reflected on her lesson:

Alice I spent hours trying to find the scenario, making the materials and I felt that
everything was ready…In this lesson that was not the case… I had also to be
able during my teaching to find ways to help children adjust their predictions,
making questions and giving the right spinner…I also want to mention that
using technology to help children visualize what would happen in many turns
was critical for helping themunderstand that the spinnerswere fair, evenwhen
they did not get what they expected

In her teaching intervention, Alice used at the end of the lesson an applet with a fair
spinner, in order for the class to get an approximately equal number of occurrences
for each colour. It was very encouraging that she recognized, through her students’
predictions, the need for using technology to help children understand fairness.

12.5 Discussion

These findings suggest that combining mathematical know-how (Boaler, 2003) with
mathematical content knowledge is very important for early childhood educators to be
able to teach stochastic ideas like randomness. Teachers discussed critical incidents
they observed (Goodwell, 2006; Hanuscin, 2013). Critical incidents were crucial to
joint reflection between teachers and researchers on concrete classroom situations
(Scherer and Steinbring, 2006). Teachers in our study recognized that they needed to
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know not only what randomness is and how to deal with this concept, but also how
to make it visible in their lessons. They pointed out that successful introduction of
the idea of randomness in the early mathematics classroom requires knowledge of
how to build upon children’s prior intuitions regarding random phenomena, as well
as how to react during the lesson to students’ predictions regarding stochastic events
and to the actual outcomes of such events.

All of our early childhood teachers appreciated the importance of using materials
and finding everyday scenarios for teaching probability. In the follow-up interviews
and reflection papers, they all exhibited understanding of the fact that these tools
acted as a means for not only motivating children, but also for challenging them in
reasoning about probability. However, quite often the stochastical challenges they
posed in their classroom were rather trivial in both the planning and the classroom
implementation stages. Teachers did set learning objectives that were related to prob-
abilistic concepts, but these objectives appeared to have certain limitations in at least
some of the cases. At some instances, the learning objectives were too general,
emphasized procedures rather than conceptual understanding, and/or were discon-
nected from the designed tasks. For example, in some of the stochastic lesson plans,
one of the aims was for children to use and understand the words ‘certain’, ‘proba-
ble’ and ‘impossible’. However, although teachers and children were using verbally
these words in various scenarios, the scenarios lacked the idea of randomness. Fur-
thermore, teachers often used closed-ended questions rather than engaging the class
in investigative activities. Most of the teachers’ attention during the planning stages
was focused on what Ball and Bass (2000) spoke about the curriculum knowledge as
including knowledge of educational goals, where specific concepts appear. This type
of knowledge may help teachers appropriately sequence the introduction of statisti-
cal ideas in a curriculum (Godino, Ortiz, Roa, & Wilhelmi, 2011). However, there
is considerable variability in how teachers interpret curriculum materials. The find-
ings show that it was through actually teaching the lesson and after reflection that
the knowledge components/challenges became more evident for these early-stage
teachers. Similar findings were obtained in a previous study conducted by Paparis-
todemou et al. (2006), which had investigated prospective teachers’ awareness of
young children’s stochastic activities. The fact that similar tendencies were observed
in both pre-service and in-service teachers might lead us to conclude that awareness
is not only a matter of teaching experience, but also of the extent to which teachers
engage with the process of noticing and understanding their teaching.

In the case of Sally and Alice, we saw some degree of awareness of important
concepts like randomness. At some instances, these two teachers indicated some
understanding of randomness and of how it relates to other probabilistic concepts,
but this was not always the case. We could say that their awareness remains at the
level of action (mathematical), and it does not indicate a greater degree of awareness
that of the awareness in discipline (Mason, 1998).

Summing up, this study shows the kind of experiences that a small group of early
childhood teachers’ incorporated into the design, implementation and evaluation of
teaching related to stochastics. It can be argued that these teachers did build some
relations between theory and teaching practice, but that their transition and reflec-
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tion to more specific stochastical and pedagogical issues appeared to be a difficult
endeavour. This calls upon special attention and reflection on behalf of mathematics
teacher educators to tackle this problem.

12.6 Limitations of the Study

A number of issues warrant a cautious interpretation of the results. Turning to the
participants of the study, the early childhood teachers were all women who partic-
ipated in a voluntary capacity in the study. The researchers acted as their advisors
throughout all of the activities. This involvement was an integral part of the design
process and the implementation of tasks.

12.7 Implications for Teacher Education and Future
Research

In conclusion, it appears that the ‘mathematical know-how’ procedure (Boaler, 2003)
is a difficult endeavour in designing lessons with engaging contexts (Chick & Pierce,
2008). The early childhood teachers in this study had rich ideas on the context,
but they needed extra effort to understand the stochastical idea hidden in the tasks.
The findings of the study show that this procedure calls upon a balance between
the stochastical challenge, the management of learning and sensitivity to students’
behaviour.We suggest away of developing early childhood teachers’ implementation
of designing, implementing and reflection process by identifying critical incidents,
analysing aspects of these incidents and finally by reconsidering their planning and
suggesting changes in the light of these experiences. Moreover, it is really important
for early childhood teachers to realize the importance of accepting and experiencing
the concept of randomness in their tasks. The successful introduction of critical
incidents as a tool for reflection described by Potari et al (2011) supports further the
potentiality of this approach to mathematics teacher education.

Further research is needed to investigate approaches that teacher educators can
use to support teachers in directing balanced attention to the different dimensions that
constitute the teaching of stochastics. Our work shows that the relationship between
theory and practice becomes an element of both teacher education and researcher
development. Further research has a crucial role to play in supporting early childhood
teachers to ‘transform’ theoretical ideas in school experience.
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Chapter 13
Design, Implementation, and Evaluation
of an Instructional Sequence to Lead
Primary School Students to Comparing
Groups in Statistical Projects

Daniel Frischemeier

Abstract Concerned citizens need statistical skills to be able to participate in
public decision-making processes. The first steps in the development of these skills
can be made as early as primary school. Here, students can have initial experience
in the data analysis cycle including posing statistical questions, preparing for data
collection, collecting data, and analyzing data to answer the statistical question(s).
Some challenges are enabling students to explore large datasets and leading them
to more sophisticated activities such as group comparisons. In the first part of this
chapter, we will describe the design and implementation of a teaching unit on early
statistical reasoning for German primary school students in Grade 4 (age 9–10). Dif-
ferent representation levels (enactive, iconic, symbolic) are used to enhance students’
understanding of statistical displays. TinkerPlots was used to help students analyze
large and real datasets and to enable them to compare groups. In the second part
of this chapter, we will present results from an accompanying qualitative research
study investigating how Grade 4 students compared groups after the teaching unit
described in the first part of this chapter.

13.1 Introduction

Statistical reasoning is important for everyday life because many decisions in poli-
tics, economics, and society are based on statistics. So it is critical that we educate
statistically literate students. The cornerstone for this can already be set in primary
school. The recommendations for “data, frequency and chance” in Grades 1–4 for
primary school in Germany include posing statistical questions, collecting data, get-
ting to know how to represent data, and creating and interpreting representations
of data (Hasemann & Mirwald, 2012). These recommendations imply that students
need to conduct a data analysis cycle such as PPDAC (Wild & Pfannkuch, 1999),
where students are asked to plan data collection for a given statistical problem (P),
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prepare for data collection (P), collect data (D), analyze and interpret data (A), derive
conclusions (C), and finally to answer the problem posed at the beginning. In this
chapter, we call this application of the PPDAC cycle a statistical project and we
concentrate on how to enhance early statistical reasoning with a focus on the “ana-
lyzing and interpreting data” component of the PPDAC cycle. In order to support the
analysis and interpretation of data in statistical projects, it is necessary to develop
competence with statistical displays, to handle and explore data in large and real
datasets, and to be able to carry out fundamental statistical activities such as group
comparisons. The use of adequate digital tools is especially important for exploring
large datasets from real-world contexts. This chapter addresses the following three
questions:

• In what manner is it possible to introduce early statistical reasoning elements (in
regard to analyzing large datasets) in German primary school?

• In which ways are primary school students (Grade 4) able to compare non-equal-
sized groups before and after experiencing our teaching unit?

• In which way does the performance of primary school students (Grade 4) for
comparing groups improve after experiencing the teaching unit?

The first part of this chapter will present activities which are developed and designed
via the design-based research approach (Cobb, Confrey, diSessa, Lehrer,&Schauble,
2003). These activities are intended to enhance early statistical reasoning about ana-
lyzing and interpreting data in statistical projects. The second part of this chapter
presents results of an empirical study about comparing groups and how Grade 4
students compared groups before and after experiencing the teaching unit.

13.2 Conducting Statistical Projects in Primary School

Statistical projects, as we conceive of them, include the following six phases: (1)
posing a statistical problem, (2) generating statistical questions, (3) preparing for data
collection, (4) collecting data, (5) analyzing and interpreting data, and (6) presenting
conclusions to solve the statistical problem posed in (1). With our focus on phase
(5) there are three fundamental components in the “analyzing and interpreting data”
phase: First, students need a good understanding of statistical displays; second, they
need to be able to explore real and motivating questions in statistical projects and
explore large datasets; third, they need to be able to compare groups. We refer to
the three components as understanding statistical displays, exploring large datasets,
and comparing groups below.
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13.2.1 Understanding Statistical Displays

One central goal related to developing understanding of statistical displays in the
sense of “reading between” and “reading beyond” the data (Friel, Curcio, & Bright
2001) is to attain a global view of distributions (taking into account global features of
a distribution like center, spread, or skewness). When dealing with typical statistical
displays like bar graphs or stacked dot plots, learners often focus on local features of
the distribution (e.g., a single bar in bar graphs or single points in stacked dot plots)
and therefore have problems identifying global features like center, spread, or skew-
ness. Leading primary school students to a global view of distributions of numerical
variables is a challenge, because students often concentrate on local features like sin-
gle points or extreme values (themaximumor theminimum) of a distribution (Bakker
& Gravemeijer, 2004). For developing a global view on, for example, stacked dot
plots, so-called modal clumps (see Konold et al., 2002 and Bakker, 2004) might
serve as fruitful precursors for the concepts of center and spread of a distribution. To
develop a deeper and competent understanding of conventional statistical displays
(like bar charts) and to lead students to a global view on distributions, it might be
helpful to approach statistical displays on different representation levels (enactive,
iconic, symbolic). By deeper and competent understanding, we mean that students
are enabled to make a bar graph with given categorical data and a stacked dot plot
with given numerical data and that they are able to answer questions with their sta-
tistical displays (bar graph, stacked dot plot) on the first two levels of Friel et al.
(2001, p. 130): reading the data (“What is displayed in the graph?”, “Which cate-
gories do exist?” or “How many pupils are in category x?”) and reading between
the data (“Which category is the most frequent/seldom one?”, “Are more pupils in
category x than in category y? If yes, how much more?” or “Which title would fit to
the display?”).

In this respect as a first step (enactive), students can do “animated” statistics (in the
sense of embodied cognition, see Lakoff & Núñez, 2000) in a way that the students
are the statistical units themselves (see Biehler & Frischemeier, 2013 and Biehler &
Frischemeier, 2015). Thatmeans the students generate categories (like boys and girls)
by separating themselves, structuring and ordering themselves in these categories,
and finally creating a “human” display such as a bar chart. The transition from
animated statistics to more abstract levels can be realized with data cards (Harradine
& Konold, 2006). Here, students also can use intuitive data operations like “stack,”
“separate,” and “order” for their data exploration process to construct statistical
displays with data cards, the so-called data card bar graphs (see Fig. 13.1).

Furthermore initial multivariate data analysis activities can also be carried out
with data cards. Finally (as part of the transition from the iconic to symbolic) after
the data cards are taken away, the final stage (symbolic level) is a conventional bar
graph (see Fig. 13.2).
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Fig. 13.1 Data cards
separated by categories and
stacked

Fig. 13.2 Final stage of data
card bar graph

13.2.2 Exploring Large Datasets

For analyzing real, large datasets, the use of educational software is desirable. Tin-
kerPlots (Konold & Miller, 2011) is a educational data analysis software (Biehler,
Ben-Zvi, Bakker, & Makar, 2013) for primary and secondary schools that can help
students carry out statistical projects in primary school with large datasets. Tinker-
Plots builds on the work with data cards, stores the data in data card stacks, and offers
a plot in which the operations (separate, stack, order) can be performed. TinkerPlots
can support operations with data cards, can lead to better comprehension of statistical
displays, and can facilitate the exploration of large datasets.
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13.2.3 Comparing Groups

Group comparisons are fundamental activities in statistics (Konold &Higgins, 2003)
because they incorporate ideas like data, representation, and variation (Burrill &
Biehler, 2011). Research (e.g., Watson &Moritz, 1999) shows that at an early stage,
students in primary school are able to establish adequate strategies to compare two
groups. AlsoMakar andRubin (2009) see activities like group comparisons as oppor-
tunities to engage young students in making first informal inferences. As previously
mentioned, distributions of numerical variables, for example, in the form of stacked
dot plots, can be very challenging for students to analyze, because students often
tend to focus on single local features (values) and do not have a global view of the
distribution. Pre-formal ideas like modal clumps (Konold et al., 2002; Bakker, 2004)
can help students identify the center of a distribution and compare distributions by
focusing on the shift of modal clumps. The hat plots (Watson, Fitzallen, Wilson,
& Creed, 2008), which are also available in TinkerPlots, build on the modal clump
concept and bring students to a more formal concept of the middle 50% of the distri-
bution and therefore can help young students identify and compare other important
characteristics of distributions of numerical variables such as spread (of the middle
50%).

Frischemeier (2017) found six categories of methods for comparing groups in the
work of German pre-service mathematics teachers: center, spread, skewness, shift,
p-based, and q-based. In this scheme, center comparisons aim to compare the centers
of distributions (mean, median). Comparisons via spread can be done by comparing
the ranges or interquartile ranges of distributions. Skewness comparisons take into
account the comparisons of skewness of distributions (left-skewed, right-skewed, and
symmetric). Furthermore, it is possible to compare the shift of two distributions by
comparing the modal clumps of the distributions. Comparisons of two distributions
of numerical variables are called p-based, if a cut-point x can be given (e.g., 10 h)
and the proportion of cases which are equal or larger than this value x (e.g., 10 h)
is compared in both groups (see Biehler, 2001, p. 110). In addition, comparisons
of two distributions of numerical variables are called q-based, if distributions are
compared in regard to their quartiles or more general in regard to their quantiles.
Comparisons in regard to center, spread, skewness, shift, and p-based can already be
taught in primary schoolwith slightmodifications: Instead of concentrating on formal
concepts of center like the mean or formal concepts of spread like the interquartile
range, one could use modal clumps as precursors for center and spread.

In the following section, we will outline how we implemented these three com-
ponents understanding statistical displays, exploring large datasets, and comparing
groups in the design and implementation of our teaching unit for Grade 4 in primary
school in Germany.
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13.3 Design and Implementation of Activities to Enhance
Early Statistical Reasoning and to Lead Grade 4
Students to Comparing Groups

The teaching unit we present in this chapter was designed, implemented, evaluated,
and revised as part of two bachelor theses (Breker, 2016; Schäfers, 2017) in coopera-
tion with the author of this chapter. The lessons were taught by the bachelor students
(Breker, 2016; Schäfers, 2017) themselves. Both bachelor students were studying
teaching mathematics for primary school and have been in their fifth semester when
conducting their teaching experiment. In evaluating the teaching unit, the bachelor
students collected and analyzed written notes and TinkerPlots data files of all stu-
dents. Furthermore, they took field notes of all of the lessons in the teaching unit for
a retrospective analysis.

With the aims of helping Grade 4 students to develop understanding of statistical
displays, explore large datasets with software, and to compare groups, we designed
the teaching unit using the design-based research approach (Cobb et al., 2003).
In regard to general design issues of our teaching unit, we implemented elements
of the statistical reasoning learning environment (Garfield & Ben-Zvi, 2008). For
instance, we focused on central statistical ideas (group comparisons), used real and
motivating datasets (class and school data), used classroom activities (cooperative
learning environments), and also integrated the use of appropriate technological tools
(TinkerPlots).

The teaching unit was framed in terms of conducting a statistical project with
the six phases (listed in Table 13.1). We chose the overarching topic “Our school
in numbers.” Students investigated the leisure time activities (e.g., sports activities)
and preferences (e.g., favorite pet, favorite meal) of their schoolmates.

Table 13.1 Phases of the teaching unit

No. Phase Content

1 Statistical problem Statistical problem was discussed and posed, e.g., “Our school
in numbers—we want to get to know more about our school”

2 Generating statistical
questions

Statistical questions for the inquiry were generated, e.g., “What
does the distribution of the variable favorite pet look like for
our class/school?”

3 Preparing for data
collection

A questionnaire was created

4 Data collection Data were collected in all classes at school

5 Analyzing and
interpreting data

Students were:
• introduced to data analysis on different representation levels
• introduced to data analysis with TinkerPlots
• introduced to group comparisons

6 Presenting conclusions
and results

The results of the inquiry were presented in the form of posters
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Table 13.2 Several steps of phase (5) of the teaching unit

Step Activity Dataset used
(class/school)

Type of variable
used

1 Getting started with animated statistics Class Categorical

2 Analyzing categorical data with data cards Class Categorical

3 Introduction to categorical data analysis
with TinkerPlots

Class Categorical

4 Analyzing categorical data from our school
with TinkerPlots

School Categorical

5 Introduction to numerical data analysis Class Numerical

6 Analyzing numerical data from our class
with TinkerPlots

Class Numerical

7 Analyzing numerical data from our school
with TinkerPlots

School Numerical

8 Comparing non-equal-sized groups with
TinkerPlots

School Categorical,
numerical (group
comparison)

In this chapter, we will focus on the design and implementation of our unit on “an-
alyzing and interpreting data” (phase (5)). In Table 13.2, we show the different steps,
which dataset (small�class; large� school), and which type of variable (categori-
cal; numerical) we used to develop students’ understanding of statistical displays, to
allow them explore large datasets, and to help them make group comparisons.

The eight steps shown (Table 13.2) are intended to lead Grade 4 students stepwise
to group comparisons. Using these steps, we aim for three major learning goals to
be accomplished in phase (5) of our teaching unit; we want students to: (i) develop a
competent understanding of statistical displays like bar graphs or stacked dot plots;
(ii) use adequate software to explore larger datasets; and (iii) compare groups using
modal clumps and, later at a more formal stage, hat plots.

In the following section, we will describe our implementation of the teaching
unit in a Grade 4 class from a rural area primary school in North Rhine-Westfalia
(Central Germany). The teaching unit consists of 13 lessons, and each lesson lasts
45 min. The teaching unit is tested for the second time (Breker, 2016; Schäfers,
2017). In this chapter, we will report on the teaching unit of Breker (2016) only
because the analysis of the implementation of the teaching unit of Schäfers (2017)
is still ongoing. Fourteen students participated in the teaching unit of Breker (2016),
and twelve students participated in the teaching unit of Schäfers (2017). All students
had little previous knowledge relating to data analysis: They had collected data and
documented data in tallies in Grade 3. Furthermore, they were introduced to reading
pie graphs in Grade 3.

Step1: Getting Started with Animated Statistics

To introduce Grade 4 students to initial data operations, such as separate and stack,
we worked on an enactive level and did animated statistics. In regard to the question
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“What does the distribution of the variable favorite pet look like for our class?” the
students separated themselves into groups (dog, cat, rabbit, etc.) to build categories.
Then, they stacked (in the sense of standing one after another in a line) themselves
in the categories. Hence, a human bar graph was created.

Step 2: Analyzing Categorical Data with Data Cards

As a next step, we brought the students to a more abstract level (data cards) to bring
them closer to the symbolic level. To collect data to answer the question “What does
the distribution of the variable favorite pet look like in our class?”, each student
received a yellow sticky note and wrote his/her name, gender (b: boy; g: girl), and
favorite pet on it. An example of Anna’s (pseudonym) data card (in this case with
the variables name, gender, and height) can be seen in Fig. 13.3.

The students put the sticky notes with their characteristics on the board (Fig. 13.4,
left) and used data operations like “stack” and “separate” (they already have inter-
nalized from animated statistics) to construct statistical displays with data cards. For
instance, at first (similar to their animated statistics), the data cards were separated
by favorite pet into the categories sheep, cat, dog, rabbit, and tiger (see Fig. 13.4,
right).

Within the categories, the cards were stacked so that a distribution of the variable
“favorite pet” becamevisible (Fig. 13.5, left) as a data card bar graph. In this bar graph,
the students could still make a 1:1 assignment (data card� student) and identify their
own data cards in the different categories/bars. To arrive at a more abstract, symbolic
level, the teacher framed the data card bars with a pen and then removed the data
cards to gain a conventional bar graph with a scale on a symbolic level (Fig. 13.5,
right).

At this point, the students learned how to read and interpret the bar graphs. The
teacher discussed how to read the data and posed questions like “What is displayed
in the graph?”, “Which categories exist?” or “How many pupils are in category
x?” In addition, the teacher led the students to reading between the data by posing
questions such as “Which category is the most frequent/seldom one?”, “Are more
pupils in category x than in category y? If yes, how many more?” or “Which title
would fit the display?”

Fig. 13.3 Anna’s data card
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Fig. 13.4 Data cards unordered on board (left), and data cards separated by categories, but still not
stacked (right)

Step 3: Introduction to Categorical Data Analysis with TinkerPlots

As the third step, when the students have internalized the data card operations (in the
teaching unit byBreker (2016), this process took three lessons) and they learned about
reading and interpreting bar graphs, TinkerPlots was introduced alongside the well-
known operations (stack, separate, order) with data cards. The teacher demonstrated
the fundamental features (that the data are stored in data card stacks in TinkerPlots)
and the operations (stack, separate, order) and showed the students how to create
bar graphs in TinkerPlots analogous to the data card operations done earlier on the
board. The teacher first used square iconswith the names of the students labeled inside
(see Fig. 13.6, left), so that students could still assign each data card to themselves,
and then, the icons were fused rectangular to create a conventional bar graph in
TinkerPlots (Fig. 13.6, right).

Step 4: Analyzing Categorical Data from Our School with TinkerPlots

In step 4, students explored larger datasets in TinkerPlots. The same operations
they had internalized during exploration with smaller datasets were carried out with

Fig. 13.5 Data cards separated by categories and stacked (left), and final stage of bar graph (right)
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the larger school dataset in TinkerPlots. Here, TinkerPlots was used to carry out
the operations with data cards, and to support the exploration of large datasets. In
Fig. 13.7 (left), we can see a precursor to a bar graph in TinkerPlots with the cases
(dots) visible in each bin. As a further developed graph, we can see the distribution
of the variable favorite pet as a conventional bar graph in TinkerPlots (see Fig. 13.7,
right).

Step 5 & 6: Introduction to Numerical Data Analysis and Analyzing Numerical Data
from Our Class with TinkerPlots

After dealingwith distributions of categorical variables, the students were introduced
to the distribution of numerical variables. To accomplish this, students were first
asked to collect data on the heights of their classmates. Then, each student received
a magnetic dot and was encouraged to place it on the prepared scale on the board.
Together with the teacher, the students created a stacked dot plot of the variable
height with dots on the board (see Fig. 13.8, left). The teacher then imported the
data to TinkerPlots and demonstrated how to create a stacked dot plot of the variable
height via the operations of separate and stack in TinkerPlots (Fig. 13.8, right).

Step 7: Analyzing Numerical Data from Our School with TinkerPlots

As shown with the distributions of categorical data (steps 3 & 4), TinkerPlots allows
students to handle large amounts of numerical data and to create stacked dot plots.
In Fig. 13.9, we see the distribution of the variable height as a stacked dot plot. The
teacher first drew attention to single local values like the maximum and minimum
of the distribution and then emphasized that a global holistic perspective on the
distribution is important. For this reason, the teacher demonstrated how to identify
a modal clump in the distribution with the drawing tool (see Fig. 13.9). The modal
clump was seen as characteristic of the distribution of heights and can be seen as
precursor for examining global features (like center and spread) of the distribution.

At this stage, we observed the initial difficulties for students in our stepwise
development. Many students had problems understanding how to identify the modal
clump in the stacked dot plot distribution. Also, many had problems describing and
interpreting the distribution with the modal clump and finding a headline for the
statistical display shown in Fig. 13.9.

Fig. 13.6 Bar graph with data cards in TinkerPlots (left); final stage of bar graph in TinkerPlots
(right)
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Fig. 13.7 Precursor to a TinkerPlots bar graph (stacked dot plot graph) of distribution of variable
favorite pet (left), and final version of bar graph of distribution of variable favorite pet in TinkerPlots
(right)

Fig. 13.8 Stacked dot plot of the distribution of the variable height on the board (left), and stacked
dot plot of the distribution of the variable height in TinkerPlots (right)

Fig. 13.9 Distribution of the variable height in TinkerPlots as a stacked dot plot with identified
modal clump
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Step 8: Comparing Groups with TinkerPlots

Finally, in step 8, students were introduced to group comparisons and were expected
to apply the knowledge gained from the previous steps (describing stacked dot plots,
identifying modal clumps, etc.). As an introduction to group comparisons, students
were shown (see Fig. 13.10) two distributions of the variable PackWeight from the
dataset backpacks (which is included in TinkerPlots). Together with the teacher, the
students realized that there were 17 Grade 1 and 21 Grade 3 students in the dataset.
The students were then shown how to identify the modal clumps in each distribution
(grade one/grade three) using the TinkerPlots drawing tool. Afterward, the location
of both modal clumps was compared to conclude that in the backpacks dataset Grade
3 students tended to have heavier backpacks than Grade 1 students.

As in step 7, students had problems identifying the modal clumps in the distri-
butions. To practice the identification and the comparison of modal clumps, further
group comparisons with distributions given as stacked dot plots were conducted.
Finally, the students were shown how to calculate the median and how to use hat
plots in TinkerPlots to compare two groups as a more formal comparison procedure
than modal clumps (see Figs. 13.11 and 13.12).

Here, the teacher built on the group comparison via modal clumps (Fig. 13.10)
and used TinkerPlots to put hat plots on the marked modal clumps as a more formal
way to identify the middle 50% of both distributions (see Fig. 13.11). The teacher

Fig. 13.10 Distributions of the variable PackWeight (Grade 1 and Grade 3) with modal clumps

Fig. 13.11 Distributions of the variable PackWeight (Grade 1 and Grade 3) with modal clumps
and hat plots
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Fig. 13.12 Distributions of the variable PackWeight (Grade 1 and Grade 3) with modal clumps,
hat plots, and medians

then pointed out that the crown of the upper hat plot was shifted more to the right
than the crown of the lower hat plot and therefore stated that Grade 3 students tended
to have heavier backpacks than Grade 1 students. For the median, the teacher used
modal clumps to estimate the location of the median to have a rough approximation
of the center of the distribution (see Fig. 13.12).

13.4 Study of Primary School Students’ Statistical
Reasoning When Comparing Groups After Attending
to Our Activities

In this section, we concentrate on an empirical study conducted in the frame of the
teaching unit we described. One main goal of the teaching unit was to lead Grade 4
students to sound statistical reasoning for comparing groups via modal clumps. So
we investigated the ways in which Grade 4 students performed group comparisons
when comparing two non-equal-sized groups before and after participating in our
teaching unit.

Research Questions, Design & Method of the Study

The following research questions guided our work: In which ways are primary school
students (Grade 4) able to compare non-equal-sized groups before and after expe-
riencing our teaching unit? In which way does their performance for comparing
groups improve after experiencing the teaching unit?

To investigate these research questions, we presented Grade 4 students a
group comparison task before and after the teaching unit to observe how
they improved and in which ways their group comparison strategies changed.
We distributed an exercise sheet with two distributions of the variable “Play-
ing_computer_games_in_hours_per_week” in the form of stacked dot plots. In the
task, students were asked: “Do 4th graders tend to play more computer (in hours per
week) than 3rd graders? Explain!” (see Fig. 13.13).
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Fig. 13.13 Group comparison task from pre- and posttest

The correct statement to solve the task is that fourth graders tend to play more
computer games (in hours per week) than third graders. There are different ways our
students could solve this task based on their experiences from the teaching unit. One
possibility would be to identify modal clumps in both distributions and compare the
locations of the modal clumps. In this case, we have to mention one limitation of the
task, because the modal clumps in each distribution are very close to one another.
So the students can only identify little differences between the two distributions in
regard to modal clumps. Furthermore, the students could use p-based comparisons
to identify differences between both distributions. For example, the students could
choose 10 h as cut-point and then compare the frequencies of cases playing more
than 10 h/week in each group in regard to the total amount of cases in each group.
Another possibility would be to concentrate on extreme values (maximum values of
the distributions). This approach could lead to misleading conclusions about which
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group tends to playmore computer games (in hours per week), because themaximum
of the distribution for third graders is larger than the maximum of the distribution for
fourth graders. The students could also calculate themean (but this was not discussed
in our teaching unit) and find that fourth graders spend on average approximately
0.6 h more on playing computer games than third graders. Another (but incorrect)
possibility could be to calculate and compare the total numbers of hours in both
groups, but in this case (comparing non-equal-sized groups) such a method is not
adequate.

Data Gathering and Analysis

Eleven Grade 4 students (age 9–10 years) participated in our study. They were asked
to do the group comparison task prior to participating in the teaching unit and work
on the same task again after participating in the unit. Students recorded their conclu-
sions on an exercise sheet (see Fig. 13.13). Thus, our data constitute eleven exercise
sheets from the pre-task and eleven exercise sheets from the post-task. We used
a qualitative content analysis approach (Mayring, 2015) to analyze our data. One
fundamental step in qualitative content analysis is to generate categories. In our
case, we had to identify group comparison elements that our students used to com-
pare both groups (for an overview of group comparisons elements, see Table 13.3).
This can be done deductively, inductively, or mixed (Kuckartz, 2012). At first, we
derived categories from a deductive perspective. We used the categorization system
of Frischemeier (2017) as groundwork and adapted it to our purposes: We left out
q-based comparisons, since they are not applicable to primary school because they
involve comparing quartiles. From an inductive point of view, we broadened the
comparison perspective on shift. We added shift to two portions of our categoriza-
tion system: shift of multiple data points (shift Ps) and shift of modal clumps (shift
MC). We have also broadened our perspective on p-based comparisons and distin-
guish between p-based comparisons taking into account additive reasoning (absolute
frequencies) and multiplicative reasoning (relative frequencies). We also added the
category “extreme values,” for learners concentrating on extreme single values (like
maximum or minimum) and also the category “local, but no extreme value.” Finally,
we added “Total score” as a non-adequate group comparison element for comparing
two unequal-sized groups.

In regard to the quality of group comparison elements when comparing unequal-
sized groups, we rated the group comparison elements p-based_relative frequencies,
skewness, spread, shift Ps, shift MC, and center as sustainable group comparison
elements (“+”), because these elements take into account global features of the
distributions. Focusing on local features of distributions like extreme values (mini-
mum,maximum)was ratedwithmediumquality (“0”), and comparing unequal-sized
groups by adding up the values in each group and comparing the total scores or con-
ducting p-based comparisons using absolute frequencies was rated as low quality
(“−”). When students did not mention a group comparison element or when they
used a local (but not relaying on extreme value) explanation to compare the two
groups, the rating was also low (“−”). In Table 13.3 there is an overview of several
group comparison elements with definitions and examples.
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Table 13.3 Overview of group comparison elements with definitions and examples

Group comparison Element
(Rating)

Definition Example

None (−) No element for comparison is used –

local, but no extreme value
(−)

The element used for comparison
focuses on local data points (but not
on extreme values)

“The 4th graders play more
computer because there are
more 4th graders playing
one hour than 3rd graders.”
(Johannes)

Total score (−) Learners calculate the total score of
each distribution and compare both
sums

“The 3rd graders play 107 h
on the computer, the 4th
graders play 125 h of
computer games” (Peter)

p-based_abs_frequency (−) Learners choose a cut-point in both
distributions and count and compare
the number of data cases
larger/smaller than the cut-point in
both distributions

“They both spend the same
amount on playing
computer games, because
in both groups there is the
same amount of children
playing computer games
from 0–3 h” (Josefine)

Extreme values (0) Extreme values like
maximum/minimum or outliers of a
distribution of a numerical variable
are used to explain the difference
between the two groups

“The 3rd graders play
more, because there is one
child at 20 h” (Leon)

p-based_rel_frequency (+) Learners choose a cut-point in both
distributions and count and compare
the relative frequency of data cases
larger/smaller than the cut-point in
both distributions

No example in data

Skewness (+) The difference between the two
groups is explained with differences
in skewness (right-skewed, etc.)

No example in data

Spread (+) The difference between the two
groups is explained with differences
in spread (range or interquartile
range)

No example in data

Shift Ps (+) Learners compare the location of
more than one point in both
distributions

“The 4th graders play more
because the points are more
right” (Marc)

Shift MC (+) Learners identify modal clumps in
both distributions and compare the
shift between both modal clumps

“The 4th graders play more
computer because the
clump is more right”
(Fiona)

Center (+) The difference between the two
groups is explained with differences
in center (mean/median)

No example in data
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Table 13.4 Overview of group comparison performance (and change: before/after) of all students

No. Name Correct
statement
(before)

Group comparison
element (before)

Correct
statement
(after)

Group comparison
element (after)

1 Peter Yes None (−) Yes Total score (−)

2 David Yes None (−) Yes None (−)

3 Lorenz Yes None (−) Yes local but no extreme
value (−)

4 Lars No Extreme value (0) No Shift MC (+)

5 Marc No Extreme value (0) Yes Shift Ps (+)

6 Noel No local but no extreme
value (−)

Yes Shift Ps (+)

7 Sarah No p-
based_abs_frequency
(−)

Yes Shift Ps (+)

8 Fiona Yes None (−) Yes Shift MC (+)

9 Christian Yes None (−) No None (−)

10 Johannes No Maximum (0) No Idiosyncratic (−)

11 Josefine No Maximum (0) No p-
based_abs_frequency
(−)

We analyzed the exercise sheets for the pre- and post-tasks for all eleven students.
Firstly, we have analyzed whether the students made the statement that the fourth-
grade students tended to play more computer games per week than the third-grade
students. The second step of analysis was to document which group comparison
element was used to make the comparison statement.

13.5 Results

The results of our coding process can be seen in Table 13.4. Column three indicates
whether in the pre-task a statement like “the 4th grade students tended to play more
computer games per week than the 3rd grade students” was given, and column four
identifies which comparison element was used to compare both groups in the pretest.
Column five indicates whether in the post-task the desired statement was given, and
column six shows which comparison element was used in the posttest task.

Five (Peter, David, Lorenz, Fiona, and Christian) of eleven students were able to
state that fourth graders tend to spend more hours on playing computer games than
third graders—even before participating in the teaching unit. After experiencing the
teaching unit, seven out of eleven students were able to make this statement. This
is, at first glance, not a large improvement. But the improvement becomes clearer
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Fig. 13.14 Written note of Marc (pretest)

when examining the quality of the group comparison elements used by students to
solve the task. As part of the pretest, none of the five students (Peter, David, Lorenz,
Fiona, and Christian) whomade the statement (“4th graders tend to spendmore hours
on playing computer games than 3rd graders”) used an adequate group comparison
element to state the difference between both groups. In the posttest, four (Marc, Noel,
Sarah, and Fiona) of the seven students (Peter, David, Lorenz,Marc, Noel, Sarah, and
Fiona) who provided the statement (“4th graders tend to spendmore hours on playing
computer games than 3rd graders”) used adequate group comparison elements to state
the differences between both groups. They used the shift of multiple points (Marc,
Noel, Sarah) or the shift of modal clumps of the distributions (Fiona) to compare
both groups.

Examining the work of Marc on the group comparison tasks reveals how the
quality of the group comparison element he used changed following participation in
the teaching unit. In the pretest,Marc compared both groups andwrote on the exercise
sheet that “the children in class 3 (tend to spend more time on playing computer
games), because there is one child at 20 (maximum of the distribution of the variable
in class 3)” incorrectly, as can be seen in Fig. 13.14. Thus, he took into account local
features of the distribution; in this case, themaximum (20 h/week) concluded that the
pupils of class 3 tend to spend more time playing computer because the maximum
of the distribution of the variable “Playing_computer_games_in_hours_per_week”
is larger in class 3 than in class 4.

In the posttest,Marc showed amore sophisticated comparison view (“The children
of class 4 play more, because the points are more at the higher numbers”) as we can
see in Fig. 13.15. Here, Marc compared both groups correctly and identified a shift
(shift Ps) of multiple points to the right in the distribution of the variable in class 4
compared to the distribution of the variable in class 3.

In all, we can say that many of our Grade 4 students were able to make the
statement (“4th graders tend to spend more hours on playing computer games than
3rd graders”) even before being confronted with group comparison tasks, but the

Fig. 13.15 Written note of Marc (posttest)
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group comparison elements used by the students lacked quality before the teaching
unit. This quality seemed to improve after engagement in the teaching unit.

13.6 Conclusion and Discussion

In the introduction to this chapter, we outlined which competencies are demanded
from German primary school students in the field of data analysis (Hasemann &
Mirwald, 2012). From a retrospective view and taking into account the results of
our study, we can say that the understanding of statistical displays and also the com-
parison of distributions can be supported already in primary school by approaching
statistical displays via different representation levels (enactive, iconic, symbolic) and
using educational software like TinkerPlots to support young children to explore data
in larger datasets. In addition, the research presented in this chapter shows us the
potential to engage young students’ sophisticated statistical reasoning with some
pedagogical support at an early stage and gives us design ideas for instructional
sequences to lead young children to group comparisons. One major implication is
that foundational work with concrete activities and materials should be done before
and alongside using TinkerPlots. Specifically, it seemed to help that the students at
first identified themselves as statistical units (animated statistics, enactive level), then
put their characteristics on data cards (enactive and iconic level), and finally were
enabled to use the data operations stack, separate, order, and fuse (rectangular) in
TinkerPlots to explore larger datasets.

With regard to the theme of this book, the instructional sequence we have pre-
sented in Sect. 13.3 of this chapter and the use of TinkerPlots shows how the statistical
reasoning of students can be already enhanced at primary school. In addition, group
comparisons can serve as fruitful activities taking into account fundamental statisti-
cal ideas and therefore confronting young children with these fundamental statistical
ideas at an early stage. Our study (see Sect. 13.4 of this chapter) shows that some stu-
dents can compare groups already at primary school level. Makar and Rubin (2009),
as mentioned in the introduction of this chapter, see the comparison of two distribu-
tions as one way to engage young students in making informal inferences. This fact
and the observations and results of our study may lead us to the conclusion that it
is important to confront young children with activities like group comparisons very
early. The instructional sequence presented in this chapter can be used and adapted
for other teaching projects not only in Germany but also internationally to develop
young students’ statistical reasoning, especially in regard to comparing groups. One
recommendation for practice and pedagogical suggestions arising from our experi-
ences of the teaching units [see Breker (2016) and Schäfers (2017)] is to introduce
students to TinkerPlots in these three steps and on these three representational lev-
els, so that the operations with data cards can be transferred to data operations in
TinkerPlots and so that students are led to a competent understanding of statistical
displays.
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As we have already learned in Konold et al. (2002), in Bakker (2004), and in
Bakker andGravemeijer (2004),modal clumps offer fruitful precursors to identifying
global characteristics of distributions like center or spread and also can help students
compare two distributions. In our instructional sequence, we have first concentrated
on summarizing numerical data (stacked dot plots) using modal clumps and then we
have usedmodal clumps as tools to compare distributions. Ourmain focus was on the
second component: the use of modal clumps for comparing groups. To lead students
to compare groups using modal clumps, we have designed an instructional sequence
which we have described in Sect. 13.3 above. But working with modal clumps also
causes difficulties for Grade 4 students. As experienced in our teaching projects,
students struggled to identify modal clumps in distributions of numerical data in the
form of stacked dot plots. A further difficulty we experienced is that Grade 4 students
have problems describing and interpreting the modal clump of the distribution of a
numerical variable. One further pedagogical suggestion is that the identification of
modal clumps has to be discussed intensively in the classroom for different examples
(small dataset, medium dataset, and large dataset) and different types of distributions
(skewed, symmetric). Looking forward, in our point of view hat plots may offer an
adequate next step after modal clumps, but from the experiences of our teaching
units we recommend introducing modal clumps first, to develop the notation and
a sense of the meaning of a hat plot. After the modal clump (drawn by hand) has
been internalized as a pre-formal stage of identifying the center or the spread of the
distribution, hat plots can help to set the stage for group comparisons in TinkerPlots
and later one could “set the stage for explorations of alternative ways to define modal
clumps (e.g., 1/3–2/3 of the range, 40th–60th percentile)” (Konold et al., 2002, p. 6).
The framework (see Table 13.3) listing different elements for comparing groups,
their definitions, and examples can be used and refined for further research projects
focusing on students’ statistical reasoning when comparing groups.

In our research pointed out above, we have only concentrated on the written notes
of our students, but we have not interviewed our students or collected video data
from the working processes of our students. With a laboratory interview study, we
intend to get insight into the cognitive processes of primary students when comparing
groups and to develop a sense of the difficulties primary school students face when
comparing groups. So we plan to conduct an interview study where primary school
students are confronted with a group comparison task in TinkerPlots and are asked to
think aloud when comparing both groups with TinkerPlots. With this study, we want
to investigate how students identify modal clumps in their distributions, whether
they see modal clumps as representatives for the whole distributions, and which
other group comparison elements they might use to identify differences between two
groups.
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Chapter 14
Data Representations in Early Statistics:
Data Sense, Meta-Representational
Competence and Transnumeration

Soledad Estrella

Abstract Citizens today are immersed in a very complex and technological world,
which requires them to analyse and discuss alternatives, as well as to argue and make
decisions. Educating students as citizens requires familiarising them with statistics
and giving them educational opportunities so they can make decisions based on data.
In order for students to be able to understand key statistics concepts better and to
begin to develop statistical thinking, early development of the capabilities of explor-
ing and learning from data is beneficial. This chapter shows that by strengthening
teachers’ reflections in lesson study groups, teachers innovate in the classroom and,
for example in grade K (5 years old) and grade 2 (7 years old), they are then able
to get pupils involved in resolving exploratory data analysis situations. The chapter
goes on to present diverse data representations produced by pupils, details some
components—statistical, numerical and geometric—of the different representations
and identifies some transnumeration techniques used by students to understand the
behaviour of the data. Our findings which are based on the consideration that external
representations are cognitive tools that give meaning to discovering, communicating
and reasoning with data account for the early understanding of fundamental statisti-
cal concepts, the richness of the graph and table meta-representations created by the
pupils, and the data sense making they develop.

14.1 Introduction

Citizens today are immersed in data, and as a result, promoting statistical literacy has
become a fundamental responsibility. Many school curricula have introduced statis-
tics and probability courses to help students become competent in everyday decision-
making regarding data. This literacy involves being able to read and interpret data in
tables, graphs and summaries, and being able to use such tools tomake arguments that
include evidence of their validity (Ben-Zvi & Garfield, 2004). In order for a citizen
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to participate in democratic society in an informed manner, the early and progressive
development of abilities with graphs is necessary. This includes the reading, writing
and interpretation of graphical representations. Statistical literacy gives a person the
ability to critically interpret and evaluate information, surveys and statistics studies
appearing inmedia coverage, aswell as to appreciate the valueof statistics in everyday
life, civic life and professional life as consumers of data (del Pino & Estrella, 2012).

In this chapter, we look at the challenging process of representing (modelling) for
pupils in the first years of school. This involves exploration of a set of raw data before
they then go on to build their own representations to reveal and provide evidence of
the behaviour of the data, its patterns and relationships.

14.2 Background

14.2.1 Statistical Literacy

The ideas of Cobb and Moore (1997) have been repeated many times in statistics
education, particularly the notions that “data are not just numbers, they are numbers
with a context” (p. 801) and “in data analysis, context providesmeaning” (p. 803).We
believe that data are the centre of statistics and they must, therefore, occupy the same
position in school statistics teaching and learning. In order to achieve meaningful
statistics instruction, the students must learn about and develop data sense, i.e. a
certain numerical sense within a context that provides meaning.

Working with problems and data in context is an opportunity to build authentic
literacy and to begin to cement statistics thinking, as expressed by Pfannkuch and
Wild (2000). The introduction of exploratory data analysis (EDA) (Tukey, 1977)
changed the teaching paradigm for statistics learning, because, as opposed to simply
answering set questions, it proposed more flexible and exploratory analysis in search
of what can be found in the data. EDA applies methods and ideas needed to organise,
represent and describe data, using visual representations such as tables, diagrams,
graphs and others, as well as numerical summaries.

It takes time to develop statistical ideas linked to this literacy, and it is there-
fore advisable to begin in the first years of school (English, 2010, 2013; Franklin &
Garfield, 2006; Shaughnessy, 2006). Several research studies into statistics educa-
tion have looked at graphical representations (e.g. Aoyama, 2007; Estrella, Olfos,
Morales, & Vidal-Szabó, 2017; Friel, Curcio, & Bright, 2001; Pérez-Echeverría,
Martí, & Pozo, 2010), proposing exploratory data analysis as an effective focus for
gaining literacy in this area (e.g. Ben-Zvi &Arcavi, 2001; Ben-Zvi &Garfield, 2004;
Burgess, 2011; Estrella & Olfos, 2013; National Council of Teacher of Mathemat-
ics [NCTM], 2000, 2009; Shaughnessy, 2006). Regarding graphical representations,
Pfannkuch and Wild (2004) believe that even simpler tools such as statistical graphs
can be considered statistical models, since they are a statistical way to represent and
think about reality.
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14.2.2 Representations in Statistics Education

Chilean primary school curricula suggest that students should be able to argue and
discuss solutions they present to certain problems, supporting their reasoningwith the
use of different ways to communicate their ideas, including representations (Chilean
Ministry of Education [MINEDUC], 2012). The mathematics curriculum states that
students should be able to use awide variety of representations and apply themfluidly.
However, this requirement limits students’ learning to simply using and reproduc-
ing pictorial representations, such as diagrams, figures and graphs, to communicate
(MINEDUC, 2012). As with many primary school curricula, it fails to consider the
production of original and unique representations by the students themselves.

Our perspective aims to revitalise the spirit of EDA to place focus on original
representations that emerge from decisions made by the students in search of better
comprehension of how data behave, which is not necessarily achieved with rep-
resentations from standardised school reproductions established by the curriculum.
Statistics learning includes opportunities to select methods to graph and analyse data,
and in statistics, the choice of how to analyse the data is equally (if not more) impor-
tant than the accounts and calculations used to carry out the procedure (Garfield &
Franklin, 2011, p. 136). Very few studies explore students’ interactions with different
representations (e.g. Estrella et al., 2017;Martí, 2009; Pérez-Echevarría, & Scheurer,
2009), although the interpretation and construction of representations can lead to bet-
ter comprehension of statistical concepts (Duval, 1995; Tippett, 2016). This lack of
attention on how to work with representation in schools can limit students’ learning
regarding representation (diSessa, 2004).

There is very little systematic research that looks at the role of the signs that com-
prise a representation built by students (e.g. Earnest, 2015; English, 2012; Estrella
et al., 2017;Martí, 2009). Research into studentswith a high level of understanding of
the number line and of the structure of a rectangular grid shows that they possess the
capacity to acquire graphical abilities quicker than others (Mulligan, Mitchelmore,
English, & Crevensten, 2013). Therefore, it is necessary to document, describe and
classify the models and representations students use, as well as the explanations they
give for their statistical ideas as solution alternatives for a given problem that requires
data management. Hence, a contribution to the area of statistics education would be
to provide evidence of the components of data representation and thus demonstrate
the improved understanding of the behaviour of data shown by some students in the
representations they build.

14.2.3 Reading and Building Our Own Representations

The process of deciding what to do with a set of data in order to understand its
behaviour is critical. Reading previously constructed data representations has been
studied (e.g. Curcio, 1987; Shaugnessy, Garfield, & Greer, 1996), but there are few
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studies on the creation of data representations (either typical or invented) and the
complexity of building them.

The following section describes some concepts that support our teaching proposal
and its aim to develop statistical thinking:meta-representational competence (MRC),
some components of representation, transnumeration, statistical thinking and data
sense.

14.3 Conceptual Framework

14.3.1 Meta-Representational Competence

MRC describes the complete range of abilities that a subject possesses to be able
to build and use external representations (diSessa, 2004; diSessa & Sherin, 2000).
It includes the ability to select, produce and use representations constructively, and
to criticise and modify, understand and explain and even design new representations
(see Table 14.1).

MRC recognises the native ability of students to create their own representations,
an ability that is gradually developed through cultural practices inside and outside the
classroom.MRC also identifies twomain categories of native ability in students: first,
a wide range of resources to design representations, including perceptual attributes,
such as length, size, numerosity, colour and second, judgement of the representation.
The term representational competence covers a wide range of activities involved in
representing, while the prefix “meta” is added in order to avoid limiting the term to
typical representations or those taught in school as methods of reproduction.

Table 14.1 Aspects of
meta-representational
competence

Aspects of MCR Focus

Invention The ideas and abilities of the students
that allow them to invent or design new
representations

Criticism The knowledge of the students that
allows them to judge and compare the
quality of representations in terms of a
good representation

Functionality The reasoning employed by students in
order to understand the purpose and use
of different types of representations

Learning The learning and reflection that reveal
new awareness by students of their own
understanding of representations and of
gaps in their knowledge

Note Aspects summarised from diSessa and Sherin (2000, p. 388)
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14.3.2 Some Components of Representations

In the construction of data representations, coordination among statistical, numerical
and geometric components associated with data organisation is activated. These are
assumed to have been built on mathematics abilities in the early development of
the students. The ability to represent requires coordination between geometric and
numerical quantities (Duval, 2014; Earnest, 2015; Estrella et al., 2017).

As a component of statistical structure, the concept “variable” crosses all areas
of statistics and is central to data representations and their behaviour. A variable
is understood as any measurable characteristic of a set of individuals that can take
different values and can be categorised.

As a component of numerical structure, “frequency” is the cardinal number cor-
responding to each category of a variable. When part of a representation, it is aligned
with other frequencies, but separated from the qualitative variable. Therefore, in
determining absolute frequency it is necessary to obtain the cardinal number for the
whole set. Through understanding the principle of cardinality, students can relate
sets of different sizes depending on their quantity.

Estrella, Olfos, Vidal-Szabô, Morales and Estrella (2018) define some compo-
nents of geometric structure in a graphical data representation, including base-line,
linearity-graph and unit-of -equal-size. The first establishes the base on which the
data representation is placed and then built. The second allows comparison of heights
or ordered distribution over a physical space, and the last gives the visual equivalency
between each data point. Specifically, the base-line component is the base given by
a line (either explicit or implicit) on which the data organisation begins in order for
the representation to then be built, and linearity-graph is the linearity characteristic
of data organisation into columns or rows, in which unit-of -equal-size is simulta-
neously respected along with the conservation of the space between each unit of
data represented. These components are essential for comparing and visualising a
relationship among the data.

14.3.3 Transnumeration

This is a type of statistical thinking that is carried out when beginning a process of
transforming data into a representation or changing a representation or coordination
of representations, with the intention of gaining better understanding (Pfannkuch &
Wild, 2004). This dynamic process involves interpreting the information received
from the data representations, returning to the context to make assertions, answering
questions or asking new ones. The transnumeration process comprises transnumera-
tion techniques, such as creating a new variable, changing the type of variable, organ-
ising the data differently or representing it visually, sorting data, forming groups,
graphing a graph or table, calculating central tendency or measure of the spread,
calculating frequencies, selecting and analysing a subset of the data (Chick, 2003).
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14.3.4 Statistical Thinking

This is a way of thinking that involves the inductive reasoning common to statistical
processes (e.g. identification of data patterns). This type of thinking includes gener-
alisation through the relationships between covariant quantities (e.g. correlation), the
representation of these relationships in different ways using natural language, sym-
bolic expressions, tables and graphs, and fluid reasoning between representations to
interpret and predict the behaviour of functions (Blanton, Levi, Crites, & Dougherty,
2011).

14.3.5 Data Sense

This conceptual framework ends with the notion of data sense, which we have built
and presented based on the idea of numerical sense reviewed byBerch (2005). There-
fore, the proposed elements of data sense come from key ideas and techniques com-
mon in statistical processes (Burrill & Biehler, 2011). They include the ability to do
the following:

1. Approximate or estimate based on data behaviour.
2. Make data comparisons of numerical magnitude in different data representa-

tions.
3. Use numbers and quantitative methods to communicate, process and interpret

information from the data and from contextual knowledge.
4. Recognise the need for data, searching for links between the new information

and prior conceptual knowledge.
5. Understand numbers in context as reference points for measuring variability in

the uncertain real world.
6. Move seamlessly between real-world quantities and the world of statistical

data.
7. Represent data units in multiple ways depending on the context and the aim

of the data representation, moving between different representations to gain
a better understanding of the behaviour of the data and to make predictions
beyond the data.

8. Think or speak in a sensible manner about the behaviour of the data in a statis-
tical problem, without making any precise calculations.

9. Recognise research as a statistical process that includes a problem, plan, data
collection, data analysis and drawing of conclusions, using the data as evidence.

10. Be aware that a research process is taking place with a real experience with data
and the understanding of statistical concepts, using everyday decision-making.
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14.4 Methodology

14.4.1 Participants and Context

This study details the experiences of five pupils who attend the same Chilean school,
and whose performance is average. Three are preschool pupils, 5 years old, (from
a class with 27 pupils) and two are primary pupils, 7 years old, (from a class of 38
pupils). The pupils experienced an open-ended data organisation lessonwithout prior
instruction. Both lessons were designed by teachers at their school (one group of four
preschool teachers and another group of second grade 4) during eight sessions carried
out at the school andmediated by four researchers. The researchers asked the teachers
to participate in a course on school-level statistics through lesson study (Estrella,
Mena-Lorca, & Olfos, 2018; Isoda, Arcavi, & Mena, 2007; Isoda & Olfos, 2009)
and to promote the connection between theory and practice in statistics education.

14.4.2 Statistics Lesson Design by Teachers in Lesson Study

Figure 14.1 shows the lesson study cycle as formulated and used by the groups of
teachers. They worked together to formulate their considerations regarding learning
statistics and made professional decisions in order to design their lesson plan.

We then analysed the representations built by the pupils with pen and paper when
performing an open data organisation task with categorical variables (grade K: “the
class’s favourite sports activities”; and grade 2: “water consumption in the home”),
including some video-recorded transcriptions of pupil interviews. After describing

Fig. 14.1 Lesson study cycle implemented for statistics
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and analysing the cases, students’ MRC is studied based on the representations,
transnumeration techniques used in the statistical process, the data sense and the
components demonstrated in the representations.

The cases presented here were selected to answer the central statistics question of
each lesson, respectively, due to the richness of the productions made by the pupils
while completing the lesson, and their degree of participation when expressing their
ideas during the lesson and in the interview.

14.5 Statistics Lessons in Preschool and School

14.5.1 Preschool Lesson (Three Preschool Pupils)

A group of teachers of grade K developed a lesson with a theme that would be
interesting to the children. The pupils were asked about their favourite sports activity
with the idea that the most popular answer would then be organised for the children
during one of their break times. This group met for 120 min a week for two months.
They planned a lesson and implemented it on three occasions, improving it each
time in terms of the teaching for their students’ statistics learning. The teachers were
involved in a research cycle (Wild & Pfannkuch, 1999) known as Problem, Plan,
Data, Analysis and Conclusions (PPDAC). They experienced the entire statistical
process and took it to the classroom in order for their pupils to then conduct the
same cycle in a statistics learning setting using the EDA paradigm (Ben-Zvi, 2016),
applying real data from the school context. The central question of the statistics
lesson was: What is our class’s favourite sports activity?

Grade K Cases: Juan, José and Maria

The data representation performed by the pupils of grade K contained two critical
moments.

Moment 1: The pupils gave evidence of categorisation of the variables (the class’s
favourite sports activity) and therefore, of implicit comprehension of the concept of
variable, by showing in their data representation six activities classified by type
(jumping, running, skating, bike-riding, playing basketball and playing football).

Moment 2: After observing the presentation of the representations of their class-
mates, three pupils showed their data representation to the class, and one of them,
on his own initiative, asked for a pencil and wrote down the cardinal number of each
categorised activity, thus answering the questions of the statistics task regarding the
class’s favourite sports activity.

The pupils demonstrated understanding of the statistics component variable and
its categorisation. However, the geometric component was less developed, since the
data were cut out in different sizes and shapes, and not all were placed on the same
base-line (see third category in Fig. 14.2). For this grade, the subsequent emergence
of the numerical component was notable. In this case, it was the frequency of the
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Fig. 14.2 Preschool pupils’ data representation, and the moment they calculated and recorded
frequency

variable, and in the answer, the pupil not only stated the cardinal number “10”, but
also the context, “the favourite activity is bike-riding”.

At several times, the pupils applied transnumeration techniques (see grey boxes
in Fig. 14.3), by ordering the data and grouping them to represent them, creating a
new variable (frequency) and analysing a subset of the data.

The preschool pupils participated in a lesson that allowed them to build the cat-
egories of the variable, absolute frequency, functionally, and to use subitizing and
counting strategies (see Figs. 14.2 and 14.3). This learning experience allowed them
to develop their data sense, as the pupils were able to express their ideas on the
behaviour of the data without making precise calculations (Moment 1) and to demon-
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Fig. 14.3 Suggested components of data sense and transnumeration techniques in the task of rep-
resenting data performed by three preschool children

strate their ability to use numbers and cardination to communicate and process the
data in order to obtain information from their contextual knowledge (Moment 2).

With regard to MRC, this group of pupils demonstrated the aspects of invention
and learning, as they created and designed their own representations. The learning
aspect was shown at the moment when the pupils became aware of their own under-
standing of the data representation they had built and of the usefulness of absolute
frequency to answer the central question.

14.5.2 Second Grade Lesson (Two Pupils)

The group of four grade 2 teachers designed and studied an open-ended problem
lesson related to water consumption in the home. These teachers met for 120 min a
week for two months. They discussed and planned the lesson, implementing it over
three sessions, as with the grade K lesson.

The statistical situation proposed by the four teachers focused on the question:
How can we organise data to help reduce water consumption in the home? The
teachers chose real data on the daily water consumption of a Chilean family. The
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Fig. 14.4 Diagram of data
lists in the process of being
built

data were given to the students in a worksheet with 36 icons, each representing 1 L
of water consumption for a typical family (13 toilets, 10 showers, 8 bathroom sinks,
4 kitchen sinks and 1 garden hose). The students produced different representations
of the 36 given data points to answer the central question.

The teachers were involved in the entire statistical process of the PPDAC, which
they took to the classroom with the objective that the students would perform the
same cycle in an EDA setting and reason with data in a familiar context, such as
caring for water use.

The Second Grade Cases: Julia and Her Diagram of Data Lists with Frequency

In the organisation and representation produced by Julia (see Fig. 14.4), it can be
seen that the construction process she employed began by her choosing and counting
of the icons on water consumption (data) given on the worksheet. She then wrote a
word related to the icon and drew a square around it. She then wrote “- 13” (i.e. a
dash and the number 13) on the square with the word and drew 13 icons and then
another border around them. Based on this, we can interpret that Julia counted and
classified the icons to identify and write the category of the variable and the cardinal
number. She repeated this procedure for the remaining data in an unusual order (in
the west) from right to left.

In Julia’s representation, see Fig. 14.4, it can be seen that she organised the data by
separating the quantitative from the qualitative. She built vertical lists with repeating
icons characterised by: conservation of unity (icons of similar sizes); linearity-graph
use in the bars (vertical lists of icons); and base-line (on which the sign of the
categorical variable is written with its cardinal number and the bars).

Julia was interviewed and asked about some of her actions and the characteris-
tics of her representation (see Fig. 14.5). She creatively invented a diagram of the
data with frequencies and applied her judgement to the representation she built, thus
demonstrating the four aspects ofMRC: invention, criticism, functionality and learn-
ing (Table 14.1). The decisions Julia took in building her data representation allowed
her to compare the data lists and reach correct conclusions based on the relationship
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Fig. 14.5 Suggested components of data sense and transnumeration techniques in the task of rep-
resenting data performed by Julia, grade 2

Fig. 14.6 Icon table of
absolute frequencies created
by Manuel

of the variable category to its frequency, stating that the use of the highest form of
water consumption should be restricted, i.e. the variable category with the highest
frequency.

Manuel and His Absolute Frequency Table

Figure 14.6 shows a different representation produced by Manuel, which is a hor-
izontal table comprised of a rectangle with two rows and five columns. The upper
cells show the icons that represent the variable categories, and the lower cells show
cardinal numbers for each category, i.e. the absolute frequencies.

In the process of building his data representation, Manuel outlined an upper seg-
ment and from this drew the cells, filling each with a drawn icon (the categorical
variable) and below this he wrote the corresponding cardinal number. This procedure
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Fig. 14.7 Suggested components of data sense and transnumeration techniques in the task of rep-
resenting data performed by Manuel, grade 2

was repeated for each category, drawing a representative icon and thus demonstrating
a certain linearity-graph aspect of the cells (verticality of the iconic lists).

Manuel classified the data belonging to the same category of a set of data pre-
sented in iconic form and then searched for a relationship that would allow him to
answer the question. By observing the repeated data icons, he saw that there was
a representative of them for each category of the variable and he expressed this by
drawing a single icon. Each iconic data symbol represented a category of the variable,
and each category was placed on the header upper of the horizontal table of absolute
frequencies.

The context of water use awareness gavemeaning to the variable “water consump-
tion” and to the categories that emerged, which were visualised as classes (categories
of the variable) and ordered horizontally in the table of frequencies (see Fig. 14.6).

In the interview, Manuel indicated understanding of the tabular data represen-
tation as a tool that allowed him to simultaneously verify the cardinal value and
the frequency without having to count again. By inventing this data representation,
Manuel moved away from the individual data point and presented an (aggregated)
global summary, and he recognised the situation context and the functionality of
his table of frequencies corresponding to this, thus providing indications of strong
MRC, i.e. all the aspects (invention, criticism, functionality and learning) described
in Table 14.1. The number sense within the context is articulated with data sense that
emerges from the representation used in his discourse to communicate (see Fig. 14.7).



252 S. Estrella

14.5.3 The Role of the Teacher in Statistics Lessons

In lessons with open problems as proposed by both groups of teachers (preschool
and grade 2), it was the pupils who spoke, thought, questioned and built answers;
they argued, communicated and discussed with their peers. The role of the teacher
was to encourage the pupils to listen to each other, to take an interest in the questions
posed by their classmates and to make an effort to understand the presentations they
constructed and the underlying statistical concepts they used.

By implementing the PPDAC research cycle in an EDA setting, the teachers
experienced the entire statistical process and were therefore aware of the challenge
facing the pupils. There were some groups of pupils who initially used the data as
drawings without any meaning and who could not understand the complexity of the
data organisation, as they had not comprehended the contextual meaning of the data
(specifically, 21 of the 27 pre-schoolers, and 8 of the 38 2nd-graders). However, in
the end they joined the majority of the groups who presented and were able to detect
patterns, irregular questions and trends. In order to induce statistical thinking, the
teachers conversed with the groups of pupils, promoting criticism, exploration and
visualisation of the behaviour of the data, as they had planned, and thus bringing the
pupils’ emerging statistics ideas into play.

14.6 Conclusions

The first years of school provide an ideal setting for promoting statistics, not only
due to the importance of the subject in several different domains of modern soci-
ety, but also because it reinforces understanding of various mathematical concepts
(e.g. numbers, measurement, counting, cardinals, partitions, classification, opera-
tions, even distribution, sorting, etc.), while at the same time integrating students
into a context in order to awaken the development of their statistical thinking.

Through the products of grade K and grade 2 pupils, we have found evidence of
essential components in data representations and of increased understanding of data
behaviour acquired by the pupils when freely building their own representations.
They used graphs and tables, moving from individual data points to aggregated data.
This gave them the opportunity to attain deeper understanding of the characteristics
of a data set and its relationships, through individual data manipulation.

The teachers proposed the objective of developing statistics reasoning and not
simply learning specific graphical representations, aiming to develop a certain data
sense, encouraging the pupils to see the data representations as a whole instead of
individually (moving from individual data points to aggregated data).

The experience of preparing lessons as a group allowed the teachers to experience
the entire statistical process and then repeat the biggest part of this process with
their pupils. This research process included specification of the problem and the
central question of the research, data collection, data analysis, data representation,
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interpretation and discussion of the results, and communication of the conclusions.
The pupils then ordered, classified and organised the data, observing that the data
vary and detecting the behaviour of most of the data within the context.

In the specific cases described above, there is notable richness in the graph and
table meta-representations created by the pupils. Only a few of the pupils, while talk-
ing with their classmates, made links between the cardinal numbers and the context
(frequency of the associated variable) or between the iconised data and the context
(unit-of-equal-size); either this, or they separated the qualitative (categories of the
variable) from the quantitative aspects and used the cardinal linearly (frequency).We
believe that this shows that the pupils can develop data sense, as the cardinal number
gives meaning within context. They demonstrated an interest in the variable, observ-
ing its behaviour through the representations they built, and they made sure the icons
were of a similar size, spacing them out homogenously, thus allowing comparison
between the categories of the variable that emerged from the initial classification.
These cases demonstrated the aspects ofMRC, transnumeration techniques in action,
and the data sense the pupils were developing.

14.7 Projections and Opportunities

Recently, in statistics education systematic research has begun into statistical rea-
soning in the first years of pre-school, primary school and secondary school. Several
questions have arisen in the field of early statistics, providing new opportunities
for research and action from a focus on teachers and teacher trainers, such as the
following:

Which new demands for statistics teaching are teacher trainers, teachers and first
grade pupils facing?
How can early statistic thinking be developed progressively in children?
What type of teaching promotes early conceptual understanding and attitude com-
prehension in statistics?
Does interdisciplinary lesson study promote effective lessons for thinking statisti-
cally?
How does the written curriculum allow early move of EDA to informal statistical
inference (ISI)?
How can data sense that provides statistical literacy be promoted from early infancy?
These questions require further research.
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Chapter 15
Supporting Young Children to Develop
Combinatorial Reasoning

Lucía Zapata-Cardona

Abstract The goal of this chapter is to discuss young children’s approaches to
dealing with combinatorial tasks and to present some teachers’ strategies to support
children’s combinatorial reasoning. The discussions are based on clinical interviews
with young children (ages 6–8) who were asked to solve a combinatorial task cen-
tered on the process of combinatorial counting. Childrenwere interviewed in a private
setting and were given some manipulative to help them visualize, explore, model,
and solve the combinatorial task. The results revealed by the clinical interviews
were contrasted with those disclosed by the literature on children’s combinatorial
development. Such a contrast suggests that some strategies could be used to sup-
port children’s combinatorial reasoning. One of the important contributions of this
chapter is that it reveals the close relation between young children’s combinatorial
reasoning andmultiplicative reasoning. Consequently, teachers’ strategies to support
young children’s combinatorial reasoning need to be grounded on the development
ofmultiplicative reasoning and to support exploration of combinatorial counting pro-
cesses. The chapter closes by presenting and discussing some strategies for teachers
to support young children in their combinatorial reasoning.

15.1 Statement of Problem

Nowadays, probability is a topic integrated in most elementary school curricula in
different countries. Probability includes, among other topics, combinatorial counting
which is considered a very fundamental topic in the development of mathematical
ideas, and which is based on additive and multiplicative reasoning

1
(Shin & Steffe,

2009). Although combinatorics seems to be a high-level topic for elementary school

1Additive reasoning is related to children’s first organized attempt to understand and operate with
adults’ number system and it is mainly based on addition and subtraction while multiplicative
reasoning recognizes and uses grouping to manage the number system.
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curricula, literature has shown that the evolution of combinatorial counting is essen-
tial in the establishment of the ideas of chance and probability. Piaget and Inhelder,
for example, stated that “the child constructs his notions of probability by his ability
to subordinate the disjunctions effected within mixed sets to all the possible com-
binations, using a multiplicative and not simply an additive mode” (p. 161). Some
authors consider that the development of the combinatorial counting is important
because it is the basis for more complex subjects (Ura, Stein-Barana, & Munhoz,
2011); others defend that the nature of formal reasoning is based on the combinatorial
capability of the learner (Fischbein & Grossman, 1997).

Research literature on teaching and learning statistics has shown that students of
all ages strugglewith different types of combinatorial counting problems (Lockwood,
2011; Batanero, Navarro-Pelayo, & Godino, 1997) mainly because there is not an
upfront way to solve them using procedural reasoning and because they require deep
mathematical thinking. In spite of the fact that combinatorics is in the curriculum,
there are few resources available for teachers to help them support young children
in polishing their combinatorial reasoning. Discussing the path young children go
throughwhile exploring, approaching,modeling, and solving combinatorial counting
situations could be an important source of reflection for teachers’ practice as well as
a valuable resource for researchers and statistics educators.

A crucial issue today is that the resources available to support teachers in teach-
ing combinatorics to young children are separated from the daily life of students.
Informal knowledge of students is infrequently taken into account when building
new knowledge. Consequently, school mathematics is disconnected from the way
young children solve problems and domathematics in their daily lives (Bosch, 2012).
Research results have shown, for example, that in the mathematical curriculum of
certain educational systems, it is common to find statistics instruction as a set of pro-
cedures and algorithms that need to be memorized and applied without any contact
with practical situations of the world (Zapata-Cardona & González Gómez, 2017).
This form of instruction assumes and accepts statistics as a disarticulated science
with no relation to the world experienced by the student. To transform this ingrained
practice, daily situations have to be the basis of teaching in elementary education.

Teachers need to understand how young children think and do combinatorial
counting tasks. When teachers understand children’s ways of thinking and offer
them opportunities to construct their own knowledge, it is easy to see how much
students are able to learn. In a similar way, learning is meaningful when tasks are
connected to students’ lives.

Piaget and Inhelder’s (1975) work studying the origin of the idea of chance in
children has been very influential for those interested in children’s combinatorial
reasoning. However, in spite of its recognized impact and usefulness, it has raised
strong criticism because of the characteristics of the tasks used in the clinical inter-
views with children. According to some critics, Piaget’s research used material that
was not very familiar for the children interviewed and this might have affected chil-
dren’s performance in the tasks (English, 1991). Piaget (as cited in Batanero, 2013)
indicated that combinatorial reasoning is fully developed during the stage of formal
operations (ages 11–15). However, there are some other researchers that stated that
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some teaching strategies could challenge young children to develop their combinato-
rial reasoning before coming to the stage of formal operations (Cañadas & Figueiras,
2010; Itzcovich, Ressia de Moreno, Novembre, & Becerril, 2009).

The intent of this chapter is to address the tensions found in the literature relating to
the unfamiliarity of the tasks used in researchwith young children, the lack of detail in
the strategies young children use to solve combinatorial counting task, and the limited
resources teachers have to support and challenge young children’s combinatorial
reasoning. The chapter presents a description of the combinatorial counting strategies
young children activate when they solve a familiar task. The purpose is not to judge
their performance but to illustrate the kind of questions and strategies that researchers
and teachers could use to challenge young children’s combinatorial reasoning beyond
their actual state. This chapter presents the reflections after interviewing three young
children when solving a combinatorial counting task related to the multiplication
principle.

15.2 Theoretical Framework

Combinatorial reasoning can be defined as the activation of resources (mental or
physical) to complete a combinatorial task. Combinatorial counting is essential for
the study of discrete mathematics and is the basis for other branches of mathemat-
ics. It is fundamental in the study of biology, economics, transportation, agriculture,
and others related areas. For some authors, combinatorial reasoning is an important
prerequisite for the dynamic and creative power of logical reasoning (Fernández
Millán, 2013). Frequently, the study of combinatorics appears in the secondary edu-
cation curriculum. However, there is an important aspect of combinatorics that can
be introduced and successfully worked on with young children in the elementary
school mathematics curriculum if it is carried out in conjunction with the strategies
to develop multiplicative reasoning.

Some authors (Roa,Batanero,&Godino, 2001) have suggested that the difficulties
that even advanced students of mathematics have solving combinatorial problems
are related to the way combinatorics is taught. Every so often, teaching is focused
on the formula, definition, and combinatorial operation. These authors suggest that
in teaching combinatorics, the teacher should privilege problem-solving, systematic
enumeration, and tree diagrams. They also indicate that combinatorial reasoning is
developed in the stage of formal operations and recognize the strong influence of
the environment and personal capacities of the individual. Despite localizing com-
binatorics at the end of the development period, the multiplication principle can be
promoted early on in schooling if teachers support their teaching by using differ-
ent typologies of problems to develop the multiplicative schemes. In this regard,
other authors (Pessoa & Borba, 2012) have shown that combinatorial reasoning is
not exclusively a characteristic of the stage of formal operations—as mentioned in
Piagetian studies. Pessoa and Borba (2012) provide empirical evidence that children
as young as preschool are able to solve, by manipulation of figures, combinatorial
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problems of different types: arrangement (from a larger set some elements are chosen
whose ordering generates different possibilities), permutation (all elements of the set
are used, only the order of the presentation varies), combination (these are similar
to arrangements in terms of choice of elements, with the difference that the order
of the elements does not generate distinct possibilities), and Cartesian product (the
total number of all ordered k-tuples from multiple sets).

Scholarly literature in education and psychology reports several studies interested
in the way children—from prekindergarten up to high school levels—explore, deal,
and come up with solutions for combinatorial situations. The most influential study
is that of Piaget and Inhelder (1975) who studied the genesis of the notion of chance
by means of clinical interviews with children of a wide range of ages. Piaget and
Inhelder’s work has been the inspiration for a number of subsequent studies. One of
these studieswas carried out byEnglish (1991)who explored 50 children’s (4–9 years
old) strategies to solve combinatorial problems by using seven different forms of
the same problem: “find all the possible outfits for toy bears.” English found that
children could go from trial and error to very sophisticated and efficient algorithmic
actions with the potential to generate all possible combinations. One of the important
findings of this studywas that children in the concrete operational stage, under proper
learning conditions, are able to independently develop amethod for themultiplication
principle prior to formal instruction.

Another study explored the combinatorial abilities of 720 secondary school stu-
dents (14–15-year-old pupils) finding that children make several mistakes in the
combinatorial procedures (Batanero et al., 1997). The authors presented a list of 14
different types of errors participants made during the study. However, one of themost
important results arises from comparing the performance of students who received
direct instruction with those who did not, and the frequency of errors was reduced in
the instruction group. One more study carried out by Cañadas and Figueiras (2010)
investigated how students (11–12 years old) solve combinatorial problems using
manipulative and how they make a generalization. In the cited study, one of the
important results was the different interpretations students gave to multiplication.
Students studied multiplication as Cartesian products going beyond the tradition
of primary school mathematics instruction that promotes multiplication mainly as
repeated addition. Another study carried out by Fuentes and Roa (2014) required
54 compulsory secondary students (12 and 13 years old) to solve a task making
all the possible outfits from some shirts, pants, and hats. Fuentes and Roa found
that participants were successful 78% of the time and used different strategies like
multiplication (59.2% of the time), addition, seriation, and tree diagrams. In another
study, Lockwood (2011) examined how students transfer some knowledge devel-
oped in solving some combinatorial problems to other types of problems. The study
concluded that to help students with the reported difficulties in the literature for com-
binatorial counting problems, teachers need to pay closer attention to the connections
students naturally make.

Studies exploring children’s combinatorial abilities have been abundant and they
have taken different approaches. Some of them have focused on children’s mistakes
and some on children’s strategies. But what is important to highlight is that some of
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them have shown that children as young as prekindergarten and elementary school
have available the operational structures necessary for dealing successfullywith com-
binatorial counting tasks. This chapter takes into account the reflections and results
that the available literature has suggested but the intention is to offer a little more
depth and detail in the strategies that young children use when solving combinatorial
counting tasks. It also attempts to reveal the type of child–adult interactions that
support young children in moving a little beyond their actual capacities.

15.2.1 Multiplicative Reasoning

Usually, a multiplicative structure is constructed prior to operating. Such structure
allows the child to shorten a counting activity and later on to internalize conducted
actions and operations and use them a priori for the construction of more abstracted
combinatorial reasoning. This is also called recursive multiplicative reasoning.

Multiplication in primary school is encouraged under its common intuitive
meanings: (1) repeated addition (Cañadas & Figueiras, 2010; Steffe, 1994), (2)
ratio and proportion—if a package of cookies has four cookies, how many cookies
are there in five packages?—(Cañadas & Figueiras, 2010; Itzcovich et al., 2009),
(3) rectangular arrangements—you need to set up a carpet on a surface of 3 by
5 m, how much carpet do you need?—(Itzcovich et al., 2009), and (4) Cartesian
product—howmany different outfits are you able to create from four shirts and three
pants—(Cañadas & Figueiras, 2010; Itzcovich et al., 2009). Nonetheless, there is
a disparity in the way multiplicative tasks are stimulated in curriculum materials.
Usually, tasks that bring to mind repeated addition, ratio and proportion (formation
of groups) or rectangular arrangements are stimulated but those that evoke Cartesian
products are left out, having devastating implications for the development of
combinatorial reasoning in young children.

15.2.2 Combinatorics and Combinatorial Counting Problems

Combinatorics is defined as “a principle of calculation involving the selection and
arrangement of objects in a finite set” (English, 2005, p. 121). It includes areas like
combinatorial counting, computations, and probability. In combinatorial counting
problems, children are asked to count the number of ways that certain patterns can
be formed. However, these are different from simple counting problems such as
“how many color pencils do you have?” Counting is understood by Steffe (1983)
as “the production of a sequence of number words, such that each number word
is accompanied by the production of a unit item” (p. 111). Combinatorial counting
problems involve more than children’s basic counting schemes and require several
connected actions. Initially, children need to deal with units of the indeterminate
quantity to be counted in the problem situation; then, they need to properly combine
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elements from the different sets to create the new counting units; finally, they need to
check the counting activity to decidewhen to stop counting (Shin&Steffe, 2009). In a
simple counting situation, the child is asked to count single elements like “howmany
coins do you have in your pocket.” In a combinatorial counting situation, the counting
unit is a combination of single units that the child properly creates. Combinatorial
counting problems facilitate the development of enumeration processes, conjectures,
generalizations, and systematic thinking. Combinatorial activities also help with the
development of important concepts such as relations, equivalence classes, mapping,
and functions (Batanero et al., 1997; English, 2005).

Within combinatorial counting, problems are those that involve the multiplication
principle. This principle declares that if one event can occur in n ways and another
event inmways, then the two events together can occur in n×mways. It is important
that young children understand and properly use this elemental principle since it is
the basis for more complex subjects like combinatorics, probability, and statistics
(Ura et al., 2011).

15.3 Methodology

The goal of this chapter is to make evident children’s strategies to solve enumerative
combinatorial counting situations so that the reflection on such strategies can orient
teachers’ actions in the classroom when teaching combinatorics to young children.
This chapter also pays close attention to how certain questions, actions, and sugges-
tions indicated by the researchers challenge young children’s strategies and make
young children go beyond their initial strategies. To address this goal, three young
children (ages 6–8) were the participants who inspired the reflections discussed here.
It will be too ambitious to call this experience a formal study since the participants do
not represent all primary school students. The sample was a convenience sample of
three girls. They were interviewed in a home setting while they solved the following
combinatorial task:

You have a doll and have four shirts and three pants. If you were to dress the doll in these
clothes in how many different ways, could you combine those tops with those bottoms?

The task was presented in verbal form and some manipulative (silhouettes of tops
and pants) were given to help visualize, explore, model, and solve the combinatorial
task (like the ones shown in Fig. 15.1). The researcher did not reinforce correct
choices and avoided referring to the quality of the participants’ decisions (as it is
recommended by Falk, Yudilevich-Assouline, & Elstein, 2012).

The participants had not had formal academic training in combinatorics during
their schooling, which was an advantage in that it made it easier to induce children
to express their informal ideas during the interviews. Each child’s performance was
videotaped, with the camera positioned to capture eye, head, and hand movements,
and the use of manipulative.
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Fig. 15.1 Silhouettes of tops and pants given to children to model the task

There are different reasons that support the use of attractive manipulative materi-
als. First, images are important in helping children to communicate scientific ideas
and support conceptualization. Second, manipulative stimulate children’s minds and
help them to explore different solutions without giving them the exact way to solve
it. Third, children are able to develop concepts related to multiplication and combi-
nations based on their own concrete experience (Ura et al., 2011).

In this study, attractive manipulative materials and an attractive task were used
to explore young children’s counting combinatorial strategies. By using attractive
manipulative materials, teachers and researchers can increase the willingness for
children to explore and attempt a solution using their informal knowledge.When chil-
dren are exposed to tasks that are attractive to them, they increase the possibilities of
exhibiting sophisticated solutions (English, 1993; Falk et al., 2012; Ura et al., 2011).

The analysis of data occurred at multiple levels. The researcher reviewed the
videos several times to construct a content log. Special attention was paid to
young children’s strategies and how they reacted to challenging questions from the
researcher. The interviews were transcribed verbatim, translated from Spanish into
English, and reviewed to refine the understanding and descriptions of key aspects of
the children’s combinatorial reasoning.

15.4 Results

In this section, some segments of the interviews with the three young children are
presented. The order in which the segments are displayed is related to the level
of sophistication the young children displayed in the interview. The rudimentary
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strategies are presented first and then the more elaborate ones. The goal is to look
beyond young children’ strategies to focus on the potential support they could get
from adults (teachers or researchers) to refine their combinatorial reasoning.

The first child is Valery, a seven-year-old girl who was in second grade of ele-
mentary school.

Researcher: Let us suppose you have a doll with different clothes: four shirts and three
pants. If you were to dress the doll in these clothes in how many different
ways, could you combine those tops with those bottoms?

Valery: Three ways

Researcher: How did you do it?

Valery: I have three outfits. I have three pants that I can dress the doll with and every
day I put one on

Researcher: Show me the three outfits you say

Valery: [She pairs up one top with one bottom] this way

Researcher: One way. Show me another way

Valery: This way and this way [She pairs up two more tops with two bottoms, but one
top is left aside as it is shown in Fig. 15.2]

Researcher: And with that one [the top left aside], what are you going to do with it?

Valery: If I have another doll out there, I can put it on [the top left aside] to it

Researcher: I see. Thank you so much

Fig. 15.2 Combinations done by Valery
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Valery’s counting strategy was very straightforward. She paired up bottoms with
tops, and once she ran out of pants, she stopped counting. She left one top aside
without using it and when was asked what to do with it she recycled it to use it with
another doll. The child used a very simple counting scheme and did not even intend
to combine the elements of the sets to create the new counting units. The researcher
did not ask further questions in this situation. This is a common strategy used by
young children in solving combinatorial counting tasks.

The next child is Eileen. She was a six-year-old girl who was in first grade of
elementary school.

Researcher: You have a doll, four tops and three bottoms. How many ways do you have to
dress your doll?

Eileen: [She pairs up a top and a bottom] this one

Researcher: Do you have any other way to dress the doll?

Eileen: And these ones [She pairs up two tops with two pants leaving one top apart]

Researcher: What are you going to do with that top? [Pointing to the top left aside]

Eileen: I am going to put it here [she puts the silhouette of the top on her own chest]

Researchers: To whom?

Eileen: To the doll [she exchanges the top on her chest with one of the tops that was
already paired up with one of the bottoms. She ends up with a different top on
her hand]

Researcher: So, what are you going to do with this one? [The one on her hands]

Eileen: [She exchanges the top again with another top already paired up with a
bottom. She does that several times completing seven different ways and ends
up with one top on her hands]

Researcher: So, what are you going to do with this one [The one on her hands]?

Eileen: I will throw it away

In Eileen’s interview, she paired up each bottom with each top and she stopped
the combinatorial counting when she did not have any more bottoms for the tops.
Initially, she formed three different ways and only after being asked what she was
going to do with the remaining top, she came up with four more ways. In total, she
created seven different ways by using random (unstructured) strategies. She did not
use any systematic way to list the combinations or to keep track of the possibilities.
Eileen was able to create four more ways because of the researcher intervention. The
researcher pushed her to think about what to do with the remaining top and she was
able to react to the query by coming up with an action. Eileen’s action did not allow
her to find all the different ways but at least allowed her to further extend her initial
strategy. Comparing Eileen’s with Valery’s performance, it is evident that Eileen was
able to go beyond her initial strategy. Even though both children were asked the same
question about what to do with the single remaining top, the question presented the
necessary motivation for Eileen to explore more ways to combine clothes. In this
sense, the same question challenged only one child.
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The third child is Sandy, an eight-year-old girl who was in second grade of ele-
mentary school.

Researcher: You have a doll, three bottoms and four tops. If you were going to combine bottoms and tops
in how many different ways, could you dress the doll?

Sandy: I can dress my doll with this dress [top] and with the orange one [bottom]. This pink one
[bottom] with the red one [top], and the yellow one [bottom] with this one [top]

Researcher: In how many ways could you dress the doll?

Sandy: Three ways

Researcher: [Pointing out to the top that was left without bottom] And this one, what is going to happen
with this one?

Sandy: That one does not have a pant

Researcher: So, would you put it on to the doll?

Sandy: No

Researcher: And what do you think could happen if we do this? [Pairing up one of the pants with the shirt
that has been left alone]. One day you dress the doll with this pant and this shirt, and the next
day you dress the doll with this other shirt?

Sandy: Or you could also do this. This one with this one [she moves the pants around and leaves the
tops fixed] and this yellow one [pant] can be also worn with this one

Researcher: How many outfits do you have then?

Sandy: Four

Researcher: Show me the four outfits

Sandy: I have this one [she makes some exchanges with the pants] and also this one. This one with
this one

Researcher: Then, it seems you have found more than four ways

Sandy: Five then

Researcher: Show me the five ways

Sandy: [she puts together five outfits] This one with this one, this one with this one, this one too

Researcher: Do you have more ways?

Sandy: I have one more.

Researcher: Which one?

Sandy: [she moves two bottoms again getting two new ways]

Researcher: Now you have seven. Do you think you have more ways?

Sandy: Yes [she moves two pants getting two more ways but one of them is already repeated], eight
and nine

Researcher: Do you have more forms?

Sandy: And ten [she puts together another repeated outfit]

Researcher: Do you think that you have repeated some outfits?

Sandy: This one and this one [she points out two outfits, one of them was not repeated]

Researcher: Do you have more outfits?

Sandy: No

Researcher: Then, how many forms in total do you have to dress your doll?

Sandy: Ten

Researcher: Thank you so much
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In Sandy’s interview, she initially paired up bottoms with tops paying attention
primarily to the proper combination of colors. Once she ran out of bottoms, she
stopped making combinations. She did not consider dressing the doll with the fourth
top (the one left out). Sandy paired up one top with one bottom and stopped when she
exhausted the elements of the smaller set. The transformation of Sandy’s strategy, at
the end of the interview, was due to the researcher’s stimulating question “And what
do you think could happen if we do this? [Pairing up one of the pants with the shirt
that has been left alone]. One day you dress the doll with this pant and this shirt,
and the next day you dress the doll with this other shirt?” After this question, Sandy
started randomly (unstructured) matching shirts with pants without being systematic
in her approach. In doing so, Sandy found ten combinations but not all of them were
different. She repeated two counting units but she was not fully aware of this. This
was mainly in part because she did not follow any systematic strategy to keep track
of the repeated counting units.

15.5 Discussion

The three young children participating in this experience, at first, used the same
strategy to combine shirts and pants in order to find out the different combinations
of outfits for the doll. All the children started by pairing up pants with shirts and left
one shirt out. They stopped the combinations when they did not have more pants
left to combine with the shirts. Similar results were found by Piaget and Inhelder
(1975) and later on by English (1991, 1993) who stated that young children initially
tend to approach combinatorial problems using very simple counting schemes and
empirical approaches.

Valery, as well as Eileen, initially found the same number of outfits by combining
shirts with pants using the same rudimentary strategy. They paired the elements of
one set with the elements of the other set until they ran out of elements from the
smaller set. However, when they were asked what to do with the shirt left aside,
the answers were very different. The question the researcher asked did not have any
effect onValery’s actions andher task ended there,whereas the samequestion allowed
Eileen to explore other options slightly modifying her strategy and consequently the
results. Eileen got four counting units more than in her initial attempt. This is a very
interesting result because it shows that the same researcher strategy had different
effects on children’s actions. These differences in children’s performance might be
attributed to the different resources children come with to the interview (influence
of family, schooling, or culture). Children before being interviewed have previous
knowledge that cannot be separated from their essence and constitutes what they
are and what they do. In this chapter, knowledge is conceived in a sense similar to
Radford: “knowledge […] is considered to be constituted of forms of human action
that have become historically and culturally synthesized” (2016, p. 199). Despite
this interesting hypothesis, this experience does not offer sufficient data to support
this claim. This is just a hypothesis that could be explored in future studies. What
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is important to highlight is that the researcher’s intervention was essential for one
of these children. The researcher’s question challenged the child to go further in
her combination strategies, and even though she did not use a systematic approach,
she was able to find four more outfits. This could be explained using the zone of
proximal development in which the learner is able to do something unaided but their
capacities are potentiated with the help of an adult or a teacher. In other words,
“children ‘appropriate’ knowledge and skills from more expert members of their
society” (Fernández, Wegerif, Mercer, & Rojas-Drummond, 2015, p. 55) and “the
child develops through participating in the solution of problems with more experi-
enced members of his or her cultural group” (p. 55).

Sandy’s initial strategy was very similar to Valery’s and Eileen’s strategies. Sandy
paired up bottoms with tops and she stopped when she ran out of bottoms. It gives
the impression that children see an implicit one-to-one correspondence between the
shirts’ set and the pants’ set, and those single elements (without their respective pair)
that cause difficulties in such a correspondence are just left out. The three children
in this experience, initially, did not consider interchanging the tops to create more
counting units. Apparently, young children’s enumerative combinatorial counting
strategies are very concrete, probably resembling the same counting strategy they
use when counting a simple list of discrete elements as it has beenmentioned by Shin
and Steffe (2009). In enumerative combinatorial counting situations, the counting
units are beyond concrete. The child needs to create those newcombinatorial counting
units, which usually are a challenge for young children. It is worth noticing Sandy’s
strategy transformation at the end of the interview. Although she was not able to
generate all the new counting units from the combinatorial counting situation, she
was able to increase the number of combinations compared to her efforts in her first
attempt. This increment in the number of counting units was due to the researcher’s
intervention through the use of stimulating questions. The researcher did not ask
leadingquestions but those askedmade the child either think twice about her decisions
or conceive the situation from a different approach. This interaction with a more
experienced individual contributes to child development and knowledge in the sense
stated by Fernández and colleagues:

the child develops through participating in the solution of problems with more experienced
members of his or her cultural group. […] the development of the child towards more able
ways of participation in society is carried out through a process of ‘guided participation,’
which may or may not include explicit teaching. (2015, p. 55)

That young child–teacher interaction could be oriented, taking into account some
aspects of the combinatorial counting. According to the level of the child, the teacher
might monitor that there are not elements left out in the new counting units; that there
are clear intentions for combining all the elements from one collection with all the
elements from the other collection; that there is an explicit use of tools to organize the
combinatorial counting units like lists, draws, tables, flow diagrams; that there are
clear indications of approaches to keep track of the possibilities to avoid repetitions of
the combinatorial counting units. In all these situations, the teachermight ask probing
questions or explanations. That does not mean that the child will be successful but
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at least will be challenged without being explicitly taught. Those “interactions give
to each child the opportunity to participate in activities and goals that would be very
difficult for them to achieve alone” (Fernández et al., 2015, p. 56).

In terms of the contributions for developing multiplicative reasoning in young
children, there is a need to incorporate a wide variety of multiplicative situations in
instruction. Most multiplicative situations proposed in the school for young children
when learning multiplication have the form of repeated addition, direct proportion-
ality, or rectangular arrangements (arrays). However, on very few occasions, are
multiplicative situations that resemble the Cartesian product—like the one discussed
in this chapter—used in elementary school to orient the work with multiplication.
Some authors have stated that in the proportionality situations or rectangular arrange-
ments, the conception of multiplication as a repeated addition is clear; however, this
repeated addition is not as clear in situations that require combinatorial counting
to reach a solution (Itzcovich et al., 2009). As a result, in order to contribute to
the development of multiplicative reasoning early in elementary education, teach-
ers need to propose a variety of situations in which young children could explore
different ways to approach multiplication. Multiplicative reasoning cannot be fully
developed using primarily (or exclusively) direct proportionality situations that are
very straightforward for most young children. Children’s multiplicative reasoning
needs to be challenged with multiplicative situations that require deep exploration
like Cartesian product tasks. This statement holds firm, taking into account the fact
that the literature has shown that young children with no instruction in multiplica-
tion are able to solve direct proportion multiplicative situations using their previous
knowledge (English, 1991; Park & Nunes, 2001). This suggests that teachers and
schools have to do something else. Teachers and schooling must challenge young
children to go beyond what they can do using their own resources.

In terms of the familiarity, young children have with the tasks, it is crucial to
mention thatmost combinatorial tasks used in research are too formal and abstract for
young children to connectwith their daily life. In the experience reported here, having
a familiar situation was essential for young children to understand and engage in the
solution of the task. Proposing tasks that have some familiarity for young children
could potentially activate children’s informal knowledge to build new knowledge. In
this regard, there are scholars who state that children’s abilities are better revealed
when the proposed tasks are motivating and meaningful (Falk, et al. 2012).

Providing young children with manipulative to support the exploration of the task
was vital to keep track of their approaches to get a solution. By using themanipulative
provided, the young children were able to visualize, explore, and model different
strategies, and the researcher was able to figure out and follow young children’s
reasoning while they explored the task.
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15.6 Conclusions and Implications

This experience shows that young children’s combinatorial reasoning could be stimu-
lated from the moment children begin to work with multiplication. It is not necessary
to wait until formal combinatorial instruction that usually takes places in secondary
education since the formation of the ideas of probability depends on the evolution
of combinatorial counting. Teachers could expose young children to exploring and
solving different formats of multiplicative situations, focusing not only on those that
follow the structure of either direct proportionality or rectangular arrangements but
also on those that follow the structure of Cartesian product. Frequently, in elemen-
tary school education, the tasks for developing multiplicative reasoning are based on
straightforward strategies without the possibility of exploration. Young children need
to be challenged with interesting and familiar situations to enhance their capacities.

In this experience, young children sense of fashion came out in the interviews.
Young children wanted to combine tops with bottoms attending to the proper coordi-
nation of color. This aspect rises up two contradictory reflections. First, the silhouettes
used to help young children visualize, explore, model, and solve the combinato-
rial task seemed to distract children from creating all the combinatorial units. The
researcher could be tempted to simplify the material or the task by taking out the
context to warrant young children do not get distracted with fashion issues. How-
ever, this could take us back to the criticism received in Piagetian tasks that were too
unfamiliar for students. Second, the fashion issue is intrinsic to the task proposed
in this experience. Most situations students find in their daily life are not clear and
cut. Generally, they incarnate the characteristics of a particular context that in some
cases could be considered potential distractions. The researcher could keep the task
as it is but emphasizing the probing questions on the creation of the counting units
more than in the fashion aspect of it. Either decision the researcher makes will leave
something crucial out. This experience also reveals that young children’s implicit
knowledge can be strengthened by creating hands-on tasks that allow them to deal
with combinatorial counting situations early on in schooling in a playful, attractive,
and familiar way. Since young children are still concrete thinkers, the use of manipu-
lative is always a welcome support in the modeling and exploration of combinatorial
situations. To carry out a simple counting activity, the units to be counted are tangi-
ble to the child. However, the combinatorial counting activity requires the child to
create the new counting units, which is not a simple task. To help young children
with this challenge, teachers could complement the combinatorial taskwith attractive
manipulative that help them in the exploration and modeling.

The results from this experience show that whereas young children explore com-
binatorial tasks, teachers’ questions are essential to focus children’s attention and to
challenge their reasoning. Teachers’ questions could have different purposes: close
questions (How many ways do you have to dress the doll?), probing questions (How
did you do it? Can you show me those outfits? Howmany outfits do you have then?),
or challenging questions that require the children go beyond their actual state (Do you
have any other way to dress the doll? What are you going to do with this piece [the
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top left aside]? What do you think could happen if we do this [Pairing up one of the
pants with the shirt that has been left alone]?). This young child–teacher interaction
is fundamental for child development. After all, learning is the result of interaction
with more experienced members of the cultural group.

In this experience, young children did not use structured strategies to find all the
different counting units; however, this does not mean that young children were not
ready to engage in combinatorial reasoning. The fragments of young child–adult
interaction shown here had the intention to illustrate different ways to challenge
young children, but literature has revealed previously that young children could
develop efficient and sophisticated strategies with the potential to generate all the
possible counting units (English, 1991).

Combinatorial reasoning, although developed slowly, can be favored by simple
enumeration combinatorial counting activities. Teacher should promote combinato-
rial tasks early on in schooling to encourage reflection and problem-solving skills
that contribute to the development of combinatorial reasoning. Combinatorial tasks,
when accompanied with challenging questions from more experienced members
of the cultural group (teachers, researchers, parents), could help young children to
confront their primary intuitions and polish their reasoning.
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Chapter 16
Integrating Games into the Early
Statistics Classroom: Teachers’
Professional Development
on Game-Enhanced Learning

Maria Meletiou-Mavrotheris, Efi Paparistodemou and Loucas Tsouccas

Abstract Digital gameshold a lot of promise as tools for improving statistics instruc-
tion in the early school years. The research discussed in this chapter aimed at equip-
ping a group of in-service primary teachers with the knowledge, skills, and practical
experience required to effectively integrate digital games within early statistics edu-
cation. The study took place within an in-service teachers’ professional development
program focused on game-enhanced mathematics teaching and learning. The pro-
gram was designed based on the technological pedagogical and content knowledge
(TPACK) framework and was attended by six educators teaching at the lower pri-
mary school level (Grades 1–3; ages 6–9). Participants experimented with different
ways in constructivist gaming environments could get integrated into the early pri-
mary mathematics curriculum to motivate young children and to help them internal-
ize important concepts, including key ideas related to data analysis and probability.
They also developed and delivered instructional episodes integrating the use of digital
games in different areas of the early mathematics curriculum. This chapter discusses
the impact of the study on teachers’ perceptions regarding game-based statistical
learning and on their competence in selecting, evaluating, and productively utilizing
digital games as an instructional tool in the early years of schooling.
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16.1 Introduction

Although important for people of all ages, play is essential for young children. Most
contemporary theories of learning emphasize its vital role in children’s development
and its contribution to their cognitive, physical, social, and emotional well-being
(Ginsburg, 2007). Through active play, young children can learn in joyful and con-
ceptually rich ways. They can express their feelings and ideas, symbolize and test
their knowledge of the world, and strengthen their creativity and imagination (Sara-
cho, 2012). Nevertheless, in a fast-changing world driven by rapid technological
advancements, gameplay is also changing. The exponential rate of adoption of tablet
computers and other smart mobile devices witnessed worldwide in recent years has
dramatically increased young children’s accessibility and use of electronic devices
for gaming purposes. Research indicates that children as young as two can easily
adapt to the intuitive interface of touch-enabled devices and use them with much
greater independence compared to desktop computers (Geist, 2012). The ease of
using tablets has resulted in a large percentage of young children becoming frequent
users of mobile devices, which they tend to use mainly for playing games, often for
enormous amount of time (Common Sense Media, 2013). This increased popularity
and proliferation of digital games has led to a widespread interest among educators
in how this massively popular youth activity could be brought into the classroom
to capture students’ interest and facilitate their learning. Responding to this trend,
there has been an explosive growth in the number of educational game apps, target-
ing children available on the market. The existing literature strongly indicates the
educational value of games and their potential to serve as a powerful perspective for
reforming pedagogy at the early school level (Lowrie & Jorgensen, 2015).

Acknowledging the educational potential of games for transforming statistics
instruction in the early years, but also the crucial role of teachers in any effort to
bring about change and innovation, the current study focused on providing in-service
teacher education on the effective utilization of digital games in the lower primary
classroom (ages 6–9). The study took place within a Cypriot teachers’ professional
development program on the integration of games within the early mathematics
curriculum, which was designed based on the notion of technological pedagogical
content knowledge (TPACK) as a conceptual framework (Mishra andKoehler, 2006).
The study aimed at providing teachers with the knowledge, skills, confidence, and
practical experience required to effectively exploit digital games as a tool for fostering
young children’s motivation and learning of statistics (as part of the mathematics
curriculum). The program’s impact on the study participants was examined from
three perspectives:

(i) Influence on teachers’ attitudes and perceptions regarding game-based teaching
and learning;

(ii) Impact on the development of teachers’ TPACK regarding the instructional
integration of mobile games;

(iii) Level of transfer and adoption of TPACK competencies acquired through the
program to actual teaching practice.
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16.2 Theoretical Perspective

The expanding use of data for prediction and decision-making in almost all domains
of life makes it a priority for mathematics instruction to help students of all ages
develop their statistical reasoning. In recent years, leaders in mathematics education
have been advocating a much wider and deeper role for statistics in school mathe-
matics (Franklin et al., 2007). It is now widely recognized that the foundations for
statistical reasoning should be laid in the earliest years of schooling rather than being
reserved for secondary school or university studies. Consequently, the development
of students’ statistical literacy has become an important goal of mathematics edu-
cation at the early school level internationally. This broadening of the mathematics
curriculum to encompass statistical literacy, reasoning, and thinking has put consid-
erable demands on teachers (Hannigan, Gill, & Leavy, 2013). In particular, it has
been challenging for teachers to design lessons with engaging contexts and a focus
on conceptual aspects of statistics and to pose critical questions. As the research
literature indicates, many teachers tend to have weak knowledge of the statistical
concepts and to focus instruction on the procedural aspects of statistics rather than
on conceptual understanding (Watson, 2001).

Recognizing the need for fundamental changes to the instructional practices
employed in the mathematics classroom to teach statistical and probabilistic con-
cepts, researchers have in recent years been experimenting with new models of
teaching that are focused on inquiry-based, technology-enhanced instruction and on
statistical problem-solving (e.g., Meletiou-Mavrotheris & Paparistodemou, 2015).
One promising approach lately explored is the potential for digital games to trans-
form statistics instruction. Although—unlike the numerous studies investigating the
instructional use of computer simulations, animations, and dynamic software—there
only few published studies on the use of games for teaching statistics, the general
thrust of the evidence in the existing literature is positive (Boyle et al., 2014). Most
of the conducted studies report that employing games has a positive effect on stu-
dents’ motivation and learning of statistical concepts (e.g., Asbell-Clarke et al., 2012;
Gresalfi & Barab, 2011).

Findings of the statistics education literature on game-enhanced learning concur
with the general educational literature which suggests that, when suitably designed,
digital educational games have many potential benefits for teaching and learning at
all levels, including the preschool and early school years (Manessis, 2014). One of
games’ foremost qualities is the capacity to motivate and immerse players (Felicia,
2009). It has been shown that educational games captivate children’s attention, con-
tributing to their increased motivation and engagement with learning (see Ke, 2008).
However, their greatest strength as a medium, according to a meta-analysis on the
impact of games on learning conducted by Clark, Tanner-Smith, and Killingsworth
(2014), involves their affordances for supporting higher-order cognitive, intraper-
sonal, and interpersonal learning objectives. Through the introduction of open-ended,
challenging tasks that aremeaningful for young children and facilitate their interest in
exploration, properly designed games can help focus instruction on conceptual under-
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standing and problem-solving rather than on recipes and formal derivations (Koh,
Kin, Wadhwa, & Lim, 2012). Using games, children can collaboratively engage in
exploration of virtual worlds and in authentic problem-solving activities and eventu-
ally become reflective and self-directed learners (Van Eck, Guy, Young, Winger, &
Brewster, 2015). This supports the development of important competencies essen-
tial in modern society such as logical and strategic thinking, planning, multi-tasking,
self-monitoring, communication, negotiation, group decision-making, pattern recog-
nition, accuracy, speed of calculation, and data-handling (Miller &Robertson, 2010).
At the same time, games can match challenges to children’s skill level, providing
them with immediate feedback about the correctness of their strategies and thought
processes, while at the same time enabling teachers to observe students’ problem-
solving strategies in action and to assess their progress (Koh et al., 2012). Thus,
placing a focus on game-enhanced learning offers a powerful perspective for trans-
forming statistics instruction at the early school level and providing children with the
tactile and dispositional skills required to meet the needs of a global, information-
driven society.

While digital educational games provide a range of potential benefits for mathe-
matics and statistics teaching and learning, not all the available games are designed
to promote optimal development among children. Most of the available educational
games tend to be a drill and practice and to support mainly procedural fluency rather
than high-level thinking. Nonetheless, some exceptional exemplars do exist that can
help create constructive and meaningful learning experiences. Larkin (2015), for
example, reported on the findings of a long-term research project that comprehen-
sively reviewed mathematical apps to determine their usefulness for primary school
students. He found that although the majority of apps provide little more than edu-
tainment, a core group of apps were highly effective in supporting children in their
development of higher-order mathematical thinking and learning.

The successful deployment of digital games in the early statistic classroom is
highly dependent upon the knowledge, attitudes, and experiences of teachers. Imple-
menting game-based instruction can be a challenge for teachers, requiring skills
not necessarily addressed in current teacher education practices. Teachers need to
be proactive, choosing high-quality educational games, supporting and scaffolding
pupils, and providing appropriate feedback. The research literature indicates that
despite having a fundamental understanding of the importance of playtime based
on their teacher education, and positive attitudes toward the adoption of games in
instruction, the majority of both pre-service and in-service primary teachers have not
been educated on the structure and benefits of well-designed educational games, and
thus lack the vision and the personal experience of what game-enhanced teaching
could look like. They tend to view games as instructional tools to be mainly used
for motivational purposes or for reinforcing already acquired concepts (Williamson,
2009). Takeuchi & Vaala (2014), who surveyed 694 K–8 teachers across the USA,
found that while around 75% of the teachers reported using digital games in their
classrooms, the vastmajority used “drill-and-practice”-type games focused on lower-
level knowledge and skills. Consequently, the provision of high-quality professional
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development on the educational applications of games is of paramount importance
to their effective integration in classroom settings.

16.3 Methodology

16.3.1 Conceptual Framework

The TPACK conceptual framework guided the program’s design and implemen-
tation. TPACK is a powerful and influential framework, proposed by Mishra and
Koehler (2006), which emphasizes the importance of teachers developing integrated
and interdependent understanding of three primary forms of knowledge: technol-
ogy, pedagogy, and content. In this study, the adoption of TPACK served a twofold
purpose: (i) a guiding theory for designing the program so as to create professional
development opportunities that would better prepare teachers to effectively integrate
digital games in early mathematics and statistics and (ii) a conceptual blueprint for
investigating the impact of the program on participants’ professional growth in the
use of games in early statistics.

16.3.2 Research Design: Scope and Context of Study

A case study design was employed. The case studied consisted of the six primary
school teachers (3 males, 3 females) who participated in the program. With one
exception, all participants were expert teachers with several years of instructional
experience (7–19 years).

Following the TPACK model and action research procedures, the study was
designed and carried out in three phases: (i) Phase I: Familiarization with Game-
Based Learning; (ii) Phase II: Lesson Planning; (iii) Phase III: Lesson Implementa-
tion andReflection. Each of the three phases, described next inmore detail, supported
teachers in strengthening the connections among their technological, pedagogical,
and content knowledge. At the same time, various forms of data were collected and
analyzed in order to track changes in teachers’ TPACK regarding game-enhanced
statistics learning in the early years.

Phase I—Familiarization with Game-Based Learning

During Phase I (6 h duration), teachers were offered a critical introduction into the
potential and challenges of using serious games in early mathematics and statis-
tics instruction. They experienced some of the ways in which purposefully selected
games, blended with carefully constructed learning experiences, could help improve
children’s attitudes toward the subjects, while at the same time advancing their math-
ematical and statistical thinking and problem-solving skills. The unit also familiar-
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ized participants with the design principles for constructivist gaming environments
(Munoz-Rosario &Widmeyer, 2009) and promoted the development of their skills in
properly evaluating and selecting games with pedagogically sound design features.

Participants worked in various individual or group game-based activities to
explore a variety of mathematical concepts included in the lower primary school
curriculum, including topics related to data analysis and probability. They experi-
mented with a broad range of serious games, from adventure games to puzzle games.
There were also discussions focusing on children’s learning and what is required to
involve them in learning about mathematics and statistics through use of educational
games. These discussions provided the venue for examining the affordances and lim-
itations of educational games and for identifying design considerations that promote
the incorporation of educational games in educationally powerful ways. A number of
assigned key readings (e.g., Gee, 2007) served as a backdrop for these discussions.
In-service teachers were also introduced to research literature (e.g., Pivec & Pivec,
2009) on effective instructional strategies that could be used to facilitate learning
with educational games (e.g., debriefing, collaborative gameplaying, supplementing
of games with other instructional methods).

A characteristic example of the type of activities included in the program is the
Evaluation of Educational Games Task. In this activity, teachers worked individu-
ally to evaluate six freely available mathematics education game apps. They were
instructed to do the following:

1. Use an evaluation rubric to assess each game.
2. Write an evaluation report for each game.

Phase II—Lesson Planning

In Phase II, teachers’ TPACK was enhanced through their engagement in lesson
planning. They selected a topic from the national mathematics curriculum for Grades
1–3 anddeveloped a lessonplan and accompanying teachingmaterial alignedwith the
learning objectives specified in the curriculum, which incorporated the use of digital
games. They were instructed to integrate into their lessons educational games that
adhered to important principles associated well-designed educational games (Gee,
2007) such as facilitation of an authentic learning experience, active participation,
collaboration, and promotion of higher-order thinking skills. The lesson plans were
shared with the researchers for comments and suggestions and were revised based
upon received feedback.

Phase III—Lesson Implementation and Reflection

Next, the participants implemented the lesson plans in their classroom, with the
support of the research team. Once the classroom research was completed, teachers
prepared and submitted a reflection paper, where they shared their observations on
students’ reactions during the lesson, noting what went well and what difficulties
they faced and making suggestions for improvement.
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16.3.3 Instruments, Data Collection, and Analysis Procedure

Multiple forms of data were collected to document changes in teachers’ percep-
tions and attitudes, and in their TPACK of game-enhanced learning as a result of
participating in the professional development program:

(i) Teacher pre-survey: This open-ended survey administered before the start of
the program gathered baseline information about teachers’ use of and attitudes
toward ICT in general and digital games in particular, as tools in daily life and
in the classroom.

(ii) Individual interviews: Upon completion of Phase I, the researchers conducted
semi-structured interviews with each of the participants to trace possible shifts
in their attitudes and perceptions regarding game-enhanced mathematics and
statistics learning.

(iii) Observations and artifacts collected during Phases I & II: In-service teach-
ers’ submitted work (game evaluation reports, lesson plans, etc.), researchers’
observations and field notes.

(iv) Observations and artifacts collected during Phase III: Given the study’s focus
on statistical reasoning, data at this phase were mainly collected from the class
of the only teacher whose lesson plan had focused on concepts related to statis-
tical data analysis (the rest prepared and implemented lesson plans focusing on
other areas of the mathematics curriculum). This intervention took place in a
Grade 2 (ages 7–8) classroomwith 18 students and lasted for 80min (two teach-
ing periods). Researchers were present, observing closely and videotaping the
lesson, keeping field notes, and collecting student work samples. Qualitative
data were also obtained from the reflection papers written by the teachers at
the end of Phase III.

For the purpose of analysis, we did not use an analytical framework with pre-
determined categories to assess how teachers’ perceptions and TPACK developed
after going through the intervention due to the lack of well-established frameworks
and methodological insights for studying game-enhanced statistics education in the
context of in-service teacher education. What we did instead was to identify, through
careful reviewing of the transcripts, reports, and other data collected during the study,
recurring themes or patterns in the data. To increase the reliability of the findings,
the activities were analyzed and categorized by all three researchers. Inter-rater dis-
crepancies were resolved through discussion.

16.4 Results

Our research findings illustrate the usefulness of TPACK as a means of studying and
facilitating teachers’ professional growth in the use of games in early statistics educa-
tion. They indicate that our TPACK-guided professional development program had
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a positive impact on all three perspectives of the participants’ experiences examined:
(i) attitudes and perceptions regarding game-enhanced learning; (ii) TPACK com-
petency for using digital games; and (iii) level of transfer and adoption of acquired
TPACK to actual teaching practice.

16.4.1 Changes in Attitudes and Perceptions Regarding
Game-Enhanced Learning

In the pre-survey completed at the program outset, although teachers indicated high
level of familiaritywith technology and very positive attitudes toward its instructional
use, they acknowledged that ICT tools were not adequately used in their classrooms.
They made extensive use of technology, but this was limited mainly to Word Pro-
cessing, PowerPoint, Internet browsing, and drill-and-practice-type applets. Teachers
uniformly reported low use of technologies promoting more engaging, interactive,
student-centered pedagogical approaches, such as simulations, virtual worlds, and
electronic voting systems. In mathematics, their students used technology mainly to
perform routine calculations, practice skills and procedures, and check answers. They
rarely or never used technology to solve complex problems, discover mathematics
principles and concepts, process and analyze data, produce graphical representations,
or develop mathematics models. As far as digital games are concerned, all teachers
agreed that they are worthy of consideration in the classroom and reported already
frequently using them in their mathematics classes. However, they had very limited
TPACK regarding games as educational tools, viewing them primarily as a useful aid
for making instruction more joyful and efficient. The most commonly cited reasons
behind their use of games in mathematics were for increasing students’ motivation
and engagement and for practicing and/or evaluating acquired skills. Thus, teachers
lacked understanding of digital games’ true potential for transforming the nature of
teaching and learning and of how to implement game-basedmathematics instruction.

Findings from the interviews at the end of Phase I suggest that the professional
development program was quite successful in helping teachers move beyond their
restricted views of digital games as educational tools. They came to realize games’
true potential for supporting learning of different areas of the early mathematics
curriculum, including data analysis and probability, in educationally powerful ways.
As they all admitted during the interviews, their past exposure to digital mathe-
matics education games had been limited to drill-and-practice ones. However, their
participation in the program gave them the opportunity to be exposed to challeng-
ing, complex, and scaffolded (Gee, 2007) games designed to help students build
higher-order mathematical and statistical problem-solving skills. This exposure to
high-quality digital games helped teachers develop a much more sophisticated view
regarding the benefits of gaming:
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I got familiarized with unknown to me games. I saw how the introduction of such games
in the classroom could take learning to a higher level, by increasing student initiative and
independence.

I realized that games can offer much more than drill-and-practice. The can have an added
value in terms of teaching challenging mathematical concepts, promoting children’s creativ-
ity and analytical skills, supporting differentiated instruction, and enriching student assess-
ment.

Unlike the pre-survey stage, teachers’ focus was not on the playfulness of games,
but on the fact that their instructional integration offers an effective learning context
that refocuses instruction toward a more student-centered instructional experience
and promotes the construction of powerful mathematical and statistical knowledge
and skills. Using the insights gained from their experimentation with various types
of digital games, and their classroom research, teachers listed several advantages that
can make appropriately designed games a more meaningful, engaging, and effective
learning experience for young students:

Digital games reinforce student independence, ingenuity, creativity, personalized learning,
as well as collaborative learning, and limit the role of the teacher to that of a mentor.

Children get the situation into their own hands and are actively involved in different problem
solving scenarios, which are often non-standard and thus force them to think past what they
have been taught in class, to think “outside the box”.

Good educational games have varying levels of difficulty. So, the game naturally provides
feedback on student learning to both teacher and student, since a player needs to achieve the
objectives of the previous level to go to the next level. The teacher monitors the progress of
each student, and through the game, the learning objectives are redefined for each learner.

16.4.2 Changes in Participants’ TPACK Competency
for Using Digital Games

Teachers’ professional development extended their thinking on how young students
learn with digital games and supported the development of their TPACK. Through
familiarization with the design principles for constructivist gaming environments,
experimentation with a range of game apps, feedback from each other, and reflection,
teachers gained better understanding of how to implement game-based mathematics
and statistics instruction in the early years. They also improved their ability to assess
the educative power of different games, to properly identify their advantages and
disadvantages.

Participants’ endeavors with the Evaluation of Educational Games Task are
indicative of the program’s effectiveness in helping them acquire the necessary skills
for effectively assessing the educational potential and suitability of different digital
games. In this task, participants worked individually to compare and contrast six
different freely available mathematics education game apps. They used the Educa-
tional Video Game Evaluation Rubric (http://educators.brainpop.com/wp-content/u
ploads/2015/04/Game-Rubric-Editable-2015-1.pdf) to appraise the games and then

http://educators.brainpop.com/wp-content/uploads/2015/04/Game-Rubric-Editable-2015-1.pdf
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prepared an evaluation report for each selected game. For the purposes of this study,
we restricted our analysis to teachers’ evaluation rubrics and reports in relation to
the following two game apps that have content supporting the development of early
statistical reasoning:

• CarTally, a mobile game app available on Android and iOS platforms, introduces
kindergarten and early elementary school children (Grades K–2; ages 4–8) to the
basic mathematical and scientific concepts of observation, classification, quantifi-
cation and data analysis. Children join Maddie the Giraffe on a journey from the
country road to the big city. To move along, they need to identify passing cars and
classify them based on color. As they do so, they generate a dataset of the results,
which is displayed graphically (as a bar chart). To move forward, children need to
answer some questions about what they observe in the graph (e.g.,Howmany blue
cars are there…? Are there more yellow cars than green cars…?). As they advance
through a series of four progressive sorting levels, children are introduced to more
complex data analysis concepts, where alternative strategies for visualizing and
evaluating data are presented.

• The Electric Company Prankster Planet, available on Android and iOS plat-
forms aswell as online, is based on theEmmyAward-winningPBSKIDSTVseries
The Electric Company, and it targets children aged 6–10. It features eight unique
quests with math curriculum woven throughout that children have to complete to
save Earth from the Reverse-a-ball machines of Prankster character Francine, that
are scrambling up all the words on Earth and are causing a lot of confusion. Chil-
dren complete a series of data collection, representation, and analysis challenges in
order to shut down all eight machines hidden in the jungles, cities, junkyards, and
underground world of Prankster Planet. The app features side-scrolling play and
exploration in a 2D platformer world, an avatar creator with many customization
options, a reward system to encourage repeat play, and the option of collaborative
play through group activities.

We chose to focus our analysis of students’ responses on CarTally and Prankster
Planet because we wanted to investigate how teachers would compare and contrast
two game apps of varied educational value. Specifically, we selected CarTally as a
typical example of a “drill-and-practice” type of game app, and Prankster Planet as a
good example of a high-quality game app that includes the elements of collaboration
and competition and promotes authenticity of learning, higher-order thinking, and
statistical problem-solving.

Table 16.1 shows the median score of teachers’ ratings of each game for each of
the criteria in the Educational Video Game Evaluation Rubric (on a 1–5 scale with
5 being the best).

Analysis of teachers’ evaluation reports showed that they all based their assess-
ment of the two games on important technical and pedagogical considerations, in
accordwith the scholarly discussions of positive implementation of games in learning
situations and our own ranking of the two games. They justified their preference for
Prankster Planet by explaining that were attracted by compelling technical features,
such as the user-friendly interface and well-designed graphics. They also recognized
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Table 16.1 Teachers’ median ratings of Prankster Planet and CarTally

Evaluation feature Prankster Planet median score CarTally median score

Presentation of content

Accurate 4.0 3.0

Interactive 4.0 2.0

Gameplay

Compelling objectives 4.0 2.0

Integrated content and
gameplay

5.0 2.0

Embedded assessment 5.0 2.0

Pedagogy

Adaptive instruction and
feedback

4.0 2.0

Amount of instructions 5.0 1.0

Interface 5.0 3.0

Multimedia

Audio 5.0 3.0

Artwork 4.0 3.0

Narrative and theme 4.0 1.0

that the pedagogical potentials of Prankster Planet are mediated by many factors,
including the rich narrative and theme, which establishes an engaging context that
promotes authenticity of learning and provides reasons for the student to play the
game. They argued that the capturing game scenario, in combination with the reward
system, engages and immerses young children in the learning process, while the
provision of avatars enables them to identify with the story and the main characters
and keeps their interest high. More importantly, teachers recognized that Prankster
Planet provides a challenging environment that promotes inquiry learning and sta-
tistical problem-solving, thus reflecting the emphasis of the program on the impor-
tance of selecting games that promote learners’ higher-order, critical thinking skills
(e.g., Williamson, 2009). Other positive characteristics identified in the evaluation
of Prankster Planet, again in agreement with the literature, are the fact that the game
offers varied difficulty levels for the player to choose from. Teachers also stressed
that the app is an excellent example of a social game that can support collaboration
and group work and/or competition among players, an important aspect of digital
games also discussed in the literature (e.g., Felicia, 2009).

The reasons the teachers gave for their more negative evaluation ofCarTallywere
also based on important pedagogical principles. They noted that although CarTally
does have a user-friendly and well-designed interface and supports differentiated
instruction through the provision of multiple levels, it is not a game they would
introduce in their classroom to promote higher-order statistical thinking, but would
rather “use it at the end of a unit for drill-and-practice purposes.” They gave several
reasons to justify their more negative evaluation of the game: (i) not based on a really
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“convincing” scenario; (ii) not adequately challenging and engaging; (iii) does not
provide proper feedback; (iv) finding the right answer can be based on random factors;
(v) can only be played individually; thus, there is no opportunity for collaboration
and/or competition among children.

16.4.3 Transfer and Adoption of TPACK Competencies
to Teaching Practice

During Phases II and III, participants transferred the knowledge acquired during
Phase I into lesson planning and implementation. This was valuable experience
that helped them further develop professionally in relation to game integration into
the mathematics curriculum. Their hands-on teaching experiences and sharing with
peers helped them develop many pedagogical ideas and apply in practice effective
instructional strategies for successful instructional integration of games. Analysis of
the lesson plans submitted by all six teachers suggests positive gains in their ability
to effectively select and integrate digital games within the mathematics curriculum.
Everyone prepared lessons that incorporated the use of high-level educational games,
which fitted well with their targeted grade level and curricular topic. All lesson plans
also included appropriate pre- and post-game activities.

Next, we turn our attention to the only teaching intervention that focused on
statistics. As mentioned in the Methodology section, the intervention took place in a
Grade 2 mathematics classroom. It targeted the following indicators of achievement
included in the national mathematics curriculum for Grade 2: (i) Collect information
and data in the environment and present them in an organized way; (ii) record,
organize, and present data in tables and graphical representations (pictogram, bar
graph, pie chart); (iii) represent the same data in multiple ways. The lesson is briefly
described next, followed by some reflection.

Lesson Overview

The lesson started with the teacher informing the class that the headmistress needed
information about children’s preferences on afternoon activities, to plan for the
upcoming school year. Therefore, she would like each class to collect data regarding
their preferences, organize them, and present them to her in way that would help her
come up with a schedule of activities that would satisfy as many children as possible.

To tackle the task, the class first decided to do a census where each student
selected their favorite afternoon activity among five different options. Then, they
recorded their preferences on a tally table and counted the total number of students
selecting each afternoon activity. This was followed by class discussion on how to
best present the survey results to the headmistress. During this discussion, children
were introduced to bar graphs, the process of their construction, and the ways in
which this graphical representation can help us to present and interpret the results of
a survey and to make decisions.
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Fig. 16.1 A pair of students interpreting a bar graph in Prankster Planet

Next, children played in pairs the digital game Prankster Planet on their iPads.
As explained earlier, in this game players take the role of a character they construct
using the avatar creator and they try to prevent the wicked Francine from reversing
the order of letters in all the words on Earth, and thus causing great inconvenience on
the planet. Children were asked to go through all eight increasingly difficult missions
of the game. Within each mission, they responded to various questions where they
had to interpret a bar chart or a pie chart, or to construct such graphs, in order to
collect as many points as possible and to achieve their objective (see Fig. 16.1).

Throughout the activity, the teacher went around the class and offered personal-
ized assistance to each pair of students. Although children were fully engaged with
the game and quickly learned its mechanics (possibly due to their high degree of
familiarity with digital games as the vast majority owned a tablet at home), they
needed some help from their teacher in understanding the posed questions, which
were in English.

Finally, children completed an exercise adopted from their mathematics textbook.
They were presented with a table showing the number of hours of sleep per day of
12 different mammals. First, they worked in pairs to complete a task in the game-
platform Kahoot! where they had to respond to various questions related to the
information included in the table. The task was set up as a contest, where each correct
answer gave different points to the pair, depending on their response time. For each
question, the right answer appeared on the whiteboard, as well as a bar chart showing
the children that answered it correctly, and the score of each pair. After completing
the task, the children worked individually to construct a “bar graph” of the data in
their notebook (a simple histogram in reality), with each bar corresponding to an
interval of hours of sleep (i.e., animals sleeping between 0 and 5 h, between 6 and
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10 h, etc.). Finally, through a second contest, theywere again given the opportunity to
collect points and to win by interpreting the graph they had just built, and answering
various questions (e.g., How many animals sleep more than 5 h and less than 16 h
per day?).

At the end of the lesson, a discussion took place about what they had learned. Dur-
ing this discussion, the teacher highlighted the main statistical concepts introduced
during the lesson. Children were also encouraged to express their opinion about the
format of the lesson and whether they would like to again use similar digital games
in class.

Reflection on the Lesson

As the observation of the teaching intervention, but also the quality of the lesson
plan and tasks prepared by the teacher indicated, the specific educator did indeed
acquire the necessary TPACK for teaching this topic and similar statistical topics
using tablets and game apps like Prankster Planet and Kahoot! It can be argued
that this teacher knew how to exploit the specific technologies to their full potential.
He understood how to represent the specific statistical concepts through use of the
technological tools and used appropriate pedagogical techniques in a constructive
way. He was also aware of the difficulties/obstacles that students usually face when
learning these concepts, and of the ways in which the integration of games could
help to overcome these difficulties.

The teacher selected appropriate game apps—Prankster Planet for introducing
the new statistical concepts to children and Kahoot! for reinforcing these concepts in
a playful manner. He properly exploited the games to organize teaching in a construc-
tive, learner-centered way, so that his young students would have the opportunity to
work together in constructing statistical concepts and processes. Specifically, in sev-
eral activities, children collaborated to build joint understanding of the new concepts
they had just encountered. For example, to respond to some of the Prankster Planet
questions, students worked together to understand and interpret pie charts, which
had never been mentioned in class before (see Fig. 16.2).

Moreover, the process of assessing their learning process was transferred from
the teacher to the students themselves. Instead of standing in front of the classroom,
the teacher moved around to the different groups and offered assistance whenever
necessary.

As expected, the game-based nature of the lessonwaswell received by the students
and increased their morale and motivation. In the discussion that took place at the
end of the intervention, children expressed their enthusiasm about the games they
engaged with during the lesson, “because they gave [them] the chance to play and
learn at the same time.”Although expressing a preference for “the gamewhere [they]
had to prevent the Lady from changing the letters” (i.e.,Prankster Planet) which they
found to be “more adventurous,” they also liked the game on Kahoot! because it was
set up as a contest. The children stressed that they would love all their lessons to have
a similar format since games enable them “to learn more things about mathematics
and to have a joyful time in class.”
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Fig. 16.2 A pair of students interpreting a pie chart in Prankster Planet

In the reflection paper he wrote after the teaching intervention’s completion, the
teacher also noted that he was very impressed by the fact that the lesson ended up
being so successful:

The children got excitedwith the games,were constantly active, therewas rivalry between the
teams, but also collaboration within each team, and this had a positive impact on children’s
motivation, but also on the attainment of the instructional objectives. Very important and
noteworthy is also the fact that even the supposedly “weakest” students had strong interest
and active participation during the lesson and gave several thoughtful answers, with no trace
of fear of making a mistake. These are qualities I do not usually experience in lessons where
I do not use digital games.

According to the teacher, the use of the games led to an effortless involvement of
all children and contributed substantially to the achievement of the learning objec-
tives, but also to ensuring fruitful cooperation among learners and the collaborative
construction of knowledge in a creative and enjoyable way. Lastly, use of technology
worked exactly as he had anticipated, providing the opportunity to introduce in the
classroom activities with added value, that could not otherwise be implemented.

While the classroom experimentation further strengthened the teacher’s belief that
appropriate use of game apps can help create motivational and more conducive to
learning environments, it also helped him to build more realistic expectations about
what games’ instructional integration might entail in practice. He recognized that
games are not a panacea and that their incorporation into the curriculum does not
guarantee improved learning.Hementionedvarious challenges anddrawbacks to dig-
ital games’ incorporation in the mathematics classroom, including time constraints,
difficulties in locating high-level games, the risk of the learning objectives being
neglected for the sake of playfulness, and language issues for non-native English
speakers:
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The fact that Prankster Planet is in English was prohibitive factor to its best possible use.
While students played, I had to constantly move around to translate things to them. The
mismatch between children’s mother tongue and the language of the game made my work
hard and tiring.

The teacher stressed the key role of educators not only in choosing appropriate
digital games with the goals of gameplay being closely aligned with instructional
objectives, but also in “coordinating classroom activities appropriately so as to keep
children focused on the achievement of the learning objectives,” and in facilitating
learning by providing continued support and scaffolding. He pointed out that games
should not dominate class time, but should be used as part of carefully planned
learning experiences, and explained how, in his teaching experimentation, the use
of alternative pre-game and post-game instructional activities led to a fuller learning
experience. His comments concur with the literature, which indicates that digital
games are more effective when acting as adjuncts to more traditional teaching meth-
ods rather than as stand-alone applications (Gee, 2007).

16.5 Conclusions and Implications for Teaching
and Research

Digital games present some exciting opportunities for a transformative shift in early
statistics instruction. However, their actual success as an instructional tool will ulti-
mately depend upon the abilities of teachers to take full advantage of their affor-
dances. Findings from the teacher pre-survey in the current study corroborate with
the research literature, which indicates that the majority of teachers do have positive
attitudes toward the educational adoption of games but lack appreciation of their
true potential (e.g., Koh et al., 2012). Similar to other researchers (e.g., Van Eck
et al., 2015), we also found that the teachers in our study had limited TPACK of
game-enhanced learning, lacking the vision and personal experience of what game-
enhanced teaching could look like, and tending to view games as instructional tools
to be used for motivational or drill-and-practice purposes.

In accord with the research literature (e.g., Niess et al., 2009), our research has
illustrated the usefulness of the TPACK framework as a means of both studying
and facilitating teachers’ professional growth. Although there was no pre-post test
assessment to formally track changes in participants’ TPACK, the results do suggest
that the in-service teacher education formatwas successful in achieving all threemain
objectives, as these derive from the study research questions. Firstly, there are strong
indications in the collected data that the program was quite successful in helping
teachers move beyond their restricted views of digital games as educational tools.
Secondly, it helped to convey to teachers technological and pedagogical knowledge
regarding the teaching of specific mathematical and statistical concepts with games.
Thirdly, it improved teachers’ confidence and ability to transfer and adopt the TPACK
competencies acquired through the program to actual teaching practice.
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There are important implications of this study for the design or revamping of
pre-service or in-service teacher education curricula and programs on digital game
integration. The study design and outcomes shed light on what effective teacher
education in game-enhanced learning might entail in helping statistics teachers learn
about, adopt, and integrate games (but also other technological tools) into their teach-
ing. Insights from the study suggest that utilizing a conceptually based theoretical
framework about the relationship between technology and teaching like TPACK can
enrich teachers’ professional development. Findings also indicate that the devel-
opment of teachers’ TPACK necessitates the provision of opportunities for both
theoretical and experiential learning of technology-based pedagogical approaches
to mathematics education. Concurring with prior research (e.g., Serradó, Meletiou-
Mavrotheris, & Paparistodemou, 2014), this study provides evidence that teachers’
involvement in professional development activities such as lesson design and field
experience (e.g., conduct of action research, classroom teaching, classroom obser-
vation) can support them in developing their teaching competencies with ICT and
understanding of TPACK in ways transferable into their own practice.

Although this case study has provided some useful insights, the presented results
are only suggestive and warrant further research. There are several limitations to the
study, emerging primarily from its exploratory nature, which constrain the interpre-
tation of the research results. A serious drawback is the limited generalizability of the
research findings. The qualitative methodology used to research the case, the small
scale of the study, and its limited geographical nature means that generalizations to
cases that are not very similar should be done cautiously. Thus, the study needs to be
repeated with more cohorts of in-service teachers, both within and outside Cyprus.
Future iterations of the study ought to employ more rigorous research methods and
procedures to investigate the impact of the professional development on in-service
teachers’ TPACK competencies and skills on game-enhanced early statistics instruc-
tion (e.g., use of control groups, collection of pre- and post-data on the actual impact
of teachers’ developed TPACK on children’s motivation, and higher-level statistics
learning). This approach could lead to the development of generalized principles and
models of professional development that can help foster the expertise of mathematics
teachers in incorporating games into early statistics instruction.
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Chapter 17
Young Children’s Statistical Literacy
in Modelling with Data and Chance

Lyn D. English

Abstract This chapter reports on eight-year-old children’s responses to data and
chance investigations designed to foster their statistical literacy. Explored through
the lens of modelling with data, statistical literacy involves a number of processes
common to both statistics and probability, with culmination in models from which
conclusions and inferences can be drawn. Specifically, consideration is given to how
the students identified variation, made informal inferences, created representations,
and interpreted their models that displayed the outcomes from their investigations.

17.1 Defining Statistical Literacy

Literacy has had numerous interpretations across disciplines over the years. As
diSessa (2018) points out, we need to know more about what forms of literacy
can exist, how they evolve over the years, and how they are shaped by sociocultural
factors. The representational forms in which literacies are embedded likewise require
greater attention. While textual literacy has had extensive coverage (e.g. Kalantzis
& Cope, 2012), literacies pertaining to statistics and probability have not been as
prolific, especially in the early years, and have been open to debate.

Several definitions of statistical literacy have appeared in the past decade or so
(e.g. Ben-Zvi & Garfield, 2004; Gal, 2002; Watson, 2006). In contrast, the notion of
probabilistic literacy has received limited attention, frequently remaining implicit in
definitions of statistical literacy. Watson’s definition (e.g. English & Watson, 2013,
2016) encompasses both statistics and probability, both of which must be targeted
in developing fundamental understandings for dealing with an increasingly complex
world. Watson considers statistical literacy to be the “meeting point” of statistics and
probability with the everyday world, in which encounters involve unrehearsed con-
texts, chance phenomena, and spontaneous decision making (Watson, 2006, p. 11).
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Table 17.1 Foundational
literature for early statistics
and probability

Knowledge
Components

Chance constructs: possible, impossible, certain,
uncertain, random, likely, unlikely, equally
likely, most/least likely
Statistical and chance constructs: variation,
expectation, prediction, data distributions,
informal measures of centre (mode, median,
mean)

Processes Designing and conducting investigations with
chance and data: Mathematical, statistical, and
chance processes including measuring,
comparing, interpreting, representing,
modelling, making decisions, identifying
uncertainty, justifying, communicating
Making informal inferences: predicting,
recognizing uncertainty and variability in
drawing conclusions beyond the data,
generalizing

Dispositions Critical awareness, appreciation of uncertainty,
flexibility, seeking connections

Watson’s definition is a multifaceted one and brings into question the “literature”
being targeted. As diSessa (2018) rightly argues, “a literacy needs a literature”.
By proposing this argument, diSessa emphasizes the need to “get to civilizations’
expanse of deep and powerful ideas” (p. 7). What then is the literature of statistical
and probabilistic literacy, that is, the core constructs that define the domain? While
not delving into controversies on whether statistics and mathematics are discrete
domains (see Chap. 9 for a discussion on this issue), I consider the literature for
early statistical literacy as encompassing key elements of mathematics, statistics,
and chance phenomena and constructs. The role of dispositions in any such literacy
also cannot be underestimated (Gal, 2005). Table 17.1 presents what I consider to
be the foundational literature for early statistical literacy, including probability.

In this chapter, I describe two investigations implemented in third grade, one
focusing primarily on statistics and the other on probability. Examples of children’s
responses fostered in the early school years are provided. The nature of this learning
is addressed through the lens of modelling.

17.2 Developing Statistical Literacy Through Modelling

Models and modelling have been variously interpreted in the literature, as reported
by English, Arleback, and Mousoulides (2016). Modelling with statistics and prob-
ability can entail a number of processes, including: interpreting and understanding a
problem and its context; identifying, posing, and refining questions; collecting and
organizing data; recognizing variation; creating models (through representing and
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re-representing statistical and probabilistic outcomes); and drawing conclusions and
informal inferences from models generated (cf. Makar, Bakker, & Ben-Zvi, 2011;
Lehrer & English, 2018).

Models are typically conveyed as systems of representation in which structur-
ing and displaying data are essential (Lehrer & Schauble, 2007). Hestenes’ (2010)
expresses this succinctly, namely “Amodel is a representation of structure in a given
system”, with systems defined as “a set of related objects”, where the structure of a
system is the set of relations among the objects (p. 17). Such objects can be actual
or imaginary, concrete or cognitive, simple or complex. Young children create the
structure of a model; such structure is neither inherent nor given to them, in contrast
to many other mathematical situations they meet in class. Furthermore, research has
revealed how young learners can create more than one representation to display the
same data (e.g. English, 2010; Lehrer & Schauble, 2000), revealing what diSessa
(2004) refers to as “met representational competence”. Such competence reflects
children’s “native capacities” (diSessa, 2004, p. 294) to create and recreate their own
forms of representation, with such competence appearing to exist before instruc-
tion and develop independently of it. Moreover, metarepresentational competence
can help children’s development of conceptual competence. Further elaboration on
metarepresentational competence appears in Chap. 14, where the authors illustrate
how preschool students demonstrated features of invention and learning as they cre-
ated their own representations.

Although the importance of modelling with data and chance has been highlighted
in the literature (e.g. English, 2013; Lehrer&English, 2018), young children are often
not given credit for their ability to create and work with models, particularly when
it comes to probability. Research (e.g. English, 2013; Fielding-Wells, 2014; Lehrer
& Schauble, 2005) has revealed; however, that primary school students can engage
in modelling involving data and chance, and furthermore, can apply their statistical
learning to representing and modelling chance events (English & Watson, 2016).

Young learners’ ability to create a range of representations, including those that
extend beyond traditionally or expected accepted formats, is underestimated and
needs greater recognition. In particular, the explicit consideration of variation in
relation to organizing and structuring data, whether the variation is generated in
chance experiments or statistical investigations, has not been a key feature of research
in the primary years.

17.3 Variation

Variation (and expectation, addressed next) is foundational in developing both prob-
ability and statistics in the early years (English & Watson, 2016; Lehrer, 2011). In
simple terms, variation is “the quality of an entity (a variable) to vary, including
variation due to uncertainty” (Makar & Confrey, 2005, p. 28). Although there is
considerable research on older students’/adults’ awareness of variation there is less
so on how this understanding can be developed with young students. This is a major
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concern especially when older students frequently apply statistical techniques with-
out understanding or appreciating why, when, or how these are applied sensibly to a
range of contexts (Garfield & Ben-Zvi, 2008).

Explicit consideration of variation in relation to representations has not been a key
feature of research in the primaryyears.Yet amajor foundational component of young
students’ statistical literacy is being able to interpret the meaning, within a given
context, of a distribution that displays variation, clusters, modes, and unexpected
values. Such distributions are not just confined to data generated from children’s
statistical investigations. As they undertake chance experiments, young children need
to become aware of variation in the outcomes, which often are contradictory to their
expectations. When children represent their findings from these experiments, they
can see and appreciate such variation.

Opportunities for children to represent, in their own way, the outcomes of early
chance experiments have remained largely ignored. As is the case for statistical
investigations, it is important that children identify and justify the sources of variation
that they encounter (but usually don’t anticipate) in chance experiments. Their typical
experiences tend to involve chance events for well-defined sample spaces in which
equally likely outcomes are assumed (e.g. those of a die or coin; Jones, Langrall,
& Mooney, 2007). Greater insights are needed into how young students deal with
variation in working with statistics and probability, and how such variation confirms
or refutes their initial expectations.

17.4 Informal Inference

Informal inference, including expectation and prediction, is the process of using the
evidence provided by data to answer questions beyond the data, while acknowledging
the uncertainty in reaching a conclusion (Makar, 2016; Makar & Rubin, 2009).
Although expectation is usually referred to in connection with drawing informal
inferences from themodels generated, it can be present, either implicitly or explicitly,
throughout the modelling process. As Makar and Rubin (2009) pointed out:

Focusing on investigating phenomena entails understanding the statistical investigation cycle
as a process of making inferences. That is, it is not the data in front of us that is of greatest
interest, but the more general characteristics and processes that created the data. This process
is indeed inferential. (p. 84)

The extent to which any conclusion from an investigation can be reached with
some degree of certainty depends on creating a balance between variation and expec-
tation (Watson, 2006). Konold and Pollatsek’s (2002) well-known metaphor of sig-
nal in noise, with noise indicating variation and signal the expectation (or central
tendency) that can be extracted from the noise, nicely conveys these foundational
constructs. Unfortunately, a focus on informal inference in the primary school has
been limited despite the fact, like adults, young children make predictions in their
everyday lives (Doerr, Delmas, & Makar, 2017; Makar & Rubin, 2009). Learning
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to appreciate variation and its relationship to expectation/prediction needs to begin
early with appropriate hands-on experiences and student/teacher questioning.

In the remainder of this chapter, I first describe two investigations, one dealing
with statistics and the other with probability. Of particular interest in both activities
were students’ identification of variation, their informal inferential reasoning, the
representations they created, and how they interpreted their models. Findings related
to these aspects are presented.

17.5 Investigations in Modelling with Data and Chance

17.5.1 Background

The two investigations, Manufacturing Licorice, and What is the Chance of That?
were implemented during the first year of a four-year longitudinal study being con-
ducted across grades three through six in two Australian capital cities (with collabo-
rators, Jane Watson and Noleine Fitzallen). The first investigation was implemented
in both cities, while the second in just the author’s city. Examples of children’s
responses are drawn from data in the author’s city only (one third-grade classroom,
mean age of 8.8 years). The first investigation, Manufacturing Licorice, was imple-
mented in the first half of the third-grade year, with the second, What is the Chance
of That? in the second half. For the implementation of each investigation, “focus
groups” were selected in consultation with the class teacher and comprised three stu-
dents ofmixed achievement levels. Detailed lesson plans for both investigations were
prepared for the teacher, as was a workbook for each student. The students worked
in small groups of mostly three members, although recorded their own responses to
the investigations in their workbooks.

17.5.2 Design and Analysis

A design-based approach was adopted (Cobb, Jackson, & Dunlap, 2016), with such
an approach catering for complex classroom situations that contain many variables
and real-world constraints. A design-based approach supports learning and informs
future learning experiences based on feedback, and facilitates contributions to both
theory and practice.

Data collection included videotaping of three focus groups as they worked the
investigations, as well as all class discussions, which were subsequently transcribed
for analysis. The data reported in this chapter are drawn from the students’ work-
books, together with the recorded and transcribed group work and whole-class dis-
cussions. In conjunction with an experienced research assistant, content analysis
(Patton, 2002) was applied in initially identifying and coding the data recorded in
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the students’ workbooks. A further round of refined coding was undertaken to ensure
meaningfulness and accuracy. For example, in coding the students’ responses for
“What does the shape of the class plot tell you about the variation in the licorice
sticks made by the class?”, we refined our coding thus: “code 2: “student must refer
to change or comparison, such as ‘there is more on 10 and less on 7’; ‘there are a lot
of people between 8 and 16’”; code 1: “student refers to a single characteristic (no
reference to variation), such as ‘there is a lot on 10; there is a lot on 13’”; and code
0: “the student gave no response, an idiosyncratic response, or one that was out of
context” such as, ‘there are numbers, g, and sticky notes’; they are both like long
rectangles’”.

Iterative refinement cycles for videotape analyses of conceptual change (Lesh &
Lehrer, 2000) were applied in reviewing the transcribed focus group and whole-class
discussions to gain greater insights into the development of the students’ learning.

17.5.3 Investigation Implementation

Manufacturing Licorice. In this investigation, students experienced the “creation of
variation” as they compared the masses of “licorice sticks” they made by hand (using
Play-Doh) with those made using a Play-Doh extruder kit (“factory made”; adapted
from Watson, Skalicky, Fitzallen, & Wright, 2009). Students chose their own forms
of representation in displaying their models for the two forms of licorice produc-
tion and identified, compared, and explained the features of their data distributions.
Following a number of introductory experiences (e.g. exploring the manufacturing
processes and roles of engineers in the creation of licorice and other such products),
the students discussed questions pertaining to quality control and the overall manu-
facturing process. In small groups, the students then undertook the two investigations
involving handmade licorice sticks and those made by the Play-Doh extruder.

For each licorice manufacturing method, the students identified, measured, com-
pared, and recorded attributes of the sticks including their mass, and compared their
findingswith their groupmembers. Their group data on themasseswere then collated
and comparedwithin the group. Each groupmember then created her own representa-
tion of the collated group data. No direct guidance was provided for developing these
representations. However, if a student’s representation was incomplete or unclear we
would remind them to check that their creation could be interpreted clearly. Subse-
quent class sharing and interpreting of the resultant group models for each method
enabled students to identify the range and “typical” masses displayed in each group
model. Eachmethod of licorice manufacture ended with all group data being collated
and displayed as a class plot (bar graph). Figure 17.2 illustrates the plots created as
each child placed a post-it-note, on which they had recorded one of their licorice
stick masses, in the appropriate position on the axis drawn on the class whiteboard.
The students explored and discussed the data distribution revealed in the whole-class
model for each licorice manufacturing method, with inferences drawn regarding the
two methods and the predicted masses if further sticks were made.
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What is the Chance of That? In this investigation, the children created their own
chance experiments and independently developed core probability understandings.
Introductory experiences included reading a chance storybook [“Probably Pistachio”
(Murphy, 2001)], which helped children appreciate that one cannot predict with cer-
tainty the outcomes of a probabilistic situation. On reading the book, the children
recorded examples of events that would be certain to happen for them the follow-
ing weekend, could possibly happen, and would be impossible to occur. The next
introductory component engaged the children in playing a “bingo” game where the
notions of randomness and variation in chance events were experienced. On play-
ing the game, the children responded to questions including, “Did everyone have
an equal chance of winning?”; “Was it certain that someone would win?”; “Was it
possible for two people to win?”; and “Do you think some numbers are more likely
to roll out than others?” They were to justify their responses.

In the main investigation, the children were presented the scenario of a company
seeking their help in designing a game (“What is the chance of that?”). The chil-
dren were to help the company determine the chances of selecting various coloured
counters from a “mystery bag”. A container of 36 counters comprising nine of each
of four different colours was presented to each group of children. Each group was
to select only 12 of the 36 coloured counters to place in their group’s mystery bag,
using their choice of numbers of each colour but ensuring there was at least one of
every colour in the bag (the numbers of each colour did not have to be the same).
The remaining counters were returned to the container. Each groupmember recorded
on a table the number of each coloured counter they chose for their mystery bag of
12 counters. Prior to selecting counters, each child was to predict and record what
coloured counter she would draw from the bag if she only had one chance and was
not permitted to look. Once all students in the group had made their prediction, each
child recorded the predictions of the other group members.

Next, the children took turns in selecting one counter without looking, returning
the counter to the bag, and recording the outcome of each group member’s selection.
On completion, they responded to questions (and justified their responses) on their
initial predictions and any variation in the data they observed. The questions included:
“Why did you predict you would select that colour?”; “Did you select the coloured
counter that you predicted?”; “Describe any variation you can see in your table of
data”; and “If you were to repeat the counter selection over and over, how might the
data in your table change?”

The following questions were then posed regarding the children’s chances of
selecting counters from their bag (responses were again to be justified): “Does each
counter have an equal chance of being selected?”; “Is there a coloured counter that
has the greatest chance of being selected?”; “Is there a coloured counter that has the
least chance of being selected?”; and “Would it be possible to select a purple counter
from your bag?” (no purple counters were included in the containers of counters).

The last component of the investigation engaged the children in creating two
representations of the chances of selecting the different coloured counters from their
group’s mystery bag. The first representational form linked the children’s learning
with their introduction to fractions earlier in the year (e.g. “2 chances out of 12
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chances;” 2
12 ). The second form was primarily a statistical representation of the

children’s own choice. On creation of their models, the children were to explain how
their model displayed the chances of selecting their coloured counters. Following
this, the children were invited to represent their chances in a different way (re-
representing) and subsequently compare their two models to determine which they
considered conveyed their “chance story” more effectively, and why.

In reporting a sample of findings from both investigations, consideration is given
to their shared features of identifying variation, drawing informal inferences, creating
representations, and interpreting models generated.

17.6 Sample of Findings

17.6.1 Identifying Variation

Manufacturing Licorice. The majority of students were able to identify variation and
justify their responses. Over 80% of students (N �23) could detect the variation in
the mass of handmade licorice sticks and all (N �24) could do so for the “factory
made” ones. Likewise, the students had fewdifficulties in giving an appropriate initial
reason for this variation in the former (87%, N �23), with explanations including
reference to some sticks being “fatter” or “too thin” or “thicker”. A considerable
number of students (71%, N �24) could explain that the Play-Doh extruder was
more accurate in producing sticks of a consistent mass (e.g., “Because it’s a machine
like, the machine makes them all about the same size and when you’re doing them
with your hands you can’t really tell if they’re going to be the same size or not”).

What is the Chance of That? As for the previous investigation, the students had
little difficulty in identifying variation in their predictions and outcomes of counter
selection. All students except one (N �24) were able to explain the variation in
the table displaying their predictions and outcomes. The students’ responses varied
from “We all got the same colour which was yellow so there is no variation”, to
“There wasn’t much variation because we had 4 reds and 3 of (each) of the other
colours”, and “Yes (there was variation) because we picked out different colours
and predicted different colours”. One student referred to variation in the student
names and predictions (“On the table the names are different and the predictions are
different”).

Students’ overall ability to identify variation in both investigations provided a
foundation for drawing informal inferences, where one has to acknowledge varia-
tion in the data, and hence the uncertainty with which any conclusions can be drawn
(cf. Makar, Bakker, & Ben-Zvi, 2011; Lehrer & English, 2018). As noted next, stu-
dents’ reference to chance in drawing conclusions from theManufacturing Licorice
investigation suggests they were linking their understanding of statistics and proba-
bility in developing statistical literacy.
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17.6.2 Drawing Inferences

On both investigations, students were asked to make informal inferences from the
data created and/or the models generated.

Manufacturing Licorice. In this investigation, students drew inferences from the
whole-classmodels constructed from the groupdata collected for eachmanufacturing
method. The scenario was posed: “If you made one more piece of licorice, what do
you think (predict) its mass might be? How did you decide?” Students were readily
able to respond to the first part of this question, with 88% (N �24) identifying an
appropriate mass range for the handmade and 96% for the equipment-made sticks.
The majority of students could also offer appropriate reasons for each decision,
referring to either their own data or the whole-class data. Their reasons included, “I
think because most of mine were around ten and mine were both exactly 1 cm wide
and 8 cm long”; “because it is about the average”; and “I decided because 13 g is the
typical mass of sticks in the class”.

As part of a follow-up class discussion, the students were also asked, “If another
student came into our class and made some licorice, what do you think hers would be
(mass of licorice stick)?” In their responses, the students frequently referred to chance
and uncertainty when explaining what the mass of a licorice stick made by a new
student might be. For example, one student explained that, “It might be 13 because
most people got … 13 so maybe that’s the typical number”. Another explained, “I
think maybe 12, because if she came in, there’s a chance, because the Fun Factory
makes all of them um pretty similar and, … but I decided on that [13 g] because I
think there’s a more likely chance that she would [make that mass] because it won’t
always be bigger, she might get it a little smaller than some”.

The teacher asked a further question, namely, “Would you expect, say, if we did it
again next week and we used the same Play-Doh, and we used the same Fun Factory,
would you expect the same plots (i.e. the same class plots of the two licorice-making
methods)?” Alesha expressed the opinion, “I think they might be different because
like we could do something, we may have like cut it a bit further or because it’s really
hard to get everything exact, so it won’t always be exact”. Monica agreed, “…maybe
or maybe not, I sort of agree … you actually don’t know because … when you made
three of them like last week they weren’t all the same mass, they weren’t all 15 or
they weren’t all 13…”

What is the Chance of That? As mentioned earlier in this section, children were
asked to predict the colours they might select from their bag of counters and give
reasons for their answer. The students were also asked if their predictions would
guarantee the outcomes. The students were readily able to justify their predictions
based on the proportions of counters in their bags, with 75% (N �24) offering
reasons such as “I predicted green because there were 4 green counters and all the
other colours were less”. One student simply referred to a random selection: “My
prediction was yellow. I chose it because I randomly chose”, while 21% offered
a general reason unrelated to chance notions or an irrelevant response, such as,
“I thought I would get green because I practised it in random and I got green and



304 L. D. English

because it is one of my favourite colours”. Another student also referred to predicting
her favourite colour, while another explained, “I predicted blue because when the
counters were in a pile blue was on top so when we put it in [the bag] it would still
be on top”.

Almost all students were able to give appropriate reasons for why their predictions
would not guarantee the outcomes, with comments such as: “No, because we have
an equal chance of getting each colour because there are three of each colour”, and
“I can’t be certain that I will always pick a green counter but it may be likely that I
will pick a green or blue”.

One student wrote, “I guarantee I will get a colour. I don’t guarantee that I will
get silver” [there were no silver counters].

17.6.3 Creating Representations and Interpreting Resultant
Models

Manufacturing Licorice. Perhaps not surprising, given the typical nature of early data
experiences in their curriculum, the children mostly created bar graphs to display
their licorice-making results. Two students in two groups, however, used a three-
way table (Fig. 17.1), with one student using both tallies and a three-way table to
represent her data. As can be seen in Fig. 17.1, the former student also indicated the
frequencies of some of the masses.

Although the children favoured bar graphs, they differed in their approaches to
organizing and structuring their data. For example, many students (78%, N �23)
structured their data according to each group member’s results (e.g. Monica, Kate,
Sarah), while some (13%) ordered the data differently, such as from the “biggest
licorice” to “second biggest”, to “second smallest”, to “smallest licorice” as illus-
trated in Fig. 17.2. One student displayed each member’s heaviest licorice stick only.

On collating the group results to form a class plot for each licorice-makingmethod
(see Fig. 17.3), the students were to describe the data distributions of each model.
Sixty-two per cent of the students (N �24) could identify one feature of the model
for the handmade licorice, (e.g. “very, very lumpy”; “zig-zag”), while 33% of these
students could identify multiple characteristics (e.g. “lots of spaces and humps and
sections and a lot at the start”). In contrast, all students except one were able to
describe the class model developed for the second method, with 79% (N �24)
identifying multiple features.
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Fig. 17.1 Three-way table displaying one group member’s masses

The students’ comparisons of the two class plots further suggested their devel-
opment of statistical literacy as they experimented with the two licorice-making
methods (e.g. “handmade was squished together but factory made are apart; factory
made looks like a bed to me but handmade looks like boxes in a storage room; hand-
made are more horizontal but factory made is more vertical. The typical number for
handmade was 11 g but in factory made it was 13 g”).

What is the Chance of That? In contrast to theManufacturing Licorice represen-
tations, the students created a range of ways to display their chances of selecting
the counters in their bags. Furthermore, their inscriptions and explanations indi-
cated a linking of their understanding of statistics, probability, and rational number.
Table 17.2 displays the forms of representation the children produced for their first
and second representations.

It is interesting to note the prevalence of children’s use of circle graphs, even
though they had not been taught these formally nor had they been introduced to frac-
tion representations using this format (similar findings regarding children’s indepen-
dent use of circle graphs were observed in earlier studies, e.g. English, 2014). Bar
graphs were also popular but less so than in the previous investigation. The students
increased substantially their use of circle graphs for their second representations;
although not observed, it could be that some children had learned about the use of
circle graphs from their peers in the first representation. As indicated in Table 17.2,
fewer students created bar graphs for their second representation.
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Fig. 17.2 Graph displaying ordering of licorice masses from largest to smallest

Fig. 17.3 Class plots for each licorice-making method

Of particular interest in the students’ representations were their inscriptions and
accompanying written text. For their first representation, 71% of the students anno-
tated their creations, while 83% did so on their second representation. Their anno-
tations comprised various approaches to documenting the chances of selecting the
different colours, as illustrated in Figs. 17.4 and 17.5.Millicent and Greta’s represen-
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Table 17.2 Students’ representations for the chance activity

Representation type First representation (%) Second representation (%)

Circle graph 38 63

Bar graph 42 21

Grid 12 4

Picture graph 4 4

Illustration 4 4

Text only 0 4

N �24

tations are chosen as examples of ways in which students linked their understanding
of chance, fraction, and statistics.

Millicent (Fig. 17.4) explained that her resultant models “tell you that red is 3
out of 12, blue is 4 out of 12, green is 3 out of 12, and yellow is 2 out of 12 and
together they add to twelve”. It is interesting that Millicent preferred her bar graph
to the circle graph, explaining: “A bar graph because it does the total too, as well as
everything else it needs to”.

For Millicent, the circle graph did not appear as effective for displaying the total
possible outcomes. A desire to display the total possible outcomes is an interesting
feature of many of the models created, suggesting further development of statistical
literacy. That is, without prompting, the children were able to create models that
indicated a linking of chance, fraction, and statistical understandings.

This connected understanding is also evident in Fig. 17.5, where Greta used a
range of annotations displaying the chances and likelihood of selecting the differ-
ent coloured counters. Although Greta did not accurately display the total possible
outcomes on her bar graph, she nevertheless indicated the likelihood of each colour
being selected. Greta also preferred her bar graph, apparently because of her textual
annotations (“The plot because it had it in words”).

17.7 Discussion and Concluding Points

This chapter has examined two investigations that revealed 8-year-olds’ statistical lit-
eracy in modelling with data and chance. Children’s responses to both activities were
explored in terms of how they identified variation, made informal inferences, created
representations, and interpreted their resultant models. Given that the two investiga-
tionswere the children’s first exposure tomodellingwith data, their responses suggest
they were developing important foundational components of statistical literacy. The
children could readily identify variation in the data of both investigations, and fur-
thermore, could explain why such variation occurred. They recognized why there
was reduced variation in the factory made licorice sticks and understood how varia-
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Fig. 17.4 Millicent’s annotations
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Fig. 17.5 Greta’s annotations
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tion in their predictions and outcomes of the chance investigation was due largely to
the different proportions of their coloured counters.

Using their understanding of variation as a foundation, the students were able
to draw informal inferences regarding licorice stick masses that might be produced
in future licorice-making activities. Drawing on their understanding of typical and
average, as well as their recognition of other factors that could generate variation,
the children displayed a degree of uncertainty in drawing conclusions about future
stick masses. For the probability investigation, three quarters of the children made
predictions basedon their proportions of coloured counters,while a fewother students
referred to the random nature of selection, or their preference for a particular colour.
Nevertheless, the children’s “intuitive ideas” or personal beliefs or perceptions about
probability (Hawkins & Kapadia, 1984, p. 349) appeared rarely in this particular
investigation. In contrast to common activities with equally likely outcomes (e.g.
rolling a die), where an “equiprobability” bias can be present (e.g. Khazanov, 2008),
the nature of this chance investigation enabled students to appreciate the variation in
outcomes possible. Furthermore, students’ control over their initial counter selection
appeared to facilitate their understanding that predictions and outcomes can vary,
and that the former does not guarantee the latter. An appreciation of the relationship
between variation and expectation is critical in students’ development of formal
probability models (English & Watson, 2016).

One of the interesting findings from the children’s representations was the greater
variety of models generated from the chance investigation, in contrast to the common
use of bar graph models for the licorice-making. Despite the preferred use of bar
graphs, the students displayed different approaches to organizing and structuring their
data in the licorice-making investigation, and furthermore, could identify the data
distributions of the whole-class models for the two methods. Their identification of
how the distributions differed reflects Konold and Pollatsek’s (2002) notion of signal
in noise, where the handmade data showed more “noise” than the factory made. In
describing and comparing the two data distributions, students identified their features
in terms of familiar contexts (e.g. a “bed” and “boxes in a storage room”) as well as
in terms of statistical notions such as data clusters and typical mass values.

The students’ representations for the models produced from the chance inves-
tigation varied considerably. There was a greater use of circle graphs than in the
previous investigation, even though the children had not been formally introduced
to this representational form. Their use of inscriptions, indicating a linking of math-
ematics, statistics, and probability understandings, was unexpected as, again, they
had not received formal instruction in creating such models. Furthermore, with all
but a couple of children able to generate more than one representational model to
display the same data, it appeared the students had developed the metarepresenta-
tional competence identified by diSessa (2004). The children’s identification of the
representational model that more effectively conveyed the chance outcomes further
indicated their conceptual linking of chance and statistical notions. For example,
for many children, their desired models needed to indicate clearly the total possible
outcomes, which was taken into consideration in model generation. As illustrated in
Figs. 17.4 and 17.5, children frequently included an additional bar to display the total
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outcomes or to document the chances of selecting each colour. Such an inclusion
was unexpected and suggests these children had developed a solid grasp of chance
outcomes expressed in fraction form. Those students who preferred the circle model
gave reasons such as “…because you can easily tell that red and blue are even, and
yellow and green are even, and red and blue have more counters”, “…because it tells
you about how many counters you have and it shows the chance like most likely,
least likely and equal”, and “I think pie graph because it explains the chance in two
ways: in fractions and in chance out of twelve”.

Children’s responses to both investigations highlight the learning affordances gen-
erated when students actually create their own data, experience variation “in action”,
make predictions based on their findings (rather than someone’s else’s), and gener-
ate their own models to convey their investigative “story”. More opportunities that
capitalize on, and advance, young children’s learning potential in early statistics and
probability are clearly warranted, especially when research is revealing the enhanced
mathematical skills of today’s beginning school students in contrast to previous years
(Bassok & Latham, 2017).
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