
Mining High Utility Co-location Patterns Based
on Importance of Spatial Region

Jiasong Zhao1,2, Lizhen Wang1(&), Peizhong Yang1,
and Hongmei Chen1

1 Department of Computer Science and Engineering, Yunnan University,
Kunming, China

zhaojs75@163.com, lzhwang@ynu.edu.cn
2 Department of Electronic and Information Engineering,

Yunnan Agricultural University, Kunming, China

Abstract. Co-location pattern mining aims at finding the subsets of spatial
features whose instances are frequently located together in geographic space.
Most studies mainly focus on whether spatial feature instances are frequently
located together. However, the utilities of spatial instances in different space
regions are different. Based on the importance of spatial a region, the utility
value of the region is determined, and then a utility participation index of
co-location patterns as a new interestingness measure is defined. We present a
basic high utility co-location pattern mining algorithm. To reduce the compu-
tational cost, an improved mining algorithm with pruning strategy is developed
by cutting down the search space. The experiments on synthetic and real world
datasets show that the proposed methods are effective and efficient.

Keywords: Spatial data mining � Co-location pattern � High utility
Spatial region

1 Introduction

Owing to the rapid generation of spatial data and wide use of spatial databases, it’s
essential to discover spatial knowledge automatically from spatial datasets. Spatial
co-location mining is to discover a set of spatial features of which instances frequently
appear in a spatial neighborhood of each other. Mining spatial co-location patterns is an
important spatial data mining task with broad applications [1, 2].

The participation index is used to measure the prevalence (or frequency) of a
co-location pattern in the traditional approaches of co-location pattern mining. It
mainly focused on whether spatial feature instances are frequently located together.
However, the utility of the feature instances in different spatial regions is different. For
example, in the study of plant symbiosis, the symbiotic plants that grow in the poor
ecological environment (soil, humidity, altitude, etc.) are more general than those that
grow in the good ecological environment. Another example, in the research field of
public safety, social effect of criminal cases occurring in the downtown is absolutely
different from ones occurring in the school. Therefore, it is necessary to establish the
importance of spatial region in mining spatial co-location patterns. After setting of
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region utility values based on regional importance, the utility value of the instance is
the utility value of the region where the instance is located. By the way of mining high
utility co-location patterns similar to the literature [3], the method of discovery high
utility co-location patterns can not only detect some low-frequency but high-utility
(interesting) patterns, but also remove some common-sense patterns (high-frequency
but low-utility).

Here, we use a specific example to illustrate this problem. Figure 1 shows a sample
spatial dataset consisting of four features, A, B, C, and D. A.2 represents the second
instance of spatial feature A. Two instances are connected by edges (shown as solid
lines) if they have a spatial neighbor relationship, and the whole space is divided into
four equal regions. Suppose the utility values of these four regions are 8, 5, 2, and 1
respectively. According to the traditional co-location pattern mining method, the par-
ticipation index of co-location {C, D} is 1/3. If the prevalence threshold is not less than
0.6, {C, D} would be regarded as a non-prevalent co-location. However, two row
instances of {C, D}, {C.5, D.5} and {C.6, D.6}, all appear in Region 1 which shows
the highest utility value. So the utility of each feature in {C, D} accounts for a large
proportion of its total utility. {C, D} may be interesting to users. As to the pattern {B,
C}, in contrast, the participation index of {B, C} is 2/3, the utility participation index of
{B, C} is lower. So {B, C} may be non-interesting to users.

Therefore, the real interesting co-location patterns cannot be found by traditional
approach because the importance of different regions is ignored. In the paper, we focus
on high utility co-location mining based on importance of spatial regions.

1.1 Related Work

Morimoto et al. [4] first defined the problem of finding frequent neighboring
co-locations in spatial databases. Huang et al. [5] proposed a general approach for
mining co-location patterns, the join-based approach, which defined the participation
index to measure the prevalence of a co-location. After that, different algorithms were
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proposed to improve the efficiency of the mining process, such as join-less algorithm
[6] proposed by Yoo et al., and density based algorithm [2] proposed by Xiao et al.
Wang et al. also presented a new join-less algorithm based on the CPI-tree [7] and an
approach based on order-clique for discovering maximal co-locations [8]. Previous
approaches focus on discovering global co-locations in a spatial dataset. The results of
these approaches are usually not able to capture or represent the characteristics of
different zones. Celik et al. [9] defined the problem of zonal co-location mining. He
proposed an index structure based on the Quad-tree to support dynamic parameters for
zonal co-location mining. Dai et al. [10] developed a new index structure and algorithm
to mine zonal co-locations more efficiently. Sengstock et al. [11] introduced a new
general class of interestingness measures that are based on the spatial distribution of
co-location patterns. A new measurement using an evenness coefficient of the feature
distribution was introduced, and a novel algorithm for discovering prevalent and evenly
distributional co-location patterns was proposed in [12].

Much works on high utility pattern mining have presented different approaches in
the transactional data sets [13]. A two-phase algorithm to efficiently prune down the
number of candidates, through transaction-weighted downward closure property was
presented in [14]. UP-Growth proposed in [15] enhances the mining performance in
utility mining through maintaining the information of high utility itemsets by UP-tree.
There are just a very limited number of studies on high utility co-location pattern
mining. A framework for mining high utility co-locations was proposed in [16]. Wang
et al. [17] discussed a problem of incremental mining high utility co-locations on
spatial databases which are constantly changed with added and disappeared data.
Recently Wang et al. [3] presented a method of mining high utility co-locations from
spatial data sets with instance-specific utilities.

1.2 Contribution

The main contributions of this paper are as follows.
First, based on the importance of spatial regions, we propose a new measure called

the utility participation index for high utility co-location pattern mining.
Second, we present a basic algorithm to discover high utility co-locations. In order

to reduce the computational cost, an improved algorithm is given.
Finally, we evaluate our algorithms with experiments on both synthetic and real

world data sets.
The remainder of this paper is organized as follows. Section 2 introduces basic

concepts and definitions of high utility co-location pattern mining based on the
importance of spatial regions. A basic algorithm and an improved algorithm with a
pruning strategy are presented in Sect. 3. Experimental results are shown in Sect. 4.
The last section is conclusions.
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2 Basic Concepts and Problem Definition

2.1 Basic Concepts

A set of spatial features represents a collection of different kinds of items in space, as
F ¼ f1; f2; � � � ; fkf g. An object with a specific spatial position is called a spatial
instance, and a set of instances, as S ¼ S1 [ S1 [ . . .Sk , in which Sið1� i� kÞ is an
instance collection that corresponds to spatial feature. Each instance denoted by the
feature type and a numeric id value e.g. B.1. If the Euclidean distance of two instances
is not greater than the given threshold d, which means the two instances meet neighbor
relationship R. A co-location pattern c is a set of spatial features, in which c�F. The
instance set I is a row instance of co-location pattern c, if (1) I contains all features of c,
and no proper subset of I does so; (2) any two instances, ii and ij, ii; ij 2 I, Rðii; ijÞ, that
is, ii and ij are neighbors. The set of all row instances of c is the table instance of c,
denoted as T(c).

When the participation index of a co-location pattern is not less than the given
threshold, it is referred as a prevalent co-location pattern. The participation index of
co-location pattern c is expressed as PI (c), which is the minimum of participation
ratios among all spatial features of c, defining as follows:

PIðcÞ ¼ min
fi2c

fPrðc; fiÞg ð1Þ

The participation ratio of spatial feature fi in co-location pattern c is expressed as Pr
(c, fi), defined as:

Prðc; fiÞ ¼ Number of distinct instance of fi in any row instance of c
Number of instance of fi

ð2Þ

2.2 Problem Definition

In practical applications, the effect of feature instances in different space regions is
different. Therefore, we will set spatial region utility values based on the importance of
each region, and then the region utilities will be transformed into the instances. In this
section, some related definitions about mining high utility co-location patterns based on
the region importance will be given.

Definition 1 (spatial region utility). The spatial region utility is used to describe the
importance of different spatial regions. We denote the spatial region utility of Region i
as ui.
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Definition 2 (spatial instance utility). Let spatial instance fi.j be the j-th instance of
feature fi. We denote the utility of spatial instance fi.j as u(fi.j), which is the utility of
region where fi.j is located in it.

For example, in Fig. 1, A.2 is located in Region 2. u(A.2) = u2 = 5.

Definition 3 (total utility of feature). The total utility of a feature fi is the sum of
utilities of its instances, denoted as uðfiÞ ¼

P
fi:j2Si uðfi:jÞ, where Si is the a set of

instances belonging to fi.
For example, the total utility of feature A in Fig. 1 is u(A) = u(A.1) + u(A.2) + u

(A.3) + u(A.4) + u(A.5) + u(A.6) = 1 + 5 + 2 � 3 + 8 = 20.

Definition 4 (utility of feature in co-location). Given a size-k co-location pattern
c = {f1, f2,…, fk}, the utility of fi in c is defined as the sum of utilities of instances
belonging to feature fi2c in table instance T(c). It is denoted as
uðc; fiÞ ¼

P
fi:j2pfi ðTðcÞÞ uðfi:jÞ, where p is the relational projection operation with

duplication elimination.
For example, in Fig. 1, considering the size-2 co-location pattern c = {C, D}, T

(c) = {{C.5, D.5}, {C.6, D.6}}. The utility of D in c is u(c, D) = u(D.5) + u
(D.6) = 8 + 8 = 16.

Definition 5 (Utility Participation Ratio, UPR). The utility participation ratio of
feature fi in co-location pattern c is defined as the proportion of fi’s utility in c to its
total utility. The utility participation ratio can be computed as:

UPRðc; fiÞ ¼ uðc; fiÞ
uðfiÞ ð3Þ

For example, in Fig. 1, for pattern c = {C, D}, the utility participation ratio of each
feature in c is computed as

UPRðc;CÞ ¼ uðC:5Þþ uðC:6Þ
uðCÞ ¼ 16

26
;UPRðc;DÞ ¼ uðD:5Þþ uðD:6Þ

uðDÞ ¼ 16
22

:

Definition 6 (Utility Participation Index, UPI). The utility participation index UPI(c)
of a co-location pattern c = {f1, f2,…, fk} is the minimum in all UPR(c, fi) of
co-location c:

UPIðcÞ ¼ minki¼1 UPRðc; fiÞf g ð4Þ

Definition 7 (high utility co-location pattern, UCP). Given a minimum UPI
threshold h, a co-location pattern c is a high utility co-location pattern if UPI(c) � h
holds.
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The prevalent patterns may not be high utility patterns and the high utility patterns
may not be prevalent as well. For example, for patterns {B, C} and {C, D} in Fig. 1, PI
({B, C}) = 0.67 and UPI({B, C}) = 0.38, while PI({C, D}) = 0.33 and UPI({C,
D}) = 0.62. If both of minimum PI threshold and minimum UPI threshold are 0.6, we
can identify {B, C} is prevalent easily, but {C, D} is not. At the same time, {C, D} is a
high utility co-location pattern, but {B, C} is not.

Lemma 1. The utility participation ratio and the utility participation index are anti-
monotone (monotonically non-increasing) as the size of the co-location increases.

Proof: The utility participation ratio is antimonotonic because a spatial feature instance
that participates in a row instance of a co-location c also participates in a row instance
of a co-location c0, where c0�c. Because the utility participation index is the minimum
in all UPR(c, fi) of co-location c, when the size of the co-location increases, the utility
participation index is decreases, so it is also monotonically non-increasing.

Theorem 1. If a size-k co-location pattern ck= {f1, f2,… fk} is the high utility co-
location pattern, each size-(k-1) co-location pattern ck�1 � ck must be the high utility
co-location.

Proof: According to lemma 1, it is easy to be proved.

3 UCP Mining

3.1 Basic Algorithm

The basic UCP mining algorithm uses the generate-and-test methods, that is, generate
candidates, and test each candidate to identify whether it is a high utility co-location
pattern. Algorithm 1 shows the pseudocode of the basic UPC mining.

Algorithm 1. Basic UCP Mining
Input: F: a set of spatial features, S: a set of spatial instances, d: a distance threshold, θ: a 
utility participation index threshold.
Output: A set of high utility co-locations. 
Variables: k: co-location size, Ck: a set of size-k candidates, Tk: a set of table instances of 
Ck, Uk: a set of size-k high utility co-location patterns
Methods:
1. the data space is divided into m regions;
2. set the utility value for the region, respectively, u1, u2, ..., um
3. U1=F; T1=S; 
4. for (k = 2; Uk-1≠φ; k++) do
5.   Ck = gen_candidate_colocations(k, Uk-1); 
6.   Tk = gen_table_instances(Ck, Tk-1, d); 
7.   Calculate_UPI(Ck, Tk) ;
8.   Uk = select_high_utility_colocations(Ck, Tk, θ); 
9. end for
10. Return (U2, U3, ..., Uk ) 
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Initialization (Step 1–3): First of all, according to the importance of the regions, the
data space is divided into m regions, and the utility value for these regions is set,
respectively, u1, u2,…, um. And then size-1 high utility co-location patterns sets and
size-1 table instance sets are initialized.

Generating Candidate Co-locations (Step 4–6): Given a spatial data set and a dis-
tance threshold, all neighboring instance pairs can be found by using a geometric
method such as plane sweep. Meanwhile, the set of size-2 candidates and the set of
table instances of C2 can be generated from the neighbor instance pairs. For k > 2, size-
k candidate co-locations and table instances of them are generated from size-(k-1) high
utility co-location patterns. Here, we use the antimonotone of utility participation index
to prune the set of generated candidate patterns.

Discovering High Utility Co-locations (Step 7–8): First, we calculate the UPI of each
candidate co-location according to the Definition 6. Then, we identify high utility
co-location patterns by the UPIs of candidate co-locations and the given UPI threshold h.

Steps 4–9 are repeated with the increment of size k. Note that the row instances
which lie across two regions are ignored in Algorithm 1.

3.2 Improved Algorithm

The basic UCP mining algorithm can efficiently discover utility co-location patterns
due to the antimonotone property of UPI. In this section, we present an improved UCP
mining algorithm for reducing the computational cost.

As shown in Fig. 1, the instances of feature B and C in pattern {B, C} exist in a
high utility region, but there is no row instance of {B, C}. Therefore, the utility
participation index of {B, C} is low. Through this observation, we get the improvement
of basic algorithm: m regions are sorted from high to low according to the utility
values, and the regional number is 1, 2,…, m in turn. And then we mine high utility
co-location pattern with the strategy of generate-and-test based on the sorting regions.

Definition 7 (utility of feature within a region). Within region l, suppose Sli is a set of
instances belonging to a feature fi. The utility of fi within region l is denoted as
ulðfiÞ ¼

P
fi:j2Sli uðfi:jÞ.

For example, in Fig. 1, the utility of feature A within Region 1 is u1(A) = u
(A.6) = 8.

Definition 8 (utility of feature in co-location within a region). Within region l, given
a size-k co-location pattern c = {f1, f2,…, fk}, the utility of fi in c is defined as the sum of
utilities of instances belonging to feature fi2 c in Rl(c), where Rl(c) is the set of row
instance of c within region l. It is denoted as ulðc; fiÞ ¼

P
fi:j2pfi ðRlðcÞÞ uðfi:jÞ, where p is

the relational projection operation with duplication elimination.
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For example, in Fig. 1, within Region 1, considering the size-2 co-location pattern
c = {A, C}, R1(c) = {A.6, C.6}. The utility of A in c within Region 1 is u1(c, A) = u
(A.6) = 8.

Lemma 2. Let m regions are sorted from high to low according to the utility value,
and the regional number is from 1, 2,…, m in turn. After the related utility values of the
first l regions are calculated, the maximum utility participation ratio of feature fi is
UPR (c, fi) maxl.

UPRðc; fiÞmaxl ¼
uðfiÞ �

Pl
r¼1

urðfiÞþ
Pl
r¼1

urðc; fiÞ
uðfiÞ ð5Þ

Proof:

UPRðc; fiÞ ¼

Pl
r¼1

urðc; fiÞþ
Pm

r¼lþ 1
urðc; fiÞ

uðfiÞ �

Pl
r¼1

urðc; fiÞþ
Pm

r¼lþ 1
urðfiÞ

uðfiÞ

UPRðc; fiÞ�
Pl
r¼1

urðc; fiÞþ uðfiÞ �
Pl
r¼1

urðfiÞ
uðfiÞ

Theorem 2. Given a size-k co-location pattern c = {f1, f2, …, fk}, if UPR (c, fi) maxl< h
holds, then c must be a non-high utility co-location pattern, i.e., pattern c can be
pruned.

Proof: According to Definition 6 and Lemma 2, we have UPI (c) � UPR (c, fi)
UPR (c, fi) maxl. So, when UPR (c, fi) maxl< h holds, pattern c can be pruned.

For example, in Fig. 1, for pattern c = {B, C}, we have

UPRðc;BÞmax1 ¼ uðBÞ�u1ðBÞþ u1ðc;BÞ
uðBÞ ¼ 13�0þ 0

13 ¼ 1

UPRðc;CÞmax1 ¼ uðCÞ�u1ðCÞþ u1ðc;CÞ
uðCÞ ¼ 26�16þ 0

26 	 0:38
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If minimum UPI threshold h is 0.6, pattern {B, C} can be pruned by Theorem 2.

Algorithm 2. Improved UCP Mining

Input: F: a set of spatial features, S: a set of spatial instances, d: a distance threshold, θ: a 
utility participation index threshold.
Output: A set of high utility co-locations. 
Variables: 
k: co-location size
Ck: a set of size-k candidates

l
kT : a set of table instances of Ck within region l

Uk: a set of size-k high utility co-location patterns
Methods:
1. The data space is divided into m regions; 
2. sort regions and make the utility values of region 1, 2, …, m meet u1 u2 … um
3. U1=F; T1=S; 
4. for (k = 2; Uk-1≠φ; k++) do
5.   Ck = gen_candidate_colocations(k, Uk-1); 
6.   for each c in Ck 
7.     for l = 1 to m do
8.       tc=gen_table_instances(c, 1

l
kT − , d); 

9.       Calculate_UPR maxl (c, tc) ; 
10.       if UPR(c, fi) maxl θ  then 
11.         remove c from Ck ; break;
12.       end if
13.     append tc to l

kT ; 
14.     end for
15.   end for
16.   Uk←Ck;
17. end for
18. Return (U2, U3,…, Uk ) 

According to Theorem 2, the basic mining algorithm can be optimized. Instead of
scanning the entire dataset, candidate patterns and their table instances can be generated
and UPI can be calculated. In particular, the initialization is similar to the basic
algorithm, but the m regions should be sorted from high to low (step 2) according to
their utility values. Then, we use size-(k-1) high utility co-location patterns to generate
size-k candidate co-locations (step 5). And then, the table instance tc is generated
according to the regional order, one by one. Finally, the UPR (c, fi) maxl is calculated.
The unpruned candidate pattern Ck is the high utility pattern Uk (step 6–17). In the
process of generating the table instance tc of each pattern c, the time consumption for
the improved algorithm will be reduced as a result of reducing the scanning scope of
the dataset. Algorithm 2 shows the pseudocode of the improved UPC mining.
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4 Experimental Evaluation

In this section, we perform a series of experiments to verify the effect and the efficiency
of the basic UCP (BUCP) algorithm and the improved UCP (IUCP) algorithm on
synthetic and real datasets.

The algorithms are implemented in JAVA and are memory-based algorithms. All
the experiments were performed on an Intel core i7-6700 3.4 GHz PC with 8G MB
main memory, running on Microsoft Windows10.

4.1 Datasets

For the synthetic dataset, we generate instances and randomly distribute them into a
1000 � 1000 space, and the utilities of regions are assigned randomly between 1 and
10. For the real dataset, we use a plant dataset of the “Three Parallel Rivers of Yunnan
Protected Areas”, we set the utilities of regions by an expert judge method.

4.2 Quality of Mining Results

The criterion QðcÞ ¼ P
f2c uðc; f Þ

.P
f2c uðf Þ is used to evaluate the quality of a

mined co-location pattern c, and the bigger Q(c) is, c has the higher utilities [3]. We
compare the quality of mining results identified by the traditional participation index
(PI) and the UPI proposed in our paper.

Mining results on the synthetic dataset. The number of spatial features we take is
20; the total number of instances n is 15 K; the distance threshold d is 25; and the
number of regions m is 9. Figure 2(a) shows the sum of quality of top-k interesting
co-location patterns identified by the measure PI and UPI respectively. The results
show that UPI measure can discover higher quality co-location patterns.

Mining results on the real dataset. In Fig. 2(b), we use a real-world plant distri-
bution dataset which the number of plant species (spatial features) is 25 and the number
of instances is 13348 in a 90 km � 90 km area. According to the soil properties, this

Fig. 2. The quality of mining results (a) on the synthetic dataset, (b) on the real dataset
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space is divided into 7 regions. With the same results of the synthetic dataset, the
quality of mining results by UPI measure is still better than the quality of mining results
by PI measure.

4.3 UCP Mining Performance Evaluation

In this subsection, we compare running time of BUCP algorithm and IUCP algorithm
on synthetic datasets.

Effect of the number of instances n. The number of spatial features we set is 20;
the distance threshold d is 10; the number of regions m is 25; and the utility partici-
pation index threshold h is 0.3, the running time of two algorithms by increasing the
number of instances n is shown in Fig. 3(a). We can see that with the increase of n, the
running time of the two algorithms is increased. This is because that the increase of
n will produce more clique instances, leading to more time consumption. When
n > 70 K, the algorithm IUCP is obviously superior to that of BUCP, because the
IUCP algorithm can prune non-high utility candidate patterns through scanning parts of
data space.

Effect of the distance threshold d. In Fig. 3(b), the number of spatial features is 20,
n = 20 K, m = 25, h = 0.3. Similarly, the running time is increased with the increase of
d, because a larger value of d means more instances which could form cliques to bring

Fig. 3. Running time of UCP mining (a) by number of instances, (b) by distance threshold,
(c) by utility participation index threshold, (d) by number of regions
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more join operations. The performance of IUCP algorithm is still better than BUCP
algorithm, as there is a pruning strategy in IUCP algorithm.

Effect of the utility participation index threshold h. In Fig. 3(c), the number of
spatial features is 20, n = 60 K, m = 25, d = 10. As h becomes higher, more patterns
dissatisfy the condition of the high utility patterns, naturally, the performance of two
algorithms meliorate. When h < 0.3, the running time of IUCP algorithm is less than
BUCP. When h > 0.3, the running time of the two algorithms is almost equal. This is
because that when h value is larger, BUCP algorithm has greatly reduced the running
time by using antimonotone property of UPI.

Effect of number of regions m. In Fig. 3(d), the number of spatial features is 20,
n = 60 K, d = 10, h = 0.3. When m > 25, the running time of IUCP algorithm is less
than that of BUCP algorithm. Besides, with the increase of m, the pruning utility of
IUCP algorithm is better and its running time is less, while the UPI calculation amount
of the algorithm BUCP is increased and its running time is slightly increased. When
m < 25, with the increase of m, the running time of the two algorithms is reduced.
However, the running time of IUCP algorithm is more than BUCP, because the pruning
strategy of IUCP algorithm is invalid and it scans the entire datasets when identifying
high utility patterns. In this way, the table instance is generated in each region and UPI
is calculated, thus, increasing the running time.

5 Conclusions

In this paper, we present a method to find high utility co-location patterns based on
importance of spatial regions. We use the utility participation index of the patterns as
interestingness measure and present BUCP algorithm and IUCP algorithm with a
pruning strategy. The experimental results show that we can effectively mine the high
utility co-location patterns. IUCP algorithm achieves superior performance than to
BUCP algorithm. In the future, we plan to validate our method with different types of
datasets.
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