
Chapter 4
The Analysis of Event-Related Potentials

Marco Congedo

Abstract In this chapter, we provide an introduction to the major methods used
for the analysis and classification of Event-Related Potentials (ERPs). We start by
considering the problem of estimating ERP ensemble averages in the time domain.
An estimator allowing for weights and time shifts for each trial is discussed. Then
we consider spatial, temporal and spatio-temporal multivariate filters for improving
the estimation, including principal component analysis, the common spatial pattern
and blind source separation. Then, we review time-frequency analysis methods. The
reader is provided with definitions in order to understand the most commonly used
linear and non-linear measures used in the time-frequency domain.We continue with
a brief discussion on the importance of the analysis in the spatial domain, includ-
ing topographic maps and tomographies. Next, we review procedures for applying
inferential statistics to ERP studies. Emphasis is given to procedures based on per-
mutation tests, which account for the multiple comparison problem and adapt to
the form and degree of correlation between hypotheses. Finally, we consider the
problem of classifying ERP single-trials, pointing to recent literature covering the
most promising methods currently available, namely, Riemannian geometry, random
forests and neural networks.

4.1 Introduction

Event-Related Potentials (ERPs) are a fundamental class of phenomena that can be
observed by means of electroencephalography (EEG). They are defined as poten-
tial difference fluctuations that are both time-locked and phase-locked to a discrete
physical, mental, or physiological occurrence, referred to as the event. ERPs are
usually described as a number of positive and negative peaks characterized by their
polarity, shape, amplitude, latency and spatial distribution on the scalp. All these
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characteristics depend on the type (class) of event. Each realization of an ERP is
named a sweep or trial. Important pioneering discoveries of ERPs include the con-
tingent negative variation [96], the P300 [88], the mismatch negativity [68] and the
error-related negativity [31]. Another class of time-locked phenomena are the Event-
Related De/Synchronizations (ERDs/ERSs, [77]), which are not phase-locked. In
order to keep a clear distinction between the two, ERD/ERS are referred to as induced
phenomena, while ERPs are referred to as evoked phenomena [89]. Traditionally,
ERPs have been conceived as stereotypical fluctuations with approximately fixed
polarity, shape, latency, amplitude and spatial distribution. Accordingly, the ERP
fluctuations are independent from the ongoing EEG and superimpose to it in a time-
and phase-locked fashion with respect to the triggering event. This yields the so-
called additive generative model. Several observations have challenged this model
[23], suggesting the possibility that evoked responses may be caused by a process
of phase resetting, that is, an alignment of the phase of the spontaneous neuronal
activity with respect to the event [44, 57, 62]. According to this model, ERPs result
from time/frequency modulations of the ongoing activity of specific neuronal pop-
ulations. Still another generative model of ERPs was introduced by [65] and [69].
These authors pointed out that ongoing EEG activity is commonly non-symmetric
around zero, as can be seen clearly in sub-dural recordings of alpha rhythms [58].
They proposed that averaging amplitude-asymmetric oscillations may create evoked
responses with slow components.

In this chapter, we consider several major methods currently used to analyze and
classify ERPs. In modern EEG, using a multitude of electrodes is the rule rather than
the exception, thus emphasis is given on multivariate methods, since these methods
can exploit spatial information and achieve higher signal-to-noise ratio (SNR) as
compared to single-electrode recordings.Weconsider the analysis in the timedomain,
in the time-frequency domain and in the spatial domain. We also consider inter-
trial amplitude and latency variability as well as the case of overlapping ERPs.
We then consider useful tools for inferential statistics and classifiers for machine
learning specifically targeting ERP data. All the time-domain methods described in
this chapter are implicitly based on the additive model, but they may give meaningful
results even if the data is generated under other models. Time-frequency domain
methods can explicitly study the phase consistency of ERP components. We will
show an example analysis for each section. The real data examples in all but the
last figure concerns a visual P300 experiments where healthy adults play a brain-
computer interface video-game namedBrain Invaders [21]. This experiment is based
on the classical oddball paradigm and yields ERPs pertaining to a target class, evoked
by infrequent stimuli, and a non-target class, evoked by frequent stimuli.
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4.2 General Considerations in ERP Analysis

ERPanalysis is always preceded by a pre-processing step inwhich the data is digitally
filtered. Notch filters for suppressing power line contamination and band-pass filters
are common practice to increase the SNR and remove the direct current level [61].
If the high-pass margin of the filter is lower than 0.5 Hz, the direct current level can
be eliminated by subtracting the average potential (baseline) computed on a short
window before the ERP onset (typically 250ms long). Researchers and clinicians are
often unaware of the signal changes that can be introduced by a digital signal filter, yet
the care injected in this pre-processing stage is well rewarded, since severe distortion
in signal shape, amplitude, latency and even scalp distribution can be introduced by
an inappropriate choice of digital filter [98].

There is consensus today that for a given class of ERPs only the polarities of
the peaks may be considered consistent for a given electrical reference used in the
EEG recording; the shape, latency, amplitude and spatial distribution of ERPs are
highly variable among individuals. Furthermore, even if within each individual the
shape may be assumed stable on average, there may be a non-negligible amplitude
and latency inter-sweep variability. Furthermore, the spatial distribution can be con-
sidered stable within the same individual and within a recording session, but may
vary from session to session, for instance, due to slight differences in electrode
positioning. Inter-sweep variability is caused by the combination of several experi-
mental, biological and instrumental factors. Experimental and biological factors may
affect both latency and amplitude. Examples of experimental factors are the stimulus
intensity and the number of items in a visual search task [61]. Examples of biolog-
ical factors are the subject’s fatigue, attention, vigilance, boredom and habituation
to the stimulus. Instrumental factors mainly affect the latency variability; the ERP
marking on the EEG recordingmay introduce a jitter, whichmay be non-negligible if
the marker is not recorded directly on the EEG amplification unit and appropriately
synchronized therein, or if the stimulation device features a variable stimulus deliv-
ery delay. An important factor of amplitude variability is the ongoing EEG signal;
large artifacts and high energy background EEG (such as the posterior dominant
rhythm) may affect differently the sweeps, depending on their amplitude and phase,
artificially enhancing or suppressing ERP peaks.

Special care in ERP analysis must be undertaken when we record overlapping
ERPs, since in this case simple averaging results in biased estimations [85, 99, 100].
ERPs are non-overlapping if the minimum inter-stimulus interval (ISI) is longer than
the length of the latest recordableERP.There is today increasing interest in paradigms
eliciting overlapping ERPs, such as some odd-ball paradigms [21] and rapid image
triage [104], which are heavily employed in brain-computer interfaces for increasing
the information transfer rate [101] and in the study of eye-fixation potentials, where
the “stimulus onset” is the time of an eye fixation and saccades follow rapidly [86].
The strongest distortion is observedwhen the ISI is fixed. Less severe is the distortion
when the ISI is drawn at random from an exponential distribution [21, 85].



58 M. Congedo

Amplitude/latency inter-sweep variability as well as the occurrence of overlap-
ping ERPs call for specific analysis methods. In general, such methods result in an
improved ensemble average estimation. For a review of such methods, the reader is
referred to Congedo and Lopes da Silva [23].

4.3 Time Domain Analysis

The main goal of the analysis in the time domain is to estimate the ensemble average
of several sweeps and characterize the ERP peaks in terms of amplitude, shape and
latency. Using matrix algebra notation, we will denote by x(t), the column vector
holding themultivariate EEG recording at N electrodes and at time sample t, whereas
N×Tmatrix Xk will denote a data epoch holding the kth observed sweep for a given
class of ERP signals. These sweeps last T samples and start at event time±an offset
that depends on the ERP class. For instance, the ERPs and ERDs/ERSs follow a
visual presentation but precede a button press. The sweep onset must therefore be
set accordingly adjusting the offset. We will assume along this chapter that T>N,
i.e., that the sweeps comprise more samples than sensors. We will index the sweeps
for a given class by k∈{1, …, K}, where K is the number of available sweeps for the
class under analysis.

4.3.1 The Additive Generative Model

The additive generative model for the observed sweep of a given class can be written
as

Xk � σkQ(τk) + Nk , (4.1)

where Q is an N×T matrix representing the stereotypical evoked responses for
the class under analysis, σ k are positive scaling factors accounting for inter-sweep
variations in the amplitude of Q, τ k are time-shifts, in samples units, accounting for
inter-sweep variations in the latency ofQ andNk are N×Tmatrices representing the
noise term added to the kth sweep. Here by ‘noise’ we refer to all non-evoked activity,
including ongoing and induced activity, plus all artifacts. According to this model,
the evoked response inQ is continuously modulated in amplitude and latency across
sweeps by the aforementioned instrumental, experimental and biological factors.
Therefore, the single-sweep SNR is the ratio between the variance of σ k Q(τ k) and
the variance of Nk . Since the amplitude of ERP responses on the average is in the
order of a fewμV , whereas the noise is in the order of several tens ofμV , the SNR of
single sweeps is very low. The classical way to improve the SNR is averaging several
sweeps. This enhances evoked fluctuations by constructive interference, since they
are the only time- and phase-locked fluctuations.
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4.3.2 Ensemble Average Estimations

The usual arithmetic ensemble average of the K sweeps is given by

X̄ � 1
K

K∑

k�1

Xk . (4.2)

This estimator is unbiased if the noise term is zero-mean, uncorrelated to the
signal, spatially and temporally uncorrelated and stationary. It is actually optimal
if the noise is also Gaussian [56]. However, these conditions are never matched in
practice. For instance, EEG data are both spatially and temporally correlated and
typically contain outliers and artifacts, thus are highly non-stationary. As a rule of
thumb, the SNR of the arithmetic ensemble average improves proportionally to the
square root of the number of sweeps. In practice, it is well known that the arithmetic
mean is an acceptable ensemble average estimator provided that sweeps with low
SNR are removed and that enough sweeps are available. A better estimate is obtained
by estimating the weights σ k and shift τ k to be given to each sweep before averaging.
The resulting weighted and aligned arithmetic ensemble average is given by

X̄ �
∑K

k�1 (σkXk(τk))∑K
k�1 σk

. (4.3)

Of course, with all weights equal and all time-shifts equal to zero, ensemble aver-
age estimation (4.3) reduces to (4.2). Importantly, when ERP overlaps, as discussed
above, estimators (4.2) or (4.3) should be replaced by a multivariate regression ver-
sion, which is given by (1.9) in Congedo et al. [22].

4.3.3 Multivariate Filtering Methods

A large family of multivariate methods have been developed with the aim of improv-
ing the estimation of ERP ensemble averages bymeans of spatial, temporal or spatio-
temporal filtering. These filters transform the original time-series of the ensemble
average in a number of components, which are linear combinations of the original
data. A spatial filter outputs components in the form of time-series, which are linear
combinations of sensors for each sample, along with the spatial patterns correspond-
ing to each component. A temporal filter outputs components in the form of spatial
maps, which are linear combinations of samples for each sensor, along with the
temporal patterns corresponding to each component. A spatio-temporal filter out-
puts components that are linear combinations of sensor and samples at the same
time, along with the corresponding spatial and temporal patterns. Given an ensemble
average estimation such as in (4.2) or (4.3), the output of the spatial, temporal, and
spatio-temporal filters are the components given by
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⎧
⎪⎪⎨

⎪⎪⎩

Ȳ � BT X̄ spatial

Ȳ � X̄ D temporal

Ȳ � BT X̄D spatio - temporal

. (4.4)

For both the N×P spatial filter matrix B and the T×P temporal filter matrix D,
we require 0<P<N, where P is named the subspace dimension. The upper bound
for P is due to the fact that for our data N<T and that filtering is achieved effectively
by discarding from the ensemble average the N-P components not accounted for by
the filters, that is, at least one component must be discarded. The task of a filter is
indeed to decompose the data in a small number of meaningful components so as
to suppress noise while enhancing the relevant signal. Once designed the matrices
B and/or D, the filtered ensemble average estimation is obtained by projecting back
the components onto the sensor space, as

⎧
⎪⎪⎨

⎪⎪⎩

X̄ ′ � ABT X̄ spatial

X̄ ′ � X̄ DET temporal

X̄ ′ � ABT X̄DET spatio - temporal

, (4.5)

where N×P matrix A and T×P matrix E are readily found so as to verify

BTA � ETD � I . (4.6)

In the spatio-temporal setting the columns of matrix A and E are the aforemen-
tioned spatial and temporal patterns, respectively. In the spatial setting, only the
spatial patterns in A are available, however the components in the rows of Ȳ (spatial)
in (4.4) will play the role of the temporal patterns. Similarly, in the temporal setting,
only the temporal patterns inE are available, however the components in the columns
of Ȳ (temporal) in (4.4) will play the role of the spatial patterns. So, regardless the
type of chosen filter, in this kind of analysis it is customary to visualize the spatial
patterns in the form of scalp topographic or tomographic maps and the temporal
pattern in the form of associated time-series. This way one can evaluate the spatial
and/or temporal patterns of the components that should be retained and those that
should be discarded so as to increase the SNR. Nonetheless, we stress here that in
general these patterns bear no physiological meaning. A notable exception are the
patterns found by the family of blind source separation methods, discussed below,
which, under a number of assumptions, allow such interpretation.

4.3.4 Principal Component Analysis

Principal component analysis (PCA) has been the first multivariate filter of this kind
to be applied to ERP data [28, 45] and has been often employed [12, 27, 51]. A long-
lasting debate has concerned the choice of the spatial vs. temporal PCA [27, 79],
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however we hold here that the debate is resolved by performing a spatio-temporal
PCA, combining the advantages of both. The PCA seeks uncorrelated components
maximizing the variance of the ensemble average estimation (4.2) or (4.3); the first
component explains the maximum of its variance, while the remaining components
explain the maximum of its remaining variance, subjected to being uncorrelated
to all the previous. Hence, the variance explained by the N-P discarded components
explains the variance of the ‘noise’ that has been filtered out by the PCA. In symbols,
the PCA seeks matrices B and/or D with orthogonal columns so as to maximize the
variance of X̄ ′. Note that for any choice of 0<P<N, the filtered ensemble average
estimator X̄ ′ obtained by PCA is the best P-rank approximation to X̄ in the least-
squares sense, i.e., for any 0<P<N, the matrices B and/or D as found by PCA attain
the minimum variance of X̄ − X̄ ′.

The PCA is obtained as it follows: let

X̄ � UWVT (4.7)

be the singular-value decomposition of the ensemble average estimation, where
N×T matrix W holds along the principal diagonal the N non-null singular val-
ues in decreasing order (w1≥ · · · ≥wN ) and where N×NmatrixU and T×Tmatrix
V hold in their columns the left and right singular vectors, respectively. Note that
the columns of U and V are also the eigenvectors of X̄ X̄ T and X̄ T X̄ , respectively,
with corresponding eigenvalues in both cases being the square of the singular values
inW and summing to the variance of X̄ ′. The spatial PCA is obtained filling B with
the first P column vectors of U, the temporal PCA is obtained filling D with the first
P column vectors of V and the spatio-temporal PCA is obtained filling them both.
The appropriate version of (4.4) and (4.5) then applies to obtain the components and
the sought filtered ensemble average estimation, respectively. In all cases 0<P<N
is the chosen subspace dimension. Note that since for PCA the vectors of the spatial
and/or temporal filter matrix are all pair-wise orthogonal, (4.6) is simply verified by
setting A=B and/or E=D.

An example of spatio-temporal PCA applied to an ERP data set is shown in
Fig. 4.1, using estimator (4.2) in the second column and estimator (4.3) in the fourth
column. The ERP of this subject features a typical N1/P2 complex at occipital loca-
tions and an oscillatory process from about 50–450 ms, better visible at central and
parietal location, ending with a large positivity peaking at 375 ms (the “P300”). We
see that by means of only four components the PCA effectively compresses the ERP,
retaining the relevant signal; however, eye-related artefacts are also retained (see
traces at electrodes FP1 and FP2). This happens because the variance of these arte-
facts is very high, thus as long as the artefacts are somehow spatially and temporally
consistent across sweeps, they will be retained in early components along with the
consistent (time and phase-locked) ERPs, even if estimator (4.3) is used. For this
reason, artefact rejection is generally necessary before applying a PCA.



62 M. Congedo

Fig. 4.1 Comparison of several filtered ensemble average estimations via (4.5) using several spatio-
temporal filtering methods. One second of data starting at target (infrequent stimulus) presentation
averaged across 80 sweeps is displayed. No artifact rejection was performed. The green shaded
area is the global field power (Lehmann and Skrandies [52] in arbitrary units, Legend “Ar. EA”�
non-filtered arithmetic mean ensemble average given by (4.2). “ST PCA”� spatio-temporal PCA
with P�4. “CSTP”�CSTP with P�12; These two filters have been applied to estimator (4.2).
“*” The filters are applied on the weighted and aligned estimator (4.3) using the adaptive method
of Congedo et al. [22]. All plots have the same horizontal and vertical scales

4.3.5 The Common Pattern

In order to improve upon the PCA we need to define a measure of the SNR, so that
we can devise a filter maximizing the variance of the evoked signal, like PCA does,
while also minimizing the variance of the noise. Consider the average spatial and
temporal sample covariancematrixwhen the average is computed across all available
sweeps, such as

S � 1
K

K∑
k�1

COV (Xk), T � 1
K

K∑
k�1

COV
(
X T
k

)
(4.8)

and the covariance matrices of the ensemble averages, namely,
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S̄ � COV
(
X̄

)
, T̄ � COV

(
X̄ T

)
. (4.9)

The quantities in (4.8) and (4.9) are very different; in fact S and T hold the
covariance of all EEG processes that are active during the sweeps, regardless the fact
they are time and phase-locked or not, while in S̄ and T̄ the non-phase-locked signals
have been attenuated by computing the ensemble average in the time domain. That is
to say, referring to model (4.1), S and T contain the covariance of the signal plus the
covariance of the noise, whereas S̄ and T̄ contain the covariance of the signal plus
an attenuated covariance of the noise. A useful definition of the SNR for the filtered
ensemble average estimation is then

SNR
(
X̄ ′) � VAR

(
ABT X̄DET

)

1
K

∑K
k�1 VAR

(
ABT X̄kDET

) . (4.10)

The common spatio-temporal pattern (CSTP), presented in Congedo et al. [22], is
the filtering method maximizing this SNR. It can be used as well when the data
contains several classes of ERPs. The sole spatial or temporal common pattern
approaches are obtained as special cases. Both conceptually and algorithmically,
the CSTP can be understood as a PCA performed on whitened data. So, the PCA
can be obtained as a special case of the CSTP by omitting the whitening step. The
reader is referred to Congedo et al. [22] for all details and reference to available
code libraries. An example of CSTP is shown in Fig. 4.1. In contrast to the spatio-
temporal PCA, the CSTP has removed almost completely the eye-related artefact.
The last two plots in Fig. 4.1 show the filtered ensemble average estimation obtained
by spatio-temporal PCA and CSTP using the adaptive method presented in Congedo
et al. [22] for estimating the weights and shift so as to use (4.3) instead of (4.2);
the CSTP estimator is even better in this case, as residual eye-related artefacts at
electrodes FP1 and FP2 have been completely eliminated.

4.3.6 Blind Source Separation

Over the past 30 years, Blind Source Separation (BSS) has established itself as a core
methodology for the analysis of data in a very large spectrum of engineering appli-
cations such as speech, image, satellite, radar, sonar, antennas and biological signal
analysis [17]. In EEG, BSS is often employed for denoising/artifact rejection (e.g.,
[26]) and in the analysis of continuously recorded EEG, ERDs/ERSs and ERPs. Tra-
ditionally, BSS operates by spatially filtering the data. Therefore, it can be casted out
in the framework of spatial filters we have previously presented, that is, using the first
of the three expressions in (4.4) and (4.5). We have seen that PCA and the common
pattern filter seek abstract components optimizing some criterion: the signal variance
for PCA and an SNR for the common pattern. In contrast, BSS aims at estimating
the true brain dipolar components resulting in the observed scalp measurement. For
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doing so, BSS makes a number of assumptions. The common one for all BSS meth-
ods is that the observed EEG potential results from an instantaneous linear mixing
of a number of cortical dipolar electric fields. Although this is an approximation of
the physical process of current generation in the brain and diffusion through the head
[70], physical and physiological knowledge support such generative model for scalp
potentials [9]. In particular, the model fits well low-frequency electrical phenomena
with low spatial resolution, which yield the strongest contribution to the recordable
EEG. The model reads

x(t) � As(t), (4.11)

where, as before, x(t) is the observed N-dimensional sensor measurement vector,
s(t) the unknown P-dimensional vector holding the true dipolar source process (with
0<P≤N), and A, also assumed unknown in BSS, is named the mixing matrix. BSS
entails the estimation of a demixing matrix B allowing source process estimation

y(t) � BTx(t). (4.12)

We say that the source process can be identified if

y(t) ≈ Gs(t), (4.13)

where P×PmatrixG=BTA is a scaled permutation matrix, i.e., a square matrix with
only one non-null element in each row and each column.MatrixG cannot be observed
since A is unknown. It enforces a shuffling of the order and amplitude (including
possible sign switching) of the estimated source components, which cannot be solved
byBSS. Equation (4.13)means that in BSS the actualwaveform of the source process
has been approximately identified, albeit the sign, scaling and order of the estimated
source process is arbitrary. Such identification is named blind because no knowledge
on the source waveform s(t) nor on the mixing process A is assumed. Fortunately,
condition (4.13) can be achieved under some additional assumptions relating to the
statistical properties of the dipolar source components (see [11, 78]).

Two important families of BSS methods operate by canceling inter-sensor second
order statistics (SOS) or higher (than two) order statistics (HOS); the latter fam-
ily being better known as independent component analysis (ICA) (see [17], for an
overview). In doing so, both assume some form of independence among the source
processes, which is specified by inter-sensor statistics that are estimated from the
data. The difference between the two families resides in the assumption about the
nature of the source process; since Gaussian processes are defined exhaustively by
their mean and variance (SOS), ICAmay succeed only when at most one of the com-
ponents is Gaussian. On the other hand, SOSmethods can identify the source process
components regardless of their distribution, i.e., even if they are all Gaussian, but
source components must have a unique power spectrum signature and/or a unique
pattern of energy variation across time, across experimental conditions or, in the case
of ERPs, across ERP classes (see [20, 24]). For HOS methods the available EEG
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can be used directly as input of the algorithms [26]. For BSS methods, either lagged
covariance matrices or Fourier co-spectral matrices are estimated on the available
data, then the demixing matrix B is estimated as the approximate joint diagonalizer
of all these matrices [20]. Details on the application of BSS methods to ERP data
can be found in Congedo et al. [24].

Figure 4.2 shows the result of a SOS-basedBSS analysis applied to P300 data; here
the ensemble averages have been aligned using the method described by Congedo
et al. [22]. Analyzing both the temporal course and spatial distribution, we see that
the BSS analysis finds two relevant source components: S7 features a topographic
map (spatial pattern) with maximum at the vertex and an ERP (temporal pattern)
with maximum at 370 ms, clearly describing the P300. S13 features a topographic
map with maximum at parietal and occipital bilateral derivations and an ERP with
the classical P100/N200 complex describing a visual ERP. Both source components
are present only in the target sweeps. Further analysis of these components will
be presented in the Sect. 4.4. time-frequency domain analysis. Clearly, BSS has
successfully separated the two ERP components.

It is worth mentioning that while traditionally only spatial BSS is performed,
a spatio-temporal BSS method for ERPs has been presented in Korczowski et al.
[49]. Just as in the case of PCA and common pattern, a spatio-temporal approach is
preferable for ERP analysis, thus it should be pursued further (Fig. 4.2).

4.4 Time-Frequency Domain Analysis

Time-FrequencyAnalysis (TFA) complements and expands the time domain analysis
of ERP thanks to a number of unique features. While the analysis in the time domain
allows the study of phase-locked ERP components only, TFA allows the study of
both phase-locked (evoked) and non-phase-locked (induced) ERP components. In
addition to timing, theTFAprovides information about the frequency (both for evoked
and induced components) and about the phase (evoked components only) of the
underlying physiological processes. This is true for the analysis of a single time
series (univariate) as well as for the analysis of the dependency between two time-
series (bivariate), the latter not being treated here. In all cases, the time series under
analysis may be the sweeps derived at significant scalp derivations or BSS source
components with specific physiological meaning as obtained by themethodswe have
discussed above. In this section we introduce several univariate TFA measures.

A time-frequency analysis (TFA) decomposes a signal in a two dimensional plane,
with one dimension being the time and the other being the frequency.Whereas several
possible time-frequency representations exist, nowadays in ERP studies we mainly
encounterwavelets [50, 89] or theanalytic signal resulting from theHilbert transform
[13, 84, 90]. Several studies comparingwavelets and theHilbert transformhave found
that the two representations give similar results [8, 53].

The examplewe provide below employs theHilbert transform [37],which is easily
and efficiently computed by means of the fast Fourier transform [64]. By applying
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Fig. 4.2 SOS-based blind source separation of ERP. From left to right of the top panel: theweighted
and aligned ensemble average (4.3) of the non-target sweeps (Ar. EA NT) and of the target sweeps
(Ar. EA TA), the BSS components for non-target (BSS Comp. NT) and target (BSS Comp. TA)
ensemble average (obtained via (4.4), first expression), the same filtered ensemble average retaining
source component 7 for the non-target (S7 @ NT) and target sweeps (S7 @ TA) and the filtered
ensemble average obtained retaining source component 13 for the non-target (S13@NT) and target
sweeps (S13 @ TA). +: arbitrary vertical units for each trace. The bottom panel shows the spatial
patterns (columns of the inverse of matrix B) of the BSS components in the form of monochromatic
topographic maps. The sign of the potential is arbitrary in BSS analysis. Each map is scaled to its
own maximum. Note the separation of two source components: S7 which accounts for the P300,
with maximum at the vertex and an ERP with maximum at 370 ms, and S13, which accounts for
the classic P100/N200 visual ERP, with maximum at parietal and occipital bilateral derivations. As
expected, both source components are present only in the target sweeps, whereas other components
are visible in both the target and non-target sweeps

a filter bank to the signal, that is, a series of band-pass filters centered at successive
frequencies f (for example, centered at 1 Hz, 2 Hz,…) and by computing the Hilbert
transform for each filtered signal, we obtain the analytic signal in the time-frequency
representation. Each time-frequency point of the analytic signal is a complex number
ztf =atf + ibtf (Fig. 4.3). For each sample of the original signal we obtain from ztf
the instantaneous amplitude rtf , also known as the envelope, as its modulus rtf = |ztf |
and the instantaneous phase ϕtf as its argument ϕtf =Arg (ztf ). The amplitude rtf
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Fig. 4.3 In the complex plane the abscissa is the real line and the ordinate is the imaginary line
endowed with the imaginary unit i, which is defined as i2 �−1. A complex number can be repre-
sented in Cartesian form as the point z � a + ib in such plane, where a is the real coordinate and
ib is the imaginary coordinate. The point can be represented also by a position vector, that is, the
vector joining the origin and the point, with length r and angle ϕ (in the left part of the figure the
point is on the unit circle). r and ϕ are known as the polar coordinates. In trigonometric form the
coordinates are rcosϕ and irsinϕ, therefore, using Euler’s formula ei � cosϕ + isinϕ, we can also
express any complex number as z � rei

is expressed in μV units. The phase ϕtf is a cyclic quantity usually reported in the
interval (−π, …,π], but can be equivalently reported in any interval such as (−1,…,
1], (0, …, 1] or in degrees (0°, …, 360°]. The physical meaning and interpretation
of the analytic signal, the instantaneous amplitude and the instantaneous phase are
illustrated in Fig. 4.4. Besides illustrating these concepts, the simple examples in
Fig. 4.4 shows how prone to errors may be the interpretation of the analytic signal if
a filter bank is not used.

There are two ways of averaging the analytic signal across sweeps. The first
is sensitive to evoked (phase-locked) ERP components. The second is sensitive to
both evoked and induced (non-phase-locked) components. Thus, we obtain comple-
mentary information using the two averaging procedures. In order to study evoked
components we average directly the analytic signal at each time-frequency point,
such as

z̄tf � 1

K

∑

k

aktf + i
1

K

∑

k

bktf (4.14)

from which the average instantaneous amplitude (envelope) is given by

r̄ft � ∣∣z̄tf
∣∣ (4.15)
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Fig. 4.4 Three 2-second signals were generated (input Signal). Time is on the abscissa. The vertical
scaling is arbitrary. The Hilbert transform of the input signal is shown in the second traces. The
next two traces are the instantaneous amplitude (envelope) and instantaneous phase. Note that the
envelope is a non-negative quantity. a The input signal is a sine wave at 4 Hz. The instantaneous
amplitude is constant in the whole epoch. The phase oscillates regularly in between its bounds at
4 Hz. b The input signal is a sine wave at 4 Hz with a phase discontinuity occurring exactly in
the middle of the epoch. The instantaneous amplitude now drops in the middle of the epoch. As
expected, the instantaneous phase features a discontinuity in the middle of the epoch. c the input
signal is a sine wave at 4 Hz multiplied by a sine wave at 0.5 Hz with the same amplitude. The result
input signal is a sine wave at 4 Hz, which amplitude and phase are modulated by the sine wave at
0.5 Hz. The Instantaneous amplitude is the envelope of the sine at 0.5 Hz. The instantaneous phase
is like the one in B, but is now caused by the multiplication with the 0.5 Hz wave

and the average instantaneous phase is given by

ϕ̄tf � arg
(
z̄tf

)
(4.16)

Note that in this case the envelope may be high only if the sweeps at that time-
frequency point have a preferred phase, whereas if the phase is randomly distributed
from sweep to sweep, the average envelope will tend toward zero. This phenomenon
is illustrated in Fig. 4.5.

While the Hilbert transform is a linear operator, non-linear versions of measures
(4.15) and (4.16) may be obtained by adding a simple normalization of the analytic
signal at each sweep [74]; before computing the average in (4.14), replace aktf by

aktf
/
rktf and bktf by bktf

/
rktf , where rktf �

√
a2ktf + b2ktf is the modulus. This means

that at all time-frequency points and for each sweep the complex vector aktf + ibktf is
stretched or contracted so as to be constrained on the unit complex circle (Fig. 4.6).
The average instantaneous amplitude (4.15) and phase (4.16) after the normalization
will be actually sensitive to the stability of the phase across sweeps, regardless of
amplitude. Such non-linear measure is known as inter-trial phase coherence (ITPC:
[62]), but has been named by different authors also as “inter-trial phase clustering”,
“phase coherence” among other ways [14].
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Fig. 4.5 In each diagram six complex numbers are represented as position vectors (gray arrows)
in the complex plane (see Fig. 4.3). Consider these vectors as representing the analytic signal for a
given time-frequency point estimated on six different sweeps. In each diagram the black arrow is
the position vector corresponding to the average of the six complex numbers as per (4.15). In the
left diagram the vectors are distributed within one half circle, featuring a preferred direction. In the
right diagram the vectors are more randomly distributed around the circle; the resulting mean vector
is much smaller, although the average length of the six vectors in the two diagram is approximately
equal

Fig. 4.6 The left diagram is the same as in Fig. 4.5. The vectors in the right diagram have been
normalized to unit length (non-linear normalization). Note that the mean vector on the right points
in a different direction as compared to the mean vector on the left, albeit the vectors have the same
direction in the two diagrams; while on the left diagram the amplitude of the vectors weights the
average, on the right diagram the amplitude is ignored
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If induced components are of interest, instead of using (4.14) we average the
envelope computed on each sweep as

r̄tf � 1

K

∑

k

|zktf |� 1

K

∑

k

√
a2ktf + b2ktf (4.17)

In this case, the average envelope depends on the amplitude of the coefficients in
each sweep and is not affected by the randomness of the analytic signal phase. Note
that it does not make sense to average phase values ϕktf estimated at each sweep, as
we have done with amplitude in (4.17), since the phase is a circular quantity.1

Measures (4.15), (4.16) and their normalized (non-linear) versions can be modi-
fied computing a weighted average of the normalized analytic signal. Note that the
non-normalized average analytic signal is equal to the normalized average analytic
signal weighted by its own envelope. Choosing the weights differently, we obtain
quite different measures of phase consistency. For instance, weights can be given
by experimental or behavioral variables such as reaction time, stimulus luminance,
etc. In this way, we can discover phase consistency effects that are specific to certain
properties of the stimulus or certain behavioral responses [14, 15]. Taking as weight
the envelope of the signal at the frequency under analysis and the analytic signal of
another frequency (that we name here the modulating frequency) we obtain a mea-
sure of phase-amplitude coupling named modulation index (MI: [10, 14, p. 413]). If
the distribution of the modulating phase is uniform, high values of MI reveal depen-
dency between the two frequencies. The modulating frequency is usually lower than
the frequency under analysis. Note that by weighting the normalized analytic signal
arbitrarily, the obtained average amplitude is no longer guaranteed to be bounded
superiorly by 1.0. Furthermore, such measures are subjected to several confounding
effects and must be standardized using resampling methods (for details see [10, 14,
pp. 253–257, 413–418]). An alternative to the MI measure that does not require such
standardization is the phase-amplitude coupling (PAC), which is the MI normalized
by the amplitude [72]. Measures such as MI and PAC and other variants, along with
bivariate counterparts (e.g., [94]), are used to study an important class of phenomena
that can be found in the literature under the name of amplitude-amplitude, phase-
amplitude and phase-phase nesting (or coupling, interaction, binding…), amplitude
modulation and more [16, 36, 54, 55, 73, 93].

Several measures of amplitude and phase in the time-frequency plane are shown
in the following real-data example. Figure 4.7 shows a time-frequency analysis of
source S7 and S13 of Fig. 4.2. The analysis has been performed on the average of the
80 target sweeps, from−1000 to +1000mswith respect to the flash (visual stimulus),
indicated on the abscissa as the time “0”. Successively, the first and last 200 ms have
been trimmed at both sides to remove edge effects. See the caption of the figure for
explanations and the interpretation of results.

1The time of the day is also a circular quantity and provides a good example. The appropriate
average of 22 h and 1 h is 23 h 30, but this is very far from their arithmetic mean. See also Cohen
[14, pp. 214–246].
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Fig. 4.7 Time-Frequency analysis of the source component S13 (left column) andS7 (right column)
shown in Fig. 4.2. a Estimated instantaneous amplitude for frequency going from 1 Hz (top of
the plot) to 20 Hz (bottom of the plot), in 0.5 Hz steps, computed using (4.17). This method is
sensitive to both phase-locked and non-phase-locked components. The instantaneous amplitude is
color coded, with white coding the minimum and black coding the maximum. The amplitude in a
features a maximum in the time-frequency plane at around 6 Hz happening 170 ms post-stimulus,
corresponding to the P100/N200 complex (see Fig. 4.2). We also notice a sustained activity around
2.5 Hz from about 200 to 700 ms post-stimulus. Note that at 2.5 Hz substantial power is present
also before the stimulus, but this does not happen at 6 Hz. b Estimated instantaneous amplitude
obtained with (4.15). This method is sensitive to phase-locked components. Note that both post-
stimulus maxima at around 2.5 and 6 Hz survive, whereas anywhere else in the time-frequency plot
the amplitude becomes negligible, including pre-stimulus activity around 2.5 Hz. Note also that the
2.5 Hz activity post-stimulus now is weaker. Taken together the analyses in a and b suggest that
the activity around 6 Hz may be strictly phase-locked, whereas the activity at 2.5 Hz may be mixed
with non-phase-locked components. Plot c shows the instantaneous phase of S13 in the closed
interval (−π …−π], for frequencies in the range 2 Hz, …, 7 Hz, in 1 Hz increments. This has been
computed using (4.16), hence it is the phase spectrum corresponding to b. At about 220 ms post-
stimulus, in correspondence to the end of the maximum at 6 Hz, the phase alines at all frequencies
in the range 2 Hz, …, 7 Hz. The amplitude spectrum in d and corresponding phase spectrum in
e are the non-linear (normalized) version of b and c, respectively. The results are very similar to
those seen in b and c, although they appear a bit noisier. For S7, the instantaneous amplitude (4.17)
features only one strong maximum at about 3 Hz in between 280 and 570 ms (a, right column).
This maximum corresponds to the P300 peak (Fig. 4.2). The same activity is seen also in b and
d, although they appear noisier. This analysis suggests that the P300 is strictly phase-locked to the
stimulus
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We end up this section with some considerations about TFA analysis. The Hilbert
transform can be obtained by the FFT algorithm [64]. The use of this algorithm
requires the choice of a tapering window in the time domain to counteract spectral
leakage due to finite window size (see Harris [39]). As illustrated in Fig. 4.4, the
analytic signal does not necessarily represent adequately the phase of the original
signal. The study of Chavez et al. [13] has stressed that this is the case in general only
if the original signal is a simple oscillator with a narrow-band frequency support.
These authors have provided useful measures to check empirically the goodness of
the analytic signal representation. Because of this limitation, for a signal displaying
multiple spectral power peaks or broad-band behavior, which is the case in general
of EEG and ERP, the application of a filter bank to extract narrow-band behavior
is necessary. When applying the filter bank, one has to make sure not to distort the
phase of the signal. In general, a finite impulse response filter with linear phase
response is adopted (see Widmann et al. [98], for a review). The choice of the filters
band width and frequency resolution is usually a matter of trials and errors; the band
width should be large enough to capture the oscillating behavior and small enough
to avoid capturing several oscillators in adjacent frequencies. Also, the use of filter
banks engenders edge effects, that is, severe distortions of the analytic signal at the
left and right extremities of the time window under analysis [67]. This latter problem
is easily solved defining a larger time window centered at the window of interest and
successively trimming an adequate number of samples at both sizes, as we have done
in the example of Fig. 4.7. The estimation of instantaneous phase for sweeps, time
sample and frequencies featuring a low SNR are meaningless; the phase being an
angle, it is defined for vectors of any length, even if the length (i.e., the amplitude) is
negligible. However, phase measures can be interpreted only where the amplitude is
high [7]. The effect is exacerbated if we apply the non-linear normalization, since in
this case very small coefficients are weighted as the others in the average, whereas
they should better be ignored.

4.5 Spatial Domain Analysis

Scalp topography and tomography (source localization) of ERPs are the basic tools
to perform analysis in the spatial domain of the electrical activity generating ERPs.
This is fundamental for linking experimental results to brain anatomy and physiol-
ogy. It also represents an important dimension for studying ERP dynamics per se,
complementing the information provided in time and/or frequency dimensions [52].
The spatial pattern of ERP scalp potential or of an ERP source component provides
useful information to recognize and categorize ERP features, as well as to identify
artifacts and background EEG. Early ERP research was carried out using only a
few electrodes. Current research typically uses several tens and even hundreds of
electrodes covering the whole scalp surface. More and more high-density EEG stud-
ies involve realistic head models for increasing the precision of source localization
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methods. Advanced spatial analysis has therefore become common practice in ERP
research.

In contrast to continuous EEG, ERP studies allow spatial analysis with high-
temporal resolution, i.e., they allow the generation of topographical and/or tomo-
graphical maps for each time sample. This is due to the SNR gain engendered by
averaging across sweeps. Thus, as compared to continuous EEG, ERPs offer an anal-
ysis in the spatial domain with much higher temporal resolution. The SNR increases
with the number of averaged sweeps. One can further increase the SNR by using a
multivariate filteringmethod, as previously discussed. One can also increase the SNR
by averaging spatial information in adjacent samples. The spatial patterns observed
at all samples forming a peak in the global field power2 can safely be averaged, since
within the same peak the spatial pattern is supposed to be constant [52].

When using a source separation method (see Fig. 4.2 for an example) the spatial
pattern related to each source component is given by the corresponding columnvector
of the estimated mixing matrix, i.e., the pseudo-inverse of the estimated matrix BT .
In fact, a source separation method decomposes the ensemble average in a number
of source components, each one having a different and fixed spatial pattern. These
patterns are analyzed separately as a topographic map and are fed individually to
a source localization method as input data vector. Source localization methods in
general perform well when the data is generated by one or two dipoles only, while
if the data is generated by multiple dipoles the accuracy of the reconstruction is
questionable [95]. BSS effectively decomposes the ensemble average in a number of
simple source components, typically generated by one or two dipoles each [25]. As a
consequence, spatial patterns decomposed by source separation can be localizedwith
high accuracy by means of source localization methods. Note that applying a generic
filtering method such as PCA and CSTP, the components given by the filter are still
mixed and so are the spatial patterns held as column vectors by the matrix inverse
of the spatial filter, that is, the pseudo-inverse of BT . This prevents any physiologi-
cal interpretation of the corresponding spatial patterns. Source separation methods
are therefore optimal candidates for performing high-resolution spatial analysis by
means of ERPs. An example of topographical analysis is presented in Figs. 4.2 and
4.8. For an example of tomographic analysis refer to Congedo et al. [24].

4.6 Inferential Statistics

Aswe have seen, in time-domain ERP studies it is of interest to localize experimental
effects along the dimension of space (scalp location) and time (latency and duration
of the ERP components). Analysis in the time-frequency-domain involves the study
of amplitude and phase in the time-frequency plane. The dimensions retained by

2The global field power is defined for each time sample as the sum of the squares of the potential
difference at all electrodes. It is very useful in ERP analysis to visualize ERP peaks regardless their
spatial distribution [52].
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Fig. 4.8 a Ensemble average error-related potentials (19 subjects) for “Correct” and “Error” trials
at electrode Cz. The supra-threshold cluster size permutation test was applied in the time and spatial
dimension, with a � 0.05, to compare the “Correct” and “Error” condition. A significant positivity
for error trials was found at time window 320–400 ms at electrode Cz (p < 0.01), a significant
negativity for error trials at time window 450–550 ms at clustered electrodes Fz, FCz, Cz (p < 0.01)
and a significant positivity for error trials at time 650–775 ms at clustered electrodes Fz, FCz
(p � 0.025). Significant time windows are indicated by grey areas in (a) and significant clustered
derivations by white disks in (b). The supra-threshold cluster size test display good power while
controlling the FWER. Data is from the study of Congedo et al. [24]

the experimenter for the statistical analysis actually are combined to create a multi-
dimensional measurement space. For example, if a time-frequency representation
is chosen and amplitude is the variable of interest, the researcher defines a statis-
tical hypothesis at the intersection of each time and frequency measurement point.
Typical hypotheses in ERP studies concern differences in central location (mean or
median) within and between subjects (t-tests), the generalization of these tests to
multiple experimental factors including more than two levels, including their inter-
action (ANOVA) and the correlation between ERP variables and demographic or
behavioral variables such as response-time, age of the participants, complexity of
the cognitive task, etc. (linear and non-linear regression, ANCOVA).

The goal of a statistical test is to either reject or accept the corresponding null
hypothesis for a given type I error (α), which is the a priori chosen probability to
reject a null hypothesis when this is indeed true (false discovery). By definition,
our conclusion will be wrong with probability α, which is typically set to 0.05.
Things becomesmore complicated when several tests are performed simultaneously;
performing a statistical test independently for each hypothesis inflates the type I error
rate proportionally to the number of tests. This is known as the multiple-comparison
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problem [41, 97] and is very common in ERP studies, where several points in time,
space and frequency are to be investigated. Let M be the number of hypotheses to
be tested and M0 be the number of true null hypotheses. Testing each hypothesis
independently at the α level, the expectation of false discoveries is M0 ×α. Thus,
if all null hypotheses are actually true, i.e., M0 �M, we expect to commit on the
average (100 ×α) % false discoveries. This is, of course, an unacceptable error rate.
Nonetheless, themore hypotheses are false and themore they are correlated, themore
the error rate is reduced. ERP data is highly correlated along adjacent time points,
spatial derivations and frequency. Therefore, special care should be undertaken in
ERP statistical analysis to ensure that the error rate is controlled while preserving
statistical power, that is, while preserving an acceptable chance to detect those null
hypotheses that are false. Two families of statistical procedures have been employed
in ERP studies with this aim: those controlling the family-wise error rate (FWER)
and those controlling the false-discovery rate (FDR).

The family-wise error rate (FWER) is the probability of making one or more false
discoveries among all hypotheses. A procedure controlling the FWER at the α level
ensures that the probability of committing even only one false discovery is less than or
equal to α, regardless the number of tests and howmany null hypotheses are actually
true. The popular Bonferroni procedure belongs to this family; each hypothesis is
tested at level α/M instead that at level α. Sequential Bonferroni-like procedures like
the one proposed byHolm [42] also control the FWER,while featuring higher power.
However, all Bonferroni-like procedures fail to take into consideration explicitly the
correlation structure of the hypotheses, thus they are unduly conservative, the more
so the higher the number of hypotheses to be tested.

An important general class of test procedures controlling the FWER is known as
p-min permutation tests [75, 97], tracing back to the seminal work of Fisher [35] and
Pitman [80–82]. Permutation tests are able to account adaptively for any correlation
structure of hypotheses, regardless of its form and degree. Also, they do not need a
distributional model for the observed variables, e.g., Gaussianity, as required by t-
tests, ANOVAetc. [6, 30, 35, 43, 46, 75, 80–82, 91, 92, 97]. Evenmore appealing, one
may extract whatever variable from the data and perform a valid test, thus we are not
limited to test on central location, correlation, etc. Depending on the experimental
design, even the random sampling assumption may be relaxed [30]. Given these
characteristics, permutation tests are ideal options for testing hypotheses in ERP
studies and have receivedmuch attention in the neuroimaging community [1, 43, 76].

Permutation tests are available for classical correlation, within- and between-
subject mean difference tests, as well as for testing the main effects in ANOVA
designs [30]. However, a straightforward permutation test for interaction effects in
ANOVA designs does not exist, although some solutions have been proposed [75].
This is a major limitation if more than one independent variable is manipulated in the
experiment. Also, like other resampling methods such as bootstrap andMonte Carlo,
permutation tests require intense computations. For large data sets, permutation tests
may be time consuming, although this is rarely a concern with modern computers
and the typical size of data sets in ERP analysis.
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Another kind of FWER-controlling permutation test in ERP analysis is the supra-
threshold cluster size test [43]. A variant of this test has been implemented in the
EEG toolbox Fieldtrip [71], following the review ofMaris and Oostenveld [63]. This
procedure assesses the probability to observe a concentration of the effect simulta-
neously along one or more studied dimensions. For example, in testing the mean
amplitude difference of a P300 ERP, one expects the effect to be concentrated both
along time, around 300–500 ms, and along space, at midline central and adjacent
parietal locations. This leads to a typical correlation structure of hypothesis in ERP
data; under the null hypothesis the effect would instead be scattered all over both time
and spatial dimensions. An example of the supra-threshold cluster size test applied
in the time-space ERP domain is shown in Fig. 4.8.

Another family of testing procedures controls the false discovery rate (FDR). The
FDR is the expected proportion of falsely rejected hypotheses [3]. Indicating by R
the number of rejected hypotheses and by F the number of those that have been
falsely rejected, the FDR controls the expectation of the ratio F/R. This is clearly a
less stringent criterion as compared to the FWER, since, as the number of discoveries
increases, we allow proportionally more errors. The original FDR procedure of Ben-
jamini andHochberg [3] assumes that all hypotheses are independent,which is clearly
not the case in general for ERP data. A later work has extended the FDR procedure
to the case of arbitrary dependence structure among variables [4], however, contrary
to what one would expect, the resulting procedure is more conservative, yielding low
power in practice. The FDR procedure and its version for dependent hypotheses have
been the subject of several improvements (e.g., [38, 87]). Recent research on FDR-
controlling procedures attempts to increase their power by sorting the hypotheses
based on a priori information [32]. Such sorting may be guided by previous find-
ings in similar experiments, by the total variance of the variables when using central
location tests, or by any criterion that is independent to the test-statistics. Another
trend in this direction involves arranging the hypotheses in hierarchical trees prior to
testing [102] and in analyzing experimental replicability [40]. The FDR procedures
tend to be unduly conservativewhen the number of hypotheses is very large, although
much less so than Bonferroni-like procedures. In contrast to FWER-controlling pro-
cedures, FDR-controlling procedures are much simpler and faster to compute. They
offer, however, a much looser guarantee against the actual type I error rates and, like
Bonferroni-like procedures, do not take explicitly into consideration the correlation
structure of ERP data.

4.7 Single-Sweep Classification

The goal of a classification method is to automatically estimate the class to which a
single-sweep belongs. The task is challenging because of the very low amplitude of
ERPs as compared to the background EEG. Large artifacts, the non-stationary nature
of EEG and inter-sweep variability exacerbate the difficulty of the task. Although
single-sweep classification has been investigated since a long time [29], it has recently
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received a strong impulsion thanks to development of ERP-based brain computer
interfaces (BCI: [101]). In fact, a popular family of such interfaces is based on the
recognition of the P300 ERP. The most famous example is the P300 Speller [34], a
system allowing the user to spell text without moving, but just by focusing attention
on symbols (e.g., letters) that are flashed on a virtual keyboard.

The fundamental criterion for choosing a classification method is the achieved
accuracy for the data at hand.However, other criteriamaybe relevant. InBCI systems,
the training of the classifier starts with a calibration session carried out just before the
actual session. Such calibration phase makes the usage of BCI system impractical
and annoying. To avoid this, there are at least two other desirable characteristics
that a classification method should possess [60]: its ability to generalize and its
ability to adapt. Generalization allows the so-called transfer learning, thanks to
which data from other sessions and/or other subjects can be used to initialize a BCI
system so as to avoid the calibration phase. Transfer learning may involve using data
from previous sessions of the same subject (“cross-session”) and/or data from other
subjects (“cross-subject”). The continuous (on-line) adaptation of the classifier [47,
48] ensures that optimal performance is achieved once the initialization is obtained by
transfer learning [18]. Taken together, generalization and on-line adaptation ensure
also the stability of the system in adverse situations, that is, when the SNR of the
incoming data is low and when there are sudden environmental, instrumental or
biological changes during the session. This is very important for effective use of a
BCI outside the controlled environment of research laboratories.

Classification methods differ from each other in the way they define the set of fea-
tures and in the discriminant function they employ. Traditionally, the classification
approaches for ERPs have given emphasis to the optimization of either one or the
other aspect in order to increase accuracy. The approaches emphasizing the definition
of the set of features try to increase the SNR of single-sweeps by using multivariate
filtering, as those we have encountered in the section on time domain analysis, but
specifically designed to increase the separation of the classes in a reduced feature
space where the filter projects the data [83, 104]. For data filtered in this way, the
choice of the discriminant function is not critical, in the sense that similar accuracy is
obtained using several types of discriminant functions. In general, these approaches
perform well even if the training set is small, but generalize poorly across sessions
and across subjects because the spatial filters are optimal only for the session and
subject on whom they are estimated. Instead, the approaches emphasizing the dis-
criminant function use sharp machine learning algorithms on raw data or on data that
has underwent little-preprocessing. Many machine learning algorithms have been
tried in the BCI literature for this purpose [59, 60]. The three traditional approaches
that have been found effective in P300 single-sweep classification are the support-
vector machine, the stepwise linear discriminant analysis and the Bayesian linear
discriminant analysis. In general, those require large training sets and have high
computational complexity, but generalize fairly well across sessions and across sub-
jects. The use of a random forest classifier is currently gaining popularity in the BCI
community, incited by good accuracy properties [33]. However, its generalization
and adaptation capability have not been established yet. The deep neural networks
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learning [5] has recently been shown to be very promising in other fields of research.
Studies testing its performance on ERP data are not conclusive so far. An approach
that features at the same time good accuracy, good generalization and good adapta-
tion capabilities in the case of ERP data has been recently borrowed from the field of
differential geometry. This approach makes use of the Riemannian geometry on the
manifold of symmetric positive definite (SPD) matrices. Covariance matrices are of
this kind. A very simple classifier can be obtained based on the minimum distance
to mean (MDM) method [2]: every sweep is represented as a covariance matrix,
i.e., as a point on the multidimensional space of SPD matrices. The training set is
used to estimate the center of mass of training points for each class, i.e., a point best
representing the class. An unlabeled sweep is then simply assigned to the class the
center of mass of which is the closest to the unlabeled sweep. This approach as well
as other classifiers based on Riemannian geometry have been shown to possess good
accuracy, generalization and robustness properties [19, 66, 103, 105]
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