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Changes of Brachiopods 
in Relation to Varied 
Palaeogeographic Settings
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7.1	 �Previous Study on the 
Permian–Triassic Body Sizes 
and Potential Insights into 
the Palaeoenvironments

The so-called Lilliput effect refers to a macroevo-
lutionary phonemnon where the surviving ani-
mals in the aftermath of a mass extinction tend to 
be smaller on average than their pre-extinction 
relatives (Urbanek 1993; Fraiser and Bottjer 
2004; Payne 2005; Twitchett 2007; Keller and 
Abramovich 2009; Zhang et al. 2016). This obser-
vation clearly highlights the importance of animal 
body-size changes in the study of mass extinc-
tions. Body size is a key character of any organ-
ism and profoundly affects its biology and ecology 
(Jablonski 1996). Body size is often controlled by 
environmental factors, including oxygen fluctua-
tions (Savrda and Bottjer 1986; Payne et al. 2008, 
2013), food availability (Hallam 1965; Rheault 
and Rice 1996; Twitchett 2007; He et  al. 2010) 

and temperature changes (Hunt et  al. 2010; 
Sheridan and Bickford 2011; Edeline et al. 2013), 
as well as substrate conditions. As many of these 
factors vary with water depth, the relationship 
between body size and bathymetry (i.e., spatial 
body-size changes in this book) is crucial for the 
study on body-size changes (Anderson 1971; 
Thiel 1975; Peck and Harper 2010; Shi et  al. 
2016). For example, the study of spatial body-size 
changes is useful for examining which factor  
(or factors) played a more important role in con-
trolling the differences of body sizes, thereby 
providing insights into the evolution of palaeoen-
vironments through time. Meanwhile, the study 
of size changes through past extinction times (i.e., 
temporal body-size changes in this book) is also 
of particular importance in understanding the 
biotic responses to global-scale climatic and envi-
ronmental evolution (Twitchett 2007; He et  al. 
2010, 2015).

Numerous researches have been undertaken 
on the Permian–Triassic body-size changes of 
conodonts, brachiopods, siliceous sponges, ostra-
cods or foraminifers in South China (He et  al. 
2007, 2010, 2015, 2016, 2017; Peng et al. 2007; 
Luo et al. 2008; Song et al. 2011; Liu et al. 2013; 
Chu et al. 2016; Zhang et al. 2016). Most of these 
studies have focused on the patterns of body-size 
changes of individual taxa across time and their 
possible underlying control mechanisms, and a 
few (e.g., He et  al. 2010; Liu et  al. 2013) have 
addressed the relationship between size changes 
in relation to primary productivity and redox 
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palaeoproxies in the context of palaeobathyme-
try. Most recently, based on a global dataset of 
Changhsingian brachiopod orders, Shi et  al. 
(2016) examined the relationship of 
Changhsingian brachiopod body-size changes in 
relation to the onshore–offshore–basin gradient.

7.2	 �Latest Permian Body-Size 
Changes in Relation to 
Varied Palaeogeographic 
Settings

The palaeogeographic settings of South China 
are already described in Chap. 2 and the age cor-
relations in Chap. 4. Detailed descriptions of the 
methodology used for the measurement of body 
sizes and their analyses including significance 
testing are given in Chap. 5.

Here we present a summary of body-size 
changes of latest Permian brachiopods across dif-
ferent bathymetrically controlled palaeoenviron-
mental settings within the South China basin, 
extracted from our recent study (He et al. 2017). 
In this book, we adopted two most commonly 
found Changhsingian chonetid brachiopod spe-
cies, Fusichonetes pygmaea and Fusichonetes 
quadrata (These two species had been referred to 
as Tethyochonetes pygmaea and Tethyochonetes 
quadrata, respectively, see Wu et  al. 2017 for 
details), from five different sections, which 
together constituted an approximately-defined 
basin-wide bathymetric gradient spanning the 
shallow-water clastic shelf, shallow-water car-
bonate platform and ramp, and deep-water sili-
ceous basinal settings (see Fig.  7.1; analysis of 
palaeo-water depths see Chap. 3). The studied 
five sections include Huangzhishan, Zhongzhai, 
Daoduishan, Majiashan and Rencunping.

For the study of body sizes, values of Xmean 
and Xmedian were adopted (the definition and rea-
son for selected as parameters sees Chap. 5). The 
Xmean shows that the body sizes at Zhongzhai and 
Huangzhishan are both close to or greater than 
5 mm (see Line a in Fig. 7.1a) whereas the same 
size metric for the Daoduishan, Majiashan and 
Rencunping sections are all smaller than 4 mm 
(see Line b in Fig. 7.1a) except for F. quadrata at 
Majiashan whose Xmean reached larger than 5 mm 
(Fig. 7.1a).

Additionally, the Xmedian shows that the median 
body sizes at Huangzhishan and Zhongzhai are 
close to or larger than 5.0  mm (see Line c in 
Fig. 7.1b). By contrast, the median sizes of bra-
chiopods for the other three deeper-water sec-
tions are all close to or smaller than 4.0 mm (see 
Line d in Fig.  7.1b) with the exception of F. 
quadrata at Majiashan whose Xmedian attained 
larger than 5 mm (Fig. 7.1b). A Mann–Whitney 
(M–W) test revealed that the difference in median 
sizes between the two groups of sections (i.e., the 
Huangzhishan and Zhongzhai as a group repre-
senting shallow-water settings while the 
Daoduishan, Majiashan and Rencunping together 
representing a group of deeper-water settings) is 
statistically significant (P < 0.05, see Table 5.1), 
although the difference of medians for F. 
quadrata is not significant between Zhongzhai 
and Majiashan sections (P  =  0.3622, see Table 
5.1).

Overall, the analysis on body sizes for both 
species by using different size parameters (Xmean 
and Xmedian) among the studied sections revealed 
that body sizes at Huangzhishan and Zhongzhai 
are significantly larger than their counterparts in 
the Daoduishan, Majiashan and Rencunping sec-
tions, with the only exception of F. quadrata at 
Majiashan (see explanation in Chap. 8).

Fig. 7.1  Body-size differences of F. pygmaea (black) and 
F. quadrata (purple) in the five studied sections and their 
comparision with varied palaeo-bathymetry and redox con-
ditions (revised after He et al. 2017). (a) Body size (Xmean); 
(b) Body size (Xmedian); (c) Redox conditions at the studied 

sections; (d) Sketch diagram showing the palaeogeographic 
settings and palaeo-bathymetry of the studied sections. 
Note: The division for redox condition in Fig. 7.1c is based 
on the study of pyrite framboids (see Chap. 8). The estima-
tion for palaeo-bathymetry in Fig. 7.1d sees Chap. 3
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7.3	 �Temporal Body-Size Changes 
Through the Permian–
Triassic Transition in Varied 
Palaeogeographic Settings

The studied species for the body-size changes 
include Paracrurithyris pygmaea from the 
Rencunping and Majiashan sections and 
Fusichonetes pygmaea from the Daoduishan sec-
tion, with mean size as the studied parameter (see 
Chap. 5). The reasons for these two species were 
chosen for study is given in Chap. 5. In addition, 
body sizes of Fusichonetes pygmaea and 
Spinomarginifera spp. from Huangzhishan, 
Fusichonetes pygmaea and all brachiopod speci-
mens from Zhongzhai and all radiolarian speci-
mens from Akkamori of Japan, have also been 
analyzed for comparison, although their temporal 
changes could not be tested for significance 
because of scarcity of specimens (Fusichonetes 
pygmaea) or difference in taxonomy level (e.g., 
Spinomarginifera spp. being at the genus level, 
all radiolarian specimens being at subclass level).

The analyses revealed the following patterns 
(Fig.  7.2): Paracrurithyris pygmaea at 
Rencunping significantly reduced its size from 
Beds 22-3 to 23a and then significantly increased 
its size from Beds 23b-2 to 23c-1 and again from 
Beds 23c-2 to 23d–24; Paracrurithyris pygmaea 
at Majiashan shrank from Beds 10–12, followed 
by a significant increase from Beds 14–15. Thus, 
it is clear that the mean size of brachiopods from 
the deep-water Rencunping and Majiashan sec-
tions began to decline significantly (in a statisti-
cal sense) from the middle 
Pseudotirolites–Rotodiscoceras Zone (≈middle 
Clarkina yini Zone) (Fig.  7.2). In contrast, sig-
nificant size reduction of brachiopods in the shal-
lower water environment of Daoduishan 
(shallower, compared to Rencunping and 
Majiashan) began in the top part of the C. meis-
hanensis Zone (Fig.  7.2). As for the compared 
faunas, the size reduction of radiolarian speci-
mens from the deep-water Akkamori section of 
Japan (pelagic environment) apparently began to 
take place far below the PTB, namely earlier than 
the faunas in the shallow-water settings of South 
China. The size reduction of Spinomarginifera 

spp. at the shallow-water Huangzhishan took 
place at the base of C. meishanensis Zone and 
size reduction of Fusichonetes pygmaea at this 
section took place in the upper part of C. meisha-
nensis Zone, both later than their counterparts of 
deep-water environments. At the shallow-water 
Zhongzhai section, although the mean body size 
of Fusichonetes pygmaea did not appear to have 
changed significantly, but the body sizes of all 
brachiopod specimens through the section dem-
onstrate a reduction trend in the Early Triassic 
(e.g., Beds 32 and 38), and the reduction occurred 
later than brachiopods living in deep-water envi-
ronments. In summary, it is evident that size 
reduction in deep-water environments occurred 
earlier than in shallow-water environments 
(Fig. 7.2). This pattern is consistent with the tem-
poral trend of the brachiopod diversity evolution 
in that the decline of deep-water brachiopod spe-
cies diversity commenced earlier than in shallow-
water settings (the reason and analysis see Chap. 
8).

In addition, body sizes of most species which 
tentatively survived the PTB, attained or demon-
strated a reduction trend. For example, Paryphella 
orbicularis and Chaohochonetes triangusinuata 
(=?Tethyochonetes sp. of He et  al. 2010) at 
Majiashan reduced their body sizes immediately 
below the PTB and attained smaller sizes in the 
Early Triassic. A similar pattern of body-size 
changes for Paryphella orbicularis (=Paryphella 
triquetra of He et al. 2016) has been recorded at 
Daoduishan. These cases are typical of the 
Lilliput effect.
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