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v

Regenerative medicine is a branch of multidisciplinary research in tissue 
engineering and molecular biology, which deals with the process of replac-
ing, engineering, or regeneration of human cells, tissues, or organs to restore 
or establish normal function. Regenerative medicine is leading the innovation 
of life sciences and medicine with various expansion toward stem cells, cell 
therapy, and tissue engineering, and hence it is now becoming a pillar of the 
advanced medical industry. In regeneration medicine fields, biomaterials are 
essential tools for replacing part of a living system or to function in intimate 
contact with the living tissue. Therefore, this book introduces the recent 
trends of biomaterials derived either from nature or synthesized in the labora-
tory using a variety of chemical approaches utilizing metallic components, 
polymers, ceramics, or composite materials. The book consists of 5 main 
parts and 28 chapters containing recent topics reported by a number of promi-
nent researches in these fields.

Part I reviews the fate of stem cells regulated by biomaterials.

Chapter 1 is an introduction to the human placenta laminin-111 as a mul-
tifunctional protein for tissue engineering and regenerative medicine. In 
Chap. 2, a novel strategy for simple and robust expansion of human pluripo-
tent stem cells using botulinum hemagglutinin is introduced. Polycaprolactone 
scaffolds used for the growth and differentiation of dental stem cells of apical 
papilla are summarized in Chap. 3. The impact of three-dimensional culture 
systems on hepatic differentiation of pluripotent stem cells and beyond is 
introduced in Chap. 4.

Controlling of signal pathway of stem cell by biomaterials is discussed in 
Part II.

In Chap. 5, modulation of the osteoimmune environment in the develop-
ment of biomaterials for osteogenesis is reviewed. For tissue regeneration and 
disease modeling, novel biomimetic microphysiological systems are summa-
rized in Chap. 6. Chapter 7 contains the feasibility of silk fibroin in wound 
healing process. In Chap. 8, the role of natural-based biomaterials in advanced 
therapies for autoimmune diseases is described.
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Part III describes functional biomaterials for regenerative medicine.

Content of Chap. 9 includes recent advancements in decellularized matrix-
based biomaterials for musculoskeletal tissue regeneration. In Chap. 10, clin-
ical applications of injectable biomaterials are introduced. Advanced 
injectable alternatives for osteoarthritis are discussed in Chap. 11. Chapters 
12, 13 and 14 introduce fabrication of hydrogel materials, injectable nano-
composite hydrogels and electrosprayed nano(micro)particles, and advances 
in waterborne polyurethane-based biomaterials for biomedical applications, 
respectively. Content reviewed in Chap. 15 is medical applications of colla-
gen and hyaluronan in regenerative medicine.

Part IV shows the review on inorganic biomaterials for regenerative 
medicine.

Calcium phosphate biomaterials for clinical application in dentistry are 
described in Chap. 16. In Chap. 17, stem cell and advanced nano bioceramic 
interactions are discussed. Chap. 18 introduces recent trend in hydroxyapa-
tite (HAp) synthesis and the synthesis report of nanostructure HAp by 
hydrothermal reaction. Use of TiO2 in the bone regeneration is discussed in 
Chap. 19.

Finally, Part V introduces the recent trends of smart natural biomaterials 
for regenerative medicine.

Chapter 20 reviews the feasibility of silk fibroin-based scaffold for bone 
tissue engineering. Chapter 21 explains characteristics of collagen Type I as 
a versatile biomaterial. Techniques of tissue-inspired interfacial coatings for 
regenerative medicine are described in Chap. 22. Chapters 23, 24 and 25 
introduce naturally derived biomaterials, mussel-inspired biomaterials, and 
chitosan for tissue engineering applications, respectively. Chapter 26 reviews 
demineralized dentin matrix (DDM) as a carrier for recombinant human 
bone morphogenetic proteins (rhBMP-2). Prospects of natural polymeric 
scaffolds in peripheral nerve tissue regeneration are introduced in Chap. 27. 
In Chap. 28, chitosan-based dressing materials for problematic wound man-
agement are reviewed.

We offer a special thanks to all participants who have generously devoted 
their time, energy, experience, and intelligence for successful completion of 
this book. Their efforts will contribute to next generation who studies regen-
erative medicine based on biomaterials. Finally, we really appreciate the 
effort of Dr. Sue Lee, the publishing editor of biomedical sciences of 
Springer Nature, who made a great effort to publish this book. Also we 
would like to appreciate Mrs. Ok Kyun Choi and Yong Woon Jeong at 
Gilson’s Lab for e-mailing all authors, editing, pressing, and so on as boring 
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Human Placenta Laminin-111 
as a Multifunctional Protein 
for Tissue Engineering 
and Regenerative Medicine

Johannes Hackethal, Christina M. A. P. Schuh, 
Alexandra Hofer, Barbara Meixner, 
Simone Hennerbichler, Heinz Redl, 
and Andreas H. Teuschl

Abstract
Laminins are major components of all base-
ment membranes surrounding nerve or vascu-
lar tissues. In particular laminin-111, the 
prototype of the family, facilitates a large 
spectrum of fundamental cellular responses in 
all eukaryotic cells. Laminin-111 is a bioma-
terial frequently used in research, however it is 
primarily isolated from non-human origin or 

produced with time-intensive recombinant 
techniques at low yield.

Here, we describe an effective method for 
isolating laminin-111 from human placenta, a 
clinical waste material, for various tissue engi-
neering applications. By extraction with Tris- 
NaCl buffer combined with 
non-protein-denaturation ammonium sulfate 
precipitation and rapid tangential flow filtra-
tion steps, we could effectively isolate native 
laminin-111 within only 4 days. The resulting 
material was biochemically characterized 
using a combination of dot blot, SDS-PAGE, 
Western blot and HPLC-based amino acid 
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analysis. Cytocompatibility studies demon-
strated that the isolated laminin-111 promotes 
rapid and efficient adhesion of primary 
Schwann cells. In addition, the bioactivity of 
the isolated laminin-111 was demonstrated by 
(a) using the material as a substrate for out-
growth of NG 108-15 neuronal cell lines and 
(b) promoting the formation of interconnected 
vascular networks by GFP-expressing human 
umbilical vein endothelial cells.

In summary, the isolation procedure of 
laminin-111 as described here from human 
placenta tissue, fulfills many demands for var-
ious tissue engineering and regenerative medi-
cine approaches and therefore may represent a 
human alternative to various classically used 
xenogenic standard materials.

Keywords
Laminin-111 · Placenta · Schwann cells · NG 
108-15 · Vasculogenesis

1.1  Introduction

Basement membranes (BMs) are specialized 
extracellular sheet-like matrices underlying epi-
thelia in all mammals [1]. They are key elements 
during embryogenesis and are mainly composed 
of laminins, collagen-4 and heparin sulfate pro-
teoglycans [2], joined together by nidogens, per-
lecans and other proteins [3].

In this regard, the primary function of lami-
nins, a family of large heterotrimeric (a, ß, γ) gly-
coproteins present in BMs, is to interact with 
receptors anchored in the plasma membrane of 
cells, such as endothelial or neuronal cells [1]. 
Laminin-111, a 800-kDa protein, is the prototype 
of the family and the best characterized laminin 
isoform [1, 3] It is adhesive for most cell types, 
promotes cell survival in vitro and has various 
biological key activities [3–5], including cell 

adhesion, proliferation, differentiation and 
migration [1, 6]. Laminins are frequently used 
for in vitro and in vivo neuronal cell cultivation 
[7–11], angiogenesis [5, 12], wound healing [6, 
13–15], or stem cell studies [16, 17].

Laminin-111 was the first laminin type iso-
lated by Ruppert Timpl from Engelbreth-Holmes 
Sarcoma (EHS) mouse material during the 1970s 
[18]. For several years this has been the only 
known laminin isoform [19]. Since its discovery, 
many attempts have been made to isolate lam-
inin- 111 from a human source such as placenta 
[20–24] or produce it recombinantly [25, 26]. 
However, no human equivalent to the mouse 
tumor derived EHS laminin-111 is available for 
large-scale production and therefore, more than 
30 years after its discovery, laminin-111 extracted 
from xenogenic EHS tumor tissue is still the fre-
quently used gold standard for various in vitro 
and in vivo research protocols [27].

The aim of this study was to establish an effec-
tive method for isolation of human placental lam-
inin- 111 (pLm-111). The method was based on 
an extraction step via Tris-NaCl buffer to yield a 
laminin-rich protein fraction, followed by a pro-
tein precipitation step using 30% ammonium 
chloride combined with a series of diafiltration 
and salt precipitation steps to remove non- 
laminin contaminants and therefore purify the 
laminin-111 isolates. The resulting purified lam-
inin- 111 was biochemically characterized using a 
combination of dot blot, sodium dodecyl sulfate 
polyacrylamide gel electrophoresis (SDS- 
PAGE), Western blot and HPLC-based amino 
acid analysis. The in vitro biocompatibility and 
bioactivity of laminin-111 was demonstrated 
using NG 108-15 neuronal cell lines, Schwann 
cells and GFP-expressing human umbilical vein 
endothelial cells (gfpHUVEC).

1.2  Materials and Methods

If not stated otherwise all chemicals were pur-
chased from Sigma Aldrich and of analytical 
grade.

J. Hackethal et al.
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1.2.1  Collection of Human Placenta 
Tissue

Placenta material was collected after caesarian 
section from the Landes-Kinderklinik Hospital 
Linz, Austria (with the permission of the local 
ethical board and informed consent from all 
donors), delivered to LBI Trauma laboratories on 
dry ice, and stored at −20 °C until the isolation 
procedure was performed.

1.2.2  Isolation Procedure 
of Placenta Laminin-111 
(pLm-111)

All isolation steps were performed in a cold- 
room at 4  °C.  For all diafiltration steps in this 
protocol the tangential flow filtration (TFF) 
Ultralab™ system PALL (VWR, Vienna, Austria) 
has been used, equipped with a 100 kDa cut-off 
Ultrasette™ tangential flow filter.

After thawing, the placenta was dissected free 
of the outer membranes, amnion and chorion as 
well as of the umbilical cord. The residual basal 
tissue was used for the isolation process. Blood 
components were removed by repetitive homog-
enization steps of 100 g basal placenta tissue in 
200 mL phosphate buffered saline (PBS) without 
Ca2+/Mg2+ using a blender (Braun Type 4184, 
Kronberg, Germany) and subsequent centrifuga-
tion at 3.000  ×  g for 5  min using a Heraeus 
Multifuge™ (Beckman Instruments GmbH Type 
1  S-R, Vienna, Austria). The supernatant fluid 
containing blood components was discarded, pel-
lets were resuspended in fresh PBS and centri-
fuged again (three times). Thereafter, the 
procedure was repeated three times with aqua 
dest.

Subsequently, 100 g wet weight of blood-free 
basal tissue were homogenized for 60 s in 100 mL 
Tris-NaCl buffer (50  mM Tris, 0.5  M NaCl, 
4 mM EDTA, 2 mM N-Ethylmaleimide (NEM), 
pH 7.4) using the blender. Suspension was stirred 
overnight on a magnetic stirrer at 200  rpm and 
subsequently centrifuged at 7.000 × g for 15 min. 
Supernatants were collected and crystalline 
ammonium sulfate ([NH4]2SO4) was added to 

adjust for 30% final concentration. After 2 h of 
stirring, the extract was centrifuged at 7.000 × g 
for 15 min. Pellets were collected in 150 mL Tris- 
buffered saline (TBS) buffer and diafiltrated 
against 10× volumes of TBS. To precipitate col-
lagen- 4 contaminants, NaCl concentration was 
adjusted to 1.7 M by adding 150 mL of 3.4 M 
NaCl at a constant flow rate of 2 mL/min using a 
Minipuls Evolution® roller pump (Gilson Inc., 
Vienna, Austria) and stirred overnight at 200 rpm. 
Subsequently, the suspension was centrifuged at 
7.000 × g for another 15 min. Supernatant con-
taining native pLm-111 was either (a) diafiltrated 
against at least 3 volumes of TBS and stored at 
−80  °C (native pLm-111), or (b) diafiltrated 
against aqua dest. to remove residual salts, and 
concentrated to approximately 200  mL using 
TFF, and lyophilized (Christ Alpha 1-4 lyophi-
lizer, Heraeus Schauer GmbH, Vienna, Austria). 
The resulting lyophilized pLm-111 was stored at 
−20 °C for up to 12 months before further use.

1.2.3  Biochemical Identification 
of pLm-111

1.2.3.1  Dot Blots
For native pLm-111 detection, dot blots were 
performed. 2 μL of either 1 mg/mL EHS laminin-
 111, pLm-111 (native or lyophilized), collagen-1 
or recombinant laminin-111 from fibroblast cell 
culture (Sigma Aldrich, Vienna, Austria) were 
pipetted in duplicates on nitrocellulose mem-
branes (Peqlab, Erlangen, Germany) and air- 
dried for 60  min. Thereafter, membranes were 
blocked with 5% skim milk powder in TBS buf-
fer for 60 min and incubated with 1:2000 diluted 
monoclonal primary laminin-111 antibodies in 
TBS for another 60  min. After washing with 
TBS, membranes were incubated with peroxi-
dase conjugated secondary antibodies (Abcam, 
CA, USA) for 60 min and signals were detected 
using a Multiimage Light Cabinet (BioZym, NY, 
USA).

1.2.3.2  SDS PAGE/Western Blot
SDS PAGE and western blot analysis were per-
formed as previously described using the XCell 

1 Human Placenta Laminin-111 as a Multifunctional Protein for Tissue Engineering and Regenerative…
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SureLock™ Mini-Cell Electrophoresis System 
(Invitrogen, Vienna, Austria) [28, 29]. Briefly, 
20 μg per lane of EHS laminin-111 (control), or 
lyophilized pLm-111 reconstituted in TBS buffer 
were resolved on 3–8% SDS-polyacrylamide 
gels (NuSep®, VWR, Austria), stained with 
0.25% (w/v) Coomassie Brilliant Blue, or trans-
ferred onto nitrocellulose membranes (Peqlab) 
using the XCell II Blot Module (Invitrogen, 
Vienna, Austria). Membranes were blocked with 
5% milk powder in TBS buffer containing 0.1% 
Tween (TBS/T) and incubated with anti- 
laminin- 111 (polyconal 1:2000, AB11575, 
Abcam, USA) in 5% BSA-TBS/T at 4 °C over-
night. Subsequently, membranes were incubated 
with peroxidase conjugated secondary antibodies 
(R1364HRP, Arctis GmbH, Germany) in 5% 
milk-TBS/T, and signals were detected using a 
Multiimage Light Cabinet (BioZym).

1.2.3.3  Amino Acid Analysis
Amino acid quantification was performed as pre-
viously described [30]. Briefly, pLm-111 was 
digested following a two-step protocol (enzymat-
ical followed by chemical). 75 mg of lyophilized 
sample were incubated with 1  mL of 0.0125% 
protease from Streptomyces griseus in 1.2% 
TRIS/ 0.5% SDS pH  7.5 (adjusted with 0.1% 
HCl) solution for 72 h at 37 °C. Then 1 mL of 4% 
formic acid in ddH2O was added for chemical 
pre-digestion and the suspension was incubated 
for 2 h at 108 °C followed by lyophilization. The 
dried samples were reconstituted in 5 mL 0.6% 
TRIS and 7 M guanidine hydrochloride pH 8 for 
2  h. After centrifugating (Sigma centrifuge, 
3–18 K) the sample at 4800  rpm for 15 min at 
4 °C, 1 mL of the supernatant was combined with 
0.5  mL 4  M methansulfonic acid solution con-
taining 0.2% tryptamine and incubated for 1 h at 
160 °C. Subsequently, the solution was quantita-
tively transferred into a 5  mL volumetric flask, 
225 μL 8 M NaOH and 0.25 mL internal standard 
were added and the flask was filled up with 2.2 M 
sodium acetate solution. The samples were then 
directly used for HPLC analysis.

A multi-amino acid standard mix was pre-
pared by mixing the amino acid standard, a solu-

tion containing 2.5  mM each of asparagine, 
glutamine and tryptophan in MQ, a solution con-
taining 2.5 mM each of taurine and hydroxypro-
line in 0.1 M HCl and a solution of the internal 
standards, i.e. 25 mM each of norvaline and sar-
cosine in 0.1 M HCl. Ten different concentrations 
of this standard mixture, ranging between 
45  mg/L and 0.5  mg/L, were used for 
calibration.

The HPLC system Ultimate 3000 (Thermo 
Fisher Scientific, USA) was equipped with a 
pump (LPG-3400SD), a split-loop auto-sampler 
(WPS-3000 SplitLoop), a column oven (Col.
Comp. TCC-3000SD) and a fluorescence detec-
tor (FLD-3400RS). Chromeleon 7.2 software 
was used for the control of the device as well as 
for the quantification of the peak areas. 
Chromatographic separation was achieved with a 
reversed phase column (Agilent Eclipse AAA, 3x 
150  mM, 3.5  μm) a guard column (Agilent 
Eclipse AAA, 4.6 × 12.5 mM, 5 μm) and a gradi-
ent using eluent (A) 40 mM NaH2PO4 monohy-
drate pH  7.8 and eluent (B) MeOH/ACN/MQ 
(45/45/10, v/v/v). The protocol was run at a flow-
rate of 1.2 mL min−1, the column oven tempera-
ture was set to 40  °C and the injection volume 
was 10 μL. As most amino acids have no fluoro-
phore in their structure, an in-needle derivatiza-
tion step was performed using 0.4  M borate 
buffer, 5 mg/mL ortho-phthalaldehyde (OPA) in 
0.4  M borate buffer containing 1% of 3-MPA, 
2.5 mg/mL FMOC and 1 M acetic acid for pH 
adjustment. In order to guarantee sample quanti-
fication despite the derivatization step, every 
sample was spiked with 25  mM sarcosine in 
0.1 M HCl and 25 mM sorvaline in 0.1 M HCl as 
internal standards. Primary amines and norvaline 
were detected at Ex 340 nm/Em 450 nm and sec-
ondary amines and sarcosine were detected at Ex 
266 nm/Em 305 nm.

1.2.4  In Vitro Biocompatibility 
Testing of Isolated pLm-111

All in vitro experiments were performed with 
lyophilized pLm-111.

J. Hackethal et al.
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1.2.5  Adhesion

1.2.5.1  Primary Schwann Cell Isolation
All animals were euthanized according to estab-
lished protocols, which were approved by the 
City Government of Vienna in accordance with 
the Austrian Law and the Guide for the Care and 
Use of Laboratory Animals as defined by the 
National Institute of Health.

Prior to Schwann cell isolation, sciatic nerves 
of adult male Sprague Dawley rats were dissected 
and kept in PBS on ice. Schwann cell isolation 
was performed as previously described [31], 
adapted from Kaekhaw et  al. [32]. Cells were 
cultured in DMEM-D-valine (PAA, Austria), 
supplemented with 10% FCS, 2 mM L-Glutamine 
(PAA, Austria), 1% antibiotics (PAA, Austria), 
N2 supplement (Invitrogen, Germany), 10 μg/mL 
bovine pituitary extract and 5 μM forskolin.

1.2.5.2  Primary Schwann Cell Adhesion
For the Schwann cell culture, tissue culture plas-
tic (TCP) was coated with poly-L-lysine and/or 
EHS laminin-111 or pLm-111. Briefly, 96-well 
plates were incubated with 0.01% (w/v) poly-L- 
lysine for 15 min at room temperature in a lami-
nar flow-hood. Poly-L-lysine was removed and 
plates were left to dry for at least 2 h. Subsequently, 
wells were incubated with EHS laminin-111 or 
pLm-111 reconstituted in PBS (100 μg/mL) and 
incubated at 37 °C for 30 min. Laminin-111 solu-
tion was removed and plates were washed twice 
with PBS followed by UV sterilization.

Cell viability of Schwann cells on TCP, poly- 
L- lysin, EHS laminin-111, pLm-111 or on com-
binations of poly-L-Lysin with either EHS 
laminin-111 or pLm-111 was determined using 
MTT assay. Schwann cells, seeded at a density of 
4 × 103cells/cm2 (n = 18), were incubated with 
culture medium containing 650  μg/mL MTT 
[3-(4,5- dimethylthiazol-2-yl)-2,5- 
diphenyltetrazolium] bromide for 1  h in a cell 
culture incubator (37  °C, 5% CO2 and 80% 
humidity). MTT reagent was discarded and MTT 
formazan precipitate was dissolved in 100  μL 
DMSO per well of a 96 well plate by shaking in 
dark for 20 min. Light absorbance at 550 nm was 
measured immediately and optical density (OD) 

values were corrected for an unspecific back-
ground on a microplate reader (Tecan Sunrise; 
Tecan Switzerland).

Proliferation of Schwann cells on TCP, poly- 
L- lysin (Lysin), EHS laminin-111, pLm-111 or 
on combinations of poly-L-Lysin with either 
EHS laminin-111 or pLm-111 was evaluated 
using a 5-bromo-2-deoxyuridine uptake assay 
(BrdU; Cell Proliferation ELISA assay Kit; 
Roche Diagnostics, Switzerland), according to 
manufacturer’s instructions. Briefly, 96-well 
plates of all groups were seeded with Schwann 
cells at a density of 4  ×  103cells/cm2 (n  =  18). 
Medium was changed to Schwann cell medium 
containing 100  μM BrdU and cells were incu-
bated for 24 h at standard cell culture conditions 
(37 °C and 5% CO2). The culture plates were fix-
ated with FixDenat® solution and incubated with 
anti-BrdU POD antibody solution for 45 min at 
room temperature. After washing the plate with 
PBS twice, substrate solution containing tetra-
methyl benzidine was added for 20  min. The 
reaction was stopped using 1  M H2SO4 and 
absorption was measured at 450 nm with 690 nm 
as reference wavelength on an automatic micro-
plate reader (Tecan Sunrise; Tecan Switzerland).

1.2.6  NG 108-15 Outgrowth

NG 108–15 cell lines were purchased from 
ECACC (#88112302, Salisbury, U.K.) and cul-
tured in DMEM high glucose supplemented with 
10% FCS, 1% glutamine and 1% Pen/Strep.

24 well plates were incubated with 250 μL of 
EHS laminin-111 or pLm-111 at 100 μg/mL and 
UV sterilized for 30 min. Laminin solutions were 
removed and 12,000 cells were seeded (6000 cells/
cm2, n = 12) on TCP, EHS laminin-111, or pLm-
111  in medium supplemented with 20  ng/mL 
human beta neurotrophic growth factor β -NGF 
(Peprotech, Vienna, Austria) and incubated at 
37  °C. Photographs were taken after 24, 48 and 
72  h using an epifluorescence microscope 
(DMI6000B, Leica GmbH, Vienna, Austria). The 
neurite outgrowth was analyzed as previously 
described [33]. Briefly, microscopy pictures were 
processed in a blinded manner with Adobe 

1 Human Placenta Laminin-111 as a Multifunctional Protein for Tissue Engineering and Regenerative…
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Photoshop software by adjusting contrast/bright-
ness. Then the neurite outgrowth was analyzed 
using AngioSys software (TCS Cellworks, 
London, UK). The obtained values were further 
statistically analyzed using Prism 5 (Graphpad, 
CA, USA).

1.2.6.1  Immunostaining
For actin/DAPI staining, the medium was aspi-
rated and cells were washed with PBS before 
fixation in 4% formaldehyde for 10  min. The 
cells were washed three times with PBS, stained 
with Alexa Fluor 488 phalloidin (1:40) 
(Invitrogen) in the dark for 20 min, and washed 
two additional times with PBS.  Then, DAPI 
staining (1:1000) for 5  min and two additional 
washing steps were performed before imaging on 
an epifluorescence microscope (DMI6000B, 
Leica GmbH, Vienna, Austria).

1.2.7  gfpHUVEC Network 
Formation

1.2.7.1  Human Umbilical Vein 
Endothelial Cells (HUVEC) 
Isolation

HUVEC were isolated from umbilical cords of 
healthy donors with the authorization of the local 
ethics committee of Upper Austria with written 
informed consent of the donors and according to 
established protocols as previously described 
[34, 35]. Cells (p6-p9) were cultured in EGM-2 
medium (Lonza, Basel, Switzerland) supple-
mented with 5% FCS. Isolated HUVEC were ret-
rovirally infected with expression vectors for 
fluorescent proteins using the Phoenix Ampho 
system as described elsewhere [36].

Network formation was investigated using a 
previously described vasculogenesis assay [37–
39]. Briefly, 50 μL of pLm-111, EHS laminin-
 111, EHS collagen-4 or calf skin collagen-1 were 
pipetted per well in 96 well plates at two different 
concentrations of 500 μg/mL or 1  mg/mL, UV 
sterilized for 30 min and incubated at 37 °C for 
2 h. Coating solutions were removed and 15.000 
GFP-HUVECs were seeded (40.000 cells/cm2, 
n = 12) in 100 μL of EGM-2 medium. After 48 h 

of cultivation the networks were imaged and ana-
lyzed as previously described [33]. Fluorescence 
microscopic pictures of two independent experi-
ments (different pLm-111 donors) were taken 
from two different fields per well and processed 
in a blinded way using Adobe Photoshop soft-
ware (Adobe Systems, San Jose, USA) by adjust-
ing contrast/brightness. Then, tube formation 
was analyzed using AngioSys software (TCS 
Cellworks, London, UK) and the AngioSys val-
ues were analyzed using Prism 5 (Graphpad).

1.3  Data Analysis

All experimental data is presented as mean ± stan-
dard deviation (SD) if not stated otherwise. 
Normal distribution of data was tested with the 
Kolmogorov–Smirnov test. One-way analysis of 
variance (ANOVA) with Tukey’s post hoc test 
was used to calculate statistical significance. For 
the NG108-15 outgrowth assay, a Two-Way 
ANOVA with Bonferroni post-test was used. 
P-values <0.05 were considered statistically sig-
nificant. All calculations were performed using 
GraphPad software (GraphPad software, Inc., 
San Diego, CA, USA).

1.4  Results

1.4.1  Extraction of pLm-111 
from Placenta

1.4.1.1  Yield and Purity
We have developed an effective method for iso-
lating pLm-111 by extraction with a Tris-NaCl 
buffer combined with non-protein-denaturizing 
ammonium sulfate precipitation and rapid tan-
gential flow filtration steps.

A detailed flow chart of the method is shown 
in Fig. 1.1. After defrosting, the chorionic mem-
brane was removed and basal villous tissue was 
isolated. Major blood components were removed 
using PBS buffer/aqua dest. Thereafter, collagen 
remnants were removed and the residual laminin-
 111 diafiltrated against physiologic TBS buffer. 
The mean amount of pLm-111 after isolation was 

J. Hackethal et al.
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175  ±  35  mg/100  g wet weight basal tissue 
(n = 7).

By the use of Dot blot and monoclonal anti-
bodies we assessed the presence of native lam-
inin- 111  in TBS buffer (Fig.  1.2a). After 
diafiltration and freeze-drying, laminin-111 is 
denatured and is therefore not detectable by the 
used monoclonal antibody (Fig. 1.2b). By using 
SDS-PAGE gels stained with Coomassie blue we 
assessed major protein bands in lyophilized pLm- 
111 (Fig.  1.2c) between 200 and 300  kDa. In 
western blot analysis using polyclonal antibod-
ies, laminin-111 bands were clearly detected and 
matching with the major bands from the SDS- 
PAGE (Fig. 1.2d).

Table 1.1 lists the amino acid composition of 
human laminin-111 α, β and γ-chains (www.uni-
prot.org), pLm-111 from three different donors 

and the amino-acid composition of EHS colla-
gen- 4 and human collagen-4 from placenta.

1.4.2  Biocompatibility of pLm-111

1.4.2.1  Schwann Cell Viability
The MTT assay was used to analyze Schwann 
cell viability on pLm-111 compared to EHS lam-
inin- 111. Cell viability on all three single coat-
ings was significantly increased compared to the 
TCP control group (OD values: lysin 1536 ± 220, 
EHS laminin-111 1776  ±  195, pLm-111 
1763 ± 216, TCP 503 ± 42, n = 18, Fig. 1.3a) but 
no significant difference among the three coating 
groups could be detected (p  =  0.78). Schwann 
cells cultured on both combined coatings of lysin 
and EHS laminin-111 or lysine and pLm-111 

Fig. 1.1 Graphical 
overview of steps 
required for the 
introduced rapid and 
efficient isolation of 
laminin-111 from 
human placenta 
(pLm-111). Full term 
placenta is dissected 
free of amnion/chorion 
followed by 
centrifugation to remove 
blood components, and 
further isolation/
purification steps 
(salt-precipitation and 
diafiltration) to separate 
laminin-111. Final 
freeze-drying leads to 
powdery laminin-111 
isolates

1 Human Placenta Laminin-111 as a Multifunctional Protein for Tissue Engineering and Regenerative…
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showed increased viability (between 33% and 
46%) compared to the single coatings or the TCP 
control. There were no significant differences 
between lysin/EHS laminin-111 and lysin/pLm- 
111 (OD values: lysin/EHS laminin-111 
2285 ± 230, lysin/pLm-111 2362 ± 216, p = 0.75).

The results of the proliferation analysis were 
similar to the viability assays. Schwann cells 
show higher proliferation on all three single coat-
ings, compared to TCP (OD values: Lysin 
3681 ± 512, EHS Laminin-111 3722 ± 470, pLm- 
1,113,822  ±  474, TCP 1871  ±  122, n  =  18, 
Fig.  1.3b). No significant difference could be 
observed between the single coating groups 

(p = 0.87). Proliferation on combined coating of 
lysine and EHS laminin-111 or lysine and pLm- 
111 resulted in increased proliferation (between 
23% and 33%) compared to the single coatings or 
the TCP but no differences between EHS lam-
inin- 111 and pLm-111 were detectable (OD val-
ues: EHS Laminin-111 4938  ±  297, pLm-111 
5034 ± 381, p = 0.79).

1.4.2.2  NG 108-15 Outgrowth
An outgrowth assay was used to analyze NG 
108–15 cells on pLm-111 compared with EHS 
laminin-111 (Fig. 1.4). After 24 h, the total neu-
rite outgrowth (TCP 86  ±  3  μm, EHS 

Fig. 1.2 Isolated laminin-111 characterized by (a) 
Representative immunoblot of duplicates of 2 μg of pur-
chased Engelbreth-Holmes Sarcoma (EHS) laminin-111, 
isolated native pLm-111 from two independent donors, 
purchased collagen-1 from rat tail against a monoclonal 
laminin-111 antibody. (b) Representative immunoblot 
showing duplicates of 2 μg of cell culture laminin-111, 
EHS laminin-111 or lyophilized pLm-111 from two inde-
pendent donors against a polyclonal laminin-111 anti-

body. (c) Coomassie blue stained 3–8% 
SDS-polyacrylamide gel showing marker (M) (HiMark, 
Life Technologies), (1) EHS laminin-111 and (2, 3) two 
independent lyophilized pLm-111 isolates from two dif-
ferent donors. (d) Corresponding immunoblot showing 
20 μg of (1) EHS laminin-111 and (2, 3) two independent 
lyophilized pLm-111 isolates from two independent 
donors loaded per lane and a primary antibody against 
polyclonal laminin-111

J. Hackethal et al.
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 laminin- 111,268 ± 13 μm, pLm-111,519 ± 16 μm, 
n = 12) and the number of tubules (TCP 5 ± 1, 
EHS laminin- 111 11  ±  3, pLm-111 20  ±  2, 
n = 12) on pLm-111 were significantly increased 
compared to the TCP control and EHS lam-
inin-111, but no significant difference between 
EHS laminin-111 and TCP could be detected. 
After 48  h, the total neurite outgrowth (TCP 
71  ±  6  μm, EHS laminin- 111,590  ±  110  μm, 
pLm-111,848 ± 240 μm, n = 12) and the number 
of tubules (TCP 3 ± 1, EHS laminin-111 21 ± 5, 
pLm-111 33 ± 9, n = 12) on both coatings were 
significantly increased compared to the TCP con-
trol, but no significant difference between EHS 
laminin-111 and pLm-111 could be detected. 
After 72  h, the total neurite outgrowth (TCP 
96.9 ± 1 μm, EHS laminin-111,382 ± 4 μm, pLm-
111 1024  ±  6 μm, n  =  12) and the number of 
tubules (TCP 6  ±  1, EHS laminin-111 20  ±  4, 
pLm-111 47 ± 5, n = 12) on pLm-111 were sig-
nificantly increased compared to EHS 
laminin-111.

1.4.2.3  HUVEC Network Formation
A well-established vasculogenesis assay was 
used to analyze gfpHUVEC with fully supple-
mented EGM-2 medium on pLm-111 from two 

independent isolations (donors D1; D2) and com-
pared with EHS laminin-111 (Fig.  1.5). After 
24 h, a cell network was formed on EHS laminin-
 111 and pLm-111 at 1 mg/mL but neither on EHS 
collagen-4 nore on lower pLm-111 coating con-
centrations or TCP. After 48 h, the networks were 
analyzed. There was no significant difference 
between the number of tubules (EHS laminin-
 111,134  ±  17, pLm-111 D1 124  ±  13; D2 
157 ± 18, n = 12) or the total tubule length (EHS 
laminin-111 35 ± 6 mM, pLm-111 D1 37 ± 2; D2 
42 ± 5 mM, p < 0.5, n = 12) between both lam-
inin- 111 coatings. The mean tubule length (EHS 
laminin-111,240 ± 7 μm, pLm-111 D1 315 ± 17; 
D2 300 ± 13 μm, n = 12) and the number of junc-
tions (EHS laminin-111,284 ± 28, pLm-111 D1 
410 ± 42; D2 463 ± 47, n = 12) were significantly 
increased on pLm-111 compared to EHS 
laminin-111.

1.5  Discussion

Although laminin-111 from EHS tissue was 
already described more than 30 years ago, about 
20,000 laminin publications in 2016 proved the 
ongoing interest in this key protein [2]. 

Fig. 1.3 Schwann cell viability (MTT assay) and prolif-
eration (BrdU assay) 24 h after seeding on tissue culture 
plastic (TCP) compared to EHS laminin-111 and pLm- 
111 coated wells (100 μg/mL), as well as poly-L-lysin/
EHS laminin-111 and poly-L-lysin/pLm-111. Data is 

 presented as mean + SD; significance tested with 1-way 
ANOVA followed by Tukey’s post test; *,** and *** indi-
cates significant difference of p < 0.05, 0.01 and 0.005, 
respectively; n = 18

J. Hackethal et al.
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Laminin-111 is naturally present during embry-
onic development and has been shown to be a 
useful biomaterial for the cultivation of stem 
cells [7, 26, 40, 41]. Beside, it has been used for 
various applications in tissue engineering and 
regenerative medicine, eg. cultivation of neuronal 
cells [7, 11], angiogenesis studies [5, 13], or 
wound healing studies [6, 15]. A robust method 
for culturing human pluripotent stem cells under 
xeno-free conditions is an important tool for stem 
cell research and for the development of regen-
erative medicine [42]. Especially in the research 
of muscle tissue biology, laminin-111 has been 
shown to improve skeletal muscle stem cell qual-
ity and function [43]. In this regard, Goudenne 

et al. could demonstrate that intramuscular injec-
tion of laminin-111 increased muscle strength 
and resistance in mice and could potentially be 
used to treat Duchenne muscular dystrophy [44].

Regarding clinical applicability, caution must 
be taken regarding the tissue origin of the 
extracted biomaterials. Proteins extracted from 
xenogenic tumor tissues are not suitable for clini-
cal applications. Non-human proteins are 
reported to provoke immune responses in patients 
[45], and carry the risk of xenogenic disease 
transmission [46, 47]. Therefore, human sources 
are regarded as the best option for the generation 
of medicinal products [30]. In this regard, human 
placenta is a highly vascularized organ [48], and 

Fig. 1.4 Upper panel: fluorescence micrographs of phal-
loidin (green) and DAPI (blue) stained NG 108-15 cells 
cultivated on tissue culture plastic (TCP), EHS laminin-
 111 or pLm-111 at concentrations of 100 μg/mL; Scale 
bars  =  100  μm; Lower panel: analysis of the neurite 
 outgrowth: total neural length and number of tubules per 

field of view of NG108 cells after 24, 48 and 72  h of 
 cultivation. Data is presented as mean + SD; significance 
tested with 2-way ANOVA followed by Bonferroni post 
test; *,** and *** indicate significant difference of 
p < 0.05, 0.01 and 0.005, respectively; n = 12

1 Human Placenta Laminin-111 as a Multifunctional Protein for Tissue Engineering and Regenerative…
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Fig. 1.5 pLm-111 at higher concentrations promotes 
vasculogenesis using gfpHUVEC (a) Fluorescence micro-
graphs of gfpHUVEC 48 h after seeding on EHS laminin-
 111, pLm-111, or EHS collagen-4 at concentrations of 
1 mg/mL. Scale bar = 400 μm. (b) Network characteristics 
(total/mean tube length, number of junctions/tubules) of 

gfpHUVEC, seeded on EHS laminin-111 or pLm-111 
from two independent donors (pLm-111 D1; D2). Data is 
presented as mean + SD; significance tested with 1-way 
ANOVA followed by Tukey’s post test; *,** and *** indi-
cates significant difference of p < 0.05, 0.01 and 0.005, 
respectively; n = 12

J. Hackethal et al.
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it therefore harbors high amounts of basal mem-
brane proteins [49]. Human placenta tissue is 
available in sufficient amounts and consistent 
quality for large industrial scale processes. 
Moreover, it has been shown to exhibit excellent 
anti-inflammatory and antibacterial properties, 
[50] which has been favoring its use to treat non- 
healing wounds for decades [51–53].

Commercial success of a medicinal product is 
dependent on the balance of efficacy and cost- 
effectivness [54]. Several studies have been per-
formed to isolate laminin isoforms from placenta 
using salt precipitation or pepsin digestion and 
chromatography [20–24]. However, the protocols 
to isolate laminin-111 described in the literature 
to date are time consuming, work intensive and 
show low extraction efficiency. By modifying the 
protocols described in literature, we were able to 
(1) significantly increase the extraction efficiency 
of laminin-111 yield from placenta tissue com-
pared to reported isolation protocols and (2) to 
shorten the isolation time from almost 2 weeks to 
a total of only 4 processing days (Fig. 1.1) [20–
22]. In our protocols, tangential flow filtration 
instead of dialysis was used since it was less 
time-consuming and further allows easy and 
rapid concentration of laminin isolates. 
Collagen-4 remnants were removed by precipita-
tion with 1.7 M NaCl [18].

Native laminin-111 from human placenta was 
assessed using Dot Blots. Residual salts from 
TBS buffer were removed by tangential flow fil-
tration against aqua dest and the proteins were 
freeze-dried to make process ability and storage 
easier. On the average, 175 ± 35 mg of laminin-
 111 was isolated from 100  g of placenta tissue 
using the isolation protocol described here. In 
western blot analysis for laminin-111 and SDS- 
PAGE analysis, two bands around 200 kDa were 
clearly visible, which represent the α1 and ß1 
chains, as described in literature [1, 19, 55]. 
Interestingly, a third protein band was visible 
with a molecular weight of approximately 
300  kDa in both the pLm-111 isolates and in 
EHS laminin used as control. This high molecu-
lar weight band most likely represents the 
reduced γ-chain, which usually appears around 
400 kDa [2, 19]. The HPLC- based amino acid 

quantification analysis is consistent with the data 
from www.uniprot.com, however low amounts of 
hydroxyproline were still detectable. Most prob-
ably, these could be attributed to impurities of the 
isolate with collagen-4, another major compo-
nent of BMs beside laminin [55].

Freeze-dried pLm-111 was used as a coating 
substrate and compared to xenogenic standard 
proteins using Schwann cells. These experiments 
indicated that the pLm-111 isolates show bioac-
tivity comparable to commercially available 
xenogenic proteins. Furthermore, pLm-111 pro-
moted rapid attachment of various cells including 
Schwann cells, HUVEC or NIH3T3 fibroblasts 
(data not shown). NG 108-15 cells rapidly devel-
oped a complex neurite outgrowth on pLm-111 
with at least similar effectiveness compared to 
xenogenic proteins.

In addition, laminin-111 is the principal factor 
for endothelial cells to differentiate into intercon-
nected tubules on Matrigel, a laminin-111-rich 
(around 70%) gel, extracted from basement mem-
brane tumor materials from mice [56]. However, 
beside its tumorigenic origin, Matrigel is a hetero-
genic mixture of various extracellular matrix pro-
teins and pro-angiogenic growth factors. For 
potential clinical applications, a single protein 
would be an advantageous material. EHS lam-
inin-111 at concentrations of 1 mg/mL promotes 
the differentiation of gfpHUVEC into intercon-
nected networks, but so does pLm-111 from human 
origin with at least similar performance (total/mean 
tube length, number of tubules/junctions).

The 2D cell culture experiments described 
above have been performed with freeze-dried 
laminin-111 stored at −20  °C for at least 
6 months. Moreover, in other in vitro experiments 
we have used the isolated lyophilized pLm-111 
materials after storing them for up to 18 months 
without noticing alterations in stability or activity 
(data not shown).

To conclude, we could establish a simple, 
rapid and effective method to isolate laminin-111 
from human placenta. This pLm-111 clearly 
demonstrates its applicability as a biomaterial of 
human origin with strong bioactive potential for a 
broad spectrum of in vitro and potentially in vivo 
tissue engineering approaches.
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1.6  Conclusion

Summarizing, we established an effective method 
for isolating laminin-111 from human placenta, a 
clinical waste material. Laminins are routinely 
used in cell culture to on the one hand improve 
attachment of cells (eg Schwann cells), and on 
the other hand induce specific functions (eg 
HUVEC). The availability of this potent and ver-
satile protein offers new, fully human, approaches 
for neuronal and endothelial in vitro tissue engi-
neering and may provide a new platform technol-
ogy for clinical use with an increased overall 
safety profile for patients.
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Abstract
Clinical and industrial application of human 
pluripotent stem cells (hPSCs) has been hin-
dered by the lack of robust strategies to sustain 
cultures in an undifferentiated state. Here, we 
describe a simple and robust method to culture 
and propagate hPSCs, which we anticipate 
will remove major roadblocks in investigating 
the basic properties of undifferentiated hPSCs 
and accelerate cell-based manufacturing. We 
also provide an overview of the use of botuli-
num hemagglutinin, an inhibitor of E-cadherin, 
to maintain and expand various hPSC lines in 
an undifferentiated state in different culture 
conditions. Hemagglutinin selectively 
removes cells that have lost the undifferenti-
ated state, dissociates aggregates in situ, and is 
easy to use, scalable, and reproducible.

Keywords
Human pluripotent stem cells ·  
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Undifferentiated state · High-density culture · 
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2.1  Introduction

Human pluripotent stem cells (hPSCs), including 
human embryonic stem cells (hESCs) and human 
induced pluripotent stem cells (hiPSCs), hold 
great clinical and industrial potential, because of 
unlimited self-renewal in culture and capacity to 
differentiate into any cell type [18, 44, 45]. 
Although methods to optimize hPSC expansion 
and differentiation have advanced considerably, 
efficiency, reproducibility, and product quality 
are ongoing challenges [14].

In two-dimensional monolayer culture, hiPSCs 
spontaneously lose the undifferentiated state, i.e., 
deviate from the undifferentiated state, dramatically 
transforming into large, flat cells [15–17] that grad-
ually take over the colony with passage, and eventu-
ally the entire culture vessel. The nature of these 
cells remains unclear; for example, it is not known 
whether expression of lineage markers in these cells 
is only sporadic or a coherent departure from pluri-
potency. Although spontaneous loss of the undiffer-
entiated state is expected and signifies pluripotency, 
it may interfere with culture maintenance and 
intended use if left uncontrolled. Thus, several strat-
egies have been proposed to eliminate these cells 
based on morphological features [35, 48]. However, 
as morphological analysis is subjective, industrial- 
scale cell production would probably require meth-
ods independent of individual experts.

In conventional three-dimensional suspension 
culture, hiPSCs form aggregates that grow in size 
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over time [1, 4, 27, 34]. However, these aggre-
gates also deposit a collagen-rich shell that, along 
with mass transport limitations, impedes the 
delivery of oxygen and essential nutrients, espe-
cially in larger aggregates of highly metaboli-
cally active cells, and results in necrosis and 
differentiation [46, 50]. To address this issue, 
alternative methods were recently described [1, 
2, 4], and stirred culture systems such as spinner 
flasks and stirred-tank bioreactors are also widely 
used [2, 11, 29, 32, 33, 52]. In addition, several 
factors such as inoculation density, medium com-
position, and culture conditions can be manipu-
lated as needed. Nevertheless, lack of 
understanding of the nature of hPSC aggregates 
in suspension culture, and of a scalable method 
for long-term propagation, limits usefulness.

Considering the biological differences between 
undifferentiated cells and deviated cells in mono-
layers, as well as physiological changes during 
aggregate growth in suspension, we hypothesized 
that disruption of the epithelial barrier may facili-
tate the maintenance and expansion of undifferen-
tiated cells. To this end, Clostridium botulinum 
hemagglutinin, a component of the large botuli-
num neurotoxin complex that directly binds 
E-cadherin and disrupts cell–cell adhesion at 
adherens junctions [23, 40–42], may be useful.

In this chapter, we first introduce fundamental 
mechanisms related to the maintenance and 
expansion of undifferentiated hiPSCs, as inferred 
from morphological and biological features. We 
then review recent advances in hPSC culture 
strategies, as well as in experimental approaches 
to investigate hPSC physiology, with an empha-
sis on the application and the industrial and clini-
cal potential of hemagglutinin-based processing 
of cells and tissues.

2.2  Principles Underlying 
the Maintenance 
and Expansion 
of Undifferentiated hPSCs

Based on a growing body of research, cell-cell 
and cell-substrate interactions are now known to 
influence commitment and differentiation in 
hPSCs. Indeed, hESC and hiPSC colonies exhibit 

structural characteristics of polarized epithelial 
cells, and form cell-cell adhesions via E-cadherin 
and integrin [22, 38]. This dynamic structure 
physically connects neighboring cells, couples 
intercellular adhesive contacts to the cytoskele-
ton, and helps define the apical-basal axis in each 
cell [3, 6, 26]. Cell-cell and cell-substrate adhe-
sions are also spatially regulated and coordinated 
[20], such as by interactions between actin and 
Rho GTPases, membrane turnover and traffick-
ing, and interplay between cell-cell and cell- 
substrate adhesion [9, 21]. In addition, the Ras 
GTPase Rap1 regulates endocytic membrane 
recycling to control cell junctions and stabilize 
apical-basal polarity, both of which are essential 
for colony formation and self-renewal [19, 24, 
25, 36]. Indeed, Rap1 coordinates E-cadherin, 
integrin, and cytoskeleton reorganization, and 
restores hiPSC structure and function after loss 
of E-cadherin. Collectively, these studies provide 
not only critical insights into the behavior of 
undifferentiated hiPSCs, but also unique and 
powerful opportunities to culture and maintain 
stem cells.

2.2.1  Mechanism of Loss 
of Undifferentiated State 
in Monolayer Culture

Proposed mechanisms for the spontaneous and 
dramatic loss of the undifferentiated state in 
monolayer culture are illustrated in Fig.  2.1 
[12,13,16] for hiPSC colonies cultured on SNL 
and MEF feeder cells. On SNL feeder cells, 
hiPSCs grow outward, with cells simultane-
ously dividing and migrating, gradually becom-
ing larger and more tightly packed (Fig. 2.1a). 
Consequently, cell motility steadily decreases 
while the cell density at the center increases. 
Notably, central cells then partially detach from 
the substrate, exhibit morphological changes 
consistent with apoptosis, enlarge, and flatten. 
It appears that the contraction of a blebbing 
apoptotic cell drags neighboring cells into the 
space it vacates, thereby inducing loss of undif-
ferentiated state. Ultimately, a large number of 
cells dissociate from colonies and disperse as 
single cells.

M.-H. Kim and M. Kino-oka



21

Conversely, loss of the undifferentiated state 
in colonies cultured on MEF feeder cells is asso-
ciated with rapidly proliferating and outwardly 
migrating cells at the periphery of the colony 
(Fig. 2.1b). It is likely that the enhanced migra-
tion of peripheral cells is due to reduced cell-cell 
interactions, resulting in accelerated replication 
of deviated cells and highlighting cell migration, 
cell-substrate interactions, and E-cadherin- 

mediated cell-cell adhesions as essential param-
eters in maintaining undifferentiated hiPSCs. 
Indeed, loss of E-cadherin maybe useful as a 
marker of deviated cells. The differences in 
migration are likely due to differences in the 
microenvironments provided by feeder cells. 
Remarkably, exposure to Rac1 inhibitor or acti-
vator to inhibit or activate cell migration, respec-
tively, switches the deviation from the central to 

Fig. 2.1 Deviation of the undifferentiated state in hiPSC colonies growing on SNL (a) and MEF feeder cells (b). 
(Modified from [12, 16])
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the peripheral region, and vice versa, consistent 
with a switch in cell migration [12]. Taken 
together, the data indicate that cell migration is a 
crucial inducer of loss of the undifferentiated 
state, and should thus be controlled.

2.2.2  Mechanism of hPSC 
Aggregate Growth 
in Suspension Culture

Suspension cultures are an attractive, scalable 
platform for large-scale cell production. In such 
cultures, aggregates form via the proposed 
mechanism illustrated in Fig. 2.2, in which sin-
gle seed cells encounter other cells and establish 
cell-cell adhesions via E-cadherin. These aggre-
gates then grow in size over time, and coalesce 
into even larger aggregates, ultimately resulting 
in reduced proliferation and necrosis [1, 4, 27, 
34] due to impeded diffusion of oxygen and 
nutrients from the surface into densely agglom-
erated cells ([37,50]). Finally, accumulation of 
collagen type I around aggregates [27, 28] limits 
not only growth, but also microenvironmental 
stimulation, cell- cell adhesion, and cell-cell sig-
naling. Therefore, an optimal aggregate size and 
suitable passaging methods are important to 
maximize proliferation rate and cell numbers. In 
addition, suspension cultures generally require 

prior harvest of seed cells using proteolytic 
enzymes [10, 32], which, however, may cause 
cell damage and elicit apoptosis [31, 49]. Hence, 
it may be necessary to also optimize steps prior 
to suspension culture.

2.3  Simple and Robust 
Expansion of hiPSCs Using 
Botulinum Hemagglutinin

State-of-the-art methods for monolayer or sus-
pension hPSC cultures are cumbersome, and may 
elicit unintentional spontaneous differentiation 
with each passage or manipulation. Accordingly, 
the development of simple, effective, and robust 
methods has attracted significant attention [14, 
47], to accommodate not only the cellular 
response to manipulation and culture conditions, 
but also potential operator errors.

Integrin- and cadherin-mediated cell–cell 
adhesions are now well-known to be critical in 
many aspects of cell state or differentiation [24, 
25]. In particular, cadherin subtypes tend to be 
abundantly expressed in distinct cell types during 
spontaneous differentiation [8]. For example, 
deviating cells in hiPSC colonies express less 
E-cadherin than undifferentiated cells [16]. Of 
note, neutralizing antibodies to E-cadherin 
degrades cell-cell contacts in human ESCs with-

Fig. 2.2 Cell survival, growth, and necrosis in aggregates formed by hiPSCs in suspension culture
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out affecting cellular viability or inducing differ-
entiation. Similarly, a peptide that inhibits 
E-cadherin transhomodimerization sustains pro-
liferation of undifferentiated ESCs [24]. Taken 
together, these studies imply that differences in 
expression of total cadherin and cadherin sub-
types may provide the most robust basis of selec-
tion between deviated and undifferentiated 
hiPSCs [15, 17].

2.3.1  Selective Removal of Deviated 
Cells Using Botulinum 
Hemagglutinin

Based on its ability to block E-cadherin and dis-
rupt the epithelial barrier, we have attempted to 
use hemagglutinin to selectively eliminate devi-
ated cells according to Fig. 2.3, which also high-
lights the distinct modes of action of 
hemagglutinin against E cadherin [17].

 (a) Temporal disruption of E-cadherin-mediated 
cell-cell adhesions in hiPSC colonies. 
Hemagglutinin is functionally and structur-
ally separable into HA1, which binds cell-
surface carbohydrates, and HA2-HA3, which 
binds E-cadherin and disrupts paracellular 
barriers [23, 40–42]. The latter recognizes 
the first extracellular cadherin domain (EC1) 
in E-cadherin with high specificity, forming 
extensive intermolecular interactions [23], 
and altering the structural and functional 
integrity of cell-cell junctions. Importantly, 
hemagglutinin distinguishes between devi-
ated and undifferentiated cells, since highly 
organized E-cadherin molecules in the latter 
are anchored to the actin cytoskeleton and 
are resistant to hemagglutinin disruption, and 
thus preserve apical-basal polarity. In con-
trast, weaker E-cadherin junctions in the for-
mer are rapidly and effectively disrupted by 
hemagglutinin binding.

Fig. 2.3 Proposed mechanisms by which hemagglutinin removes deviated cells from hiPSC colonies. (Modified 
from [17])
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 (b) Detachment of deviated cells through disrup-
tion of E-cadherin anchored to the actin 
cytoskeleton. Shortly after exposure to hem-
agglutinin, E-cadherin ring-like structures 
disappear, adhesion belts formed by 
E- cadherin lose the circular F-actin geome-
try, and basal stress fibers and focal adhe-
sions diminish. Since each intercellular 
adhesive junction is subject to opposing acto-
myosin contractile stresses independently 
generated by the interacting cells, and since 
the actin cytoskeleton in hiPSCs connects 
cell-cell junctions to focal adhesions, it is 
likely that changes in cytoskeletal tension 
directly affect barrier structure and function. 
In addition, loss of cell-cell adhesion elicits 
cytoskeleton-mediated cell contraction, 
which is cytotoxic. Indeed, cell-cell adhesion 
promotes survival by inhibiting such contrac-
tion, and deviated cells appear rounded pre-
sumably as a result of contraction prior to 
detachment. Accordingly, cell viability and 
attachment may depend on the residual 
strength of cadherin- and integrin-mediated 
adhesions following exposure to hemaggluti-
nin. Collectively, these observations suggest 
that integrin-dependent actin-cytoskeleton 
contraction and degradation of integrin may 
facilitate detachment of deviated cells fol-
lowing exposure to hemagglutinin.

 (c) Rescue of E-cadherin and actin cytoskeleton 
in undifferentiated cells through Rap1. Loss 
of E-cadherin-mediated cell-cell adhesion 
also alters cytoskeletal organization and 
focal adhesion via Rap1 [19, 24, 30, 36], the 
activation of which restores the structure and 
function of E-cadherin and integrin in undif-
ferentiated cells. Subsequent to Rap1 activa-
tion, actin fibers form radial structures that 
are capped with E-cadherin, and are morpho-
logically reminiscent of zipper-like junctions 
observed at nascent cell-cell adhesions. In 
deviated cells, however, E-cadherin disrup-
tion by hemagglutinin appears irreversible, 
and promotes further dispersion of hemag-
glutinin to other E-cadherin molecules, 
finally resulting in detachment and removal 
of these cells. These findings indicate that 

E-cadherin expression is fully reversible, and 
that the effects of hemagglutinin depend on 
the restoration of E-cadherin structure and 
function through cytoskeletal factors.

In any case, the effects of hemagglutinin are 
dose- and time-dependent, and its application 
should be optimized to achieve a balance between 
selective removal of deviating cells and recovery 
of undifferentiated cells. Indeed, high concentra-
tions of hemagglutinin completely disrupts 
E-cadherin junctions, resulting in failure to 
recover, while a drop in hemagglutinin concen-
tration only disrupts E-cadherin without remov-
ing deviated cells. Hence, an optimal combination 
of hemagglutinin dose, time between doses, and 
duration between passages may have to be estab-
lished. There have been several recent reports 
demonstrating some success with this approach 
for various hiPSC cell lines, regardless of the 
presence or absence of feeder cells. Importantly, 
pluripotency was sustained in these experiments, 
demonstrating the robustness of the method and 
the stability of the resulting hiPSC cultures.

2.3.1.1  Hemagglutinin-Mediated  
in situ Dissociation of hPSC 
Aggregates to Establish High- 
Density Suspension Cultures

To achieve high-density suspension cultures, a 
simple method was developed to disaggregate 
hiPSCs cells in situ using hemagglutinin [28]. 
The proposed molecular basis of this approach is 
illustrated in Fig. 2.4.

 (a) Temporal disruption of E-cadherin-mediated 
cell-cell adhesions in hiPSC aggregates. In 
the presence of hemagglutinin, aggregates 
became easy to manipulate and dissociate by 
pipetting, although not immediately (0–6 h) 
or long after (12–24  h) exposure. At 6  h, 
hemagglutinin has probably disrupted 
E-cadherin- mediated cell-cell adhesions at 
peripheral cells, and has likely penetrated 
into central cells as a result via extracellular 
dispersion, the primary mode of transport. 
Importantly, hemagglutinin is observed at 
this point only in intercellular barriers of 
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central cells, indicating specific binding to 
E-cadherin. Most E-cadherin junctions at 
these barriers are disrupted at 9 h, and aggre-
gates become dissociable by pipetting. 

Disruption of cell-cell adhesions then appears 
to stimulate Src signaling, which in turn acti-
vates endocytosis [5] and significantly 
depletes E-cadherin from the surface. At 12 

Fig. 2.4 Mechanisms of colony disaggregation by hemagglutinin, resulting in high-density hiPSCs suspension cultures 
(a), and simplified protocols (b). (Modified from [28])
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h, however, aggregates again become resis-
tant to disaggregation, since internalized 
E-cadherin has been recycled in central cells 
via Rap1 [5, 15, 17], and has formed new 
cell-cell adhesions. However, hemagglutinin 
activity seems to persist in peripheral cells 
after 12  h, since these cells continue to 
express E-cadherin less abundantly. 
Detection of hemagglutinin in the cytoplasm 
at 12  h indicates a secondary, transcellular 
mode of transport. After 24 h, hemagglutinin 
diminishes significantly, likely by cellular 
uptake, and E-cadherin is re-expressed 
throughout the aggregate [23]. These results 
suggest that hiPSCs can be disaggregation in 
situ in suspension culture.

 (b) Simplified protocols following disaggrega-
tion with hemagglutinin. Hemagglutinin- 
treated hiPSC aggregates are more viable 
and reach higher densities than enzymati-
cally dissociated aggregates. Indeed, enzy-
matic digestion in conventional suspension 
culture causes cell damage and apoptosis 
[31, 39, 51]. In particular, degradation of the 
extracellular matrix may trigger apoptosis 
because integrin signaling supports growth 
and proliferation [7, 43]. In addition, the 
enzyme used for digestion would have to be 
removed along with the degraded extracellu-
lar matrix. In contrast, hemagglutinin treat-
ment preserves most cell-cell adhesions and 
extracellular matrix, resulting in higher via-
bility. Although the apparent specific growth 
rates was found to be similar, higher fold- 
expansion was achieved with hemagglutinin 
(13.2 ± 2.3-fold) than with enzymatic diges-
tion (5.5 ± 1.3-fold) [52]. Finally, hemagglu-
tinin does not need to be removed, since it 
does not compromise hiPSC proliferation or 
pluripotency, and is spontaneously inacti-
vated. Thus, the method enables high–den-
sity cultures without enzymatic treatment or 
subsequent clean up.

 (c) High-density culture of hiPSCs from 
hemagglutinin- treated aggregates. This 
method can overcome the aggregate size limi-
tation through the break-up of hiPSC aggre-
gates into small sizes by hemagglutinin to 

obtain a high cell density and maintaining 
pluripotency in suspension culture. Higher 
cell densities (4.5  ±  0.2  ×  106 cells mL−1) 
were achieved with hemagglutinin-treated 
aggregates than with untreated aggregates. In 
addition, the apparent specific growth rate of 
untreated hiPSCs decreased significantly in 
96–192  h because of increasing aggregate 
size. Moreover, higher glucose consumption 
and lactic acid production were observed in 
cultures of hemagglutinin-treated aggregates. 
Densities of 2.0 × 106 cells mL−1 have also 
been reported for conventional aggregate sus-
pension cultures [1, 2, 33], although these are 
still significantly lower than for hemaggluti-
nin-treated aggregates. Collectively, the stud-
ies highlight hemagglutinin treatment as a 
promising technique to prevent cell loss dur-
ing seeding, to simplify protocols, and to 
obtain high cell densities and high growth 
rates in suspension culture.

2.4  Development of hPSC 
Culture Methods as a Way 
to Enhance Bioprocessing

To improve productivity and efficiency in office 
environments [14, 15, 17], some tools may have 
to be developed. Of these, stationery items used 
on a daily basis are among the most important, 
including paper and pencil, which accommodate 
different writing styles and skill levels, and can 
be adapted to meet the needs of a user. Similarly, 
it is necessary to develop robust culture tools to 
maintain undifferentiated hiPSCs. In the same 
way that good writing implements provide “paper 
and pencil to write beautiful letters” and “an 
eraser to correct mistakes”, hiPSC cultures 
require suitable substrate and nutrient media to 
prevent loss of the undifferentiated state, and 
these have been extensively investigated. 
However, something equivalent to an eraser, in 
this context to remove cells that have lost the 
undifferentiated state, does not yet exist, but will 
be indispensable. We have now demonstrated that 
hemagglutinin helps establish and maintain 
undifferentiated hiPSCs by selectively removing 
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deviated cells or by dissociating hiPSC aggre-
gates in high-density cultures. These techniques 
may enable maintenance of undifferentiated hiP-
SCs in any media, by operators of all skill levels 
or by an automated bioreactor. Accordingly, these 
techniques may overcome the limitations of con-
ventional cell cultures, and thereby enable large- 
scale production of hiPSCs for industrial and 
clinical purposes.

2.5  Conclusions

Many approaches have been attempted to develop 
a simple and robust method to culture undifferen-
tiated hiPSCs. These methods typically exploit 
variations in adhesion strength and E-cadherin 
turnover to selectively remove deviated cells and 
dissociate hiPSC aggregates in situ. Positive 
feedback from Rap1 can then restore E-cadherin 
to intercellular junctions, and thereby rebuild 
cell-cell contacts and colony structure. Indeed, 
selective removal of deviated cells using hemag-
glutinin has been demonstrated in various culture 
conditions, in various hiPSC lines, in the pres-
ence or absence of feeder cells, and without loss 
of pluripotency. The method is simple and scal-
able, enables high-density hiPSC cultures with-
out enzymatic treatment and subsequent cleanup, 
and minimizes cell loss during seeding. 
Therefore, hemagglutinin may enable the estab-
lishment of simple, robust, and stable closed sys-
tems for large-scale monolayer and suspension 
cultures of hiPSCs, a critical step towards con-
trolled bioprocessing and manufacturing of stem 
cells for clinical and industrial applications.
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Abstract
Biodegradable scaffolds are useful tools in 
the field of tissue engineering and regenera-
tive medicine. The aim of this study was to 

test the potential of the human stem cells of 
apical papilla (SCAP) to attach, proliferate 
and differentiate on a polycaprolactone 
(PCL)-based scaffolds. SCAP were extracted 
from the root apical papillae of freshly 
extracted immature premolar teeth by using 
enzymatic digestion. Porous PCL scaffolds 
were fabricated using particle leaching 
method and NaCl or mannitol as porogens. 
SCAP of passage 3 were seeded on non-
porous and porous PCL scaffolds for up to 
14 days. For control, cells were cultured on 
glass coverslips. Picogreen DNA quantifica-
tion was used to assay for cell proliferation. 
Cell differentiation and development of calci-
fication nodules were examined using scan-
ning electron microscopy and alizarin red 
staining. SCAP showed a comparable attach-
ment, growth and proliferation patterns on 
PCL scaffolds and coverslips. Cell prolifera-
tion was enhanced on mannitol scaffolds at all 
time points. Calcification nodules were 
detected in all PCL scaffolds while it was not 
present on glass coverslips. These nodules 
were detected on NaCl-scaffolds by day 7 and 
on mannitol and non-porous scaffolds by day 
14. In conclusion, SCAP were able to attach, 
proliferate and differentiate on PCL scaffolds 
without using any inductive media, indicating 
their potential application for dental tissue 
regeneration.
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3.1  Introduction

Several case reports in the literature have shown 
that immature teeth with necrotic pulp and peri-
apical lesions can be treated to overcome the 
infection and rescue root development and apical 
closure [1–4]. These reports demonstrate the 
ability of the pulp or pulp-like tissue to regener-
ate and maintain root development. The details of 
this remarkable process of immature pulp regen-
erative potential are not completely understood 
[5, 6]. In addition, it is unknown which stem cells 
and/or growth factors are involved in this regen-
eration process [7, 8].

The discovery and isolation of the stem cells 
of apical papilla or SCAP could partially explain 
the regenerative potential of immature pulp [9]. 
Accordingly, a treatment protocol was proposed 
in some cases of necrotic pulp, by initiating 
bleeding from the periapical tissue [3]. 
Consequently, blood would fill the root canal 
system and transport some stem cells from the 
periapical tissues. Stem cells would then popu-
late the blood clot formed in the root canal. From 
an anatomical point of view, the most probable 
cell type to fill the root canal space is the SCAP 
[9–11]. This theory of SCAP involvement in 
pulp regeneration is further supported by the 
findings that SCAP were able to regenerate pulp-
dentin like tissue both in vivo and in vitro [9, 12]. 
Therefore, the SCAP have become an attractive 
stem cell type to study their biological features 
in details and to explore the possibility of their 
use in the regenerative therapy of dental pulp 
necrosis.

To develop a therapeutic regenerative model, 
there is a need to identify not only the cell source, 
but also a scaffold that would provide a three- 
dimensional microenvironment to allow the cells 

to grow and differentiate. Ideally, the scaffold 
should then gradually degrade to allow the new 
regenerated tissue to grow and fill up the pulp 
space. Therefore, the scaffold should be made 
from a biocompatible and biodegradable material 
[13, 14]. Polycaprolactone (PCL) is a biocompat-
ible, slow degrading synthetic polymer, which 
has been used as a scaffold material in several 
tissue regeneration models and also has different 
other applications in medicine and dentistry [15–
20]. The main aim of this study was to investigate 
the ability of SCAP to attach, proliferate and dif-
ferentiate on different forms of PCL-based scaf-
folds. Results obtained from this study could 
provide a basis to design a model for regenerative 
endodontics.

3.2  Material and Methods

3.2.1  SCAP Isolation and Cultures

Intact caries-free premolars were extracted from 
10–14 years old patients (n = 3). The teeth had 
incompletely formed root apices. The patients 
were healthy and required teeth extraction as part 
of their orthodontic treatment. Informed consent 
forms were signed by the parents before teeth 
extractions. The apical papillae were micro- 
dissected and SCAP were isolated and cultured 
as described by Sonoyama et al. [9]. Briefly, the 
papillae were minced and digested in a physio-
logical solution containing 3 mg/ml collagenase 
type I (GIBCO/Invitrogen) and 4 mg/ml dispase 
(GIBCO/Invitrogen) for 45 min at 37 °C. Isolated 
cells were then plated in culture dishes contain-
ing alpha-modification of Eagle’s medium 
(GIBCO/Invitrogen) supplemented with 15% 
fetal bovine serum (GIBCO/Invitrogen), 
2 mM L-glutamine (GIBCO/Invitrogen), 100 U/
ml penicillin and 100  mg/ml streptomycin 
(GIBCO/Invitrogen) and allowed to grow in a 
humidified incubator (Thermo Scientific) 
adjusted at 37  °C and 5% CO2. Once the cells 
reached 80% confluence, several passages were 
carried out. All experiments were done on pas-
sage 3.
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3.2.2  Scaffold Fabrication

Polycaprolactone (PCL) porous scaffolds were 
prepared using a particle leaching technique [21], 
where two types of porogens; namely sodium 
chloride (NaCl; Aldrich, USA) and mannitol 
(Aldrich, USA), were used. Briefly, a 25% w/v 
PCL solution was prepared by dissolving PCL 
particles (Aldrich, USA) in chloroform and 
 stirring until a homogenous solution was 
achieved. Porogen particles, 10  g of NaCl or 
mannitol, were added to the solution and stirred 
until the porogen particles were completely dis-
persed in the PCL solution. The solution was 
poured into glass Petri dishes and left under the 
hood for 24 h to allow evaporation of chloroform. 
After drying, a uniform sheet of PCL scaffold 
was formed. Scaffolds were subjected to a leach-
ing procedure by soaking in distilled water for 
24  h. After complete leach out of the porogen 
particles, porous PCL scaffolds were obtained. In 
addition to the two types of porous scaffolds, 
pure PCL nonporous scaffolds were prepared 
using the same method. Scaffold sheets were cut 
into small round pieces with a 6.5 mm radius. For 
control, glass coverslips of the same surface area 
were used. All scaffolds were examined with ste-
reomicroscope, inverted microscope and scan-
ning electron microscope (SEM) to evaluate their 
surface topography and microstructural 
characteristics.

3.2.3  SCAP Culture

Before cell seeding, all scaffolds were sterilized 
by soaking in 70% ethanol for 1 h under a lami-
nar flow hood and then subjected to an ultraviolet 
light for another 1 h before allowed to dry. Sterile 
scaffolds were incubated in modified Eagle’s cul-
ture media and left overnight in a humidified 
incubator at 37 °C and 5% CO2. Approximately 
30,000 cells from passage 3 suspended in 100 μl 
of culture media, were seeded onto scaffolds and 
coverslips placed into 12-well plates and allowed 

to grow in the CO2 incubator at 37 °C. After 12 h, 
1  ml of culture media was added to each well. 
The media was changed every 2–3 days.

3.2.4  Assessment of Attachment, 
Proliferation 
and Differentiation of SCAP

3.2.4.1  Toluidine Blue Staining
On days 2, 7 and 14, cell-seeded scaffolds were 
removed from the culture plates and fixed with 
4% paraformaldehyde. Cells were permeabilized 
with 0.1% Triton X-100 and toluidine blue (0.1%, 
Agar Scientific Limited) was added to the surface 
of scaffolds for 1 min. Stained cells grown on the 
scaffolds were examined with a stereomicro-
scope (LEICA, MZ16A, Danaher, Germany) and 
an inverted microscope (Olympus IX71, Tokyo, 
Japan) to assess cell attachment and proliferation 
on the different types of scaffolds. Three scaf-
folds from each type and the control coverslips 
were examined for each of the different periods 
of culture.

3.2.4.2  Alizarin Red-Toluidine Blue 
Double Staining

To detect mineralization, cells on different scaf-
folds and coverslips from days 2, 7 and 14 were 
initially stained with toluidine blue, washed with 
PBS, and then stained with alizarin red solution 
(pH = 4.2) for 15 min and finally 1% toluidine 
blue stain was added for 1  min. All scaffolds 
were examined with stereo and inverted micro-
scopes. Three scaffolds from each type and cov-
erslips were stained and examined.

3.2.4.3  DNA Quantification
The total DNA content was measured by using 
Quant-iT™ PicoGreen® dsDNA quantification 
kit (Molecular Probes, Invetrogen, USA). Each 
scaffold from days 2, 7 and 14 was transferred to 
a 50 ml tube with 5 ml of deionized water added 
to lyse the cells. The cell-seeded scaffolds 
together with the water were frozen at -80  °C 
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overnight. The lysed cells were thawed and then 
ultrasonicated using Sonic Ruptor 250 Ultrasonic 
Homogenizer (Omni International, Kennesaw, 
GA, USA) for 10 min. Equal volumes of the sam-
ple and the Picogreen reagent were mixed and 
added to 96 microwell plates and incubated for 
2–5 min. DNA was measured on a fluorescence 
microplate reader with excitation of 265 nm and 
emission of 450 nm and the DNA amounts were 
calculated from a standard curve. Three scaffolds 
from each type and coverslips were subjected for 
total DNA quantification. The analysis was 
repeated at three different times.

3.2.4.4  SEM
To examine the cellular morphology, distribution, 
and the elemental composition, scaffolds from 
experimental and control groups were processed 
for SEM and energy dispersive X-ray spectros-
copy (EDXS) (XL-30 Phillips, Amsterdam, 
Netherlands). Scaffolds with cells cultured for 2, 
7 and 14 days were fixed with 4% paraformalde-
hyde for 1 h and post-fixed in 1% osmium tetrox-
ide for 10  min. Cells on all scaffolds were 
dehydrated using a series of increasing concen-
trations of ethanol. Finally, scaffolds were 
mounted on aluminum stubs, coated with gold 
using a sputter coater, and finally examined using 
SEM. Three scaffolds from each type and cover-
slips were examined at 3 different times.

3.3  Results

3.3.1  Scaffolds’ Surface Topography 
and Pores Characteristics

SEM observations demonstrated that the NaCl 
particles used as porogens were mostly cuboidal 
in shape with an average particle diameter of 
150–250 μm (Fig. 3.1a). On the other hand, man-
nitol appeared as short, needle-like microfibers 
with average dimensions of 65 μm in length and 
10 μm in diameter (Fig. 3.1b). The fibers appeared 
as aggregates possibly due to their physical and 
chemical interactions.

Figure 3.2a shows SEM micrograph of a non- 
porous PCL scaffold, showing the presence of a 
rough surface with irregular topography and a 
layer architecture. On the other hand, SEM obser-
vations of the scaffolds with NaCl-created pores 
showed their homogeneous distribution within 
the polymeric matrix. The pores varied in size 
and morphology due to overlap between the NaCl 
particles during mixing and casting. Due to the 
characteristic morphology of the NaCl particles, 
the created porosity was more of an isolated than 
interconnected. However, in places where NaCl 
particles were close to each other, interconnected 
pores were created (Fig.  3.2b). Scaffolds with 
mannitol-created pores had a homogeneous dis-
tribution of pores with fiber-like morphology rep-

Fig. 3.1 Scanning electron micrographs of pure NaCl (a) and mannitol (b) porogens used in the preparation of porous 
PCL scaffolds
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resenting the mannitol fibers. There were more 
pores per scaffold in this group in comparison to 
the scaffolds with NaCl-created pores. In addi-
tion, the pores were smaller, but with more inter-
connectivity than those of NaCl-created pores 
(Fig. 3.2c).

3.3.2  Assessment of Proliferation 
and Differentiation of SCAP 
on PCL Scaffolds

TB staining showed a similar growth pattern of 
SCAP on different types of scaffolds, in culture 
dish and on glass coverslips (Fig. 3.3). On day 1 
post-seeding, cells appeared to be attached in 
 isolated pattern (Fig. 3.3a, b), while on day 7, the 
cells began to form colonies with a star shape 

(Fig. 3.3c, d). TB staining and stereomicroscopic 
analysis showed that the amount of SCAP and 
the area they cover consistently increase from 
day 2 to day 14 (Fig. 3.4a).

To obtain some information on the number of 
cells growing on the scaffolds, the amount of 
DNA was quantified on the 3 time points (days 2, 
7 and 14). The results revealed that on day 2, the 
amounts of DNA reflecting the numbers of cells 
were almost similar in the porous scaffolds and 
the control glass coverslips (Fig. 3.4b). On day 7, 
there was an increase in the number of SCAP, 
indicating their proliferation, in comparison to 
day 2 in all groups, with highest DNA value for 
mannitol-scaffolds while NaCl-scaffolds were 
associated with the highest percentage of increase 
in cell number. By day 14, DNA value continued 
to increase, with mannitol-scaffolds maintained 

Fig. 3.2 Scanning electron micrographs of non-porous (a) and porous PCL scaffolds using 10% NaCL (b) and 10% 
mannitol (c)
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the highest DNA value which indicated the high-
est number of cells (Fig. 3.4b). Figure 3.5 shows 
stereoscopic and SEM micrographs of mannitol 
and NaCl porous scaffolds after TB staining 
demonstrating extension of cell growth within 
the pores.

3.3.3  SCAP’s Differentiation

Double staining with alizarin red and toluidine 
blue was used to test whether calcification nod-
ules (sign differentiation) were developed by the 
cultured cells. If present, the nodules would 

Fig. 3.3 Growth pattern of SCAP on culture flasks (a and c) and on PCL scaffolds (b and d), after 2 days (a and b) and 
7 days (c and d) of incubation. Scale bar = 50 μm

Fig. 3.4 (a) Stereomicroscopic images of SCAP growing 
on NaCl- and mannitol-porous scaffolds for 2 and 14 days 
after TB staining. Scale bar = 2 mm. (b) Bar chart repre-
senting total DNA values of SCAP growing on porous 

PCL scaffolds using 10% NaCl (N10) and 10% mannitol 
(M10), non-porous (solid) PCL scaffolds and on glass 
coverslips (control) for 2, 7 and 14 days in culture
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acquire red-orange stain with blackish center. 
After examining all the samples, we found no 
staining in the control group in all time points 
examined. The same result was found in all 
experimental groups examined on day 2. SCAP 
cultured on NaCl-scaffolds started to show signs 
of calcification on day 7, while on day 14 the 
number and size of calcification nodules 
increased (Fig. 3.6a). SCAP cultured on mannitol- 
scaffolds and non-porous scaffolds started to 

show calcification nodules only on day 14. 
Moreover, SEM micrograph of day 14 NaCl- 
scaffold indicate the presence of extracellular 
matrix and nodule like clusters (Fig. 3.6b). The 
mineral nature of the calcification nodules was 
analyzed by energy dispersive X-ray spectros-
copy (EDXS) and it revealed the components of 
the calcification nodules and the presence of 
 calcium and phosphorous deposit at a Ca:P ratio 
of 1.5–1.6.

Fig. 3.5 Stereomicroscopic and SEM images of SCAP 
cultured on PCL scaffolds extending into their pores. (a) 
SCAP growing on NaCl- and mannitol-porous scaffolds 
for 14  days and stained with TB.  Note that images are 
taken with different focal plans to demonstrate cell growth 
on the external surface and also extending within the 

pores (indicated by white dotted borders) of the scaffolds. 
(b) SEM micrographs obtained at low and high magnifi-
cations showing SCAP growing on NaCl-porous scaffold 
(left double arrows) and extending within the pore (right 
double arrows)

Fig. 3.6 Light (a) and SEM (b) micrographs of SCAP 
cultured on NaCl-porous scaffold for 14 days. (a) TB-AR 
double staining showing an evidence of calcification 

 nodules (arrows). (b) SEM shows the beginning of form-
ing small calcification nodules (arrows)
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3.4  Discussion

The apical papilla is a soft tissue with a smooth 
surface found at the apex of the dental pulp. 
Histologically, the apical papilla is made of loose 
connective tissue including a few blood vessels 
and many mesenchymal cells [10, 11]. From this 
papilla, SCAP have been isolated and character-
ized for the first time by Sonoyama et  al. [9]. 
These cells attracted the interest of many 
researchers as they could be the stem cells 
responsible for the process of regenerative end-
odontics. Several in vivo and in vitro models were 
developed to investigate the potential of these 
cells to regenerate different tissues [9–12]. In the 
present study, we have isolated and cultured 
SCAP to test their potential to attach, proliferate 
and differentiate on synthetic porous and non- 
porous PCL scaffolds.

To achieve our aims, first, SCAP were isolated 
by enzymatic digestion of apical papilla of 
extracted human permanent immature premolars. 
Second, non-porous PCL-based scaffolds were 
fabricated, seeded with the isolated SCAP and 
examined at 3 time points: 2, 7, and 14 days post- 
seeding. Growth, proliferation and differentiation 
pattern of SCAP were compared with those 
growing in culture flasks at the same time points. 
Glass cover slips of the same size and surface 
area of scaffolds were used as control for the 
comparison. Using glass cover slips provides a 
better ability of matching the number of cells and 
amount of culture media to those on scaffolds 
and the possibility of processing the cells on 
cover slips for immunohistochemistry. The find-
ings showed a comparable attachment, growth 
and proliferation pattern of SCAP growing in 
culture flasks, on coverslips and on scaffolds. 
These results confirm the suitability of the PCL- 
based scaffold for the growth of SCAP. This find-
ing is in agreement with other studies which 
showed the biocompatibility of PCL but with dif-
ferent types of stem cells, including dental pulp 
stem cells [22]. By day 7, signs of differentiation 
of SCAP were noticed in both non-porous PCL 
and control samples. The signs of differentiation 
were manifested by (a) change in the morphol-
ogy of the cells from stellate to longitudinal, and 

(b) calcification and mineralization evidences 
from Alizarin red stain or SEM and EDXS.

It is generally believed that when some cells 
become in close contact with each other, they can 
be triggered to differentiate, and once they form 
multilayers they start mineralization [23]. In this 
study, it was observed that, by day 7, the cells 
became close to each other and acquired large 
longitudinal morphology with oval nucleus. By 
day 14, the number of differentiated cells 
increased and covered almost all the surface area 
in both glass and PCL scaffolds. Interestingly, 
calcification nodules were noticed by day 14, 
only in PCL scaffolds and this was manifested by 
Alizarin stain and SEM. These results could be 
attributed to the well-known biocompatibility of 
PCL in addition to its rough surface caused by 
the gradual evaporation of the solvent during 
scaffolds preparation. In contrast, the glass cov-
erslip has a smooth surface, which may not allow 
stratification of SCAP cells.

One of the requirements of a scaffold to be 
used in tissue regeneration, is to have intercon-
nected pores. This porosity and interconnectivity 
is essential to ensure sufficient transport of oxy-
gen and nutrients towards the cells and allow 
removal of metabolic products [24]. Porosity 
may also have a positive effect on cell attachment 
[22, 24]. Variations in the size, shape and number 
of pores within the scaffold might have an effect 
on cell attachment, proliferation and differentia-
tion. One of the aims of this study was to investi-
gate this effect. Therefore, porous scaffolds were 
prepared using particle leaching technique. It is 
easy, economic and has been successfully and 
commonly used before to create porous scaffolds 
for engineering bone, heart valve and other tis-
sues [25–27]. To create pores with this technique, 
water soluble porogens were used. The percent-
age, size and shape of pores depend on the type 
and morphology of the porogen particulates. 
NaCl is one of the most commonly used poro-
gens, and it has been used before in many studies 
including those involved in dental pulp regenera-
tion. Another less commonly used porogen is the 
mannitol, which is also water-soluble. In the 
present study, the proliferation and differentiation 
of SCAP seeded on non-porous and porous PCL 
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scaffolds were compared at different time points 
after seeding. The porous scaffolds were created 
using 10% of either NaCl or mannitol. Two days 
post-seeding, the light microscopic examination 
revealed that mannitol-porous and non-porous 
scaffolds showed better growth of SCAP than 
NaCl-porous scaffolds. This was also reflected in 
the DNA analysis, although the cells were prolif-
erating in a similar rate in all groups. This can be 
explained by the fact that mannitol- porous scaf-
folds have more surface area than NaCl-porous 
scaffolds. The SEM and stereomicroscopic 
examination of the latter revealed that it has 
larger pores than mannitol ones and thus limiting 
the area for cells to attach. Another supporting 
finding, is the fact that there were more cells on 
the glass-coverslip (which has the  maximum sur-
face area) and that cells were growing all over the 
available surface, and this is supported by the 
DNA analysis as well. On day 2, there were no 
signs of differentiation and cells on all scaffolds 
or coverslips didn’t form monolayer.

On day 7, there was a significant increase in 
the number of cells growing on all scaffolds or 
glass coverslips. In addition, cells started to dif-
ferentiate as they became elongated in areas 
where they were in close contact with each other. 
This change in cell shape was apparent in all PCL 
scaffolds. Interestingly, there were also signs of 
calcification and formation of mineralization 
nodules in NaCl-scaffolds only. This was mani-
fested by the Alizarin red stain, SEM and EDXS 
analysis. By day 14, cells continued to proliferate 
in mannitol and non-porous scaffolds, with 
increased calcification and mineralization nod-
ules on NaCl-scaffolds. In contrast, cells on man-
nitol and non-porous scaffolds started to show 
calcification nodules. This finding was also sup-
ported by the DNA analysis (Fig. 3.4), and this 
can be explained by the fact that many cells in 
NaCl scaffolds have already differentiated by day 
7 and reduced their proliferation rate by day 14. 
This could be explained by the characteristic fea-
ture of the surface area of different scaffolds. So, 
it seems that cells on NaCl-scaffolds contact each 
other and form multilayers in a shorter time than 
those on mannitol- and non-porous scaffold, and 
therefore, differentiate and form mineralization 

nodules earlier than other cells growing on other 
scaffolds. These findings indicate the osteogenic/
odontogenic potential of the SCAP in vitro.

3.5  Conclusion

The results of this study indicate that SCAP 
attach, proliferate and differentiate on PCL-based 
scaffolds. According to literature search, this is 
the first time to culture SCAP on such synthetic 
material. The differentiation of SCAP on PCL 
scaffolds occurred without using any inductive 
media or growth factors. These findings indicate 
that PCL does not only support but also induces 
SCAP to differentiate. Therefore, PCL is a prom-
ising material to use for future regenerative end-
odontics protocols.
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Impact of Three-Dimentional 
Culture Systems on Hepatic 
Differentiation of Puripotent Stem 
Cells and Beyond
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and Wei Cui

Abstract
Generation of functional hepatocytes from 
human pluripotent stem cells (hPSCs) is a vital 
tool to produce large amounts of human hepa-
tocytes, which hold a great promise for bio-
medical and regenerative medicine 
applications. Despite a tremendous progress in 
developing the differentiation protocols reca-
pitulating the developmental signalling and 
stages, these resulting hepatocytes from hPSCs 
yet achieve maturation and functionality com-
parable to those primary hepatocytes. The 
absence of 3D milieu in the culture and differ-

entiation of these hepatocytes may account for 
this, at least partly, thus developing an optimal 
3D culture could be a step forward to achieve 
this aim. Hence, review focuses on current 
development of 3D culture systems for hepatic 
differentiation and maturation and the future 
perspectives of its application.

Keywords
Tissue engineering · Regenerative medicine · 
3D culture · Hepatocytes · Pluripotent stem 
cells

4.1  Pluripotent Stem Cells 
Provide a Valuable Resource 
for Hepatocytes: Strength 
and Challenges

4.1.1  Human Hepatocellular 
Resource Is in Demand

The liver plays an essential role in detoxification, 
maintenance of homeostasis and metabolism in 
the body. This highly complex functionally com-
plex organ consists of various cell types includ-
ing hepatocytes, Kupffer cells, sinusoids and bile 
duct cells. Hepatocytes performs most of the spe-
cialised liver functions including aid digestion by 
producing bile acids, express detoxification cas-
cade related enzymes, secrete serum proteins and 
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control the bulk of intermediary metabolism. 
Despite a low level of cell turnover normally, the 
liver has a unique feature which can regenerate 
cells upon destruction by certain short-term inju-
ries, toxins, aging or diseases, subsequently to 
restore its functional state. The regeneration of 
the liver occurs without any external cellular 
resources through activation of organ residing 
stem cells. The presence of facultative hepatic 
stem cells within the intra-hepatic biliary tree are 
activated for rapid re-entry into the cell cycle 
from G0 phase, and then differentiate into paren-
chymal cells; hepatocytes and bile ducts cells. 
However, the liver slowly loses its regenerative 
ability completely upon persistent liver injury, 
which causes chronic liver failure. On another 
note, acute liver failure is characterised by dam-
age in a relatively short duration, in which part of 
the liver relatively has the ability to regenerate to 
support the liver function that was impaired. 
Although it may be possible for the trace residue 
liver cells to regenerate for restoration of liver 
function ultimately, this needs time. In these con-
ditions, external support or cellular resources to 
support the impaired liver function necessitate to 
treat patients with liver failure.

Hepatocytes are in demand to bridge the gap 
of waiting for a liver donor due to the indispens-
able requirement to recover the partially or com-
pletely failed liver. This could be achieved by 
functional hepatocyte-embedded bioartificial 
liver device or by hepatocyte transplantation to 
restore the impaired function of failed liver or to 
correct metabolic liver diseases [40]. Despite 
these remarkably effective treatment strategies, 
the demand for transplantable human hepatocel-
lular resources is ever-escalating. However, the 
shortage of available suitable donors is another 
crucial issue affecting transplantation, apart from 
the lack of well-established methodology and 
standard to grow and expand hepatocytes to a 
scalable format in culture while maintaining their 
functionality. Not only human hepatocytes are 
valuable for cell therapy application, but also 
instrumental for screening and development of 
pharmaceutical drugs. They serve as a cellular 
platform to assess the metabolism of xenobiotics 
and drugs in which the current practise heavily 

relies on the animal models that may not effec-
tively reflect metabolic processes and pathways 
in human. The demand for ideal hepatocellular 
resources for various fundamental and transla-
tional medical applications is discussed in the 
following section.

4.1.1.1  Treatments for Liver Failure
The patients with acute liver failure and end stage 
liver diseases are relying on donor organ trans-
plantation as treatment. However, due to the lim-
ited availability of organ donors, it is essential to 
explore alternative hepatocyte approaches and 
resources to support human liver function during 
liver failure.

Cell-Based Therapy for Liver Diseases
Human embryonic stem cells (hESCs)-derived 
hepatocytes have emerged as a potential source 
for cell-based therapy. Due to the shortage of 
donor livers, cell-based therapy would be an 
alternative treatment for patients with liver fail-
ure to either allow the recovery of liver regenera-
tion capacity or to bridge the gap prior to organ 
transplantation. hESC-derived hepatocytes would 
be the ideal choice for both tissue transplantation 
and BAL devices. A number of animal studies 
have demonstrated that it may possible to restore 
the lost function of the organ by transplantation 
of stem cell-derived hepatocytes [2, 9, 31, 171, 
172, 181].

Bioartificial Liver Devices
A remarkable advancement in treatment of liver 
diseases is the development of bioartificial liver 
(BAL) devices which are known as extracorpo-
real devices embedded with functional hepato-
cytes to deliver therapeutic support for acute liver 
failure patients. The BAL-type devices are not a 
permanent solution to replace liver function, but 
only as a supportive device. Its function is by 
either bridging individual’s liver functions or 
allowing natural liver regeneration following 
acute liver failure until an organ transplant is pos-
sible [140]. A hollow fiber-type BAL has been 
developed by Mizumoto et al. [116], with mouse 
ESCs (mESCs) immobilized inside it. The rats 
with liver failure were able to recover after treated 
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with BAL module under perfusion conditions 
containing hepatic differentiated mESCs, exhib-
iting liver-specific functions.

Researchers have been exploring on the inno-
vative technologies in tissue engineering and 
stem cell research in the effort to provide solution 
for regenerative medicine. In the development of 
stem cell-derived liver technology, there are three 
key criteria to consider; (1) an efficient directed 
differentiation, (2) an expandable cellular 
resource and (3) high fidelity function. While use 
of stem cell-derived hepatocytes seems to be very 
favourable for cell-based therapy and BAL 
devices, characterisation of properties and func-
tion of the stem cell derived hepatocytes, the 
safety and post transplantation complications and 
unlimited cell sourcing need to be taken into con-
sideration for successful therapeutic outcomes.

4.1.1.2  Drug Screening 
and Toxicological Studies

Toxicity Screening for Drug Discovery
An efficient in vitro hepatic differentiation that 
generates functional cells could greatly improve 
the competence of drug development process. 
The process of drug development is costly with 
thousands of compounds unsuccessful at the pre-
clinical stage, and the costs of introducing a drug 
to the market are estimated to range between 
$800 million and $2 billion [129]. The liver tox-
icity test is a measure for the safety of new drug, 
since the liver plays vital role in xenobiotic 
metabolism.

In the development of new drug, pharmaceuti-
cal R&D pipeline utilizes either primary hepato-
cyte culture or animal models for the prediction of 
potential drug hepatotoxicology, but both systems 
lack of a few critical safety aspects of drug devel-
opment. Despite animal models are useful for in 
vivo drug testing, there is still a huge demand for 
human hepatocytes to overcome the differences in 
liver function among species, including induction 
of cytochrome P450 (CYP) [84]. Furthermore, 
the emphasis on the 3Rs principles; development 
of humane experimental framework that reduce, 
refine and replace the use of animals in research, 
has led to the need for an alternative methodology 

or technology to reduce the use of animals in drug 
testing procedure. On the other hand, due to the 
scarcity of human hepatocytes, deriving human 
hepatocytes from hESCs is promising strategy to 
overcome the issues associated with toxicity 
screening for screening and discovery of drug. 
Efficient hepatic differentiation from hESCs 
could produce unlimited functional hepatocyte 
source and useful for toxicity screening in the 
pharmaceutical industry.

Remarkably, iPSC-derived hepatocytes from 
different patient is the latest development in the 
field that the technology improve drug toxicity 
assessment and development of effective person-
alised drug [4, 193]. Studies have showed that 
these cells derived from patients with metabolic 
deficiency can be used for specific disease mod-
elling which could be useful for drug evaluation 
[16, 134]. On a specific note, Sirenko et al. [154] 
developed high-content imaging-based screening 
assays using iPSC-derived neuronal culture to 
study the efficacy and safety for drug develop-
ment that this can be extended to develop liver 
toxicological workflow.

4.1.1.3  Understanding Hepatocellular 
Related Disease Progression

Human pluripotent stem cells (hPSCs), both 
ESCs and induced pluripotent stem cells (iPSCs), 
showed evident potential in modelling liver 
pathology including infectious, genetic, meta-
bolic diseases, thereby offering an innovative and 
cost-effective in vitro strategy to unravel the 
mechanisms pathophysiology of hepatic disor-
ders. While liver transplantation models are 
widely available for key liver disorders, relevant 
hiPSC-based models are only available for few 
disorders including cirrhosis, metabolic diseases 
and polycystic disease [141]. Nevertheless, there 
is a great need for modelling cancer, cholestatic 
diseases and acute hepatic failure using human 
pluripotent stem cells.

The development of therapeutics has been 
hampered by greater lack of understanding of 
molecular mechanisms of injury, degeneration 
and infection, partly due to availability of in vitro 
and in vivo models that recapitulate molecular and 
cellular features of disease phenotypes. It is note-
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worthy that great initiative has been taken in this 
aspect and that hiPSC-derived hepatocyte- like 
cells are employed as model to study virus infec-
tion including dengue, hepatitis C to unravel key 
phases of virus-host interactions [13, 86, 147].

4.1.2  Pluripotent Stem Cells 
Provide Excellent Cellular 
Resources for Hepatocyte 
Generation

4.1.2.1  Alternative Models to Primary 
Hepatocytes

Although the most ideal cell sources that could 
be used for treatment of liver diseases are the pri-
mary human hepatocytes, their restricted acces-
sibility and phenotypic instability mean that 
alternative unlimited source of cells with least 
invasive procedure are needed together, for hepa-
tocyte regeneration and replacement.

Human hepatoma carcinoma cell lines, includ-
ing HepG2 and its clonal derivative C3A, have 
been embedded in extracorporeal liver-assist 
devices in patients from clinical trials [35]. 
However, the therapeutic outcomes is not signifi-
cant which could be due to the poor function of 
HepG2 cells concerning their activities of mixed 
oxidase and ammonia detoxification [127]. 
Furthermore, patients’ safety concerns have been 
raised with regards to the transmigration of 
tumour nodules outgrowth through a cut-off 
membrane of BAL system. Before being recog-
nised suitable for BAL support, HepG2 cells 
require major improvement in safety and liver- 
specific functions aspects despite their scalable 
properties. Some hepatoma cells (HepaRG and 
HuH7) showed increased CYP3A4 activity com-
pared to HepG2 cells [71, 155], but the basal 
activity is still lower than human hepatocytes, 
suggesting the limitation in hepatoma or hepato-
cellular carcinoma cells for hepatotoxicity and 
drug metabolism studies.

Alternatively, several studies have shown that 
hepatic stem cells are responsible for liver regen-
eration. These multipotent cells share similar 
characteristics to hepatoblasts, which reside in the 
Canals of Hering of mature adult liver, and the 

ductal plates of foetal liver. Due to their expan-
sion, differentiation potential and their role in 
liver regeneration, these cells considered to be 
beneficial in the development of cell-based ther-
apy or BAL applications. The population of cells 
can be identified and isolatable using cell surface 
markers such as E-cadherin, EpCAM, CD29 and 
CD133 from foetal and postnatal donors and have 
been shown to engraft into liver tissue, following 
the cell transplantation in an animal model [144]. 
Although this may be a promising approach for 
applications in hepatocellular transplantation and 
BAL devices, the quantity of these cells is minute 
in the liver, thus sourcing and scaling up for thera-
peutic applications is a great challenge.

Trans-differentiation of bone marrow (BM)-
derived stem cells, also known as mesenchymal 
stem cells (MSCs) is another way to generate hepa-
tocyte-like cells. Differentiation of mouse, rat and 
human BM–derived multipotent adult progenitor 
cells with a cocktail of growth factors such as HGF, 
FGF2, EGF, DEX, OSM and nicotinamide, were 
able to express several liver- specific markers [3, 27, 
47, 91, 146, 157]. These cells had showed several 
characteristics of functional hepatocytes including 
production of urea and albumin, expression of tran-
scription factors and CYP activity. Liver of intoxi-
cated rodents were engrafted with human 
BM-MSCs and differentiated into human hepato-
cytes, which demonstrated functional engraftment 
[7], express liver-specific markers [142] and 
improved liver fibrosis [197] and liver functions 
[83]. However, a few researchers postulate this as 
the fusion of recipient hepatocytes and BM-derived 
stem cells, rather than trans-differentiation event 
[185]. Besides, these adult stem cells also showed 
inconsistencies in their hepatic differentiation 
capacity [137, 186], while some claims that trans-
differentiation of MSCs towards hepatocytes can 
happen without cell fusion [7, 142]. Hence, further 
studies are required to justify this and to ensure 
these MSCs of a greater benefit for liver disease 
treatment.

4.1.2.2  Pluripotent Stem Cell-Derived 
Hepatocytes

The progress made in differentiation of pluripo-
tent stem cell into hepatocytes holds a great 
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promise for the liver failure treatment and differ-
entiation from these cells have been shown to 
generate many different cell types. The success-
ful isolation and culture of mouse and human 
ESCs many years ago has initiated a new pro-
spectus of potential cell sources for cell therapy, 
developmental biology studies and other biomed-
ical applications.

Both mESCs and hESCs owned two unique 
properties: (i) an unlimited capacity to generate 
themselves, named self-renewal and (ii) develop-
mental potential to differentiate into all three 
derivatives of the primary germ layers: ectoderm, 
mesoderm and endoderm, termed pluripotency 
[177]. Owing to their unique properties, hESCs 
are excellent cell model for the study of develop-
mental biology, since the restrained accessibility 
of early embryos and the limited tissue and stage- 
specific cells limit further research work into 
developmental changes. Moreover, hESCs sup-
ply a cell resource to generate wide varieties of 
cell types that could be utilised in regenerative 
medicine and many other biomedical and cell 
therapy applications such as (1) development of 
cell-based therapies for treatment of liver dis-
eases; and (2) to study the development of par-
ticular lineage and (3) drug discovery and 
toxicology.

hESCs hold a promising unlimited source for 
the generation of hepatocytes to be utilised in 
toxicity screening and cell-based therapy. The 
idea of the hESCs differentiation process in reca-
pitulating in vivo liver development has been 
extensively studied and replicated in many 
research [12, 51, 52, 130, 133, 181]. However, a 
more rigorous and accurate understanding of the 
instructive signals that govern the hESCs into the 
hepatocyte lineage and ultimately obtaining 
functional matured hepatocytes is in demand. 
Thus, there is a need for better understanding on 
the culture system underlying hepatic maturation 
and functionality in  vitro, thus ensuring an 
improved technology for the liver-associated 
field.

Generation of induced Pluripotent Stem Cells 
(iPSCs) is a major breakthrough in the field of 
stem cell and regenerative medicine, holds 
immense potential in understanding disease 

mechanism and development of personalised 
medicine. Promisingly, a latest study showed that 
transplantation of human iPSC-derived hepato-
cyte sheet have shown to successfully rescue 
mice from acute hepatic failure that this effect 
was mediated predominatly by hepatocyte growth 
factor secreted from the human iPS-HLC sheet 
[120]. Considering iPSC technology pave a path 
for a personalised therapy, it provides an opportu-
nity for genetic correction through gene editing 
technology for the diseases developed due to 
mutations, hence transplantation of the corrected 
iPSCs that further differentiated into specialised 
cell types will then evade tissue rejection and the 
need for immunosuppression. However, the 
exogenous genes used for reprogramming of 
somatic cells into iPSC state have the potential to 
cause adverse clinical effects including teratoma 
formation. If these obstacles can be resolved, 
iPSCs mostly likely be employed in treating 
many degenerative and genetic diseases includ-
ing liver diseases. Not only for transplantation for 
regenerative purpose, iPSC technology provides 
relevant model or tool for disease modelling and 
development of personalised theraputics or 
drugs.

4.1.3  In Vitro Step-Wise 
Differentiation Milieu 
Produces Immature/Foetal- 
Like Hepatocytes

The applications of hPSCS in biomedical field 
such as drug screening, require differentiation 
into functional hepatocytes comparable those in 
vivo. Meanwhile, for cell-based therapy applica-
tion, it has been shown that progenitor or foetal- 
like hepatocytes were able to perform as these 
cells will be able to continue to be matured in the 
in vivo microniche to support the impaired func-
tion of the liver. Nevertheless, the efficiency of 
hESCs in vitro differentiation has been the ulti-
mate focus of deriving hepatocytes for both 
applications. In the past decades, tremendous 
effort have been channelled in developing proto-
cols to generate hepatocyte-like cells that the pro-
tocols generally be classified into two 
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differentiation or culture strategies; (1) spontane-
ous differentiation (via embryoid body forma-
tion) and, (2) directed and step-wise 
differentiation.

4.1.3.1  Spontaneous Differentiation 
by Embryoid Bodies

The very early protocols in development of 
hepatic cells used formation of sphere-like aggre-
gates called embryoid bodies (EBs), which, to a 
certain extent, mimics the early development of 
embryo. This protocol yields hepatocytes along 
with varieties of cell types, which often requires 
isolation or purification of hepatocytes from the 
differentiated EBs. Early hepatocyte specific 
markers, including ALB, AFP, transferrin, 
HNF4-α [69], GST, FoxA2 [115] and TDO2 
were expressed in these derived cell population, 
to carry out certain hepatocyte functions, such as 
ICG uptake [190]. As they have neither been 
tested nor able to show terminal hepatic differen-
tiation and functionality, such as steroid metabo-
lism or CYP enzyme activity, they are still 
classified as early endodermal-hepatic cells. It 
could be due to some factors that are absent from 
other cell types, thereby affecting efficiency of 
hepatocyte differentiation. This EB-based spon-
taneous differentiation method rather limits the 
derivation of hepatocytes on scalable manner, 
since the hepatocyte population from a mixed 
population of many cell lineages is relatively low 
in number. With the aim to tackle this limitation, 
studies have described that cytokine-mediated 
differentiation following isolation or sorting of 
EB-derived hepatic cells, results in higher per-
centages of mature hepatic cells. Gouon-Evans 
et al. [48] reported that FACS-sorted mouse EB 
cells have yielded hepatocytes with better func-
tional index. These mature hepatocyte-like cells 
from a highly enriched population (45-75%) 
were developed and characterised by the expres-
sion of CYP, major enzymes associated with bio-
activation and drug metabolism, such as 
CYP3A11 and CYP7A1, glycogen storage and 
production of ALB upon addition of FGF2, 
Activin A and BMP-4. This finding indeed reca-
pitulate the roles of growth factors and cytokines 
in governing and directing stem cells into a par-

ticular lineage with better differentiation 
efficiency.

The advantages that can be offered by the EB 
system include mimicking in vivo embryo organ-
ogenesis and development, providing a three- 
dimensional (3D) structure and providing some 
worthwhile information for lineage-specific dif-
ferentiation in the presence of other cell types. 
Baharvand et al. [8] has cultured EBs with colla-
gen scaffold 3D culture system supplemented 
with differentiation inducing growth factors. 
They suggested that this method is more efficient 
than 2D cultures in inducing hepatocyte differen-
tiation as the latter system does not recapitulate 
the developmental microniche which is an essen-
tial coordination for cellular differentiation and 
maturation. Hence, the complex nature of EBs 
and specifically the presence of cells from other 
lineages have limit this tool to be developed as an 
ideal in vitro hepatic differentiation strategy, con-
sidering that a multiple-phased sequential differ-
entiation is essential to augment derivation of 
desired population.

4.1.3.2  Directed Hepatic 
Differentiation

Differentiation strategies to achieve more con-
trolled and efficient derivation of therapeutically 
relevant cell types from stem cells are mainly by; 
(i) supplementation of stage specific differentia-
tion inducing growth factors and cytokines, (ii) 
constitutive expression of hepatic-specific tran-
scription factors, (iii) co-culture with other cell 
types and (iv) application of ECM or biomateri-
als and (v) biodegradable scaffolds based 3D cul-
ture, or (vi) a combination of any of these 
strategies [12, 62, 63, 70, 92, 160]. The differen-
tiated cells yielded from these strategies have 
exhibited typical hepatocyte morphology, per-
formed hepatocyte function to a certain degree 
and expressed nearly all commonly assessed 
hepatocyte markers. Table 4.1 summarises stud-
ies on hepatic differentiation of human embry-
onic stem cells (hESCs) or human induced 
pluripotent stem cells (hiPSCs) in different 3D 
culture system, which will be discussed in the 
following sections. Fundamentally, these strate-
gies are developed by translating lessons from 
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developmental biology of endodermal and 
hepatic lineages into in vitro systems, which are 
discussed further in the following sections.

Directed Hepatocyte Differentiation by 
Growth Factors and Small 
Chemicals

One of the major research areas of stem cell biol-
ogy is the efficient differentiation of PSCs 
towards a specific lineage in a controlled and 
robust manner. Due to the multi-stage develop-
ment process in liver (as discussed in Sect. 4.1.2), 
many procedures have been developed for hESCs 
differentiation into hepatocytes by sequential 
supplementation of various cocktails of cyto-
kines/growth factors based on the animal devel-
opmental biology. ESCs differentiation to 
hepatocytes in this method mimics the liver 
development in vivo, which includes the follow-
ing stages: (i) formation of definitive endoderm, 
(ii) hepatoblast specification, (iii) hepatocyte 
maturation.

Definitive endoderm (DE) differentiation is 
crucial for the formation of endoderm derivatives 
such as hepatocytes, intestine cells and pancreas 
[2, 20, 51, 59, 93]and the Nodal signalling path-
way has an important role in this specific differ-
entiation. Hence, Activin, which is a surrogate of 
Nodal and the most well-established factor, is 
used in the protocol for DE induction. After a 
high dose Activin A treatment, a significant 
upregulation of the expression of DE specific 
transcription factors, such as Mix, Sox17, GATA4 
and GATA6 factors, is shown in hESCs. Multiple 
studies have shown that the dose of Activin A 
affects the production of DE from hESCs; only 
higher concentrations of Activin A leads to DE 
differentiation, whereas low levels favour the 
mesoderm lineage [2, 12, 20, 51, 173]. DE dif-
ferentiation from hESCs is can be initiated 
through mesoendoderm, a transient bipotent pro-
genitor stage, which has close resemblance to the 
primitive streak in vivo. After treatment for a day, 
cells co-express both endoderm markers (Sox17 
and FoxA2) and mesoderm markers (brachyury, 
Mixl1 and goosecoid). By day 3–5 of differentia-
tion, only the expression of endoderm markers is 
shown in most cells, while mesoderm markers 

diminished. Moreover, CXCR4, the cell surface 
marker is highly expressed in DE cells.

Apart from Activin, other small molecules or 
signalling pathways such as the Wnt/β-catenin 
signalling activation factors, LiCl, Wnt3a and 
BIO are reported to stimulate Activin-induced 
DE differentiation, [52, 165]. Along with Activin, 
ESCs treated with a combination of these factors 
can lead to enhance DE differentiation efficiency 
[52, 165]. Another molecule, sodium butyrate, is 
a histone deacetylase inhibitor described to 
improve the homogeneity of Activin A-induced 
definitive endoderm differentiation from hESCs 
[67], by selectively ablating the undifferentiated 
hESCs [52]. Additionally, PI3K suppression with 
LY-294002 inhibitor has been reported in several 
studies to enhance Activin-induced DE differen-
tiation [108, 181, 194]. To date, strategies to 
direct DE differentiation from ESCs using these 
methods can produce up to 80% DE cells [20, 51, 
52, 181].

Subsequent to formation of DE, is the hepatic 
specification, which mainly achieved by supple-
ment of medium with addition of growth factors, 
BMP-2 and FGF4 [2, 12, 112, 181]. Both growth 
factors provide signals to direct definitive endo-
derm into a hepatic fate and become hepatic pro-
genitors [26] via regulation of hepatic endodermal 
genes, FoxA and Gata factors [17]. Furthermore, 
the chemical treatment of DE such as sodium 
butyrate or dimethylsulfoxide has also been 
shown to promote hepatocyte formation [19, 52, 
136], most likely by affecting chromatin medi-
ated transcription. Small molecule-based 
approach in hepatic differentiation of hESCs has 
been shown to generate morphological and func-
tional hepatocyte-like cells that were similar or 
better compared to using growth factors [174]. 
The hepatic specification is assessed by the gene 
expression of hepatocyte-associated markers, 
such as ALB, AFP, HNF4α and CK19.

The next step to generate functional hepato-
cytes is A set of defined combination of cyto-
kines, HGF and OSM, have been used in 
hepatocyte maturation of ESC-derived hepato-
blasts [2, 12, 52, 133, 151, 181]. HGF facilitates 
hepatoblast maturation selectively into hepato-
cytes via the hepatic regulator, CCAAT/enhancer 
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binding protein (C/EBPα) [167]. Moreover, it 
also controls proliferation of hepatocyte in the 
fetal liver [184]. Dexamethasone, a steroid hor-
mone, is used in some studies too [2, 9, 131, 
163], for upregulation of CYP2A6 expression 
through increasing of HNF4α binding to the 
proximal promoter [128].

The sequential differentiation mimicking 
developmental stages induce differentiation of 
hESCs to hepatocytes within a duration period of 
15–28  days, depending on the type of hESC 
lines, and can generate up to 70% of hepatocytes 
in the final cell population. These hepatocytes not 
only useful for application, but also contribute as 
a potential in vitro model system to elucidate the 
molecular mechanisms underlying DE and hepa-
tocyte differentiation. On the other hand, the 
functional capacity of these hepatocytes is not 
complete when compared to primary hepato-
cytes. Further development is required to produce 
scalable and functional hepatocytes for potential 
applications.

Over-Expression of Hepatic Enriched 
Transcription Factor

The hepatic differentiation from pluripotent stem 
cells induced by growth factors/cytokines, which 
could be necessary to activate the downstream 
transcription factors. Interestingly, investigation 
on effect of ectopic expression of these down-
stream transcription factors has been carried out 
by several studies and the results revealed that the 
effects are similar in ESCs differentiation towards 
the hepatic lineage. For example, FoxA2 expres-
sion, which is a hepatic-specific transcription fac-
tor, has improved hepatic differentiation in both 
mESCs and hESCs [70, 88, 169]. Furthermore, a 
constant expandable endodermal phenotype is 
induced, following sufficient constitutive Sox17 
expression in hESCs [148]. There was a dramatic 
increment of the expression of liver-specific 
markers without exogenous Activin A in Sox17- 
transgenic cells. In addition to in vitro differenti-
ation, cell therapy and transplantation of hepatic 
progenitor cells with over-expressed HNF4A was 
a success in mice model of liver fibrosis [164]. 
The in vitro differentiation of hepatic progenitor 
cells to hepatic parenchymal cells was achieved 

via the adenovirus-mediated HNF4 transduction, 
and this results in increased cholesterol, albumin 
and glucose levels in post cell transplant mice. 
Several groups also have generated human 
induced hepatocytes by direct hepatic repro-
gramming from fibroblasts through overexpres-
sion of a set of liver-enriched transcription 
factors such FOXA2, FOXA3, GATA4 HNF4A 
and HNF1A [56, 121, 153, 159], and therefore, 
facilitates the differentiation and proliferation of 
hepatocytes.

Co-culture System with Other Cell Types
IIt has been suggested that the homotypic and 
heterotypic interactions in liver may have roles in 
hepatocyte functionality, as the micro- 
architecture of liver exhibits both interaction 
between cells. Indeed, compelling evidence 
shows that several non-hepatocyte cell types in 
the liver can improve hepatocyte maturation and 
functionality in co-culture systems. For instant, a 
group has showed an increase in gene expression 
in mature hepatocytes after co-culture of Thy-1 
positive mesenchymal cells isolated from mouse 
foetal liver with AFP-producing ESC-derived 
hepatocytes [62]. Similarly, the regenerative liver 
has been shown to stimulate hepatic differentia-
tion from ESCs [60]. These studies propose that 
ESCs could potentially be driven towards a 
hepatic fate via liver-specific cues from co- 
cultured cells. Cho et al. [15] have shown that a 
double sequential co-culture of hepatocytes with 
ESCs and fibroblast cells, results in cells exhibit-
ing good hepatic morphology, functionality and 
gene expression. The liver comprises of many 
cells types, predominately hepatocytes (approxi-
mately 70–80%). In another study, non- 
parenchymal cells are required by hepatoblasts 
purified from mouse foetal liver for expression of 
hepatocyte markers and proliferation [125]. 
Interestingly, the combination of co-culture and 
3D culture system can mimic human liver micro-
structure and generate functional hepatocyte-like 
cells [119, 171].

The process of liver regeneration first involves 
the proliferation of parenchymal and non- 
parenchymal cells through highly orchestrated 
signalling events and cell-cell and cell-matrix 
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communications [39]. In addition, several studies 
have shown that that Kupffer, stellate and sinu-
soidal endothelial cells release mitogenic factors 
that facilitate proliferation of hepatocytes both in 
vivo and in vitro models [103]. Interestingly, 
studies by Michalopoulos et al. [111] and Mitaka 
et  al. [113] showed that co-culture with non- 
parenchymal cells yield higher number of hepa-
tocytes, supporting the role of microniche in 
generation of therapeutically relevant cell types 
via secretomes and cell-to cell communications.. 
Not only the number, Soto-Gutiérrez et al. [160] 
demonstrated that when mESC-derived endo-
derm cells (EB, then further differentiated into 
DE) were co-cultured with non-parenchymal 
cells, they generated better functional hepato-
cytes assessed by their capacity to produce albu-
min, metabolize ammonia, lidocaine and 
diazepam in comparison to primary mouse hepa-
tocytes.. The development of micropatterning 
technique which enable culturing of cells for 
controlled interactions provide further insight 
role of heterotypic interaction in governing the 
cellular fates. Micropatterned culture of 
hepatocyte- Kupffer cells affect the hepatocyte 
functionality through both cell-cell contacts and 
soluble factors secreted by co-cultured fibro-
blasts and human umbilical vein endothelial cells 
[198]. Similarly, hepatocyte function was shown 
to be improved by co-culture of iPSC-derived 
hepatocyte with endothelial cells in multicompo-
nent hydrogel fibers that, vascularization was evi-
dent after implantation of this heterotypic cell 
system into a mouse model [30]. This effect is 
mediated efficiently by having an optimal ratio of 
various cell types and the right combination of 
cell types. While the effect can be mediated 
through 2 different modes; cell-cell contact or/
and secretomes, a more recent study by Freyer 
et al. [42] showed that culture medium composi-
tion plays a significant role hepatic differentia-
tion of hiPSCs co-cultured with human umbilical 
vein endothelial cells (HUVEC) that produced a 
superior differentiation index than those co- 
cultured with HUVEC. Taken all these together, 
current research direction is focusing on dissect-
ing the complex microenvironment that govern 
cellular fates.

Several studies on 3D culture methods with 
scaffolds, bioreactors, spheroids, biochips, co- 
culturing, micropatterning have been carried out 
to facilitate hepatic differentiation of hESCs and 
iPSCs to hepatocyte-like cells. Stepwise differen-
tiation protocol is commonly used by sequential 
addition of growth factors and other factors such 
as activin A and BMP4 followed by FGF4, HGF, 
ITS, OSM and Dex in culture media. Most dif-
ferentiated cells in these 3D culture systems dis-
played several phenotypes of hepatocytes, 
including upregulation of hepatic gene expres-
sion (AFP, ALB, TAT, A1AT and HNF4a), 
increase in CYP isoenzyme activity, secretion of 
ALB and urea, as well as glucose consumption 
and lactate production. Some studies also 
reported that the 3D culture system was able to 
maintain the cell viability and hepatic differentia-
tion efficiency.

4.1.4  Achieving Efficient 
Differentiation and Functional 
Maturation: Challenge 
to Be Overcome

It has become a critical concern to have a func-
tional and scalable source of hepatocytes in order 
to have successful drug toxicity screening. It 
becomes challenging to maintain both stem cell- 
derived and primary hepatocytes in their differen-
tiated characteristics, since they tend to rapidly 
loss their differentiated function in culture [49, 
161], which often associated with loss of cell 
polarity and polygonal morphology. Studies has 
shown that lack of sufficient cell contacts between 
neighbouring hepatocytes cells may lead to loss 
of hepatocyte function and decrease in the hepatic 
gene expression [10, 195]. Previously, the con-
ventional two-dimensional (2D) culture formats 
that are often applied to culture hepatocytes, do 
not mimic the similar response of cells in the 3D 
milieu of tissues in vivo [1, 166]. Hence, these 
cells showed a significant decrease in their 
 functionality, such as loss of both canaliculi 
structures and membrane transport activities [68, 
97, 106] and a reduction in CYP activity [55, 
135]. This phenomenon involves fundamental 
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changes in gene expression concomitant with a 
declined transcription of associated liver-specific 
genes, which is termed as dedifferentiation. The 
key factor facilitating the dedifferentiation event 
is the insufficient cellular niche which is a spe-
cialised tissue microenvironment providing for 
tissue survival, generation and function. This 
niche contains three major aspects, namely; (i) 
cell-cell contacts (ii) extracellular matrix compo-
nents and (iii) soluble factors [28, 143].

Therefore, the most drastic improvement of 
both cell function and survival may be achieved 
by recreating av3D in vitro cell culture configura-
tion to recapitulate the niche in liver [49],which 
is important to obtain and maintain the function-
ality of hepatocytes. Moreover, it is a crucial pre-
requisite to an improved culture system by having 
better understanding of the cell-cell contacts that 
modulate the behaviour of hepatocytes in vitro.

4.2  Three-Dimensional Culture: 
A System to Improve 
Hepatocyte Quality 
and Function

4.2.1  3D Culture System Provides 
a Milieu for Better Cellular 
Differentiation and Function

Generally, the function of differentiated human 
hepatocyte in 2D monolayer culture is short-lived 
and the suboptimal culture conditions that unable 
to recapitulate the environment in the liver is 
thought to be the cause. Thus, the culture hepato-
cyte function from both the liver and stem cells 
could be enhanced with the stimulation of in vivo 
environment from development of culture condi-
tions. development. In order to achieve this, a 3D 
culture system could enhance both the functional 
and differentiation efficiency. On the other hand, 
some parameters such as seeding procedure, opti-
mal scaffolding and cells’ behaviour characteri-
sation requires optimisation to establish a 
successful 3D cell culture in this scaffold.

Thus far, alginate has been discovered to be an 
excellent choice among several other biomateri-
als and scaffolds that have been tested. Alginate, 

a biocompatible polymer widely employed for 
3D scaffold in many cells types including liver is 
a polysaccharide derived from brown seaweed. 
Aside from the application of scaffold in tissue 
engineering, it has also been applied in basic bio-
logical studies as extracellular matrix (ECM) and 
in drug delivery system [5, 6, 87]. In the field of 
tissue engineering, alginate-based capsulation 
has been extensively used and applied to various 
type of cells such as ESCs [37, 43, 101, 133], pri-
mary hepatocytes [36, 45], human hepatocarci-
noma cell lines [18, 77, 149] and hepatoblast 
[14]. The alginate-based approach facilitates the 
formation of spheroid [45], which has more 
advantage compared to other scaffolds particu-
larly in promoting production of ECM via cell- 
cell contact and are formed partially by specific 
ECM These hepatic spheres also exhibited better 
liver-specific functions and an extended viability 
in culture [45, 46, 80, 82].

4.2.1.1  hESCs Based
As the protocols for hepatic differentiation of 
ESCs mostly focus on sequential differentiation 
using cocktail of growth factors, it has a benefit 
over other strategies (as discussed in Sect. 4.1.3) 
in generation of the most efficient differentiation. 
The cells are important in artificial liver devices 
and drug discovery but there are some drawbacks 
in these methods in the maintenance and matura-
tion of the differentiated cells. Therefore, the cur-
rent differentiation protocols need further 
improvement.

Research has described various strategies to 
maintain in vitro functionality of hepatocytes in 
3D culture with either co-cultures of hepatocytes 
with endothelial cells [79, 90] and non- 
parenchymal cells [120, 171, 189] or enriched 
hepatocyte populations [57, 58]. While 3D cul-
ture plays a role in maintaining the adult primary 
hepatocyte functionality for a prolonged period, 
the system has also been shown to stimulate foe-
tal hepatocytes to differentiation to a mature 
 phenotype and maintain the functions [66, 150]. 
This indicates the use of 3D culture to support 
differentiation, maturation and maintenance of 
the hepatocytes. Hence, the combination of 3D 
culture and hESCs differentiation is predicted to 
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hold a great potential for higher quality of hepa-
tocytes. Therefore, the soluble factors and cell- 
cell contacts could improve maturation through 
the well-adjusted culture conditions that recapit-
ulate in vivo environment.

In order to produce hepatocytes from ESCs, a 
few studies have attempted to create 3D systems 
[8, 60]. All these studies were conducted, either 
after the in vitro EBs formation in suspension 
culture and transfer of EBs to the scaffold or by 
ESCs seeding into the 3D scaffold for differentia-
tion into EBs, the differentiation of hepatocytes 
continues from the EBs in the scaffold. The 
attempts to obtain fully functional mature hepa-
tocytes are unsuccessful, despite all these efforts, 
which could be explained by the inefficient DE 
differentiation from EB formation method. 
Therefore, the incorporation an enriched hESC- 
derived DE into the 3D scaffold may enhance 
the maturation of hESCs and the yield of 
hepatocytes.

It is essential to understand the control of 
highly sophisticated cell biology processes in all 
2D and 3D differentiation methods. Additional 
challenges involving cell organisation, survival, 
attachment and differentiation in 3D culture sys-
tems, remain largely unknown, thus warrant fur-
ther research to understand the cell behaviour for 
better hepatocyte function and differentiation.

4.2.2  Development of 3D Culture 
System

Various methods have been established to develop 
physiologically significant models in a reproduc-
ible and controllable approach, knowing that 3D 
microniche is crucial for maintenance of cell 
function. The two strategies mainly used by these 
methods are; suspension cultures and biomaterial- 
based scaffolds/hydrogels.

4.2.2.1  Formation of Spheroids 
and Aggregates in Suspension 
Cultures

Moscona first observed the spontaneous forma-
tion of aggregates in vitro by using a rotational 
technique in 1961 [117] and many years later, 

another 3D aggregates were formed by plating 
cells in an ultra-low or non-adherent culture dish 
containing serum-free medium. The resulting 
aggregates were named ‘spheroids’ [85] and 
exhibited deposition of ECM consists of fibro-
nectin, laminin and collagen, histotypic (one cell 
type) reorganisation, as well as extended survival 
and improved metabolic and production of 
plasma protein, such as secretion of ALB and 
transferrin induction [139, 180]. This method is 
simple and inexpensive to carry out using non- 
adhesive to produce spheroids, even though the 
spheroids exhibited differences in shape, cell 
number and size [196].

Several groups have successfully produced 
hanging drop technique, a fast, homogenous and 
inexpensive spheroid formation method [74, 75, 
95]. Initially, this method was developed to facili-
tate the formation and cultivate EBs, through 
microgravity at the liquid-air interface. Although 
this method limits the scalability of 3D sphere 
formation, the culture model has been useful for 
studying molecular and cellular events during 
the interaction of two different cell types as well 
as angiogenesis in tumoursphere culture [23, 
178]. A number of rotary culture systems has 
been developed to overcome the disadvantages 
of stationary culture method and it becomes 
feasible to have massive cell production, while 
providing an enrichment in 3D-induced func-
tionality [78].

4.2.2.2  Biomaterials Scaffold/Hydrogel 
Based 3D Formation

Another 3D modelling system that has been 
widely used is the biodegradable scaffolds/
hydrogels. This particular system supports the 
Biomaterial-based scaffolds/hydrogels support 
the formation of organoids or tissue like struc-
tures eventually recapitulates the in vivo micro-
environment3D scaffold-based culture systems 
made from various type of materials have been 
shown to enhance various differentiation 
 protocols including osteogenesis [29], haemato-
poiesis [96], neural differentiation [124, 168], 
and provide greater support for hepatocyte prolif-
eration and functionality than routine 2D cell cul-
ture system [36, 45].
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Both natural and synthetic biodegradable bio-
materials have close resemblance to the native 
tissue, thus making them a promising scaffold 
materials for soft tissue engineering. Since the 
nature of cell interaction depends on the scaf-
fold’s features, both the internal morphology 
(pore size and porosity) and chemistry of the 
scaffolds impose great impact on the nature of 
tissue regeneration and functionality improve-
ment. Fundamentally, biomaterial scaffolds pro-
vide one of these two cues for cellular behaviours; 
(i) acting as the extracellular matrix (exogenous) 
and/or (ii) promoting lineage-specific ECM 
expression (endogenous) [183] through enhanced 
cell-cell contact. Therefore, it is of utmost impor-
tant that the biomaterial influence and suitability 
on cell functions are clearly understood before 
the creation of optimal cell niche. Several 3D cel-
lular model systems using scaffolds/hydrogels 
made from biomaterials, such as alginate [6, 34, 
38, 45, 133], collagen [8, 44, 60], matrigel [63, 
145], hyaluronic acid [183] and chitoson [33] 
have been widely used. Among various biomate-
rials, alginate is of special interest for hepatic tis-
sue engineering. Interestingly, iPSC-derived 
hepatocyte-like cells via 3D co-aggregation with 
stromal cells and encapsulation with alginate 
capsules, have been successfully engrafted in 
immunocompetent mice [158]. The secretion of 
albumin and A1AT and gene expression of 
hepatic markers in iPSC-hepatocyte-like cells/
stromal cells aggregates were comparable to 
human hepatocytes/stromal cells aggregates.

Over the years, researchers have been improv-
ing the various available scaffolds for better out-
comes in tissue engineering applications. 
Recently, a study has showed that hPSC-derived 
DE cells attached better to acellular matrix 
derived from HepaRG, expressing hepatocyte- 
specific markers, compared to other matrices 
[72], shedding light on the important role of spe-
cific matrices in promoting hepatic differentia-
tion and maturation. Besides, comparing with 
randomly oriented polyethersulfone (PES) nano-
fibers, aligned PES nanofibrous scaffolds could 
improve the iPSCs differentiation into hepatocyte- 
like cells and functions [102]. Culturing of ESCs 
on substrate stiffness that is similar to human 

liver has advantage on maturation of ESCs- 
derived hepatocytes [114], which could further 
improve the function of hepatocyte-like cells.

While a preference for stem cell-derived hepa-
tocytes is expressed for liver-based technology, it 
remains a challenge to provide an absolutely func-
tional hepatocyte resource. The research focusing 
on the development and application of 3D culture 
is progressively developed latest, innovative and 
advance sophisticated strategies/technologies, 
which are discussed in the following sections.

4.2.2.3  Static vs. Dynamic Culture
Static culture involves culturing of cells in stag-
nant media. The most common method uses to 
achieve static culture is through the formation of 
spheroids or multicellular aggregates. The adher-
ent cells aggregate through low suspension cul-
ture in low-adhesion culture plate, rotating culture 
and hanging drop techniques [107]. Generally, 
EBs are utilised to induce differentiation in plu-
ripotent stem cells as they are able to differentiate 
into three germ layers and provide the environ-
ment that mimics embryonic development [64]. 
Studies have shown that 3D spheroid culture 
improved the functionality of ESCs- differentiated 
hepatocyte [132, 163, 170]. However, this method 
is not suitable for large scale cell expansion and 
long-term suspension culture. Some of the cells 
agglomerate, become apoptotic and non-prolifer-
ative due to limited perfusion of oxygen and nutri-
ents to the centre of the spheroids with 
accumulation of waste [32]. On the other hand, 
bioreactors such as spinner flasks, fed-batch, 
rotating wall vessel and mechanical force bioreac-
tors can be incorporated into culture system to 
create dynamic culture conditions. The bioreac-
tors are useful for higher cell densities culture and 
overcome the limitation of static culture by intro-
ducing continuous agitation, resulting in increas-
ing oxygen and nutrients flow to the cells and 
removing cellular waste metabolites. Besides, 
both culture methods can be modified by integra-
tion of either natural or synthetic biomaterials 
including microcarriers, microcapsules and 
microfluids. These biomaterials are able to mimic 
the properties of stem cell niche for maintenance 
and differentiation of cells [107].
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4.2.2.4  Micropatterned Cultures
Micropatterning has been widely used for cellu-
lar analyses, cell-based sensing and tissue engi-
neering applications. Cells are highly sensitive to 
the microenvironment in in vitro culture and 
micropatterning enable manipulation of those 
important properties of the microenvironment 
(structures, volume and biochemical composi-
tion) that influence cell growth, differentiation, 
migration and cell fate [110, 123]. It involves fab-
rication of plastic or glass culture surface and 
enable control over cell and tissue architectures 
with differential cell adhesion patterns [176]. The 
first step in micropattern culture is the generation 
of an adhesiveness-controlled pattern onto cul-
ture substrate. The cells are seeded and adhered 
on target region of culture substrate and washed 
to remove non-adherent cells. For co-culture, the 
non-adhesive surface is reactivated and the sec-
ond cell type is seeded and adhered to the area 
without the first cell population, producing pat-
terned co-culture [21]. Examples of materials 
that are used to facilitate and prevent cell adhe-
sion includes extracellular matrix proteins (col-
lagen, laminin and fibronectin), BSA, agarose, 
PEG and poly-lactide [123]. A study has showed 
that agarose micropatterning on glass culture sur-
face enabled analysis of differentiated HepaRG 
cells and high throughput genotoxicity testing 
[110] while micropatterned co-cultures of 
mESCs and stellate cells with combination of 
growth factor arrays can further enhance hepatic 
differentiation of mESCs [182]. As most hepatic 
differentiation involved interruptive protocols, 
study by Yao et  al. [191] has achieved a more 
homogenous and uninterrupted hepatic differen-
tiation of hESCs using 3D multi-layered colonies 
with microstencil array.

4.2.2.5  3D-Bioprinting Technology
In recent years, researchers have made a major 
breakthrough by developing 3D bioprinters 
which enable the fabrication of large 3D vascu-
larised tissue for transplantation purpose. These 
bio constructs enhance the cell survival, prolif-
eration and differentiation by having better vas-
cularisation mimicking the in  vivo 
microenvironment [11].

Bioprinting employs controlled and precise 
delivery and placement of living cells, biomateri-
als and biochemicals to fabricate functional 3D 
constructs. Design approaches including tissue 
self-assembly, biomimicry and mini-tissue blocks 
can be used in combination for printing of multi-
functional components or structures. It is crucial 
to determine the suitable biomaterials, differen-
tiation and growth factors and types of cells prior 
to construction of tissues and organs [118]. The 
most widely use bioprinting system for cell depo-
sition are extrusion bioprinting, laser bioprinting 
and ink jet bioprinting. Extrusion bioprinting has 
the capacity to deliver bioink/cells from syringe 
at relatively high viscosity or cell concentration 
but it produces pressure along the nozzle, leading 
to possible apoptosis and deformation of bioink 
encapsulated cells. Ink jet bioprinting has a car-
tridge loaded with bioink/cells and printed in 
droplets. It has problem with printing with high 
cell concentration or viscous materials. Laser 
bioprinting uses laser stimulation to allow vapor-
ization of sacrificial materials and delivers bio-
ink/cells droplet on collection substrates. This 
method is able to overcome limitations of extru-
sion and ink jet bioprinting by reducing shear 
stress, nozzle clogging and allows printing with 
viscous bioink and high cell densities [61]. It is 
noteworthy that both mechanical and shear 
stresses can trigger differentiation of stem cells to 
different cell types in [152, 162], suggesting the 
importance of selecting suitable strategy for spe-
cific type of cells.

Interestingly, Ma et al. [100] has developed a 
3D bioprinted hydrogel-based triculture model 
(hiPSC-hepatic progenitor cells embedded with 
adipose-derived stem cells and human umbilical 
vein endothelial cells) that showed functional and 
phenotypic enhancements in the hiPSCs such as 
high expression levels of liver-specific genes, 
enhanced secretion of metabolic products and 
improved morphological characteristics. Besides, 
a small portion of human liver model has been 
constructed by another group with bioprinting 
technology. The model has the ability to maintain 
liver metabolic functions and bile acid secretion 
[81]. Printing complex hollow organ and large tis-
sue construct with embedded vascular features and 

4 Impact of Three-Dimentional Culture Systems on Hepatic Differentiation of Puripotent Stem Cells…



56

incorporation of multiple materials can be chal-
lenging with the current bioprinting approaches. 
Despite that, 3D bioprinting technology remains a 
promising tool for drug screening, tissue trans-
plantation and regenerative therapies [105].

Thus, organ printing is a new emerging 
enabling technology paradigm which enables us 
to produce a large scale living human organ con-
structs which offer a better alternative to classic 
biodegradable scaffold-based approach in tissue 
engineering.

4.2.3  Challenges and Prospects 
of 3D Culture in Achieving 
Hepatic Maturation

The differentiation of hESCs along the hepatic 
cell lineage has undergone remarkable changes 
over the decades, ranging from generation of EB 
to growth factor directed differentiation. The 
progress of hepatocyte generation has been sub-
stantial, with greatest improvement up to 70–80% 
efficiency. Although advancement towards the 
development of improved protocols is profound, 
further functional improvement and a good effi-
cient reproducibility are still hindered by existing 
problems. Identification of these problems, from 
all relevant studies, holds great initiative for 
future research before being fully employed for 
toxicology studies, cell therapy or for BAL 
device incorporation.

4.2.3.1  Inherent of Cellular Sources
Often heterogeneous characteristics of hESCs is 
attributed by variation between derivation of the 
different lines, culture media and methods, pas-
sage numbers and fluctuating plasticity during in 
vitro passaging. In particular, their differentiation 
kinetics and factors required for efficient differ-
entiation were different between the hESCs lines 
we have tested so far, namely H1, H7 and H9 
lines [24, 50, 156]. Thus, this represents a major 
barrier in development of robust differentiation 
protocols and often requires a customised differ-
entiation procedure.

Another major hurdle in yielding sufficient 
number of high quality hepatocytes in culture as 

most culture systems are not efficient in deriving 
phenotypically same quality of cells. FACS sort-
ing cells based on their cell surface markers or 
genetically engineered markers can enrich for 
certain cell types, which then can be expanded 
and differentiated [20, 48, 53, 54, 104, 192]. 
Incorporation of this technique would be, there-
fore, very promising in order to obtain relatively 
pure cell population.

4.2.3.2  Sourcing Therapeutically 
and Pharmaceutically Valuable 
Hepatocytes at Large Scale

Meanwhile stepwise differentiation using differ-
entiation factors and 3D culture have been shown 
to yield higher number of functional hepatocytes, 
they do not proliferate when they are switched 
into efficient differentiation mode in 3D culture 
system [122, 188]. This leads to the question of 
how to develop sufficient number of mature 
hepatocyte-like cells derived from hESC which 
will be made available for downstream applica-
tions such as cell therapy, BAL technology and 
toxicology studies. To overcome this hurdle, it 
may provide a better strategy to expand cells at 
early progenitor stage or hepatoblasts with high 
proliferative capacity to sufficient number before 
transferring into 3D culture system to achieve 
better differentiation and maturation.

4.2.3.3  Development of Defined 
and Xenogeneic-Free Culture 
Components

Another challenge relating to sourcing hPSC- 
derived hepatocytes for clinical application is 
that most protocols are developed to be undefined 
culture conditions, either by co-culture or the use 
of serum. Hence, it produces variable outcomes 
due to its undefined conditions, mainly caused by 
varying factors produced by cells in the con- 
culture system. This could be overcome by the 
development and use of small molecules and syn-
thetic biocompatible ECMs which can substitute 
for xeno-derived ECMs. The use of serum may 
contribute to stochastic differentiation into hepa-
tocytes that development of serum-free condi-
tions or the use of serum-replacement factors 
may be favoured.
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4.3  Current State-Of Art 
in Development 
of Engineered Tissue 
and Organs

4.3.1  3D Printer for Bioengineered 
Tissue

4.3.1.1  Bioreactors
A very constructive technology development 
that aid better culture technology is the develop-
ment of bioreactors. The increasing recent inter-
est in in vitro culture of hepatocytes and many 
other tissue/cell types in 3D format has resulted 
in the introduction of bioreactors in an attempt to 
more closely stimulate in vivo liver architecture. 
This would further extend the survival and func-
tional lifetime of hepatocytes past those of the 
static culture of 3D hepatocytes. Progressively, 
such systems have been shown to incorporate 
into BAL support systems and resulted in a 
promising outcome both in vitro and in experi-
mental animal models of acute liver failure [22, 
65, 94]. Following successful testing in animal 
models, phase I clinical studies were carried out 
on patients with acute liver failure and showed 
beneficial effects on the patients [25, 76]. 
Besides, studies on 3D culture of hESCs and 
iPSCs with hollow fiber perfusion and stirred-
suspension bioreactors have reported cells dif-
ferentiation into hepatocyte-like cells along with 
upregulation of hepatic gene expression, hepatic 
metabolism and secretory functions [41, 109, 
112, 187].

4.3.2  Vascularization

Despite many research works have dedicated 
towards generation of functional hepatocyte cul-
ture system, developing a three-dimensional vas-
cularised liver or hepatocellular system remains 
as great challenge. Intriguingly, Takebe et  al. 
[172] has developed a culture system to generate 
a vascularised and functional human liver from 
iPSCs which achieved by the three-dimensional 
self-organisation of hepatic precursor cells 
(endodermal cells) with endothelial and mesen-

chymal cells recapitulating organogenesis inter-
actions. These in vitro generated liver buds were 
able to connect to the host vessels with short 
period of time upon transplantation into a mice 
model.

It is essential to have functional vasculariza-
tion system during development of the tissue 
construct. Growth/pro-angiogenic factors such as 
bFGF, VEGF, PDGF and angiopoietin-1 are 
loaded on biomaterial scaffolds enhance vascular 
development. A study has showed that VEGF 
enhanced vascularization of scaffolds trans-
planted on rat liver lobules and the hepatocyte 
engraftment [73]. In addition, the construct’s 
engineering and design are relative important too 
to ensure cell viability with sufficient oxygen and 
nutrients perfusion. The combinations of chan-
nelled scaffolds and micropatterning techniques 
with varying concentrations of growth factors 
could also promote migration of vascular cells. 
Other current approaches such as angiogenic 
factors- transfected cells and co-culture-based 
techniques, bioreactors systems, microfluidics, 
modular assembly and in  vivo systems have 
shown to promote cell viability, stimulate angio-
genesis and formation of capillary-like structure 
[98, 126, 138]. However, there is a need to fully 
understand the nutrients and oxygen require-
ments of the tissue for efficient in vivo 
transplantation.

4.4  Implication of 3D Culture 
in Liver Disease and Future 
Perspective

In conclusion, hPSCs hold a great potential as an 
unlimited resource in hepatocytes production for 
development of bioartificial devices, cell therapy, 
disease modelling and screening for therapeutics. 
The concept of hPSCs differentiation process 
mimicking the in vivo liver development has been 
recapitulated in several studies [12, 51, 52, 133, 
181, 194]. The hepatocytes generated from 3D 
culture approaches, including co-culture with 
other cell types, bioreactor systems and genera-
tion of scaffolds, are critical for the applications 
in cell/tissue transplantation, generation of bio- 
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artificial liver, therapeutic discovery and disease 
modelling. For a better culture system, further 
insights into which instructive cues and how do 
these signals direct hPSCs into the hepatocyte 
lineage would pave a path to achieve the ultimate 
goal (Fig. 4.1).

Achieving functional maturation of hepato-
cytes remains one of the key challenges for 
hESC–derived hepatocytes, and even in primary 
hepatocytes, as they lose their in vivo niche when 
growing in monolayer. Thus, recreating the niche 
in vitro is the key step needed to improve the mat-
uration of hESC-derived hepatocytes. 
Technological advancement using various strate-
gies in deriving hepatocytes from embryonic and 
induced pluripotent stem cells has promoted fur-
ther investigation into better strategies to yield the 
mature hepatocytes which are in greatest demand. 
Hepatocyte functionality improvement shown in 
3D culture in complement with many other cul-
ture conditions indicates that the final maturation 
steps require an in vivo environment. This includes 
homotypic and heterotypic cell interactions to 
provide a micro-niche suitable for functionality 
modulation. This seems to be a very complex net-

work of cellular interactions, and is still largely 
not understood both in vivo and in vitro.

As for the future, despite continual improve-
ment in in vitro differentiation of hESCs into the 
hepatic lineage, we need to take the state-of-art 
such as bioprinting, organ on chip, vasculariza-
tion and many other complement systems into 
consideration. It is vital to be very strategised in 
employing these new technological improve-
ments and approaches that may be inter-related 
and could be the success of applications of hESCs/
hiPSCs-derived hepatocytes. Indeed, this hond 
immense potential in sourcing for hepatocytes 
(universal source and patient specific), and there-
fore clinically useful. The increasing recent inter-
est in in vitro culture of hepatocytes in 3D format 
has resulted in the introduction of innovative bio-
reactors in an attempt to more closely stimulate in 
vivo liver architecture. This would further extend 
the survival and functional lifetime of hepatocytes 
past those of the static culture of 3D hepatocytes. 
Such systems have been shown to incorporate into 
BAL support systems and resulted in a promising 
outcome both in vitro and in experimental animal 
models of acute liver failure.

Fig. 4.1 Schematic presentation of the specific stages during in vitro hepatocyte differentiation of embryonic stem cells 
and induced pluripotent stem cells in 3D culture system
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Abstract
In spite of inherent regenerative ability of 
bone, large amounts of fracture patients still 
display delayed or compromised bone healing 
due to patients’ age status, trauma severity or 
the developmental anomalies or infections, 
which requires therapeutic intervention. Bone 
regeneration involves different cells (immune 
cells, progenitors and mesenchymal stem 
cells, etc) and subsequent signaling molecules 
(chemokines, cytokines and growth factors, 
etc). The quantity and quality of immune cells 
influx into the site of injury and the subse-
quent cytokine production form a unique 
osteoimmune environment. Current strategies 
on repairing bone defects have largely focused 
on the development of suitable bone substitute 
materials, which may have potential osteoin-
ductive, and/or osteoconductive properties. 
Various studies have been reported to develop 
the immuno-active or immunomodulatory 
biomaterials, which could fully explore the 
early osteoimmune environment in order to 
achieve better bone regeneration.

Keywords
Osteoimmune environment · 
Immunomodulation · Biomaterial · Bone 
regeneration · Osteogenesis

5.1  Early Osteoimmune 
Environment in Bone 
Healing

Bone healing involves four different stages 
(inflammatory, soft callus phase, hard callus 
phase, and bone remodelling stage), among which 
the initial inflammatory phase represent the most 
important stage throughout the entire bone regen-
eration process [120]. In general, the instant rup-
ture of blood vessels and the formation of fracture 
haematoma governing the healing process com-
mences. It has long been suggested that the gen-
eration of blood clot is indispensable for the bone 
healing, in which the absence can severely impede 
the bone repair process [115]. Grundnes and 
Reikeras demonstrated that removal of fracture 
haematoma at indicated times in rats resulted in 
impaired fracture healing [43]. However, the cel-
lular composition of the haematoma remains 
poorly understood because of the complexity of 
early osteoimmune environment. Only a few 
reports on bone haematoma composition have 
been reported so far. It has been demonstrated the 
formed blood clot acts as temporary scaffold for 
the infiltration of immune cells, including neutro-
phils, macrophages and lymphocytes.
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5.1.1  Neutrophils Act as First 
Immunomodulator for Bone 
Regeneration

Neutrophils represents the first and one of the 
most important immune cells which influx into 
blood clot [42, 49]. As the most abundant leuko-
cyte in humans and mice, neutrophils function by 
clearing cell debris and decreasing the occur-
rence of wound infection. Previous studies indi-
cated that patients would suffer from retarded 
wound healing due to insufficient neutrophils 
populations or dysfunction to adhere to the endo-
thelium or extracellular matrix [74, 116]. It seems 
that the role of neutrophils in bone healing pro-
cess is far more important than previously appre-
ciated. Increased neutrophils recruitment induced 
by low dose recombinant human tumour necrosis 
factor (rhTNF) administration at the fracture site 
led to the accelerated fracture healing in normal 
and osteoporotic bone in murine tibial fracture 
model[12]. In addition, depletion of neutrophils 
in the fracture site by using specific neutrophils- 
blocking antibodies led to impaired neutrophil 
mobilization and recruitment, which in turn, 
resulted in delayed bone regeneration and remod-
elling compared to the isotope treatment group. 
Another study showed similar result which indi-
cated that leukocytes may contribute to fracture 
healing by rapidly synthesizing fibronectin 
within 48 h after injury [4]. The formation of this 
major extracellular matrix may further stabilize 
cell-to-cell adhesion and support the recruitment 
and infiltration of stromal into the haematoma in 
the relatively late stage. These studies support the 
concept that the early inflammatory phase where 
neutrophil infiltration and the secreted factors 
occur, represent a key rate-controlling step in 
fracture healing. However, negative effect of neu-
trophils on bone repair has been recorded by 
other researchers in rats [12, 22]. A study was 
performed by systemic administration of 
neutrophil- neutralizing antiserum in rats with 
growth plate injury models showed increased 
mesenchymal cell osteoblastic differentiation 

potential compared to the control group, further 
indicating that neutrophil-mediated early inflam-
matory response may be involved in the down-
stream regulation of chondrogenic and osteogenic 
cascades [21].

5.1.2  Monocytes/Macrophages

Macrophages, derived from haemopoietic pro-
genitors or via circulating monocyte precursors, 
are essential components of innate immunity and 
play a central role in inflammation, host defence, 
homeostasis and regeneration [6, 78, 79, 81]. 
Among all the immune cells, macrophages are 
one of the most important cells in the bone regen-
erative process due to their remarkable diversity 
and plasticity. It is noteworthy that macrophages 
have been reported to be actively involved 
throughout all the healing phases [10]. In gen-
eral, reducing macrophages numbers or compro-
mising macrophages functions led to the impaired 
or delayed bone healing in various animal models 
[118]. This further indicated their significant role 
in bone healing process due to their modulatory 
role to angiogenic and osteogenic effect.

5.1.3  Lymphocyte

Although the immune cells infiltrate the fracture 
site immediately upon damage, the role of T cells 
and B cells on bone regeneration are more or less 
ambiguous. Little is still known about the func-
tional role of lymphocytes in the immediate and 
later stage of bone healing. Previous studies 
using femoral fracture model in mice indicated a 
dynamic changing patterns of T and B lympho-
cytes. At later stages where adaptive immunity 
dominates, T and B cells entered the callus 
through inner blood vessels. In addition, it has 
been suggested the direct interaction of lympho-
cytes with osteoclast precursors and osteoblast, 
indicating the immunoregulatory role of T and B 
cells in later stage of bone healing [67].
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5.1.4  Cytokines Secretory Profiles 
in Early Osteoimmune 
Environment

The rapid infiltration of large amount of immune 
cells into the bone healing site makes the propo-
sition that proinflammatory and anti-inflamma-
tory cytokines secreted by immune cells play an 
important role in the bone healing process. The 
first 24  h after fracture induces a pronounced 
expression of proinflammatory cytokines, which 
is characterized by consecutive and overlapping 
expression of interleukin-1β (IL-1β), interleukin-
 6 (IL-6) and TNF-α [66]. The expression levels 
of pro-inflammatory cytokines decline rapidly 
within a few days. Interestingly, the expression 
levels of TNF-α and IL-1β in the bone healing 
process exhibit a biphasic pattern, where the ini-
tial peak occurrs within the first 24 h, followed by 
a second peak at terminal bone remodelling phase 
[87]. These proinflammatory cytokines, mainly 
secreted by the proinflammatory macrophages, 
are extremely important in maintaining the early 
osteoimmune environment, in further recruit-
ment of mesenchymal cells to the fracture site, 
and in stimulation of mesenchymal stems cell 
proliferation and differentiation. Previous studies 
indicated that abolishing or inhibiting initial pro-
inflammatory stages by local administration of 
nonsteroidal anti-inflammatory drugs resulted 
compromised bone healing compared to normal 
bone healing models [1, 28, 94, 101, 107]. The 
effect of each proinflammatory cytokine on 
osteogenesis and bone healing process has been 
extensively studied in vitro and in vivo. However, 
the complex nature of early osteoimmune envi-
ronment and multi-functional roles of proinflam-
matory cytokines at fracture site require further 
extensive study to understand the role of osteo-
immune environment in early bone healing. 
Figure 5.1 summarizes the some of the key regu-
lators of early inflammatory environment during 
bone regeneration.

The IL-1β secretion pattern during natural 
bone healing and its role in bone regeneration has 
been inconsistent in previous in vitro and in vivo 

studies. The effect of IL-1β and TNF-α on osteo-
genic differentiation of mesenchymal stem cells 
were tested in vitro previously. The results indi-
cated that both cytokines could inhibit the 
osteogenic- differentiation of murine-derived 
mesenchymal stem cells in vitro [69]. However, 
another studies using low dose IL-1β and TNF-α 
stimulation on human mesenchymal stem cells 
indicated increased alkaline phosphatise activity 
and mineralization in vitro [26]. This is further 
supported by experiments using human peri-
odontal ligament stem cells stimulated with dif-
ferent dosage of IL-1β in vitro. It seems that the 
effect of IL-1β on mesenchymal stem cells are 
dose dependent, in which low concentration of 
IL-1β could enhance the osteogenesis of human 
periodontal ligament stem cells, while high con-
centration could inhibit the osteogenesis via acti-
vating of nuclear factor-κB (NF-κB) and 
mitogenactivated protein kinase (MAPK) signal-
ling pathway [80]. Another in vitro study demon-
strated similar stimulatory effect of IL-1β on 
osteoblast proliferation and increased mineral-
ization. However, total opposite results were 
noted in murine bone marrow derived mesenchy-
mal stem cells. This discrepancy can be explained, 
at least partially, by the vast differences in IL-1β 
concentration and stromal cells involved in dif-
ferent studies [37, 96]. Further in vivo studies 
using Interleukin 1 Receptor 1-deficient mice 
exhibited no significant differences in callus, car-
tilage, and bone matrix production at days 7, 10, 
14, and 28 post-fracture compared to wild-type 
counterparts [71]. In addition, only subtle effect 
of IL-1β on bone regeneration rate can be 
observed when local administration of IL-1β at 
the fracture site in murine tibial fracture model 
[71]. The effect of IL-1on bone remodelling were 
further tested by using IL-1α-deficient, IL-1β- 
deficient and IL-1α/β double-deficient mice. It 
seems that the IL-1-deficient mice exhibited 
increased femur mineral density, trabecular bone 
mass and cortical thickness compared to wild- 
type counterparts [73]. IL-1β may have a dual 
role in physiological and inflammatory condi-
tions. Therefore, the role of IL-1β on bone regen-
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eration is more complicated than previously 
appreciated.

Events in bone healing are also considerably 
influenced by other pro-inflammatory cytokines 
in the prevailing microenvironment. With a focus 
on the clinical translation of pro-inflammatory 
cytokines treatment during bone fracture, many 
groups have extensively examined the effect of 
TNF-α on osteogenesis and bone forming ability. 
It seems that TNF-α may also have dual role in 
physiological and inflammatory environment. 
The role of TNF-α on mesenchymal cell migra-
tion and fracture healing outcomes can also be 
concentration- and time-dependent. In vitro study 
using human mesenchymal stem cells stimulated 
with TNF-α demonstrated enhanced expression 
of osteogenic-related proteins, mineralization 
and activation of NF-κB signalling pathway [47]. 
TNF-α also increase the recruitment of mesen-

chymal stem cells to the injured site by enhancing 
the expression of migratory related proteins, such 
as intercellular adhesion molecule-1 (ICAM-1) 
and vascular cell adhesion protein-1 (VCAM-1) 
[31]. Positive role of TNF-α on bone healing has 
also been studied in animal fracture models. In 
vivo study using TNF-α receptor (p55(-/-)/p75(-/-
))-deficient mice fracture model indicated the 
important modulatory role of TNF-α in postnatal 
endochondral bone formation [36]. Addition of 
1 ng/mL TNF-α at the fracture site could acceler-
ate the fracture healing in murine slow-healing 
fractures model, while high dose TNF-α has 
inhibitory effect [38]. However, persistent pro-
inflammatory environment with high TNF-α con-
centration can lead to bone destruction. Previous 
study indicate that long- term elevated TNF-α lev-
els in murine fracture model can result higher 
non-union fracture rate and delayed fracture heal-

Fig. 5.1 Cytokine secretion profiles and cells involve-
ment in initial inflammatory process. Peak expression of 
major pro-inflammatory cytokines are depicted schemati-
cally. The changing pattern of immune cells and cytokine 
secretory profiles in early inflammatory stage are also 

shown schematically. The cross-interaction of diverse 
cytokines could sustain the early osteoimmune microenvi-
ronment and act as important mediator for early mesen-
chymal stem cell recruitment, osteogenesis and 
vascularisation
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ing [45]. Similar results also indicated that sus-
tained supplementation of TNF-α for seven 
consecutive days resulted impaired bone growth 
and bone destruction, which can be reversed by 
administration of TNF-α inhibitor [30]. This is 
consistent in inflammatory- related diseases, like 
rheumatoid arthritis, where sustained and ele-
vated levels of TNF are noted [7, 50, 125]. These 
studies are clear indications that precise modula-
tion of TNF-α level holds significant clinical 
translational promises for accelerated bone 
regeneration.

The third key factor with a significant role 
during the initial inflammatory stage appears to 
be IL-6. Similar to TNF-α, IL-6 also exhibits a 
biphasic expression pattern, in which the mRNA 
expression level of IL-6 peaks shortly after frac-
ture and again during endochondral ossification 
stage [64]. The role of IL-6 on human mesenchy-
mal stem cells has been previously investigated 
in vitro. One of the study indicated that IL-6 
plays an important role in maintaining stemness 
of mesenchymal stem cells via ERK1/2 signal-
ling pathway [95]. Blockade of IL-6 signalling 
by administration of IL-6 neutralizing antibody 
in mice femur osteotomy models demonstrated 
compromised fracture healing compared to iso-
tope control group. These results indicated that 
IL-6 signalling pathway might play crucial role 
in early fracture repair. Similar results can be 
noted in tibial fractures models using IL-6 knock-
outs mice. One of the study indicated the absence 
of IL-6 signalling pathway significantly reduced 
the osteoclastogenesis and impaired callus 
strength [113]. Another knockout study also indi-
cated the delayed callus maturity and mineraliza-
tion compared with the not-knockout mice, 
especially in early stages of bone regeneration 
[125]. These results may support the concept that 
pro-inflammatory cytokines may be able to mod-
ulate the bone healing process via directly regu-
lating the early osteoimmune environment. 
Therefore, this osteoimmune environment, where 
the interaction of different cytokines, immune 
cells, and mesenchymal stem cells interacted, is 
more dynamic than previously appreciated.

5.2  Modulation of Early 
Osteoimmune Environment 
via Biomaterials Offers Huge 
Potential for Better Bone 
Regeneration

To date, in a proportion of patients who suffered 
from severe soft-tissue injury, open fractures or 
the presence of multiple injuries, persistent local 
and systemic inflammation predispose to com-
promised bone healing [40, 68, 85, 108]. It seems 
that the existence of significant discrepancy in the 
early osteoimmune environment between normal 
and delayed bone healing regarding blood clot 
formation, cytokine profiles, and cell populations, 
etc. Previous investigations on cytokine secretory 
profiles in normal and delayed bone healing mod-
els demonstrated that both pro- inflammatory and 
anti-inflammatory cytokines have increased sig-
nificantly in the delay fracture healing models 
compared to the normal healing samples [98], 
indicating the potential therapeutic strategies by 
altering the initial cytokine response for better 
bone regeneration. The successful bone healing 
requires the incorporation of a number of cells 
and various molecular factors. Different osteoim-
mune environment may in turn, lead to different 
outcomes that favour or hinder bone regeneration 
under certain circumstances. Therefore, it is rea-
sonable to speculate that positive or negative out-
come of bone regeneration can be achieved via 
modulating the early osteoimmune environment 
under the influence of biomaterial implantation. 
The ideal therapy for bone healing would entail 
local regulation of osteoimmune environment by 
using immunomodulatory biomaterials incorpo-
rated with/without pro- osteogenic factor(s) at the 
time of surgical treatment, among which the cyto-
kines/chemokines secreted around the osteoim-
mune environment play an indispensable role in 
this process. Therefore, how to modulate the tem-
poral and spatial pattern of the pro-inflammatory 
and anti- inflammatory cytokines, how to coordi-
nate the different stages of bone regeneration, and 
how to smart-driven the unfavourable osteoim-
mune environment via immunomodulatory bio-
materials toward better outcome need to be fully 
investigated.
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5.2.1  Traditional Titanium Scaffold

Titanium and titanium alloys are one of the most 
important scaffolds for dental and orthopaedic 
implantation due to their good biocompatibility 
and mechanical properties [59]. However, severe 
injuries caused by surgical procedure together 
with particles released from titanium implants 
into the micro-environment may trigger marked 
pro-inflammatory response, which are detrimen-
tal to normal bone regeneration [27, 93]. 
Macrophages, as key immune cells in engulfing 
titanium particles, can produce massive pro- 
inflammatory cytokines into the surrounding 
micro-environment [89]. Such acute or long-term 
inflammation can cause fibrous capsule develop-
ment, and foreign body giant cells formation, 
which may finally impair implant integration and 
tissue regeneration [2, 65]. As a result, research-
ers tried to develop titanium implants with 
inflammation modulation properties, thereby 
prolonging the life-span of titanium implants [39, 
106]. Attempts have been made to modify the 
titanium substrates with rough sandblasted acid 
etched (SLA),or hydrophilic SLA (modSLA) 
treatment, which demonstrated decreased pro- 
inflammatory interleukins expression and 
increased anti-inflammatory IL-10 level of cells 
cultured on SLA and modSLA surfaces [55, 
123]. It seems that modulation of titanium sur-
face roughness can significantly influence 
immune cells inflammatory response, which in 
turn, increase osseointegration rate [23, 52]. The 
effect of rough titanium surface on early stage 
blood clot formation and its subsequent effect on 
MSC recruitment and osteogenesis have also 
been investigated previously. The results indi-
cated that rough titanium-blood interaction could 
induce significant increase of rat bone marrow 
mesenchymal stromal cells proliferation and 
recruitment, thus potentiating its wound healing 
ability [124]. Therefore, the influences of rough 
titanium surfaces on bone regeneration are more 
complicated than previously appreciated. Other 
surface coating technique, such as plasma-based 
coating, plasma sprayed hydroxyapatite (HA) 

coating, biomimetic calcium phosphate (CaP) 
coating, and alumina coating, ect [57] have also 
been widely used for titanium surface modifica-
tion. For example, plasma-based Sr2ZnSi2O7 
(SZS) ceramic was used to modify the titanium 
surface in our previous study. The SZS coatings 
exhibited slow ions releasing properties com-
pared to the hydroxyapatite (HA) coatings. Such 
SZS-coated titanium surface demonstrated sig-
nificant immune-regualtory properties with sig-
nificant reduction of pro-inflammatory cytokines 
and increase of osteogenic-related factors [17].

In recent years, polydopamine-based one-step 
coating method gains more and more attention 
due to the simplicity and cost-effectiveness. 
Polymerized dopamine (polydopamine) coating 
is a mussel-inspired biomimetic surface modifi-
cation technique widely used for tissue engineer-
ing [76]. It exhibits high affiliation towards 
biomolecules containing amine and thiol func-
tional groups, which can be broadly used to 
immobilize a vast range of macromolecule on 
different material surfaces. Therefore, modifica-
tion of metallic implants with polydopamine 
coating have been investigated in the past several 
years and showed great promises in bone regen-
eration [24, 48, 54, 58, 72, 90]. Polydopamine- 
assisted collage coating on titanium surfaces has 
demonstrated better uniformity and distribution 
compared to passive adsorption coating, which 
can significantly enhance the pre-osteoblast 
adhesion and differentiation in  vitro [127]. 
Polydopamine-assisted antibiotic coating on tita-
nium surfaces has also been investigated previ-
ously, since biofilm formation onto implant 
interfaces have been regarded as one of the main 
reasons for implant failure. Antibiotic-decorated 
titanium implant showed long-lasing adhesion 
and antibacterial activity to various bacteria 
strains [46]. Such non-toxic and effective antibi-
otic coating method offers researchers and ortho-
paedics effective approach to prevent infections 
on the implant interface. Additionally, 
polydopamine- based modification can be widely 
applied on a wide range of surfaces. Such modi-
fication can significantly increase the initial cell 

F. Wei and Y. Xiao



75

attachment without significant alteration of the 
sub-structure of biomaterials. For example, 
porous SiO2 scaffolds with polydopamine coat-
ing demonstrated improved bone marrow 
 mesenchymal stromal cells attachment, prolifera-
tion, and mineralization compared to the uncoated 
surfaces [119].

5.2.2  Scaffolds with Sequential 
Cytokines Release Functions

It is not clear the exact roles of various macro-
phage subsets and cytokine secretory profiles in 
disease progression, especially in bone healing 
process. It seems that the cytokines secretory 
profiles are one of the most influential factors in 
these physiological and pathological conditions. 
Therefore, instead of considering different cyto-
kines as isolating molecules, they should be 
viewed as an overall environment, especially in 
the early inflammatory stage during bone healing 
where platelets, neutrophils, monocytes/macro-
phages and lymphocytes are trapped within the 
cross-linked haematoma matrix, in which they 
have long been neglected before. To test this 
hypothesis, several recent studies have analysed 
the pro-angiogenetic potential of conditioned 
media derived from macrophages under different 
polarization status. Among all the macrophage 
phenotypes generated in vitro, M1 polarised cells 
secreted the highest angiogenic factors like 
VEGF, while M2a and M2c polarised macro-
phages secreted the highest levels of PDGF-BB 
and MMP-9, respectively. Additional analysis of 
subcutaneous-implanted biomaterial further 
reveals that biomaterials elicited both M1 and 
M2 phenotypes. This represents the most suc-
cessful revascularization and neo-angiogenetic 
group compared to the extreme M1 and M2 pola-
rising states [102]. Therefore, it seems that the 
presence of both M1 and M2 phenotypes and bal-
anced cytokine secretory profiles is one of the 
key factors for successful angiogenesis and scaf-
fold vascularization. This conclusion is some-
how; further supported by their successive studies 

using sequentially M1 and M2 cytokines released 
scaffold and murine subcutaneous implantation 
models. It has been shown that M1 secreted cyto-
kines are mainly responsible for the initiation of 
angiogenesis, while M2 generated cytokines 
mediate vessel maturation [102]. Therefore, spe-
cific scaffolds were designed with the initial 
release of M1 phenotypic inducing cytokines fol-
lowed by M2 macrophages inducing cytokines. 
However, the result here is more intricate than 
their previous study. It seems that both scaffold 
with M1 inducing cytokines or combo polariza-
tion cytokines can lead to increased vasculariza-
tion after 2 weeks of subcutaneous implantation 
compared to the negative control. In addition, 
more CD31+ blood vessels could be observed in 
M1 inducing scaffold compared to the combo 
samples [103]. However, the effect of different 
macrophage phenotypes and the influence of 
cytokine secretory profiles on bone healing pro-
cess have not been examined. The overlapping of 
pro-inflammatory and anti-inflammatory cyto-
kines secretory profiles, together with their 
dynamic changes within the bone healing micro-
environment, has resulted in considerable confu-
sion in the published literature regarding the role 
of different phenotypes macrophages and cyto-
kines secretory profiles during bone healing 
process.

Bone morphogenetic protein-2 (BMP2), 
which belongs to the transforming growth 
factor-β (TGF-β), is one of the most important 
osteoinductive molecules for bone formation and 
remodelling [105]. Numerous studies have dem-
onstrated that BMP2 can initiate the osteoblastic 
differentiation and accelerate the regeneration of 
mineralized tissue in vivo in different bone-defect 
models [8, 53]. Recombinant human BMP2 and 
BMP7 have been approved (eg: INFUSE® Bone 
Graft, Medtronic) by the United States Food and 
Drug Association (FDA) as osteoinductive adju-
vants for use in human surgery [82]. Several 
implantable carriers, such as absorbable collagen 
sponges, gelatin, β-tricalcium phosphate 
(β-TCP), polylactic-co-glycolic acid (PLGA) 
microspheres, and hyaluronic acid (HA), etc. 
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have been used as delivery system for BMP2 [35, 
61, 91]. However, poor retention of BMP2 by 
some of the carriers can be noted from the 
implantation sites, thus requiring high dosage of 
BMP2 for effective bone formation [9, 109]. 
Numerous complications have also been 
recorded, thus comprising the safety utilization 
of BMP2. Apart from osteogenesis, angiogenesis 
also plays an important role for bone regenera-
tion. The formation of new vascular network and 
branching of the pre-existing ones are crucial for 
efficient nutrient supply, transportation of bio-
molecules, and maintenance of essential environ-
ment for bone regeneration [44, 60]. Vascular 
endothelial growth factor (VEGF) is one of the 
most important angiogenic molecules during 
bone regeneration. Previous studies have indi-
cated the stimulatory role of VEGF on bone for-
mation in various animal models. Coupling of 
osteogenesis and angiogenesis have long been 
suggested in bone regeneration therapeutic strat-
egies as cellular communication between VEGF 
and BMP families may lead to the potential syn-
ergies among effective cells network [99, 114]. 
During normal bone regeneration, VEGF demon-
strated high secretary profiles during early stages 
of bone healing while BMP peaked at later time 
point [19, 41]. Therefore, biomaterials manipu-
lating sequential cytokines release profiles offers 
huge therapeutic promises. Previous studies 
using double layered-scaffold with BMP-2 in the 
inner microspheres and VEGF in the outer layer 
suggested markedly increased ectopic bone for-
mation in rat subcutaneous model [62]. Such 
composite with sequential release strategies 
offers orthopaedics and researchers new insight 
into beneficial strategies for enhancement of 
bone regeneration.

5.2.3  Micro-patterned Scaffold

In recent years, surface modification technolo-
gies using microfabrication on scaffolds have 
gained increasing trends due to the versatility, 
compatibility and precise modulation capability 
of this technology on cell behaviour on nanoscale 
level. Such microarchitecture (porosity, intercon-

nectivity, and pore geometry) and micro-textures 
(micro-patterns) changes on scaffold surface, 
which are smaller than normal cell shape, offers 
unique stimulatory structure and cues to the func-
tional development and behaviour changes of 
cells and tissues [126]. This microarchitecture 
and cells interaction may, in turn, regulate the 
early osteoimmune environment of bone regen-
eration via cytokines and chemokines secretion 
of immune cells and mesenchymal stem cells 
recruitment. Cell morphological differences have 
been recorded under different stages of cellular 
polarization/proliferation states [104]. The most 
typical examples for cell shape changes would be 
macrophages, which M1 polarization induced 
bone marrow-derived macrophages (BMDMs) 
into a pancake-like morphology, while M2 polar-
ization cytokine caused cellular elongation [84]. 
M1 and M2 macrophage phenotypes demonstrate 
different cytokine profiles, which represent dif-
ferent immune environments. The plasticity of 
macrophages implies the potential strategies to 
modulate macrophage response in bone regener-
ative medicine. Studies performed using micropa-
tterned cell culture substrates showed that 20-μm 
wide lines-induced cellular elongation led to M2 
phenotypes changes of macrophages [84]. This 
phenomenon indicated the remarkable immuno-
modulatory role of micropatterned scaffold in 
regulating osteoimmune environment in favour 
of pro-healing outcome. Optimized pore size also 
plays an important role in macrophage polariza-
tion as 30–40 μm pore size biomaterials appear to 
promote M2 polarization, while non-porous or 
random-porous-size materials may enhance M1 
subpopulation [34]. Such conclusion was further 
supported by our previous study in which differ-
ent pore sizes (0 nm, 15 nm, 50 nm, 100 nm, and 
200  nm) on anodic alumina scaffold affected 
macrophage spreading and cell morphology, 
which in turn, offered different osteoimmune 
environment for the osteogenesis of bone marrow 
stromal cells [16]. Additionally, controlled nano-
topography with different sized gold nanoparti-
cles and tailored surface chemistry in our previous 
study also demonstrated marked difference in 
osteoimmune environment in terms of macro-
phage inflammatory cytokines, osteoclastic 
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activities, and osteogenic, angiogenic, and fibro-
genic factors expression [14]. These results are 
clear indications that nano-engineered surface 
offers huge potential to manipulate the osteoim-
mune environment in favour of osteogenesis. 
Persistent local and systemic inflammation can 
be frequently noted in patients who suffered from 
severe soft-tissue injury, open fractures or the 
presence of multiple injuries, which are detri-
mental to bone regeneration [36]. Via modulating 
macrophage polarization through microfabrica-
tion of scaffold, which could precisely modulate 
the immune microenvironment of cells and cyto-
kine secretion profiles, different bone healing 
immune environmental cues could be obtained.

In addition, a number of studies have been 
published presenting results of the modulating 
osteoblast/mesenchymal stem cells behaviour 
and osteogenesis via a three-dimensional (3D) 
structure-based microfabrication technology. 
Scaffold with micro-pillar and micro-ridge tex-
tures offers favourable attachment surface for 
pre-osteoblast cells compared to the unpatterning 
control, which in turn, stimulate the osteogenic 
differentiation of pre-osteoblast cells [11]. 
Micropatterned poly (ε-caprolactone) (PCL) 
consisting of grooved pillars demonstrated sig-
nificant increase of cell and tissue alignment 
compared to the random-porous PCL scaffold in 
murine subcutaneous implantation model [92]. 
Blood vessel formation and angiogenic factors 
also play an important role in large tissue and 
bone repair. The role of micropatterned scaffold 
on angiogenesis have also been investigated pre-
viously. Collagen scaffolds incorporated with 
micropatterned VEGF showed more blood ves-
sels formation in nude mice subcutaneous 
implantation models compared to control colla-
gen sponge [88]. Another study using micropat-
terned scaffolds with different inter-channel 
spacing revealed increased blood vessels num-
bers compared to the random-pore scaffold [111]. 
Therefore, the potential modulatory role of 
micropatterned scaffold on cellular behaviours 
offers fundamental theoretical basis for regulat-
ing the early osteoimmune environment for 
favourable osteogenesis and accelerated bone 
regeneration.

5.2.4  Plasma Ion Immersion 
Implantation (PIII) Modified 
Scaffold

Surface modification using Plasma Ion Immersion 
Implantation (PIII) technique have been shown to 
have huge biomedical applications promises due 
to high biocompatibility, efficiency, and versatil-
ity [130]. Through PIII modification, surface 
characterizations of the scaffold can be enhanced, 
while the original bulk property and topography 
are still maintained at the same time. Such chang-
ing offers superior adhesion capacity for many 
cells, including immune cells and mesenchymal 
stem cells. The osteo-modulation effects of 
plasma-modified surface on mesenchymal stem 
cells (MSCs) or osteoblasts have been clearly 
demonstrated in vitro and in vivo [128–130]. For 
instance, nitrogen and carbon PIII-modified tita-
nium implants showed improved osteoblastic dif-
ferentiation in vitro and increased bone 
regeneration in rat bone defect model [130]. In 
addition, human MSCs seeded onto the oxygen 
PIII-modified titanium implants demonstrated 
increased differentiation and mineralization abili-
ties [122]. More recently, magnesium-doped tita-
nium surface via PIII-based strategy demonstrated 
significant immunomodulatory role on macro-
phages phenotypic shifts, further indicating 
important modulatory role of PIII- modification 
on cellular behavior [75]. In addition, previous 
studies have also shown that PIII-treated surface 
can change the chemical composition of materi-
als by generating a hydrophilic surface, which are 
capable of forming covalent bonds to immobilize 
proteins through radicals embedded in a sub-sur-
face layer [18]. The covalently bonded proteins 
on the surface can markedly regulate the attach-
ment, proliferation, and differentiation of various 
cells in vitro, such as human coronary endothelial 
cells, human dermal fibroblast (HDF) and human 
umbilical vein endothelial cell (HUVEC), etc. [5, 
18]. These studies are clear indications that 
manipulation of the osteo-modulation effect gen-
erated by PIII treatment and further utilization of 
such microenvironment offer huge potential to 
provide an effective approach for future bone 
regeneration.
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5.2.5  Bio-membrane Guided 
Scaffold for Bone 
Regeneration

Bio-membrane guided scaffolds have been suc-
cessfully designed and have demonstrated sig-
nificantly immunomodulatory role on 
osteogenesis and bone healing. Such guided bone 
regeneration technique offers researchers and 
orthopaedics useful surgical method to increase 
the proliferation of oeteogenic cells at bone 
defect site with precise immunoregulatory prop-
erties [25]. Non-resorbable expanded- 
polytetrafuoroethylene (e-PTFE, Teflon) have 
been firstly introduced and widely used since 
1982 [77]. Such biocompatible materials can 
cover the defect area and maintain their structural 
integrity during implantation. However, the need 
of removal the non-resorbable biomaterial and 
other limitations restrain their application [83]. 
Currently, several barrier membranes have 
already been used in clinical areas, such as most 
commonly used bioresorbable collagen mem-
branes. Several novel membranes with increased 
biocompatibility, and tissue integration proper-
ties have already been developed, such as 
polymer- based membrane, nanofibrous mem-
branes, and alginate membranes, etc. [97]. 
Polycaprolactone (PCL) is a US Food and Drug 
Administration (FDA)-approved biocompatible 
and bioresorbable material for tissue regenera-
tion [56]. Although PCL scaffolds have been 
shown to support bone regeneration in vivo in 
previous studies, lack of bioactivity limits their 
application in future bone tissue engineering 
[33]. Osteoinductive molecules or growth factors 
play an important role in bone healing process. 
The concept of adding osteoinductive molecules 
into the membrane have long been investigated 
by numerous researchers in the past decades. 
Platelet-derived growth factor (PDGF-BB), 
fibroblast growth factor (FGF2), and recombi-
nant human bone morphogenetic protein-2 have 
been used as loading agents in various in vivo and 
in vitro studies to test their effect on osteogenesis, 
in which improved bone formation has been 
achieved by modifying bio-membrane guided 
scaffolds [20, 121]. Previous studies have shown 

that PIII treated surfaces are able to covalently 
immobilize cytokines without the need for addi-
tional linker chemistry, thus offering huge appli-
cation potential in medical prostheses and 
diagnostic devices industries [70]. In our previ-
ous study, PIII treated PCL surface with IL4 
immobilization indicated altered inflammatory 
response of macrophages, which in turn, led to 
the differed angiogenics cytokines secretory lev-
els and elicit enhanced osteogenesis of human 
mesenchymal stem cells (hBMSCs) in in vitro 
co-culture models (Fig. 5.2).

However, challenges remain in maintaining 
effective therapeutic concentrations of osteoin-
ductive molecules as well as maintaining slow 
release properties of scaffold at target site in 
order to achieve therapeutic efficacy. Therefore, 
researchers are still trying to develop novel bio- 
membrane based scaffold with improved osteoin-
ductive molecules releasing systems. Other 
release strategies, such as sequential cytokines 
release-based bio-membrane, can also be 
designed for their effect in critically-sized seg-
mental bone defects models. Such controlled spa-
tiotemporal release patterns may optimize the 
regeneration results by minimizing the concomi-
tant adverse effects. In addition, combined cyto-
kine release strategies, in which the osteoinductive 
molecules and other growth factors synergies can 
be established in order to amplify the optimal 
combination results of different cytokines. 
However, long-term observations regarding the 
safety and biocompatibility of bio-membrane 
barrier in both animal models and human trails 
are still needed, especially for those scaffolds 
with cytokine releasing properties.

5.2.6  Ion Doping

The role of different ions on bone regeneration 
has been extensively reported duo to their regula-
tory role in bone cells and immune cells. Metallic 
ion doping on scaffold materials have been 
widely used as modification techniques for the 
improvement of the mechanical and osteoinduc-
tive properties of biomaterials [15]. Cooper, 
strontium, zinc, magnesium, silver and silicon, 
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etc. have been tested in vitro and in vivo previ-
ously [3, 51, 112]. In vitro study using copper- 
doped mesoporous silica nanospheres on 
macrophages indicated significant immunomod-
ulatory role of such scaffold on macrophages, 
which in turn, induced the robust osteogenic dif-
ferentiation for bone mesenchymal stem cells 
[100]. β-tricalcium phosphate is a calcium phos-
phate ceramic that is widely used as a bone sub-
stitute materials. Attraction of macrophages to 
β-TCP particles was previously demonstrated in 

vitro, whereby macrophages migrated towards 
the biomaterial by emitting cytoplasmic exten-
sions [32]. Additionally, magnesium doped 
β-TCP (Mg-β-TCP) demonstrated M2 macro-
phage polarization ability in vitro, which the 
osteogenic differentiation of bone marrow stro-
mal cells was significantly enhanced by stimulat-
ing with Mg-β-TCP-derived conditioned medium 
[13]. The effect of magnesium doping on osteo-
genesis can be further corroborated by the new 
bone formation on magnesium doped 

Fig. 5.2 (a) Plasma immersion ion implantation protocol 
on PCL surface. (b) Representative SEM images of PCL 
and PIII surface. Scale bars: 400  nm. (c) Experimental 
protocol of the indirect co-culture study. IL-4 (200 ng/ml 
in sterile PBS) was added to each scaffold for 1 h at room 
temperature. RAW264.7 cells seeded on PIII and PIII+IL4 
surfaces were placed on 0.4 μm hanging cell insert, while 

hBMSCs were cultured in to lower chamber. (d) IL4- 
immobolized PIII surface enhanced in vitro osteogenesis 
via modulation of macrophages phenotype. Representative 
confocal microscopy images of hBMSCs co-cultured with 
RAW264.7 cells on PIII and PIII+IL4 surfaces. Cells were 
stained by Alexa Fluor 594-conjugated phalloidin, ALP 
(green), and DAPI. All scale bars: 50 μm
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 polycaprolactone (PCL) scaffolds[117]. Dual or 
multiple ions incorporation strategies have also 
been introduced in various cell culture and in 
vivo models. For example, strontium and lithium 
ion doped bioactive glass demonstrated increased 
tissue integration, vascularity, and bone regenera-
tion compared to the single lithium-doped sam-
ples [63]. Therefore, modification of biomaterials 
with controlled release of metal ions may create 
unique immunomodulatory environment that 
can, alone or in combination with other modifica-
tion strategies, control inflammatory response 
and accelerate bone regeneration.

5.2.7  Biomimetic-Inspired Scaffold

Over the past decades, researchers in various 
filed have tried to learn from the pre-existing 
hierarchical structures in nature, which con-
verged into the banner of biomimetic. Therefore, 
scientists in biomaterial field have tried to devel-
oped biomimetic-inspired scaffold for better 
bone regeneration. Bone is a highly hierarchical 
organized composite with sophisticated struc-
tures, ranging from macroscale to nanolevel. 
Therefore, the idea of biomimetic-inspired scaf-
fold should partially or fully mimic the biological 
structure of nanofibrous collagen, satisfy certain 
moderate of porosity for efficient nutrient supply, 
and could resist to various mechanical pressures 
at the same time. So far, several attempts on 
biomimetic- related biomaterial development has 
been explored by several researchers under dif-
ferent perspectives. For example, lotus root- 
inspired multi-channel scaffold showed improved 
mesenchymal stem cells attachment and prolif-
eration in vitro. Further in vivo studies using rat 
muscle model and rabbit calvarial defects model 
indicated increased neo-vascularisation and new 
bone formation, respectively [29]. Another study 
using magnesium-doped hydroxyapatite/type I 
collagen scaffold, which mimic the human osteo-
genic niche, demonstrated enhanced osteogene-
sis in vitro and large volume of new bone 

formation in rabbit [86]. Interestingly, it seems 
that the potential of nature-inspired scaffolds are 
beyond imagination. Researchers inspired by the 
host escape mechanism of influenza virus have 
designed polymer carrier to precisely control the 
release profile of small interfering RNA for the 
therapeutic application in many diseases[110]. 
Therefore, biomaterial inspired by mimicry of 
natural structures may provide researchers new 
insight into biomaterial design and development, 
thus paving the way for future clinical applica-
tions for such novel and functional biomaterials.

5.3  Biomaterial 
and Osteoimmune 
Environment Interaction- 
Future Direction?

The successful bone repair requires the incorpo-
ration of a number of cells and various molecular 
factors, among which the osteoimmune environ-
ment plays a key role in determining this process. 
Therefore, it is critical to understand the impor-
tance of this osteoimmune environment, how this 
microenvironment coordinates bone repair, and 
mechanisms governing the osteoimmune envi-
ronment. In addition, the effect of different bio-
materials on such osteoimmune environment 
should be fully considered, as biomaterials are no 
longer considered as inert object with no modula-
tory properties. Therefore, it is critical to under-
stand the equilibrium and interaction between 
implants and osteoimmune environment since 
neither of these two elements is solely indepen-
dent. Generating favourable osteoimmune envi-
ronment through biomaterials-based strategy at 
initial stage may have the function to precisely 
influence the final outcome of bone regeneration. 
As many exciting studies are currently underway, 
it is possible to speculate that novel functional 
scaffold with precise osteoimmune environment 
modulation properties will be discovered in the 
near future (Fig. 5.3).
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Abstract
Biomaterials engineered to closely mimic 
morphology, architecture, and nanofeatures of 
naturally occurring in vivo extracellular matri-
ces (ECM) have gained much interest in 
regenerative medicine and in vitro biomimetic 
platforms. Similarly, microphysiological sys-
tems (MPS), such as lab-chip, have drummed 
up momentum for recapitulating precise bio-
mechanical conditions to model the in vivo 
microtissue environment. However, porosity 
of in vivo scaffolds regulating barrier and 
interface functions is generally absent in lab- 
chip systems, or otherwise introduces consid-
erable cost, complexity, and an unrealistic 
uniformity in pore geometry. We address this 
by integrating electrospun nanofibrous porous 
scaffolds in MPS to develop the lab-on-a- 
brane (LOB) MPS for more effectively model-
ing transport, air-liquid interface, and tumor 

progression and for personalized medicine 
applications.

Keywords
Nanomedicine · nanotechnology · electrohy-
drodynamic · atomization · electrospinning · 
tissue engineering · microphysiological 
systems · disease model

6.1  Background

Descriptive anatomy is to physiology what geogra-
phy is to history, and just as it is not enough to 
know the typography of a country to understand its 
history, so also it is not enough to know the anat-
omy of organs to understand their functions. 
(Claude Bernard. Paris, 1878)

Microphysiological systems (MPS) find appli-
cations in a broad array of domains including tis-
sue engineering for regenerative medicine, in 
vitro platforms that closely mimic specific in vivo 
parameters to gain a deeper understanding of 
physiology and pathophysiology, and therapeutic 
evaluation of treatment options from testing new 
formulations and genes to optimal delivery 
mechanisms. Essentially, MPS combine architec-
tural and environmental aspects, including the 
interplay of one with the other, of the target tissue 
to simulate both structural mechanics – such as 
stiffness, stretch, porosity, morphology, and so 
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on  – and biodynamic elements including fluid 
flow, pressure, and shear. In this chapter we will 
first review in vivo characteristics of tissue, with 
a focus on interfaces supporting barrier and trans-
port functions, followed by engineering tissue 
scaffolds for MPS and, finally, integrating these 
engineered scaffolds in MPS to model in vivo 
physiological and pathophysiological 
conditions.

At its core, tissue engineering is about select-
ing suitable biomaterials for fabricating scaffolds 
designed to support cell fates leading to func-
tional target tissue and then combining the engi-
neering scaffold in a physiologically relevant 
environment with cells and additional biological 
and chemical formulations. Despite successes 
and Food and Drug Administration (FDA) 
approvals for human applications, engineered tis-
sue constructs have not as yet gained widespread 
use in human patients.

6.1.1  Disease Models and Drug 
Development

However, that is not to say that bench-to-bedside 
prospects for tissue engineering are bleak. On the 
contrary, the rise in the number of patients diag-
nosed with genetic disorders, such as cancers, is 
pushing the demand for developing next genera-
tion disease models and personalized medicine 
treatment efficacy evaluation assays. Already 
today, cardiovascular diseases (CVD) and cancer 
claim over 25 million lives in the USA exacting a 
tremendous toll on patients, caregivers, and soci-
ety. In 2010 alone, $290 billion (American 
Association for Cancer Research estimates) was 
incurred globally in direct cost of treatment 
alone. About $125 billion was incurred in United 
States in 2010 which exceeded the National 
Institutes of Health (NIH) 2015 budget by more 
than 400%. And these are showing no signs of 
abating, instead, as shown in Fig. 6.1, estimated 
lifetime probability of developing cancer will 
increase, over the next five years, to 1-in-2 for 
men and 1-in-3 for women [39, 105]; resulting in 
cancer surpassing cardiovascular diseases (CVD) 
to become the leading cause of death worldwide.

6.1.2  Drug Discovery

Despite the significant toll exerted by these disor-
ders and advances made in pre-discovery and dis-
covery phases of drug development – including 
high-throughput screening and other miniatur-
ized assays [12, 61, 77, 87, 90, 137], combinato-
rial chemistry, and computational models and 
databanks [11, 26, 36, 60, 69, 125, 128] – discov-
ery of new drugs and other treatment options, 
including delivery mechanisms, remains quite 
slow and expensive. One reason for this disso-
nance is that assays and methods for evaluating 
efficacy of new treatments (Fig. 6.1) during pre-
clinical evaluation are simply inadequate. Static 
culture dishes fail to recapitulate the in vivo 
microenvironment, making cells far from physi-
ologically relevant, and animal models, though 
physiologically relevant, are limited indicators of 
success in subsequent human trials [51, 52, 68, 
94, 107].

Cell culture models in dishes, while offering 
various advantages including relative ease (seed-
ing, imaging, containment, and so on), scale, 
cost, precision (reproducibility at least with same 
cell lines), fall short in 3 key areas: (a) 
Morphology: the uniform, smooth, flat, non- 
porous surface of petri dishes is in stark contrast 
with the non-woven, random, network of nanofi-
bers comprising porous in vivo substrates. (b) 
Material: Most dishes and plates are made of 
polystyrene or glass while water-rich in vivo 
extracellular matrix (ECM) is composed of vari-
ous fibrous proteins such as collagens, elastins, 
laminins, and fibronectins and proteoglycans 
such as hyaluronic acid, decorin, aggrecan, and 
perlecan [32, 81]. (c) Mechanics: Young’s modu-
lus, a measure of stiffness (elastic response), for 
collagen [13] (500 KPa) is five orders of magni-
tude lower than that for glass and polystyrene 
(65x106 and 3.5x106 KPa respectively), which 
when compounded with in vivo fluid dynamics 
(absent in static cell culture dishes) can lead to 
significant differences in cell fates due to biome-
chanical cues and matrix remodeling. Animal 
models overcome these shortcomings but at the 
expense of relative ease, scale, reproducibility 
(precision), and cost [106]. Moreover, neither 
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static culture models nor animal models are suit-
able for personalized medicine (patient specific) 
applications.

6.1.3  Tissue Microenvironment

Impeding advancement in understanding dis-
eases and the subsequent development and test-
ing of effective treatment options is often the 
parallel, multivariate nature of tissue and organ 
systems resulting from dynamic interplay of bio-
logical, chemical, and physical forces at the 
molecular, micro, and macro scale [23, 35, 37, 
48, 53, 71, 76, 98, 115, 119, 126, 129]. Developing 
models that isolate variables or sub-systems, aid 
in the deeper understating of the specific mecha-
nisms under examination but at the expense of 
muting any cross-talk along isolated boundaries. 
High-throughput screening (HTS) systems [12, 
61, 77, 90, 137] investigating efficacy on small 

sets of biomolecules, for instance, offer a signifi-
cant upstream performance advantage at the 
expense of escalating downstream costs from 
failed clinical trials. That said, optimal design 
with deliberate and established isolation bound-
aries can provide rich abstractions to assist both 
in disease modeling and development and evalu-
ation of new treatment options. 

6.2  Tissue Structure 
and Environment

The whole organism subsists only by means of the 
reciprocal action of the single elementary parts. 
(Theodor Schwann. Theory of the Cells, 1847)

The extracellular matrix, or ECM, is the non- 
cellular component of tissue that provides struc-
tural rigidity and support to organs and tissues as 
the de facto scaffolding. This water-rich and 
fibrous scaffolding is composed of various fibrous 

Fig. 6.1 Potential for 
improving disease 
modeling and 
therapeutic R&D with 
biomimetic MPS. © 
elixir international. 
(Reproduced with 
permission. All rights 
reserved)
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proteins such as collagens, elastins, fibronectins, 
laminins, and proteoglycans such as hyaluronic 
acid, aggrecan, decorin, and perlecan [32, 81]. As 
illustrated in Fig.  6.2, supramolecular compo-
nents, such as fibrils, fiber bundles, or fiber net-
works, assembled from collagen proteins provide 
mechanical support and biological signaling for 
cellular adhesion, cellular proliferation, and tis-
sue morphogenesis [3, 99]. Further, the ability of 
the ECM to withstand high compressive forces 
without loss of properties comes from a cova-
lently cross-linked gel of glycosaminoglycan 
chains (proteoglycans) which remains unsolubi-
lized and gets very elongated due to the hydro-
philic network of saccharide chains. Although 
this network is unsolubilized, soluble growth fac-
tors that influence morphology and physiological 
function of the tissue can be integrated.

Despite these common base constituents, 
there is considerable variance in the specific 
composition and morphology of the undergirding 
ECM not only between tissue structures from dif-
ferent systems but also at different sites within a 
tissue. This heterogeneity stems from a variety of 
factors including type of tissue, ECM site within 
a specific tissue structure, and the physiological 
state of the tissue [32]. In fabricating scaffolds 
and substrates for engineered tissue, whether for 
patient or MPS applications, it is therefore impor-
tant to recapitulate these variations in ECM com-
position and morphology to accurately mimic the 
resulting biomechanical and biochemical cues 
which, in turn, direct cell fates including 
 proliferation and, in the case of stem cells, dif-
ferentiation to a directed lineage. In providing 
structure, support, and through appropriate bio-

Fig. 6.2 Structure and composition of in vivo extracellu-
lar matrix (ECM). Key features include (a) Complex 
fibrous network with various other biochemical compo-
nents, (b) Stiffness/elasticity of the network provide struc-
tural support and biomechanical cues driving cell fates, 
(c) Pores regulating cellular and molecular transport, (d) 
Viscoelasticity, which allows polymeric constituents to 

behave both as elastic solid and viscous fluid as a function 
of time or temperature, is key to matrix deformation and 
subsequent remodeling of ECM, (e) Undergird morphol-
ogy varies richly with respect to fiber diameter distribu-
tion, substrate thickness, adhesion profiles, surface area 
topography, and so on. (Reproduced here from Stem Cells 
International [3] under Creative Commons Attribution 
License)
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mechanical and biochemical cues, the ECM 
plays a key role in driving cell fates and 
function.

6.2.1  ECM Scaffolding and Cell 
Fates

While ECM provide tissue with structural sup-
port, biomechanical and biochemical cues, cells 
are the building blocks and builders of tissue. 
This building also includes remodeling the under-
lying ECM itself. Cells respond to signals and 
cues they receive from their local environment. 
This response can initiate a chain of responses 
that not only modulate cell fates but also the 
secretion of proteins that ultimately result in 
matrix remodeling, thereby changing the local 
environment and downstream signaling. A better 
understanding of cellular response to biomechan-
ical signals such as stiffness and morphology – 
specifically in resulting cell fates, local 
environment interaction and subsequent organi-
zation into tissue systems and organs – has pro-
vided researchers and biomedical engineers with 
the ability to identify and tune scaffolding prop-
erties to mend damaged tissue or even create new 
ones.

6.2.2  Stiffness of Scaffolds 
and Fibers

Cellular responses to elastic properties of tissue 
engineering substrates have been shown to 
impact differentiation of stem cells. This is par-
ticularly pronounced for anchorage dependent 
cells [14, 17, 28, 29, 46, 62, 63, 78, 85, 89, 130–
132, 136] as proliferating cells respond to the ini-
tial pull against the ECM and mechano-transducer 
signals proportional to the required matrix defor-
mation force [29]. Figure  6.3 highlights the 
impact of matrix stiffness on mesenchymal stem 
cell (MSC) morphology [116] where the spindle- 
factor is a measure of cellular morphology 
derived simply by dividing the major by the 
minor axes As shown in the image, morphologi-
cal changes in cells can be observed as a function 

of culture time and ECM stiffness. On methacryl-
amide/chitosan hydrogels (with laminin to pro-
mote cellular adhesion), of varying moduli, 
proliferation of neural stem/progenitor cells 
(NSPC) peaked on substrates with 3.5 kPa stiff-
ness, neuronal differentiation was optimal when 
stiffness was under 1  kPa, and oligodendrocyte 
differentiation was favored when stiffness was 
above 7 kPa [63]. Cellular growth and migration 
was observed only for the softest scaffolds in this 
study. Human MSC (HMSC) from adipogenic 
and osteogenic cells in thiol-hyaluronic acid 
hydrogels were found to differentiate into adipo-
genic cells with a larger spreading area and thin 
elongated processes on stiffer substrates in the 
4  kPa range, while spindle-shaped osteogenic 
differentiation was observed on 0.15  kPa stiff-
ness substrates [136]. Another study, of iPSC- 
derived embryoid bodies on substrates with 
varying stiffness (0.6 kPa, 14 kPa, 50 kPa, and 
1  GPa), found [78] that differentiation toward 
cardiac and neural tissue lineages was favorable 
in polyacrylamide (pAA) 0.6 kPa substrates com-
pared to the control 1 GPa polystyrene tissue cul-
ture plates.

In terms of stiffness, electrospun fibers offer 
higher Young’s modulus (or stiffness) than hydro-
gels. In our studies [109, 110, 112] of nanome-
chanical properties of electrospun fibers, moduli 
ranged from 0.2 GPa (collagen type I) to 0.6–
0.8  GPa (collagen/nanohydroxyapatite (nHA) 
composite), depending on chemistry and diame-
ter of fibers, and stiffness increased further with 
chemical-crosslinking [109]. Alignment of fibers 
also contributed to stiffness with increased mod-
ulus of fibers from scaffolds with aligned fibers 
(depending on rotation speeds for fiber align-
ment) [110]. Improved HMSC adhesion and sur-
vival was observed on higher stiffness PCL/nHA 
electrospun substrates compared to PCL and col-
lagen substrates [91]. Additionally, MSCs on 
PCL/collagen/nHA scaffolds showed higher lev-
els of phosphorylated FAK, an integrin activation 
marker and signaling molecule implicated in cell 
survival and osteoblastic differentiation [91]. 
These studies highlight that composition and 
stiffness of scaffolds are key parameters in direct-
ing cell growth and function.
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6.2.3  Morphology of Fibers

In addition to composition and stiffness, morpho-
logical attributes of the substrate such as fiber 
diameter, orientation, and porosity influence cell 
fates [1, 6, 16, 19, 45, 67, 70, 75, 79, 100, 121, 
124]. It has been shown that fiber orientation has 
a dramatic impact on cell fates, particularly in 
cardiac and neural tissue. Neural precursors from 
mouse embryonic stem cells (ESC), for instance, 
more readily differentiated into mature motor 
neurons and interneurons on aligned poly(Ɛ- 
caprolactone) (PCL) scaffolds [1]. Similarly, 

aligned fiber scaffolds provide better contact 
guidance for nerve and cardiomyocyte elonga-
tion compared to randomly oriented substrates as 
shown in Fig. 6.4; human iPSC derived cardio-
myocytes (hiPSC-CM) show improved cell 
alignment and elongation on electrospun aligned 
nanofibrous polylactide-co-glycolide (PLGA) 
substrates compared to evenly distributed 
 generally round-shaped morphology on flat 
plates [54]. Beyond alignment and elongation, 
better physiological outcomes, including 
increased electrical coupling and cell-cell com-
munication, were also observed by immunostain-

Fig. 6.3 Impact of matrix stiffness. (a) MSC spindle fac-
tor increases on 11 kPa while C2C12 myoblasts remain 
steady. (b) MSC stiffness induced morphological changes, 

scale bar: 12.5 μm. (c) Spindle-factor of MSC over time. 
(Reproduced here with permission from PLoS ONE [116] 
under Creative Commons Attribution License)
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Fig. 6.4 Fiber orientation. Cellular alignment and gap 
junctions of iPSC derived cardiomyocytes on (a) flat plate 
vs. (b) aligned electrospun polylactide-co-glycolide 
(PLGA) nanofibrous substrate. Cells characterized with 

CX-43 (Red), SAA (Green) and DAPI (Blue). (Adapted 
and reproduced here with permission from PLoS ONE 
[54] under Creative Commons Attribution License)
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ing for cell-cell electrical coupling gap junctional 
protein Connexin 43 (CX-43). In addition to 
structural support and guidance, the scaffolding 
must also facilitate cellular and nutrient transport 
for which, adequate porosity, in terms of pore 
sizes and density, is vital.

Electrospinning is an optimal method for fab-
ricating nanofibrous scaffolds with tunable 
porosity to target specific tissue systems and 
sites. Processing parameters can be further 
adjusted to tailor the nanofibrous substrate for 
larger bulk surface area, to increase cellular adhe-
sion, by decreasing fiber diameters. This also 
results in greater porosity. However, in reducing 
fiber diameters, individual pore sizes also shrink, 
which could impede transport of some cells into 
the interior of the scaffold [6]. Chondrogenic dif-
ferentiation, for instance, was found to be greater 
for MSC on PCL microfibers than on nanofibrous 
substrates likely due to smaller pore sizes of 
nanofibrous substrates, precluding MSC from 
penetrating deeper into the scaffold, whereas 
larger pores characteristic of microfibrous sub-
strates allowed for completely colonizing the 
scaffold [6]. One way to overcome this is by 
modulating fiber density across the substrate 
resulting in larger average pore sizes. On the 
other end of the pore size spectrum, smaller pore 
sizes are better suited in applications such as our 
lab-on-a-brane [13] (LOB) capillary mimicking 
in vivo regulation of transendothelial molecular 
transport.

6.2.4  Microarchitecture 
and Materials

As described earlier, during tissue regeneration 
and indeed for tissue engineering applications, 
cells rely greatly on the extracellular environ-
ment for structural support, adhesion capabilities, 
proliferation capacity, alignment guidance, elon-
gation and more, until they can remodel and build 
their natural ECM for homeostasis. The microar-
chitecture and materials must therefore closely 
mimic the in vivo ECM while allowing for tuning 
biomechanical properties and mechanisms for 
providing biochemical cues based on target sys-

tem, tissue type and site. Further, since in vivo 
ECM are generally networks of nanofibers, nano-
fibrous substrates are an optimal structural choice 
for regenerative therapy applications.

Optimal materials for engineered tissue scaf-
folding are determined by the target application. 
For instance, for engineering scaffolding for hard 
tissue such as bone, metals and ceramics [18, 
111] offer optimal biomechanical properties [58], 
whereas polymers are more suitable for soft tis-
sue systems. Engineers further narrow polymer 
selection from among biopolymers, synthetic 
biodegradable polymers, or their blends and 
copolymers [4, 58]. Synthetic polymers com-
monly used for fabricating tissue scaffolding 
include PCL, poly(lactic acid), and poly(glycolic 
acid). In addition to collagen, commonly used 
biopolymers include silk and chitosan, and natu-
ral carbohydrates such as alginate and agarose. 
Several tradeoffs must be considered when decid-
ing between natural and synthetic materials.

Being innately bioresponsive and biodegrad-
able is an advantage for natural protein fibers in 
biomedical applications, but it is not without con-
straints. Consider biodegradability for instance, 
while advantageous overall, absence of control 
over the rate of hydrolytic or proteolytic degrada-
tion makes natural fibers unsuitable for applica-
tions with tighter requirements over synchronized 
degradation of engineered scaffold with tissue 
regeneration. Processing difficulty and greater 
variances in mechanical properties among 
batches of natural polymers are other weaknesses 
of such materials. On the flip side, synthetic poly-
mers offer advantages in parameters such as tun-
able degradation rates, higher precision polymer 
structure, enhanced mechanical properties, and 
lower cost due to ease of bulk production, but are 
inferior to natural materials in offering binding 
sites for anchorage-dependent cells, for instance, 
or may produce potentially acidic or cytotoxic 
degradation by-products among other drawbacks. 
Hybrid polymers, that effectively combine natu-
ral and synthetic polymers to optimize aspects 
from both for achieving application-driven prop-
erties, are increasingly used in engineered tissue 
scaffolding for regenerative medicine and next 
generation MPS.  Nanofibrous PLGA/collagen 
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scaffolds were shown to outperform similarly 
electrospun PLGA nanofibers for ESC 
 proliferation and target differentiation into car-
diomyocytes [93].

6.3  Engineered Biomimetic ECM 
Scaffolds

There’s Plenty of Room at the Bottom. (Richard 
P. Feynman. American Physical Society, Caltech, 
1959)

While they may not have been referred to as 
such, nanotechnology and nanofabrication meth-
ods have long pervaded various spheres of human 
endeavor; including the fine arts, with some 
accounts tracing creative applications of colloi-
dal gold and silver in enhancing the visual 
intrigue of works of art as far back as the forth 
century [84]. Between then and now, the course 
of human history and knowledge has been greatly 
influenced by innovative applications of nano-
technology, but it was only in 1959, with the 
canonical lecture by Feynman at Caltech, that a 
vision for the deliberate exploration of the atomic 
scale was distinctly articulated [31]. Since then, 
nanotech has rapidly ballooned and branched out 
into many subdomains. Nanomedicine is one 
such domain. The NIH define nanomedicine as a 
branch of nanotechnology that focuses on “highly 
specific medical intervention at the molecular 
scale for curing disease or repairing damaged tis-
sues, such as bone, muscle, or nerve,” [83] 
restricting the size scale to under 100 nm, which 
is in the intracellular or sub-cellular domain. 
However, in the context of this chapter, we 
expand the definition of nanomedicine to include 
the immediate nanofibrous extracellular local 
environment and its interaction, interplay, and 
interventions at the sub-micron level (sub-700 
nm). Nanostructured biopolymers exhibiting 
nanofibrous morphology have gained much inter-
est in regenerative medicine and in vitro biomi-
metic systems due, primarily, to the close 
approximation of this nanofibrous morphology to 
nanofeatures found in natural ECM.

Of particular interest within this subdomain 
are advances in controlling material properties 

and optimizing morphology of nanofibrous engi-
neered tissue scaffolds and substrates for biomi-
metic MPS and regenerative medicine 
applications. Despite the growing momentum in 
regenerative medicine toward repairing or replac-
ing diseased or damaged tissue using synthetic or 
natural constructs, complexities in cellular 
response compounded by variables, such as sub-
strate morphology, composition, topography, 
geometry, adhesion profiles, cell-cell and cell- 
ECM crosstalk, and a myriad of other factors 
impede rapid translation from research to clinical 
applications. A host of biomimetic MPS, includ-
ing our recent LOB platform [13], therefore have 
been investigated for enabling rapid development 
of in vitro evaluation models to bridge the chasm 
from bench research to clinical applications. 
Much attention has also been focused on charac-
terizing the interplay between various aspects of 
the substrate and resulting cellular response. 
Optimally, scaffold materials chemistry and 
physical morphology would not only mimic the 
natural environment but also foster cellular 
growth, proliferation, and – for stem cells – dif-
ferentiation into the target lineage. In many appli-
cations, it may also be desired for the biomimetic 
scaffold to ultimately give way to the natural pro-
cess of cellular remodeling of the ECM. In this 
section we examine three distinct methods for 
producing tissue scaffolds and substrates used in 
tissue regeneration and MPS applications.

6.3.1  Decellularized ECM

Before detailing methods that use materials to 
fabricate new scaffolds for engineered tissue, it is 
noteworthy to discuss decellularized ECMs 
whereby new tissue is engineered by repurposing 
existing tissue scaffold. In this approach, cells of 
a donor organ are stripped using various [5, 44, 
133] protocols, leaving behind only the decellu-
larized natural scaffold (Fig. 6.5) which is subse-
quently used to grow new tissue. In theory, since 
the regenerated tissue would be cultured using 
the patient’s own cells, the risk or magnitude of 
any immunogenic rejections would be mitigated. 
This approach, which has been used to engineer 
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heart, liver, lung, and kidney tissue, offers the 
additional prospect for repurposing otherwise 
discarded human tissue scaffolding from routine 
surgical procedures.

Clinically applied examples range from decel-
lularized dermis for burn injuries to decellular-
ized vessels for restoring vascular function [5, 
44]. Although such repurposed tissue scaffolds 
have shown promising results in tissue repair, 
they are not without drawbacks, particularly in 
terms of mechanical properties, immunogenicity, 
degradation, and cross-contamination. Moreover, 
decellularized ECM from animal tissues pose 
other challenges such as dimensional or scaling 
mismatch between donor and target tissues, vari-
ances and mismatches in compositional profile 
and rates of enzymatic degradation, and risks 
associated with xenogeneic pathogens.

6.3.2  Photolithography

Photolithography is a common fabrication tech-
nique used for creating high-fidelity uniform 
microporous and non-porous membrane sub-
strates for in vitro microtissue models. In this 
method, virtually nanoscale features are 
“imprinted” on a thin, typically, polydimethyl 
siloxane (PDMS) membrane by a process similar 
to computer microchip manufacturing. The mod-
els created using this method often include the 
moniker “chip” – as in lab-on-a-chip [9] – due to 
this adaption of computer chip fabrication pro-
cesses. This method essentially involves three 
steps: (a) designing an appropriate mask, (b) cre-
ating a stamp, or master, by patterning SU-8 on 
silicon wafers, and finally (c) spin-coating PDMS 
on the master to manufacture the final micropo-
rous thin membrane. Let’s look at each of these 
closely.

Fig. 6.5 Macroscopic allogeneic aortic valve substitutes after decellularization (a, b) and explant at 15 months (c, d). 
(Adapted and reproduced here with permission from PLoS ONE [44] under Creative Commons Attribution License)
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Low cost photolithography masks are typically 
made using polyester film, however, these may 
not faithfully reproduce very fine features, in 
which case, soda lime glass or quartz masks are 
preferred. The primary role of the mask is to allow 
(or block) high intensity ultraviolet (UV) light to 
selectively cure photoresist coated on a silicon 
wafer, thereby optically transferring the pattern 
from the mask onto the photolithography master. 
With negative photoresist, only the exposed 
regions on the wafer are cross-linked and retained, 
the remaining uncured photoresist is washed 
away during development. An example of a nega-
tive resist mask design, with channels of 10 μm 
diameter hexagonal pores, is shown in Fig. 6.6.

Based on required features, photolithography 
parameters, including the amount of photoresist 
and spin and cure protocols, must be carefully 

selected for creating a suitable master (or stamp) 
from which the final scaffold would be created. 
The master shown in Fig. 6.7, for instance, was 
created by spinning 10g of photoresist using a 
two-speed spin protocol and cured using a glass 
mask in conformal contact to produce the desired 
set of 192,000 posts, each post being ~25 μm tall.

Finally, the master is used to stamp micropat-
terned or microporous substrate membranes 
which would subsequently be used in microtissue 
models. Material and fabrication parameters for 
this part of the process must also be carefully 
selected to produce substrates with properties 
that accurately reflect the target microtissue envi-
ronment. While producing micropatterned sub-
strates using this method is common, fabricating 
and detaching microporous thin membranes can 
be challenging including pores occluded with 

Fig. 6.6 A negative resist mask design with 10 μm fea-
tures spaced 15μm apart in 3 channels. (a) The complete 
mask. (b) A section of a μporous channel patterned on the 

mask. (c) Detailed view of individual μscale features com-
prising the μporous channel pattern. © elixir international. 
(Reproduced with permission. All rights reserved)

Fig. 6.7 Photolithography Master with 192,000 hexago-
nal posts ~10 μm in diameter spaced ~15μm apart on sili-
con wafer. (a) 300 μm resolution of rows of posts. (b) 40 
μm resolution of posts. Note, images of cracked silicon 

wafer taken after membrane was fabricated, hence, some 
residual PDMS deposits and broken posts can also be 
seen. © elixir international. (Reproduced with permission. 
All rights reserved)
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photoresist residue, uneven membrane thickness, 
and tears along porous channels during mem-
brane detachment from substrate.

One approach to overcoming some of those 
challenges is described thoroughly by Huh et  al 
[41]. Alternatively, thin microporous membranes 
(Fig.  6.8) can also be fabricated without PDMS 
backings during stamping. In our approach, we 
spun PDMS directly onto the silanized photolithog-
raphy master, placed a rectangular piece of ordinary 
transparency film (polyethylene terephthalate or 
PET) over the micropatterned area, and a glass slide 
over the PET film, while carefully applying gentle 
pressure to ensure photoresist posts from the master 
make contact with the PET film to produce com-
pletely through pores in the membrane.

This class of substrates, which offers many 
benefits including ease of seeding and imaging, 
has been shown to successfully mimic in vivo 
biomechanical properties, particularly in terms of 
the Young’s modulus, which is an important fac-
tor in driving cell fates. It has also been shown to 
successfully model transport and barrier interface 
functions in various in vitro models, including 
the alveolar-capillary interface of the human lung 
with pulmonary epithelial and endothelial cell 
(EC) layers on either side of a vacuum stretched 
microporous PDMS scaffold fabricated using 
soft photolithography.

However, there are also considerable limita-
tions. While this class of scaffolds successfully 
mimics biomechanical stiffness, the non-uniform 

Fig. 6.8 PDMS membranes 20 μm thick with 10 μm 
pores. SEM showing (a) Membrane cross-section. (b) 
Rows of through pores. (c, d) Hexagonal unoccluded 

micropores. © elixir international. (Reproduced with per-
mission. All rights reserved)
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nanofibrous bundle architecture of in vivo ECM is 
entirely absent resulting in characteristically dis-
tinct adhesion profiles and morphology of cells. 
Furthermore, recapitulating  three- dimensional 
tissue architectures, although it has been done, is 
non-trivial at best. And, since these scaffolds are 
typically not made of materials naturally occur-
ring in vivo, applications other than lab-chip, bio-
reactors, and similar in vitro models, particularly 
in regenerative medicine, are limited.

6.3.3  Electrohydrodynamic 
Atomization (EHDA)

Electrospinning is an electrohydrodynamic 
atomization fabrication method which has been 
widely published since the early 1900s [135] and 
continues to remain attractive for fabricating a 
diverse range of nanofibrous scaffolds and sub-
strates, primarily due to its simple and repeatable 
process that allows for reproducible results and 
the ease with which the process can be modulated 
to achieve tunable fiber sizes, fiber orientation, 

and porosity, among other characteristics [82, 
117]. This versatility enables electrospun nanofi-
brous membranes to closely mimic in vivo ECM 
for a range of disparate tissue system configura-
tions for tissue engineering [10, 49, 59, 101, 112] 
applications. Parameters and resulting impact on 
fibers have been discussed in various research 
manuscripts [6, 97, 138].

Essentially, electrospinning is the drawing and 
whipping of a polymer solution into nanofibers 
by the interplay of gravity, surface tension, elec-
trostatic, and mechanical forces; mechanical 
forces, applied typically by way of syringe 
pumps, push polymer solution out of a nozzle 
while electrostatic forces, in concert with or nor-
mal to gravity, counteract surface tension to draw 
a charged polymer jet toward the grounded col-
lecting plate (or mandrel) positioned across from 
the syringe needle. Diameter, orientation, den-
sity, porosity, and other properties of the resulting 
fibrous scaffold can be adjusted [13, 20, 47, 103] 
by varying several parameters. For instance, as 
shown in Fig.  6.9, collecting electrospun fibers 
onto a spinning mandrel or disk yields uniaxially 

Fig. 6.9 Random (top) 
vs. aligned (bottom) 
electrospun PCL+Gel 
fibers. SEM (left) and 
fluorescent images 
(right) show cellular 
interactions with the 
substrate morphology. 
Scale bars are 20μm. 
(Adapted and 
reproduced here with 
permission from PLoS 
ONE [30] under 
Creative Commons 
Attribution License)
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aligned fibers [30]; while using a stationary 
grounded plate results in non-woven, randomly 
oriented fibrous scaffolds (Fig. 6.10).

This is but one example of the ease with which 
electrospinning parameters and process can be 
adapted to produce scaffolds with a diverse range 
of feature sets to target appropriate tissue systems 
and sites. Electrospinning process parameters 
and the effects of modulating those on the result-
ing fibrous scaffolds [21, 56, 57, 92, 95, 109] 
have been reviewed extensively. By simply 
adjusting the applied voltage, for instance, diam-
eters of electrospun fibers can be tuned from hun-
dreds of nanometers to a few microns. Similarly, 
bulk surface area, fiber density, and porosity of 
scaffolds can be tuned for target adhesion pro-
files, transport, and microtissue architecture 
including modulating mechanical properties such 

as stiffness. Scaffolds can also be treated with 
attachment factors by protein adsorption, immo-
bilization, or other surface functionalization 
treatments. And despite seemingly harsh solvents 
and processing conditions, living cells have been 
integrated in the electrospinning process result-
ing in homogenous distribution of viable cells 
[134]. Thus, while phase separation and self- 
assembly have also been used to produce nanofi-
brous structures, electrospinning is among the 
fastest growing techniques for fabricating these 
scaffolds in research due to its relative simplicity, 
low cost, ease of modification, and applicability 
with natural fibers, synthetic fibers, and ceramics 
[2, 8, 108].

Electrospinning also allows for easily tuning 
chemical composition, fiber-geometry, fiber- 
orientation and density, and introducing soluble 

Fig 6.10 Electrospun nanofibrous scaffold sandwiched 
between PDMS chambers. (a) SEM of scaffold across full 
width of channel. (b) SEM showing nanofibrous morphol-
ogy and interconnected network of pores. (c, d) 

Distribution of fiber diameters (median: 425 nm) and 
poresize (280 nm to 10.7 μm) among larger pores. © IOP 
Publishing. (Adapted and reproduced with permission. 
All rights reserved [13])
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growth factors or basement membrane proteins 
making resulting scaffolds particularly suitable 
for biomimetic applications including regenera-
tive therapy [13, 102, 113, 118]. Various fiber 
properties, tuned simply by modulating electros-
pinning process parameters, have been shown to 
influence cell fates. Aligned nanofibers, for 
instance, induce cell migration along fiber axis 
and improve differentiation compared to random 
nanofibers [34, 65, 100, 127] in MSC and adult 
stem cells (ASC). Finer fiber diameters, modu-
lated by solution concentration, conductivity, or 
applied voltage, improve multi-directional prolif-
eration and differentiation, while large diameters 
lead to cell extension along single fibers [19, 123] 
in ESC and neural stem cells (NSC). Compositional 
changes, including protein  coatings, induce bio-
chemical cues that affect cell proliferation and 
promote differentiation [7, 50, 80, 96, 121]. 
Tuning fiber conductivity, by adding electrically 
stimulatory nanoparticles, has been used to induce 
differentiation into a specific lineage [22, 104]. 
And finally, rough fibers have been shown to be 
better suited for MSC proliferation [15, 72].

6.4  Case Study: Biomimetic 
Tissue and Disease Modeling 
MPS

We are fashioned creatures, but half made up. 
(Mary Wollstonecraft Shelley. Frankenstein, 1818)

In this section we briefly walk through a case 
study in engineering biomimetic microtissue and 
MPS as effective and efficient in vitro platforms 
to facilitate investigation of specific aspects of 
physiological and pathophysiological conditions 
and evaluate efficacy of new formulations. As 
previously alluded, investigators have explored 
several configurations for MPS including 3D, 
layered, or multi-well co-cultures [42, 43, 55, 86, 
88], bioreactors [64], and microfluidics organs- 
on- a-chip [74, 120, 122]. While organs-on-a-chip 
are typically single culture systems, these have 
been connected via fluid flow circuits to simulate 
interfaces between organs or full-body-lab-on-
chip [40] to successfully recapitulate elements of 

the in vivo microenvironment, however, conspic-
uously absent in most of these are the fundamen-
tal pathways for molecular transport: pores.

One way around this limitation is by using pho-
tolithography fabricated microporous membranes, 
which has been shown to form an effective inter-
face between pulmonary epithelial and EC layers 
in mimicking the alveolar-capillary interface of 
the human lung [42]. However, while barrier and 
transport functions were successfully recapitu-
lated, the architecture of the scaffold  – highly 
organized arrangement of uniform size pores  – 
was not representative of in vivo ECM. In this case 
study, we combine electrospun  nanofibrous mem-
branes, which better mimic in vivo ECM, with lab-
on-a-chip microfluidics, which simulate in vivo 
pressure, flow and stretch conditions, to recapitu-
late the organ-capillary interface in the LOB MPS 
that regulates transendothelial molecular transport 
optimized for effective pharmacokinetic evalua-
tion as show in Fig. 6.11.

6.4.1  LOB Microtissue Culture 
Chamber

PDMS Housings PDMS cell chamber hous-
ings, each comprised of two 1mm thick 
60 × 20 mm2 rectangular pieces for the upper and 
lower chambers of the housing, were fabricated 
from 10  g of thoroughly mixed and degassed 
15:1 (wt/wt) PDMS (Sylgard 184 Silicone 
Elastomer Kit. Dow Corning, USA). The mix 
was poured slowly onto a clean flat glass plate 
affixed to the base of a petri dish and allowed to 
cure overnight at 60 °C. Using a stencil, rectan-
gular chambers with a central channel (25×4 mm2) 
were cut out from the cured PDMS. Corners of 
the resulting chambers were also cut out to 
improve bonding [41]. Finally, these were steril-
ized using 70% ethanol, dried, and exposed to 
UV radiation for further sterilization.

Nanofibrous Porous Scaffolds Three sets of 
materials were used to fabricate the nanofibrous 
porous thin membranes to form the channel scaf-
folds in LOB microtissue culture chambers. 10% 
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(wt%) solutions of Nylon 6 (RTP Company, 
USA), collagen (freeze-dried soluble calf-skin 
collagen sponge. Sigma-Aldrich, USA), and 
collagen+PLLA (PLLA source: Absorbable 
Polymers, Birmingham, AL, USA) in 
1,1,1,3,3,3-hexafluoro-2-propanol (HFP) 
(Sigma-Aldrich, USA) were prepared and spun 
directly onto prefabricated PDMS device cham-
bers using a high-voltage power supply (Gamma 
High Voltage Research, M826, USA), a syringe 
pump (KD Scientific Apparatus, USA) fitted with 
a syringe lure locked to a 21½ gauge stainless- 
steel needle, and an aluminum collector. Edges of 
the collector were covered with insulation so that 
only rectangular areas corresponding to the chan-
nels in the PDMS chambers were exposed. 
Collector was rotated every 15 minutes to evenly 
distribute fibers. Upon completion of electrospin-
ning, PDMS chambers with freshly electrospun 
nanofibrous scaffolds were moved to a vacuum 
desiccator to dry overnight. Electrospinning 

parameters [66, 114] were used as tuning gauges 
to obtain desired fiber diameter and poresize. 
Final values of these parameters, listed in 
Table 6.1, resulted in 70 ± 20 μm thick nanofi-
brous scaffolds with non-beaded 425 ± 157 nm 
diameter fibers and up to 82% porosity. While 
fibers aligned along shortest conduction distance 
over long ranges, short-range fiber alignment was 
generally random, with a well interconnected 
network of pores over short and long ranges. 
Mechanical properties, listed in Table  6.2, 
showed stiffness for all nanofibrous scaffolds 

Table 6.1 Electrospinning parameters

Parameter Value
Applied voltage 15 kV
Solution feeding rate 1 mL/h
Total volume 1.5 mL
Collector distancea 20 cm
Collector area 10×20 cm2

adistance measured from needle tip

Fig. 6.11 Illustration highlighting anatomical and physi-
ological characteristics of blood vessels and transport 
regulation vis-à-vis the LOB.  Nanofibrous electrospun 
membrane, mimicking in vivo structural and mechanical 

properties, integrated with lab-chip platform, simulating 
in vivo flow, pressure, stretch, and shear. © elixir interna-
tional. (Reproduced with permission. All rights reserved)
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consistent with previously reported values for 
collagen fibers. Nylon-6 membranes offered 
higher strength and durability. Both the composi-
tion and stiffness were found to be compatible 
with in vivo vascular collagen matrix.

Self-Rivet Next each PDMS chamber with 
nanofibrous scaffolding was bonded with an open 
(no scaffolding) chamber to complete the micro-
tissue co-culture housing so that the nanofibrous 
electrospun scaffold, mimicking in vivo vascular 
ECM, formed the microporous interface between 
top and bottom PDMS chambers. Before bond-
ing, all chambers were sterilized with 70% etha-
nol mist, fully dried, and placed under UV 
radiation for 120 min. On chambers with electro-
spun membranes, approximately 500 μm diame-
ter holes were bored along edges and on the 
corners of the membrane, to expose underlying 
PDMS for self-riveting. Next, the self-rivet ready 
chambers (with membrane side facing up) and 
counterpart membrane-less chambers, were 
treated for 45s with 500-700 mTorr O2 plasma 
pressure, brought in conformal contact so that 
channels on both chambers aligned, clamped and 
cured at 70 °C for 90 minutes to form securely 
bonded LOB co-culture microtissue housings. 
Completed housings are shown in Fig. 6.12 and 
SEM images of sandwiched membranes from 
these housings are shown in Fig. 6.10.

Microfluidics The co-culture microtissue was 
subsequently clamped in reusable polycarbonate 
cassettes – with fittings for fluid inlets and outlets 
for both top and bottom cell chambers – and con-
nected to the LOB microfluidics circuit assembly 
to simulate in vivo biomechanical loading. Note 
that given the invertible sandwich architecture of 

housings and cassettes, in which the central elec-
trospun nanofibrous membrane always remains 
suspended, care must be exercised to ensure that 
adequate media is available to both top and bot-
tom chambers during static culture and under 
flow conditions. Fig. 6.13 shows fluorescent, his-
tology, and 3D confocal images obtained from 
LOB microtissue of SMC and EC blood vessel 
interface and lung microvasculature interface 
where alveolar epithelial cells were in an air- 
liquid interface while the endothelium was main-
tained under hemodynamic conditions.

6.4.2  Modeling In Vivo Organ- 
Capillary Interface in the LOB

In order to model transendothelial molecular 
transport, the LOB was setup as shown in 
Fig. 6.14a, with the endothelial monolayer side 
of the membrane in the tissue culture chamber 
facing up. Other components in the circuit 
included a pump (Ismatec CP-78017-10), tunable 
resistance to modulate pressure in the loop, and a 
one-way valve to prevent reverse flow. The cir-
cuit was also fitted with flow (Transonic 
ME2PXN) and pressure (Validyne Engineering 

Table 6.2 Mechanical properties of electrospun nanofibrous scaffolds

Scaffold Material
Young’s Modulus (kPa) Strength (GPa)
Low High Mean sda Low High Mean sda

Nylon-6 323 471 405.49 56.54 8.58 11.25 9.96 1.22
Collagen+PLLA 427 608 515.36 80.98 2.03 2.29 2.18 0.10

asd standard deviation

Fig. 6.12 LOB co-culture microtissue housings with 
nanofibrous electrospun scaffolding securely bonded 
between 2 PDMS chambers. © elixir international. 
(Reproduced with permission. All rights reserved)
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P55D) sensors wired into a computer running a 
LabVIEW® monitoring program to record pres-
sure and flow waveforms. The tissue was 
 conditioned for flow and pressure for 60 minutes, 
after which, it was subjected to target in vivo 
hemodynamic loading conditions with flow rate 
and pressure maintained at 3 ± 1 mL/min and 80 
± 5 mm Hg, respectively. Microtissue was kept 
under hemodynamic conditions for between 24 
and 48 hours based on experimental objectives.

The barrier function of the interface was 
assessed and monitored under hemodynamic 
load conditions using an independent flow sensor 
connected to the bottom chamber, or collector, to 
ensure no flow was recorded in that chamber. In 
addition, a FITC-Dextran permeability assay was 

used to assess both the barrier and interface func-
tions. Dextran is a polysaccharide with molecular 
mass ranging from 3 to 2000 kDa [27, 38, 73]. 
Transport and barrier functions were tested using 
10 kDa (LifeTechnologies, USA.  D1821) and 
500 kDa (LifeTechnologies, USA.  D7136) 
respectively. As shown in Fig.  6.14B, smaller 
molecules, representing nutrients and drug for-
mulations, diffused across the interface while 
larger molecules were prevented from breaching 
the barrier. Thus, the morphology and phenotype 
of cells (Fig. 6.13) and the transport and barrier 
function of the resulting organ-capillary interface 
(Fig. 6.14), were successfully recapitulated in the 
LOB using electrospun nanofibrous scaffolds 
integrated in a microfluidics circuit.

Fig. 6.13 Recapitulating in vivo blood vessel microenvi-
ronment. (a) Endothelial monolayer on nanofibrous elec-
trospun scaffold with adherens junction formation seen 
with staining for β-catenin. (b) Smooth muscle cells ori-
ented along fiber direction with consistent cell-cell con-
tact in x-y plane and across layers similar to in vivo vessel 
architecture. (c) H&E of 3D smooth muscle μtissue 
around nanofiber bundles. © IOP Publishing. (Adapted 
and reproduced with permission. All rights reserved [13]). 

(d) Endothelial monolayer with preferred orientation in 
direction of fluid flow and actin filaments predominantly 
oriented towards cell periphery. (e, f) 3D confocal images 
of lung microvasculature across nanofibrous electrospun 
scaffold where alveolar epithelial cells (top) were in an 
air-liquid interface while the endothelium, on the other 
side of the scaffold, was under hemodynamic conditions. 
© elixir international. (Reproduced with permission. All 
rights reserved)
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6.4.3  Tumor-Train: Modeling Tumor 
Progression in the LOB

The modular LOB platform can be easily tailored 
and scaled from the simplest – single microtissue 
chamber  – to several chambers connected in 
series, parallel, or any combination thereof for 
mimicking a range of physiological or patho-
physiological conditions. As shown in Fig. 6.15a, 
a multiunit LOB with two co-culture microtissue 
chambers (c1 and c2) connected in series, dubbed 
tumor-train, was used to model pancreatic tumor 
microenvironment and progression.

The flexibility to model and connect multiple 
tissue/organ systems in highly modular Lego®-
like configurations is particularly useful for mod-
eling diseases involving multiple organ 
systems  – such as cancers  – and for predicting 
toxicity and therapeutic efficacy of candidate 
drugs. This level of modular configurational con-
trol is simply not possible in static cell culture or 
animal models. In addition, tumor-train offers 
the distinct advantage of being a humanized sys-
tem, i.e. containing human cellular components; 
making it, not merely configurable but, configu-
rable in a human tissue context to specific dis-
eases, pathways, and other variables under 

investigation. Figure 6.15 highlights this feature 
where after 72-hours of conditioning, luciferase- 
tagged tumor cells were observed to invade non- 
tumorous “healthy” microtissue (c2) from 
“tumorous” microtissue (c1). Moreover, invasive 
cells from the tumor-train also showed a more 
aggressive proliferation profile compared to that 
of the non-invasive cancer cells that remained at 
the “primary tumor” site (c1).

6.5  Future Perspectives

A Tufts/Duke University study [24, 25] assigns 
more than 30% of the cost of approved drugs to 
pre-human costs; about $1.5 billion of $3.9 bil-
lion. While firms categorize costs differently, a 
Boston University [33] study estimates that phar-
maceutical companies spend $34.4 billion annu-
ally on preclinical research. Compound this with 
the finding that 90% of drugs effective in pre- 
human studies fail in human trials [68, 94]. While 
the LOB may not altogether replace animals, it 
could substantially reduce the number used in 
preclinical evaluation. Further, its ability to iso-
late, control, and recapitulate specific physiologi-
cal and pathophysiological conditions within a 

Fig. 6.14 LOB organ-capillary interface transendothelial 
molecular transport assay. (a) Setup integrating tissue co- 
culture chamber [d], with electrospun nanofibrous porous 
membrane sandwiched between two PDMS housings, in 
microfluidic circuit with a pump [a], one-way valve [b], 
flow [c] and pressure [e] sensors, resistance [f] to tune 
pressure, and perfusion media [g]. (b) Results from FITC- 

Dextran permeability tests confirming transport and bar-
rier functions with small FITC-dextran molecules (10 
kDa) diffusing across the interface while larger molecules 
(500 kDa) prevented from flowing across. © IOP 
Publishing. (Adapted and reproduced with permission. 
All rights reserved [13])
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humanized tissue microenvironment coupled 
with the capacity to connect multiple LOB micro-
tissue units in series and/or parallel to model 
various organ systems such as kidney, lung 
(including liquid/air interface), and liver, allows 
for pharmacokinetic and pharmacodynamic anal-
ysis under highly configurable parameters which 
is simply not possible in animal models. A nomi-
nal decrease in preclinical costs of merely 2%, 
from LOB adoption, translates into estimated 
savings of $688 million annually to the pharma-
ceutical industry. Such savings would increase 
capacity to investigate more compounds thereby 
expediting the pace at which new treatments are 
discovered and delivered to patients. Similarly, 
from a regenerative medicine perspective, 
advances in nanotechnology particularly within 

the context of nanomedicine will help address the 
already large and steadily widening toll imposed 
by conditions such as cardiovascular diseases and 
cancer. We see the potential from advances in 
stem cell and nanotechnology domains being 
realized both at the intracellular – sub 100 nm – 
and extracellular size scales – sub 750 nm – over 
the next five to fifteen years. Further, it is our 
opinion that this exploration will continue to 
transcend traditionally isolated disciplines in 
developing better substrates and tissue systems, 
designing and scaling more effective models for 
identifying, evaluating and delivering therapeutic 
agents, and deriving and administrating patient 
specific  – personalized or precision medicine  – 
treatments; thereby enhancing both the quantity 
and quality of lives of people around the world.

Fig. 6.15 Tumor-Train tumor microenvironment and dis-
ease progression model. (a) Setup integrating two tissue 
co-culture chambers, with S2VP10-Luc “tumorous” tis-
sue in [c1] and “healthy” tissue downstream in [c2] con-
nected in series [d]. A semi-independent lymphatic loop 
[L1, L2] was also integrated in the microfluidic circuit 
while the remaining components, including the pump [a], 
one-way valve [not shown], flow [b] and pressure [e] sen-
sors, resistance [not shown], and perfusion media [f], mir-
rored those from Figure 6.14. (b) Environmental SEM of 

tumorous μTissue with cancer cells growing many layers 
deep into nanofibrous matrix. (c) Luciferase tagged can-
cer cells migrated ~18cm from primary tumorous μtissue 
[c1] downstream and attached to healthy μtissue of 
untagged fibroblasts [c2]. (d) Microtissue from [c2] was 
placed in static culture for 48 hours and then moved to a 
fresh well for imaging. Relatively aggressive proliferation 
profile was observed in cells that invaded healthy micro-
tissue. © elixir international. (Reproduced with permis-
sion. All rights reserved)
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Silk Fibroin in Wound Healing 
Process

Md. Tipu Sultan, Ok Joo Lee, Soon Hee Kim, 
Hyung Woo Ju, and Chan Hum Park

Abstract
Silk fibroin (SF), a natural bioproduct, has 
been extensively used in biological and bio-
medical fields including wound healing due to 
its robust biocompatibility, less immunogenic, 
non-toxic, non-carcinogenic, and biodegrad-
able properties. SF in different morphologic 
forms, such as hydrogels, sponges, films, elec-
trospun nanofiber mats, and hydrocolloid 
dressings, have been successfully used for 
therapeutic use as wound dressings to induce 
the healing process. SF has also been known 
to promote wound healing by increasing the 
cell growth, proliferation, and migration of 
different cells types involved in the different 
phase of wound healing process. In this 
review, we summarize the different morpho-
logic forms of SF that have been used in the 
treatment of various wound healing process. 

We also discuss the effect of SF on various 
cells types during the SF-induced healing pro-
cess. Furthermore, we highlight molecular 
signaling aspects of the SF-induced healing 
process.

Keywords
Silk fibroin · Shape · Wound healing · Wound 
dressings · Signaling pathways

7.1  Introduction

Wound healing is a complicated process that 
involves interactions with different cells and 
matrices, among various overlapping phases of 
events including inflammation, new tissue forma-
tion, and remodeling of tissue taking place [18, 
57, 83]. Inflammation is the first phase of wound 
healing, which occurs immediately after injury 
and can last for up to 2 days. Activation of the 
inflammatory pathways, coagulation cascade, 
and immune system are needed to prevent con-
tinuing blood and fluid losses, to remove dead 
and dying tissues and to stop infection. 
Inflammatory cells such as neutrophils and mac-
rophages play numerous critical roles to support 
the repair process by removing pathogens or 
injured cells through phagocytosis, and via the 
production of several cytokines and growth fac-
tors [24, 85]. The new tissue formation is the 
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 second phase of wound healing, which is associ-
ated with angiogenesis, re-epithelialization, 
granulation tissue configuration, matrix/collagen 
deposition, and wound contraction [24, 53, 85]. 
The wound healing process is accomplished by 
the maturation or remodeling phase, which can 
stay for a year or more depending on the extent of 
the injury, and is coupled with the remodeling of 
the epidermis and extracellular matrix (ECM) 
[27, 53].

There are several wound dressing biomaterials 
on the market in the present day, such as those 
composed of hydrocolloids [98], alginates [93], 
polyurethane [44], collagen [70, 87], chitosan 
[63], and hyaluronic acid [92]. To display 
enhanced wound healing, dressing’s materials 
should exhibit biocompatibility, an ability to pro-
vide a favorable moist environment for wound, 
confer protection against dust and pathogen, con-
trol of structure for gaseous permeation, the bio-
degradability of the material to escape disrupting 
the wound site, waterproofness and easy applica-
tion and removal [78].

SF, a fibrous protein derived from Bombyx 
mori, has been extensively applied as a promising 
biomaterial for tissue engineering and regenera-
tion applications [33, 38, 39, 55]. Compared with 
other biomaterials, such as polylactic acid and 
collagen, SF has exceptional mechanical strength, 
toughness, and thermal stability. Also, SF is 
proved to contain the tripeptide Arg-Gly-Asp 
(RGD) sequences that can support cell adhesion, 
proliferation, and migration [3, 7, 10, 30] of vari-
ous cell types, including epithelial, endothelial, 
fibroblast, keratinocyte, glial, and osteoblasts 
[52, 100, 102]. The application of SF as a suture 
for wound treatment [3, 62] started centuries ago. 
Several studies have reported that SF in different 
forms, such as hydrogels [20], sponges [75], 
films [20, 43], electrospun nanofiber mats [76], 
and hydrocolloid dressings [48], have been suc-
cessfully used for therapeutic use as wound 
dressings to promote the healing process [67, 79, 
91, 97]. In this chapter, we focus on several mor-
phologic forms of SF used in wound healing, cel-
lular response to SF during the healing process, 
and mechanisms underlying the SF-induced 
wound healing process.

7.2  SF in Different Forms 
for Wound Healing 
Applications

SF can be tailored to hold a wide range of forms 
such as powder, solution, fibers, hydrogels, films, 
and sponges via different treatment approaches. 
Due to the ease of processing in diverse forms 
and control ability of molecular structure and 
morphology, SF-based biomaterials has been 
extensively used in several morphologic forms in 
different wound healing applications (Table 7.1).

7.2.1  SF Solution

SF solution can be obtained by degumming the 
silk cocoons in an aqueous solution of 0.02 M 
Na2CO3 by boiling for 40 min at 95 °C, flowed 
by washing with distilled water to eliminate the 
glue-like sericin proteins [14, 47, 52, 66, 67]. 
Subsequently, degummed SF was solubilized 
with CaCl2, ethanol, and H2O (at a molar ratio of 
1:2:8) for 50  min at 98  °C.  This solution was 
then filtered through the dialysis membrane for 

Table 7.1 Different morphologic forms of SF for various 
wound treatments

Morphological form Types of wounds References
Solution Partial-thickness 

skin wound
[1, 4, 52, 
68]

Scratch wound
Corneal epithelial 
wound
Burn injury

Hydrogel Burn wound [34, 89]
Scratch wound

Film Full-thickness skin 
wounds

[65, 86]

Acute dermal 
wound

Sponge Full-thickness skin 
wounds

[75, 87]

Electrospun silk 
fibroin mat

Burn wound [2, 33, 
76]Full-thickness 

dermal wound
Chronic non- 
healing wound

Hydrocolloid 
dressing

Burn wound [48]

M. T. Sultan et al.



117

3 days to obtain SF solutions (Fig. 7.1.). It has 
been demonstrated that SF in solution state 
induced wound healing in a scratch wound 
model in vitro [52]. Recently Park et al. exhib-
ited that silk solution significantly induced heal-
ing effect both in vitro and in vivo [68]. They 
used a scratch wound model with NIH3T3 cells 
and a partial excision skin wound model with rat 
for in vitro and in vivo for the evaluation of silk 
solution wound healing ability, respectively. 
Solubilized silk-derived protein (SDP) as an eye 
drop has also been applied to enhance rabbit cor-
neal epithelial wound healing process [1]. The 
regenerated SF solution can be applied to formu-
late different types of ointment and creams for 
various wound healing purposes.

7.2.2  SF Hydrogels

Hydrogels are three-dimensional polymeric net-
works with high swelling ratio which are in aque-
ous solution. Due to the relatively good 
biocompatibility, hydrogels generally fabricates 
with naturally derived polymers, such as collagen 
[59], hyaluronic acid [9], chitosan [56], SF [34, 
45], alginate [8], and gelatin [94]. Gelation of the 
SF solution can be maintained by temperature, 
calcium ion concentration, pH, and polymer 
blending with materials like polyethylene oxide 
(PEO) to produce a hydrogel [23, 42, 72]. 
Hydrogels have been extensively applied in a 
wide range of biomedical applications including 
wound treatment [16, 35]. The silk-based hydro-

Fig. 7.1 Schemetic of SF extraction procedure. Silk 
cocoon was degummed with an aqueous solution of 0.02 M 
Na2CO3 by boiling for 40 min at 95 °C, and then washed 
with distilled water to eliminate the glue-like sericin pro-

teins. Degummed SF was solubilized with CaCl2, ethanol, 
and H2O (at a molar ratio of 1:2:8) for 50 min at 98 °C. This 
solution was then filtered through the dialysis membrane 
for 3 days to obtain SF solutions [14, 47, 52, 66, 67]
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gel has been shown to have potential effects on 
wound healing. The favorable effects of SF not 
only for the induction of cell attachment, growth, 
proliferation, migration, and production of extra-
cellular matrix (ECM) but also for the enhance-
ment of the hydrogel mechanical strength that is 
fabricated from other natural polymers [36]. SF- 
based hydrogel have been reported for burn- 
induced wound healing applications in a rat model 
[34]. Biomimetic hydrogel loaded with silk and 
L-proline demonstrated significantly improved 
wound healing effect in vitro [89]. It has also been 
reported that silk hydrogel contain Centella asi-
atica extract and hydrocortisone acetate used for 
healing of pressure sores in vivo [46]. Although 
SF hydrogels have been successfully applied in 
many studies for wound treatment, SF hydrogels 
should essentially be designed by mimicking the 
structure and function of the native extracellular 
matrix (ECM) proteins, which offer mechanical 
support and regulate cellular activities during the 
healing process.

7.2.3  SF Films

SF membranes offer a well-designed and straight-
forward biomaterial of choice medical applica-
tions. Due to the intrinsically less complicated 
character of membranes, these materials offer 
quick characterization and design with regards to 
scaffold development. Silk films have been 
employed for the healing of full-thickness skin 
wounds in rats, and it showed faster healing with 
a lower inflammatory response than traditional 

porcine-based wound dressings [86]. Recently, 
Zhang et  al. evaluated the clinical application 
capability of the SF film to treat donor site 
wounds in a randomized single-blind parallel 
controlled clinical trial. They observed treatment 
with the SF film significantly promoted the 
wound healing speed and reduced the occurrence 
of adverse events as compared to the commercial 
dressing. From their observation, they demon-
strated that the SF film is an effective and safe 
biomaterial for skin repair and regeneration, 
which can be easily translated to the future clini-
cal treatment of skin wounds [105]. Padol et al. 
discovered that SF film, as a novel wound healing 
material, is very efficient with epidermal growth 
factor for the acute wound [65]. Since silk film 
offers numerous advantages over other dressing 
materials such as transparent, easily obtainable, 
sterilizable, allowing easy observation of tissue 
regeneration during the healing process, it could 
be clinically useful for wound treatment.

7.2.4  SF Sponges

Porous sponges are significant tissue engineering 
materials and regenerated SF solutions also have 
been utilized in the fabrication of porous sponges 
[5, 37, 49, 60, 75, 81]. Sponge scaffolds provide 
a framework of interconnected pores with a high 
amount of surface area within a defined three- 
dimensional volume, which allows for cell 
attachment and tissue ingrowths. SF porous 
sponges can be obtained using gas forming, poro-
gens, freeze-drying (Fig.  7.2), freeze-drying/

Fig. 7.2 Schemetic process for the preparation of the porus SF sponge using the freeze-drying method [87]
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foaming, and electrospun fibers [51, 58, 103, 
104, 106]. Due to the fragile nature of SF sponge, 
SF as a hybrid sponge with others polymers has 
been successfully applied in several studies for 
wound healing applications [41, 87]. Roh et  al. 
have been tested silk protein alginate sponge for 
dressing of full-thickness skin defect on rat- 
model [74]. Lee et  al. suggested that the silk/
duck’s feet collagen hybrid sponge could be used 
as a dermal replacement for full-thickness skin 
defects [47].

7.2.5  Electrospun SF Mats

Recently, scientists have extensively focused on 
developing micro to nanofiber-based dressings 
for wound healing that can mimic the native der-
mal ECM with large surface area and high poros-
ity. Nowadays electrospinning SF solution is a 
favored processing methods for obtaining nano to 
micro-scale fibers that result in a high degree of 
available surface area for use in developing scaf-
folds for tissue engineering and regenerative 
medicine purposes [19, 32, 40, 54]. Electrospun 
SF nanofibrous materials have been widely stud-
ied with functional properties such as high 
 porosity, biocompatibility, and less inflammation 
for wound healing treatment. In numerous stud-
ies, electrospun silk materials have been reported 
as an ideal wound dressing material [84, 97]. 
Chutipakdeevong et al. developed an electrospun 
SF fiber mat which exhibited good support for 
cellular adhesion with accelerated wound healing 
[15]. To promote wound healing, Akturk et  al. 
have been developed an electrospun SF/gold 
nanoparticle 3D matrices which accelerated the 
wound healing process without toxic effect both 
in vitro and in vivo [2]. It has also been revealed 
that the incorporation of growth factors into elec-
trospun silk mats induced chronic wound healing 
process [76]. However conventional electrospun 
SF nanosheet has limitations for a wound healing 
application due to the problem associated with 
electric resistance to increase electrospun mat 
thickness (<1  mm) of SF nanosheet and the 
inability to provide large pore structure. These 
structural constraints result in lesser water 

absorbability and fast drying of wound bed. 
Therefore, SF nanosheet obtained with a conven-
tional electrospinning method has limitations for 
application in wound treatment in comparison to 
foam type dressings including alginate sponge, 
and polyurethane foam used in clinical treat-
ments. To overcome these limitations, recently 
our group has been developed an electrospun SF 
nanomatrix with bulk volume and large pores 
using a modified electrospinning method com-
bined with porogens (sodium chloride crystal) 
dispensing apparatus [33]. We revealed that our 
nanomatrix effectively promoted healing process 
by suppressing inflammation, and inducing re- 
epithelialization with less scar formation and 
short healing period in a second-degree burn 
wound rat model. Furthermore, Lee et  al. have 
addressed an efficient design to fabricate SF 
nanofibers. They poured different size of NaCl 
crystals during electrospinning, which enhances 
large pores within the electrospun fibers. Their 
improvisation to the conventional electrospin-
ning method resulted in thick nanofiber mats 
with highly porous structures within the nanofi-
bers, which favorably lead to improvements in 
cell proliferation and infiltration. Also, they 
investigated the wound healing effect of their 3D 
SF nanofiber matrix produced by this method, 
and they found a significant healing effect with 
less contracture in compare to Matriderm® (a 
commercial wound dressing) in a full-thickness 
skin defect rat model.

7.3  Cellular Response to SF 
During Wound Healing 
Process

Several types of cells such as neutrophils, lym-
phocytes, monocytes, macrophages, fibroblasts, 
keratinocytes, mesenchymal, and endothelial 
cells are implicated in the wound healing process 
[26]. Inflammatory cells have several functions in 
both early and late phases of inflammation [24]. 
Neutrophils are the first inflammatory cells 
appear at the spot of injury, followed by macro-
phages, monocytes, and lymphocytes. They 
engage in the phagocytosis of microorganisms 
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and cell debris and are an essential source of 
cytokines and growth factors [71, 96]. Mediators 
produced by macrophages and nearby cells start 
the proliferative phase of the healing process. 
The proliferative phase of the wound healing 
starts with the proliferation and migration of 
keratinocytes and fibroblasts into the wound 
edge. These cells are implicated in the deposition 
of collagen and wound construction. 
Macrophages, endothelial, fibroblasts, and epi-
thelial cells are accountable for matrix remodel-
ing in the maturation or remodeling phase. Most 
likely interactions between mesenchymal and 
epithelial cells continuously control homeostasis 
and skin integrity [88]. In wound healing, several 
cell types proliferate and migrate [17], with fibro-
blasts as critical components of the normal 
wound healing from the late inflammatory phase 
until achievement of complete epithelialization 
[21]. Early studies revealed that SF increased cell 
growth and cell proliferation [20, 38, 39, 52, 100, 
102]. SF solution, when coated on polyurethane 
and poly (carbonate) urethane films and scaf-
folds, enhanced the adhesion and proliferation of 
human fibroblasts [13, 69]. It has also been 
reported that SF solution induced the cell prolif-
eration and migration of primary human dermal 
fibroblasts (HDF) cells and NIH3T3 cells with 
significant healing response in a wound scratch 
healing model [68]. A similar result has been 
demonstrated in a previous study where SF accel-
erated human skin fibroblast proliferation [102]. 
Another study revealed that SF nanofibers mat 
enhanced fibroblast cells proliferation up to 
7 days culture [80]. Thus SF in different forms 
induced healing process of different wound heal-
ing by increasing the cells proliferation and 
migration of various cells type involves in differ-
ent stages of healing process.

7.4  SF and Wound Healing 
Mechanism

Successful wound healing is a complicated pro-
cess requires the interaction of several cell types, 
cytokines, growth factors, and extracellular cel-
lular matrix (ECM) components. During wound 
healing process, several complex cellular signal-

ing including AKT/mTOR signaling [101], Wnt 
and Notch signaling [82], mitogen-activated pro-
tein kinase (MAPK) signaling [11, 90], and 
transforming growth factor beta (TGF-β) signal-
ing [12] take place in a closely coordinated cas-
cade to heal the injury. SF has been known as a 
potential dressing for wound treatment for more 
than one hundred years. So far, few studies have 
demonstrated the mechanistic aspects of the 
SF-induced wound healing process in vitro [52] 
or in vivo [4, 68] (Fig. 7.3).

Cellular pathways such as AKT/mTOR sig-
naling [101] and MAPK signaling [11, 90] had a 
significant role in wound healing processes. A 
recent study explored that SF stimulated cell 
migration in a scratch wound assay via the activa-
tion of c-Jun N-terminal kinases 1/2 (JNK1/2) 
and extracellular signal-regulated kinases 1/2 
(ERK ½) [52]. More recently Aykac et al. have 
been reported that SF exerted a protective effect 
in burn injury in a rat model via inactivation of 
apoptotic pathway [4]. Although NF-ĸB has been 
known as a modulator of the inflammatory 
responses and immune cell functions, it is evi-
dent that the stimulation of NF-ĸB in wound 
healing is a common matter [28, 82, 95]. NF-ĸB 
signals have been involved in scratch injury [27], 
corneal epithelial wound healing [95], and cuta-
neous wound healing [11, 29]. Recently our 
group has been explored that SF induced skin 

Fig. 7.3 Silk fibroin induces wound healing by activating 
different cellular pathways and via increasing cell sur-
vival, proliferation, and migration [4, 52, 68]
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wound healing effects in a rat model via activat-
ing the canonical pathway of NF-ĸB signaling 
[68]. Numerous cytokines and growth factors 
have been known to play a critical role in wound 
healing process. These comprise tumor necrosis 
factor-α (TNF- α), interleukin-lβ (IL-1β), inter-
leukin- 6 (IL-6), interleukin-6 (IL-8), interleukin-
 10, transforming growth factor (TGF α and TGF 
α), vascular endothelial growth factor (VEGF), 
epidermal growth factor (EGF), and as well as 
platelet-derived growth factor family [27, 88, 
96]. Several studies revealed that SF suppressed 
the increased proinflammatory cytokines during 
inflammation phase of wound that results in pro-
tective effect in cells and tissues during wound 
healing [4, 33].

Different types of wound healing such as burn, 
bruise, ulceration, which may lead to different 
healing progress of the wound. Previous evi-
dences revealed that cyclin D1, vimentin, fibro-
nectin, and VEGF has a significant role in several 
types of wound healing process including burn, 
bruise and ulceration. Fibronectin is known to 
involved in the healing process of burn [61], ulcer 
[25, 99], and bruise [50]. It has been demon-
strated that VEGF regulated the healing process 
of ulcer [6, 73], bruise [64], and burn [22]. Early 
evidence revealed that cyclin D1 played a pro-
found role in ulcer [77] and burn [31] wound 
healing process. In our previous study, we 
revealed that NF-ĸB signaling pathway regulated 
SF-accelerated healing process via modulating 
its regulated proteins such as vimentin, fibronec-
tin, VEGF, and cyclin D1 [68]. From these evi-
dence it can be speculated that SF could be a 
useful material for all of the wound healing pro-
cess. Thus, more studies needed to be conducted 
to explore the mechanistic insight in SF-induced 
wound healing processes.

7.5  Conclusions and Future 
Perspective

SF, as one of the most ancient natural polymers, 
has attracted intense interest in recent decades for 
various astonishing biomedical applications 
including wound healing due to their competent 
biocompatibility, least inflammatory response to 

host tissue, comparatively slow biodegradation 
rates compared to other materials, ease of use, 
and easy availability. It has been revealed to be a 
promising biomaterial in several forms, such as 
solution, hydrogels, sponges, films, hydrocolloid 
dressings and electrospun SF nanofiber mats in 
various wound healing applications. However, 
silk fibroin has some disadvantages including 
easy fragmentation, brittleness, and difficulty in 
creating a uniform thickness. Although numeous 
literature are available on SF and modified SF 
(composites/blends/derivatives) for wound heal-
ing, there are many challenges remain to be 
explored in the process of wound healing. Further 
studies are needed to improve the potential effect 
of SF for different types of wound healing 
applications.

Furthermore, SF has been used efficiently in 
therapeutic practice to enhance tissue regenera-
tion and promote wound healing via cell prolif-
eration, migration and differentiation, little effort 
into the molecular signaling (cellular/biochemi-
cal) mechanisms underlying these phenomena 
have been reported. Therefore intense research is 
needed to be carried out to explore mechanistic 
basis for SF on the wound to fabricate a new 
array of SF-based biomaterials for treatment of 
different types of wound healing.
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Abstract
Autoimmune diseases (ADs) constitute a het-
erogeneous group of more than 100 patho-
physiological conditions in which an immune 
response against the self is observed. The inci-
dence and prevalence of these chronic dis-
eases are increasing with inherently high 
social and economic impacts. The currently 
available therapies generally focus on reduc-
ing the activity of the immune system and, 
therefore, can present severe side effects such 
as enhanced patient susceptibility to opportu-
nistic infections. Advanced therapies emerged 
as promising treatments and with real curative 
potential for ADs. Additionally, the use of 
natural polymers to engineer gene therapies, 
cell therapies and/or tissue-engineered medic-
inal products presents specific advantages. 
Natural polymers present higher affinity with 
biological systems than synthetic polymers, 
and frequently have a chemical structure and 

motifs similar to those existing in the extracel-
lular matrix of the tissues. They also have 
good biological performance, making them 
very strong candidates for advanced therapy 
medicinal products. This review discusses the 
therapeutic advances and provides demonstra-
tive examples of the role of natural-based bio-
materials for the development of advanced 
therapies for ADs.
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8.1  Fundamentals of Advanced 
Therapies for ADs

According to the American Autoimmune Related 
Disease Association (AARDA), autoimmune dis-
eases (ADs) consist of a group of more than one 
hundred pathophysiological conditions. The inci-
dence and prevalence of ADs are both increasing 
over the last decades [62], affecting 5–10% of the 
world population, and being women more fre-
quently affected than men [79, 88].

Traditionally, these immune-mediated dis-
eases are divided in two groups, namely into 
organ-specific and non-organ-specific or sys-
temic ADs [41, 96]. Despite the clinical hetero-
geneity of ADs even within a single disease 
variant [21], they are characterized by an inap-
propriate and harmful immune response against 
the patient own organs, tissues or cells (Fig. 8.1). 
The physiological and primary function of the 
immune system is to protect the organism against 
diseases. Therefore, this complex system must be 
able to distinguish self (e.g. cell receptors, hor-
mones and growth factors) from non-self (e.g. 
viruses, bacteria and toxins) and self-presenting 

modifications (e.g. tumor cells and virus infected 
cells) in order to destroy and debug them [24]. 
Two major and cooperative pillars are responsi-
ble for immunity, namely the innate (inborn) and 
adaptive (acquired) immune system. Innate 
immune responses are the first line of defense 
against pathogens, initiating the host response 
with posterior activation of the adaptive immune 
system [90]. The innate system comprises physi-
cal barriers (e.g. skin and saliva), several immune 
cells (e.g. monocytes, macrophages and neutro-
phils) and soluble factors (e.g. cytokines and che-
mokines). Unlike the innate defense, the adaptive 
immune response is highly specific, destroying 
the invading pathogens and any toxins produced 
by them. Additionally, it can provide long lasting 
protection that will allow for a fast defense 
response in the event of a new contact with that 
specific pathogen [90]. The adaptive immune 
system involves T lymphocytes, responsible for 
cell-mediated immune responses and B lympho-
cytes, responsible for humoral immune responses 
[20, 42]. In the last years, it has been described 
that all individuals present a “healthy level” of 
autoimmunity, which is essential for the protec-

Fig. 8.1 Schematic illustration of some ADs in the 
human body as well as of the factors that can be respon-
sible for their development. ADs can affect a single organ 

(organ-specific diseases) or several organs (non-organ- 
specific or systemic diseases), leading to positive and 
negative regulation of several signalling biomolecules
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tion against the development of degenerative dis-
eases [12]. Moreover, the human body developed 
specific mechanisms to replace or purge autore-
active B lymphocytes that are produced [113]. 
Indeed, self-reactivity is by no means rare [118]. 
Therefore, a disturbance in the homeostasis of 
those biological processes triggers an abnormal 
immune response and consequently a debilitating 
and chronic condition –AD-, by the loss of immu-
nological tolerance to specific self-antigens.

ADs present an enormous disease burden 
regarding human suffering and economic costs 
[93]. Common ADs include rheumatoid arthritis, 
multiple sclerosis, Graves’ disease, systemic 
lupus erythematosus, type 1 diabetes, psoriasis, 
celiac disease and inflammatory bowel disease. 
Although the exact etiology of ADs is still 
unknown, it is well recognized that genetic, epi-
genetic, hormonal and environmental factors 
have an important role in the disease susceptibil-
ity and progression [24, 70, 73] (Fig. 8.1).

In the last years, a better understanding of 
ADs immunopathogenesis and increasing knowl-
edge of the immune system led to a dramatic 
change in the available treatments modalities, 
aiming generally to control the overactive 
immune response and inflammation. 
Unfortunately, a treatment that restores health is 
still to be developed [79]. However, biological 
therapies (e.g. monoclonal antibodies), which 
can target defined pathways of the adaptive 
immune response have been used in the clinic 
with satisfactory outcomes [15]. Nevertheless, 
these therapies are quite expensive and can pres-
ent severe side effects, such as enhanced patient 
susceptibility to opportunistic infections or can-
cer [15]. Therefore, new therapeutic strategies 
with more efficacy and specificity and avoiding 
the collateral effects are needed to significantly 
improve the currently available treatments of 
ADs.

The design of strategic and effective therapeu-
tic plans should take into account several factors, 
namely (i) the AD in question and its specific bio-
markers; (ii) the clinical stage of the disease; and 
(iii) the clinical background of the patient com-
prising the diagnostic tests, the environmental 
and immunological information, and the treat-

ments previous performed. Therefore, a person-
alized health care is fundamental to (i) know 
what, how and when signalling pathways need to 
be targeted, (ii) improve the therapeutic out-
comes, (iii) mitigate toxicity and (iv) prevent suc-
ceeding diseases/comorbidities. Additionally, an 
early diagnosis and onset of treatment is 
extremely important to minimize, e.g., the dam-
age of organs, the loss of physical mobility and 
the increased likelihood of death.

Advanced therapy medicinal products 
(ATMPs) have emerged as promising therapies 
for ADs, due to their potential to cure severe 
chronic conditions [45]. Indeed, gene therapy, 
cell therapy, tissue-engineered medicines or their 
combination [33] have been considered the 
health’s future and a great opportunity for thera-
peutic innovation [83]. However, despite the 
nomenclature of ATMPs was only introduced in 
2007 by the European Commission Regulation 
No  1394/2007, the clinical use of medicinal 
products based on cells or genes, for example, 
initiated previously. Indeed, since 1950s that 
hematopoietic stem cell transplantation has 
become an established treatment for patients with 
advanced or refractory diseases [49], becoming 
in the mid-1990s an accepted therapeutic proce-
dure for patients with severe ADs [51]. Besides 
hematopoietic stem cells, there are several types 
of stem cells, such as neural, embryonic and mes-
enchymal stem cells that provide an unprece-
dented hope in the treatment of ADs. Table 8.1 
presents examples of ATMPs recommended by 
the European Medicines Agency (EMA) to treat 
some ADs.

The association of cells with a supporting 
matrix -scaffold- can be an advantageous solu-
tion to maximize their efficacy. Indeed, excluding 
blood circulating cells, most cells are anchorage- 
dependent and in the tissues they attach to the 
extracellular matrix (ECM) [19]. The scaffold 
provides both the surface and the structural sup-
port for the cells to attach, proliferate and differ-
entiate leading to the restoration or regeneration 
of the defective tissues [18, 19]. Additionally, the 
scaffolds can be enriched with drugs or growth 
factors enabling achieving the desired therapeu-
tic effect.

8 The Role of Natural-Based Biomaterials in Advanced Therapies for Autoimmune Diseases
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Scaffolds are typically engineered using 
ceramics and/or polymers. The choice of the 
material used to produce the scaffold is critical to 
mediate the biological activity of the cells [18]. 
Ceramics, such as hydroxyapatite and tri-calcium 
phosphate, are mainly used for bone tissue engi-
neering and in combination with polymers, to 
improve their mechanical and biological 
 properties [18]. Regarding their origin, polymers 
may be classified as natural or synthetic. Both 
natural and synthetic polymers present advan-
tages and disadvantages in the biomedical field 
[10, 77], being the concrete application that usu-
ally determines which one to use. Natural poly-
mers present chemistry and structure with an 
inherent affinity with biological systems and with 
the ECM of many tissues [76]. Moreover, the 
well- designed molecular structure and unique 
properties of many natural polymers cannot be 
reproduced in the lab [110]. Natural polymers 
can also be modified to improve their characteris-

tics, modulating their chemical, mechanical and 
bioactive properties [100].

Naturally occurring polymers are produced by 
living organisms (animals, plants and microor-
ganisms) and can be divided into three major 
classes according to their chemical structure, 
namely polysaccharides (e.g. alginate, hyaluronic 
acid, agarose and cellulose), proteins (e.g. colla-
gen, gelatin, elastin and silk fibroin) and polyes-
ters (e.g. polyhydroxyalkanoates) [3, 116]. 
Polysaccharides are widely used for cell encap-
sulation, mainly due to their ability to form 
hydrogels under mild conditions [30]. Indeed, 
hydrogels present several interesting properties: 
(i) enable the mild immobilization of cells and 
other therapeutic agents, such as drugs and 
growth factors; (ii) have a predictable swelling 
and degradation; (iii) enable designing self- 
assembly systems or devices that can be regu-
lated by environmental parameters, such as pH or 
temperature; (iv) have a controlled porosity; (v) 

Table 8.1 ATMPs recommended by the European Medicines Agency for the treatment of ADs [31]

Product description Disease
Medicinal product 
classification Date/status

Allogeneic human glial-restricted precursors 
(EMA/664954/2017)

Amyotrophic lateral 
sclerosis

Tissue engineered 14/09/2017

Human umbilical cord blood-derived mesenchymal 
stem cells (EMA/534881/2017)

Atopic dermatitis Somatic cell 
therapy

30/06/2017

Freshly isolated autologous adipose-derived 
mesenchymal stem cells (EMA/417057/2017)

Autoimmune drug 
resistant epilepsy

Somatic cell 
therapy

06/06/2017

Allogenic Wharton’s jelly-derived mesenchymal 
stem cells (EMA/417124/2017)

Amyotrophic lateral 
sclerosis

Somatic cell 
therapy

06/06/2017

Bone marrow-derived lineage negative heterogenic 
stem and progenitor cells (EMA/54559/2017)

Amyotrophic lateral 
sclerosis in adults

Tissue engineered 19/12/2016

Bone marrow-derived autologous non- 
haematopoietic stem cells (EMA/758163/2016)

Multiple sclerosis Tissue engineered 04/11/2016

Bone marrow-derived autologous non- 
hematopoietic stem cells (EMA/264406/2016)

Type I diabetes Somatic cell 
therapy

21/12/2015

Adipose-derived mesenchymal stem cells 
(EMA/555245/2015)

Rheumatoid arthritis 
and systemic lupus 
erythematosus

Somatic cell 
therapy

26/01/2015

Bone marrow-derived autologous non- 
hematopoietic stem cells (EMA/264542/2016)

Rheumatoid arthritis Somatic cell 
therapy

21/12/2015

Human mesenchymal stem cells-derived from 
Wharton’s jelly tissue of umbilical cord 
(EMA/240980/2016)

Amyotrophic lateral 
sclerosis

Somatic cell 
therapy

27/10/2015

Human mesenchymal stem cells-derived from 
adipose tissue (EMA/240982/2016)

Amyotrophic lateral 
sclerosis

Somatic cell 
therapy

27/10/2015

Human mesenchymal stem cells derived from bone 
marrow (EMA/240985/2016)

Amyotrophic lateral 
sclerosis

Somatic cell 
therapy

27/10/2015
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enable obtaining homogenous cell distribution; 
(vi) can be infiltrated by cells after implantation; 
and (vii) can be administered by injection [6, 19, 
103]. Besides cell encapsulation, natural poly-
mers can also be used to develop effective deliv-
ery systems for different therapeutic agents [28, 
86, 92, 117]. Polymers can also be associated to 
other natural materials, namely to lipids. Lipids, 
as natural polymers, are responsible for multiple 
and essential biological roles in living organisms. 
These biologically essential organic molecules 
are, for example, the main components of bio-
membranes, a storage of energy and important 
signaling molecules [34]. According to LIPID 
MAPS Lipid Classification System, lipids can be 
divided in eight categories – fatty acyls, glycero-
lipids, glycerophospholipids, sphingolipids, ste-
rol lipids, prenol lipids, saccharolipids and 
polyketides  – that can be further subclassified. 
Polymer-lipid hybrid systems present unique 
advantages, for instance as delivery devices 
allow: (i) the co-encapsulation of therapeutic 
agents or imaging agents presenting radically dif-
ferent properties, (ii) enhancing the loading 
capacity of medicines, (iii) a higher control of the 
release of therapeutic agents, (iv) an increased 
uptake and intracellular transport of the encapsu-
lated material and (v) circumventing the mem-
brane efflux transporter-mediated multidrug 
resistance of cancer cells [43, 122]. Lipids can 
also enable developing valuable delivery sys-
tems, such as liposomes, which are successfully 
used in the clinic. Indeed, liposomes were one of 
the first delivery carriers approved by the Food 
and Drug Administration (FDA). The major com-
ponent of any liposome is phospholipids, but oth-
ers lipids can be included, like cholesterol as 
stabilizer [14]. Additionally, as its lipid bilayer 
resemble the cell membrane, liposomes are also 
widely used as membrane models [36, 37].

Delivery devices are extremely important, for 
example, in gene therapy. Indeed, the association 
of therapeutic agents with appropriate delivery 
devices that allow their carry, protection and 
release in a controlled and sustained way, until 
they reach their target, has led to the “golden era” 
of medicine. Indeed, several therapeutic agents, 
such as nucleic acids, peptides and proteins, 

should be administered using an appropriate car-
rier that allows enhancing their therapeutic effi-
cacy by increasing their half-life (e.g. by avoiding 
their physical denaturation or proteolytic degra-
dation) and ensuring the preservation of their 
active form. Indeed, the development of a deliv-
ery system that increases the therapeutic index of 
bioactive agents will dramatically improve the 
patients’ quality of life.

8.2  Advanced Therapies

The therapeutic target of the ADs is the dysregu-
lated immune system. The long-term administra-
tion of conventional treatments can lead to high 
toxicity and susceptibility of the patients to 
develop other opportunistic infections. The 
reduced capacity of the immune system drasti-
cally affects the patient’s quality of life. 
Therefore, there is an urgent need of advanced, 
innovative and more effective treatments to give a 
new hope to millions of patients’ worldwide suf-
fering with ADs. In the last years, intense research 
efforts were directed to new therapies able to (i) 
specifically target the autoreactive cells, without 
compromising the normal function of the immune 
system; (ii) restore the immune tolerance over 
time, avoiding the necessity of long-term immu-
nosuppressant therapies; (iii) have reduced or no 
toxicity and side effects and (iv) be more cost- 
effective than the current therapeutic approaches 
[94]. We will review the literature reporting 
the latest advanced therapies with biomaterials 
for ADs.

8.2.1  Gene-Based Therapies

Gene therapy is based on the therapeutic delivery 
of genetic material (e.g. plasmid DNA –pDNA, 
complementary DNA –cDNA, small interfering 
RNA –siRNA, short hairpin RNA –shRNA, and 
microRNA -miRNA), being a promising strategy 
for several pathologies, including ADs. The gen-
eral mechanism of action of these functional 
genes comprises the inactivation or replacement 
of the defective gene in the target cells [99]. The 
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first successful transfer of a functioning gene into 
a living mouse was performed in 1980 by Martin 
Cline, however only about 10 years later was suc-
cessfully performed the first gene transfer in 
humans. In the last decade, gene therapy research 
has been greatly expanded due to the promising 
results in ameliorating disease progression and 
symptoms in several animal models [87, 115]. 
However, despite its potential, only in 2017, the 
first gene therapy was approved by FDA.  This 
strategy, which aims to treat blood cancers, such 
as leukemia, is based on the genetically repro-
gramming of patients’ immune cells, namely 
T-cells, with a gene that contains a protein called 
a chimeric antigen receptor (CAR). This protein 
will allow the binding of T-cells with leukemia 
cells presenting at their surface the antigen CD19, 
leading to their killing. This treatment is also 
awaiting approval for lymphoma. Indeed, it is 
anxiously expected that new approaches follow 
the same trend for other serious and life- 
threatening diseases. However, gene therapy does 
not necessarily have to serve as an alternative to 
conventional therapies but instead may comple-
ment and improve them.

Clinical trials comprehending gene therapy 
have been recently completed or are ongoing to 
find new solutions for ADs, such as NCT00185848 
and NCT02727764 for rheumatoid arthritis, 
NCT00617032 and NCT00126724 for psoriatic 
arthritis or ankylosing spondylitis, NCT02404298 
for Clarkson Syndrome and muscular ADs and 
NCT02769767 for multiple sclerosis. In ADs, 
gene therapy aims to regulate the proinflamma-
tory cytokines or molecule levels and the local 
infiltration of lymphocytes through the delivery 
and expression of therapeutic genes in the target 
cells [99].

The efficient and specific intracellular deliv-
ery of the genetic material in the target cell is a 
key point to obtain the desired therapeutic effect. 
Since genetic material cannot freely cross cell 
membranes, appropriate delivery systems are 
required to facilitate its access to the desired 
intracellular site of action. Additionally, the use 
of delivery systems is very important to protect 
genes from chemical and enzymatic degradation 
by nucleases, to increase their half-life in blood 

circulation, to provide their specific delivery into 
the cytoplasm and nucleus of the target cells and 
also to provide an escape from endosomal and/or 
lysosomal degradation [40, 125].

To cross the cell membrane and ultimately to 
reach the cell nucleus, genetic material can be 
incorporated in (i) viral-based vectors to deliver 
exogenous transgenes and introduce those genes 
in the host cell, allowing their replication along 
with the host DNA during the S phase of mitosis, 
usually in actively dividing cells and (ii) non- 
viral vectors to deliver exogenous transgene by 
nonintegrating vectors predominantly in postmi-
totic cells (e.g., neurons, muscle fibers, and hepa-
tocytes) [59] (Fig.  8.2). To produce non-viral 
vectors, natural biomaterials with low toxicity 
and immunogenicity are highly recommended 
[28]. The biomaterials used for gene delivery are 
essentially cationic polymers or lipids, which are 
consequently positively charged, and easily con-
jugated with the negatively charged nucleic acids 
due to electrostatic interactions [27, 111].

The gene-based therapies for the management 
and possible treatments of ADs comprise a range 
of different and innovative approaches that will 
be further discussed.

8.2.1.1  Viral-Based Vectors
The use of viral-based vectors to deliver genetic 
material for ADs is mainly focused in adenovirus 
and retrovirus, such as lentivirus. Viral vectors 
are based on modified or inactivated virus, where 
areas of its genome suffered a modification or 
depletion leading to a modified replication and a 
safer virus. This strategy is one of the most used 
tools to effectively deliver transgenes. Relatively 
to non-viral vectors, viral vectors present the 
advantage of having a relatively higher transfec-
tion capacity only with a single administration. In 
this sense, virus particles act as “natural” adju-
vants to efficiently deliver genetic materials to 
cells [59].

Apart from their advantages, the use of viral 
vectors in patients can be accompanied with 
some potential risks. Indeed, the immunogenicity 
of viral vectors can induce inflammatory 
responses leading to degeneration and toxin pro-
duction, and ultimately to death [67]. Additionally, 
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the risk of integration of the virus DNA into the 
host genome is a theoretical concern. 
Consequences of this integration are the occur-
rence of mutations, which can lead to tumorigen-
esis [101] and the transactivation of neighboring 
genome sequences. Other limitation of these vec-
tors includes the concentration of them that is 
necessary to obtain a transgenic capacity. Indeed, 
virus concentrations many orders of magnitude 
higher than those encountered in natural infec-
tions are needed to achieve the desired transfec-
tion [1, 38, 124]. Despite these concerns, these 
vectors are widely used due to their undoubtedly 
high transfection capacity. However, their use 
should take into account patients’ condition, such 
as severity and progression of disease.

The use of viral vectors for ADs will be fur-
ther discussed providing the latest research 
advances.

Lentiviral Vectors
Lentiviruses belong to the family of retrovirus 
and are reported as alternative therapeutic strate-

gies for ADs. An example of them is the human 
immunodeficiency virus (HIV). Lentiviruses are 
virus with long incubation times, with a suitable 
stability and with a unique ability to translocate 
across the nuclear membrane and infect nondi-
viding cells [13, 97]. This ability is, therefore, 
particularly useful for gene transfer to nondivid-
ing cells, such as monocytes, neurons and antigen 
presenting cells (APCs) [85, 120].

The use of lentivirus to suppress or activate 
genes for the regulation of immune responses in 
ADs is the main strategy adopted. A study per-
formed by Liu and co-workers [69] demonstrated 
that regulating calcium entry through CRACM1 
(the pore-forming subunit of calcium release- 
activated calcium (CRAC) channels; also known 
as ORAI1) may be beneficial for the manage-
ment of rheumatoid arthritis. For that purpose, it 
was used a shRNA-based lentivirus in order to in 
vivo suppress the CRACM1 gene expression and 
activation. This gene is associated with the 
growth and proliferation of T cells, B cells and 
osteoclasts, being important cellular targets in 

Fig. 8.2 Schematic illustration of the gene therapy approaches used in the management of ADs
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rheumatoid arthritis treatment. The results sug-
gested that the silencing of CRACM1 reduced 
local inflammation through the reduction of 
inflammatory cytokines (IL), such as IL-6, IL-17, 
and interferon-γ (IFN-γ). Lentivirus also revealed 
potential for the in vivo carry of miRNA-873 as a 
new approach to treat systemic lupus 
 erythematosus [68]. Indeed, in those patients, the 
expression of miRNA-873 that can facilitate the 
differentiation of CD4+ T cells into Th17 lineage 
(responsible for the expression of inflammatory 
ILs) is up-regulated. It is known that the gene 
Forkhead boxO1 (Foxo1), that is a Th17 suppres-
sor, regulates that differentiation. Thus, this study 
demonstrated that Foxo1 is a target of miR-873 in 
regulating inflammatory responses in systemic 
lupus erythematosus. After in vivo gene transfec-
tion, it was observed an attenuation of the disease 
severity. Other example includes the use of lenti-
virus to silence a gene, namely B7-2, in a pristine- 
induced mouse model of lupus nephritis. This 
gene is present in APCs and is involved in the 
regulation of the regulatory T (Treg) cells. The 
silencing of B7-2 gene resulted in the attenuation 
of the over-activity of splenic immune cells, 
including macrophages, dendritic cells, granulo-
cytes and B-cells. Overall, the progression of the 
disease reflected in the secretion of ILs, immune 
complexes accumulation/deposition in kidneys, 
and the renal inflammatory damage were relieved 
compared to the control group. Thus, the lentivi-
rus was efficient in the transfection and these 
results suggest an opportunity for delaying the 
progression of lupus-like diseases [57].

Adenoviral Vectors
Adenoviruses are being studied as effective gene 
delivery vectors for ADs. This virus presents a 
protein capsid with a DNA genome, encoding 
~20 proteins, without the lipid envelope [105]. 
These proteins are expressed in viral DNA repli-
cation and present regulatory functions promot-
ing the virus control of the cell. The use of 
adenoviral vectors is mainly correlated with its 
genetic stability, well-defined biology, the suit-
able transfection of cells and the possibility to be 
produced in large scale [26]. Adenovirus presents 
a higher transfection capacity and consequently 

higher transgene expression than other virus vec-
tors (e.g. retrovirus) since that most human cells 
express the primary adenovirus receptor and the 
secondary integrin receptors.

The generality of adenovirus vectors are 
genetically modified versions of the human 
Adenovirus 5. Despite their use in treatment, 
these vectors are also being currently used for 
induction of ADs in animal models, such as 
autoimmune hepatic fibrogenesis [46], autoim-
mune myocarditis [2] and Grave’s diseases [47]. 
These vectors have been revealed a relatively 
safe and effective profile. For example, these 
vectors were used in an in vivo model of experi-
mental autoimmune encephalomyelitis (EAE). 
Specifically, the delivery of IL-23 receptor 
cDNA was performed by the adenovirus 5  in 
order to block its interaction with IL-23, which 
is a key molecule in maintaining the response 
mediated by Th17 cells. The results showed that 
the adenovirus was able to promote in vitro and 
in vivo transfection. In vivo results also con-
firmed the transgene expression [81].

In type 1 diabetes, an in vivo model of non- 
obese diabetic (NOD) mice was treated with 
anti- CD20 and an adenoviral vector-mediated 
interleukin-10 therapy [109]. This combination 
seems to benefit the expression of Treg cells and 
several ILs involved in the pathogenesis of dia-
betes (e.g. IL-4, INF-γ). Additionally, this 
approach was able to protect pancreatic islet 
cells, since that the treated mice group presented 
higher C-peptide. This molecule is a precursor 
of insulin that directly reflects the function of 
pancreatic β-cells. Furthermore, the Th1/Th2 
imbalance was reversed, being this cell ratio 
often associated with ADs. Thus, this approach 
revealed to be a promisor treatment for type 1 
diabetes.

In autoimmune myocarditis, an adenovirus 
vector was used to deliver antisense CIITA. CIITA 
is a transcriptional coactivator that acts as a key 
regulatory factor of the major histocompatibility 
complex (MHC)-II expression, which is related 
with the induction of immune responses. The 
results shown that 21  days after immunization, 
both groups of mice (preventive and treatment) 
presented a suitable transfection and a higher 
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expression of MHC-II in mice heart tissues than 
in other tissues (e.g. spleen) [16].

8.2.1.2  Non-viral-Based Vectors
Non-viral-based vectors can overcome the limi-
tations of the above mentioned viral-based vec-
tors, namely the risks associated with the use of 
virus in therapies. During the past 20 years, the 
focus of research and development has been 
driven toward the development of vectors that 
could combine low genotoxicity and immunoge-
nicity with high efficient delivery. Although viral 
vectors continued to be developed for multiple 
indications, there is an effort to develop non-viral 
vectors to overcome the risks of viral-vectors, as 
already mentioned, that can greatly limit their 
acceptance in clinical trials. Additionally, non- 
viral vectors are more cost-effective than viral 
vectors. The main drawback associated with the 
non-viral-based vectors is their lower transfec-
tion efficiency into the cell nucleus and lower 
loading capacity of genes than the viral vectors. 
Thus, a balance of these advantages and limita-
tions should be taken into account in order to 
select the ideal vector. Non-viral vectors can be 
developed from a range of biocompatible and 
biodegradable materials, including natural poly-
mers and lipids (cationic liposomes).

Natural Polymer-Based Vectors
Chitosan is the most common naturally derived 
cationic polymer used for gene therapy. This nat-
ural cationic polymer is described as safe due to 
its reported in vitro and in vivo biocompatibility. 
Additionally, it can be combined with other natu-
ral polymers (e.g. dextran, collagen, gelatin, cel-
lulose, and cyclodextrin) to modulate its 
properties. A study using thiolate glycol chitosan 
nanoparticles to deliver a Notch1 targeting 
siRNA (siRNA-NPs) [54] reported their anti- 
inflammatory effect in a collagen-induced arthri-
tis model [61]. This signaling receptor is 
associated with the regulation of inflammatory 
responses in rheumatoid arthritis. The in vivo 
results showed an accumulation of the particles 
in the synovial joints. It was also highlighted that 
the use of the siRNA-NPs can avoid side effects 
associated with the γ-secretase inhibitor and the 

non- specific Notch1 inhibition in undesired tis-
sue sites. The same combination of polymers was 
used to carry siRNA for in vivo targeting of tumor 
necrosis factor α (TNF-α), using the previously 
referred collagen- induced arthritis model [61]. 
The suppression or neutralization of TNF-α will 
down- regulate the systemic inflammation 
observed in ADs. The siRNA/thiolated glycol 
chitosan particles after systemic injection into 
mice were rapidly and selectively accumulated in 
the arthritic joints. The developed particles were 
able to suppress paw swelling and progressive 
joint destruction. Another study revealed the abil-
ity of chitosan-based particles to transfect astro-
cytes isolated from healthy and EAE-induced B6 
mice [56]. This study demonstrated a different 
cell permeability and transfection efficiency of 
large- sized particles in astrocytes. These differ-
ences were attributed to the polymer/DNA ratio, 
suggesting that higher ratio means that DNA was 
more compactly wrapped by chitosan, forming a 
particle presenting a smaller diameter and a high 
positive charge.

Another target for ADs treatment is the tran-
scription factor nuclear factor-kappa B (NF-κB), 
which is associated with the production of inflam-
matory mediators. To deliver this transcription 
factor, Wardwell and co-workers [119] designed 
N-trimethyl chitosan-polysialic acid nanoparti-
cles coated with decoy oligodeoxynucleotides. 
The results showed that these particles provide 
suitable stability for nucleic acid and facilitate 
cellular penetration in human synovial sarcoma 
cells, an in vitro model of rheumatoid arthritis. In 
another study, chitosan nanomicelles modified 
with oleic acid and linoleic acid (nanomicelle- 
based polyplexes) were used to prevent autoim-
mune diabetes [75]. For that, the 
nanomicelle-based polyplexes carried a plasmid 
DNA for encoding IL-4 and IL-10  in a strepto-
zotocin induced diabetic mouse model. The 
results revealed the transfection capacity of this 
system in pancreatic islets of the animals. 
Additionally, the animals treated with plasmid 
DNA in chitosan nanomicelles, showed signifi-
cantly lower blood glucose levels and higher ILs 
expression compared to the control group. 
Therefore, this study revealed the ability of chito-
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san nanomicelle-based polyplexes to protect the 
pancreatic islets from insulitis.

Cationic Liposomes
Cationic liposomes are one of the most promis-
ing non-viral vectors for the delivery of therapeu-
tic genes. They are usually produced using 
cationic lipids mixed or not with neutral 
 phospholipids. The incorporation of neutral lip-
ids in the cationic liposome formulations pro-
mote a higher rate of transfection, which can be 
modulated by the ratio of cationic/neutral lipid 
used [29]. The positive charge of cationic lipo-
somes will allow for their complexation with 
nucleic acids (negatively charged) forming the 
lipoplexes (cationic liposome–gene complexes). 
The development of negatively charged lipo-
somes has also been considered, being in this 
case the nucleic acid complexed with a positively 
charged polymer [60].

Despite the synthetic cationic lipids being 
more frequently used, efforts have been made in 
the last decades to develop gene carriers derived 
from natural resources. For that, natural lipids 
(e.g. phospholipids and steroids) are linked to 
amine-containing cationic groups (e.g. amino 
acids and polyamine) to develop new biocompat-
ible cationic lipids [11].

There are several studies reporting cationic 
liposomes-mediated transfection both in vitro 
and in vivo [25, 35], but no clinical product has 
yet emerged. Rheumatoid arthritis is an example 
of an AD where cationic liposomes were used to 
reduce the cytosolic phospholipase A2α 
(cPLA2α) expression [25]. The siRNA-mediated 
cPLA2α gene silencing in mice with collagen- 
induced arthritis resulted in a reduction of the 
disease severity, demonstrating the therapeutic 
potential of the developed delivery system. A 
similar liposome composition was used to dem-
onstrate the silencing specificity of three pro- 
inflammatory cytokines (IL-1, IL-6, and IL-18) 
in the same animal model previously referred of 
rheumatoid arthritis [53]. This siRNA-based 
immunotherapy preferentially targeted mono-
cyte/macrophage cells and led to a reduction of 
the disease severity, including inflammation and 
joint destruction. In a general approach to prevent 

the inflammatory component of many diseases, 
such as in atherosclerosis (recent data reports its 
autoimmune nature [58]), Leuschner  and co- 
workers [63] developed a lipid nanoparticle to 
carry siRNA for silencing the expression of the 
chemokine receptor CCR2 responsible for the 
migration of the inflammatory monocyte subset. 
Regarding atherosclerosis, after administration 
of the developed formulation in the diseased 
mice, the number of atherosclerotic plaques and 
the infarct size after coronary artery occlusion 
were reduced.

Considering the previous examples, it is pos-
sible to conclude that gene therapy through the 
use of viral and non-viral vectors is a valid and 
promising strategy to deliver specific genes into 
the target cells. The main aim of gene therapy, as 
previously referred, is to control the immune 
responses, by silencing or by attenuating the 
expression of genes involved in the pathophysiol-
ogy of the disease (Fig.  8.2). These genes are 
therefore, mainly related with the regulation of 
immune cells and ILs, which modulate the immu-
nological responses observed in ADs.

8.3  Cell-Based Therapies

Cell therapies for ADs are gaining increased 
interest. Frequently, the transplantation of autolo-
gous cells is preferred to avoid non-desirable 
immune responses. For that, the cells are isolated 
from the patients and further manipulated for 
posterior injection (Fig. 8.3). The administration 
of the cells can be advantageously performed 
through scaffolds or delivery systems. We will 
summarize some of the current strategies that are 
being investigated regarding cell or cell-derived 
vesicles (extracellular vesicles) therapies for the 
treatment of ADs.

8.3.1  Stem Cells

Stem cells are widely studied to treat, regenerate 
and restore biological functions of tissues and 
cells [76, 89]. Its clinical impact has already been 
demonstrated in bone marrow transplants and 
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blood transfusion procedures routinely per-
formed for many decades [4]. Stem cells present 
the inherent ability of self-renewal and capacity 
to differentiate into several cell lineages. This 
feature is important for the natural replacement 
of aged or apoptotic cells as well as for the regen-
eration of damaged tissues. Additionally, stem 
cell differentiation can be induced with several 
growth factors or interleukins that are expressed 
by the desired cells. The potential of stem cells 
for the treatment of ADs is based on their ability 
to reduce the inflammation, to modulate the 
immune response and tolerability and to stimu-
late the regeneration of the damaged tissues 
[108]. Table 8.2 presents ongoing and completed 
clinical trials using stem cells for ADs.

Mesenchymal stem cells (MSCs) are one of 
the most promising adult stem cell types for 
developing new therapies. MSCs can be isolated 
from adipose tissue (ADMSCs) or bone marrow 
(BMSCs). Even though BMSCs have been pro-
viding promising results in several studies 
(Table  8.2), ADMSCs are also an attractive 
source for autologous stem cell therapies given 
its abundance. Adipose tissue contains a higher 
number of MSCs than bone marrow, which can 

be easily obtained using minimally invasive pro-
cedures [91]. The differentiation and immuno-
modulatory potencies of ADMSCs are reported 
to be equivalent to those of BMSCs [64]. Indeed, 
allogeneic ADMSCs were able to ameliorate 
autoimmune diabetes in diabetic NOD mice by 
attenuating the Th1 immune response concomi-
tant with the expansion/proliferation of Tregs [8]. 
This result highlights the ability of those cells to 
maintain the function of β-cells and also to be 
immune regulatory. In a study involving co- 
transplantation of islets with ADMSCs obtained 
from the adipose tissue of chronic pancreatitis 
patients, it was obtained an improvement of islet 
survival and function [102]. Autologous 
ADMSCs were also used in the clinical treatment 
of patients with multiple sclerosis, where it was 
revealed their safety and ability to reduce the pro-
gression of the disease during 1  year [104]. 
ADMSCs also showed beneficial therapeutic 
effects on the peripheral blood mononuclear cells 
of rheumatoid arthritis patients [5]. Indeed, they 
were able to reduce inflammation by inhibition of 
IL-17 and IL-21 effects.

As already mentioned, the use of stem cells 
alone is beneficial, however it is advantageous 

Fig. 8.3 Schematic illustration of the cell therapies that can be used for the treatment of ADs. Those strategies compre-
hend the use of autologous stem cells and EVs which are manipulated and further injected into the patients
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their association with biomaterials. After the iso-
lation of the cells and their in vitro expansion, the 
cells can be attached or incorporated in different 
substrates. The local delivery of cells in an ade-
quate time frame will determine their efficient 
engraftment [82]. The biomaterials should be 
biodegradable, biocompatible and provide excel-
lent stability. For that, natural polymers are 
 usually chosen since they present excellent 
characteristics.

A strategy involving the co-encapsulation of 
BMSCs and mouse pancreatic β cells in alginate- 
chitosan- alginate microcapsules was developed 
to treat diabetic mice [71]. The results revealed 
an increased insulin secretion approximately 
28 days after transplantation and a reduction of 
the blood glucose levels. Alginate was also used 
to deliver human embryonic stem cell (hESC)-
derived beta cells for treating type 1 diabetes 
with promising results. Alginate was able to 
protect against foreign body reactivity in 
immune- competent mice at least for 6  months 
[84]. Various cell-based replacement therapies 
for type 1 diabetes are based in the generation of 
insulin- producing cells from MSCs. To promote 
their differentiation, scaffolds based in polyvi-
nyl alcohol (PVA) and platelet-rich plasma 
(PRP) [32], or collagen/hyaluronic acid [52] 
were used. The use of these biomaterials as sub-
strate for stem cells as well as of the described 
differentiation methodologies, revealed to be 
able to promote stem cells differentiation into 
insulin-producing cells.

Although the combination of stem cells with 
natural polymers is being useful for ADs 
 treatment, there are very few examples of suc-
cessful application of this strategy. The main 
applications are based on the treatment of the 
symptoms and not of the causes of those dis-
eases. Additionally, the ADs chronicity charac-
ter requires innovative interventions to avoid 
the progression of the associated injuries. 
Therefore, the use of stem cells combined with 
natural polymers for modulating the immune 
system is still a growing strategy that can pro-
vide new alternatives in the future for the treat-
ment of ADs.

8.3.2  Extracellular Vesicles

Extracellular vesicles (EVs) promote the inter-
cellular communication and are able to transfer 
their cargo, including proteins, lipids and RNAs, 
between cells [50]. EVs are small vesicles (50–
1000 nm) released by various cells by exocytosis 
and present a lipid bilayer structure, formed by 
the fusion of multivesicular bodies with the 
plasma membrane [80]. In recent years, it was 
recognized the involvement of those vesicles, 
such as microvesicles and exosomes, in immune 
signaling and inflammation. Indeed, it was 
already described the ability of EVs to suppress 
inflammation and to control the Treg cells 
through genetically modification of bone marrow- 
derived dendritic cells (BMDC) [17, 55]. These 
achievements demonstrate the promising use of 
these vesicles as immunotherapeutics, but more 
research is needed to understand their role in 
modulating immune responses.

EVs represent an important tool for both diag-
nostic and therapeutic purposes due to the singu-
lar ability to interact with the recipient cells. 
These vesicles present the faculty to attach to tar-
get cells by a range of surface adhesion proteins 
and vector ligands (e.g. integrins, tetraspanins, 
CD11b and CD18 receptors), and deliver their 
cargo to target cells [9, 112]. Likewise, according 
to their characteristics and origin, the EVs dem-
onstrate a specific cell tropism, i.e. a natural abil-
ity to target a specific cell [121]. Since MSCs 
have shown suppressive effects on many types of 
immune cells both in vitro and in vivo, MSC- 
derived EVs are been investigated for ADs. For 
example, MSC-derived EVs had shown ability to 
inhibit the activation of antigen-presenting cells 
(APCs) and to suppress the development of T 
helper 1 (Th1) and Th17 cells, attenuating the 
immune response in diabetes and uveoretinitis 
animal models [98]. The capacity of MSC- 
derived EVs to inhibit the migration of inflamma-
tory cells in a uveitis model was also demonstrated 
[7]. Other studies also revealed that hBMSC- 
derived  EVs have the potential for driving the 
osteogenic differentiation, without any chemical 
or genetic osteoinductor [78], illustrating their 
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potential for regenerative medicine. EVs can also 
be loaded with specific cargo that can be directly 
introduced on them [48] or obtained by modula-
tion of their producer cells. As already men-
tioned, EVs can exhibit strong potential to 
regulate immune responses and therefore the 
encapsulation of therapeutic agents on them can 
promote synergistic therapeutic effects [106]. For 
instance, EVs encapsulating curcumin were used 
as a strategy to treat brain inflammatory diseases 
[126]. In this study, their ability to target and to 
be internalized by microglial cells, inducing sub-
sequently their apoptosis was demonstrated.

Despite EVs being mainly proposed as prom-
ising candidate biomarkers, more research 
regarding their potential therapeutic use for ADs 
is being developed. Because of their heterogene-
ity, the analysis and isolation of a pure population 
of EVs is complex. However, their potential in 
future therapies for ADs relies in the capacity to 
use them as reliable sources of self-antigens 
enabling inducing specific tolerance to those self- 
antigens by the immune system. Thus, EVs 
clearly need to be further investigated to develop 
their full potential in innovative ADs therapies.

In summary, the use of cell therapies (or cell- 
derived vesicles) for ADs is a promising approach 
mainly due to their ability to restore the normal 
immune system as well as to regenerate the dam-
aged tissues. Indeed, their therapeutic potential 
has been demonstrated in several clinical trials. 
Thus, in the upcoming years, it is believed that 
clinical cell-based therapies will become a reality 
for ADs patients.

8.3.3  Stem Cell-Based Gene 
Therapy

Stem cell-based gene therapy meets the advan-
tages of the stem cell and gene therapies and can 
provide synergistic effects in the treatment of 
ADs [95]. Indeed, stem cell therapy is a promis-
ing strategy to overcome the limitations of the 
current treatment methods, but to attain its full 
therapeutic potential may be necessary to adjust 
or modify the cell properties. For that, genetic 
engineering is very appealing. In this sense, stem 

cells can be transfected in vitro using similar 
methods to those used in direct gene transfer, 
such as genetically-engineered viruses (e.g. lenti-
virus and adenovirus) and nano- or micro- 
particles (e.g. cationic liposomes). These methods 
should not compromise the immunological prop-
erties of the engineered cells neither elicit a 
strong immune response after their transplanta-
tion [22, 44, 114]. Therefore, instead of a direct 
gene transfer, as referred before, in this therapeu-
tic approach the genes of interest will be deliv-
ered using living cells. The major advantage of 
the in vitro genetic manipulation of cells is to 
have a higher control of the process than in vivo. 
Additionally, the use of stem cells as vectors for 
genes will allow an efficient and stable endoge-
nous gene expression and will circumvent the in 
vivo short half-life of exogenously expressed 
genes [72].

There are several and promising examples in 
the literature using stem cell-based gene deliv-
ery in ADs treatment. For instance, in a general 
approach for ADs treatment, Hajizadeh-
Sikaroodi and co-workers [44] genetically 
engineered ADMSCs for IL-17 suppression 
through expression of IL-27. Therefore, after in 
vitro transduction of the ADMSCs with two 
subunits of IL-27 included in a lentiviral vector, 
the cells were able to express high levels of 
functional IL-27.

To treat multiple sclerosis, Makar and co- 
workers [74], for example, explored the thera-
peutic potential of brain-derived neurotrophic 
factor (BDNF) gene transfected BMSCs in 
EAE mice, an animal model of multiple sclero-
sis. In mice that received the genetically engi-
neered BMSCs, the EAE onset was significantly 
delayed and the clinical severity was greatly 
reduced in comparison with control receiving 
BMSC transfected with an empty vector lack-
ing the BDNF gene. In the same animal model, 
the effect of the human ciliary neurotrophic 
factor (CNTF)-overexpressed MSC therapy 
was also explored [39]. As observed in the pre-
vious study, the intravenous injection of MSCs 
transfected with the CNTF gene led to a 
remarkable neuronal functional recovery in the 
EAE mice.
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Genetically engineered stem cells led to prom-
ising outcomes in type 1 diabetes. BMSCs 
expressing human insulin gene were transplanted 
in a mice model of type 1 diabetes to reduce the 
clinical manifestations of this AD [123]. The 
human insulin gene transfected BMSC therapy 
was able to increase the body weight and to sig-
nificantly reduce the blood glucose levels. The 
same animal model was used to evaluate the 
effect of betatrophin (hormone that increases the 
expansion of insulin-secreting β-cells and pro-
duction of insulin) overexpression by human 
ADMSCs [107]. The transplantation of these 
genetically modified stem cells was also able to 
ameliorate the hyperglycemia and weight loss as 
well as to increase the ratio of β-cells per islet. 
Human and rat ADMSCs were also transduced 
with pancreatic duodenal homeobox 1 (PDX-1) 
gene to obtain insulin-producing cells [66]. 
Indeed, the transplantation of ADMSC- 
expressing PDX-1  in diabetic rats enables 
increasing the levels of insulin in response to 
increasing concentrations of glucose. The same 
gene was introduced in human BMSCs by Li and 
co-workers [65]. As observed for ADMSCs, the 
genetically modified BMSCs were able to differ-
entiate into insulin-secreting cells, constituting, 
therefore, another possible cell source for the 
treatment of type I diabetes.

8.4  Concluding Remarks

The current therapeutic approaches for ADs are 
mostly directed to control the immune response. 
This can be accomplished by the suppression or 
induction of tolerance by the immune cells 
involved in the autoimmunity and by the positive 
or negative regulation of ILs and related biomol-
ecules. However, there is still no effective cure 
for the ADs. The major challenges in the devel-
opment of effective therapies for ADs are to 
increase the target specificity and to reduce the 
immunological adverse events associated to the 
treatment. Advanced therapies are gaining an 
enormous interest mainly due to the potential to 
generate specific and highly effective therapeutic 
strategies overcoming the limitations of currently 

available therapies. Additionally, the association 
of genes and/or cells with natural-based biomate-
rials can boost their therapeutic efficiency. The 
discussed strategies revealed being promising for 
the regulation of the deregulated immune 
response using different mechanisms and targets. 
Some advanced therapies are already in clinical 
trials and can induce long-term remissions. It is 
expected that these advanced and innovative 
approaches will become alternatives to conven-
tional therapies for the management and eventu-
ally for the cure of ADs.
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Abstract
The native extracellular matrix (ECM) within 
different origins of tissues provides a 
dynamic microenvironment for regulating 
various cellular functions. Thus, recent 
regenerative medicine and tissue engineering 
approaches for modulating various stem cell 
functions and their contributions to tissue 
repair include the utilization of tissue-spe-
cific decellularized matrix-based biomateri-
als. Because of their unique capabilities to 
mimic native extracellular microenviron-
ments based on their three- dimensional 
structures, biochemical compositions, and 
biological cues, decellularized matrix-based 
biomaterials have been recognized as an 
ideal platform for engineering an artificial 
stem cell niche. Herein, we describe the most 
commonly used decellularization methods 
and their potential applications in musculo-
skeletal tissue engineering.

Keywords
Decellularization · Extracellular matrix 
(ECM) · Biomaterials · Scaffold · 
Microenvironment  · Musculoskeletal tissue 
regeneration

9.1  Decellularized Matrix 
as a Source of Novel 
Biomimetic Material

Regenerative medicine and tissue engineering 
approaches to repair damaged or degenerated tis-
sues include the combinatorial use of stem cells, 
biomaterials, and various cell signaling mole-
cules [1]. Particularly, based on the sources of 
scaffolding materials, biomaterials can be cate-
gorized as either natural or synthetic materials [2, 
3]. Biomaterials derived from natural sources 
consisting of native extracellular matrix (ECM), 
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such as collagens, chondroitin sulfate, and hyal-
uronic acid have been shown to create a favorable 
microenvironment for supporting in vitro cell 
adhesion, proliferation, and differentiation [4–6]. 
Similarly, synthetic polymer-based biomaterials 
have been utilized to provide artificial extracel-
lular microenvironments to embedded or encap-
sulated stem cells, allowing these cells to undergo 
in vitro proliferation and promoting their directed 
differentiation into target tissue-specific cells [3, 
7]. However, although these natural and synthetic 
biomaterials are considered to be biocompatible, 
the host immune system identifies them as for-
eign materials because of their synthesis pro-
cesses and sources, and the presence of 
xenogeneic and allogenic cellular antigens, 
resulting in pro-inflammatory responses and 
immune-mediated rejection of the transplanted 
biomaterials [8, 9].

Recent studies demonstrated that to achieve 
the most effective contribution to functional in 

vivo tissue regeneration, scaffolding biomateri-
als, which fully mimic the physicochemical prop-
erties of target tissue and have an 
immunomodulatory capability, are highly 
demanded [10, 11]. Thus, decellularized matrices 
from native target tissues or organs as biomimetic 
scaffolding materials have been recognized as a 
novel platform in the field of regenerative medi-
cine and tissue engineering. For example, these 
approaches include the utilization of decellular-
ized matrices for understanding the specific 
physicochemical properties of the native ECM 
and providing a tissue-specific biological scaf-
fold for engineering functional tissues by har-
nessing cell-cell/cell-matrix interactions [12, 13]. 
This can be achieved through a process known as 
decellularization, which involves multiple steps 
for removing the total cellular and nuclear mate-
rials within native tissues while preserving the 
complex three-dimensional microstructures, 
mechanical integrity, and unique biochemical 

Fig. 9.1 Schematic for 
the generation of 
musculoskeletal 
tissue-specific 
extracellular matrix- 
based biomaterials 
through decellularization
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compositions of native ECMs and their intrinsic 
biological cues with minimum immune- 
associated detrimental effects [14–16]. These 
biological scaffolds derived from decellularized 
tissues have been extensively used in both in vitro 
studies and pre-clinical in vivo applications, and 
therefore we highlight the currently available 
methods for decellularization and recent applica-
tions of decellularized matrix-based biomaterials 
for musculoskeletal tissue regeneration (Fig. 9.1).

9.2  Common Methods 
for Decellularization

9.2.1  Acid-/Base-Based 
Decellularization

Acids, such as peracetic acid, acetic acid, and 
hydrochloric acid, and bases, such as sodium 
hydroxide and calcium hydroxide, have been 
widely used to solubilize cell membrane and 
cytoplasmic components of cells and remove bio-
molecules within native tissues or organs by cata-
lyzing hydrolytic degradation [17, 18]. Although 
peracetic acid and acetic acid treatments for 
decellularizing tissues effectively remove nucleic 
acids and other cellular components while pre-
serving multiple growth factors within tissues, 
these acid treatments undesirably lead to 
increased stiffness of the decellularized matrix 
with significantly decreased elasticity and the 
failure strain value, resulting in inferior mechani-
cal properties compared to their non-treated 
counterparts [19]. Similarly, although alkaline 
solutions including either sodium hydroxide or 
calcium hydroxide were shown to destroy cellu-
lar and nuclear components, they also eliminate 
growth factors from the tissues and decrease 
ECM stiffness by degrading collagen fibrils and 
disrupting collagen crosslinks [20, 21].

9.2.2  Surfactant-Based 
Decellularization

Surfactant-based decellularization agents utilize 
ionic, non-ionic, and zwitterionic detergents, 

which are known to efficiently lyse the cell mem-
brane and remove cellular components from tis-
sues by disrupting the phospholipid membrane 
[22]. Numerous studies have demonstrated the 
potential use of sodium dodecyl sulfate (SDS), an 
ionic detergent, as a decellularization agent, as it 
can readily eliminate cellular and nuclear materi-
als even from thick and dense tissues [23, 24]. 
However, despite its strong decellularization 
ability for multiple tissues and organs including 
the cartilage, heart, blood vessels, kidney, lung, 
and small intestine, SDS can cause a high degree 
of disruption of ECM microstructures and dam-
age signaling proteins and growth factors within 
tissues [18]. In addition, because of the ionic and 
cytotoxic nature of SDS, complete removal of 
SDS from the decellularized tissues is difficult 
and SDS causes cytotoxicity to cells within the 
decellularized matrix-based scaffolds [19]. Triton 
X-100, a non-ionic detergent, is a mild decellu-
larization agent compared to SDS and has been 
commonly used in combination with ammonium 
hydroxide to efficiently remove remnant DNA 
within the tissues by breaking up lipid-lipid and 
lipid-protein associations [25, 26]. Another zwit-
terionic detergent, 3-[(3-cholamidopropyl)
d imethy lammonio] -1-propanesu l fona te 
(CHAPS), has been extensively used as a non- 
denaturing decellularization agent for thin tissues 
of organs, such as lung, nerve, and blood vessels, 
because of its ability to have both non-ionic and 
ionic properties [27].

9.2.3  Enzyme-Based 
Decellularization

Various enzyme-based decellularization meth-
ods involve the use of a nuclease, protease, and 
collagenase in combination with chelating 
agents. Among the various enzymes, trypsin is 
the most extensively used proteolytic decellu-
larization agent, generally employed with ethyl-
enediaminetetraacetic acid (EDTA), to 
selectively break cell adherent proteins on the 
carbon side of arginine and lysine [28]. However, 
extended treatment with trypsin/EDTA has 
shown to disrupt elastin, collagens, and glycos-
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aminoglycans (GAGs), resulting in the loss of 
mechanical stability of decellularized tissues 
[29]. Nucleases, including DNases and RNases, 
have also been utilized in decellularization 
methods to cleave nucleic acids and therefore 
can remove cellular and nuclear materials after 
cell lysis [30, 31].

9.2.4  Physical Method-Based 
Decellularization

Recent advances in developing an efficient 
decellularization method with a higher yield and 
minimum toxicity utilize physical treatments, 
including multiple freeze-thaw cycles, high 
hydrostatic pressure (HHP), and supercritical 
carbon dioxide without introducing any chemi-
cal agents [15]. Multiple freeze-thaw treatments 
of tissues disrupt cellular membrane and lyse 
cells by forming intercellular ice crystals when 
the tissues to be decellularized are exposed to 
freeze-thaw cycles between subzero (−80  °C) 
and physiological (37  °C) temperatures [32]. 
Although freeze- thaw treatment can maintain 
the biochemical composition and microstructure 
of the ECM during decellularization processes, 
complete elimination of cellular debris and 
genetic materials released during cell lysis are 
problematic and lead to immune-associated 
rejection of the transplanted decellularized 
matrix within in vivo host environments [33]. To 
bypass the use of toxic detergents or other chem-
ical agents, another physical method for decel-
lularizing tissues by using a high hydrostatic 
pressure greater than 600–980  MPa has been 
applied to soft tissues with loosely organized 
ECMs, such as liver, lung, cornea, and blood 
vessels [34–36]. Recently, supercritical carbon 
dioxide was reported as a detergent-free decel-
lularization agent because of its unique physical 
properties [37, 38]. For example, at the super-
critical phase, with a pressure above 7.38 MPa 
and temperature above 32 °C, supercritical car-
bon dioxide shows high diffusivity and low vis-
cosity with non-toxic and relatively inert 
characteristics, allowing it to remove cellular 
and nuclear materials, whereas the mechanical 

stability and biochemical contents of the ECM 
are well-preserved.

9.3  Potential Applications 
of Decellularized Matrix- 
Based Biomaterials 
in Musculoskeletal Tissue 
Engineering

Numerous studies examining a variety of tissue 
engineering and regenerative medicine applica-
tions have been conducted to examine the poten-
tial of decellularized ECM as scaffolding 
biomimetic materials to facilitate the repair and 
reconstruction of damaged tissues by providing 
native extracellular microenvironmental cues to 
regulate cell-matrix/cell-cell interactions of 
either transplanted donor stem cells or host 
endogenous stem cell populations. Some of most 
important approaches that have employed afore-
mentioned decellularization methods for muscu-
loskeletal tissue regeneration are described.

9.3.1  Bone Tissue

The most effective treatment for large bone 
defects mainly relies on the transplantation of 
either natural bone grafts such as allografts and 
autografts or synthetic bone grafts, which are 
composed of synthetic polymers, bioinert metals, 
or bioceramics [39, 40]. Despite the most prom-
ising approach for bone healing involving trans-
plantation of autologous bone grafts, several 
concerns such as pain, donor-site morbidity, 
infection, hematoma, and other complications 
may occur [41, 42]. In addition, although emerg-
ing evidence has demonstrated that synthetic 
polymer-based artificial bone grafts provide nat-
ural bone-matching mechanical properties, these 
bone grafts cannot fully mimic the native bone 
extracellular microenvironment with osteocon-
ductive, osteoinductive, and osteogenic capabili-
ties to orchestrate spatiotemporal bone 
remodeling and bone homeostasis [43–45]. In 
fact, these dynamic extracellular components of 
bone tissues are composed primarily of collagen 
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type I with small fractions of other collagens 
(types V and XII), glycoproteins, bone matrix 
proteins including osteonectin, osteopontin, bone 
sialoprotein, and osteocalcin, and several growth 
factors such as bone morphogenetic proteins 
(BMPs) and transforming growth factor-β (TGF- 
β) (Cheng and Solorio 2014; [46]).

Recently, decellularized bone matrix (DecBM) 
which retains the biological cues described above 
has been shown to overcome the current limita-
tions of synthetic material-based bone grafts 
[10, 47]. For example, Hashimoto et  al. used a 
high hydrostatic pressure treatment (~980 MPa) 
to successfully decellularize porcine bone tissues 
and investigated whether these DecBMs could 
induce osteogenic differentiation of rat mesen-
chymal stem cells (rMSCs) [48]. In their study, 
cells seeded onto the DecBM promoted initial 
cell adhesion, proliferation, and further osteo-
genic differentiation of rMSCs into mature osteo-
blasts, even in the absence of dexamethasone, 
compared to cells on tissue culture polystyrene 
(TCPS) (Fig.  9.2a). In addition to DecBM- 
mediated robust in vitro osteogenesis, the authors 
demonstrated that in vivo transplanted cell-laden 
DecBM could support the infiltration of host 
cells into the DecBM with newly formed vascu-
latures without causing immune responses. 
Similarly, Gothard et al. introduced DecBM into 

alginate hydrogels containing growth factor- 
loaded poly(lactic-co-glycolic acid) (PLGA) 
microparticles, and they evaluated the in vivo 
osteogenic potential of DecBM/alginate hydro-
gels [49]. The authors demonstrated that DecBM/
alginate hydrogels could support the infiltration 
of host cells and promote ectopic bone formation 
not only by the DecBM/alginate scaffolds alone, 
but also by osteogenic/angiogenic growth factor- 
encapsulated microparticles.

Another interesting approach for engineering 
fully viable and critical-sized (~0.5 cm) compact 
bone-like scaffolds using human embryonic stem 
cells (hESCs) and human mesenchymal stem 
cells (hMSCs) was reported by Vunjak-Novakovic 
et  al. [50, 51]. The authors utilized DecBM as 
three-dimensional scaffolds and additionally 
incorporated a perfusion-based bioreactor culture 
system to support maximum cell viability and 
osteogenic differentiation of hESCs for a longer 
period of in vitro culture (Fig.  9.2b). After 
5  weeks in vivo, osteogenically pre-committed 
hESC-laden DecBMs within host tissues showed 
robust ectopic bone formation with no signs of 
teratomas, whereas teratoma formation occurred 
when undifferentiated hESCs were seeded within 
the DecBM or when no bioreactor culture system 
was used to induce in vitro osteogenic differenti-
ation of hESCs. Taken together, these results sug-

Fig. 9.2 Decellularized bone matrix-based biomaterials 
for bone tissue engineering. (a) Alkaline phosphatase 
staining of rat mesenchymal stem cells cultured on decel-
lularized bone/bone marrow (A: day 0, C: day 21) com-
pared to cells cultured on TCPS (B: day 0, D: day 21). 

(Reproduced with permission from Ref. [48], Copyright© 
2011, Elsevier) (b) hMSC-laden decellularized bone con-
structs engineered by perfusion bioreactor culture system 
to repair large bone defects. (Reproduced with permission 
from Ref. [51], Copyright© 2010, Elsevier)
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gest that decellularized bone tissues possess 
osteoconductive, osteoinductive, and osteogenic 
potential equivalent to that of native bone 
tissues.

9.3.2  Cartilage Tissue

Articular cartilage provides mechanical stability 
against load-bearing and has a low-friction sur-
face; however, its regenerative capability is lim-
ited because of the avascular nature of articular 
cartilage [52]. The cartilage ECM is composed 
mainly of collagen type II and glycosaminogly-
cans [53]. Defects in articular cartilage can be 
caused by traumatic injury, congenital defects, or 
degenerative arthritis, resulting in failure of carti-
lage ECM remodeling [54]. Clinically available 
treatments for cartilage defects involve autolo-
gous chondrocyte implantation, bone marrow 
stimulation, mosaicplasty, and subchondral abra-
sion. However, these treatments frequently 
require multiple stages of surgical procedures 
and have shown limited success in full regenera-
tion of functional hyaline cartilage [55]. As alter-
native approaches, synthetic biomaterials have 
been used to repair cartilage defects because of 
their biomimetic properties such as water con-
tent, mechanical strength, and the three- 
dimensional microenvironment; however, these 
biomaterials still require either additional growth 
factors or sophisticatedly designed microporous 
structures to induce chondrogenic differentiation 
of both transplanted and endogenous stem cells 
[6, 56].

To address these issues, decellularized carti-
lage ECM-based materials have been gaining 
attention as potential therapeutic candidates as 
implantable biomaterials because of their intrin-
sic biochemical and biomechanical properties, 
which is equivalent to the native cartilage tissue, 
and their immunomodulatory capability [57–60]. 
Guo and coworkers successfully synthesized 
decellularized human cartilage tissue-derived 
porous 3D scaffolds and demonstrated their 
chondrogenic potential using canine mesenchy-
mal stem cells [61]. The authors reported that the 

pore size of 3D scaffolds was approximately 
230 μm, allowing seeded cells to easily penetrate 
and proliferate within the scaffolds. The seeded 
cells showed successful ectopic in vivo cartilage 
tissue formation in nude mice. In addition, they 
further investigated the in vivo chondrogenic 
potential to repair cartilage defects by transplant-
ing autologous human adipose-derived stem 
cells-laden scaffolds into full-thickness cartilage 
defects in rabbits for 6 months [62]. The authors 
evaluated the degree of cartilage repair over the 
short-term (3 months) and long-term (6 months) 
by biochemical, biomechanical, and histological 
evaluations, and concluded that neo-cartilage tis-
sue formation and integration with host tissues 
through cartilage ECM remodeling were fully 
achieved at 6 months after surgery.

Numerous other studies have attempted to 
utilize decellularized cartilage tissue in the form 
of microparticles rather than whole tissues to 
promote chondrogenesis for cartilage tissue 
repair. For example, Sutherland et  al. investi-
gated the chondroinductive properties of decel-
lularized cartilage tissues using a pellet culture 
of rMSCs, and the results showed that decellu-
larized and freeze-milled cartilage microparti-
cles alone induced chondrogenic differentiation 
of rMSCs in the absence of any chondrogenic 
supplements. These results were comparable to 
those of cells cultured with chondrogenic sup-
plements in the absence of decellularized carti-
lage tissues [63]. Similarly, Yin et  al. utilized 
decellularized cartilage microparticles with an 
average diameter of 263 μm to evaluate their in 
vitro and in vivo chondrogenic potential using 
bone marrow stromal cells [64]. In their study, 
in the absence of chondrogenic growth factors, 
the cells were able to adhere to the cartilage 
microparticles and formed cartilage-like micro-
tissue aggregates, evident by the abundant pro-
duction of cartilage-specific ECMs. Moreover, 
when these cell-laden aggregates were trans-
planted into cartilage defects in a rat model, the 
defects were nearly filled with hyaline-like car-
tilage tissues, demonstrating the in vivo chon-
drogenic potential of the decellularized cartilage 
matrix.
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Another important approach utilizing decellu-
larized cartilage tissue involving 3D printable 
bioinks has been pioneered by Cho and his 
coworkers [65]. In their study, they developed a 
novel 3D bioprinting method for solubilizing car-
tilage tissue as pH-sensitive pre-gel bioinks and 
transform cell-laden bioinks to 3D gelled cell- 
printed structures (Fig.  9.3a–b). To achieve 
tissue- specific mechanical strength, they also 
incorporated a polycaprolactone (PCL) frame-
work into the cell-laden 3D structures. These 
novel cell-laden 3D constructs were shown to 
promote successful in vitro chondrogenic differ-
entiation of human mesenchymal stem cells com-
pared to collagen-based scaffolds, which was 
validated by upregulated chondrogenic gene 
markers and cartilage-specific ECM deposition 
(Fig.  9.3c–e). Thus, the decellularized cartilage 
ECM shows better performance over either syn-
thetic polymer-based biomaterials or single 
ECM-based biomaterials and provides crucial 
cues for in vitro proliferation and differentiation 
of stem cells, as well as in vivo functional engraft-
ment within host microenvironments.

9.3.3  Skeletal Muscle Tissue

Skeletal muscle is composed of hierarchically 
organized and three-dimensional bundles of 
myofibers surrounded by skeletal muscle-specific 
ECM [66, 67]. The biochemical, biomechanical, 
and topographical properties of the skeletal mus-
cle ECM, including collagens, proteoglycans, 
glycoproteins, and other matrix remodeling 
enzymes, have been shown to play a significant 
role in skeletal muscle homeostasis and regenera-
tion by modulating cellular adhesion, migration, 
and differentiation of muscle-specific stem cells, 
known as satellite cells, into multinucleated mus-
cle fibers [68–71].

Numerous studies have been conducted to 
develop methods for decellularizing skeletal 
muscles using physical methods such as multiple 
freeze–thawing processes, enzymatic treatment 
with trypsin, or various detergent solutions 
including SDS, sodium deoxycholate, and Triton 
X-100 [72–75]. For example, the research groups 
of Dyke and Christman established a method for 
obtaining solubilized ECM from the decellular-
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Fig. 9.3 Decellularized cartilage matrix-based bioinks 
for 3D printing of cell-laden engineered cartilage tissues. 
(a) Optical images of decellularized cartilage tissue and 
gelation of decellularized cartilage ECM (cdECM). (b) 

3D printed cell-laden engineered cartilage tissue. (c–e) 
Improved chondrogenic differentiation of hMSCs com-
pared to that of cells encapsulated within collagen. 
(Reproduced with permission from Ref. [65], Copyright© 
2014, Springer Nature)

9 Recent Advancements in Decellularized Matrix-Based Biomaterials for Musculoskeletal Tissue…



156

ized skeletal muscle tissues and investigated its 
potential as a novel coating material for inducing 
myogenic differentiation of myoblasts [76, 77]. 
Their results confirmed that decellularized ECM 
retained a complex mixture of muscle-specific 
proteins, peptides, and growth factors after decel-
lularization processes, as characterized by mass 
spectroscopy. Moreover, cells cultured on the 
skeletal muscle ECM-coated substrate  underwent 
faster proliferation and significantly enhanced 
myogenic differentiation compared to non-coated 
or collagen-coated substrates.

Similarly, Chaturvedi et al. developed a decel-
lularization method using phospholipase A2 and 
compared it to conventional decellularization 
methods [78]. The results indicated that the skel-
etal muscle-specific ECM was mostly retained 
without the loss of numerous glycoproteins and 
that solubilized ECM coating promoted myo-
genic differentiation of murine myoblasts in 
serum-free medium. Furthermore, when the 
authors seeded cells into decellularized 3D skel-
etal muscle rather than the ECM-coated sub-
strate, they found that the seeded cells sensed the 
topographical features of skeletal muscles and 
that the topography guided myotube formation 
and oriented myofiber bundles.

In another study, by structuring the microenvi-
ronment of skeletal muscle progenitor cells with 
decellularized skeletal muscle ECM similar to 
native tissue, Farrar and coworkers investigated the 
regenerative potential of a decellularized 3D skel-
etal muscle ECM scaffold using a lateral gastroc-
nemius (LGAS) muscle defect model [79]. After 
removing a part of the LGAS muscle from Sprague-
Dawley rats, the authors initially transplanted a 3D 
decellularized skeletal muscle ECM scaffold into 
the defect to promote skeletal muscle regeneration. 
Although the transplanted skeletal muscle ECM 
scaffold promoted new vessel formation and myo-
fiber growth at the defect, there was no functional 
recovery at 42 days after transplantation. In con-
trast, when the authors transplanted the same skel-
etal muscle ECM scaffold with rat MSCs, the 
cell-laden scaffolds promoted robust blood vessel 
formation and partially improved functional recov-
ery. These results suggest that cell-secreted trophic 
factors are also required for the functional recovery 
of damaged skeletal muscles.

To enhance the survival and functional 
engraftment of transplanted cells into ischemic 
muscle, recapitulation of the skeletal muscle 
microenvironments has been reported. Rao et al. 
used injectable skeletal muscle ECM-based bio-

Fig. 9.4 Decellularized matrix-based biomaterials for 
skeletal muscle tissue engineering. (a) In vivo transplanta-
tion of skeletal muscle progenitors with fibroblast using 
decellularized skeletal muscle ECM (SkECM) to improve 
cell survival, engraftment, and vascularization. 
(Reproduced with permission from Ref. [80], Copyright© 

2017, American Chemical Society) (b) 3D printing-based 
engineered 3D functional skeletal muscle-like bundles 
composed of major skeletal muscle ECM. (Reproduced 
with permission from Ref. [81], Copyright© 2016, John 
Wiley and Sons)
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Table 9.1 Summary of various decellularization methods for bone, cartilage and skeletal muscle tissues described in 
this chapter

Sources of 
tissue

Decellularization 
methods Reagents References

Bone Physical method/
Enzyme

1. Hydrostatic pressurization at 980 MPa at 30 °C 
for 10 min

Hashimoto et al. [48]

2. 0.2 mg/mL of DNase I at 37 °C for 3 weeks
3. 80%v/v ethanol washing at 37 °C for 3 days

Enzyme/Physical 
method

1. 0.05% Trypsin/0.02% EDTA at 37 °C for 24 h Gothard et al. [49]
2. Repeated snap freezing and lyophylization

Surfactant/Enzyme 1. 0.1% EDTA at room temp. for overnight at 4 °C Grayson et al. [51] 
and Marolt et al. [50]2. 0.5% SDS in 10 mM Tris for 24 h at room temp

3. 50 U/mL DNase, 1 U/mL RNase in 10 mM Tris 
for 3–5 h at 37 °C

Cartilage Physical method/
Enzyme/Surfactant

1. Physical pulverization Yang et al. [61] and 
Kang et al. [62]2. 3.5% phenylmethyl sulfonylfluoride (PMSF) and 

0.1% EDTA for 60 mins
3. 1% TritonX-100 in hypotonic Tris-HCl for 12 h at 
4 °C
4. 50 U/mL DNase and 1 U/mL RNase in 10 mM 
Tris-HCl at 37 °C

Enzyme/Surfactant/
Osmotic shock

1. hypertonic salt solution (HSS) treatment at 21 °C 
for overnight

Sutherland et al. [63]

2. 2 cycles of 0.05% TritonX-100
3. 0.0625 KU/mL benzonase at 37 °C for overnight
4. 1% sodium-lauroyl sarcosine at 21 °C for 
overnight
5. 40% ethanol washing

(continued)

materials that could form nanofibrous hydrogels 
when heated to physiological temperature [80]. 
In their study, the authors showed that co- 
transplanting myoblasts with fibroblasts using 
injectable biomaterials into ischemic muscle sig-
nificantly improved the viability, vasculariza-
tion, and function engraftment of transplanted 
cells (Fig.  9.4a). Recently, another innovative 
approach for mimicking the structural and func-
tional properties of skeletal muscle using 3D 
bioprinting techniques has been demonstrated 
by Choi et al. [81]. The authors developed decel-
lularized skeletal muscle ECM-based bioinks to 
achieve prepare skeletal muscle-like cell-laden 
scaffolds (Fig.  9.4b). By controlling the archi-
tectures of cell-laden ECM constructs, align-
ment of embedded myoblasts was controlled, 
resulting in enhanced myogenic differentiation 
through fusion of mononucleated myoblasts into 
multinucleated myotubes. Moreover, these cell-
laden ECM constructs exhibited visible contrac-

tion upon electrical stimuli, suggesting that 
decellularized skeletal muscle ECM provided a 
biomimetic microenvironment equivalent to that 
of native skeletal muscle tissues. Thus, combin-
ing decellularization methods with 3D cell-
printing technologies shows great potential for 
treating muscle wasting. The various decellular-
ization methods for native musculoskeletal tis-
sues are summarized in Table 9.1.

9.4  Conclusion

In summary, recent technological breakthroughs 
in the field of regenerative medicine and tissue 
engineering have been achieved by incorporating 
dynamic biological cues into a biomaterial for 
functional tissue regeneration. Decellularized 
tissue-based matrix is among the most attractive 
biomimetic materials and shows great beneficial 
effects in a variety of biomedical applications. 

9 Recent Advancements in Decellularized Matrix-Based Biomaterials for Musculoskeletal Tissue…



158

Table 9.1 (continued)

Sources of 
tissue

Decellularization 
methods Reagents References
Physical method/
Surfactant/Enzyme

1. Physical pulverization Yin et al. [64]
2. 0.5–2% SDS with 1–3% TritonX-100 at 4 °C for 
8 h
3. 50 U/mL DNase and 1 U/mL RNase at 37 °C for 
4 h

Physical method/
Surfactant/Enzyme/
Osmotic shock

1. Physical pulverization Pati et al. [65]
2. Hypotonic 10 mM Tris-HCl buffer (pH 8.0) 
treatment
3. 6 cycles of freeze-thaw
4. 0.25% trypsin at 37 °C for 24 h
5. Hypertonic 1.5 M NaCl in 50 mM Tris-HCl buffer 
(pH 8.0) treatment at 37 °C for 4 h
6. 50 U/mL DNase and 1 U/mL RNase in 10 mM 
Tris-HCl (pH 7.5) at 37 °C for 4 h
7. Hypotonic 10 mM Tris-HCl buffer (pH 8.0) 
treatment for 20 h
8. 1% TritonX-100 for 24 h

Skeletal 
muscle

Physical method/
Surfactant/Enzyme

1. Physical pulverization by slicing tissues 
(<500 μm)

Stern et al. [76]

2. 0.05% trypsin with EDTA for 1 h
3. 1% TritonX-100 for 5 days

Physical method/
Surfactant

1. Physical pulverization by mincing tissues 
(<1 mm3)

DeQuach et al. [77]

2. 1% SDS for 4–5 days
Physical method/
Surfactant/Enzyme

1. Physical pulverization by slicing tissues (<10 μm) Chaturvedi et al. [78]

2. 170 U/mL phospholipase for 30 min
3. 0.5% SDS in 20 mM Tris buffer (pH 8.0) for 
30 mins
4. 0.15 M NaCl with 1x cOmplete protease inhibitor 
for 30 mins
5. 3.4 M NaCl in 20 mM Tris for 2 h
6. 75 U/mL DNaseI in 40 mM Tris-HCl (pH 8.0), 
10 mM MgSO4 and 1 mM CaCl2

Solvent/Surfactant 1. Chloroform for 4–5 days Merritt et al. [79]
2. 2% SDS for 1 week
3. 0.1 M Tris buffer (pH 9.0) for 4 h

Physical method/
Surfactant/Enzyme

1. Physical pulverization by mincing tissues 
(<1 mm3)

Rao et al. [80]

2. 1% SDS for 5 days
3. isopropyl alcohol for 24 h

Physical method/
Surfactant/Enzyme/
Solvent

1. Physical pulverization by mincing tissues (< 
1 mm3)

Choi et al. [81]

2. 1% SDS for 5 days
3. 0.5% TritonX-100 for 24 h
4. 50 U/mL DNase in PBS for 12 h
5. Isopropyl alcohol for 12 h
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Presently, complete decellularization of target 
tissue by combinations of physical, enzymatic, 
and chemical treatments is considered to be very 
important; however, preservation of the structural 
and functional components of the native ECM is 
equally important.

Despite the promising results of both in vitro 
and in vivo studies, some challenges remain 
regarding their pre-clinical/clinical applications. 
First, although various decellularization processes 
based on single or combinatorial methods provide 
a certain degree of removal of cellular and nuclear 
components of each tissue, the most efficient pro-
tocol for target tissues must be further optimized. 
Second, despite the previously reported immuno-
modulatory ability, to accelerate the use of decel-
lularization-based technologies from the bench to 
the bedside, potential safety issues and risk fac-
tors of decellularized materials must be carefully 
evaluated. Third, identifying the specific molecu-
lar mechanism of decellularized material-medi-
ated assembly of host stem cell populations or 
consequent donor cell contribution to tissue 
regeneration is necessary. If these issues can be 
overcome in further research and development 
studies, decellularization technology has an excel-
lent potential to provide a great impact on cell-
based translational research.
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Abstract
Regenerative medicine is an interdisciplinary 
field that aims to regenerate the lost or dis-
eased tissues through the combinational use of 
cells, biomolecules and/or biomaterials. 
Injectable biomaterials have been comprehen-
sively evaluated for use in this field for their 
prominent properties, such as ease of han-
dling, providing a better integration of the 
native tissue by filling irregular defects and 
having controllable chemical and physical 
properties. This class of biomaterials can be 
developed from natural or synthetic origin 
materials, decellularized matrices or from 
combinations of materials to form composites. 
Injectable biomaterials enable minimally 
invasive approach when compared with tradi-
tional open surgeries, which can reduce the 

cost, and speed up the recovery time for the 
patients. Cells, growth factors and/or bioactive 
molecules can be effectively delivered to the 
target tissue using injectable biomaterials, 
making them desirable for a number of clini-
cal applications. This chapter gives an over-
view on injectable biomaterials and their 
clinical applications in soft, hard, and cardio-
vascular tissue regeneration.

Keywords
Injectable biomaterials · Stimuli-responsive 
hydrogels · In-situ gelling · Clinical applica-
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medicine · Scaffolds · Biopolymers

10.1  Introduction

Tissue engineering is a field that intends to restore 
or replace the damaged tissues with the combina-
tion of cells, biochemical factors and scaffolds 
[1]. Tissue engineering scaffolds ensure a struc-
tural support as an artificial extracellular matrix 
(ECM) for cell attachment, growth, proliferation, 
differentiation and organization into a three- 
dimensional (3-D) structure. In addition, the 
scaffold should facilitate transport of nutrients, 
oxygen, growth factors and waste removal. An 
ideal biomaterial scaffold assists new tissue for-
mation and remodeling by allowing cells to 
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maintain their microenvironment [2]. The 
 scaffold material can vary based on the applica-
tion and tissue type. A wide range of biomaterials 
from natural or synthetic sources can be devel-
oped with the aim to regenerate tissues [3, 4].

Injectable biomaterials have remarkable 
advantages over other preformed scaffold types 
and are prevalently used in tissue engineering 
[5–8] (Fig. 10.1). They also have potential cell- 
free uses, e.g. in the orthopedic surgery [9], and 
in the reconstructive surgery field [6]. Injectable 
biomaterials also find application in drug deliv-
ery [10]. An invasive surgery will be required for 
scaffold implantation, however injectable scaf-
folds can be delivered in-situ by minimally inva-
sive technique through needle-cannula injection 
avoiding complications associated with open sur-
gery. This property could be imperative in cir-
cumstances where tissues cannot be reached by a 
large incision, such as stroke treatment in the 
brain, etc. [11]. Also applying injectable bioma-
terials will reduce the infection risks of the open 
surgery. Lacking of any sutures will provide free-
dom of action to the patient and will shorten the 
patient’s remission time. Injectable biomaterials 
should have an appropriate viscosity to fill the 
defect site and its hardening time should be con-
trollable in order to integrate with the defect. 
Besides, injectable biomaterials should not cause 
any host response, and should provide a mechan-
ical support for tissue regeneration as a template 
[10]. In this chapter, an overview of injectable 
biomaterials, and their clinical use in soft, hard, 
and cardiovascular tissue regeneration is given.

10.2  Sources of Injectable 
Biomaterials

Injectable biomaterials enable complex treat-
ments through a minimally invasive surgical pro-
cedure. This property is required especially in 
cases where the lesion cannot be reached or in 
cases where a large incision is counter indicated, 
such as treatment of stroke in the brain [11]. 
Second important feature of injectable biomateri-
als is that they can easily integrate with the native 
tissue by filling the irregular defects, thus allow-
ing customization for the patient [8]. To fulfill a 
variety of treatment needs, injectable biomateri-
als should display properties such as, mechanical 
resistance, biocompatibility, biodegradability 
and tissue-specific interactions. Injectable bio-
materials and their properties can vary depending 
on the tissue of interest [12–16]. They can be cat-
egorized into three main classes on the basis of 
source; i.e. synthetic polymers, natural polymers, 
and decellularized matrices.

10.2.1  Synthetic Polymers

Synthetic polymers are used as injectable bioma-
terials to benefit from their controllable chemical 
and physical properties. In addition to being 
combined with growth factors, they have tunable 
matrix structure and chemical composition. The 
crosslinking density, gel formation dynamics, 
mechanical properties and degradation rate of 
synthetic polymers can be adjusted to the needs. 

Fig. 10.1 Injectable biomaterials in tissue engineering applications
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The most frequently used synthetic-origin 
 injectable biomaterials are; poly(ethylene oxide) 
(PEO), poly(ethylene glycol) (PEG), poly(vinyl 
alcohol) (PVA), poly(lactic acid) (PLA), 
poly(propylene fumarate) (PPF) and 
poly(propylene fumarate-co-ethylene glycol) 
(P(PF-co-EG) [14, 17] (Fig. 10.2).

Poly(ethylene oxide) is FDA approved for a 
number of medical applications. It is a photo- 
crosslinked polymer with hydrophilic proper-
ties. PEO can be modified with the suitable 
photoinitiator for crosslinking by UV exposure 
[14]. Sims et  al. have developed an injectable 
cartilage biomaterial by combining bovine chon-
drocytes with PEO and have injected into the 
nude mouse model. Histological analyses at 6 
and 12 weeks confirmed the formation of neo-
cartilage without any adverse inflammatory 
response [18].

In a study by Aho and co-workers, an inject-
able composite of poly(ε-caprolactone-co-D,L- 
lactic acid) (PCLA) and bioactive glass S53P4 
(BAG) was used as synthetic bone filler in a rab-
bit cancellous and cartilaginous subchondral 
defect model. Thus, the composite structure pro-
vided an interface with the host tissue. The high 
rate of bone bioactivity index and increased bone 
coverage index indicated good osteoconductivity. 
These values correlated with the amount of glass 
in the composite [19].

Poly(methyl methacrylate) (PMMA) has 
widely been used in dental and bone repair appli-
cations [20–22]. PMMA is used as combination 
of a monomer liquid and polymer powder. 
PMMA–based injectable biomaterials are espe-
cially useful for vertebral augmentation in the 
clinics due to their ease of handling, structural 
integrity, and radiopacity [23].

Poly(lactic acid) is an aliphatic polyester 
which has been recognized as biocompatible and 
biodegradable, as its degradation products can be 
naturally metabolized in-vivo [24]. 
Homopolymers of lactic acid can be stereoregu-
lar with D- or L- configurations, or racemic mix-
tures of D- and L-lactic acid units [25, 26]. 
Stereoregular D- and L-PLA have been used as 
crosslinking moieties by forming stereocom-
plexes, which also provide propulsive forces to 
make in-situ forming hydrogels [27, 28]. PLA 
has been utilized in many biomedical applica-
tions, including drug delivery and as structural 
component of internal fixation devices [29].

Stimuli responsive hydrogels are a class of bio-
polymers which respond to changes in their envi-
ronment [30]. Many hydrogels can undergo 
reversible changes in phase transition, from a 
solution-to-gel or gel-to-solution, connected with 
their chemical properties and the type of stimulus. 
This group of materials can be stimulated by pH, 
temperature, ionic strength, specific ions or mol-

Fig. 10.2 Chemical structures of common synthetic polymers
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ecules, electric field, magnetic field, and light. 
Among them, the most studied ones are the pH- 
and temperature-responsive (thermo- sensitive) 
hydrogels. The networks of  pH- sensitive poly-
mers change from neutral to charged state, with 
the changes in the environmental pH. In the bio-
medical field pH-sensitive hydrogels are com-
monly applied in the body parts having different 
pH levels, such as the stomach, intestine, blood 
vessels, vagina or tumor sites [31].

Thermo-responsive hydrogels undergo gela-
tion upon change (increase or decrease) in the 
temperature [32]. They show two types of char-
acteristic behavior in aqueous solution, known as 
the lower critical solution temperature (LCST) 
and the upper critical solution temperature 
(UCST). Below the LCST, the polymer is hydro-
philic and soluble and above the LCST, the poly-
mer becomes more hydrophobic and insoluble, 
thus causing a collapse into a gel form [33]. 
In-situ gelled hydrogels can be used for the sus-
tained release of therapeutics at a targeted site. 
These biomaterials undergo sol–gel transition 
after introduction into the body; thus gelation 
occurs in-situ at physiological temperature based 
on the thermo-sensitive character. The biomate-
rial degrades gradually over time, allowing local-
ized release of the therapeutic at the desired site 
of the body.

Lei et al. [34] have used PLA as an injectable, 
and have designed a radiopaque thermogel based 
on PLA-PEG hydrogel system. They used 
mPEG–PLA diblock and PLA–PEG–PLA tri-
block copolymers end-capped with triiodo ben-
zoic acid derivatives. The obtained TIB-capped 
mPEG–PLA thermogel showed good injectabil-
ity and high level of in-vivo radiopacity at differ-
ent administration sites [34]. Thermo-responsive 
hydrogels also find use in cell encapsulation and 
tissue engineering applications [35].

Injectable biomaterials can fill the irregular 
bone defects. Also therapeutic agents can be 
incorporated into an aqueous solution without the 
need for organic solvents. Kim et al. have devel-
oped an injectable pH and thermo-sensitive multi-
block copolymer, PCLA-PEG-PCLA for bone 
tissue engineering [36]. The copolymer encapsu-
lates human multipotent stromal cells (hMSCs) 

and recombinant human bone morphogenetic pro-
tein-2 (rhBMP-2) with high efficiency. When sub-
cutaneously injected into the mice, at the seventh 
week researchers observed human mesenchymal 
stem cells (hMSC) differentiation, and the forma-
tion of mineralized ectopic tissue with high levels 
of alkaline phosphatase (ALP) activity [36].

For cardiac repair, biodegradable and 
temperature- sensitive gels are a valid option due 
to the gelation property in physiological condi-
tions, maintaining molecular bioactivity and cell 
viability. Wu et al. described the production of a 
temperature-sensitive polyester, poly(D- 
valerolactone) (PVL)–PEG–PVL in conjugation 
with vascular endothelial growth factor (VEGF) 
and investigated its reparative capacity on a myo-
cardial infarction (MI) model. PVL–PEG–PVL 
in liquid form (at room temperature) transformed 
into solid form when injected. As the result, 
improvement in ventricular function with a 
decrease in negative cardiac remodeling was 
observed. Also, polymer conjugated with VEGF 
promoted localized angiogenesis [37].

10.2.2  Natural Polymers

Collagen, chitosan, alginate and hyaluronic acid 
(HA) offer properties resembling the natural 
ECM, so that biological environment accepts and 
degrades scaffolds made from these natural poly-
mers (Fig. 10.3). Owing to the biomimetic prop-
erties, natural polymers are compatible with the 
cells and cellular interactions [38]. Main disad-
vantages of these biomaterials are their low 
mechanical strength and fast degradation rate. 
Injectable hydrogels contain hydrophilic chains 
that make them soluble in water. After crosslink-
ing, insoluble networks are formed which leads 
to the swelling of the material in water. Water 
molecules surrounding the polymer chains act as 
plasticizers, thus decreasing their mechanical 
properties. To enhance the mechanical proper-
ties, chemically crosslinkable groups are intro-
duced into the chains. Mechanical properties of 
physically crosslinked injectable hydrogels are 
generally weaker when compared to covalently 
crosslinked hydrogels. Crosslinking density, 
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types of bonds and the structure of the polymer 
can affect the mechanical properties of 
 crosslinked hydrogels [16]. However, with 
refined techniques and/or new recombinant 
approaches it is possible to overcome the 
mechanical limitations of natural origin biomate-
rials. The degradation rate and mechanical prop-
erties of natural biopolymers can be improved by 
combining them with synthetic materials [12].

Collagen is a highly utilized natural polymer 
as a biomaterial. It is abundant in mammalian tis-
sues as the ECM component, and comprised of 
three polypeptide chains forming a three-stranded 
structure. Collagen can form fibers by self- 
aggregation and cross-linking. Collagen degrada-
tion is governed by metalloprotease activity, 
specifically serine proteases and collagenases. In 

comparison to some other natural polymers, col-
lagen exhibits good biodegradability, weak anti-
genicity and superior biocompatibility, making it 
a preferred biomaterial for medical applications 
[39].

Alginate is a naturally occurring linear hydro-
philic polysaccharide, composed of (1–4)-linked 
α-L-guluronic acid (G) and β- D-mannuronic 
acid (M) monomers. Gelation of alginate occurs 
through cooperative binding between G units 
caused by divalent cations (such as Mg2+, Ba2+, or 
Ca2+) [40]. The mechanical properties and the 
crosslinking density of alginate gels are altered 
by changing the M/G ratio, and the molecular 
weight [14]. The characteristic gelation property 
of alginate enables its use in drug delivery, cell 
encapsulation, and tissue engineering [41]. Cells 

Fig. 10.3 Common natural polymers and their structures
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encapsulated in alginate could allow minimally 
invasive operations for the treatment of 
 orthopaedic deformities. For example, Dobratz 
et al. reported that in-situ molded cell-encapsu-
lated alginate scaffold maintained its stability for 
more than 38 weeks upon implantation [42].

Injectable composite biomaterials have also 
been used as cell delivery vehicles in tissue engi-
neering of the bone. Beta-tricalcium phosphate 
(β-TCP) is a synthetic calcium phosphate bioc-
eramic displaying optimal osteoconductivity and 
biodegradability. It can be combined with colla-
gen, fibrin and/or alginate gels as scaffold for 
bone tissue engineering. In a study by [43], it was 
found that MSC-laden alginate-β-TCP composite 
subcutaneously injected into nude mice sup-
ported new bone formation and osteogenic dif-
ferentiation of MSCs.

Chitosan is a semi-crystalline, linear polysac-
charide consisting of β- (1–4) 2-amino-2-deoxy-
D- glucose unit repeats. It is formed by the 
N-deacetylation of chitin [44], where the crystal-
linity is determined by the amount of deacety-
lation. Chitosan becomes soluble in dilute acids 
below pH  5, as the free amino groups become 
protonated. pH-dependent solubility of chitosan 
enables processing under mild conditions. 
Chitosan is degraded through hydrolysis (by 
lysozyme and other proteolytic enzymes). 
Degradation kinetics is directly related to the 
degree of crystallinity [45]. Its biocompatibility, 
biodegradability and low immunogenicity prop-
erties enable the use of chitosan as an injectable 
biomaterial [46]. For example, Mwale et  al. 
investigated the feasibility of cell-laden genipin 
cross-linked chitosan glutamate for the treatment 
of nucleus pulposus (NP) as a supplementation of 
the degenerate intervertebral disk (IVD) on an in- 
vitro cadaveric intervertebral disk model [47]. 
Chitosan and its degradation products can be uti-
lized as nutrients for the cartilage [46]. Lu and 
co-workers evaluated the use of intra-articular 
chitosan injection in a rat defect model, and 
found that chitosan significantly decreased 
epiphyseal cartilage thickness and increased 
chondrocyte density of the articular cartilage 
[48]. This finding suggests that injectable chito-

san could be a sound alternative for cartilage 
regeneration.

Hyaluronic acid is present in nearly all tissues 
of vertebrate organisms. It comprises of 
D-glucuronic acid and N-acetyl-D-glucosamine 
repeating disaccharide units [49]. HA hydrogels 
are formed through covalent crosslinking by uti-
lizing hydrazide derivatives, annealing and ester-
ification [50]. HA is important for many 
biological processes, i.e. cell differentiation, pro-
teoglycan organization, nutrient diffusion and tis-
sue hydration. HA is fully biodegradable, 
non-thrombogenic and non-immunogenic. HA 
finds use as biological absorber, lubricant and an 
injectable bimaterial for regenerative applica-
tions [51].

Fibrin is widely used as sealant in clinical 
applications. It contributes to natural wound 
healing [52]. Fibrin gels are formed through 
enzymatic polymerization of fibrinogen in the 
presence of thrombin and its degradation rate can 
be controlled by a proteinase inhibitor, apronitin. 
Evidence suggests that fibrin gels induce cell 
proliferation, matrix synthesis and cell migration 
[53]. Fibrin glue is useful in a number of tissue 
engineering applications; one of them is the bone 
tissue engineering. Zhu et al. evaluated the ecto-
pic (subcutaneous) bone tissue formation poten-
tial of a platelet-rich fibrin gel containing BMP-2 
and bone marrow MSCs in a nude mice model 
[54]. Bone tissue formation was observed after 
12 weeks, indicating the regenerative osteogenic 
potential, and that platelet-enriched fibrin glue 
was better than platelet-rich plasma (PRP) [54]. 
In a different application, Christman et al. evalu-
ated fibrin glue as wall support and its use as 
injectable scaffold (with and without myoblasts) 
in a rat post-MI heart model [55]. Researchers 
noted improvement in cellular retention and sur-
vival with significant positive changes in cardiac 
function.

10.2.3  Decellularized Matrices

Scaffolds derived from the decellularization of 
tissues and organs have come into prominence in 
the last decade [56]. They are currently gaining 
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use for regenerative applications for tissue and 
organ replacement [57]. Upon decellularization 
of fresh tissues/organs, a complex combination 
of functional and structural proteins that consti-
tute the extracellular matrix (ECM) remains 
(Fig.  10.4). As known, ECM is formed by the 
biological activity of resident cells. ECM compo-
nents are organized in a 3-D pattern specific to 
tissue type. It provides cues to cells for migra-
tion, proliferation and differentiation [58, 59].

Cardiac tissue does not have significant regen-
erative capacity, so it cannot completely repair 
itself after an ischemic injury which may lead to 
negative left ventricular remodeling [60]. Success 
of cell-based cardiac repair or cardiac patch treat-
ments is limited by poor cell survival and reten-
tion. Current cardiac regenerative approaches are 
mostly focused on injectable biomaterials alone 

or in combination with cells [61–63]. Seif- 
Naraghi et al. evaluated the use of decellularized 
porcine pericardium as an injectable biomaterial 
on rat myocardium and observed infiltration of 
vascular cells. Moreover, the team reported c-kit 
cell existence at the injection site, indicating 
recruitment of resident progenitors [64].

Cellular transplantation combined with bio-
material support may influence cardiac repair. An 
example is the study by [65], in which acellular 
porcine small intestine submucosa (SIS)-derived 
ECM was found to promote angiogenesis. 
Porcine SIS is a source for glycosaminoglycans 
and glycoproteins which facilitates successful 
cell function and attachment [65]. In another 
study, Zhao et  al. reported an increase in stem 
cell factor expression, recruitment of bone 
marrow- derived c-kit positive cells, and an 

Fig. 10.4 Concept of 
decellularization process
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increase in VEGF expression, following injection 
of SIS-ECM into the MI model, suggesting that 
decellularized biomaterial has favorable effects 
on cardiac remodeling [66].

Singelyn et  al. proposed a decellularized 
myocardium- based injectable biomaterial for 
vascularization [63]. The myocardial matrix pro-
moted vascular cell infiltration, and new arteriole 
formation was observed after 11 days. Later, the 
group evaluated the self-assembling gel derived 
from decellularized ventricular ECM in a MI 
model, and found that the injectable biomaterial 
increased the number of endogenous cardiomyo-
cytes and preserved cardiac function post-MI 
[67].

DeQuach et al. [68] investigated the potential 
of decellularized skeletal muscle ECM-based 
hydrogel injectable for treating peripheral artery 
disease (PAD) in an hind limb ischemia model. 
Upon injection, a porous scaffold was formed 
which promoted cell infiltration to the damaged 
zone. ECM injectable increased capillary and 
arteriole density 1  week after injection, and 
recruited higher number of MyoD-positive and 
desmin-positive cells compared to positive con-
trol. The results show that injectable ECM hydro-
gels can be further developed as a stand-alone 
therapy for the treatment of ischemia caused by 
PAD [68].

10.3  Clinical Applications 
of Injectable Biomaterials

The use of injectable biomaterials is becoming an 
attractive alternative to surgical implantation, 
when factors such as patient comfort, post-op 
recovery, costs and other complications are con-
sidered. Implantation of pre-formed scaffolds 
with limited information about the size or shape 
of the defect is usually inefficient. However, 
injectable biomaterials can be tuned to assume a 
pre-formed shape after delivery [5, 69]. Injectable 

biomaterial approach also offers a more homog-
enous distribution of bioactive molecules, and 
cells within the prospective graft. For these rea-
sons, they are becoming prevalent in many clini-
cal treatments, including cardiovascular, 
orthopaedic, and plastic/reconstructive surgery 
applications [70].

10.3.1  Cardiovascular Applications

Upon MI, left ventricule (LV) remodeling is 
characterized by the degradation of the 
ECM.  Direct injection of biomaterials into the 
infarcted zone can potentially limit this process. 
Frey et  al. investigated the effectiveness of an 
injectable bioabsorbable scaffold (IK-5001), 
composed of calcium gluconate and sodium algi-
nate, in preventing and possibly counteracting 
adverse LV remodeling in MI cases. Twenty 
seven patients (age 54  ±  9  years) received 
IK-5001 through the coronary artery 7 days after 
MI. It was found that the procedure and the mate-
rial was safe, did not disrupt coronary blood flow 
and myocardial perfusion, and no additional 
myocardial injury was observed [71].

Reduction of LV wall stress is an important 
aspect of heart failure (HF). Algisyl-LVR™, 
which basically consists of calcium alginate is 
intended to prevent deterioration of HF patients 
who suffer from dilated LV. Lee et al. evaluated 
the efficiency of Algisyl-LVR™ hydrogel injec-
tions for reducing LV wall stress of 11 HF 
patients with an ejection fraction (EF) ˂40% [72]. 
Three months after treatment, wall thickness 
increased by ~20%. Results showed that after 
treatment end-systolic volume (ESV) decreased 
further by ~30%, while the end-diastolic volume 
(EDV) did not decrease significantly. The overall 
results show that Algisyl-LVR™ treatment may 
be a promising approach in treating dilated LV.

Another study (AUGMENT-HF trial) investi-
gated direct injection of alginate-hydrogel into 
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the myocardium to alter the size and shape of 
dilated ventricles of 113 patients (age 
18–79 years). Researchers administered alginate- 
hydrogel through left thoracotomy with multiple 
intra-myocardial injections. The treatment was 
shown to increase exercise capacity and improve-
ments in chronic HF patients [73].

10.3.2  Orthopaedic Applications

Injectable biomaterials applications are wide-
spread in the orthopedic surgery field. Some 
examples are given in Table  10.1. Vertebral 
 fractures mostly cause persistent acute pain, 
which negatively affects patient mobility and life 

quality. Jensen et al. tested the efficacy of PMMA 
injections in 29 patients (19 women and 10 men) 
with back pain refractory to analgesic therapy. 
All patients had acute pain which inhibited their 
physical activity. Vertebroplasty technique 
(Fig. 10.5) was applied with fluoroscopic injec-
tion of PMMA. Twenty four hours after the appli-
cation, 90% of the subjects displayed improved 
mobility and pain relief [92].

Allegretti et  al. [93] used PMMA injections 
for the treatment of symptomatic haemangiomas, 
metastatic fractures and osteoporotic fractures. 
Twelve patients (5 female, 7 male) participated in 
the study (age 29–69  years; mean age 57.6). 
Intra-operative vertebroplasty (IVP) was per-
formed during a single session under fluoroscopic 

Table 10.1 Examples of injectable biomaterials used in orthopedic surgery

Product/company Composition Related references
Norian SRS/Synthes®, West 
Chester, PA

α-TCP, CaCO3, MCPM Zimmermann et al. [74], Gómez et al. 
[75], Sanchez-Sotelo et al. [76] and 
Lobenhoffer et al. [77]

Sinovial® (Yaral®, 
Intragel®), Lugano, 
Switzerland

Sodium hyaluronidate/Hyaluronan/
Hyaluronic acid

Theiler and Bruhlmann [78] and Roux 
et al. [79]

BoneSource ™/Stryker- 
Howmedica- Osteonics, 
Rutherford, NJ

DCP, TTCP Dickson et al. [80]

Mimix™/Biomet, 
Jacksonville, FL

TTCP, α-TCP, trisodium citrate

ChronOS™ inject/Depuy 
Synthes, Leeds, UK

β-TCP, MCMP, MgHPO4.3H2O, MgSO4, 
Na2H2P2O7

Joeris et al. [81], Arora et al. [82] and 
Oh et al. [83]

Calcibon®/Biomet, berlin, 
Germany

α-TCP, DCP, CaCO3,PHA Friesenbichler et al. [84]

Cerament™/BoneSupport 
AB, Lund, Sweden

CaSO4.1/2H2O, HA Kaczmarczyk et al. [85]

BonePlast®/Zimmer 
Biomet, Warsaw, IN

CaSO4.1/2H2O Johnson and Clayer [86] and Clayer 
[87]

Cortoss®/Orthovita Inc., 
Malvern, PA

Bis-GMA, Bis-EMA, TEGMA, glass and 
ceramic fillers, barium 
boroaluminosilicate, silica

Boyd et al. [88], Bae et al. [89], Bae 
et al. [90] and Jacobson et al. [91]

HydroSet™/Stryker, 
Kalamazoo, MI

TetCP, DCPD, trisodium citrate

Cementek® LV/Teknimed, 
Vic-en-Bigorre, France

α-TCP, TTCP, Na glycerophosphate, 
DMS

Abbreviations: Bis-EMA bisphenol-a-ethoxy dimethacrylate, Bis-GMA bisphenol-a-glycidyl dimethacrylate, DCP di- 
calcium phosphate, DMS dimethylsiloxane, MCPM monobasic calcium phosphate monohydrate, TCP tricalcium phos-
phate, TEGMA triethylene glycol dimethacrylate, TTCP tetracalcium phosphate
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control. Compared to the pre-surgical state, all 
cases displayed a significant reduction of their 
symptoms (33.8  months follow-up). The visual 
analogue scale (VAS) score showed that the pain 
intensity was reduced after the treatment [93].

Calcium phosphate-based hydraulic cements, 
termed as cancellous bone cement present poten-
tial for filling irregular bony voids. They harden 
at physiological pH and body temperature. 
Compared to PMMA cements, they have much 
better non-cytotoxic property. Jupiter et al. inves-
tigated the clinical utility of Norian SRS injec-
tion for extra-articular fractures of the distal 
radius. Five women patients (age 49–57  years) 
with fractures or limb injury participated in the 
study [94]. The treatment was performed under 
local or general anesthesia using fluoroscopic 
control. The outcomes were assessed by radio-
graphic and functional evaluations (1-year fol-
low- up). No intra-articular extrusion and no 
clinically detectable problems were observed. 
Norian SRS was bioabsorbable through osteo-
clastic activity, and in three patients the material 
was completely resorbed at 6  months [94]. 
Similarly, Wolff et al. used Norian SRS as a bone 
mineral substitute for the treatment of viscerocra-
nium or calvaria in 27 patients (age 37–76 years). 
They reported no signs of infection, or inflamma-
tion in any of the patients [95].

Hyaluronic acid is normally found in the 
healthy cartilage matrix. However, HA content is 
altered in osteoarthritis (OA), characterized by 
the reduction of viscosity and elasticity of the 
synovial fluid. Derivatives of HA products may 
hold promise in OA cases. In a study by Evanich 
et al., 84 patients (100 knees) with symptomatic 
OA were treated with intra-articular injections of 
Synvisc® (hylan G-F 20), for three sequential 
weeks (10-months follow-up) [96]. Synvisc® is a 
chemically-crosslinked elastoviscous high 
molecular weight fluid containing hylan A and 
hylan B polymers. Clinical efficacy was evalu-
ated by the increase in activity level, degree of 
pain relief and reported satisfaction. As the result, 
HA injection was advised for patients with sig-
nificant surgical risk factors. However, this treat-
ment was not advised in cases with collapsed 
joint space or significant bone loss [96, 97].

In a study by Roux et  al., the efficiency of 
sodium hyaluronidate injection on the osteoar-
thritic carpometacarpal joint of the thumb 
(CMCJ) was evaluated in 42 patients (mean 
64.8 years). However, there were no significant 
differences for pain relief and function between 
groups [79]. In another study, the efficiency of 
intra-articular HA injection or its combination 
with corticosteroid (CS) on the duration between 
diagnosis of knee OA to knee arthroplasty (KA) 

Fig. 10.5 Vertebroplasty 
technique
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was investigated. 267,345 OA patients partici-
pated in the study between 2005 and 2012. It was 
found that, HA injections in medicare knee OA 
patients are associated with longer time to KA 
[98].

Marcia et al. evaluated the effect of absorbable 
and injectable calcium bone cement (Cerament™, 
Bone Support, Sweden) in comparison to PMMA 
in patients with vertebral fractures. Thirty three 
patients (age 29–84  years) participated in the 
study, and the clinical outcome was evaluated by 
using ODI questionnaire and VAS score. Also the 
team utilized X-ray, CT, and MRI assessments 
post-procedure at 1, 6 and 12 months. ODI and 
VAS scores demonstrated a significant pain 
relief. The results showed that the injectable bone 
cement was an effective substitute in treatment of 
vertebral fractures [99].

PRP is an autologous source of growth factors 
approved for various medical applications and 
has a potential to enhance tissue regeneration. 
For example, [100] aimed to explore the effi-
ciency of PRP injections for degenerative lesions 
of articular cartilage. Clinical evaluation on 91 
patients with OA showed improved activity in 
younger subjects, and notable improvement in 
patients older than 65 years. These findings con-
firm that intra-articular PRP injection treatment 
is safe, and useful for early degenerative articular 
pathology of the knee [100].

10.3.3  Plastic and Reconstructive 
Surgery Applications

Facial fillers have become a primary option for 
facial rejuvenation due to nonsurgical delivery 
procedure. Dermal fillers, including HA, colla-
gen, PLLA, and liquid silicone aim long-lasting 
soft-tissue augmentation without side effects 
[101].

Since temporary treatment options are limited, 
there is requirement for more persistent and 

effective treatment options for facial lipoatrophy. 
At this point, liquid silicone became an option for 
treatment. In 1972, Rees et al. treated 73 subjects 
with liquid injectable silicone. Approximately 
90% of the cases had displayed improvement in 
facial contour [102]. In another study, Jones et al. 
investigated 1000-cSt silicone oil injection treat-
ment of HIV-associated lipoatrophy. Seventy 
seven patients with HIV-related facial lipoatro-
phy participated in this study in which they 
received Silikon 1000 (Alcon Labs., Ft. Worth, 
TX) or VitreSil 1000 (Richard James, Inc., 
Peabody, MA). This study suggests that inject-
able silicone is a feasible option for HIV-related 
facial lipoatrophy [103]. Similarly Chen et  al. 
investigated the safety and efficacy of a 1000-cSt 
highly purified silicone fluid injection to 20 HIV- 
related facial lipoatrophy patients. Adverse 
events including edema and erythema were 
observed in 3 patients. After the treatment, study 
reported self-rated severity of lipoatrophy 
through the CLSS and presented a complete 
decrease in CLSS score in 75% of the patients 
[104].

PLLA is widely preferred in cosmetic proce-
dures owing to the increase in fibroblast prolifer-
ation and collagen production upon deep dermal 
injections. Clinical studies on HIV-related facial 
lipoatrophy have shown that injectable PLLA is 
well-tolerated and effective [105]. In a study by 
Moyle et  al., the tolerability and efficacy of 
PLLA (New-Fills; Medifill, London, UK) injec-
tion in 30 patients with HIV-related facial lipoat-
rophy was demonstrated [106]. In 2006, the same 
group evaluated the efficacy and long-term safety 
of PLLA injections, and found no serious side 
effects after 2  years [107]. In another study, 
PLLA was used in ˃7000 treatments in ˃2500 
patients. Correction with injectable PLLA 
(Sculptra) lasted for 18 to 24  months in most 
patients. The reports showed that injectable 
PLLA provided an effective treatment for patients 
seeking facial volumetric correction [108].
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Lowe et  al. used injectable PLLA to correct 
facial volume deficits caused by ageing or dis-
ease in the nasolabial fold region of 221 patients. 
Reported adverse events, including bruising, 
swelling and discomfort, were resolved within 
2–7 days. This study demonstrated that injectable 
PLLA could be a valid option for corrective 
interventions of facial areas with volume loss 
[109].

Poly(alkylimide) gel is a non-toxic, non- 
biodegradable and non-allergenic polymer. In a 
study by Loutfy et  al., PAIG (Bio-Alcamid™, 
Milan, Italy) injection was applied to treat HIV- 
associated facial lipoatrophy in 31 patients, and 
found to be a valid method [110]. Similarly, 
Karim et  al. evaluated the long-term effects of 
PAIG injections on facial lipoatrophy in 17 HIV- 
positive patients. As a single-stage procedure, 
PAIG was found to be effective to significantly 
decrease the facial lipoatrophy of the patients 
[111].

Calcium hydroxyapatite is used in different 
forms in cosmetic and reconstructive surgery. For 
example, CaHA gel (Radiesse, BioForm Medical, 
San Mateo, CA) comprises of synthetic CaHA 
microspheres (30%) suspended in an aqueous 
carrier gel (70%). The safety and effectiveness of 
CaHA gel in HIV-associated lipoatrophy patients 
was confirmed by [112]. Similarly, Berlin et al. 
evaluated efficacy of the CaHA filler for soft tis-
sue augmentation by evaluating levels of colla-
gen expression. Findings showed CaHA filler 
safely stimulates new collagen deposition and 
contributes to the clinical improvement in sub-
jects with rhytids [113].

In a particular study, 138 patients with promi-
nent nasolabial folds were randomized to receive 
either bovine collagen (Zyplast) or hyaluronic 
acid gel (Restylane; Q-Med, Uppsala, Sweden). 
Findings indicated similar effectiveness for 
Zyplast and Restylane in corrective ability of the 
nasolabial folds. On the other hand, hyaluronic 
acid gel caused a significantly longer-lasting 
 correction in comparison to bovine collagen, 
along with permanent success in some patients 
[114].

Hyaluronic acid shows rapid degradation, 
making it unsuitable for soft tissue filler in cos-
metic surgery. Chemical cross-linked of hyal-
uronic acid becomes an insoluble viscoelastic 
polymer and shows resistance to enzymatic deg-
radation. Carruthers et  al. [115] compared the 
safety and the efficacy of two cross-linked HA 
gel product, Restylane Perlane (Q-Med, Uppsala, 
Sweden) and Hylaform (Genzyme Corp., 
Cambridge, MA). 150 patients were treated with 
Restylane and Hylaform on the contralateral 
nasolabial folds of their faces. Findings indicated 
that both products were effective, while Restylane 
Perlane provided a more durable esthetic 
improvement than Hylaform [115]. In another 
study, Levy et  al. compared two HA products, 
Restylane Perlane and Juvéderm ULTRA 3 in a 
single blind clinical trial setting. 126 patients 
(mean age of 53  years) were treated with both 
products at contralateral nasolabial folds. There 
was no significant difference between products 
related to the patient assessment of post- treatment 
smoothness and appearance [116]. Some exam-
ples of injectable biomaterials used in plastic and 
reconstructive surgery are given in Table 10.2.

10.4  Conclusions

In this chapter, we attempted to give an overview 
of some of the types and clinical applications of 
injectable biomaterials. As a matter of fact, the 
success of an injectable biomaterial depends on 
its design, which includes physical, chemical and 
biological properties tailored for the specific tis-
sue type and related use. Injectable biomaterials 
have shown promising results in many tissue 
engineering applications; thus, common con-
cerns are possible toxicity of initiators, mono-
mers or macromers contacting the tissue, the rate 
of polymerization and potential harm caused by 
the remnants of toxic solvents and/or degradation 
products. Since there is no single injectable that 
meets all the requirements, it is important to bal-
ance the advantages and disadvantages of a bio-
material for each application.
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Table 10.2 Clinical use of some injectable biomaterials in plastic and reconstructive surgery

Main component Product/company Related references
Poly(L-lactic acid) Sculptra®/Sanofi-Aventis – Dermik Labs., 

Bridgewater, NJ; Sinclair Pharma Paris, 
France (in Europe)

Valantin et al. [105], Vleggaar [108], Moyle et al. 
[107], Lam et al. [117], Burgess and Quiroga 
[118], Duracinsky et al. [119] and Lowe et al. 
[109]New Fill®/Valeant, Laval, Quebec, 

Canada
Poly(alkylimide) Bio-Alcamid™/Polymekon Biotech 

Industry, Milan, Italy
Lahiri and Waters [120], George et al. [121], 
Gómez-de la Fuente et al. [122] and Protopapa 
et al. [123]

Poly(methyl 
methacrylate)

Artecoll/Rofil Medical Int., Breda, The 
Netherlands

Solomon et al. [124], Karnik et al. [125], Cohen 
et al. [126] and Chen et al. [127]

Artefill/Artes Medical, San Diego, CA
Liquid silicone Silikon 1000/Alcon Labs., Ft. Worth, TX Jones et al. [103], Chen et al. [104], Orentreich 

and Leone [128] and Jacinto [129]VitreSil 1000/Richard James, Inc., 
Peabody, MA
Silskin/Richard-James, Inc., Peabody, 
MA
Adatosil 5000/Bausch & Lomb, 
Rochester, NY

Calcium 
hydroxylapatite

Radiesse®/Bioform Medical Inc., San 
Mateo, CA

Kasbekar and Sherman [130], Carruthers and 
Carruthers [112], Berlin et al. [113], Alam et al. 
[131], Daley et al. [132] and Smith et al. [133]

Collagen Zyplast® – Zyderm®/McGhan Medical 
Inc., Santa Barbara, CA

Narins et al. [114], Downie et al. [134], Sclafani 
et al. [135] and Lupo et al. [136]

Cosmoderm – Cosmoplast/Allergan- 
Inamed Corp., Santa Barbara, CA

Smith et al. [133] and Bauman [137]

Cymetra/LifeCell Corp., Branchburgh, 
NJ, USA

Sclafani et al. [135]

Dermalogen/Collagenesis Corp., Beverly, 
MA
Autologen/Collagenesis Inc., Beverly, 
MA
Resoplast/Rofil Medical Int., Breda, The 
Netherlands
Fascian®/Fascia Biosystems, Beverly 
Hills, CA

Hyaluronic acid Restylane®/Q-Med, Uppsala, Sweden Narins et al. [114], Downie et al. [134], Arsiwala 
[138], Wu et al. [139], Kinney [140], Moers- 
Carpi et al. [141] and Chen et al. [127]

Perlane ®/Medicis Pharm. Corp., 
Scottsdale, AZ
Hylaform/Biomatrix Inc., Ridgefield, NJ Grimes et al. [142]
Hyaluderm/LCA Pharmaceutical, 
Chartres, France
Captique/Inamed, Santa Barbara, CA Onesti et al. [143] and Grimes et al. [142]
Matridur/BioPolymerGmbH & Co. KG, 
Montabaur, Germany
Puragen Plus/Mentor Corp., Santa 
Barbara, CA

Kinney [140] and Onesti et al. [143]

Juvederm/Allergan Inc., Irvine, CA Baumann et al. [144], Grimes et al. [142], Lupo 
et al. [136] and Moers-Carpi et al. [141]
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Advanced Injectable Alternatives 
for Osteoarthritis
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Abstract
Osteoarthritis (OA) is a common form of 
arthritis, which is characterized by progressive 
degradation of joint cartilage resulting in pain, 
joint stiffness, deformity and disability that is 
also recently related to an increased incidence 
of mortality. Inhibition of the extracellular 
matrix (ECM) production by chondrocytes 
and accumulation of catabolic mediators 
associated with matrix degradation are the 
cause of OA. Nonsurgical treatments for OA 
can be characterised as symptom-modifying 
or disease-modifying approaches. It’s 
estimated that 10% of the world population 

older than 60  years demonstrated symptoms 
of OA (Messier SP, Callahan LF, Beavers DP 
et  al., BMC Musculoskelet Disord 18(1):91, 
2017). A virtue of chondrocytes has a limited 
proliferation capability; nonsurgical OA ther-
apies mostly include native cartilage extracel-
lular component injections like hyaluronic 
acid, anti-inflammatory effected autologous 
cell implantations, platelet rich plasma injec-
tions and medicals like corticosteroids. Stem 
cells are searched to cure OA recently. Also 
nowadays we can develop injectable release 
systems, biocompatible hydrogels and micro/
nano sized carriers to make these medicals 
more effective. In this review we cover inject-
able alternatives to modify the natural course 
of OA that gives a window for patients 
between conventional treatment methods and 
joint replacement surgery.

Keywords
Osteoarthritis · Cartilage · Chondrocytes · 
Hyaluronan · Glycosaminoglycan · 
Chondroitin sulfate

11.1  Introduction

Osteoarthritis (OA) affects the whole joint struc-
tre including menisci, ligaments and subchondral 
bone and causes progressive changes in cartilage 
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and inflammation of synovial fluid. [11]. It’s esti-
mated prevalence is 35% people whose aged 
between 50 and 59  years, and 55% for people 
over 70 years [37]. The lifetime risk for knee OA 
is 45% [62] and hip OA is 25%, respectively [63]. 
OA is mostly related to overweight, cartilage 
injuries, aging and heredity [41]. In early OA, 
chondrocytes expose a proliferative response, 
increased synthesis of cartilage extracellular 
matrix components like type II collagen and 
aggrecan as an early attempt at repair and 
increased synthesis of catabolic cytokines and 
matrix degrading enzymes [31]. Major problem 
in clinical OA treatment is damaged articular car-
tilage has poor healing potency by virtue of its 
hypovascularity and hypocellularity [33].

Oral glucosamine (GA) and chondroitin sul-
fate (CS), which are native components of joint 
cartilage matrix, intake is preferred by patients 
for more than 30  years to decrease pain and 
improve function in OA treatment (Table 11.1). 
CS in the joint space provides a structural sup-
port, slowing cartilage destruction, helping in 
maintaining the structural integrity and homeo-
stasis of the tissue and reducing OA symptoms 
[12, 45]. Also, GA has potential chondroprotec-
tive effects on cartilage with OA [82]. Information 
on serum and joint cartilage accumulation of 
these molecules however is lacking.

To deliver the therapeutic agent directly into 
the articular cavity, intra-articular (IA) injections 
represent a therapy that is often used in the control 
of OA [76]. OA therapies with IA injections have 
a good safety profile and several products can be 
used including hyaluronic acid (HA) injections, 
platelet rich plasma (PRP) injections, expanded 
stem cell injections, non- steroidal anti-inflamma-
tory drug (NSAID) injections and biomaterials 
(eg, nano-micro carriers, hydrogels and drug 
delivery/release sytems).

11.2  Hyaluronic Acid (HA) 
Injections

Intra-articular (IA) hyaluronic acid (HA) injec-
tions is the most common used non-surgical ther-
apy for OA. HA is responsible for the viscoelastic 
properties of the synovial fluid and cartilage 

extracellular matrix (Fig.  11.1). HA is a long, 
non-sulfated glycosaminoglycan that contains 
the repeating disaccharide unit of N-acetyl glu-
cosamine and glucuronic acid [60].

Exogenous HA injection improves chondro-
cyte HA and proteoglycan synthesis, increases the 
production and activity of pro- inflammatory medi-
ators and matrix metalloproteinases. Hyaluronan 
also suppresses cartilage degeneration and prevent 
cartilage for damage [61].

FDA approved IA HA injections are, Hylan 
G-F 20 (Synvisc®), Hylan G-F 20 (Synvics- 
OneTM), Sodium hyaluronate (Hyalgan®, 
Supartz®, EuflexxaTM, Monovisc™, Gel-Syn™, 
GenVisc® 850). High molecular weight 
Hyaluronan (Orthovisc®), Hyaluronic acid (Gel- 
One®), High molecular weight viscoelastic 
hyaluronan (Hymovis®), (bcbswyn.com).

Chondrocytes cultured in culture media with 
HA have significantly greater rates of DNA 
proliferation and extracellular matrix production, 
compared with chondrocytes cultured without 
HA [1]. Studies have also shown that IA HA 
injection decreases arthritic lesions in 
experimental animal models of articular cartilage 
injury [7, 50, 67, 61, 21, 23, 56, 66, 75]. HA 
injections reduce synovial fluid levels of intercel-
lular adhesion molecule-1 (ICAM-1) and vascu-
lar cell adhesion molecule-1 (VCAM-1) and 
improved WOMAC pain and stiffness score of 
patients with knee OA [47].

Due to a wide variety of IA-HA products, 
which molecular weight of IA-HA product 
should be used or how many injections should be 
applied for OA therapies is a contention. Ultra- 
high molecular weight viscosupplement 
(UHMW-HA) is a safe and effective treatment 
for hip osteoarthritis. A single dose of UHMW-HA 
was as effective as two doses of medium 
molecular weight hyaluronan (MMW-HA) 
resulting in similar reductions of pain and 
disability [16]. If we compared multiple and 
single injection of HA, 2–4 and ≥5 injection of 
HA decreased pain, while single injection did 
not. And multiple IA injections of HA treatment 
in knee OA has better results compared with 
IA-saline injections. [17]

Conrozier et al. [18], The goal of their study is 
to obtain pilot data from daily practice conditions 

Ş. Şahin et al.

http://bcbswyn.com


185

of a IA injection made of a cross-linked high- 
molecular weight HA combined with mannitol in 
patients with knee OA.  They reported no 
treatment-related severe adverse event and 
efficacy was rated as good or very good in 77% 
of the cases.

Doria et al. [22], studied to compare the clini-
cal efficacy of ultrasound-guided intra- articular 

injections of autologous platelet rich plasma 
(PRP) versus hyaluronic acid (HA) for symptom-
atic early osteoarthritis (OA) of the hip and they 
found that both groups showed a significant 
improvement.

Ishijima et  al. [39], compared intra articular 
HA injections versus oral NSAIDs for the treat-
ment of knee OA. Their study was multi- center, 

Table 11.1 Oral GA and CS intake for OA treatment

Study Dose Method Results References
After oral glucosamine 
therapy synovial and 
plasma glucosamine 
concentrations in 
osteoarthritic patients

Oral 1500 mg 
crystalline 
glucosamine 
sulphate

Liquid chromatography- 
tandem mass 
spectrometry

After treatment, plasma 
median value increased 
52.0–1282 ng/ml, synovial 
glucosamine concentration 
increased 36.5–777 ng/ml.

[72]

Evaluation of the effect 
of glucosamine on an 
experimental rat 
osteoarthritis model

Oral 
Glucosamine 
hydrochloride 
(GlcN; 1000 mg/
kg/day)

Mankin score, toluidine 
blue staining of 
proteoglycans, serum 
biomarkers such as 
CTX-II (type II collagen 
degradation) and CPII 
(type II collagen 
synthesis) with ELISA.

GlcN has a potential to 
exhibit a chondroprotective 
action on OA by inhibiting 
type II collagen degradation 
and enhancing type II 
collagen synthesis.

[64]

The human 
pharmacokinetics of 
oral ingestion of 
glucosamine and 
chondroitin sulphate 
taken separately or in 
combination

Oral 1500 mg of 
glucosamine, 
1200 mg of CS

Fluorophore-assisted 
carbohydrate 
electrophoresis (FACE)

CS amount in human plasma 
are about 20 μg/ml. The 
endogenous concentration 
and CS disaccharide 
composition were not 
detectably altered by 
ingestion of CS, when the 
CS was taken alone or in 
combination with GlcN.

[40]

Effect of the 
administering of an 
green tea supplement 
with N-acetyl 
glucosamine on 
biomarkers for 
cartilage metabolism

1000 mg 
GlcNAc- 
containing diet

Serum C2C and PIICP 
were measured with 
ELISA

C2C/PIICP ratio was 
decrease on GlcNAc group. 
(reduction of type II 
collagen degradation and 
increase of type II collagen 
synthesis) but there was no 
significant difference 
between the two groups.

[81]

Effect of N-acetyl 
glucosamine 
administration on 
cartilage metabolism

500 or 1000 mg/
day

Serum C2C and PIICP 
were measured with 
ELISA

No significant change in the 
biomarkers for type II 
collagen degeneration and 
synthesis during and after 
the intervention with the 
placebo and two.

[53]

Effect of the N-acetyl 
glucosamine and 
proteoglycan 
containing supplement 
on locomotor functions 
of subjects with knee 
pain

526.5 mg of 
N-acetyl 
glucosamine 
(GlcNAc) and 
33.6 mg of 
proteoglycan 
tablets (NGPS)

VAS, JKOM, JOA The study reveals that intake 
of NGPS is significantly 
effective for relieving knee 
pain and improving knee 
function when walking or 
climbing stairs, swelling and 
bending or stretching.

[65]

C2C Collagen Type II Cleavege, PIICP Procollagen II C-Terminal Propeptide, VAS Visual Analog Scale, JKOM 
Japanese Knee Osteoarthritis Score, JOA Japanese Orthopedic Association Score
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randomized, open-label and non- inferiority. They 
resulted early efficacy of IA-HA is similar to 
NSAIDs yet IA-HA injections is more safe than 
NSAIDs injections. Also, Elsawy et al. [25], did 
a similar comparative study to IA corticosteroids 
versus IA-HA treatment of knee OA.  After 
6 months of the treatment, both HA and cortico-
steroid groups showed improvement in pain and 
knee function, but the IA-HA was superior to 
corticosteroid on long-term follow-up. This result 
supports that IA HA injection is an effective 
long-term therapeutic option for patients with 
OA of the knee.

11.3  Platelet-Rich Plasma (PRP) 
Injections

Platelet-rich plasma (PRP) is a concentrated 
extract of platelets from autologous blood and is 
an another injectable treatment alternative in 
osteoarthritis [74]. PRP is categorized into four 
groups, depending on leukocyte and fibrin 
ingredient: pure platelet-rich plasma (P-PRP); 
leukocyte- and platelet-rich plasma (L-PRP); 
pure platelet-rich fibrin (P-PRF); and leukocyte- 
and platelet-rich fibrin (L-PRF) [24].

PRP contains platelet growth factors like 
transforming growth factor beta (TGF-β), 
platelet-derived growth factor (PDGF), insulin 
like growth factor (IGF), fibroblast growth 

factor-2 (FGF), connective tissue growth factor 
(CTGF) which promotes chondrocyte 
differentiation, proliferation and stimulates HA 
production by synovial cells [69] (Table 11.2).

PRP injections for OA treatment are safe and 
more effective than placebo. Single injection of 
PRP improves in all Western Ontario and 
McMaster Universities Arthritis Index 
(WOMAC) parameters (pain, stiffness, physical 
function, and total score) [71, 77]. PRP injections 
to osteoarthritic knee are more effective than 
corticosteroids. Provides pain relief, higher 
quality of life and activities of daily living. 
However it didn’t improve sporting ability. PRP 
was significantly more helpful for relieving 
patients' pain (VAS) compared to corticosteroids 
[29]. PRP injections provide decrease synovial 
fluid (SF) volume, SF total protein concentrations, 
inflammatory proteins and serum biomarker of 
cartilage degeneration (S.Coll2-1) on the knee 
OA patients [14, 27].

Smolina and Khimion [79], investigated safety 
and efficacy of the PRP use in early stages of the 
knee OA, and they observed no adverse events. 
They concluded that 3 IA injections of PRP 
added to the standard treatment of knee OA 
improves functional activity, reduces pain and 
probably can maintain relief in patients with the 
early stages of disease. Gobbi et al. [30], studied 
a similar study and they concluded too IA PRP 
injections into the knee for symptomatic early 

Fig. 11.1 Extracellular 
matrix structure of 
cartilage. (Originally 
drawn by Korkusuz F)
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stages of OA are a valid treatment option. They 
found a significant reduction in pain and 
improvement in function on early OA patients.

Gormeli et  al.  [32], compared PRP and HA 
injections with osteoarthritic knee and they 
observed the knee scores of patients treated with 
multiple PRP injections were significantly 
improved than patients whose of the other groups. 
But they found no significant difference in the 
scores of patients injected with one dose of PRP 
or HA. Also, Raeissadat et al. [73], did a similar 
study, they compared PRP and HA injections and 
they found WOMAC pain score and bodily pain 
significantly improved in both groups; however, 
better results were determined in the PRP group 
compared to the HA group.

11.4  Medical Treatment

Immunosuppressive drug therapies are widely 
used for OA in order to inhibit catabolic activity 
of chondrocytes. Corticosteroids have both anti 
inflammatory and immunosuppressive effects 
[5]. They decrease vascular permeability and 
inhibit aggregation of inflammatory cells, 
phagocytosis, production of neutrophil superox-
ide, metalloprotease, prostaglandin and leukotri-
enes [19, 70]. Corticostreoids mostly used for 
OA therapies due to their anti inflammatory 
effects. FDA labeled corticosteroids are methyl-

prednisione acetate, triamcinolone acetate, beta-
methosone acetate, betamethasone sodium 
phosphate, triamcinolone hexacetonide and 
dexamethasone.

McAlindon et al. [59], studied 2-year random-
ized placebo controlled double-blind trial of IA 
triamcinolone vs. saline injections with OA. They 
injected intra-articularly 40  mg triamcinolone 
acetinoide every 3 months and followed progres-
sion of cartilage loss and pain. IA triamcinolone 
injections resulted in significantly greater carti-
lage volume loss than did saline for a mean 
change in index compartment cartilage thickness 
of -0.21 mm vs -0.10 mm. However they observed 
no significant difference in pain. Saline group 
had 3 treatment-related adverse events compared 
with 5 in the triamcinolone group.

Cheng et  al. [15], used IA injection of 
Torin-1  in articular cartilage in a rabbit OA 
model. The mammalian target of rapamycin 
(mTOR) proteinkinase plays a key role in the 
regulation of cell proliferation, motility, 
metabolism, survival and autophagy. Torin-1 is a 
specific inhibitor of mTOR and major 
immunosuppressant. IA injection of Torin-1 
reduces degeneration of articular cartilage in 
collagenase-induced OA by autophagy activation. 
Collagenase type II was injected rabbits combined 
two IA injections of Torin-1. Significantly 
reduced degeneration of the articular cartilage 
after induction of OA. Autophagosomes, Beclin-1 

Table 11.2 Results of PRP injections of OA therapies

Study
Number of 
patients Disease Parameters Result References

PRP vs 
HA 
injection

180 1 and 2 stage of 
OA

KSS and VAS score PRP is more efficient than HA [49]

PRP 
injection

24 OA combined 
with supra- 
patellar bursitis

SF volume, total 
proteins, Lequesne 
index values

Significant decreases in SF total 
protein concentrations, volumes, 
and Lequesne index values

[14]

PRP 
injection

127 Early stage of 
OA

VRS, WOMAC, 
ROM, knee and 
IKDC score

Significant reduction in pain and 
improvement in knee function

[36]

PRP 
injection

40 OA VAS score Decrease of VAS score [44]

PRP 
injection

78 OA WOMAC score WOMAC scores showing 
significant improvement

[71]

SF Synovial fluid, KSS Knee Society’s Knee Scoring System, VAS Visual Analog Scale, VRS Visual Rating Scale, ROM 
Range of motion, IKDC International Knee Documentation Committee, WOMAC Western Ontario and McMaster 
Universities Arthritis Index
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and LC3 expressions were increased in the 
chondrocytes from Torin-1 treated rabbits. Also 
MMP-13 and VEGF expressions are reduced at 
8 weeks after collagenase injection.

Bannuru et al. [8], they assess the relative effi-
cacy of IA HA injections in comparison with 
NSAIDs for knee OA, and both groups showed 
improvement pain from baseline. Also they 
couldn’t find statistically significant difference 
between the groups in function or stiffness.

Also Tammachote et al. [80], studied to com-
pare the efficacy of single IA injection of hyal-
uronic acid (hylan G-F 20) with triamcinolone 
acetonide for knee OA patients. They reported 
that following at the 6  months triamcinolone 
acetonide provided similar improvement in knee 
pain, function, and range of motion compared 
with HA injections, with better pain control in 
the first week and better knee functional 
improvement in the second week.

Low-dose (1μM) Ral has the potential to cease 
or reduce the matrix degredation in OA.  Kavas 
et  al. [48], investigate the effects of Raloxifene 
(Ral) on degeneration-related changes in 
osteoarthritis (OA)-like chondrocytes using two- 
and three-dimensional models. They studied in 
two-dimensional and three-dimensional OA 
model and evaluated caspase-3 activity, gene 
expressions of collagen II, aggrecan, alkaline 
phosphatase (ALP), matrix metalloproteinases 
(MMP-13, 3 and 2) expressions and extra cellular 
matrix deposition. They resulted 1 μM Ral 
enhanced activities involved with matrix, but 
when they increase the dose these effects reversed 
except ALP gene expression and sGAG 
deposition.

Ohtori et al. [68], they investigated efficacy of 
direct injection of etanercept (TNFα inhibitor) 

into knee joints for pain in moderate and severe 
knee OA.  They were divided patients into two 
groups; hyaluronic acid (HA) and etanercept 
injection. No adverse events were observed in 
either group but significant pain relief was found 
in the etanercept group at 1 and 2 weeks by VAS, 
and at 4  weeks by WOMAC score, compared 
with the HA group

11.5  Stem Cell Therapies

Cell-based regenerative therapy have also been 
focused as an emerging regime for cartilage 
regeneration. Unlike chondrocytes implantation, 
the use of stem cells for regeneration of human 
articular cartilage is still investigational [54, 84]. 
Bone marrow mesenchymal stem cells(BM- 
MSCs) and adipose derived stromal cells 
(ADSCs) using in OA therapies for several years. 
Both type of cells are inhibits progression of OA 
and provide cartilage repair [20, 78] (Table 11.3). 
BM-MSCs has several advantages like 
multipotency, immunomodulatory activity, 
demonstrating featured safety and efficacy for 
cartilage regeneration [13, 43]. However, clinical 
applications of BM-MSCs have limitations by 
the painful surgical procedure, an excessively 
low cell yield and physiological circumstance of 
donors [3, 28, 35].

In a recent in vitro study, extracellular vesicles 
(EVs) secreted by bone marrow mesenchymal 
stem cells (BM-MSC-EVs) inhibit the adverse 
effects of inflammatory agents on cartilage 
homeostasis. When co-cultured with OA 
chondrocytes, BMMSC-EVs cancelled the TNF- 
α- mediated upregulation of cyclooxygenase 2 
and pro-inflammatory interleukins and inhibited 

Table 11.3 The cells applied for OA therapies and WOMAC score improvement at the end of the study

Cells Time Total WOMAC Score improvement Number of patients References
ADSCs (SVF) 2 years 23 points 10 [9]
BM-MSCs 12 months 16.5 points 30 [55]
AD-MSCs 6 months 21.4 points 18 [42]
ADSCs (SVF) 6 months 15.8 points 13 [87]
BM-MSCs 30 months 29.3 points 18 [26]

ADSC Adipose derived stromal cells, BM-MSC bone marrow mesenchymal stem cell, AD-MSC Adipose derived 
mesenchymal stem cells, SVF Stromal vascular fraction, WOMAC Western Ontario and McMaster Universities 
Osteoarthritis Index, PRP Platelet rich plasma, HA Hyaluronic acid
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TNF-α-induced collagenase activity. BM-MSC- 
EVs also supported cartilage regeneration in vitro 
[83].

Al-Najar et al. [2], did a phase I/II study with 
intra-articular injection of expanded autologous 
bone marrow mesenchymal cells in moderate and 
severe knee osteoarthritis, and they found nor-
malized The Knee Injury and Osteoarthritis 
Outcome Score (KOOS) improved significantly, 
also mean knee cartilage thickness measured by 
MRI improved significantly.

Lamo-Espinoza et  al. [55], compared IA 
injections of two different doses of autologous 
bone marrow mesenchymal stem cells (BM-MSC) 
vs. HA with 30 patients diagnosed with knee 
OA.  After 12  month followed up, no adverse 
effects were reported and BM-MSC implement 
patients improved according to VAS during all 
follow-up evaluations and median value (IQR) 
for control and were also superior according to 
WOMAC. Motion ranges remained unaltered in 
the control group but improved with BM-MSCs. 
MRI results showed that joint damage decreased 
only in the BM-MSC group, albeit slightly.

Jo et al. [42], studied IA injection of MSC fort 
he treatment of OA of the knee. They used 3 
doses of autologous adipose tissue derived MSCs 
(AD-MSCs) for IA injection. In the high dose 
group, size of cartilage defect decreased while 
the volume of cartilage increased, WOMAC 
score improved and thick hyalin-like cartilage 
regeneration was observed.

Yokota et al. [87], used adipose derived stro-
mal vascular fraction (SVF) cells for IA injec-
tions in patients with knee OA. They harvested 
200 mL or more subcutaneous adipose tissue 
using tumescent liposuction technique. These 
cells injected into articular cavity of both knees 
directly. They reported o serious adverse events 
and 1 month after SVF injection all the scores of 
JKOM, WOMAC and VAS were significantly 
improved over baseline.

Applications of MSCs and PRP together for 
OA therapies have presented promising results 
[9], studied intra-articular injection in the knee of 
adipose derived stromal cells (SVF) and platelet 
rich plasma (PRP) for osteoarthritis, and the 
patients reported a reduction in pain levels, 

especially after 3  months. They reported no 
severe adverse events or complications which 
means SVF+PRP injection is a safe therapy for 
knee OA. Also Bastos et  al. [10], did a similar 
study, their purpose is to compare the effectiveness 
and safety of intra-articular injections of 
autologous expanded mesenchymal stromal stem 
cells alone (MSCs), or in combination with 
platelet-rich plasma (MSCs + PRP), in patients 
with knee OA.  They studied with eighteen 
radiographic symptomic knee OA patients. They 
resulted KOOS improved significantly throughout 
the 12  months for both groups (p < 0.05). No 
statistically significant differences between 
groups were found in KOOS subscales and global 
score improvements at 12-month end-point. The 
MSCs and MSCs+PRP groups both exhibited 
significant improvements in the pain, function 
and daily living activities (p < 0.05). They 
concluded that adding PRP to the MSCs injec-
tions did not provide additional benefit [34], 
investigated effects of intra-articular injection of 
MSCs associated with PRP in a rabbit model of 
OA.  They studied with undifferentiated MSCs 
and MSCs differentiated to chondrocytes. MSC- 
treated group showed improved macroscopic 
changes on the articular surface. However they 
reported there are no difference in between 
groups that were treated with MSC differentiated 
chondrocytes and those that were not.

However, there are studies about stem cell 
injections in the literature that have negative 
results. In a recent clinical study, following direct 
injection of ADSCs, 76% of 37 patients showed 
abnormality in cartilage regeneration, especially 
with large cartilage lesions (≥5.4  cm2) [52]. 
However, when the same group studied fibrin 
glue as a scaffold for ADSC injection, the results 
showed a significant difference between the 
scaffold and non-scaffold group in International 
Cartilage Repair Society (ICRS) grades 
(P = 0,028). 12 of the 17 lesions (58%) in scaffold 
group and 9 of the 39 lesions (23%) in non- 
scaffold group achieved a grade of I or II [51].

It was recommended that a convenient scaf-
fold should be developed for treating patients 
with big cartilage defects, since ADSCs seeded in 
scaffolds may have better viability, containment 
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and accumulation [52]. Also, directly injected 
cells usually have limited cell retention and 
survival capacity at the target site. The 
applicability of IA injected ADSCs for knee joint 
repair was questioned, because 1 month after IA 
injection of ADSCs, only 15% of cells was 
detectable in the joint of experimental animal 
model, and this number further decreased to 
1.5% in 6 months [58].

In conclusion, IA injections of autologous 
expanded MSCs are safe and have a beneficial 
effect on symptoms in patients with symptomatic 
knee osteoarthritis. It reduces pain, improve the 
function, WOMAC, VAS and JKOM scores, 
KOOS, decrease the cartilage degradation and 
improve the cartilage regeneration. The safety of 
stem cell-seeded scaffolds already demonstrated 
in multiple in vivo animal models and small-scale 
humans trials [51], the next step is to confirm 
their safety and efficacy in large-scale human tri-
als. And the stem cell-seeded scaffolds should be 
compared with the delivery of stem cells alone.

11.6  Biomaterials

Biomaterials are commonly using on OA thera-
pies. Hydrogels, nano and micro sized particles, 
spheres, drug encapsulation and controlled drug 
delivery systems are the most used technologies 
for OA therapy (Fig.  11.2). Especially, hyal-
uronic acid, chondroitin sulfate and other GAGs 
using for carriers due to they are natural compo-
nents of articular cartilage. Also biocompatible 
materials like polyethylene glycol (PEG), poly 
D,L-lactide (PDL) and poly-ɛ- caprolactone 
(PCL) are the most encountered carriers.

Due to clinical limitations, most of these stud-
ies are in vitro or in vivo with experimental ani-
mals. There are a few examples below.

Yao et al. [85], their objective was induce the 
differentiation of BMMSCs to chondrocytes in 
three-dimensional culture. They prepared PEG 
hydrogel with glucosamine (GA) and 
encapsulated the human BMMSCs. 5 and 10 mM 
concentrations of the GA-modified PEG 
hydrogels promoted the chondrogenesis of 
hBMSCs. In 8  weeks, the subcutaneous 

transplantation of 10 mM GA-modified hydrogels 
with hBMSCs formed cartilage-like blocks 
in  vivo and when glucosamine increase, the 
modified hydrogels downregulated the fibrosis 
and hypertrophic cartilage markers in protein 
level.

Hurtig et al. [38], studied poly D,L-lactide and 
polyethylene glycol (PDL-PEG) combined with 
celecoxib for OA therapy and they observed tar-
geted delivery of NSAID to the synovial mem-
brane can significantly reduce intra articular 
inflammation while minimizing systemic 
exposure.

Aydin et  al. [4], studied in vitro and in vivo 
evaluation of doxycycline-chondroitin sulfate/
PCL microspheres for intraarticular treatment of 
osteoarthritis. They prepared doxycycline (D) 
and doxycycline-chondroitin sulfate loaded poly- 
ɛ- caprolactone microspheres (D-CSMS) as IA 
delivery systems. They found D-CSMS had a 
positive contribution on all in  vivo treatment 
outcomes and showed potential as a new strategy 
for treatment when applied to OA knee joints.

Yin et al. [86], made a novel chondroitin sul-
fate decorated nano platinum for the treatment of 
osteoarthritis and in-vitro cytotoxicity of PtNPs 
against the osteoarthritis chondrocytes showed 
their biocompatibility, hence the obtained 
nanoparticles may have future scope in the 
treatment of osteoarthritis.

Bajpayee et  al. [6], they developed Avidin 
nano-carriers for dexatmethasone delivering into 
the cartilage and studied for catabolic effects on 
cytokine challenged cartilage in vitro. And they 
observed single dose Avidin-DEX suppressed 
cytokine-induced sGAG loss over, rescued IL-1α 
induced cell death and restored sGAG synthesis 
levels without causing cytotoxicity.

Liu et  al. [57], studied articular cartilage 
regeneration on the rabbits with cartilage defects. 
They used human acellular amniotic membrane 
loaded with bone marrow mesenchymal stem 
cells They showed that treated cartilage showed 
improved results as compared to the control 
group, suggesting that MSCs play important 
roles in cartilage defect repair.

Kandel et  al. [46], studied with MM-II, is a 
novel intra-articular bio-lubricant made of lipo-
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somes suspended aqueous solution. They com-
pared MM-II with IA-HA injections. They found 
that IA MM-II injections are safe and effective. 
The pain reduction action was more rapid and 
sustained up to 3 months compared with HA.

In conclusion, OA is a chronic joint disease 
that is characterized by pain, loss of function and 
deformity where disease-modifying approaches 
are currently used. The recent approach by modi-
fying the natural progress of OA using GAG, CS 
and HA by injecting them intra- articularly is 
open to research. The molecular mechanism how 
these molecules are incorporated into the joint 
cartilage matrix needs further research. Their 
effect on decreasing pain and inflammation is 
also open for discussion. Intracellular pathways 
of chondrjocyte for maintaining joint cartilage 
homeostasis need further evaluation. Nano bio-
materials to deliver GAG, CS and HA into the 
joint space are searched these days. We could 
produce controlled release systems, smaller mol-
ecules of high-weight molecules, so cells are eas-
ily intake and integrate their metabolic pathways. 
Also mimicking ECM of cartilage is improve of 
treatment of OA.

Oral treatments of OA may not be as effective 
as injectable treatments. Due to cartilage tissue 
lack the blood vessels and diffuse from synovial 
fluid, it is really difficult to reach the tissue from 
gastro-intestinal system. So we focused on the 
injectable therapies.

HA injections are good for pain reduction 
and synthesis ECM from chondrocytes but it 
shows no anti-inflammatory effect. PRPs and 
medical treatments (corticosteroids or other 
experimental drugs) decrease inflammatory 
molecules of cartilage, reducing pain and stiff-
ness. However they are didn’t stimulate to chon-
drocytes produce ECM. Also stem cells excrete 
anti-inflammatory molecules and they too 
reduce pain and offer a better life quality to OA 
patients. However in the cell therapies there are 
many difficulties like painful surgical proce-
dures and low cell yield. Also, directly injection 
of MSCs may causes abnormal cartilage repair 
and increase the thickness of cartilage tissue. 
There are many positive resulted stem cell ther-
apy studies exist in literature, but directly 
injected cells have restricted retention and sur-
vival capacity at the target site. Using biocom-
patible scaffolds to stem cell injections may 
improve the conservation of the cells.
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Fabrication of Hydrogel Materials 
for Biomedical Applications
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Abstract
Hydrogels are three-dimensional hydrophilic 
polymeric networks that can be made from a 
wide range of natural and synthetic polymers. 
This review discusses recent advanced engi-
neering methods to fabricate hydrogels for 
biomedical applications with emphasis in car-
diac constructs and wound healing. Layer-by- 
Layer (LbL) assembly offers a 
tissue-engineered construct with robust and 
highly ordered structures for cell proliferation 
and differentiation. Three-dimensional print-
ings, including inkjet printing, fused deposi-
tion modeling, and stereolithographic 
apparatus, have been widely employed to fab-

ricate complex structures (e.g., heart valves). 
Moreover, the state-of-the-art design of intel-
ligent/stimulus-responsive hydrogels can be 
used for a wide range of biomedical applica-
tions, including drug delivery, glucose deliv-
ery, shape memory, wound dressings, and so 
on. In the future, an increasing number of 
hydrogels with tunable mechanical properties 
and versatile functions will be developed for 
biomedical applications by employing 
advanced engineering techniques with novel 
material design.
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12.1  Introduction

Hydrogels are three-dimensional (3D) networks 
of polymer chains that have high water absorbing 
capacity [14, 82, 111]. From the historical point 
of view, the first hydrogel (poly(2-hydroxyethyl 
methacrylate)) used in ophthalmometry was pro-
posed by Wichterle and Lim in 1960s [152]. 
Since then, hydrogels have emerged as potential 
candidates for various biomedical applications, 
including tissue engineering and drug delivery.

Hydrogels can be made from a wide range of 
polymers [27, 29, 50, 93, 127, 137], including 
synthetic polymers (e.g., polyethylene glycol 
[PEG], poly(acrylamide) [PAAM], and poly(vinyl 
alcohol) [PVA]) and natural polymers (e.g., fibrin, 
collagen, hyaluronic acid [HA], and alginate). 
Hydrogel materials have many desirable features, 
such as biocompatibility, nontoxicity, predictable 
degradation rates, tunable mechanical properties, 
and good elasticity [130, 138, 151, 172, 173].

Hydrogels are basically constructed from 
cross-linking networks and can be classified as 
physically cross-linked or chemically cross- 
linked hydrogels [24, 138]. Controlling the struc-
ture of hydrogel networks allows the proper 
design and characterization of hydrogel scaffold 
degradation, bioactive molecule diffusion, and 
cell migration through the network [60, 179]. 
Hydrogel networks at the molecular level can be 
elucidated using combined theories of equilib-
rium swelling, rubber elasticity, and other predic-
tive models [3, 15, 26, 39, 86, 88, 109, 110]. 
Peppas et  al. summarized three key parameters 
for defining the structures of hydrogels:

• Equilibrium polymer volume fraction in the 
swollen state (v2, s)

• Average molecular weight between cross- 
links (Mc)

• Network mesh (or pore) size (ξ)
• These parameters can be further defined by 

the following constitutive equations:
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VPis the volume of the polymer. Vgel is the vol-
ume of the swollen gel. Q is the equilibrium volu-
metric swelling ratio. Mo is the molecular weight 
of the polymer repeating unit. X is the degree of 
cross-linking. ( γ 0

2 1 2) /  is the root-mean-square 
end-to-end distance of network chains between 
two adjacent cross-links in the equilibrium state. 
The network mesh (or pore) size, (ξ), is descrip-
tive of the distance between consecutive junc-
tions, cross-links, or tie points.

This review highlights recent advanced engi-
neering methods, including 3D printing, Layer- 
by- Layer (LbL) assembly, and the microfluidic 
technique for fabricating hydrogels and their 
potential biomedical applications (especially for 
cardiac constructs and wound healing). We also 
discuss the state-of-the-art fabrication of smart/
intelligent/stimulus-responsive hydrogels and 
their wide range of biomedical applications, 
including drug delivery, glucose delivery, shape 
memory, and diagnosis.

12.2  Classification of Hydrogels

Hydrogels are generally classified based on their 
chemical compositions, cross-linking methods, 
microstructures, ionic charges, and degradation 
rates, among others [115, 148].

12.2.1  Hydrogel Origin/Source

Hydrogels consist of two categories that are 
based on chemical composition: (i) synthetic 
materials and (ii) naturally derived materials. 
Hydrogels of natural polymers are able to mimic 
natural tissue constructs. However, these hydro-
gels are usually prone to permanent breakage 
because of their limited mechanical strength. 
Hydrogels that are made of synthetic polymers 
have high mechanical strength and tunable physi-
cochemical properties [43]. Figure  12.1 shows 
the chemical structures of various natural and 
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synthetic hydrogels that have been used for bio-
medical applications.

12.2.1.1  Natural Polymer-Based 
Hydrogels

Natural polymer-based hydrogels, including col-
lagen, HA, gelatin, fibrin, alginate, chitosan, aga-
rose, keratin, cellulose and decellularized 
extracellular matrix (dECM), have been used for 
biomedical applications [55]. Natural polymers, 
such as alginate, gelatin, and collagen can be 
used as bioink due to their excellent biocompati-
bility, cell encapsulating prowess and intrinsic 
ability akin to the complex tissue microenviron-
ments thereby providing dynamics clue for cel-
lular activities [106].

12.2.1.2  Synthetic Polymer-Based 
Hydrogels

Biocompatible synthetic polymers have been 
widely used as scaffold materials for various bio-
medical applications owing to their excellent 

mechanical strength and tailorable physicochem-
ical properties which enhance the output of the 
printed constructs. The materials of the synthetic 
polymers are cost effective, with no risk of patho-
genic invasion in engineered constructs [106]. 
Synthetic polymers namely polycaprolactone 
(PCL), poly (ethylene glycol) diacrylate 
(PEGDA), poly(lactic-co-glycolide) (PLGA), 
polyvinyl alcohol (PVA) have been reportedly 
used for bioprinting of tissue engineered con-
structs. The combination of synthetic and natural 
polymer blends (i.e., hybrid polymers or modi-
fied polysaccharides; e.g., HA and dextran meth-
acrylate) has been employed to control hydrogel 
matrix architecture, which in turn improves the 
cellular response [8, 108].

12.2.2  Cross-Linking Methods

Hydrogels can be classified into physically and 
chemically cross-linked hydrogels based on their 

Fig. 12.1 The chemical structures of various natural and synthetic hydrogels that have been used for biomedical 
applications
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cross-linking mechanisms [138]. Physical cross- 
linking is normally achieved via physical pro-
cesses, such as crystallite formation, polymer 
chain complexion, hydrophobic interaction, and 
hydrogen bonding. Chemical or covalent cross- 
linking forms as a result of covalent bond junc-
tions. Physically cross-linked hydrogels are 
reversible because of conformational changes 
that prevent them from dissolving in aqueous 
media, whereas, chemically cross-linked hydro-
gels are permanent and irreversible because of 
configurational changes. The hydrogel matrix of 
the chemically cross-linked hydrogels is well sta-
bilized during gelation process which conse-
quently improves the hydrogel flexibility and 
spatiotemporal precision [170]. Radical polymer-
ization (polymerization of end-functionalized 
macromers in the presence of a cross-linking 
agent) is one of the most widely used methods to 
prepare chemically cross-linked gels [103]. The 
type and degree of cross-linking influence mac-
roscopic properties of hydrogels, including the 
degree of swelling, mechanical property and 
molecule transportation through the hydrogel 
meshes [13].

12.2.3  Interpenetrating Network

Based on different compositions and network 
structures, hydrogels can be classified as (i) 
homo-polymers, (ii) copolymers, (iii) semi- 
interpenetrating networks (IPNs), and (iv) inter-
penetrating networks [1]. Homo-polymer 
hydrogels are usually cross-linked by one mono-
mer spices in hydrophilic environment [148], 
whereas copolymer hydrogels comprise of net-
works of two or more types of hydrophilic mono-
mer units [159]. The hybrid of one cross-linked 
and another non cross-linked polymer forms 
semi-interpenetrating network hydrogels [53, 
169]. Interpenetrating polymeric hydrogels form 
through reaction of monomers in polymeric net-
work [148].

12.3  Advanced Engineering 
Methods for Hydrogel 
Fabrication

Over the years, hydrogels that have been used as 
tissue engineering scaffolds usually possess low 
mechanical integrity and lack of structural com-
plexity. Recently, the broadened applications of 
hydrogels require advanced engineering tech-
niques to spatially manipulate the physical and 
chemical properties of hydrogels and hence con-
trol their architectural precision [170].

Key parameters (e.g., vascularization for the 
adequate transport of oxygen and metabolites, 
control over matrix architecture by regulating 
porosity and mechanical properties, the presenta-
tion of biological signaling motifs, and the 
microenvironmental control of cell-cell and cell-
matrix interactions) have been considered when 
fabricating tissue-engineered constructs [81, 
113, 118, 121]. Different fabrication techniques, 
such as 3D printing, LbL fabrication, 
microfluidic- based fabrication, electrospinning, 
and self- assembly, have been explored to modu-
late key parameters of hydrogels and thus spa-
tially confer cellular architecture or hydrogel 
functionality.

12.3.1  Three-Dimensional Printing

Three-dimensional (3D) printing, often referred 
to as additive manufacturing (AM), has been 
employed to fabricate structures of precise geom-
etries by depositing materials onto a moving plat-
form according to a computer-controlled process 
[45, 62, 77]. Three- dimensional printing is a 
rapid prototyping (RP)-based approach that has 
excellent 3D microfabrication capacity for tissue 
engineering constructs [90, 91].The technology 
employs computer-aided design (CAD) to model 
the construct and convert it into a compatible for-
mat, followed by fabrication of the construct 
using a printer [181].
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The history of 3D printing can be traced back 
to the early 1990s when Sachs and colleagues 
made available the first rapid prototyping method 
to fabricate models at the Massachusetts Institute 
of Technology [22, 23]. Many advanced 
approaches have been implemented in 3D print-
ing techniques, including inkjet printing, fused 
deposition modeling (FDM), and laser-based ste-
reolithography [38, 74, 76, 133, 137].

Inkjet printing is an inexpensive process that 
relies on the deposition of a rheologically tai-
lored ink filament that is made of nanoparticle 
colloids or organic materials to build 3D struc-
tures [38]. Inkjet printers can be classified as 
drop-on-demand or continuous-flow type printers 
based on the flow rate of bioinks [76]. The inkjet 
printing has been mainly used with low viscosity 
bioink materials, which is not able to print 3D 
volumetric constructs with low shape fidelity due 
to insufficient mechanical strength of printed 
objects [132].

Fused deposition modeling employs 
thermoplastic- based materials that pass through a 
heated extrusion nozzle, which are melted and 
deposited on a building platform in an LbL man-
ner [51]. One of the captivating advantages of 
FDM is the creation of complex scaffolds with 
good mechanical strength and outstanding geo-
metric accuracy [21]. However, the challenges 
for FDM include temperature sensitivity and lim-
ited choice of materials.

Stereolithographic apparatus is currently the 
most widely used AM technology to build 3D 
scaffolds for tissue engineering applications. The 
technology builds 3D structures by curing or 
solidifying a photosensitive resin through the use 
of an irradiated ultraviolet laser beam. The instru-
ment setup consists of a vessel that contains a 
photosensitive resin, a moveable platform on 
which the model is built, and a computer- 
controlled laser beam that is operated in a defined 
CAD pattern [6, 31]. Compared with other AM 
techniques, SL has the potential to fabricate com-
plex 3D structures with very high resolution and 
accuracy [90]. However, material constraints, 
such as the need for low viscosity and transparent 

materials, the high printer cost, and the long 
duration of printing, are the main drawbacks of 
SL techniques [38].

The significance of bioprinting technology is 
the ability to create 3D tissue structures that can 
encapsulate cells and also mimic physiological 
environments. Numerous factors, including 
material cytotoxicity, printability, and mechani-
cal property are needed to be considered when 
used for 3D printing. The most widely used bio-
materials for bioprinting are hydrogels, also 
called bioinks; a liquid precursor which solidifies 
into a cross-linked polymeric structure after the 
printing process [77].

Presently, various 3D printing techniques have 
been used to fabricate 3D scaffolds and eliminate 
the limitations peculiar to traditional printing 
process [64, 102, 106]. Compared with tradi-
tional manufacturing processes, 3D printing 
techniques are more flexible and rapid, especially 
when creating parts with complex architectures 
and compositional variations [64]. The use of 
medical imaging data, such as magnetic reso-
nance imaging (MRI) and computed tomography 
(CT), for 3D printing provides a platform for cre-
ating patient-specific implants that have anatomi-
cal geometries of the defective part [90, 131, 
166].

Recently, technical advances in 3D printing 
suggest the possibility of fabricating human cell- 
based tissue models by depositing live cells and 
growth factors along with biomaterial scaffolds 
during printing [5, 77]. For example, cardiac tis-
sue valves, blood vessels, and whole heart for tis-
sue engineering have been successfully developed 
using different 3D printing-based tissue engi-
neering approaches [46, 133]. However, there is 
limited availability or choice of raw materials for 
3D printing nowadays.

12.3.2  Layer-by-Layer (LbL) 
Fabrication

LbL fabrication technology has tremendous 
potential to create intricate cardiac constructs 
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that feature biomimetic structural complexities 
with better cell organization, maturation, and 
cell-cell electrical coupling. For example, multi-
layer tissue that was composed of cell-adhered 
poly-L-lysine–graphene oxide (PLL-GO) thin 
films on a graphene-methacrylated gelatin 
(GO-GelMA) hybrid hydrogel was constructed 
in LbL manner. The effects of PLL-GO 
 concentration on the architectural network of the 
multilayer cell construct, cell adhesion affinity, 
the viability of cardiomyocytes, endothelial cells 
(ECs), and human mesenchymal stem cells 
(hMSCs), and construct electrical propagation 
were also investigated. Live/dead assays that 
were performed with the constructs showed 
excellent cell viability, and PLL-GO effectively 
provided an adhesive surface necessary to main-
tain interactions between the cells and the stacked 

layers with no cytotoxic effects. Furthermore, 
incorporation of cardiomyocytes in PLL-GO 
resulted in synchronous beating pattern under a 
low external electric field [134].

An LbL filtration technique was employed to 
fabricate nanometer-sized fibronectin and gelatin 
ECM films onto an iPSC-CM (human cardio-
myocyte (CM) tissues derived from human 
induced pluripotent stem cells (iPSCs)) surface 
as shown in Fig. 12.2. The findings revealed that 
at high cell viability (95%) of the 3D tissue, the 
micro vessels of the blood capillary served as an 
exchange media for vital nutrients and oxygen 
for the cells encapsulated within 3D tissues. The 
introduction of human cardiac fibroblasts (HCFs) 
into 3D-iPSC–CM tissues enhanced tissue 
 organization and induced blood capillary net-
works [2].

Fig. 12.2 Schematic diagrams of (a) nanofilm fibronectin and gelatin coated cell using LbL filtration techniques and 
(b) constructed of vascularized 3D iPSC-CM tissues [2]. (Reprinted with permission from Elsevier)
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12.3.3  Microfluidic-Based 
Fabrication

Microfluidic technology exploits such character-
istics as a small size and the laminar flow of liq-
uid for engineering geometry, composition, and 
functionality in hydrogel constructs [17]. The 
density and pore size that are associated with 
nutrients and waste transportation play a crucial 
role in delivering soluble biochemical factors and 
oxygen through the scaffolds.

Microfluidic systems have been widely 
exploited for the microfabrication of hydrogel 
structures that can be used for tissue engineered 
vessels, lung and cartilage. For example, micro-
fludic devices with bifurcated motifs have been 
used to generate highly functionalized 
polystyrene- based vascular structures.

The microfluidic systems have the potential to 
confer functionality on structures with endotheli-
alized cells. To this end, primary human umbili-
cal vein endothelial cells (HUVECs) cultured 
inside semicircular microfludic device adhere to 
the bifurcated networks of the device to form 
lumen-like structure. Microfluidic techniques 
allow precise control and manipulation of fluids 
which inherently influence the physiological con-
ditions of 3D culture models.

Microfluidic systems have provided a plat-
form to generate bioactive, stem cell-laden 
microgels with well-defined physical and chemi-
cal microenvironments that enhance cell prolif-
eration, function, and differentiation (Fig.  12.3; 
[57]). Siltanen et  al. fabricated heparin-based 
hydrogels for encapsulating mouse embryonic 
stem cells for the formation of spheroids with 
enhanced endodermic differentiation [136].

Fig. 12.3 (a) Schematic diagram of the universal micro-
fluidic chip used for production of photo cross-linked 
PEGDA, ionic cross-linked alginate, and enzymatically 
cross-linked Dex-TA microgels. Dashed areas depict the 
initiation point for photo, ionic, and enzymatic cross- 
linking. (b) Scanning electron image of the droplet form-

ing nozzle with inlets for HRP and H2O2 to crosslink 
Dex-TA. (c) The confocal image of hMSCs encapsulated 
in a Dex-TA microgel after 14 days of culture. Red colour 
indicates the nucleus while green colour depicts the cyto-
skeleton of the encapsulated cells [57]. (Reprinted with 
permission from John Wiley & Sons, Inc)
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12.4  Advanced Engineering 
of Hydrogels for Cardiac 
Constructs and Repair

Cardiac tissue engineering (CTE) is an evolving 
field that offers the possibility of restoring con-
tractile function and retaining the pumping fea-
tures of the human heart. The aim of tissue 
engineering is to develop autologous and 
 functional biomaterials that can be implanted into 
injured tissues. Based on this concept, CTE has 
been introduced as a promising technique to ben-
efit patients with cardiovascular disease [79]. The 
strategic protocols involve designing suitable 
scaffolds for cardiac tissue engineering by pos-
sessing three key features (i) anisotropic mechan-
ical properties that provides physiological 
relevance similar to those of native cardiac tissue, 
(ii) an anisotropic structure that reproduces the 
fibre suitable for the cardiac tissue alignment, and 
(iii) conductive properties for electrical signalling 
interaction that provides synchronous beating 
behaviour for cells in cardiac microenvironment 
[9, 11, 34, 72]. Recent advances in the engineer-
ing of hydrogels for cardiac constructs and repair 
by 3D printing will be further discussed.

12.4.1  Three-Dimensional Printing- 
Based Approaches for Cardiac 
Tissue Constructs 
and Regeneration

Three-dimensional printing is a powerful tool 
that is pertinent to repairing and regenerating 
damaged cardiac tissue after myocardial isch-
emia. Among microfabrication strategies, 3D 
printing has shown tremendous potential to cre-
ate intricate cardiac constructs that feature biomi-
metic structural complexities [66] that have been 
employed to generate 3D architecture of cardiac 
tissue patches, valves, blood vessels, and whole 
heart models.

12.4.1.1  Three-Dimensional Printing 
for Myocardial Tissue

Upon myocardial infarction, cardiac muscles 
(primarily cardiomyocytes) lose their contractil-

ity because of insufficient blood pumping by the 
heart to injured cardiac tissue. As a result, the 
elaborate architecture of the myocardium is 
transformed into non-functional scar tissue 
through fibroblast activation, which consequently 
inhibits cardiac cellular communication [37, 69] 
and results in ischemia or eventually death when 
the diseased condition is not well managed.

Cell therapy is a treatment option for damaged 
cardiac tissue, in which cells are implanted in the 
affected site. However, the ability of the cells to 
survive and properly integrate into heart tissue 
during implantation determines the effectiveness 
of therapy with regard to cardiac tissue regenera-
tion. Thus, cell therapy may not achieve desirable 
cardiac tissue repair because of the limited sup-
ply of oxygen to the implanted cells in the heart 
[40, 116]. To overcome these limitations, 3D 
printing has been employed to fabricate 3D com-
plex structures with homogeneously dispersed 
cells.

Highly controlled oriented 3D tissue models 
that were composed of hydroxybutyl chitosan 
(HBC) and HCFs were fabricated using an LbL 
technique and a 3D printing system [146]. A 
thermo-responsive polymer, HBC, was laminated 
to a height of 1124 ± 14 μm using a robotic dis-
pensing 3D printer, followed by an LbL coating 
of HCFs with ECM nano films that were later 
seeded and cultured on the HBC gel of different 
frames (square, triangular, rectangular, and circu-
lar). The cell orientation in the 2 mm × 15 mm 
rectangular gel frame was extended in one direc-
tion compared with the3 mm × 15 mm rectangu-
lar gel frame. The observed alignment of F-actin 
fibers on the 2 mm short-side rectangular HBC 
gel frame as a result of HCF and human dermal 
microvascular endothelial (HMVEC) co-culture 
confirmed vascularization of the orientation- 
controlled 3D tissues.

Zhang and colleagues developed an in vitro 
model to mimic the efficacy of endothelium cells 
inside the cardiac tissue microenvironment 
(Fig.  12.4). HUVECs were printed with a 
GelMA-alginate bioink using an Organovo 
NovoGen MMX commercial extrusion printer 
and coaxial nozzle. Cell-laden bioink was 
extruded from the inner nozzle, and the outer 
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nozzle continuously dispensed calcium chloride 
until the extruded strut was fully polymerized. 
After endothelialization of the tissue construct by 
the self-assembly of endothelial cells, viability of 
the cardiomyocyte-seeded construct was evalu-
ated and reported to exhibit cardiac maturation 

and sarcomeric bandings that are necessary for 
proper cardiac contractility [172, 173].

Decullularized extracellular matrices of 
whole organs have been shown to have great 
potential to provide instructional cues to cells 
to achieve a proper phenotype. Myocardial-

Fig. 12.4 Fabrication processes for an endothelialized 
myocardium construct using 3D bioprinting technique. 
Step 1: bioprinting of an endothelialized cells embedded 
fibrous structure. Step 2: vascularisation of the endotheli-
alized structure for cellular interactions. Step 3: seeding 

of endothelialized scaffold with cardiomyocytes. Step 4: 
formation of endothelialized myocardium with physiolog-
ical relevance that structurally resembled the native myo-
cardium [172, 173]. (Reprinted with permission from 
Elsevier)
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based bioinks that were derived from decellu-
larized ECMs of heart tissue have been 
developed, which were simultaneously printed 
with a PCL polymeric framework using a 
multi-head bioprinting system (Fig. 12.5). The 
platform enabled the 3D bioprinting of patient-
specific tissue constructs using a mixture of 
dECMs and myoblasts. The cardiogenic differ-
entiation of myoblasts and long-term survival 
and function of the constructs were achieved 
after 14  days of cell culture. This study pro-
vided promising advances in cell- personalized 
treatment via the use of patient- specific dECMs 
[107].

A selective laser sintering (SLS) technique 
was also used to create a porous PCL scaffold 
with square pyramid-shaped cellular sub units 
(Fig. 12.6). The PCL samples yielded ~89% of a 
strain-sintered structure with tensile stiffness of 
~0.43 MPa, surface roughness of ~34 μm, and 
porosity of ~48%. The functional controlled 
porosity and efficient mass transport of the pyr-
amid units were attributed to the mechanical 
properties of the 3D scaffolds during the fabri-
cation process. The findings revealed the high 

cell viability of seeded myoblasts after 21 days 
of culture [167].

12.4.1.2  Three-Dimensional Printing 
of Heart Valves

Valvular heart diseases, also called cardiovascu-
lar aortic heart disease (CAVD), are among the 
major causes of death worldwide. To date, the 

adECM gelcdECM gelhdECM gel

hdECM gel
structure

Hybrid of cdECM
and PCL framework

dECM/PCL Hybrid Scaffold

Hybrid of adECM and
PCL framework

PCL framework
(fine)

PCL framework
(moderate, wide)

Fig. 12.5 Three-dimensional multi-bioprinting of 
patient-specific decellularized bioink within a PCL poly-
meric framework [107]. Abbreviations: decellularized 
extracellular matrix (dECM), adipose decellularized 

extracellular matrix (adECM), cartilage decellularized 
extracellular matrix (cdECM), heart decellularized extra-
cellular matrix (hdECM). (Reprinted with permission 
from Springer Nature)

Fig. 12.6 Three-dimensional scaffold with square pyra-
mid cellular shape subunits fabricated using selective 
laser sintering [167]. (Reprinted with permission from 
Elsevier)
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only treatment option for severe CAVD is surgi-
cal valve replacement. Because of a dearth of 
donors, mechanical valves and bioprosthetic 
heart valves are mainly used for heart valve 
replacement surgery [55, 171]. These strategies 
have advantages and disadvantages. For example, 
mechanical valves are mechanically strong with 
high durability than biological valves. However, 
the application of mechanical valves is limited by 
reported cases of hemorrhage and thromboembo-
lism; thus, they require life time treatment with 
anticoagulants [16]. Biological valves that are 
made from either an allogenic or xenogenic tis-
sue source requires no life time administration of 
anticoagulants by patient, but they have shorter 
durability because of degeneration, calcification, 
and fibrosis, which may cause immunogenic 
complications [18, 135].

To overcome these limitations, tissue 
engineering- based heart valves have emerged as 
promising candidates for mitigating the need for 
long-term medication and ameliorate the hemo-
dynamic properties of the replacement valve. 
Notably, the predominant function of heart valves 
is to maintain unidirectional blood flow through 
cyclic opening and closing during cardiac systole 
and diastole. The following desirable characteris-
tics must be manifest for artificial heart valves: (i) 
minimal regurgitation of blood upstream, (ii) low 
transvalvular pressure gradient, (iii) minimal 
thrombogenetic response, and (iv) high capacity 
to repair damaged tissue [59, 101].

Three-dimensional printing-based tissue engi-
neering technology has been used to improve the 
outcome of tissue-engineered heart valves 
because of its potential to fabricate patient- 
specific heart valves with anatomical geometry 
and microstructural complexity that can allow 
intrinsic biomechanical and hemodynamic func-
tions [101]. Schaefermeier et  al. employed an 
STL silicone-based model to physiologically 
design a 3D heart valve scaffold that resembled 
the complex natural anatomical structure of a 
human aortic homograft using thermoplastic 
poly-4-hydroxybutyrate (P4HB) polymer [125]. 
The trileaflet heart valve, which contained the 
sinus of Valsalva, was fabricated without any 
suture or stent. The valve scaffold had shape 

fidelity of 3 ± 4% compared with the homograft. 
Although mild stenosis and regurgitation were 
observed in the valve scaffold without suture, the 
avoidance of the leaflet suture improved the 
hemodynamic function of the heart valve con-
structs [128, 141].

The Butcher group at Cornell University 
worked extensively on the 3D printing of tissue- 
engineered heart valves [35, 36, 59]. An extrusion- 
based printer (Fab@Home Model 1) was used to 
print a heterogeneous aortic valve structure using 
composite hydrogels of PEGDA and alginate 
(Fig. 12.7). Two aortic valve geometries (i.e., an 
axisymmetric aortic valve that was generated in 
SolidWorks and micro-CT-scanned porcine aor-
tic valve translated into printable STL geome-
tries) were created for printing. The suitable 
extrusion viscosity for the PEGDA hydrogel dur-
ing printing was achieved by adding 10–15% w/v 
alginate to PEGDA while NaCl salt was used to 
maintain the pH of the hydrogel. The mechanical 
properties of the PEGDA hydrogels were tuned 
from 20to 300 kPa by varying the weight ratios of 
different molecular weight PEGDA blends.

Based on the PEGDA blend formulation, het-
erogeneous valves with different internal diame-
ters (12-18 mm) were printed with rigid hydrogels 
with mechanical stiffness of ~75 kPa for the root 
and soft hydrogels with mechanical stiffness of 
~5 kPa for leaflets. Shape fidelity was evaluated by 
micro-CT, and the larger printed valve was found 
to have greater shape fidelity. Porcine aortic valve 
interstitial cells (PAVICs) exhibited spread mor-
phology and good viability (~100%) over 21 days 
of culture on 3D-printed heart valve scaffolds. The 
study reported that 3D hydrogel printing has the 
potential to fabricate anatomical heterogeneous 
valve conduits that support cell engraftment [59].

The printability of methacrylated hydrogels 
from a mixture of gelatin and HA with a human 
aortic valvular interstitial cells (HAVICs) suspen-
sion was also investigated [36]. The remodeling 
process of the printed hydrogels was achieved by 
the deposition of ECMs (collagens and glycosami-
noglycans) that were derived from the HAVICs. 
The cell phenotype was influenced by the stiffness 
of these printed hydrogels, in which softer hydro-
gels induced fibroblastic behavior in the HAVICs.
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Similarly, Butcher’s group demonstrated the 
potential of 3D printing technology to fabricate 
mechanically robust living trileaflet heart valves 
using valvular cells [35]. The 3D extrusion-based 
Fab@Home Model 1 printer was employed to 
print an aortic heart valve using alginate/gelatin 
hydrogel mixtures. A micro-CT image of a por-
cine aortic valve was translated into an STL file 
geometry, which was used to print a hydrogel 
valve. To print the hydrogel valve, two different 
cells (smooth muscle cells [SMCs] and PAVICs) 
were separately mixed with the alginate/gelatin 
gel at a density of 1× 107 cells/ml. The SMCs 
were encapsulated into the aortic root sinus 
region while PAVICs were encapsulated in the 
aortic valve leaflet. These two types of cells had 
high viability (~81% for SMCs and ~83% for 
PAVICs). Additionally, the cell-laden hydrogel 
valves exhibited better mechanical integrity than 
the acellular heart valves after printing.

Researchers at Kosair Children’s Hospital in 
Louisville, Kentucky, printed a 3D whole-heart 
model using biocompatible synthetic material. 
The printed heart was reportedly had anisotropic 
mechanical features similar to the paediatric heart 
and serve as a replacement for the defective heart 

in the infant. However, the heart did not exhibit 
the tenacity to remodel as the child grew [65].

Although 3D printing has been exploited to 
develop a complex geometry of a heart valve with 
good mechanical integrity and excellent cell 
growth, the challenges of vascularizing the struc-
ture of engineered heart valve tissue constructs 
for proper oxygen/nutrient delivery have not yet 
been addressed.

12.5  Advanced Engineering 
of Hydrogels for Wound 
Dressing and Healing

12.5.1  Skin

Skin is the principle exterior defense system, 
which protects inner body systems from microor-
ganism attack, contamination, infection, and the 
external environment. Skin plays a vital role in 
regulating the temperature of the body and trans-
mitting external environment information, such 
as pain and heat [67]. Skin is composed of three 
main layers: epidermis, dermis, and hypodermis 
(subcutaneous tissue). The diagnostic structural 

Fig. 12.7 Printing heterogeneous valve and scaled valve 
constructs. (a) Porcine aortic valve model was (b) printed, 
where root was formed with 700 MW PEG-DA hydrogel 
while the leaflets were formed with 700/8000  MW 
PEG-DA hydrogels. Key features such as the coronary 
ostium and sinuses were present (c) Scaffolds were 

printed with 700 MW PEG-DA at different scale for fidel-
ity analysis, where the inner diameters (ID) were 22, 17, 
and 12 mm. (d) Axisymmetric valve model was (e) printed 
with two blends of hydrogels (f) and at 22, 17, and 12 mm 
ID [59]. Scale bar  =  1  cm. (Reprinted with permission 
from IOP Publishing)
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details of normal human skin are shown in 
Fig. 12.8. The epidermis is a vascular, and cells 
are shed and renewed every 4–6 weeks. The epi-
dermis forms an external barrier that provides the 
function of protection and waterproofing. The 
dermis, the living layer of skin, is supportive con-
nective tissue, which is rich in fibers and makes 
the skin elastic and strong. The epidermis and 
dermis are clearly separated but firmly anchored 
together by conicol papillae. Subcutaneous tis-
sue is a fat cell sliding layer that performs transi-
tion and storage functions of water and fat.

12.5.2  Wounds and Wound Healing

Wounds are a disruption of the continuity of the 
epithelial lining of the skin or mucosa that results 
from physical or thermal damage. When wounds 
occur, a set of complex biochemical events occur 
in a closely orchestrated cascade to repair the 
damage. Wound healing or wound repair is the 
body’s natural process of regenerating dermal 
and epidermal tissue. According to the duration 
and nature of the healing process, the wound is 
categorized as acute or chronic [120, 143]. 
Traumatic wounds, surgical wounds, and derm-
abrasion are considered acute wounds. They heal 
within a predictable and expected time frame, 
usually 8–12  weeks, depending on the size, 
depth, and extent of damage to the epidermis and 

dermis [117, 129]. Venous ulcers, arterial ulcers, 
pressure ulcers, and perforating diabetic foot 
ulcers result in chronic wounds. Chronic wounds 
require a longer healing time (up to months) and 
leave serious scars. Some factors delay the heal-
ing of chronic wounds, such as diabetes, dryness 
of the wound, and infections [10].

The wound healing process can be divided into 
three or four distinct phases. The three-phase con-
cept includes inflammatory, fibroblastic, and mat-
uration [49], also described as inflammation, 
proliferation, and remodeling [89]. The four- 
phase concept includes the hemostasis phase 
(immediately after injury), inflammatory phase 
(shortly after injury to tissue during which swell-
ing occurs), proliferation phase (when new tissues 
and blood vessels are formed), and remodeling 
phase (when the remodeling of new tissue occurs; 
[25, 28, 33, 63, 144, 150]). In the three-phase con-
cept, the hemostasis phase is contained within the 
inflammatory phase. These healing phases are 
affected by specific and individual factors (e.g., 
nutrition, patient age, disease, and size, depth, and 
causation of the wound; [114]).

12.5.3  Wound Dressing

A dressing can be a sterile pad or compress that is 
applied to the wound to promote healing and pro-
tect it from further damage. Rapid and proper 
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Fig. 12.8 Schematic representation of (a) normal skin structure and (b) design of an ideal wound dressing membrane 
[67]. (Reprinted with permission from Elsevier)
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healing is important for the treatment of wounds. 
In cases of severe and large amounts of skin loss, 
immediate coverage of the wound surface with a 
dressing is needed. The selection of dressing 
should be based on its ability. One or more of the 
following characteristics of the wound dressing 
should be ensured [30, 158]. (1) The dressing 
material should be able to absorb the liquid that 
exudes from the wounded area. (2) The dressing 
material should permit water evaporation at a cer-
tain rate and allow no microbial transport. (3)The 
material should enhance epidermal migration and 
promote angiogenesis and connective tissue syn-
thesis. (4) The material should maintain a moist 
environment at the wound/dressing interface. (5) 
The material should provide thermal insulation 
and mechanical protection for the body. (6) The 
material should allow gas exchange between 
wounded tissue and the environment. (7) The 
material should be non-adherent to the wound 
and easily removed without trauma. (8) The 
material should provide some debridement action 
to enhance leucocyte migration and remove dead 
tissue and/or foreign particles.

The dressing materials that are used for 
wounds and burns can be classified into tradi-
tional, biological, and artificial dressings [140]. 
Traditional wound dressing products, including 
gauze, lint, plaster, bandages (natural or syn-
thetic), and cotton wool, are dry and used as pri-
mary or secondary dressings to protect the wound 
from contamination [10]. Since traditional dress-
ings fail to provide a moist environment for the 
wound, they have been replaced by modern 
dressings that have more advanced formulations 
[10]. Modern wound dressings have been devel-
oped to facilitate the function of the wound rather 
than just cover it. Modern wound dressings are 
usually based on synthetic polymers and are clas-
sified as passive, interactive, and bioactive prod-
ucts [28, 63, 119, 142].

Biological “auto-grafting” dressings consist 
of normal and fresh skin that is donated from for-
eign bodies (e.g., humans, animals, or cadavers). 
These materials consist of collagen-type struc-

tures, including elastin and lipids. They are the 
most suitable materials for the complete healing 
of deep, chronic wounds and burns, but one 
drawback of these materials is insufficient donor 
tissue for deep or large wounds [71].

Artificial dressings are fabricated from syn-
thetic materials, such as non biological materials 
and polymers, that are not found in the constitu-
ents of skin [149]. In the mid 1980s, polyure-
thane (PU) foams, hydrocolloids, and 
iodine-containing gels were introduced as wound 
dressings that have important characteristics that 
provide moisture and absorbing fluids. During 
the mid-1990s, synthetic wound dressings 
expanded into various groups of products, includ-
ing hydrogels, hydrocolloids, alginates, synthetic 
foam dressings, silicone meshes, tissue adhe-
sives, vapor-permeable adhesive films, and sil-
ver/collagen-containing dressings [30].

Some commercial products of PU are avail-
able for the application of wound dressings. For 
example, the commercial products OpSite® and 
Tegaderm® are a sterile, semipermeable film of 
PU that is coated with acrylic adhesive. They are 
transparent to allow wound checks and suitable 
for shallow wounds with low exudates. The com-
mercial products Allevyn® and Lyofoam® are PU 
or silicone foams. They are designed to absorb 
large amounts of exudates [155]. Polyurethane 
and styrene-butadiene-styrene block copolymers 
(SBS) are well-known thermoplastic elastomers 
that have gained considerable attention and appli-
cations in recent years. To enhance the perfor-
mance and application of SBS for wound 
dressings, the SBS membrane has been modified 
with epoxidation, followed by a ring opening 
reaction with potassium hydrogen maleate to pre-
pare the maleate SBS ionomer membrane that 
contains a COO− group. The maleate SBS iono-
mer membrane was further modified with an LbL 
self-assembly deposition technique. The different 
chitosan/alginate multilayer films were deposited 
on the maleate SBS ionomer membrane surface 
to achieve the tri-steps modified SBS membrane 
(Fig.  12.9; [155, 158]). The tri-steps modified 
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Fig. 12.9 Three-step modification of SBS: (a) Preparation of MSBSI, (b) Preparation with LbL technique [155]. 
(Reprinted with permission from Elsevier)
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SBS membranes are sterile and semipermeable, 
have bactericidal activity, and are transparent to 
allow wound checks; they can be considered 
appropriate for shallow wounds with low exu-
dates [155].

12.5.4  Hydrogels for Wound 
Dressings

Various synthetic and naturally derived materials 
may be used as hydrogels [157]. Poly(ethylene 
oxide), poly(vinyl alcohol), poly(hydroxyethyl 
methacrylate), poly(ethylene glycol dimethacry-
late), poly(acrylic acid), and their derivativesare 
synthetic hydrogels. Agarose, alginate, chitosan, 
collagen, gelatin, and HA are naturally derived 
hydrogels [157]. Hydrogels are similar to those 
of human tissues, possess excellent tissue com-
patibility, and have become attractive to the field 
of biomaterials [139]. Hydrogels have the fol-
lowing basic properties. (1) Hydrogels have a 
high water content that may absorb from 10–20% 
(an arbitrary lower limit) up to thousands of 
times their dry weight in water, helping granu-
lated tissues and epithelia in a moist environ-
ment. (2) With soft elastic properties, hydrogels 
provide easy application and removal after 
wounds are healed, without any damage. (3) 
Because ofthe soothing and cooling effect, the 
temperature of cutaneous wounds can be 
decreased by hydrogels. Hydrogels are often 
used for dry chronic wounds, necrotic wounds, 
pressure ulcers, and burn wounds [30]. Some 
commercial hydrogel dressing materials have 
appeared on the market under brand names. For 
example, Intrasite™ Gel is a clear amorphous 
hydrogel that contains a modified carboxymethyl 
cellulose polymer, propylene glycol, and water. 
NU-gel™ is a transparent hydroactive amor-
phous gel that contains sodium alginate that gen-
tly and effectively debrides necrotic tissue and 
fibrinous slough. Aquaform™ contains calcium 
alginate that rehydrates dry or necrotic tissue to 
help facilitate autolytic debridement and prevent 
low exuding wounds from drying out. Tegagel® is 
classified as a calcium alginate dressing and 
made from the calcium salt of alginic acid. 

Tegagel may be used for the management of a 
variety of exuding wounds, including leg ulcers, 
pressure sores, and ischemic and diabetic 
wounds. Geliperm® hydrogel composed of two 
interlaced networks, one of polyacrylamide and 
one of agar, provides optimal physiological con-
ditions for wound healing [52, 73].

Hydrogels with a single component have low 
mechanical strength, and recent trends involve 
the generation of composite or hybrid hydrogel 
membranes to meet typical wound dressing 
requirements. For example, an hydroxyl- 
terminated polybutadiene (HTPB)-based PU 
solution was prepared, and then the PU solution 
was modified with N-isopropyl acrylamide by 
ultraviolet radiation without degassing to achieve 
a thermo-sensitive membrane (PUNIPAAm). 
Chitosan was then impregnated onto the 
PUNIPAAm surface and treated by freeze-drying 
to create chitosan-containing PUNIPAAm 
(PUNIPAAm-chi). The results showed that these 
thermo-sensitive PUNIPAAm membranes had 
low cytotoxicity and could support cell adhesion 
and growth. Based on antibacterial ability and 
water vapor transmission rates, the permeance 
and permeability of the various PUNIPAAm-chi 
membranes are comparable to commercial prod-
ucts, and PUNIPAAm-chi may be considered for 
wound dressings [161, 162]. A tri-layer mem-
brane as artificial skin for extensive burn injury 
was developed by Lin [84]. The tri-layer wound 
dressing was successfully prepared by subse-
quent high-energy plasma treatment, γ-ray irra-
diation, ultraviolet light exposure, and 
lyophilization. The first layer was a 3D tri- 
copolymer sponge of gelatin/hyaluronan/
chodroitin- 6-sulfate with 70% porosity and a 
20–100 μm pore size. The second layer was a so- 
called auto-stripped layer that was composed of 
poly-N-isopropyacrylamide (PNIPAAm). The 
third layer was composed of a polypropylene 
(PP) nonwoven fabric, which provided an open 
structure for exudate drainage that reduced the 
risk of secondary infection. The modification of 
PP for wound dressings was also studied by Yang 
[156, 160]. Based on thermo-sensitivity and anti-
bacterial ability, the modified nonwoven fabric 
couldbe considered for wound dressings. As 
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shown in the review by Kamoun [67], natural 
polymers and their derivatives, such as sodium 
alginate, chitosan, dextran, N-O-carboxymethyl 
chitosan, hydroxyethyl starch, glucan, HA, poly- 
N- acetylglucosamine, silk, and gelatin, have been 
used as hydrogel membranes for wound dress-
ings or skin substitutes.

12.6  Advanced Engineering 
of Stimulus-Responsive 
Hydrogels for Biomedical 
Applications

12.6.1  Stimulus-Responsive 
Hydrogels

Stimulus-responsive hydrogels are generally 
referred to as “environmentally sensitive”, 
“smart,” or “intelligent” hydrogels because of 
their ability to receive, transmit, or process a 
stimulus and respond by producing a useful effect 
[54]. These hydrogels can undergo dramatic 
phase transitions or rapid physicochemical 
changes under the influence of minimal and spe-
cific external stimuli [42, 61, 83].

Physical stimuli can include light, pressure, 
temperature, electric or magnetic fields, mechan-
ical stress, and radiation energy from various 
sources, which affect energy level transitions 
and change molecular interactions at critical 
onset points. Chemical stimuli, such as pH, ionic 
factors, and chemical agents, can influence 
interactions between polymer chains and sol-
vents and between polymer chains at the molec-
ular level.

The combinatory effect of two or more 
stimulus- responsive mechanisms into one hydro-
gel system gives rise to a special class of hydro-
gels, called dual-responsive hydrogels [87]. 
Dual-responsive hydrogels can respond simulta-
neously and independently to more than one 
external stimulus. For example, poly(N- 
isopropylacrylamide- co-propylacrylic acid) and 
copolymers of poly(N-isopropylacrylamide-co- 
propylacrylic acid) were reported to exhibit a 
sharp response to minimal signals of both pH and 
temperature [41, 122, 168]. Biochemical stimuli 

involve responses to enzymes, antigens, ligands, 
and other biochemical agents [47].

Stimulus-responsive hydrogels have been pro-
posed for numerous biomedical applications, 
ranging from drug delivery to tissue engineering 
because of their quick responsiveness and active 
targeting properties [70, 75, 80, 104].

12.6.1.1  Temperature-Responsive 
Hydrogels

Temperature-responsive hydrogels are prepared 
from polymers that exhibit a temperature-induced 
transition from a state of preferential polymer- 
water interaction to a state of preferential 
polymer- polymer interaction [48]. At a critical 
solution temperature, temperature- responsive 
polymers exhibit a phase transition between 
polymer and solution, depending on the polymer 
chain composition [153].

For example, poly(N-isopropylacrylamide) 
(PNIPAM), poly(vinyl methylether) (PVME), 
and poly(N-vinylcaprolactam) (PNVC) have 
shown to possess lower critical solution tempera-
ture (LCST) which invariably make them to 
undergo phase separation in water [153]. The 
side chains of the aforementioned polymers con-
tain both superhydrophilic and superhydrophobic 
groups. Therefore, these polymers have an inher-
ent ability to simultaneously switch between con-
tracted and expanded states (superhydrophobic 
or superhydrophilic; [80]). At a temperature 
below the LCST, water molecules interact with 
the polymer super hydrophilic groups via hydro-
gen bonds, thereby causing expansion in the 
hydrogel. However, at the temperature above 
LCST, hydrophobicity of the polymer interacting 
chains depletes the hydrogen bond formations, 
which consequently expel water and caused poly-
mer network contractions [126, 153].

Shape memory gels have been used for surgi-
cal procedures that require automatic healing for 
mechanical deformations and rapid closures for 
sutures. The potential of thermal-responsive gels 
to recall their initial structure upon a change in 
temperature after being deformed make them 
suitable for this application. Shape memory gels 
were prepared from acrylic acid and stearyl acry-
late [105]. The polymer experienced change in 
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shape as the temperature changes. Such polymer 
assumed a deformed and a stable state in alcohol 
upon cooling. At high temperature, there is a 
switch in polymer configuration from temporary 
deformed state to original geometry.

12.6.1.2  pH-Responsive Hydrogels
Another stimulus-responsive hydrogel that has 
been widely studied is pH-responsive polymer. 
Upon their response to environmental changes in 
pH, the ionizable pendant of the polymer chain 
can accept or donate protons. The ionization level 
of the pendant group dramatically changes 
around the pKa and pKb, causing alterations of 
the water-holding capacity of polymer chains 
[87]. There are two types of pH-responsive 
hydrogels: weak polyacids and weak polybases. 
The typical example of weak polyacids is 
poly(acrylic acid), which accept protons at low 
pH via carboxylic groups and later release pro-
tons above its pKa, thereby leading to a sudden 
increase in the hydrodynamic volume and swell-
ing capability of the hydrogel [19]. By contrast, 
in weak polybases, such as poly(N,N′-
diethylaminoethyl methacrylate), ionization of 
the amine pendant group occurs at critical pH 
below pKb, resulting in hydrophilic swelling of 
the hydrogel through more electrostatic repulsive 
forces [19, 87].

A pH-responsive hydrogel was developed for 
drug delivery to treat colon inflammation. The 
hydrogel contained azoaromatic moieties as the 
cross-linker species, which improved the func-
tionality of the entire hydrogel chain and also 
moderated the release profile of the target drug. 
The hydrogels resisted swelling in both the stom-
ach and intestine because of the presence of 
cross-linker spices. Only in the colon, cross- 
linker spices triggered the formation of azoreduc-
tase enzymes by micro-flora that resided in the 
colon, which degraded the cross-linkers species, 
thereby allowing fast release of the entrapped 
drugs [44].

Polysaccharide-based pH-responsive hydro-
gels have gained considerable attention as poten-
tial candidates for various biomedical applications 
ranging from wound dressing to drug delivery 
system. To this end, chitosan have been proposed 

as nanofilm to encapsulate a prefabricated 
poly(lactic acid) scaffold and as well hydrophilic 
analogues for the uptake of ketroprofen. Such 
hybrid materials can permit the delivery of rele-
vant bioactive agents and facilitate cellular inter-
actions and differentiation that are necessary to 
therapeutically induce the formation of new tis-
sue [112].

12.6.1.3  Glucose-Responsive 
Hydrogels

The treatment of diabetes involves periodical 
checking of blood sugar level and administration 
to compensate for any shortage observed [178]. 
However, multiple subcutaneous insulin injec-
tions reduce patient compliance. Recently, smart 
insulin delivery systems have been developed to 
shorten the injection time, which can homeostati-
cally regulate the level of blood glucose [124, 
175–177]. Therefore, glucose-sensitive hydro-
gels have gained considerable attention in the 
development of self-regulated insulin systems for 
the controlled regulation of blood glucose levels 
[92]. Glucose-responsive polymeric systems are 
typically based on the enzymatic oxidation of 
glucose by glucose oxidase (GOD), the binding 
of glucose with concanavalin A (ConA), or 
reversible covalent bond formation between glu-
cose and boronic acids.

Glucose oxidase is the most widely used 
enzyme in the glucose-sensitive drug delivery 
system (DDS) because it oxidizes glucose into 
gluconic acid. The enzymatic action of GOD on 
glucose is highly specific, especially when GOD 
is incorporated with a pH-responsive polymer, 
generating gluconic acid and H2O2, which change 
the pH in the polymer microenvironment [32, 
174]. Thus, the pH change that is triggered by 
GOD induces a swelling-shrinkage process in 
hydrogel matrices that contain insulin. Therefore, 
pH-sensitive hydrogels that contain glucose oxi-
dase can be a therapeutic strategy for diabetic 
patients to regulate insulin release in response to 
glucose concentrations [85]. Peppas and col-
leagues synthesized poly(methacrylic acid) 
(PMAA)-graft-ethylene glycol-based glucose- 
responsive hydrogels in the presence of 
GOD. The polymer was reported to be swollen at 
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neutral and high temperature due to repulsive 
force acting within the negatively charged meth-
acrylate units of the polymer. Furthermore, the 
reduction of pH triggers GOD to oxidize glucose, 
which consequently led to collapse of the gel. 
Similarly, the gel responsiveness was attributed 
to 𝜋  – 𝜋 interactions between the carboxyl and 
ether groups of the ethylene glycol units via 
hydrogen bond [56].

Lectins are multivalent proteins that tend to 
bind carbohydrates and interact with glycopoly-
mers on the cell surface, thus causing the aggre-
gation of cells. However, the introduction of 
competitively binding glucose prevents cell 
aggregation. The tenacity of lectin to bind glu-
cose provides a platform for fabricating glucose- 
sensitive systems that are subjected to glucose 
regulation [92]. Tetradentate ConA-based lectin 
has been suitably employed for this purpose. It is 
noteworthy that conA-glycogen gel preferential 
bind ConA with free glucose which further cause 
gel-sol transitions [20].

Complexation behavior between phenyl 
boronic acid and a polyol compound has pro-
vided useful insights into construction of a spe-
cial glucose-responsive material. Hisamitsu et al. 
have synthesized a glucose-responsive hydrogel 
composed of terpolymers of 
3- acrylamidophenylboronicacid (APBA), (N,N- 

dimethylamino) propylacrylamide (DMAPA), 
and DMA. At physiological pH, there was com-
plex formation between boronic acid groups that 
are present in the terpolymer and poly(vinyl alco-
hol) (PVA; [58]). The competitive displacement 
of PVA at high glucose concentrations led to a 
decrease in cross-link density and caused swell-
ing of the hydrogel and the release of insulin 
(Fig. 12.10).

12.6.1.4  Enzyme-Responsive 
Hydrogels

Enzyme-responsive materials are typically com-
posed of an enzyme-sensitive substrate and 
another component that directs or controls inter-
actions that lead to macroscopic transitions. 
Physiological changes that may occur as a result 
of catalytic actions of the enzyme on the sub-
strate include the swelling/deswelling of gels, the 
transformation of surface properties, or changes 
in supramolecular architecture [147].These prop-
erties allow enzyme-sensitive hydrogels to be 
used as enzyme sensors and enzyme-sensitive 
DDSs. For example, the microflora that reside in 
the colon produce microbial enzymes. 
Azoreductases are predominately used for colon- 
specific drug delivery. Azo-aromatic bonds have 
been used as cross-linker species to produce 
 azoreductase; an enzyme-sensitive hydrogel 

Fig. 12.10 Sol–gel transition of a glucose-sensitive hydrogel [115]. (Reprinted with permission from Elsevier)
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which can serve as colon target drug delivery 
sensors.

The hydrogels that were based on biocompat-
ible copolymers of N,N-dimethylacrylamide 
(DMAAm) and tert-butylacrylamide (BAAm) 
exhibited improvements in mechanical proper-
ties and cross-linking agents that contained 
azoaromatic bonds. The susceptibility of the 
hydrogel to low swelling in the stomach (at low 
pH) conferred a protective shield for protein 
drugs against digestion by proteolytic enzymes. 
However, changes in pH triggered the ionization 
of carboxylic acid groups, which caused hydro-
gel swelling. The enzymatic activity of azoreduc-
tases toward the cross-linker spices in the 
hydrogel matrix degraded to release the protein 
drugs [44, 165].

12.6.2  Engineered Smart/Intelligent/
Stimulus-Responsive 
Hydrogels: Case Reports

A functionalized smart artificial microfish with 
diverse biomimetic structures and locomotive 
capabilities was fabricated using advanced 3D 
printing technology, called microscale continu-
ous optical printing (μCOP; Fig. 12.11). With the 

μCOP system, a uniform arrays (~30μm 
 thickness, ~120 μm length) of complex 3D 
microfish were fabricated using PEGDA 
(MW = 700 Da) at a concentration (40 wt%) in 
water with functionalized nanoparticles in the 
presence of 1  wt% lithium phenyl-2,4,6- 
trimethylbenzoylphosphinate as the photoinitia-
tor [180]. Pt nanoparticles were encapsulated in 
PEGDA for the tail of microfish, which facili-
tated self-propulsion of the microswimmer’s tail 
through the catalytic decomposition of the perox-
ide fuel. PEGDA-containing magnetic Fe3O4 
nanoparticles were encapsulated and polymer-
ized at the head portion of the fish, which guided 
the motion of the microfish. Energy-dispersive 
X-ray (EDX) spectroscopy data supported local-
ization of the functional nanoparticles with high 
accuracy at specific positions in the microfish. 
Functional polydiacetylene (PDA) toxin- 
neutralizing nanoparticles were also integrated 
into the hydrogel matrix of the fish body and 
showed good detoxification potential.

A new class of stimulus-responsive drugs 
was fabricated using the self-assembly method 
(Fig.  12.12). The self-assembly of a naph-
thalimide derivative formed a functionalized 
hydrogel with a low critical gelation concentra-
tion driven by π  −  π and multiple hydrogen 

Fig. 12.11 (a) 
Schematic illustration of 
the μCOP method to 
fabricate microfish. (b) 
Schematic illustration of 
taxis-induced microfish 
by functionalized Pt 
nanoparticle (at the tail 
portion of the fish and 
Fe3O4 nanoparticle (at 
the fish head) for 
catalytic propulsion and 
magnetic control 
respectively [180]. 
(Reprinted with 
permission from John 
Wiley & Sons, Inc)
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 bonding (i.e., noncovalent) interactions in aque-
ous solution. The super amphiphilic interaction 
of a host-guest naphthalimide derivative and 
cucurbit[n]uril(CB[n]) led to the self-assem-
blage formation of nanovesicles with diameters 
of 80–200 nm. Various spectroscopic techniques 
and molecular dynamics (MD) simulations con-
firmed self-assemblage of the hydrogel and 
nanovesicles. The drug nanocarriers presented 
cellular –inducing efficacy and drug-loading 
tenacity as confirmed by confocal laser scan-
ning microscope (CLSM) and MTT experi-
ments. The cytotoxicity assay showed that 
DOX-loaded nanocarriers possessed high anti-
cancer effects [154].

Novel photo responsive capsules that were 
composed of polyelectrolyte/carbon nanotube 
composites were prepared. Water-solubilized 
single-walled carbon nano tube (SWCNT) micro-
capsules were fabricated using LbL and template- 
assisted methods and used as polyanion and 

near-infrared (NIR) absorbers [123]. The anti- 
cancer drug was loaded into the SWCNT- 
embedded hollow capsules, and the latter was 
irradiated with a NIR laser beam. Similarly, ther-
apeutic disulfide cross-linked poly(methacrylic 
acid) (PMAA) were also developed by LbL 
assembly of complexes formed by poly(vinyl 
pyrrolidone) and thiol based-PMAA on the silica 
particle templates, which in turn control the rate 
of degradation in the polymer capsule [7].

Controlled drug delivery systems (DDS) have 
drawn considerable attention because of its safety 
and enhanced therapeutic efficiency of drugs 
actively target at a delivery sites. A controlled 
DDS was prepared by integrating 1,6-hexanediol 
diacrylate (HDDA) microcapsule with copoly-
mer poly(N-isopropylacrylamide-co-methacrylic 
acid) (poly(NIPAAm-co- MAA)). The nano 
porous HDDA core-shell capsule were fabricated 
based on inkjet printing combined with an 
 ultraviolet polymerization process. The HDDA 

Fig. 12.12 Diagrammatic representations of hydrogel 
and nanovesicles formation achieved by 𝜋− 𝜋 hydrogen 

bonding interactions with functionalized CB and derivate 
of naphthalimide [154]. (Reprinted with permission from 
John Wiley & Sons, Inc)
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particles were printed at optimal concentration of 
2.5 wt% in the presence of Photocure-1173 as the 
initiator [164]. The thermo-responsive 
poly(NIPAAm-co-MAA) copolymer was grafted 
onto the surface of HDDA microcapsules by free 
radical-initiated polymerization. The copolymer-
ization of an appropriate molar ratio of MAA 
(methacrylic acid) adjusted the LCST of the 
thermos- responsive copolymer to a physiological 
temperature. With temperature changes around 
the LCST (38°C), the particles underwent revers-
ible change swell-collapsed conformations. 
Because of this, the copolymer-modified nano-
pore served as a “retractable gate” for the 
 controlled release of encapsulated drug mole-
cules [164].

Micro-sized bovine serum albumin (BSA) 
protogel with pH responsive features were fabri-
cated by polymerization of BSA monomers in 
LbL version using two-photon lithography. For 
the polymerization reaction, rose bengel serve as 
the photoinitiator [78]. Precise control of the 
swelling extent of BSA protogels and its pro-
grammable directionality that was tailored by 
two-photon lithography resulted in an inducible 
chiral structure (i.e., from achiral to chiral) and 
free-standing trap-like structures. The chiral cen-
ter of the structures could be switched on or off 
upon changes in pH. Likewise, the programma-

ble changes in directional shape of the trap-like 
structures depended on changes in pH, which can 
act as microrobotic arms to capture microobjects. 
The dynamic, shape-shifting, pH-responsive, 
free-standing BSA hydrogel can be used as a 
smart material for creating biomimetic, 
stimulus- responsive, chemo-mechanical micro 
actuators [78].

The combination of two or more hydrogel 
strips results in supramolecular interactions of 
hydrogel strips at interfaces. Smart pH- responsive 
hydrogel strips were fabricated through the mac-
roscopic self-assembly of highly functionalized 
two different hydrogel strips (Fig.  12.13). The 
host-guest interactions between the strips provide 
strong adhesion required to form a laminate. 
Changes in pH caused swelling/deswelling of the 
hydrogel strip (Fig. 12.13). At low pH, the hydro-
gel strip de-swelled, causing the laminates to 
bend to the left side. At the initial pH, the bending 
action was recovered, and the laminate returned 
to the resting state. At lower ionic strength, the 
host hydrogel experienced a large extent of swell-
ing, and the laminate bent toward the right side. 
The computational analysis showed that the 
designed 3D-responsive structures of smart 
hydrogels exhibited specific actuating behavior 
as a one-way flexible and torsional actuator after 
simulation [163].

Fig. 12.13 Actuating behavior of the bi-hydrogel strip functionalized by β-cyclodextrin rings and adamantyl moieties 
[163]. (Reprinted with permission from SPIE Publications)
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12.7  Conclusions and Future 
Perspectives

Novel hydrogel design and fabrication are of 
great interest because of their wide range of 
applications in various domains, such as biomed-
icine, tissue engineering, drug delivery, and 
wound dressings, among others. The aims are to 
construct hydrogel scaffolds with well-defined 
architectures, tunable porosity and pore sizes, 
excellent mechanical strength, and dynamic cues 
that are required to mimic the properties of native 
tissues and organ structures. Advanced engineer-
ing strategies have been used to gain spatiotem-
poral control over hydrogels through sophisticated 
chemistries and fabrication techniques [68].

Numerous advanced techniques have been 
used to design and fabricate highly functional-
ized hydrogel scaffolds for biomedical applica-
tions. For example, LbL assembly provides a 
tissue engineering construct with highly ordered 
structures for cell proliferation and differentia-
tion [12]. Three-dimensional bioprinting offers 
superior resolution, enables the precise spatial 
distribution of cells and biomaterials within com-
plex 3D structures, and accommodates large 
material versatility. Three-dimensionally printed 
constructs have shown tremendous potential to 
repair and regenerate damaged cardiac tissue and 
heart valves after myocardial ischemia. However, 
the vasculature of 3D-printed heart valve tissue 
constructs should be addressed in the future to 
achieve proper oxygen/nutrient delivery [4].

Various smart hydrogels that are responsive to 
external stimuli within a physiological range 
have been proposed for widespread biomedical 
applications [80]. The design parameters that are 
crucial for smart and biomimetic material fabri-
cation and their potential application in 
 biomedical fields were also discussed in this 
review. Smart hydrogels are often designed at the 
molecular level before considering the desired 
applications. Tailorable biodegradable moiety 
incorporated in the microstructure of smart poly-
mers controllably minimized biodegradability of 
the polymer for short and long time applications 
[47]. Furthermore, the controlled polymerization 
process of smart and biomimetic hydrogels has 
led to the fabrication of smart materials with 

well-defined macromolecular blocks and 
stimulus- responsive characteristics for drug 
delivery, diagnosis, and tissue engineering 
applications.

Overall, significant advances have been made 
in the fabrication of hydrogels for biomedical 
applications. However, there is limited availabil-
ity or choice of hydrogel materials for clinical tri-
als or applications. In the future, an increasing 
number of hydrogels with tunable mechanical 
properties and versatile functions will be devel-
oped for biomedical applications by employing 
advanced engineering techniques with novel 
material design.
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Abstract
Polymeric scaffolds have played important 
roles in biomedical applications due to their 
potentially practical performance such as 
delivery of bioactive components and/or 
regenerative cells. These materials were well- 

designed to encapsulate bioactive molecules 
or/and nanoparticles for enhancing their per-
formance in tissue regeneration and drug 
delivery systems. In the study, several multi-
functional nanocomposite hydrogel and poly-
meric nano(micro)particles-electrosprayed 
platforms were described from their fabrica-
tion methods and structural characterizations 
to potential applications in the mentioned 
fields. Regarding to their described perfor-
mance, these multifunctional nanocomposite 
biomaterials could pay many ways for further 
studies that enables them apply in clinical 
applications.

Keywords
Injectable hydrogel · Nanocomposite · 
Polysaccharide · Electrospray · Biomedical 
applications

13.1  Introduction

There has been a high demand of biomaterials in 
therapeutic treatment, replacement or regenera-
tion of damaged tissues/organs, diagnostic proce-
dure and etc. leading to many studies on various 
advanced biocompatible and biodegradable mate-
rials recently [1]. Among of them, injectable and 
biocompatible polysaccharide-based hydrogels 
have paid much attention [2, 3]. The hydrogels 
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fabricate from hydrophilic polymers, which can 
retain significant amount of water or bio-fluid 
allowing transportation of substances such as 
nutrients and by-products from cell metabolism. 
Moreover, these materials were well-designed to 
implant in a minimally invasive surgical opera-
tion, improve patient compliance, degrade along 
with regeneration process of typical tissues and 
deliver drug/bioactive compounds/cells on the 
treated sites [4–6]. Up to now, various injectable 
hydrogel scaffolds have been fabricated via physi-
cal interactions of polymers or chemical reactions 
of functional polymers such as hydrophobic inter-
action, stereocomplex affect, electrostatic interac-
tion, photochemical reaction, Michael- type 
reaction, Schiff-base reaction and enzyme- 
mediated crosslinking reactions [7–9]. Preparation 
of the injectable horseradish peroxidase enzyme-
mediated hydrogels is emerging as an effective 
method because it is a highly specific reaction, 
which avoids side reactions or production of toxic 
by-products leading to harm with cells and living 
body [5, 9]. Every obtained scaffold has exhibited 
some particular points on physical property, 
speech of matrix dissolution, compatibility and 
etc. Recently, incorporation of nanoparticles and 
the hydrogels produced multifunctional injectable 
nanocomposite biomaterials for extending their 
applications in tissue engineering, drug delivery, 
antimicrobial materials, and bio-sensing systems.

Besides performance of the mentioned nano-
composite hydrogels, polymeric nano(micro)par-
ticles (NMPs) recently have exhibited a great 
potential in biomedical applications. The 
nanoparticles could be fabricated via two physi-
cal and chemical methods. In the physical meth-
ods, polymeric NMPs are fabricated via various 
techniques such as freeze drying, spray drying, 
nano(micro) precipitation, self-assembly of 
amphiphilic copolymers or phospholipids, elec-
trospinning, solvent evaporation and so on in 
which polymers are dissolved in solutions. For 
the chemical methods, most of NMPs obtains 
from polymerization of monomer solutions that 
could be listed as micro emulsion, conventional 
emulsion, controlled radical, surfactant-free 
emulsion and etc. [10]. These polymeric NMPs 
have received great interest due to their structural 

versatility in fabricating process that could effi-
ciently load and release bioactive compounds, 
chemotherapeutics, contrast agents, proteins and 
nucleic acids to the desired sites. Moreover, the 
drug release behavior of the particles is also 
adjustable by their structural materials and fabri-
cating methods that satisfy with treatment and 
harmony with physiologically internal conditions 
such as pH, enzyme and biochemical reactions. 
An incorporation of the particles with external 
stimuli such as temperature, near-IR irradiation, 
UV-Vis light, magnetic fields, ultrasound energy 
and etc., have also paved other ways for these 
materials in biomedical applications [11].

In this study, we introduce some injectable 
nanocomposite hydrogel systems and electro-
sprayed NMPs that have been recently developed 
and performed a great potential for applying vari-
ous biomedical fields. In the chapter, besides some 
advanced biomaterials were published from devel-
oped countries, many our studies are also included 
to indicate an extensive development of these 
advanced biomedical materials in over the world.

13.2  Injectable Nanocomposite 
Hydrogel for Biomedical 
Applications

13.2.1  Nanoparticles

In recent years, several metallic nanoparticles 
(NPs) have been emerging as the alternative can-
didates in many conventional materials due to 
their novel well-known properties such as anti-
bacterial, antiplasmodial, anti-inflammatory, 
anticancer, antiviral, and antifungal activities 
[12–22]. Some kinds of inorganic and organic 
nanoparticles also exhibited osteoinductive and 
osteoconductive activities or high efficiency in 
drug delivery that have offered much potential in 
biomedical applications [23–28].

Approaches to produce nanoparticles are clas-
sified as “top down” and “bottom up” methods 
(Fig. 13.1). The top-down method used various 
physical and chemical processes to achieve the 
small-sized nanoparticles from its bulk form. Of 
bottom up approach, the nanoparticles can be 
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synthesized from ions, joining atoms, molecules 
or small particles. The bottom up approach 
mostly relies on chemical and biological methods 
of production [29, 30]. Among different types of 
nanoparticle production, chemical synthesis is 
known as the most popular method using in com-
mercial scale due to the high efficiency compared 
to other methods. The obtained nanoparticles tar-
geted for various biomedical applications. Until 
now hundreds of nanoparticles-based products 
approved in clinical applications or successes in 
clinical trial phases [31–35].

13.2.2  Nanocomposites 
and Biological 
Nanocomposites

Nanocomposites is well-known as a biphasic 
material in which has one nano-sized solid phase 

dispersed in the bulk matrix. The material has 
early applied in paint engineering and cosmetic 
from middle 1950s. Thereafter, there had been 
widely studied and developed on the nanoparti-
cles or nanofibers-based reinforcing materials for 
industrial applications. The nanomaterial phase 
exhibiting large surface area contributes to signifi-
cantly enhance interaction between the dispersing 
phase and the bulk matrix resulting in a mechani-
cal improvement as compared to bulk materials. 
According to their bulk matrices, they could be 
classified into three main categories: Ceramic 
matrix nanocomposites (CMNCs), metal matrix 
nanocomposites (MMNCs) and polymer matrix 
nanocomposites (PMNCs) [24, 25, 36]. PMNCs 
have been frequently used in fabrication of scaf-
folds for tissue engineering or drug delivery, anti-
microbial materials, and biosensors systems.

In tissue regeneration and drug delivery fields, 
many calcium phosphate-based PMNCs possess 

Fig. 13.1 Methods for fabrication of nano(micro)particles
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a similar structure with biological nanocompos-
ites such as exoskeleton of arthropods and animal 
bone as well as biocompatibility and biodegrada-
tion. Several kinds of mineral nanoparticles like 
hydroxyapatite, biphasic calcium phosphate, bio-
glass etc. have been dispersed in the polymers 
producing bioactive nanocomposite materials for 
tissue regeneration. Hydroxyapatite (HA), a cal-
cium phosphate, possesses chemical composition 
and structure similar to mineral phase in human 
bones with osteoinductive and osteoconductive 
properties that has been utilized to fabricate arti-
ficial bionanocomposites for bone implantation 
[23–27]. Abundance of nano-sized HA and poly-
mers exhibit a high biocompatibility and good 
mechanical properties that match with require-
ments for bone implant engineering [23–27]. 
Biphasic calcium phosphate and bio-glass are 
also some similar properties of HA.  However, 
these materials exhibit a high bio-mineralization 
rate via an enhanced formation of crystalline 
hydroxyapatite that contributes to new bone for-
mation. Some studies also indicated that calcium 
phosphate nanoparticles dispersed in polymer 
matrices can partially protect some loaded bio-
molecules and polymer from biodegradation [32, 
37]. The calcium phosphate nanoparticles-based 
materials have recently used as a platform for 
delivery of bioactive molecules, drugs and genes. 
Calcium phosphate-alginate nanocomposite per-
forms a high drug loading efficiency (caffeic, 
chlorogenic and cisplatin), control release of the 
drugs and improvement in anticancer activity on 
human osteosarcoma [38, 39]. Several kinds of 
calcium phosphate nanoparticles and 
biopolymers- based nanocomposites delivered 
effectively growth factors and/or osteogenic 
drugs (BMP-2, FGF-2, bisphosphonate, dexa-
methasone etc.) that are considering as a novel 
generation of the osteogenic stimulating scaf-
folds for bone regeneration [38–43].

Regarding outstanding properties of metal 
nanoparticles on antimicrobial activity, there has 
an emerging approach in which utilized them in 
fabrication of antimicrobial nanocomposite for 

practical applications such as agriculture, health-
care, and the industry. As prepared at nanoscale, 
the nanoparticles exhibit a highly active facet that 
is more biologically reactive as compared to the 
bulk counterpart [40, 43]. It is well-known that 
various biological polymers are elastic and flexi-
ble to fabricate equipments, biomedical devices 
and household items. The incorporation of the 
antimicrobial nanoparticles and polymers pro-
duced several kinds of active nanocomposites as 
well as improvement in nanoparticles’ stability 
[40, 43]. In some cases, the formulation could 
increase a higher antimicrobial activity as com-
pared to their own nanoparticles due to synergic 
effects of the constituents such as antimicrobial 
or/and structural properties of polymeric phase 
and the active nanoparticles as sampled in 
Fig. 13.2 [24, 25, 44, 45].

An emerging approach of the biological 
nanocomposites in fabrication of biosensors and 
flexible electronics should be herein discussed. 
Regarding to the elastic property of polymers 
and the specific interactions of nanoparticles, 
various biological nanocomposites have devel-
oped for several biomedical applications such as 
pathogen detection, cancer tracking, detection of 
small biomolecules etc. [46]. In fact, S.K. Shukla 
et  al. developed an indium-tin oxide glass 
substrate- based bio-electrode that coated glu-
cose oxidase- immobilized ZnO/chitosan-graft-
poly(vinyl alcohol). The bio-electrode potentially 
responded to the glucose down to1.2 mM. In the 
electrode, ZnO play an important role in the 
enzyme immobilization and its excellent stabil-
ity. Wang also reported a gold nanoparticles–
bacterial cellulose nanocomposite that effectively 
immobilized glucose oxidase and horseradish 
peroxidase for coating the glassy carbon elec-
trode. Gold nanorod particles-doped polyaniline 
and gold- graphene/chitosan nanocomposites 
performed a high efficiency in immobilizing glu-
cose oxidase and cholesterol oxidase, respec-
tively, and others that have exhibited a great 
potential of nanocomposite- based biosensors 
[47–52].
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13.2.3  Hydrogels 
and Nanocomposite 
Hydrogels in Biomedical 
Applications

It is well-known that hydrogel scaffolds are play-
ing an important role in biomedical applications 
due to their practical performances such as deliv-
ery of bioactive components, platforms for tissue 
engineering [53–55]. The hydrogels consist of 
hydrophilic polymers network are prepared via 
various physical, chemical and enzyme-mediated 
methods in which can encapsulate or immobilize 
bioactive molecules, drugs, enzyme and nanopar-
ticles for tissue engineering or controlled drug 
delivery, antimicrobial materials, biosensors sys-
tems etc. [53–57]. With swellable and porous 
properties in aqueous solution, the hydrogel sys-
tems facilitate the transportation of substances 
from cell metabolism, control delivery of drugs, 
provision of signals from various biologically 
specific interactions [58].

Nanocomposite hydrogels (NC gels) have 
recently emerged as approaches to extend appli-

cable fields of these mentioned platforms that 
based on an incorporation of the hydrogels with 
nanoparticles. By incorporating the interactions 
between nanoparticles and hydrogel network as 
well as physical, chemical, electrical, biological 
as well as swelling/de-swelling properties of 
either material alone, NC gels could lead to an 
innovative means for producing multi- 
compartment and multifunctional materials. For 
example, Meisam Omidi reported a thermo- and/
or pH sensitive, electro-responsive, magnetically 
responsive or light-responsive NC gel based on 
chitosan and carbon dots (CDs) exhibiting poten-
tially dual applications as antibacterial and pH- 
sensitive nano-agents for enhancing wound 
healing and monitoring the pH at the same time. 
The NC gel had a strong antibacterial activity 
[59]. Moreover, under daylight at various pH val-
ues, the color of the CDs changes from bright 
yellow towards dark yellow when increasing the 
pH values indicating the pH sensitivity of the 
CDs even under daylight, whereas under UV 
light, the fluorescence intensity of the CDs is 
obviously affected from acidic milieu towards 

Dopamine-mediated
adhesive bonding
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Dihydroxyphenyl acetamide chitosan
O
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The NPs can enhance antibacterial ability due to
electrostatic interaction with negative-charged cell membrane

Fig. 13.2 Illustration of the formation of silver nanoparticles and cationic chitosan composite for enhancing antibacte-
rial activity
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basic. This NC gels can be utilized as an out-
standing pH-sensitive probe for biomedical 
applications, especially for monitoring the pH 
values during the wound healing process  [59].
Various carbon, polymeric, ceramic and/or metal-
lic nanomaterials-incorporated hydrogels exhib-
ited biological, optical and ambient stimulus 
properties, which can be potential to apply in 
clinical fields like tissue engineering, drug deliv-
ery system and biosensors as demonstrated in 
Fig. 13.3 [58, 60, 61].

13.2.4  Injectable Nanocomposite 
Hydrogels in Biomedical 
Applications

For some implanted biomaterials and bio- 
microfluid devices, in situ fabrication of various 
hydrogel platforms has paid much attention 
because it allows monomers (macromolecules) to 
form a 3-D network that enables the hydrogels 
conform to the shape of the defect sites or sub-
strate of the devices resulting in its better bio- 
interaction, increment in interconnectivity, 
site-specific drugs delivery, enhancing bioavail-
ability and minimizing side effects and/or match 
with the structural device [62–66]. Moreover, 
these in situ implanted materials could improve 

patient compliance due to its minimally invasive 
surgical operation. Up to now, various injectable 
nanocomposite hydrogels have been reported at 
which were prepared via physical or chemical 
methods. These materials could be formed by 
hydrophobic interaction, stereocomplex effect, 
electrostatic interaction, photochemical reaction, 
Michael-type reaction, Schiff-base reaction and 
enzyme-mediated crosslinking reactions [66–
68]. Every obtained scaffold has exhibited some 
different behaviors on physical property, speech 
of matrix dissolution, drug delivery rate, compat-
ibility and etc.

In tissue regeneration, various NC gels have 
been in situ fabricated from the combination of 
biodegradable polymers and bioactive inorganic 
materials, which proved an improvement in 
mechanical properties and mineralization of the 
nanocomposite materials for bone tissue engi-
neering [8, 69]. Fu reported an injectable biode-
gradable thermo-sensitive nano-hydroxyapatite 
and poly(ethylene glycol)-poly(ε-caprolactone)-
poly(ethylene glycol)-based nanocomposite 
hydrogel exhibiting a potential for orthopedic tis-
sue engineering. The group also found that the 
injectable nano-hydroxyapatite dispersed PEG- 
PCL- PEG copolymer/collagen hydrogel per-
formed a high cytocompatibility and better 
calvarial bone regeneration as compared the self- 

Fig. 13.3 Approaches in fabrication of nanocomposite hydrogel for biomedical applications
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healing defects [70]. Dang also introduced the 
injectable NC gel using biphasic calcium phos-
phate (BCP), gelatin, and oxidized alginate [71]. 
The alginate-gelatin-BCP hydrogels provided a 
favorable environment for bone in growth and 
possibly biodegradation as compared with pure 
hydrogel (alginate-gelatin hydrogel). The NC gel 
implanted to femoral bone defects exhibited a 
regenerated bone surface/volume ratio and bone 
surface density higher than that of the hydrogel- 
filled incisions. Other injectable NC gel were 
fabricated from fibrin nanoparticles and bioglass- 
loaded chitin/poly(butylene succinate) enhanced 
the osteoinductive properties [72]. We have also 
developed an enzyme-mediated and 
biodegradation- controllable BCP -loaded chito-
san/gelatin hydrogel as demonstrated in Fig. 13.4 
that stimulated bio-mineralization as well as pro-
liferation of bone marrow mesenchymal stem 
cells (MSCs) [73]. Our obtained results indicated 
that these injectable nanocomposite hydrogels 
could be promising in bone regeneration.

Various nanocomposite hydrogels have also 
been well-performed in burn or wound healing. 
Our group in situ prepared curcumin nanoparticle 
in an amphiphilic pluronic F127-g-chitosan 
copolymer solution resulting fabrication of a 
temperature responsive NC gel. The synergic 
incorporation has also produced a multifunc-
tional nanocomposite hydrogels by the combina-
tion of dual bioactive chitosan and nanocurcumin 
components that has also led to NP-gels against 

growth of both gram bacteria. Moreover, the 
injectable NC gel enhanced 3rd burn healing rate 
as compared to Silvirin (a commercial drugs for 
burn treatment). Preparation and application of 
the hydrogels are demonstrated in Fig. 13.5 [74].

Li also reported an injectable curcumin 
nanoparticles-loaded N,O-carboxymethyl chito-
san/oxidized alginate hydrogel exhibiting a high 
wound healing efficiency [75]. The system may 
also be applied for internal wounds due to its 
ability in minimally invasive implantation. 
Moreover, some injectable NC-gels have also 
developed from incorporation of antibacterial 
metallic nanoparticles in biocompatible and bio-
active hydrogels for inhibiting microbe growth at 
wound sites [76, 77].

Utilization of some inorganic and carbon- 
based nanomaterials for enhancing efficiency of 
various injectable delivery systems has recently 
become an approach. Renae developed an inject-
able silicate nanoplatelets and gelatin-based 
hydrogel to effectively deliver the hMSC growth 
factor and enhance proliferation of human endo-
thelial cells resulting in produced significantly 
myocardial angiogenesis at the injected site [78]. 
An injectable NC gel for effective vasculogenesis 
and cardiac repair was developed based DNA- 
VEGF- complexed polyethylenimine – graphene 
oxide nano-sheets and methacrylated gelatin 
(GelMA) hydrogels [79]. Gold nano-rods doped 
into a thermally responsive hydrogels were able 
to induce the contraction of the thermo- responsive 

Fig. 13.4 Horseradish peroxidase-mediated fabrication of chitosan/gelatin and BCP nanoparticles-based nanocompos-
ite hydrogel for born tissue regeneration
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hydrogels and trigger the release of loaded doxo-
rubicin to inhibit breast cancer under NIR irradi-
ation [80]. Other NIR-responsive nanoparticles 
such as carbon nanotubes and graphene oxide 
nanoparticles were also incorporated into thermo- 
responsive polymers to harness NIR for remotely 
controlled drug delivery [81, 82]. The stimuli 
responsive NC gel has also developed from dopa-
mine nanoparticle-loaded pNIPAAm-co-pAAm 
hydrogel, in which was loaded bortezomib and 
doxorubicin to apply in photo/thermal therapy 
and multidrug chemotherapy. NIR laser and 
dopamine nanoparticles controlled release behav-
iors of doxorubicin and bortezomib, respectively 
[83]. Gold nanorods were dispersed into the 
injectable N-isopropylacrylamide and methacry-
lated poly-β-cyclodextrin copolymers-based 
hydrogels loaded doxorubicin that showed as an 
effectively long-term drug delivery platform in 
chemophotothermal synergistic cancer therapy. 
In addition, abundance of amphiphilic nature- 
driven copolymers performed a great biological 
properties could be ultilized for fabricating sev-
eral kinds of injectable materials [84, 85]. Such 
injectable multifunctional nanocomposite hydro-
gels would be well performed clinically in near 
future.

13.3  Electrosprayed  
Microparticles for  
Biomedical Applications

In recent years, several nano (micro)particles 
(NMPs) have been emerging as the potential can-
didates in various drugs delivery systems due to 
their structural versatility in fabricating process 
that could efficiently load and deliver bioactive 
compounds, chemotherapeutics, proteins and 
nucleic acids to the desired site. Drug release 
behavior of the particles is moreover adjustable 
by their structural materials. We therefore focus 
on efficiency of electrospraying method in con-
trolling drug delivery.

13.3.1  Introduction 
of Electrospraying Method 
for Drug Delivery

Electrospraying is a significant technique for fab-
ricating polymeric solid microparticles in drug 
carrier application. There are a lot of prospective 
advantages of this method such as simple one- 
step process, no or limited denaturation of bio- 
macromolecules (drugs and proteins), high 

Fig. 13.5 Thermosesitive 
biocompatible chitosan/
gelatin and curcumin- 
based nanocomposite 
hydrogel for burn healing
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hydrophobic/hydrophilic drug encapsulation 
efficiency (EE) and loading capacity (LC), con-
trolling the morphology and size of solid parti-
cles and high permeability to small molecules 
[86–88]. Similar to some well-known drug deliv-
ery systems, electrospraying technique fabricated 
particles have been studying to reduce or over-
come these drawbacks of conventional therapeu-
tic treatment by their prolong drug release and 
release onsite with a safe dose. Therefore, the 
particles have been one of the most efficient plat-
forms for drug delivery system and tissue engi-
neering. The mechanism release of drug from the 
particulate microparticles consists of 2 steps: The 
initial step is burst release since the drugs in and 
on their surface diffuse to the environment. The 
second step is release at slow and more constant 
by releasing the drug inside the particles due to 
the erosion of microparticles, consequences of 
degradation polymer matrix [89, 90]. The release 
profile was influenced by the morphology, size 
and size distribution of the microparticles [91–
93]. In more details, the wrinkle and hollow par-
ticles have pores and larger surface area than that 
of the dense spheres, in consequence, the fluids 
penetrate inner the particles faster and the drugs 
are able to diffuse easily and rapidly. Whereas, 
the dense particles can reduce the fluid penetra-
tion and diffusion of drug in the polymer matrix 
because the drugs can move out of the particles 
through the pores so that it can maintain the con-
stant release kinetics. In addition, the polymer 
concentration as well as the molecular weight of 
polymers (Mw), can tailor the morphology of 
particles and their release profile [94–97]. The 
low molecule weight of polymers causes inter-
molecular interaction weaken, thus it cannot 
encapsulate drug effectively and allow the diffu-
sion of drug from the polymer more easily [93]. 
Besides, burst release can happen from smaller 
particles size. Microparticles with smaller size 
make the drug release faster due to the penetra-
tion of fluid and diffusion of drugs to the environ-
ment. They have a larger surface area to volume 
ratio than bigger particles so that they are eroded 
quickly as a consequence of degradation polymer 
matrix [98, 99]. Furthermore, the size distribu-
tion of polymeric particles causes uncontrollable 

release rate of drug since the different size have 
different the drug release rate.

According to the of the essential literature of 
drug release and some factors which influence on 
release rate, the release of drug can be tailored by 
controlling the morphology and size of the mic-
roparticles. For electrospraying technique, how 
the morphology and size can be controlled? The 
fundamental principle of electrospraying method 
is that the high voltage was applied between the 
tip of the needle and the collector. Thanks to the 
electrical field force, the charged droplet issued 
from the tip will fly to the collector and form 
solid particles. During electrospraying, there was 
the competition between the coulomb fission and 
the polymer diffusion in the droplets. When the 
solvent evaporated, the charge density was 
increased inner the droplet and so that the cou-
lomb fission divided a primary droplet into 
smaller droplets [98–100]. Finally, the solid par-
ticles were collected on the collector, as a conse-
quence of the absolute evaporation of solvent as 
demonstrated in Fig. 13.6.

According to a basic theory of this method, 
adjusting the solvent, polymer concentration 
and flow rate seriously influenced the morphol-
ogy of the electrosprayed particles. Each sol-
vent has specific properties such as electrical 
conductivity, evaporation rate, and viscosity so 
that it causes the changing morphologies. For 
faster- evaporating solvent as dichloromethane 
(DCM) has a low boiling point (40 °C) or chlo-
roform (boiling point is 56  °C), the solvent in 
the droplet is evaporated quickly while the poly-
mer chains don’t have enough time to diffuse to 
inside the droplet. In addition, the surface of 
particles change solid although the solvent still 
is inner the particles, and during the time sol-
vent diffuse and emit to the environment. 
Therefore, the final particles on the collector are 
wrinkles or even hollows and porous. From the 
opposite side, the low evaporating solvent as 
dimethyl formamide (DMF) and tetrahydrofu-
ran (THF) have boiling points at 152  °C and 
65  °C, respectively. The polymer chains have 
more time to diffuse from the surfaces of mic-
roparticles to inner when the solvent move out 
and evaporate completely. These result reported 
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Fig. 13.6 Demonstration 
of an electrospraying 
technique for fabrication of 
particles was fabricated in 
our group

that electrosprayed particles are smaller and 
smooth surface as well as dense [94, 96, 98, 
101]. Beside different evaporation rate, each 
solvent has different conductivity (or dielectric 
constant), it causes dissimilar to Coulomb fis-
sion in the droplet and leads to different parti-
cles size. Xie et al. reported that the size of PCL 
particles reduced when the conductivity of 
polymer solution increase, as a consequence of 
using different solvent as DCM (0.000275 μS/
cm) and Acetonitrile (0.071 μS/cm) [94].

The second factor influences the morphology 
of microparticles is the chain entanglements in 
electrosprayed solution. The number of chain 
entanglements depends on the polymer concen-
tration and molecular weight (Mw) [98‚102–
104]. There are a few entanglements when the 
polymer concentration or Mw of polymer is low, 
thus electrosprayed particles is a film, disk, or 
semi-sphere in shape. Whereas, high polymer 
concentration or high molecular weight, the 
polymer solution occurs with higher density of 
chain entanglements, in consequence, tapered 
particles, beaded fibers, and event fibers will be 
created. The electrosprayed microspheres were 
achieved when the chain entanglements were 
generated effectively. And the electrosprayed 
droplet cannot be separated and deformed by 
Coulomb fission [105, 106]. The low Mw poly-
mer can create the microspheres at high polymer 
concentration instead of hollow and porous par-

ticles, whereas high Mw polymer can generate 
the microspheres at low concentration. Because 
the polymer chains of high Mw polymer are lon-
ger, they overlap together easier and enhances the 
formation of the entanglements in the droplets 
[93, 102, 107].

Flow rate factor also effects on the morphol-
ogy of the electrosprayed particles. A high flow 
rate causes particles deformed, aggregated and 
inconsistent morphology as a result of incom-
pletely solvent evaporation. At the same polymer 
solution, the high flow rate produces a lower 
amount of chain entanglements and higher 
amount of solvent in the droplet, so that the poly-
mer matrix cannot conserve the droplet integrity 
under the Coulomb fission and solvent evapora-
tion. As a result, when the particles impact on the 
collector, they are collapsed and deformed. For 
example, the PLGA particles were deformed and 
stick together at the flow rate of 2 mL/h while at 
1 mL/h, they formed the separated microparticles 
[93, 108]. Moreover, the size of particles created 
by a high flow rate is bigger than that of low flow 
rate [94, 95].

Apart from solvent, polymer concentration 
and flow rate, applied voltage is one of factors 
influences on morphology of the particles. When 
the applied voltage increased,the droplets were 
highly charged. Therefore, the microspheres 
were stretched and changed to elongated parti-
cles, tapered particles or beaded fibers [106, 
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109]. In addition, the high voltage strengthens 
the electric field force so that it makes the elec-
trospraying mode change and it impacts on the 
size and size distribution or even the morphology. 
For instances, the multi-jet mode causes the 
irregular shape of particles and broaden the size 
distribution while the Taylor cone-jet mode gen-
erates the homogeneous particles and monodis-
persity. The morphology of particles is stable and 
homogeneous with the mono cone-jet mode how-
ever, the size of particles is increased slightly if 
the applied voltage increased, as a consequence 
of increasing Coulomb fission [93, 101].

In case of collecting distance, it should be 
enough far to avoid deformed and aggregated 
particles because the solvent cannot evaporate 
completely and stay inside particles. In Arya’s 
reported, chitosan particles were deformed and 
stick together at collecting distance of 6 cm, in 
consequence, it created a film while microspheres 
were formed separately at 7 cm [103]. Increasing 
the distances not only help polymer chain have 
time to diffuse and rearrange within the particles 
but also solvent was evaporated completely, so 
that more microspheres were obtained [93].
When the collecting distance is expanded enough 
far to create separate particles, the size of the par-
ticles is decreased when the collecting distance 
increase, as a result of the droplet had been still 
divided to smaller particles thanks to coulomb 
fission. However, at the constant voltage, if the 
collecting distance is too far and it overcomes the 
limitation, which maximizes of electric field 
force, the particles size will reduce [93, 108].

Besides all factors were regarded above, a 
diameter of the needle (Gauge) also influenced on 
particles size and size distribution. The micropar-
ticles which were produced by a bigger gauge 
have smaller size because the size of the droplet 
(or the volume of the droplet) at the tip of the nee-
dle reduces, in consequences, the final particles on 
the collector have smaller sizes [93]. However, the 
big gauge (small size of inner diameter‘s needle) 
can create the multi-jet mode, it leads to polydis-
persity and unrepeatable particles.

13.3.2  Fabricating Mono- 
Distribution 
and Homogeneous 
Morphology of PCL NMPs 
by Studying Electrospraying 
Modes and Tailoring 
the Parameters Processing

In this research, some kinds of solvent and sol-
vent mixture were used to investigate the influ-
ence of solvent on microparticles morphology. 
With the main purpose of fabrication the homo-
geneous particles with smooth surfaces, the DMF 
solvent was chosen [94, 96, 97, 101]. Therefore, 
it has been used a mixture of two solvent. When 
the mixture solvent of DMF and chloroform 
(DMF/CHCl3  =  3/1) was created, the morphol-
ogy of particles was heterogeneous such as 
beaded fibers, elongated particles, and fibers 
(Fig. 13.7a). Because the physical properties of 
the solvent mixture such as solubility, evapora-
tion rate and dielectric constant depended on 
both chloroform (56 °C, 4.8) and DMF (154 °C, 
36.7) [110–112], so that the mixture caused an 
unstable spraying mode and formed collapsed, 
unstable and unrepeatable microparticles. 
Especially, the different conductivity (or dielec-
tric constant) caused dissimilar to Coulomb fis-
sion in the droplet and leads to different particles 
size [110]. Therefore, the solvent mixture made 
undesirable morphology of PCL particles and 
should not be used for electrospraying. According 
to Fig. 13.7b and c, the electrosprayed particles 
were microspheres although they were wrinkled. 
This phenomenon was explained that DCM and 
chloroform had high evaporation rate (their low 
boiling points, DCM (40  °C) and chloroform 
(56  °C) [113]), It made the external surface of 
particles are solidified quickly and became wrin-
kled. Furthermore, the dielectric constant of 
chloroform (4.8) was lower than DCM (9.1) so 
that the Coulomb fission formed from the elec-
trostatic force is smaller in consequence; the size 
of PCL/DCM particles was smaller than the size 
of PCL/chloroform particles.
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According to some previous studies,the elec-
trospraying mode appreciably influenced both 
morphology and the size of the microparticles 
since the shape of the primary droplet issued 
from the tip of the needle can be formed some 
unstable spraying modes such as dripping, multi- 
jet, spindle and oscillating [109, 114]. These 
spraying modes are the undesirable because of 
their instability and unpredictability. In more 
details, multi–jet mode and oscillating–jet gen-
erate the satellite and secondary droplets, result-
ing in a broader size distribution and unrepeatable 
particles shapes. In case of dripping and spindle 
mode, the particles are bigger and deformed 
because the solvent still exists inside the parti-
cles. Whereas, the cone–jet mode generated 
almost uniform morphology and size of parti-
cles, especially the Taylor cone-jet was the most 
stable mode can maintain the spraying mode 
permanently as well as obtain homogeneous 
morphology and the mono-dispersity [98, 100, 
109, 114, 115].

Our results indicated that when the flow rate 
was lower 2 mL/h and the collecting distance was 
from 5 cm to 25 cm, the surface tension of PCL 
solution was higher than the coulomb fission as a 
consequence of weak electrostatic force 
(Fig.  13.8a). It led to the polymer drop which 
ejected on the tip of the needle had irregular 
shapes as a spindle. In spindle mode, the drop-
lets, as well as electrosprayed particles, contained 
solvent so that the particles were deformed and 
aggregated. When the collecting distance was 
shorter (2.5–5 cm), the cone-jet mode was formed 
because the electric field force was strengthened 

but this area was narrow. Increasing voltage to 
15 kV, the spindle mode area decreased (flow rate 
of 0.8 mL/h to 2 mL/h, distance from 10 cm to 
25 cm) while the cone–jet mode area increased 
(flow rate of 0.4 mL/h to 0.8 mL/h, distance from 
6  cm to 25  cm and another area as seen in 
Fig. 13.8b).

Moreover, the multi-jet mode was appeared at 
the short distance in spite of small areas, as a con-
sequence of high electric field force. The cone-jet 
mode area is biggest when the applied voltage is 
18 kV, it spread from 0.5 mL/h to 2 mL/h of flow 
rate and from 15 cm to 25 cm of collecting dis-
tance. Besides, at 18 kV, the oscillating–jet mode 
(the vacant cone was formed at the tip of the nee-
dle and it changed position irregularly appeared 
when the flow rate is low (0.5–0.8 mL/h) and the 
collecting distance increased from 10  cm to 
17  cm whereas the spindle mode varnished 
(Fig. 13.8c) [114]. It was a result of strengthening 
electrostatic force thanks to increasing applied 
voltage and the presence of a small solution vol-
ume ejected from tip of needle as a result of low 
flow rate. Especially, at the short collecting dis-
tance from 2.5 to 10 cm, the electric field force 
was strengthened by a high potential and a short 
collecting distance so that it overcame the surface 
tension of polymer solution, as a result of the 
larger multi-jet area. In addition, increasing flow 
rate generated a greater volume of solution so 
that the cone-jet mode was obtained more easily, 
however, it also depended on the electrical field 
force, if it is strong, the multi-jet mode was cre-
ated. Therefore, when the applied voltage was 
increased to 24  kV, the multi–jet mode was 

Fig. 13.7 MicroparticlesSEM micrographs of 4% PCL 
solutions in different solvents (a) Mixture ofChloroform 
with DMF = 1:3 (v/v), (b) Chloroform, (c) DCM. (Applied 

voltage: 18  kV, collecting distance: 18  cm, flow rate: 
1 mL/h, gauge 20G)
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spread to all the flow rate of 0.5–2.0 mL/h and the 
collecting distance of 2.5–25.0 cm. The voltage 
applied to the needle and the collector was so 
high that it overcame the surface tension of the 
polymer droplets. Multi-jet generates the separa-
tion of a primary droplet into many small jets, so 
that, secondary and satellite particles appeared, 
in consequence, the solid particles were hetero-
geneous and had high distribution [114].

Another significant factor influenced on the 
morphology of PCL particles is polymer concen-
tration. Although using different solvents as chlo-
roform and DCM, the polymer concentration had 
the similar effects on the morphology of the elec-
trosprayed particles. At very low concentration, 
1% PCL in chloroform, the morphology of the 
particles was hollow and semi-spherical as a con-
sequence of lack chain entanglements in solution 
(Fig. 13.9a). Increasing Polymer concentration to 
3% PCL in chloroform or 3.5% and 4% PCL in 
DCM, the entanglements weren’t still enough to 
create microspheres; they generated corrugated 

or distorted particles (Fig. 13.9c and Fig. 13.10a, 
b). Whereas, high polymer concentration caused 
the tapered particles, beaded fibers and event 
fibers, as a result of a huge amount of chain 
entanglements in the droplet (Figs.  13.9d and 
13.10d). The microspheres were obtained at 4% 
PCL in chloroform and 4.5% PCL in DCM 
(Figs. 13.9c and 13.10d), as a result of the signifi-
cant chain entanglements in droplets. This phe-
nomenon is explained that the intermolecular 
interaction of polymer is different in the dissimi-
lar solvent; it is stronger in chloroform than in 
DCM so that the chain entanglements were cre-
ated more in chloroform.

Furthermore, microspheres had a tendency to 
agglomerate together if the surface of micro-
spheres had been wetting, consequences of sol-
vent still inside microspheres. The solvent still 
remained inside had evaporated during it flew 
from the tip of the needle to the collector. At the 
same processing parameters, the surface wetting 
property of particles had increased belong to the 

Fig. 13.8 Mode selection maps to generate electrospraying modes (a) 12 kV, (b) 15 kV, (c) 18 kV, (d) 24 kV (4.5% 
PCL in DCM, 20G)
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increased amount of solvent in PCL solutions. 
Therefore, the microspheres reduced agglomera-
tion together when the PCL concentration was 
increased from 3.5% to 5% (Fig. 13.10).

As showed in Fig.  13.11, near distances 
(10 cm) caused the particles deformed and col-
lapsed since a lot of solvents were still inside the 
particles. When the final droplets (or the parti-
cles), which contained solvent impacted on the 
collector, they were plashed and covered on the 
collector [93, 103]. When other particles flew 
from the tip to collector and hit on it, they stick 
with the first particles, as a result, it created a film 
although the polymer concentration increased to 
5%. Increasing collecting distance to 15 cm, the 
separate particles were generated, especially at 
high polymer concentration (4% and 5% PCL) 
(Fig. 13.11e and f). The reason is that chloroform 
had  more time to evaporate and polymer can 
 diffuse significantly in the droplet. However, 

solution 3% PCL generated the deformed aggre-
gated particles (Fig.  13.11d) while 4% and 5% 
PCL solution did not have the aggregation of par-
ticles. It was a result of the higher amount of sol-
vent in 3% PCL solution than others. Therefore, 
the collecting distance should be over 15 cm for 
solvent evaporation completely.

Changing faster-evaporated solvent like DCM, 
the microspheres were obtained at 4.5% PCL. The 
electrosprayed particles were obtained homoge-
neous and separated microspheres at collecting 
distance of 20 cm while at 15 cm a heterogeneous 
morphology such as spheres, tapered particles, 
microbeads, and fibers was created. Because the 
chain entanglements had more time to diffuse and 
rearranged structure inside the droplet and solvent 
can evaporate completely when the collecting dis-
tance increased to 20 cm. When the distance was 
increased to 25 cm, the particles turned to corru-
gated spheres and the size distribution of particles 

Fig. 13.9 SEM micrographs of PCL microparticles in chloroform with different polymer concentration (a) 1%, (b) 
3%, (c) 4%, and (d) 5% (voltage: 15 kV, collecting distance: 15 cm, flow rate: 1 mL/h, gauge 20G)
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Fig. 13.10 SEM micrographs of PCL microparticles in DCM with different polymer concentration (a) 3.5%, (b) 4%, 
(c) 4.5%, and (d) 5%(voltage: 18 kV, collecting distance: 20 cm, flow rate: 1 mL/h, gauge 20G)

Fig. 13.11 SEM micrographs of PCL microparticles in 
chloroform with different polymer concentration (a) 3% 
PCL-10 cm, (b) 4% PCL-10 cm, (c) 5%PCL -10 cm (d)) 

3% PCL – 15 cm, (e) 4% PCL-15 cm, (f) 5% PCL -15 cm 
(flow rate 1 mL/h, voltage: 15 kV, gauge 20G)
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became broader than using 20 cm consequences 
of reducing electric field force [116]. The long 
collecting distances can overcome the limitation, 
which maximizes of electric field force, the parti-
cles size will reduce [93, 108]. The average diam-
eter of particles reduced from 11.73  μm to 
7.93 μm when the collecting distance increased 
gradually from 15 to 20 cm, as a result of increas-
ing the time for separating droplets by the 
Coulomb fission into smaller particles. These 
results showed that with 20  cm distances, the 
homogeneous microspheres and narrow size dis-
tribution were obtained so that it was an optimal 

value [114].  At the same polymer solution of 
4.5% PCL in DCM, low flow rate (0.5 mL/h and 
1 mL/h) created a small  primary droplet and high 
charge density, so that the Coulomb fission were 
strengthened and tend to separate to secondary 
and satellite particles. Besides, the volume of the 
cone issued from the tip of the needle was small, 
thanks to the solvent evaporation, the density of 
chain entanglements in the droplet were increased. 
Therefore, the electrosprayed particles were het-
erogeneous and irregular in shapes such as 
spheres, tapered particles, beaded fibers and fibers 
(Fig. 13.12a and b).

Fig. 13.12 SEM micrographs of particles with different 
flow rate (a) 0.5  mL/h, (b) 1  mL/h, (c) 1.5  mL/h, (d) 
1.8 mL/h, (e) 2 mL/h (f) 4 mL/h and (g) the diagram of 

effect of the flow rate on the diameter of PCL particles 
(4.5% PCL in DCM, collecting distance: 20 cm, voltage: 
18 KV, gauge 20G)
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According to Fig. 13.12c, d, e, microspheres 
were generated at flow rate from 1.5  mL/h to 
2 mL/h, however, they were deformed and stick 
together or on collector when flow rate was 
higher (1.8 mL/h and 2 mL/h), as a consequence 
of the presence of solvent inside particles. The 
separate and homogeneous microspheres were 
obtained at flow rate 1.5 mL/h and the average of 
their diameter was 8.45  μm with the smallest 
standard deviation (SD) of 1.33 μm so that it was 
the optimize value in this experiments 
(Fig. 13.12c and g). The average diameter of par-
ticles was increased from 4.35 μm to 13.32 μm 
when the flow rate increased gradually from 
0.5 mL/h to 4 mL/h (Fig. 13.12g). The reason is 
that at a high flow rate, the solution volume 
ejected from the needle increased so the size of 
particles was bigger, besides, some microparti-
cles were collapsed and spread on the collector 
and this causes the bigger size.

Next factor effect on the size and size distribu-
tion of PCL microspheres is applied voltage so 
that it was investigated with different value 15 kV 
and 18 kV (because the cone-jet mode area was 
created at this value) (Fig. 13.8b and c). The opti-
mal values for fabricating homogeneous micro-
spheres such as the flow rate of 1.5 mL/h, polymer 
concentration of 4.5% PCL in DCM and the col-
lecting distance of 20 cm were fixed. The micro-
spheres were obtained at both 15 kV and 18 kV, 
however, the aggregation was generated at 
smaller applied voltage (15 kV) and the size of 
microspheres is bigger (9.044 μm) than the par-
ticles size using 18  kV (8.466 μm). The lower 
applied voltage caused the lower electric field 
force; in consequence, the coulomb fission was 
weaker to separate to smaller particles. In addi-
tion, due to the bigger size, the solvent was still 
inside the particles and microparticles were 
aggregated (Fig. 13.13).

Fig. 13.13 SEM images and the size distribution histograms of PCL microparticles with different applied voltage. 
(a,c) 15 kV, (b,d) 18 kV, (collecting distance: 20 cm, flow rate: 1.5 mL/h, 4.5% PCL in DCM, 20G)
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Our studies indicated that the solvent in the 
PCL particles was evaporated completely after 
drying 48  h and it was determined by GC-MS 
testing. It determined that the electrosprayed 
microparticles are non-toxic and can be used in 
pharmacy. Furthermore, after 40 days, the parti-
cles were degraded and formed fragment 
(Fig.  13.14). It showed that the particles were 
eroded quickly, as a consequence of degradation 
polymer matrix. The electrosprayed PCL parti-
cles are suitable to apply for the permanent treat-
ment some diseases in pharmacy and medicine 
application.

13.3.3  Fabrication Insulin or 
Paclitaxel Loaded 
Microparticles 
by Electrospraying

In drug carrier application, polymer types were 
chosen to depend on their desirable degradation 
and the release of drug from the polymer matrix. 
Both PLGA and PLA microparticles were suit-
able for short-term drug delivery due to a lot of 
ester groups in the structure. In the other hand, 
the PCL backbones have lack of ester groups and 
contain high crystalline so that their degradation 
is slow, as a result, PCL particles are suitable for 
long-term release system [87, 104, 117, 118]. 
According to some previous studies, PLGA 
encapsulated some kind of hydrophilic and 
hydrophobic drugs such as Rhodamine B [86], 

Rifampicin [101], Celecoxib [92], oestradiol [98] 
and Taxol [119]. Although their encapsulation 
efficiency (EE) was high, the initial burst release 
happened in few hours. Increasing the number of 
drugs in electrosprayed particles, the drug release 
becomes faster because of the porosity inside the 
particles and corrugated surfaces [92, 101, 119]. 
Besides PLGA particles, PLA particles can 
encapsulate BSA with high EE (81%) and LC 
(91%) [92] or the hydrophobic drug  – 
Beclomethasone dipropionate (BDP) with EE 
54% and the hydrophilic drug – Salbutamol sul-
fate (SS) EE = 56% [120]. In a report of Jing Wei 
Xie and Chi-Hwa Wang, Bovine Serum Albumin 
(BSA)  – loaded PLGA particles fabricated by 
electrospraying had 20–21  μm diameter with 
wrinkle surfaces (without emulsion) or smooth 
surface (with emulsion and 5–10% PluronicF127). 
The EE was 40–77%. An initial burst release was 
happened due to the BSA located on or in the 
wrinkle particles surface. The protein was dif-
fused from the particles to the medium easily in 
few hours so that the BSA release gained 40–55% 
after 24  h. In case using emulsion with 
PluronicF127, the electrosprayed BSA-loaded 
microparticles could maintain the sustained 
release, however, it was complicated to create the 
water-oil emulsion [119, 121]. Another research 
of their group is fabricating Paclitaxel (PTX) or 
Taxol-loaded PCL microparticles for treating the 
glioma C6 brain tumor. The particles size was 
6–12 μm with high EE (93–97%) [99]. The initial 
burst still was generated in 1–2 days. After that, 

Fig. 13.14 SEM images of electrosprayed PCL particles after 40 days in in-vitro testing
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the drug release was maintained 10–27% amount 
of total drugs encapsulated in the particles within 
22 days.

In some studies, the effects of polymer con-
centration and electrosprayed processing param-
eters on the morphology and size of PCL drug/
protein-loaded microparticles such as Taxol, 
Paclitaxel [94, 99], β-Oestradiol [98], Bovine 
serum albumin (BSA) [121] were investigated. 
However, the insulin-loaded PCL microparticles 
producing by electrospraying method have been 
new carrier system and need to develop in the 
pharmaceutical application.

Firstly, the mixture including PCL, Insulin, 
and DCM was prepared by dissolving 
 mechanically PCL in DCM at room temperature. 
Then the insulin/PCL solution was prepared in a 
10  ml glass syringe with stainless steel needle 
20G (inner diameter 1.19) and placed in a Syringe 
pump (Top–5300, Japan). The high voltage 
(18 kV) was applied to the needle and the collec-
tor plate, which was covered with aluminum foil. 
During electrospraying, the droplets were sepa-
rated into small particles and thanks to the sol-
vent evaporation; the solid insulin-loaded PCL 
particles were formed. Then, they were dried for 
2  days at room temperature to remove solvent 
completely.

Following all investigating of the effects of 
solvent, PCL concentration and parameters pro-
cessing on the morphology, size and size distri-
bution of the electrosprayed of microparticles, 
these experiments were conducted with the flow 
rate of 1.2 mL/h, the applied voltage of 18 kV, 
needle gauge of 20G, and 4.5% PCL in DCM sol-
vent. We used PTX which is hydrophobic drug 

and insulin which is hydrophilic drug to fabricate 
the drug-loaded microparticles by electrospray-
ing. The method fabricated PTX-loaded PCL 
particles was similar to insulin-loaded PCL. The 
results indicated that the nature of drug impact on 
the distribution of drug inside the polymer matrix, 
and morphology’s particles.

The morphology of PTX-loaded particles 
(15% PTX/PCL, wt/wt) is microspheres with 
smooth surfaces (Fig.  13.15b) as compared 
unloaded PCL particles (Fig.  13.15a). 
Hydrophobic macromolecules can be compatible 
with PCL, so that small molecule of PTX could 
fill the hollow, pore and wrinkle on the structure 
of particles, leading to the smooth and dense par-
ticles [99]. Besides, the size of the PTX-loaded 
particles is smaller (6.98  μm) than the PCL 
microspheres (8.47 μm). This phenomenon can 
be explained like that, the PTX/PCL solution had 
bigger surface tension than the PCL solution, so 
that the Taylor cone-jet mode was formed, as a 
result of their size distribution was monodisper-
sity. In contrary, the size distribution of PCL par-
ticles was bidispersity due to the secondary and 
satellites droplet, as a consequence of non-Taylor 
cone-jet mode formation. In case of insulin, a 
hydrophilic drug, it was unincorporated in PCL 
solution, which is hydrophobic so that the mix-
ture of insulin and PCL solution was a suspen-
sion. Lack of solubility of the insulin in polymer 
solution caused not only the sedimentation dur-
ing spraying but also the migration of drug on 
and near the surface particles [122]. As showed in 
Fig.  13.15c, the morphologies of the insulin- 
loaded particles were collapsed and irregular par-
ticles. This is a result of unincorporated insulin/

Fig. 13.15 SEM images of PCL microparticles (a) blank (no drug) (b) 15% PTX/PCL (wt/wt) and (c) 20% insulin/
PCL (wt/wt) (collecting distance: 20 cm, flow rate: 1.2 mL/h, 4.5% PCL in DCM, 20G)
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PCL suspension and lack of diffusion of the drug 
as well as polymer in solution. This system can 
be created by combining both hydrophobic 
(PTX) and hydrophilic drug (insulin) with PCL.

Chitosan, another natural polymer was used in 
fabricating electrosprayed NMPs in our study. The 
polysaccharide can load the Ampicillin, BSA, and 
Doxorubicin [103, 123, 124] with high EE. Our 
research focuses on fabricating the insulin- loaded 
chitosan by electrospraying method. The effect of 
insulin concentration on the release of drug was 
investigated. Thanks to controllable morphology 
and size of the particles, the degradation and the 
release of drug sustained over the investigated 
time as seen in Fig. 13.16. The drug carrier system 
should be studied further for extending its practi-
cal applications. Such electrosprayed drug-loaded 
particles could be imerging delivery systems in 
future [87, 88, 104, 125–127].

13.4  Future Perspective

Regarding to the above demonstration, prepara-
tion of polymeric nanoparticles or/and incorpora-
tion of several kinds of nanoparticles into 
injectable hydrogel systems produced multifunc-
tional nanocomposite biomaterials that have paid 
many ways to apply in tissue engineering, drug 

delivery, antimicrobial materials, and etc. these 
systems effectively delivery from various chemo-
therapeutic drugs/proteins/gene to bioactive 
compounds as well as phytochemicals. The struc-
ture of these materials has been gradually well- 
designed to satisfy with treatment and harmony 
with physiologically internal conditions such as 
pH, enzyme and biochemical reactions. They 
also incorporated with external stimuli (tempera-
ture, near-IR irradiation, UV-Vis light, magnetic 
fields, ultrasound energy and etc.) to enhance 
effectiveness in biomedical applications. Such 
injectable multifunctional nanocomposite hydro-
gels would be well-performed clinically in near 
future. Other corporations of metallic or carbon- 
based nanoparticles could also improve the effi-
ciency of conventional drugs via an additionally 
synergistic effect of the photo/thermal therapy.

For electrosprayed NMPs, the technique could 
also be studied further for applications due to 
their high drug loading efficiency and prolong 
drug release onsite with a safety dose. It is also 
potential practically because the electrosprayed 
NMPs could be produced in large scale in which 
loading various drugs and bioactive compound 
without denaturation.
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Abstract
Polyurethane (PU) is one of the most popular 
synthetic elastomers and widely employed in 
biomedical fields owing to the excellent bio-
compatibility and hemocompatibility known 
today. In addition, PU is simply prepared and 
its mechanical properties such as durability, 
elasticity, elastomer-like character, fatigue 
resistance, compliance or tolerance in the 
body during the healing, can be mediated by 
modifying the chemical structure. 
Furthermore, modification of bulk and surface 
by incorporating biomolecules such as antico-
agulants or biorecognizable groups, or hydro-
philic/hydrophobic balance is possible 
through altering chemical groups for PU 
structure. Such modifications have been 
designed to improve the acceptance of implant. 
For these reason, conventional solventborne 
(solvent-based) PUs have established the stan-
dard for high performance systems, and exten-
sively used in medical devices such as 
dressings, tubing, antibacterial membrane, 
catheters to total artificial heart and blood con-

tacting materials, etc. However, waterborne 
polyurethane (WPU) has been developed to 
improve the process of dissolving PU materi-
als using toxic organic solvents, in which 
water is used as a dispersing solvent. The pre-
pared WPU materials have many advantages, 
briefly (1) zero or very low levels of organic 
solvents, namely environmental-friendly (2) 
non-toxic, due to absence of isocyanate resi-
dues, and (3) good applicability caused by 
extensive structure/property diversity as well 
as an environment-friendly fabrication method 
resulting in increasing applicability. Therefore, 
WPUs are being in the spotlight as biomateri-
als used for biomedical applications. The pur-
pose of this review is to introduce an 
environmental- friendly synthesis of WPU 
and consider the manufacturing process and 
application of WPU and/or WPU based nano-
composites as the viewpoint of biomaterials.
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14.1  Introduction

Solvent-borne polyurethanes (PUs) has long 
been used as high-performance materials, and the 
standard of their manufacturing systems has been 
widely used. The processing and application of 
solvent-borne PUs involve evaporation of organic 
solvents, which adds to volatile organic com-
pounds (VOCs) content in the atmosphere. Thus, 
different environment protection agencies have 
taken serious steps to reduce VOC emission from 
the industrial sector and issued guidelines to 
combat the same [63]. Under such circumstances, 
a paradigm shift in research has been observed in 
the development ecofriendly polymeric materi-
als. As a result of such efforts, waterborne poly-
urethane (WPU) has emerged out as one of the 
greener alternatives [37, 96].

The WPU is formed when a polyurethane pre- 
polymer containing isocyanate functional group 
is subjected to disperse into water either directly 
or by means of the phase-inversion emulsifica-
tion process. Further, after dispersion these poly-
urethanes are chain extended with a diamine in 
the water phase.

The WPU is of great importance due to their 
extraordinary characteristics of containing lower 
levels of volatile organic content (VOC). Further, 
water-based PUs are versatile and environmen-
tally friendly coating materials that are available 
in a wide range of film hardness and solid con-
tent. They contain no free isocyanate residuals 
and possess high blocking resistance, weather 
resistance, long-term flexibility, UV resistance, 
and high abrasion resistance. Owing to all the 
required characteristics of coating materials, 
water-based PUs are rapidly growing segment of 
the polyurethane coatings industry [64, 65, 72, 
77, 113]. Waterborne PU technology used water 
as the primary dispersion solvent. The resultant 
waterborne PU materials gave many advantages: 
(1) zero or very low levels of VOCs (environmen-
tally friendly), (2) absence of isocyanate residues 
(nontoxic) and (3) good applicability, versatility, 
and a wide range of superior properties, such as 
abrasion resistance, impact strength, and low 

temperature flexibility. Waterborne PUs are used 
in various industries, majorly in paints and coat-
ings. In addition, they are used as binders in 
hygiene coatings, insulating coatings, concrete 
sealers, industrial coatings, architectural coat-
ings, paper coatings, leather & textile finishing, 
printing ink, and various other applications [17, 
32, 81, 103]. Particularly, urethane used for med-
ical use should be required to have biodegrad-
ability, good affinity for human body, and no 
environmental hazard. WPU have increasingly 
focused owing to possibility of tailoring proper-
ties caused by altering the chemical structure and 
composition, nontoxicity by absence of isocyante 
residues, the excellent biocompatibility [112], as 
well as zero levels of organic solvents, namely 
environmental-friendly fabrication method, 
thereby being difficult to integrate cells. 
Consequently, water-dispersed polyurethane 
(WPU) is inevitably required as biomaterials for 
biomedical applications. Nowadays, several stud-
ies are underway to manufacture biodegradable 
and environmentally friendly polyurethanes.

With the growing environmental awareness 
and regulations formulated by the governments 
in developed and emerging economies to keep 
the VOCs below 350 g/l are expected to drive the 
water-based PUs market in near future. Major 
players, namely, Covestro AG (Germany), The 
DOW Chemical Company (U.S.), BASF SE 
(Germany), and various other global players are 
focusing on expanding and developing water- 
based PUs.

However, most WPUs are linear thermoplastic 
polymers and have a relatively low average 
molecular weight. Therefore, some properties of 
WPUs, such as water resistance, solvent resis-
tance and mechanical property, are inferior to 
that of solvent-based polyurethanes [11]. In order 
to overcome this, many studies have been carried 
out, such as crosslinking modification [10, 96, 
124], chain extender [72] and composites of 
nanoparticles [37]. The main purpose of this arti-
cle is to introduce the general features and appli-
cations of WPU, and to list the types of diol, 
isocyanate, and chain extender that are mainly 
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used in biomaterials. The research on WPU field 
based on new oligomer polyols provides poten-
tial application possibilities in the field of medi-
cine. In particular, it has great research value and 
tremendous potential for access to eco-friendly 
materials, such as polyol, which is obtained from 
vegetable oil, which is a renewable resource.

Based on its specific mechanical properties 
such as elasticity, flexibility, tensile strength, bio-
compatibility, and durability, PUs, especially 
WPUs have been greatly employed in the devel-
opment of biomedical applications, involving 
engineered artificial tissues, wound dressings, 
antibacterial membranes, etc. A great number of 
research have been conducted on optimizing its 
properties required for specific applications, and 
lots of result have been published over time. 
However, scarcely reviews and books on the bio-
medical application of only WPUs have been 
published, which provide researches an informa-
tion on the advances of WPUs in medical devices 
as yet. In this chapter, the following topics will be 
merged: synthesis of WPUs, properties, WPU as 
biomaterials, and applications in biomedical 
area.

14.1.1  Biomedical Polymers 
for Biomaterials

A biomaterial is any substitutes, which has been 
engineered to interact with biological systems 
for a medical purpose, for example, a therapeu-
tic, and a diagnostic one. The biomaterials have 
been often used to replace or improve an injured 
tissue, or to accomplish a complex function. 
Biomaterials for biomedical applications involve 
metals, ceramics, pyrolytic carbon materials, 
composites and polymers. In order to use in bio-
medical area, biomaterials need to possess 
key properties for this; proper mechanical 
strength matched with desired tissue, a capacity 
to perform its functions, and biocompatibility, 
also mentioned as bioaffinity. Mechanical 
strength is desired to maintain a proper perfor-
mance. Lastly biocompatibility is discussed in 
details in next part.

14.1.2  Biocompatibility

It is essential to understand the interactions 
between biomaterials and the surrounding bio-
logical environment for design of biomedical 
devices. The term is associated with the behavior 
of biomaterials in diverse biological phase. The 
definition of biocompatibility has advanced over 
the years from one of biological inactivity to 
some degree of interaction between the biomate-
rials and surrounding tissue implanted. In other 
words, it is the ability of a biomaterial to accom-
plish some biological process with a proper host 
response. In addition, it can be discussed in terms 
of hemocompatibility and histocompatibility. 
The former is rarely defined comparing in bio-
compatibility. It is usually related to thrombosis 
what should not occur. The latter includes less or 
no toxicity, and acceleration of neo tissue forma-
tion around an implant.

Chemical modification of urethanes has 
evolved to provide convenient and effective tools 
for deformation of biomaterials, which providing 
desirable properties for biomedical applications. 
Efforts with the biomaterials and medical materi-
als described above have resulted in a multifunc-
tional urethane-based biocompatible material 
that meets the specific requirements of each 
application.The diversity of chemical modifica-
tion of urethanes in modern biomaterial designs, 
which have been further upgraded, also affects a 
wide range of applications, particularly in the 
field of medical engineering. To render WPU bio-
degradable, researchers have attempted to incor-
porate biodegradable polymeric materials into 
the backbone of WPU. The biodegradable poly-
meric materials can be long-chain polyols, chain 
extenders, or diisocyanates.

14.2  Waterborne Polyurethane 
Synthesis

Generally, PUs are incompatible with water 
because of the presence of hydrophobic isocya-
nates that cannot be dispersed in water and react 
with water. The hydrophilic modification of the 
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poly (diisocyanate) shows water dispersibility by 
the introduction of a hydrophilic group distrib-
uted along the chain of the polyurethane prepoly-
mer. The water-dispersible polyurethane (WBPU) 
coating solution was developed by introducing 
ionic groups into the PU backbone [80], which 
can be synthesized or dispersed in water as an 
ionomer with little solvent used by introducing a 
carboxylic acid or tertiary amine to the structure. 
Therefore, water-based processes have reduced 
environmental concerns about hazardous air pol-
lutants (HAPs), toxic hazards from volatile 
organic compounds (VOCs), and residual sol-
vents [48, 57]. Depending on these ionic groups, 
WPU can be classified as cationic, anionic and 
nonionic. Nonionic types include hydrophilic 
soft segment pendant groups such as polyethyl-
ene oxide. Cationic dispersion contains N-methyl 
diethanol amine and poly(tetramethylene adipate 
diol) and poly(tetramethylene glycol) (PTMG), 
poly(propylene glycol) (PPG), poly(ethylene 
glycol) (PEG) and dimthylolpropanoic acid 
(DMPA) are categorized as anionic dispersions. 
The ionomer is neutralized to form salts. These 
groups are built into the chain structure during 
polymer preparation [127]. B.  K. Kim et  al. 
reported the connection relationships of anionic 
and nonionic monomers or the position of those 
hydrophilic groups in polyurethane should also 
have an influence on the dispersion and stability 
properties of WPUs [64, 65]. That is, a combina-
tion of ionic and nonionic monomers, typically 
containing oxyethyl segments, has a synergistic 
effect on WPU and induces stable dispersion in 
fine particle size and low hydrophilic groups.

The most important processes used to manu-
facture WPUs are the acetone process, the pre-
polymer mixing process, the melt dispersion 
process and the ketamine process. Generally, the 
molecular weight is controlled by the molar ratio 
of NCO/OH and chain extender. The synthesis 
process varies depending on how the diamines 
(–NH2) and diols (–OH) are used to change the 
chain extension step that is generally performed. 
Various changes can be made depending on the 
application of the final product [57].

Polyurethane is a segmented polymer com-
posed of a soft segment and a hard segment, 

which constitute a unique microphase separated. 
The PU ionomer contains an ionic group which is 
introduced into a hard or soft segment having a 
predetermined property. The dispersion of the 
polymer in water and the properties of final prod-
ucts are influenced by the type and content of the 
ionic centers and macrolides as soft segments.In 
addition, reaction conditions such as reaction 
temperature, stirring speed, rate of addition of 
components and order of addition have a signifi-
cant effect on the properties of the aqueous dis-
persion [42, 92].

14.2.1  Classification of Waterborne 
Polyurethane

The water-dispersed polyurethane is classified 
into an aqueous solution type, a colloid type and 
an emulsion depending on the particle size and 
the degree of water absorption, and is divided 
into anionic, nonionic and cationic depending on 
the type of the hydrophilic group (Table 14.1). It 
is divided into dry type, reactive curing type and 
UV curing type. These hydrophilic groups 
include –COOH, –SO3H, –CH2CH2O–, tertiary 
amine, and the like. However, these water- 
dispersible polyurethanes are environmentally 
friendly, but they are generally less competitive 
in terms of economy, physical properties, water 
resistance, and processability than solvent types.

The effective method for making PU dispers-
ible in water is to introduce ionic and/or nonionic 
hydrophilic moieties into its backbone structure 
(Table 14.2). When the polyurethane water dis-
persion exhibits ionic properties, it is necessary 
to consider how the bonding that may occur when 
mixing with an ionic additive in a post-process is 
affected. However, the nonionic water dispersion 
is ionically stable and is preferred in some fields, 
but it has a disadvantage with weak dispersibility 
in water and lower physical properties than 
anionic polyurethane.

The cationic polyurethane can be synthesized 
by the following four steps. Step 1, polyol and 
isocyanate are reacted at 70 ~ 75 °C for 3 ~ 4 h to 
prepare an isocyanate terminated prepolymer. 
Step 2, ionomer is added and reacted at 60 to 
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65 °C for 1–2 h to extend the chain. Step 3, the 
tertiary amines of the chain-extended prepolymer 
are reacted with acetic acid, DMS, HCl at 50 °C 
for 1–2 h to quaternary ammonium salt. Step 4, 
the neutralized prepolymer is dispersed in water 
with vigorous stirring at 40–45 °C. At this time, 
phase transition occurs, and viscosity change 
should be considered. As a water dispersion 
method, it is common to add a prepolymer to 

water, but in some cases, a dispersion method in 
which water is added to the prepolymer is also 
adopted. Solid contents are generally around 
35%.

Recently, the anionic type of waterborne PU 
have been emerging as practical type. This type 
of waterborne PU possesses pendant ionized car-
boxylic acid groups. Anionic waterborne PUs 
with carboxylic acid groups can be synthesized 

Table 14.1 Classification of water dispersed PU according to dispersion state

Items
Type
Aqueous solution Colloid Emulsion

Dispersion state Solution-micelle Dispersion Dispersion
Appearance Transparent Translucent Opaque

Particle size (μm) 0.001 0.01~0.1 0.1

Table 14.2 Classification of water-dispersible PU according to ionic type

Items
Type
Non ionic Anionic Cationic

Structure

Side group -(CH2CH2O)- -COO-Na+
R

A

N

|

|

− −

−

+

Mainly 
quaternary 
ammonium 
groups

-SO3Na+

Isocyanate hydrogenated methylene 
diphenylene diisocyanate 
(HMDI)

Isophorone 
diisocyanate (IPDI)

Isophorone diisocyanate (IPDI) 
toluene-2,4- diisocyanate (TDI)

Polyol monomethoxypolyethylene 
glycol (MPEG), polybutylene 
succinate diol (PBSD), 
polybutylene adipate diol 
(PBAD), polyethylene glycol 
(PEG), Polyethylene glycol 
(PEG), polypropylene 
glycol(PPG)

Polyethylene glycol 
(PEG), Polycarbonate 
diol(PCDL), 
Polycaprolactone 
diol(PCL)

Poly(neopentylglycol adipate) (PNGA), 
PPG, PTMG, Polycaprolactone 
diol(PCDL) PEG, Polyester polyol

Ionomer – Dimethylol propionic 
acid (DMPA), 
triethylamine (TEA)

N-methyl diethanolamine (MDEA), 
3-dimethyl amino 1,2-propane diol 
(DMPA) dibutyltindilaurate (DBTL)

Chain 
extender

1,4-butabediol (BD) 1,4-butabediol (BD), 
Ethylene diamine 
(ED)

Acetic acid

References Li et al. [76] and Yang et al. 
[143]

Na Liu et al. [83], Lei 
et al. [74] and Kumar 
Gaddam [31]

Li et al. [80], Wu [134] and Sukhawipat 
et al. [118]
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by a four-step process, In the first step, 
 macromonomer diisocyanate is prepared by 
reacting excess diisocyanate with a long-chain 
polyol and/or low molecular weight glycol. Then 
carboxylic acid-containing macromonomer 
diisocyanate is prepared through the hydrophili-
zation of macromonomer diisocyanate in the sec-
ond step, where bis-hydroxycarboxylic acid, 
such as dimethylolpropionic acid (DMPA), is 
incorporated into the backbone of macromono-
mer diisocyanate. The next step involves the neu-
tralization of carboxylic acid with tertiary amine. 
Finally, the anionic PU prepolymer is vigorously 
sheared and stirred in water diamine. Chain 
extension in water causes the residual isocyanate 
group to transform into urea linkage resulting in 
an anionic PU that is stably dispersed in water.

Depending on the type of polyol used here, 
they are classified as polycarbonate-based, 
polyether- based and polyester-based WPUs. 
García-Pacios et al. showed polycarbonate-based 
WPUs displayed a lower degree of phase separa-
tion between the soft and the hard segment and 
higher adhesive strength than the regular 
polyether- based and polyester-based WPUs [35]. 
In some studies, polycarbonate-based WPUs 
were also proved possessing excellent hydrolysis 
resistance and weatherability. In addition, organic 
solvent resistance is found to be great property 
for the polycarbonate-based WPUs [34, 119].

The degradation can be tailored through an 
appropriate choice of the soft segment. Polyether- 
based polyurethanes are resistant to biodegrada-
tion. If the polyol is a polyester, then polyurethanes 
are readily biodegradable [95]. Biodegradable 
polyesters used are PCL, PLA and PGA [39, 45]. 
It is assumed that the degradation rate is gov-
erned by soft segments, where esters bounds are 
located. The urethane bounds, which are located 
in hard segment, are not easily hydrolysed.

In synthesizing WPU, water plays the role of 
chain extender to react with terminal isocyanate 
groups. For this reason, WPU synthesized with-
out addition of a chain extender may be used in 
eco-friendly or biodegradable applications [156]. 
The influence of the nature of the chain extender 
on biodegradability was studied only recently 
[121]. Introducing a chain extender with hydro-

lysable ester linkage allowed to the polyurethane 
hard segment to be degradable. Most common 
isocyanates, however, are toxic, so aliphatic bio-
compatible diisocyanates have been used. 
Poly(ester urethane)s were prepared by reaction 
of lysine diisocyanate with polyester diols based 
on lactide or ε-caprolactone [117, 148]. 
1,4- diisocyanatobutane is another biocompatible 
diisocyanate.

14.2.2  Dispersion, Particle 
Stabilization of Waterborne 
Polyurethane

Here, the role of water used as a dispersant is 
described as follows. In polar solvents such as 
acetone, the PU ionomer solution spontaneously 
disperses when the water is added. The transfor-
mation of an organic solution to an aqueous dis-
persion takes place in several steps. According to 
Dieterich, the addition of water at an early stage 
leads to a sharp drop in viscosity due to a decrease 
in ionic bonding [20]. The ionic bond formed by 
the neutralization of the ion center is a reversible 
process, and water reduces ionic bonds between 
molecular chains. As more water is added, the 
hydrophobic chain segment decreases due to the 
decrease in acetone concentration and the hydro-
phobic chain-induced hydrophobic interaction 
increases the viscosity of the hydrophobic chain. 
Further addition of water leads to turbidity and 
the formation of a dispersed phase, followed by 
turbidity and rearrangement to microspheres 
where ions are formed on the surface of the par-
ticles of the aggregate, resulting in reduced the 
viscosity. Some studies have suggested that water 
molecules are first adsorbed on the surface of the 
hard segment microionic lattices and then con-
tinuously introduced into disordered and ordered 
hard domains [9]. The water dispersion interferes 
with the ordering of the hard domain, resulting in 
a phase separation between the soft segment and 
the hard segment.

The stabilization mechanisms of ionomer dis-
persion and non-ionomer dispersion are different 
[20, 105]. The ionomer dispersion is stabilized by 
forming an electric double layer between the 
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ionic components. One layer binds to PU 
 chemically, and the counterion migrates into the 
water phase around the particle. Interference of 
electric double layers of different particles 
causes particle repulsion and contributes to sta-
bilization of dispersion. Adding an inert elec-
trolyte to the ionomer dispersion reduces the 
range of bilayer repulsion and induces coagula-
tion by providing additional ions at the water 
phase. In nonionomer dispersion, the hydrophilic 
PEO segments are fixed to the particle surface 
and stretched into the water phase. The stabiliza-
tion mechanism for this type of particle structure 
can be explained in terms of entropy repulsion. 
As the particles approach closely, the freedom 
of movement of the PEO chain in the water 
phase is limited and entropy is reduced. 
Therefore, the repulsion between particles is nat-
urally induced [61].

14.3  Design of Waterborne 
Polyurethane Biomaterials

The most common way to obtain biorenewable 
and biodegradable water-dispersible polyure-
thanes is to include biodegradable and bio-based 
components in the water-dispersible PU main 
chain during polymer synthesis.

WPU is used in a wide range of applications 
from chemical engineering to medical part, 
which contains cosmetic and chemical applica-
tions. WPU dispersions have been gaining 
increasing importance in a wide range of applica-
tions because of their excellent properties, such 
as adhesion to various substrates, resistance to 
chemicals, solvents, and water, abrasion resis-
tance, high tensile strength and elongation, flexi-
bility, toughness, and water vapor permeability. 
Recently, polyurethane films with high water 
vapor permeability have been used in medical 
applications, breathable coating fabrics, and spe-
cial adhesives [64, 65]. In addition to film, WPU 
is also used for coating medical devices and 
equipment. Continued research and development 
on WPU’s other application development in the 
medical field is expected to improve this market 
in the future.

14.3.1  Introduction of Bio-based 
Polyol Materials

Vegetable oils are widely used bio-based renew-
able resources due to their low toxicity, inherent 
biodegradability, ready availability, and relatively 
low price. As such, a great deal of effort has been 
made to develop waterborne PUs from vegetable 
oils [91].

A challenge in the synthesis of vegetable oil- 
based, environmentally friendly waterborne PU 
is the high crosslinking of the PU prepolymers 
caused by high hydroxyl functionality of the veg-
etable oil based polyols. Vegetable oils are also 
susceptible to hydrolytic breakdown due to the 
three ester bonds in their structure. Vegetable oil- 
based waterborne PU bonds may degrade when 
exposed to excessive humidity, releasing amines 
and carbon dioxide and they are also susceptible 
to microorganism attack [72].

Since plant-derived fats and oils can be 
extracted directly for monomers, fine chemicals 
and polymers, there is a great possibility of 
replacing currently used petrochemicals. The 
synthesis of monomers as well as polymers from 
vegetable fats and oils offers promising new 
opportunities because they are used in many 
ways in industry. These oils make highly pure 
fatty acids available that may be used for chemi-
cal conversions and for the synthesis of chemi-
cally pure compounds such as oleic acid from 
“new sunflower,” linoleic acid from soybean, 
linolenic acid from linseed, erucic acid from 
rapeseed, and ricinoleic acid from castor oil. The 
most important parameters affecting the physical 
and chemical properties of oils are stereochemis-
try, the degree of unsaturation and the length of 
the carbon chain of fatty acids.

In castor oil, the most abundant fatty acid is 
ricinoleic acid ((9Z,12R)-12-hydroxy-9- 
octadecenoic acid), providing additional natural 
chemical functionality for modifications, cross- 
linking or polymerization [41]. Castrol oil, which 
has inherent hydroxyl groups in its structure, was 
the first vegetable oil directly used in the synthesis 
of waterborne PUs. Other vegetable oils, such as 
sunflower, corn, palm, rapeseed, soybean, and lin-
seed oils, much be modified into polyols for syn-
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thesizing waterborne Pus [129, 138]. Vegetable 
oil-based polyols are long-chain polyols that offer 
promise in producing biorenewable waterborne 
PUs. The various types of vegetable oil-based 
polyols can be used to synthesize bio- based PUD 
and PU materials with a wide range of colloidal 
and physical properties. Castor oil’s unique struc-
ture, with ∼90% of the fatty acid chains in the oil 
bearing a hydroxyl group, eliminates the need for 
chemical modification of the triglyceride to pro-
duce polyols for PU synthesis [90]. Madbouly 
et al. successfully synthesized via homogeneous 
solution polymerization in methyl ethyl ketone 
followed by solvent exchange with water. 
Thermally induced gelation was observed for 
PUDs with a solid content ≥27 wt%. The kinetics 
of thermally induced gelation behavior of PUDs 
was investigated analyzing the real- time evolution 
of G′, G″, η*, and tanδ at constant temperatures 
(55, 60, 65, and 70 °C) and angular frequencies 
for different solid contents. These biorenewable 
PUDs exhibited rich and complex viscoelastic 
behavior and can serve as excellent model sys-
tems for more detailed explorations of rheology 
and macromolecular structure under flow and 
deformation conditions for other PUDs. Castor 
oil-based waterborne PUs show good mechanical 
properties in terms of both tensile strength 
(9.3  ±  1.5  MPa) and elongation at break 
(520 ± 20%). Thus they have been used to modify 
plasticized starch to prepare novel biodegradable 
materials with high performance [129]. Siva 
Sankar Panda et al. synthesized successfully from 
castor oil-based polyol, isophorone diisocyanate 
and dimethylol propionic acid with NCO/OH 
ratio of 1.5. And then, different weight percent-
ages of cloisite 30B (1, 2, and 3 wt%) were loaded 
with WPUDs to prepare nanocomposite films 
[99] (Scheme 14.1).

A soybean oil-based waterborne PU disper-
sion has also been successfully prepared from 
toluene-2,4-diisocyanate, DMPA, and a chlori-
nated soybean-oil-based polyol [88].

After that they synthesized WPUs containing 
50~60  wt% of bionewable components, which 
have been prepared using methoxylated soybean 
oil polyols(MSOLs) with gydroxyl functionality 
ranging from 2.4 to 4.0. The particle sizes of the 

resultant waterborne PUs range from 12 to 
130 nm. An increase in the hydroxyl functional-
ity of the MSOLs significantly improved the 
cross-link density of the waterborne PUs. These 
novel films exhibit tensile stress-strain behavior 
ranging from elastomeric polymers to rigid plas-
tics and possess Young’s moduli ranging from 8 
to 720  MPa, ultimate tensile strengths ranging 
from 4.2 to 21.5 MPa, and percent elongation at 
break values ranging from 16 to 280%, and 
resulted in biorenewable PUs ranging from elas-
tomeric polymers to ductile plastics [86] (Scheme 
14.2).

Sariah Saalah et  al. synthesized a series of 
waterborne polyurethane dispersions derived 
from jatropha oil-based polyol (JOL) with differ-
ent OH numbers ranging from 138 to 
217  mgKOH/g. The results reveal that with 
increasing OH number, the DMPA content and 
hard segment content significantly decrease the 
particle size from 1.1 μm to 53  nm, indicating 
increasing stability of the dispersions. JPU films 
exhibit the stress–strain behavior of an elasto-
meric polymer with a Young’s modulus ranging 
from 1 to 28  MPa, a tensile strength of 1.8to 
4.0 MPa and elongation at break ranging from 85 
to 325% [109].

Ismail Omrani et  al. synthesized the WPU 
from bio-based polyol, which was derived from 
sunflower oil. The polyol containing carboxylic 
acid groups from sunflower oil was prepared and 
used in the production of biodegradable 
WPU. The synthesized WPU was loaded by the 
drug and its loading ability was studied. Drug 
release studies have shown controlled release of 
raloxifene from anionic nanoparticles predomi-
nantly driven by diffusion-based mechanisms 
[97, 98] (Schemes 14.3 and 14.4).

14.3.2  Introduction of Bio-based 
Chain Extender Materials

Chain extenders can also be substituted with bio- 
based components in the synthesis of waterborne 
PUs. The chain extender can be replaced with a 
bio-based component in WPU synthesis. For 
example, Hong Chen et al. used L-lysine (PU–L), 
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ethylenediamine (PU–E), and their mixture (PU– 
L–E) as chain extenders of WPU. The produced 
emulsion exhibited satisfactory freeze/thaw sta-
bility. Films cast from emulsions exhibited excel-
lent mechanical properties and good antiblood 
coagulation character [12].

Chitosan, a derivative of an abundant naturally 
occurring polysaccharide, has active amino 
groups, exhibits much higher reactivity and water 
solubility. So, chitosan can be used to chain water-
borne PU in water. Chitosan has unique biological 
properties such as toxicity, biocompatibility, anti-
coagulant and biodegradability. Dan Xu et al. pre-
pared a novel blood-compatible WPU film, which 

can be synthesized with chitosan as a chain 
extender. Its properties showed antibacterial and 
antifungal activity as well as excellent mechanical 
and anticoagulant properties. Though these films 
had hydrophilic groups, they were not soluble in 
water due to crosslinking. Based on mechanical 
properties and blood compatibility of the materi-
als, these films can be a candidate for bio-applica-
tions [139] (Scheme 14.5).

Gelatin from cold fish skin also can be intro-
duced into waterborne PUs by covalent bonding, 
to reinforce and render biodegradability. Lee 
et al. chemically modified gelatin with vinyltri-
methoxysilane and incorporated the modified 
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gelatin into waterborne PU with terminal 
hydroxyl ethyl acrylate groups by UV polymer-
ization. The waterborne PU showed excellent 
mechanical properties and water resistant proper-
ties along with significantly enhanced biodegrad-
ability both in trypsin solution and in soil [73].

14.4  Waterborne Polyurethane 
for Biomedical Applications

Waterborne polyurethane (WPU) has been enor-
mously employed as an environment friendly 
material in various biomedical applications such 
as tissue regeneration, antibacterial, wound 
dressings, water purification due to abrasion 
resistance, wide substrate suitability, better 
mechanical properties in terms of elasticity, flex-
ibility, tensile strength as well as biocompatibil-
ity. For using in various applications, the materials 
can be prepared by either alone or with other 
polymers including natural or synthetic polymer 

for altering chemical composition resulting in 
modulating mechanical, physicochemical, and 
biological properties. Furthermore, many 
researches have conducted on modification of 
WPU, the addition of inorganic nanomaterials is 
also common approaches among them mentioned 
above, including SiO2 [149], Carbon [71], gra-
phene [62], nanoclays [30], etc.

14.4.1  Tissue Engineering

The final goal of tissue engineering is to replace, 
maintain, and enhance injured tissues. The key 
strategy for tissue regeneration is to engineer bio-
constructs providing biomechanical, cellular, 
physicochemical, and molecular cue in order to 
repair damaged tissue. The engineered constructs 
should ideally mimic properties, architecture, 
morphology of natural tissues to replace injured 
site. Although autograft and allografts are a gold 
standard for tissue replacement, they have major 

Scheme 14.2 Synthesis of soybean-oil-based waterborne polyurethane dispersions. (Adapted with permission from 
Lu and Larock [86]. Copyright (2008) American Chemical Society)
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limitation such as complications, causing pain 
and infection, donor shortage. Therefore, the 
employment of biomaterials is currently a prom-
ising approach for an alternative treatment.

Waterborne polyurethanes (WPU) have 
mainly focused due to possibility of controlling 
properties altering the chemical structure and 

composition, nontoxicity, no flammability, the 
excellent biocompatibility [112] and an eco- 
friendly fabrication method comparing with 
solvent- borne polyurethanes involving toxic 
organic solvents causing in residue of the solvent 
in the resultant product, thereby being difficult 
to integrate cells [50, 51, 130]. Xu et al. investi-

Scheme 14.3 Reaction scheme for synthesis of waterborne polyurethane dispersions. (Adapted with permission from 
Saalah et al. [109]. Copyright (2015) Elsevier)
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gated to evaluate BSMC growth and morphology 
on waterborne polyurethane membranes in com-
parison with PLGA, a generally used biomate-
rial for repairing injured bladder and proved that 
it was greater than PLGA membranes. Hsu et al. 
fabricated peripheral nerve conduits from biode-
gradable PU which was synthesized by a water-
borne process. The conduits with asymmetric 
microporous structure were prepared from 15% 
PU dispersion by the freeze-drying method. The 
porous structure was interconnective with pore 
size of 23 μm. The interconnected porous struc-
ture allows high permeability resulting in help-
ing cell proliferation. The histology of 
regenerated nerve after 6 weeks post implanta-
tion at the mid- section of the conduit was showed 
in Fig. 14.1. The areas of regenerated axons were 

about 0.24  mm2 and 0.14  mm2 for WPU and 
Neurotube, respectively. In addition, the mor-
phology of nerve fibers of WPU conduits was 
more organized comparing with Neurotube. As a 
result, the fabricated WPU conduits proved 
potential applications in peripheral nerve tissue 
engineering [49].

Nanofibrous scaffolds without any organic 
solvents were fabricated through electrospinning 
biodegradable WPU emulsion blending with 
aqueous poly(vinyl alcohol) (PVA) by Wu et al. 
The nontoxic WPU prepared by using 
poly(ethylene glycol) (PEG) and poly(ε- 
caprolactone) (PCL) as soft segment, L-lysine 
diisocyanate (LDI) as hard segment, 
1,3-propanediol(PDO) and L-lysine as chain 
extender are fabricated.

Scheme 14.4 The synthesis route of DHA from sun flower oil. (Adapted with permission from Omrani et al. [97, 98]. 
Copyright (2017) John Wiley and Sons)
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As shown in Fig. 14.2, altering the mass ratio 
of PVA to WPU changes the diameter and 
 morphology of fiber effectively. The fabricated 
scaffolds with high porosity and interconnected 
pore could be obtained by consisting of homoge-
neous fibers excepting in the 1/9 ratio. The sur-
faces of electrospun nanofibers are smooth and 
the diameters decrease from 964 to 370 nm with 
increasing the ratio of WPU, because of crystal-
lization of PVA. Also, the nanofiber mats showed 
outstanding biocompatibility, accordingly they 
have lots of potential for excellent biomaterials 
for tissue regeneration [137].

3D printing has been a potential approach to 
fabricate customized scaffolds providing sur-
rounding environments to attach, migrate, and 
proliferate cells resulting in guiding to grow tis-
sue. Biocompatible and biodegradable materials 
applicable for 3D printing are rare [50, 51, 145]. 
Although synthetic polymers with biodegrad-
ability such as polylactic acid (PLA), polygly-
colic acid (PGA), and polylactic-co-glycolic 
acid (PLGA) could degrade at high temperature 

or require to dissolve in organic solvent for 
printing [144] they do not possess a proper elas-
ticity similar to that of natural tissue. Among 
materials for 3D printing, it is possible that 
waterborne polyurethane mimics biomechanics 
of natural tissue. Hung et  al. developed 3D 
printing system employing water dispersion of 
biodegradable polyurethane elastomer with a 
viscosity enhancer [53]. Water based printing 
have been advantageous for integrating biomol-
ecules such as growth factors into materials in 
order to enhance the functionality of the fabri-
cated scaffolds. Also, they developed custom-
ized waterborne polyurethane scaffolds with 
cell aggregation capacity via 3D printing and 
controlled release function. The 3D printed 
waterborne polyurethane scaffolds integrated 
self-clustering MSCs could guide to regenerate 
tissue and release the incorporated bioactive 
compound without any exogenous induction 
medium. Finally, the group confirmed the effec-
tiveness of the developed scaffolds for regener-
ating cartilage defect [54].
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nerve inside the conduit 
obtained from the image 
analysis of histology at 
the middle portion of the 
explant. (Adapted with 
permission from Hsu 
et al. [49]. Copyright 
(2017) John Wiley and 
Sons)
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14.4.2  Drug Delivery

Currently polyurethanes (PUs) have gotten atten-
tion as a polymers that can be employed in lots of 
areas such as biomaterials due to adhesion to 
various substrates, resistance to chemicals, sol-

vents, and water, abrasion resistance, high tensile 
strength and elongation, flexibility, toughness, 
and water vapor permeability  [116, 147]. 
Therefore, many medical devices including blood 
pumps, prosthetic heart, valves and insulation, 
have prepared from PUs [21, 93]. Degradable 

Fig. 14.2 SEM images of PVA/WPU nanofiber mats that 
electrospun with various mass ratios of PVA/WPU 
(A)10/0, (B)9/1, (C)7/3, (D)5/5, (E)3/7, and (F)1/9 (total 

polymer concentration 15 wt%, TCD 15 cm, and applied 
voltage 20 kV). (Adapted with permission from Wu et al. 
[137]. Copyright (2017) Taylor & Francis)
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PUs are generally synthesized by polyaddtion 
reaction of degradable polyester or polycarbon-
ate diols with diisocyanate [125, 128]. The PUs 
with degradable ester bonds degrade slowly, and 
accordingly are not matchable with sustained 
release applications [52, 97, 98, 155]. To date, 
micro or nanocarriers with disulfide bonds have 
drawn lots of research efforts, due to the presence 
of redox-potential gradient between the extracel-
lular and intracellular milieu [55]. L-cysteine and 
glutathione (GSH), which are reducing agents, 
can split disulfide bond via thiol-disulfide 
exchange reaction [141]. Lili et  al. developed 
successfully novel redox-responsive micelles 
self-assembled with disulfide containing cross-
linked structure in hydrophobic segment. It is 
found that doxorubicin (DOX) as anticancer is 
efficiently released from the fabricated micelles 
to cytosol, and the release rate could be acceler-
ated by the presence of comparatively high con-
centrations of glutathione (GSH). The carrier 
fabricated using disulfide linkage enable intracel-
lular delivery by allowing an accelerated release 
of incorporated drugs. However, almost carriers 
prepared from a disulfide bond between hydro-
phobic and hydrophilic blocks generally lack 
control of sensibility and micellization [16]. 
Biodegradable polyurethane- based micelles with 
redox responsive properties is emerging materi-
als in drug delivery system [5]. The presence of 
disulfide bones in PUs can lead to the break of 
polymer chain resulting in collapsing nanocarri-
ers. Although introducing carboxylic acid or ter-
tiary amine into their structure, PUs is able to be 
synthesize and dispersed in water either alone or 
with little solvent used [135]. The waterborne 
process decreased the environmental issue 
regarding toxic organic solvents. Waterborne 
polyurethane (WPU) possesses the ionic groups 
enabling PU particles to be dispersed in water. 
The WPU have drawn attention in biomedical 
area owing to their versatility and environment-
friendly process. It is reported that WPU is pos-
sible for carrying hydrophobic compounds 
including an anticancer drug due to no toxicity as 
well as low cost.

Recently, Omrani et  al. reported that WPU 
nanocarriers with disulfide bonds in both hard 

and soft segment were prepared for redox- 
triggered intracellular delivery of DOX.  As 
shown in Fig.  14.3, the polyester diol bearing 
disulfide bonds was prepared using disulfide- 
labeled polyester diol, bis (2-hydroxyethyl) 
disulfide, DMPA and isophorone diisocyanate. In 
Fig.  14.3, DLS displayed that the fabricated 
nanocarriers had a size of 92  nm, in addition 
SEM micrograph exhibits that the WPU nanocar-
riers had a homogeneous distribution with good 
stability. In analysis of release DOX, it was dem-
onstrated that the enhanced DOX release at 
10 mM reducing agent concentration was caused 
by the disassembly of WPU nanocarriers owing 
to the DTT-induced disulfide bond cleavage. It 
was proved that the developed WPU nanocarriers 
possess merits including ease process, nontoxic-
ity, good stability at physiological condition, fast 
degradation at reductive environment, and trigger 
drug release by GSH concentration [97, 98].

Moreover, Ajorlou et al. reported that the fab-
ricated WPU nanomicelles loaed paclitaxel 
showed inhibitory effects on growth of cancerous 
cells and the size and weight of the mice tumors 
decreased during treatment with folate decorated 
nanomicells. In addition, the performance of the 
fabricated nanomicells was a lot better than com-
mercializing drug, Taxol® [1].

Gene therapy is a promising treatment for 
genetic diseases. Cationic polymers including 
polyurethane, which form complexes with DNA 
for gene transfection, are generally employed as 
non-viral carriers [115, 126]. Biodegradable 
polymers have been attracted attention as trans-
fection reagents, because of lower risk resulted 
from polymer accumulation [100]. Although the 
cationic polymer has high transfection efficiency, 
they have still considerable toxicity. Yang et  al. 
developed N,N-diethylethylenediamine- 
polyurethane (DEDA-PU), bearing tertiary 
amines in the backbone and side chains for gene 
delivery [142]. Jian et  al. synthesized lysine- 
based poly(urethane-co-ester) PMMD bearing 
ester linkages in the backbone and tertiary amines 
in the side chain, to improve the self-assembly 
efficiency of nanoparticles with DNA [58]. 
However, these PU as transfection reagents has 
drawbacks such as difficult synthesizing as 
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Fig. 14.3 The 
distribution of size 
determined by DLS (a) 
and SEM micrograph 
(b) of reduction- 
sensitive WPU, the 
scheme of glutathione- 
degradable WPU 
nanocarriers for 
redox-triggered 
intracellular DOS 
delivery (c). (Adapted 
with permission from 
Omrani et al. [97, 98]. 
Copyright (2017) 
Elsevier)
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 carriers as well as use of toxic organic solvent. 
Wu et  al. synthesized biodegradable cationic 
polyurethane nanoparticles (NPs) with tertiary 
ammonium group through an environment-
friendly waterborne process. It was demonstrated 
that the new cationic elastomer waterborne poly-
urethane with excellent antibacterial activity 
(100%) was formed into NPs and films. Moreover, 
it showed the ability to form complexes with 
plasmid DNA and little cytotoxicty [135].

Consequentially, these waterborne polyure-
thane nanocarriers above mentioned, can be pref-
erable candidates as biodegradable vehicles for 
drug/gene delivery system.

14.4.3  Wound Healing

Wound healing is complex, dynamic, and physi-
ological responses of a living tissue caused by 
physical, chemical, mechanical or thermal injury. 
It accompanies a process to substitute lost cells 
and matrix components, and skin layer, which 
results in facilitating wound regeneration and 
restoring tissue integrity [14]. The process for 
wound healing is categorized into 3 or 4 dynamic 
and overlapping phases-inflammatory (homeo-
stasis and inflammation), proliferative (granula-
tion, contraction, and epithelialization) and 
remodeling (maturation), which has also been 
denoted as hemostasis, inflammatory, prolifera-
tion, and remodeling phase. The inflammatory 
phase is distinguished by accumulating lots of 
neutrophils and macrophages involved in by the 
by the secretion of inflammatory mediators like 
reactive oxygen species (ROS), reactive nitrogen 
species (RNS), cytokines, etc. [6]. In case of 
medical treatment to full-thickness (FT) wound 
complications caused by chemical injury, burns, 
secondary infections, and diabetes, non-toxic 
surface engineered matrices of biomaterials can 
be used as wound dressing materials with the 
function to protect from external mechanical 
stress as well as microbial infections. These 
wound dressing biomaterials should possess the 
following properties; it has to be swollen by 
absorbing an exudation in its polymer network 
from wound without dissolving by the 

 surrounding liquid. Therefore, the materials 
enable to provide proper conditions for healing 
process by mimicking native tissue environment; 
for example, glycosaminoglycans (GAGs), algi-
nate, poly (vinyl pyrrolidone), gelatin poly (eth-
ylene glycol), hyaluronic acid, etc. [2, 19, 28, 60, 
70, 78, 106, 131]. Almost these cases, it is neces-
sary to use covalent crosslinker for maintaining 
their structure during desired period. However, 
the chemicals as crosslinker are often toxic, 
thereby requiring an additional confirmation 
about bioaffinity.

Polyurethane as a wound dressing material 
have been commercially in the spotlight because 
of main characters such as biocompatibility, 
mechanical properties, elasticity in particular, 
flexibility, good oxygen/carbon dioxide permea-
bility [6]. Accordingly, polyurethane-based 
dressings have been commercialized, mainly 
OpSite®, 3 M® Tegaderm®, and Bioclusive® [26, 
94], though they have restricted absorbent prop-
erty with only a barrier from microbial infection 
for chronic wound. Currently, comparing with 
conventional solvent-borne polyurethane, water-
borne polyurethane have greatly attention and 
been employed either alone or with other nature 
or synthetic polymers for wound restoration. It is 
associated with a binary colloidal system con-
sisting polyurethane particles dispersed in water 
[94]. The polyurethane dispersion scaffolds pre-
pared with poly(ethylene glycol) were informed 
to imbibe, followed by being swollen in aqueous 
condition without dissolving, primarily owing to 
strong hydrogen bond between dispersed hard 
segment, namely urethane and urea, and 
poly(ethylene glycol) soft segment causing 
phase separated morphology. Yoo and Kim 
proved that the resultant waterborne polyure-
thane hydrogel fabricated in their study has a 
great potential for novel wound dressing materi-
als, which support and retain the sufficient moist 
condition required to prevent scab formation and 
dehydration in the wound bed, resulting in 
retarding in tissue regeneration and scar forma-
tion [147]. In addition, they prepared waterborne 
polyurethane/poly(N- vinylpyrrolidone) (PVP) 
composite films with various PVP by in situ 
polymerization in an aqueous medium. With 
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increasing the content of PVP in composite 
films, the tensile strength declined, while its 
elongation at break increased, as well as water 
absorption [146].

Bankoti et al. fabricated waterborne polyure-
thane/anti-bacterial chitosan scaffolds with dif-
ferent ratios which self-organized to form 
macroporous hydrogels at room temperature on 

drying. The morphological analysis of chitosan 
and chitosan/WPU was performed by SEM and 
AFM microscopy as shown in Fig. 14.4. The fab-
ricated chitosan scaffold did not exhibit any 
porosity, while the C8P2 with composition 
(chitosan:WPU, 8:2) C7P3 (chitosan:WPU, 7:3) 
possessed highly interconnected porous network. 
It was found that the porosity and pore size 

Fig. 14.4 Morphological characterization of the Chitosan 
and Chitosan/WPU scaffolds (a) surface (b) lateral mor-
phologies observed by SEM and (c) AFM micrographs of 
the four different compositions (according to composition 

by ratio of blending Chn:WPU, Chn 10:0/C8P2 8:2, C7P3 
7:3, C6P4 6:4). (Adapted with permission from Bankoti 
et al. [6]. Copyright (2017) Elsevier)
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increased with increasing WPU dispersion con-
tent in compositions. The interconnected porous 
structure would allow an exudation evaporation 
and gas exchange which is essential for wound 
care.

In Fig.  14.5, H&E staining reveals that both 
control and C7P3 showing higher cellular infil-
tration and neovascularization was more occurred 
in wounds covered with C7P3 comparing to con-
trol. This result in C9P3 was caused by its struc-
ture with interconnected pore. Also, this staining 
at 14  day after wounding proved that re- 
epithelialization was more taken place in wounds 
covered by C7P3. The histological study showed 
faster wound healing using C7P3 as compared 
with control in terms of increased closure rate, 
more collagen synthesis, and higher re- 
epithelialization. Therefore, it was concluded the 
prepared chitosan/WPU hydrogel scaffolds was 
promising dressings for full-thick ness wound 
regeneration [6].

As above, these many positive results support 
the potential of WPU-based scaffolds to be used 
for an artificial skin graft.

14.4.4  Antibacterial Materials

Microbial contamination on the surface of mate-
rials results in not only the formation of multi 
resistant bacterial strains, pathogenic infections 

but also materials damage. The hazards men-
tioned above have posed a health threat [114, 
153], packaging industry of food [3, 150, 151], 
biosensors, water purification system [150, 151], 
etc. Common strategies are used for embedding 
antibiotics [108], triclosan [123]. Antimicrobial 
products have drawn a great attention from indus-
trial area. Many researchers have been performed 
for developing of alternative antibacterial thera-
peutics such as quaternary ammonium salts 
(QAS) [75], Ag [107], antimicrobial peptides 
[33], and guanidine polymers [102] destroying 
bacteria membrane or escaping intracellular 
components from bacterial cells. However, it has 
a critical issue with masking by biomolecules 
film or residues of cells resulting in interrupting 
further bacterial interactions as well as causing 
side effects [13]. Therefore the development of 
waterborne antibacterial materials embedding 
antibiotics via simple fabrication methods is a 
crucial strategy to combat microbial contamina-
tion of materials [82]. Nowadays, antibacterial 
and antifouling materials have focused on surface 
modification in regard to waterborne polyure-
thane as an immobilizing surface of materials 
owing to mechanical and physical properties as 
well as low cost since 2009 [22–25]. In addition, 
waterborne polyurethanes (WPU) have attracted 
attention because of possibility of tailoring their 
properties altering the composition, a widespread 
applications, non-toxicity, non-flammability, and 

Fig. 14.5 Images of Masson’s Trichrome and H&E 
stained histological sections of day 7 and day 14 after ini-
tial wounding; yellow arrow represents wound area and 

yellow inverted triangles represent healing wound edges. 
(Adapted with permission from Bankoti et  al. [6]. 
Copyright (2017) Elsevier)
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environment-friendly approaches in comparison 
with solvent-borne polyurethane. [18, 27] Zhang 
et  al. also developed WPU materials with good 
antibacterial activity using IPDI, PTMG, PEG, 
L-lysine and a novel GQAS diamine EG12 by a 
facile polymerization strategy without any 
organic agent [153]. Hendessi et  al. developed 
WPU nanocomposite films incorporating carva-
crol loaded HNTs as antibacterial nanofillers 
resulting in sustained releasing of natural anti-
bacterial agents. The nanocomposites demon-
strated growth inhibition and killing bacterial 
activity and also, they offered surfaces with 
strong potential for preventing bacterial coloni-
zation [46]. Anionic WPU/Ag nanocomposites 
prepared by Wattanodorn [132] displayed sus-
tained silver ion release over 21 days, causing in 
excellent antibacterial activities as well as 
enhancement of tensile strength and Young’s 
modulus.

Even if the WPU composites above mentioned 
exhibited a dramatically enhancement of antibac-
terial activities, the use of biocides may introduce 
adverse effects including cytotoxicity, inflamma-
tory responses, and hypersensibility. A use of 
lysozyme, proteases, and glucosidases has been 
proposed as an alternative to bond covalently 
enzymes on polymer material surfaces [84, 85, 
122], however the process of covalent bonding, 
unfortunately occurred in organic conditions, 
leads to denature a part of enzymes. WPU have 
been considered as green materials with highly 
tunable properties. Moreover, it has good com-
patibility to embed enzyme [84, 85]. Wu et  al. 
reported that waterborne cationic polyurethane 
(WPU) nanoparticles (NPs) exhibit excellent 
antibacterial activity against Escherichia coli (E. 
coli) and Staphylococcus aureus (S. aureus). The 
number of colonies formed in all other groups 
reduced comparing with initial values. The anti-
bacterial ratio of WPU NPs has reached 100% 
during a contact time of 3 h. For also the fabri-
cated WPU films, it reached 100% against both 
E. coli and S. aureus after a contact time of 24 h. 
Zhang et  al. successfully fabricated crosslinked 
WPUs containing quaternary ammonium salts 
with long-term stability, excellent antibacterial 
activity and biocompatibility by the crosslinking 

of poly(ethylene glycol) (PEG), polyoxytetra-
methylene glycol (PTMG), isophorone diisocya-
nate (IPDI), L-lysine, and its derivative diamine 
consisting of gemini QAS (GQAS) with ethylene 
glycol diglycidyl ether (EGDE) through simple 
method as shown in Fig.  14.6. The fabricated 
WPU films are consisted of a gemini quaternary 
ammonium salt (GQAS) antibacterial upper layer 
and an antifouling PEG sublayer, with largely 
improved stability by crosslinking. The films dis-
play recyclable contact-active bactericidal activ-
ity. Also, the crosslinked WPUs are potentially 
biocompatible both in vitro and in vivo without 
toxicity on surrounding tissues. Accordingly, the 
crosslinked waterborne polyurethane systems 
have potential of implants and medical devices to 
combat microbial infections [154].

Chinese government has established more 
stringent drinking water criterion based on the 
standard of drinking water quality (GB5749- 2006) 
involving the concentration of ammonia nitrogen 
below less than 0.5  mg/L. [23]. In water treat-
ment area, an efficient plan for dealing with 
removal of ammonia nitrogen from micro- 
polluted water has become a matter of grave con-
cern. In comparison to the conventional approach 
of growing nitrifying bacteria for biological 
ammonia nitrogen removal processes, immobili-
zation of nitrifying bacteria can be more effective 
in retaining biomasses for nitrification process 
even in very short hydraulic retention times 
(HRT) and low ammonia concentration environ-
ment in an up-flow inner circulation reactor with 
10% pellets stuffing ratio in volume.

Wijffel and Tramper showed that nitrifying 
bacteria show various nitrification characteristics 
depending on different ammonia concentrations. 
[133] Studies related to the effect of nitrification 
on environmental factors at low ammonia con-
centrations have been hardly ever reported, espe-
cially in cells immobilized. Recently, WPU was 
employed as a novel supporting material with 
specific mechanical and chemical properties for 
the entrapment and immobilization of single 
nitrifying or denitrifying bacteria strains for 
wastewater treatment [24]. Dong et al. reported 
that WPU immobilized nitrifying bacteria dis-
played efficient removal of ammonia nitrogen 
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from wastewater with stability for long-term 
period, thereby being a promising water treat-
ment approach in long duration. These WPU 
materials have great potential for antibacterial 
applications.

14.5  WPU Nanocomposites 
and Curing

Since the physical properties of WPU are lower 
than that of general PU, nanocomposites or cur-
ing processes are used for industrial applications. 
Most preferred coating material are biobased 
WPU and its nanocomposites as high performing 
environmentally benign systems with good abra-
sion resistance, impact resistance, flexibility 

hardness, gloss, reduced flammability, chemical 
resistance, durability, high adhesive strength, low 
viscosity, easy cleaning and weather-ability, in 
addition to zero or low emission of VOCs. Further 
an in situ fabricated waterborne nanocomposites 
exhibited better performance than the pristine 
WPU due to the strong interactions between the 
PU matrix and the interactional functional groups 
of the nanoparticles [152].

14.5.1  Nanocomposites

WPU/Ag nanocomposites films were prepared 
through mixing aqueous solution of AgNO3 and 
WPU reduced by NaBH4. The particle size of Ag 
is dependent on the concentration of AgNO3. 

Fig. 14.6 Schematic structure of PTMGPU and the preparation of CPTMGPU films. (Adapted with permission from 
Zhang et al. [154]. Copyright (2017) American Chemical Society)
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Higher AgNO3 concentration results in larger 
particle [136]. Chou et  al. produced WPU/Ag 
nanocomposites by mixing the waterborne PU 
with the nanoparticle suspension, casting and 
drying at 60 °C [15]. All these nanocomposites 
exhibited good antibacterial properties (Scheme 
14.6).

Satyabrat Gogoi et  al. synthesized a carbon 
dot/hydroxy apatite nanohybrid. This nanohybrid 
was successfully fabricated as a bio-based water-
borne multi-branched polyurethane system using 
in-situ technology. The evaluation of mechanical 
and biological properties showed excellent bene-
fits over the properties of the hydroxyapatite/
polyurethane system. The results can be used as 
bone substitutes [38].

WPU nanocomposites with ZnO, TiO2, Fe2O3, 
SiO2, clay, cellulose nanocrystals(CNc), silk, 
polyhedral oligomeric silsesquioxane (POSS) 
[89], functionalized carbon nanotube(CNT) etc. 
Hsu-Chiang Kuan et  al. successfully prepared 
nanocomposite consists of multiwall carbon 
nanotube (CNT)/waterborne polyurethane 
(WPU) nanocomposite for increasing the physi-
cal properties of nanocomposite due to covalent 
bonding system between modified CNT and 
WPU [71].

Many researchers also have been reported in 
the literature about cellulose nanocrystal/WPU 

nanocomposite, which exhibits typical behavior 
of composites reinforced by agents with a high 
ratio and good adhesion. Although the ductility 
of the final nanocomposites was slightly reduced, 
the Young’s modulus and strength were signifi-
cantly improved [8, 101]. Arantzazu Santamari 
et al. observed, the polyurethane microstructure 
was altered by varying the NCO/OH ratio. At low 
NCO/OH ratio, soft ordered domains were 
observed, whereas at higher NCO/OH ratio, hard 
ordered domains were obtained. These PU micro-
structures act as crystal growth inhibitors or 
nucleating agents to induce other behaviors of the 
CNC reinforcement to control the properties of 
the final material [111] (Scheme 14.7).

Silk fibroin (SF) is an attractive material well 
known for its structural, biological and hemody-
namic properties. WPU/SF is a promising scaf-
fold material for tissue engineering applications. 
Significant strengthening and toughening can be 
achieved by introducing SF powder into the WPU 
formulations [120].

Nanocomposites with ZnO and TiO2 could be 
used protecting coating materials. Coatings con-
taining ZnO and TiO2 microparticles have the 
low surface tension, which improve coating pen-
etration into matrix and reduce photodegrada-
tion. Therefore, they intended to be used coating 
materials [104, 110]. Such nanocomposites with 

Scheme 14.6 Thermosetting in situ carbon dot/hydroxy apatite/WPU nanocomposite. (Adapted with permission from 
Gogoi et al. [38]. Copyright (2016) Royal Society of Chemistry)
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metal oxide such as TiO2, ZnO, Al2O3, SiO2, etc.) 
afford antibacterial hygienic coating and thus 
find applications in marine coatings. A PUD/silica 
nanocomposite obtained by in situ formation of 
SiO2 nanoparticles through hydrolysis and con-
densation reactions of tetraethoxysilane(TEOS) 
with or without methyltriethoxysilane(MTES) in 
PUD exhibited good abrasion resistance and 
could be used as coatings for fabric, leather, and 
paper [40] (Scheme 14.8).

PEDOT/PSS particles also are used as com-
posites with WPU solution. Highly conductive 
and stretchable polymer films were prepared by 
blending a conductive polymer, poly 
(3,4- ethylenedioxythiophene), polystyrenesulfo-
nate (PEDOT:PSS), with highly stretchable 
waterborne polyurethane (WPU). The two poly-
mers have good miscibility at a wide range of 
blending ratios. This method provides a facile 
method to develop highly stretchable conductive 
polymer films [79]. Rui Zhou et  al. suggested 
Stretchable or wearable electric heaters devel-
oped by using composites of intrinsically con-
ductive poly (3,4-ethylenedioxythiophene):poly 
(styrene sulfonic acid) (PEDOT:PSS), elasto-
meric waterborne polyurethane (WPU) and 
reduced graphene oxide (rGO) for arthritis, stiff 

muscles, joint injuries, and injuries to the deep 
tissue of skin [157]. The mechanical properties of 
WPU/nanocomposites tested by several authors 
are shown in Table 14.3.

14.5.2  Curing

In recent days, the importance application on bio-
material of WPU is coating process due to zero or 
low VOC content, water resistance, low tempera-
ture flexibility, pH stability, excellent weathering 
resistance, superior solvent resistance, and desir-
able chemical and mechanical properties. Among 
many processing methods to curing, UV-cured 
WPU coating is preferable due to their environ-
mentally friendly nature, fast curing, and low 
energy requirements [4, 140].

Ultraviolet (UV) curable WPU coating was 
obtained from HEMA-capped oligomer, butyl 
acrylate (BA) and multifunctional acrylates 
(TPGDA) as reactive diluents, and Darocur 1173 
as photoinitiatorby Jicheng Xu et al. Ultraviolet 
(UV) cured WPUA films prepared from HEMA- 
capped oligomer, butyl acrylate (BA), and multi-
functional acrylates (TPGDA) as reactive diluents 
and with Darocur 1173 as photoinitiator, showed 
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good mechanical and thermal properties with 
good microstructures, which was used to protect 
iron materials of iron cultural relics.

Waterborne UV-curable polyurethane disper-
sion was also obtained by a phase-inversion 
emulsification technique using water-soluble 
poly(ethylene glycol) monomethyl ether methac-
rylate surface-modified silica. DMA analysis 
revealed the formation of strong covalent interac-
tions between the WUPU chain and modified 
aqueous colloidal silica. The mechanical proper-
ties of the WUPU/silica hybrid films displayed 
higher storage modulus as modified aqueous 
colloidal silica content increased to 10 wt%. The 

resulting high-transparency nanocomposite films 
are promising materials for high-performance 
water-based UV-curable coatings [150, 151].

14.6  Conclusions and Future 
Perspectives

Waterborne polyurethanes (WPUs) are a widely 
utilized in versatile areas of materials, including 
coatings, adhesives, sealants, elastomers [29, 36, 
59, 69] and in addition, as scaffold materials 
for tissue regeneration as well as delivering 
vehicles in drug delivery system [56]. Although 
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 polyurethane can be divided into 2 types accord-
ing to the dispersions, solvent-borne and water-
borne, the waterborne polyurethane, namely 
dispersed in water condition, has been concerned 
with their applications owing to environment-
friendly fabrication approach, higher durability, 
and preferable tailoring capability. It is mightily 
important to understand behaviors in rheological 
[7, 43, 44] and mechanical properties [66–68] of 
WPU for modulating its flow during employ-
ments in not only coating to fibers, sealants, siz-
ing of glass fiber, but also tailoring mechanical 
properties of WPU products [47]. WPU compos-
ites have been rigorously conducted in both aca-
demia and industry, because of its simplicity and 
efficiency in developing novel materials with a 
goal of reinforcement using microscale or 
nanoscale fillers.

In this chapter we have introduced to water-
borne polyurethane mechanical, chemical, and 
biological properties and reviewed their applica-
tions in biomedical areas. Recently, WPU elasto-
mers have been widely regarded as one of popular 
biomaterials, owing to their excellent mechanical 
properties, especially tensile strength and elastic-
ity, higher durability, capacity of tailoring capa-
bility, and blood and tissue compatibility. As 
reviewed in this chapter, the properties mentioned 
above are partially determined by the reagents 
selected for synthesis from the large range of 
possible precursors.

These properties can be adjusted using appro-
priate selection of components (macroglycol, 
diisocyanate, and chain extender), in particular 
structure and composition, optimization of 
polymerization conditions, post-synthesis 
modification.

The mechanical properties of WPU are influ-
enced by the fabrication methods. Almost these 
factors attribute to the performance of PUs in 
biomedical applications. Also, additives, condi-
tions of processing can alter the functions of bio-
materials and understanding about this correlation 
can help to comprehend the conversion from a 
biomaterial to a biomedical device. This correla-
tion is useful to design materials for medical 
devices, especially to overcome the obstacles of 
thrombosis on the surface, infection, and calcifi-
cation of engineered WPU materials.

Eventually, a biomaterial in biomedical appli-
cations is the key in the function of medical 
devices, and is a significant constituent of regen-
erative medicine and surgery. Therefore, the 
advance of developed biomaterials can be 
depended on progress in the biological science, 
engineering, and medical science. In spite of the 
limitations of using synthetic materials for bio-
medical applications, researches for using PUs 
and WPUs in particular have persistently 
 investigated. Courtesy of its various chemistries 
finally causing tailored mechanical properties 
engineered by researchers, continued in the line 

Table 14.3 Classification of mechanical properties of WPU nanocomposites

Nanocomposites material
Young’s modulus 
(MPa)

Tensile strength 
(MPa)

Strain at break 
(%) References

PEDOT:PSS 18.3 ± 0.7 5.3 860 [157]
[79]

PEDOT:PSS/graphene 
oxide(1 wt%)

18.2 ± 0.2 12.5 530 [157]

Silk fibroin 0.3–3.91 0.56–8.94 1067–2480 [120]
Multiwall carbon 
nanotube(2.5 phr)

110 ± 10 12 ± 1 – [71]

Clay 1.7–6.9 15.0–33.6 517–794 [64], 
[65]

Cellulose nanocrystals 80–160 18–27 450–780 [111]
[8]

Hydroxyapatite 30.87 17.47 ± 0.67 205 ± 3 [38]
Carbon dot decorated 
hydroxyapatite

38.26 20.43 ± 0.35 221 ± 2 [38]

Silver 40–130 15–33 400 [132]
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of considering as biomaterials. Since the bioma-
terial is a rising answer for regenerative medi-
cine, WPUs with an eco-friendly fabrication 
method will be employed in new ways as part of 
the therapeutic strategy.

Besides, the WPU advanced applications can 
be extended to special attributes like shape mem-
ory, self-healing, self-cleaning composites with 
biodegradability and biocompatibility, etc. 
Especially, applications of WPU nanocomposites 
are unlimited due to the extraordinary perfor-
mance of nanomaterials. However the changes in 
the properties of such nanocomposites by various 
nanomaterials at different dose levels are not con-
sistent and particularly the mechanism behind 
these phenomena are still unclear.
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Abstract

In order to develop and commercialize for the 
regenerative medicinal products, smart bioma-
terials with biocompatibility must be needed. 
In this chapter, we introduce collagen and hyal-
uronic acid (HA) as extracellular matrix as well 
as deal with the molecular mechanism as 

microenvironment, mechanistic effects, and 
gene expression. Application of collagen and 
HA have been reviewed in the area of orthope-
dics, orthopedics, ophthalmology, dermatology 
and plastic surgery. Finally, the ongoing and 
commercial products of collagen and HA for 
regenerative medicine have been introduced.

Keywords
Collagen · Hyaluronic acid · Biomaterial

15.1  Biomaterials Research 
for Regenerative Medicine

15.1.1  Hyaluronic Acid (HA) 
and Collagen as Extracellular 
Matrix (ECM)

To mammalian, such as human, they are com-
posed of different organs, tissues, and cells. To 
maintain the cell activity and function, the extra-
cellular matrix (ECM) is important. Hyaluronan, 
which is also called hyaluronic acid (HA) or hyal-
uronate, is a polysaccharide found in most tissues 
and body fluids of vertebrates [25]. It is a major 
component of ECM of the skin, joints, and many 
other tissues and organs [70]. Besides  hyaluronan, 
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another important ECM is called collagen, which 
is a large group of families. In human, there are 
now 28 known collagens, for each type plays an 
important role to different tissues.

15.1.2  The HA and Collagen Cellular 
Receptors

In mammalians, the situation of the tissues is 
dependent on its cells. However, to cells, how 
would they execute some specific functions? The 
answer is about the signaling transduction. In com-
mon signaling transductions, there are many mole-
cules that can active the signaling which is called 
‘ligand’, such as some growth factors (GF). Besides 
GF, hyaluronan and collagen can also be the 
ligands, to active the signaling to active some func-
tions. For hyaluronan, there are eight known recep-
tors: CD44, RHAMM, ICAM- 1, LYVE-1, 
Stablin-1, HARE, TLR-4 and layilin. Despite there 
are eight receptors, the most common used recep-
tors for hyaluronan are CD44 and RHAMM, as 
these two receptors whose biological functions in 
human and tumor cells have been investigated com-
prehensively [63]. However, to collagens, there are 
at least eight human collagen receptors belonging 
to four different classes: integrins, discoidin domain 
receptors, immunoglobulin- like receptors and man-
nose receptors [52]. To humans, integrins function 
as the major cell receptor for collagen.

15.1.2.1  The Influence of HA 
and Collagen to the Cell 
Cytoskeleton 
and the Organelles

When a receptor binds to a ligand, a signaling 
transduction will begin and influence the down-
stream cellular function. In some researches, it 
had shown that the activation of some signaling 
by HA and collagens will cause the change of the 
cell behavior or cell’s organelles. For examples, 
in hyaluronan, it had been shown that in tumor 
cells, the HA-CD44–ankyrin interaction will 
causes the cytoskeleton activation and results in 
cell adhesion, proliferation and migration, and 
thus, cause the tumor cell progression [9]. 
Besides, another research had shown that when 
HA binding to CD44v3 isoform, it will stimulate 

Tiam1-specific GDP/GTP exchange for Rho-like 
GTPases such as Rac1 and thus promotes 
cytoskeleton- mediated tumor cell migration [10].

By contrast, there are also some research 
studying the activation by collagen which cause 
the changing of cell behavior. A research had 
shown that the type VIII collagen active the sig-
naling through beta-1 integrin receptors to sup-
press RhoA—a small GTPase protein in the Rho 
family, to make optimal configuration of the 
cytoskeleton and make the stimulation of MMP- 
2- dependent cell migration [2].

15.1.2.2  The HA and Collagen 
to the Intracellular Signaling 
Pathways

Besides the cytoskeleton and the cell behavior, 
the HA and collagen will also be the ligand and 
activate the downstream signaling transduction. 
Now, there have had lots of researches that study-
ing the signaling transduction. In the results, for 
HA, the researchers have found that hyaluronan 
will activate the downstream Ras/Raf/MEK/ERK 
and Ras/PI3K/PTEN/Akt/mTOR signaling path-
ways [87]. Besides, HA will also activate the 
NF-κB pathway, as recently NF-κB activation 
has been shown to have oncogenic effects impor-
tant in the control of apoptosis, cell cycle, differ-
entiation and cell migration. By contrast, the 
collagen will also activate the FAK/PI3K/Akt 
pathway through its integrin receptor [95].

15.1.3  Mechanism Effect 
on Physiological Functions

When the cells are activated by HA or collagen, 
there are some physiological functions be acti-
vated, of course. In a research, it has been shown 
that HA suppressed the UVB-induced decrease in 
cell viability and had significant protective effects 
for HaCaT cells against UVB irradiation [95]. 
Moreover, another research has shown that in the 
heart HA is involved in physiological functions, 
such as cardiac development during embryogen-
esis, and in pathological conditions including ath-
erosclerosis and myocardial infarction [8]. For 
collagen, in 2001, a research shows that collagen 
XVIII is expressed in the epithelium of the 
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 developing mouse lung and kidney, and antibody 
treatment directed against it can interfere with the 
development of lung epithelial tips or ureter bud 
tissue cultured within lung mesenchyme ex vivo 
[53]. Besides, in cardiac tissue, another research 
shows that collagen XVIII is localized not only in 
various basement membranes but is also highly 
expressed throughout the connective tissue core 
of the endocardial cushions and forming AV valve 
leaflets [13]. These results show that both HA and 
collagen are important for the cells to change or 
maintain some physiological functions.

15.1.4  Gene Expression

In previous, we have talked about that HA and 
collagen will activate downstream signaling, as 
this will influence the gene expression of the cells. 
Take a research for example, this paper shows that 
HA induces an interaction between CD44 and 
PKCδ and between RHAMM and ERK, as the 
activation of PKCδ leads to the induction of 
RHAMM via AP-1. Meanwhile, PKCδ is also 

necessary for the activation of ERK.  When HA 
transactivates TGFβRI via PKCδ and ERK, the 
activation of TGFβRI by HA is associated with 
degradation of HDAC3, which results from tyro-
sine nitration induced by rac1. The decreased 
HDAC3 expression is responsible for the induc-
tion of PAI-1 and MMP-2. In consequence, the 
upregulated of PAI-1 and MMP-2 will promote 
angiogenesis (Fig. 15.1) [68]. The research gives 
a prove that HA-induced gene expression changes 
are important for angiogenesis. In addition, HA 
treatment downregulated collagen I expression 
and upregulated several genes relating to chon-
drocyte phenotype [59], including collagen II, 
collagen XI and chondroadherin [76].

15.1.5  Collagen and Hyaluronan 
Effects on Nuclear Cluster 
Genes

In the activation of the downstream signal by HA 
and collagen, the signal would also transduct to 
the nucleus. Interaction of HA with CD44 and 

Fig. 15.1 The 
mechanism of the HA 
activation to the 
downstream PKCδ/
ERK/PAI-1 and MMP-2, 
which promote the 
angiogenesis
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RHAMM induces CD44 receptor clustering and 
intracellular RHAMM-regulated MAPK activa-
tion, which results in ERK phosphorylation and 
downstream activation of the transcription effec-
tors AP-1 and NF-κB.  Active transcription of 
AP-1 and NF-κB target genes ultimately result in 
the induction of directed cell migration and 
release of inflammatory cytokines [83]. For col-
lagen, type I collagen induces EMT through inte-
grin or DDR1/2 signaling. Both receptors activate 
NF-κB and other transcription factors (TFs) that 
promote expression of SNAI1/2 and LEF1. Other 
pathways are activated by type I collagen through 
integrins and DDRs, which promote the stabiliza-
tion and activity of the EMT-associated transcrip-
tion factors Snail1/2 and LEF-1. DDR1 is also 
known to form complexes with E-cadherin at the 
cell surface, which are disrupted upon binding to 
type I collagen (Fig. 15.2) [31].

15.2  Collagen Research 
in Regenerative Medicine

15.2.1  Collagen in Human 
Physiology

Collagen is a structurally highly conservative 
biopolymer that is the main component of mam-
malian connective tissue ECM, consisted of one- 
third of protein amount [15]. One collagen 
protein is composed of three peptide chains, at 
least one of these three contained the repeated 
amino acid sequence, for example, Gly-X-Y 
formed Right-handed triple helix in type I colla-
gen [86]. To be defined as a collagen, the protein 
is characterized by the Gly-X-Y peptide, and is 
contained at least one collagenous domain (COL 
domain) and one non-collagenous domain (NC 
domain) [70]). Collagen type is determined by 

Fig. 15.2 The mechanism of the collagen activation to the downstream NFκB signaling
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the number and structure of COL and NC 
domains. Within the vertebrate genome, there 
existed at least 45 genes encoding 28 collagen 
types. The collagen proteins were grouped 
according to their suprastructure into the catego-
ries summarized in Fig. 15.3 [62].

Type I collagen is the most abundant colla-
gen protein in vertebrate connective tissues such 
as tendon, ligament, bone, skin, and cornea. It is 
composed of two α1(I) and one α2(I) peptide 
chain, each contained more that 1000 amino 
acid residues, all together formed three spiral 
short rod-shaped molecule of 1.5 nm diameter 
and 300  nm length. Collagen functioned as a 
frame structure for cells and other ECM compo-
nents. The collagen α1(I) CB3 peptide 
(GFOGER) region is also easy for platelet 
attachment via α2β1 integrin interaction, hence 

in case of blood cell wall injury and expose of 
collagen to blood flow, platelets immediately 
attached and activated by collagen DGEA tetra-
peptide, resulted in fast formation of coagula-
tion aggregate and stop of bleeding [22, 36] 
(Fig. 15.4).

15.2.2  Collagen Biomaterial as a Tool 
in Tissue Engineering

15.2.2.1  Application in Hard Tissue 
Regeneration

In Orthopedics
Previous studies were focused on the potential of 
3-D structure of collagen as a drug delivery system, 
regarding its advantages in high biocompatibility, 

Collagen family

Fibril-forming collagens: Type I,II,III,V,XI,XXIV,XXVII.

Type IX,XII,XIV.

Type XVI,XIX,XXI,XXII.

FACTTacollagens:

FACTT-like collagens:

Network-forming
collagens:

Basement
membrane:

Beaded
filament-
forming:

Anchoring
fibrils:

Hexagonal
networks:

Transmembrane
collagens:

Multiplexin
collagens:

Other molecules
with collagenous
domain:

Type XXVI,XXVIII,
Acetylcholinesterase,
adiponectin, Clq,
collectins,surfactant
proteins, others.

Type XIII,XVII,
XXIII,XXV,
Gliomedins,
ectodysplasin

Type VIII,X.

Type VII.

Type VI.

Type IV.

Type XV,XVIII.

Fig. 15.3 General classifications of collage types
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degradability, and cell attachment, promotion of 
angiogenesis. Collagen type I can exhibit all 
these characteristics, be capable to bind integrin 
through RGD domain, and activate/enhance cell 
migration, proliferation, and cell attachment [4, 
35, 38, 71, 89]. Type I collagen scaffold is appli-
cable for bone tissue repair after BMP or BSP 
coating [60, 91]. In 2015, Jo laboratory treated 
calvarial defect using heparinized collagen mem-
brane; first BMP7 was combined/bound with col-
lagen membrane and covered the bone defect, 
followed by BMP2 treatment to enhance bone 
regeneration [42]. During 2014, Missana labora-
tory discovered that synthesized human rhPTH 
can effectively increase the bone quality of osteo-
porosis patient, and combined treatment of 
rhPTH and atelocollagen can enhance healing 
and regeneration of skull bone defect [64].

In Dentistry
Human teeth are structed as a hard tissue fully 
covered the soft pulp tissue, recent studies in 
regenerative medicine discovered that chitosan 
can be applied in the dental field [96, 97]; how-
ever, the chitosan may induce early inflammation 
reaction [47]. Nagai group’s research found that 
degraded atelocollagen can effectively affect 3T3 
cell proliferation, and human periodontal liga-
ment fibroblasts can proliferative excellent and 
highly differentiate when cultured in collagen gel 
[65]. Based on these knowledges/results, 
Kawase’s group cultured human periosteal sheets 
in a porous poly(L-lactic acid) (pPLLA) mem-
brane scaffold to generate a 3D skeleton and 
applied as a grafting biomaterial for stimulation 
of in vitro mineralization and bone formulation 
of osteogenic induced cells [45]. The polypeptide 

Fig. 15.4 The structure of BIOBRANE. Silicone outer 
membrane with Nylon mesh that coated collagen and pep-
tide. This 3-D structure allow epithelial migration and 

fibrin collagen adherence. (http://www.smith-nephew.com/
belgique/produits-old/biobrane-/biobrane--technology/)
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chain of collagen can also promote post-transla-
tional modification in osteoblast [98]. During 
2016, Salamanca laboratory  discovered that the 
PTFE membrane traditionally utilized in surgery 
is not bioresorbable, hence required additional 
second surgery for removal of this membrane, to 
solve this issue, they developed a bioresorbable 
membrane, for inducing tissue regeneration. A 
freeze-dried collagen membrane placed at the 
boundary of alveolus and bone, not only maintain 
a normal physiological space, but also achieve 
regeneration of alveolus bone, reduction of alve-
olar atrophy and promotion of allograft bone for-
mation induction [77].

15.2.2.2  Application in Soft Tissue 
Regeneration

In Ophthalmology
Recent researches established that biomaterials 
consisted of type I collagen exhibited a novel 
self-organizing behavior, hence widely utilized 
as a construct in tissue engineering [33]. During 
2014, Chae’s group used chondroitin sulfate-
polyethylene glycol (CS-PEG) adhesive and col-
lagen-based membrane (collagen vitrigel, 
abbreviated CV) to treat penetrating ocular inju-
ries, which are applicable to retired militants 
injured on the battlefields. The vancomycin 
released by CS-PEG and the CV resembling the 
corneal shape, combined together, effectively 
promote the healing of the ocular injuries at cor-
neal and corneoscleral regions. CS-PEG adhesive 
alone is sufficient for healing of 5-mm to 6-mm 
length wounds in a porcine cadaver eye model. 
However, wounds of larger size and similar to 
those resulted from battlefield injuries required 
the presence of both CS-PEG and CV for effi-
cient treatment [14].

In Dermatology
Due to the incessant increase of chronic or com-
plicated wound prevalences, autologous skin 
graft or novel material wound dressing only pro-
vide modest wound healing function and exterior 
improvement [72]. Wehrhan’s laboratory studied 
the effect of porcine type I/III collagen mem-
brane on blood vessel vascularization and  

epithelialization, and found no significant differ-
ent in comparison to treatment by split-thickness 
skin graft, thus concluded that collagen mem-
brane is a suitable substitute of full-thickness 
dermal dressing in the future application, caused 
by its advantages in positively enhanced vascu-
larization and proliferation of epithelial cells at 
wound site treated [92]. In 2016, Petersen’s group 
developed a novel collagen-gelatin fleece for 
treatment of deep skin wound on minipig model; 
comparison with the commercial Matriderm® 
dressing concluded that, multiple treatment using 
collagen- gelatin fleece of 150  g/m2 thickness 
achieved the best results.

The chronic diabetic wound is a major prob-
lem in cases of diabetic patients post-surgery 
and/or post-trauma; it often leads to severe com-
plications yet no effective treatment method. The 
causes of difficult skin wound healing are vari-
ous, ranging from poor angiogenesis to low bio-
activity of growth factors and/or cytokines. 
Skin-derived precursors (SKPs) have been dem-
onstrated to successfully differentiate into vascu-
lar cell or neural cell, both playing an important 
role during skin healing process, but the previous 
problem of utilization of skin progenitor cells for 
cell therapy was due to its low cell survival rate. 
Ke’s group co-transplanted a collagen sponge 
with the SKPs and found that diabetic wound 
healing was accelerated and local capillary regen-
eration was accelerated within 14 days, and this 
facilitation of wound healing was accredited to 
SKPs in  vivo transdifferentiation and paracrine 
signaling [46].

15.2.3  Drug Delivery 
and Nanomedicine

Starting in the year 1982, scientists started to 
study regarding how to make collagen into 
nanoparticle as a tool for drug delivery and drug 
release [32]. Natural products such as elastin, 
collagen, and hyaluronic acid, are developed for 
their potential as a drug carrier [44]. During the 
purification process, collagen may be degraded 
due to its fragile chemical structure, cross-linking 
is often applied to reducing this negative effect 
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and enhancing the mechanical stability. In 
exchange, chemical cross-linking agents, for 
example, formaldehyde or glutaraldehyde, usu-
ally comes with toxicity and therefore resulted in 
reduced biocompatibility [34].

To solve the problem of easy collagen nanopar-
ticle degradation without applying toxic chemical 
cross-linking agents, Pham’s group incorporated 
D-Glucose for stabilization of collagen nanopar-
ticles [50]. On the other hand, Grant’s laboratory 
cross-linked collagen using gold nanoparticles 
(AuNPs) and successfully strengthened the 
mechanical stability of collagen nanoparticles, 
rendered some resistance against collagen degra-
dation, and maintained natural molecular struc-
ture and biocompatibility [34]. Attempt using 
other metal such as silver also reduced antimicro-
bial activity and no cell toxicity; for instance, 
Cardoso’s groups stabilized collagen using silver 
in a 1:6 molar ratio and generated a silver nanopar-
ticles stabilized with type I collagen (AgNPcol) 
[11]. Also in 2014, Nagarajan’s laboratory gener-
ated collagen nanofibers by electrospray deposi-
tion of under ambient pressure and temperature 
[66]. Increase of solution conductivity can obtain 
solid nanoparticles, which exhibited promising 
potential as a drug carrier as demonstrated by the 
theophylline incorporation and controlled theoph-
ylline release by the cross-linking collagen mole-
cules, and this is applicable as a nasal stent or oral 
drug [66]. In 2014, Cheng’s group developed a 
collagen- nanoparticle fiber consisted of aligned 
collage, which regulates bioactivity of adipose-
derived stem cells (ADSCs) through controlled 
release of platelet-derived growth factor (PDGF) 
[19]. They found that the ADSCs not only signifi-
cantly proliferated along the aligned collagen 
fibrils but also induced toward tenogenic differen-
tiation [19].

Pastorino’s group had discovered that oriented 
collagen can promote cell proliferation and align-
ment, Langmuir-Blodgett technique allows the 
formation of a stable collagen film at the air- 
water interface; this collagen film is then disposi-
tioned by Langmuir-Schaefer technique and later 
served as a planar surface for 3T3 cell attachment 

and proliferation. Collagen film not only 
enhanced cell attachment, but also oriented cells 
cultured on it to follow a parallel orientation 
direction [69].

15.3  HA Research in Regenerative 
Medicine

15.3.1  HA in Human Physiology

Hyaluronan (HA) is a linear unbranched polysac-
charide macromolecule, consist of disaccharide 
repeats of glucuronic acid and N-acetyl glucos-
amine, largely present in vertebrate tissue ECM, 
especially found but no limit to synovial fluid, 
cartilage, and skin. HA biogenesis was carried 
out by hyaluronan synthase (HAS) enzymes at 
plasma membrane [84]. Depending on which 
hyaluronan synthase generated the HA molecule, 
the molecular weight could vary from 0.1 million 
to more than 2 million Daltons (Da). HA macro-
molecule binds water molecule in the ECM and 
serves as a structural support scaffold. HA is also 
characterized to be able to preserve activity of 
multiple growth factors and cytokines in the 
ECM. Though traditionally the main functions of 
HA are categorized as joint lubrication, tissue 
homeostasis, and as a scaffold for holding tissues 
together [20], HA also participates in regulation 
of multiple biological functions such as promo-
tion of cell proliferation and migration, inhibition 
of wound contraction and scar formation, and 
effecting angiogenesis and embryonic develop-
ing phenotype, embryonic development, lympho-
cyte migration, tissue regeneration, and cancer 
cells invasion and transfer/transformation [54, 
84, 85, 94].

15.3.2  HA Biomaterial as a Tool 
in Tissue Engineering

HA contributes significantly to cell proliferation 
and migration, yet it may also be involved in the 
progression of some malignant tumors.

L. L. H. Huang et al.
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15.3.3  Limitations and Managements 
of Hyaluronan Scaffolds

Even with the advantages of hyaluronic acid as a 
scaffold material, implantation of HA-scaffolds 
induced some foreign reactions. HA-scaffold sur-
face may absorb various body proteins and 
induce the following ranges of responses and 
ultimately lead to denaturation. When random 
proteins and other cells stick to HA-scaffold 
through this absorption, resident cells near the 
HA-scaffold target site may release cytokines 
and other pre-inflammatory mediators; this 
induction of HA-scaffold inflammation cannot  
be cleared by microphage phagocytosis due to 
the large molecular size of HA [75]. Ultimately 
the cell scaffold-linked inflammation lead to  
activated hyaluronidases and MMPs causing  
degradation of the ECM.  Both HA-scaffold 
inflammation and ECM degradation events can 
cause physical and chemical changes to the 
HA-scaffold surface, which may be undesirable. 
The HA-scaffold-derived end products and cel-
lular bioactive molecular on resident/target cell/
tissue not only caused autocrine and paracrine 
effects, can also induce oxidative effect due to the 
increase in the free radical release. One resolu-
tion for solving this limitation is to treat the 
HA-scaffold biomaterial with bioactive agents, 
often hyaluronidase inhibitors, such as clinically 
accepted antioxidant N-acetyl cysteine (NAC) 
and glutathione [88]. The NAC treatment is 
advantageous in that it not only quenches the free 
radical but also protects HA-scaffold from 
inflammation and denaturation.

15.4  Biomaterials with Collagen 
and Hyaluronan 
for Regenerative Medicine

15.4.1  Collagen and Hyaluronan 
Biomaterials as a Tool 
in Tissue Engineering

Since 2003, Kuroyanagi laboratory conducted a 
series of experiments regarding wound dressing 
materials, exhibiting a double-layered spongy 

matrix consisted of one layer of hyaluronan and 
the other layer contained collagen and its derived 
peptides [48]. These two layers of the sponge 
covalently bonded to form a culture dermal sub-
stitute (CDS) and applied as a wound dressing. 
This material was assessed at the cellular level, 
followed by studies on animal models and even-
tually clinical studies on human patients. In 2003, 
Kuroyanagi et al. tested skin defect S-D rats and 
proved that autologous CDS can provide efficient 
healing, HA, and collagen incorporated in the 
double-layered sponge which provides a suitable 
environment for wound healing, enhanced granu-
lation tissue formation, and compensated for the 
insufficiency in cases applying to only a single 
layer of HA and collagen [48]. Even more, col-
lagen is slightly more expensive than HA, hence, 
this double layer of collagen and HA is cost-
down in comparison to double layer of collagen. 
Later in 2005, Kuroyanagi’s group discovered 
that fibroblasts in CDS produced/secreted vari-
ous bioactive factors, including cell growth fac-
tors and extracellular matrix components that are 
important for wound healing, this can improve 
wound condition, enabled the wound site to adapt 
to later skin autologous transplantation and short-
ened time duration for full-thickness skin wound 
healing. This clinical study was conducted on 
human patients (n = 3) [37]. In 2014, Kuroyanagi 
et al. discovered that incorporation of EGF (epi-
dermal growth factor) and vitamin C in CDS are 
potential for enhancing ex vivo/in vitro biogene-
sis of VEGF (vascular epithelial growth factor) 
and HGF (hepatocyte growth factor). Induced 
granulation tissue formation and promoted blood 
vessel biogenesis were  conducted in vivo using 
diabetes mellitus type 2 mice [49].

15.4.2  Collagen and HA in Drug 
Delivery and Nanomedicine

Collagen type I is the main organic component in 
the bone extracellular matrix, providing physical 
structure for glycosaminoglycans binding sites 
and enhanced cell adhesion through the varied 
amino acid sequence. GAGs included hyaluronic 
acid (HA) and chondroitin sulfate (CS). Hofbauer 
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[28] laboratory in 2012 launched a study regard-
ing the basic mechanism of how these GAGs 
regulate osteoclast, evaluating/assessing how 
high degree sulfation of HA and CS may be help-
ful for improvement of bone fracture and bone 
defect healing. Experimental model was based on 
human peripheral blood monocytic cells and 
osteoclast isolated from mice, Hofbauer’s group 
analyzed the effect of GAGs on osteoclast adhe-
sion, viability, differentiation, morphology, 
resorption, and proteomic regulation [78]. During 
2014, Hofbauer’s group published their results 
regarding sulfation of GAG enhanced osteoclast 
differentiation and inhibition of osteoblast [79]. 
Follow-up animal study was conducted in 2016, 
the research group proved that scaffolds coated 
with collagen/sHA3 effectively enhance bone 
mineralization and reduced the amount of demin-
eralized bone matrix, ultimately improve the bone 
fracture syndrome in diabetic patients, and is a 
very promising biochemical material for enhanc-
ing bone regeneration [73].

15.4.3  Limitations and Managements 
of Collagen and HA–Based 
Scaffolds

Decrease of collagen, elastin, and HA density 
resulted in dermis a trophy and skin aging, but 
local application of collagen cannot significantly 
improve skin quality, because relatively large 
molecular size of collagen (130–300 kDa) makes 
it unable to pass through the epidermis [27]. 
Collagen and HA are widely applied on wound 
dressing and scaffolds, even rare but still exists 
side effects [90]. For example, hyaluronidase and 
collagenase degraded the scaffold to produce side 
products which induced inflammation and 
affected wound healing process [29].

During 2017, Gokce’s group discovered by 
in  vivo experiments that collagen-laminin based 
dermal matrix impregnated with RSV loaded 
HA-DPPC microparticles exhibited excellent 
wound healing potential due to its antioxidant 
activity, and this is useful for application on treat-
ment of chronic diabetic wound. Impregnation of 
MP-RSV in DM had extended the collagenase deg-

radation time to 2  h, and RSV possess excellent 
anti-collagenase activity in addition to enhance-
ment of skin fibroblast proliferation. Gokce’s 
research indicated that addition of RSV is not only 
contributive to wound healing, the anti-collagenase 
activity is helpful to maintain matrix integrity [29].

15.5  Ongoing and Commercial 
Products for Regenerative 
Medicine

15.5.1  Collagen Products 
(Summarized in Table 15.1)

Collagen related therapeutic products are widely 
developed for clinical appplications, inclusing 
wound healing, osteochondral lesions, surgical 
hemostatic, and aesthetic surgery. Here we briefly 
described some examples in the following para-
graphs and listed in Table 15.1.

15.5.1.1  Collagen for Wound Healing
Most of the previous collagen product is derived 
from nature, such as bovine and pig. However, the 
use of collagen supplement in humans these days 
always raises safety issues. Recently, many com-
panies tend to develop and combine new material. 
These products usually provide the framework or 
microenvironment to accelerate wound healing. 
For example, Helicoll™ is a component of pure 
Type-I collagen to form an acellular skin that pro-
vides a framework. It promotes the regeneration 
of blood vessels and supports biologic cell migra-
tion due to the resorbable properties of Helicoll™. 
Besides, Helicoll™ also accelerates tissue remod-
eling significantly compared to other dressings 
and basically reduces post-treatment care require-
ments. INTEGRA™ Matrix is composed of colla-
gen-GAG matrix which is made of a 3-D porous 
matrix of cross- linking bovine tendon collagen 
and glycosaminoglycan. This tissue provides a 
scaffold for cellular invasion and capillary growth. 
BIOBRANE is created from a silicone film with a 
nylon fabric partially imbedded into the film 
which presents the sophisticated 3-D structure of 
tri-filament and collagen has been used chemi-
cally bound (Fig.  15.4). Blood/sera clot in the 
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Table 15.1 Collagen commercial products

Product name Type Compositions Indication Reference
Collagen in wound healing
BIOBRANE A thin layer A silicone membrane 

bonded to a nylon mesh 
to which peptides from 
a porcine dermal 
collagen source have 
been bonded to the 
nylon membrane

Superficial and 
partial-thickness 
wounds.

http://www.smith-
nephew.com/key-
products/
advanced-wound-
management/other-
wound-care-products/
biobrane/

COLLGEL® Gel Fish collagen and its 
peptides (FCP – fish 
collagen peptides) 
extracted from the skin 
of fish like silver carp, 
salmon and various 
marine fish.

Oral wounds http://collgel.
pl/o-produkcie/

Helicoll™ A layer Bovine high purity 
Type-I collagen (>97% 
pure) forming an 
acellular skin

Ulcers, Abrasions, 
full-thickness or 
partial-thickness 
wounds.

http://www.
woundsource.com/
product/helicoll

BICOL® Sponge Collagen Sponge Neurological 
procedures requiring 
prolonged retraction 
and exposure of the 
brain in surgery.

http://implant-line.ru/ru/
product/bioteck/
faktory-rosta-
osteoplantr-angiostad-
bioteck-biotek

PROMOGRAN™ A layer Sterile, freeze dried 
composite of 45% 
oxidized regenerated 
cellulose (ORC) and 
55% collagen

Ulcers, Abrasions, 
full-thickness or 
partial-thickness 
wounds.

http://www.acelity.com/
products/
promogran-dressing

OASIS® A thin layer Porcine small intestinal 
submucosa (SIS) and 
freeze-dried sponge 
prepared from bovine 
collagen and ORC. 
Does not contain 
proteoglycans or 
glycosaminoglycans 
(GAGs)

Wounds, ulcers, and 
Second-degree burns

http://www.
oasiswoundmatrix.com/
aboutowm

INTEGRA™ 
Matrix

A thin layer Collagen-GAG matrix 
made of a 3-D porous 
matrix of cross-linked 
bovine tendon collagen 
and glycosaminoglycan.

Partial and full 
thickness wounds, 
ulcers, second-degree 
burns

http://www.ilstraining.
com/imwd/imwd/
imwd_it_03.html

Collagen in osteochondral lesions
OSTEOPLANT® Gel Bone collagen and 

special growth factor, 
this is the type I 
collagen from antigen 
purified.

Bone repair or 
replacement particles 
for contacting the 
bone.

http://implant-line.ru/ru/
product/bioteck/
faktory-rosta-
osteoplantr-angiostad-
bioteck-biotek

Bio-gen® putty Cylinder of 
lyophilized 
paste

Mixture of cancellous 
bone granules and 
collagen extracted from 
the Achille’s tendon.

As osteoconductive 
materials to be used in 
bone regeneration 
surgery.

http://www.bioteck.
com/index.
php?option=com_conte
nt&view=article&id=66
&Itemid=205&lang=en

(continued)
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nylon matrix, thereby firmly adhering the dress-
ing to the wound until epithelialization occurs.

OASIS® uses porcine small intestinal submu-
cosa (SIS), freeze-dried sponge prepared from 
bovine collagen and oxidized regenerated cellu-
lose (ORC) as a framework to provide the opti-
mal environment to restore tissue structure and 
function. PROMOGRAN™ is a freeze-dried 
product and it is composed of 45% ORC and 
55% collagen. This product maintains a physio-
logically moist microenvironment at the wound 
surface and conducive to granulation tissue for-
mation, epithelization and rapid wound healing. 
BICOL® is a kind of collagen sponge, which also 
provides the moist microenvironment to protect 
the brain from excessive friction when using 
blade slides over the brain. Another gradient is 
rarely to be used, such as fish, it also has a lot of 
collagen. For example, COLLGEL® that is used 
to reduces the healing time of soft tissues mouth.

15.5.1.2  Collagen for Osteochondral 
Lesions

Most of this collagen product is designed to be 
gradually resorbed by the osteoclast and replaced 
by new bone formed through osteoblastic activ-

ity. OSTEOPLANT® is composed of bone colla-
gen and special growth factors that activate 
vascular endothelial growth factor and promote 
the angiogenesis. Bio-gen® is a variety of formu-
las (e.g., sponges, membranes or gels) for each 
surgical procedures needed. Bio-gen® putty is a 
mixture of cancellous bone granules and collagen 
extracted from the horse Achille’s tendon. The 
tissue which eliminates the antigenic component 
is reconstructed by osteoclasts and is remodeled 
by the patient’s bone. In this case, collagen stanch 
the blood to help better adhere the bone and 
accelerate regeneration processes.

15.5.1.3  Collagen in Surgery 
Hemostatic

When you are bleeding, your body processes com-
plicate procedures to stop bleeding by directly 
activate platelets that have a good effect on rapid 
hemostasis. There are several products which are 
especially used in surgery, such as ANTEMA® and 
Jason® fleece. ANTEMA® which is made from 
equine Achilles tendon and Jason® fleece acceler-
ate the thrombocytes which are cross-linked by 
fibrinogen to make white thrombus that initially 
stabilizes the wound. Moreover, Jason® fleece can 

Product name Type Compositions Indication Reference
Collagen in surgery hemostatic
ANTEMA® Tampon Class III medical device 

based on resorbable type 
I collagen extracted 
from equine Achilles 
tendon.

Used in acute and 
chronic ulcerative 
cutaneous lesions of a 
vascular, traumatic 
and as a hemostatic 
device in surgery.

http://www.opocrin.it/
medical-devices/
antemar/

Hemocollagene Sponge Native, non-denaturated, 
freeze-dried collagen of 
bovine origin.

Local hemostasis after 
dental surgical 
procedures.

http://www.septodont.
co.uk/sites/uk/
files/2016-08/
Hemocollagene%20
-%20Package%20insert.
pdf

Jason® fleece Tampon Porcine dermis-derived 
natural porous collagen.

A1rterial and diffuse 
seeping bleedings 
especially in situations 
in which the 
application of 
conventional 
hemorrhage agents are 
challenging and 
time-consuming.

https://botiss-dental.
com/products/
jason-fleece/

Table 15.1 (continued)
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also be used in diffusing seeping bleedings. 
Besides, hemocollagene usually is used in  local 
hemostasis after dental surgical procedures.

15.5.1.4  Collagen in Aesthetic 
Surgery

Recent years, collagen has been become more 
important in aesthetic and reconstructive surgery, 
especially in the face. It commonly injects der-
mal fillers with collagen to wrinkles result in res-
toration of dermal volume. However, it still have 
a lot of problem, such as allergic responses and 
high possibility of developing palpable textural 
change at the injected site. Zyderm® is extracted 
from cow skins and the bovine dermal collagen 
plus 0.3% lignocaine to form a dermal filler. It is 
used to treat pronounced scars, lines, and fur-
rows. Artecoll is composed 75% bovine collagen, 
and 25% microspheres of polymethylmethacry-
late (PMMA), respectively. PMMA has been 
used extensively in dental and orthopedic surgi-
cal settings, largely as a biocompatible cement 
[1, 74]. The ultimate goal in treating deep skin 
creases is to expand dermal layer volume and 
simultaneously replace dermal collagen [56]. In 
Artecoll, bovine collagen functions as a transient 

carrier of PMMA microspheres, and facilitates 
their deposition in tissue. The goal of depositing 
PMMA microspheres in tissue is to elicit a 
fibrotic process resulting in the formation of 
microcapsules around each PMMA microsphere. 
The viscosity of the collagen carrier molecule 
enables the even distribution of the microspheres 
in the tissue, thereby promoting tissue ingrowth 
between the microspheres. As such, a more per-
manent tissue filling or augmentation is achieved 
and it is indicated for the correction of contour 
deformities of the dermis [58].

15.5.2  HA Products

HA is widely applied to therapeutic products for 
clinical purpose, ranging from osteoarthritis, 
ophthalmology, cystic fibrosis, papilla regenera-
tion, dermatology, and plastic surgery. Related 
HA products had entered the market, and many 
kinds of literature were published regarding the 
clinical effects of these products. Here we briefly 
summarized some examples in the following 
paragraphs and listed in Table 15.2.

Table 15.2 HA commercial products for osteoarthritis treatment

Product Name Type Company Compositions Indication References
SYNVISC® Solution Genzyme 

Corporation
1.  Hylan polymers: 

48 mg
Pain in 
osteoarthritis 
(OA) of the 
knee

1.  Clin Rheumatol. 2005, 24, 
285–289.

2.  Sodium chloride: 
51 mg

2.  U. S. food and drug 
administration, https://
www.accessdata.fda.gov/
cdrh_docs/pdf/
p940015s012b.pdf

3.  Disodium 
hydrogen 
phosphate: 0.96 mg

4.  Sodium 
dihydrogen 
phosphate 
monohydrate: 
0.24 mg

Synocrom Solution Croma 
Pharma

Sodium hyaluronate, 
concentration of 
10 mg/ml

Osteoarthritis 
(OA) of the 
knee

1.  acta medica transilvania 
2013, 2, 260–263

2.  https://www.fda.gov.tw/
MLMS/H0001D.aspx?Typ
e=Lic&LicId=56026198

Suplasyn Solution Mylan 
Institutional

Sodium Hyaluronate 
solution 10 mg/ml

Pain in 
osteoarthritis 
(OA) of the 
knee

1.  Przegl Lek. 2011, 68, 
307–310.

2.  https://www.suplasyn.
com/
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15.5.2.1  Hyaluronan 
for Ophthalmology

HA commercial products are widely developed 
in the field of ophthalmology due to the great 
need. Major commercial products such as Healon 
GV®, Viscoat®, Biotrue multipurpose solution 
(MPS), Provisc®, Healonid, and Viscorneal(R), 
are mainly composited of sodium hyaluronate 
with some modifications due to their individual 
targeted symptoms.

Healon GV®

A highly purified non-pyrogenic solution of high 
molecular weight (~5000 kDa) sodium hyaluro-
nate dissolved in physiological buffer. The solu-
tion is highly viscous and helpful in expansion 
and maintenance of anterior chamber. Applications 
in eye surgery included and not limited to: cata-
ract, glaucoma filtering, and corneal transplanta-
tion. For instances, at early stage of cataract, 
sufficient amount of Healon GV® was slowly 
injected into front chamber to avoid tissue trauma.

Viscoat®

A transparent solution with high fluidity that is 
mainly composed of sodium chondroitin sulfate 
and sodium hyaluronate. Usage of Viscoat® is lim-
ited to eye, and the main purposes of this product 
are maintenance of deep cavity, strengthening of 
visualization, and protection of corneal endothe-
lium. Additionally, viscoelasticity of this solution 
can keep vitreous on correct position to prevent 
forming postoperative cavity. The solution residue 
will be remove at the end of surgery by perfusion 
and extraction of balanced salt buffer.

Provisc®

PROVISC® is a sterile, non-pyrogenic, high 
molecular weight, non-inflammatory highly puri-
fied fraction of sodium hyaluronate, and dis-
solved in physiological sodium chloride 
phosphate buffer. The viscoelastic properties of 
Provisc® help to push back the vitreous face and 
prevent the formation of a flat chamber postop-
eratively. Provisc® is indicated for using as an 
ophthalmic surgical aid in the anterior segment 
during cataract extraction and intraocular lens 

(IOL) implantation. Because it can maintain a 
deep anterior chamber during anterior segment 
surgery allowing reduced trauma to the corneal 
endothelium and surrounding ocular tissues.

Healonid
It is the injectable solution composed of Sodium 
hyaluronate. Depending on the chemical environ-
ment, Healonid can exist in the acid, sodium salt 
or Healonid anion. It can help to heal degenera-
tive joint disease, however, the actual mechanism 
is not clear. Healonid has two major functions: 
one is to be the regulation of normal cellular con-
stituents, and the other is to exert an anti- 
inflammatory action by inhibiting the movement 
of granulocytes and macrophages.

Viscorneal(R)
Viscorneal(R) is the sterile and pyrogen-free 
solution consisting of hyaluronate sodium, 
sodium chloride and so on. Sodium hyaluronate 
is biocompatible and has interesting physical and 
rheological properties for ophthalmic surgery. 
Viscoelastic solution of highly purified sodium 
hyaluronate dissolved in a buffer solution (pH 7 
to 7.5). Viscorneal(R) is administered with a 
graduated disposable syringe, previously filled. 
Its important functions and usages form a thin 
protective layer on cells and ocular tissues, allow 
the lubrication of the intraocular lens before 
implantation. It is also a coadjuvant in anterior 
chamber surgery and especially during cataract 
surgery with or without IOL implantation, and in 
glaucoma surgery.

Summary on HA Products 
for Ophthalmology
Here we compare the functions of HA products 
above. The comparing result shows that there are 
the same functions in these five ophthalmology 
HA products during ophthalmic surgery. Mostly, 
they can protect ocular tissues from trauma and 
maintain a deep anterior chamber during anterior 
segment surgery, and especially users can even 
take Healonid to facilitate anti-inflammatory 
action by inhibiting the movement of granulo-
cytes and macrophages.

L. L. H. Huang et al.
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15.5.2.2  HA for Papilla Regeneration.
HA is still the major product for papilla regenera-
tion. No matter it is in any physical state of 
Hyaluronan, there is still the same function and 
effect by gel or solution. It is a fact that most of 
HA products for papilla regeneration are original 
hyaluronan, this subchapter will choose one 
product which includes the additional materials 
to illustrate.

Corgel™: Corgel™ is composed of two algi-
nates and three hyaluronic-based biocompatible 
and injectable hydrogel. Corgel™ can be a carti-
lage repairing biomaterial, which has the func-
tions like tissue bulking agents or cell delivery 
matrix because the hydrogel can be formed under 
physiologic conditions in situ.

15.5.2.3  HA for Dermatology 
and Plastic Surgery

The development of injectable dermal fillers in 
plastic surgery has become one of the most popu-
lar aesthetic medical procedures available to 
patients who desire facial rejuvenation. The der-
mal fillers are mainly used for the filling of wrin-
kles and skin folds caused by disease or age [26]. 
An ideal material for dermal filler include bio-
compatibility, reasonable clinical appearance and 
duration, ease of use and minimal tendency to 
migrate to distant sites. Currently, the most com-
mon procedure is now the injection of hyaluronic 
acid (HA) fillers. HA-based temporary dermal 
fillers are being employed with increasing fre-
quency for the treatment of facial skin lines in the 
aesthetic medical procedures [12]. The character-
istics of HA include non-surgical and injectable 
cosmetic procedure [30]. Until now, many of HA 
fillers have been developed and available to aes-
thetic plastic surgery. The main differentiators of 
HA fillers for aesthetic plastic surgery include the 
source of HA, the properties of HA fillers, the 
concentration of HA in each injection being uti-
lized, the particulate size of the HA, the type of 
cross-linking agent used in the HA,and whether 
the HA is monophasic or biphasic.

AdvaCoat™

AdvaCoat™ or AdvaCoat Sinus Gel and Stent is 
produced from a non-animal, nonpathogenic 
source using a highly purified HA. It is a biore-
sorbable material composed of cross-linked poly-
mers of a derivatized HA. The gel of AdvaCoat™ 
is placed in using a syringe and the stent is formed 
in the sinus cavity. The sinus cavity was com-
pletely filled with gel (2007). These devices are 
used for preventing tissues adhesions in the nasal 
cavity and minimizing edema and bleeding in 
patients undergoing nasal/sinus surgery (2007).

Belotero® Balance
The Belotero® range of products exhibit different 
densities of HA (concentration ranging from 18 
to 26  mg/mL) for different purposes of non- 
surgical and monophasic procedures of rejuvena-
tion [74]. The similar product Belotero® Balance 
utilizes 22.5  mg/mL HA in a patented matrix 
technology. The matrix HA of Belotero® Balance 
is cross-linked with a binding agent 
(1,4- butanediol diglycidyl ether, BDDE) in two 
consecutively executed reactions and reconsti-
tuted in a physiologic buffer at pH  7 [74]. The 
pivotal studies indicated of the patients main-
tained optimal correction at 6  months on the 
Belotero-treated side of the face. The open-label 
study of dermal fillers persisted in the majority of 
subjects without repeated treatment [56].

Hylaform®

Hylaform® is a sterile, colorless gel implant 
material, cross-linked with divinyl sulfone, and 
isolated from an avian (bird) source. The degree 
of cross-linking is 20%. The concentration of HA 
in Hylaform® is 4.5–6.0 mg/mL. The gel particle 
size (500 um) is suitable to severe facial wrinkles 
and folds [30]. The study of skin testing indicated 
lip enhancement or augmentation were not rec-
ommended. Side effects may occur as a result of 
the injection with Hylaform® gel. Most of the 
symptoms of side effects were mild and went 
away [58].
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Juvederm™ 30 HV
Six different formulations of Juvederm™ HA fill-
ers have been developed, with differing concen-
trations of HA in each formulation, ranging from 
18 to 30 mg/g. Juvederm™ 30 HV (also Juvederm™ 
Ultra Plus) contain 30 mg/g of HA. The HA of 
Juvederm™ 30 HV is cross-linked by BDDE to 
form a 3-dimensional HA gel and kept in phos-
phate buffered to 6.5–7.3 pH. The HA fillers in 
Juvederm™ 30  HV exhibit higher concentration 
of HA and more cross-link than other HA fillers, 
so it may persist longer than other HA fillers and 
have a more smooth injection flow [61]. The 
results of the clinical trial showed significantly 
greater efficacy than the bovine collagen product 
[6]. The nasolabial folds treated with product had 
shown clinically significant correction at 
24 weeks after the last treatment [57].

Restylane Silk
Restylane Silk is a non-animal stabilized HA and 
purified from a fermentation of equine strepto-
cocci. The cross-linking degree in BDDE- 
modified HA is 1%. The HA concentration is 
20 mg/mL with 0.3% lidocaine and its gel parti-
cle size is 400 μm. The lidocaine in Restylane 
Silk has been added to reduce the discomfort 
associated with the treatment [30, 51]. The clini-
cal study was conducted with Restylane Silk 
exhibited that 98% of subjects reported improve-
ment in their lip fullness 14 days after injection 
and 76% of the subjects still had lip improvement 
6 months after their injection (FDA).

Revanesse
The HA of Revanesse cross-linked dissolvable 
dextranomer beads and is thought to give the 
products greater longevity and filling power [7]. 
The clinical study indicated that the improving 
effect for facial tissue, such as nasolabial folds. 
The patients in the main study were offered 
retreatment with Revanesse if they had returned 
to their previous wrinkle severity or needed opti-
mal correction at 6 months post-treatment [7].

Other Commercial HA Products
The Captique is non-animal stabilized HA tech-
nology. This averted the potential immunological 

problems associated with the previous avian 
source for the HA fillers [30]. The HA of Perlane 
is Streptococcus species of bacteria, chemically 
cross-linking with BDDE, stabilized and sus-
pended in phosphate buffered saline at pH  =  7 
and concentration of 20 mg/mL (FDA).

15.5.3  Regenerative Products 
with Collagen and HA

In the past two decades, several regenerative 
products containing hyaluronan and collagen or 
gelatin have been developed into the market. 
These products are bringing great benefits to 
human life, such as the bioresorbable dressing for 
postoperative wound healing to eliminate the 
need for painful packing removal, cell- compatible 
scaffold for tissue engineering to enhance the effi-
cacy of regenerative medicine, and highly absorb-
able dietary ingredient for the promotion of skin, 
joint, connective tissue, tendon and ligament 
health. Table 15.3 shows a list of regenerative 
products with hyaluronan and collagen or 
gelatin.

MeroPack® is an absorbable hyaluronic acid 
packing material containing 80% esterified HA 
and 20% collagen (http://www.medtronic.com/
us-en/healthcare- professionals/products/ear- 
nose- throat/bio-packing/bio-nasal-packing/mero-
pack.html). It is indicated for use in patients 
undergoing nasal/sinus surgery as a space- 
occupying stent in the nasal cavity (https://www.
accessdata.fda.gov/cdrh_docs/pdf4/k041381.
pdf). Upon hydration, MeroPack can transform 
into a biocompatible, mucoadhesive gel and be 
slowly resorbed by the body within 2 weeks. It 
could be removed by suctioning if desired. In 
2010, Huang [40] reported that MeroPack has 
lower pain score during packing removal as a 
nasal dressing after endoscopic sinus surgery in 
comparison with an unabsorbable cross-linking 
polyvinyl alcohol packing material (Merocel). 
MeroPack effectively prevented postoperative 
hemorrhage for nasal trauma patients, although it 
does not show distinct advantages on prevention 
of synechiae formation [39, 40]. MeroPack was 
suggested reserving for children who are predis-
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posed to develop postoperative hemorrhages or 
adhesions, such as resection of the concha bul-
losa, traumatic surgery with the creation of large 
raw surfaces on the middle turbinate, and revision 
surgery with preexisting adhesions.

HyStem® products (HyStem®-C, -HP, and -VF), 
developed by BioTime, Inc., are low salt hyaluro-
nan-gelatin hydrogels with minor difference in its 
ingredients or applications (as shown in Table 15.3). 
These products have applications in cell culture [3, 
16, 17], stem cell growth [3, 18, 21, 43, 55], tissue 
engineering, and animal models of cell-based ther-
apies [5, 21, 67, 99]. Basically, they are a family of 
research products to mimic a living cell’s natural 
environment (ECM). Liu et al. [55] demonstrated 
HyStem®-C can support the prolonged mainte-
nance of mouse embryonic stem cells in standard 
growth medium and human induced pluripotent 
stem cells (hiPSCs) in MEF-conditioned medium. 
It has also been proven that frozen mouse embry-
onic fibroblast cells (NIH 3T3 cells) survival rate 
can still be maintained at 85–88% after 48  h in 
HyStem®-C by Chen and Thibeault in 2013 [16]. 
They [17] also studied the complex interactions 
among bone marrow-derived mesenchymal stro-
mal cells (BM-MSCs), co-culture assay of normal 
or scarred human vocal fold fibroblasts in 
HyStem®-VF 3D hydrogel. Their findings support 
the hypothesis that fibroblasts and hydrogel- 

embedded BM-MSCs are capable of modulating 
cellular behavior via cytokines and growth factor 
production, providing an in  vitro regenerative 
milieu for vocal fold scarring.

HyStem®-HP is a hyaluronan–heparin–colla-
gen hydrogel, can be mixed with stem cells to 
form a stem-cell-hydrogel complex. In 2010, 
Zhong et al. [99] transplanted neuronal stem cells 
within a pro-survival HyStem-HP hydrogel into 
the infarct cavity after stroke in mice models. 
Their result indicates that HyStem-HP enhances 
the survival of stem cell transplantation and 
diminishes cell stress. Espandar et al. [21] proved 
the human adipose-derived stem cells can also be 
successfully grown on HyStem®-HP hydrogel in 
the corneal stroma of rabbits and can express 
human cornea-specific proteins. Renevia® is one 
of the HyStem® hydrogel formulations as well 
(http://www.biotimeinc.com/wp-content/
uploads/2015/

06/2_HyStem_Technology_clean_v.2.pdf; 
[93]. It is designed as an implantable matrix for 
the delivery of autologous adipose tissue- derived 
cells to treat the facial lipoatrophy associated 
with HIV. Note that, Renevia® is not cleared for 
marketing in the United States due to the clinical 
trial has not been submitted to the US FDA for 
review (http://www.biotimeinc.com/products-
pipeline/renevia/).

Table 15.3 A list of regenerative products with hyaluronan and collagen or gelatin

Product Name Type Company Contains Indication References
MeroPack® Solid Medtronic plc 80% esterified 

hyaluronan and 20% 
collagen

Nasal 
packing 
and sinus 
stent

Hu et al. (2008) and 
Huang and Huang 
(2010)

HyStem®-C Hydrogel BioTime, Inc
HyStem®-HP Hydrogel
HyStem®-VF Hydrogel
BioCell 
Collagen®

Fine power for 
use in capsules 
and soft gels

Biocell 
Technology 
LLC

60% hydrolyzed 
collagen type II, 10% 
low-molecular-weight 
hyaluronic acid, 20% 
chondroitin sulfate, 
and 10% 
uncharacterized 
components of 
chicken sternal 
cartilage

Schauss (2007), 
Schauss (2012) and 
Schwartz and Park 
(2012)
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BioCell Collagen®, derived from the chicken 
sternal articular cartilage, is a multifaceted 
healthy aging dietary ingredient produced by 
BioCell Technology LLC. Acute and subchronic 
oral toxicity studies [80] have been conducted in 
rats at a single dose of 500 mg per kg of body 
weight and the maximum 1000  mg per kg of 
body weight for over 90 days. All animals sur-
vived and showed no significant changes in their 
body weights and histopathology throughout the 
study. In the multiple human clinical trials, 
BioCell Collagen® as a daily supplement could 
promote joint and skin health [82] and improve 
osteoarthritis-related symptoms [81]. In the 
report of Schauss et al. [81], daily supplementa-
tion with BioCell Collagen® provided significant 
symptom reduction in patients suffering from 
osteoarthritic pain and disability. It is believed 
that BioCell Collagen® can stimulate chondro-
cytes in the cartilage and dermal fibroblasts in 
skin dermis that synthesize collagen and glycos-
aminoglycans, providing a potential regenerative 
mechanism.
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Abstract
Bioceramics represent functional ceramics 
with significant interest in regenerative medi-
cine area. In orthopedics as well as in oral and 
maxillofacial surgery, bioceramics have been 
widely used as bone reconstructive materials. 
The most common one is hydroxyapatite 
which have been in the market and clinical 
applications since the mid of 1970s. Nowadays, 
a lot of works have been being in the pipeline 
to develop bioceramics for various clinical 
applications in regenerative medicine area, 
including dentistry. Bioceramics have been 
used and considered promising candidate for 
periodontal treatment, prevention of relapse, 
nerve regeneration, vaccine adjuvant, drug 
delivery technology, even for esthetic medi-
cine and cosmetics. In this chapter, the advan-
tages of bioceramics for regenerative therapy 
especially in dentistry is discussed. The over-
view of bioceramics classification is also 
explained. The future perspective and chal-
lenges on the use of bioceramics for next gen-
eration regenerative therapy is also discussed.

Keywords
Bioceramics · Regenerative therapy · 
Classification · Orthopedic · Maxillofacial 
surgery

16.1  Novel Bioceramics 
for Regenerative Medicine

Bioceramics is a terminology which refers to 
ceramics engineered to interact with biological 
system and applied for biomedical uses, either 
for therapeutics uses such as body implants, 
repairs, augmentations, drug delivery vehicles, 
vaccine adjuvants, or diagnosis. What is ceramics 
then? According to some previous references, 
ceramics are highly crystalline structures formed 
by heating non- metallic mineral salts under high 
temperature process known as sintering. For 
example, to fabricate bioactive glasses which 
also considered as ceramics, some amounts of 
SiO2, NaO2, CaO, and P2O5 are processed at the 
temperature which gradually raises from 350° to 
the melting point of the glasses at around 1400 °C 
[20]. However, due to various purposes and indi-
cations on the use of bioceramics inside the body, 
low or poor crystalline ceramics are also being 
considered and the fabrication methods also vary 
not only by high temperature sintering. For 
example, fabrication method of amorphous cal-
cium phosphate ceramics by wet precipitation 
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method needs lower temperature [27]. This is 
because the temperature at which porous ceram-
ics are sintered can affect biological response due 
to alteration of chemical and topographical sur-
faces of the materials [18].

Moreover, it is also known from previous 
researches that crystallinity also influences cell 
and tissue response. Frank et  al. [17] observed 
that crystallinity affected adsorption of serum 
components to the surface and the ability of cells 
to attach, proliferate and differentiate. While 
according to Oonishi et  al. [33] morphological 
characteristics of the ceramics and size of the 
granule can also affect bone ingrowth. In view of 
these phenomena, a lot of researches have been 
being done to modify ceramics morphology, crys-
tallinity, chemical, and topographical surfaces of 
the ceramics in order to improve tissue responses 
shown by enhancement of cell attachment by 
fibronectin or laminin treatment of ceramics sur-
face, cell proliferation, cell differentiation, includ-
ing osteogenic capacity of different ceramics.

Beside being considered among the oldest 
materials used by man, bioceramics also represent 
functional ceramics. It is because many ceramics 
are known and has been developed to achieve bio-
compatible properties to be widely used in ortho-
pedics as bone reconstruction materials. Because 
of its functionality, ceramics are also used as coat-
ing of implants, drug delivery technology, vaccine 
technology as adjuvant, and cancer therapy 
including hyperthermia of cancer wherein the 
body is exposed to high temperature to kill cancer 
cells. Ceramics are also extensively studied in the 
area of tissue engineering to construct scaffolds 
and provide proper microenvironment for tissue 
to regenerate. Among various ceramics which 
have been developed and fabricated, hydroxyapa-
tite pays a lot of attention because its similarity to 
bone apatite as the major component of inorganic 
phase of bone. Simultaneous but independent 
works have been done extensively by the group of 
Jarcho and co- workers in USA, de Groot and 
team in Europe, as well as Aoki and co-workers in 
Japan [42] to provide hydroxyapatite for clinical 
applications and commercialization. Nowadays, a 
lot more have been in the pipeline for various 
clinical applications.

It has been reported in the recent literatures, 
especially by the group of Ishikawa and team 
[23], that synthetic carbonate apatite revealed the 
biological activity better than synthetic hydroxy-
apatite because the incorporation of carbonate 
into hydroxyapatite caused an increase in solubil-
ity, a decrease in crystallinity, a change in crystal 
morphology, and an enhancement of chemical 
reactivity owing to the weak bonding resulted [5, 
36, 37]. In this context, carbonate apatite will be 
more soluble in  vivo compared to hydroxyapa-
tite. The solubility of carbonate apatite will 
increase the local concentration of calcium and 
phosphate ions that are necessary for new bone 
formation. Existence of carbonate in the complex 
also increases identical properties of the materi-
als with the human apatite or bone apatite [30].

The most important aspect on the clinical 
application of bioceramics is its bioactivity which 
leads to biocompatibility of ceramics. The bio-
compatibility of an implant material, for exam-
ple, elicits the formation of normal tissue to its 
surface. Ducheyne [14] observed that once the 
formation of normal tissue is developed, it allows 
establishment of an interface capable of support-
ing the loads normally occur at the site of implan-
tation. During the wound healing process 
associated with the implantation of bioceramics, 
angiogenesis takes place and enables the devel-
opment of capillary blood supply. The possible 
mechanism is that dissolution of the calcium ions 
and precipitation reaction on the surface of bioc-
eramics will provide interface for fibroblasts to 
attach and form an appositional fibrous matrix. 
The process will also lead to the occurrence of 
vascular penetration, differentiation of mesen-
chymal stem cells into osteoblast or other desig-
nated cells, based on the composition, structure, 
topography, crystallinity, and function of the bio-
ceramics. A study done by El-ghannam and co- 
workers [16] also shows that initial reaction of 
some bioactive glasses (one of the member of 
bioceramics) cause a local increase in pH.  The 
local increases in pH will cause alkalization. The 
alkalization is beneficial when bioceramics are 
combined with degradable polymers which usu-
ally produce acidity when they undergo biode-
gradable process.
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Table 16.1 Composition and shapes of the various bioceramics [39]

Category Materials and compositions Shapes
Calcium 
phosphate 
(CP) group

Hydroxyapatite (HAp or HA) Sintered body (dense and porous)
Ca5(PO4)3OH Powder

Coating
Composite
Fiber

β-Tricalcium phosphate (β-TCP) Sintered body (dense and porous)

Ca3(PO4)2 Powder
Dicalcium phosphate anhydrate (monetite, DCP or DCPA) Powder
CaHPO4

Dicalcium phosphate dihydrate (brushite, DCP2 or DCPD) Powder
CaHPO42H2O
Calcium pyrophosphate (CPP) Powder
Ca2P2O7

α-Tricalcium phosphate (α-TCP) Powder

Ca3(PO4)2

Tetracalcium phosphate (TeCP) Powder
Ca4(PO4)2O
Octacalcium phosphate (OCP) Powder
Ca8H2(PO4)65H2O
Amorphous calcium phosphate (ACP) Powder
Ca3(PO4)2nH2O

Others Yttria-stabilized tetragonal zirconia (Y-TZP) Sintered body (dense)
Y2O3-ZrO2

Aluminum oksida (Alumnina) Sintered body (dense)
Al2O3

Titanium oksida (Titania) Sintered body (dense)
TiO2

Silicon nitride Sintered body (dense)
Si3N4

Silicon carbide Sintered body (dense)
SiC
Carbon Fiber
C
Bioactive glasses system Bulk
SiO2-P2O5-Na2O-CaO Bulk
SiO2-P2O5-Na2O-K2O-CaO-MgO Bulk
SiO2-P2O5- CaO-Al2O3

Bioactive glasses ceramics system Bulk
SiO2-P2O5- CaO-MgO (A-W) Fiber
SiO2-P2O5-Na2O-K2O-CaO-MgO (Ceravital)

16.2  Classification of Bioceramics

According to Tanaka and Yamashita [39], ceram-
ics are generally classified from their chemical 
compositions into two groups: calcium phos-
phate (CP) and others, including ytrria (Y2O3) – 
stabilized tetragonal zirconia (ZrO2) (YTZP), 
alumina (Al2O3) and some silicate and phosphate 

families of glasses and crystallized glasses (glass 
ceramics), as depicted in Table 16.1. Among the 
families of orthophosphate molecules, hydroxy-
apatite is one of and considered as the most bio-
logically compatible substances used as bone 
graft substitute material. The hydroxyapatite 
 stoichiometric chemical formula is 
Ca10(PO4)6(OH)2 and share similarities with the 
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mineral phase of bone. Hydroxyapatite have been 
used in particulate or granule forms and porous 
blocks. Nowadays, there have been a shifting in 
the use of hydroxyapatite because it is not identi-
cal with human apatite. The difference is because 
of high crystallinity of hydroxyapatite as the 
result of high temperature process, which makes 
hydroxyapatite is difficult to be resorbed during 
the remodeling process of bone. Thus, carbonate 
apatite is used as an alternative and better candi-
date for bone substitution purposes compared to 
hydroxyapatite [23].

Based on the biological perspective that Mg 
ion is typically contained in high concentration in 
cartilage and natural bone tissues during the ini-
tial phases of osteogenesis which then it tends to 
disappear when bone is mature, some researchers 
also developed Mg substituted carbonate hydroxy 
apatite [32]. Tampieri and team have been work-
ing intensively on Mg substituted carbonate 
hydroxy apatite. Meanwhile, Daculsi and team 
also proposed and developed biphasic calcium 
phosphate (BCP), a group of bioceramics which 
has identical chemical composition with bone 
minerals [19]. Either carbonate apatite, some 
compositions of calcium orthophosphates, and 
BCP have been already translated into clinical 
applications.

Another group in the calcium phosphate fam-
ilies is TCP (tri- calcium phosphate). When 
mixed with water, dissolution of TCP to supply 
Ca2+ and PO4

3− and precipitation into CDHA will 
lead to the formation of needle- like crystals of 
apatite which interlock each other to form a set 
mass [41]. It is reported that in general TCP is 
less crystalline than hydroxyapatite, and there-
fore, more soluble. Bone graft that contains TCP 
are biocompatible and osteoconductive, but 
because of its relative solubility it is used in the 
situation where structural support is less impor-
tant. Unfortunately, setting time of α-TCP is too 
long if free from additives. This long setting time 
prevents its clinical use. Therefore, a chelating 
agent such as succinic acid or citric acid is 
employed to shorten the initial setting reaction, 
but it prevents compositional transformation to 
apatite.

The works of Dorozhkin [15] shows that cal-
cium orthophosphate is an important part in the 

area of bioceramics, because it represents the 
inorganic part of major normal and pathological 
calcified tissues in mammals. Bones, teeth, and 
antlers are considered as calcium orthophos-
phate. In a pathological condition, the blockage 
in blood vessel in atherosclerosis is caused by a 
solid composite of cholesterol with calcium 
orthophosphates. As mentioned by the group of 
Dorozhkin [15], all calcium orthophosphates 
consist of three major chemical elements, cal-
cium (oxidation state +2), phosphorus (oxidation 
state +5), and oxygen (reduction state −2), as a 
part of orthophosphate anions.

Some literatures also indicate the use of coral, 
which is also considered as bioceramics [4]. For 
example, coralline derived from marine coral 
which contains aragonite type of CaCO3 is also 
considered bioceramics. It has been used in its 
natural mineral form of calcium carbonate for 
bone substitution purposes, but to some extent it 
is also converted and used as a starting material 
to fabricate into calcium hydroxyapatite. 
Coralline derived from marine coral as natural 
mineral is already used for bone grafting since 
1970 because of its good osteoconduction, biore-
sorbability, biocompatibility, and biodegradation 
[7, 8]. Coral shows a good tissue response and is 
completely resorbed in the body. Moreover, coral 
(aragonite or calcite forms of calcium carbonate 
or CaCO3) is one of the limited number of materi-
als that can form a chemical bond with bone and 
soft tissues in vivo.

Another group of bioceramics is calcium sul-
fate hemihydrate (CaSO4.1/2H2O) which is very 
famous in dentistry and may be considered as the 
oldest bioceramics used as bone grafting material 
in the history. In fact, calcium sulfate cement is 
one of the oldest and sturdiest building materials 
on earth which is also considered as bioceramics. 
It is a gypsum product that has been used for at 
least 5000 years. It is safe, rapidly resorbing mate-
rial that has been used for bone filling applica-
tions for more than 100 years. The use of calcium 
sulfate or gypsum or POP (Plaster of Paris) is 
based on its advantages, which include the ability 
to self-setting and a well-tolerated biological 
response without eliciting a severe inflammatory 
response. When calcium sulfate hemihydrate 
(CaSO4.1/2H2O) is mixed with water, calcium 
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sulfate dihydrate (CaSO4.2H2O) is formed. This 
property makes it possible for POP to set in situ 
when it is applied into a bone defect. Dewi and 
co- workers [10–12, 34, 40] have been doing 
efforts to enhance bone formation in POP implan-
tation to overcome problems related to fast 
degradability of POP by combining it with calcite 
as well as calcite hydrogel, or the use of cinnam-
aldehyde as crosslinking agent [13].

The discovery of bioactive glass by Larry 
Hench and colleagues in 1969 at the University 
of Florida has been the fundamental insight on 
the use of bioactive glass, then initiated the field 
of bioactive ceramics and Bioglass® to be trans-
lated into clinical use since 1985. Bioactive 
glasses are amorphous silicate- based materials 
which are compatible with human body, bond to 
bone and stimulate new bone growth while dis-
solving over time [20]. Bioactive glass can stimu-
late the body’s own regenerative mechanism to 
restore damaged bone to its original state and 
function.

When in contact with body fluid, carbonated 
hydroxyapatite (HCA) layer will be formed on 
the surface of the glass. The layer will be an 
interface for the glass to bond to bone. The rapid 
exchange of Na+ and Ca2+ with H+ or H3O+ from 
solution will cause hydrolysis of the silica groups 
which creates Si-OH (silanols). This makes the 
pH increases as the results of the replacement of 
H+ ions by cations. The increasing hydroxyl con-
centration leads to the attack of silica glass net-
work. Condensation and repolymerisation of the 
silanols will leave silica rich layer. The existence 
of silica-rich layer initiates migration of Ca2+ 
and PO4

3− on the surface through silica-rich and 
from the surrounding fluid to form CaO-P2O5-
rich film on the top of silica-rich layer. The CaO-
P2O5-rich film crystallites as it incorporates 
OH− and CO3

2− anions from solution to form a 
mixed HCA [25].

16.3  Bioceramics Clinical 
Products and Applications

The first documented use of synthetic bone graft 
was reported in 1892 by Van Meekeran, who 
treated a large bone defect with calcium sulfate 

[6]. Since then, materials which are categorized 
as ceramics have been extensively used as bone 
graft substitutes in human, known as bioceram-
ics. The most widely used bioceramics materials 
for bone grafting in human is hydroxyapatite 
(HA), considering it as major mineral constituent 
of natural bone matrix [38]. Hydroxyapatite has 
chemically similar composition and crystalline 
structure with bone and hard tissue.

Hydroxyapatite and, to some extent, other cal-
cium based ceramic materials can be regarded as 
bioactive materials that will support bone 
ingrowth and osseointegration when used in 
orthopedic, dental, and maxillofacial application.

The calcium phosphate ceramic that consists 
hydroxyapatite (HA) and/or beta tri-calcium 
phosphate (β-TCP) and calcium phosphate- 
silicate glass are called osteoconductive materi-
als since it allows the apposition of osteoblasts 
at the material surface. It has also been reported 
that HA has been developed in variety of forms 
(powders, porous blocks, or beads) to fill bone 
defects or voids when large sections of bone 
have had to be removed (e.g. bone cancer) or 
when bone augmentations are required (e.g. 
maxillofacial reconstructions or dental applica-
tion). It is known that HA is able to directly 
bond to bones and teeth in vivo. In Indonesia, 
since 2014, dentist and oral and maxillofacial 
surgeons have been applying carbonate apatite 
composite, named Gama-CHA, as depicted in 
Fig. 16.1 and Fig. 16.2. The modified formula is 
also used to develop bioceramics- based haemo-
static sponge wherein a small amount of cal-
cium ions from carbonate apatite will function 
as better haemostatic agent. The reason for 
using grafting materials in oral treatment is that 
the materials can facilitate formation of an alve-
olar bone regeneration, periodontal ligament 
and root cementum through the specific mecha-
nisms, those are osteogenesis, osteoconduction 
and osteoinduction, and the findings have been 
performed in some studies.

Meanwhile, the use of corals from Goniopora, 
Porites, Favites, etc. has been long investigated. 
The coral specimens consist of 99% calcium car-
bonate in the form of aragonite and 1% of organic 
material. In the body fluid, coral can be trans-
formed in apatite. Combes and co-workers [9] 
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demonstrated the application of 100% calcium 
carbonate as a good bone cement candidate due 
to the re-crystallization of the initial metastable 
phases of the cement, in which CaCO3 reacts 
with water, forms a calcium phosphate layer in 
the presence of phosphate ions and acts as a tem-
plate to facilitate apatite crystal formation and 
growth. Such a cement can be prepared by simply 
mixing water with CaCO3 powder. After implan-
tation, the cement will release calcium and car-
bonate ions, which subsequently can be 

incorporated into the apatite structure of the sur-
rounding bone tissue. The released calcium ions 
inhibit the activity of osteoclasts and shift the 
bone balance toward formation [26]. Meanwhile, 
the carbonate ions released from CaCO3 can sub-
stitute phosphates and or hydroxide ions in the 
structure of bone apatite.

In case of calcium sulfate (CS), also known as 
Plaster of Paris (POP), it has been used in clinic 
for many years to treat skeletal defects, either 
alone or in combination with other bone graft 
materials [22, 24, 31, 34]. It is safe, rapidly 
resorbing material that has been used for bone 
filling applications for more than 100 years. The 
use of POP is based on its advantages, which 
include the ability to self-setting and a well-toler-

ated biological response without eliciting a severe 
inflammatory response. When hemihydrate is 
mixed with water, dihydrate is formed. This 
property makes it possible for POP to set in situ 
when it is applied into a bone defect.

The use of bioactive glass in clinics is based 
on the process that the surface of the glass will be 
dissolved and release mineral ions. This leads to 
the formation of a biologically active, carbonated 
apatite layer that provides the bonding interface 
with tissues, as described previously. This adher-
ent interface with tissues resist substantial 
mechanical forces. In many cases, the interfacial 
strength of adhesion is equivalent to or greater 
than the cohesive strength of the implant material 
or the tissue bonded to the bioactive implant. The 
clinical applications of bioactive glass require 
several different forms of material. The use of 
Bioglass®45S5 implants in the middle of ear sur-
gery to replace ossicles damaged by chronic 
infection is also successful, and the results are 
encouraging. Bioglass®45S5 implants have also 
been used successfully to maintain a nearly 90% 
retention rate of alveolar ridge for denture wear-
ers [21].

Nowadays there are a lot of efforts have been 
being done to translate the use of bioceramics as 
periodontal strip and drug delivery [3], for nerve 
regeneration scaffold [35], injectable gel to pre-
vent relapse after orthodontics treatment [1, 2], 
including scaffold for stem cell delivery by using 
synthetic coral [28, 29].

16.4  Future Perspective

It has been a critical issue and a key challenge in 
the regenerative area on how to ideally replace 
lost tissue. The conductive strategy will interfere 
the regenerative process, while enabling the 
desired host cells to populate the regeneration 
site. Bioceramics is also recognized to provide 
local environment for cells to promote prolifera-
tion and differentiation and function as instruc-
tive extracellular microenvironments for 
morphogenesis. Thus, bioactivity of ceramics is 
considered very promising strategy in rehabilita-
tive area. Hydroxyapatite, carbonate apatite, 

Fig. 16.1 The first Indonesian bone graft, carbonate apa-
tite based bone graft

Fig. 16.2 Porosity of carbonate apatite ceramics as bone 
substitute
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some calcium orthophosphates including bipha-
sic calcium phosphate, and bioactive glasses are 
example of products which have been already in 
clinical applications.

The future challenges of bioceramics are 
related to acidic condition caused by infections 
which have been problems in regenerative proce-
dures. Hospital-acquired bone infection, includ-
ing in the maxillofacial area (even more 
specifically in tropical settings with high temper-
ature/humidity), will be a costly and critical 
health issue, and the great difficulty to eradicate. 
Thus, it is as an absolute necessity and has led 
clinicians to consider the prevention of infection. 
Calcium phosphate apatites are best candidates 
for preparing biomaterials for bone repair. 
However, calcium phosphate compounds could 
act as propitious substrates for microbial prolif-
eration. Since the use of antibiotics is often prob-
lematic (bacterial resistance), other strategies 
have to be found, compared and developed. In 
view of this, the development of bioceramics 
such with inner antimicrobial properties is con-
sidered very strategic and important to overcome 
the problems in the near future.
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Abstract
Bioceramics are type of biomaterials gener-
ally used for orthopaedic applications due to 
their similar structure with bone. Especially 
regarding to their osteoinductivity and osteo-
conductivity, they are used as biodegradable 
scaffolds for bone regeneration along with 
mesenchymal stem cells. Since chemical 
properties of bioceramics are important for 
regeneration of tissue, physical properties are 
also important for cell proliferation. In this 
respect, several different manufacturing meth-
ods are used for manufacturing nano scale 

bioceramics. These nano scale bioceramics 
are used for regeneration of bone and cartilage 
both alone or with other types of biomaterials. 
They can also act as carrier for the delivery of 
drugs in musculoskeletal infections without 
causing any systemic toxicity.

Keywords
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17.1  Introduction

Bioceramics are frequently used to replace or 
regenerate bone tissue in medicine. They are also 
used to coat biomedical implants for better osteo-
integration [7, 8] and they are an integral part of 
bone and joint tissue engineering [59]. Calcium 
sulfate, calcium phosphate, hydroxyapatite (HA) 
and bio-glasses are the most common synthetic 
forms of bioceramics [56]. Nano forms of HA in 
powder, particle, fiber, tube and film increase sur-
face area and may improve biocompatibility [60]. 
Such bioceramics can be named as advanced bio-
medical materials and they are considered as 
medical devices. Nano-bioceramics are practi-
cally lighter and stronger than micro forms. They 
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can also be used for drug and gene delivery. 
Faster and better tissue regeneration by nano-HA 
may improve recovery and improve quality of 
life of patients. Nano-bioceramics are natural 
components of the bone structure. From the 
material perspective, bone is a composite consist-
ing of nano-HA rods embedded into a type 
1- collagen matrix [58]. Nano-HA can also be 
used to print bioceramic medical materials, 
which may decrease the need of autografts and 
replace allografts [58]. Combining mesenchymal 
stem cells (MSC) with nano-HA is a new area for 
research and questions need to be answered on 
MSC-nano-HA interactions. In this chapter, we 
focused on MSCs, advanced nano-bioceramics 
and their potential use on control and treatment 
of bone infections.

17.2  Stem Cells 
for the Regeneration 
of the Musculoskeletal 
System

Bone regeneration or repair using advanced 
metal, polymer or ceramic materials is very com-
mon in orthopedic and trauma, maxillofacial and 
neurosurgery. Current treatment options such as 
bone grafts and protein-based therapies do not 
provide satisfactory solutions for large bone 
defects specifically after infection and tumor 
cases [2]. Stem cell-based therapies for the repair 
of massive bone loss or non-unions have emerged 
as an alternative to existing solutions in recent 
years. Mesenchymal stem cells (MSC) alone or in 
combination with advanced nano-bioceramics 
from various sources are recently studied as treat-
ment options. Tissue-specific adult MSCs are also 
used in complex injuries such as loss of an extrem-
ity for musculoskeletal tissue regeneration [60].

Mesenchymal stem cells migrate to damaged 
areas, to support and enhance angiogenesis, 
while preventing fibrosis. They have anti- 
inflammatory properties and contain regenerative 
cytokines. They secret chemokines and may dif-
ferentiate into connective tissue cells including 
bone, joint cartilage, ligament, tendon and skele-
tal muscle cells, which makes them inevitable for 

tissue regeneration (Fig.  17.1). These MSCs, 
which are also known as multipotent cells, can be 
isolated from many locations, such as bone mar-
row, adipose and muscle tissue, periosteum, 
umbilical cord and placenta. They need to be 
identified and replicated in vitro due to their low 
number and sparse distribution in tissues. They 
may be used directly or in differentiated forms. In 
some cases, mesenchymal stem cells can be 
injected or applied to the injury site directly while 
they can also be introduced through the circula-
tory system. In the latter case, most of the MSCs 
are destroyed in the lungs; therefore, new tech-
nology focuses on directing them to the regenera-
tion site [124]. These cells can be combined with 
natural and synthetic tissue scaffolds with or 
without any signaling molecules that affect the 
biological properties of the carrier system in the 
form of combination therapy. Bone and cartilage 
regeneration can further be enhanced by efficient 
transcription of genes in vivo by engineering 
practice to ensure rapid tissue regeneration if 
possible. Thus, obtained MSCs with autocrine 
and paracrine effects on damaged host cells may 
aid multidimensional regeneration. Developing 
tissue-engineering applications enhanced MSC 
therapy recently. Mesenchymal stem cells com-
bined with nano-HA especially to keep the 
administered cells in the damaged area and pre-
vent inflammation and scar tissue formation.

17.2.1  What Are Mesenchymal Stem 
Cells?

Mesenchymal stem cells both renew themselves 
and they are capable of differentiate into specific 
cells (Fig.  17.2). They have typical capacities 
according to the tissue they are harvesting from 
and their potential. Totipotent stem cells can dif-
ferentiate into embryonic and non-embryonic 
cells (16 cell embryo), pluripotent stem cells, can 
differentiate into all cell types found in tissues 
belonging to the three germ layers (e.g. inner cell 
mass derived from embryonic stem cells); multi-
potent stem cells, can differentiate into all cell 
types which belongs to the origin of their germ 
(e.g. MSCs can differ mesoderm-derived cells 
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(bone, cartilage, fat)); unipotent (nullipotent) 
stem cells; can form only a single cell type (eg. 
Oogonia is generated oocyte cells). (Fig. 17.3).

Another feature of MSCs, which remains as a 
silent feature (quiescence); they prevent the 
depletion of adult stem cells in tissues. In case of 
damage, stem cells in their quiet state are acti-

vated through symmetric or asymmetric division 
and differentiated into tissue specific cells and 
regeneration is achieved. Isolated and cultured 
stem cells have the tendency to create clones 
(clonogenicity). A single cell clone that includes 
undifferentiated stem cells has self-renewal prop-
erty. Mesenchymal stem cells migrate to the 

Fig. 17.1 Proliferation profile of mesenchymal stem cell

Fig. 17.2 Signature 
characteristics of the 
stem cell
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injury site to regenerate the tissue. The microen-
vironment that MSCs migrate determines the 
self-renewal and differentiation features [119].

 Stem Cells According to  Their Sources 
and Potentials
Embryonic stem cells (ESCs); each cell on day 
5 blastocysts (inner cell mass) formed after for-
mation of the zygote is called ESCs. These cells 
are pluripotent and differentiate into all cells of 
the body, also they provide advantage with their 
ability to expand and differentiate in vitro and 
can do genetic modifications. In clinical use how-
ever; ESCs are not appropriate as they contain 
high risk of developing cancer even after differ-
entiation. The use of human ESCs furthermore 
has ethical and legal problems [108]. Tumor 
forming risk and immunological responses makes 
ESCs unavailable to use in humans.

Fetal Stem Cells are obtained from 5 to 
9 weeks of abortion. These cells are pluripotent/
multipotent and have self-renewal features. They 
are alternatives to ESCs, however their clinical 
use is again limited due to the risk of tumor for-
mation. Fetal stem cells also have ethical prob-
lems [82].

 Induced Pluripotent Stem Cells-iPSc
These cells, which have lost their pluripotency 
ability gain pluripotency characteristic after vari-
ous methods/factors. Shinya Yamanaka of Kyoto 

University has introduced the term iPSc to the 
literature in 2006. Yamanaka and his co-workers 
obtained ECSs like cells with retroviral transfec-
tion of 4 pluripotency stimulating genes (Oct4, 
Sox2, KLF-4, c-Myc) from skin fibroblast cells. 
Yamanaka and John Gurdon who laid the founda-
tion of cloning, have shown terminally differenti-
ated cells can gain pluripotency and have been 
awarded with the Nobel Prize for Medicine in 
2012 [105].

In the following years, studies with iPSs 
gained popularity. Improvements such as increas-
ing efficiency of forming cells, using tissue- 
specific multipotent stem cells rather than 
terminally differentiated cells, using more conve-
nient method for the clinic use instead of viral 
transfer, are aimed to increase the chances of 
clinical use of these cells. The biggest advantages 
of these cells are; the use of cells obtained from 
the patient with the lack of immunological 
incompatibility problems, genetic corrections 
derived from pluripotent stem cells can be per-
formed and can be differentiated into desired 
cells. Although it has many advantages compared 
to embryonic cells, there are important issues 
before they can be clinically applied. First, iPSc 
efficiency should be increased using non-viral 
methods. In addition, these methods must not 
create any susceptibility to tumor formation. 
Xenogenic factors should not be used to avoid 
immunological reactions [122].

Fig. 17.3 Stem cells according to their sources
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iPSc used in maxillofacial surgery, plastic and 
reconstructive surgery and orthopedic surgery 
and traumatology generally differentiate into 
bone and cartilage cells. For this purpose, iPSc 
are expanded on tissue scaffolds and differenti-
ated into osteogenic/chondrogenic cells. 
Prefabricated cell containing tissue scaffolds are 
injected to immune suppressed mice and then 
bone/cartilage tissue formation is monitored. In 
addition to direct differentiation, iPSc can be dif-
ferentiate into MSCs before bone and cartilage 
cell differentiation. Thus, it is argued that a more 
controlled protocol should be followed [17].

 Adult Stem Cells (ASCs)
MSCs MSCs, especially those of the bone, carti-
lage, fat, tendon and stroma, differentiate into 
many different tissue cells (heart, liver, pancreas, 
nervous system cells) using soluble factors that 
contribute to tissue and organ regeneration. 
MSCs are expanded in  vitro by protecting its 
stem cell properties, support hematopoiesis, and 
when they are transplanted they are not rejected 
by immunosuppressive properties. Thus, these 
cells have potential applications in many clinical 
areas [10].

MSCs are main cells of the connective tissue. 
They were identified by the first time in 1976. 
Friedenstein showed cell colonies, which are 
adhesive and morphologically resembling fibro-
blasts in bone marrow culture by using fetal calf 
serum. Also, their differentiation into bone, fat 
and cartilage cells was demonstrated. Previously, 
these cells called CFU-F (Colony forming unit- 
fibroblast) and ‘bone marrow stromal fibroblasts’, 
but then they were called as mesenchymal stem/
stromal cells [40].

Bone marrow is one of the richest sources of 
MSCs that host hematopoietic endothelial and 
mesenchymal stem/progenitor cells originating 
from the mesoderm [4]. MSCs can be also iso-
lated from other tissues than bone marrow. 
Mechanical and enzymatic methods are used for 
the isolation of MSCs in solid tissues. MSCs can 
be isolated and expanded from bone/periosteum, 
muscle tissue, dental pulp and maxillofacial tis-
sues, liver, lipoaspiration materials, umbilical 
cord blood, cord stroma, placenta, amniotic fluid, 

synovial fluid, and even stimulation through the 
peripheral blood. They have many properties like 
adherence to plastic tissue culture dishes, show-
ing fibroblastoid morphology, differentiation and 
surface markers and these features are indepen-
dent from their harvesting tissues. These proper-
ties are substantially similar; but the differentiation 
capacity and functional characteristics may show 
some changes according to origin of tissue type 
[86].

In cultures initiated with heterogeneous cell 
population, MSCs distinguish from other cells 
with their cell surface molecules, which are dif-
ferent from of hematopoietic stem cells (HSC) 
and/or tissue specific antigens. In contrast, 
involved in adhesion, cell-cell, cell-extracellular 
matrix interactions and stroma-specific antigens 
are known to be expressed high. However, defin-
ing a specific antigen has not been described for 
MSCs [32]. MSCs which is found in various tis-
sues as support cells, are synthesized a large 
number of bioactive molecules, cytokines, che-
mokines, enzymes and the extracellular matrix 
proteins in relation to these features. MSCs 
release some growth factors required for hemato-
poietic cells in bone marrow such as macrophage 
colony stimulating factor (M-CSF), Flt-ligand, 
and stem cell factor (stem cell factor/SCF). 
Furthermore, as well as interleukin-6 (IL-6), 
IL-7, IL-8, IL-11, IL-12, IL-14, IL-15 cytokines, 
MSCs are synthesized chemokines including 
SDF1-alpha (Stromal Derived Factor-1alpha/
CXCL12), monocyte chemo attractant protein 
(monocyte chemo attractant protein-1/MCP-1) 
[39]. Transplanted MSCs into the injured area of 
the spinal cord appeared to reduce apoptosis in 
neuronal cells [45]. In other studies, neurotroph-
ins like BDNF (Brain-derived neurotrophic fac-
tor) and NGF-β (Nerve growth factor-β) released 
by the MSCs increases the life of the neuronal 
cells [5, 25, 63]. Also in vitro co-culture obtained 
from 25 different bone marrow MSCs and neuro-
nal stem cells obtained from the cerebral cortex 
of mice showed increased survival and migration 
properties for neuronal cells [6].

MSCs in vivo are anti-inflammatory and non- 
immunogenic. They also prevent alloreactive T 
cell activation and further reactions, inhibit acti-
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vated B-lymphocytes and stimulate regulatory T 
cells. Thus, immunosuppressive effect was 
through inhibiting lymphocyte proliferation in 
animals and humans. Besides, a dose-dependent 
stimulating effect probability is shown on the 
immune system in some circumstances [80]. As 
well as the immunomodulatory effect of MSCs, 
anti-apoptotic factors, angiogenic and antifibrotic 
properties are also available. These features are 
explained through their role in wound healing. 
Mesenchymal stem cells are antifibrotic when 
they are used after spinal cord injury and they 
prevent scar tissue formation that may prevent 
axon regeneration inhibition [51].

 Differentiation Potential of MSCs
The most interesting feature of MSCs, especially 
for applications in regenerative medicine, is their 
potential to differentiate into a variety of cell 
types in appropriate microenvironments includ-
ing connective tissue. Several researchers stimu-
lated osteogenic, adipogenic, chondrogenic, and 
myogenic in vitro differentiation with appropri-
ate signals and generated hematopoietic stroma 
formation. Mesenchymal stem cells also present 
plasticity. They may differentiate to other essen-
tial cells in the regeneration area [86]. Myoblast 
[12], hepatic [75], cardiac [49], renal [3] and neu-
ral cell [101] differentiation of bone marrow 
derived MSCs were published.

MSCs migrate to sites of inflammation and 
differentiated to requested cells during wound 
healing. The same property is realized for trans-
planted MSCs in the damaged area. Rat bone 
marrow stromal cells transplanted to spinal cord 
injury differentiated to neurons [26] and astro-
cytes [128] and functional improvement was 
documented based on BBB behavioral ratings 
scoring (Basso, Beattie, Bresnahan Locomotor 
rating scale) [48, 61, 97].

 Contribution of  MSCs to  Repair Damaged 
Tissue
As effective mechanisms of MSCs in damaged 
tissue repair; differentiation to mature functional 
cells, cell function recovering after damaged cell- 
MSC fusion, cell-cell and cell-extracellular 
matrix relationship with MSCs, releasing of the 
soluble factors (growth factors, cytokines, che-

mokines, etc.), paracrine factors, enzyme or 
immunomodulatory, anti-inflammatory, anti- 
apoptotic, and angiogenic effects can be consid-
ered. The most important mechanisms are 
thought as soluble factors releasing and cell- 
matrix adhesive relationship [102].

Migration is required for the movement of 
MSCs from their niche into the damaged tissues. 
Signal for migration of cells has been shown to 
come from the damaged tissue microenviron-
ments. Soluble factors like SDF-1 (Stromal 
Derived Factor-1/CXCL12), MCP-1 
(Macrophage Chemoattractant Protein-1) and 
complement C3 fraction released in the damaged 
area have important roles in migration [120]. 
Advantages of MSCs in clinical practice are as 
follows (Fig. 17.4).

Musculoskeletal diseases (MSDs) are a group 
of disorders that result from trauma or degenera-
tion in either a single event or repetitive episodes. 
With the potential to differentiate along mesen-
chymal lineages, MSCs have been widely used in 
cell-based therapy for the treatment of MSDs. 
Lot of studies using MSCs for cell- based ther-
apy in MSDs have shown promising results [33, 
37, 41].

Many studies have also investigated the usage 
of ex vivo expanded MSCs in bone regeneration. 
Three patients with segmental bone defects were 
successfully treated with autologous MSCs deliv-
ered in hydroxyapatite scaffolds [90]. There are 
several investigations that integrated MSCs into 
biomaterials like hydroxyapatite and calcium 
phosphate and showed promising features, 
including their ease of availabilities, osteocon-
ductivities, and absence of immune responses 
[11, 95, 114]. A clinical study also reported that 
full-thickness articular cartilage defects in the 
patella-femoral joint transplanted with collagen 
gels containing autologous MSC showed 
 significant and lasting restoration of cartilage 
after follow- ups at 17 and 27 months [116]. When 
comparing autologous MSC transplantation with 
autologous chondrocyte implantation (ACI) for 
cartilage repair, the MSC transplantation was 
shown to be more economical, minimize donor- 
site morbidity, require less surgery, and still as 
effective as its ACI counterpart in a 2-years fol-
low- up [81].
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Treatment of osteoarthritis (OA) is much more 
difficult, since the defect is larger and is charac-
terized by an inflammation environment. MSCs 
embedded in collagen gels have been trans-
planted to treat patients with knee OA who 
underwent a high tibial osteotomy, and the effects 
were compared with the patients who underwent 
only osteotomy. Although the clinical improve-
ment in each group was not significantly differ-
ent, the cell-transplanted group achieved better 
arthroscopic and histological results than the 
cell-free control group [115]. Another clinical 
trial involved patients of OA who received intra- 
articular injections of culture-expanded, bone 
marrow-derived MSCs, and 63.2% of patients 
showed improvement at an average follow-up of 
11.3 months [24].

For degenerative lumbar conditions, MSCs 
have been applied for spinal fusion as a compo-
nent of Osteocel Plus, an alternative allograft cel-
lular bone matrix, to treat patients who underwent 
a minimally invasive transforaminal lumbar inter-
body fusion [1]. MSCs with β-tricalcium phos-
phate (β-TCP) utilized for lumbar spinal fusion 

resulted in a successful fusion rate of 93.3%, by 
autologous iliac crest bone grafts [123].

Consequently, the studies currently available 
suggest that expanded MSCs have multiple thera-
peutic effects on MSDs. Based on these signifi-
cant benefits; MSCs or accumulating MSC-related 
osteo-biologic products are in development. 
However, there is still a lack of a gold standard 
procedure to expand MSCs. Recently, improve-
ment of culture conditions like using a hypoxic 
culture has been shown to enhance short-term 
proliferation, long-term expansion efficiency, 
differentiation potential, stemness, expression of 
chemokine receptors, migration and engraftment 
ability.

17.3  Advanced Nanobioceramics

Ceramics are nonmetallic inorganic solid materi-
als composed of calcium, silica, phosphorous, 
sodium, magnesium and potassium, which are 
found in amorphous (non-crystalline) and crys-
talline forms [46, 53, 57]. Their presence in 
amorphous or crystalline form depends on the 

Regenera�on - Direct 
Effect

•With access to the damaged 
�ssue with migra�on 
characteris�cs, 

•With their differen�a�on 
capaci�es; 
*has both mesenchymal �ssue 
cells like muscle, fat, bone, 
car�lage, stromal cells, 
tendons, ligaments and 
*other �ssue cells 
differen�a�on capability 
(transdifferen�a�on; neurons, 
hepa�c, pancrea�c, etc.) 

•Be capable of fusion with 
damaged cells, 

Regenera�on-
Indirect Effect

•Because of differen�a�on of 
connec�ve �ssue stromal cells, 
providing support related to 
the development and func�on 
of �ssue cells,

•Contribute to the repair of 
damaged cells/�ssues by 
growth factors, cytokines and 
chemokines such as exosomes 
directly or via secreted soluble 
factors. 

•Due to angiogenic, apopto�c, 
an�-inflammatory proper�es 
that contribute to �ssue repair 

Immunoreac�vity

•Be of immunosuppressive/non-
immunogenic; due to these 
characteris�cs does not have to 
HLA compa�bility for the 
clinical use of MSCs,

Fig. 17.4 Advantages in terms of clinical use of MSCs
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arrangement of the ionic bonds [106]. Degradation 
of ceramics is more durable and harder than most 
metals generally, but they are also more fragile. 
Since they have similar chemical properties to 
the natural structure of bone, they can be used in 
orthopedic and dental implant applications [106]. 
Although autologous bone or autografts are still 
an effective treatment for bone regeneration, the 
morbidity in the donor zone limits the effective-
ness of this procedure. While beneficial results 
such as osteoconduction, osteoinduction and 
non-emergent immuno-response from graft 
applications can be obtained through bioceramics 
[66]; the problem of the morbidity of the donor 
region can also be avoided.

Biomaterials have followed an evolutionary 
process in the direction of usage capacities; first- 
generation biomaterials have a feature that would 
only replace the damaged area, but second- 
generation biomaterials repair the damaged tis-
sue zone. Bioceramics, which are third-generation 
biomaterials, are used for tissue regeneration due 
to their surface properties and carrier features 
[112]. For the purpose of their use, bioceramics 
are divided into three main classes (Table 17.1); 
non-resorbable (inert), bioactive or surface-active 
(semi-inert) and biodegradable (non-inert) [36, 
57].

Regeneration of the replacement tissue also is 
affected by the size and chemical properties of 
bioceramics. If the cell size in the replacement 

tissue zone is between 10 μm and 100 μm, adap-
tation to the host site makes it important that the 
bioceramics are in micro dimension while; the 
presence of protein and molecule sizes in the 
range of 1 nm to 10 nm induces cytokines that 
activate cellular pathways required for tissue 
regeneration nano-size stands out in bioceramics 
[55, 112].

Because of their similar mineral content and 
natural biocompatibility; hydroxyapatite (HA), 
tricalcium phosphate (TCP) and glass ceramics 
are the most widely used bioceramics [55].

17.3.1  Nano-hydroxyapatite 
Bioceramics

Nano-hydroxyapatite (nHA) is the main inor-
ganic component of bone with Ca10(PO4)6(OH)2 
molecular formula. It is one of the widely used 
bioceramics because of its biocompatibility and 
osteoinduction in bone treatment applications 
[55, 112, 113].

nHA production is carried out in four different 
ways; wet chemical synthesis, dry chemical syn-
thesis, high temperature reactions, and biological 
sources. With these production methods, nHA 
can be produced from 3  nm to 2000  μm 
(Fig.  17.5). Wet chemical synthesis is widely 
used as it is the simplest and most effective 
method and also final product’s Ca:P ratio is 
approximately 1.67 [36, 76, 112].

In a study poly-(lactic-co-glycolic acid) 
(PLGA)-collagen bioactive scaffolds containing 
nHA were investigated for proliferation and bone 
regeneration in human MSCs, and found that 
proliferation in nHA-containing scaffolds 
decreased when compared to other scaffolds but 
significant increase in alkaline phosphatase 
(ALP) activation was observed as a sign of 
 osteoblastic differentiation [15]. In another study 
where scaffolds produced by freeze-drying 
method containing zein (ZN), chitosan (CS) and 
nHA at different weight ratios were used with 
human osteosarcoma cell line MG-63 cells for 
bone regeneration and the fabricated biomaterial 
was characterized by X-ray Diffraction (XRD), 
Fourier Transform Infrared Spectroscopy (FTIR) 

Table 17.1 Bioceramic classes

Bioceramics
Biodegradable 
(non-inert)

Bioactive 
(semi-inert)

Nonresorbable 
(inert)

Calcium 
phosphates

Hydroxyapatites Alumina

Tricalcium 
phosphates

Silica calcium 
phosphates

Zirconia

Aluminum 
calcium 
phosphates

A/W glass-ceramics Carbon

Coralline Oxide- and 
hydroxide- based 
bioactive ceramics 
vd.

Silicone 
nitride

Zinc calcium 
phosphorous 
oxides vd.

Calcium 
aluminate vd.

S. Köse et al.
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and scanning electron microscope (SEM) meth-
ods. Comparisons of the mechanical properties 
after the characterization studies showed that 
scaffolds containing nHA at the highest weight 
ratio were more stable. When scaffolds were 
examined for cell attachment, biomineralization 
and cytotoxicity, MTT (3-(4,5 dimethylthiazol- 2- 
yl)-2,5-diphenyltetrazolium bromide) analysis 
showed that the proliferation of cells decreased 
as nHA ratio increases. Scaffolds containing 
nHA at the highest level appear to increase 
biomineralization [100]. In another study, nHAs 
were obtained by wet chemistry method at 
800  °C, 900  °C and 1000  °C temperatures and 
after their structural properties was confirmed by 
XRD and transmission electron microscopy 
(TEM) analysis; these nHAs were evaluated for 
their cytotoxic effects on murine fibroblast cell 
line L929 with MTT test and none of the groups 
showed any cytotoxic effect [104]. In Dan et al.’s 
study, nHA was added to improve the physico-
chemical and biological properties of the 
chitosan- gelatin scaffolds and the properties of 
these scaffolds in bone tissue engineering were 
examined. According to the results, nHA con-
taining scaffolds showed higher cell viability and 
cell proliferation than blank scaffolds with 
MC3T3-E1 cells [29] (Tables 17.2 and 17.3).

17.3.2  Nano-tricalcium Phosphate 
Bioceramics

Tricalcium phosphate (TCP) is also an osteocon-
ductive bioceramic like nHA but has different 
bioactivity with the chemical formula Ca3(PO4)2 
and two forms α and β[14, 68, 93].

Compared to HA, the resorption rate of TCP 
was higher in the physiological media, while HA 
was higher in the osteoconductivity. These bioac-
tive properties and degradation levels depend on 
the ratio of calcium and phosphate ions contained 
in the bioceramics; as mentioned above while 
this ratio is 1.67 for HA and 1.5 for both forms of 
TCP [34, 44, 84]. Due to their composition dif-
ferences, dissolution rates of α-TCP and β-TCP 
are different and α-TCP dissolves more rapidly 
than β-TCP [34].

Cao et al. investigated the availability of poly-
lactic acid (PLA) cages in the cervical region for 
spine surgery by improving their osteoconductiv-
ity with nano β-TCP. In this study, with creating 
an anterior spine fusion model in goats, the 
effects of autologous bone graft, polyether ether 
ketone (PEEK) cage and PLA/nβ-TCP cage were 
investigated with disc space height  measurements 
and histological evaluation at week 12 along with 
radiography. As a result, it has been shown that 

Fig. 17.5 SEM images for nHA at different temperatures (a) 300 °C, (b) 1000 °C

17 Stem Cell and Advanced Nano Bioceramic Interactions



326

the PLA cages developed with nano β-TCP have 
better biomechanical stability, and overall inter-
vertebral bone and interbody fusion volume ratio 
when compared to autologous bone graft and 
PEEK cages [44].

In an in vivo study in the field of endodontic 
application, nano β-TCP particles were fabri-
cated together with Chitosan/Glycerophosphate/
Glyoxal hydrogels to gain thermo-sensitive prop-
erties. Physicochemical characterization of the 
produced bio-molecule was carried out using 
XRD, FTIR, TEM and SEM. Cytotoxicity stud-
ies were performed in normal Wish cells, hepato-

cellular carcinoma cell line HEPG2 cells and 
breast cancer cell line MCF7 cells via MTT. In 
vitro cytotoxicity assays have shown that the 
application of composites is safe and in vivo stud-
ies have been made in the premolar teeth of mon-
grel dogs. The fabricated composite and 
Klipdent-PL®, a commercial product, has been 
compared for their histological and inflammatory 
reactions regarding to bone tissue regeneration. 
Consequently, fabricated composite was more 
bioactive than the commercial product and had a 
positive effect on bone tissue formation by show-
ing osteoconductive properties [84] (Table 17.4).

Table 17.2 In vitro studies with nHA

Material Produced methods
Characterization 
methods Cell Type Effect References

PHBV/
PAA-nHA

Electrospinning FTIR, FE-SEM Human Fetal 
Osteoblast (hFOB)

In the group containing 
nHA, cell proliferation 
and ALP expression 
increased by 36.40% 
and 40.14%, 
respectively.

[124–
126]

PCL/Fibroin/
nHA Scaffold

Supercritical 
Foaming

SEM Murine 
Osteoblastic Cell 
Line MC3T3-E1

Increase in scaffolds 
containing nHA of ALP 
activation

[31]

Increase in Calcium 
levels in scaffolds 
containing nHA and 
Fibroin according to 
PCL scaffold
Cellular attachment was 
highest in the PCL/
Fibroin/NHA scaffold

PCL + 
Fibronectin + 
nHA Scaffold

Electrospinning FTIR, SEM Mouse 
Mesenchymal 
Stem Cells 
(mMSCs)

Increase in Calcium 
Concentration

[74]

Increase in ALP 
activation
Increase in OCN, OPN 
and Runx2 gene 
expressions

nHA + Folic 
Acid

Hydrothermal TEM, FTIR, 
UV-Vis 
Spectroscopy

Human Bone 
Marrow 
Mesenchymal 
Stem Cells 
(hMSC-bm)

No effect on 
proliferation and 
survival

[98]

Increase in expression of 
Runx2

nHA+PCL 
Composite 
Films

Solvent and 
Mechanical 
Blending Process

EDX, SEM, 
micro-CT, XRD, 
FTIR

Human Tenocytes Increase in cell adhesion [109]
Parallel organization of 
cells was observed
Increase in proliferation

S. Köse et al.
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17.3.3  Nano- Biphasic Calcium 
Phosphate Bioceramics

Nano-biphasic calcium phosphate (nBCP) is an 
osteoconductive and osteoinductive bioceramic 
consisting of two calcium phosphate phases, 
nHA and nTCP.  The ratios of nHA and nTCP 
phases alter the physicochemical properties of 
nBCP ceramics and resulting in different biologi-
cal responses [20, 30]. By using TCP in this com-
posite bioceramics, the low dissolution rate of 
HA is avoided while the similarity to the mineral 
phase of the bone and mechanical properties 
increased by the HA content. The advantage of 
BCP is the possibility to design the ratio of HA 
[42]. nBCP bioceramics can be produced by sin-
tering, solid-state reaction, flame spray pyrolysis, 
liquid-microwave sintering and sol-gel tech-
niques. Among these methods, sintering tech-
nique with a non-stoichiometric CaP and 
temperature higher than 750  °C is used more 
often since it is more simple and economic. Hiep 
et al. investigated in vitro and in vivo effects of 
Polycaprolactone/Poly (lactic-co-glycolic acid) 
-BCP (PCL/ PLGA) scaffolds produced by sol-
vent evaporation method on osteogenic differen-
tiation. SEM, Energy Dispersive X-Ray 
Spectrometry (EDS), micro-CT indicated distri-
bution of BCP in the polymer scaffold and the 
XRD peaks within the characterization study 
were shown in the expected regions. Following 
the production stage of the material, proliferation 
studies were carried out with MTT in hBMSCs 
(human bone marrow MSCs). In the proliferation 
experiment, the contribution of BCP to prolifera-
tion was investigated by forming control, PCL/
PLGA and PCL/PLGA+BCP groups. As a result 
of the comparison of groups at weeks 1, 2 and 3, 
there was only a statistically significant differ-
ence in the group containing BCP compared to 
the group containing PCL/PLGA at all three time 
points. Compared to the control group, only pro-
liferation increase was detected in the group con-
taining BCP at week 3. As a result of fluorescence 
and Hematoxylin & Eosin (H&E) staining, both 
scaffold groups seem to support cell migration. 
When osteopontin (OPN), collagen type 1 
(COL1), bone morphogenetic protein-2 (BMP-2) 

and osteocalcin (OCN) expression levels were 
examined, quantitative RT-PCR analysis showed 
a significant increase in OCN and OPN with 
BCP. Later, BCP containing scaffolds implanted 
into rabbits femoral defects and new bone forma-
tion was assessed with micro-CT [107].

A clinical study with 48 volunteers by Uzeda 
et al. evaluated two BCP bioceramics with differ-
ent nHA/nβ-TCP ratios and compared them with 
a commercially available bone ceramic histologi-
cally and histomorphometrically. nHA and 
nβ-TCP contents of these applied composites 
were; Biomaterial 1 (60.3% / 29.7%), Biomaterial 
2 (78.2% / 21.8%) and Bone Ceramic (61% / 
39%), respectively. Volunteers were followed for 
6 months and no infection, pain or swelling was 
observed in any of them when subjected to exam-
ination with H&E staining. At the end of 
6 months, new bone formation was observed in 
the biomaterial 1  BCP bioceramics, which had 
the highest β-TCP ratio [111].

17.3.3.1  Electrospinning 
and Nano- Bioceramics

As mentioned above, there are many methods in 
the production of nano-bioceramics however 
electrospinning is generally preferred due to its 
ease and cheapness to produce biomaterials in 
various shapes and sizes (10 μm to 10 nm) [21, 
47]. Even though polymer materials are produced 
mostly by electrospinning method, nano- 
bioceramics can be alsoused to create an extra-
cellular matrix (ECM) -like structure.

In this method, polymer solution as a visco-
elastic fluid or melt is loaded into a syringe-like 
structure area with electric force and then this 
fluid is sent to the Taylor cone region, which is in 
a conical form. An electrostatic force-generating 
melt or polymer solution that can exceed the sur-
face tension is collected in a non-woven platen or 
rotary pick-up, or oriented through the spinneret 
[35, 121].

In a study by Kumar et al., PCL/HA scaffolds 
containing 100 nm nHA were prepared by elec-
trospinning and characterized by SEM, FTIR and 
differential scanning calorimetry (DSC). After 
material characterization, in vitro biocompatibil-
ity of these scaffolds containing different ratios 
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of nHA was investigated. Cell proliferation assay 
was performed with MTT, while apoptosis was 
performed with Acridine Orange and Propidium 
Iodide staining and found that proliferation of 
hMSCs was increased with increasing HA con-
tent of scaffolds, and no apoptotic cells were 
found at fluorescent microscope after staining 
[62]. In another study scaffolds produced by 
electrospinning using PCL- Polyvinyl acetate 
(PVA) and HA were investigated for vascularized 
craniofacial bone regeneration. In vitro studies 
with DPSCs (Dental pulp stem cells) and hMSCs 
were similar to those of Kumar et al. It has been 
shown that the ectopic bone formation studies in 
mice following in vitro experiments supported 
vascularization and bone formation ability of the 
produced PCL-PVA + HA scaffolds [88].

17.3.3.2  Enhancing Nano- 
Bioceramics with Trace 
Elements

Nano-bioceramics resemble the natural mineral 
content of bone, and integration of trace elements 
in the structure of the bone by incorporating the 
produced ceramic structures is one of the research 
topics of today. In this route, especially in the 
field of tissue engineering, it is aimed to develop 
new bioceramics with higher bioactivity and bio-

mechanical properties by adding Zinc (Zn+2), 
Magnesium (Mg+2), Strontium (Sr+2) and Boron 
(B), which are naturally found in biological 
structures. These elements are participated by 
interactions with calcium (Ca+2) ions in ceramic 
structures (Fig. 17.6).

In a unit cell of the apatite structure, there are 
four Ca+2 ions surrounded by nine oxygen (O) 
atoms, which are called Ca+2 (I) and six Ca+2 ions 
in each unit cell are Ca+2 (II) and it is allowing the 
movement of anions due to its large size. For 
each P atom, it forms the structure with 6 PO4

3− 
anions coordinated with four O atoms [103]. The 
Ca+2 (II) region is larger than the Ca+2 (I) region 
by volume. Different interactions with the two 
regions have different consequences for this rea-
son. The Ca+2 (I) and Ca+2 (II) regions are impor-
tant for the crystallinity of the apatite structure 
and for the incorporation capacities of trace 
elements.

Magnesium and Strontium are important trace 
elements in human physiology and cell metabo-
lism. While Mg is found to be 0.72, 1.23 and 
0.44% by weight in bone, dentin and enamel, 
respectively; Sr is also present in the mineral con-
tent of the bone and contributes to bone mineral-
ization. These two elements contribute to bone 
tissue formation at different stages. Studies show 

Fig. 17.6 SEM images for Sr doped nHA at different temperatures (a) 300 °C, (b) 1000 °C
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that Sr increases osteoblast activity and inhibits 
osteoclast activity [16, 94]. Mg plays an impor-
tant role in bone metabolism by stimulating 
osteoblast proliferation in the early stages of 
osteogenesis [91, 103]. Mg interacts with the 
Ca+2 (I) region of the apatite structure; the Sr 
interferes with Ca (II) +2 region and prevents 
crystallization. These interactions also impair the 
stabilization of the structure and the thermal 
transformation of the apatite structure supports 
the transition to β-TCP [92, 103]. These two ele-
ments disrupt the stability of apatite structure that 
causes increased ion release from the material 
and stimulates cell responses. For bone tissue 
engineering applications, different concentra-
tions of Sr were doped with nHA and nanohybrid 
scaffolds’ Ca: Sr ratios were 10: 0, 9: 1, 5: 5 and 
0:10, respectively. They were represented as 
HAP, Sr1HAP, Sr5HAP and Sr10HAP, respec-
tively. Nanohybrid scaffolds were evaluated for 
proliferation and ostegenic differentiation in 
hBMSCs. In all four nanohybrid scaffolds, cell 
proliferation and morphology appeared normal in 
SEM images, and cell numbers increased with 
the day. The CCK-8 test showed same level of 
proliferation for all four groups on day 1 and an 
increase on day 7. SrHA/CS scaffolds show an 
increase in proliferation on days 3 and 7 com-
pared to HA/CS scaffolds. On days 7 and 14, 
ALP activation, ALP protein expression, and 
COL1 protein expression levels were highest in 
the Sr5HA/CS group compared to other groups. 
Alizarin Red S staining was done on day 14, to 
evaluate the ECM mineralization and the highest 
mineralization was also observed in Sr5HA/CS 
nanohybrid scaffolds. According to these results, 
the Sr5HA/CS nanohybrid scaffold had the high-
est osteoinductivity when compared to other 
nanohybrid scaffolds and since the Ca: Sr ratio 
was 5: 5  in this group; it was thought that the 
combined effect of two ions contributes to this 
situation [65].

In Geng’s study, nHA bioceramics were pro-
duced using egg shells as a Ca+2 source and Sr+2 
bioactivitiy was investigated in osteoblast-like 
MG-63 cells by loading Sr+2 into the produced 
Egg Shell-nHA (ES-nHA). The fabricated 
ES-nHA was analyzed by XRD, FTIR, SEM, 

TEM and ICP (Inductively Coupled Plasma) 
methods to show the similarity to nHA structure 
and the effect of ES-SrnHA on cell proliferation 
and osteogenic differentiation were also investi-
gated. On both day 3 and 7, the proliferation rate 
of cells was higher in the ES-SrnHA group. 
ES-SrnHA bioceramics also had the highest ALP 
activation level on day 4. Osteogenic differentia-
tion was also analyzed by RT-PCR and same 
results were obtained due to higher Runx2 (Runt- 
related transcription factor 2), ALP and OCN 
mRNA expressions levels [43].

Zinc (Zn) is a trace element that stimulates the 
synthesis of many proteins and is a cofactor for 
many enzymes, as well as in the structure of the 
bone, its effects resemble Sr. Zn also inhibits 
osteoclastogenesis while stimulating osteoblast 
activity, such as Sr [103]. Zn interacts with the Ca 
(II) region of the apatite form and reduces the 
crystallinity of the apatite form such as Mg and 
Sr [92]. Predoi and colleagues showed by XRD 
and FTIR analysis, that the increment of Zn con-
centration in the composite decreased the crystal-
linity of HA while increased the fluid lattice. 
Physico-chemical studies showed that the Zn+2 
ions were displaced by Ca+2 ions and responsible 
for this behavior. In the morphological analysis 
of Zn-nHA bioceramics by SEM, as the Zn con-
centration increased in the nHA, the particle size 
decreased. However, there was no difference in 
the particle size affected by different Zn concen-
trations. Effect on cell-viability of Zn-loaded 
nHA bioceramics for 65.5, 125, 250 and 500 μg/
ml doses on HepG2 cells were investigated. 
Massive cell death was observed as a result of 
high dose sedimentation. However, bioceramics 
with the highest Zn concentration showed less 
toxicity at concentrations of 250 and 500 μg/ml. 
According to this result, researchers suggested 
that nHA bioceramics containing different con-
centrations of Zn could make a difference in the 
release of Zn+2 ions or solubility [89].

In Forero’s study, they added nHA and nano- 
Copper- Zinc alloy (nCuZn) to Chitosan/Gelatin 
(G/C) scaffold for the improvement of scaffold’s 
biological and mechanical properties. They 
investigated composites’ effects to proliferation, 
attachment and ALP activations with mouse 
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embryonic fibroblast cells in vitro. In vivo stud-
ies, they implanted composites to rabbits subcu-
taneously and they evaluated the results by 
histological methods. In in vitro studies, nCuZn 
alloy- nHA doped scaffolds increased cell adhe-
sion at 24 h and ALP activation up to day 21 com-
pared to nHA doped scaffolds. The effect of 
nZnCu/nHa/Ch/G scaffolds on cell proliferation 
was demonstrated by H&E staining; the cells 
were adherent to the nZnCu/nHA/Ch/G scaffold 
surface on day 7 and they were started to be seen 
on the nZnCu/nHA/Ch/G scaffold pores on day 
14. For in vivo biocompatibility measurements, 
H&E staining was carried out at the end of 4th 
week and it was shown that cell migration was 
triggered in the nZnCu/nHA/Ch/G scaffold than 
better the CH/G scaffold [38].

Chou et  al. investigated the effect of Zn on 
β- TCP for proliferation and osteogenic differen-
tiation of mesenchymal stem cells. ICP-MS 
results showed that the amount of Zn+2 released 
by β -TCP does not have any side effects. 
Zn-loaded β -TCP bioceramics increased the 
proliferation of MSCs and ALP activity up to 
day 14. On day 14, the amount of calcium, which 
is a sign of late osteogenic differentiation, was 
increased in Zn-doped β -TCP according to con-
trol and β -TCP and supported by Alizarin red S 
staining [27].

Boron (B) is another element that is intended 
to be added to ceramic materials to improve the 
structural properties of the material and to stimu-
late biological responses. B has direct and indi-
rect effects on bone structure [87]. In Tuncay’s 
work, nHA and B-nHA, known for their osteoin-
ductive properties, were used to improve the 
mechanical properties and bioactivity of chitosan 
scaffolds prepared by microwave irradiation and 
they were used with osteoblastic MC3T3-E1 
cells for investigating the effects of cell attach-

ment characteristics, proliferation effect, early 
and late osteoblastic differentiation markers. 
Morphology of composites was investigated with 
SEM and TEM. XRD, FTIR and RAMAN analy-
ses showed that B loading did not affect the HA 
structure. XRD diffraction peaks showed that B 
doped nHA had higher crystallinity than 
nHA.  The proliferation and attachment proper-
ties of MC3T3-E1 osteoblastic cells showed bet-
ter results with B-nHA composites. For the 
evaluation of B-nHA bioceramic’s effect to bone 
regeneration capacity, early and late osteoblast 
differentiation markers COLI, RunX2, OCN and 
OPN gene expressions were investigated and it 
was shown that COL1, OCN and OPN gene 
expression significantly increased. But, RunX2 
gene expression was similarly increased in both 
groups with B-nHA and nHA. Authors stated that 
the mineralization was higher in the chitosan 
scaffolds with B-nHA [110].

Ciftci’s study showed that the proliferation 
and osteogenic differentiation potential of bone 
marrow mesenchymal stem cells were similar in 
HA composite treated and untreated cells but 
application of B-nHA to cells increased the pro-
liferation. When the amount of calcium was mea-
sured, the contribution of the B-nHA composite 
to the osteogenic differentiation was higher than 
blank nHA composite (Fig. 17.7) [28].

Another study examining the in vitro cyto-
toxic effects of B by modifying the bioactive 
glass with two different amounts of B showed 
that, the cell viability of mouse early osteocyte 
MLO-A5 cells was reduced in stable environ-
ment with bioactive glass containing 35.33% 
more B, but in a dynamic environment similar to 
body fluid the viability of the cells increased 
[73]. The other studies on Mg, Zn, Sr and B are 
summarized in Table 17.5.
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17.4  Control and Treatment 
of Bone Infection 
with Bioceramics

Osteomyelitis is a musculoskeletal infection 
caused by many microorganisms, like bacteria, 
fungi, yeast and viruses. The infection is gener-
ally arisen secondary from a contiguous focus of 

infection such as trauma, surgery or vascular 
insufficiency and hematogenous spread. 
Osteomyelitis can be classified as acute or 
chronic osteomyelitis; acute osteomyelitis lasts 
for days and weeks while chronic osteomyelitis 
lasts for months or years. In the mechanism of 
infection, microorganisms adhere to host bone 
tissue with their adhesins specific for host pro-

Fig. 17.7 FTIR spectra of B doped nHA. All of peaks in this diagram belong to PO4 and OH radicals. The (BO3)−3 
characteristic peaks are shown at 1243 cm−1 and 783–743 cm−1 vibration band

Table 17.5 Various trace element loaded nano-bioceramic studies

Trace 
element Bioceramic material Study type Effects References
Mg and 
Zn

Mg-3Zn-HA In vitro Increased degradation [50]
Increased cell viability

Mg Calcium magnesium 
phosphates

In vitro Increased degradation [19]
Increase in the number of differentiated 
osteoclasts

Sr Sr-nHA In vitro and 
in vivo

Enhancing of cell adhesion, proliferation and 
osteogenic differentiation

[67]

Increasing of new bone area
Increasing of degradation

Sr Sr-BCP bone cement In vitro Increasing of degradation [127]
Good cytocompatibility
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teins like collagen, fibronectin and bone sialopro-
tein. Macrophages attack to the pathogen, release 
proteolytic enzymes and leads to tissue lysate. In 
the manner of adaptive immunity, pus spreads to 
vascular channels in the bone and deteriorate 
blood flow. As the infection progresses to chronic 
state, necrotic bone is fragmented and seques-
trum is formed [18]. Methicillin resistant 
Staphylococcus aureus (MRSA) is the most com-
mon pathogen isolated from the infection site but 
other pathogens like Staphylococcus epidermi-
dis, coagulase-negative staphylococci, 
Enterobacter species, Pseudomonas aeruginosa 
and Mycobacterium species are also responsible 
for osteomyelitis. Staphylococcus aureus is a 
gram positive, facultative anaerobe having a 
spherical shape with 0.5–1.5  μm diameter and 
forms bead like clusters when colonized. It 
attaches to the surface with its adhesins and exo-
toxins and many of its strains are capable of 
forming biofilm [71].

Biofilm is a three dimensional extracellular 
polymeric matrix formed by the irreversible 
attachment of the Staphylococcus aureus to a sur-
face. Once Staphylococcus aureus attach to a sur-
face, it begins to produce multi-layered biofilms 
under glycocalyx, or slime layer. Biofilm protects 
the bacteria from outer environmental conditions 
like antibiotic agents, phagocytosis, oxygen radi-
cal and protease defenses. As biofilm decreases 
the permeability of antimicrobial agents by act-
ing as a diffusion barrier, in order to eradicate the 
bacteria within the biofilm, higher concentrations 
of antimicrobial agents are needed. Also under 
the protection of a biofilm, mature bacteria colo-
nies can detach from the biofilm and they can 
migrate and form new biofilms in uninfected 
areas [77].

Conventionally, infection is treated with surgi-
cal debridement and 4–6 week lasting parenteral 
antibiotic therapy [72]. Actually regarding to the 
pathophysiology of the osteomyelitis, infection 
deteriorates the blood circulation and systemi-
cally delivered drugs cannot reach to infection 
area. Drug delivery systems gain attention, since 
the infection in the body cannot be eradicated by 
systemic or parenteral drug delivery. Beside the 
delivery of the drug to the infection area, these 

systems also have advantages like improving the 
efficacy of the drug and diminishing its toxic 
effects [79]. For drug delivery, there must be a 
carrier for the drug and drug is released either by 
diffusion, chemical reaction or solvent activation 
and transport. Drug release systems have many 
different types of carrier materials like polymers, 
ceramics and composites that can be used in their 
fabrication [96].

In this section novel ceramics and composites 
used as carrier material for the control and treat-
ment of the osteomyelitis is summarized.

In a study conducted by Kankilic et al., poly-
l- lactic acid (PLLA)/β-TCP composites with 
vancomycin were developed to control implant 
related osteomyelitis (IRO) in rat model. Rat tib-
ias were inoculated with MRSA and titanium 
particles to establish the model. After 3 weeks, 
the presence of the infection was verified by radi-
ology. After the implantation of composites, 
radiological and histological scores were quanti-
fied along with microbiological findings on 
weeks 1 and 6 and found that, IRO was resolved 
[54].

Marques et  al. robocasted biphasic calcium 
phosphate scaffolds both un-doped and doped 
with strontium (Sr) and silver (Ag). The scaffolds 
were characterized by scanning electron micros-
copy and its cytotoxicity and proliferation were 
checked by resazurin colorimetric assay using 
human osteosarcoma derived MG-63 cell line. 
The antimicrobial activity of the scaffolds was 
determined by Mueller-Hinton agar diffusion 
method using E.coli and S. aureus strains. The 
scaffolds doped with Sr and Ag had antibacterial 
effect against both E.coli and S. aureus strains 
with 1 mm and 1.5 mm inhibition zones, respec-
tively [70].

Bakhsheshi-Rad et  al. developed novel scaf-
folds with baghdadite and vancomycin by space 
holder method. Vancomycin concentrations in 
the scaffolds were 1, 3 and 5 wt.%, respectively. 
In vitro release of vancomycin was determined 
by UV spectrophotometer at 280 nm and found 
that vancomycin bursted from the scaffold in the 
first 6 h and then released sustainably. After 36 h, 
approximately 45–75% of the vancomycin 
trapped in the scaffolds was released and its anti-

S. Köse et al.



335

microbial activity was confirmed by Kirby-Bauer 
disc diffusion method for S. aureus strain [9].

In 2017, Cao et  al. fabricated 8% wt. 
vancomycin- loaded bone-like hydroxyapatite/
poly amino acid (V-BHA/PAA) scaffold for the 
treatment of chronic osteomyelitis and compared 
it with 8% wt. vancomycin containing poly-
methyl methacrylate cement (V-PMMA) against 
both in vitro drug release and antimicrobial prop-
erties. Vancomycin in vitro released from V-BHA/
PAA for 38 days while it was only released for 
18 days for V-PMMA. Antimicrobial properties 
of both materials were determined by agar diffu-
sion method for both S. aureus and MRSA 
strains. The inhibition zones diameters were 
much larger for V-BHA/PAA than V-PMMA for 
both strains and bacteriostatic effect of  V-BHA/
PAA lasted for more than 28 days while it was 
only last for 14 days for V-PMMA [23].

Seyfoori et  al. developed cloxacillin loaded 
biphasic calcium phosphate scaffold made up of 
both hydroxyapatite and tricalcium phosphate 

with different cloxacillin concentrations of 20, 
50, 100 and 200 mg mL−1, respectively. The scaf-
folds were characterized according to scanning 
electron microscopy, x-ray diffraction spectros-
copy and Fourier transform infrared spectros-
copy. Cloxacillin is an antibacterial agent against 
methicillin sensitive S. aureus (MSSA). 
Cloxacillin was released into phosphate buffered 
saline and the released amount of antibiotic was 
determined by UV spectrophotometer at 232 nm. 
For antimicrobial activity, agar well diffusion 
method was used and zone of inhibitions were 
determined with inoculation of 0.5 McFarland 
MSSA suspension. According to results, as the 
concentration of cloxacillin in the scaffold 
increased, the diameter of zone of inhibition 
increased and all the concentrations of cloxacillin 
loaded to scaffolds are susceptible for the treat-
ment of osteomyelitis [99].

Other studies using bioceramics as carrier 
material were summarized in Table 17.6.

Table 17.6 Summary of studies using bioceramics as carrier material

References Material Aim Methods Results
[52] Vancomycin-loaded 

nano- 
hydroxyapatite 
(nHA) pellets

To treat chronic 
osteomyelitis 
and bone 
defects caused 
by MRSA

Powdered nHA were mixed 
with vancomycin at a 
concentration of 160 mg 
vancomycin/g nHA and 
molded. Pellets without any 
antibiotic were also prepared 
as control. Antibacterial 
activity was determined by 
agar dilution technique using 
strains of S.aureus, 
Escherichia coli (E.coli) and 
MRSA. Later, the pellets 
were implanted into tibias of 
New Zealand rabbits with 
osteomyelitis model. In vivo 
drug release was determined 
with high performance liquid 
chromatography (HPLC). 
X-ray and histopathological 
analysis were performed.

Vancomycin released from 
pellets were effective for 
both S.aureus and MRSA 
for 25 days, while it was 
only effective for E.coli for 
7 days. According to in vivo 
vancomycin release, drug 
concentration was greater 
than minimum inhibitory 
concentration for 12 weeks. 
Within 3 months, for all 
animals implanted with 
vancomycin loaded pellets 
osteomyelitis was controlled 
and treated while in control 
group, none of the animals 
were treated.

(continued)
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Table 17.6 (continued)

References Material Aim Methods Results
[117, 118] Levofloxacin loaded 

mesoporous silica 
microspheres/
nano- 
hydroxyapatite/
polyurethane 
composite scaffolds 
(Lev-MSNs/n-HA/
PU)

To treat 
osteomyelitis in 
an animal 
model while 
comparing with 
bulk PMMA.

Scaffolds were manufactured 
by using 1 mg or 5 mg of 
levofloxacin and 
characterized with scanning 
electron microscopy. On the 
other hand, PMMA was 
prepared again by using 
1 mg or 5 mg of 
levofloxacin. Osteomyelitis 
model was established in 
New Zealand white rabbits 
with the inoculation of 3x107 
CFU/ml S. aureus (ATCC 
25923). Rabbits were treated 
with either debridement 
only, 1 mg levofloxacin- 
PMMA, 5 mg levofloxacin- 
PMMA, 
1 mg levofloxacin- Lev- 
MSNs/n-HA/PU composite 
scaffolds or 5 mg 
levofloxacin- 
Lev-MSNs/n-HA/PU 
composite scaffolds. At 
predetermined time points 
(1, 3, 6 and 12 weeks) x-ray 
and microCT evaluations 
were conducted along with 
immunohistochemical 
staining.

Radiographically, at 1 week, 
soft tissue swelling was 
observed in all treatment 
groups. At 3, 6 and 
12 weeks, the symptoms of 
chronic osteomyelitis were 
only observed for 
debridement group. At 
1 week and 3 weeks after 
implantation, the new bone 
formation of 5 mg lev-
PMMA and 5 mg lev-
MSNs/n-HA/PU were 
significantly different from 
other groups. But, at 
6 weeks and 12 weeks, 5 mg 
lev-MSNs/n-HA/PU group 
had the most new bone 
formation.

[69] Porous nano- 
hydroxyapatite/
polyamide 66 
(nHP66)-based 
nanoscaffold 
materials containing 
varied 
concentrations of 
silver ions (Ag+) 
(TA-nHAPA66) and 
oxidized titanium 
(TiO2)

To investigate 
the in vivo 
antimicrobial 
and therapeutic 
effects of 
TA-nHP66 
biomaterials 
and their in vivo 
silver release

TA-nHP66 scaffolds were 
prepared by using either 
0.22 wt% Ag + or 0.64 wt% 
Ag+. As control same 
scaffolds without any TiO2 
were prepared. Antimicrobial 
activity was determined by 
using agar disc diffusion 
method for both E.coli and 
S.aureus strains. 
Osteomyelitis model was 
established in New Zealand 
white rabbits with the 
inoculation of 3 × 107 CFU/
ml S. aureus (ATCC 25923). 
Infected rabbits were treated 
with three groups: first group 
was treated with 
debridement only, second 
group was treated with 
debridement and blank 
nano-HA/polyamide 66 
scaffold implantation, and 
third group was treated with 
debridement and 0.64 wt% 
ag + TA-nHP66 scaffold 
implantation.

All scaffolds showed 
antimicrobial activity 
against both E.coli and S.
aureus strains but 0.64 wt% 
Ag + TA-nHP66 scaffold 
group had the longest 
antimicrobial activity. Also 
Ag + TA-nHP66 scaffold 
group had potent 
antibacterial/anti- 
inflammation effects in vivo 
and promoted bone 
formation at the lesion site 
of osteomyelitis

(continued)
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Table 17.6 (continued)

References Material Aim Methods Results
[85] Vancomycin loaded 

microporous 
hydroxyapatite 
scaffolds

To determine 
the antibacterial 
effects of 
vancomycin 
loaded HA 
scaffolds

10 mg/mL, 20 mg/mL or 
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Abstract
This research summary the trend in synthesis of 
Hydroxyapatite (HA) using different route such 
as dry method and wet method (co-precipitation 
method; emulsion method, hydrolysis method, 
sol-gel method, hydrothermal method). In addi-
tion, the research group also report the tech-
nique to synthesis nano-structure HA by 
hydrothermal reaction using Ca(OH)2 and 
H3PO4 with the Ca/P molar ratio of 1.67. The 
mixture after homogenized for 2 h, follow by 
hydrothermal reaction at different hydrothermal 
temperature time (100 °C, 150 °C, and 180 °C) 
and different hydrothermal reaction time (0 h, 
12  h and 24  h). The 180  °C-hydrothermal 
treated-HA has needle-like shape with the diam-
eter of 10 ~ 20 nm and length of below 100 nm, 
which is similar with human bone. For the 
hydrothermal reaction, temperature is the key to 
form nanostructure HA.

Keywords
Nano structured hydroxyapatite · 
Hydrothermal reaction · Bone substitute · 
Calcium phosphate · Biomaterials

18.1  Introduction

Biomaterials are the emerging fields that are 
growing rapidly to fulfill the demand in medicine 
and dentistry. Over the past few decades, new 
biomaterials for bone replacement, total hip pros-
thesis and dental implants have been synthesized 
and commercialized for various needs. Currently, 
thousands of these materials can be found easily 
in the market. The industry market for orthopedic 
biomaterials over the world is worth over US$25 
billion in 2006 and with a growth rate of more 
than 5% a year (refer Table 18.1). The market for 
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orthopedic biomaterials is expected to increase 
each year due to the need for better solution for 
injuries, diseases and ageing population all over 
the world.

The bone substitute biomaterials market con-
sists primarily of bone graft substitutes, bone 
growth factors, degradable tissue fixation and tis-
sue technologies for cartilage regeneration. 
Generally, orthopedic prostheses should offer a 
functional life of at least 20 years to match the life 
span of most patients. Among these bone graft 
substitute, Hydroxyapatite or HA 
[Ca10(PO4)6(OH)2] is the most attractive bone 
graft materials due to its excellent bone bonding 
to host surrounding implantation. Synthetic HA is 
a very important bone graft materials with the 
applicable in wide shape such as: bulk ceramic, a 
ceramic coating, or as one of the component of 
bone cement. HA is also used as a catalyst for the 
dehydration and dehydrogenation of primary 
alcohol due to its strong absorbent in water. 
Indeed, HA is a material of varying properties 
depend on its mode of preparation. The special 
structure of calcium and phosphate group in HA 
enables the possibility to use HA in divert appli-
cation. For example, due to HA’s similarity in 
chemical composition to the mineral phase of 
bone tissue, it is known for its applications in 
medicine as synthetic bone substitute [2]. In addi-
tion to its biological important, HA is researched 
for various applications such as fluorescent lamps 
[3], materials for fuel cell [4], or an absorption of 
waste and harmful materials [5]. For these appli-
cations, it has been noticed that a non-stoichio-

metric material is more efficient either in 
promoting the precipitation of biological apatite 
on its surface [6, 7] or increasing the reaction rate 
of water absorbent [8, 9]. The extend of the non-
stoichiometry can be evaluated through various 
technique and expressed by value of x in the for-
mula Ca10−x(HPO4)x(PO4)3−x(OH).

Many methods have been used to synthesis 
HA such as dry methods [10, 11] by heat treat-
ment of finely ground mixed precursor. For 
example, the mixture of Tricalcium phosphate 
[TCP: Ca3(PO4)2 or 3CaO.P2O5) and Tetracalcium 
phosphate [TTCP: Ca4(PO4)2O or 4CaO.P2O5] 
follow by proper calcination can be used to form 
HA as shown in Eqs. (18.1) and (18.2)

 2 3 4 2 4 2 9 2 10 4 6 2
Ca PO Ca P O H O Ca PO OH( ) + + → ( ) ( )

 (18.1)

 3 3 4 2 10 4 6 2
Ca PO CaO Ca PO OH( ) + → ( ) ( )

 (18.2)

In general, the solid state reaction result in 
yield well-crystallized product. However, the dis-
advantage of this method is the employee of high 
temperature to produce HA.

Another method use to synthesis HA is wet 
method. This method comprising co-precipita-
tion method [12–14], emulsion method [15–17], 
hydrolysis method [18–23], sol-gel method 
[24–30], hydrothermal method [31–39] due to 
its advantage in simplicity of the procedure. 
These methods allow to control the structure, 
crystallinity, morphology of HA.  The wet 
method can be done in water or in organic sol-
vent. These methods can be performed at room 
temperature or elevated temperature, under the 
normal pressure or high pressure using hydro-
thermal technique. The major disadvantage of 
wet method is that they sometimes give impu-
rity to the structure of HA or other phase of 
phosphate present together with HA.  In addi-
tion, various ions can be incorporated into the 
structure of HA, leading to the trace impurity. 
The classification and over view of wet method 
to synthesis HA are listed as below:

Table 18.1 Market share of orthopedic biomaterials over 
the world in 5 years from 2007 to 2011 [1]

Year
Worldwide sales (US$ 
Billions)

Growth 
(%)

2006 25.764
2007 27.122 5.3
2008 28.562 5.3
2009 30.989 8.5
2010 31.708 2.5
2011 33.425 5.4
Average growth 
rate (%)

5.4
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18.1.1  Co-precipitation Method

This method is the common method for the prep-
aration of HA. The chemical process consists of 
a chemical reaction source of Ca, and P in the 
present of other additives with the acidic or base 
environment. The conditions of the 
co-precipitation method are variable, but in 
general, this process is usually carried out at pH 
value vary from 3 to 12 and at temperature vary 
from ambient to the elevated temperature of 
water. In somehow way, this method is sometimes 
performed in the present of templates.

18.1.2  Emulsion Method

The emulsion method is used to synthesis HA 
which more efficient, simple and suitable for 
producing nanostructure HA powder. The 
advantage of emulsion method is the precise 
control of the morphology and distribution of 
HA’s grain size. This technique was originally 
used to create porous materials as well as to 
overcome the issue of particle agglomeration. 
Several sources of Ca and P have been used, but 
the most popular used are calcium nitrate and 
phosphoric acid due to its economic and easy to 
found on the market. Among the surfactant used 
to prepare the emulsion, some chemical include: 
dioctyl sodium sulfosuccinate salt, dodecyl 
phosphate, polyoxyethylene, nonpolyphenol 
ether, polyoxyethylene ether, cetyltrimethyl 
ammonium bromide and sodium dodecyl sulfate. 
The key factor to study is type of surfactant, ratio 
of aqueous and organic phase, pH, temperature 
condition, concentration of Ca and P source etc.

18.1.3  Sol-Gel Method

The sol-gel process is a method of mineralization 
from precursor in a solution, preferably 
organometallic compounds or other suitable 
precursors. This useful method can be used for 
the synthesis of porous, dense, bulk, xerogel film 
coating ceramic as well as aerogel HA.  The 
procedure sol-gel method is given in Fig. 18.1.

During the gelation, sol are harden and form 
the gel network as shown in Fig. 18.2. The sol-gel 
process has limitation that hinder its scale up to 
industry scale production. The main disadvantage 
are: (a) the high cost and scarcity of often used 
alkoxide-based precursors and (b) the delicate 
process control culminating in usually time 
consume process. This process involves 
hydrolysis of the precursors and the formation of 
micelles around templates in either an aqueous or 
an organic phase followed by the gelation of 
these sol. The key factor to control the gelation 
depends on: (a) the nature and what kind of 
solvent used; (b) the temperature and pH used 
and (c) the chemical nature of the reagent used. 
In addition, lack of control of certain parameters 
during the growth of HA may cause the 
appearance of secondary phases such as CaO, 
Ca2P2O7, Ca3(PO4)2 and/or CaCO3.

18.1.4  Hydrolysis Method

The aqueous hydrolysis of calcium phosphate to 
form HA usually follows 2 stages: (a) dissolution 
and precipitation depending on the source of Ca 
and P.  In the aqueous solution, the Ca and P 
source are dissolved with respect to the 
surrounding environment then its concentration 
become supersaturated with respect to HA, 
leading to the precipitate of HA. The hydrolysis 
process applicable to these precursors depends 
strongly on pH and temperature of environment. 
The addition of other calcium and phosphate 
sources are sometimes required to control the 
stoichiometry HA.

18.1.5  Hydrothermal Method

The hydrothermal process is a technique for the 
growth of crystalline HA with nanoscale. This 
process is the generic term used to describe a 
reaction between the calcium source and phos-
phate precursors in the present of the following 
conditions: (a) water or organic solvent; (b) a 
mixture of water/organic solvent. In case of the 
water used, it is called the term hydrothermal 
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while organic solvent used is called the term sol-
vothermal; and in case of water/organic solvent 
system, it is called solvo- hydrothermal. The pro-
cess happen in the close environment with a high 
temperature and pressure greater than autoge-
nously ambient pressure, for example inside an 
autoclave or a pressure vessel. The illustration of 
autoclave is shown in Fig. 18.3. During the hydro-
thermal reaction, the medium could be subcritical 
or supercritical, depending on the pressure and 

temperature. Through the effect of medium evap-
oration and condensation, the pressure increase of 
reactivity and support for the chemical reaction 
between chemical reactant. It should be noted that 
the high pressure permits the formatting of HA in 
the form of micro or nano crystal size HA, with 
controlled morphology and porosity through the 
control of temperature and pressure.

The hydrothermal method can be used to  
control the interaction between solid/solvent, 

Fig. 18.1 Principle procedure of sol-gel method. (Courtesy: https://commons.wikimedia.org/wiki/File:Sol-Gel_
Technology_Scheme.png)

SOL GEL

Fig. 18.2 The 
transformation of sol to 
gel. (Source: http://
www.uk-finishing.org.
uk/N-COAT70/sol_gel.
htm)
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especially in terms of solubility and also function 
as a mean to control the nucleation and growth 
processes. In addition, this technique is often 
combined with conventional method such as co-
precipitation or sol-gel routes.

18.1.6  Grinding-Assisted Method

In order to increase the chemical reactivity of Ca 
and P starting materials, the grinding method is 

used is the first step. This method is also termed 
as mechano-chemical process, which often used 
the ball milling equipment as shown in Fig. 18.4. 
The advantage of this method is simplicity, repro-
ducibility and large-scale production of HA. The 
control of growth HA by this technique focus on 
the types of chemical agent used, the grinding 
medium, the diameter and milling medium, the 
ratio of milling medium, the duration of milling 
steps and interval pauses, the powder- to- ball 
mass ratio and the rotation speed.

Fig. 18.3 The autoclave 
system used to synthesis 
HA. (Courtesy at 
Department of Ceramic 
Materials, Faculty of 
Materials Technology, 
Ho Chi Minh City 
University of 
Technology)

Fig. 18.4 The ball 
milling system use for 
grinding starting 
materials. (Courtesy at 
Department of Ceramic 
Materials, Faculty of 
Materials Technology, 
HCMUT)
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18.1.7  The Microwave (MW)-Assisted 
Method

In order to active the chemical reaction of Ca and 
P starting materials, the output energy supplied 
equipment used common is microwave oven. The 
MW-assisted preparation of HA produces an 
increase yield of perfectly crystalline powder. In 
addition, the obtained HA by MW-assisted 
method gains particularly homogenous in term of 
size, porosity and morphology. The activation 
results from two key factors: (a) purely thermal 
origin, resulting in molecular agitation that is 
caused by the inversion of dipole with the 
extremely rapid heating by the alternation of 
electric moment field and (b) an electrostatic 
origin, involving interactions like dipole-dipole 
between polar molecules and the electric field. 
The MW-assisted method cause direct effect on 
the kinetics of activation energy.

18.1.8  Ultrasonic-Energy-Assisted 
Method

The ultrasonic-energy-assisted method or sono-
chemical approach can be used to synthesis nano-
structure of HA. This method results in nanosized 
products and perfect to control the morphology, 
porosity and size of HA. In addition, this ultra-
sonic-assisted method enhance stimulation of the 
reaction between the calcium and phosphate pre-
cursors to accelerate the rate of reaction in a 
remarkable manner.

Based on consideration of these references to 
synthesis HA above, my research group at 
Department of Ceramic Materials aim to 
synthesize nanoprecipitated HA by hydrothermal 
reaction method. The research group succeeded 
to fabricate HA and Tricalcium phosphate (TCP) 
[40–47], with the aim to be used as bone 
substitute. In order to focus on the side effect of 
nanostructured HA, we aim to use hydrothermal 
reaction between Ca(OH)2 and H3PO4 used as 
precursor. This research report the technique to 
prepare nanostructure HA by coprecipitation 
method follow by hydrothermal reaction.

18.2  Materials and Method

18.2.1  Experimental Preparation

All the chemical was purchased from company 
without purification. The Ca(OH)2 and H3PO4 
were supplied by  Guangdong Chemical 
Co (China). In brief, 0.3 mol H3PO4 was dropped 
into 0.5  mol Ca(OH)2 suspension, so that the 
Ca/P molar ratio of the mixture was 1.67, 
according to the stoichiometric of HA. The CaP 
mixture was homogeneous by stirring at 400 rpm 
(IKA stirring) for 2 h at room temperature, follow 
by hydrothermal reaction at different 
hydrothermal reaction (100  °C, 150  °C and 
180 °C) for different duration time (0 h, 12 h and 
24  h). The samples after hydrothermal reaction 
were filtered and washed with double distilled 
water (DDW) for at least 3 times then follow by 
the characterization. In comparison with 
synthesis HA, the human teeth were used for 
characterization. In brief, the human teeth was 
supplied by Ho Chi Minh University of Pharmacy 
by collecting from dental clinic, follow by 
immersion in phosphate buffer solution (PBS).

18.2.2  Material Characterizations

18.2.2.1  X-Ray Diffraction Analysis
The composition of sample before and after 
hydrothermal reaction were determined using 
X-Ray diffraction (XRD; D2 Bruker), operated at 
40 kV and 40 mA.

18.2.2.2  Scanning Electron 
Microscopic Observation

The morphology changes of sample before and 
after hydrothermal reaction were observed using 
a scanning electron microscope (SEM, S-3400N, 
JEOL) with an acceleration voltage of 15  kV, 
after the deposition of gold-palladium coating 
(Magnetron Sputtering Machine, MSP-1S).

18.2.2.3  Transmission Electron 
Microscopic Observation

The morphology of sample before and after 
hydrothermal reaction was observed at  nano- scale 
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using transmission electron microscope (TEM, 
Hitachi-7000) with an acceleration voltage of 
10 kV. The samples were dispersed into ethanol 
with ultrasonic cleaning, then drop into copper 
grid for TEM observation.

18.2.2.4  Fourier Transform Infrared 
Spectroscopy

The chemical bonding of samples was identified 
by Fourier transform infrared spectroscopy 
(FTIR, Bruker 400D) in the range of 400–
4000 cm−1 using KBr pellet technique.

18.2.3  Statistical Analysis

For statistical analysis, a one-way factorial 
ANOVA and Fisher’s LSD method, as a post-hoc 
test, were performed using KaleidaGraph 4.0. 
Values are expressed as mean ± SD. A p-Value of 
<0.05 was considered to be statistically 
significant.

18.3  Results and Discussion

Figure 18.5 shows the typical XRD pattern of 
samples before and after hydrothermal treatment 
at different hydrothermal temperature (100  °C, 
150 °C and 180 °C) and different hydrothermal 
time (0 h, 12 h and 24 h). The XRD of Ca(OH)2 
starting materials and HA standard are shown as 
reference. Basically, at 100 and 150  °C, the 
Ca(OH)2 is still remained up to 24  h reaction 
(Fig.  18.5a–f). However, when elevate the 
hydrothermal temperature up to 180  °C, HA 
single crystal phase can be obtain after 12 and 
24  h, respectively (Fig.  18.5h–i). The synthesis 
condition of hydrothermal reaction at 180 °C for 
24  h is selected to synthesis HA for the next 
experiment.

Figure 18.6 shows the typical XRD image of 
human tooth; synthesize HA by hydrothermal 
condition at 180 °C for 24 h and sintering HA at 
900  °C.  Basically, the synthesize HA by 
hydrothermal condition has the crystal structure 
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Fig. 18.5 XRD pattern of samples before and after hydrothermal treatment at different hydrothermal temperature 
(100 °C, 150 °C and 180 °C) and different hydrothermal time (0 h, 12 h and 24 h)
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similar with that of human teeth. However, the 
peak shifting at 31.8° can be observed at synthe-
sis HA and sintering HA. It can be explain that in 
human tooth, there is the minor trace of another 
element like Zn, Mg, Si co-exist, and substitute to 
the network of human tooth.

Figure 18.7 shows the FTIR patterns of 
samples before and after hydrothermal treat-
ment at different hydrothermal temperature 
(100  °C, 150  °C and 180  °C) and different 
hydrothermal time (0  h, 12  h and 24  h). The 
FTIR of Ca(OH)2 starting materials and HA 
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Fig. 18.6 XRD pattern 
of (a) human tooth, (b) 
synthesize HA by 
hydrothermal condition 
at 180 °C for 24 h and 
(c) sintering HA at 
900 °C
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P. T. Kien et al.



351

standard are shown as reference. Basically, the 
chemical bonding of PO4

3− can be observed at 
1100 cm−1 while the present of HPO4

2− can be 
found at 560 and 605 cm−1. In addition, we can 
observe the CO bonding at 1458  cm−1. These 
CO bonding might be derived from CO2 in 
atmosphere, due to the highly absorption of 
CO2 from Ca(OH)2 starting materials. There is 
no different in chemical bonding at 150 °C and 
180  °C. these data are support for XRD data 
shown in Figs. 18.5 and 18.6.

Figure 18.8 shows typical morphology of 
samples at magnification of 10,000X before and 
after hydrothermal treatment at different 
hydrothermal temperature (100  °C, 150  °C and 
180  °C) and different hydrothermal time (0  h, 
12 h and 24 h). After hydrothermal reaction, the 
sample contain many needle-like shape crystal 
and interlock together. The size of needle-like 
shape crystal increase with the increasing of 
hydrothermal temperature.

Figure 18.9 shows typical morphology of 
sample before and after hydrothermal reaction at 
180 °C for 12 and 24 h. In addition, the morphol-
ogy of human tooth also show as reference. The 
morphology of 180 °C-hydrothermal treated-HA 
is similar with that of human tooth, indicate that 
180 °C-hydrothermal treated-HA can be used as 
excellent candidate for bone substitute.

Figure 18.10 shows the typical TEM images 
of human tooth, synthesize HA by hydrothermal 
condition at 180 °C for 24 h and sintering HA at 
900 °C at 100,000X. The upper-left photo show 
the same condition with the magnification of 
30,000X.  The 180  °C-hydrothermal treated-HA 
has needle-like shape structure with the average 
diameter of 10  ~  20  nm and length of below 
100  nm. These nano structure of 
180 °C-hydrothermal treated-HA is very similar 
with that of human tooth, indicate that 
180 °C-hydrothermal treated-HA can be used as 
bone substitute materials.

Fig. 18.8 Typical morphology of samples at magnification of 10,000X before and after hydrothermal treatment at dif-
ferent hydrothermal temperature (100 °C, 150 °C and 180 °C) and different hydrothermal time (0 h, 12 h and 24 h)
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18.4  Conclusions

In this report, the author reviewed the trend of 
HA synthesis as well as report the process to 
fabricate nanostructure HA by co-precipitation 

method of Ca(OH)2 and H3PO4 follow by hydro-
thermal reaction method. The hydrothermal 
treated-HA has needle-like shape with the diam-
eter of 10 ~ 20 nm and length of below 100 nm, 
which is similar with human bone. For the hydro-

Fig. 18.9 Typical morphology of (a) sample before hydrothermal reaction; (b) hydrothermal reaction at 180 °C for 
12 h; (c) hydrothermal reaction at 180 °C for 24 h and (d) human tooth

Fig. 18.10 Typical TEM images of (a) human tooth; (b) sintering HA at 900 °C and (c) synthesize HA by hydrother-
mal condition at 180 °C for 24 h at 100,000X. The upper-left images show the TEM at 30,000X

P. T. Kien et al.
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thermal reaction, temperature is the key to form 
nanostructure HA. These data will be useful for 
researcher who are looking for different forms of 
nanostructure HA to suit their intended 
application.
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Abstract
Bone tissue engineering using titanium (Ti) 
implant and titanium dioxide (TiO2) with their 
modification is gaining increasing attention. 
Ti has been adopted as an implant material in 
dental and orthopedic fields due to its superior 
properties. However, it still requires modifica-
tion in order to achieve robust osteointegration 
between the Ti implant and surrounding bone. 
To modify the Ti implant, numerous methods 
have been introduced to fabricate porous 
implant surfaces with a variety of coating 
materials. Among these, plasma spraying of 
hydroxyapatite (HA) has been the most com-
monly used with commercial success. 
Meanwhile, TiO2 nanotubes have been actively 
studied as the coating material for implants, 
and promising results have been reported 
about improving osteogenic activity around 
implants recently. Also porous three- 
dimensional constructs based on TiO2 have 

been proposed as scaffolding material with 
high biocompatibility and osteoconductivity 
in large bone defects. However, the use of the 
TiO2 scaffolds in load-bearing environment is 
somewhat limited. In order to optimize the 
TiO2 scaffolds, studies have tried to combine 
various materials with TiO2 scaffolds includ-
ing drug, mesenchymal stem cells, Al2O3-SiO2 
solid and HA. This article will shortly intro-
duce the properties of Ti and Ti-based implants 
with their modification, and review the prog-
ress of bone tissue engineering using the TiO2 
nanotubes and scaffolds.

Keywords
Titanium · Implant · Titanium dioxide · 
Nanotube · Scaffold · Bone

19.1  Bone Tissue Engineering

Skeletal injuries account for 25–30% of all mus-
culoskeletal pathologies, and as life expectancy 
continues to increase in developed country, the 
incidence is rising gradually [90]. Orthopedic or 
dental implants, such as plate with screws or joint 
prostheses, are commonly used as the initial 
treatment for bone disorders including fracture, 
osteoarthritis and bone defect after tumor resec-
tion etc. Titanium (Ti) is presently the most popu-
lar material for these implants with good 
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biocompatibility [1]. Although recent advances 
of Ti implant provide the early rigid fixation and 
bone has the regeneration capacity by itself, cer-
tain conditions such as major trauma, chronic 
infection, large musculoskeletal tumor resection 
and previous implant failure can still lead to 
impaired bone healing or major bone defects.

The autologous bone graft from iliac crest is 
considered the gold standard for enhancing bone 
healing in bone defect [37]. However, the proce-
dure has drawbacks, including requiring another 
surgical incision, sometimes not being sufficient 
for treatment, and having several complications 
such as pain, neurologic injury, infection and 
hematoma [16]. Overall, additional strategies and 
investigations are necessary for bone tissue engi-
neering. A variety of approaches including 
allograft, implant surface modification, synthetic 
implant fabrication, and cell-based therapies are 
being studied in tissue engineering [55].

In recent years, there has been appreciable 
interest in bone tissue engineering strategies, 
which utilizes modified Ti implants and titanium 
dioxide (TiO2). Notably, TiO2 nanotube and scaf-
fold technologies are currently under study for 
novel bone tissue engineering with their osteo-
conductive and osteoinductive capabilities. This 
article will briefly introduce the properties of Ti 
and modified Ti-based implants, and review the 
research progress of bone tissue engineering, 
using TiO2 nanotube and scaffold in detail.

19.2  Ti

19.2.1  Ti Implant

Biocompatibility without causing inflammatory 
response and mechanical durability is important 
attribute in both temporary and permanent 
implants [54]. Originally used in aeronautics, Ti 
and its alloys have been of large interest in bio-
medical applications because of their special 
properties such as bioinertness, excellent bio-
compatibility, high fatigue and tensile strengths, 
low allergenicity and light in weight [1]. In addi-
tion, Ti is one of the most abundant elements on 
the Earth and is distributed in natural mineral 

deposits, principally rutile and ilmenite, making 
it more accessible. On top of that, Ti biomaterials 
are osteoconductive as they induce new bone for-
mation and form tight bonds with newly formed 
bones. As a result, the usage of Ti has been suc-
cessful in orthopedic and dental applications, 
especially in implantation.

Among the various Ti biomaterials, commer-
cially pure Ti, ASTM F67 and Ti6Al4V are 
widely used in orthopedic and dental fields. 
Generally, commercially pure Ti with a single 
phase alpha microstructure is often used in dental 
implants, while Ti6Al4V with a two-phase alpha- 
beta microstructure is most commonly used in 
orthopedics. Other various types of Ti alloys are 
summarized in supplemental Table  19.1 [46]. 
However, still Ti-based implant has the disadvan-
tages including difficultly in achieving a suffi-
cient chemical bond with surrounding bone, 
particularly during the early stage of implanta-
tion due to Ti-based implant being bioinert by 
nature [23]. Another limitation of Ti-based 
implant is the substantial mismatch between 
Young’s modulus of Ti (E¼ 100–110 GPa) and 
that of cortical bone (E ¼ 5–27 GPa), which gen-
erates a stress-shielding effect at the bone/implant 
interface [76]. Therefore, it is necessary to 
modify Ti-based implants in order to properly 
promote osteogenesis, osteoconduction and 
osteointegration.

19.2.2  Modification of Ti or Ti Alloy 
Implant Surface

Implants have been developed over three genera-
tions. The first generation implants were pure 
metal that were accidentally discovered. Second 
generation implants focused on becoming a tis-
sue replacement by matching their physical prop-
erties with high biocompatibility and bioinertness. 
Surface treatments were used to improve the bio-
active nature of these implants, especially metals 
such as Ti alloys that change the physicochemi-
cal, mechanical, and electrical properties of their 
surfaces. The third-generation biomaterials are 
new materials which can stimulate specific cel-
lular responses at the molecular level. To this 
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end, the bioactivity and biodegradability  concepts 
are combined, as bioabsorbable materials become 
bioactive and vice versa [32].

Based on these concepts, various methods for 
modifying Ti or Ti alloy implants have been 
developed so far in order to obtain high strength 
and biocompatibility with excellent cellular 
response at the same time (Table 19.1). Currently, 
research on the fabrication of porous or rough 
implant surface with or without material or 
chemical coating is the most studied [42].

19.2.2.1  Porous or Rough Implant 
Surface

Porous or coarse implant surfaces are well known 
to improve bone formation by increasing the sur-
face area of implants, cell migration, and attach-
ment to implants. However, there is still 

controversy for the ideal pore size. A pore size of 
more than 100 μm and a porosity of up to 85% 
are considered to be optimal for rapid bone 
ingrowth [92]. However, Wen et al. reported that 
porous Ti with pore size ranging from 200–

Supplemental Table 19.1 Various type of Ti alloys and their properties

Material Tensile strength (MPa) Yield strength (MPa) Type
Commercially pure Ti-1 (grade 1–4) 241–552 172–483 α
Commercially pure porous Ti ㅡ ㅡ α
Ti-3Al-2.5 V 690 586 α/β
Ti-5Al-2.5Fe ㅡ ㅡ α/β
Ti-5Al-3Mo-4Zr ㅡ ㅡ α/β
Ti-6Al-4 V 931 862 α/β
Ti-6Al-4 V ELI 862 793 α/β
Ti-6Al-7Nb 862 793 α/β
Ti-20Cr-0.2Si 874 669 ㅡ
Ti-13Cu-4.5Ni 703 ㅡ ㅡ
Ti-15Mo 793 655 β
Ti-15Mo-6Zr-2Fe 1000 965 β
Ti-12Mo-5Zr-5Sn ㅡ ㅡ β
Ti-15Mo-5Zr-3Al ㅡ ㅡ β
Ti-15Mo-2.8Nb-0.2Si-0.26O 793 655 β
Ti-45Nb 483 448 β
Ti-13Nb-13Zr 860 725 β
Ti-16Nb-10Hf 486 276 β
Ti-29Nb-13Ta-4.6Zr ㅡ ㅡ β
Ti-35Nb-7Zr-5Ta 827 793 β
Ti-55.8Ni 1034 345 Intermetallic
Ti-30Ta ㅡ ㅡ β
Ti-40Ta ㅡ ㅡ β
Ti-50Ta ㅡ ㅡ β
Ti-35Zr-10Nb 897 621 β
Ti-15Zr-4Nb-2Ta-0.2Pd ㅡ ㅡ α/β
Ti-15Sn-4Nb-2Ta-0.2Pd ㅡ ㅡ α/β
Ti-20Pd-5Cr 880 659 ㅡ

Table 19.1 Techniques to fabricate porous implant 
surface

Subtractive 
techniques Additive techniques
Blasting Plasma spraying
Acid etching Electron-discharge compaction
Anodization Microwave method
Electro/
mechanical 
polishing

Powder metallurgy (sintering or 
thermal decomposition)
Removal of space holder with 
metal powder particles
Rapid prototyping
Biomimetic coating

19 Modification of Titanium Implant and Titanium Dioxide for Bone Tissue Engineering
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500 μm was good enough for satisfactory bone 
formation and fluid transport [88]. Otsuki et al. 
stated that the ideal pore size for bone tissue 
ingrowth for both levels of porosity was between 
500–1500  μm whereas Murphy et  al. reported 
that the optimal pore size for bone ingrowth was 
approximately 325 μm [56].

Porous implant surface can be constructed by 
subtractive procedures or additive techniques. 
The implant subtraction procedure can be imple-
mented through physical, chemical or electrical 
methods. Typical subtractive techniques include 
large-grit sands or particle blasting, acid etching 
and anodization [42]. Blasting is a technique that 
forces the flow of abrasive material (TiO2 or cal-
cium phosphate) to the surface under high pres-
sure to smoothen the rough surface or roughen a 
smooth surface [28]. Acid etching, which treat 
acids to form pits on the surface of Ti implant, can 
be combined with other methods, such as blasting 
[39]. Anodization is a technique that expands the 
thickness of the natural oxide layer on the surface 
of metal components. In any case, the anodically 
oxidized surfaces have a positive effect on osteo-
blast behavior and osteointegration.

Next, extensive research was conducted on 
preparing porous or rough implant surfaces with 
additive techniques including (1) Thermal spray 
with different powder particles, (2) Electron- 
discharge compaction, (3) Biomimetic deposi-
tion, etc. [24, 48, 84].

Thermal spraying is the most commonly used 
method that sprays diverse powdered material to 
roughen the implant surface. Thermal spraying 
involves four main process groups: (1) Spray 
combustion processes, (2) Electric arc spray pro-
cess, (3) Cold spray, (4) Plasma spray process. A 
major advantage of thermal spraying is the 
exceedingly wide array of materials that can be 
used to produce coatings [24]. Recently, biomi-
metic coating has emerged as a promising tech-
nique as it enables bone formation by immersing 
substrates in a simulated body fluid solution 
maintained at 37 °C in vitro, a solution that has a 
very similar ion concentration to that of human 
body plasma. The technique defines the ability to 
form a bone-like, carbonated hydroxyapatite 
(HA) layer [74]. Biomimetic coating method has 

been reported to have several advantages which 
include providing increased control over the 
chemical composition of the coating, generating a 
homogeneous film, creating a structure close to 
bone apatite, decreasing densification tempera-
ture, and being sufficient for coating on complex- 
shaped porous implants [84]. Owing to biomimetic 
coating technology, cytokine-based engineering, 
poly(dopamine)-assisted immobilization of Arg-
Gly-Asp peptides, hydroxyapatite, or cyclic Arg-
Gly-Asp with heparin binding peptide is gaining 
more attention at the moment [12, 50, 63]. Studies 
also have shown that the co- deposition of bone 
morphogenic protein (BMP) with biomimetic cal-
cium phosphate coating can promote the prolifer-
ation and differentiation capability of Ti surfaces 
[95]. The clustering integrin- specific ligands pro-
moted functional integration of the coated Ti 
implant in vivo study [66].

19.2.2.2  Various Coating Materials 
to Enhance Local Cellular 
Response

Many reports demonstrated that coated Ti sur-
faces have a significant effect on early events of 
cellular response, such as the protein absorption, 
blood clot formation, and cell behaviors occur-
ring upon implantation. Coating materials can be 
broadly classified into (1) HA based bioceramics, 
(2) Metal ion incorporated coatings, (3) 
Extracellular matrix components and/or Growth 
factors, (4) Drugs, (5) TiO2 nanotubes (Table 19.2) 
[93].

Table 19.2 Various coating materials

Category Materials
Calcium 
phosphate

Hydroxyapatite, tri-calcium 
phosphate (TCP), bi-phasic 
phosphate

Metal ions Calcium, magnesium, fluoride, 
phosphorous

Growth factor BMP2, FGF2, IGF-1, IGF-2, 
TGF-β1, TGF-β2, PDGF

Extracellular 
matrix

Collagen 1, chondroitin sulfate, RGD 
peptide, DLTIDDSYWYRI peptide, 
GFOGER peptide

Drug Bisphosphonates, strontium, 
dopamine

TiO2 Various diameter (15 – 100 nm)

T.-K. Ahn et al.
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HA is one of the most popular materials for 
the implant coating with commercial success to 
date [8, 21]. Traditionally, HA was coated by 
plasma spraying and have been thought to be 
osteoconductive. However, HA biomaterials with 
specific three-dimensional geometries have been 
shown to bind to endogenous BMPs and osteo-
blasts directly formed osteoid on HA surface 
coating, implying that the bone-implant interface 
is bonded both chemically and biologically to the 
HA [26]. Thus, some researchers have labeled 
the material with osteoinductive features [44]. 
HA is a relatively insoluble calcium ceramic 
compared to tri-calcium phosphate (TCP). 
Coatings consisting of a combination of HA and 
TCP are known as bi-phasic calcium phosphates. 
The TCP easily dissolves in the body, releasing 
more ions and increasing the amount of carbon-
ated HA formed on the surface [15, 89]. 
Furthermore, adding calcium, phosphorus, mag-
nesium and fluoride (F) ions to Ti implants 
improves osteointegration through apatite depo-
sition [11]. This osteointegrative activity is 
reported to be mediated by increased osteogenic 
differentiation of mesenchymal stem cells 
(MSCs) through integrins α1, α2, α5, and β1, and 
upregulated BMP-2 secretion by osteoblasts ([14, 
59]; J. W. [65, 96]).

Bone stimulants of the transforming growth 
factor superfamily, particularly BMP, transform-
ing growth factor-β1, platelet-derived growth fac-
tor and insulin-like growth factor can be coated to 
improve the bone healing process locally. BMP- 
2, which promotes the osteoblastic differentiation 
of MSCs, is the most commonly used growth fac-
tor to achieve osteointegration of implants [41]. 
Sustained release technique is also being used to 
coat BMP-2 on implants due to the recently 
reported risk of ectopic bone formation or tumor-
igenesis by bolus delivery of BMP-2 [9]. A study 
led by Bae et  al. suggested that the combined 
coating of BMP-2 and calcium phosphate with 
biodegradable polymers and extracellular matrix 
for Ti implants prolonged BMP-2 release and had 
the improved osteogenesis [5, 31, 40]. In addi-

tion, recent attempts have been made to introduce 
BMP-2 DNA plasmids using cell transfections 
that promote sustained BMP-2 secretion [11, 36, 
70].

Incorporation of bisphosphonate, such as 
pamidronate or zoledronate, may be relevant for 
clinical cases lacking bone support. 
Bisphosphonate inhibits osteoclast-induced bone 
resorption and promotes net bone regeneration 
and osteointegration of osteoporotic healthy bone 
[22]. Incorporation of strontium, another effec-
tive anti-osteoporosis drug, also improved bone 
formation in vivo [3]. Dopamine may be one of 
the widely used materials for the modification of 
implant [35, 87, 91].

At last, given the differentiating effects of 
nanophase structures on osteoblasts, some 
researchers have proposed TiO2 nanotube as a 
means of developing nano-textured implant coat-
ings. This will be discussed in more detail in the 
following TiO2 nanotube section.

19.3  TiO2

TiO2 has been shown to have excellent biocom-
patibility, the ability of osteoconduction espe-
cially when in contact with bone tissue. In the 
living human body, TiO2 layer is naturally formed 
when Ti is exposed to atmospheric or other 
oxygen- containing environments. However, the 
spontaneously formed TiO2 layer on the Ti 
implant surface, composed of soft and dense 
TiO2, can form a fibrous tissue which prevents 
osteoblastic cells from strongly adhering onto the 
surface, leading to the loosening of implant and 
inflammation [58]. Therefore, numerous studies 
have reported cases in which the osteogenic 
effect increased when TiO2 scaffold and nanotube 
were combined with other materials [49]. 
Moreover, porous three-dimensional TiO2 scaf-
fold has been proposed as a promising material 
for inducing bone formation from the surround-
ing tissue in the restoration of critical bone 
defects [30, 78].
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19.3.1  TiO2 Nanotube

A major challenge in orthopedic biomaterials is 
the design of material surfaces which provide 
optimal osteointegration and at the same time 
promote durability of the implant. If the surface 
properties of the biomaterial cannot ensure a sta-
ble fixation between the implant surface and sur-
rounding tissue, leading to a fibrous layer 
undermining load transmission at the bone/
implant interface, micro movements would be 
favored and result in implant failure [53].

Studies have been conducted to select the opti-
mal surface topography for bio applications, and a 
considerable amount have shown that nanomodi-
fications of the implant surface can affect cellular 
physiology. Such modifications can allow the 
implant to mimic the natural extracellular matrix 
at the nanoscale level [13]. In addition, there was 
a correlation between nano-level surface structure 
and cellular functionalities, including improved 
osteointegration and increased osteogenic differ-
entiation of MSCs [17, 20].

Among the numerous nanostructures avail-
able, TiO2 nanotube has been widely studied [60, 
80]. TiO2 nanotube was first described by 
Zwilling et al. in 1991 as “Columnar porous TiO2 
layers formed electrochemically in fluorinated 
electrolyte.” [97]. TiO2 nanotubes coated Ti 
implant showed superior corrosion resistance and 
biocompatibility than pure Ti; moreover, the 
modulus of elasticity was much closer to that of 
native bone than that of pure Ti [58].

19.3.1.1  Fabrication of TiO2 Nanotube
Methods for the preparation of TiO2 nanotubes 
include assisted-template method, the sol-gel 
process, electrochemical anodic oxidation, and 
hydrothermal treatment. Among the above- 
mentioned fabrication approaches, the sol-gel, 
template-assisted, and hydrothermal treatment 
methods are broadly used in applications such as 
photocatalysis and solar cells, while those manu-
factured by electrochemical anodization are more 
commonly used for biological applications [58]. 
The electrochemical cell is composed of an 
anode, which can be any of the following; Ti or Ti 
alloy and cathode, platinum and electrolyte solu-
tion, typically containing HF or NH4F.  Three 
steps occur in the electrochemical anodization of 
Ti in F-based electrolyte. First, the oxidation of 
Ti to TiO2 occurs to form a dense oxide film on 
the surface of Ti. Next, the fluoride anion 
adsorbed on the Ti surface reacts with the oxide 
layer to form a porous thin film. Lastly, the pro-
duced soluble Ti-F complex [(TiF6)-2] steadily 
dissolves into the body of the solution on the tita-
nium surface, resulting in a porous TiO2 nanotube 
structure (Fig. 19.1) [4].

19.3.1.2  Effects of TiO2 Nanotube 
Diameter

Different diameters of the TiO2 nanotubes exhib-
ited clearly different effects on the cellular response. 
Up to 20 nm diameter is known to be optimal for 
improved cell adhesion and proliferation [64]. 
According to Mark et  al., a diameter of about 
15 nm greatly increased the adhesion, proliferation 

Fig. 19.1 Scanning electron microscope view of TiO2 nanotube arrays (a) Top view (b) Overview. (Reprinted from 
[75])

T.-K. Ahn et al.



361

and differentiation of MSCs, whereas a diameter of 
approximately 100 nm was associated with apopto-
sis [80]. TiO2 and zirconium dioxide (ZrO2) in dif-
ferent crystallization states were used to determine 
the size impact of the nanotubes and the different 
fluoride contents in the tubes [6]. The effect of dif-
ferent diameter size was also confirmed in various 
kinds of living cells including MSCs, hematopoi-
etic stem cells, endothelial cells, osteoblasts and 
osteoclasts. The size effect is a result of tailored 
nanotube morphology in that the integrin clustering 
of the cell membrane leads to a focal adhesion 
complex with a diameter of approximately 10 nm, 
hence being an ideal fit for nanotubes with a diam-
eter of 15 nm [64].

19.3.1.3  In Vivo Studies Using TiO2 
Nanotube

Several in vivo studies on the application of TiO2 
nanotube have reported varying results on bone 
formation. The biocompatibility of TiO2 nano-
tube was confirmed by subcutaneous injection of 
TiO2 nanotube into rats, and as a result TiO2 
nanotube did not cause chronic inflammation or 
fibrosis [68]. One study examined the effects of 
TiO2 nanotubes on bone formation around the 
implants and compared the results to those of 
untreated pure Ti surfaces placed in pig skulls. As 
a result, the expression of collagen type I in the 
nanostructured implants was considerably higher 
than the control group. Regardless, there was no 
difference observed in osteocalcin expression at 
any point of time on the implant surface. In addi-
tion, the amount of osteogenesis on both implant 
surfaces was almost the same without any statis-
tical difference [81]. In contrast to these results, 
Wang et al. reported a notable increase in bone 
implant contact and gene expression levels in the 
bone attached to TiO2 nanotubes by analyzing the 
histological features and fluorochrome labeling 
changes after implantation [85].

Similar to this study, von Willmowski et  al. 
reported that osteocalcin expression was 
increased the most in TiO2 nanotubes with a 
diameter of 70 nm when different diameters (15–
100 nm) were implanted in pig skull [82]. Using 
a rabbit tibia model, Ti implants with TiO2 nano-
tubes (diameter: 100  nm) have been proven to 

have greater pull-out force and bone-to-implant 
contact area than conventional Ti surfaces [7].

19.3.2  TiO2 Scaffold

As an alternative to bone, one of the most prom-
ising biocompatible materials has been proven to 
be a bioactive ceramic TiO2 [38, 61, 62]. In previ-
ous studies, TiO2 porous scaffolds have shown to 
promote good cell adhesion and growth of mouse 
osteoblasts into TiO2 structures [72]. Moreover, 
TiO2 porous scaffolds provide a better substrate 
for the proliferation and survival of human MSCs 
compared to other commercially available bone 
graft substitutes [73].

Highly porous TiO2 scaffold provides a large 
surface area-to-volume ratio that assists cell 
adhesion and is required to gain a high cell den-
sity within the scaffold. Additionally, a large 
interconnected pore volume is necessary to per-
mit bone cells to migrate into and subsequently 
proliferate within the scaffold [33, 51]. Assembly 
of a highly porous TiO2 scaffold with the ability 
to promote fibroblast and osteoblast cell adhesion 
onto the entire scaffold surface has previously 
been reported, and preferable pore size ranges 
from 300 μm to 400 μm (more than 100 μm at 
least), otherwise vascular tissue cannot grow into 
the scaffold [19].

Although porous scaffold provides better 
osteogenic environment, it should be noted that 
excessively increased porosity and pore size have 
a detrimental effect on the mechanical strength 
and therefore cut down the mechanical integrity 
of the scaffold structure. However, Ceramic TiO2 
is known to have inherently higher compressive 
strength compared to other common osteocon-
ductive scaffold materials, thus providing better 
mechanical strength to the scaffold structure. In 
the case of ceramic TiO2 scaffolds with a total 
porosity of less than 85%, high compressive 
strength values of about 2.5 MPa were reported 
[77]. This strength was maintained even after 
implantation on account of the non-resorbable 
property of TiO2. The reported compressive 
strength values for calcium phosphate ceramic 
and calcium phosphate ceramic / polymer com-
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posite scaffolds with similar porosity are typi-
cally much lower than 2 MPa [83]. On the other 
hand, the compressive strengths of trabecular 
bone and cortical bone is generally ranged 
2–12 MPa and 100–230 MPa, respectively [10].

19.3.2.1  Fabrication of TiO2 Scaffold
The most widely used technique for manufactur-
ing TiO2 scaffolds is the polymer sponge method 
where reticulated open-pore ceramics are fabri-
cated through the replication of polymeric porous 
structures. This is the standard method for pro-
ducing alumina, zirconium, silicon carbide and 
other ceramic foams. The foams are produced by 
coating a ceramic slurry on a polyurethane foam. 
The polymer, having already the desired macro-
structure, serves merely as a sacrificial scaffold 
for the ceramic coating. The slurry then infiltrates 
the structure and attaches to the surface of the 
polymer. Excess slurry is extracted, leaving a 
ceramic coating on the foam struts. After drying, 
the polymer is slowly burned away as to mini-
mize damage to the porous coating. Once the 
polymer is removed, the ceramic is sintered to the 
desired density. This process reproduces the mac-
rostructure of the polymer and creates a unique 
microstructure within the struts (Fig. 19.2) [52].

19.3.2.2  In Vivo Studies of TiO2 
Scaffold

As with TiO2 nanotube, several in vivo studies 
have been reported on the application of TiO2 
scaffolds for bone defects. In particular, Tianien 
et  al. investigated the bone formation in TiO2 
scaffolds in extraction sockets of pigs’ jaw. After 
implantation of TiO2 scaffolds to the bone socket, 
evidence of angiogenesis and a great quantity of 
viable mineralized bone tissue was observed, 
proving that the highly interconnected pore struc-
ture of TiO2 scaffolds had superb osteoconduc-
tive capacity and arranged a supportive 
environment for bone ingrowth [78].

Another study analyzed the in vivo perfor-
mance of the porous TiO2 scaffolds in a peri- 
implant cortical defect in the rabbit model. After 
8 weeks of implantation of TiO2 scaffolds to the 
cortical defect of rabbit’s tibia, the defects treated 
with TiO2 scaffolds had significantly higher bone 
volume, bone surface and bone surface-to- 
volume ratio without any side effects, both in the 
cortical and bone marrow compartment. 
Histologic observations verified osteogenesis in 
the cortical sections of the defects and the exis-
tence of freshly developed bone in close proxim-
ity to the scaffold surface [30].

19.3.2.3  Improving TiO2 Scaffold 
Bioactivity by Combination 
with Other Materials

Since TiO2 scaffolds themselves are not rigid 
enough for use as an implant, researchers have 
tried combining TiO2 scaffold with other materi-
als to improve its rigidity. For example, Tiainen 
et al. examined the effect of ZrO2 addition on the 
mechanical properties of TiO2 scaffolds [67]. Up 
to 40 weight % of the TiO2 raw material were 
substituted with ZrO2 by polymer sponge replica-
tion in order to fabricate ultra-porous TiO2 scaf-
folds. The addition of ZrO2 increased the average 
compressive strength without altering the pore 
structural parameters of TiO2 scaffolds. Further 
ZrO2 additions led to reduction in the compres-
sive strength as compared to the absence of ZrO2 
[34]. They proposed that combining the excep-
tional mechanical properties of ZrO2 with the 
osteogenic properties of TiO2 might allow the 

Fig. 19.2 Macrostructure of TiO2 scaffold. (Reprinted 
from [29])
“Reprinted from J Eur Ceram Soc, 24(4), Haugen, H., 
Will, J., Köhler, A., Hopfner, U., Aigner, J., & 
Wintermantel, E., Ceramic TiO2-foams: characterisation 
of a potential scaffold, 661-668, Copyright (2004), with 
permission from Elsevier.”

T.-K. Ahn et al.



363

production of a profoundly osteoconductive scaf-
fold with great mechanical strength for load- 
bearing environment, all the while preserving the 
highly reticulated pore structure necessary for 
bone regeneration.

In addition, numerous studies have reported 
cases in which the osteogenic effect increased 
when TiO2 scaffold was combined with other 
materials. For instance, based on the pluripotency 
of MSCs and osteogenic effects of simvastatin, 
Pullisaar et al. explored the osteogenic differen-
tiation of adipose tissue-derived MSCs on TiO2 
scaffolds coated with alginate hydrogels with dif-
fering concentrations of simvastatin [69, 94]. The 
study concluded that the TiO2 scaffolds coated 
with alginate hydrogel containing simvastatin 
promotes osteogenic differentiation of stem cells 
and were proved valid for adipose tissue-derived 
MSCs based bone tissue engineering.

19.3.3  TiO2 Composite

Copious studies have examined bone tissue- 
engineering methods by developing composite of 
osteoinductive biomaterials and three- 
dimensional cell aggregates based on TiO2 scaf-
folds or particles. A research team led by Ferreria 
et al. created a novel cell aggregate-loaded mac-
roporous scaffolds combining the osteoinductive 
properties of TiO2 with hydroxyapatite–gelatin 
nanocomposites for regeneration of craniofacial 
defects [18]. In their in vivo study, hydroxyapa-
tite–gelatin nanocomposites with enriched mac-
roporous TiO2 scaffolds were applied to the rats, 
and the results showed that the scaffolds had a 
greater strength and osteointegration than the 
natural calvarial bone at 8 and 12  weeks after 
implantation [18].

A different team added TiO2 to the Al2O3-SiO2 
mixture to increase the bioactivity of the pro-
duced scaffold. The scaffold was assembled by 
rapid fluid infiltration of Al2O3-SiO2 solid into a 
polyethylene non-woven fabric template struc-
ture [45, 71]. Both in vitro and in vivo tests 
showed potent bone formation with improved 
mechanical properties in the mixture of Al2O3- 
SiO2 solid with TiO2 scaffold [57].

Furthermore, a few studies have established 
procedures for bone tissue engineering by com-
bining TiO2 nanoparticle components with differ-
ent materials [25, 48]. In their researches, TiO2 
nanoparticles were introduced to the polymeric 
matrices composed of collagen and chitosan 
hydrogels to enhance strength, mechanical prop-
erties as well as their bioactivity [2, 47]. Collagen 
and chitosan were selected as hydrogel compo-
nents being that they are biopolymers, exist in the 
extracellular matrix, and have structural similar-
ity with glycosaminoglycan. Additionally it has 
been reported that modified TiO2 by pyridoxal 
5′-phosphate, an active form of vitamin B6, dra-
matically increases the hemophilic property at 
the implant-blood interface and inactivated plate-
let for sufficient supply of growth cytokines and 
migration of osteoblasts [43].

19.4  Other Functions of TiO2

19.4.1  Drug Delivery

A variety of drugs have been loaded into TiO2 
nanotube to test whether the implant can deliver a 
drug directly to the implant site [27]. The most 
common drugs loaded to TiO2 nanotubes are anti-
biotics such as gentamicin, vancomycin and levo-
floxacin. Other drugs such as non-steroidal 
anti-inflammatory drug (indomethacin), anti- 
lipidemic drug (simvastatin) and certain growth 
factors are also available for loading [79]. 
Recently, several advanced approaches have been 
proposed to achieve a TiO2 nanotube platform for 
sustainable drug delivery, including methods trig-
gered by pH, temperature, light, radiofrequency, 
magnetics and ultrasonic stimulation [86].

19.4.2  Cosmetic and Skin 
Applications

TiO2 is also widely used in the field of cosmet-
ics considering that it’s an effective emulsifier 
in powder form and is used as a pigment to 
impart whiteness and opacity to products such 
as cosmetics, food, pharmaceuticals and most 
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toothpastes. Especially in cosmetics and skin 
care products, TiO2 is used as a pigment, sun-
screen, thickener, and tattoo pigment. Indeed, 
TiO2 is produced in a wide range of particle 
sizes, oils and water dispersions, and certain 
grades in the cosmetics industry.

19.5  Conclusion and Future 
Direction

Ti-based implants are the first choice in the field 
of orthopedic and dental surgery because of their 
high biocompatibility. That being the case, cer-
tain modifications are necessary in order to 
obtain a strong osteointegration between the Ti 
implant and the bone. Various techniques to form 
a porous implant surface were introduced, 
including using a coating material or nano-mod-
ification by TiO2 nanotubes. Recently, promising 
results were reported using TiO2 nanotubes as 
the surface modifiers. One of the most emerging 
methods to obtain TiO2 nanotubes is electro-
chemical anodizing with controlled diameters. 
The advantage of a porous TiO2 scaffold com-
pared to the other ceramics is that it is biocom-
patible with relatively superior mechanical 
properties. However, there have been only a 
small number of in vivo articles on the bone 
forming ability using TiO2 nanotubes or scaf-
folds. Further studies using various animal 
model under different conditions is needed to 
optimize and commercialize the TiO2 nanotubes 
or scaffolds for clinical applications in orthope-
dic or dental field. Finally, techniques using TiO2 
nanotube or scaffold has the potential as a novel 
therapeutic strategy for osteogenesis.
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Abstract
Regeneration of diseased or damaged skeletal 
tissues is one of the challenge that needs to be 
solved. Although there have been many bone 
tissue engineering developed, scaffold-based 
tissue engineering complement the conven-
tional treatment for large bone by completing 
biological and functional environment. 
Among many materials, silk fibroin (SF) is 
one of the favorable material for applications 
in bone tissue engineering scaffolding. SF is a 
fibrous protein mainly extracted from Bombyx 
mori. and spiders. SF has been used as a bio-
material for bone graft by its unique mechani-
cal properties, controllable biodegradation 
rate and high biocompatibility. Moreover, SF 

can be processed using conventional and 
advanced biofabrication methods to form vari-
ous scaffold types such as sponges, mats, 
hydrogels and films. This review discusses 
about recent application and advancement of 
SF as a biomaterial.
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PCL Polycarprolactam
PGA Polyglycolide
PEG Polyethylene glycole
PLA Polylactide
SF Silk fibroin
TCP Tricalcium phosphate
TE Tissue Engineering
VEGF Vascular endothelial growth factor

20.1  Introduction

Millions of people worldwide suffer from severe 
pain by trauma or disease of skeletal tissues. 
Major clinical challenges are represented to 
revive a damaged bone. Bone tissue engineering 
(TE) has been significantly developed over the 
past two decades and many advances have been 
made in the establishment in biomaterial scaf-
folds [53]. Bone TE promotes construction of 
new bone by using alternative bone grafts. TE 
construct allows to investigate tissue regenera-
tion, helps to analyze the cellular activity and acts 
as a microenvironment template for tissue regen-
eration [22, 28]. One of the main goal is to design 
a scaffold which mimics the bone hierarchical 
and complex structure. Polymers such as natural 
and synthetic polymers, ceramic and metals are 
used as a material for TE scaffolds [26]. The 
main challenge to design a scaffold is to choose 
an appropriate biomaterial. Biocompatibility is 
one of the most important factor that needs to be 
considered for any biomaterials. Specific physi-
cal, mechanical and degradation properties are 
needed for different types of tissues [101]. SF is 
known as a commonly available biomaterial and 
many attempts have been made to enhance its 
properties. SF has been used in bone tissue engi-
neering field because of its easy and various pro-
cessing methods, high mechanical strength, 
excellent elasticity, biocompatibility, and con-
trollable biodegradability [8]. The number of 
papers and citations are still increasing in SF 
application of bone TE. This review will discuss 
about characteristics and different processing 
methods of SF as an alternative bone graft in 
bone tissue engineering.

20.2  Bone

A bone is a crucial and structural part of a human 
body. Bones protect the organs in the body, sup-
port movement, regulate the storage of mineral 
and blood pH and participate in maintaining 
homeostasis. It is important to understand the 
knowledge of bone tissue, structure, composition 
and mechanic to regenerate bone [67]. Bone tis-
sue is a hard tissue which compose of 35% of 
organic part such as collagen which occupy 
almost 95% of the organic extracellular matrix 
(ECM), osteocalcin, osteonectin, hyaluronan and 
proteoglycans. The rest of the 65% of bone tissue 
is an inorganic matrix which is consist of 
hydroxyapatite (HAp), carbonate and inorganic 
salts [46]. The organic ECM contribute to regu-
lating the stem cell fate and immobilizing cyto-
kines and growth factors. Inorganic part helps to 
strengthen architecture of bone. Bone tissue has 
two types of mineralized tissue, cortical bone 
which is compact and sponge-like cancellous 
bone. Bone marrow, endosteum, nerves, blood 
vessels, cartilage and periosteum are also found 
in the bone tissue [4].

Bone tissue engineering is a strategy to regen-
erate bones and guide cells into osteogenesis. 
Alternative bone grafts not only use as grafts but 
also mimic bone tissue structures which help to 
accelerate bone regeneration and analyze at cel-
lular level. The goal of bone tissue engineering is 
to provide a 3 dimensional (3D) bone mimicking 
structure by means of combining cells, growth 
factors and scaffolds [96]. The main challenge is 
to choose an appropriate biomaterial which pos-
sesses high biocompatibility and low toxicity. 
Moreover, mechanical properties of bone graft 
are crucial for handling surgical implantation and 
tissue integration [64].

20.2.1  Bone Extracellular Matrix 
(ECM)

The physiology and biomechanical structure of 
bone tissue must be completely understood in 
order to design a scaffold that can satisfy the 
needs of making a functional tissue. Bone has a 
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very complex microenvironment that embed dif-
ferent cell types such as osteocytes, osteoblasts 
and osteoclasts and regulate the cell adhesion, 
proliferation and differentiation [79]. This com-
plex environment named as ECM supply struc-
tural and biological properties to the bone tissue. 
The organic nanocomposite of ECM mainly col-
lagen type I serves a template for inorganic nano-
composite such as HAp which helps bone 
formation and reconstruction by providing a 
nucleation center for calcium and phosphate ions. 
The fibrous network ECM also plays a role in 
regulating the growth factor activity by control-
ling the release kinetics [67].

Many studies have demonstrated the bone- 
mimetic environment scaffolds for bone regener-
ation. The growth factor combined scaffolds has 
been extensively and repots show that these scaf-
folds were more efficient in  localized delivery 
and provided ectopic bone formation [79]. Also 
challenges have been made for poor vasculariza-
tion in large bone TE scaffolds by using angio-
genic factors. Other studies have shown that 
angiogenic molecules improved bone healing in 
vitro and in vivo. However, these studies do not 
simulate the bone structure perfectly and more 
investigations are needed to regulate growth fac-
tors in the desired region [33].

20.2.2  Scaffolds for Bone 
Regeneration

Designing an ideal scaffold for bone regeneration 
require biodegradability, biocompatibility, large 
surface-area-to-volume-ratio, high mechanical 
strength, and controlled release of growth factors 
[79]. A porosity is also an important factor 
because it facilitates delivery of nutrients, dif-
fuses of waste products, provides a microenvi-
ronment for cell adhesion, proliferation and 
differentiation to shape bone tissue [1, 2]. To 
enhance the scaffold and tissue interaction, sur-
face chemistry and topographical features should 
also be considered for a required scaffold. 
Promoting vascularization is another crucial 
issue in bone TE scaffold and this is satisfied by 
incorporating angiogenic growth factors such as 

platelet-derived growth factor (PDGF), vascular 
endothelial growth factor (VEGF), insulin-like 
growth factor (IGF), or fibrous growth factor 
(FGF-2) in the scaffolds [118]. Producing the 
scaffold that fulfill the properties mentioned 
above require different materials and processing 
methods. The materials for bone TE are nature 
origin polymers such as collagen I duck feet’s 
collagen, SF, polysaccharides, elastin and fibrin-
ogen [11, 12, 48, 49, 91, 93]. There are also syn-
thetic polymers for bone scaffold material such 
as poly(lactide-co-glycolide) (PLGA), polycarp-
rolactam (PCL), polyglycolide (PGA), polyeth-
ylene glycole (PEG), or polylactide (PLA) ([1, 
20, 49]). Processing methods of bone TE are 
elecrospinning, 3D printing freeze-drying and so 
on.

20.3  Silk Fibroin As a Biomaterial

Musculoskeletal defects have been treated using 
bioactive molecules, scaffolding materials or 
only cells [79]. Recently, silk which is a bioac-
tive polymer gained its focus on regeneration of 
orthopedic tissue architecture. Silk is a native- 
derived protein biopolymer made from silk-
worms, spiders, mites and flies. Silk from varied 
sources may differ in properties but the compo-
nent is chiefly proteins and minor amounts of 
lipids and polysaccharides [30]. The biomaterial 
and surface topography of scaffolds where cells 
adhere influence cell migration, proliferation, 
phenotype and differentiation [3, 19, 23, 24, 27, 
57, 61, 102, 110]. The SF scaffolds have shown 
the advantage of SF as a biomaterial on mesen-
chymal stem cells (MSCs) to differentiate with 
ECM secretion and mineralization [43, 45]. The 
mechanical properties are also important in 
bone TE.  SF has shown excellent mechanical 
properties such as tensile strength, toughness 
and young’s modulus in several studies. 
Biocompatibility, biodegradability and low 
immunogenicity that are also a crucial factors to 
consider in TE scaffolding have shown out-
standing results [17]. Following paragraphs will 
discuss about characteristics of SF as a 
biomaterial.

20 Silk Fibroin-Based Scaffold for Bone Tissue Engineering



374

20.3.1  Characteristics of Silk  
Fibroin (SF)

Silk is composed of two different major protein 
called SF that is made of the fibrous part of the 
filament and sericin which is a glue-like protein 
and water soluble. Silk is extracted from differ-
ent insects such as spiders, Bombyx mori. and 
beetles using different methods. Different silks 
provide different functions and mechanical 
properties [95]. The most famous silk is SF from 
Bombyx mori. due to its ease handling, good 
mechanical properties and high biocompatibil-
ity. SF has been used as textiles over thousands 
of years due to its mass production. Moreover, 
there are number of studies on SF used in bio-
medical application. Removal of the sericin 
component in SF is one of the first step in fabri-
cation of SF scaffold. The sericin, the outer part 
of silk was known to show allergenic reaction for 
clinical use. However, it was found that compos-
ite of sericin and fibroin caused the adverse reac-
tion and sericin has been found as a biocompatible 
material in last few years [6, 15, 32, 92, 109, 
117]. Degumming process is a thermochemical 
treatment of the cocoons to remove the glue-like 
protein sericin (Fig. 20.1). Degummed SF has a 
crystalline β-sheet which is a main structure of 
SF. Potassium phosphate or methanol treatment 
can induce extremely stable β-sheet nanocrystals 
by increasing glycine content in the SF amino 
acids sequence. This high glycine constituent 
allows SF to pack tightly [30, 42, 43, 45, 51, 69, 
75, 88, 89]. The crystalline β-sheets are mainly 
interacted by hydrogen bonds. Although, hydro-
gen bonds are reported to have weak interac-
tions, hydrogen bonds of SF help to assemble 
and heal up itself when reforming. The sericin, 
the outer part of SF is removed in laboratories 
before use. Degumming process exposes SF to 
an extreme environment. This not only changes 
the structure of the silk but also changes the 
mechanical properties. While degummed SF 
showed similar Young’s modulus, the tensile 
strength and elongation rate showed difference 
[25, 55, 64, 107, 113]. These tunable mechanical 
strengths of SF may attract many researchers to 
process SF in different forms.

20.3.2  Biocompatibility

SF extracted from silk worm is a well-studied 
biomaterial with a great biocompatibility and low 
immunity due to its unique structure and chemi-
cal composition [10]. The first approach on SF as 
a biomaterial was attempted in 1995 using fibro-
blast cells (Minoura et  al. 1995). The result 
showed great cell attachment and proliferation on 
the surface of Bombyx mori SF. After 1 year, SF 
has been reported to show biocompatibility on 
blood [63, 82]. SF has been approved by US 
Food and Drug Administration (FDA) in 1993 
and used as a suture. More studies of the immu-
nogenicity and antigenicity of SF were done in 
vitro and in vivo [5, 103]. In vitro studies showed 
that the water absorption ability which is related 
body fluid and nutrient loss during transplanta-
tion was remarkable in SF sponges. 
Biocompatibility was studied more in vivo in SD 
rat skin. The result showed no sign of infection 
for up to 4 weeks [88] (Fig. 20.2). Bioengineered 
composite such as curcumin, β-tricalcium phos-
phate and Broussonetia kazinoki (BK) SF scaf-
folds were also tested in vivo and these studies 
showed that composites increased the biocom-
patibility of the SF scaffolds [42, 43, 51].  
Properly degummed and sterilized SF is widely 
accepted for biocompatibility in overall studies. 
Although SF has been known as a successful bio-
compatible material for a long time, SF is like 
any other biomaterials a foreign substances in 
human body [103]. Further detailed investiga-
tions are needed in an adverse immunological 
response. It is still a challenge to answer a ques-
tion about long term safety of SF. The immune 
reaction of SF degraded products is also a con-
cern. With more studies in this regard, it is 
expected that SF scaffolds will have more poten-
tials in TE.

20.3.3  Degradation

Degradation of biomaterial is tested by mass loss 
and morphology changes assessment. Animal 
models are used by implantation and  examination 
of histologic and fluorescent studies. SF biodeg-
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radation have been tested in many studies. 
Combination of biomaterials allow SF degrada-
tion rate to increase [10]. Degradation of scaffold 
in different tissue should possess controllable 
degradation rate. The understanding of structure 

of different tissue and characteristic is crucial for 
designing a controllable scaffold. The main chal-
lenge of SF is the degradation of β-sheet in SF 
because amyloid of β-fibrils has been reported to 
have its association with Alzheimer. However, SF 

Fig. 20.1 Illustration of processing SF (a). Schematic representation of different types of SF scaffolds (b). In vivo test 
of SF scaffolds on animal model (c)
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Fig. 20.2 Gross observation of wounds treated by medifoam and 1% silk sponge (a). Skin stained with H&E for his-
tological observation (b). [88]
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has been reported to have non-toxicity on neural 
cells in in vitro studies [43, 45, 70, 71]. The deg-
radation of SF is affected by the content of two 
type of SF. The insoluble silk I and soluble silk II 
in water. The methanol treatment increases the 
β-sheet formation during cross-linking process, 
resulting an increase in silk II. The fast degrada-
tion can be performed with water soluble SF film 
fabricated without cross-linking process [37, 59]. 
The lowest rate of β-sheet had shown when the 
drying time of the scaffold was longer [59]. There 
are few studies comparing the degradation of dif-
ferent species of SF. The manipulation of degra-
dation time and rate of SF is still challenges for 
new possibilities in application of tissue engi-
neering and drug release.

20.3.4  Mechanical Properties of Silk 
Fibroin

High mechanical properties are necessary in 
bone TE scaffolds. The scaffolds should have 
mechanical compatibility with native bone and 
transfer load properly. It is known that compres-
sive strength should be 2-12 MPa and 50-500 MPa 
for modulus to match the mechanical properties 
of cancellous bone. SF is studied to have high 
strength, tensile strength and toughness. This 
polymer is appropriate for bone construct because 
of its ultimate tensile strength 300-740 MPa, 
elastic modulus of 10-15 GPa and elasticity of up 
to 20 % strain-to-failure [26, 40, 43, 50, 53].  
The crystalline β-sheets of SF contribute to its 
mechanical properties. The changes in tempera-
ture, pH, mechanical stresses, or exposure to 
higher salt concentrations or methanol form the 
crystalline β-sheet [13, 47, 103, 104]. Cells also 
deposit matrix among the SF which contribute to 
the bioengineered scaffolds. Studies have shown 
that the cells incorporated in the composite SF 
increase the compressive modulus [86, 97]. The 
curcumin/SF composite have shown that the cells 
incorporated composite SF has the higher com-
pressive modulus [42]. Also the composite of 
hydroxyapatite and β-tricalcium phosphate 

(TCP) reinforced SF showed that the compres-
sive strength of SF scaffolds increased as the 
hydroxyapatite β-TCP content increased [51]. 
The degumming process expose SF to a harsh 
condition which change SF structure and 
mechanical properties slightly. This process 
makes varied mechanical properties such as dif-
ferent β-sheet content, matrix stiffness and com-
position of SF. Although there are some problems 
to overcome, SF still surpass other natural derived 
polymers and some synthetic polymers [73].

20.3.5  Porous Structure

Porosity and pore interconnectivity are impor-
tant features that dictate the final scaffold prop-
erties and biological performance. The scaffolds 
with porous structures are ideal because it 
closely mimic the physiological microenviron-
ment of a tissue [35, 54]. There are many pro-
cessing techniques to make the porous structures 
such as freeze-drying, porogen leaching (e.g. 
salt), gas- foaming, and elecrospinning. The 
freezing temperature, solution pH and organic 
solvents amount can control the pore size of the 
freeze dried sponges [29, 50, 69, 98]. The freeze-
drying method makes porosity by the sublima-
tion of ice- crystals. The methanol, 
glutaraldehyde, or genipin-crosslinking treat-
ments can stabilize the dried 3D scaffold. Also 
the phosphate or calcium chloride solution can 
increase compressive strength of the dried silk 
scaffold which reinforce the osteogenic differen-
tiation [17, 64, 89]. The freeze-thaw process can 
increase the pore sizes. Salt as a particle for the 
porous SF scaffolds can produce controlled 
porosity and pore sizes. It is studied that when 
compared with salt and sugar, salt leaching 
results in harder scaffold structure [60]. The 
average pore sizes and porosity of SF scaffold 
differ depending on the treatment method. The 
3D SF scaffold treated with hexafluoro- 2-
propanol (HFIP) is known to have higher poros-
ity and average pore size than the methanol 
treated scaffold. Also the aqueous derived SF 
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scaffold showed increase in the pore size than 
the freeze dried SF hydrogel. Selecting a suitable 
fabrication method can lead to an appropriate 
scaffold for the target tissue [8].

20.4  Processing Methods of Silk 
Fibroin

Selecting an appropriate biomaterial that mimic 
the micro- and nano-structure of the tissue aimed 
at regenerate is very important. Above that, suit-
able architecture is needed for the functionality of 
the tissue [116]. The choice of material and design 
of scaffold for bone tissue engineering is decisive 
factors. The scaffold should support cell prolifera-
tion, differentiation, migration and deposition of 
ECM. Also the scaffold for the bone tissue must 
have sufficient toughness and matrix deposition 
considering the fact that the bone is a connective 
tissue that has major components of collagen type 
I and hydroxyapatite [79]. The biocompatibility, 
biodegradability and delivery of growth factors 
and osteoprogenitor cells delivery capacity is 
another crucial characteristics that is necessary 
for a suitable material [94]. The scaffold with 
porous 3D structure is considered as the most 
important factors of the bone scaffolds design 
because it offers proper mechanical properties, 
controllable porosity and pore sizes and high 
interconnectivity. The SF is a reasonable selection 
for the bone TE for its tunable mechanical proper-
ties and bio-compatibility. Moreover, the structure 
of SF scaffolds can support transportation of 
essential nutrients, oxygen and cell debris. The SF 
scaffolds can be processed into different struc-
tures by different fabrication methods [34, 39,  
43, 68, 120]. SF scaffolds can be processed into 
hydrogels, porous sponges, fibrous mats, micro-
spheres and fibers. In this section, various pro-
cessing methods to fabricate different types of 
scaffolds will be discussed.

20.4.1  Hydrogels

Hydrogels are 3D structure scaffolds which 
keep high amount of water molecules. In recent 
days, hydrogels have attracted many researchers 
as it provide high cell interactions and delivery 
of cytokines in tissue engineering field. 
Hydrogels can be used as an injectable medicine 
to deliver drugs and cells. The hydrogelation of 
SF can be processed by vortexing, sonication, 
lowering the PH level, increasing the tempera-
ture and ionic strength, freezing and electro-
magnetic treatment [7, 9, 105, 114, 115]. 
Gelation process will change the structure of 
aqueous SF solution from disordered state to 
β-sheet formation. The sonication process 
imparts movement of SF molecules and can 
convert gel in to aqueous solution by taking 
disulfide bonds apart [58, 81]. Consequently, a 
hydrogel is formed after sonication. The SF 
hydrogel fabricated by freezing method pro-
vides unique mechanical properties. The frozen 
SF solution immersed in solvent and kept below 
frozen temperature. In the previous study, 
hydrogel fabricated by sonication method 
reported to increased human mesenchymal stem 
cells (hMSCs) proliferation and enhanced cel-
lular activities. hMSCs were well encapsulated 
in the SF based hydrogels. The hMSCs showed 
osteogenic differentiation in SF hydrogels with-
out adding promoters for osteogenic differentia-
tion. Moreover, SF hydrogel incorporated with 
VEGF and bone morphogenic protein-2 (BMP-
2) has been reported to enhance angiogenesis 
and bone regeneration. SF hydrogels have the 
ability to carry different cytokines and growth 
factors with a minimal incision during surgery 
which will shorten the recovery time after post-
implantation [7, 105, 106, 119]. More recently, 
Yan et al. proposed a new class of enzymatically 
crosslinked hydrogels for TE, cancer research 
and drug delivery applications [111, 112]
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20.4.2  Sponges

SF sponges with high porosity have been used in 
bone tissue engineering for bone regeneration. 
3D structure of sponge scaffolds support ECM 
secretion, cell proliferation, cell differentiation 
and attachment [69, 98]. Sponge scaffolds allow 
to exchange essential nutrients and oxygen [43]. 
The pore size and porosity can be controlled in 
different sizes using various methods such as salt 
leaching, freeze-drying, or gas foaming. The SF 
sponges with bioactive ceramics increase the 
controllability of a porosity and pore sizes. 
β-TCP incorporated SF sponges showed that as 
the β-TCP increased, porosity increased and the 
pore sizes increased which enabled cell attach-
ment and invasions for bone tissues [51]. Another 
study showed that the SF sponges with hydroxy-
apatite porosity was controlled similar as the 
β-TCP/SF.  The study showed that the more 
hydroxyapatite in the SF sponges allowed more 
cells adhesion and active interaction along the 

cells [89] (Fig. 20.3). SF sponges with BK bio-
material showed smaller pore sizes than the SF 
but higher ECM was shown [43, 45].

The degradation of SF based sponge scaffolds 
can be differ by using different solvent. The use 
of HFIP on SF scaffolds may take more than 
2 years to degrade. However, scaffolds made with 
aqueous SF solution may take 2–6 months. The 
advantage of HFIP based SF scaffold on bone tis-
sue engineering using adipose-derived stem cells 
(ASCs) has been reported. The HFIP based SF 
scaffold enhanced alkaline phosphatase (ALP) 
activity, calcium deposition. Apart from the 
above, the scaffolds fabricated with freeze- drying 
method with bone lamellar structure showed dif-
ferent result. The scaffolds were treated with 
methanol which induced β-sheet formation. 
Moreover, the other group has reported enhance-
ment of osteogenic differentiation of hMSCs cul-
tured on SF aqueous based scaffold compared to 
HFIP based scaffold. They implanted two differ-
ent scaffolds into cortical defect area of the 
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Fig. 20.3 Histochemistry staining in aqueous-derived 
silk fibroin scaffolds loaded with various ratios of HAp 
with rBMSCs after 1 and 4 weeks of implantation in vivo: 

H&E (a). Alizarin red S (b). Von Kossa (c) (magnification 
with ×200, scale bar = 200 μm) (red arrows: osteocyte in 
lacuna, black arrows: mineral). [89]
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lambs. After 4  weeks of post-implantation, SF 
aqueous based scaffold group showed new bone 
formation while HFIP based scaffold showed 
necrotic cells without new bone formation [17, 
72, 101, 105, 106]. In recent studies, porous SF 
sponge scaffolds can be monitored in 3D images 
using micro-CT process without destroying. The 
main concern of using micro computed tomogra-
phy (micro-CT) method on SF scaffold is invisi-
ble sight of bottom part because SF is not radio 
opaque material. Due to invisible sight of SF 
using micro-CT, it is not proper to monitoring the 
degradation process of SF scaffolds using micro-
 CT [31, 64].

20.4.3  Fibrous Mats

Electrospinning method which is flexible and 
versatile produces fibrous polymer with different 
size and diameter. The diameter of electrospun 
fibers differs from nano to micro size that can 
allow mimicking the fibrous ECM structure. The 
control of atmospheric temperature and humid-
ity, voltage, distance between the needle and col-
lector, nozzle configuration, type of collector, 
and use of different solvent that differ in viscos-
ity, polarity, concentration, volatility and conduc-
tivity can manipulate the diameter of porosity of 
electrospun fibrous mats [43, 45, 66, 67]. By han-
dling these parameters, diameter of the fibers 
which control the adhesion and proliferation of 
bone marrow derived mesenchymal stem cells 
(BMSCs) is controlled. Besides the tunable pro-
cessing properties, electrospinning is economical 
and relatively fast in fabrication of scaffolds [21, 
56, 76, 77, 79]. In the previous study, BMSCs 
have been reported to show higher cell prolifera-
tion and ECM secretion which is cultured on 
electrospun SF fibrous mats. ECM structure 
mimic in tissue engineering application is impor-
tant to support cell proliferation, migration and 
attachment [41, 108]. Selecting an appropriate 
solvent and concentration of SF is important dur-
ing elecrospinning. HFIP is used to fabricate 

nanometer-diameter SF fibers. The silk concen-
tration is known to be the most important consid-
eration in producing uniform fibers with a 
diameter less than 100 nm. Methanol treatment 
convert SF fibers α-helix to crystalline β-sheet. 
Blending with synthetic polymers with SF pro-
duce improved properties in hydrophilicity, 
strength, elongation and osteoconductivity. When 
elecrospinning is combined with freeze-drying, 
growth factors delivery is facilitated. The growth 
factors increase the mimic of microenvironment 
of bone tissue which enhances osteogenic differ-
entiation. Although the electrospinning is easy to 
use and robust, there are some limits. It is chal-
lenging to make a sufficient amount of produc-
tion, distribute cells uniformly and control the 
mean pore sizes. Combining other fabrication 
methods with electrosinning or increasing the 
time span dramatically can compensate the defect 
of the elecrospinning method [8, 30, 50, 87].

20.4.4  Silk Fibroin Composite 
Scaffold

The incorporation of SF and other biomaterials 
has been reported to show advantages on bone 
tissue engineering. The incorporation of calcium 
phosphate, collagen and different nature derived 
biomaterials showed bone regeneration in both in 
vitro and in vivo. Recently, composite SF scaf-
folds lead to higher osteoconductivitiy, osteo-
genic differentiation and new bone formation rate 
compared to unmodified scaffolds. The incorpo-
ration of HAp with SF due to its great osteocon-
ductivity and enhancement of mechanical 
properties has been used in electrospinning pro-
cess. Moreover, incorporation of BMP-2, HAp 
and SF has been reported to support hMSCs pro-
liferation, osteogenic differentiation and showed 
high calcium composition [44, 52, 65, 74].

Incorporation with nature derived materials 
such as aloe vera, chitosan, BK has been proved 
to enhance osteoconductivity and osteoinductiv-
ity [38, 43, 45]. The demineralized bone matrix 
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(DBM) is widely used material which contains 
large amount of collagen and BMP-2. The incor-
poration of DBM powder or DBM particles with 
SF not only promoted osteogenesis of rat ASCs 
but also allowed to handle DBM easily. The com-
position of DBM and SF increased surface rough-
ness and mechanical properties which are 
important for cell attachment and migration 
[100].

Recently, SF has been combined with ionic- 
doped calcium phosphates that can modulate 
stem cells proliferation and osteogenic potential 
[78].

The proper compressive strength of scaffold 
for bone tissue engineering can be achieved by 
adding new biomaterial or reinforcement of SF 
itself. In the previous study, SF microfibers and 
microspheres have been used to enhance mechan-
ical properties. The incorporation of SF particles 
increase rigidity, roughness of the scaffolds and 
osteogenic differentiation of cells.

20.4.5  3D Printing

3D printing controls the internal geometry and 
porosity which influence the cellular behavior. 
Current scaffold processing methods are unsuc-
cessful in controlling the material properties. The 
conventional strategies such as freeze drying, 
porogen leaching, electrospinning, or gas foam-
ing produce random porous scaffolds. The 3D 
printing combines biomaterials with cells and 
supporting components with pre-defined internal 
architecture scaffolds which overcome the con-
ventional methods drawbacks [14, 99]. Also the 
3D printing allows cells to encapsulate in bio-
compatible hydrogels that mechanically and bio-
chemically supportive environment. There are 
few studies using SF for 3D printing. The β-sheet 
content modification regulates the stiffness and 
degradation of the SF scaffolds in 3D printing 
[14, 16, 80, 83, 90]. Recently, Costa et al. reported 
on a fast setting SF bioinks which open ups pos-
sibilities in the biofabrication of memory-shape 

implants for personalized TE [18]. More studies 
are needed but the 3D printing is regarded as the 
potential future technique in bone TE.

20.5  Bone Regeneration Using 
Silk Fibroin In Vivo

To investigate the regeneration ability of a scaf-
fold, it is difficult to process only with in vitro 
evaluation. Therefore, to evaluate and analyze the 
new bone formation ability and osteogenesis, in 
vivo evaluation should be performed. SF has been 
evaluated as sponges, electrospun fibrous mat 
and hydrogels in different animal models on dif-
ferent locations mainly on calvarial, mandibular 
and femoral area. The pristine SF scaffold with 
and without osteogenic cell seeded scaffolds 
were compared in previous studies. The results 
demonstrated that there were no significant new 
bone formation in non-cell seeded group com-
pared to cell seeded group in mice. The similar 
result was revealed when pre-differentiated 
hMSCs were used. The mandibular defects of 
rats and canines were filled with new bone tissue 
in mineralized or apatite coated SF scaffolds [36, 
62, 121]. Although osteogenic cell seeded on SF 
scaffolds showed advantages on osteoconductiv-
ity and osteoinductivity in in vivo studies, use of 
pre-cell cultured scaffolds may not be appropri-
ate in a clinical purpose for human due to isola-
tion process, long duration time and immune 
rejection problem. To overcome these problems, 
rather than seeding the cells on the scaffolds, 
incorporation of bioactive resources such as 
nature-derived biomaterials and bioactive glasses 
with SF were attempted. Interestingly, incorpo-
rated scaffolds induced new bone formation and 
mineralization compared to pristine SF scaffolds 
[43, 45, 84, 85].

The in vivo study of β-TCP and SF composite 
showed that the rate of bone formation was 
slower in the blank group and increased in the 
BMSCs seeded scaffolds. The bone regeneration 
was significantly active in the SF/β-TCP compos-
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ite scaffolds. The histological staining in the 
defect model implanted with SF/β-TCP showed 
developed bone tissue and extent of collagen for-
mation was investigated after 8 weeks of scaffold 
implantation in the defect area [51] (Fig. 20.4). 
Combination of a SF and biomaterial instead of 
growth factors and cytokines was also studied. 
BK powdery extract was applied to make SF 
scaffold. The BK/SF scaffold implanted area was 
filled with mineralized bone tissue at 8 weeks but 
the SF scaffold in the defect area showed almost 
undetectable newly formed tissue [43, 45] 
(Fig. 20.5).

20.6  Conclusion

SF is a nature-derived biomaterial with tunable 
mechanical properties and biocompatibility which 
is favorable for a variety of purpose in TE. SF can 
be incorporated with different biomaterials to 
form hybrid composite scaffolds which induce 
new bone formation and mineralization. These 
hybrid composite can provide a natural bone envi-
ronment and expand osteogenic potential. SF can 
be fabricated to different types of scaffolds such 
as hydrogels which are injectable or printable, 
sponges that are porous and fibrous mats in 2D or 
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3D constructs by using different processing meth-
ods. Improved SF scaffolds can be expected with 
novel processing techniques and lead to new pos-
sibilities on bone tissue engineering. In vitro stud-
ies using SF scaffolds can contribute to 
understanding more about bone tissue ECM min-
eralization, bone resorption occurrence and vas-
cularization as well as bone diseases and 
therapeutic drugs. In vivo studies have been per-
formed on small animals such as rats and rabbits. 
These results do not suggest that SF can be applied 
to humans. Further studies such as requirements 
in clinical trials and suitable commercialized 

structures for silk-based scaffolds in bone regen-
eration are needed. The future of SF in clinical use 
for bone regeneration is promising and will leads 
to better life styles and rapid healing for patients 
with various bone diseases and defects.
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Fig. 20.5 rBMSC-laid scaffolds were implanted into the 
calvaria defects of female SD rats (a). Histological sec-
tions stained with H&E and MTS for calvaria defect 
treated models. Histological sections stained with H&E 

and MTS for calvaria defect treated with SF, BK/SF scaf-
fold, and nontreated (control) at 8  weeks postsurgery 
(scale bar = 1 mm) (b). [43, 45]
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Abstract
Collagen type I is the most abundant matrix 
protein in the human body and is highly 
demanded in tissue engineering, regenerative 
medicine, and pharmaceutical applications. To 
meet the uprising demand in biomedical appli-
cations, collagen type I has been isolated from 
mammalians (bovine, porcine, goat and rat) 
and non-mammalians (fish, amphibian, and 
sea plant) source using various extraction 
techniques. Recent advancement enables fab-
rication of collagen scaffolds in multiple 
forms such as film, sponge, and hydrogel, with 
or without other biomaterials. The scaffolds 
are extensively used to develop tissue substi-

tutes in  regenerating or repairing diseased or 
damaged tissues. The 3D scaffolds are also 
used to develop in vitro model and as a vehicle 
for delivering drugs or active compounds.

Keywords
Collagen type I · Biomaterial · Fabrication · 
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vitro model · Drug delivery system

21.1  Collagen Type I

Collagen is one of the major extracellular matrix 
(ECM) proteins in animals. It has fibrillary struc-
ture, which is essential for tissue scaffold net-
working to perform its standard functions [39]. 
The presence of collagen in ECM governs the 
structural integrity, biochemical properties, and 
physiological functions of body tissues. It involves 
regulation of cellular functions that include cell 
attachment, migration, proliferation, differentia-
tion and gene expression through specific cell 
receptors and cell binding sites [97]. Collagen 
also facilitates cellular function by providing 
growth factors to the cells [129]. So far, 29 types 
of collagen have been identified and characterised 
[117], among them, collagen type I is the most 
abundant, which is present in connective tissues 
such as skin, tendon, bone, ligament, and cornea 
[1]. Considering the availability and importance 
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of collagen type I in maintaining  tissue structure 
and functions, research is  extensively conducted 
to demonstrate its applications in regenerative 
medicine, tissue engineering, drug discovery and 
drug delivery. Scaffolds are the integral compo-
nent of tissue engineering that works by either 
mimicking the native microenvironment or acting 
as a delivery vehicle. Collagen type I can be fabri-
cated into different scaffolds and the scaffold 
properties can be modulated to meet the desired 
biomedical applications. Taking into account the 
potential of collagen type I in biomedical applica-
tions, in this chapter, the discussion topics revolve 
around various sources of collagen type I and 
their characteristics, scaffolding techniques, and 
applications of collagen type I scaffolds.

21.1.1  Source of Collagen Type I

Collagen type I is one of the most abundant pro-
teins in the animal kingdom, and it is extensively 
used in biomedical applications. It is extracted 
from various sources, which include mammalians, 
amphibians, fishes, marines, and avians [148]. 
Since the early 1950s, collagen type I is extracted 
from mammalians such as bovine and porcine 
skins and bones. However, the outbreak of diseases 
transmitted from animal to humans such as bovine 
spongiform encephalopathy, spongiform encepha-
lopathy, and foot-and-mouth disease, besides the 
religious constraint in using porcine products, 
alternative sources of collagen type I production 
are scrutinised. Recently, collagen type I extracted 
from the tendon of rat tail becomes popular and is 
used in biological research [161]. Nonmammalian 
sources such as fish, marines, amphibian, and avi-
ans are also used to extract collagen type I [166, 
173] to meet the demand. In addition, synthetic col-
lagen and recombinant collagen are a potential 
source of collagen type I [48]. However, they lack 
natural microstructure and spatial complexity [1], 
thus affecting their biological performance [9]. The 
source and extraction methods of collagen type I 
are summarised in Table 21.1.

In general, collagen type I is extracted via 
salt- precipitation, acid-based digestion, and 
enzymatic isolation using neutral saline solu-

tion, an acidic solution such as acetic acid, 
hydrochloric acid, as well as an acid-enzyme 
mixture such as pepsin with acetic acid. The 
selection of extraction method depends on the 
material solubility. Both acid and alkaline-based 
treatments are cost- effective, but the yield of 
collagen type I is little, besides involving tedious 
extraction process. In contrast, enzymatic treat-
ment is able to produce collagen type I with 
high purity and requires less production time, 
but this method is expensive [137].

Acid-based hydrolysis used to extract colla-
gen type I encompasses either organic acids such 
as acetic acid or inorganic acid such as hydro-
chloric acid. It cleaves the crosslink in collagen 
and solubilises the unbound collagen [91]. The 
use of low concentration of acetic acid is favour-
able in extracting collagen type I from mammali-
ans, avians, marines and fish [9, 84, 175]. 
Meanwhile, salt solution such as sodium chloride 
(NaCl) is used to precipitate collagen from acidic 
solution prior to dialysis [47]. The neutral saline 
of sodium chloride is used for specific tissues for 
solubility, but it is less effective due to the pres-
ence of crosslinked structure in collagen [137].

Enzymes such as pepsin, trypsin, pronase, col-
lagenase, and papain are used to extract collagen 
type I [137]. In general, the enzyme is premixed 
with an acid solution, and the target material is 
incubated to extract collagen type I by breaking 
the intertwined collagen structure. Later, colla-
gen is collected using a low concentration of the 
acidic solution. This two-step extraction method 
results in high yield of collagen type I.

21.1.2  Characteristics of Collagen 
Type I

There are 29 types of collagen which are identi-
fied in vertebrates so far. They consist of at least 
46 polypeptide chains. The structural character-
istic of collagen family is the right-handed triple 
helix of three polypeptide chains. Based on the 
supramolecular structure, collagens are catego-
rised into fibril-forming, anchoring, network- 
forming, transmembrane and fibril-associated 
group [126, 162]. The predominant one in 
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 collagen type I is the fibril-forming group, 
which is present in all fibrous tissues except car-
tilage. It consists of two alpha-1 chains, an 
alpha-2 chain and a regular collagen secondary 
structure (beta- sheet) [54, 75]. The collagen 
contains a domain with repetition of the Gly-
X-Y motif to form the trimeric collagen triple 
helix [105]. Glycin (Gly) is found at every third 
position of polypeptide chains, and the X and Y 
represent any amino acids, predominantly pro-
line and hydroxyproline. Collagen type I iso-
lated from different species and tissues has 
different proline and hydroxyproline content. 
Lower content of these amino acids results in 
lower denaturation temperature (Td) of collagen 
type I [118].

The collagen type I monomers self-assemble 
to form macromolecular fibre via fibrillogenesis. 
Fibril formation stabilises the collagen molecules 
at body temperature. Simulation study by [18] 
revealed that collagen type I fibrils are robust and 
demonstrate favourable mechanical properties at 
its usual triple helix length (about 300 nm). The 
Young Modulus of collagen monomer is esti-
mated to be 6–7 GPa, whereas the atomic force 
microscope (AFM) measurement of dehydrated 
fibril of collagen type I is 5 GPa in bovine achil-
les tendon and 11 GPa in rat tail tendon. The frac-
ture strength of collagen monomer and fibril is 
estimated to be 11 GPa and 0.5 GPa, respectively. 
Collagen monomer has higher fracture strength 

because it has higher structural order as com-
pared to collagen fibrils [18].

There is no difference of collagen type I 
chemical characteristics across species. Collagen 
type I has functional groups that encompass 
amide I, II and III. The amide groups are detected 
at peak intensity between 1450  cm−1 and 
1235 cm−1 in Fourier transform infrared (FTIR), 
and the amides indicate collagen helical structure 
[47, 134]. Via X-ray diffraction (XRD), collagen 
type I from mammalians, avians, marines, fish 
demonstrate near to amorphous rather than crys-
talline form [47]. The XRD of collagen in general 
consists of 2 prominent peaks, where the first 
peak is sharper than the second [81]. This explains 
that collagen has an organised structure and 
majority of them are in amorphous phase [180].

21.2  Collagen Scaffolding

Three-dimensional (3D) scaffold is crucial in 
developing tissue substitutes for clinical applica-
tions, as well as in vitro model. Moreover, 3D 
scaffold functions as a delivery vehicle for drug 
and/or functional factors. A 3D scaffold is essen-
tial to provide a microenvironment that mimics 
the native ECM environment, for cell attachment, 
proliferation and tissue regeneration [50, 94]. 
The issues that arise in the fabrication of scaffold 
are the biocompatibility, immunocompatibility, 

Table 21.1 The sources and extraction methods of collagen type I

Animal class Source & tissue type Extraction method References
Mammalian Bovine skin, bone, 

pericardium
Acid-based (hydrochloric acid) [132]

Porcine skin, bone Salting out method, Alkaline-based method, Acid-based 
method, Enzymatic method, Hybrid method

[176]

Rat tail Acid-based (Acetic acid) [161]
Caprine tendon Acid-based (Acetic acid) [9]
Ovine tendon Acid-based (Acetic acid) [47]

Fish Freshwater fish, marine 
fish

Acid-based (Acetic acid), Enzymatic method [118, 131, 
166]

Marine Jellyfish tissues, 
Jumbo squid mantle

Acid-based (Acetic acid) [2, 173]

Amphibian Skin Acid-based (Acetic acid) + Enzymatic method (pepsin) [181]
Avian Skin, skin-dermis Acid-based (Acetic acid), Enzymatic method (pepsin) [84, 175]
Human 
recombinant

Transgenic tobacco 
plant

Genetic engineering technology [145, 146]
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macrolevel size and shape, microlevel tissue 
architecture, nanoscale substrate arrangement, 
exchange site for gases, nutrients and metabo-
lites, biodegradation rate, cell attachment site, 
pore size and distribution, exposed surface area, 
porosity, mechanical properties, biodegradation 
rate and other properties that mimic the native tis-
sue structure [20, 112].

Collagen type I is used in 3D scaffold fabrica-
tion as it is the major component of ECM in vari-
ous tissues. It is developed as a coating material 
for existing implants, as a hydrogel or being 
freeze-dried to form 3D porous scaffolds or thin 
films in a single or composite form. It is biocom-
patible, as well as having low immunogenicity 
and suitable wettability (hydrophilicity) for cell 
attachment [99]. However, the collagen type I 
extracted and purified from natural sources lacks 
the desired mechanical strength [6, 37, 184].

The crosslinking of collagen type I intercon-
nect collagen fibrils to increase the mechanical 
strength and preserve the scaffold ultrastructure 
for an extended period by reducing enzymatic 
degradation in vivo [117, 124]. However, cross-
linking decreases number of available functional 
groups, modifies the rheology and potentially 
causes cytotoxicity [124]. The crosslinking of 
collagen is categorised into physical, chemical, 
and enzymatic.

Physical crosslinking includes ultraviolet 
(UV) irradiation and dehydrothermal (DHT) 
treatment. UV irradiation is a rapid and control-
lable technique to increase the mechanical 
strength of collagen scaffold by inducing chemi-
cal and physical changes in collagen. DHT treat-
ment involves exposing collagen to temperature 
above 90°C in vacuum, which eliminates water 
from the collagen molecules, so crosslinking 
occurs through condensation [64]. Physical 
methods do not employ cytotoxic reagents for 
crosslinking, and since both UV and DHT treat-
ments sterilise the resulting scaffold, additional 
disinfection of the produced scaffold is not 
required.

The conventional chemical crosslinkers are 
aldehydes such as glutaraldehyde (GTA) [124]. It 
is widely used because it is cheap, highly reactive 

with protein functional groups and highly soluble 
in aqueous solution [163]. 1-ethyl-3-(3-dimethyl 
aminopropyl) (EDC) is another chemical cross-
linker and known as a zero-length crosslinking 
agent as EDC does not incorporate new chemical 
entity into the polymer [56]. An alternative to the 
crosslinking chemical is genipin, which was iso-
lated from Gardenia fruit [49]. Genipin is more 
biocompatible and less cytotoxic as a crosslink-
ing agent.

These crosslinkers result in covalent bond 
crosslinking in collagen. Nevertheless, polyca-
tionic molecules such as chitosan produce ionic 
bonds between amine and carboxyl group in col-
lagen, which are sufficiently tough in increasing 
the collagen scaffold mechanical strength [29]. 
Moreover, chitosan is a suitable biomaterial for 
tissue engineering, widely studied as an inject-
able solution that forms stable hydrogel inside 
the body and has antimicrobial properties [29]. In 
addition, enzymes such as transglutaminase is 
used as a crosslinking agent to improve mechani-
cal strength and enzymatic degradation of colla-
gen scaffold [27, 150]. The advantage of 
enzymatic crosslinking is that there is no chemi-
cal residue introduced into the collagen scaffold, 
thus avoiding the risk of cytotoxicity.

21.2.1  Decellularization

The tissue microenvironment is a complex struc-
ture, in which the effort to mimic the structure is 
a challenge yet to overcome. The biological scaf-
fold consists of natural ECM such as collagen 
type I, which can be utilised to reconstruct many 
human tissues. Decellularization of native tissues 
preserves the scaffold micro- and macro- 
architecture and circumvents the need to recreate 
a suitable tissue-specific scaffold for the develop-
ment of tissue-engineered organs [117]. Many 
decellularization methods are utilised to preserve 
the scaffold structure, ECM content and mechan-
ical properties of the decellularized tissue or 
organ. One of the methods used is repeated 
 freezing/thawing that lyses the cells and reduces 
chemical usage  for cell lysis [7]. Another 
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 decellularization method is immersion in solu-
tions containing enzymes (trypsin, exonuclease 
and endonucleases), chemicals (acid to alkaline), 
chelating agents (EDTA, ionic or non-ionic deter-
gents, zwitterionic detergents) and hyper or 
hypotonic solutions [7, 117]. Often, immersion is 
coupled with mechanical agitation to ensure 
complete perfusion of the solution throughout 
organ, thus facilitating cell lysis and removal of 
cell remnants from the organ scaffold [7].

21.2.2  Freeze Drying

Freeze drying is used to produce porous struc-
ture, often sponge-like structure. This process is 
based on sublimation, where biomaterial is dis-
solved in a solvent, frozen, and the solvent is then 
removed via lyophilisation under high vacuum 
condition. This method enables control over the 
mechanical strength, pore size and distribution, 
porosity, and pore interconnectivity by modify-
ing polymer concentration and freeze-drying 
parameters [20, 112, 138]. Previous study showed 
that the collagen type I scaffold produced by 
freezing at −30 °C had higher pore size than that 
of frozen at −80 °C [46].

21.2.3  Electrospinning

Electrospinning is a new technique for nanofi-
brous scaffold fabrication. Thus, the scaffold 
has a high area-to-volume ratio. The produced 
scaffold is to mimic the native tissue nanostruc-
ture. This technique involves the use of high 
voltage power supply to generate high electric 
field between the spinneret (such as needle) and 
collector (metallic plate or rotating mandrel), 
that act as two electrodes of opposite polarity 
[154]. The resulting fibre alignment, thickness, 
roughness and density is controlled by modify-
ing parameters such as solution properties, volt-
age, needle to collector distance, collector 
rotating speed, temperature, and humidity. It is 
common for collagen type 1 to be blended with 
other polymers to increase the mechanical 

strength of the resulting electrospun nanofibre 
mesh [114, 168].

21.2.4  Adsorption

Adsorption or coating is the simplest method to 
obtain a 3D-collagen-combined scaffold. Using 
this technique, the scaffold frame that is made of 
other biomaterials and collagen type I is used to 
coat the 3D scaffold so that the produced scaffold 
will have the required macro- and micro- 
architecture, mechanical strength and biological 
properties suitable for cell attachment, prolifera-
tion and maturation. As collagen type I enhances 
cell growth, the coating of synthetic polymers 
with inert or less favourable cell growth surface 
makes the surface suitable for cell growth [8, 
122, 156, 178, 185].

21.2.5  Solvent Casting 
and Particulate Leaching

Scaffold fabrication by solvent casting is easy, inex-
pensive, and versatile in producing thin scaffold 
layers such as films. The method involves dipping 
the mould into polymer solution or addition of poly-
mer solution into a cast, and then the solvent is 
evaporated to create the film. An advantage of using 
this technique is the ability to control the thickness 
uniformity of the scaffold. Furthermore, the unidi-
rectional rocking of collagen type I solution during 
evaporation process is found to orientate the col-
lagen fibrils in an aligned manner, which also 
enhances the attachment and proliferation of human 
fibroblast cells on the collagen thin film [47].

Solvent casting is often combined with par-
ticulate leaching to fabricate a scaffold that with 
higher number of pores and/or pore size, and uni-
form pore morphology. Particulate leaching is 
also combined with other fabrication techniques 
such as electrospinning where porosity is adjusted 
by the polymer to porogen ratio while pore size is 
determined by the porogen size. The most com-
mon porogens are sodium chloride, ammonium 
bicarbonate, and glucose.
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21.2.6  Rapid Prototyping (RP)

Rapid prototyping, which is known as solid free- 
form technique (SFF), refers to computer-aided 
design (CAD) in designing and fabricating the 
scaffold. It produces 3D scaffolds via additive 
layer manufacturing technology, where each 
scaffold cross-section is layered one by one 
[154]. Although there are many RP techniques, 
most of them fall into three categories; fused 
deposition modelling (FDM), selective laser sin-
tering (SLS), and stereolithography. RP tech-
nique can control the matrix design such as 
shape, size, interconnectivity, orientation and 
geometry. Furthermore, RP produces scaffolds 
with reproducible architecture and composition 
[154]. Thus, the mechanical, chemical and bio-
logical properties are adjustable and can be main-
tained over time. This advanced technology can 
be integrated with the existing imaging tech-
niques for scaffold customisation, according to 
the need of each patient.

21.3  Type I Collagen-Based Tissue 
Substitutes

Collagen type I makes up the ECM of most tis-
sues in the human body it provides the microen-
vironment and surface for cell growth, cell 
attachment and proliferation. The literature 
revealed reports on its application as adhesive, 
tissue void fillers, carriers for cell or structural 
scaffold in tissue engineering. The following sec-
tions discussed the application of collagen type I 
in tissue-specific engineering and regeneration in 
the clinic.

21.3.1  Skin Substitutes

Collagen is a predominant component in skin 
ECM as it constitutes 75% of the skin dry weight 
[147]. Most of the collagen found in the skin are 
collagen type I, followed by collagen type 
III. Skin cells, including keratinocytes on the epi-
dermal layer and fibroblast on the dermal layer 
able to grow on the collagen type I matrix. Often, 

collagen type I is used in skin tissue engineering 
research as it is the most important and abundant 
ECM of human skin. To date, some type I 
collagen- based skin substitutes have been clini-
cally tested in randomised control trial to treat 
different wounds, such as partial and full- 
thickness burns, split-thickness skin graft (STSG) 
donor sites, diabetic foot ulcers and venous leg 
ulcers (Table 21.2). Some of the skin substitutes 
are solely made of collagen type I (OrCel® and 
Apligraf®), while others contain additional bio-
materials (Integra®, Matriderm®, Biobrane® and 
TransCyte®). In general, the clinical trials showed 
that application of these collagen-based skin sub-
stitutes, with or without cells, is beneficial in 
wound healing.

21.3.1.1  Integra®

Integra® Dermal Regeneration Template consists 
of crosslinked collagen type I and chondroitin- 6- 
sulfate dermal replacement layer with a tempo-
rary silicon epidermal cover to reduce fluid loss 
and prevent infection [67]. About 2–3 weeks after 
implantation, the dermal regeneration template is 
revascularized and form the neodermis. After 
neodermis formation, the silicon cover is 
removed, for wound closure with split-thickness 
skin graft (STSG) or engineered epidermis such 
as cultured epidermal autograft [30, 115]. 
Integra® is used for skin loss treatment due to 
trauma, burn, chronic ulcers and resurfacing of 
chronic scarring [32, 67, 95, 171]. Integra® is 
useful when an autograft is insufficient. Integra® 
is readily available and allows time for neodermis 
formation to improve the subsequent STSG suc-
cess rate. Nonetheless, Integra® is expensive and 
requires two-step procedure for permanent 
wound closure.

21.3.1.2  Matriderm®

Matriderm® is a highly porous matrix made of 
bovine collagen type I, III and V and elastin. The 
collagen comes from bovine dermis and elastin is 
taken from bovine nuchal ligament via hydrolysis 
[104, 130]. Matriderm® is used as a one-step pro-
cedure to promote wound healing in combination 
with STSG [130, 165]. Even though the applica-
tion of Matriderm® increases the distance 
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between skin graft and vasculature, this does not 
adversely affect the skin graft survival. 
Matriderm® is used in the treatment of burns, 
skin graft donor sites, reconstructive wound, 
trauma wound and diabetic foot ulcers. The use 
of Matriderm® improves wound elasticity and 
scar quality [62, 104, 130]. An advantage of using 
Matriderm® is that wound treatment can be per-
formed in one step, hence no additional surgery 
required.

21.3.1.3  Biobrane®

Biobrane® is a composite scaffold, with type I 
collagen-coated nylon membrane attached to a 
silicone membrane [149]. Biobrane® is to treat 
superficial and partial-thickness wound as well as 
skin graft donor sites. Upon application, 
Biobrane® adheres to the wound bed and gets 
detached as re-epithelialisation is underway. 
Also, Biobrane® is used to hold autograft and cell 
suspension [45, 57, 128]. The product contains 
pores, that drains exudates. Biobrane® is proven 
to enhance the rate of healing and reepithelialisa-
tion while reducing pain and length of hospital 
stay [51, 76, 82].

21.3.1.4  TransCyte® (Dermagraft-TC)
TransCyte®, formerly known as Dermagraft-TC, 
is a tissue-engineered skin substitute consists of a 
silicone membrane attached with collagen-coated 
nylon mesh and seeded with neonatal fibroblasts 
[74]. Fibroblasts are cultured on the nylon mesh 
for 4–6 weeks, to allow the formation of a dense 
matrix enriched in ECM and growth factors 
[143]. TransCyte® is used to treat partial- 
thickness burns. The engineered skin is left on 
the wound until it sloughs off normally, this usu-
ally takes 3 weeks. The use of TransCyte® expe-
dites wound re-epithelialisation and reduces the 
length of hospital stay [4, 74, 98, 111].

21.3.1.5  OrCel®

OrCel® is a bilayered tissue-engineered skin con-
sists of collagen type I sponge, seeded with allo-
geneic neonatal keratinocyte layer and fibroblast 
layer, that mimics normal skin. The engineered 
skin has living keratinocytes and fibroblasts that 
secrete growth factors and cytokines to support 

wound healing [153]. It is indicated for the treat-
ment of partial-thickness wounds. As the skin 
substitute contains living cells, it is more expen-
sive than the acellular skin substitutes [153].

21.3.1.6  Apligraf®

Apligraf® is a bilayered living skin equivalent 
consists of allogeneic neonatal keratinocytes and 
fibroblasts with bovine collagen type I as sup-
porting matrix. It is a composite skin substitute 
containing both stratified epidermal and dermal 
layers [34]. It is the first tissue-engineered skin 
substitute that was approved by the Food and 
Drug Administration (FDA) to treat chronic 
ulcers. Apligraf® is also approved for the treat-
ment of diabetic foot ulcers and venous ulcers 
[179]. It shows potential in treating epidermoly-
sis bullosa wounds [42]. In addition, Apligraf® is 
used in the treatment of burns and surgical 
wounds, including those caused by excisional 
surgery and biopsy collection [55, 65, 108]. Even 
though Apligraf® is prepared from allogeneic 
keratinocytes and fibroblasts, it is immunologi-
cally tolerated by recipients [36, 43, 167]. 
Nonetheless, it is short-lived upon transplanta-
tion (less than 4 weeks), depending on the appli-
cation. Apligraf® promotes wound healing via the 
secretion of growth factors and cytokines [179].

21.3.2  Corneal Substitutes

Cornea is a transparent dome-shaped eye tissue 
that is responsible for the image focusing on the 
eye. Cornea contributes to two-thirds of the eye’s 
optical power [172]. The tissue is divided into 
epithelium, stroma and endothelium layers and it 
is the outermost part of the eye that covers the iris 
and pupil [68]. Therefore, cornea serves as a bar-
rier that prevents foreign particles such as germ 
and dust from going into the eye. Cornea is highly 
innervated, avascular and immunologically privi-
leged [28]. Collagen type I is the most abundant 
collagen in the eye tissue, constituting about 75% 
of total collagen. Besides, cornea also contains 
collagen types VI and V as well as glycosamino-
glycans such as dermatan sulphate, keratin sul-
phate and heparin sulphate [103].
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The development of tissue-engineered cornea 
is rapidly growing to overcome the shortage of 
donor cornea, which leaves many people blinded. 
Nonetheless, most of the studies are still in in 
vitro and preclinical stages. Due to its excellent 
biocompatibility, low immunogenicity and suit-
able mechanical properties, collagen biomaterial 
is extensively studied for corneal tissue engineer-
ing. Collagen supports the survival of corneal 
epithelial cells, corneal stromal cells and corneal 
fibroblast cells, that are used to support new tis-
sue formation [52]. Merrett et  al. conducted a 
study in porcine to compare cross-linking with 
EDC and N-hydroxysuccinimide (NHS) between 
collagen types I and III as corneal substitute and 
it was found that both showed equivalent perfor-
mance in terms of optical clarity, even when the 
collagen type III scaffold has superior optical 
clarity [102]. A clinical study with 10 patients 
using only EDC-NHS cross-linked collagen type 
III scaffold found that the best spectacle- corrected 
visual acuity improved in 4 patients, remained 
the same in 4 while other the 2 got worse, after 
6  months implantation [40]. After 4  years, the 
corneal substitute promotes endogenous regen-
eration of corneal tissue and nerves. No rejection 
happened in any patient, even when no immuno-
suppressant is given while the best-corrected 
visual acuity of the transplanted eye had improved 
[41]. Thus far, none of the type I collagen-based 
corneal substitutes developed in the laboratory is 
clinically tested.

21.3.3  Vasculature Substitutes

Vascular or circulatory system is made up of ves-
sels that carry blood throughout the body, carry 
oxygen, nutrients and hormones to the cells, and 
transport metabolic waste such as carbon diox-
ide, urea and excessive minerals from the cells to 
excretory organs to be excreted from the body. 
Vascular diseases such as atherosclerosis result 
in narrowing of blood vessels that obstruct blood 
flow to the cells. In severe cases, blood vessel 
substitute is needed to replace the obstructed 
vessel to prevent fatal complication such as 
myocardial infarction and stroke, that is due to 

insufficient blood flow to the targeted tissues 
[85]. Bypass surgery is performed worldwide to 
replace the damaged blood vessels. Currently, 
autologous vascular substitute and synthetic 
 vascular graft made of expanded polytetrafluoro-
ethylene (ePTFE), polyethylene terephthalate 
(Dacron®) and polyurethane are used for this 
purpose [123].

Tissue engineering approach is used to pre-
pare vascular substitutes. For vascular tissue 
engineering, it is important for the graft to be bio-
compatible, noninflammatory, non-thrombogenic 
and has mechanical strength that matches the 
native vessel. Endothelialisation of the vascular 
substitute luminal surface is critical to ensure 
long-term patency. Collagen type I is the main 
component of the vascular wall and is widely 
used in vascular tissue engineering. Often, colla-
gen type I in vascular tissue engineering is forti-
fied with biomaterials (e.g. silk fibroin, elastin 
and PCL) because it has weak mechanical 
strength [13, 33, 101, 183]. Currently, the focus 
of research shift to vascular substitutes develop-
ment with multilayer structure that imitates natu-
ral vessel. For example, Wu et  al. developed a 
complex trilayer vascular substitute consisting of 
PLCL/collagen nanofibre as the inner layer, 
PLGA/silk as the middle layer and PLCL/colla-
gen nanofibre as the outer layer. The trilayer vas-
cular substitute demonstrates suitable mechanical 
property and supports the growth and organisa-
tion of endothelial cells at the inner layer and 
smooth muscle cells at the middle layer [174]. 
Several type I collagen-based vascular grafts 
made of decellularised xenogeneic tissues are 
clinically tested. Bovine carotid artery graft 
(Artegraft®) is a natural decellularised collagen 
vascular graft that shows encouraging clinical 
results for permanent haemodialysis vascular 
access and lower extremity bypass [71, 90]. 
The graft is to enhance long-term patency and 
provides a pliable conduit with excellent bio-
compatibility. Apart from Artegraft®, Solcograft® 
and ProCol® are other commercially available 
vascular grafts based on decellularized bovine 
blood vessels [135, 139]. A decellularized bovine 
ureter graft (SynerGraft model 100) was tested 
against polytetrafluoroethylene (ePTFE) for 
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arteriovenous access in dialysis patients, and it 
was found that both are comparable in terms of 
patency and complications [22].

21.3.4  Cartilage Substitutes

Purified isolated collagen type I from tissues is 
utilised in many defected cartilage restorative 
applications [23]. Studies show that articular car-
tilage implantation (ACI) is helpful in focal carti-
lage lesions, but is not recommended for 
osteoarthritis [17]. The procedure involves the 
use of periosteal flap fixed to the surrounding car-
tilage rim, to create a reservoir for culture- 
expanded chondrocytes [100]. However, this has 
risk of complications such as periosteal hypertro-
phy, delamination of transplant, arthrofibrosis 
and transplant failure [17, 100].

Collagen type I alone or in combination with 
other biomaterials are used to obtain second gen-
eration ACI, where cells are combined with 
resorbable biomaterials, in matrix-associated 
autologous chondrocyte implantation or trans-
plantation (MACI/MACT) [164]. Further devel-
opment resulted in third-generation ACI that 
delivers autologous cultured chondrocytes using 
collagen cell carrier scaffolds [17]. Some prod-
ucts associated with clinically available collagen 
cartilage implants include; MACI, MACT, 
Atelocollagen, Bioseed C, Neocart, Novocart, 
Gel MACI, Chondro-Gide, Chondron™ etc., [73].

Clinical studies have shown the effectiveness 
of MACI-related procedures to regenerate articu-
lar cartilage. In a level IV prospective study that 
used sequential objective patient evaluation to 
determine MACI results at 6, 18, and 36 months 
after surgery. The International Cartilage Repair 
Society (ICRS) and modified Cincinnati score 
showed significant improvement between preop-
erative and treatment groups at all times [73, 
152]. Furthermore, a randomised, controlled trial 
comparing Chondro-Gide®, a collagen type I/III 
matrix to microfracture in a follow-up study at 
two centres demonstrated good clinical outcome 
throughout 2 years after operations in small- to 
medium-sized cartilage defects were conducted 
[5]. Zhang et al. [182] conducted a 2-year study 

aimed to evaluate MACI safety and efficacy as 
cartilage repair treatment. The primary outcomes 
were the Knee Injury and Osteoarthritis Outcome 
Score (KOOS), domains and magnetic resonance 
imaging results. It was concluded that there is no 
postoperative complication and adverse event 
related to MACI [182].

Gille et  al. [53] conducted the longest pro-
spective clinical investigation to see the effect of 
MACI on long-term improvement, where 38 
patients treated with MACI were evaluated for up 
to 16 years after the intervention. Three different 
scores namely Lysholm-Gilquist score, ICRS 
score and Tegner score were taken for the evalua-
tion. These three scores significantly improved, 
which suggests that MACI is a suitable treatment 
for focal cartilage defects [53].

Recently, Ebert et al. [35] and Schuette et al. 
[140] conducted 5-year clinical investigation on 
MACI and MACT.  Ebert performed a prospec-
tive clinical and radiological evaluation of 31 
patients, who underwent MACI via arthroscopy 
for symptomatic tibiofemoral chondral lesions. 
Meanwhile, Schuette investigated the patello-
femoral and tibiofemoral joints. It was concluded 
that the procedures demonstrate good clinical 
and radiological outcome up to 5 years, with high 
patient satisfaction level [35, 140].

Besides, Devitt et al. [31] performed a system-
atic 10-year review of randomised controlled tri-
als, which also involved four MACI procedures. 
It was found that micro-fracture has higher fail-
ure than MACI.  Larger lesions, of greater than 
4.5 cm2 treated with MACI had better outcome 
than those with microfracture [31].

21.3.5  Ligaments and Tendon 
Substitutes

Ligament rupture, tendon tear and meniscus loss 
cause abnormal wear on joints, thus promotes 
cartilage degeneration and osteoarthritis. Owing 
to the limited vascularity, injuries sustained by 
these tissues cannot heal properly [157]. Allograft 
transplantation is proposed to address these prob-
lems. Evidence found suggest that allograft trans-
plantation improves the condition in short and 
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intermediate term, depending on pain and level of 
function for daily activities. However, there are 
limitations such as limited donor tissues, graft 
selection, preservation, sizing, sterilisation and 
short shelf life [77, 79]. Hence, there is a need for 
a readily available approach to restoring func-
tionality of the skeletal structures upon injury. 
Therefore, Irvine, CA-Pegasus Biologics, Inc. 
developed OrthADAPT™, a bioimplant for soft 
tissue repair. OrthADAPT™ is a highly organised 
collagen Type I scaffold that is used to repair, 
reconstruct, augment, and reinforce soft tissues 
in tendons and ligaments. Clinical results demon-
strate that OrthADAPT™ does not cause any sig-
nificant inflammatory response and provides 
strength throughout the healing process with a 
rapid, controlled remodelling at the implantation 
site. It is used to repair rotator cuff injuries and 
reconstruct anterior shoulder. In both cases, 
patients had recovered well.

Furthermore, collagen I-based biomaterials 
are applied in tissue engineering cell therapeutics 
for the whole menisci [23]. Meniscus provides 
physical protection to knee cartilage by transmit-
ting load through the joint, by distributing high 
peak stress on the underlying surface to absorb 
shock. Due to the orientation of fibre bundle 
arrangement, the meniscus depicts anisotropic 
property [157]. To tackle the limitations of 
allograft transplantation, Regen Biologics Inc. 
developed a collagen meniscal implant known as 
Menaflex. Menaflex is a bioimplant derived from 
bovine collagen to relieve symptoms and prevent 
joint degeneration for acute or chronic advanced 
meniscal loss or damage. Menaflex has been 
developed by applying pressure heat moulding 
approach to shape a bovine Achilles tendon into a 
collagen meniscal implant (CMI) [109].

The collagen meniscus implant (CMI) is the 
first tissue-engineered device that is effective in 
supporting new meniscus-like tissue at clinics. It 
is used in thousands of patients, including 
sportspersons. This provides significant benefit to 
people who have lost part of their knee meniscus, 
and those who suffer irreparable acute meniscus 
injury [127]. Results showed that after CMI 
implantation, about 75% of the missing 
meniscal tissue grow back, and the presence of 

fibrocartilaginous tissues like normal meniscal 
tissue is observed [157]. In a 10-year follow-up 
clinical evaluation, data revealed pain relief and 
functional improvement of knee joints. It was 
observed that meniscal allografts shrink and 
undergo collagen remodelling upon transplanta-
tion, which restores mechanical strength. 
However, the efficacy of the implant on knee 
osteoarthritis prevention is not yet proven [61].

Actifit® scaffold is another collagen-based 
bioimplant that provides partial meniscal substi-
tute with histological, radiological, and clinical 
evaluations comparable to Menaflex. Both have 
received the European Conformity (CE) approval, 
whereas the US Food and Drug Administration 
(FDA) believed that additional data is required to 
verify their efficacy on chondral degradation and 
prevention of osteoarthritis [116].

21.3.6  Bone Substitutes

A mature bone matrix has organic component 
(30%) with mainly collagen (90–95%), and inor-
ganic bone mineral made up of salts (70%) [59]. 
In bone, collagen is laid down by osteoblasts, 
which are distinguished from mesenchymal stem 
cells (MSC) [120], as long and thin fibrils of tri-
ple helical structure that crosslink to one another 
in the space around cells. The crosslinks form 
strong; mature collagen type I fibre that provides 
bone with tensile strength [119]. Osteoblasts then 
produce hydroxyapatite that is deposited, in an 
organised manner into the organic matrix, form-
ing a strong and dense mineralised matrix, which 
provides compressive strength. Thus, the natural 
composite of collagen and mineral imparts 
mechanical property to bone, for it to function as 
a skeletal structure and provides load-bearing 
capacity [59].

Autografts remain the standard for filling bone 
void. However, bone substitutes arise due to mor-
bidity at the donor site and limited availability of 
autografts. Many products that mimic the bone 
mineralised matrix are developed as bone substi-
tutes. For instance, collagen type I is coated or 
incorporated into deproteinised natural bone or 
3D synthetic ceramic scaffold. Besides, bone 
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particulates or ceramic powder are added to col-
lagen slurry and then freeze-dried to form a 3D 
scaffold. Another method is by adding hydrogel 
to collagen and bone particulate or ceramic mix-
ture, to form malleable putty. As a coating, col-
lagen matrix provides a favorable topography for 
cell attachment and proliferation on the mineral 
scaffold. Such configuration is stable and can be 
used in load-bearing bone defect site. On the 
other hand, when only collagen is used as a scaf-
fold, it is extremely porous (> 90%) and absorp-
tive. As collagen scaffold lacks mechanical 
strength and possesses osteoconductivity, it is 
coupled with osteoinductive factors such as BMP 
or osteogenic components such as osteoprogeni-
tor cells or MSC. It is used along with bone mar-
row aspirate, MSC or osteoprogenitor cells, 
platelet-rich plasma or growth factors, to improve 
its osteogenicity. It is applied to repair non-
weight-bearing bones such as the alveolar ridge 
and collarbone, or along with stable bone fixator. 
An example of commercial collagen scaffold 
used as fillers at non-load bearing site is CelGro® 
from OrthoCell, Australia. This includes collagen 
matrices by Zimmer, USA for alveolar ridge aug-
mentation, i.e. BioMend®, CurVTM, Zimmer 
Collagen Capsule, Zimmer Collagen Wedge and 
Foundation Bone Filling Augmentation Material 
by J Morita, USA. Most of the collagens used are 
from bovine.

A more complex configuration is explored 
where the collagen scaffolds are infused with 
recombinant human bone morphogenetic protein 
type-2 (BMP-2), along with cylindrical interbody 
cage (infused bone is from Medtronic, USA), to 
be applied on posterior lumbar interbody fusion, 
which is shown to be promising [58]. However, 
now there are reports of adverse effects of this 
product in clinics [38].

In case of bone defect that involves load bear-
ing, collagen scaffolds provide no initial mechan-
ical support, and they must be used with a scaffold 
or fixation to function as bone substitute. 
Collagen needs to be mineralised, by coupling it 
with calcium phosphate-based material. There 
are many types of mineral/ceramic-collagen 
composites. Some of the products are listed in 
Table 21.3. Many are still in clinical trial, and on 

long-term follow-ups, so far there is no report on 
adverse effect. The bone substitutes are conve-
nient and become off-the-shelf solutions to the 
growing need of bones in orthopaedic and dental 
fields.

In the dental field, collagen membrane is used 
over bone graft to guide bone regeneration in 
alveolar ridge augmentation. The principle of 
Guided Tissue Regeneration (GTR) is used for 
decades to treat periodontal lesion using barrier 
membrane to exclude fast-growing soft tissues 
such as epithelial cells and fibroblasts from 
invading the regenerated new bones made of 
slower-growing alveolar bone [80]. Non- 
resorbable materials that were used in developing 
the membranes are replaced with biodegradable 
collagen membranes. For examples, there are 
OSSIX® PLUS (Datum Dental, USA), BioMend® 
(Zimmer, USA) and Hypro-Sorb F (Bioimplon 
GmbH, Germany).

21.3.7  Neural Substitutes

In the peripheral nervous system, collagens are 
present as interstitial fibrils (collagen type I) and 
non-fibrillar component (collagen type IV) in the 
endoneurium, of the basal lamina surrounding 
the Schwann cells. The focus of neural tissue 
engineering is to restore damaged peripheral 
nerve or central nervous tissue in the spinal cord 
and brain. The treatment of severed peripheral 
nerve involves direct reconnection via end-to-end 
anastomosis or guidance of the existing nerve via 
graft or conduit (Fig.  21.1) [136]. Many nerve 
conduits made of either natural or synthetic mate-
rial are now available. Among them, collagen 
type I nerve conduit is the most popular. 
Table 21.4 shows a list of nerve conduits in the 
market.

The commercial collagen matrices are in the 
form of conduit or wrap. They serve as a guide 
for axon regeneration across the nerve gap and 
help to align the regenerating axons [86, 170]. 
Also, they function as a barrier to prevent scar 
formation, while allowing nutrient exchange 
and neurotrophic factors across the matrix. As 
they resorb over time (6–12  months) through 
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Fig. 21.1 Types of nerve defect repair. (a) Transected 
nerve with short nerve gap is repaired by direct end-to- 
end anastomosis. (b) Transected nerve with nerve gap 

ranging from 0.5 cm to 6 cm is repaired using autograft or 
nerve conduit (c) Partial defect or crushed nerve is pro-
tected by a nerve wrap to facilitate nerve regeneration

Table 21.4 Commercially available FDA-approved nerve conduits

Product Material Structure Company Recommended use by the supplier
NeuraGenR Collagen 

type I
Semipermeable tubular 
conduit

Integra 
LifeSciences 
Co, USA

Repair of peripheral nerve discontinuities 
where gap closure can be achieved by exion 
of the extremity

NeuroWrap™ Collagen 
type I 
porous

Porous, tubular structure 
that opens as a wrap

Integra 
LifeSciences 
Co, USA

A nerve protector for cases with no 
substantial loss of nerve tissue, non-
constricting encasement for injured 
peripheral nerves for protection of the neural 
environment, create an interface between the 
nerve and the surrounding tissue

NeuroFlex Collagen 
type I 
conduit

Flexible, semipermeable 
tubular conduit with 
corrugated walls

Collagen Matrix 
Inc, USA

Treatment of symptomatic or painful 
neuromas, interface between the nerve and 
the surrounding tissue

NeuroMatrix™ Collagen 
type I

Semipermeable tubular 
conduit

Collagen Matrix 
Inc, USA

Tensionless repair or when direct suturing is 
not possible

NeuroMend™ Collagen 
type I

Semipermeable tubular 
structure that opens as a 
wrap, self-curling 
membrane with overlap

Collagen Matrix 
Inc, USA

Design to better match the dimensions of the 
defect, ability to wrap nerves from 2.0 mm 
to 12.0 mm in diametre

21 Collagen Type I: A Versatile Biomaterial
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metabolic pathways, they will be replaced by 
the regenerating axons and host cells from the 
proximal nerve stump [88].

The commercial collagen conduits are in the 
market for decades, and so far, there is no adverse 
reaction has been reported. The only drawback is 
that these conduits inefficiently repair nerve gap 
longer than 3  cm and nerve of large diameter 
(>2.3 mm) [107]. Nerve autografting which is the 
standard of transacted nerve repair is still the 
only option available.

Recent improvement of the conduits include 
the addition of; (a) electrospun collagen nanofi-
bres [77, 79, 92, 93], muscle fibres [63], or PLGA 
nanofibres coated with collagen [156] into the 
lumen to guide regeneration of longer nerve gap, 
(b) collagen binding neurotrophic factors [21, 96] 
to promote axonal migration, (c) neutralising 
proteins [87] to antagonise myelin inhibitors, (d) 
Schwann cells to promote myelination of sensory 
or motor neurons [15] and (e) MSC to reduce 
scar formation and improve axonal regeneration 
[84, 175].

Application of collagen matrix either alone or 
combined with neurotrophic factors to repair spi-
nal cord in preclinical models have been 
attempted. However, the feasibility of such 
 innovation is still far-fetched due to the complex-
ity [16, 25, 44, 60].

21.4  Tissue Substitutes as the In 
Vitro Model

Engineered tissue substitutes do not only con-
tribute to the regeneration and repair of dam-
aged tissues, but it is also an essential tool in 
studying tissue development and evaluating 
safety and efficacy of drugs at the earliest stage 
of development. In vitro 3D tissue substitutes 
provide the opportunity to predict a more accu-
rate cellular response than the 2D testing model, 
given that the 3D tissue model resembles the 
native tissues in respect to anatomy, physiology 
and functionality.

3D skin model is one of the most developed 
tissue models and used to test the safety and 
 efficacy of cosmetic, pharmaceutical and medi-

cal device products. The demand for skin tissue 
model increases after the restriction of animal 
testing for cosmetics (Regulation (EC) No 
1223/2009 of the European Parliament and of 
the Council of 30 November 2009 on cosmetic 
products. (2009) OJ L 342, pp. 59–209), and the 
search for a suitable tissue model is still ongo-
ing. Many 3D skin models that resemble the 
structural, functional and compositional fea-
tures of the native skin are developed. Skin 
models are developed for partial thickness, 
which contains either epidermal or dermal layer, 
whereas full- thickness has both layers, depend-
ing on the test requirement. Since collagen type 
I is the main ECM of skin, the scaffold made of 
collagen type I such as decellularized matrix 
[125], collagen hydrogel [10], collagen-glycos-
aminoglycan (CG) [14], and chitosan cross-
linked CG [142], becomes the ultimate choice to 
develop partial and full-thickness skin models. 
In general, epidermal skin model is developed 
by culturing keratinocytes on decellularized 
dermal matrix or collagen-based scaffolds. 
Tissue maturation is performed by exposing 
keratinocyte cells to air- liquid interface, which 
induces keratinocyte differentiation and forma-
tion of multilayer epidermis layer. Other epider-
mal cells such as Langerhans cells and 
monocytes are used to develop epidermal model, 
depending on the functional requirement. 
Dermal skin models are developed by culturing 
dermal fibroblasts with native collagen hydro-
gel. Culturing keratinocytes on top of the der-
mal-equivalent leads to the formation of 
full-thickness skin model. Attempt is made to 
develop tri-layer full-thickness skin model by 
incorporating hypodermis layer underneath of 
dermis layer, using collagen type I and silk scaf-
folds [11].

In addition to the testing tool, skin model 
helps to understand the skin cellular behaviour 
and function. It contributes to the study of skin 
biology in different ethnic groups, skin aging, 
drug or cosmetic penetration and their effect on 
skin cells, and protection against microbes and 
environmental pollution. The research is now 
more focused in developing disease-specific skin 
model, which includes diabetic foot ulcer, 
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 melanoma, psoriasis, vitiligo, squamous cell car-
cinoma, and genodermatoses [3, 121].

The study of tumorigenic mechanisms in 
respect to angiogenesis, invasion, and metastasis 
used to rely on 2D in vitro model and small ani-
mal models, which is proven inadequate in the 
discovery of definite treatment for cancer termi-
nation and prevention. Recent advancement of 
scaffold fabrication techniques in interdisciplin-
ary research enables the development of in vitro 
models to deepen the knowledge about tumour 
biology and discover new treatment strategy. 
Effort is given to develop in vitro model by cul-
turing cancer cells with collagen type I hydrogel 
to study tumour development [159]. However, to 
understand the tumorigenic mechanism, focus is 
shifted to microfluidic-based system, that mimics 
cancer cell migration across endothelial mono-
layer into a hydrogel, resembling the extracellu-
lar space, and consequently metastasis to other 
tissues or organs [12, 69, 133]. Similar approach 
is developed to study the angiogenesis potential 
using endothelial cells treated with drugs or 
growth factors [110].

Neural system is one of the most complex sys-
tems in human body. To further understand the 
neural system, tissue engineering approach is 
employed in tissue reconstruction. Chwalek et al. 
[26] developed brain-like model resembling 
white and grey matter of cortex using porous silk 
sponge immersed in soft collagen matrix  [26]. 
This compartmental architecture mimics the 
native neural tissue, thus enables the formation of 
polarised neuronal outgrowth and neuronal net-
work, which can use as a model of the neural sys-
tem. In another attempt, Li et al. [83] developed a 
blood-brain barrier model using endothelial cell 
line monoculture, coculture of endothelial cell 
line and primary rat astrocytes, with or without 
collagen type I and IV mixture and Matrigel for 
drug delivery studies. The developed model gen-
erated data equivalent to animal models, and it is 
then recommended to study the transport of large 
solutes across the blood-brain barrier. Besides, 
the formation of other normal and diseased mod-
els are also investigated, which include kidney, 
gastrointestinal tract, using collagen type I as the 
biomaterial [155, 158].

21.5  Collagen Type I Scaffold 
as Drug Delivery Vehicle

Recent fabrication technology enables the devel-
opment of controlled delivery systems for drug or 
bioactive compounds, to improve the therapeutic 
efficacy by releasing those factors at controlled 
rate for a longer period. In general, collagen- 
based scaffolds provide the 3D architecture to 
promote tissue regeneration. Besides, extensive 
research is done to encapsulate drug or bioactive 
compounds on collagen scaffolds to enhance the 
scaffold functionality. Drug or bioactive com-
pounds from the scaffolds are released simultane-
ously via diffusion and degradation of the 
scaffolds. However, natural collagen-based scaf-
folds degrade faster, unless modification is made 
via crosslinking or fabricating composite scaf-
folds. Drugs or bioactive factors such as antibiot-
ics, anticancer, growth factors are encapsulated 
in the collagen-based scaffolds for delivery.

Delivery of angiogenic factor such as vascu-
lar endothelial growth factor (VEGF) is studied 
extensively to promote the formation of vascu-
lar network in the implanted engineered tissue 
substitutes. Lack of vascularization on the engi-
neered tissue of clinically relevant size causes 
necrosis in the core of the construct due to 
insufficient oxygenation and nutrient supply, 
thus impedes tissue regeneration. Controlled 
release and physical immobilisation of VEGF 
were reported to enhance the in vivo angiogen-
esis [78, 151, 160]. However, in tissue substi-
tute, covalent immobilisation is preferable, so 
that vascularisation takes place in the tissue sub-
stitutes rather than the surrounding tissues. 
Attempts were made to immobilise VEGF on 
porous collagen scaffolds via crosslinking using 
EDC [24, 106, 113, 144] or Traut’s reagent and 
sulfo-SMCC [66]. This results in VEGF conju-
gation and reduces the collagen scaffold degra-
dation rate. VEGF immobilisation on collagen 
scaffold significantly enhances the infiltration 
and proliferation of endothelial cells in vitro, as 
compared to the soluble VEGF [113, 144]. In 
addition, it was demonstrated that gradient dis-
tribution of VEGF increases infiltration, not 
proliferation, of endothelial cells to the centre of 
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collagen scaffold than the uniformly distributed 
VEGF, even when the overall concentration of 
VEGF was the same [113]. Similar observation 
was reported by He et al. [66] in in vivo implan-
tation of conjugated VEGF on collagen scaffold. 
However, infiltration of endothelial cells on the 
scaffold is not  sufficient to form mature vascular 
network. Hence, Chiu et al. [24] co-immobilised 
VEGF and angiopoietin- 1 on 3D porous colla-
gen scaffolds, and the formation of capillary-
like structure both in vitro and in vivo was 
observed. The success of in vitro and in vivo 
studies leads to the testing of covalently immo-
bilised VEGF in tissue regeneration. The study 
conducted by Miyagi et al. [106] developed car-
diac patch using porous collagen scaffold with 
covalently immobilised VEGF and mesenchy-
mal stem cells (MSC), and the tissue construct 
was implanted on the right ventricle of rat heart. 
Significant improvement in the proliferation of 
MSC and endothelial cells was demonstrated in 
vitro. In addition, the increase of blood vessel 
density was evident in cardiac patch, suggesting 
the improvement of cell survival and tissue 
formation.

Delivery of other growth factors is also tested 
to evaluate their effect on tissue-specific regen-
eration. In a study by Caliari et al. [19], it was 
demonstrated that the incorporation of platelet- 
derived growth factors (PDGF)-BB and insulin- 
like growth factor 1 (IGF-1) to aligned 
collagen-glycosaminoglycan (CG) scaffolds 
enhances tendon cell motility, viability, and 
metabolic activity in a dose-dependent manner. 
Besides, delivery of growth factors PDGF-BB 
was done using heparinised collagen I suture to 
repair flexor tendon laceration using in vitro 
model [177]. This study found that the conju-
gated suture ensures a prolonged release of the 
PDGF-BB, through increased cell proliferation, 
without affecting the suture tensile strength. 
Furthermore, encapsulation of rhTGF- β3  in 
P(LLA-CL)/collagen nanofibres is proven to be 
a sustainable delivery system for tracheal carti-
lage regeneration [169]. Meanwhile, significant 
bone generation was observed in a murine criti-
cal size bone defect model, via the release of 

BMP-2 and SDF-1a from heparinised MCM 
scaffolds [186]. A clinical trial on bovine colla-
gen carrier for recombinant human BMP-7  in 
the treatment of tibial non-union was proven 
successful [89]. A comparative study on one 
diabetic Wistar rat found that chitosan nanopar-
ticle with curcumin in collagen scaffold has 
potential in diabetic wound healing, thus 
addressing multiple pathological pathways of 
the disease [70]. Collagen and chitosan are 
proven to be wound healing modulator, and cur-
cumin is an anti-inflammatory, antioxidant ele-
ment. The delivery method is also tested to 
develop prodrug system for chemotherapy. 
Diffusion of the prodrug from collagen gel 
affects cancer metastasis, where it enhances the 
tumour growth suppression rate and metastasis 
attenuation [72].

21.6  Conclusion

So far, collagen-based scaffold prepared using 
collagen type I is proven to be versatile and effi-
cient in biomedical applications due to its excel-
lent biocompatibility, immunocompatibility, and 
flexibility towards modification. Although the 
natural collagen type I lacks mechanical strength, 
cross-disciplinary innovation enables the discov-
ery of new methods to enhance the mechanical 
properties, thus extending the application of type 
I collagen-based scaffolds. In this chapter, the 
focus is on the application of type I collagen- 
based scaffold in the formation of tissue substi-
tutes to repair and regenerate damaged tissues, 
development of in vitro tissue models to under-
stand normal and disease tissue biology and drug 
discovery, and the use of the scaffolds as a vehi-
cle for cells, drug and bioactive compounds. 
Despite their potential, more effort should be 
given to developing state-of-the-art collagen- 
based scaffolds, from bench to bedside. 
Integration of newly developed techniques and 
understanding of the complex tissue microenvi-
ronment will unlock the path in the development 
of structurally and functionally tissue-equivalent 
scaffold.

S. R. Chowdhury et al.
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Abstract
Biomedical devices have come a long way 
since they were first introduced as a medically 
interventional methodology in treating vari-
ous types of diseases. Different techniques 
were employed to make the devices more bio-
compatible and promote tissue repair; such as 
chemical surface modifications, using novel 
materials as the bulk of a device, physical 
topological manipulations and so forth. One 
of the strategies that recently gained a lot of 
attention is the use of tissue-inspired biomate-
rials that are coated on the surface of biomedi-
cal devices via different coating techniques, 
such as the use of extracellular matrix (ECM) 
coatings, extracted cell membrane coatings, 
and so on. In this chapter, we will give a gen-
eral overview of the different types of tissue- 
inspired coatings along with a summary of 
recent studies reported in this scientific arena.

Keywords
Interfacial coating · Supported lipid bilayer · 
Extracellular matrix · Cellular membrane · 
Tissue-mimetics

22.1  Extracellular Matrix (ECM) 
Coatings

22.1.1  Brief Introduction of ECM

ECM is a diverse and complex network of glyco-
proteins, proteoglycans and glycosaminoglycans 
that are secreted and assembled locally to form 
an adhering platform for cells [1]. Although the 
composition of the matrix and the spatial correla-
tion between cells and the matrix differ between 
tissues, it is a component of the environment of 
all cell types [2]. Each component of the matrix 
has unique functions that cumulatively leads to 
ECM’s ability to modulate cellular behaviors [3] 
cell signaling [4] and to provide structural sup-
port for a tissue.

It would be wrong to assume that composi-
tions of the ECM of different tissues are in any 
way identical. On the contrary, the components 
are different and tissue-specific. In bones, the 
ECM is composed of 90% collagen type I with 
minor amounts of collagen III and V and 5% of 
other non-collagen based proteins such as osteo-
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calcin, osteonectin, fibronectin, hyaluronan and 
others, [5–6] while cartilage ECM mainly con-
sists of collagen and fibronectin [7]. Vascular 
cells in a formed vascular tissue are embraced by 
type I, III, IV, XV and XVII collagen, elastin and 
laminin, fibronectin and other macromolecules 
[8–10].

22.1.2  Quick Overview of ECM 
Components’ Functions

Copious studies have been done to investigate 
roles of each component of ECMs in vivo. These 
studies have unveiled that each component of an 
ECM have tissue-dependent roles because cells 
in a tissue are different. Elastin in a vascular wall 
regulates the phenotypic switch and inhibits the 
proliferation and migration of vascular smooth 
muscle cells (VSMCs) in the cellular level, [11] 
whereas, in the tissue level, elastin provides elas-
ticity for a vascular wall to recoil, thus withstand-
ing the high pressure of blood. The ability to 
recoil is an integral part of the process of blood 
flow, [10] That is the reason why elastin com-
prises 50% of the vessel’s dry weight [12]. On the 
other hand, fibrinogen and fibronectin were 
shown to facilitate the adhesion of endothelial 
cells (ECs) and the proliferation of both ECs and 
VSMCs [13–15]. Collagen is very stiff protein 
that limits the decrease in blood vessel tension. 
Collagen has 24 subtypes that are expressed by 
different cell types in different tissues. Thus, the 
interaction of different cell types is different to 
each and every subtype of collagen [16]. 
Interaction of ECs with type I collagen, for exam-
ple, leads to the higher decrease of nitrite synthe-
sis and endothelial nitric oxide synthase (e-NOS) 
than the interaction of those with type IV colla-
gen [17]. Fibulin, most notably, exhibits its func-
tions by interacting with other ECM proteins, 
such as assisting elastin assembly, participating 
in blood clotting along with fibronectin and so on 
and so forth [10]. We cannot end this section 
without mentioning that there are other but less 
studied, yet equally important ECM components, 
such as laminin, fibrillin, vitronectin and fibrino-

gen. The role of these components could be found 
summarized elsewhere [10].

22.1.3  Recent Studies Utilizing ECM 
Inspired Biomaterials 
on Surfaces

As previously mentioned, numerous studies 
showed the effectiveness of using ECM coatings 
for regenerative medicine. Despite their success, 
however, one of the drawbacks of using collagen 
coatings, for example, is the difficulty in control-
ling thickness of the layer, thus affecting surface 
structure [18]. This led Uchida et al. to pursue a 
novel scaffold using layer-by-layer (LBL) depo-
sition of fibronectin and gelatin on electrospun 
fibrous poly(carbonate urethane)urea (PCUU) 
scaffolds, with the long-term goal of fabricating a 
urinary bladder tissue consisting of smooth mus-
cle and urothelial cells using their scaffolds [19]. 
The authors reported enhanced adhesion and pro-
liferation of bladder smooth muscle cells 
(BSMCs), they also observed the migration and 
attachment of BSMCs on a culture plate toward 
the PCUU fibers coated with fibronectin and gel-
atin, suggesting the high potential of this system 
in future applications.

On the other hand, Huang et al. also utilized 
the LBL technique, but they used type 1 collagen 
and RGD peptide functionalized hyaluronic acid 
with embedded recombined human bone mor-
phogenic protein-2 (rhBMP-2) with the substrate, 
being titanium in this case [20]. They were 
inspired by certain functional properties of ECM 
components. Primarily ECM components, such 
as fibronectin and vitronectin, present RGD motif 
that mainly mediates initial cell recognition and 
influences cell adhesion [21]. While growth fac-
tors such as BMPs stimulate proliferation and 
differentiation of osteogenic cells, thus accelerat-
ing bone formation [22]. With all that is men-
tioned, authors prepared a polyelectrolyte 
membrane (PEM) using collagen as a base layer, 
then the functionalized hyaluronic acid that con-
tains thiol cross-linkers, and the process was 
repeated to form several consecutive layers with 
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the rhBMP-2 embedded between the layers. The 
system showed sustained release of rhBMP-2 for 
the prolonged period of 2 weeks through gluta-
thione (GSH) responsive degradation, and in 
vitro and in vivo results showed the promotion of 
pre-osteoblast cell response and increased bone- 
to- implant binding strength.

In another attempt to optimize ECM coating 
technologies, a research group studied the effects 
of ECM components on hepatic differentiation 
from adipose-derived stem cells (ADSCs) [23]. 
The main driving force behind this study was to 
produce hydrogel scaffolds from decellularized 
liver ECM for treatment of liver diseases. They 
compared the decellularized ECM with type I 
collagen, fibronectin and Matrigel in the presence 
and absence of growth factors. Firstly, their 
results clearly showed that it is possible to pro-
duce a 3D gelling scaffold from a decellularized 
whole-liver matrix. Secondly, the matrix proved 
to be a superior bio-mimetic environment for 
enhanced ADSC differentiation when compared 
to collagen, fibronectin and Matrigel in the pres-
ence and absence of growth factors. But it is 
worth mentioning that the result on differentia-
tion in the presence of growth factors were better 
than the result in the absence of those.

Human corneal ECs are a cell type with high 
metabolic rate as evidenced by the fluent cyto-
plasmic organelles such as mitochondria, Golgi- 
apparatus, endoplastic reticulum (ER) and 
ribosomes [24]. Despite their high metabolic 
rate, however, those cells do not proliferate in 
vivo, thus severe damage to them due to ocular 
surgery [25–27] and inflammatory diseases [28] 
cause stromal and epithelial edema, leading to 
loss of corneal clarity and visual acuity. This led 
Koo et al. to design a system made up of ECM 
coated polydimethylsiloxane (PDMS) [29]. The 
authors prepared three different types of ECM 
coated PDMS, fibronectin-collagen I coated 
PDMS (FC), FNC coating mix® coated PDMS 
and laminin-chondroitin sulfate coated PDMS 
(LC) with each sample having 2 subtypes, pat-
terned and un-patterned. They found out that 
behavior and appearance of human corneal ECs- 
B4G12 on patterned FC and LC samples were 

superior to cells cultured on FNC, which is due to 
the cells inability to form a confluent monolayer 
on FNC samples.

22.2  Natural Cell Membrane 
Coatings

22.2.1  Brief Introduction of the Cell 
Membrane

In nature, virtually all cells make use of a mem-
brane to separate and shield its components from 
the outside environment. The cellular membrane 
structure is based on a two-ply sheet of lipid mol-
ecules that are highly dynamic, ordered and dec-
orated with a wide range of biomolecules in a 
spatiotemporal controlled fashion. This complex 
interface is crucial for cell function such as in 
molecular transport and complex intracellular 
signaling processes [30–32]. The system was 
described by Singer and Nicholson in 1972 using 
the ‘fluid mosaic model’. In the model, the lipid 
bilayer is considered as a two-dimensional liquid 
phase in which proteins and lipids can move 
freely [33]. Currently due to newer analytical 
technologies available, the model has been 
updated to include variable patchiness, variable 
thickness and higher protein occupancy than 
what was previously considered [34].

The analytical studies also suggest that over 
1000 different lipids are present in any eukary-
otic cell [35]. Based on their chemical structures, 
three main categories can be defined, glycero-
phospholipids, sphingolipids and sterols. Not 
mentioning the huge array of proteins that are 
either embedded or anchored to the membrane, 
with each protein providing a distinct job, such 
transmembrane transport proteins acting as a 
controlled gate for various species.

22.2.2  Quick Overview of Cell 
Membrane Functions

To give a detailed account of all components of a 
cellular membrane, we would need a huge num-
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ber of books to be able to describe each compo-
nent. So, in this section, we will give a quick 
overview of cellular membrane components that 
are of interest with regenerative medicine. 
Regarding with membrane lipid components, it is 
important to know that the major type of 
 phospholipid head group available on the mem-
brane’s outer leaflet of mammalian cells are of 
the phosphatidylcholine family that is zwitter-
ionic [36]. On the other hand, phospholipids with 
serine head group (negatively charged), are pre-
dominantly on the inner leaflet of the membrane, 
but its importance is related to apoptosis, as when 
cells die, the serine based phospholipids flip and 
become available on the outer leaflet, thus signal-
ing macrophages to seek these cells out and 
engulf them [37]. Other phospholipids that are 
also available in the membrane of mammalian 
cells include phosphatidylglycerol, phosphati-
dylinositol and phosphatidic acid [36].

On a different note, as mentioned previously, 
cell membranes have a vast number and types of 
proteins that are either embedded or anchored to 
it. These are cell adhesion proteins, protein recep-
tors activating intracellular pathways, transport 
proteins, and so on. One type of these interesting 
proteins is adhesion molecules such as intercel-
lular adhesion molecule 1 (ICAM-1), a glycopro-
tein ligand for integrin found on leukocytes, [38] 
in which leukocytes bind to ECs and transmigrate 
into tissues when they are activated [39]. Another 
important super family of proteins on a cellular 
membrane are cadherin, which is a type of cell 
adhesion molecules that are important for cell to 
cell interaction [40]. An example of such proteins 
is endothelial cadherin (E-cadherin).

Based on this quick overview, it should be 
understood by readers that cellular bilayer com-
ponents are very important to be considered when 
designing a natural cell (or tissue)-mimetic coat-
ing, as each component will add a new property 
to the coating to improve possibility of success of 
tissue regeneration.

22.2.3  Recent Studies Utilizing Cell 
Membrane Based 
Biomaterials on Surfaces

One of approaches to increase the biocompatibil-
ity and bio-functionality of biomedical surfaces 
can be use of a continuous two-dimensional 
phospholipid bilayer assembled on a solid sub-
strate, which is widely known as ‘supported lipid 
bilayer (SLB)’. SLB membranes have proven 
useful in a wide variety of applications such as 
antifouling coatings, biosensors, drug delivery 
and cell culture-based biomolecular studies [41–
43] due to SLB’s innate biomimicry, bilayer 
thickness and 2-D fluidic nature, which resem-
bles mechanical and biological properties of nat-
ural cell membranes [44]. Generally, the bilayer 
is formed spontaneously on substrates such as 
glass, mica and silicon dioxide [45]. While other 
surfaces encourage saturated vesicle adsorption 
instead of bilayer formation, such as titanium 
oxide [46] and gold [47]. Despite that, currently 
through various methodologies and conditions, 
the formation of SLBs became possible on a vari-
ety of substrates such as aluminum oxide due to 
its oxide layer on which it is used to prevent the 
initial adsorption of lipid vesicles [41]. Most 
widely used and the simplest methodology is the 
vesicle adsorption-rupture method, which is con-
trolled by various parameters including lipid 
composition, vesicle concentration, temperature, 
osmotic pressure, vesicle size, surface chemistry, 
buffer composition and pH [48].

With growing potential use of artificial SLB in 
a wide variety of applications, mimicking the 
extreme complexity of natural cell membranes is 
not a simple task to achieve because natural cell 
membranes are decorated with a large amount of 
proteins that regulate and mediate various cellu-
lar functions, locomotion and many more [49]. 
This led to a recent study in which extracted natu-
ral cell membranes are utilized for the formation 
of SLB covered nanoparticles to be able to fully 
mimic cells and be incognito while circulating in 
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vivo [50–52]. The basic concept is that covering 
nanoparticles with natural cell membrane based 
SLB will provide the nanoparticles with an exte-
rior shell that is almost similar to naturally circu-
lating cells, thus the immune system would not 
consider them as a foreign body.

Another concept was tested by Chen et  al., 
which the group studied the cell proliferation 
promoting ability of a polycaprolactone (PCL) 
based nanofiber material that is covered with 
extracted cell membrane from pancreatic β cells 
[53]. After fabricating nanofibers via electrospin-
ning, they incubated the fibers with extracted 
membrane vesicles, then evaluated their prolifer-
ative effect on mouse pancreatic β cell line (MIN6 
cells). In vitro cell studies revealed that the cell 
membrane covered fibers promoted proliferation 
much more than the uncovered fibers due to the 
presence of adhesion molecules such as 
E-cadherin on the surface of nanofibers coming 
from a natural cell membrane. Additionally, insu-
lin release test unveiled that β cells grown on the 
fibers underwent glucose-dependent insulin 
release behavior. The use of natural cell mem-
brane coating on a certain surface for regenera-
tive medicine is emerging and promising 
approach and opens the door to copious studies in 
the future.
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Abstract

Naturally-derived biomaterials have been 
used for decades in multiple regenerative 
medicine applications. From the simplest cell 
microcarriers made of collagen or alginate, to 
highly complex decellularized whole-organ 
scaffolds, these biomaterials represent a class 
of substances that is usually first in choice at 
the time of electing a functional and useful 

biomaterial. Hence, in this chapter we describe 
the several naturally-derived biomaterials 
used in tissue engineering applications and 
their classification, based on composition. We 
will also describe some of the present uses of 
the generated tissues like drug discovery, 
developmental biology, bioprinting and 
transplantation.
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23.1  Introduction

The use of new advanced experimental strategies, 
such as bioengineering techniques, will trans-
form the practice of medicine in the coming 
years. A clear example of this is the quick 
advancement in the field of tissue engineering, an 
interdisciplinary field of research that involves 
the principles of materials science, engineering, 
life sciences, and medical research. Tissue engi-
neering aims to replace an entire organ or provide 
restoration of the specific cellular functions [1, 
2]. For this purpose, tissue engineering usually 
works with three essential tools: scaffolds, cells, 
and growth factors [3].

In recent years, the search and generation of 
new and suitable scaffolds for tissue engineering 
has been greatly accelerated. This is especially 
true in the study of natural biomaterials as they 
have been found to mimic the biological and 
mechanical function of the native ECM found in 
vivo in any tissue of the body. Natural biomateri-
als can be categorized into the following sub-
types: protein-based biomaterials (collagen, 
gelatin, silk) [4], polysaccharide-based biomate-
rial (cellulose, chitin/chitosan, glucose) [5], 
glycosaminoglycan- derived biomaterials and tis-
sue/organ-derived biomaterials (decellularized 
heart valves, blood vessels, livers) [6]. Depending 
on the final use, they usually share several promi-
nent features: biocompatibility, biodegradability, 
and non-toxicity, amongst others [7]. However, 
when the final goal of tissue engineering is the 
generation of solid organs with bioengineering 
techniques, the use of protein-based and 
polysaccharide- based biomaterials presents some 
disadvantages: a) Mechanical strength is limited, 
avoiding the generation of larger constructs and 
restricting their applications at load bearing 
regions; b) manufacturing variability; c) Potential 
impurities from the proteins or polysaccharides 
before implantation, which can be a source of 
immunogenicity [8, 9]. Despite these disadvan-
tages, almost every tissue and organ in the body 
has been bioengineered in vitro with success. 
Within the past 20  years, most of the major 
achievements in tissue engineering were focused 
on tissues constructed using thin sheets of cells 

for tissue replacement, such as skin, small intes-
tine, esophagus, bladder, bone, carotid arteries, 
amongst others [10–14].

Construction of thicker tissues has been slow 
due to the limited diffusion of nutrients and oxy-
gen within the engineered tissue mass [15]. 
Nonetheless, the tissue engineering sector has 
grown exponentially with breakthroughs reached 
in this area in the last years, and right now the 
ultimate goal of the field is the creation of whole- 
organs using bioengineering techniques for 
human transplantation. End-stage organ diseases 
affect millions of people around the world, and 
for these patients, organ transplantation is the 
only definitive cure available. However, every 
year there is a significant gap between the number 
of patients on the organ waiting list, the number 
of donors, and the number of patients died wait-
ing for a transplant due to the persistent organ 
shortage. In 2016, Europe registered 10,893 
organ donors, with 59,168 patients in the waiting 
list for transplantation, and 3795 deceased people 
waiting for an organ transplant [16]. Multiple 
alternatives and solutions have been sought in 
past decades to solve this problem, and at the 
moment, whole-organ bioengineering seems 
promising [17] and it could change the actual 
paradigm of organ shortage in the near future.

The development of decellularization meth-
ods for the generation of whole-organ engineer-
ing provides the ideal transplantable natural 
bioscaffold with all the necessary microarchitec-
ture and extracellular cues for cell attachment, 
differentiation, vascularization, and function 
[18]. Numerous attempts to generate whole- 
organs have been made. The most extensively, 
are some of the major organs: liver, heart, kidney, 
and lung [4, 19–22]. Although, progress so far 
has been quite remarkable, significant challenges 
still need to be overcome in whole-organ bioen-
gineering to transfer this new technology into the 
clinic. These include identifying appropriate spe-
cies to provide decellularized tissues, selecting 
ideal cell sources, localizing signals for differen-
tiation, achieving robust vascularization, opti-
mizing bioreactor perfusion technology along 
with scalability, and preventing graft immuno-
logical rejection [23–25].
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23.2  Naturally-Derived 
Biomaterials

The current research into naturally-derived bio-
materials should be considered a renaissance as 
its original interest started with the beginning of 
recorded human history.

Some of the earliest biomaterial applications 
have been dated as far back as 3000 BC to the 
ancient Egyptians who employed coconut shells 
to repair injured skulls, or wood and ivory as 
false teeth. In modern times, more sophisticated 
applications of natural biomaterials emerged 
with the first replacement surgery using ivory 
being reported in Germany,1891 [26].

By the 1950s and 60s, there were records of 
clinical trials with blood vessel replacement and 
the first mechanical human cardiac valve implan-
tation [27].

In the biomedical field, natural biomaterials 
can be classified into several categories accord-
ing to their origin. These groups can be distin-
guished as those derived from proteins (for 
example, collagen, gelatin, silk, and fibrin); poly-
saccharides (cellulose, chitin/chitosan, alginate 
and agarose), or glycosaminoglycans (hyaluronic 
acid, chondroitin sulfate, dermatan sulfate, hepa-
ran sulfate and keratan sulfate). In recent years, 
more complex biomaterials have emerged as in 
the case of cell/organs-derived matrices.

Despite their nature, they all shared some 
unique features (such as biocompatibility, biode-
gradability and remodeling) which have increased 
the scientific interest in the development of medi-
cal/tissue engineering technologies around these 
biomaterials. Hence, in this section, we provide a 
brief summary and applications of the most 
important naturally-derived biomaterials.

23.3  Protein-Based Biomaterials

23.3.1  Collagen

Collagen is the main structural protein of most 
tissues in the animal kingdom and plays an 
important role in maintaining the biological and 
structural integrity of the extracellular matrix 
(ECM) while also providing physical support to 

cells and tissues. At a cellular level, collagen is 
secreted mainly by fibroblasts and plays key roles 
in regulating cellular morphology, adhesion, 
migration and differentiation.

In the human body, collagen comprises 
approximately 25–35% of the whole-body pro-
tein content where it can be found mostly in 
fibrous tissues (skin, tendons and ligaments) and 
every other tissue that require strength and flexi-
bility, such as bones, cartilage, blood vessels, 
corneas, gut, intervertebral discs and dentin (in 
teeth) [28].

Currently, there are 29 known isoforms of col-
lagen that have been described. Collagen’s 
important biological role has driven this biomate-
rial to the center of tissue engineering research. 
In fact, collagen is easily isolated and can be 
purified on a large scale. Moreover, it has well- 
documented structural, physical, chemical and 
immunological properties. Additionally, collagen 
is biodegradable, biocompatible and has non- 
cytotoxic proprieties.

Collagen can also be processed into a variety 
of forms including cross-linked films, steps, 
beads, meshes, fibers, sponges and others [29] 
expanding its potential applications. Many 
researchers have illustrated the use of collagen as 
scaffolds for cartilage and bone [30–32] as well 
as in bioprosthetic heart valves, vascular grafts, 
drug delivery systems, ocular surfaces, and nerve 
regeneration [33]. Additionally, microcapsules 
containing collagen matrices have been designed 
in 3-D scaffolds for soft tissue engineering [34]. 
Regarding liver tissue bioengineering, collagen- 
coated silicone scaffolds represent an important 
tool for the development of viable 3D hepatocyte 
cultures [35]. More recently, Wang Y et al. were 
able to generate crypt-villus architecture of 
human small intestinal epithelium using micro 
engineered collagen scaffolds [36]. These are just 
a few examples of the great potential of using 
collagen as a biomaterial.

23.3.2  Gelatin

Gelatin is a biocompatible, biodegradable and 
fully absorbable biopolymer derived from the 
hydrolysis of collagen. Due to its biological 
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nature, great solubility in aqueous systems and its 
high commercial availability at low cost, gelatin 
has been commonly used and showed several 
advantages compared to its parent protein.

Among its many formulations (mainly derived 
from porcine, fish, and bovine tissue) the most 
used ones in biological fields include nanoparti-
cles, microparticles, 3D scaffolds, electrospun 
nanofibers and in situ gels [37].

Another important fact regarding this polymer 
is that it can be crosslinked and chemically modi-
fied which expands even more its applications.

As an example of gelatin versatility, Tayebi L 
and co-workers, have recently characterized a 
biocompatible and bio-resorbable 3D-printed 
structured gelatin/elastin/sodium hyaluronate 
membrane with great biostability, mechanical 
strength and surgical handling characteristics 
which hold great potential for engineered proce-
dures [38].

Furthermore, several other authors have 
described other applications of gelatin-derived 
biomaterials from cardiovascular [39], bone [40], 
skeletal muscle [41] and hepatic tissue engineering 
[42] to wound healing and injectable fillers [37].

Another very interesting finding was attrib-
uted to Kilic Bektas C., and Hasirci V., who 
recently developed a “corneal stroma system” 
using keratocyte-loaded photopolymerizable 
methacrylated gelatin hydrogels which could 
serve as an important alternative to the current 
products used to treat corneal blindness [43].

Gelatin as a biomaterial shows a wide range of 
applications. In stem cell research, modifications 
in gelatin formulations have been shown to influ-
ence stem cell fate in injectable cell-based thera-
pies [44].

Gelatin-based delivery systems have also 
found to be successful in gene and siRNA deliv-
ery, by inducing the expression of therapeutic 
proteins or trigger gene silencing, respectively.

Overall, with the significant progress that has 
already been made, along with others that will be 
achieved in a near future, the safe and effective 
clinical implementation of gelatin-based prod-
ucts is expected to accelerate and expand shortly.

23.3.3  Silk

Silks are biopolymers formed by different fibrous 
proteins (fibroin and sericin) that are segregated 
by the glandular epithelium of many insects 
including silkworms, scorpions, spiders, mites 
and flies.

Silk fibers, in the form of sutures, have been 
used for centuries, and new research into differ-
ent formulations (gels, sponges and films) have 
been encouraging [45].

In the orthopedics medical field and cartilage 
tissue engineering, many studies have been pointed 
out the enormous potential of this biomaterial.

Thus, Sawatjui N et al...., found very recently 
that the microenvironment provided by the 
porous scaffolds based on silk fibroin (SF) and 
SF with gelatin/chondroitin sulfate/hyaluronate 
scaffolds enhanced chondrocyte biosynthesis and 
matrix accumulation [46].

In this line, another silk derived scaffold (cur-
cumin/silk scaffold) was also described as a good 
candidate for cartilage repair [47] and for menis-
cal replacement [48].

Another recent investigation conducted by Hu 
Y et al., lead to a silk scaffold with increased stiff-
ness and SDF-1 controlled release capacity for 
ligament repair [49].

On the other hand, Bryan S.  Sack et  al, 
described that silk fibroin derived scaffolds 
showed promising repair of urologic defects in 
pre-clinical trials [50].

Although silk fibers also showed broad appli-
cations, the more popular ones seems to be 
related to cartilage engineering.

23.3.4  Fibrin

Fibrin is a non-globular protein, involved in 
blood coagulation, formed from the thrombin- 
mediated cleavage of fibrinogen.

Numerous studies have exploited fibrin’s func-
tion as hemostatic plug and wound healing, which 
suggests fibrin has potential applications in both 
the medical field and tissue engineering [6].
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Among its applications, three-dimensional 
fibrin gels have been used as scaffolds for cell 
proliferation and migration. According to Ye Q., 
et al.., fibrin gels can serve as a useful scaffold 
for cardiac tissue engineering with controlled 
degradation, excellent cell seeding effects and 
good tissue development [51].

More recently, Seyedi F et  al., have reported 
that 3D fibrin scaffolds effectively induced the dif-
ferentiation of human umbilical cord matrix- 
derived stem cells into insulin producing cells [52].

Other studies reported that hybrid fibrin/
PLGA scaffolds may promote proliferation of 
chondrocytes as well as cartilaginous tissue res-
toration and may eventually serve as a potential 
cell delivery vehicle for articular cartilage tissue- 
engineering [53].

Additionally, a new biomaterial called fibrin 
glue or fibrin sealant, has been formulated by 
combining fibrinogen and thrombin at very high 
amounts along with calcium and Factor XIII. This 
material is currently used as an adjunct to hemo-
stasis in patients undergoing different types of 
surgeries. More specifically, Azizollah 
Khodakaram-Tafti, et  al, suggested that autolo-
gous fibrin glue appears to be promising scaffold 
in regenerative maxillofacial surgery [54], just to 
name one example.

23.4  Polysaccharides-Based 
Biomaterials

23.4.1  Cellulose

Cellulose is the most abundant natural polymer 
on Earth; present in the cell walls of green plants, 
some forms of algae, and can also be produced by 
bacteria.

Although cellulose is very abundant and has 
several readily available renewable natural 
sources, major difficulties in its refinement make 
it a poor option for a naturally-derived biomate-
rial, such is the reason why there are no physio-
logical or pharmaceutical applications [55]. 
Research is currently focused on the simplifica-

tion of the normally intensive methods for the 
depolymerization of cellulose and the manufac-
ture of its derivatives so that it may be used as a 
biomaterial.

Recently, chemists were able to generate use-
ful cellulose derivatives such as carboxymethyl-
cellulose, cellulose nitrate, cellulose acetate, and 
cellulose xanthate which are all gaining some 
interest in the medical and tissue engineering 
fields [6]. Cellulose acetate for instance has been 
used to produce cardiac scaffolds [56], while 
other forms were used for cartilage tissue engi-
neering [57].

One of the lastest and curious application of 
this biomaterial is to use heparinized bacterial 
cellulose based scaffold for improving angiogen-
esis in tissue regeneration [58].

23.4.2  Chitin/Chitosan

Chitin is the second most abundant natural poly-
saccharide next to cellulose. It is mostly found in 
the exoskeletons of arthropods and many insects. 
Its derivatives which includes chitosan, carboxy-
methyl chitin, and glyco-chitin have all generated 
attractive interests in various fields such as bio-
medical, pharmaceutical, food and environmen-
tal industries [59].

In recent years, considerable attention has 
been given to chitosan (CS)-based materials and 
their applications in the field of orthopedic tissue 
engineering. It has garnered this interest because 
of its intrinsic anti-bacterial nature, porosity, and 
the ability to be molded in various geometries 
which are suitable for cell growth and osteocon-
duction [60]. Chitosan/alginate hybrid scaffolds 
have also been developed in this field [61]. 
Moreover, chitosan was also reported to promote 
angiogenesis and accelerate wound healing 
response by promoting migration of inflamma-
tory cells to the wound site and collagen matrix 
deposition in open skin wounds [62–64]. Thus, 
chitosan hydrogels have been developed in medi-
cal therapeutics for third-degree burns [65].
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23.4.3  Alginate

Alginate is a naturally occurring anionic poly-
mer typically obtained from brown seaweed. 
Among its excellent biological proprieties (bio-
compatibility, low toxicity, and relative low 
cost), alginate is a readily processable into 
three-dimensional scaffolding materials such as 
microspheres, microcapsules, sponges, foams, 
fibers and hydrogels.

Alginate hydrogels are one of its most popular 
formulations. In fact, alginate hydrogels can be 
prepared by various cross-linking methods and 
their structural similarities to ECM of living tis-
sues that allows a wide range of applications 
from wound healing management [66] to more 
complex drug delivery vehicles [67].

Wang Y et  al. recently described a three-
dimensional (3D) printing technology to fabri-
cate the shape memory hydrogels with internal 
structure (SMHs) by combining sodium alginate 
(alginate) and pluronic F127 diacrylate mac-
romer (F127DA), which showed a huge prospect 
for application in drug carriers and tissue engi-
neering scaffold [68].

Another common application of alginate is for 
the immobilization of cells [69] allowing for large-
scale cellular expansion in different bioreactors. 
This immobilization application was exhibited by 
Anneh Mohammad Gharravi et  al., which have 
fabricated a bioreactor system containing alginate 
scaffolds for cartilage tissue engineering [70]. 
Beigi MH et al, also described very recently that 
3D alginate scaffolds with co- administration of 
PRP and/or chondrogenic supplements had a sig-
nificant effect on the differentiation of ADSCs into 
mature cartilage [71].

Besides that, encapsulated cells have been 
proven useful for cell therapies. According to 
Coward SM et al., alginate encapsulated HepG2 
cells, circulating in the plasma of patients suffer-
ing with acute liver disease, maintained their 
hepatic metabolism, synthetic and detoxification 
activities, indicating that the system can be 
scaled-up to form the biological component of a 
bioartificial liver [72].

In another interesting approach has just been 
published, Yajima Y., et  al performed perfusion 
cultivation of liver cells by assembling cell-laden 
hydrogel microfibers and packed HepG2 into the 
core of sandwich-type anisotropic microfibers, 
which were produced using microfluidic devices 
to structurally mimic the hepatic lobule in vivo 
[73].

Pipeleers D., et al., also reported that human 
embryonic stem cell (hESC)-derived beta cells 
encapsulated in alginate microcapsules were pro-
tected from the immune system and corrected 
insulin deficiencies of type-1 diabetic mice for at 
least 6 months [74]. These are just few examples 
of the potential of polysaccharides-based 
biomaterials.

23.4.4  Agarose

Agarose, the main constituent of agar, is another 
polysaccharide naturally found in red algae and 
seaweed.

Most of the beneficial features shown by algi-
nate are shared by agarose. In fact, agarose and 
alginate were two of the first materials used as 
hydrogels for cartilage tissue, showing natural 
pro-chondrogenic properties and are easy to pre-
pare [75].

On the other hand, recent findings pointed 
agarose as an excellent candidate for applications 
involving neural tissue engineering [76–78].

In this line, Han S et al.., reported that an aga-
rose scaffold loaded with matrigel could promote 
the regeneration of axons and guide the recon-
nection of functional axons after spinal cord 
injury in rats [79].

In cardiac bioengineering and stem cell biol-
ogy, agarose was shown to promote cardiac dif-
ferentiation of human and murine pluripotent 
stem cells [80].

In other study, high quality valvular interstitial 
cell aggregates were generated, in agarose micro- 
wells, which were able to produce their own 
ECM, resembling the native valve composition 
[81].
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23.5  Glycosaminoglycans

Glycosaminoglycans (GAGs) represent a group 
of long unbranched polysaccharides consisting of 
repeating disaccharide units. There are several 
types of GAGs components including hyaluronic 
acid (HA), chondroitin sulfate (CS), dermatan 
sulfate, heparan sulfate, and keratan sulfate.

Among these GAGs, HA and CS are the two 
most studied in regenerative medicine and tissue 
engineering field. Some of its applications are 
described briefly.

23.5.1  Hyaluronic Acid

Hyaluronic acid (HA) is a molecule comprised of 
repeating disaccharide units of N-acetyl-d- 
glucosamine and d-glucuronic acid being widely 
distributed in the most connectives tissues and 
some body fluids (such as synovial fluid and the 
vitreous humor of the eye). Its chemical proper-
ties (solubility and the availability of its reactive 
functional groups) make this molecule an excel-
lent candidate for chemical modifications and a 
very biocompatible material for use in medicine 
and tissue regeneration.

Research has found that intra-articular injec-
tions of MSCs and HA in rabbits showed statisti-
cally significant improvements in osteochondral 
defect healing [82].

In current orthopedics medical practice, HA 
has a prominent place. In fact, HA injections 
have been shown to ameliorate osteoarthritis 
symptoms and shown the ability to delay pros-
thetic surgeries [83]. Moreover, HA has also 
become popular as dermatological fillers for 
treatment of face aging [84].

In tissue engineering, cartilage biodegradable 
scaffolds made of HA were engineered [85] and 
HA-collagen hybrid scaffolds were proven robust 
and offered freely permeable 3-D matrices that 
enhance mammary stromal tissue development in 
vitro [86]. In other research field, Kushchayev SV 
et al, described that hydrogel had a neuroprotec-
tive effect on the spinal cord of rats by decreasing 
the magnitude of secondary injury after a lacerat-
ing spinal cord injury [87].

To conclude, one of the most attractive advan-
tages of HA is that it can be easily and controlla-
bly produced in large scale through microbial 
fermentation avoiding the potential risks of 
animal- derived biomaterials [88].

23.5.2  Chondroitin Sulfate

Chondroitin sulfate (CS) consists of repeating 
disaccharide units of d-glucuronic acid and 
N-acetyl galatosamine, sulfated at either 4- or 
6-positions [89] and represents the second most 
used GAG as biomaterial. CS could be obtained 
from bovine, porcine, chicken, shark and skate 
cartilage after various extraction and purification 
processes.

In biomedical applications, CS has been asso-
ciated with bone and cartilage metabolism and 
regulation, presenting both anti-inflammatory 
effects and accelerated bone mineralization capa-
bilities [90].

In animal studies, CS combined with HA and 
other GAGs administered after arthroscopy were 
described as beneficial to equine cartilage health 
by increasing the number of repair cells and 
decreasing the number of apoptotic cells [91].

In this line research, other biomaterials com-
binations have been hypothesized. According to 
Liang WH, et al., CS-Collagen scaffolds could be 
used to cartilage and skin applications [92].

Recently, Zhou F et  al., designed a silk-CS 
scaffold and proved that this scaffold exhibited 
good anti-inflammatory effects both in vitro and 
in vivo, promoted the repair of articular cartilage 
defect in animal model [93]. Thus, CS also con-
stitutes one of the FDA approved skin substitute 
component [94].

23.6  Extracellular Matrix-Derived 
Biomaterials

23.6.1  Cell-Derived Matrices

In recent years, the development of decellular-
ized ECM has made the fields of cell biology, 
regenerative medicine and tissue engineering 
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advance beyond the use of simple natural derived 
biomaterials.

Cell-derived matrices (CDMs) consist of an 
acellular complex of different natural fibrillar 
proteins, matrix macromolecules and associated 
growth factors that often recapitulate, at least to 
some extent, the composition and organization of 
native ECM microenvironments. As an ECM 
derived material, CDMs provide mechanical and 
biological support allowing cellular attachment, 
migration and proliferation; paracrine factor pro-
duction and differentiation in a tissue-specific 
manner [34].

The unique ability to produce CDMs de novo 
based on cell source and culture methods makes 
them an elegant alternative to conventional allo-
geneic and xenogeneic tissue-derived matrices 
that are currently harvested from cadaveric 
sources, suffer from inherent heterogeneity, and 
have limited ability for customization [95].

The production of CDMs have undergone sev-
eral evolutions. There are several ways these 
matrices can be produced through the use of dif-
ferent decellularization strategies that includes 
chemical, enzymatic, physical, mechanical, or a 
combination of methods.

Regarding chemical decellularization proto-
cols, the surfactant sodium dodecyl sulfate (SDS) 
is the most used reagent, which promotes cellular 
lysis through phospholipid membrane disruption 
[56]. However, many authors prefer using acids 
(peracetic acid) or bases (sodium hydroxide) 
agents to decellularize the ECMs. To supplement 
this treatment some enzymes like DNase I can be 
added to prevent the agglutination of DNA.

Due to the toxicity of this approach, some 
physical and mechanical methods have therefore 
been developed. These methodologies include 
the use of temperature (for example, freeze-thaw 
cycles) or pressure treatments (such as high 
hydrostatic pressure or supercritical CO2 
content).

Among all CDMs that have been tested, small 
intestine submucosa (SIS), bladder submucosa, 
acellular dermis and engineered heart valves rep-
resent the most popular ones and will be described 
briefly.

23.6.2  Small Intestinal Submucosa 
(SIS) and Bladder Submucosa 
(BS)

One such CDM being extensively used is the 
Small Intestinal Submucosa (SIS) or the Bladder 
Submucosa (BS). These are naturally occurring 
ECM, derived from the thin and translucent 
tunica submucosa layer of the porcine small 
intestine or urinary bladder, which remains intact 
after removing the mucosal and muscular layers. 
SIS and BS have been shown to be biologically 
active and its unique combination of intrinsic 
growth factors, cytokines, GAGs and structural 
proteins (mainly collagen fibers, fibronectin, vit-
ronectin, etc) provide strength, structural sup-
port, stability and biological signals which allow 
overall cell ingrowth [96–99].

Once the SIS or BS biomaterial is harvested, it 
is carefully processed to remove all living cells, 
disinfected and sterilized, and then able to be 
used as scaffold or for long-term storage in their 
lyophilized form [100, 101].

Over the years, many applications have 
emerged. The first application of SIS was associ-
ated to Lantz and colleagues, who first used SIS 
in animal studies as a vascular patch, reported a 
great tissue-specific regeneration in both arteries 
and veins [102, 103].

Within the urology field, SIS and BS are also 
very popular biomaterials. Thus, Kropp and col-
leagues subsequently demonstrated that SIS, 
used as an unseeded graft, could promote bladder 
regeneration, in both small and large animal 
models, and it was accompanied by serosal, mus-
cle and mucosal layers regeneration, tissue con-
tractibility and biological functionality [104, 
105]. Gabouev et al. have used BS to bioengineer 
porcine urinary bladder tissue that they have 
seeded with smooth muscle and urothelial cells. 
The resulting tissue displayed the generation of 2 
tissue layers with the putative markers of muscle 
and urothelial cells [106].

In the management of anterior urethral stric-
ture disease, SIS showed promising results. In 
one study, more than 50 patients were managed 
with an SIS graft placed in an inlay fashion and 
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according to a follow-up of 31  months the  
success rate was around 80% [107]. A second 
study reported 85% success when SIS was  
used as either an inlay or on lay patch graft  
with a mean follow-up of 21 months. However, 
when used ventrally, it failed in 6 of 10 adult 
patients [108].

In different clinical areas, SIS has been 
described as a functional bioscaffold for the 
intestinal tract. According to Hoeppner et al., SIS 
application showed a great potential in colon 
walls regeneration in domestic pigs [109].

In neurological and orthopedic fields, porcine 
SIS was used in rat peripheral nerve regeneration 
[110] and chest reconstruction after tumor 
removal respectively [111]. Based on scientific 
findings, many companies have been interested 
in this CDM with many SIS and BS derivatives 
being currently commercialized. SIS and BS 
derived devices are now available for hernia and 
hiatal hernia grafts; dural graft; ENT repair graft; 
enter cutaneous Fistula Plug and as nerve con-
nector/protector, etc. [112].

23.6.3  Acellular Dermis

The acellular dermis (AD) is another example of 
a CDM, which consists of a soft tissue substitute 
derived from donated human skin tissue. As the 
others CDMs, AD undergoes a multi-step process 
which includes epidermis removal, disinfection 
and sterilization minimizing the risk for an anti-
genic or rejection response.

AD was initially used as a type of graft mate-
rial for the management of burn wounds [113]. 
However, in the recent years, AD has been used 
for various applications in reconstructive surgery 
including head and neck reconstruction as well as 
chest and abdominal wall reconstruction [114, 
115].

Currently, AD has become an integral part of 
implant breast reconstruction being one of its 
most important applications in regenerative med-
icine field [97].

23.6.4  Heart Valves

The origin of decellularized cardiac valves matri-
ces may come from xenotransplants or allotrans-
plants showing different outcomes. Rieder, et, al 
reported immunological differences depending 
on whether the valves came from human or por-
cine, showing that decellularized porcine pulmo-
nary valve does not represent a completely 
non-immunogenic heart valve scaffold [116].

In other studies, the aim was to develop and 
optimize decellularization protocols to obtain 
viable scaffolds for this type of applications. For 
example, mitral valves can be decellularized to 
obtain structures that generally preserved their 
microarchitecture, biochemistry, and biomechan-
ics [117]. These CDMs are currently widely stud-
ied and tested being now available many 
commercial options on the market such as 
Acellular porcine heart valve leaflets from Epic™ 
and SJM Biocor®; porcine acellular valve from 
Prima™ Plus or porcine acellular heart valve tis-
sue from Hancock® II, Mosaic®, and Freestyle® 
[118].

Another important aspect is to know what 
type of cells may be a functional option for valve 
replacement. Fang et, al, reported that human 
umbilical cord blood-derived endothelial progen-
itor cells (EPCs) may be a promising option to 
form a functional endothelial layer on decellular-
ized heart valve scaffolds [119].

23.7  Bioengineering of Solid 
Organs

The disciplines of tissue engineering (TE) and 
regenerative medicine (RM) endeavor to elimi-
nate the need for patient to patient tissue and 
organ transplantation by constructing analogs in 
vitro that will normalize or improve physiologi-
cal functions of their respective system. The need 
for further research is paramount, as currently 
there are 115,000 patients waiting for organ 
transplants, however there were only 34,000 
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transplants performed in 2017  in the 
USA. Programs to reduce the wait list by increas-
ing donors have been met with limited success. 
The difference in waitlisted patients and trans-
plant recipients has grown in size over the last 
14  years. TE and RM would initially eliminate 
the gap between the waitlisted and recipients cul-
minating by rendering large donor pools 
obsolete.

23.7.1  Liver

Whole-liver engineering has made incremental 
advances in the recent past. Researchers have 
been able to successfully decellularize the liver 
ECM in a variety of different ways [19, 120–
124]. Decellularization is achieved by effectively 
pumping detergents through the vasculature with 
the use of peristaltic pumps through the portal 
vein. There have been several successful attempts 
at reintroducing cells into the decellularized scaf-
fold, namely Baptista and colleagues [19, 124]. 
Current roadblocks to generate liver tissue capa-
ble of completely assuming the full spectrum of 
native tissue functions are several-fold: The con-
struction of a fully patent vascular network and 
generation of required number of cells to acquire 
a basal level of functionality. Vascular network 
patency is required for normal blood flow as acel-
lular ECM will induce the formation of blood 
clots as it is highly thrombogenic. Recent 
advances in revascularization have greatly 
improved the efficacy of endothelial cell seeding 
resulting increased vascular patency. In 2015 Ko 
et al. were able to greatly improve the reendothe-
lialization of the vasculature by the introduction 
of anti-CD31 antibodies which were injected into 
the decellularized arteries and veins of the scaf-
fold after being treated with 1-Ethyl-3-[3- 
dimethylaminopropyl] carbodiimide 
hydrochloride (EDC) and N-hydroxysuccinimide 
esters (NHS) thus effectively conjugating the 
antibody to the acellular liver scaffold [125]. 
After conjugation, mouse endothelial cells (MS1) 
were statically seeded and perfused through the 
liver construct. This resulted in a vascular net-
work evenly seeded with endothelial cells and 

was successfully transplanted into a pig [125]. 
This method allowed the liver construct to main-
tain biological blood flow and reduced platelet 
aggregation for a 24-h period. In 2017 Mao et al. 
were able to obtain a patent vascular network by 
using porcine umbilical vein endothelial cells 
(pUVEC) and its human analog (hUVEC). The 
use UVEC’s also allowed for complete coverage 
of the vasculature and additionally allowed for 
vascular patency over a period of 72 h in a por-
cine model [126]. Other methods such as the 
refinement of the decellularization technique 
have also yielded positive results [127]. An aver-
age male liver is made up of ~2 × 1011 cells [128]. 
Even achieving the 30% fraction required for 
complete organ function still is proving a chal-
lenge. The preferred source of cells would be 
autologous liver stem cells, but alternative cell 
sources are also being studied such as iPSCs, 
Mesenchymal SCs, and humanized hepatocytes 
[129–132]. There have been several studies on 
the transplant of iPSCs into mice suffering CCl4 
induced liver failure. iPSCs show much promise 
in that they are autologous and are a potentially 
limitless source for the material required to 
repopulate a sufficiently sized scaffold. Currently, 
research has been oriented into making more 
functional cells similar to their native counter 
parts [133–136].

23.7.2  Heart

As with the liver, similar complication arises in 
the bioengineering of the heart in terms of gen-
eration of the adequate number of cells, and of 
appropriate scaffold sources. Decellularized 
ECM has also been successfully used as a scaf-
fold for the seeding of cardiac cells and been 
transplanted into animal models with some lim-
ited success. Specifically, Ott et al. was able to 
successfully transplant the recellularized scaffold 
where it was able to pump in blood throughout 
the vasculature for a short period of time [20]. 
For clinical applications, porcine ECM tissue has 
been at the forefront of research [137–140]. 
Decellularized porcine heart valves have been used 
clinically, however this has not been plausible for 
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the entire heart itself [141]. As with any xeno-
transplant the risk of immunogenicity is of para-
mount importance. In porcine tissues the alpha 
[1, 3]-galactose epitope is the general cause for 
rejection in the human host [142]. There have 
been attempts to remove the epitope through the 
use of galactosidase during the decellularization 
process and additionally to genetically engi-
neered pigs to abolish the possibility of synthesis 
of this particular epitope [142]. Cardiomyocytes 
and endothelial cells are the two major cell types 
that comprise the heart. The generation of several 
billion cells directly from adult stem cells remains 
elusive in the cardiac field of research as well. 
Again here we see that iPSCs and human embry-
onic stem cells have come to the forefront of the 
field as a possible solution to the problem of cul-
turing the amount of cells required for recellular-
ization [143].

23.7.3  Kidney

The bioengineering of the kidney has proven 
challenging and the cellular makeup of the organ 
is highly complex consisting of approximately 26 
different cell types that perform a litany of func-
tions for the body including the regulation of 
blood pressure, blood filtration, and ion exchange 
[144–146]. There are more than a dozen cell 
based therapies in current clinical trials for the 
treatment of renal deficiencies [147]. However, 
this does not help with patients suffering from 
end-stage renal disease and are in need of total 
transplant. Recellularization of whole acellular 
ECM constructs have been attempted by several 
research institutes which demonstrated the ability 
to form some native like structure [148–150]. For 
most of the native functions that have been mim-
icked have been in terms of the filtration of 
plasma into a urine-like substance, but have not 
been able to control overall vascular blood pres-
sure as a normally functioning kidney would do 
[151]. This has been through the growth of neph-
ron like structures, which were found after the 
recellularization using pluripotent stem cells 
[151]. The nephron stem cells were generated by 
researchers Tagasaki et al. and Taguchi et al. [152] 

using a variation of treatments where the directed 
differentiation of the iPSCs was achieved through 
the use of Activin A or CHIR90021, a GSK3β 
inhibitor.

The field of tissue engineering has not yet pro-
vided clinicians with the ability to replace defec-
tive organs with wholly engineered ones. Yet, 
highly important steps have been made to replace 
some function of the organs themselves, but not 
all. There have been great strides made in the area 
of decellularization of a multitude of different 
types of organs. Vascularization of the decellular-
ized organs has also made great advances allow-
ing for a fully patent vasculature that does not 
undergo thrombosis under blood flow. Finally, 
the use of autologous iPSCs have garnered a 
great deal of interest and could serve as the ulti-
mate source of cells for the future of recellular-
ized organ constructs. Satisfying these three 
needs could greatly benefit the world of trans-
plantation needs throughout the world.

23.8  Current and Future 
Applications

23.8.1  Drug Development 
and Toxicology

The development and launching of a new drug 
into the market continues to be challenging [153]. 
The average cost is currently 3–5  billion USD 
and takes approximately 12–15 years of exhaus-
tive research. After a preliminary screening, the 
potential drugs (or pharmaceutical candidates) 
are characterized in vitro and in vivo for their 
ADME-Tox (absorption, distribution, metabo-
lism, excretion and toxicity) properties before 
continuing on to clinical trials. However, about 
90% of the candidates fail during the final stages 
of the clinical trials, where 43% are due to a lack 
of efficacy, and 33% due to the presence of nega-
tive adverse effects [154], predominantly in the 
liver, phenomenon known as DILI (drug-induced 
liver injury) [155] or in the heart (cardiotoxicity). 
The principal problem resides in the use of con-
ventional drug screening models (cell lines or 
animal cell monolayers), which possess a lack of 
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predictive value of the human tissue response to 
the drug candidate. Therefore, it is necessary 
more physiological systems in order to relieve 
the burden of high failure rates.

The liver is the responsible organ for the 
metabolism, conversion, and elimination of a 
variety of substances. The majority of the drugs 
are transformed, there, into metabolites/active 
substances which could result in toxicity to the 
liver and to the rest of the body. The principal 
cause of failure at the clinical trials in humans is 
the use of unsuitable and inaccurate in vitro and 
in vivo hepatic models. In addition, the liver is 
target of many prevailing diseases, such as infec-
tious HBV, HCV [156], malaria [157], 
overnutrition- induced (type 2 diabetes, NAFLD, 
fibrosis, cirrhosis) [158–160] or tumoral diseases 
(hepatocellular carcinoma represents the 6th 
most common cancer worldwide) [161]. 
Therefore, the improvement of hepatic models 
would be essential for the development of spe-
cific drugs for liver diseases.

To reproduce a hepatic environment suitable 
to study the efficacy and toxicology of different 
drugs, it is essential to maintain the liver paren-
chymal function ex vivo. Currently, models used 
for drug screening are simply comprised of a 
monoculture system that is maintained on a col-
lagen substrate under static conditions. However, 
under these conditions hepatocytes suffer de- 
differentiation into fibroblastic-like cells and lose 
their liver-specific functions due to limited 
amount of juxtacrine signalling with neighbour-
ing cells, while the majority are in contact with 
the substratum or the medium which is unlike the 
native environment. For this reason, this type of 
drug screening platform is not an optimal model 
for drug development, testing and efficacy subop-
timal models for drug efficacy and safety testing 
[162]. The development of 2D culture models, 
such as sandwich culture, produced an rising of 
the basal and induced drug-metabolizing enzyme 
activities [163, 164]. Nevertheless, the absence of 
non-parenchymal cells and hepatic de- 
differentiation continued being inherent disad-
vantages of these models [165]. The co-culture of 
hepatocytes with non-parenchymal cells, such as 
Kupffer cells, hepatic stellate cells, and liver 

epithelial or sinusoidal endothelial cells helped 
overcome some of the previous limitations, 
recovering cellular functionality/longevity, and 
generating higher expression of CYP and Phase 
II isoforms than in monotypic culture [166–169]. 
However, these co-cultures result only in a ran-
dom mix of diverse cell types without taking into 
account their specific anatomical relationships. 
More recently, in order to recreate much better 
the microenvironment, 3D cultures have been 
developed. These 3D cultures generally consist 
of spheroids [170, 171], 3D scaffold systems 
[172] or microfluidic in vitro systems [172, 173]. 
Up to the present, many commercial 3D co- 
culture devices are commercialized for drug 
screening, such as the “Hepatopac” platform 
[174], the 3D InSight™ Human Liver Microtissues 
of Insphero, the HepaChip® in vitro microfluidic 
system [175] or the Hμrel® microliver platforms 
[176]. Although several issues have been resolved 
with the models mentioned above, others con-
tinue to be biologically and technically challeng-
ing [163, 177].

Heart failure is the major cause of morbidity 
and mortality worldwide. The statistics by the 
American Heart Association show a decrease in 
the rates of cardiovascular diseases, in part 
because of current available treatments and 
improved patient supervision, however, the bur-
den of disease continues to be high [178]. 
Consequently, robust translational models that 
mimic the environment of the heart failure are 
needed to address questions during development 
of new therapeutics related to target validation, 
pharmacodynamic’s research and pharmacoki-
netic, and biomarker discovery.

The cardiotoxicity is a frequent side effect of 
many novel drugs. A clear example of is the 
recent research regarding peroxisome 
proliferator- activated receptor-gamma modula-
tors employed in the treatment of type 2 diabetes. 
While this drug presents metabolic benefits in the 
treatment of type 2 diabetes [179, 180] several 
studies show that this drug is related to a signifi-
cantly higher risk of heart failure [181]. Therefore, 
it is essential to establish a translational model 
for cardiac safety assessment to increase the lim-
ited capacity of preclinical screening assays used 
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for the detection of cardiotoxicity. Currently, in 
vitro assays measure the toxicity in two different 
cell lines (CHO and HEK cells), which have been 
genetically modified to artificially express car-
diac channels. However, due to the genetic aber-
rations accumulated in these cells and the failure 
of ectopically expressed channels to accurately 
model the same channels found in human cardio-
myocytes [182, 183], it is very easy to obtain 
false negatives and positives, which can lead to 
the commercialization of potentially lethal drugs 
and the discard of valuable drugs [184–187]. As 
mentioned above, in pharmaceutical industries, 
the cardiotoxicity test models are based on cell 
lines, animal cardiomyocytes, and small/large 
animal models [188, 189]. To improve the preci-
sion of toxicity screening, preclinical drug tests 
should be done on adult human cardiomyocytes. 
However, it has not been possible due to the dif-
ficulty of obtaining these cells from patients, and 
the inability of expanding them in culture. The 
discovery and development of the iPSC, and the 
following derivation into cardiomyocytes have 
done feasible circumvent these hurdles [190, 
191]. Generation of iPSC from patients suffering 
inherited heart disease and their differentiation 
into cardiac cells have been predicted to serve as 
a model to study disease pathogenesis and to dis-
cover novel drugs [192]. The employment of 
patient-specific iPSC-cardiomyocytes provides 
an exceptional opportunity to renovate drug tox-
icity screening [193]. However, the maturation of 
these cells has been compared to 16-week old 
human fetal cardiomyocytes [194], questioning 
the validity of these cells as compared to the clas-
sical animal models. However, the actual prog-
ress in differentiation protocols and the 
combination of many innovate organ-on-a-chip 
platforms [195], have opened new avenues for in 
vitro engineering as they recapitulate mechanics 
and physiological responses of tissues in the 3D 
manner [196, 197]. Hence, it is vital to develop 
appropriate models of disease, and identify new 
biomarkers that are more sensitive predictors of 
the early on-set and/or progression of heart fail-
ure to facilitate drug discovery and development.

Kidneys are the main organs of the urinary 
system consisting of complex organs involved in 

the secretion of waste substances through urine 
and the maintenance of osmolarity of blood 
plasma, homeostasis of body fluids, the balance 
of electrolytes and pH of the internal environ-
ment. Furthermore, they are involved in the pro-
duction of different hormones like erythropoietin 
(contributing to erythropoiesis) and renin (con-
tributing to hypertension regulation).

In developed countries, hypertension, obesity, 
diabetes, and exposure of environmental contami-
nants are the main detonators of renal failure. 
Acute kidney injury (AKI) is the rapid loss of renal 
function, which can develop chronic kidney dis-
ease (CKD), reduction of the glomerular filtration 
rate (GFR) and terminate with end-stage renal dis-
ease (ESRD) and death [198]. Furthermore, non-
renal complications can de also developed, like 
cardiovascular disease (CVD), which seems to be 
one of CKD complications [199].

Despite this imperative urgency in finding 
clinical tools to reduce the effects of kidney dys-
function, therapeutic advances have failed until 
today. The main reasons being the lack of knowl-
edge in renal pathophysiology, its association to 
CVD, poor characterization of predictive bio-
markers involved in essential molecular mecha-
nisms, and a lack of precise selection of clinical 
validation criteria, among others [199, 200].

The complexity in achieving a successful 
pharmaceutical drug development for kidney dis-
ease resides in the fact that many processes can 
be activated and the many cell types that are 
involved. Serum creatinine and blood urea nitro-
gen have been popular biomarkers for renal dis-
ease, but resulted in poor candidates for clinical 
trials because of their poor diagnostic capabili-
ties. Currently, the most relevant molecular path-
ways include the deeper study of RAAS 
(renin-angiotensin-aldosterone system), inflam-
mation, hypoxia, phenotypical modulation pro-
cesses and extracellular matrix (ECM) 
remodeling [201]. Furthermore, new candidates 
as KIM-1 (Kidney injury molecule-1), fibrinogen 
and small RNA species are considered as emerg-
ing biomarkers due to characteristics like their 
stability, sensitivity and predictive capability in 
animal models, early expression and less com-
plexity [198].
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Lungs are the principal organs of the respira-
tory system, with the critical role of extracting 
oxygen from the air while removing the gaseous 
waste from the body. Due to the fact that airway 
epithelial cells are located at the interface with 
the external environment, this tissue not only acts 
as a first barrier against inhaled irritants and aller-
gens, but it is also involved in the immune 
system.

There are several cell culture models for lung 
drug delivery [202]. For example, SOPC1 (rat 
tracheal globet cell line) is used as a model for 
mucus secreting drug absorption, allowing the 
evaluation of the effect of mucus layer on drug 
transport in the tracheal epithelium. Another 
example is the use of the human cell line Calu-3, 
utilized in the study of drug transport at the bron-
chial level.

More realistic models of lung tissue are those 
made in a 3D configuration. For example, Klein 
et  al. developed a system where four kinds of 
cells (alveolar type II cell line, differentiated 
macrophage-like cells, masts cells and endothe-
lial cells) where seeded on a microporous mem-
brane to mimic the alveolar surface, making it 
able to study of the toxic effects of particles 
within the lungs [203].

In the last few years, companies like Epithelix 
Sàrl or CellnTec had introduced in vitro cell cul-
ture models to the market that mimic airways like 
trachea and bronchi, with the aim to provide 
alternative solutions for drug development and 
toxicity assays. Others, like Charles River, offers 
services related to drug development such screen-
ing assays, in vivo pharmacology studies, and 
biomarker services.

Hug et  al. Developed a human-cell based, 
“breathing,” lung-on-a-chip microdevice, form-
ing an alveolar-capillary barrier on a thin PDMS 
membrane previously coated with ECM that rec-
reated physiological breathing movements [204]. 
This represents a novel strategy that closely mim-
ics the microarchitecture of the alveolar-capillary 
unit, constituting an excellent screening platform 
for toxicity and drug development studies.

Most of the new treatments approved for 
respiratory diseases are improvements of existing 
drugs, due to the difficulty in finding new ones. 

Some targets of these drugs are leukotriene 
receptor antagonists (used in asthma control), 
several epithelial growth factors receptor inhibi-
tors (used for lung cancers) and endothelin recep-
tor antagonists, phosphodiesterase-5 inhibitors 
and prostanoids (used for Group 1 pulmonary 
hypertension treatment) [205].

23.8.2  Developmental Biology 
Research

The liver is the largest internal gland in the body. 
It plays a fundamental role in metabolic homeo-
stasis due to provide many essential metabolic 
exocrine and endocrine functions such as the 
detoxification and elimination of many sub-
stances, maintenance of blood homeostasis, regu-
lation of glucose levels, and production of 
numerous products such as lipids, proteins, vita-
mins, and carbohydrates. In addition, the liver 
possesses a unique regenerative capacity, being 
able to regenerate most of its function after losing 
up to three-quarters of its mass because of a par-
tial hepatectomy or toxic injury.

In the third week of gestation, hepatic devel-
opment and organization begins continuing into 
postnatal period. The first morphological charac-
teristic is the formation of the hepatic diverticu-
lum on the ventral surface of the foregut cranial 
to the yolk sac. The anterior portion of the hepatic 
diverticulum gives rise to the liver and intrahe-
patic biliary tree, while the posterior portion 
forms the gall bladder and extrahepatic bile ducts.

The majority of in vitro models employ human 
embryonic and iPSCs [206, 207]. However, these 
models do not completely recapitulate the simul-
taneous differentiation of liver progenitors into 
hepatocytic and biliary fates. The formation of 
mature bile ducts is particularly laborious in vitro 
[208, 209] thus needs the presence of a 3D envi-
ronment for effective and suitable cellular polar-
ization [210, 211]. Wang et al. demonstrated that 
scaffolds made from liver ECM possessed that 
required environmental cues [212]. In 2011, it 
was demonstrated as the human fetal liver pro-
genitor cells cultured inside a ferret liver ECM 
developed into a native liver tissue including 

M. Brovold et al.



435

hepatocytic and biliary structures [19] indicating 
a preservation of cell differentiation signals from 
the ECM among different species. Recently, 
Vyas et al. showed as human fetal liver progeni-
tor cells self-assembled inside acellular liver 
extracellular matrix scaffolds to form 3D liver 
organoids, which mimicked many aspects of hep-
atobiliary organogenesis and resulted in concom-
itant formation of progressively more 
differentiated hepatocytes and bile duct struc-
tures [213]. In this study, after 3 weeks in culture, 
there were clear changes in the phenotype of the 
human hepatoblasts, suggesting parallel lineage 
specification into hepatocytes and polarized chol-
angiocytes. Hence, liver tissue scaffolds contains 
specific and necessary ECM molecules that sur-
round the diverse hepatic zones and regulate spe-
cific cell differentiation, function, expansion, and 
regeneration [214]. As mentioned above, 3D 
scaffold systems are an excellent model, not only 
for human liver development, but also for drug 
development and toxicity screenings. On the 
other hand, conventional 2D differentiation from 
pluripotency fails to recapitulate cell connections 
happening during organogenesis. Recently, the 
team headed by Professor Barbara Treutlein have 
used single-cell RNA sequencing to reconstruct 
hepatocyte-like lineage progression from pluri-
potency in 2D culture hepatic cells [215]. Then, 
they developed 3D liver bud organoids by recon-
stituting hepatic, stromal, and endothelial inter-
actions, and deconstruct diversity during liver 
bud development. They found that liver bud hep-
atoblasts diverge from the 2D lineage, and 
express epithelial migration signatures character-
istic of organ budding. In addition, they com-
pared 3D liver buds to fetal and adult human liver 
single-cell RNA sequencing data, and that their 
lab-grown liver buds had molecular and genetic 
signature profiles very similar to those found dur-
ing human liver cellular development.

The heart is the first functional organ in 
human body, which begins to beat 3 weeks after 
gestation pumping blood throughout the body via 
the circulatory system, supplying oxygen and 
nutrients to as well as extracting wastes from the 
rest of the organs. The heart is an organ with a 
complex hierarchical molecular, electrical, and 

mechanical organization thus in vitro models 
take into account.

Despite the effort in studying the anatomy and 
physiology of the human cardiovascular system, 
little is known about the normal development of 
human heart and dysregulation in disease at the 
molecular and cellular level. Until now, the most 
of our understanding of the cellular and molecu-
lar basis for cardiogenesis is based on studies of 
murine cardiovascular development. Recently, 
researchers at UC Berkeley and Gladstone 
Institutes have demonstrated that induced plurip-
otent stem cells can differentiate and self- 
organize into cardiac microchambers when 
spatially confined [216]. In this study, after 
2 weeks in culture the cells, which initiated in a 
2D surface environment, started taking on a 3D 
structure as a pulsating microchamber. 
Furthermore, the cells had self-organized based 
upon whether they were located along the perim-
eter or in the middle of the construct. The cells 
positioned along the edge experienced greater 
mechanical tension and stress compared to the 
center of the cellular mass. On the other hand, the 
cells in the center developed into cardiac muscle 
cells. Such spatial establishment was perceived 
as soon as the differentiation began. Hence, it is 
the first time that it has been demonstrated the 
cardiac spatial differentiation in vitro.

It is crucial to have an in-depth understanding 
of kidney development and regulatory pathways 
in order to achieve successful tissue engineering.

Kidney formation consists of two processes: 
nephrogenesis (where glomerulus and tubules are 
formed), followed by branching morphogenesis 
(which involves the formation of collection tubes, 
calyces, pelvis and ureter) [217]. Kidney develop-
ment starts with the formation of the metanephric 
kidney, derived from the metanephric mesen-
chyme (the source of the epithelial cells constitut-
ing the mature nephron) and the ureteric bud 
(originating the epithelial tissue present in the 
caudal portion of the Wolffian duct). The fully 
developed kidney is preceded by transient kidney- 
like structures which do not contribute to the fully 
functional organ such as the pro-nephros (which 
degenerates in mammals) and the mesonephros 
(which originates male reproductive organs).
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The ureteric bud formation starts at week five 
in human fetal gestation, induced by signals pro-
duced by the metanephric mesenchyme. 
Afterwards, the metanephric mesenchyme is 
invaded by the ureteric bud and ureteric bud 
branching follows. Simultaneously, cells that are 
in contact with the invading ureteric bud differen-
tiate from mesenchymal to epithelial cells, which 
become new nephrons. This process continues up 
to 20–22  weeks of gestation, when ureteric 
branch is completed and peripheral branch seg-
ments give rise to the collecting duct 
development.

From weeks 22 to 44 of gestation, the cortical 
and medullary areas of the kidney are well 
defined and become morphologically different. 
Finally, after birth, many medullary stromal cells 
suffer apoptosis and are replaced by developing 
loops of Henle. Additionally, stromal cells from 
nephron tissue differentiate into fibroblasts, 
lymphocyte- like cells and pericytes.

Kidney ECM is composed of heparin sulfate 
proteoglycans, hyaluronic acid, collagens, fibro-
nectins and laminins and ECM binds to growth 
factors like FGF (fibroblast growth factor), VEGF 
(vascular endothelial growth factor) and HGF 
(hepatic growth factor) to regulate their activity 
to support cell growth and differentiation [218, 
219].

Despite the fact that there are several well 
defined processes of kidney development, there is 
still much to be understood. These investigations 
are crucial for having a whole knowledge for kid-
ney origin in order to apply it in scientific studies. 
For example, Kaminski et  al. demonstrate the 
transformation of human and mouse fibroblasts 
into induced renal tubular epithelial cells (iRECs) 
using four transcriptional factors (Emx2, Hnf1b, 
Hnf4α and Pax8) [220]. The resultant cells have 
many morphological, transcriptional and func-
tional characteristics of fully differentiated kid-
ney epithelial cells making them available for 
nephrotoxic agent screening and for the study of 
hereditary tubular diseases and drug toxicity.

Abolbashari et  al. used primary adult renal 
cells isolated from kidney cortical tissue, with the 
in vitro expression of aquaporines 1, 2, 4, ezrin 
and podocin, showing the presence of cells from 

different renal segments. Most of them expressed 
aquaporin 1 and ezrin, indicative of proximal 
tubular cells, and other expressed aquaporin 2 
and 4, indicative of collecting duct cells. These 
cells were then seeded in kidney scaffolds, show-
ing promising results regarding to electrolyte and 
protein absorption, hydrolase activity and eryth-
ropoietin production [221].

Embryonic stem (ES) cells have also been 
used in kidney recellularization with promising 
results. Song et al., infused these cells via renal 
artery and ureter, showing their distribution into 
tubular and vascular structures, with cell multi-
plication [222]. Despite the fact that ES cells 
offer promising results in organ recellularization, 
their use is limited due to ethical questions and 
their teratogenic potential. For these reasons, 
other source of cells is employed, such as bone 
marrow mesenchymal stem cells (BM-MSCs), 
adipose tissue or amniotic fluid stem cells.

Taguchi et al. used human and mouse pluripo-
tent stem cells (PSCs) to derive metanephric 
mesenchyme. They demonstrate that these pro-
genitors are able to generate 3D nephric tubules 
and glomeruli with podocytes [223].

Lungs are tree-like structures divided into two 
anatomical zones, the conducting airways and 
alveoli.

The conducting airways begin with the tra-
chea, which split into two main bronchi, which 
further branch into smaller airways, the bronchi-
oles. These conducting airways are covered by 
three different epithelial cells (ciliated, globet 
and basal cells) surrounded by fibroblasts, 
smooth muscle, cartilage, vasculature and neu-
rons. The alveolar epithelium is composed of two 
epithelial types I (AETI) and II (AETII) [224].

Lungs and trachea arise from the anterior fore-
gut endoderm, the gut tube which will further 
originate the gastrointestinal tract and organs like 
lungs, thyroid, liver and pancreas. Lung develop-
ment starts arounds week 3 during human 
 gestation, with two forming buds that undergo a 
highly and regulated branching process to form 
the typical tree-like network of airways of the 
organ [225, 226], with an established proximal-
distal axis. This is followed by the canalicular 
and saccular stages, where alveoli are formed, in 
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preparation for respiration at birth. Finally, 
around the third trimester, full maturation of the 
alveolus follows, which persists for up to 3 years 
postnatally. During the stages of endodermal 
development, lung mesoderm interacts with lung 
endoderm, promoting branching and cell differ-
entiation into lung lineages [226].

Despite advances in the understanding of lung 
development and cellular components of its epi-
thelium the diversity and function of all mesen-
chymal cell types is still poorly understood. 
Additionally, researchers recently realize how 
important the vascular and neuronal networks are 
during lung development [227].

Most of the current models for lung develop-
ment and homeostasis are based on rodent 
models.

ALI (Air-Liquid-Interface) method developed 
in the 80’s supposed a great advancement in the 
field. This system consists on a cell monolayer of 
epithelial tissue grown on a porous filter that 
physically separates lung epithelial tissue from 
the underlying media, resulting in the achieving 
of proper apical-basal polarization. These sys-
tems are combined today with ROCK inhibitors, 
allowing long term cell culture.

3D environments are more recently used for 
primary adult human lung tissue culture. One 
example is the “bronchospheres”, where basal 
stem cells from human or mouse origin are 
embedded in a gel, allowing the formation of 
spherical colonies [228]. With these structures, 
the self-renewal capacity of stem cells and its 
capability for giving rise to proximal secretory 
and ciliated cells is known, and they are also used 
as screening platforms for the study of epithelial 
responses against different stimuli.

Ghaedi et al. reported an efficient differentia-
tion method to obtain definitive endoderm, ante-
rior foregut endoderm and a homogenous 
population of alveolar epithelial type I and II 
cells from human iPSCs, which were then seeded 
into rat or human lung scaffolds. They demon-
strated that iPSCs-derived AETII were able to 
proliferate and give rise to lung cell types [229].

Similarly, Dye et  al. seeded hPSC-derived 
lung spheroids in mice lung scaffolds, obtaining 

promising results like the formation of airway 
structures, the creation of many mesenchymal 
cell types and ciliated and secretory functional 
cells [230].

Recently, proximal (airway) and distal (alveo-
lar) models can be studied in vitro. However, full 
integration of both parts in a unique system is 
still challenging, due to intrinsic differences in 
each cell type such as the physical environment 
or ECM composition where different cell types 
develop [227].

23.8.3  Bioprinting

3D Bioprinting consists in the manufacture of 
artificial constructs. This process uses small 
amounts of biomaterials and cells that are pre-
cisely placed to the most miniscule detail of the 
organ [231]. This novel technology can be classi-
fied according to the final use in tissue and organ 
fabrication, or pharmaceutical investigation. 
Nowadays, several medicinal and therapeutic 
applications include the creation of personalized 
implants and prosthetics, drug discovery, drug 
delivery or dosage forms [232], as well as disease 
models and regenerative medicine.

The principal issue in organ failure is the large 
number of people waiting for a transplant, which 
results in long waiting lists due to the few number 
of available donors. 3D Bioprinting could resolve 
this problem using cells from the patient’s own 
organ to create a tissue substitute, decreasing the 
risk of rejection and eliminating the necessity of 
taking immunosuppressants for live [233]. 
Although, the main objective of tissue engineer-
ing and regenerative medicine is to alleviate the 
organ donor shortage, 3D Bioprinting possesses 
some advantages. For example, bioprinting pres-
ents a highly precise cell placing, concentration, 
and diameter of printed cells [234]. At present, 
3D Bioprinting is capable of producing complex 
organs with a high degree of cell density [235]. 
However, to achieve a correct vascularization is a 
big challenge. Currently, none of cardiovascular 
tissue have been bioprinted with entire functions 
similar to native tissue.
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In the field of the liver research, Organovo™ 
has performed 3D vascularized liver constructs 
containing stellate, endothelial, and hepatocyte 
cells with high cell viability and a solid zonation, 
mimicking the native hepatic lobules. Organovo™ 
currently offers testing services thanks to 
ExVive™ 3D Bioprinted Human Liver. This tissue 
can be used in the assessment of drug exposure 
for acute and chronic toxicity and metabolism 
studies for more than 28  days. At the present, 
Organovo is working on bioprinted organs for 
therapeutic use in humans with a therapeutic tis-
sue program. In this program, the company is 
emphasizing on developing clinical solutions for 
pediatric inborn errors of metabolism, and for 
acute on-chronic liver failure and it plans to 
develop and conclude its liver tissue design over 
the next 18 months. The preclinical studies into 
diseased animal models have shown good 
engraftment, vascularization, and functionality 
60 days after implantation. The company expects 
to file an Investigation New Drug application in 
2020.

Currently, there are two options for heart 
valve replacement surgery: using a mechanical 
heart valve or using a biological heart valve 
[236]. However, using the first option requires 
the patient to take an anti-coagulant for life and 
on the other hand, biological heart valve has a 
shorter lifespan which may require replacement 
[237]. Thus, the capacity to produce bioprinted 
native heart valves has a direct clinical impact. 
Sodian et al. have employed them for many sur-
gical procedures to correct everything from con-
genital heart defect [238] to aortic valve 
replacement operation [239–242] or patients with 
rare cardiac tumors [243]. Though the surgical 
models were non-living, it was a step towards 
bioprinting heart valves. In fact, Sodian and his 
colleagues were the first in using 3D printing to 
manufacture engineered heart valves [244, 245]. 
Recently, Jonathon Butcher’s lab have been using 
this novel technology to fabricate living alginate/
gelatin hydrogel valve conduits [246, 247]. When 
heart tissue suffers damage, the heart pumps 
blood inefficiently due to the loss of contractile 
muscle and the formation of stiff scar tissue [248] 
which can lead to ischemia [249]. One approach 

to repair the heart is to transplant cells at the site 
of the damaged tissue [250], however, one of the 
main limitations to survival of the implanted cells 
is the immediate availability of oxygen [251]. To 
solve that, Yeong et  al. used 3D bioprinting to 
produce porous structures, facilitating and ensur-
ing efficient mass transport trough the construc-
tion [252]. Others used this technology to create 
a construct containing human cardiac-derived 
cardiomyocyte progenitor cells and RGD- 
modified sodium alginate as the ECM [253]. 
Another approach is the use of bioinks generated 
from decellularized ECM. Cho’s group encapsu-
lated rat myoblasts cells into the heart-derived 
bioink and observed an increase in many cardiac- 
specific genes compared to collagen constructs 
[254]. Thus, 3D printing is a promising field, 
however, despite the major limitation is still the 
source of human cardiac cells.

The structure of a whole heart includes multi-
ple cell types, ECM, and multi-scale structures 
for pumping blood. Thus, a replication using this 
new technology involves a great effort. BioLife4D 
is working in to be the next great medical achieve-
ment within heart transplants. It is currently 
developing bioprinted hearts in combination with 
unspecialized adult induced pluripotent stem 
cells, which will convert into cardiac cells.

In the field of kidney research, Homan et al. 
reported a bioprinting method that creates 3D 
human renal proximal tubules [255]. The process 
starts with the printing of a renal proximal tubule 
with a a thermos degradable ink, which models 
the convoluted pathway of the proximal tubule. 
Afterwards, a layer of ECM is deposited on top 
of the printed structure. Then, the ink is removed, 
resulting in a proximal tubule mold, with a per-
fusable inlet and outlet. Finally, live human kid-
ney cells are pumped into the mold and adhere, 
forming a confluent epithelium. This system is 
placed on a chip and it is able to persist more than 
2 months in vitro. They describe a method that 
combines bioprinting, 3D culture and organ-on- 
a-chip concept, showing an epithelial  morphology 
and functionality comparable to those observed 
in the same cells cultured in 2D conditions.

Once more, Organovo had performed a 3D 
bioprinted kidney tissue (ExVive ™ Human 
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Kidney Tissue), which is a complete human bio-
printed tissue consisting on an apical layer of 
polarized primary renal proximal tubule epithe-
lial cells sustained by a collagen IV-rich interface 
of renal fibroblasts and endothelial cells. This 
architecture provides an extraordinary system for 
phenotypic and nephrotoxicity studies.

In contrast, very few works have been pub-
lished regarding lung 3D bioprinting. Horváth 
et al. reported the biofabrication of a human air- 
blood tissue barrier analogue to lung tissue. It 
consists on a two cell-layer model of endothelial 
cells printed in a matrigel ECM bioprinted layer. 
They achieved the creation of an automated and 
reproducible way to obtain thinner and homoge-
nous cell layers, resembling to the naturally 
occurred environment of the native tissue, where 
the epithelial cell layer is separated by a thin 
basement membrane [256].

23.9  Regulatory Landscape 
for Naturally-Derived 
Biomaterials

23.9.1  Regulatory Landscape

Development of a tissue-engineered product for 
clinical use can be challenging. Because of the 
novelty, complexity and technical specificity, it is 
essential to understand the regulations that guar-
antee the quality and safety of these novel prod-
ucts. For this goal, this section of the chapter will 
be focused on two regulatory agencies with simi-
lar objectives, but different systems of operation: 
The Food and Drug Administration (F. D. A.) and 
the European Medicines Agency (EMA).

23.9.1.1  Food and Drug 
Administration

In the US, the FDA’s Center for Biologics 
Evaluation and Research is responsible for ensur-
ing the safety, purity, potency, and effectiveness 
of many biologically derived products. The term 
“tissue engineered medical products,” (TEMP) 
has been defined in a standard document of the 
American Society for Testing and Materials, and 

this terminology has been included in the FDA- 
recognized consensus standards database [257].

TEMP can consist of a variety of different 
constituents (cells, scaffolds, device...) or any 
combination of these and the FDA classifies these 
products as combination products. Congress rec-
ognized the existence of combination products 
when it enacted the Safe Medical Device Act of 
1990, and it was defined in the 21 Code of Federal 
Regulation 1270/1271 Part C 210/211/820 [258, 
259].

A combination product’s primary mode of 
action (PMOA) establishes its regulatory and 
product development framework and determine 
which center will be responsible for a particular 
combination product [260]. The PMOA is such 
an important concept that the FDA published a 
docket in August 2005 entitled Definition of 
Primary Mode of Action of a Combination 
Product. The PMOA is defined as “the single 
mode of action of a combination product that 
provides the most important therapeutic effect of 
the combination product.

23.9.1.2  European Medicines Agency
In the European Union (EU), an Advanced 
Therapy Medicinal Products (ATMP) is defined 
as being a Somatic Cell Therapy Medicinal 
Product (SCTMP), a Tissue Engineered Product 
(TEP), a Gene Therapy Medicinal Product 
(GTMP) or a combined ATPM [261].

The Committee for Advanced Therapies 
(CAT) is a multidisciplinary committee and it 
was established by EMA to offer high-level 
expertise to assess the quality, safety and efficacy 
of ATMPs, so this committee is the responsible 
for reviewing applications for marketing authori-
zation for Advanced Therapy Medicinal Products 
[262]. In 2007, the European Parliament and 
Council of the European Union (EU) issued an 
amendment to Directive 2001/83/EC and 
Regulation No. 776/2004 to include regulatory 
provisions for ATMPs defined in Regulation EC 
No 1394/2007.

According to this regulation, when a product 
contains viable cells or tissues, the pharmacolog-
ical, immunological or metabolic action of those 
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cells or tissues shall be considered as the princi-
pal mode of action of the product. Therefore, a 
natural-derived biomaterial could be not the only 
actor in these fields. However, the biomaterial 
biocompatibility is still an essential requisite, and 
the new products should be subjected to the same 
regulatory rules as the others biomedical devices 
(Regulation EC No 1394/2007) [263].

In addition to the requirements laid down in 
Article 6 of Regulation No 726/2004 [264], the 
application for the authorization of an ATMP 
containing medical devices, biomaterials, scaf-
folds or matrices shall include a description of 
the physical characteristics and performance of 
the product. It should also include the description 
of the product design method, by the Annex 1 to 
Directive 2001/83/EC [265].

23.9.2  GMP Production

Control of clinical products manufacturing in 
both EU and the USA is exerted by the use of 
Good Manufacturing Practice (GMP) regulations 
and guidelines, to protect the patient from receiv-
ing poor quality, unsafe or products that vary 
from their specifications. Each regulatory body 
has the responsibility to apply the GMP require-
ments. The regulatory bodies are:

• The Food and Drug Administration in the 
USA

• The European Medicines Agency (EMEA) for 
centrally authorized products in Europe

• The National Regulatory Authorities within 
the various EU member states

GMP regulation includes Good Practice for 
Tissue and Cells and Good Engineering Practice 
(GEP) [266]. GMP facilities follow GMP guide-
lines promulged by each regulatory agency, with 
specialized facility designs and highly trained 
personnel to produce the first clinical prototype 
faithfully in a controlled and reproducible 
fashion.

The EU regulates by the publication of GMP 
directives and GMP Guidelines which are pre-
pared and published in one volume by the 

European Commission under the auspices of 
Directorate General Enterprise. The US control 
procedures are comparable to EU’s practices, 
whereby the GMP Regulations are published in 
the Code of Federal Regulations by various exec-
utive departments and agencies of Federal 
Government [267]. In the last years, FDA and 
EMA are making significant progress toward 
mutually recognizing each other’s GMP inspec-
tions. The result of this attempt is the creation of 
a joint pilot program, allowing more sites to be 
monitored and reducing unnecessary duplication 
through the implementation of the International 
Council for Harmonization (ICH) and relevant 
regulatory requirements [268].
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Abstract
In designing biomaterial for regenerative 
medicine or tissue engineering, there are a 
variety of issues to consider including bio-
compatibility, biochemical reactivity, and cel-
lular interaction etc. Mussel-inspired 
biomaterials have received much attention 
because of its appealing features including 
strong adhesiveness on moist surfaces, 
enhancement of cell adhesion, immobilization 
of bioactive molecules and its amenability to 
post-functionalization via catechol chemistry. 
In this review chapter, we give a brief intro-
duction on the basic principles of mussel- 
inspired polydopamine coating, catechol 
conjugation, and discuss how their features 
play a vital role in biomedical application. 
Special emphasis is placed on tissue engineer-
ing and regenerative applications. We aspire to 
give readers of this book a comprehensive 
insight into mussel-inspired biomaterials that 
can facilitate them make significant contribu-
tions in this promising field.

Keywords
Mussel-inspired · Polydopamine · Catechol 
conjugation · Tissue engineering · Biomedical 
application

24.1  Introduction

The mussel-inspired adhesive mechanism was first 
introduced by Waite et  al. in the 1980s [59]. 
Marine mussel is renowned for its capability of 
adhering to various kinds of substrates chemically 
and physically under moist condition [28]. The 
previous study demonstrated that this adhesion 
was due to Mytilus edlis foot protein (Mefp), 
which have the reactive catechol-containing com-
pound 3,4-dihydroxyphenyl-L-alanine (DOPA) 
and lysine, distributed at the interface between 
protein and substrates [54, 74]. The ortho-dihy-
droxyphenyl group of catechol, is responsible for 
the superior adhesiveness to a wide range of 
organic and inorganic surfaces [29, 30].

Inspired by this property, plenty of polydopa-
mine coating methods and modified polymers 
using chemicals with catechol functional groups 
were developed [38]. Dopamine can exhibit self- 
polymerization under alkaline conditions to form 
polydopamine layer on almost all types of organic 
and inorganic materials [29]. Examples include 
PDMS [44], PVA [3], PLGA [75] titanium oxide 
surface [61] and biomaterial scaffold [40, 57]. 
Another method is catechol conjugation onto 
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polymer backbones [49]. There are many devel-
oped materials for such approach, including 
PEG-catechol [31], PEI-catechol [50], chitosan- 
catechol [49], alginate-catechol [20, 72] and so 
on.

Polydopamine coating and catechol conjuga-
tion enable materials to attain desirable proper-
ties and the potential for secondary reaction. For 
instance, catechol conjugation is a simple method 
that enhances hydrophilicity or water solubility 
[23]. Catechol groups permit metal chelation [64] 
and metal-mediated crosslinking [54], and zwit-
terionicity of polydopamine provide more versa-
tile application [69]. Furthermore, catechol 
groups are partially oxidative, which become 
o-quinone groups that are able to react with 
amino and thiol groups, facilitating biomolecular 
adsorption and immobilizations [29, 58]. These 
characteristics are significant in biomaterial 
design especially in tissue engineering, because 
physiochemical interactions between substrates 
and cell would have impact on cellular functions 
such as spreading, migration, proliferation and 
differentiation [62].

In addition, with biomolecules containing 
thiol or amine groups and various secondary 
reactions, polydopamine and catechol conjugated 
derivatives provide novel alternatives for surface 
immobilization [13, 29]. Studies have reported 
versatile immobilization of biomolecules such as 
protein (H.-W. [10]), growth factor [45], peptide 
[9] and heparin [68]. This functionalization 
enables polydopamine coating and catechol con-
jugated derivatives to be utilized for different bio-
medical applications, such as tissue adhesive 
[50], antifouling [14], antibacterial activity [55], 
blood compatibility [68] and drug delivery [34]. 
The mussel-inspired chemistry brings a wide 
range of diversity to biomedical fields and have 
attracted much attention.

The aim of this review chapter is to outline the 
results of previous research in mussel-inspired 
biomaterials. In the first section, we will intro-
duce mussel-inspired adhesive property, coating 
mechanism and catechol derivatives’ reactivity, 
and the mechanism of better cell adhesion. In the 
next section, cellular interaction and application 
in tissue engineering will be emphasized. Finally, 

other kind biomedical application designed by 
novel immobilization of biomolecule will be 
discussed.

24.2  Principles and Features 
of Mussel-Inspired 
Polydopamine Coating 
and Catechol Conjugation

Previous studies have reported that mussel- 
inspired surface modification or catechol conju-
gation could improve the functionality of organic 
and inorganic surfaces and modify unfavorable 
properties. Here, we list the important features of 
polydopamine and catechol conjugation that 
makes mussel-inspired chemistry advantageous 
in many applications.

24.2.1  Attachment Mechanism

Mussel-inspired adhesion is superior due to its 
moisture-resistant adhesion and its applicability 
to organic and inorganic surface. In this part, we 
delve into the chemistry principle behind it, and 
why this kind of attachment can be multifunc-
tional. There are two major attachment mecha-
nisms: (i) Covalent binding and (ii) noncovalent 
binding.

When it comes to mechanisms for adhesion to 
organic surfaces, the majority relies on the reac-
tion where catechol groups in polydopamine or 
modified polymers were oxidative and then 
became o-quinone groups under alkaline condi-
tion. This reaction causes covalent binding to 
organic surfaces that contain amine and/ or thiol 
groups via aryl−aryl coupling or possibly via 
Michael-type addition and/or Schiff base reac-
tions (Fig. 24.1) [33, 38, 65].

On the other hand, noncovalent binding inter-
action such as metal coordination or chelating, 
hydrogen bonding, π–π stacking of the aromatic 
rings in the dopamine [1, 6, 60, 67] forces poly-
dopamine to form an effective layer over inor-
ganic or metal surfaces. Metal ions like Fe3+, 
Mn2+, Zn2+, and Cu2+, etc., can chelate with cate-
chol groups, and metal or metal oxide surfaces 
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are usually hydroxylated or hydrated under 
 ambient conditions. Coordination and chelate 
bonding contribute to the adhesion of polydopa-
mine on metal or metal oxide surfaces [67]. Take 
pervasively used TiO2 surface as an example. 
Messersmith et  al. reported that there was the 
reduction of hydroxyl groups in catechol groups 
on TiO2 surface (Fig. 24.2) [15]. Catechol groups 
reacted with the surface Ti–OH, leading to dehy-
dration and a charge-transfer complex [46, 67]. 
As a result, some research determined that adhe-
sion increase is roughly proportionally to the 
increase in dopamine content, however, o- quinone 
groups exhibit much lower adhesion to metal sur-
faces than parent catechol groups [53]. This fact 
also explains the attachment mechanism with 
metal surfaces. Another example is physical 
crosslinking vis ferric-ion. Studies demonstrated 
that the iron center crosslinks with three dopa-
mine residues as shown in Fig.  24.3 [54]. 
Moreover, hydrogen bonding also contributes 
another kind of adhesion. The interaction on 
mica with catechol is the hydrogen bonding of 
the catecholic OH groups to the oxygen atoms of 

the mica surface [42]. Nevertheless, since this 
has to compete with the surrounding water mol-
ecule, it is weaker than previous attachment 
mechanism.

The versatile adhesive properties enable poly-
dopamine and catechol conjugated polymers to 
serve as tissue adhesive, sealant, surface coating 
and immobilization of biomolecules. Therefore, 
with this foundation, we will further discuss the 
coating mechanisms, ideal features after coated 
onto material surfaces and how they are related to 
recent applications.

24.2.2  Coating Mechanism

Previous studies have reported that dopamine 
monomer can undergo self-polymerization under 
some alkaline condition. The solution oxidative 
method to produce polydopamine coating on dif-
ferent types of substrates is the most widely inves-
tigated. Among all coating methods, the most 
commonly used is dipping the materials into 
pH  8.5 Tris-HCl buffer at room temperature 

Fig. 24.1 Typical chemical reactions of catechol groups [65]

Fig. 24.2 The proposed 
mechanism of doapmine 
binding to TiO2 surfaces, 
resulting in the depletion 
of surface Ti–OH groups 
[15]
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(Fig. 24.4) [29, 32]. Aside from the reaction envi-
ronment, to successfully fabricate a polydopamine 
layer onto materials’ surface, the concentration of 
dopamine monomer must be higher than 2 mg/mL 
[38]. The thickness of the layer can be controlled 
by tuning the concentration and coating time. 
However, the maximum thickness of polydopa-
mine layer in a single reaction step is approxi-

mately 50  nm [4]. Higher concentration of the 
monomer or longer coating time does not increase 
the thickness of the layer. With the advantages of 
simple coating mechanism and applicability to 
wide range of substrates, polydopamine coating 
play a pivotal role in surface modification of bio-
materials such as membrane, scaffold and medical 
device for biomedical application.
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Fig. 24.3 (a) Proposed mussel adhesive ferric-ion crosslinking and (b) illustration of the proposed binding mechanism 
of dopamine to mica surfaces [67]

Fig. 24.4 Polymerization of dopamine at pH = 8.5 [41]
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24.3  Appealing Characteristics

After the discussion about the fabrication of 
polydopamine, the reason why this mussel- 
inspired coating is superior and widely used must 
be explained. In this section, the hydrophilicity, 
pH-sensitive charge and useful reactivity for 
post-functionalization will be discussed, includ-
ing their principle, application and related 
researches (Table 24.1).

24.3.1  Hydrochemistry

Hydrophilicity is desirable for biomaterials in 
biomedical application. Hydrophilic surfaces are 
favored for cell adhesion and this property can be 
used in tissue engineering compared to hydro-
phobic substrates [41]. When biomaterials are 
implanted into human body, it inevitably comes 
in contact with tissue fluid. The hydrophilicity of 
surface thus has important influence on cellular 
response [76]. As a result, to fabricate different 
kinds of biomaterials with preferred hydrophilic-
ity, many substrates are equipped with polydopa-
mine coating to change their initial 
hydrophobicity.

There are numerous related researches on the 
relation between hydrophilicity and the angle of 
water contact. For instance, Ku et  al. reported 
that by depositing polydopamine on PDMS, 
PTFE and silicone rubber, their water contact 
angle decreased by 39°, 49.8° and 35.6° respec-
tively [27]. In another study, Wang et al. showed 
surfaces coated with polydopamine, the water 
contact angle increased about 51° than before. 
The largely decreased contact angle represented 
that a better hydrophilic surface was obtained, 
which is beneficial for a biological response [76]. 
Ku et al. also deposited polydopamine coating on 
PCL nanofiber scaffold, and observed decreases 
in the water contact angle for about 76.9°. The 
polydopamine coating turned the PCL hydropho-
bicity into hydrophilicity [26].

According to these studies, we conclude that 
the polydopamine coating can indeed change the 
hydrochemistry of many types of materials. The 
hydrochemistry and hydration of polydopamine 
film has been investigated in a recent research of 
Zhang et al. where it was pointed out that there 
might be three types of hydration effects 
(Fig. 24.5): (i) Hydroxyl groups in polydopamine 
on the surface would attract water molecules to 
form hydrogen bonds with water molecules [71]. 

Table 24.1 Appealing characteristics of mussel-inspired coating

Appealing characteristics
Brief description Example

Hydrochemistry Make various substrates more hydrophilic by 
conjugating catechol groups which can form hydrogen 
bond in fluid.

1. Reduce water contact angle of 
various kinds of surface.
2. Improve hydrophilicity of 
biomaterials to improve cell 
adhesion and cellular response.

pH-switchable 
charge

This pH-sensitive charge enables polydopamine to 
exhibit reversible selectivity for both cations and 
anions.

1. pH < 4, polydopamine will 
become positively charged.
2. pH > 4, polydopamine will be 
negatively charged.

Reactivity of 
catechol groups

Under alkaline conditions, the catechol groups would 
be oxidized into the quinine groups, which can react 
with the nucleophilic amine groups via Schilf base 
reaction or Michael-type addition. As for thiol- 
containing molecules, they can react with quinone 
groups through Michael-type addition.

1. Amenable to design for various 
applications including 
immobilization of peptides, growth 
factors or other biomolecules.
2. Allow biomaterials attach to 
organic or inorganic surfaces via 
Schiff base reaction or Michael-type 
addition, metal coordination or 
chelating, hydrogen bonding.
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(ii) Some water molecules may be trapped into 
polydopamine film during the polymerization. 
(iii) Polydopamine film has a porous structure 
that the water molecules can penetrate or diffuse 
[5, 43]. In summary, the hydrophilicity and bio-
compatibility of polydopamine may serve as an 
ideal platform for cell adhesion or a water-based 
lubricant for tissue engineering. For example, the 
coating can reduce the contact stresses and fric-
tion to protect the biomaterials from wear and 
tear [73].

24.3.2  pH-Switchable Charge

Polydopamine and its monomer with amino 
groups and phenolic hydroxyl groups can 
undergo zwitterionicity. This pH-sensitive charge 
enables polydopamine to exhibit reversible selec-
tivity for both cations and anions [69]. The iso-
electric point is determined to be around pH 4. 
For pH value lower than 4, the amino groups will 
be protonated and polydopamine will become 
positively charged. On the other hand, for pH val-
ues higher than 4, polydopamine will be 
 negatively charged due to the deprotonation of 
the phenolic groups [37].

24.3.3  Reactivity 
and Post-functionalization

The mussel-inspired chemistry mainly relies on 
the reactivity of catechol groups or quinone 
groups after oxidation in polydopamine. In this 
section, we will discuss the chemical reactivity 
and the secondary reactions after polymerization 
or catechol conjugation. The post- 
functionalization is amenable to design for vari-
ous applications. For instance, biomolecules can 
be immobilized onto polydopamine-coated sub-
strates or catechol-conjugated polymers. Another 
example is that catechol-conjugated polymers 
can adhere to almost all types material surfaces 
via catechol chemistry. We will briefly introduce 
the mechanism and some related researches.

First, the most widely investigated reactions 
are polydopamine that reacts with the amine and/
or thiol containing molecules. Under alkaline 
conditions, the catechol groups would be oxi-
dized into the quinone groups, which can react 
with the nucleophilic amine groups via Schiff 
base reaction or Michael-type addition. As for 
thiol-containing molecules, these nucleophiles 
are most likely to react with quinone groups 
through Michael addition reaction [29]. There are 

Fig. 24.5 The hydration of polydopamine thin films: (a) surface hydration, (b) bulk hydration, and (c) diffusion of 
water into the nanopores of polydopamine films [73]
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several researches that utilize this mechanism to 
immobilize biomolecules. Lee et al. developed a 
polydopamine-coated poly(lactide-co- 
caprolactone) substrate to immobilize a cell 
adhesive peptide, RGD, and an angiogenic 
growth factor, bFGF (Fig. 24.6). With the immo-
bilization of these biomolecules, better cell adhe-
sion, proliferation and differentiation can be 
achieved, and these biomaterial may serve as 
endothelial vascular graft materials [36].

Secondly, catechol conjugated methods also 
have versatile applications. Lee et al. reported a 
non-fouling surface fabricated by simply 
immersing substrates into an aqueous solution of 
catechol- grafted poly(ethylene) glycol. In con-
trast to PEG derivatives’ limited applicability, 
this catechol-g-PEG can apply PEGylation on 
various substrates [31]. Kim et  al. developed a 
catechol-conjugated chitosan to enhance the 
mucoadhesive property. The catechol groups in 
hydrocaffeic could be easily conjugated onto 
chitosan via EDC reaction mechanism, and can 
form covalent bonding with amines and thiols in 
mucin [22].

In the following sections, we will discuss how 
polydopamine or catechol groups interact with 
cell. Furthermore, we select some influential 

mussel-inspired studies, focusing on tissue engi-
neering and other biomedical application.

24.4  Cellular Interaction 
and Application in Tissue 
Engineering

Many patients suffer from damage or loss of 
organs/tissue caused by disease or accident. With 
advanced understanding in cellular biology and 
development of biomaterials, many researchers 
have delved into the study of tissue engineering 
to realize the possibility of replacing damaged 
human organs with artificial organs and without 
the concern of immune response [11]. Amongst 
various biomaterial designs, mussel-inspired bio-
materials for tissue engineering and regenerative 
medicine have attracted much attention due to its 
advantages such as ideal cell adhesion and immo-
bilization of bioactive molecules. We will discuss 
tissue engineering researches in bone and vascu-
lar tissue regeneration, and some researches 
about wound healing and cell pattern will also be 
introduced. Finally, the reason why polydopa-
mine or catechol-conjugated materials have ideal 
cell adhesion will be explained as followed.

Fig. 24.6 Schematic diagram of polydopamine-mediated immobilization of bioactive molecules [36]
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24.4.1  Bone Tissue Regeneration 
and Mineralization

In a world with ever advancing medical technol-
ogy and healthcare quality, problems associated 
with aging population have become an important 
issue. For example, due to injuries there will be 
more people in need of bone tissue repair [63]. In 
this part, we discuss researches related to bone 
regeneration or remineralization, and how 
mussel- inspired biomaterials are applied in this 
field.

First, we list some studies that directly utilize 
properties of polydopamine without immobiliza-
tion of biomolecules. Rim et al. fabricated poly(l- 
lactide) electrospun fibers coated with 
polydopamine. The fibrous structure mimicked 
the structure of natural bones’ extracellular 
matrix, and the polydopamine coating not only 
supported the proliferation of human mesenchy-
mal stem cells (hMSCs), but in contrast with the 
unmodified poly(l-lactide) fibers, also enhanced 
osteogenic differentiation and calcium mineral-
ization of hMSCs. They concluded that this 
polydopamine- coated biodegradable fiber is 
promising for regulating stem cell functions for 
bone tissue regeneration [47].

Zhou et al. coated polydopamine onto demin-
eralized dentin surface to investigate whether 
polydopamine can help the latter undergo remin-
eralization. They found that polydopamine could 
promote remineralization and since catechol-
amine moieties in polydopamine could bond to 
Ca2+, they facilitate the formation of hydroxyapa-
tite crystals which occupies the surface of den-
tin’s hole. This result demonstrates that coating 
polydopamine on dentin tissue could be a poten-
tially promising technique for tooth remineraliza-
tion [78] (Table 24.2).

Zhang et  al. prepared dopamine-conjugated 
alginate beads and fibers to evaluate the influence 
of polydopamine on cell viability of bone mar-
row stem cells. The result showed that the Ca2+ 
crosslinked dopamine-alginate gel is ideal for 
cell proliferation and osteogenic differentiation 
in vitro via PCR and alkaline phosphatase activ-
ity assays (Fig. 24.7) [72].

Ma et al. fabricated a 3D-printed bioceramic 
porous scaffold coated with self-assembled 
calcium- phosphate/polydopamine layer, which 
stimulates bone regeneration in  vivo. This is a 
reflection of the characteristics of surface rough-
ness, hydrophilicity, hydroxyl and amino groups 
provided by polydopamine that enhances cell 
adhesion and proliferation of rabbit bone mesen-
chymal stem cells. Furthermore, catechol groups 
can promote apatite nucleation and mineraliza-
tion of surfaces, which enhances the differentia-
tion of cells (Fig. 24.8) [40].

Immobilization of bioactive molecules is also 
a commonly used method in mussel-inspired 
chemistry. Chien and Tsai designed a one-pot 
surface modified method that mixed RGD- 
conjugated poly(ethyleneimine), hydroxyapatite 
(HA) and bone morphogenic protein-2 (BMP-2) 
with dopamine solution under alkaline condition. 
By the facile method, the immobilization of RGD 
peptides, HA and BMP-2 could be easily 
achieved. RGD peptides could enhance the adhe-
sion and proliferation of human bone marrow 
stem cells. HA was able to facilitate osteodiffer-
entiation of cells, and osteoinductive BMP-2 that 
induces osteogenesis on modified titanium sur-
face with polydopamine (Fig. 24.9). This result 
demonstrated that this surface modification 
method has a promising potential for the applica-
tion of osteointegrative orthopedic and dental 
implants [9].

Numerous recent researches focus on porous or 
fibrous scaffold with immobilization of biomole-
cules via catechol chemistry. Ko et al. fabricated a 
polydopamine-coated poly(lactic-co-glycolic acid) 
(PLGA) scaffold with the immobilization of BMP-
2. This scaffold promoted the osteogenic differen-
tiation and mineralization of human adipose-derived 
stem cells (hASCs) in  vitro and in  vivo. The 
implantation of scaffold with hASCs enhanced the 
in  vivo bone formation in critical-sized calvarial 
bone defects (Fig. 24.10) [24]. Zhao et al. devel-
oped BMP-2 immobilized PLGA/hydroxyapatite 
fibrous scaffold via polydopamine coating that 
enhanced osteogenic differentiation [75].

As another example, Lee et  al. fabricated a 
3D-printed polycaprolactone (PCL) scaffold 
immobilizing rhBMP-2 via polydopamine coat-
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Table 24.2 Application in tissue engineering of mussel-inspired biomaterials

Application in tissue engineering

Field
Research method and 
feature Cell type Result References

Bone tissue 
regeneration and 
mineralization

Coating polydopamine 
onto the PLA fibers with 
fibrous structure

hMSC Supported the proliferation and also 
enhanced osteogenic differentiation 
and calcium mineralization of 
hMSCs in contrast to the unmodified 
fibers.

[47]

Coating polydopamine 
onto demineralized dentin 
surface to investigate of 
whether polydopamine can 
help undergo 
remineralization

N/A Polydopamine could promote 
remineralization since catecholamine 
moieties in polydopamine could 
bond to Ca2+ that facilitate the 
formation of hydroxyapatite crystals 
which occupies the surface of 
dentin’s hole.

[78]

Dopamine-coated alginate 
beads and fibers

BMSC The Ca2+ crosslinked dopamine- 
alginate gel is ideal for cell 
proliferation and osteogenic 
differentiation in vitro.

[72]

3D-printed bioceramic 
porous scaffold coated 
with self-assembled 
calcium-phosphate/
polydopamine layer

rBMSC The characteristics of surface 
roughness, hydrophilicity, hydroxyl 
and amino groups provided by 
polydopamine that enhances cell 
adhesion and proliferation of 
rBMSC. Catechol groups can 
promote apatite nucleation and 
mineralization of surfaces, which 
enhances the differentiation of cells.

[40]

Immobilizing RGD 
peptides, HAp and BMP-2 
with dopamine solution 
under alkaline condition 
via a one-pot surface 
modified method

hBMSC RGD peptides could enhance the 
adhesion and proliferation of 
hBMSC. HA could facilitate 
osteodifferentiation of cells, and 
osteoinductive BMP-2 induces 
osteogenesis on modified titanium 
surface with polydopamine.

[9]

Fabricated a PLGA 
scaffold with the 
immobilization of BMP-2 
via polydopamine coating

hASC This scaffold promoted the 
osteogenic differentiation and 
mineralization of hASCs in vitro and 
in vivo and enhanced the in vivo 
bone formation in critical-sized 
calvarial bone defects.

[24]

Developed BMP-2 
immobilized PLGA/
hydroxyapatite fibrous 
scaffold via polydopamine 
coating

MC3T3-E1 BMP-2-immobilized scaffold greatly 
promoted the attachment and 
proliferation of MC3T3-E1 cells. 
Furthermore, the ALP activity, 
mRNA expression of osteosis-related 
genes and calcium deposition in 
MC3T3-E1 cells cultured on 
BMP-2- immobilized scaffold were 
significantly increased.

[75]

(continued)
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Table 24.2 (continued)

Application in tissue engineering

Field
Research method and 
feature Cell type Result References
Fabricated a 3D-printed 
PCL scaffold immobilizing 
ABMP-2 via 
polydopamine coating

rMSC The microporous structure and 
immobilized ABMP-2 of this 3D 
scaffold not only promoted cell 
proliferation but also released 
ABMP-2 in a controlled and 
sustained manner.

[35]

Vascular 
regeneration

Prepared a polydopamine- 
coated PCL nanofiber 
scaffold

HUVEC The coating facilitates cell 
attachment and viability of HUVECs 
due to adsorption and immobilization 
of serum protein on polydopamine 
layer.

[26]

Fabricated a 
polydopamine-coated 
PLCL film, and then 
RGD- containing peptide 
and bFGF were 
subsequently immobilized 
by catechol chemistry

HUVEC Immobilized RGD peptide 
significantly affected cell migration 
of HUVEC in wound healing assay 
model. Moreover, adhesion, 
proliferation and expression of 
endothelialization markers were 
highly stimulated by immobilized 
bFGF.

[36]

Applied polydopamine 
coating on stainless steel 
(SS) stent

HUVEC/
HUASMC

The polydopamine-coated stent not 
only enhanced HUVECs attachment, 
proliferation and migration, but 
inhibited the proliferation of 
HUASMCs as well.

[66]

Polydopamine-coated 
316L SS stents were 
thermally treated at 50, 
100 and 150 °C 
respectively.

EC/SMC Th150, rich in quinone, was 
beneficial to immobilize serum 
protein that enhanced EC adhesion 
and proliferation. However, Th100 
and Th150 had weaker inhibition of 
SMC proliferation because of less 
catechol groups.

[39]

Wound healing 
and skin 
regeneration

Prepared a bFGF 
immobilized PLGA fibrous 
scaffold via polydopamine 
coating.

HDF Besides the enhancement of cell 
adhesion and proliferation due to 
polydopamine, the bFGF could 
promote many cell proliferation, such 
as dermal fibroblasts, keratinocytes, 
and endothelial cells, and the scaffold 
accelerated wound healing 
epithelialization and promotes skin 
regeneration in vivo.

[57]

Fabricated a nanofibrous 
PCL mat blended with 
mussel adhesive protein 
(MAP)

Human 
keratinocyte 
cell

The materials showed accelerated 
skin remodeling in a rat wound- 
healing model because MAP can 
provide keratinocyte with a 
biocompatible environment for cell 
growth and capture inherent growth 
factors.

[21]

(continued)
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ing. The microporous structure and immobilized 
rhBMP-2 of this 3D scaffold not only promoted 
cell proliferation but also released rhBMP-2 in a 
controlled and sustained manner that is ideal for a 
bone-tissue regenerative scaffold (Fig. 24.11) [35].

24.4.2  Vascular Regeneration

Malfunction in coronary arteries leads to cardio-
vascular diseases, one of leading causes of death 
worldwide. The development of vascular graft 

materials is one of the important strategies to 
address this problem. However, endothelializa-
tion on vascular grafts is a complex process that 
involves adhesion, migration, proliferation and 
differentiation of endothelial cells (EC) [66]. 
Furthermore, there are complications such as 
restenosis due to the thrombosis formation and 
smooth muscle cell (SMC) proliferation [77]. As 
a result, in this section, we will discuss how pre-
vious studies utilized mussel-inspired chemistry 
to support EC proliferation and inhibit SMC for 
vascular regeneration.

Table 24.2 (continued)

Application in tissue engineering

Field
Research method and 
feature Cell type Result References
A MAP glue containing 
collagen-binding peptides 
for regenerative healing 
and anti-scarring of dermal

NIH3T3 This MAP adhesive hydrogel can 
accelerate initial wound healing 
without inducing chronic 
inflammation by initially providing 
compatible environments for 
reepithelialization, 
neovascularization, and rapid 
collagen synthesis.

[19]

Cell pattern Prepared a microchanneled 
silicon wafer by molding 
PDMS on surface, and then 
fabricated polydopamine 
micropattern

HT1080/
MC3T3-E1/
NIH-3T3

Different mammalian cells 
successfully adhered to 
polydopamine-coated pattern and 
aligned well with the direction.

[25]

Polydopamine patches are 
microcontact printed onto 
PVA

HeLa/
HUVEC

Providing favorable environment for 
cell growth. Moreover, polydopamine 
can also be deposited onto PVA in 
situ during cell culturing.

[3]

Fabricated a 
polydopamine-coated 
supeAydrophilic PAMPS 
brushes

Erythrocyte/
platelet

Polydopamine could facilitate protein 
adsorption which contributed to cell 
adhesion and superhydrophilic 
PAMPS brushes were unfavorable for 
cell and protein adhesion. Both 
effects made cell pattern apparently 
observable.

[17]

Microcontact printing to 
coat polydopamine pattern 
on various substrates for 
different applications

L929 Polydopamine-coated polystyrene 
could support L929 cells’ adhesion 
only on polydopamine pattern. 
PEG-NH2 and PEG- SH grafted onto 
polydopamine-coated TCPS 
successfully restrained cell 
attachments. Protein immobilization 
also appeared along with imprinted 
polydopamine patterns. 
Polydopamine pattern also exhibited 
immobilization of gold nanoparticle 
and the reduction of silver ions on 
glass slides.

[10]
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Fig. 24.7 (a) ALP staining of BMSC grown in alginate 
and alginate-dopamine fiber after 14 days of osteogenic 

culture. (b) ALP activity of BMSC grown in alginate and 
alginate-dopamine fiber at day 7 and 14 of osteogenic cul-
ture. (n = 3), *means p < 0.05

Fig. 24.8 M represents 
implanted scaffolds 
material. B represents 
newly formed bone. 
Scaffolds significantly 
enhanced the in vivo 
new bone formation as 
compared to pure BC 
scaffolds due to the 
formation of mussel- 
inspired nanostructure. 
The scale bar is 100 mm 
(*** means p < 0.001) 
[40]

Fig. 24.9 Illustration of dopamine-assisted immobilization of PEI-g-RGD, hydroxyapatite (HA) nanoparticles, and 
rhBMP-2 on a titanium substrate [9]

M. Lu and J. Yu



463

Fig. 24.10 Schematic illustration of polydopamine-assisted immobilization of BMP-2 peptides on PLGA scaffolds for 
osteogenic differentiation and bone formation of hASDCs [24]

Fig. 24.11 Illustration of hybrid 3D porous scaffold [35]
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Before we present the studies related to vascu-
lar regeneration, we should discuss the reason 
why SMC needs to be inhibited and how 
 polydopamine can serve that function. Previous 
studies indicate that by inhibiting the prolifera-
tion of SMC in the vessel wall in response to the 
acute vessel wall injury of angioplasty, one can 
efficiently reduce the possibility of in-stent reste-
nosis [66]. The antioxidant property of reactive 
phenolic hydroxyl groups in polydopamine is the 
reason for its inhibition of SMC.  Although the 
mechanism has not been elucidated, several stud-
ies have demonstrated that natural polyphenols, 
inhibit proliferation and migration of both SMC 
and EC, and such inhibitory effect on SMC was 
much stronger than that on EC [12]. The polydo-
pamine coating could promote EC attachment 
and proliferation, and inhibit SMC growth that 
undergoes the vascular cell selectivity 
(Fig. 24.12).

There are some researches of using polydopa-
mine coating or immobilization of bioactive mol-
ecules to enhance endothelial cell for vascular 
tissue engineering. Ku and Park prepared a 
polydopamine- coated PCL nanofiber scaffold, 

showing that the coating can facilitate cell attach-
ment, and due to adsorption and immobilization 
of serum protein on polydopamine layer, the via-
bility of human umbilical vein endothelial cells 
(HUVECs) [26]. Lee et  al. fabricated a 
polydopamine- coated poly(lactic acid-co-3- 
caprolactone) (PLCL) film, and then RGD- 
containing peptide and basic fibroblast growth 
factor (bFGF) were subsequently immobilized by 
catechol chemistry. They found that immobilized 
RGD peptide significantly affected cell migration 
of HUVEC compared with bFGF in wound heal-
ing assay model. On the other hand, adhesion, 
proliferation and expression of endothelialization 
markers were highly stimulated by immobilized 
bFGF instead of RGD peptide [36].

Mussel-inspired designs for enhancement of 
EC and inhibition of SMC also have been 
reported. Yang et al. applied polydopamine coat-
ing on stainless steel (SS) stent, and then deter-
mined the growth behavior of HUVEC and 
human umbilical artery smooth muscle cell 
(HUASMC) cultured on materials. The 
polydopamine- coated stent not only showed 
enhancement of HUVEC attachment, prolifera-

Fig. 24.12 Schematic illustration of the proposed mechanism of polydopamine selectively modulating endothelial cell 
and smooth muscle cell behavior [12]
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tion and migration, but inhibited the proliferation 
of HUASMCs as well. The result revealed that 
polydopamine coating causes 49% and 63% 
lower attachment on polydopamine-coated stent 
than on unmodified SS after 1 and 3 days’ culture 
respectively. This advantage of polydopamine 
coating could address the issues associated with 
re-endothelialization and restenosis, and improve 
the viability of the SS stent as vascular devices 
[66].

Luo et al. presented another interesting study, 
where polydopamine-coated 316L SS stents were 
thermally treated at 50, 100 and 150 °C respec-
tively (Fig.  24.13) (Th50, Th100 and Th150). 
Due to the thermal treatment in the air, the cate-
chol groups in polydopamine would be oxidative 
and become quinone groups. The result shows 
that Th150, rich in quinone, was beneficial to 
adsorb or immobilize serum protein that enhanced 
EC adhesion and proliferation. Furthermore, 
being poor in amino, Th150 could maintain the 
natural conformation of fibrinogen, which 
thereby inhibited platelet adhesion and activation 
that provided hemocompatibility. However, the 
result also revealed that the Th100 and Th150 
had weaker inhibition of SMC proliferation than 
Th50, which could be explained by the reduced 

catechol groups. This fact could further prove 
that the SMCs’ behavior might be strongly asso-
ciated with the surface catechol content. In brief, 
a simple thermal oxidation of polydopamine 
modified SS stent demonstrated hemocompati-
bility and ideal EC proliferation and migration. 
In addition, a polydopamine surface that could 
effectively inhibit SMC proliferation depending 
on the surface catechol content [39].

24.4.3  Wound Healing and Skin 
Regeneration

Human body is covered by skin which serves as a 
protection against outside pathogens. Wound 
caused by trauma, burn or diabetes should be 
treated properly to facilitate the healing process 
and prevent infection or unfavorable scar. 
Therefore, researches for skin regenerative and 
wound healing biomaterials have been wide 
ranging, including mussel-inspired one. Sun 
et  al. prepared a bFGF immobilized PLGA 
fibrous scaffold via polydopamine coating. The 
polydopamine could be coated onto various sub-
strates including metal, organic and inorganic 
ones, and immobilize biomolecules like 

Fig. 24.13 Scheme of 316L SS coated with polydopamine and the different chemical components and possible effect 
of polydopamine after thermal treatment [39]
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bFGF. Aside from the enhancement of cell adhe-
sion and proliferation of polydopamine, the 
bFGF could promote many cell proliferation, 
such as dermal fibroblasts, keratinocytes, and 
endothelial cells due to its mitogenic and angio-
genic characteristics. In vivo results demon-
strated that this bFGF-grafted scaffold have faster 
healing rate, accelerated epithelialization and 
promotes skin regeneration [57].

Mussel adhesive protein (MAP) possess desir-
able characteristics such as strong adhesion under 
moist condition, low immunogenicity in the 
human body and biodegradability [28]. Moreover, 
MAPs can be modified and/or produced via 
recombinant DNA technology and bacterial 
expression systems, such that MAPs can have 
wider applications [7]. Kim et  al. fabricated a 
nanofibrous PCL mat blended with MAP that 
showed accelerated skin remodeling in a rat 
wound-healing model (Fig.  24.14). The result 
might stem from the fact that MAP can provide 
keratinocyte with a biocompatible environment 
for cell growth and capture inherent growth fac-
tors. The scaffold was expected to be applied in 
wound healing or other kinds of tissue regenera-
tion [21].

Scar formation is an ongoing topic in clinical 
research due to its complicated healing mecha-
nism. Jeon et al. developed a MAP glue contain-
ing collagen-binding peptides for regenerative 

healing and anti-scarring of dermal injury. MAP 
not only has ideal water-resistant adhesion and 
biocompatibility but can also stimulate adhesion 
of type I collagen via hydrogen bonding and elec-
trostatic interactions [18]. This MAP adhesive 
hydrogel can accelerate initial wound healing 
without inducing chronic inflammation by ini-
tially providing highly compatible environments 
for re-epithelialization, neovascularization, and 
rapid collagen synthesis. By fusing collagen- 
binding peptide, the glue can prevent scar forma-
tion by controlling collagen fibril growth, 
tissue-specific reassembly, and by down- 
regulating the expression of fibrogenic factors 
during the remodeling phase. Furthermore, the 
result in a rat skin excisional model showed that 
the collagen-targeting glue successfully acceler-
ated initial wound regeneration (Fig. 24.15) [19].

24.4.4  Cell Pattern

Spatial control and organization of living cells on 
materials, or known as cell patterning, play a vital 
role in certain applications such as biochips, tis-
sue engineering scaffolds and so on [8]. The basic 
principle of cell patterning is to fabricate adhesive 
and nonadhesive regions on substrates to spatially 
arrange biomolecules [48]. There are many 
researches utilizing the ideal cell adhesion via 

Fig. 24.14 Schematic illustration of suggested mechanisms for enhanced in vivo rat skin regeneration where MAP- 
blended nanofibrous mats were used [21]
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mussel-inspired chemistry. When coating polydo-
pamine, which can enhance cell adhesion on cell-
repellent materials, one can achieve living cells 
array or pattern. For example, Ku et al. first pre-
pared a microchanneled silicon wafer by molding 
poly-(dimethylsiloxane) (PDMS) on surface, and 
then fabricated polydopamine micropattern by 
immersing the materials in dopamine solution. 
Different mammalian cells, including fibrosar-
coma HT1080, mouse preosteoblast MC3T3-E1 
and mouse fibroblast NIH-3T3, successfully 
adhered to polydopamine- coated pattern and 
aligned well with the direction [25]. Beckwith 
and Sikorski coated polydopamine onto poly 
(vinyl alcohol) (PVA) hydrogels to turn cell-
repellent property of PVA hydrogel into cell-
adhesive one. In their study, polydopamine 
patches are microcontact printed onto PVA, pro-
viding favorable environment for cell growth. 
Moreover, polydopamine can also be deposited 
onto PVA in situ during cell culturing. The combi-
nation of cell patterning by microcontact printing 
of polydopamine with in situ polydopamine depo-
sition make patterned cell (similar or dissimilar 
types) co-cultures successful (Fig. 24.16) [3].

Coating polydopamine onto antifouling poly-
mers has also been investigated. Hou et al. fabri-

cated a polydopamine-coated superhydrophilic 
antifouling polymers, poly (2-acryl-amido- 2-
methylpropane sulfonic acid) (PAMPS), brushes. 
Polydopamine could facilitate protein adsorption 
which contributed to cell adhesion and 
 superhydrophilic PAMPS brushes were unfavor-
able for cell and protein adhesion. Both effect 
made cell pattern apparently observable on 
polydopamine- coated PAMPS.  Besides, 
 polydopamine pattern could also immobilize pro-
tein to form protein array [17]. Polydopamine 
pattern can be utilized in versatile applications 
such as cell pattern, protein adsorption, surface 
grafting and metal deposition. Chien et  al. uti-
lized microcontact printing to coat polydopamine 
pattern on various substrates for different appli-
cations (Fig. 24.17). Polydopamine-coated poly-
styrene could support L929 cell adhesion only on 
polydopamine pattern. PEG-NH2 and PEG-SH 
grafted onto polydopamine- coated TCPS via 
reaction with quinone groups, successfully 
restrain cell attachments. Protein immobilization 
also appeared along with imprinted polydopa-
mine patterns on PEG substrates. Polydopamine 
pattern also exhibited immobilization of gold 
nanoparticle and the reduction of silver ions on 
glass slides [10].

Fig. 24.15 Schematic illustration of proposed mechanisms for enhanced in vivo scarless skin regeneration where a 
natural healing-inspired MAP-based collagen-targeting surgical glue was used [19]
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Fig. 24.17 Schematic illustration of micropatterned substrates based on polydopamine via microcontact printing and 
secondary reactions [10]

Fig. 24.16 (a) initial cell-repellent PVA surface. (b) 
Fabrication of polydopamine patterns on PVA surfaces. 
(c) The co-culture process starts with patterned cells, then 

polydopamine is deposited in situ on PVA surface that 
provided new cell adhesive areas for second type of cell 
[3]
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24.4.5  Protein Adsorption and Cell 
Adhesion

After discussing a variety of dopamine-inspired 
biomaterials, which have good performance in 
cell attachment and pattern, we must fully under-
stand and explain the mechanisms that control 
cell adhesion on biomaterial surfaces. There are 
two main mechanism: (i) Functional groups on 
substrates’ surface, via electrostatic interactions 
or van der Waals force, exhibit weak bonding 
with glycoproteins and proteoglycans in the cell 
membrane. (ii) Protein adsorption, which forms a 
thin layer of cell-adhesive protein domains on 
substrates’ surfaces which binds to transmem-
brane integrin receptors. The first mechanism is 
termed nonspecific cell adhesion, and the second 
one specific cell adhesion [26, 41]).

From previous studies, we know that after oxi-
dation, polydopamine coating with catechol 
groups and quinone groups can exhibit pH- 
switchable charge and hydrogen bonding, that 
may contribute the nonspecific cell adhesion [67, 
69]. On the other hand, the reactive o-quinone 
groups are capable to covalently bond with 
nucleophile groups such as amino and thiol 
groups which are largely present in proteins [33]. 
Therefore, proteins, such as serum protein, can be 
adsorbed or immobilized onto polydopamine sur-
face that support cell adhesion. This fact lead to 
the specific cell adhesion mentioned above [26].

Furthermore, there are research indicating that 
polydopamine can minimize the denaturation of 
serum proteins by adjusting the surface energy of 
substrates’ surface, which results in better cell 
adhesion [27]. Equipped with all these mecha-
nism, polydopamine-coated and catechol- 
conjugated materials are regarded as ideal 
biomaterials for cell adhesion (Fig. 24.18.).

24.5  Mussel-Inspired Tissue 
Adhesives

Traditional treatment of wound closure and heal-
ing such as sutures has some disadvantageous 
and is recognized ineffective today. Sutures often 
cause additional damage and inflammation, and 

cannot arrest body fluid of wounds [2, 56]. Tissue 
adhesives attract much attention nowadays as 
appealing alternatives to sutures and staples, 
since they can be applied more quickly, causes 
less pain and may require less equipment in cer-
tain circumstances. On the other hand, two main 
factors are now affecting the modern practice of 
surgery. One is cost containment and the other is 
aging population. Because of aging population 
and its increase need of medical care and surgery, 
the accumulated medical cost has become a 
 serious issue. In order to overcome these chal-
lenges, the techniques and materials utilized in 
surgery should be improved. One solution is the 
effective use of hemostats, sealants, and adhe-
sives. These materials are useful in surgical pro-
cedure and are crucial components of the surgical 
toolbox. The modern-day hemostat, sealant, and 
adhesive, nevertheless, are still not effective 
enough. Continued research and development is 
still required to provide new materials for regen-
erative medicine [56].

For the purposes of resolving the challenges, 
new biomaterials and tissue adhesives are neces-
sary. However, the feasibility of tissue adhesive 
in the moist environment of the human body is a 
challenge [52]. The wet-resistant adhesive prop-
erty of mussel protein inspires scientists to devel-
oped tissue adhesives which are applicable in wet 
conditions like MAP glue [19]. There are a wide 
range of mussel-inspired synthetic biomaterials 
reported. Ryu et  al. fabricated an in-situ cross-

Fig. 24.18 Proposed mechanism of serum protein- 
mediated cell adhesion on polydopamine layer [27]
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linkable catechol-conjugated chitosan hydrogel 
with thiol-terminated Pluronic F-127 via 
Michael-type addition. The thermosensitive 
hydrogel is prepared at 4 °C and used at 37 °C 
such that injection and in-situ gelation possible. 
It showed robust tissue adhesion and mechanical 
property in vitro and in vivo, and reducing blood 
loss from a bleeding rat liver as well [51]. Zhang 
et  al. first synthesized a hyperbranched poly(b- 
amino ester) polymer termed poly(dopamine-co- 
acrylate), and then investigated the adhesive 
strength of various crosslinking methods includ-
ing NaIO4, FeCl3, HRP/H2O2 and fibrinogen. 
This adhesive had an approximately 4-fold 
increase in wet adhesion strength compared to 
TISSEEL® and fibrin sealant. The versatile cat-

echol reactivity enabled this tissue adhesive pre-
cursor to be crosslinked via different mechanism 
and apply on a variety of substrates including 
organic and inorganic ones (Fig. 24.19) [70].

Recent researcher developed a more ideal 
mussel-inspired tissue adhesive that addresses 
many ongoing challenges. Inspired by the adhe-
sion mechanism of the mussels that maintain a 
high concentration of catechol groups in the con-
fined nanospace of their byssal plaque, Han et al. 
fabricated a polydopamine-clay-polyacrylamide 
hydrogel. Utilizing the layered structure of clay 
nanosheets, dopamine was intercalated into the 
nanospace between the layers. Afterwards, acryl-
amide monomers were then added and in-situ 
polymerized to make the hydrogel. Compare 

Fig. 24.19 (a) The oxidation of unabsorbed dopamine to 
quinone groups by disulfide bond in fibrinogen. (b) 
Cohesive coupling of reducing thiolates with quinone 
groups by Michael addition. (c) Adhesive binding with 

inorganic surfaces via hydrogen bonding or coordination. 
(d) Adhesive binding with organic surfaces via Michael 
addition or Schiff reaction
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with previous single-use tissue adhesive, the nov-
elty of this hydrogel was that the sufficient free 
catechol groups in the hydrogel could undergo 
controllable oxidation process in the confined 
nanolayers of clay, which leads to repeatable and 
durable adhesiveness [16].

24.6  Conclusion

When working on this review chapter, we found 
that there were plenty of mussel-inspired 
researches since it was introduced. Earlier 
researches focused on the basic wet-resistant 
adhesive property and functional groups of adhe-
sive protein in mussel byssal plaque, and then its 
noncovalent and covalent interaction with organic 
and inorganic surface. Later, ideal features of 
polydopamine coating such as structure, self- 
polymerization under alkaline condition, hydro-
philicity, surface roughness, pH-sensitive charge, 
catechol chemistry and secondary reaction via 
Michael-type addition and/or Schiff base reac-
tions were investigated. Based on further under-
standing of polydopamine chemistry, many 
researches, especially tissue engineering, utilized 
the advantages of biocompatibility, enhancement 
of cell adhesion and immobilization of bioactive 
molecules to develop biomaterials like scaffold 
for regenerative applications. Recently, more ver-
satile biomedical application including surgical 
tissue adhesives, antifouling surface, antibacte-
rial activity and drug delivery have been invented. 
Especially, with mussel-inspired wet-resistant 
adhesive properties, novel tissue adhesives for 
surgical use play a vital role in regenerative med-
icine. The mussel-inspired biomaterials have 
attracted much attention, however, explanations 
for some mechanisms remains elusive, such as 
exact polydopamine structure, interactions with 
different kinds of cells and their adhesion, and 
long-term in  vivo toxicity and applicability. 
Therefore, based on this review chapter, the 
future work of mussel-inspired biomaterials is to 
solve the problem mentioned and then create 
advanced and innovative mussel-inspired designs 
for therapeutic in its promising future.
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Chitosan for Tissue Engineering
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Abstract
Chitosan, a deacetylated chitin, is one of the 
few natural polymers similar to glycosamino-
glycans (GAGs) widely distributed through-
out connective tissues. It has been believed 
that the excellent biocompatibility of chitosan 
is largely attributed to this structural similar-
ity. Chitosan is also known to possess biode-
gradability, antimicrobial activity and low 
toxicity and immunogenicity which are essen-
tial for scaffolds. In addition, the existence of 
free amine groups in its backbone chain 
enables further chemical modifications to cre-
ate the additional biomedical functionality. 
For these reasons, chitosan has found a tre-
mendous variety of biomedical applications in 
recent years. This chapter introduces the basic 
contents of chitosan and discusses its applica-

tions to artificial skin, artificial bone, and arti-
ficial cartilage in tissue engineering purpose.

Keywords
Chitosan · Tissue engineering · Scaffold · 
Regeneration · Skin · Bone · Cartilage

25.1  Scaffolds

Tissue engineering is an emerging multidisci-
plinary approach that incorporates biology, medi-
cine and engineering [7]. As a field of study, the 
discipline of tissue engineering aims to under-
stand the relationship between structure and 
function in cell and tissue and to develop biologi-
cal substitutes that can repair or replace the dead 
or damaged tissues, organs and/or parts of the 
human body. The success of tissue engineering 
may depend on a harmonious interplay of three 
components; cells for neo-tissue formation; bio-
materials to act as scaffolds; biological signaling 
molecules that instruct cells to form desired tis-
sue type [51]. Among the components, scaffolds 
play a pivotal role in the field of modern regen-
erative medicine, because they provide an archi-
tectural context in which cells and growth factors 
can cooperate and represent a wide range of mor-
phological and geometric possibility for suitable 
clinical application [32]. So far, many biomateri-
als of natural and synthetic origin have been 
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adapted for the manufacture of scaffolds with 
various fabrication techniques to create three- 
dimensional (3-D) environment mimicking extra-
cellular matrix (ECM) [6, 70], many of which 
have been the subject of practical development 
efforts [16, 58]. As natural polymers, collagen 
and hyaluronic acid can meet the several require-
ments for scaffold, therefore, have been exten-
sively studied and currently being employed in 
clinical trials [8, 55]. However, it is crucial that 
there exists the imbalance between supply and 
demand in natural polymers because of natural 
inconsistency in the in vivo source; the lot-to-lot 
variability is always a concern [24]. The addi-
tional drawbacks of natural polymers could be 
the potential impurities that may result in 
unwanted immune reaction and the difficulties in 
control mechanical properties [35, 55]. 
Meanwhile, the main advantage of synthetic 
polymers over natural polymers is the suffcient 
availability on demand with constant quality 
supporting industrial-scale production. 
Therefore, numerous attempts have been made 
to use synthetic biodegradable polyesters, such 
as polylactic acid (PLA), polyglycolic acid 
(PGA) and their copolymer (PLGA) as the sub-
stitute for natural polymeric scaffolds, however, 
their lack of cell recognition site for cell adhe-
sion, migration and subsequent cellular behav-
iors often limits applications [32, 65, 69]. 
Consequently, both natural and synthetic materi-
als have their own merits and demerits have to be 
complemented.

25.2  Chitosan

In addition to collagen and hyaluronic acid, a 
candidate of interest as natural polymeric mate-
rial for scaffold preparation would be chitin and 
chitosan. Chitin is the second abundant biopoly-
mer on earth, exceeded only by cellulose [15]. 
Chitin can be found widely in the exoskeletons of 
arthropods, shells of crustaceans, and the cuticles 
of insects [18]. Chitosan, a deacetylated chitin, is 

one of the few natural polymers that has free 
amine groups in its backbone chain, thus has the 
characteristics of a polymeric hydrogel owing to 
a high water absorption capacity [34]. It is also 
known to possess biodegradability, antimicrobial 
activity and low toxicity and immunogenicity 
which are essential for scaffolds [29, 67]. For 
these reasons, chitosan has found a tremendous 
variety of biomedical applications in recent 
years.

25.2.1  Chemical Structure

Chitosan, produced by deacetylation of chitin, is 
a linear polysaccharide composed of β-(1→4)-
linked D-glucosamine and N-acetyl-D- 
glucosamine. The deacetylation process of chitin 
can not only control degree of deacetylation 
(DD) but also change the average molecular 
weight of chitosan. In general, the weight- average 
molecular weight (Mw) of chitin is in the range 
from 1.03 to 2.5 × 106 g/mole, but the deacety-
lation process of chitin results in reduced Mw of 
chitosan to range from 1 to 5 × 105 g/mole [62]. 
Despite the loss in molecular weight of polymer, 
the main reason for manufacturing chitosan can 
be the poor solubility of chitin.

In the beginning, because the chemical struc-
ture of chitin is very similar to that of cellulose, 
the studies on solvents for chitin have been car-
ried out together with the development of cellu-
lose. Chitin is a long chain polysaccharide, like 
cellulose, that shows the degree of polymeriza-
tion around 7000~15,000 [66]. The inter- and 
intra-molecular hydrogen bond due to the pres-
ence of acetyl amino and hydroxyl bond makes 
chitin highly aggregated and insoluble in most of 
organic solvents. The solvents for chitin reported 
by far include the concentrated salt solutions 
such as LiCNS, Ca(CNS)2, CaI2, the strong acids 
such as HCl, H2SO4 and H3PO4 and other kinds of 
acids containing carboxylic group such as formic 
acid, dichloroacetic acid, and trichloroacetic 
acid, however, in most cases chitin showed very 
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slow dissolution rate accompanied by severe 
level of molecular decomposition [64]. Recently, 
N,N-dimethylacetamide, N-methyl-2-pyrollidone 
and their mixture in the presence of 5% LiCl are 
known to be a suitable solvent system for cellu-
lose [76]. The main principle is similar to 
 cellulose xanthate, that is Li+ ions formed in 
DMA and NMP solutions bind to the hydroxyl 
group of cellulose to break the original strong 
interactions between cellulose chains resulting in 
dissolution. The same system has been used to 
solubilize chitin, however, there still exist num-
ber of problems awaiting solutions [14, 66]. 
Chitosan, on the other hand, is easily dissolved in 
a dilute acid solution in the form of an ammo-
nium salt and has functionality of amino groups, 
primary and secondary hydroxyl groups for fur-
ther chemical modifications [5].

25.2.2  Nomenclature

Because deacetylated unit (D-glucosamine) and 
acetylated unit (N-acetyl-D-glucosamine) is ran-
domly distributed in chitosan, and because the 
composition of two residues is entirely depen-
dent upon deacetylation process, nomenclature 
of chitosan is still controversial. A group of 
deacetylated chitin whose D-glucosamine resi-
dues over 50% (or 60%) is often referred to as 
chitosan, however, there is no boundary in the 
nomenclature distinguishing chitin from chitosan 
[23]. This misunderstanding is probably caused 
by the fact that the % of DD in commercial chito-
san ranges from 60 to 99%. As mentioned above, 
the important factor in naming ‘chitin or chito-
san’ is the solubility in dilute aqueous acid solu-
tions. That is, regardless of the % of DD, if a 
deacetylated chitin is insoluble, it cannot be clas-
sified into chitosan [64]. In addition to DD, the 
Mw of chitosan is another important character-
ization parameter because the application field of 
chitosan can be widely varied with the distribu-
tion of Mw. For biological and functional appli-
cations of chitin and chitosan, the international 
official standard methods to determine DD and 
Mw of chitin and chitosan, ASTM F2260–03 and 

ASTM F2606–13, have been provided to 
researchers and manufacturers.

25.2.3  Distribution of N-Acetyl-D- 
Glucosamine 
and D-Glucosamine Units

From chemical point of view, either acids or alka-
lis can be used to deacetylate chitin, however, 
alkaline deacetylation is preferred, because gly-
cosidic bonds are very susceptible to acid. As the 
alkaline deacetylation of chitin, either heteroge-
neous or homogeneous hydrolysis has been being 
employed. Heterogeneous hydrolysis employs 
the severe conditions with hot concentrated 
NaOH solution within few hours. By this hetero-
geneous hydrolysis, the deacetylated chitin 
whose DD up to 80% can be obtained, but they 
are insoluble. On the contrary, homogeneous 
hydrolysis using very mild condition at 25 °C of 
deacetylation temperature produces a soluble 
chitosan, even though the range of DD is 48–55 
[36]. This can be attributed that deacetylation 
reaction performed under heterogeneous condi-
tions gives an irregular distribution of N-acetyl- 
d-glucosamine and d-glucosamine residues with 
some block-wise acetyl group distribution along 
polymeric chains [2]. Thus, solubility and degree 
of aggregation of chitosan can vary in aqueous 
solutions leading to changes in their native char-
acteristics. For instance, physico-chemical prop-
erties of such chitosans may differ from those of 
randomly acetylated chitosans obtained under 
homogeneous conditions.

25.2.4  Biocompatible Factors

In addition to good solubility, chitosan has a vari-
ety of biocompatible factors compared to chitin. 
The chemical structure of chitosan is very close 
to hyaluronic acid, the fourth class and non- 
sulfated GAG widely distributed throughout con-
nective tissues. It has been believed that the 
excellent biocompatibility of chitosan is largely 
attributed to this structural similarity, therefore, 
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numerous attempts have been made to prepare 
chitosan based scaffolds for tissue engineering 
applications [37].

The biodegradability is an essential factor for 
scaffold preparation because the degradation of 
scaffold material is a very important process in 
the tissue remodeling. In the case of chitosan, 
lysozyme plays a leading role in degradation in 
vivo, and degradation rate is inversely propor-
tional to the degree of crystallinity, which is 
greatly influenced on DD [73]. Ren et al. reported 
that each reacetylated chitosan matrices with 
deacetylation degree of 52.6%, 56.1%, and 
62.4% has weight half-lives of 9.8  days, 
27.3 days, and above 56 days, respectively, with 
mean molecular weights of 8.4%, 8.8%, and 
20.0%, respectively. They also reported that each 
reacetylated chitosan matrices with deacetylation 
degree of 71.7%, 81.7%, and 93.5% has slow 
degradation rates, and half-lives of above 84 days 
both weight and average molecular weight [63].

When chitosan is dissolved, the free amine 
group of chitosan chain becomes charged as posi-
tive, in turn produce the dielectric interactions 
with negatively charged biologics including the 
growth factors and the cytokines. The primary 
amine group can also be utilized as the coupling 
site for conjugation with biologics in order to 
build stable interaction. These modifications pro-
vide further improvements to chitosan in its bio-
medical applications [48].

Chitosan is largely known to have a broad 
antimicrobial activity to which gram-positive, 
gram-negative and fungi are highly susceptible 
[61]. Although the precise mechanism for this 
action has not fully established yet, the most 
acceptable antimicrobial mechanism includes the 
presence of positively charged groups in back-
bone chain and their interactions to negatively 
charged bacterial wall. This ionic interaction 
leads the changes in cytoplasmic permeability of 
bacteria, results in cell death. Chitosan, however, 
shows its antibacterial activity only in acidic cir-
cumstances because of its poor solubility above 
pH 6.5. In this regards, Kim originally produced 
the water soluble chitosan derivatives with 

ammonium salts and showed their broader spec-
tra of antimicrobial activities [30].

25.3  Tissue Engineering 
Applications

For the construction of tissue-engineered organ, 
three main elements are required; the scaffold, a 
source of cells and the bio-signaling. 3-D scaf-
fold with various forms takes a role of ECM that 
function as structural templates for tissue regen-
eration. For this purpose, the scaffold should 
have adequate porosity and morphology for 
transporting of cells, gases, metabolites, nutrients 
and signal molecules both within the scaffold and 
between the scaffold and the local environment. 
In the scaffold with higher porosity and pore size, 
efficient nutrient supply, diffusion of gas and 
secretion of metabolites are promoted, however, 
the interactions between cell-cell become 
decrease because of low cell attachment. In con-
trast, lower porosity and pore size results in 
adverse effects [72]. Therefore, it is necessary to 
produce scaffolds with appropriate pore size dis-
tribution and porosity depending on the cells and 
tissues.

By virtue of good solubility, chitosan can be 
manufactured into various forms of scaffolds 
including fibers, sponges and hydrogels. 
Madihally prepared chitosan scaffolds of con-
trolled microstructure in several tissue-relevant 
geometries using freezing and lyophilization 
technique [48]. Mean pore diameters could be 
controlled within the range of 1–250 μm. This 
could be a starting point for design and prepara-
tion of chitosan based scaffold materials. Years 
later, 3-D interconnected open porous chitosan 
scaffold with controlled pore distribution was 
prepared [10]. Alcohols were used as non-solvent 
to induce the liquid-liquid and liquid-solid phase 
separation via demixing solution. This method 
enabled to produce the controlled homogeneous 
micropores and the improved interconnectivity 
between pores with minimum surface skin layer 
formation. This interconnectivity of chitosan 
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scaffold provided the efficient transportation of 
the substances for cell, therefore, enhanced adhe-
sion as well as proliferation rates of fibroblasts 
around two folds.

In the meantime, the modifications with ECM 
components or growth factors to chitosan based 
scaffolds have been conducted to further increase 
cell adhesion, proliferation and differentiation 
through modulation of cellular responses [13, 
53]. As the major ECM protein, collagen has 
been used to enhance cell adhesion to chitosan 
scaffold in the form of blender of two polymers 
[49]. Fibronectin as well as laminin have been 
employed to chitosan for mimicking the biologi-
cal function of the ECM through immobilization 
or carbodiimide based crosslinking [12, 27]. 
Instead of using these macromolecules, there also 
have been other attempts to make use of small 
adhesive molecules such as motifs. Many 
research groups including Ho and Hansson have 
functionalized chitosan scaffold with arginine- 
glycine- aspartic acid (RGD) and showed suc-
cessful cell-scaffold interactions [20, 22].

Proteins and glycoprotein, collagen, laminin 
and fibronectin, and their amino acid sequence 
such as RGD, GFOGER and so on are all known 
to induce cell adhesion and migration through 
integrin mediated focal adhesion, rather than pro-
liferation and differentiation [21, 38, 68]. There 
exist, in deed, numerous report that scaffold with 
ECMs or motifs increases cell proliferation and 
differentiation, however, the elements that domi-
nate these cellular events are growth factors and 
cytokines related to receptor tyrosine kinases 
(RTKs) signaling pathway [41]. A comparative 
study of cell adhesive peptide and growth factor 
using chitosan based scaffold also showed the 
same consequences as mentioned above. Tiğli 
prepared two kinds of chitosan based scaffolds 
modified either with RGD or epidermal growth 
factor (EGF), and found the proliferation trend of 
ATDC5 murine chondrogenic cells on EGF- 
chitosan was superior compared to chitosan and 
RGD-chitosan; although, there was no significant 
effect on cell attachment [71]. Hence, various 
types of growth factors including basic fibroblast 
growth factor (bFGF), transforming growth 

factor-β1 (TGF-β1), platelet-derived growth fac-
tor- BB (PDGF-BB), and epidermal growth factor 
(EGF) have been currently introduced to chitosan 
based tissue engineering scaffold for skin, carti-
lage and bone [33, 34, 42, 71, 77].

25.3.1  Skin

Numerous efforts have been made to develop chi-
tosan based skin substitute because chitosan may 
play a key role in wound healing phases: blood 
clotting, inflammation, tissue growth and remod-
eling. First of all, chitosan has very strong hemo-
static activity which is independent on the 
classical coagulation cascade [60, 78]. 
Polycations of chitosan bind with host plasmas, 
cells and tissues inherently charged as negative 
when come in contact to traumatic wounds. This 
includes RBCs agglutination, that is, positively 
charged glucosamine on chitosan strongly 
attracts negatively charged RBCs to agglutinate; 
therefore, produce instantaneous clotting together 
with plasma sorption. The systemic hemostasis 
activation through platelet adhesion, aggregation 
and activation follows this fast clot formation. So 
far, more than 10 chitosan based wound dressing 
materials including HemCon®, Chitoflex® and 
Chitoseal® have been commercialized and used 
as hemostatic dressing [60].

Inflammation is a protective response to elimi-
nate the cause of injury, clear out necrotic cells 
and tissues through the process of phagocytosis, 
in turn initiates tissue repair [17]. During prolif-
eration, the factors for tissue regeneration such 
as, angiogenesis, collagen deposition, granula-
tion and epithelialization occur [52]. Among the 
cells involved in wound healing process, macro-
phages may perform indispensable functions in 
inflammation as well as tissue repair [44, 54]. As 
a host defender, macrophages recognize and 
destroy foreign organisms, debride dead and 
damaged tissue components (classical activation, 
M1), and produce cytokines, growth factors, and 
angiogenic factors, which regulate tissue growth 
and remodeling (alternative activation, M2) [46]. 
An important point regarding macrophages func-
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tion is that chitosan induces both classical and 
alternative activation in macrophages by the 
receptor mediated stimulatory effect of chitosan 
in macrophages, suggesting that chitosan can be 
one of the functional biomaterials that are respon-
sible for wound healing [26, 74]. Therefore, chi-
tosan scaffolds with various forms that include 
cross-linked hydrogels, nano-fibrous structures, 
ion-etched films and so on, fabricated and applied 
to traumatic or burn wound [1, 28, 47].

In tissue engineering, the focal adhesion is the 
primary requirement in which cells are commu-
nicated. In the case of chitosan, the increase in 
the content of free amine group increases the 
attachment of fibroblast but rather decreases the 
migration and the proliferation [9]. This implies 
that strong electrostatic interaction between cells 
and free amine groups in chitosan hiders the cell 
attachment through the focal adhesion. Kim et al. 
[31] leveled down this electrostatic property and 
improved biocompatibility of chitosan through 
the rigorous dry heat treatment at 110 °C. They 
had controlled the DD of chitosan based scaffold 
from 85 to 30% with increase heat treatment 
time.

The poor focal adhesion capability of chitosan 
can be enhanced by the addition of ECM compo-
nents. Ma et  al. [45] prepared porous scaffold 
with the mixture of collagen and chitosan, and 
found good cytocompatibility to effectively 
accelerate cell infiltration and proliferation. In 
addition, much attention has been focused on the 
use of the growth factor functionalized and/or 
cell based skin graft. Obara et  al. [56] and 
Alemdaroğlu et al. [3] prepared FGF-2 and EGF 
incorporated chitosan hydrogel, respectively, and 
most recently, Yang et  al. [74] produced dual 
growth factors releasing chitosan based hydro-
gels for accelerated wound healing. Altman et al. 
[4] had seeded human adipose derived stem cells 
on chitosan based scaffold and transplanted to 
wound bed using a murine soft tissue injury 
model. They found Green Fluorescent Protein 
(GFP)-positive stem cells on chitosan scaffolds 

have differentiated into variety of lineages for 
soft tissue restoration including fibrovascular, 
endothelial and epithelial cells up to 4 weeks.

25.3.2  Bone

For bone regeneration, hydroxyapatite (HA) and/
or tricalcium phosphate (TCP) have been widely 
employed with polymeric scaffolds because of 
their unique osseointegrative properties. Lee 
et al. [40] prepared platelet-derived growth factor 
(PDGF) loaded chitosan/TCP sponge type scaf-
fold and implanted calvarial defect of rat. The 
results showed that the addition of PDGF to the 
scaffold further enhanced bone regeneration. In 
order to treat large scale bone defect, Ge et  al. 
[19] proposed chitin-HA composite scaffold as a 
promising candidate to form a structural frame-
work for bone regeneration. They have demon-
strated that chitin-HA scaffold provided many 
requirements for bone tissue regeneration by 
responding physiological and biological changes 
and by remodeling the ECM to integrate with 
surrounding tissue.

Recently, liquid phase chitosan has gained 
popularity as an injectable scaffold to carry 
osteoinductive and/or osteoconductive material 
and to fill out bone defect area for minimally 
invasive technique. Liu et  al. [43] prepared a 
novel injectable bone substitute material consists 
of chitosan solution as the liquid phase and TCP 
powder as the solid phase. The mixture of two 
components became bone cement upon immer-
sion in SBF, and showed good compressive 
strength, bioactivity and cytocompatibility 
enough to have prospect for orthopedic applica-
tions. As another approach of injectable scaffold, 
Park et al. [59] have produced chitosan/alginate 
based composite that carries recombinant human 
bone morphogenetic protein-2 (BMP-2) with 
mesenchymal stem cells and subcutaneously 
transplanted into the space on the dorsum of nude 
mice. They have found the trabecular type new 
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bone formation and concluded that this chitosan/
alginate composite could become clinically use-
ful injectable scaffold.

25.3.3  Cartilage

In tissue engineering of articular cartilage, the 
round morphology of chondrocyte represents the 
maintenance of differentiated chondrocytic phe-
notype. However, this phenotype is unstable in 
culture, because chondrocytes may undergo de- 
differentiation that involves gradual shift from 
the synthesis of type II to type I and III collagen, 
in turn provides the inferior fibrocartilaginous 
circumstances [75]. This is the major restriction 
to form hyaline cartilage in cell therapy for repair 
full thickness destructive cartilage. Therefore, the 
ideal scaffold that closely mimics the naturally 
occurring environment in the cartilage matrix is 
required to stimulate and support chondrogenesis 
in vitro and in vivo. GAGs are known to stimulate 
the chondrogenesis, therefore, use of chitosan as 
an analog of GAG appears to be ideal for scaffold 
material of chondrogenesis. In this regard, Lahiji 
et  al. [37] and Iwasaki et  al. [25] hypothesized 
that chitosan based scaffold can support the func-
tion and expression of ECM components in chon-
drocytes, and demonstrated that chitosan leads 
chondrocytes to have continued expression of 
collagen II and to maintain their characteristic 
round morphology. Cui et al. [11] used chitosan 
to modify poly (L-lactic acid), biodegradable ali-
phatic polyester, for the purpose of improving 
cytocompatibility. The bovine articular cartilage 
chondrocytes cultured on the chitosan modified 
surface showed beneficial effects on adhesion, 
proliferation and function. Oliveira et  al. [57] 
have designed and prepared a novel HA/chitosan 
based bilayered hybrid scaffold using a combina-
tion method of sintering and a freeze-drying 
technique for osteochondral tissue-engineering 
applications. Both HA and chitosan layer pro-
vided an adequate support for osteogenecity and 
chodrogenecity to seeded MSCs, respectively. 
Chitosan have been also employed to deliver the 
growth factors and morphogenetic proteins for 
further enhanced chondrogenesis in the field of 
cartilage engineering ([33, 34, 39, 50]).

25.4  Future Perspective

With rapid advances and developments of mod-
ern sciences and technologies, a new era in tissue 
engineering and regenerative medicine where 
scientists with different backgrounds work 
together to cope with their multidisciplinary has 
established. For decades, a remarkable achieve-
ment has been made to take a major step forward 
to regenerate skin, cartilage, bone, liver and ner-
vous system. As the second abundant biopolymer 
on earth, chitosan has also been widely applied to 
tissue engineering because of its biodegradabil-
ity, antimicrobial activity and low toxicity and 
immunogenicity which are essential for scaf-
folds. However, there still remain problems. 
Chitosan, similar to the other natural products, 
has brittleness that limits its practical application; 
therefore, further efforts are needed to improve 
mechanical strength. Regarding most of studies 
using chitosan have been carried out in vitro, the 
additional comprehensive studies using animal 
models are required to figure out the precise rela-
tionship between chitosan and cells or tissues of 
various organs, Fortunately, HemCon Medical 
Technologies of the United States commercial-
ized the chitosan based hemostatic bandages for 
military and emergency use, and hemostatic 
agents for dentistry. In canada, Biosyntech devel-
oped chitosan based injectable hydrogels, for 
skin (BST-DermOn), for cartilage (BST-CarGel) 
and for bone (BST-Ossifil). They are all in clini-
cal trials for FDA approval. These activities truly 
lead chitosan based scaffolds to a step closer to 
the practical applications for tissue engineering 
purpose.
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Demineralized Dentin Matrix 
(DDM) As a Carrier 
for Recombinant Human Bone 
Morphogenetic Proteins 
(rhBMP-2)

In Woong Um

Abstract
A bone graft and bone graft substitute should 
have at least one of the following properties: it 
should be (1) osteogenic, (2) osteoinductive 
and/or (3) osteoconductive. In addition, bone 
graft substitutes should be biocompatible and 
bioresorbable as well as easy to use and cost 
effective. Autologous cancellous bone is the 
clinical gold standard in bone grafting proce-
dures1, 4 and it has osteogenic, osteoinductive, 
and osteoconductive properties. Because of 
disadvantages associated with harvesting 
autologous bone graft material, such as requir-
ing an additional operation and possible donor 
site morbidity, there is a need for an alternative 
in terms of enhancing the bone healing for the 
treatment of large bony defects. One possible 
option is a newly developed biomaterial, the 
demineralized dentin matrix (DDM). It is 
based on autogenous tooth dentin and is pro-
duced through demineralization. It is osteo-
conductive and osteoinductive due to the fact 
that dentin contains extracellular Type I colla-
gen and various growth factors. Based on the 
demineralization process the factors stay avail-
able to the host environment. In 1965, Urist 
already showed the formation of ectopic bone 

after implanting DDM into muscle pouches in 
rodents. DDM is used for example in dental 
surgery in the treatment of extraction socket 
preservation and guided bone regenerations. It 
functions as a scaffold to support bone regen-
eration, but can also be used as a carrier for 
rhBMP-2. When DDM serves as a carrier, it 
combines the properties of the grafting mate-
rial with those of the delivered substances. 
This chapter will present the experimental and 
clinical studies of DDM for rhBMP-2 carrier 
as well as alternatives of bone graft substitute.

Keywords
DDM · Demineralized dentin matrix · 
rhBMP-2 · Recombinant bone morphogenetic 
proteins

26.1  Scaffold for rhBMP-2 Carrier

26.1.1  Carriers for rhBMP-2

Recombinant human bone morphogenetic pro-
tein (rhBMP-2) is a water soluble relatively low 
molecular weight protein that is very difficult to 
retain in local site for a sufficient period of time 
due to the body fluids. When administered in a 
alveolar bone to repair the defect, three dimen-
sional scaffold is necessary not only to maintain 
the BMP concentration at a local site for a 
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 prolonged period of time but also to sustain the 
form and shape of alveolar bone to be repaired, 
because the protein will dissipate very easily due 
to leakage, irrigation and suction around the sur-
gical site [1].

A wide range of BMP carriers of an organic 
and an inorganic nature have been investigated 
experimentally and clinically including 
hydroxyapatite/ß-TCP, synthetic, natural poly-
mer and etc. (Table 26.1). The suitable scaffold of 
rhBMP-2 for alveolar bone regeneration has not 
been established at this moment.

Other candidates such as hyaluronic acid, 
fibrin and chitosan have been studied with differ-
ent success level in vitro and in vivo. However, 
the most preferred rhBMP-2 carrier is porous 
hydroxyapatite and collagen from human bone 
[2–4] (Table 26.1).

Type I Collagen is the most preferred and 
commonly used BMP carrier in maxillofacial 
area and bovine tendon derived Type I collagen 
has been approved by US FDA in 2007. Since 
then, composites of rhBMP-2 and absorbable 
collagen sponges have showed promising results 
in extraction socket preservation, sinus augmen-
tation procedures. However, the binding capacity 
of rhBMP-2 to bovine tendon derived collagen is 
not sufficient compare with bone derived colla-
gen. Therefore the use of rhBMP-2, even though 
it has been approved by FDA, is restricted due to 
limitations such as off-label use, squeezing out of 
collagen and weak mechanical properties [5].

Demineralized bone matrix (DBM) which has 
intrinsic, limited osteoinductive properties was 

also one of the first candidates for BMP carrier 
[6, 7]. DBM is processed by demineralization of 
allogenic bone [8]. After removing the major 
mineral part and the immunogenic components 
of bone, DBM retains the osteoconductive colla-
gen scaffold and several growth factors including 
BMP as well as the approximately 2% mineral 
phase that is different from each demineralization 
process [3, 9, 10].

DBM functions as a scaffold to support bone 
regeneration, but can also be used as a carrier for 
cells or different kinds of pharmaceutical agents 
(e.g., antibiotic substances) [11]. When DBM 
serves as a carrier, it combines the properties of 
the grafting material with those of the delivered 
substances [12]. However, DBM as a carrier has 
not gained popularity because of the risk of 
immunogenicity and the risk of disease 
transmission.

26.1.2  Requirements for rhBMP-2 
Carriers

rhBMP-2 requires combination with a suitable 
carrier to achieve maximal efficacy. Ideal carriers 
should provide retention of the protein concen-
tration at a local site for a sufficient period of 
time and degraded gradually according to the 
biologic environment. Generally accepted char-
acterizations of candidate carrier for rhBMP-2 
are adequate porosity to allow cell and blood ves-
sel infiltration, appropriate mechanical stability, 

Table 26.1 Comparison of Dose and release of BMP-2 using four major materials as a carrier system

Categories Carrier material BMP-2 Dose Key results
Inorganic material HA Granules 10 μg Non-significant

β-TCP Granular 
implant

1–10 mg Better fusion rate

Natural origin 
polymer

Collagen 1 μg Improved bone fusion rates

Chitosan 5 μg Capable to adopt bone area

Synthetic polymer PLA 100–
800 mg/g

rhBMP-2 depends on the dose

PLGA 3.5 μg, 
17.5 μg

No synchronization

Composite materials Collagen- HA 10 μg Anabolic and catabolic agent

Gelatin/β-TCP 5 μg Bone formation higher in the low p-TCP 
content

I. W. Um
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biocompatibility, biodegradability, and binding 
capacity for BMPs [13–15] (Table 26.2).

The main role of the carrier for rhBMP-2 is to 
retain the factor at the site for a prolonged period 
of time [4]. Bouxsein reported that collagen 
sponges soaked with rhBMP-2 in the rabbit ulnar 
osteotomy model showed retention of rhBMP-2 
32% of initial dose at the surgical site 7 days after 
surgery as compared to only 3% remaining when 
rhBMP-2 was injected at surgical site [16].

Huber et al. reported that DBM proved in vitro 
to be a suitable carrier for BMP-2, with a docu-
mented release over 56  days at concentrations 
sufficient to stimulate osteogenic differentiation. 
At the end of the elution experiment, 56  days, 
bioactive BMP was still captured within the 
DBM.  Using a sheep drill hole defect model, 
DBM perioperatively mixed with BMP-2 showed 
strong osteoinductive properties comparable to 
those of autologous bone and outnumbering the 
one of DBM alone or empty defects. And with 
the comparability to the clinical gold standard 

autologous bone, DBM mixed with BMP-2 might 
serve as possible alternative grafting material 
enabling a controlled osteogenic stimulation 
[12].

26.1.3  rhBMP-2 Combined 
with Absorbable Collagen 
Sponge (rhBMP-2/ACS) 
in Dentistry

Preclinical and clinical research of alveolar bone 
graft and sinus augmentation for the staged 
implant placement has demonstrated that 
rhBMP-2 soaked with absorbable collagen 
sponge (rhBMP-2/ACS) showed reliable clinical 
outcomes. Dose dependent clinical studies have 
determined 1.5 mg/cc as a safe and predictable 
dose for clinical application.

Boyne et al. [17] reported in a pivotal study 
the results of bone induction by rhBMP-2/ACS 
in maxillary sinus floor augmentation as not 
inferior to those after autogenous bone graft. 
They found that rhBMP-2 predictably and 
safely induced adequate loading of endosseous 
dental implants in patients requiring staged 
maxillary floor augmentation [18]. The propor-
tion of patients who received dental implants 
that were functionally loaded and remained 
functional at 36 months post functional loading 
was 62% and 76% in the bone graft and 1.5 mg/
ml rhBMP-2/ACS treatment groups, 
respectively.

A randomized prospective study evaluating 
the use of 1.5 mg/cc rhBMP-2/ACS for extrac-
tion socket augmentation showed that rhBMP-2 
could predictably form de novo bone [19]. Eighty 
patients requiring local alveolar augmentation for 
buccal wall defects in the anterior maxilla were 
evaluated. The adequacy of bone for placement 
of a dental implant was approximately twice as 
great in the rhBMP-2/ACS group compare with 
controls.

Table 26.2 Desirable qualities of an ideal rhBMP-2 
delivery system

Biocompatibility, low immunogenicity and 
antigenicity
Biodegradability with biocompatible components, in 
predictable manner in concert with bone growth
Adequate porosity for cellular invasion and 
vascularization
Adequate compressive and tensile strength
Enhancement of cellular attachment (but without 
inducing soft tissue growth at the bone/implant 
interface)
Amenability to sterilization without loss of properties
Affinity to BMPs and host bone
Enhancement of osteogenic activity of BMP with a 
restrictive release of BMP at an effective dose during a 
period coincident with the accumulation and 
proliferation of target cells
Adaptability to irregular wound site, malleability
Availability to surgeon on short notice

From Brekke et al. [13] , Burg et al. [14], Friess [15], and 
Kirker-Head [3]
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In 2007, the FDA approved rhBMP-2 
(INFUSE Bone Graft®, Medtronic’s, Memphis, 
TN) soaked with absorbable collagen sponge as 
an alternative to autogenous bone grafts for sinus 
augmentations, and for localized alveolar ridge 
augmentation of defects associated with extrac-
tion sockets. However, contraindications for 
patients with a known hypersensitivity to 
rhBMP-2 or bovine type I collagen are also spec-
ified as well as for the surgical sites related to the 
vicinity of a resected tumor, active malignancy 
and infected sites or in pregnant women.

Collagen has a limited capacity for controlled 
release, and most of the absorbed agent is released 
during the first day post implantation [5]. The 
implantation of rhBMP-2 delivered by ACS 
increases the potential of rhBMP-2 leakage, 
resulting in ectopic bone formation [20]. The 
ACS is bovine tendon derived type I collagen. 
Because of the poor mechanical properties of 
ACS, the soft tissue walls of the defect can com-
press it and the use of supraphysiological doses 
[21] and the insufficient retention of BMP-2 
when delivered by a collagen sponge [22] implies 
operational and biological limitations for the 
clinical use.

26.2  Studies on Demineralized 
Dentin Matrix (DDM)

26.2.1  Extracellular Matrix (ECM) 
of Dentin

Bone and dentin has very similar organic and 
inorganic components; 18% of collagen, 2% of 
noncollagenous proteins, and 70% of hydroxy-
apatite in weight volume [23] (Fig. 26.1).

Approximately 90% of the organic material in 
the dentin consists of type I collagen fibers, pri-
marily type I collagen. The remaining organic 
components consist of noncollagenous proteins 
of phosphorylated and non-phosphorylated pro-
tein. Diverse growth factors, including bone mor-
phogenetic protein (BMPs), transforming growth 
factor-β (TGF-β), basic fibroblast growth factor 
(bFGF), and platelet derived growth factors 
(PDGF), are known to be present in the non- 
phosphorylated protein fraction (Fig. 26.2).

The structural differences [24] between them 
are the most important points for the release of 
growth factors and the absorbability of ECM 
(Fig. 26.2).

Fig. 26.1 Diagram of 
common components in 
dentin and bone. (HAP 
hydroxyapatite, OCN 
osteocalcin, BMP bone 
morphogenetic protein, 
FGFs fibroblast growth 
factors). (From Murata 
[23]. J Korean Assoc 
Oral Maxillofac Surg)
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Dentin collagen matrix provides a scaffold for 
minerals formation and deposition [25, 26] cells 
adhesion and differentiation [27] and preserving 
the structural, mechanical and functional integ-
rity of the dentin [28].

The structural differences of dentin from 
bone are the acellular, avascular, dense collagen 
matrix with micropore sized dentinal tubules 

[24]. Structurally, the dentin matrix consists of 
dentinal tubules 1–3 μm in diameter [29] that 
provides micropore spaces of 3.7–5.88% poros-
ity that increase the surface contact area [30] 
and can accommodate the rhBMP-2 solution, 
thereby increasing the capacity of dentin to 
function as an effective scaffold/carrier for 
rhBMP-2 (Fig. 26.3).

Fig. 26.2 Scanning 
electron micrograph of 
the dentin surface after 
demineralization 
(×10,000). (From Kim 
et al. [24]. Oral Surg 
Oral Med Oral Pathol 
Oral Radiol Endod)

Fig. 26.3 DDM after 
rhBMP-2 fixation. 
(From Um et al. [30]. J 
Dent App)
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26.2.2  Characterization of DDM 
(AutoBT®, Korea Tooth Bank, 
Seoul, Korea)

Human autogenous DDM is one of the most acid 
insoluble collagenous scaf-folds, containing non-
collagenous proteins (NCPs) such as bone mor-
phogenetic protein (BMP), in addition to a 
mineral phase, and is an ideal bone substitute [23, 
31–33]. Of clinical importance, DDM based scaf-
folds are reprocessed, acellular, and microporous 
Type I collagen [34].

DDM (AutoBT, Korea Tooth Bank, Seoul, 
Korea), fabricated from patient’s own extracted 
tooth, is mainly processed by dehydration, defat-
ting, and partial demineralization. Dentin demin-
eralization with 0.6  N HCl results in the 
elimination of the major part of the mineral phase 
and immunogenic components, while retaining a 
very low fraction of minerals (5–10  wt.%), the 
majority of Type I collagen, and NCPs, providing 
an osteoconductive and osteoinductive scaffold 
containing several growth factors [35–37] 
(Fig. 26.4).

Kim et  al. analyzed organic components in 
autogenous tooth bone graft material (AutoBT) 
and reported that 0.29% (2.89  mg/g), 0.02% 
(0.029  mg/g), and 1.79% (17.93  mg/g) of pro-
teins were measured by weight (Bradford assay) 
in root portion, crown and block form of AutoBT 
respectively [36, 37] (Table 26.3).

The range of particle size of DDM is from 
300 μm to 800 μm in diameter with a median size 
of 500  μm. Microscopic observations demon-
strated that the basic dentin microtexture was 
preserved after demineralization that starts at the 
surface and progresses to the interior of dentine 
particle. Structurally, dentinal tubules are 
enlarged and dense collagen matrix is loosened 
[38–41] (Fig. 26.5).

X-ray diffraction (XRD) analysis found that 
low crystalline structures, domain sizes, and high 
Ca/P ion dissolution of the DDM were similar to 
those of autogenous bone with calcium phos-
phate. These included HA (Ca/P  =  1.75), TCP 
(Ca/P  =  1.46), amorphous calcium phosphate 
(ACP, Ca/P = 1.32), and oc-tacalcium phosphate 
(OCP, Ca/P  =  1.24) with the plate like crystals 
[38–42].

Fig. 26.4 Histology 
analyses of a two-week 
biopsy sample showed 
the sign of newly 
deposited osteoid. 
(H&E, ×200). (From 
Kim et al. [36]. J Korean 
Assoc Maxillofac Plast 
Reconstr Surg)

Table 26.3 The highest amounts of proteins were 
extracted in root form of AutoBT, whereas the lowest 
amounts were extracted from the crown portion in 
Bradford assay

Type of AutoBT
Organic component by weight,  
% (mg/g)

Root portion 0.29 (2.89)
Crown portion 0.02 (0.03)
Block-form 1.79 (17.93)

From Kim et  al. [36]. J Korean Assoc Maxillofac Plast 
Reconstr Surg.
AutoBT autogenous tooth bone graft material
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26.2.3  Studies on Human 
Autogenous DDM (AutoBT®, 
Korea Tooth Bank, Seoul, 
Korea)

Urist first reported that dentin is an osteoinduc-
tive material that causes connective tissue to con-
vert to bone by endochondral osteogenesis [8]. 
After the discovery of bone induction by rabbit 
demineralized bone matrix in 1965, rabbit demin-
eralized dentin matrix also founded to be osteoin-
ductive in 1967. Demineralized dentin was 
known to be more inductive than the mineralized 
dentin that is mainly due to easy release of growth 
factors in Type I collagen matrix such as BMPs 
as well as osteocalcin, osteonectin, and dentin 
phosphoproteins which are known to be involved 
in bone mineralization [31, 33, 43, 44].

In 1991, Bessho et al. successfully isolated the 
BMP from human dentin matrix. Although, 
human dentin derived BMP was different from 
human bone derived BMP, two types of BMP 
exhibit the same action in the body. Murata et al. 
[45] showed that human DDM, including small 
patches of cementum fabricated from wisdom 
teeth showed osteoinduction capacity. Kim et al. 
showed that human DDM (AutoBT, Korea Tooth 
Bank, Seoul, Korea) grafted into the muscle of 
nude mice induced cartilage and bone indepen-
dently, as shown in Fig.  26.4. Newly deposited 
osteoid on DDM powder indicated osteoinductiv-
ity of DDM [35–37].

Regarding clinical applications, AutoBT, 
which was first reported for guided bone regen-

eration in 2010, showed the regeneration of alve-
olar bone after AutoBT grafts [24]. And the 
follow up study performed 6 years after the first 
clinical report showed that the alveolar bone, 
repaired 3–6  months after AutoBT grafts, had 
been maintained its volume and shape success-
fully with minimal marginal bone resorption 
which had been within the success criteria of 
implant [46, 47]. Although the number of clinical 
samples was not enough for the statistical power, 
the results were consistent with those of other 
short term follow up studies on AutoBT 
[38–41].

Pang et al. performed randomized controlled 
clinical trials of AutoBT (autogenous human 
DDM, Korea Tooth Bank, Seoul, Korea) to com-
pare with anorganic bovine bone for the extrac-
tion sockets augmentation. Bot group showed 
favorable wound healing, reliable implant stabil-
ity and histological evidence of new bone forma-
tion that suggests AutoBT as a viable option for 
extraction socket preservation [48].

Augmentation of vertical dimension showed 
that it was as effective as augmentation using 
anorganic bovine bone both groups showed 
favorable wound healing, similar amount of 
implant stability, and histologically confirmed 
new bone formation. Thus, the results of this 
study suggest that autogenous tooth graft mate-
rial is a viable option for alveolar bone augmen-
tation following dental extraction.

Demineralized dentin matrix block (ABTB: 
Autogenous Tooth Bone Graft Block, Korea 
Tooth Bank, Seoul, Korea) is 3 Dimensional scaf-

Fig. 26.5 Size and 
surface demineralization 
of DDM particle
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fold that has very similar components and geom-
etry with alveolar bone. Kim et al. reported that 
ABTB is well incorporated to and remodeled into 
host alveolar bone (Fig. 26.6) [46].

26.3  DDM for rhBMP-2 Carrier 
(DDM/rhBMP-2)

As many studies on the DDM have investigated 
the osteoinductive functions and their clinical 
applications, those on the carriers for rhBMP-2 
have also sought to identify the mechanisms and 
to develop methods to combine with rhBMP-2. 
Some of most recent approaches that have been 
employed to study DDM as rhBMP-2 carrier are 
as follows.

26.3.1  Experimental Studies of DDM 
for rhBMP-2 Carrier

As a candidate for an rhBMP-2 carrier, Ike et al. 
reported that xenogenous rhBMP-2 adsorbed into 
pulverized root and partially DDM proved to be 
as osteoinductive as an autogenous bone graft 
[50]. Murata also showed that human DDM par-
ticles are insoluble collagenous matrices which 

has osteoinductive capacities, and that DDMs 
might be effective as an rhBMP-2 carrier for 
alveolar bone repair [51].

The first report of AutoBT (human DDM, 
Korea Tooth Bank, Seoul, Korea) as a candidate 
for rhBMP-2 carrier [40] have demonstrated that 
DDM displays the controlled release kinetics of 
rhBMP-2 such as release to load ratio and release 
speed and the osteonectin expression, resulting in 
augmented mature bone formation compare with 
tricalcium phosphate (TCP) (Fig. 26.7).

Um et al. examined the bone induction capac-
ity of AutoBT as an rhBMP-2 carrier compare 
with conventional TCP in the intramuscular 
pouches of nude mice. AutoBT (human DDM, 
Korea Tooth Bank, Seoul, Korea) and TCP 
(CowellMedi, Busan, Korea).

AutoBT (human DDM, Korea Tooth Bank, 
Seoul, Korea) that were combined with rhBMP-2 
(DDM/rhBMP-2) was the experimental group 
(n = 20). rhBMP-2 soaked TCP (TCP/rhBMP-2, 
CowellMedi, Busan, Korea) was the control 
group (n  =  20). Earlier cellular reaction on the 
DDM surface, more amount of osteoid deposi-
tion was seen in early stage compare with TCP 
groups. Later at 4 weeks, DDM showed compact 
bon formation while the TCP showed fatty tissue 
formation [30].

Fig. 26.6 Fabrication of the ABTB. (a) Macropores 
(200–300 μm) that penetrated from the surface to the pulp 
space provided the space for vascular invasion. (b) 
Histological findings; A macropore of the ABTB was 
filled with newly formed osteoid with embedded active 

chondrocyte like cells that closely contacted the inner wall 
of the macropore. Cellular fusion without fibrous tissue 
invasion was observed on the border between the osteoid 
and the dentin matrix. (From Kim et al. [49]. Clin Case 
Rep)
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In the rabbit’s calvarial defect, the anorganic 
bovine bone combined with rhBMP-2 (ABB/
rhBMP-2) groups showed osteoconductive bone 
formation, while the DDM/rhBMP-2 group 
showed osteoinductive bone formation. And the 

amount of new bone formation in DDM/rhBMp-2 
was highest among DDM and TCP/rhBMP-2 
especially at 8  week of experiment compare to 
the 2 week of experiment [34] (Fig. 26.8).

Fig. 26.7 Comparison 
of release kinetics over 
time. Kinetics of 
rhBMP-2 release from 
bone graft materials 
observed in vitro. 
Sustained release of 
rhBMP-2 was observed 
for up to 5 weeks. (From 
Kim et al. [40] J Hard 
Tissue Biol)

Fig. 26.8 New bone volume measured by microcom-
puted tomography. New bone volume increased in DDM 
(27.5%) and DDM/rhBMP-2 (87.14%) from 2 to 8 weeks 
compared with the decreased new bone volume in ABB/
rhBMP-2 (−17.9%). Values are presented as mean ± stan-

dard deviation. No statistically significant differences 
were found among the groups. (DDM demineralized den-
tin matrix, ABB anorganic bovine bone, rhBMP-2 recom-
binant human bone morphogenetic protein-2). (From Um 
et al. [34]. J Korean Assoc Oral Maxillofac Surg)
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26.3.2  Clinical Studies of DDM 
for rhBMP-2 Carrier

To compare the short term outcome of DDM/
rhBMP-2 (Bioα, Seongnam, Korea) with 
hydroxyapatite (HA)/rhBMP-2 (Bioα, 
Seongnam, Korea), each scaffold was soaked 
with 0.5  mg/0.5  ml of rhBMP-2 solution for 
10 min. Favorable bony healing was obtained in 
all cases without any severe complications. 
Successful prosthetic treatment was completed 
without any osseointegration failure. In this case 
series study, rhBMP-2 combined with HA or 
DDM scaffolds can be used for bone graft proce-
dures such as guided bone regeneration [40].

About the effectiveness of allogenic DDM 
loaded with rhBMP-2 (CowellMedi, Busan, 
Korea) for alveolar bone repair [46], the clinical 
findings with respect to the healing process were 
that there were no remarkable inflammation and 
immune rejection that impair the healing process 
and are coincident with those of the previous 
studies [24, 46–48]. The nanopore structure of 
dentinal tubules in unique avascular and acellular 
Type I collagenous dentin matrix seems to make 
it feasible to carry and release rhBMP-2 effec-
tively on local site based on the previous study.

In the clinical study of histological compari-
son of autogenous and allogenic DDM loaded 
with rhBMP-2 (CowellMedi, Busan, Korea) at 
the site between the implant cover screw and gin-
giva, as the poor blood supply allows it to simu-
late a heterotopic condition, three patients 
undergoing simultaneous implant placement and 
receiving a different type of graft were included: 
allogenic DDM loaded with rhBMP-2(DDM/
rhBMP-2), autogenous DDM/rhBMP-2 and 
autogenous DDM.  After 3–6  months of grafts, 
the antigenicity and immunogenicity of the car-
rier allogenic DDMs are low enough to maintain 
both the biocompatibility of the scaffold and the 
activity of the loaded rhBMP-2 [52, 53].

Jeon et al. reported study to evaluate soft tis-
sue volume change after socket preservation 
using AutoBT (Korea Tooth Bank, Seoul, Korea), 
AutoBT combined with rhBMP-2 (Cowellmedi, 
Busan, Korea) (DDM/rhBMP-2) and Bio-Oss 
collagen (Geistlich, Wolhusen, Switzerland). A 

total of 24 participants who were required tooth 
extraction were randomly divided into three 
groups according to graft materials. Bio-Oss col-
lagens for the first group, DDM alone for the sec-
ond, and DDM/rhBMP-2 for the third group were 
used. According to soft tissue volume changes, 
each groups showed statistically meaningful vol-
ume decreases. Bio-Oss collagen showed 15.4% 
volume decrease, DDM showed 18.8% and 
DDM/rhBMP-2 showed 16.1% decrease, respec-
tively. However, there were no significant differ-
ences among groups.

Kim et  al. reported the haling potential of 
DDM/rhBMP-2 (Cowellmedi, Busan, Korea) in 
the clinical study of a total of 23 patients with 36 
implants. The results showed that favorable 
osseointegration was obtained in 35 out of 36 
implant sites in terms of the implant stability and 
marginal bone loss [49, 54].

26.4  What Is Coming Next in 
DDM/rhBMP-2 Research?

Lee et al. [55] performed quantitative analysis of 
proliferation and differentiation of the MG-63 
cell line on partially demineralized human dentin 
matrix (PDDM) by 0.6 N HCl in vitro to evaluate 
the osteogenic potential of DDM and compare it 
to a mixture of anorganic bovine bone and colla-
gen (Bio-Oss Collagen® Geistlich, Wolhusen, 
Switzerland).

Cell adhesion and growth on the DDM surface 
were more abundant, with cells adopting a flat 
shape and uniform distribution, than on the Bio- 
Oss Collagen® at all the observation time points. 
And confocal laser scanning microscopy revealed 
that the DDM provided better attachment with 
cytoplasmic propagation than the control. 
Immunofluorescence assays showed that the flu-
orescent intensities of osteocalcin and osteonec-
tin as biomarkers of cellular differentiation were 
higher on the DDM than on Bio-Oss Collagen®.

Until now, research on DDM for rhBMP-2 
carrier has been conducted in vitro and in vivo, as 
well as clinical trials. The advantages of DDM as 
BMP carrier compare to the conventional candi-
date materials are that DDM is osteoconductive 
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and osteoinductive due to the fact that dentine 
contains various growth factors. Based on the 
demineralization process the factors stay avail-
able to the host environment. In 1965, Urist 
already showed the formation of ectopic bone 
after implanting demineralized dentine into mus-
cle pouches in rodents. DDM is used for example 
in dental surgery, in the treatment of implant 
bone graft. It functions as a scaffold to support 
bone regeneration, but can also be used as a car-
rier for rhBMP-2. When DDM serves as a carrier, 
it combines the properties of the grafting material 
with those of the delivered substances.

Microparticles of dentine are having particle 
diameter ranging from 300 μm to 800 μm. The 
nanopores of dentinal tubules (1–3 μm) provide 
higher surface to volume ratio that is advanta-
geous to reduced protein diffusion and retains 
sufficient concentration for recruitment and dif-
ferentiation of osteoprogenitor cells.

Although all the experimental and clinical 
researches of DDM/rhBMP-2 reported favorable 
results and very optimistic futures, we should do 
more hard work to ensure the clinical safety and 
efficacy. For example, the suitable concentration 
and amount of rhBMP-2, the condition of DDM 
such as particle size, processing method, loading 
method of rhBMP-2 on DDM and etc. should be 
confirmed and established by more advanced 
studies. Furthermore, the possibilities of DDM as 
stem cell carrier for alveolar bone regeneration 
would be wide open in dentistry.
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Abstract
Tissue-engineering is emerging field and can 
be considered as a novel therapeutic 
intervention in nerve tissue-regeneration. The 
various pitfalls associated with the use of 
autografts in nerve-regeneration after injuries 
have inspired researchers to explore the 
possibilities using various natural polymers. 
In this context, the present chapter summarizes 
the advances of the various types of natural 
polymeric scaffolds such as fibrous scaffolds, 
porous scaffolds, and hydrogels in nerve- 
regeneration and repair process. The 
functionalization of the scaffolds with wide- 
range of biomolecules and their 
biocompatibility analysis by employing 
various cells (e.g., mesenchymal, neural 
progenitor stem cells) along with the in vivo 
regeneration outcomes achieved upon 
implantation are discussed here. Besides, the 
various avenues that have been explored so far 
in nerve tissue-engineering, the use of the 
extracellular matrix in enhancing the 

functional polymeric scaffolds and their cor-
responding outcomes of regeneration are 
mentioned. We conclude with the present 
challenges and prospects of efficient explora-
tion of natural polymeric scaffolds in the 
future to overcome the problems of nerve- 
regeneration associated with various nerve 
injuries and neurodegenerative disorders.

Keywords
Nerve tissue-engineering · Natural polymers · 
Scaffolds · Stem cells · Extracellular matrix

27.1  Introduction

27.1.1  Micro-Architecture of Nerve 
Cell

The nervous system is the network of nerves 
responsible for the control, communication, and 
coordination in the body. Basically, it is divided 
into two parts, the peripheral nervous system 
(PNS) and the central nervous system (CNS). 
The CNS includes the brain and spinal cord and 
the PNS constitutes the nerves and ganglia. These 
acts as a communication link between the whole 
body and the CNS.  Neurons are the functional 
unit of the nervous system and are electrically 
excitable and terminally differentiated cells. It 
comprises of the cell body, neuronal axons, the 
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cells along with connective tissue stroma and a 
blood supply [88]. In comparison to CNS, the 
nerve cells of the PNS have some power of regen-
eration. The cell bodies of PNS neurons are 
located within spinal ganglia, their central con-
nections (nerve roots) and axons outstretch 
through peripheral nerves extending to target 
organs. PNS contain several types of nerves (e.g., 
afferent sensory nerves and efferent motor 
nerves) performing the coordination and func-
tional activities [115]. Each nerve is marked out 
from the surrounding by a protective layer called 
epineurium (Fig. 27.1). It consists of loose con-
nective tissue and blood vessels that supply the 
nerve. Within the epineurium, the nerve fibers are 
contained and aligned in fascicles. Each fascicle 
is marked out from the other fascicle by a layer 
called perineurium. It constitutes of dense peri-
neurial cells and collagen fibers which mark its 
outer layer. Nerve fibers in the fascicle are sup-
ported by a connective tissue in their surrounding 
called endoneurium. Reticular fibers, fibroblasts, 
collagen, extracellular matrix (ECM) constitute 
endoneurium [57]. Besides this, alignment of 
collagen fibrils around the nerve fibers gives rise 
to endoneurial tubes. The axons along with 
Schwann cells (SCs) are enclosed in these tubes. 
These endoneurial tubules provide the efficacious 
environment for SCs to proliferate and subse-
quent regeneration and reinnervation after an 
injury [124].

27.1.2  Importance of Schwann Cells 
in Nerve-Regeneration

Following injuries, only the nerve cells of the 
PNS have the power of regeneration and reinner-
vation. Therefore, permitting some degree of res-
toration of lost functions, depending upon the 
graveness of the injury and the quality of the 
repair in the PNS [4]. Besides, the change at the 
cellular and molecular levels in Wallerian degen-
eration, the internal natural ability of the injured 
neurons to regenerate equally contributes to 
nerve repair. SCs that are mainly responsible for 
the myelination of axons play a significant role in 
the regeneration of nerve cells. Distal SCs at the 
site of injury switches and dedicate themselves to 
nerve repair because of their intrinsic flexible dif-
ferent properties that are subdued in oligodendro-
cytes and neurons of the CNS. SCs at the site of 
injury proliferate and secrete trophic factors that 
guide the regeneration process of axotomized 
neurons [136]. These SCs align themselves along 
the basal lamina that leads to the formation of the 
bands of Büngner which offer cues to nerve fiber 
regeneration. The SCs along with their produced 
basal lamina (i.e., ECM) and these bands enhance 
and promote the guided nerve tissue-regeneration 
by providing the mandatory cellular and molecu-
lar factors, including the growth factors [49]. 
Thus SCs, besides the participation in myelina-
tion of axons also participate in guided nerve 

Fig. 27.1 Electron and light microscopy image of the 
nerve fascicle (F) at (a and b). The (c) highlights the 
microstructure of nerve showing three layers endoneurium 
(E/En), perineurium (P), and epineurium (Ep) around 

myelinated axons (MA). The white arrows represent the 
non-myelinated neurons. (Reprinted with permission 
from Elsevier [88])
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tissue- regeneration after an event of nerve inju-
ries. Later on, the recovering neurons will have 
the ability to reach the distal target organs and 
subsequent reinnervation restores the lost 
functions [80]. After peripheral nerve transection, 
the surgical repair is necessary, to permit the 
injured axons to grow into the distal degenerating 
nerve. [42]. This intervention reunites the two 
nerve stumps proximal and distal. However, this 
union being difficult, often misguide the axons 
towards the wrong distal path. Thus, the 
intervention of autologous grafts is commonly 
used to overcome this problem [42]. Autografts 
as the union between the stumps are most 
commonly used and have remained a gold 
standard for larger nerve defects that otherwise 
are difficult to repair. However, their clinical 
utilization implicates serious drawbacks like lack 
of donors, donor site morbidity, differences in 
nerve architecture and SC phenotype mismatch 
[39, 42].

27.1.3  ECM in Nerve 
Tissue-Regeneration

ECM of the nervous tissue is comprised of vari-
ous proteins, which include major fibrous pro-
teins collagen, laminin, fibronectin, fibrin [122]. 
Besides these proteins nidogens, vitronectin, and 
carbohydrate polymers covalently bound to pro-
teins called proteoglycans are also present. These 
include heparin, chondroitin, keratin, dermatan 
and their sulfates [73]. These ECM fibrous com-
ponents, especially collagen, laminin, fibronectin 
play an important role in the nerve-regeneration 
and hence are preferred in nerve tissue-engineer-
ing [57]. Nerve fibers in PNS are contained and 
aligned in the endoneurium as already mentioned 
above, where SC gets involved in the process of 
myelination of axons. Besides, their role in 
myelination of axons they also produce basal 
lamina in endoneurium. Basal lamina (i.e., ECM) 
is composed of collagen IV, laminin and fibro-
nectin [16, 25, 113].These basal lamina layers act 
as fibrous scaffolds and subsequent proliferation 
of SCs give existence to bands termed as bands of 
Büngner. Remembering the role of SCs and basal 

lamina contained in the endoneurium especially 
proteins, various approaches have been explored 
by tissue- engineering towards the reconstruction 
of nerve gaps after nerve injuries. Instead, of 
implantation of grafts nowadays tissue-engineer-
ing has achieved new heights in regenerative 
medicine. Moreover, the nerve tissue-engineer-
ing has also been studied greatly and engineered 
nerve tissue grafts are emerging as an encourag-
ing approach against conventional grafts [61, 
174, 175].

27.1.4  Tissue-Engineering

Tissue-engineering involves the fabrication of 
various biocompatible scaffolds for use in in vivo 
transplantation, to replace, repair and/or to 
regenerate damaged tissue [91]. Tissue- 
engineering has opened new opportunities and 
ways towards tissue-regeneration including nerve 
tissue-regeneration, thus paving a way to 
overcome the limitations of traditional routes for 
tissue-engineering like autologous grafts. 
Polymeric scaffolds of biopolymers are 
extensively used in the tissue engineering, as 
fibrous architecture and nanotopographies 
present in these scaffolds is similar to the ECM 
present in endoneurium in micro-structural nerve 
cell anatomy of PNS [9, 31, 128]. Thus, after an 
event of injury, these scaffolds are capable of 
guiding the regeneration process across injured 
lesions.

27.1.5  Fabrication 
and Functionalization 
of the Scaffolds for Nerve 
Tissue-Regeneration

Various polymeric scaffolds for nerve tissue- 
engineering have been fabricated for use in nerve-
regeneration. There are a number of approaches 
that can be utilized for their fabrication like elec-
trospinning [45], phase separation [110], self-
assembly [101], templating [154], drawing [79], 
vapor-phase separation [139], controlled solution 
synthesis [78], chemical oxidative polymerization 
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[40], bacterial cellulose synthesis [133] and 
extraction from plants [98]. Among these meth-
ods, electrospinning technique is the widely used 
strategy because of its simple, governable pro-
cessing parameters and fiber functionalization. 
Due to its versatility, this technique is also widely 
explored for fabrication of polymeric scaffolds in 
nerve tissue-engineering [17, 18, 38]. 
Electrospinning involves the fabrication of poly-
meric nanofibers from a liquid solution under the 
high electric field in kilovolts supplied by high 
voltage power supplier. The polymeric droplet 
when exposed to a high electric field gets a sur-
face positive charge, resulting in a Taylor cone 
generation. Subsequently, this droplet is driven in 
the form of a fiber having diameters at nano-scale 
depositing towards the grounded collector plate 
[18]. The fabrication of the scaffolds can be mod-
ulated by various parameters like viscosity, con-
ductivity, flow-rate, and tip to collector distance 
[18]. These parameters were simple and easily 
tunable providing the versatility of this technique. 
However, the fabrication of fibers with electros-
pinning mainly produces scaffolds with 2D archi-
tecture. The influence on electrospun 2D 
polymeric scaffolds during in vitro experiments 
with various types of cells has been extensively 
studied and certain drawbacks like size limita-
tions, low porosity, low thickness and reduced 
penetration in the scaffolds came forward [22].

Biomaterial-based polymeric scaffolds are 
frequently exploited in various nerve tissue- 
regeneration applications. A huge research has 
been performed and is currently going on towards 
the fabrication and functionalization of various 
scaffolds. Blending with proteins and growth 
factors has made good progress in tissue- 
engineering, but challenges of technical and 
ethical issues are of common concern [26] [164]. 
The role of ECM in nerve repair after injury has 
been aforementioned keeping this importance in 
consideration various ECM functionalized 
scaffolds have gained ample significance in 
recent years. The use of ECM-based polymeric 
scaffold in nerve tissue-regeneration has thus 
reduced the drawbacks associated with cells or 
growth factor functionalized scaffolds [174].

27.1.6  Natural Polymeric Scaffolds 
in Nerve Tissue-Engineering

Neural scaffolds composed of various biomateri-
als have been engineered and are providing new 
hopes to treat various neurodegenerative disor-
ders [122]. Studies have shown that ECM com-
ponents and biomimetic properties of the 
scaffolds exert significant influence on the direc-
tion and inclination of nerve cells, thus explore 
the prospects of nerve tissue repair [23, 52]. 
Natural biopolymers among biomaterials are 
extensively used for nerve tissue-engineering due 
to their unique advantages over synthetic poly-
mers [174].The properties that provide a natural 
polymers edge over synthetic polymers include 
biocompatibility, bioactivity, biomimetic proper-
ties, mechanical kinetics and controlled degrada-
tion [70, 138, 151].

Keeping in view the fact that cells reside in a 
3D niche in their physiological habitat, the 3D 
electrospinning has been introduced to fabricate 
nanofibers suitable to provide the cells exactly 
the same 3D niche as they have in their 
physiological environment [166]. This 3D natural 
polymeric scaffold promotes better proliferation, 
cell adhesion, migration, and differentiation [22]. 
These scaffolds display the almost similar surface 
topographies like native tissue, thus influence the 
cells in a positive way than 2D scaffolds. For the 
best efficiency of the scaffold function, the 
natural polymers have been used individually and 
as composites with other polymers [94]. The 
various forms of natural polymeric scaffolds so 
far employed in nerve tissue-engineering include 
fibrous scaffolds, solid porous scaffolds, polymer 
gels, acellular scaffolds [43, 105]. Natural 
polymeric scaffolds so far fabricated for nerve 
tissue-engineering are alginates [97], chitosan 
[117], collagen [37], silk fibroin [48], fibrin [10], 
gelatin [54], gellan gum [150] hyaluronic acid 
[155]. Further improvements in scaffold 
architecture have to be performed in order to 
overcome barriers like cell adhesion, proliferation, 
proper nutrient supply, cell infiltration and 
mechanical stability [2, 166]. The natural 
biomaterials manipulated by functionalization in 
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nerve tissue-engineering so far include collagen, 
laminin, silk fibroin, gelatin, gellan gum, fibrin 
and polysaccharides like chitosan, alginates and 
hyaluronic acid [49, 141]. Studies show that 
human neural stem cells adhered to various 
scaffolds like chitin-alginate have been studied 
for nerve tissue-engineering [108]. Similarly, 
mesenchymal stem cells derived acellular 
matrixes have been used to functionalize 
composite chitosan/silk scaffold nerve 
reconstruction [62]. Besides these, ECM 
functionalized scaffolds/hydrogels containing 
various biomaterial guides or conduits (e.g., 
chitosan guides) have also been fabricated with 
the aim to reconstruct peripheral nerve gap [58]. 
Moreover, various polymeric scaffolds have also 
been incorporated with different nanoparticles 
like poly (3, 4-ethylenedioxythiophene) and 
graphene oxide [168, 180]. These nanoparticles 
promote scaffold conductivity that in turn 
contributes towards physiologically relevant 
electrical stimulation, which is necessary for 
guided nerve-regeneration [67, 68, 170]. 
Furthermore, functionalization of scaffolds with 
various biomolecules (e.g., proteins) is of key 
importance in tissue-regeneration and it is helpful 
in achieving the desired experimental results 
[141]. Thus, remembering the importance of 
nerve tissue-regeneration post-injury and the 
different approaches by which various natural 
polymeric scaffolds can be tailor-manipulated 
and functionalized. The current chapter focuses 
on a brief insight towards nerve-regeneration and 
importance of these techniques in regeneration 
followed by detailed, recent progress and 
possibilities of the polymeric scaffolds in nerve 
tissue-regeneration.

27.2  Chitosan as Biomaterial

Chitosan (CS) is a polysaccharide derived from 
the chitin. Chitin is a homo-polysaccharide, 
found in the exoskeleton of crustaceans, molluscs, 
and insects, cell walls of green algae, yeasts and 
mushrooms [36, 137]. CS is obtained from the 
de-acetylation of the chitin and is composed of 
monomers D-glucosamine and N-acetyl- 

glucosamine joined together by a β(1–4) 
glycosidic bonds [135, 137]. The three functional 
groups, one amino group and two hydroxyl 
groups in the structure of CS contribute to its 
cationic nature and thus promote the affinity for 
anionic biomolecules [14, 123]. CS is the only 
natural polymer to possess this characteristic 
feature [19]. The content of amino groups and 
subsequent rate of acetylation/de-acetylation of 
monomers along with solubility, bioactivity, and 
biodegradability makes chitosan an amazing 
polymer in various fields, including tissue- 
engineering [36, 69].

27.2.1  Chitosan Scaffolds in Nerve 
Tissue-Engineering

CS has been widely explored in nerve tissue- 
engineering keeping in view its versatility [135, 
169]. Guan et  al. fabricated a novel composite 
scaffold with polymers of chitosan/gelatin 
functionalized with hyaluronic acid and heparin 
sulfate by freeze-drying technique [63]. 
Hyaluronic acid and heparin sulfate are 
glycosaminoglycans, important constituents of 
ECM.  Moreover, the hyaluronic acid has been 
investigated for playing a considerable role in 
scaffold designing for tissue-regeneration [81]. It 
is an anionic biopolymer and has also been 
investigated for the proliferation of murine neural 
progenitor cells (NPCs) in vitro, together with 
fibroblast growth factor (FGF-2) [30]. Moreover, 
hyaluronic acid along with FGF-2 also helps in 
generation of the neurons from fetal human NPCs 
at a large scale in the very precise time period 
[63, 126]. Freeze-drying is the commonly used 
technique to fabricate porous scaffolds where the 
freezing rate contributes towards the nucleation 
and considerable heterogeneity of the scaffold 
[125]. In the aforementioned study, the three 
composite scaffolds with varying content of CS/
gelatin/hyaluronic acid/heparin sulfate were 
fabricated. This was followed by analysis of their 
characteristics in comparison with the pure CS/
gelatin scaffold. These scaffolds have been 
characterized by analysis of their micro- 
architecture, physiochemical and biological 
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properties. The pore-size, total porosity and water 
absorption in composite scaffold showed no 
significant difference when the CS content was 
decreased and the content of gelatin with 
hyaluronic acid and heparin sulfate was increased. 
However, a significant difference in porosity was 
observed in comparison with CS/gelatin scaffold. 
Following the NPCs seeding on these scaffolds 
and during the subsequent investigation, it was 
observed that the composite scaffolds of CS/
gelatin/hyaluronic acid/heparin sulfate promoted 
the cell adhesion and cell viability. Moreover, 
upon proper induction, the neuronal 
differentiation potentiates considerably compared 
to CS/gelatin scaffolds [63].

ECM functionalized tissue-engineered nerve 
grafts are emerging as a primary and potential 
approach for nerve tissue-regeneration [174]. To 
overcome the limitations of autografts various 
artificial conduits or guides of natural polymers 
have been developed [60]. The nerve gap >15 mm 
is very difficult to reconstruct [42, 109] hence, 
various approaches are attempted to overcome 
this problem [60]. CS has been widely exploited 
for fabrication of nerve conduits with diverse 
functionalization. Gonzalez-Perez et  al. studied 
the regeneration power of CS tubes with varying 
degree of acetylation in the reconstruction of 
15 mm sciatic nerve gap in Wistar Hannover rats, 
compared with silicone tubes and nerve grafts. 
Compared to the nerve grafts where all rats 
showed efficient regeneration and reinnervation, 
about 100%. It was observed 57% in rats with CS 
guide having (5% acetylation) and with silicone 
tubes the rats completely failed to regenerate 
[58]. Considering this generalization, another 
study fabricated and functionalized the CS 
conduits with the incorporation of the CS film in 
the hollow CS conduits. The regeneration 
outcome was analyzed in the reconstruction of 
15 mm long sciatic nerve gap in both healthy and 
diabetic rats. Results conclude that the 
regeneration potential of these conduits almost 
approached the regeneration potential of rats 
with nerve grafts [116]. Further, exploration of 
the similar concept by functionalization of CS 
tubes using collagen enriched with laminin and 
fibronectin resulting in stabilized and the 

hydrated scaffolds/constructs. The efficiency of 
these scaffolds enclosed CS tubes were tested in 
the reconstruction of 15  mm nerve gap in rats. 
The study demonstrated that the collagen/
fibronectin enriched constructs (stabilized 
scaffold) have revealed increased myelinated 
fibers, along with increased SC migration and 
reinnervation compared to the collagen/laminin 
constructs (stabilized scaffold) and the 
corresponding hydrated scaffolds [59]. Following 
the nerve transection, the SCs at the site of injury, 
possess the ability of proliferation, differentiation 
and subsequent migration, thereby acting as 
guidance cues for axon-regeneration [121]. 
Keeping this in consideration, transplantation of 
SCs into nerve conduits has recently been 
explored and the apparent addition of neurotrophic 
factors demonstrated axonal and functional 
recovery of nerves [65, 111, 130]. Further, as one 
more step towards efficient nerve-regeneration 
by CS, conduits incorporated with the hydrogels 
containing engineered SCs have been investigated 
by Meyer et al. Hollow CS nerve conduits with 
5% acetylation and functionalization of the 
conduit lumen by genetically engineered rat SCs 
and FGF-2 enriched hydrogel scaffold have been 
used in this study. Overexpression of glial- 
derived neurotrophic factors (GDNF) and FGF-2 
by the SCs demonstrated that release of FGF-2 
promoted the efficiency of regeneration by the 
conduits. Further, the release of FGF-2 by SCs 
increased the functional recovery up to 57% in 
bridging the 15  mm sciatic nerve gap, in 
comparison to the rats where autografts were 
implanted. On the other hand, GDNF failed to 
perform these functions [117].

Nerve cells are electrically active cells, gen-
eration of electrical impulse and subsequent 
transfer of stimuli plays an important role in the 
functioning of the nervous system [159]. Recent 
research focuses on exploiting this electrical 
property of the nervous tissue in the fabrication 
of the electro-active biomaterial for nerve tissue- 
regeneration [15, 66]. The electrical, physical 
and chemical properties of these electro-active 
scaffolds can be manipulated according to 
experimental requirements related to the 
particular application [82]. Polymers such as 
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polypyrrole, polyaniline, poly(3, 
4-ethylenedioxythiophene) (PEDOT) are known 
for their conductive nature due to efficient 
electro-optical properties and thus are 
contributing significantly in various biomedical 
applications [41, 68, 171]. Due to the 
hydrophilicity and poor biodegradability of these 
conductive polymers, they are often utilized in 
tissue-engineering as blends of natural polymers 
[64]. Wang et  al. fabricated the conductive 
polymer with PEDOT nanoparticles enriched 
CS/gelatin scaffold by in-situ interfacial 
polymerization. In this study, the CS/gelatin 
hydrogel has been used as a scaffold and 
subsequent enrichment with varied content of 
PEDOT nanoparticles promoted its electro- 
optical properties. The analysis of various 
characteristics of these scaffolds demonstrated 
the successful enrichment of 50  nm diameter 
PEDOT nanoparticles on the scaffolds (Fig.27.2). 
Further, there was an increase in the electrical 
conductivity, thermal stability besides improved 
hydrophilicity and mechanical properties 
compared to pristine CS/gelatin. Consequently, 
there was a decrease in biodegradation and water 
absorption when compared to CS/gelatin 
scaffolds. Biocompatibility analysis indicated 

that upon cell seeding these scaffolds enhanced 
the cell adhesion and proliferation of neuron-like 
rat pheochromocytoma (PC12) cells. The gene 
and subsequent high protein expression analysis 
concluded that in these cells the neurite growth 
was enhanced using these scaffolds and thus 
suggests that it may prove a significant scaffold 
in nerve-regeneration [168].

The tailoring of the scaffolds towards their 
ultimate excellence, various functionalization 
approaches has been explored towards this goal. 
Tissue-derived ECM, both neural and non-neural 
has been explored in the functionalization of 
neural polymeric scaffolds [28, 89]. These 
scaffolds have been successful in nerve repair, 
but counter certain limitations like lack of 
availability of tissue, poor mechanical properties 
and uncontrollable degradation [11, 100]. To 
overcome these limitations, new research 
approaches explore the possibilities of the cell- 
derived ECM as a substitution to the tissue- 
derived ECM [102, 162]. Furthermore, Gu and 
coworkers [62] functionalized the chitosan nerve 
conduits by silk fibroin (SF) filaments 
incorporated with ECM-derived from bone 
marrow mesenchymal stem cell (BMSC) for 
nerve repair in rats. BMSCs have been exploited 

Fig. 27.2 Histomorphological analysis of H&E staining 
of scaffold constructs after 3  days of culture; (a) CS/
Gelatin; (b) 0.5 PEDOT/CS/Gelatin; (c) 1PEDOT/CS/
Gelatin; (d) 2PEDOT/CS/Gelatin; (e) 4PEDOT/CS/
Gelatin; (f) CS/Gelatin devoid of cells: scale bar = 200 μm 
and scanning electron microscopy images of scaffold 
constructs of CS/Gelatin without (a1 &b1) and with 

PEDOT(2PEDOT/CS/Gelatin) and cells (a2 & b2); scale 
bar of (a1, a2) & (b1, b2) =200 μm and 50 μm, respectively, 
demonstrating successful enrichment of 50 nm diameter 
PEDOT nanoparticles on the scaffolds. (Reprinted with 
copyright permission from Royal Society of Chemistry 
[168])
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extensively in tissue-engineering due to their 
ability to differentiate into SC-like cells, both in 
vitro and in vivo [33, 107]. Scaffolds both CS 
conduit and SF have been prepared and 
subsequently cultured with BMSCs in this study. 
This was followed by the de-cellularization of the 
BMSCs thus, results in the production of ECM 
functionalized CS-SF scaffold. Results declared 
that this scaffold potentiates the regenerative 
process of implantation in rats to bridge the 
10  mm long sciatic nerve lesion compared to 
pristine CS-SF scaffold [62]. Adding more to 
this, Xue et al. utilized the dog BMSCs-derived 
ECM to functionalize the CS-SF scaffold. The 
de-cellularization of the BMSCs onto these 
scaffolds was used to reconstruct the 60  mm 
sciatic gap in dogs. Histological analysis of this 
scaffold after implantation revealed the promotion 
of regeneration and reinnervation processes. 
Further, it was observed that the regeneration 
output was similar to that of autografts [174].

27.3  Collagen as Biomaterial

Collagen the main structural protein in verte-
brates has been extensively investigated for 
tissue- engineering. Collagen is composed of 
three polypeptide strands helically wound about 
each other, forming the triple-stranded α helical 
structure [24, 176]. Following synthesis from the 
endoplasmic reticulum and subsequent delivery 
to ECM, collagen fibrils assemble in the form of 
a scaffold-like structure by cross-linking with 
each other for this enzyme lysyl oxidase plays a 
significant role [83]. Collagens besides estab-
lishing structural unity by making ECM and 
maintaining functional aspects of the connective 
tissues present there are also responsible for 
proper cell adhesion, proliferation, differentia-
tion, migration and cell viability [20, 176]. 
Collagens being the most abundant constituent 
in ECM have been widely explored for general 
tissue- engineering including nerve 
tissue-engineering.

27.3.1  Collagen as a Scaffold 
for Nerve Tissue-Engineering

The investigations for using collagen as a bio-
material scaffold for nerve tissue-engineering 
are increasing in recent years [48]. The proper-
ties of the collagen especially its abundance in 
ECM has made it the most explored polymer in 
tissue- engineering. Besides the functionaliza-
tion of scaffolds with various biomolecules, the 
functionalization with NPCs has also gained 
importance [131]. The NPCs as cells for func-
tionalization are efficient in regenerating neural 
tissues as they have the capacity of self- renewal 
and ability to differentiate into various glial 
cells [134]. In this context, the regeneration 
power of the hNPC-derived astrocytes (hNP-
AC) adhered on collagen scaffolds were fabri-
cated by a directional freezing process, followed 
by their interactive studies with the migrating 
SCs and fibroblasts. Both 2D and 3D cultures 
used in this study concluded that human neural 
progenitor cells hNPCs possess strong and 
effective axon- regeneration power in dorsal 
root ganglia. Following cell seeding, a homog-
enous distribution of the hNP-AC was seen 
onto the 3D collagen scaffolds (Fig. 27.3) [52]. 
The axon growth was enhanced by cell seeding 
when compared to non-seeded scaffolds. 
Further, interactive studies of SCs and the fibro-
blasts with the hNP-AC revealed strong inter-
mingling of these cells. Therefore, demonstrates 
the effective interaction between the hNP-AC, 
SC, and fibroblasts. These results are contradic-
tory with general properties of SCs/astrocytes 
and fibroblasts/astrocytes association where 
they are found in distinct localization [104, 
144]. Thus, investigation demonstrated that the 
3D collagen scaffold surface morphology sub-
stantially excluded the property of CNS and 
PNS, cells from being distinctive in  location 
and thus this property can be of great signifi-
cance for implantation and for potentiating the 
axon- regeneration post-nerve injuries 
(Fig. 27.4) [52].
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Similarly, a 3D scaffold of collagen I for mim-
icking the nervous tissue was developed and 
functionalized with the rat NPCs [53]. For the 
proliferation of these cells, the induction with 
epidermal growth factor and basic FGF-2 support 
the neuron growth and promotes the differentia-
tion of the cells into neurons and astrocytes [127]. 
Recently, the composite scaffold was developed 
by exploiting the collagen, hyaluronic acid and 
alginates. The scaffold was prepared by the self- 
assembly fabrication process with methacrylic 
anhydride functionalization succeeded by photo- 
crosslinking and grafting with GRGDSP/Ln5-P4.
The corresponding characteristics of the scaf-
folds with varied content revealed that (collagen/
methacrylic anhydride, hyaluronic acid/
methacrylic anhydride and alginates/methacrylic 
anhydride) in the ratio (1:2:1) proved to be 

optimum concentration. Upon seeding with 
induced pluripotent stem cells this scaffold stim-
ulated the differentiation of these cells into neu-
rons, thus demonstrated that it can be used as a 
potential differentiation inducing biomaterial for 
regeneration [94]. Besides, the uses of collagens 
as a main polymer in the scaffolds its application 
has been explored in the development of the 3D 
microfluidic system for neuronal differentiation. 
For instance, the 3D collagen hydrogel was fabri-
cated to immobilize the hNSCs and subsequently 
used to occupy the central channels in the micro-
fluidic device. Further, the aim of this study was 
to evaluate the differentiation signals coming 
from the human mesenchymal stem cells hMSCs 
overexpressing the GDNF that inhabited the 
channels surrounding the microfluidic device 
containing hNSCs. The resultant neuronal cells 

Fig. 27.3 SEM micrographs A (scale bar 200 μm), B and 
C (scale bar 50  μm) of the 3D collagen scaffold 

representing the micro-architecture of scaffold. Image D 
represents the DAPI labeled hNP-AC cells. (Reprinted 
with permission from Elsevier [52])

Fig. 27.4 Representation 
of GFAP positive (green) 
hNP-AC associated with 
regenerating axon bundles 
NF200 positive (red). 
Double headed arrow 
represent micro-channel 
orientation reprinted with 
copyrights permission 
from Elsevier [52]
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differentiated under the influence of the hMSCs, 
exhibited neuron-like features. The in vivo results 
of this study revealed that the 3D microfluidic 
device can be used as an efficient material for 
investigation of signals from transplanting stem 
cells to stimulate endogenous neuronal behavior 
of the hNSCs [177]. Moreover, collagen I was 
also utilized for the functionalization of the poly-
caprolactone (PCL) nano-fibrous scaffold fabri-
cated by electrospinning technique [172]. PCL 
being the polymer with good mechanical proper-
ties [76], and its efficiency to hold neural cells in 
vitro and in vivo are well known [165]. MSCs 
derived from the Wharton’s jelly were seeded and 
then subsequently differentiation by using reti-
noic acid and sonic hedgehog promoted them 
into motor neuron-like cells [12]. Furthermore, 
the incorporation of the collagen as a graft into 
scaffolds revealed the enhanced differentiation 
potential. These studies reveal the varied 
dimensions and prospects of the collagen to be 
used in nerve tissue-regeneration.

27.4  Hyaluronic Acid 
as Biomaterial

Hyaluronic acid, a heteropolysaccharide is a non- 
sulfated glycosaminoglycan (GAG) which is 
composed of repeating disaccharide units of 
[acidic sugar and amino sugar]. The acidic sugar 
in the hyaluronic is D-glucuronic acid and amino 
sugar is N-acetyl-D-glucosamine [84, 142]. 
Besides, the role of the hyaluronic acid in 
immobilization of the various drugs, antibodies, 
growth factors for their controlled release, it has 
been widely explored for varied applications in 
wound healing, intra-dermal implants and in 
nerve tissue-engineering [47, 72].

27.4.1  Hyaluronic Acid Scaffolds 
in Nerve Tissue-Engineering

Hong et  al. demonstrated the hyaluronic acid 
-catechol conjugate can be used in the fabrication 
of the hydrogel scaffolds [74]. Catechol, present 
in the proteins of the marine mussels Mytilus 

edulis possesses both adhesive and cohesive 
properties [163]. The adhesive and cohesive 
properties play important role in functionalization 
of the scaffolds [27]. Hong and co-workers 
developed a novel polymeric conjugate by 
dopamine coupling with the COOH group of the 
hyaluronic acid at pH  6 that explored the 
properties of both hyaluronic acid and catechol. 
Following characterization, the conjugate showed 
efficient adhesive and the cohesive properties 
under acidic (pH less than 2) and alkaline 
conditions (pH 8–9) respectively. Further, in this 
study, cross-linking between the catechol 
moieties in the conjugate solution was induced 
upon addition of oxidizing agent (i.e., sodium 
periodate) under alkaline conditions thus, results 
in the formation of the hydrogel. This lyophilized 
hydrogel was then used as a scaffold for culturing 
of the hNSCs. Various synthetic polymers 
functionalized with this conjugate revealed that 
hyaluronic acid-catechol conjugate promotes the 
cell adhesion and differentiation, thus can be 
considered as a biopolymer for culturing hNSCs 
for used in nerve tissue-regeneration [74]. The 
3D layered hydrogels can also be fabricated by 
density gradient multilayer polymerization which 
involves modification of the cell suspension 
containing polymer by small molecules that act 
as density influencers [86]. Therefore, in another 
study, Zhang et  al. explored the same approach 
for their study [179]. The methacrylate 
functionalized hyaluronic acid was used followed 
by varied exposures of ultraviolet A to produce 
hydrogels with different firmness. Based on this, 
the hydrogels with pore size 10 μm and firmness 
100  Pa were used further in this study. The 
ultimate aim of this study was to investigate the 
movement of the NPCs towards various glial 
cells like astrocytes/neurons. Further, 
investigation of these movements in patients with 
Rett syndrome (i.e., genetic X-linked syndrome 
with the mutation in the methyl-CpG binding 
protein-2 gene) was carried [6]. This gene 
governs the neuronal development and mutation 
in this can halt the development process and thus 
results in neuro-developmental syndrome [32]. 
So, a comparative investigation based on the 
migration of the NPCs derived from the induced 
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pluripotent stem cells (iPSCs) and mutant iPSCs 
demonstrated that upon induction by either 
astrocytes or neurons the mutant iPSCs-derived 
NPCs reveal halted migration. During the 
harvesting mature neurons confirmed flawed 
synaptogenesis and neurite outgrowth compared 
to wild-type NPCs which yield electro-active 
neurons [179]. This excellent work demonstrated 
the application of hydrogel scaffolds in 
monitoring defects associated with various 
disorders besides their role in regeneration. 
Therefore, exploring the various dimensions of 
the polymeric scaffolds to be used in regenerative 
medicine.

Another step towards finding solutions to vari-
ous challenges to overcome barriers faced in 
nerve tissue-regeneration. The development of 
hyaluronic acid/laminin hydrogel was prepared 
by using thiol group functionalized hyaluronic 
acid followed by its cross-linking to poly 
(ethylene glycol) divinyl sulfone with laminin 
[1]. This was followed by fabrication using NPCs 
obtained from the medial and lateral ganglionic 
eminences of mice. The broad aim of the study 
was to evaluate the hyaluronic acid/laminin 
hydrogel scaffold for the retention of the 
transplant and migratory response to SDF-1α in 
vivo using mice as animal models. The SDF-1α 
also called as CXCL12 is the strong chemokine 
involved in directing the cells during the 
developmental process. The interaction of the 
SDF-1α with its receptor CXCR4 guides 
migration of the germ cells besides its role in the 
immune cell development process [44]. 
Moreover, the signaling cascade triggered by the 
binding of SDF-1α with its receptor CXCR4 is 
necessary for the preservation of BMSC and 
NSC niches at post-development stages [153, 
160]. It has been reported that SDF-1α involved 
in mobilizing the marrow-derived stem cells and 
NPCs towards injury sites [77].The transplantation 
of NPCs within HA/laminin hydrogel potentiates 
the retention of cells significantly in comparison 
to bolus transplantation of NPCs on 1st and 3rd 
days. Moreover, upon exogenous introduction of 
the SDF-1α just after the NPCs transplantation, 

the scaffold promotes the NPCs migration sig-
nificantly towards the SDF-1α [1].

Another study indicated the nerve-regenera-
tion potential of the human periodontal ligament 
stem cells (PDLSCs) and gingival MSCs after the 
fabrication of 3D scaffolds [8] PDLSCs being 
present in the oral cavity and in the tissue wastes 
of dental clinics, various researchers have con-
firmed their capacities for multi-lineage differen-
tiation [119, 120]. The hyaluronic acid/alginate 
hydrogel of varied alginate/hyaluronic acid con-
tents were investigated and the scaffold with algi-
nate: hyaluronic acid content in the ratio of 1:1 
showed lowest elastic modulus compared to other 
hydrogels including the alginate hydrogel alone. 
The proliferation study of the cells revealed that 
the high proliferation rate of the gingival MSCs 
corresponds to the hydrogels with a decrease in 
elasticity. However, no significant difference in 
the proliferation of the PDLSCs and hBMSCs 
was revealed with varying elasticity. This study 
concludes that alginate/hyaluronic acid scaffolds 
can prove a potential efficiency to be used in the 
nerve-regeneration [8]. To promote excellent cell 
adhesion, proliferation and the differentiation of 
the neural tissue scaffolds the efficient porosity of 
the scaffold is mandatory for a bio-mimicking [7]. 
Recently, as a step to improvise the aforemen-
tioned property of the engineered scaffolds, the 
study evaluated the use of the potassium di-hydro-
gen phosphate commonly called as urea crystals 
to induce pores to the hyaluronic acid hydrogels. 
These urea- templated hydrogels were investi-
gated for bioactivity upon seeding with the NPCs 
and SCs. The results reveal that NPCs has shown 
minimal differentiation in templated scaffolds 
thus preserving their undifferentiated status com-
pared to the non-templated control hydrogels. On 
the other hand, the SCs cultured on the template- 
scaffold showed differentiation (though at lower 
rates) compared to controls [155]. This work sug-
gests that efficient and judicious application of 
this approach with various biomolecules acting as 
a sacrificial template can be explored to create 
scaffolds architecturally similar to neural ECM 
for better regeneration outcomes.
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27.5  Silk Fibroin 
as the Biomaterial

Silk a natural macromolecular polymer is synthe-
sized by various Lepidopteran larvae in special-
ized glands and the following secretion into the 
lumen of the epithelial cells, it is spun into the 
fibers. The SF and the sericin are the main pro-
teins present in the silk with SF occupying core 
position and the sericin marks out its periphery 
[5, 143, 161]. Mostly the SF-derived from the 
mulberry silkworm Bombyx mori has been com-
monly used so far in tissue-engineering [87, 145].

27.5.1  Silk Fibroin as a Scaffold 
for Nerve Tissue-Engineering

However, SF from the non-mulberry silkworms 
such as Antheraea mylitta has also been explored 
for biomedical and bio-engineering applications. 
In this context, Subia et al. used the freeze-drying 
approach of fabrication of scaffolds to evaluate 
the potential of SF derived from both the sources 
Bombyx mori (mulberry) and Antheraea mylitta 
(non- mulberry) for acting as a scaffold for 
hNPCs. Following fabrication, the 
characterization of the scaffolds revealed that the 
pore size and porosity of the scaffold do not show 
any significant difference. Hence, both are 
efficient for cell seeding. Moreover, hNPCs 
following seeding were investigated for 14 days, 
comparatively on both the scaffolds and results 
demonstrate that both have good cell viability 
and ability to potentiate the proliferation with a 
substantial increase in the hNPCs marker nestin. 
Further, there was no significant difference 
between the results shown by the two scaffolds 
except for scaffold prepared from the non- 
mulberry source show a minimal increase in the 
cell proliferation [152]. Adding more, Xu and 
coworkers developed the composite scaffold of 
SF and collagen for sciatic nerve-regeneration in 
the rats [173]. In this case, the SF and collagen 
hydrogel was prepared separately following the 
method elsewhere [140, 146]. Then for the 
composite scaffold preparation the SF: collagen 
solution in the ratio of 4:2 was injected into the 
casting mold and via lyophilization, de-moulding 

was achieved. The functionalization of the 
scaffold was achieved by the SCs isolated from 
the neonatal rat sciatic nerve and adipose-derived 
stem cells (ADSCs) obtained from the inguinal 
region of adipose tissue. After characterization, 
these functionalized scaffolds were transplanted 
in the sciatic nerve of rats after a surgical 
procedure. The electrophysiological examination 
after implantation revealed no significant 
variations in compound muscle action potential 
amplitudes and motor nerve conduction velocity 
between the rats transplanted with the tissue- 
engineered scaffold and those bearing autografts. 
However, these results were significantly lower 
in rats transplanted with the pure scaffold. 
Moreover, scaffolds were successfully applied to 
bridge the 1  cm gap in sciatic nerve of rats 
(Fig. 27.5) [173].

The SF conduits and simultaneous function-
alization of the lumen in the conduit by SF fibers 
were achieved by the process of the electrospin-
ning by Xue and colleagues [175]. The aim was 
to test these conduits for the reconstruction of 
the 10 mm gap in the sciatic nerve in dogs. Post-
surgery, the dogs were investigated for 12 months 
for behavioral and functional recovery and the 
results demonstrated that SF-based scaffolds 
revealed almost the same results as revealed by 
dogs transplanted with autografts. Thus, the 
study declared that SF-based scaffolds can effi-
ciently be used as a possible alternative for 
nerve-regeneration. Dual functionalization by 
the brain-derived neurotrophic factor (BDNF) 
and vascular endothelial growth factor (VEGF) 
of SF scaffolds fabricated by electrospinning 
technique was achieved by Liu et al. [103]. The 
BDNF is a neurotrophic factor and is responsible 
for promoting the nerve-regeneration process 
[3]. On the other hand, VEGF is a strong growth 
factor involved in the process of vascular perme-
ability and angiogenesis [3]. Moreover, SCs 
were used in this study for the biocompatibility 
and bioactivity analysis of scaffolds and factors 
respectively. Following the implantation in the 
mouse model, the results revealed the increased 
revascularization and nerve-regeneration com-
pared to the pristine SF scaffold (i.e., without 
factors) at 4th and 8th weeks post-transplanta-
tion (Fig. 27.6) [103].
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Fig. 27.5 Representation 
of regenerated nerves after 
implantation with plain SF/
Collagen scaffold, 
tissue-engineered nerve 
conduit (TENC), autograft 
and, control rats while 
investigating the 
reconstruction of 1 cm 
nerve gap in sciatic nerve.
[173]

Fig. 27.6 Immunohistochemical staining for vessel eval-
uation at the panel (a) and innervation in SF scaffolds with 
and without dual factors at 4 and 8 weeks post- implantation 
at the panel (b). The asterisk sign denotes scaffold frag-

ments and yellow arrows the vessels and neuronal lin-
eages with copyright permission from Royal Society of 
Chemistry [103]
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Recently, another step towards overcoming 
the problems faced in the regeneration process 
after an event of injury, Zhao and co-workers 
fabricated the SF scaffold by electrospinning. 
Furthermore, the simultaneous incorporation of 
graphene-oxide was achieved by sonication thus, 
resulting in the composite graphene-oxide 
enriched SF scaffolds [180]. Graphene is a 
carbon-based 2D material with a honeycomb-like 
lattice configuration, having a single layer of sp2 
hybridized carbon atoms [71]. Besides, exploring 
various avenues in different fields such as targeted 
delivery, biosensing, detection and use in various 
electro-optical and storage devices [181]. The 
pitfalls like high hydrophobicity, lack of 
biocompatibility and the low solubility limit its 
applications in certain fields, including tissue- 
engineering [178]. Keeping in view, the electro- 
active property of the graphene and that of 
nervous tissue (i.e., being electrically-active) 
Zhao and colleagues explored the incorporation 
of the graphene in a polymeric scaffold for nerve 
tissue regeneration. Upon investigating the 
various characteristics of scaffolds with varied 
content of graphene, the scaffold with 10% was 
declared efficient for further use. Moreover, upon 
seeding of SCs onto this scaffold the cell 
adhesion, survival and proliferation were carried 
efficiently. This study thus provides the 
inspiration to manipulate the scaffolds with 
electro-active materials for efficient regeneration 
results [180]. Besides the exploration of various 
natural polymers in nerve tissue regeneration, the 
blends of natural/synthetic polymers have also 
been widely applied in regenerative processes 
including nerve regeneration [145].

In this context, the poly (lactic acid) (PLA)/SF 
composite scaffold was fabricated and 
incorporation of the nerve growth factor (NGF) 
was achieved by co-axial electrospinning. 
Moreover, the plasma treatment [178] after the 
fabrication was given and the scaffold was fur-
ther studied for the sustained release of the 
NGF. The differentiation of the PC12 cells was 
also investigated onto the scaffolds and the results 
confirmed the ability of the plasma-treated 
scaffolds as a suitable substrate for regeneration 
compared to the pure scaffold (i.e., devoid of 

plasma treatment) [157]. Similarly, the compos-
ite scaffold of SF derived from the Antheraea 
pernyi [178] and poly(L-lactic acid-co-caprolac-
tone) was fabricated by electrospinning. 
Following the various evaluations, this composite 
scaffold was declared significantly efficient to 
support cell survival and proliferation compared 
to poly(L- lactic acid-co-caprolactone) co-poly-
mer alone upon seeding with SCs [167]. Adding 
more, the investigations of various characteriza-
tions and biocompatibility/bioactivity testing of 
the laminin functionalized SF/poly(ethylene 
oxide) scaffolds after seeding of SCs reveal their 
application in nerve regeneration process [132].

27.6  Gelatin as Biomaterial

Gelatin is a natural polymer and is obtained by 
partial hydrolysis from the collagen. It is a soluble 
fibrous protein and is a constituent of the bones, 
cartilages, and skins [75]. The abundant sources 
of gelatin are pig skin, bovine hides, cattle and 
fish bones with the approximate concentration of 
46%, 29.4%, 23.1% and 1.5%, respectively [56, 
85]. Besides the biocompatibility and biodegrad-
ability, the gelatin is easily available and less 
expensive commercially, therefore, it has been 
widely used in bio-engineering field [34, 92].

27.6.1  Gelatin as a Scaffold for Nerve 
Tissue-Engineering

In this regard, gelatin extracted from genipin was 
successfully electrospun into nanofibers using 
electrospinning technique. Further, this gelatin 
was enriched with ECM derived from the 
de-cellularized brain of rat [13]. The broad aim of 
their study was to evaluate this ECM enriched 
scaffold in nerve tissue-engineering. Following 
the fabrication and succeeded by the cross- 
linking with gelatin the biocompatibility and 
bioactivity analysis of these scaffolds was 
performed by seeding with rat MSCs. The results 
reveal the cytocompatible property of these 
scaffolds for MSCs and marrow mononuclear 
cells. The hematoxylin and eosin staining 
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revealed the expected fibroblast-like extended 
morphology and DAPI staining reveals the pro-
liferation of both cell types on the ECM enriched 
mats (Fig.  27.7). This in vitro study shows the 
potential modality to be explored in near future 
for in vivo studies so that it can be regarded as a 
step in the context of tissue- engineering towards 
CNS regeneration [13]. Gnavi et  al. proposed 
another step towards the nerve-regeneration pro-
cess. In this case, gelatin hydrogel scaffolds were 
encapsulated with VEGF to screen the ability for 
controlling the release of the cargo and role of 
enclosed VEGF in nerve tissue-engineering [54]. 
The agar/gelatin composite in the ratio 
20:80 wt.% were prepared and followed by the 
cross-linking with the genipin [158]. Following 
this, the incorporation of the VEGF-A165 was 
initiated [129]. The release of the VEGF from the 
hydrogel was investigated by ELISA immunoas-
say and it was confirmed that it is successfully 
released from the hydrogels. For bioactivity anal-
ysis of the VEGF post-release studies, the human 
umbilical vein endothelial cells (HUVECs) were 
used. The screening ability of the VEGF to phos-
phorylate its downstream effectors like VEGFR-
2, Erk1/2 and Akt in its signaling cascade 
successfully revealed its bio-activity. It was also 
demonstrated that VEGF-A165 released from 
hydrogel maintains its angiogenic effect upon 
investigation on HUVECs [21] and potentiates 
the axon outgrowth as evaluated on the DRG 

explants derived from the adult female Wistar 
rats. Further, investigation of the scaffold 
enriched with VEGF-A165 was carried by seed-
ing of DRG explants on the hydrogel and results 
demonstrate that neurite growth was increased. 
This proves that gelatin-based hydrogels are an 
efficient source for encapsulation of bioactive 
molecules for application in regenerative medi-
cine [54].

The encapsulation of various factors in poly-
meric scaffolds has been implicated further in 
bio-engineering. For example, the NGF encapsu-
lated with alginate microspheres and subse-
quently, their integration in nano-fibrous gelatin 
scaffolds was achieved [110]. This approach uti-
lizes the properties of both the alginates and gela-
tin in tissue-engineering process. These 
nano-fibrous scaffolds were prepared by phase 
separation technique [112], under the influence 
of paraffin which acts as a porogen. Following 
the characterization, these scaffolds were evalu-
ated for the regeneration process by seeding of 
PC12 cells derived from the rat adrenal. The 
results demonstrate that microsphere loaded scaf-
fold revealed the controlled release of the bioac-
tive NGF, as a result, the neurite growth was 
observed in PC12 cells. Therefore, suggesting 
that this scaffold may have potential application 
in exploring various studies towards nerve-regen-
eration in CNS [29].

Fig. 27.7 (a) Hematoxylin, (b) Eosin and (c) DAPI staining of decellularized brain-ECM with rat MSCs seeded, scale 
bar = 25 μm with copyright permission from Elsevier [103]
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27.7  Alginates as Biomaterial

Alginate is a natural anionic polymer, obtained 
from Phaeophyceae (brown algae), including 
Laminaria hyperborea, Laminaria digitata, 
Laminaria japonica, Ascophyllum nodosum and 
Macrocystis Pyrifera [156]. Moreover, the 
alginates are also synthesized by some bacterial 
species, including Azotobacter and Pseudomonas. 
Alginates synthesized by these bacterial species 
furnish the well-defined chemical structure and 
physical properties compared to alginates derived 
from brown algae. They have been widely studied 
due to their potential applications in the bio- 
engineering field.

27.7.1  Alginates as a Scaffold 
for Nerve Tissue-Engineering

The mild gelation properties of alginates in the 
presence of divalent cations besides the 
biocompatibility and low toxicity have made it a 
suitable candidate to explore its applications in 
various forms of scaffolds for use in tissue- 
engineering [95]. These gelling properties have 
explored many avenues and thus have paved 
various ways towards the utilization of this 
property in the fabrication of scaffolds. Li et al. 
utilized this gelling property of alginates to 
encapsulate NSCs [97]. In this case, sodium 
alginate and calcium chloride in varying 
proportions were prepared and left for gelling to 
trigger the formation of the beads. After 
encapsulation of the cells in calcium-alginate, the 
various parameters like gelling conditions, cell 
distribution and proliferation were analyzed for 
the formation and dissociation of the beads. 
Moreover, the beads with the diameter 2 μm were 
prepared with 1.5% sodium alginate and 3.5% 
calcium alginate solution with gelling time for 10 
minutes was found efficient for culture. The 
harvest rate of over 88.5% and the population of 
the cells encapsulated almost increased two fold 
during the process. Results demonstrated that 
these beads can be used as a potential avenue for 
cell expansion as a 3D scaffold for regeneration 
[97]. Similarly, alginate micro-beads enriched 

with the embryonic stem cells were investigated 
and upon induction with retinoic acid, the 
differentiation of the stem cells into neural 
lineage potentiates [108]. Lu et  al. fabricated 
fibrous scaffold by the interfacial electrostatic 
interaction of sodium alginate and chitin and 
simultaneously human pluripotent stem cells 
were immobilized on them. Following the 
induction, with the appropriate neural markers 
noggin/retinoic acid the cells expressed neural 
progenitor markers thus results in the formation 
of the mature neurons. Upon implantation in the 
severe combined immunodeficiency SCID mice, 
these neurons act efficiently without tumor 
formation, thus opening new ways of 
manipulating stem cells for nerve tissue- 
regeneration [108]. Moving further ahead, the 
alginates have been applied to immobilize the 
hNSCs and for investigation of the growth, 
expansion and differentiation of these cells, the 
3D cellular microarray platform was developed. 
The investigations revealed the expansion of 
hNPCs and cell survival (though slowly) than 
conventional 2D scaffolds. Further, differentiation 
into glial cells was revealed, albeit decrease in 
neural progenitor markers. Moreover, this 
approach was utilized to screen the toxicity 
effects of various molecules on hNSCs [114].

27.8  Other Polymers in Nerve 
Tissue-Engineering

There are several other polymers that have been 
exploited for tissue-engineering, specifically 
nerve tissue-engineering such as (e.g., gellan 
gum and fibrin) besides the aforementioned nat-
ural polymers. Gellan gum is an anionic polysac-
charide produced by bacteria Sphingomonas 
elodea and is approved by the Food and Drug 
Administration and European Medicines Agency 
[51]. Gellan molecule upon de-acetylation yields 
a tetrasaccharide of repeating units of β-D-
glucose, β-D-glucuronic acid and α-L-rhamnose 
in the ratio of 2:1:1 [118]. It has been also 
explored for engineering scaffolds for tissue-
engineering in recent years [50]. The pitfalls like 
weak mechanical properties of the traditional 
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methods [96]. The ionotropic cross- linking and 
chemical cross-linking for the synthesis of the 
gellan gum-based hydrogel scaffolds gave exis-
tence to an alternative methodology [35, 147]. 
The cross-linking with biological amines sper-
midine (SPD) and spermine (SPM) was achieved 
by the Koivisto and colleagues [93]. These 
amines are cations in nature and are known to 
interact with the anionic polymers, for example, 
gellan gum [106]. Moreover, they serve as cross-
linking agents besides their roles as a scavenger 
in the protection of DNA and in cell proliferation 
[90]. The reports indicated that at 37  °C these 
bio-amines act as cross-linking agents after the 
synthesis of the hydrogels. Further, Koivisto and 
coworkers achieved the simultaneous functional-
ization of hydrogels with the laminin. This was 
succeeded by both encapsulations as well as 
seeding of the hNPCs and human embryonic 
stem cells and iPSCs on the hydrogels. After 
seeding both the SPD and SPM, the cross-linked 
hydrogels were investigated. Results declare that 
both hydrogels promotes the cell migration in 
both the cases and demonstrate that gellan gum 
hydrogel with 3% SPD concentration stand out 
from the rest of the hydrogels in the study and 
thus can prove as a potential candidate for appli-
cation in regenerative studies [93]. Further, the 
peptide (GRGDS) functionalized hydrogels of 
gellan gum has been fabricated for use in tissue-
engineering [148]. Gomes and colleagues 
explored this gellan gum- based hydrogel in the 
investigation of lumbar spinal cord injury in rats 
[55]. After synthesis, the bioactivity of gels was 
tested by encapsulation of the olfactory ensheath-
ing cells derived from neonatal rats and hADSCs 
[46, 149]. Upon evaluating the in vitro studies 
reveal that co-culturing these cells in hydrogel 
scaffolds enhanced the neurite growth efficiently. 
The in vivo experiments using the rat as an ani-
mal model demonstrate that upon transplanta-
tion of gellan gum-GRGDS hydrogel following 
injury, there was a significant motor recovery in 
comparison to hydrogel devoid of cells. These 
results suggest promising gains achieved by gel-
lan gum-GRGDS encapsulated hydrogels [55].

A step towards eliminating the challenges 
faced by CNS regeneration post-injury, various 

biomaterial scaffolds are being exploited and 
evaluated for overcoming these challenges. In 
this context, Arulmoli et  al. developed a multi- 
polymeric scaffold for the tissue-engineering 
purpose [10]. The composite scaffold of fibrin, 
hyaluronic acid, laminin has been derived from 
salmon and explored for both neural and vascular 
tissue-engineering. Fibrin an ECM protein during 
coagulation cascade is involved in the formation 
of clots. Besides being biocompatible and non- 
toxic the fibrin possesses RGD sequence in 
addition to various adhesion sites. The cleavage 
of the fibrinogen by thrombin generates fibrin 
monomers that can be explored for the scaffold 
designing [99]. The degradation rate of fibrin 
scaffolds during in vivo transplantation is only 
for a few days so mostly fibrin composite 
scaffolds are preferred. After the scaffold 
preparation and characterization, the results 
revealed that hydrogel scaffold prepared from 
hyaluronic acid efficiently promoted the axon 
growth than fibrin alone. Further, the multi- 
polymeric scaffold support human NPCs 
viability, proliferation, and differentiation, thus 
can be used in nerve tissue-regeneration. 
Moreover, the vascularization potential of the 
scaffolds was investigated by human cord blood- 
derived endothelial cells cultured alone with 
scaffolds and in combination with NPCs, the 
results concluded that in co-cultures the 
vascularization improves significantly. It was 
also revealed that salmon-derived fibrin 
potentiates the proliferation of the NPCs than the 
bovine and human fibrin [10].

27.9  What Is Coming Next?

Tissue-engineering has explored the various 
ways of fabrication and functionalization of 
wide-range of scaffolds for nerve tissue- 
regeneration. However, besides the extensive 
research carried out in nerve tissue-engineering 
until now no approved cell-based polymeric 
tissue implant for application in nerve 
regeneration are available. Keeping in 
consideration the impaired sensory and motor 
ability due to various nerve injuries and the 
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treatment challenges related to various 
neurodegenerative disorders, the clinical 
translation of functionalized polymeric scaffolds 
is mandatory. In this context, all researchers 
should further explore their studies towards this 
goal. Moreover, the extensive research is 
currently going on towards the realization of this 
goal and hopefully, we may be able to counter 
various challenges in nerve tissue-regeneration in 
the near future.
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Abstract
Wound healing is a complex mechanism 
involving a variety of factors and is a repre-
sentative process of tissue growth and regen-
eration in our body. Surface-based interactions 
between the dressing material and the wound 
may significantly influence the healing phase. 
Advances in understanding the mechanism of 
wound healing have led to the development of 
numerous dressing materials that can acceler-
ate the healing process. However, these mate-
rials have a passive role in wound healing. It is 
therefore necessary to develop novel wound 
dressing materials, especially effective for 
clinically problematic wounds. Chitosan- 
based dressing materials are considered suit-

able for clinically problematic wounds as they 
exhibit several characteristic features, such as 
facilitating hemostasis, enhanced wound heal-
ing during the inflammatory and proliferative 
phases, antimicrobial effect, etc. Here, we 
review the current status of clinically available 
dressing materials and studies on the biologi-
cal characteristics of chitosan, and discuss the 
potential applications of chitosan in multi- 
functional dressing materials for accelarated 
wound healing.
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28.1  Overview of Wound Healing 
and Dressing Materials

28.1.1  Wound Healing Process

Wounds are sites where repair of damaged tissue 
occurs. It is important to maintain homeostasis at 
wound sites. Non-healing problematic chronic 
wounds develop due to local or systemic causes, 
such as infection, trauma, and aging [33, 62]. The 
process of wound healing involves a cascade of 
consecutive biochemical and cellular responses 
that is generally divided into four phases: hemo-
stasis, inflammatory phase, proliferative phase 
(including fibroplasia, neovascularization, for-
mation of granulation tissue, and re- 
epithelialization), and finally, the formation of 
extracellular matrix and maturation of tissues [6, 
55].

The wound healing process is complex, and a 
wound dressing needs to meet certain require-
ments to successfully regenerate the tissue. 
Moreover, nowadays, increase in unfavorable 
and delayed healing conditions, such as diabetic 
foot, pressure ulcers, and venous ulcers that alter 
the normal wound healing process, have led to 
challenging problems associated with non- 
healing chronic wounds and increased socioeco-
nomic suffering [44, 51]. The delay in wound 
healing is a disorganization of coordinated bio-
logical responses to tissue injury that results in 
tissue contraction, epithelialization, and restora-
tion. Under unfavorable conditions, the self- 
perpetuating inflammatory cascade may result in 
increased tissue destruction and necrosis rather 
than healing. Moreover, the longer it takes for 
spontaneous wound healing, the worse the out-
come usually is, with an increasing likelihood of 
developing not only hypertrophic scarring and 
unsightly alterations in pigmentation, but also 
secondary infections and even sepsis [6, 8, 20].

Wound healing begins with the creation of the 
wound itself, and is mediated by extravasated 
cytokines and various cells from the injured 
blood vessels at the wound site. Each phase 
exhibits dominant biochemical reactions that are 
associated with specific cells. Moreover, the pro-
cess of wound healing is a consecutive flow of 

overlapping stages in which the effects of several 
cellular components and cytokines play a role in 
recovering the normal continuity of and replace-
ment of tissue defect. In particular, during the 
inflammatory phase, inflammatory cells are 
actively recruited to the wound site and play 
important roles in the secretion of growth factors 
such as transforming growth factor-beta (TGF- 
β), platelet-derived growth factor (PDGF), and 
insulin-like growth factor-1 [18, 20]. Moreover, 
during the proliferative phase, the fibroblast den-
sity significantly increases because fibroblasts 
are recruited to the wound by growth factors 
released by the inflammatory cells. From this 
perspective, the type of dressing material used for 
wound treatment is critical since surface interac-
tions between the dressing material and the 
wound may significantly influence the healing 
phase, including cell recruitment and cytokine 
production [10, 18].

28.1.2  Problematic Clinical Wounds 
and Wound Dressing

With the rapidly growing elderly population, 
delayed wound healing has significantly 
increased because chronic diseases such as dia-
betes, pressure ulcers, and venous ulcers often 
hinder the normal wound healing processes [4, 
22]. Diabetes affects 200 million people world-
wide and the number is expected to increase to 
more than 300 million people in 20 years. More 
than 15% of diabetics have a diabetic foot, and 
over a million people undergo leg amputation 
annually due to unhealed wounds [41]. The inci-
dence of pressure ulcers is steadily increasing 
due to the increased number of patients with limb 
paralysis caused by cerebrovascular disease and 
generalized placebo caused by aging. In Europe, 
the cost of treating bedsores is >500  million 
euros annually, and bedsores have been reported 
to be included in the top four illnesses in terms of 
cost. In hospitals, the incidence of pressure ulcers 
is approximately 11% [40, 52]. In the United 
States, more than 2  million people suffer from 
burns each year and the cost of treating burns is 
reportedly >1  billion dollars. The patients with 
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the most severe burns require long-term in- 
patient care, and severe burns have led to a high 
rate of mortality due to secondary infections 
through the wounds and excessive blood loss [17, 
26].

Although definite surgical treatments (which 
include debridement, skin grafting, or flaps) are 
often required for treatment of problematic 
wounds such as severe burns, appropriate wound 
dressing is a critical part of successful healing 
that supports complex wound healing processes. 
Therefore, the development of functional wound 
dressings for the acceleration of wound healing is 
necessary to minimize the duration of wound 
healing and reduce the associated medical cost, 
in addition to protecting the damaged area against 
dehydration and infection.

28.1.3  Currently Used Wound 
Dressing Materials

The maintenance of homeostasis is critical for 
the treatment of various problematic, non-healing 
clinical wounds. To treat wounds in clinical 
patients, an ideal wound dressing needs to inhibit 
exogenous microorganisms and prevent bacterial 
growth, maintain a controlled moist environment, 
allow gaseous exchange and promote fluid drain-
age, and possess a soft and flexible texture with 
biocompatibility and certain strength.

Recently, commercialized dressing materials 
composed of synthetic polyurethane foam, embed-
ded hydrogel, or hydrocolloids have been clini-
cally used. However, these materials only satisfy 
one or few of the required standard characteristics 
of an ideal wound dressing and play a passive and 
limited role in wound healing [11, 18].

Various dressing materials have been devel-
oped from conventional dressing methods such as 
the use of gauzes and biological dressing materi-
als such as polyurethane foam, hydrocolloids, 
hydrofibers, hydrogels, and alginate [10, 28].

The gauze is a simple and inexpensive mate-
rial to use in a stopgap method, but is often 
implemented as a dressing. However, there is 
pain associated with the dressing change, the 

wound gets desiccated, and the moist environ-
ment is not maintained. Commercially produced 
polyurethane foam include Medifoam® (Ildong 
Pharmaceutical, Seoul, Korea), Allevin® (Smith 
and Nephew, London, UK), Biatain® (Coloplast, 
Fredensborg, Denmark), and Versiva® (Convatec, 
Chester, UK) [21]. Polyurethane foam is widely 
used due to its ability to absorb the exudate, non- 
adherence to the wound surface, and minimized 
interference with cellular activity. However, it 
can aggravate infected wounds and has no special 
function other than to absorb the exudate [46]. 
Hydrocolloid agents, including Duoderm® 
(Convatec) and Comfeel® (Coloplast), exhibit 
wound protection and necrotic degradation, but 
also cause cellular damage on the wound surface 
due to stickiness when removed and are inade-
quate to use when there is a large amount of exu-
date. Hydrofiber materials include Aquacell-Ag® 
(Convatec) and Acticoat® (Smith and Nephew). 
Silver-containing hydrofibers possess antimicro-
bial effect to a certain degree, but after use, the 
debris of the fiber adheres and gets invaginated 
into the wound and exhibits cytotoxicity against 
important cell components needed for wound 
healing, such as keratinocytes and fibroblasts, 
implying that hydrofibers have limited applica-
tion in common cases [12, 24, 37]. In addition, 
various hydrogel components including alginate 
are used to promote wound healing. Currently, 
the commercially available hydrogels are Intrasite 
Gel® (Smith and Nephew), Purilion gel® 
(Coloplast), and Kaltostat® (Convatec).

28.1.4  Development of Chitosan- 
Based Dressing Material

Currently available dressing materials can be 
adapted according to the characteristics of the 
wound to promote wound healing. However, it is 
necessary to develop a more active and functional 
dressing material for effective wound healing. 
The most common approaches for developing 
new and improved wound dressing materials 
include synthesizing and modifying biocompati-
ble materials. Studies have attempted to develop 
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various materials that are effective in wound 
healing such as hydrocolloids, hydrofibers, algi-
nate, etc. [11, 18, 34]. Among them, chitosan and 
its composite materials have gained considerable 
attention because of their biocompatible and non-
toxic characteristics, flexibility, and distinctive 
strength. Across various fields, several studies 
have been conducted to improve the biological 
and mechanical properties of chitosan by com-
bining it with other organic or inorganic materi-
als [14, 15, 36, 38, 43]. However, the wound 
healing capabilities in these studies have not been 
extensively compared with widely used commer-
cial dressing materials, providing limited infor-
mation from a practical perspective [19].

28.2  Chitosan as a Natural 
Polymer

28.2.1  Characteristics of Chitosan

Chitin was first discovered as an insoluble mate-
rial obtained from mushrooms by Henri 
Bracoonot in 1811 [31]. Subsequently, it was also 
discovered in various organisms, namely in the 
outer skeleton of crustaceans (crabs, lobsters, 
shelfish, and shrimp), shell of insects, and even in 
the cell walls of mycelial fungi [45]. Chitosan, a 
derivative of chitin, is a natural polysaccharide 
composed of β (1–4) glycosidic bond-linked 
D-glucoamine and N-acetyl-D-glucosamine. The 
degrees of deacetylation (DDA) are key factors 
that determine the physical property of chitosan. 
Highly deacetylated chitosan has numerous free 
amine groups, making it sensitive to pH varia-
tion. Amines from chitosan chains are uncharged 
over pH 6.3 while they are protonized in acidic 
conditions under pH 6.3, suggesting that chitosan 
has the potential of being used as an advanced 
drug delivery system, which can selectively 
release drugs at certain pH levels [53]. Chitosan 
is also biodegradable. It is mainly degraded by 
lysozyme, which is present in human body fluids 
and tissues. The degradation time is related to the 
DDA and the copolymer type of chitosan. Higher 
DDA induces slower degradation rates (chitosan 
with >90% DDA could not be degraded by lyso-

zyme), and a block-type copolymer exhibits 
faster degradation mechanics than a random-type 
copolymer [53].

28.2.2  Chitosan-Based Biomaterials

Chitosan has been widely used in versatile bio-
medical applications, including guided bone 
regeneration (GBR) membranes carrying drugs, 
hemostatic agents, and antimicrobial agents. 
GBR is dominantly applied in dental surgery to 
support hard tissue growth and integration. It 
needs to be biocompatible, exclude unwanted 
cells, and provide the space to allow tissue 
ingrowth. Chitosan is a biocompatible natural 
polymer and it can be fabricated into membrane 
form with interconnected pores where tissues 
permeate into the membrane, facilitaitng bone 
regeneration. Recently, efforts to develop 
improved chitosan-based GBR were conducted 
by applying other osteoconductive biomaterials 
(for e.g., silica, hydroxyapatite, and other natural 
polymers (for e.g., fibroin) or protein-based 
growth factors (for e.g., bone morphogenetic pro-
tein- 2 (BMP-2)) to chitosan membrane. Chitosan/
fibroin-hydroxyapatite composite was prepared 
as a GBR membrane in a rabbit calvarial model 
for 8 weeks. It was effective in terms of new bone 
formation and inflammatory response, compara-
tive to commercially available collagen mem-
brane (Bio-Gide) [60]. Similarly, chitosan 
hybridized with silica xerogel induced mineral-
ization in physiological conditions, enhanced 
biological properties (such as alkaline phospha-
tase activity, indices of differentiation and prolif-
eration of ATCC pre-osteoblasts. and promoted 
bone regeneration significantly in vivo [36].

Chitosan is also widely used as a hemostatic 
agent. Its use as a hemostatic agent or dressing 
membrane was approved in the USA due to its 
potential to modulate cell mechanisms and 
induce rapid blood clotting. The functional NH3+ 
groups of cationic chitosan enhances platelet 
aggregation, which results in clot formation. 
Celox (Medtrade products Ltd., Cheshire, UK) is 
currently used as a commercial chitosan-based 
hemostatic agent for severe hemorrhage [42]. It 
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was already used in emergency situations (such 
as severe bleeding during cardiothoracic surgery) 
and military settings. Recently, to enhace throm-
bosis and hemostasis, composite systems (devel-
oped by incorporating zinc ion, cellulose, and 
kaolin with chitin) have been developed to pro-
duce synergistic effects [29, 47, 63] In addition, 
based on the applications, various types of com-
posite systems were developed, including porous 
microspheres for deep and irregular shapes of 
surgical sites and dressings for covering large 
areas.

Chitosan exhibits antimicrobial effects against 
gram-negative bacteria. The primary amines of 
chitosan disrupt the outer membranes of bacteria, 
destroying the metabolism effectively. 
Furthermore, chitosan is a prime polymer to dis-
perse and stabilize inorganic nano-particles, such 
as silver nano-particles (NPs), which possess 
anti-microbial effects against sulfur and phos-
phorous present in the microbial cells. Chitosan 
is also considered biocidal and has been proposed 
as a parasitic control agent against Lernaea cypr-
inacea, which is frequently found in gold fish 
(Carassius auratus) aquaria during the spring 
[2]. Chitosan-silver NPs composite system was 
also incorporated in electrospun mats in which 
silver NPs were dispersed homogeneously inside 
the chitosan fiber and exhibited anti-bacterial 
effects, especially against Escherichia coli [1].

28.2.3  Chitosan-Based Composite 
Biomaterials

Chitosan is extensively used in composite sys-
tems with other natural polymers, synthetic poly-
mers, inorganic particles, drugs, or growth 
factors. For application in the dairy industry, a 
silica/chitosan composite was developed to 
immobilize β-galactosidase to increase its stabil-
ity [54]. Chitosan phosphatic thermosensitive 
hydrogels—which hold significant potential for 
minimum injury surgery by regulating the applied 
heat—were developed using nano-noble Ag@Pd 
particles [3]. A chitosan/gelatin composite (CG) 
was developed as a hemostatic agent [32]. CG 
exhibited excellent liquid absorption and pro-

moted platelet aggregation significantly under in 
vitro conditions. Its hemostatic property was fur-
ther verified in greater detail using in vivo bleed-
ing models (rabbit ear artery injury model and 
rabbit liver injury model). CG was effective in 
inducing rapid blot clot formation and swiftly 
reducing bleeding. In addition, the bony defect 
healing capability of BMP-2-loaded chitosan/sil-
ica hybrid membrane was demonstrated in in 
vitro and in vivo studies [35]. Hybrid systems 
exhibited higher affinity for BMP-2 as a drug car-
rier to deliver growth factors in a sustained man-
ner. The hybrid system synergetically improved 
osteoconductivity in GBR, accelerating new 
bone formation in the regions of defects. 
Chitosan/silica hybrid also showed great perfor-
mance as a dressing membrane in wound healing. 
As nano-scale silica was incorporated in chitosan 
by sol-gel process, its biological property was 
enhanced in terms of cellular responses, which 
accelerated the healing process in vivo. Silicon 
ion released from hybrid systems and the bioac-
tive chitosan-based hybrid membrane itself pro-
moted fibroblast (L929) proliferation in vitro. 
When the hybrid dressing was used in an in vivo 
study, wound closure was accelerated, cellularity 
level was lowered, TGF-β and α-smooth muscle 
actin densities increased, and the newly formed 
collagen matrix was aligned, organized uni-
formly and dense, as determined from in vivo 
immunohistology assays [50].

28.3  Chitosan-Based Dressing 
Materials

28.3.1  Functional Benefits 
of Chitosan as a Dressing 
Material

Chitosan has been reported to accelerate wound 
healing in all stages. It prohibits hemorrage by 
inducing thrombosis, enhances the function of 
inflammatory cells (polymorphonuclear leuko-
cytes (PMNs) and macrophages), and activates 
the fibroblasts to form new collagen matrix in the 
regions of tissue defects [6]. Furthermore, the 
chitosan membrane is able to maintain a 
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 physiologically moist microenvironment that 
promotes healing and formation of granulation 
tissue and achieves hemostasis. Due to its high 
potential as an ideal healing agent, chitosan-
based products have been commercially fabri-
cated and studied [16, 30, 64]. However, there are 
concerns regarding its low bioactivity (when it is 
used in vivo) and the unsatisfactory maintenance 
of the chitosan framework, particularly in the 
moist condition [27]. Therefore, the development 
of an efficient chitosan composite system for 
accelerated wound healing in problematic clini-
cal wounds continues to remain a major 
challenge.

28.3.1.1  Hemostasis
Hemostasis is the first step in the wound healing 
process. Hemorrhage is controlled by two essen-
tial components: platelets and fibrin. Platelets are 
composed of alpha granules containing crucial 
signaling proteins, such as PDGF and TGF-β, to 
initiate the wound healing cascade by attracting 
inflammatory cells to the wound sites [6]. 
Chitosan helps in the process by inducing an 
intrinsic pathway of coagulation. Positively 
charged polymeric chains of chitosan gather neg-
atively charged cell membranes of erythrocytes 
by electrostatic interactions, leading to agglutina-
tion of erythrocytes, formation of a plug at the 
site of tissue defects and prevention of severe 
bleeding [13]. Based on the hemostatic property 
of chitosan, a collagen sponge coated with chito-
san/calcium pyrophosphate nanoflowers was 
developed. The nanoflower-coated collagen 
sponge promoted hemoglobin adsorption and 
platelet adhesion in vitro and reduced the time 
required for hemostasis and the extent of bleed-
ing significantly in an in vivo hepatic trauma 
model and a ear artery model as well [67].

28.3.1.2  Acceleration of Wound 
Healing Process

Based on the DDA, chitosan exhibits different 
cytotoxicities to keratinocytes and human skin 
fibroblasts. Chitosan with high DDA (89%) stim-
ulated the proliferation of fibroblasts but inhib-
ited human keratinocyte mitogenesis in vitro 

[25]. In an in vitro cell viability study using 
HaCaT (a cell line of human keratinocyte), it was 
found that chitosan promoted the release of cyto-
kines from the HaCaT cells to induce apoptic cell 
death [66]. PMNs, which characteristically react 
to foreign bodies, were not affected by chitosan 
when PMNs were isolated in the membrane and 
reactive oxygen species (ROS) were detected 
[57]. However, it was reported that chitosan- 
treated wounds exhibited severe infiltration of 
PMNs in the early proliferation stage, and granu-
lation was more distinctive at a later stage [64]. 
Collagen production also increased, as demon-
strated by immunohistochemical analysis. 
Moreover, in open skin wounds, chitosan ban-
dage increased the epithelialization rate and 
deposition of organized collagen in the dermis, 
and reduced the number of inflammatory cells 
significantly in vivo.

28.3.1.3  Antimicrobial Effect 
of Chitosan

Chitosan with molecular weight (MW) < 305 kDa 
exhibited antimicrobial activity against both, 
gram-negative and gram-positive barcteria [69]. 
High MW chitosan exhibited an enhanced anti-
microbial effect against gram-positive 
Staphylococcus aureus, whereas low MW chito-
san showed a high antimicrobial activity against 
gram-negative E. coli. It was suggested that chi-
tosan exhibits antimicrobial effects by two mech-
anisms in their study: (1) the chitosan polymer 
chain blocks the nutrients entering through the 
bacterial membrane, and (2) low MW chitosan 
enters the bacterial cell wall through pervasion 
and disrupts the physiological activities of bacte-
ria. The first mechanism is predominantly 
observed in gram-positive bacteria and the sec-
ond mechanism is seen in gram-negative bacte-
ria. The antibacterial property of chitosan can be 
further enhanced by adding other drugs or nano 
particles. Vancomycin and daptomycin were suc-
cessfully loaded on chitosan films to alleviate 
infections after bone fractures, and silver nano- 
particles were incorporated in wound dressing 
material, especially in cases of infected wounds 
[59, 65].
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28.3.1.4  Chitosan Composite 
Dressing Materials

Chitosan-based dressing materials can be 
enhanced by incorporating antimicrobial or bio-
active inorganic particles and grafting biopoly-
mers in the chitosan chain. Chitosan dressing 
incorporated with zinc oxide and silver nanopar-
ticles exhibited enhanced antibacterial activity 
that inhibited representative bacteria (such as S. 
aureus, E. coli, and Pseudomonas aeruginosa), 
indicating its potential as a dressing material for 
infected wounds [39]. Chitosan/titanium oxide 
(TiO2) composite improved fibroblast prolifera-
tion, induced the expression of fibroblast markers 
(TGF-β, fibroblast growth factor-2, collagen type 
I, delta like non-canonical notch ligand 1, and 
proliferating cell nuclear antigen), and showed 
significant antibacterial effects [7]. Furthermore, 
the composite could induce an accelerated heal-
ing rate by activating the fibroblast signaling 
pathway during the inherent healing cascade. 
Sericin extracted from silk fiber was also blended 
with chitosan as a form of electrospun fiber mats 
[68]. Sericin provided antioxidant, hydrophilic 
(to absorb moisture), and antibacterial functions 
to the chitosan membrane, enhancing the poten-
tial of chitosan as a dressing material. An algi-
nate/chitosan-based bi-layer composite could 
deliver ciprofloxacin hydrochloride continually 
[23]. The chitosan membrane was present in the 
exterior of the bi-layer composite to prevent bac-
terial invasion and control the water vapor trans-
mission ratio, and the inner part of the bi-layer 
composite consisted of an alginate scaffold, 
which contained drugs, and drains the exudates 
from the wounds. Chitosan-silica hybridized 
membrane coupled with sol-gel technique is also 
another promising chitosan composite dressing 
material [49]. It successfully performed wound 
closure for a full-thickness porcine wound model, 
accelerated the healing rate, and improved epi-
thelialization, fibroblast proliferation, collagen 
formation, and inflammatory cell infiltration 
histologically.

28.3.1.5  Scaffold for Drug Delivery
Local-drug delivery systems are beneficial for 
wound dressing to achieve a high concentration 

of drugs at the target sites, while lowering the 
total amount of serum needed, compared with 
whole body dosing, which could induce systemic 
toxicity [11]. Melatonin-loaded chitosan/
Pluronic® F127 microspheres were developed as 
an innovative antimicrobial dressing [56]. 
Melatonin was entrapped in the microspheres to 
potentiate chitosan antimicrobial activity against 
S. aureus and five clinical methicillin-resistant S. 
aureus (MRSA) strains, without inducing any 
deteriorating effects on the composite biocom-
patibility with skin keratinocytes and fibroblasts. 
Levofloxacin (Levo, fluoroquinolones, approved 
in 1996 by the FDA) was successfully delivered 
through a grafted derivative of chitosan with 
2-hydroxyethylacrylate (CS-g-PHEA) to kill 
methicillin-susceptible S. aureus, MRSA, and P. 
aeruginosa [58]. The chitosan/CS-g-PHEA com-
posite shows conisderable promise in wound 
infection management and exhibits tolerability, 
safety, and antibacterial activity as a potential 
wound dressing material. Chitosan scaffolds con-
taining growth factors, which can accelerate the 
healing stage by intervening in the healing cas-
cade directly, were also studied. Chitosan-bFGF 
scaffold accelerated wound closure in pressure 
ulcers in an aged mouse model, enhanced angio-
genic functions by delivering growth factors, and 
elevated neutrophil levels, which contributes to 
the proteolytic conditions of pressure ulcers [48].

28.3.2  Clinical Applications 
of Chitosan-Based Dressing 
Materials

The wound healing proficiency of chitosan-based 
dressing was further demonstrated through clini-
cal study in the human body. Azad et  al. con-
ducted a clinical study using a mesh-type chitosan 
membrane (with DDA 75%), incorporated with 
other protein and mineral contents, and a MW of 
1500 kDa [5]. The clinical results obtained post- 
treatment with the mesh chitosan matrix were in 
alignment with the results of an in vivo animal 
test, in terms of efficient adherence, hemostasis, 
healing rate, and re-epithelialization, and the 
mesh chitosan matrix was found to be  significantly 
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better than Bactigras®, a chlorhexidine acetate-
impregnated tulle gras, used as the control. It pro-
moted faster healing and re-organized the 
collagen matrix into healthy and highly accept-
able new skin. In another study, clinically treat-
ing skin graft donor sites using N-carboxybutyl 
chitosan showed that vascularization and histoar-
chitectural order improved and the number of 
inflammatory cells decreased in the chitosan-
treated sites [9]. Stone et al. evaluated the healing 
effects of a chitosan dressing called Hyphecan 
(Hainan Kangda Marine Biomedical Corporation, 
Hong Kong, China) in a clinical study [61]. 
Twenty patients (11 females and 9 males, mean 
age: 69 years) were evauated for 3–6 months for 
wounds that did not show any indications requir-
ing secondary treatments. The healing rate was 
accelerated and the nerve and capillary regenera-
tion was enhanced. However, thus far, only a few 
clinical studies using chitosan- based dressing 
materials have been conducted, whereas effective 
wound closure, antimicrobial effects, and histo-
logical recovery exhibited by several chitosan-
based membranes have been extensively 
demonstrated using both, in vitro and in vivo 
studies.

28.4  Conclusion

Current studies demonstrate that chitosan-based 
dressing materials are considered suitable for 
clinically problematic wounds. Chitosan can be 
enhanced in wound healing capability through 
composite and hybrid systems by incorporating 
minerals, organic and inorganic components, 
antimicrobial agents, drugs, and growth factors, 
according to the characteristics of the wound. 
Chitosan-based dressing materials show promis-
ing clinical applications in problematic and 
chronic wound treatment as they exhibit efficient 
adherence, hemostasis, accelerated healing rate, 
and re-epithelialization in chronic wounds, as 
demonstrated in several in vivo and in vitro stud-
ies. Our study provides valuable insights into the 
commercial development of clinically improved 
wound dressing materials that are not only non- 
toxic, flexible and durable but also possess supe-

rior biocompatibility and bioactivity, while 
exhibited accelerated wound healing. In future, it 
is important to develop standardized prototypes 
of chitosan-based dressing materials, and to 
prove their effectiveness in wound healing in 
humans through clinical trials for various clinical 
wounds. Chitosan-based dressing materials have 
significant potential for use as multi-functioning 
dressing materials, which provide an effective 
wound healing environment in problematic clini-
cal wounds.
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