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Abstract
Growth factors (GFs) are often a key component 
in tissue engineering and regenerative medicine 
approaches. In order to fully exploit the thera-
peutic potential of GFs, GF delivery vehicles 
have to meet a number of key design criteria 
such as providing localized delivery and mim-
icking the dynamic native GF expression levels 
and patterns. The use of biomaterials as delivery 
systems is the most successful strategy for con-
trolled delivery and has been translated into dif-
ferent commercially available systems. 
However, the risk of side effects remains an 
issue, which is mainly attributed to insufficient 
control over the release profile. This book chap-
ter reviews the current strategies, chemistries, 
materials and delivery vehicles employed to 
overcome the current limitations associated 
with GF therapies.

Keywords
Growth factor delivery · Tissue engineering · 
Delivery vehicles · Scaffolds · Biomaterials

13.1  Introduction

Since tissue and organ transplantation became a 
widespread medical procedure, there has been a 
tremendous disparity between the need and the 
availability of organs and tissue grafts. The inher-
ent limitations associated with organ transplanta-
tion include immune rejection, risk of disease 
transmission and donor-site morbidity. The tissue 
engineering and regenerative medicine (TERM) 
field, which aims to regenerate or repair tissues or 
organs, has emerged as an attractive strategy to 
overcome these issues.

In order to successfully engineer tissues in the 
laboratory, it is vital to firstly understand the 
physiological regenerative and development pro-
cesses. The main components in the developmen-
tal and regenerative microenvironments are cells, 
extracellular matrix (ECM) and soluble signal-
ling molecules [105]. Cells are the central unit of 
the tissue as they proliferate, migrate and differ-
entiate in response to certain environmental 
inputs. The ECM acts as a physical support to 
these cells, while also providing the necessary 
biophysical and biochemical cues for tissue 
homeostasis. On the other hand, soluble signal-
ling molecules circulate through the bloodstream 
and/or diffuse through interstitial fluid to modu-
late cellular behaviour. Thus, controlling these 
signals holds the potential to control cellular fate, 
which includes triggering or enhancing regenera-
tive/healing processes. Growth factors (GFs) 
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have been identified as soluble signalling mole-
cules that play critical roles in both the develop-
ment and regenerative processes and have been a 
main focus in TERM strategies.

Levi-Montalcini and Cohen firstly discovered 
GFs by studying the effect of sarcomas on axonal 
growth from chicken embryos [33], where the 
signalling molecule that triggered nerve growth 
was identified as nerve growth factor (NGF) [34]. 
Since then, a number of GFs which modulate 
many physiological processes have been discov-
ered and applied to different regenerative medi-
cine applications [100]. Some examples include 
bone morphogenetic proteins (BMP-2 and BMP- 
7) for bone regeneration [119] or vascular endo-
thelial growth factor (VEGF) [67] and 
platelet-derived growth factor (PDGF) [139] for 
diabetic foot ulcers.

GFs are defined as secreted, biologically 
active molecules that can affect the growth and 
differentiation of cells. GFs act on cells by bind-
ing transmembrane receptors in a highly specific 
manner, which triggers a transduction cascade 
that generally starts with phosphorylation of the 
cytosolic domain of the receptor. Each GF is 
unique with specific roles in cellular behaviour 
(Table 13.1). For example, BMP-2 is essential for 
the maintenance of bone density [208]. It was 
previously reported that adult mice lacking 
BMP-2 showed spontaneous fractures and 
impaired bone repair [200]. Due to these charac-
teristics, BMP-2 has been used in clinical settings 
for spinal fusion procedures and for non-union 
fractures [39]. A comprehensive list of these GFs 
with their respective unique characteristics are 
tabulated in Table 13.1.

In the native microenvironment, GF concen-
trations are usually in the nanomolar to picomo-
lar range, where their presence is continuous and 
can last up to several weeks or months [9]. Initial 
clinical trials, which involved injection [196] or 
spraying [16] of GFs directly to the wound site, 
showed limited therapeutic effects, mainly due to 
the short presence of the applied GFs at the 
wound site. In order to better mimic the natural 
spatio-temporal concentrations of GFs, continu-
ous doses of the GF were administered, causing 
systemic overexposure that can result in an unde-

sirable increase in cancer  risk and other side 
effects [53]. These results led to the realization of 
the need for a suitable GF delivery system, which 
has been the focus of many research groups in the 
past decades. This chapter will cover the different 
GF delivery approaches reported in the literature 
that aim to mimic key aspects of the regenerative 
microenvironment by controlling the spatio- 
temporal presence of GFs.

13.2  Design Criteria for Growth 
Factor Delivery Systems

The selection of an acceptable GF will not only 
depend on the type of organ or tissue that we are 
trying to regenerate, but also on the desired cell 
function. Some GFs are required to trigger prolif-
eration and differentiation of cells that are already 
present at the site. In other cases where the cells 
required for healing or regeneration are absent, 
chemotactic GFs are able to trigger migration of 
cells to the wound site [106, 204]. The ECM is 
another key factor that needs to be considered 
while designing any GF delivery system, since it 
can modulate the effects of GFs through different 
mechanisms. For example, heparan sulphate [4], 
decorin [201], betaglycan [205], versican [70], 
fibronectin [127], collagen [173], vitronectin 
[203], SPARC (Secreted protein acidic and rich 
in cysteine) [19] and tenascin C [41], are ECM 
components that can bind GFs and modulate 
their diffusion and localization, further influenc-
ing their availability at the cell surface and their 
receptor-binding kinetics. Due to the dynamic 
remodeling of the ECM during regenerative pro-
cesses [54, 212], it is essential to understand the 
interaction between GFs and the ECM for the 
design of an optimized delivery strategy. The 
interactions between cell receptor, ECM and GFs 
are represented in Fig. 13.1.

In order to modulate these complex interac-
tions, mimicking different dynamic aspects of the 
native GF such as its localization, expression lev-
els and expression patterns has been identified as 
a  key design criteria for GF delivery systems. 
These aspects are further discussed in the sec-
tions below.
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Fig. 13.1 From biosynthesis to cell receptor signalling, a 
growth factor’s journey within the physiological 
ECM. After their biosynthesis, growth factors are secreted 
into the ECM, where they interact with ECM components 
before binding and activating their specific receptors. 
Growth factors mainly signal to cells in autocrine and 

paracrine fashion, to instruct their behaviour during mor-
phogenetic processes. Complexes formed between growth 
factors, ECM components, and cell surface receptors may 
lead to additive or synergistic cell signalling events. 
(Reproduced from Ref. [134])

13.2.1  Localization of Delivered 
Growth Factors

GFs can have different effects in different tissues 
and cell types. For example, EGF promotes 
homeostasis in the GI tract [8] and mammary 
gland [90], but inhibits tissue maturation in the 
cartilage [24]. In order to achieve only the desired 
therapeutic outcome, the GF has to be delivered 
and contained spatially at the targeted tissue. 
Moreover, unnecessary presence of GFs in non- 
targeted tissues might also trigger cancer devel-
opment and progression due to undesirable 
excessive cell proliferation [53, 68, 214]. In order 
to avoid these effects, major focus has been given 
to the study of  different delivery systems that 
enable spatial containment of delivered GFs, 
such as nanoparticles or scaffolds.

13.2.2  Growth Factor Expression 
Levels

A major challenge in designing GF delivery 
approaches is optimizing the concentration 

required for the desired therapeutic effect. A 
recent meta-analysis on the use of FGF-2 for 
periodontal defects reported that insufficient 
amounts of GF failed to promote bone regenera-
tion [118]. In the same study, it was also shown 
that excessive concentrations of FGF-2 resulted 
in insignificant promotion of bone growth. 
Furthermore, excessive concentration of BMP-2 
has been reported to promote apoptosis in osteo-
blasts, mesenchymal stem cells (MSCs) [79] and 
periosteal cells [92]. Similarly, excessive VEGF 
concentrations promote the formation of aberrant 
and hyper-permeable blood vessels [146]. 
Therefore, the optimal concentration of GF to be 
delivered onsite has to be evaluated for each spe-
cific context and delivery system.

In developmental and regenerative processes, 
the culmination of spatio-temporal control over 
GFs is the formation of concentration gradients. 
GFs are generally secreted from a focal spot, 
which can be a cluster of cells with a specific 
phenotype or the defined space of a regenerative 
process. Cells at different distances from the spot 
will be exposed to different concentrations of the 
GF, and specific concentration thresholds strictly 

13 Growth Factor Delivery Systems for Tissue Engineering and Regenerative Medicine
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define spatial differentiation patterns in many 
stages of embryonic development [15, 154]. As 
individual cells are able to detect spatial differ-
ences in concentration, gradients of chemotactic 
GFs also represent a directional signal for cells to 
migrate to the wound site [6, 176] and for vascu-
larization and innervation of tissues [78, 207]. 
The specific characteristics of these gradients are 
crucial for organized tissue formation. Thus, their 
adequate mimicry would be one of the pinnacles 
of controlled GF delivery.

13.2.3  Growth Factor Expression 
Patterns

The time period during which the GF is present 
on site is an essential parameter to achieve opti-
mal therapeutic effects. The ordered presence 
and absence of specific factors corresponds to 
different stages of regeneration in natural pro-

cesses [40, 126]. During bone regeneration, GFs 
that promote recruitment of MSCs and vascular-
ization such as stromal derived factor 1 (SDF-1) 
and VEGF are firstly expressed. This stage is fol-
lowed by the generation of a cartilaginous callus 
in which other GFs such as TGF-β3 are highly 
expressed, followed by a prolonged mineraliza-
tion and remodeling phase in which expressions 
of TNF-α, IL-1 [126] and BMP-2 [125] are ele-
vated. In an attempt to match these expression 
patterns, delaying the administration of a rhBMP- 
2- loaded calcium phosphate matrix for one week 
instead of 3 h post-surgery resulted in accelerated 
healing in a primate fibular osteotomy model 
[174]. It has also been reported that delaying the 
administration of an adenoviral BMP-2 vector by 
5–10 days after surgery increases bone mineral-
ization in a rat critical-size defect model [13]. It 
is also to be noted that the therapeutic effect of 
GFs is time-dependant. A 4  weeks sustained 
delivery of BMP-2 improves ectopic bone forma-

Biomaterial Biomaterial

Biomaterial

Growth factor Growth factor

Growth factor

Natural affinity for
the biomaterial

Biomaterial

Biomaterial

Heparin

Growth factors

Affinity
for heparin

Affinity for
ECM fragment

ECM fragment

Growth factors

Chemical
crosslink

Chemical
crosslink

Additional reactive group

A. Non-covalent adsorption or encapsulation

B. Affinity-based systems

C. Covalent incorporation

Fig. 13.2 Types of material-growth factor interaction. 
(a) Non-covalent interactions based on surface proper-
ties. (b) Affinity-based systems rely on natural interac-
tions between growth factors and the extracellular 

matrix. (c) Covalent incorporation methods bind the 
growth to the material directly or through added func-
tional groups or amino acids. (Adapted and modified 
from Ref. [134])
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tion in comparison to just 5 days delivery [85], 
which agrees with the fact that the BMP-2 plays 
a major role in the long-term remodeling phase of 
bone regeneration [125]. These results indicate 
that matching specific GF expression patterns 
can result in improved tissue regeneration and 
should be taken into account in designing GF 
delivery systems.

Different biomaterial based systems with 
unique properties have been designed and 
employed for GF delivery in order to meet these 
design criteria. The following section reviews the 
different biomaterials and respective chemistries 
that have been used to deliver GFs for TERM 
applications.

13.3  Use of Biomaterials 
for Growth Factor Delivery

Low biochemical stability, short circulating half- 
life and rapid rate of cellular internalization are 
limitations of delivered GFs in TERM applica-
tions. In general, combining GFs with a biomate-
rial is an effective approach to overcome these 
drawbacks. However, no single material or strat-
egy has yet allowed the required spatio-temporal 
control over the delivered GFs for optimal thera-
peutic effect. In recent years, the convergence of 
different materials, chemistries and fabrication 
techniques has brought the field one step closer to 
its goal by enabling more complex release pat-
terns, including coordinated release of different 
GFs. This section will provide an overview of all 
these strategies, focusing on the advanced mate-
rials and procedures that enable control over the 
outlined design criteria.

13.3.1  Incorporation Methods

GFs can be incorporated into biomaterials 
through different strategies. The simplest proce-
dure involves directly submerging a material in a 
GF solution to facilitate the adsorption of the GF 
to the material [94]. For example, GFs have been 
adsorbed on FDA approved polymers such as 

poly(lactic-co-glycolic) acid (PLGA) micro-
spheres [44] and poly(caprolactone) (PCL) scaf-
folds [226]. Changes in material surface 
roughness [163] or the addition of nanostructured 
features [45] can increase the overall surface 
area, resulting in increased GF adsorption. 
Another prominent strategy that involves mixing 
the material with the GF in a liquid phase prior to 
scaffold fabrication allows the fabrication of 
scaffolds entrapped with GFs. Common scaffold 
fabrication techniques include freeze drying, 
phase separation, molding or in situ 
 polymerization [105]. One issue in these strate-
gies is the requirement to protect the GFs from 
harsh conditions during these scaffold fabrication 
processes in order to maintain their bioactivity. 
For example, melt molding can expose the GFs to 
high temperatures whereas radical based polym-
erization systems can facilitate GF oxidation/
denaturation [114].

13.3.2  Interaction Between Growth 
Factor and Biomaterial

The interaction between GF and biomaterial 
plays a key role in all incorporation methods, 
affecting not only the release profile [94, 130], 
but also the biological effects of the GF [130]. 
The different types of material-GF interaction are 
summarized in Fig. 13.2.

Non-covalent interactions are weaker and can 
be mainly hydrogen bonds [43], Van der Waals 
forces, ionic forces or hydrophobic interactions 
[42]. Modifying the surface charges, charge den-
sity [3, 60] or available functional groups [61] of 
the material results in different GF binding affini-
ties and release profiles. For example, increasing 
the surface hydrophobicity and decreasing the 
isoelectric point (pI) of PLGA microspheres 
resulted in an increase in the amount of rhBMP-2 
adsorbed, whereas changes in molecular weight 
did not result in any significant change [172]. 
Functionalizing the material surface or the poly-
mer chains with amino [45], alkyl [27, 45] or 
oxygen-terminated groups [185] can increase the 
adsorption of rhBMP-2 and result in a longer 
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release time. The interaction with the functional 
groups will also depend on the pI of the GF, and 
thus each GF will have specific release profiles 
when incorporated in the same material based on 
this approach [152].

A special case in non-covalent interactions is 
the use of GF-binding domains from ECM mol-

ecules. These strategies are generally classified 
as affinity-based, as the affinity of certain GFs for 
these domains is significantly higher and more 
specific than for single chemical groups or sur-
face charges [136]. An example of these affinity- 
based domains are heparin or heparan sulphate, 
which have been extensively used for the delivery 

Table 13.2 GF delivery vehicles fabricated using various biomaterials

Delivery vehicle or 
combined approach Biomaterials GFs
Particles PLGA IGF-1,VEGF, BMP-2 [31, 48, 211]

PCL-PEG-PCL bFGF [62, 63]
PBCA NGF [104]
PEG-PLGA bFGF [227]
Tetronic®-PCL (Heparin) bFGF [111, 112]
PAMAM EGF,VEGF [5, 197]
Phosphatidylcholine liposomes with 
magnetite core

BMP-2, TGF-β1 [131, 193]

DSPE-PEG-NHS NGF [102, 217]
Combined lipid SLN NGF [103]
Poloxamer 188/HSPC/cholesterol bFGF [228]
Silica (MSNs) BMP-2,FGF [225]
Iron oxide (SPION) EGF, BDNF [156, 178]
Semiconductor Qdot® BDNF, NGF [162, 218]

Scaffolds Collagen BMP-2, BMP-7 [100]
PLA BDNF [151]
PLGA FGF, BMP-2 [55, 223]
Chitosan-glycerophosphate BMP-2, Insulin [29, 180]
Fibrin FGF-2, VEGF-A [230]
PEGDA-Heparin bFGF, TGF-β, KGF, Ang1, PDGF [153, 155]
PEG FGF-2, PIGF-2 [129]
GelMA BMP-2 [7, 170]
PEG-PLLA-PEG TGF-β1 [109]
Β-TCP PDGF, GDF-5, BMP-2, hGH [65, 98, 99, 

191]
Bioglass VEGF, BMP-2 [37, 215]
CPC BMP-7,VEGF [165]
Titanium TGF-β1, BMP-2, VEGF [168, 186, 192]

Particles incorporated in 
scaffolds or injectable 
systems

OPF TGF-β1 [71]
PLGA, Gelatin, PPF BMP-2 [88]
PLGA, PEG CNTF, NT-2 [20]
Gelatin, OPF TGF-β1, IGF-1 [72, 73]
PLA, alginate BMP-2, VEGF [86]
PLA, chitosan IGF-1, BMP-2 [91]
PHBV, chitosan BMP-2,BMP-7 [175]

Core-shell Gelatin, PPF BMP-2, VEGF [89]
PLLA,PLGA BMP2-,FGF [209]

Layer by layer Gelatin BMP-2 IGF-1 [161]
OPF BMP-2,IGF-1 [123]

Biofabrication GelMA VEGF [21, 157]
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of specific GFs such as NGF or BMP-2 [169, 
221]. Fibronectin [128] and fibrinogen [129] 
GF-binding domains, which bind to several GFs 
from the PDGF, VEGF and FGF families and 
some from the TGF-β family, have also been used 
to functionalize scaffolds. The use of affinity- 
based systems has been extensively studied and 
reported in the literature [206], and the resulting 
release profile, which is significantly more sus-
tained than for other non-covalent incorporation 
methods, positioned them as one of the most suc-
cessful GF incorporation approaches to date. 
However, the strategies are limited to the release 
of GFs that display natural affinity for these 
domains, and the release profile differs between 
different GFs due to their distinct affinities with 
the system. In order to further improve the thera-
peutic effects, some engineered GFs containing 
additional ECM binding domains have been stud-
ied. Genetically engineered IGF-1 including the 
heparin-binding (HB) domain of HB-EGF was 
able to interact with specific GAGs in cartilage 
matrix after injection to the knee [133]. Through 
similar techniques, collagen-binding domains 
were added to NGF [188] or BDNF [66], promot-
ing their interaction with collagen scaffolds [187] 
and the retention of the GF at the wound site.

The release profile for delivery systems that 
use non-covalent incorporation is generally char-
acterized by an initial burst release [77]. The 
observed burst release profile has been suggested 
to have a role in early post-implantation compli-
cations [23, 199]. In order to reduce or eliminate 
burst release, protein immobilization to the 
matrix through covalent incorporation has been 
extensively studied [130]. It has been reported 
that the release of GFs conjugated to the biomate-
rial is then dependent on the materials’ degrada-
tion profile. Moreover, it is possible to have 
further precise control over the GF release profile 
by adding features such as protease-cleavable 
sequences to the material [57] or to the 
GF-material linkage [46]. Aside from improved 
control over the GF release profile, presentation 
of covalently bound GFs to cells can result in a 
differentiated response in comparison to soluble 
GFs by inhibiting the internalization of the 

GF-receptor complex [80]. Covalent incorpora-
tion can also be used for patterning GF [116], 
including the formation of gradients in a mate-
rial. Several GFs have been covalently incorpo-
rated in biomaterials for different applications, 
leading to improved functions such as endothelial 
cell proliferation [30], osteoblast adhesion to tita-
nium implants [179], or even bone formation in 
vivo [219]. Common reactions for GF immobili-
zation include carbodiimide coupling [121], 
photo-polymerization methods such as phenyl 
azide-based [219] or acrylate-based [116], and 
also click chemistry [115, 135]. One of the main 
limitations of these approaches is poor control 
over the exact reaction site of the GF, which can 
lead to disruption of the receptor-binding domain 
[130]. In order to improve the therapeutic effects 
of covalently incorporated GFs, some studies 
have engineered growth factors containing func-
tional groups [144] or amino acids [189] at spe-
cific sites that do not overlap with the 
receptor-binding domain. Overall, covalent 
incorporation shows great potential for GF deliv-
ery as it offers higher control over the presenta-
tion and the release profile of GFs.

13.3.3  Delivery Vehicles for Growth 
Factor Administration

Biomaterials used for GF delivery can be fabri-
cated into different types of vehicles, such as par-
ticles or scaffolds. Each delivery vehicle poses 
favourable characteristics and is adaptable to spe-
cific therapeutic strategies or administration pro-
cedures. A comprehensive list of different GF 
delivery vehicles is tabulated in Table 13.2 below.

13.3.3.1  Particle Systems
Particle systems, which can be in the range of 
<1 μm for nanoparticles or <1000 μm for mic-
roparticles, have been used to deliver GF for 
TERM applications [138]. The particle size 
affects the rate of GF release due to different 
surface- to-volume ratios and intracellular uptake 
[147].
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Nanoparticles
Nanoparticles (NPs) can infiltrate deeper into tis-
sue via capillaries and epithelial lining due to 
their small sizes, improving the transport proper-
ties and pharmacokinetic prolife of drugs in vivo. 
They are generally highly soluble and display 
low immunogenicity [107]. Targeted delivery of 
GFs to specific tissues can be achieved using sur-
face functionalized NPs or using electromagnetic 
fields [224]. Surface functionalization can also 
enable NPs to cross the blood-brain barrier 
(BBB), which is not possible for other delivery 
systems without invasive procedures [51]. In 
general, NPs can be classified into polymeric, 
lipidic and inorganic depending on their 
composition.

Polymeric NPs can be fabricated as nano-
spheres, nanocapsules, micelles and dendrimers, 
all of which have been studied for GF delivery. 
PLGA is the most studied material to form nano-
spheres and nanocapsules, and it has been used 
for IGF-I [48], VEGF [31] and BMP-2 release 
[211]. Functionalization of PLGA nanoparticles 
with different concentrations of heparin has also 
been used to form an affinity-based system, 
where increasing the heparin concentration 
resulted in longer term release [31]. Low fre-
quency ultrasound was combined with bFGF- 
loaded PLGA NPs to increase microvessel 
permeability for targeted skeletal muscle angio-
genic therapy [26]. Apolipoprotein E (ApoE) was 
adsorbed to poly(butylcyanoacrylate) (PBCA) 
NPs in order to cross the BBB through an ApoE 
receptor-mediated response. NGF was adsorbed 
to the PBCA NP surface and then delivered to 
rats by intraperitoneal injection. Symptoms of 
scopolamine-induced amnesia were reduced after 
the administration, indicating targeted delivery to 
the brain [104]. Some polymeric NP systems 
have also been able to achieve long-term release: 
a heparin-conjugated Tetronic®-PCL micellar 
system was used for bFGF delivery, showing 
long-term delivery up to 2 months [111, 112].

Lipid based NPs that have been used for GF 
delivery are mostly liposomes and solid lipid 
nanoparticles (SLNs) [10]. Liposomes are closed 
vesicles formed by bilayers of hydrated phospho-
lipids which enclose an aqueous core [35]. The 

main advantages of these formulations are their 
inherent low toxicity and scalable production 
methods [17]. Phosphatidylcholine liposomes 
loaded with magnetite particles were used for 
bone and cartilage regeneration after loading 
with BMP-2 [131] or TGF-β1 [193] respectively. 
Both tissues were targeted by magnetic induction 
[131, 193]. Despite their flexibility, liposome 
nanoparticles display low GF loading capacity 
and low stability due to enzymatic degradation, 
leading to a short release [224]. Other types of 
lipid NPs with different conformations have been 
used in order to overcome these issues. For 
example, a lecithin anionic nanolipid core was 
loaded with VEGF and covered by a Pluronic 
F-127 shell. The system showed increased stabil-
ity in comparison to liposome systems, and a sus-
tained release of VEGF for more than 30 days. 
The release period was extended by increasing 
the lecithin/Pluronic F-127 ratio, presumably due 
to changes in the ionic charge that enabled stron-
ger interactions with VEGF [145]. Recently, an 
SLN system has been conjugated with heparin 
and loaded with NGF for neuronal differentia-
tion. The release could be tuned by changing the 
composition of the solid core, where using stea-
rylamine resulted in a faster release than using 
esterquat, and increasing the amount of choles-
terol resulted in slower release [103].

Inorganic nanoparticles such as mesoporous 
silica NPs (MSNs), quantum dots (QDs) or 
metallic NPs have also been applied to GF deliv-
ery. In general terms, inorganic nanoparticles 
excel due to their easy handling and their physi-
cal properties. MSNs are used due to their high 
surface area and porosity [210]. For example, 
BMP-2 has been covalently grafted to the MSNs 
surface through an aminosaline linker, while 
dexamethasone was loaded in the nanopores to 
form a dual delivery system. The combination 
resulted in synergistic induction of bone forma-
tion in an in vivo ectopic model [229]. It has also 
been shown that the release kinetics can be tuned 
by controlling the porosity of the nanoparticles, 
where increased porosity leads to faster release 
[74], or by coating them with PEG, resulting in 
increased release time [14]. Magnetite NPs have 
been combined with other types of NPs, includ-
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ing MSNs [160] and liposomes [131, 193], in 
order to provide them with magnetic properties 
that enable guided targeting using an external 
magnetic field. Other magnetic NPs can also be 
directly incorporated with GFs, such as super-
paramagnetic iron oxide nanoparticles (SPIONs), 
which enabled targeting specific areas of the 
brain using a magnetic field after adsorption of 
BDNF to their surface [156]. The main draw-
backs of metal-based nanoparticles are their poor 
degradability and their tissue accumulation. 
Thus, their long-term toxicology should be fur-
ther evaluated [210]. QDs have fluorescent prop-
erties that can be used to track conjugated 
molecules. Conjugation of BDNF [218] and NGF 
[162] with QDs enabled tracking of the GF after 
internalization by neurons [218] and PC12 cells 
[162], which was used to monitor its receptor 
internalization dynamics. In the field of bone 
regeneration, calcium phosphate nanoparticles 
have also been studied due to their high biocom-
patibility and bioactivity [18].

Overall, NP delivery systems represent a 
promising approach for GF delivery. One of the 
most important advantages of NP systems is the 
possibility of intravenous administration, which 
positions them as the least invasive GF delivery 
method. The specific properties of different NPs 
provide great advantages such as targeted deliv-
ery, enhanced MRI contrast or tracking of the 
NPs. Other systems such as MSNs can be used as 
a sequential delivery system, and complex NPs 
can be synthesized in order to combine the advan-
tages of different nanostructured materials. On 
the other hand, aspects such as long-term toxicity 
and tissue accumulation of NPs should be further 
investigated before advancing to the clinical field.

Microparticles
The use of microparticles (MPs) generally results 
in a lower cellular uptake and tissue penetration 
in comparison to NPs due to their larger sizes 
[147]. On the other hand, their increased volume 
results in higher drug loading capacity, slower 
release and ease of production. These character-
istics enable a longer-term release, which can be 
extended by increasing the particle size [28]. The 
materials used to generate MPs for GF release 

include naturally derived polymers such as gela-
tin [149, 150], alginate [122], and chitosan [164], 
as well as synthetic polymers such as PLGA 
[167]. As MPs adaptability to intravenous admin-
istration is low in comparison to NPs, most of the 
applications require the formation of a scaffold 
through microsphere fusion [143] or being incor-
porated in a solid scaffold [49] or an injectable 
hydrogel [38].

13.3.3.2  Scaffold Systems
Biomaterial scaffolds can be incorporated with 
GFs and implanted at the damaged area to achieve 
local release [114]. Scaffold systems can be clas-
sified as solid scaffolds or hydrogels depending 
on their composition.

Solid scaffolds are typically porous matrices 
fabricated by techniques such as solvent casting, 
gas foaming, particulate leaching, electrospin-
ning or rapid prototyping [105]. These systems 
can be classified as organic or inorganic. Due to 
their mechanical properties and inherent tissue 
compatibility, inorganic scaffolds such as 
ceramic, bioglass or titanium play an important 
role in regenerative medicine [108]. Calcium 
phosphate-based systems excel due to their com-
positional similarities to the native bone ECM, 
and thus they have been extensively studied for 
GF delivery [18]. Most commonly used calcium 
phosphate materials include hydroxyapatite and 
TCP scaffolds with different porosities, which 
have been used for BMP-2 delivery resulting in 
positive effects ([65, 99, 191]. The incorporation 
of GFs within TCP to treat bone defects has 
resulted in different commercially available 
products. Therapeutic Goods Administration 
(TGA, Australia) and Health Canada have 
approved the safety of utilization of tricalcium 
phosphate (TCP) as scaffold to deliver PDGF 
(AugmentTM Bone Graft; BioMimetic 
Therapeutics, Franklin, TN). Different clinical 
trials have concluded that PDGF-BB [2, 132, 
140, 184, 195] and FGF-2 [32] loaded in β-TCP 
resulted in improved bone regeneration in peri-
odontal osseous defects [118]. Clinical trials 
using β-TCP as scaffold to deliver GDF-5 for 
sinus lift augmentation in 2010 [98] and for peri-
odontal defects in 2012 [213] also yielded posi-
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tive results. Other calcium phosphates have also 
been studied for GF delivery. Mesoporous bio-
glass scaffolds have been fabricated to load 
VEGF, and the addition of pores resulted in more 
than 90% loading efficacy and extended release 
profile while retaining VEGF bioactivity [215]. 
Sumner et  al employed a titanium scaffold to 
deliver TGF-β1 and BMP-2  in a dog humerus 
model, resulting in improved integration [186]. 
In another study, VEGF and antibacterial pep-
tides were bound to titanium scaffolds, resulting 
in increased cell attachment and reduced bacte-
rial growth [192].

Polymeric solid scaffolds have also been 
extensively studied for GF delivery. Homo- and 
copolymers of lactide and glycolide (like PLGA 
or PLLA) have been widely used due to their 
degradation into lactide and glycolide, which can 
enter into metabolic pathways [76]. The physical 
properties of these polymers can be altered by 
varying the ratio of lactide/glycolide, molecular 
weight or crystallinity [183], which directly 
influence the release profile of GFs. For example, 
PLA scaffolds have been loaded with BDNF by 
entrapment for spinal cord injury applications 
[151] while PLGA has been loaded with BMP-2 
for bone regeneration [55]. Affinity-based sys-
tems have also been generated by conjugating 
heparin to the surface of PLGA scaffolds. FGF 
was incorporated in the scaffolds, resulting pro-
longed release and stimulation of vascularization 
in vivo [223].

Hydrogel scaffolds are one of the most suc-
cessful and versatile GF delivery approaches, and 
the major proof of that are the commercially 
available products [100]. A collagen hydrogel 
loaded with BMP-2 (INFUSE®-BMP-2; 
Medtronic, Minneapolis, MN) has been approved 
by the FDA for treatment of degenerative disc 
disease. Another similar design using type I col-
lagen matrix to encapsulate BMP-7 (OP-1TM 
Putty; Olympus Biotech Corporation, Hopkinton, 
MA) is also approved for fractures of long bones 
and lumbar fusion procedures. Furthermore, 
PDGF impregnated in a hydrogel (REGRANEX®, 
BioMimetic) has been approved for diabetic 

ulcer treatment. However, an increased rate of 
mortality secondary to malignancy was detected 
in patients treated with high amounts of 
REGRANEX® [53], which clearly shows the 
need for optimized controlled delivery systems.

Synthetic hydrogels such as poly(vinyl alco-
hol) (PVA) and poly(ethylene glycol) (PEG) are 
biologically inert, but have well-controlled and 
reproducible physical and chemical properties 
and no risk of disease transmission. These char-
acteristics are of special interest for clinical 
translation and mass production. As an example, 
PEG has been crosslinked using thiol-ene chem-
istry [198]. This combination enabled high con-
trol over the mesh size and the degradation time, 
where decreased mesh size and increased degra-
dation time led to longer-term release for up to 
60 days. Naturally-derived hydrogels have higher 
batch-to-batch variation, but they hold the poten-
tial to interact with cells and undergo cell- 
mediated degradation. Most widely used 
naturally-derived hydrogels include fibrin, colla-
gen, gelatin, chitosan, alginate and hyaluronic 
acid. As an example, tyraminated hyaluronic acid 
crosslinked using horseradish peroxidase (HRP) 
has been studied as an injectable system for pro-
tein delivery, showing increased release time by 
increasing the crosslinking density through 
changes in HRP concentration [113]. Fibrin seal-
ants have been used for controlled release of 
FGF-2 and VEGF-A, enhancing blood reperfu-
sion after myocardium infarction or limb isch-
emia [230].

Different strategies have been designed in 
order to obtain the benefits of synthetic and natu-
ral polymers in the same scaffold. In a compre-
hensive study, gelatin or heparin were crosslinked 
to PEG diacrylate (PEGDA) and the composites 
were used for incorporation of bFGF, TGFβ, 
KGF, angiopoietin-1 (Ang1) and PDGF. In gen-
eral, the heparin conjugated PEGDA resulted in a 
longer GF release profile, which was different for 
each GFs due to differences in their interaction 
with heparin [153, 155]. In another study, the 
GF-binding domain of fibrin was incorporated in 
a PEG hydrogel. Co-delivery of FGF-2 and 
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PlGF-2 using these gels enhanced skin wound 
healing [129]. On the other hand, modification of 
naturally-derived polymers with functional 
groups that enable controlled crosslinking is also 
a generalized strategy. These modifications 
enable tailoring the crosslinking density and 
mesh size, providing higher control over the 
release profile. As an example, gelatin undergoes 
gelation at temperatures under 35 °C. This pro-
cess is not adequate for applications requiring 
high control over the network characteristics. 
Thus, gelatin functionalization with methacry-
loyl (GelMA) has been used for different applica-
tions that demand high control over the 
crosslinking density [97], including the genera-
tion of scaffolds for BMP-2 encapsulation [7, 
170]. Increasing the degree of functionalization 
of GelMA results in decreased mesh sizes, 
increasing the release time of GFs such as BMP-2 
[141].

Both hydrogels and solid scaffolds are the 
most successful platforms for GF delivery, as 
shown by the amount of commercially available 
products and clinical trials performed to date. 
The ability to spatially deliver GFs at the wound 
site by implantation of the scaffold or injection 
followed by in situ crosslinking is the most 
important advantage of these platforms.

13.3.3.3  Combined Approaches in GF 
Delivery

The combination of different materials and plat-
forms allows several advantages in GF delivery 
applications. Firstly, it enables coordinated deliv-
ery of GFs by incorporating them in different 
materials or through different methods [9]. 

Secondly, combining different materials that can 
be independently modified increases the tailor-
ability of the release profile.

Multiple incorporation strategies can be used 
in the same material in order to deliver different 
GFs with independent release profiles. For exam-
ple, encapsulation of PDGF in PLGA micro-
spheres, followed by surface adsorption of VEGF 
and generation of a scaffold by gas foaming- 
particulate leaching, resulted in a burst release of 
VEGF and a prolonged PDGF release [181]. In a 
different study, BMP-2 was covalently grafted to 
the surface of MSNs through an aminosaline 
linker while dexamethasone (DEX) was incorpo-
rated in the nanopores, obtaining short-term DEX 
release profile and a longer-term BMP-2 release 
profile (Fig. 13.3) [229].

MPs or NPs can be further incorporated into a 
scaffold (Fig. 13.4). TGF-β1 loaded gelatin par-
ticles have been immobilized in oligo 
poly(ethylene glycol) fumarate (OPF) and 
resulted in a reduction of the burst release. The 
release time could be further increased by 
increasing the molecular weight and the cross-
linking time of the OPF hydrogel [71]. 
Encapsulation of NT-3 in PLGA MPs and inclu-
sion of these MPs in a ciliary-neurotrophic factor 
(CNTF) loaded hybrid hydrogel resulted in a 
rapid CNTF release and a more sustained NT-3 
release. Increasing the crosslinking density of the 
hydrogel phase resulted in increased release time 
from weeks to months [20]. Also, gelatin MPs 
encapsulated in OPF have been used for coordi-
nated and tailorable delivery of TGF-β1 and 
IGF-1 with the aim of cartilage regeneration [72, 
73]. Further examples include BMP-2-loaded 

Fig. 13.3 Mesoporous silica nanoparticles were incorpo-
rated with two different bioactive components. Firstly, 
MSNs were functionalized with an amino group by treat-
ment with APTES. BMP-2 was covalently linked to the 

amino groups through carbodiimide chemistry, and 
Dexamethasone was incorporated into the MSN pores by 
surface adsorption. (Reproduced from Ref. [229])

13 Growth Factor Delivery Systems for Tissue Engineering and Regenerative Medicine



258

PLA microspheres incorporated in VEGF-loaded 
alginate hydrogels [86] and IGF-1 encapsulated 
in gelatin microspheres loaded into chitosan scaf-
folds containing BMP-2 [91], both resulting in 
enhanced bone regeneration.  Other strate-
gies used to combine different materials for coor-
dinated GF delivery include Layer-by-layer and 
core-shell approaches (Fig. 13.5 and 13.6).

In the past decade, emerging biofabrication 
approaches that generate complex scaffolds fol-

lowing a layer-by-layer automated deposition 
technique have also been studied for GF delivery. 
This automated high resolution approach offers a 
superior level of control over the spatial distribu-
tion of the materials in each single layer, dictat-
ing the scaffold architecture. Byambaa et  al. 
bioprinted a scaffold with similar architectural 
features as bone using bioinks consisting of 
VEGF covalently conjugated to GelMA through 
carbodiimide chemistry. The GelMA-VEGF 

MPs or NPs with Growth factor A

MPs or NPs with Growth factor B

Scaffold or injectable matrix

Fig. 13.4 Materials with different release characteristics 
are used to generate MPs or NPs, enabling high control 
over the release profile of one or more growth factors. 

These particles can be incorporated into a matrix in order 
to generate a scaffold or an injectable composite material. 
(Adapted from Ref. [9])

Fig. 13.5 Representation 
of core-shell approaches. 
Materials with different 
release characteristics are 
used to generate scaffolds 
with an internal core and 
an external shell, enabling 
high control over the 
release profile of one or 
more growth factors. 
Core- shell approaches can 
take the form of fibres, 
particles or scaffolds. 
(Adapted from Ref. [9])
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regions of the scaffold resulted in increased 
endothelial cell proliferation and tubulogenesis 
[21]. In a different study, VEGF-loaded GelMA 
MPs with different crosslinking densities were 
bioprinted in a Matrigel®/alginate bioink, 
 showing increased release time by increasing the 
crosslinking density of GelMA.  GelMA MPs 
with a more sustained delivery resulted in 
increased bioactivity in in vitro 3D cultures, and 
the presence of VEGF-releasing particles resulted 
in increased vascularization in vivo [157]. The 
possibilities of fine tuning the release profile 
expand if a coaxial systems is used for rapid pro-
totyping [36], enabling the combination of both 
core-shell and biofabrication approaches. These 
examples showcase the potential of biofabrica-
tion to generate complex biomimetic scaffolds 
that include spatially- and temporally-controlled 
GF release systems for both tissue regeneration 
and in vitro modelling.

13.4  Conclusions and Future 
Perspectives

Although several GFs have been identified as sig-
nalling molecules that play important roles in 
developmental and regenerative processes, the 
use of GFs as therapeutics agents has yet made 

significant progress in the clinic. One major issue 
that still persists is the lack of suitable GF deliv-
ery systems that achieve optimal therapeutic 
effect while avoiding side effects. It was identi-
fied that the ideal GF delivery system should 
meet key design criteria such as being able to 
deliver the GF to a localized site, as well as mim-
icking the native GF expression levels and pat-
terns during a typical tissue regenerative 
process.

A number of commercially available GF prod-
ucts exist in the market, but showed limited clini-
cal success with potential side effects, further 
highlighting the need for development of more 
advanced delivery systems. The spatial and tem-
poral control over the GF release profile from 
these delivery systems is highly desired. Various 
biomaterials, incorporation methods and fabrica-
tion techniques have been developed and 
employed for GF delivery. Although these deliv-
ery platforms often pose desirable characteris-
tics, they are usually only adapted to the release 
of one specific GF.  In the native regenerative 
microenvironment, several GFs work concur-
rently with different expression levels and pro-
files, synergistically facilitating the desired 
cellular behaviour. With our current understand-
ing of this basic biological phenomena and the 
limitations of the current GFs delivery vehicles, it 

High crosslinking Low crosslinking
density layer with density layer with
Growth factor A Growth factor B Growth factor B Growth factor A

Inner layer with Outer layer with

(C.1) (C.2)

Bulk polymer

Fig. 13.6 Representation of Layer-by-layer approaches. 
Materials with different release characteristics are used to 
generate layered scaffolds or coatings, enabling higher 

control over the release profile of one or more growth fac-
tors. (Adapted from Ref. [9])
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is recommended that the field moves forward 
with combinatorial approaches that enable 
orchestrated release of multiple GFs.
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