
Chapter 2
Preprocessing of EEG

Sung-Phil Kim

Abstract Preprocessing of the EEG signal, which is virtually a set of signal process-
ing steps preceding main EEG data analyses, is essential to obtain only brain activity
from the noisy EEG recordings. It has been shown that the design of preprocess-
ing procedures can affect subsequent EEG data analysis outcomes. Preprocessing of
EEG largely includes a number of processes, such as line noise removal, adjustment
of referencing, elimination of bad EEG channels, and artifact removal. This chapter
presents an overview of the methods available for each process and discusses prac-
tical considerations for applying these methods to the EEG signals. In particular,
considerable attention is paid to the state-of-the-art artifact removal methods since
there are still plenty of opportunities to enhance the artifact removal techniques for
EEG, in the perspectives of both signal processing and neuroscience. It is desirable
that this chapter provides the readers an overall view of EEG preprocessing pipelines
and serves as a handbook guide for the practice of EEG preprocessing.

2.1 Introduction

Preprocessing of the EEG signal is an indispensable step for the analysis of EEG in
most circumstances. Although there is still a lack of the standard pipeline of EEG
preprocessing [8, 37, 58] it generally includes any necessary digital signal processing
operations to polish up raw EEG signals with an aim to leave only brain activity
signals for subsequent analyses. Often, EEG preprocessing also involves procedures
to enhance spatiotemporal characteristics of the EEG signal related to the task used
in a study [65].

A number of studies have demonstrated the influences of EEG preprocessing on
the subsequent data analysis results [8, 33, 90, 110, 112]. For instance, the classi-
fication of different mental states from EEG or the control performance of a brain-
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computer interface (BCI) could be dependent on how EEG preprocessing treated the
recorded EEG signals. In fact, it is obvious that any analytic result from the EEG
signals containing significant noise and artifacts is likely to draw misleading conclu-
sions. Recent reports also emphasize the standardization of preprocessing routines
for multi-site data collection in divergent experimental environments [8, 37].

At the center of EEG processing lies the removal of any unnecessary covert and
overt components of the EEG signals. In this chapter, we denote such unneces-
sary components as noise and artifacts. Following the previous notion [65], noise is
regarded as neurological activities irrelevant to an examined behavioral task whereas
artifacts are regarded to originate from external sources unrelated to neurological
activities, such as eye movements, respiration or electrical interference. As most
EEG preprocessing techniques pay attention to removing artefacts, we will also nar-
row our focus on the methods used to eliminate artifacts to clean up the EEG signals.
Note that the topics covered by this chapter do not include the extraction of fea-
tures from the EEG signals for particular applications, which should be discussed
separately.

This chapter begins with the description of early-stage procedures to remove
basic artifacts, sort out contaminated channels and possibly adjust references. It then
discusses a range of methods to remove artifacts from the EEG signals, followed by
brief discussion on EEG preprocessing.

2.2 Early-Stage Preprocessing

Early-stage EEG preprocessing involves fundamental and semi-automated orga-
nization of signal processing functions. It is distinguished from common artifact
removal procedures as this stage of preprocessing is largely independent of any spe-
cific artifact. This chapter describes key parts of early-stage preprocessing including
the removal of line noise, referencing and the elimination of bad channels. Before
describing them, however, it is worth reviewing background characteristics of the
EEG signals.

2.2.1 Characteristics of Background EEG

Abasic and brief summary of the characteristics of background EEG activity is given
as follows [104]. The frequency range of EEG is reportedly limited approximately
from 0.01 to 100Hz. The amplitudes of EEGgenerated from the brain typically range
within ±100 µV. The power spectral density of EEG is known to follow the power
law [44]. Background brain rhythms are present in EEG, generally being classified
in terms of oscillatory frequency into five disjoint bands: delta (0.5–4 Hz), theta
(4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz) and gamma (30–100 Hz). More details
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of the implications and functions of these rhythms can be found in other resources
(e.g. see [10, 41, 63, 98]).

It is reasonable to consider the EEG signal as stochastic due to the lack of genuine
EEGmeasurements [93]. In addition, over a long-termperiod, theEEGsignals should
be viewed as a non-stationary time series [57, 66]. However, EEG within a short
time window can be approximately stationary with static statistical properties. The
length of such awindow containing stationary EEG signals varieswith environments,
generally ranging from several seconds to minutes [51].

2.2.2 Line Noise Removal

Most efforts to eliminate line noise from the EEG signal rely on notch filtering at
60 Hz. A notch filter is typically implemented with a certain frequency width sur-
rounding 60 Hz (e.g. a width of 10 Hz). Consequently, notch filtering, although
successfully removing line noise, could cause unintended distortions in signal com-
ponents oscillating between 50 and 70 Hz. Also, the notch filter can reportedly
generate a transient oscillation in baseline activity, leading to a potential issue in
data interpretation [18]. Follow-up low-pass filtering with a cutoff frequency lower
than 50 Hz may remedy this problem, but instead give rise to other issues such as
alteration of temporal structures of EEG [106] or spurious interactions between EEG
channels [40].

One suggestion to overcome this problem is estimating line noise embedded in
the recorded EEG signals as precise as possible and subtracting it from the data [8,
80]. This method employs multi-taper decomposition to find line noise components
in the signal. A short-time window slides over the course of the signal in which the
transformation of EEG time series based onmulti-tapers is carried out [5]. This trans-
formation can effectively estimate spectral energywithin each frequency band. Then,
a regression model is applied to estimate the amplitude and phase of sinusoidal line
noise (e.g. sinusoids at 60 Hz) in the transformed frequency domain. The Thompson
F-test evaluates a significance of the magnitude of the estimated line noise. A time
series of sinusoidal line noise is reconstructed if the magnitude is significant. This
process is repeated over the sliding windows. The reconstructed line noise signal
is subtracted from the original EEG signal. The entire process is repeated until the
magnitude at the frequency of line noise becomes non-significant (Fig. 2.1). In this
way, line noise components can be removed without damaging background spectral
components [83].

2.2.3 Referencing

We often subtract a reference (with the same time resolution as the recorded EEG
signals) from the original EEG signal at each channel. The reference signal should
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Fig. 2.1 Line noise removal using the multitaper transformation

remain unchanged relative to the EEG signals during the recording such that dif-
ferences of the EEG signals from reference can effectively represent brain activity
related to a study. Typical choices of reference include a signal recorded at a mastoid
channel, an EEG signal at a particular channel, the average of two mastoid signals
or the average of the entire EEG channels. In any case, it is strongly recommended
that a researcher should inspect a chosen reference signal carefully to ensure that its
amplitude level is on par with those of other EEG signals and it has no correlation
with task-induced brain activity.

Referencing to a mastoid channel has a potential problem because it generates a
single point of failure. If the contact to a mastoid becomes poor at any point during
the recording, referencing to the mastoid can increase signal variance tremendously,
resulting in irreversible contamination of EEG data. The same problem exists for ref-
erencing to a particular EEG channel. Using the common average reference (CAR)
may reduce the effect of single-point failure [9], but still suffer from an outlier chan-
nel. One simple solution to this problem is detecting and removing bad channels
before using CAR [8]. There are other systematic re-referencing methods developed
to address the issues of reference, based on physical considerations and electrody-
namics [38, 113, 114] or on statistical approaches [48, 69, 73].

2.2.4 Bad Channel Detection

It is often necessary to detect a noisy or bad channel that exhibits a contaminated
EEG signal [8]. To detect a bad channel, we can screen each channel to identify
EEG signals with excessively large amplitudes. The robust z-score can be used to
detect extreme amplitudes. For instance, a bad channel is determined when it shows
a robust z-score of the standard deviation greater than a threshold. A bad channel can
be also detected by investigating correlation of a single channel with others. Normal
EEG recordings show across-channel correlations in the low-frequency components.
Hence, the correlation of one channel with other channels after low-pass filtering
can allow us to detect bad channels. If two bad channels are incidentally correlated
with each other, we can attempt to predict one channel using other channels. The
predictor channels can be randomly selected from the remaining channels. Often,
a contaminated channel exhibits relatively large energy in high-frequency bands.
Thus, we can measure a ratio of the power of high-frequency components to that of
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low-frequency components and detect a bad channel showing a ratio higher than a
threshold.

Once being detected, bad channels are replaced with virtual healthy channels
created by the interpolation from neighboring channels, in order to reconstruct the
global brain responses [8, 31]. There exist a number of interpolation schemes useful
for channel reconstruction, including spherical splines [87], higher-order polynomi-
als [4], nearest-neighbor averaging [15] and radial basis function [53]. Using spher-
ical splines allows accurate estimation of scalp potentials if the electrode mapping
is sufficiently dense [38, 97]. Interpolation using a statistical method such as radial
basis functions has advantages of cost-effectiveness with less computational loads.

2.3 Artifact Removal

In this section, we briefly review the potential sources of artifacts mixed in the EEG
signal and the techniques to remove or reduce artifacts.Weprimarily dealwith artifact
removal techniques, forgoing other steps of artifact management such as artifact
detection. However, it does not mean that other methods including artifact detection
or artifact avoidance are less crucial than artifact removal. In fact, artifact removal
is often accompanied by artifact detection for efficient processing of artifacts. There
have been a number of methods for artifact detection that the interested readers can
refer to [3, 14, 32, 52, 81, 84].

2.3.1 Sources of Artifacts

The sources of EEGartifacts can be categorized into two classes: internal and external
sources. The internal sources originate from the physiological systems of self and
include electromagnetic activities of heart, eyes, muscle and so on. The external
sources include all other possible signals from environments that can contaminate
EEG such as wireless telecommunication signals, electrode attachment, recording
equipment and cable movements [93]. Recently. the handling of external artifacts
has become more important as EEG applications tend to move out of laboratories
toward in-home healthcare systems [100]. Yet, the external sources, owing to their
origins, can be inhibited once being identified.On the other hand, the internal artifacts
physiologically permeate EEG, making it difficult to prevent them from occurring
in advance. Therefore, most artifact removal methods have been focused on dealing
with the internal artifacts and here we also pay our attention to the most pronounced
internal artifacts that have been handled by EEG artifact removal methods.

Ocular artifacts include electric activities generated by eye movements or eye
blinking [22, 23]. Interference by ocular artifacts is strong enough to be visible
in EEG waveforms. EEG channels proximal to eyes are more vulnerable to ocular
artifacts. Ocular artifacts can be detected by electrooculogram (EOG)measurements.
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EOG recorded simultaneously with EEG offers an opportunity to readily remove
ocular artifacts from EEG as it helps identify true profiles of artifacts. Once knowing
the waveforms of ocular artifacts, removal algorithms can be developed to subtract
them from the EEG signal without a need to reject contaminated EEG segments.
To measure EOG for ocular artifact removal, it is recommended to record vertical
(vEOG), horizontal (hEOG) and radial (rEOG) oculomotor signals [88].

Muscle artifacts include electric activities originating from muscle contraction of
the body parts, including face, head, neck, limbs and others. Compared to ocular
artifacts, muscle artifacts generate more various forms depending of the sources
of muscles and related movements. The electrical signals associated with muscle
artifacts can be measured by electromyogram (EMG). However, widespread sources
of muscle artifacts over the body make it challenging to identify true profiles of
artifacts. In addition, the spectral properties of cranial muscle artifacts vary across
sources, corrupting high-frequency EEG components as well as low-frequency ones
[93, 105]. The spatial distribution of muscle artifacts is wider than ocular artifacts,
almost uniform over the entire scalp [44]. Temporal patterns of muscle artifacts are
often associated with tasks as movements of subjects naturally occur in response
to task requirements [95]. Considering all these issues, it still remains a significant
challenge to remove muscle artifacts from EEG [76, 77, 95].

Cardiac artifacts originate from electric activities of the heart. Cardiac artifacts
generally show low amplitudes compared to other artifacts. Cardiac electric activ-
ity can be measured by electrocardiography (ECG). They have well-known regular
characteristics, which resemble epileptic EEG activity and thus possibly leading to
incorrect seizure diagnosis [30]. However, for the perspective of removal algorithms,
regular cardiac waveforms make it easier to correct in EEG.When an EEG electrode
is positioned over a scalp artery, its contact with the skin can alter periodically due
to recurrent motion of a pulsating vessel, which is likely to rhythmic electric activity
similar to EEG oscillations [68]. But this pulsation effect shows periodicity syn-
chronous with the heart, rendering itself being identified by ECG.

2.3.2 Artifact Removal Methods

Artifact removal methods aim to cancel or correct artifacts in EEG with minimal
distortions in the brain signal. Herewe briefly overview the computationalmethods to
remove artifacts fromEEG [52, 104]. Along this path, we avoid describing the details
of mathematical backgrounds underlying each method (e.g. blind source separation
(BSS), regression, linear transformation of multivariate Gaussian, etc.). Overall, an
EEG artifact removal method belongs to one of the two kinds: a group of methods
that corrects a single channel independently or another group that processes the
whole channels all together. The single-channel processing methods employ various
techniques including linear regression, filtering, wavelet transform and empirical
mode decomposition (EMD). The whole-channel processing methods are based on
BSS to estimate a set of hidden sources from an observed mixture of those sources
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with only limited information. Below we present several basic methods from both
groups that have been most widely used in EEG studies.

2.3.2.1 Linear Regression

Assuming that artifact reference channels are available and contain thorough wave-
forms of artifacts, linear regression has been one of the main vehicles used to cancel
artifacts from the EEG signal due to its simplicity and ease-of-use. A basic proce-
dure is to estimate a portion of EEG contaminated by artifacts using regression and
to subtract the regressed portion from the contaminated EEG [22, 23, 45]. Linear
regression assumes that an EEG signal is the sum of an original brain signal and
a fraction of the artifact represented in reference. It estimates this fractional factor
from both the observed EEG signal and reference channel. The major drawbacks
of linear regression are that one or more reference channels must be available (e.g.
EOG or ECG), that it assumes a linear combination of EEG and artifacts where the
EEG signal may possess internal nonlinear dynamics and non-stationary, and that
it only applies well to a few types of artifacts such as EOG and ECG. However,
if reference channels are available, linear regression is still an effective solution to
remove artifacts [36, 107].

Linear regression methods operate particularly well with ocular artifacts since
EOG can be directly measured or indirectly inferred from EEG [13, 42]. However,
simple subtraction of a regressed portion of ocular artifacts from EEG can also take
out cerebral components. This problem is termed bidirectional contamination [91].
Many methods have been proposed to address bidirectional contamination among
which the aligned-artifact average procedure demonstrates promising results of can-
celing artifacts from eye movements or blinks while minimizing EEG contamination
[21–23].

2.3.2.2 Filtering

Filters used for artifact removal build a statistical machine whose parameters are
adaptively estimated with certain objectives, learning rules, model structures as well
as data. Three types of filters have been primarily adopted for EEG artifact removal
[104].

Adaptive filters model the way artifacts contaminate the EEG signal by adjusting
the filter weights according to a learning rule formed by an optimization algorithm
[47]. They assume no correlation between the EEG signal and artifacts. For example,
let x[n] be an observed EEG signal mixed with an unknown clean EEG signal y[n]
and an additive artifact signal z[n] (i.e. x[n]�y[n]+ z[n]). If the reference to artifact,
r[n], is available, the adaptive filter adjusts its weights, w, to minimize error between
x[n] and wTr[n]. Since r[n] is assumed to be uncorrelated with y[n], the optimal
weights would make wTr[n] as close to z[n] as possible. Then, a difference, {x[n] −
wTr[n]} will become close to y[n] (Fig. 2.2). Many learning algorithms are available
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Fig. 2.2 EEG denoising with adaptive filtering and reference to artifacts

to adjust weights, including least mean squares (LMS) and recursive least squares
(RLS) [47]. It has been shown that adaptive filters are superior to linear regression
because proportion factors are less constrained [91]. However, as in linear regression,
adaptive filters still require reference channels.

The Wiener filter is a linear time-invariant (LTI) filter that minimizes the mean
squared error between desired response and filter output [47]. Optimal weights of the
filter are estimated based on theWiener-Hopf equation. Learning the weights is done
offline with training samples that contain EEG and artifact signals. Having learned
its weights, the Wiener filter can operate with the contaminated EEG signals without
reference. However, the Wiener filter performance may deteriorate over time if a
proportion of EEG contaminated by artifacts changes over time (i.e. non-stationary).

Bayesian filters in a linear or nonlinear form can overcome some shortcomings
of both linear regression and the Wiener filter as they can sequentially update the
states online without the need of reference channels. Here the states approximate
unknown clean EEG signals. The system model in Bayesian filters approximates the
sequential transition of clean EEG data according to the first-order Markov process
and the observation model estimates the posterior probability distribution of clean
EEG data after observing contaminated EEG data using a likelihood model and
Bayesian approximation. The parameters of the system and observation models need
to be learned from the training data as in the case of the Wiener filter. Although it
is computationally expensive to estimate probability distributions in general, with
some assumptions, Bayesian filters can reduce to simpler forms such as the Kalman
filter or the particle filter. In particular, the Kalman filter has been widely applied for
artifact removal for EEG [50, 59, 82].
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2.3.2.3 Wavelet Transform and Empirical Mode Decomposition

EEG denoising can be achieved by decomposing a single-channel EEG signal into a
set of fundamental basis signals, with a premise that some basis signals may contain
the information of artifacts only. As such, we can find those artifact-related basis
signals and remove them from the decomposed set. Two representative methods for
decomposition of an EEG signal are presented below.

Wavelet transform convolves a given signal with a scaled and shifted version of
a mother wavelet function. It results in a set of coefficients corresponding to each
scale and time shift. The coefficients represent a similarity between a segment of the
signal and themother wavelet at a given scale. The discrete wavelet transform (DWT)
is derived from continuous wavelet transform with discrete-time sampling. A basic
procedure of theDWT is filtering a signalwith low- and high-pass filters, respectively,
where the low-pass filter works similar to the scaling function and the high-pass filter
works similar to the mother wavelet function [52]. Then, the low-pass filtered output
is passed to the next level of filtering with low- and high-pass filters again. This
procedure is repeated up to K levels and yields one approximation coefficient and K
detail coefficients where the approximation coefficient is obtained from the final low-
pass filtering and the detail coefficients are obtained from a series of the high-pass
filtering through K levels. Then, for denoising, a threshold is applied to the detail
coefficients to sort out the ones with small magnitudes. It draws upon a hypothesis
that the signal can be strongly correlated with a properly chosenmother wavelet basis
at some levels whereas artifacts cannot be [104]. Finally, the artifact-reduced signal
is reconstructed by the refined detail coefficients and the approximation coefficient
[94]. Systematic ways of selecting a threshold can be found in some studies [34].

Empirical model decomposition (EMD) is a data-driven technique that decom-
poses a signal into a sum of the band-limited basis functions, called intrinsic mode
functions (IMFs) [49]. The IMFs have zero means and are amplitude and frequency
modulated. EMD has been shown to perform well with nonlinear and non-stationary
signals. If different sets of IMFs can separately represent the signal and artifacts,
we can reconstruct a clean EEG signal by removing artifact-related IMFs from the
decomposed set. EMD has been successfully applied to artifact removal of EEG
[70, 94, 115]. More advanced methods to overcome shortcomings of EMD (e.g. low
robustness against noise, no mathematical background), including ensemble EMD
(EEMD) [99, 116] and multivariate EMD (MEMD) [108], have also been adopted
for artifact removal.

2.3.2.4 Blind Source Separation

Blind source separation (BSS) has been most widely used for artifact removal when
the information about artifacts is limited—for instance, no reference is provided.
The basic BSS methods used for artifact removal assume a linear mixture model in
which the observed multi-channel EEG signals are assumed to be a linear mixture of
unknown sourceswith little knowledge about sources or amixingmatrix. The optimal
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estimate of sources and a mixing matrix, thus, is achieved by certain assumptions
on the sources such that the sources are mutually independent or uncorrelated. For
instance, let x be an observed EEG signal vector, which is a mixture of an unknown
source vector s with a mixing matrix A, given by:

x � As + n (2.1)

where n denotes additive white noise.
Then, BSS methods estimate A to make sources in s as independent as possible.

Once the estimate of A is obtained, its inverse matrix W � A−1 is used to find the
sources given by:

s � Wx. (2.2)

These estimated sources are then inspected either empirically (by visual inspec-
tion, for example) or automatically (by automatic source selection algorithms [109,
111, 119]) to identify artifact-related sources. The reduced set of sources after remov-
ing artifactual ones are then used to reconstruct artifact-free EEG data using A.

Despite its prevalence in EEG preprocessing, BSS suffers from limitations that it
requires multi-channel EEG data and that there is always a possibility that removed
sources may also carry information about brain activity. In addition, researchers
should take into consideration the assumptions each BSS method works under,
including independence, uncorrelatedness, and non-Gaussianity [54, 71]. A variety
of BSS methods, however, have been successfully applied to remove artifacts from
biomedical signals. Below are described several methods that have been widely used
for EEG artifact removal.

Independent component analysis (ICA) is a BSS method based on assumptions
of mutual linear independence between sources and non-Gaussianity [7]. ICA algo-
rithms are based on either second-order or higher-order statistics [54]. The ICA
algorithms based on higher-order statistics estimate W by maximizing statistical
independence of the probability density functions of individual sources using mutual
information or negentropy [7, 19]. The ICA algorithms based on second-order statis-
tics estimate W by decorrelating the time-series data using the second-order blind
identification (SOBI) [20, 103]. ICA has been reported to perform well in EEG arti-
fact removal due to its reasonable assumption of statistical independence between the
EEG signals and artifacts (e.g. see [2]). However, to explore statistical independence,
ICA needs the sufficient amount of EEG data [56]. Also, ICA works best when the
artifacts and the EEG signals remain stationary during the period of analysis, which
may not be the case in general. To ensure stationarity, studies have suggested an
epoch of 10 s or less, or a sample size in the order of multiples of

√
C where C

is the number of channels [56, 92]. When only a limited number of data samples
are available, studies have suggested using the ICA algorithms with second-order
statistics [28, 55].

Principal component analysis (PCA) has been proposed as a means to remove
artifacts from EEG [39, 67, 102]. PCA transforms presumably correlated multi-
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channel EEGdata tomutually uncorrelated principal components (PCs) that preserve
variance of the EEG data as much as possible. A set of PCs can represent artifacts if
artifacts and brain signals are uncorrelated with each other. PCA also assumes joint
normal distributions of the data. Often, it suffers from its restricted assumption that
sources including brain activities are orthogonal to each other [39]. Hence, PCA is
now seldom used directly for artifact removal but instead used for other essential
preprocessing such as whitening [35].

Canonical correlation analysis (CCA) has also been extensively used for artifact
removal from EEG [29, 43, 118]. Basically, CCA seeks for canonical variables that
maximize correlations between two multivariate datasets. For EEG denoising, CCA
finds canonical variables between the original data and its time-shifted version (typi-
cally one step behind). In doing so, canonical variables inferred in sequence represent
the autocorrelation from the highest to the lowest. By assuming that brain activities
aremore correlated in time than artifacts, CCA identifies and removes canonical com-
ponents with lower autocorrelations that may correspond to artifacts. The advantage
of CCA over ICA is that it can take temporal correlations of the signals into account
and use less computational resources [52].

Besides the three BSS methods described above, there are other BSS methods
recently proposed for EEG artifact removal. Morphological component analysis
(MCA) can decompose artifacts from EEG if the morphological template of the
target artifacts is available [96]. Singular spectrum analysis (SSA) is a projective sub-
space method that projects a single-channel EEG signal onto a higher-dimensional
space by time embedding, decomposes the embedded signal vector into uncorrelated
components and reconstructs the EEG signal by projecting the embedded signals in
the directions with large eigenvalues [24, 25, 101]. The sparse time artifact removal
algorithm identifies and removes artifactual components of EEG that are sparse in
both space and time [27].

2.3.2.5 Hybrid Artifact Removal Methods

Recent studies have proposed hybrid approaches for EEG artifact removal by com-
bining more than one artifact removal algorithms. Many studies blend one algorithm
from the BSS family and the other with decomposition (e.g. wavelet transform or
EMD). A hybrid method can be characterized by the order of the applications of the
selected algorithms. One group of methods first decomposes an EEG signal and then
applies a BSS algorithm later whereas a different group of methods first estimates
components using a BSS algorithm followed by a decomposition algorithm. The
former usually corrects a single-channel EEG signal whereas the latter processes
multi-channel EEG signals (Fig. 2.3). The hybrid approaches are generally designed
to overcome the limitations of a single artifact removal approach and thus exhibit
better performance, but require more careful choices of algorithms that fit adequately
to the data and/or system requirements (e.g. computational complexity). The exam-
ples of the first group of hybrid methods for artifact removal, decomposition-BSS for
single channels, can be found in various forms, applying wavelet transform followed



26 S.-P. Kim

Fig. 2.3 Types of hybrid methods for EEG artifact removal

by (f.b.) ICA [11, 74, 75], EMD f.b. ICA [79, 117], and EMD f.b. CCA [16, 99]. The
examples of the second group, BSS-decomposition for multiple channels, can also
be found in different forms, including ICA f.b. wavelet [1, 12], stationary subspace
analysis f.b. EMD [115], ICA f.b. EMD [70], ICA f.b. regression analysis [61], and
ICA f.b. adaptive filtering [46].

2.4 Discussion

This chapter presents an overview of essential preprocessing steps for EEG. More
detailed guidelines of practical preprocessing procedures can be found in existing
literature (for instance, see [8, 52, 100, 104]). Although there has been substantial
progress in the development of EEG preprocessing methods until recently, continu-
ous advances in EEG-based research keep demanding innovations in preprocessing
techniques. For instance, pervasive and ambulatory applications using EEG foster
the development of preprocessing methods that can work with only a few channels
in real time [78, 86]. Recent neuroscience approaches to use multi-modal brain mea-
surements demand new ways of preprocessing EEG along with other signals such
as functional magnetic resonance imaging (fMRI) [17]. EEG hyperscanning tech-
niques recording brain activities simultaneously in more than one person, possibly
over different sites, need a more systematic preprocessing procedure [6]. Here, we
briefly discuss some ongoing issues and suggestions in the studies involving EEG
preprocessing.

When comparing the artifact removal performance of different algorithms, often
for the demonstration of the superiority of a newly proposed algorithm to existing
ones, we can encounter the issue of the lack of ground truth. Since it is generally
unknown about the exact waveform of a genuine EEG signal of interest, it is diffi-
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cult to assess how much a noisy EEG signal become purified by an artifact removal
algorithm [52]. One way to address this issue is to synthesize simulated signals
mixed with putative true EEG signals and artifacts and evaluate an algorithm with
the simulated signals [60, 64, 92]. Others have suggested using a well-known EEG
waveform evoked by an established cognitive task to test artifact removal methods
[104]. For example, an audio-visual task evoking the auditory N100 event-related
potential may provide a validation dataset with which researchers can evaluate differ-
ent artifact removalmethods by assessingN100waveforms after eliminating artifacts
by different methods (see [88] for more details).

Besides performance evaluation discussed above, there are other issues to address
for the development of an EEG artifact removal method. First, many recent EEG
applications demand online preprocessing of artifacts [26, 43, 86]. Such online pre-
processing is capable of detecting and removing artifacts even for non-stationary
environments so that it can adaptively update the parameters of algorithms by track-
ing environmental changes. As such, the requirement of online processing sometimes
weakens the advantages of certain algorithms that rely on the estimation of model
parameters using a chunk of the training data (e.g. ICA or EMD). Also, computation-
ally expensivemachine learning algorithms (e.g. thosewith deep learning algorithms)
may need further justification to be used for online processing. Yet, in the course
of the development of a new artifact removal algorithm, it would be more effective
to consider online implementation if possible. A fully automated artifact removal
algorithm will underpin online implementation [26, 84]. Second, the availability of
reference channels should be taken into consideration for artifact removal. If no ref-
erence channel is available, we need to use prior knowledge about artifacts or infer
artifacts directly from EEG data [62, 72, 86]. Generally, using an explicit reference
channel may help customizing algorithms for each individual, yielding a more pre-
cise preprocessing method. Depending on the types of artifacts, it may be useful for
improving EEG preprocessing to utilize reference channels, often acquired with a
separate device, such as: EOG channel [22, 23, 61], ECG channel [30], eye tracker
[85], accelerometer [24, 25], and contact impedance [119]. Third, it would be crucial
to match the properties of an algorithm with statistical and physiological character-
istics of the artifacts to remove. The readers may refer to Urigüen et al. [104] for the
suggestions of artifact removal algorithms suitable for different types of artifacts.
Fourth, researchers often opt to utilize public software tools for EEG preprocessing
as well as other EEG data analyses (see [52] for the list of available software tools).
Even though a number of software tools offer complete preprocessing routines and
user interfaces for EEG studies, it is recommended to intensively explore the theoret-
ical backgrounds and technical details of a tool being used. Otherwise, it is difficult
to understand how EEG signals are processed at each preprocessing step. Fifth, it is
helpful to inform study participants about the problems of artifacts in EEG record-
ings such that participants can minimize their movements during the main tasks
[89]. Although it would be also problematic if participants pay too much attention
to movement restriction throughout the whole experiment, a short training phase for
participants to minimize movements during the task periods interleaved with more
flexible breaks can help acquiring high-quality EEG data at the stage of recording.
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This instruction would be especially crucial for the studies recruiting younger par-
ticipants. Sixth, not only highly contaminated channels but also highly contaminated
trials are often eliminated from the analysis. The elimination of contaminated trials
is usually conducted after all the preprocessing steps but its operational principle
is similar to other preprocessing methods. Generally, the trials containing the EEG
signal magnitude greater than a threshold level (e.g.±150µV) are classified as being
contaminated [89]. Here, the threshold must be specified depending on experimen-
tal conditions. Rejection of too many trials would cause a shortage of the amount
of data in the subsequent analyses, so a careful interactive investigation between
preprocessing methods and trial rejection should be considered. Finally, a devel-
oped preprocessing pipeline may call for assessments based on feedbacks from the
designated applications (e.g. classification of the user intention for brain-computer
interfaces). Consequently, it isworth deliberating an end-to-end design ofEEGsignal
processing, from the recording to the interpretation of EEG as a whole.
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