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Abstract
Chitosan, a deacetylated chitin, is one of the 
few natural polymers similar to glycosamino-
glycans (GAGs) widely distributed through-
out connective tissues. It has been believed 
that the excellent biocompatibility of chitosan 
is largely attributed to this structural similar-
ity. Chitosan is also known to possess biode-
gradability, antimicrobial activity and low 
toxicity and immunogenicity which are essen-
tial for scaffolds. In addition, the existence of 
free amine groups in its backbone chain 
enables further chemical modifications to cre-
ate the additional biomedical functionality. 
For these reasons, chitosan has found a tre-
mendous variety of biomedical applications in 
recent years. This chapter introduces the basic 
contents of chitosan and discusses its applica-

tions to artificial skin, artificial bone, and arti-
ficial cartilage in tissue engineering purpose.
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25.1	 �Scaffolds

Tissue engineering is an emerging multidisci-
plinary approach that incorporates biology, medi-
cine and engineering [7]. As a field of study, the 
discipline of tissue engineering aims to under-
stand the relationship between structure and 
function in cell and tissue and to develop biologi-
cal substitutes that can repair or replace the dead 
or damaged tissues, organs and/or parts of the 
human body. The success of tissue engineering 
may depend on a harmonious interplay of three 
components; cells for neo-tissue formation; bio-
materials to act as scaffolds; biological signaling 
molecules that instruct cells to form desired tis-
sue type [51]. Among the components, scaffolds 
play a pivotal role in the field of modern regen-
erative medicine, because they provide an archi-
tectural context in which cells and growth factors 
can cooperate and represent a wide range of mor-
phological and geometric possibility for suitable 
clinical application [32]. So far, many biomateri-
als of natural and synthetic origin have been 
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adapted for the manufacture of scaffolds with 
various fabrication techniques to create three-
dimensional (3-D) environment mimicking extra-
cellular matrix (ECM) [6, 70], many of which 
have been the subject of practical development 
efforts [16, 58]. As natural polymers, collagen 
and hyaluronic acid can meet the several require-
ments for scaffold, therefore, have been exten-
sively studied and currently being employed in 
clinical trials [8, 55]. However, it is crucial that 
there exists the imbalance between supply and 
demand in natural polymers because of natural 
inconsistency in the in vivo source; the lot-to-lot 
variability is always a concern [24]. The addi-
tional drawbacks of natural polymers could be 
the potential impurities that may result in 
unwanted immune reaction and the difficulties in 
control mechanical properties [35, 55]. 
Meanwhile, the main advantage of synthetic 
polymers over natural polymers is the suffcient 
availability on demand with constant quality 
supporting industrial-scale production. 
Therefore, numerous attempts have been made 
to use synthetic biodegradable polyesters, such 
as polylactic acid (PLA), polyglycolic acid 
(PGA) and their copolymer (PLGA) as the sub-
stitute for natural polymeric scaffolds, however, 
their lack of cell recognition site for cell adhe-
sion, migration and subsequent cellular behav-
iors often limits applications [32, 65, 69]. 
Consequently, both natural and synthetic materi-
als have their own merits and demerits have to be 
complemented.

25.2	 �Chitosan

In addition to collagen and hyaluronic acid, a 
candidate of interest as natural polymeric mate-
rial for scaffold preparation would be chitin and 
chitosan. Chitin is the second abundant biopoly-
mer on earth, exceeded only by cellulose [15]. 
Chitin can be found widely in the exoskeletons of 
arthropods, shells of crustaceans, and the cuticles 
of insects [18]. Chitosan, a deacetylated chitin, is 

one of the few natural polymers that has free 
amine groups in its backbone chain, thus has the 
characteristics of a polymeric hydrogel owing to 
a high water absorption capacity [34]. It is also 
known to possess biodegradability, antimicrobial 
activity and low toxicity and immunogenicity 
which are essential for scaffolds [29, 67]. For 
these reasons, chitosan has found a tremendous 
variety of biomedical applications in recent 
years.

25.2.1	 �Chemical Structure

Chitosan, produced by deacetylation of chitin, is 
a linear polysaccharide composed of β-(1→4)-
linked D-glucosamine and N-acetyl-D-
glucosamine. The deacetylation process of chitin 
can not only control degree of deacetylation 
(DD) but also change the average molecular 
weight of chitosan. In general, the weight-average 
molecular weight (Mw) of chitin is in the range 
from 1.03 to 2.5 × 106 g/mole, but the deacety-
lation process of chitin results in reduced Mw of 
chitosan to range from 1 to 5 × 105 g/mole [62]. 
Despite the loss in molecular weight of polymer, 
the main reason for manufacturing chitosan can 
be the poor solubility of chitin.

In the beginning, because the chemical struc-
ture of chitin is very similar to that of cellulose, 
the studies on solvents for chitin have been car-
ried out together with the development of cellu-
lose. Chitin is a long chain polysaccharide, like 
cellulose, that shows the degree of polymeriza-
tion around 7000~15,000 [66]. The inter- and 
intra-molecular hydrogen bond due to the pres-
ence of acetyl amino and hydroxyl bond makes 
chitin highly aggregated and insoluble in most of 
organic solvents. The solvents for chitin reported 
by far include the concentrated salt solutions 
such as LiCNS, Ca(CNS)2, CaI2, the strong acids 
such as HCl, H2SO4 and H3PO4 and other kinds of 
acids containing carboxylic group such as formic 
acid, dichloroacetic acid, and trichloroacetic 
acid, however, in most cases chitin showed very 
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slow dissolution rate accompanied by severe 
level of molecular decomposition [64]. Recently, 
N,N-dimethylacetamide, N-methyl-2-pyrollidone 
and their mixture in the presence of 5% LiCl are 
known to be a suitable solvent system for cellu-
lose [76]. The main principle is similar to 
cellulose xanthate, that is Li+ ions formed in 
DMA and NMP solutions bind to the hydroxyl 
group of cellulose to break the original strong 
interactions between cellulose chains resulting in 
dissolution. The same system has been used to 
solubilize chitin, however, there still exist num-
ber of problems awaiting solutions [14, 66]. 
Chitosan, on the other hand, is easily dissolved in 
a dilute acid solution in the form of an ammo-
nium salt and has functionality of amino groups, 
primary and secondary hydroxyl groups for fur-
ther chemical modifications [5].

25.2.2	 �Nomenclature

Because deacetylated unit (D-glucosamine) and 
acetylated unit (N-acetyl-D-glucosamine) is ran-
domly distributed in chitosan, and because the 
composition of two residues is entirely depen-
dent upon deacetylation process, nomenclature 
of chitosan is still controversial. A group of 
deacetylated chitin whose D-glucosamine resi-
dues over 50% (or 60%) is often referred to as 
chitosan, however, there is no boundary in the 
nomenclature distinguishing chitin from chitosan 
[23]. This misunderstanding is probably caused 
by the fact that the % of DD in commercial chito-
san ranges from 60 to 99%. As mentioned above, 
the important factor in naming ‘chitin or chito-
san’ is the solubility in dilute aqueous acid solu-
tions. That is, regardless of the % of DD, if a 
deacetylated chitin is insoluble, it cannot be clas-
sified into chitosan [64]. In addition to DD, the 
Mw of chitosan is another important character-
ization parameter because the application field of 
chitosan can be widely varied with the distribu-
tion of Mw. For biological and functional appli-
cations of chitin and chitosan, the international 
official standard methods to determine DD and 
Mw of chitin and chitosan, ASTM F2260–03 and 

ASTM F2606–13, have been provided to 
researchers and manufacturers.

25.2.3	 �Distribution of N-Acetyl-D-
Glucosamine 
and D-Glucosamine Units

From chemical point of view, either acids or alka-
lis can be used to deacetylate chitin, however, 
alkaline deacetylation is preferred, because gly-
cosidic bonds are very susceptible to acid. As the 
alkaline deacetylation of chitin, either heteroge-
neous or homogeneous hydrolysis has been being 
employed. Heterogeneous hydrolysis employs 
the severe conditions with hot concentrated 
NaOH solution within few hours. By this hetero-
geneous hydrolysis, the deacetylated chitin 
whose DD up to 80% can be obtained, but they 
are insoluble. On the contrary, homogeneous 
hydrolysis using very mild condition at 25 °C of 
deacetylation temperature produces a soluble 
chitosan, even though the range of DD is 48–55 
[36]. This can be attributed that deacetylation 
reaction performed under heterogeneous condi-
tions gives an irregular distribution of N-acetyl-
d-glucosamine and d-glucosamine residues with 
some block-wise acetyl group distribution along 
polymeric chains [2]. Thus, solubility and degree 
of aggregation of chitosan can vary in aqueous 
solutions leading to changes in their native char-
acteristics. For instance, physico-chemical prop-
erties of such chitosans may differ from those of 
randomly acetylated chitosans obtained under 
homogeneous conditions.

25.2.4	 �Biocompatible Factors

In addition to good solubility, chitosan has a vari-
ety of biocompatible factors compared to chitin. 
The chemical structure of chitosan is very close 
to hyaluronic acid, the fourth class and non-
sulfated GAG widely distributed throughout con-
nective tissues. It has been believed that the 
excellent biocompatibility of chitosan is largely 
attributed to this structural similarity, therefore, 
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numerous attempts have been made to prepare 
chitosan based scaffolds for tissue engineering 
applications [37].

The biodegradability is an essential factor for 
scaffold preparation because the degradation of 
scaffold material is a very important process in 
the tissue remodeling. In the case of chitosan, 
lysozyme plays a leading role in degradation in 
vivo, and degradation rate is inversely propor-
tional to the degree of crystallinity, which is 
greatly influenced on DD [73]. Ren et al. reported 
that each reacetylated chitosan matrices with 
deacetylation degree of 52.6%, 56.1%, and 
62.4% has weight half-lives of 9.8  days, 
27.3 days, and above 56 days, respectively, with 
mean molecular weights of 8.4%, 8.8%, and 
20.0%, respectively. They also reported that each 
reacetylated chitosan matrices with deacetylation 
degree of 71.7%, 81.7%, and 93.5% has slow 
degradation rates, and half-lives of above 84 days 
both weight and average molecular weight [63].

When chitosan is dissolved, the free amine 
group of chitosan chain becomes charged as posi-
tive, in turn produce the dielectric interactions 
with negatively charged biologics including the 
growth factors and the cytokines. The primary 
amine group can also be utilized as the coupling 
site for conjugation with biologics in order to 
build stable interaction. These modifications pro-
vide further improvements to chitosan in its bio-
medical applications [48].

Chitosan is largely known to have a broad 
antimicrobial activity to which gram-positive, 
gram-negative and fungi are highly susceptible 
[61]. Although the precise mechanism for this 
action has not fully established yet, the most 
acceptable antimicrobial mechanism includes the 
presence of positively charged groups in back-
bone chain and their interactions to negatively 
charged bacterial wall. This ionic interaction 
leads the changes in cytoplasmic permeability of 
bacteria, results in cell death. Chitosan, however, 
shows its antibacterial activity only in acidic cir-
cumstances because of its poor solubility above 
pH 6.5. In this regards, Kim originally produced 
the water soluble chitosan derivatives with 

ammonium salts and showed their broader spec-
tra of antimicrobial activities [30].

25.3	 �Tissue Engineering 
Applications

For the construction of tissue-engineered organ, 
three main elements are required; the scaffold, a 
source of cells and the bio-signaling. 3-D scaf-
fold with various forms takes a role of ECM that 
function as structural templates for tissue regen-
eration. For this purpose, the scaffold should 
have adequate porosity and morphology for 
transporting of cells, gases, metabolites, nutrients 
and signal molecules both within the scaffold and 
between the scaffold and the local environment. 
In the scaffold with higher porosity and pore size, 
efficient nutrient supply, diffusion of gas and 
secretion of metabolites are promoted, however, 
the interactions between cell-cell become 
decrease because of low cell attachment. In con-
trast, lower porosity and pore size results in 
adverse effects [72]. Therefore, it is necessary to 
produce scaffolds with appropriate pore size dis-
tribution and porosity depending on the cells and 
tissues.

By virtue of good solubility, chitosan can be 
manufactured into various forms of scaffolds 
including fibers, sponges and hydrogels. 
Madihally prepared chitosan scaffolds of con-
trolled microstructure in several tissue-relevant 
geometries using freezing and lyophilization 
technique [48]. Mean pore diameters could be 
controlled within the range of 1–250 μm. This 
could be a starting point for design and prepara-
tion of chitosan based scaffold materials. Years 
later, 3-D interconnected open porous chitosan 
scaffold with controlled pore distribution was 
prepared [10]. Alcohols were used as non-solvent 
to induce the liquid-liquid and liquid-solid phase 
separation via demixing solution. This method 
enabled to produce the controlled homogeneous 
micropores and the improved interconnectivity 
between pores with minimum surface skin layer 
formation. This interconnectivity of chitosan 
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scaffold provided the efficient transportation of 
the substances for cell, therefore, enhanced adhe-
sion as well as proliferation rates of fibroblasts 
around two folds.

In the meantime, the modifications with ECM 
components or growth factors to chitosan based 
scaffolds have been conducted to further increase 
cell adhesion, proliferation and differentiation 
through modulation of cellular responses [13, 
53]. As the major ECM protein, collagen has 
been used to enhance cell adhesion to chitosan 
scaffold in the form of blender of two polymers 
[49]. Fibronectin as well as laminin have been 
employed to chitosan for mimicking the biologi-
cal function of the ECM through immobilization 
or carbodiimide based crosslinking [12, 27]. 
Instead of using these macromolecules, there also 
have been other attempts to make use of small 
adhesive molecules such as motifs. Many 
research groups including Ho and Hansson have 
functionalized chitosan scaffold with arginine-
glycine-aspartic acid (RGD) and showed suc-
cessful cell-scaffold interactions [20, 22].

Proteins and glycoprotein, collagen, laminin 
and fibronectin, and their amino acid sequence 
such as RGD, GFOGER and so on are all known 
to induce cell adhesion and migration through 
integrin mediated focal adhesion, rather than pro-
liferation and differentiation [21, 38, 68]. There 
exist, in deed, numerous report that scaffold with 
ECMs or motifs increases cell proliferation and 
differentiation, however, the elements that domi-
nate these cellular events are growth factors and 
cytokines related to receptor tyrosine kinases 
(RTKs) signaling pathway [41]. A comparative 
study of cell adhesive peptide and growth factor 
using chitosan based scaffold also showed the 
same consequences as mentioned above. Tiğli 
prepared two kinds of chitosan based scaffolds 
modified either with RGD or epidermal growth 
factor (EGF), and found the proliferation trend of 
ATDC5 murine chondrogenic cells on EGF-
chitosan was superior compared to chitosan and 
RGD-chitosan; although, there was no significant 
effect on cell attachment [71]. Hence, various 
types of growth factors including basic fibroblast 
growth factor (bFGF), transforming growth 

factor-β1 (TGF-β1), platelet-derived growth fac-
tor-BB (PDGF-BB), and epidermal growth factor 
(EGF) have been currently introduced to chitosan 
based tissue engineering scaffold for skin, carti-
lage and bone [33, 34, 42, 71, 77].

25.3.1	 �Skin

Numerous efforts have been made to develop chi-
tosan based skin substitute because chitosan may 
play a key role in wound healing phases: blood 
clotting, inflammation, tissue growth and remod-
eling. First of all, chitosan has very strong hemo-
static activity which is independent on the 
classical coagulation cascade [60, 78]. 
Polycations of chitosan bind with host plasmas, 
cells and tissues inherently charged as negative 
when come in contact to traumatic wounds. This 
includes RBCs agglutination, that is, positively 
charged glucosamine on chitosan strongly 
attracts negatively charged RBCs to agglutinate; 
therefore, produce instantaneous clotting together 
with plasma sorption. The systemic hemostasis 
activation through platelet adhesion, aggregation 
and activation follows this fast clot formation. So 
far, more than 10 chitosan based wound dressing 
materials including HemCon®, Chitoflex® and 
Chitoseal® have been commercialized and used 
as hemostatic dressing [60].

Inflammation is a protective response to elimi-
nate the cause of injury, clear out necrotic cells 
and tissues through the process of phagocytosis, 
in turn initiates tissue repair [17]. During prolif-
eration, the factors for tissue regeneration such 
as, angiogenesis, collagen deposition, granula-
tion and epithelialization occur [52]. Among the 
cells involved in wound healing process, macro-
phages may perform indispensable functions in 
inflammation as well as tissue repair [44, 54]. As 
a host defender, macrophages recognize and 
destroy foreign organisms, debride dead and 
damaged tissue components (classical activation, 
M1), and produce cytokines, growth factors, and 
angiogenic factors, which regulate tissue growth 
and remodeling (alternative activation, M2) [46]. 
An important point regarding macrophages func-
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tion is that chitosan induces both classical and 
alternative activation in macrophages by the 
receptor mediated stimulatory effect of chitosan 
in macrophages, suggesting that chitosan can be 
one of the functional biomaterials that are respon-
sible for wound healing [26, 74]. Therefore, chi-
tosan scaffolds with various forms that include 
cross-linked hydrogels, nano-fibrous structures, 
ion-etched films and so on, fabricated and applied 
to traumatic or burn wound [1, 28, 47].

In tissue engineering, the focal adhesion is the 
primary requirement in which cells are commu-
nicated. In the case of chitosan, the increase in 
the content of free amine group increases the 
attachment of fibroblast but rather decreases the 
migration and the proliferation [9]. This implies 
that strong electrostatic interaction between cells 
and free amine groups in chitosan hiders the cell 
attachment through the focal adhesion. Kim et al. 
[31] leveled down this electrostatic property and 
improved biocompatibility of chitosan through 
the rigorous dry heat treatment at 110 °C. They 
had controlled the DD of chitosan based scaffold 
from 85 to 30% with increase heat treatment 
time.

The poor focal adhesion capability of chitosan 
can be enhanced by the addition of ECM compo-
nents. Ma et  al. [45] prepared porous scaffold 
with the mixture of collagen and chitosan, and 
found good cytocompatibility to effectively 
accelerate cell infiltration and proliferation. In 
addition, much attention has been focused on the 
use of the growth factor functionalized and/or 
cell based skin graft. Obara et  al. [56] and 
Alemdaroğlu et al. [3] prepared FGF-2 and EGF 
incorporated chitosan hydrogel, respectively, and 
most recently, Yang et  al. [74] produced dual 
growth factors releasing chitosan based hydro-
gels for accelerated wound healing. Altman et al. 
[4] had seeded human adipose derived stem cells 
on chitosan based scaffold and transplanted to 
wound bed using a murine soft tissue injury 
model. They found Green Fluorescent Protein 
(GFP)-positive stem cells on chitosan scaffolds 

have differentiated into variety of lineages for 
soft tissue restoration including fibrovascular, 
endothelial and epithelial cells up to 4 weeks.

25.3.2	 �Bone

For bone regeneration, hydroxyapatite (HA) and/
or tricalcium phosphate (TCP) have been widely 
employed with polymeric scaffolds because of 
their unique osseointegrative properties. Lee 
et al. [40] prepared platelet-derived growth factor 
(PDGF) loaded chitosan/TCP sponge type scaf-
fold and implanted calvarial defect of rat. The 
results showed that the addition of PDGF to the 
scaffold further enhanced bone regeneration. In 
order to treat large scale bone defect, Ge et  al. 
[19] proposed chitin-HA composite scaffold as a 
promising candidate to form a structural frame-
work for bone regeneration. They have demon-
strated that chitin-HA scaffold provided many 
requirements for bone tissue regeneration by 
responding physiological and biological changes 
and by remodeling the ECM to integrate with 
surrounding tissue.

Recently, liquid phase chitosan has gained 
popularity as an injectable scaffold to carry 
osteoinductive and/or osteoconductive material 
and to fill out bone defect area for minimally 
invasive technique. Liu et  al. [43] prepared a 
novel injectable bone substitute material consists 
of chitosan solution as the liquid phase and TCP 
powder as the solid phase. The mixture of two 
components became bone cement upon immer-
sion in SBF, and showed good compressive 
strength, bioactivity and cytocompatibility 
enough to have prospect for orthopedic applica-
tions. As another approach of injectable scaffold, 
Park et al. [59] have produced chitosan/alginate 
based composite that carries recombinant human 
bone morphogenetic protein-2 (BMP-2) with 
mesenchymal stem cells and subcutaneously 
transplanted into the space on the dorsum of nude 
mice. They have found the trabecular type new 
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bone formation and concluded that this chitosan/
alginate composite could become clinically use-
ful injectable scaffold.

25.3.3	 �Cartilage

In tissue engineering of articular cartilage, the 
round morphology of chondrocyte represents the 
maintenance of differentiated chondrocytic phe-
notype. However, this phenotype is unstable in 
culture, because chondrocytes may undergo de-
differentiation that involves gradual shift from 
the synthesis of type II to type I and III collagen, 
in turn provides the inferior fibrocartilaginous 
circumstances [75]. This is the major restriction 
to form hyaline cartilage in cell therapy for repair 
full thickness destructive cartilage. Therefore, the 
ideal scaffold that closely mimics the naturally 
occurring environment in the cartilage matrix is 
required to stimulate and support chondrogenesis 
in vitro and in vivo. GAGs are known to stimulate 
the chondrogenesis, therefore, use of chitosan as 
an analog of GAG appears to be ideal for scaffold 
material of chondrogenesis. In this regard, Lahiji 
et  al. [37] and Iwasaki et  al. [25] hypothesized 
that chitosan based scaffold can support the func-
tion and expression of ECM components in chon-
drocytes, and demonstrated that chitosan leads 
chondrocytes to have continued expression of 
collagen II and to maintain their characteristic 
round morphology. Cui et al. [11] used chitosan 
to modify poly (L-lactic acid), biodegradable ali-
phatic polyester, for the purpose of improving 
cytocompatibility. The bovine articular cartilage 
chondrocytes cultured on the chitosan modified 
surface showed beneficial effects on adhesion, 
proliferation and function. Oliveira et  al. [57] 
have designed and prepared a novel HA/chitosan 
based bilayered hybrid scaffold using a combina-
tion method of sintering and a freeze-drying 
technique for osteochondral tissue-engineering 
applications. Both HA and chitosan layer pro-
vided an adequate support for osteogenecity and 
chodrogenecity to seeded MSCs, respectively. 
Chitosan have been also employed to deliver the 
growth factors and morphogenetic proteins for 
further enhanced chondrogenesis in the field of 
cartilage engineering ([33, 34, 39, 50]).

25.4	 �Future Perspective

With rapid advances and developments of mod-
ern sciences and technologies, a new era in tissue 
engineering and regenerative medicine where 
scientists with different backgrounds work 
together to cope with their multidisciplinary has 
established. For decades, a remarkable achieve-
ment has been made to take a major step forward 
to regenerate skin, cartilage, bone, liver and ner-
vous system. As the second abundant biopolymer 
on earth, chitosan has also been widely applied to 
tissue engineering because of its biodegradabil-
ity, antimicrobial activity and low toxicity and 
immunogenicity which are essential for scaf-
folds. However, there still remain problems. 
Chitosan, similar to the other natural products, 
has brittleness that limits its practical application; 
therefore, further efforts are needed to improve 
mechanical strength. Regarding most of studies 
using chitosan have been carried out in vitro, the 
additional comprehensive studies using animal 
models are required to figure out the precise rela-
tionship between chitosan and cells or tissues of 
various organs, Fortunately, HemCon Medical 
Technologies of the United States commercial-
ized the chitosan based hemostatic bandages for 
military and emergency use, and hemostatic 
agents for dentistry. In canada, Biosyntech devel-
oped chitosan based injectable hydrogels, for 
skin (BST-DermOn), for cartilage (BST-CarGel) 
and for bone (BST-Ossifil). They are all in clini-
cal trials for FDA approval. These activities truly 
lead chitosan based scaffolds to a step closer to 
the practical applications for tissue engineering 
purpose.
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