
Chapter 6
Methods for Functional Connectivity
Analysis

Jeong Woo Choi and Kyung Hwan Kim

Abstract The purpose of this chapter is to provide comprehensive and useful guide-
lines for the methods of the functional connectivity analysis (FCA) for electroen-
cephalogram (EEG) and its application. After presenting the detailed procedure for
the FCA, we described various methods for quantifying functional connectivity. The
problem of volume conduction and the means to diminish its confounding effects on
the FCAwas thoroughly reviewed. As a useful preprocessing for the FCA, spatial fil-
tering of the time-series measured on the scalp or transformation to current densities
on cortical surface were described. We also reviewed ongoing efforts toward devel-
oping FC measures which are inherently robust to the volume conduction problem.
Finally, we illustrated the procedures for determining significance of the FC among
specific pair of regions, which exploit surrogate data generation or the characteristics
of event-related data.

6.1 Introduction

Cognition and behavior is enabled by coordinated and integrated activities of neu-
ronal populations of relevant regions in the brain. Beyond spatial and temporal pattern
of brain activation, investigating the interaction between those neuronal populations,
i.e., the functional connectivity analysis (FCA), is essential for proper understanding
of human brain function [6, 17, 49, 56]. Now the FCA is regarded as one of the major
tools for functional brain imaging.

In functional neuroimaging studies, mainly using functional magnetic resonance
imaging (fMRI), intrinsic cortical networks such as default mode and saliency net-
works, have been identified during both resting state and task performance by the
FCA [7, 17, 55]. The functional brain network is obviously dynamic although most
fMRI-based FCA studies so far implicitly assumed static functional connectivity
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pattern. Dynamic FCA of fMRI blood oxygen level-dependent (BOLD) signals is
currently under active investigation [26].

Considering the intrinsic limitation in temporal resolution of fMRI, electrophys-
iological recordings of neural activity are better suited for the dynamic FCA, espe-
cially for the investigation of short-term neural phenomena with temporal resolution
of millisecond scale. Either invasive or noninvasive recording techniques can be
used for the FCA. However, noninvasive methods, i.e. electroencephalogram (EEG)
and magnetoencephalogram (MEG), are to be used for human behavioral/cognitive
neuroscience studies under experimental task or task-free resting state.

The EEG/MEG signals are obtained from an array of sensors placed on the scalp,
so the spread of electromagnetic fields prohibits direct interpretation of spatial ori-
gin of the signals from a single channel. Localization of cortical current sources is
obtained by solving an electromagnetic inverse problem [4, 33, 41], and it may be
applied prior to the FCA to investigate the connectivity between specific brain regions
[20, 46]. This may be even crucial for valid interpretation of the FCA results in that
functional connection between specific cortical regions can be identified. Source
imaging techniques using distributed source models are being combined with vari-
ous measures of the FC, providing significant results on cognitive, behavioral, and
clinical results [1, 2, 11, 25, 29, 39]. The high temporal resolution of EEG/MEG
can also be utilized to investigate coupling between different rhythms in various
frequency bands present within neural activities.

The FC measures should reflect the association of neural activities in different
brain regions. Hence, they should quantify the correlation and/or causality between
the time-series of neural activities of multiple brain areas [6, 15, 42, 47]. Linear
correlation coefficient is still one of the most commonly used measure of the FCA
for fMRI. Various measures have origins from various disciplines such as statistical
signal processing, nonlinear dynamics, and information theory, and they have been
adopted for the FCA analysis in order to deal with complicated interaction between
neuronal populations [6, 15, 42, 47].

It is recognized that oscillatory neural activities represent formation of local neu-
ronal populations [9], andunderlie dynamic coordination of brain function and synap-
tic plasticity [6, 50, 60]. Therefore, the interaction between oscillatory rhythmic
activities should provide valuable insights on inter-regional communication among
neuronal population, andMEG and EEG are themost suitable for this purpose. Novel
measures for better analysis of the couplings between rhythmic activities are under
active research and being applied for the FCAofEEG/MEG [5, 20, 24], exploiting the
high resolution of these electrophysiological signals. Beyond coupling of rhythms
within a single frequency band, cross-frequency couplings have been explored by
quantifying either phase-phase or phase-amplitude couplings [10, 45, 59].

The purpose of this review article is to provide comprehensive and useful guide-
lines on the methods and to illustrate application of the FCA for EEG. Although
the target is on EEG, the contents may be useful for the FCA of MEG as well. The
focus is on how the FCA can be properly applied to cognitive neuroscience studies
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Fig. 6.1 Illustration of the procedure for the FCA of multichannel EEGs

and clinical investigations. The merits and pitfalls of each FC measures are to be
illustrated so that the readers may find this article useful to select the best method
among many options available.

6.2 Procedure for the FCA

Figure 6.1 illustrates the detailed procedure for the FCA of EEG. Multichannel
signals are preprocessed, primarily for the removal of artifacts including eye blinks
and movements, muscle activity, and skin potentials. Bandpass filtering is often
applied to extract the oscillatory rhythms within the frequency bands of interest. For
the FCA between cortical regions, the time-series in the sensor space are projected
onto the cortical source space using distributed source imaging techniques [4, 33,
40]. The multiple time-series are then subject to the calculation of FC measures
between channels or cortical regions, which yields a functional connectivity matrix.
Each element of the matrix quantifies the connectivity between two specific regions.

Sometimes the elements of the FCmatrix are transformed to either 1 or 0 by deter-
mining the significant and insignificant connections by comparing the threshold level
determined by surrogate data [15, 30, 54]. Then statistical comparisons are applied
in order to determine the significant differences among experimental conditions or
subject groups. Multivariate pattern analysis based on machine-learning can also be
applied so that the information regarding conditions or groups can be decoded from
the connectivity matrix [31, 35]. The adjacency matrix can be regarded as a graph
with nodes and edges [8, 53], and thus, the pattern of the connectivity can be further
characterized by graph theory [13, 14, 51, 57].

6.3 FC Metrics

There are many FC metrics with different theoretical backgrounds such as statistical
signal processing, time-series forecasting, information theory, and nonlinear dynam-
ics [6, 15, 42, 44]. It is often unclear which method should be used. They can be
categorized by their features including theoretical basis, directionality, and signal
domains. Table 6.1 summarizes various FC metrics to be described in depth in this
review article, in terms of these features.
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Table 6.1 Categorization of various FC metrics

Category CCF COH PLV PLI MI GC PDC TE DCM

Directionality Non-directed
√ √ √ √ √

Directed
√ √ √ √

Theoretical
basis

Data-driven
√ √ √ √ √ √

Information-
based

√ √

Model-based
√

Signal
domain

Amplitude
√ √ √ √ √ √ √

Phase
√ √ √

FC functional connectivity, CCF Cross-correlation function, COH Coherence, PLV phase locking
value, PLI phase lag index, MI mutual information, GC Granger’s causality, PDC partial directed
coherence, TE transfer entropy, DCM dynamic causal modeling

6.3.1 Cross-Correlation Function (CCF)

CCF is defined as the linear correlation between two signals represented as a function
of the time delay between them. The CCF between two signals, x(t) and y(t), is
calculated as follows:

CCFx,y(τ ) � 1

N − τ

N−τ∑

t�1

(
x(t + τ ) − x̄

σx

)(
y(t) − ȳ

σy

)
. (6.1)

Here, N is the total number of samples of the signals, and τ is the time delay
between the two signals. x̄ and σx denote mean and standard deviation of the signal
x, respectively. The CCF ranges between −1 (perfect inverse correlation) and 1
(perfect correlation), and equals zero for the case of no correlation at the time delay
τ . The CCF at time delay of 0 is the Pearson’s correlation coefficient.

6.3.2 Coherence

The coherence represents the linear correlation between two signals x and y calculated
in the frequency domain, which is calculated as follows:

COHx,y( f ) �
∣∣〈Sx,y( f )

〉∣∣
√〈

Sx,x ( f )
〉 · 〈

Sy,y( f )
〉 . (6.2)
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Here 〈·〉 indicates average over a predetermined time interval. Sx,y represents the
cross spectral density function (CSDF) of two signals, x and y, which is derived by
Fourier transform of the CCF in Sect. 6.3.1. The definition of coherence includes the
normalization of CSDF Sx,y by auto-spectral density functions, Sx,x and Sy,y , so that
the range of coherence becomes between 0 and 1.

It should be noted that the coherence is still sensitive to spectral power even though
its definition contains the normalization by spectral powers of the two signals. Thus,
it is often unclear whether the coherence at a specific frequency is dominated by
powers of the signals and/or phase relationships between them [30].

6.3.3 Phase Locking Value (PLV)

PLVmeasures the degree of phase locking between two signals over time, by observ-
ing whether the phase difference between them is relatively constant within a tem-
poral interval. Prior to calculating the PLV, the signals are first transformed into
narrowband signal in the frequency band of interest (e.g., theta or gamma band)
by bandpass filtering. The instantaneous phase angle, φ(t) is calculated from the
narrowband signal x(t) and its Hilbert transform, x̃(t), as follows [23, 30]:

φ(t) � arctan
x̃(t)

x(t)
.

The PLV between two signals x and y is calculated by averaging the phase differ-
ence over N time points as follows [30]:

PLV x, y � 1

N

∣∣∣∣∣

N∑

t�1

exp[i{φx (t) − φy(t)}]
∣∣∣∣∣. (6.3)

Here, φx (t) and φy(t) represent the instantaneous phase angles for each time point
t for two signals, x and y, respectively. PLV ranges between 0 (no synchronization)
and 1 (perfect synchronization).

6.3.4 Phase Lag Index (PLI)

The PLI was developed to mitigate the spurious phase synchrony resulting from
common sources, due to volume conduction or active reference electrodes [52]. This
will be described in detail later in Sect. 6.4. The PLI is defined to quantify the
asymmetry of the distribution of phase differences between two signals (i.e. either
positive or negative phase differences). This asymmetry implies the presence of non-
zero phase difference (i.e., time lag) between two signals. If the phase synchrony is
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due to the common sources, the phase differences are expected to be symmetrically
distributed around zero.

The calculation of PLI is similar to that of the PLV, and involves bandpass filtering
and Hilbert transform as follows [52]:

PL Ix,y � 1

N

∣∣∣∣∣

N∑

t�1

sign(φx (t) − φy(t))

∣∣∣∣∣. (6.4)

here sign represents the sign of the phase difference (i.e., −1 for negative, 1 for
positive, and 0 for zero values, respectively). The PLI ranges between 0 (no synchro-
nization) and 1 (perfect synchronization).

6.3.5 Mutual Information (MI)

MI quantifies the amount of information that two signals share each other based on a
basic measure of information, Shannon entropy [48]. Shannon entropy is defined as
the average amount of information (or code) which is necessary to encode a discrete
variable [42, 48]. The entropy H (X ) is calculated as follows:

H (X ) � −
n∑

i�1

p(xi ) log2 p(xi ). (6.5)

Here, p(xi ) is the probability of the values of the signal x in the ith bin, and n
represents the number of bins used to construct a histogram which approximates the
probability density function (PDF) of x. The entropy is positive and has a unit in
bits, and unrelated to the temporal structure of the signal. It is important to estimate
the appropriate number of bins, since the approximation of PDF by a histogram
is sensitive to the number of bins [15]. Diaconis and Freedman [16] suggested a
guideline for an optimal number of bins as follows [16]:

nbins �
[
max(x) − min(x)

2Qxn−1/3

]
, (6.6)

whereQx is the range between the 25th and the 75th percentiles of data distributionX,
n represents the total number of data points, andmax(x) andmin(x) are themaximum
and minimum values of x, respectively.

From the entropies of the two signals x and y, and their joint entropy, i.e., H(X),
H(y), and H(X,Y ), MI is calculated as follows:

MIx,y � H (X ) + H (Y ) − H (X,Y ). (6.7)

Also, H (X,Y ) is the joint entropy between two signals, and defined as follows:
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H (X,Y ) � −
m∑

j�1

n∑

i�1

p(xi , y j ) log2 p(xi , y j ), (6.8)

where p(xi , y j ) is the joint probability of the values of the signal x in the ith bin
and the signal y in the jth bin. If there is no relationship between two signals at all,
X and Y are independent, and thus, the joint probability p(xi , y j ) is equivalent to
p(xi )p(y j ). Hence, the joint entropy H (X,Y ) will be H (X ) + H (Y ), and the MI
becomes zero. Otherwise, the MI should be positive and would show the maximum
value when two signals are equal.

6.3.6 Granger Causality (GC)

The idea of GC is that signal x causes signal y if the prediction error of y estimated by
autoregressive (AR) modeling is significantly reduced when it is estimated by joint
AR modeling of x and y [19]. This can be assessed by comparing the univariate and
bivariate AR models for the two signals, x and y.

The univariate AR models for each signal, x and y, are described as follows [42]:

x(t) �
p∑

n�1

ax,nx(t − n)+ex (t), y(t) �
p∑

n�1

ay,n y(t − n)+ey(t). (6.9)

Here, p denotes the number of lagged observations included in the model (i.e.,
model order), and ax,n and ay,n are the model coefficients at time lag n, and ex and ey
are the prediction error for each signal estimated by the model. The prediction error
depends on the past values of the signal.

Alternatively, the joint, bivariate AR model of x and y is as follows:

x(t) �
p∑

n�1

ax,y,nx(t − n)+
p∑

n�1

bx,y,n y(t − n)+ex,y(t)

y(t) �
p∑

n�1

ay,x,n y(t − n)+
p∑

n�1

by,x,nx(t − n)+ey,x (t)

. (6.10)

Here, p is the model order, a and b contain the coefficients of the model, and ex,y
and ey,x denote the prediction errors of the signals estimated by the model. Here the
prediction error depends on the past values of both signals.

The prediction performances of the univariate and bivariate models can be com-
pared quantitatively from the variances of the prediction errors as follows:

Vx |x � var(ex ) and Vy|y � var(ey) for univariate AR model,
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Vx |x,y � var(ex,y) and Vy|y,x � var(ey,x ) for bivariate AR model.

Here, var(·) denotes the variance.
The Granger causality between two signals, x and y, is calculated as the log-ratio

of variances follows:

GCx→y � ln

(
Vy|y
Vy|y,x

)
for the measure of ‘signal x causes signal y’

GCy→x � ln

(
Vx |x
Vx |x,y

)
for the measure of ‘signal y causes signal x’

The prediction error of y should not be reduced whether x is considered or not for
the estimation of y, if there exist no causal influence from x to y. This implies that the
variances Vy|y and Vy|y,x are identical, and thus,GCx→y is close to zero. On the other
hand, causal influence of x to y reduces the prediction error of ywhen x is considered.
Hence, GCx→y becomes a positive value. The GC measure is directional. If the GCs
of both directions are high, it can be interpreted as a bidirectional connectivity [42].

6.3.7 Partial Directed Coherence (PDC)

PDC is a frequency domain equivalent of the GC, based on multivariate autoregres-
sive (MVAR) modeling of multichannel signals [3]. Let’s assume that the simulta-
neously recorded m channel signals x(t) � [x1(t), . . . , xm(t)]T can be described by
an MVAR model as follows:

x(t) �
p∑

n�1

Anx(t − n) + e(t). (6.11)

here, p is the model order, An �

⎡

⎢⎢⎣

a1,1(n) · · · a1,m(n)
...

. . .
...

am,1(n) · · · am,m(n)

⎤

⎥⎥⎦ is the matrix of model

coefficients at time lag n, and e(t) � [e1(t), . . . , em(t)]T is a multivariate Gaussian
white noise with zero mean and covariance matrix �. The model coefficients am,m

indicate the influence among the signals (e.g., a1,2(n) is the influence of x2(t − n) on
x1(t)).

This time domain representation can be transformed into frequency domain by
Fourier transform (FT). Ā( f ) � I −A( f ) � [ā1( f )ā2( f ) . . . ām], where A(f ) is the
FT of the model coefficients and āi, j ( f ) is the i, jth element of Ā( f ). The PDC from
signal xi to signal x j can be calculated as follows:
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PDCi→ j ( f ) � āi, j ( f )√
āH
j ( f )ā j ( f )

, (6.12)

where H indicates the transpose and complex conjugate operator. Thus, the PDC
quantifies relative strength of the influence of the signal xi on the signal x j at fre-
quency f .

Another metric based on a MVAR model, directed transfer function (DTF), was
proposed [27]. The DTF is quite similar to the PDC metric in that it reveals causal
relations between time-series based on a MVAR model. However, the DTF can be
calculated from the transfer function matrix,H, instead of A for the PDC calculation,
where those two matrices are related as H ( f ) � Ā−1( f ). Because of the matrix
inversion, DTF demands higher computational loads and may suffer from numerical
imprecisions due to potential ill-conditioning of Ā( f ) [3]. If the structure of the
matrix H ( f ) is preserved upon inversion, the DTF and PDC lead to identical results
for the effective connectivity [3].

6.4 Volume Conduction Problem

As explained above, there exist numerous methods for the FCA of EEG (and MEG),
which originated from various theoretical backgrounds. Considering the possibility
of combining various preprocessing, FCmeasure, and postprocessingmethods avail-
able, the choice of appropriate FCA method is far from obvious in most applications
since each method has its own pros and cons, rendering the interpretation of the
results ambiguous.

There exist several issues that deserve caution when interpreting the FCA results.
For example, the estimated FCmay reflect the true neuronal interaction or not. This is
related to the fact that EEG (MEGaswell) signals include both relevant and irrelevant
signals and/or noises. Moreover, it is not possible to make sure whether the observed
connectivity is due to direct or indirect one through an unobserved pathway. Besides,
common reference problem and low signal-to-ratio causes significant amount of
errors. In addition to the noise or artifact, the FCA results may be affected by the
difference of signal-to-noise ratio between channels. Especially this has a huge effect
on the estimation of information flow direction. A recent review paper provides a
detailed discussion on these issues focusing on oscillatory coupling [6].

Methods have been developed to overcome aforementioned issues. For example,
in the case of the FCA based on coupling between rhythmic oscillatory neural activ-
ities, the volume conduction problem may be alleviated from the fact that the phases
of two rhythmic signals at any pair of locations are different by either 0° or 180°,
since the effect of volume conduction and field spread can be regarded as instanta-
neous [36]. The measures of oscillatory coupling taking this into account have been
developed, e.g., PLI [52], imaginary coherence [36], and phase slope index (Nolte
et al. [37]). Converting scalp EEGs to current densities on cortical surfaces may be
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Fig. 6.2 An illustration of
the effects of volume
conduction on scalp EEGs

greatly helpful since common factors in the signals are significantly reduced. It is
investigated whichmethods for the cortical source localization and FCA provide best
results for the FCA [20, 22]. In this section, we try to provide a guideline to reduce
the confounding effects of volume conduction in the FCA.

6.4.1 FCA Between the Signals from Surface Electrodes

An EEG electrode placed on scalp surface captures electric potential at a specific
location on the scalp.Multiple cortical sources distributed over awide area on cortical
surface contribute to the voltage at a point on the scalp.Conversely, the electric current
caused by a localized cortical current source is propagated to awide area on the scalp.
This field spread or volume conduction problem prohibits a rigorous FCAusing scalp
EEG, and incorrectly emphasizes the functional connections between proximate
regions. Figure 6.2 shows examples of volume conduction effect. A single current
source (A) affects more than one electrode (1 and 2). Also, the electromagnetic
field originating from a single source (B) spreads to multiple adjacent electrodes
(2 and 3) through brain tissues such as cerebrospinal fluid, dura, scalp, and skull.
These common sources lead to spurious connectivity between scalp EEG channels
even though all the cortical current sources are independent [6, 15, 38, 52]. Hence,
caution should be made when calculating and interpreting the FC metrics.

Unpredictable phenomena may occur due to the volume conduction effect as
illustrated in Fig. 6.3 which is generated from actual 64 channel EEG recordings
during an auditory oddball task [12]. First, the phase differences between the EEGs
from two nearby electrodes, Fpz and Fp1, were found to be concentrated at zero
degree (Fig. 6.3a). Second, it was also found that the strength of connectivity is
inversely correlated to the distance between two electrodes (Fig. 6.3b). In particular,
the PLV between two closest neighbors showed almost perfect locking (i.e., PLV
was close to 1). It was also observed that the connectivity strength is significantly
correlated to the spectral power (Fig. 6.3c). Although these are only a few among



6 Methods for Functional Connectivity Analysis 135

Fig. 6.3 Examples of spurious connectivity (PLV) due to the volume conduction. a Distributions
of phase differences between two EEG channels in gamma band (30–50 Hz), solid lines denote the
phase difference between two channels at a single temporal point, the length of the black arrow
corresponds to the magnitude of average PLV. b Correlation between PLV and inter-electrode
distance in gamma band. c Correlation between PLV and spectral power in gamma band

the potential problem of the FC analysis using surface EEG, at least they should be
checked to verify whether the conclusions are made by spurious effects of volume
conduction.

6.4.2 Spatial Filtering

Surface Laplacian is amethod to estimate the amount of current source density (CSD)
at the scalp, and behaves as a spatial highpass filter [43]. The potential distribution
of EEGs on the scalp usually have low spatial frequency component due to volume
conduction. When the surface Laplacian is properly used, the spurious low spatial
frequency components may be reduced. As a result, its confounding effect on FC
may be eliminated as well (For review of the algorithm of surface Laplacian, see [28,
43]).
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Fig. 6.4 Spatial filtering (surface Laplacian) can reduce the spurious effects of volume conduction.
a Phase difference between two nearby channels became widely distributed after applying surface
Laplacian. The correlation between PLV and inter-electrode distance b and between PLV and
spectral power c became reduced compared to Fig. 6.3

We found that the spurious effects of volume conduction illustrated in Fig. 6.4
were greatly reduced or eliminated by applying surface Laplacian before the FC
analysis. After applying the surface Laplacian, the phase differences between two
nearby channels (Fpz and Fp1) were much more widely distributed (Fig. 6.4a),
in contrast to the previous case of raw EEGs where the phase differences were
concentrated around zero degree (Fig. 6.3a). The PLV was decreased to 0.55 after
applying surface Laplacian, from 0.86. The correlation between the FC strength
and inter-electrode distance was mitigated (from −0.787 to −0.467, Fig. 6.4b). The
correlation between the spectral power and the FC in a frequency band became
insignificant as well (Fig. 6.4c). In conclusion, the surface Laplacian may provide a
partially useful method to reduce the confounding effects of the volume conduction
in FC analysis of surface EEG.
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6.4.3 FC Measures Robust to Volume Conduction Effect

Another solution is to use the FC metrics which is inherently robust to the volume
conduction [34, 36, 38, 52, 58]. Nunez et al. [38] proposed a modified version of
coherence, called the reduced coherence. It is calculated by subtracting the ran-
dom coherence from the measured coherence. Alternatively, partial coherence was
introduced, which removes the linear effect of the third time-series (considered as
common source) from the coherence calculated from a pair of time-series [34].

Nolte et al. [36] suggested imaginary coherence (ImC). It is based on the hypoth-
esis that the imaginary part of coherence (i.e., the non-zero phase difference) cannot
be affected by the volume conduction [36]. In the same vein, Stam et al. [52] pro-
posed the PLI based on how much the non-zero phase differences are distributed to
negative (phase lag) or positive (phase lead) sides of the x axis on the complex plane
[52]. More recently, an extended version of PLI, called the weighted PLI (WPLI),
was suggested to take into account the magnitude as well as the distribution of the
phase differences [58].

Figure 6.5 illustrates the advantage of PLI to mitigate the volume conduction
effects, as compared to the PLV. The phase differences between EEGs of two nearby
channels Fpz and Fp1 are distributed symmetrically around zero degree, which
resulted in much lower value of PLI as compared to the PLV (0.09 vs. 0.86). In
addition, the correlation between the FC and the inter-electrode distance became
drastically reduced to −0.174, from −0.787 in the case of PLV (Fig. 6.5b). The
correlation with the spectral power became insignificant as well (Fig. 6.5c). All the
results in Fig. 6.5 shows that spurious FC due to the volume connection can be
alleviated by using the PLI. Vinck et al. [58] pointed out the problems of the PLI.
Temporal discontinuity may occur when there exist small perturbations which lead
to phase lags from phase leads (and vice versa) between two time-series. Also, the
estimation of PLI is statistically biased, hence its calculation may suffer from the
small sample size [52, 58]. Modified versions of the PLI (weighted PLI and debiased
weighted PLI) have been proposed to overcome these limitations [58].

6.5 EEG FC Analysis on Source Space

Spatial filters such as surface Laplacian can be applied before the FCA to lessen the
effect of volume conduction as shown above. More recently, the reconstruction of
cortical current sources is performed prior to the FCA by solving an inverse problem
[4, 33, 40]. This provides time-series of cortical current densities at numerous vertices
on cortical surface, which enables the calculation of FC measures among cortical
regions. The FCA at the cortical source space is advantageous also for the better
explanation of the obtained results, since each pair of connection has anatomical
interpretation [46].
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Fig. 6.5 The spurious effects of volume conduction can be reduced by using phase lag index
(PLI). a Distribution of phase difference between two time-series. The red and blue colors indicate
phase lead and phase lag, respectively. b Correlation between PLI and inter-electrode distance. c
Correlation between PLI and spectral power

Figure 6.6 illustrates the detailed procedure of FCA on cortical source space,
where solutions of an electromagnetic inverse problem are used to estimate the cor-
tical sources and reconstruct their temporal dynamics. Among several approaches
proposed so far, methods based on a distributed cortical source model are appropri-
ate since they aim to provide cortical current time-series at every cortical location
(Fig. 6.6b). The most popular ones include the minimum norm estimate (MNE) and
its variants (weighted MNE, wMNE), low resolution brain electromagnetic tomog-
raphy (LORETA), and standardized LORETA (sLORETA). Beamforming methods
are also applicable. It is also feasible that themixed cortical sources due to the volume
conduction are ‘demixed’ by blind source separation [21].

Estimated time-series represent current densities on cortical surface, and they are
subject to FC measure calculation. Spatial sampling is commonly used to reduce the
number of time-series, or regions of interest (ROIs) are selected before the FCA.
The ROI selection is of crucial importance, and based on either a prior knowledge
(Fig. 6.6c, image source: http://freesurfer.net) or the results of functional neuroimag-
ing (Fig. 6.6d). Often, the most important ROIs are determined and the cortical maps
which represent the crucial regions functionally connected to those ROIs.

http://freesurfer.net
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Fig. 6.6 An illustration of procedure of FCA on cortical source space

Hassan et al. [20] reported a comparative study on the processing methods for
the FCA on cortical source space [20]. They showed that the results are highly
dependent on the selected processing methods as well as the number of electrodes.
The combination ofwMNEandPLVwas found to yield themost relevant result. Their
results imply that an optimal combination of source estimation and FCA is essential
to correctly identify the functional cortical networks, and thus, the EEG source FCA
should be performed carefully in terms of the detailed processing method.

It should be noted that there exist some cases where the spurious result is unavoid-
able. For example, when the FCA is performed on preselected ROIs, inappropriate
ROI selection should lead to incorrect conclusions. The signal-to-noise ratio affects
the FCA and may vary systematically according to experimental condition, thereby
incorrect significant difference among conditions may be unavoidable.

Aforementioned two-step approaches, consisting of source estimation and FC
measure calculation, may yield undesirable incorrect results as has been shown by
simulation studies [21], due to several reasons. The unmixing of the scalp EEG
signals is far from being perfect regardless of the methods of source estimation.
Schoffelen and Gross [46] provides a review of methods for the FCA in cortical
source space, focusing on selecting FC measure and region of interests (ROI) [46].
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It is warranted that the field spread effect is not completely removed in the source
space so that the FCA results should be carefully interpreted. The use of FCmeasures
which are inherently insensitive to the instantaneous mixing, such as imaginary part
of coherence (imagcoh), can be recommended to alleviate this problem [46].

Marzetti et al. [32] developed a method to decorrelate the reconstructed sources
using principal component analysis (PCA) [32]. Assuming orthogonality between
the estimated sources, further demixing is performed using an algorithm called mini-
mum overlap component analysis. The locations of interacting sources are estimated
underminimumoverlap constraint after identifying the spatial topographyof interact-
ing sources from the sensor-space cross-spectral density. Gomez-Herrero et al. [18]
presented a method for effective connectivity estimation based on the independent
component decomposition of the residuals of the MVAR model, which are proba-
bly due to the field spread [18]. The spatial topography of the interacting sources is
obtained from the ICA mixing matrix. More recently, Haufe [21] proposed a novel
measure of effective connectivity based on physiologically-motivatedmodel of inter-
acting sources and sparse connectivity graph [21]. A one-shot calculation method
for the blind source separation and inverse source reconstruction, which yields the
source time series, their spatial distribution, and the connectivity structure.

6.6 Determination of Significance

The calculated FC metrics may include false positives due to several confounding
effects such as residual artifacts, volume conduction, and common reference. Hence
it is important to determine statistical significance. As shown in Fig. 6.7a, null distri-
bution of the FC can be generated from a surrogate data obtained by random shuffling
and used to determine significance, which is often defined by the upper 5 or 1% of
the null distribution.

Several methods can be used to generate the surrogate data from the experimental
data [15, 30, 54]. Random shuffling of the time samples of one of the two time-
series destroys the temporal structure. If all time samples are randomly shuffled and
the temporal structure is completely destroyed, the null distribution obtained from
the surrogate data may result in excessively high false positive rate, i.e., inflate the
statistical significance. This can be understood from the fact that the FC measure
calculated from any experimental data would be much higher than those calculated
from surrogate data, in which the temporal structure is completely destroyed. An
alternative is illustrated in Fig. 6.7b, which is called ‘time-shift’ method [15]. Here
one time-series is separated into two segments at a randomly chosen temporal point,
and then, a new surrogate time-series is generated by exchanging temporal positions
of those two segments.

Instead of the random shuffling in time domain, it can also be performed in the
frequency domain as shown in Fig. 6.7c [54]. Briefly, the procedure includes fast
Fourier transform (FFT), shuffling the phase of the signal in the frequency domain,
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Fig. 6.7 a Determination of the significance of FC values using a null distribution, generated by
surrogate data. bGeneration of a surrogate time-series by time shuffling. cGeneration of a surrogate
time-series by phase shuffling (FFT: fast Fourier transform)

Fig. 6.8 Generation of a surrogate data by shuffling trials for an event-related data. Each grey thin
solid line on the circles represents the phase difference between two time-series at each temporal
point for a single trial. The black thick solid lines on the circles represent the vector sum of the
phase differences over trials, and their lengths mean the phase synchronization strength

and then, the inverse FFT. The amplitude spectrum is preserved, but any nonlinear
structure is destroyed after this procedure [54].

In the event-related data with a plenty of trials, shuffling the order of trials of the
second time-series provides an alternative method to surrogate data [30]. Figure 6.8
shows an example for the phase-based FC metrics. For experimental recordings for
which phase synchrony are expected, the phase differences between two time-series
would be narrowly distributed. Contrarily, the phase differences from surrogate data
would be widely distributed randomly, and thus, may provide a null distribution
of FC values. This method does not require a prior hypothesis on the time-series
such as linearity and stationarity, however, when the trial-to-trial variability of phase
relationships between two time-series is relatively low, it can be so conservative that
many FC values may be incorrectly rejected, resulting in high false negative rate.
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6.7 Conclusions

In this review, we tried to describe essential factors for successful FCA using multi-
channel EEG (andMEG aswell) time-series. After illustrating the detailed procedure
for the FCA, we presented various methods for quantifying functional connectiv-
ity. Especially, the FC measures based on oscillatory interactions among neuronal
population was described comprehensively, due to its importance for elucidating
coordinated activities of brain networks and synaptic plasticity. The problem of vol-
ume conduction and the means to diminish its confounding effects on the FCA was
thoroughly reviewed. Spatial filtering of the time-series measured on the scalp or
transformation to current densities on cortical surface, which are performed as a pre-
processing for the FCA, were described. Also, we reviewed ongoing efforts toward
developing FCmeasures which are inherently robust to the volume conduction prob-
lem. Finally, we illustrated the procedures for determining significance of the FC
among specific pair of regions, which exploit surrogate data generation or the char-
acteristics of event-related data. We hope that this review would provide guidelines
for the better application of the FCA and the development of novel methods.
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