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Abstract. Classification of hyperspectral images (HSI) can benefit from deep
learning models with deep architecture in remote sensing. In this letter, a novel
method based on Convolutional Neural Network (CNN) is proposed for the clas-
sification of hyperspectral images. Due to using more spatio-spectral features for
the classification of hyperspectral images, the proposed method outperforms the
existing state-of-the-art classification techniques. Our proposed method first
reduces the dimensionof hyperspectral images usingPrinciple component analysis
(PCA). The spatial and spectral features are then exploited by a fixed size convo-
lutional filter to generate the combine spatio-spectral feature maps. Finally, these
feature maps are fed into a Multi-Layer Perceptron (MLP) classifier that predicts
the class of the pixel vector. To validate the effectiveness of our proposed method,
computer simulations are conducted using three datasets namely Indian Pines,
Salinas and Pavia University and comparisons with existing techniques are made.
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1 Introduction

Hyperspectral image classification is an important research topic in remote sensing. In the
presence of commercial hyperspectral sensors e.g. Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS), HSI data is easily available to researchers. AVIRIS which is
operated by the NASA Jet Propulsion Laboratory covers 224 continuous spectral bands
across the electromagnetic spectrum with a spatial resolution of 3.7 m. The information
collected by AVRIS is used to classify the objects on earth surface. Supervised or unsu-
pervised classification algorithms have the ability to quickly obtain categorical informa-
tion from remote-sensing images and classify the objects present in the image.
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Consequently, such algorithms play an important role in remote-sensing image
applications.

The basic purpose of image classification is to classify the labels for each pixel in HSI
image, which is a challenging task. The performance of classification techniques is clo-
sely affected by high dimensionality of the data, limited labeled samples and spatial
variability of spectral information. To overcome such issues, various techniques, such as
independent component analysis (ICA) [1], neighborhood preserving embedding [2],
linear discriminant analysis (LDA) [3] and wavelet analysis [4], have been proposed for
the classification of hyperspectral images. Investigations show that the afore-mentioned
techniques did not bring significant improvement in classification accuracy. However,
support vector machine(SVM) based methods and Neural networks(NN) present a more
attractive solution to image classification in terms of computational cost and classification
accuracy [5].Due to the high diversity ofHSI data, it is difficult to determinewhich feature
is more relevant for the classification task.

Moreover, recently introduced deep learning (DL) models automatically learn
high-level features from data in a hierarchical manner. Typical deep learning models
includes Deep Belief Networks [6], Deep Boltzmann Machines [7], Stacked Denoising
Autoencoders [8] and Convolutional Neural network (CNN) [9]. More specifically
Autoencoders (AE) [10] has been an efficiently used for the classification of HSI images,
basically the input of Autoencoders (AE) is high dimensional vector i.e. flatten the high
dimensional image into a vector then feed it to the model later classify it by using logistic
regression classifier. A recent state-of-the-art technique proposed by Lee et al. [11], called
a contextual deep CNN, consist of nine layers in total, jointly obtained the spatio-spectral
features maps and classified by Softmax activation function.

Inasimilarfashioninspiredby[11],inthispaperwetrytoassesstheeffectivenessofaDL
technique namely, Convolutional Neural network (CNN). The basic motivations for us to
considerConvolutionalapproachhave twomainreasons: theeffectivenessof thisapproach
recentlyproved innumerous remote sensingapplications;main characteristics of this tech-
nique,whichmakes itapotentialcandidate toclassifyhyperspectraldata. In thiscontext,we
proposed a ConventionalMulti-Layer Perceptron (MLP) network for the classification of
remote sensing hyperspectral data. Our proposed structure basically combines the
spectral-spatial attributes in initial stage resulting in a high-level spectral-spatial features
constructionandthenimplementMLPclassifierforprobabilisticmulticlassHSIclassification.

The rest of the paper is organized as follows: In Sect. 2, we provide details of the
proposed network. The description of datasets and performance comparison are given in
Sect. 3. Finally, Sect. 4 summarizes the process and some probable future work is
pointed out.

2 Proposed Architecture

In this section architecture of the proposed system is briefly described. In the first stage
the reduction of dimensionality is presented and then the deep structure of CNN and
MLP is described.
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2.1 Dimensionality Reduction

Usually, HSI data consist of several band/channels along the spectral dimension. Thus,
it always has tens of thousands of dimensions resulting in a large amount of redundant
information. In most of the cases, the first few band/channels have significant variance
and they contain almost 99.9% of information [12]. So in the first layer of our proposed
network we introduced PCA, to reduce the dimension to an acceptable scale while
reserving the useful spatial information in the meantime. As our main concern is to
incorporate the spatial information, so we use PCA along-with the spectral dimension
only and retain first several principal components. During our experimentation process
on state-of-the-art hyperspectral datasets, we used only 10 to 30 principal components
respectively for each dataset.

2.2 Classification Framework

For CNN, Image input data is expressed as a 3-dimensional matrix of width * height *
channels (h * w * c). In order to input an HSI image, we have to decompose HSI into
patches, each one of which contains spectral and spatial information for a specific pixel.
Our proposed network contains 12 convolutional layers. First convolutional layer in
network contains 32 features with a filter whose dimension is 3 * 3. The batch size of 30
samples is used and the block size is set to 11. In first convolutional layer, we use a filter of
dimension 3 * 3 and get featuremaps in subsequent layers as shown in Fig. 1. In a similar
manner for further layers filter size remains same but the number of feature maps is
increased. For preserving local spatio-spectral correlationwedonot increase thefilter size.
The first convolutional layer is followed by further hidden layers in the network.

During the training, network parameters keep changing repeatedly which cause a
change in activations, this refers to as “internal covariate shift”. To resolve this problem
we adopt Batch normalization (BN) [13]which allows us to usemuch higher learning rate.

Fig. 1. Filter size and feature map representation.
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The algorithm given above presents Batch normalization (BN) transforms where
b ¼ x1. . .xmf g are the values over mini-batch. Equation (3) implements normalization
operation while Eq. (4) implements scaling and shifting learned by c and b parameters to
get the final result yi. The main characteristic of BN is that it is based on simple differ-
entiable operations, which can be inserted anywhere in CNN network to normalize
improper network initialization. BN boost up the performance as well.

After convolving the image fed theneurons tomax-pooling layer, the purpose is to take
themaximumvaluesfromthe inputandshorten thesizeofselectedfeatures.Thepool size is
2 * 2.Next, pooling layer is followedby theFlatten layerwhichconverts the2Dmatrix toa
vectorcalledFlatten. Itallows theoutput tobeprocessedbystandardfullyconnectedlayers.
ReLU (Rectified linear unit) and dropout are also employed here. The threshold value for
dropout is 0.3. The purpose of using ReLU is that it is much faster than other nonlinear
functionsandDropoutisusedtopreventoverfittingandcomplexco-adoptionsphenomena.

For classification purpose Softmax activation [14] function issued to output
probability-like predications according to the number of classes. Softmax is a general-
ization of logistic function, and its output can be used to represent the categorical distri-
bution, which is basically a gradient-log-normalizer:

p y ¼ jjzðiÞ
� �

¼ /soft max zðiÞ
� �

¼ ez
ðiÞ

Pk
j¼0 e

z ið Þ
k

ð5Þ

where z is the net input can be defined as

z ¼ w0x0 þw1x1 þ . . .þwmxm ¼
Xm
l¼0

wlxl ¼ wTx ð6Þ
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where w is the weight vector, w0 is for bias and x is the feature vector. zðiÞ is basically a
classification function of j� th class which takes “x” as an input and compute prob-
ability “y” for each class label. Therefore, Softmax is adopted here because it is a
potential candidate for probabilistic multiclass HSI classification problem.

Stochastic gradient descent (SGD) is a classical approach for training deep learning
architecture is employed here. SGD algorithm is used to calculate the error and propagate
it back to adjust theMLPweights and filters. The architecture of our proposed approach is
presented in Fig. 2.

3 Experimental Results and Comparative Analysis

3.1 Datasets

AVIRIS and ROSIS sensor datasets are the classical datasets [15]. Particularly, in our
experiment the Indian Pines, Salinas and Pavia university datasets are used. Indian Pines
dataset depicts a test site in North-western Indiana and consists of 145 * 145 pixels with
224 spectral reflectance bands in the wavelength range from 0.4 to 2.5 µm while spatial
resolution is 20m. Basically, it contains 16 classes but we only use 8 classes because they
have a large number of samples among others.

The University of Pavia dataset depicts the scenes acquired by the ROSIS sensor
during a flight campaign over Pavia, northern Italy whose number of spectral bands are
102 contains 610 * 340 pixels. It contains 9 classes.

The number of spectral bands and spatial resolutions are 103 and 1.3 m respectively.
While the spectral reflectance range from 0.4 to 0.8 µm.

Third dataset “Salinas” is also acquired by AVIRIS sensor over Salina Valley,
California. It consists 224-bands with 512 * 217pixels with high spatial resolution
3.7 m. Number of classes of this data set are 16. For both datasets (University of Pavia,
Salinas) we use all the classes for training and testing because they have a relatively
large number of samples. For all datasets, selected classes and samples are listed in
Tables 1, 2 and 3.

Fig. 2. Graphical representation of proposed network for HIS classification.
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Table 1. Number of training and testing samples along with selected classes used from the
Indian Pines DataSet.

ID Class Train Test

1 Corn-notill 200 1234

2 Corn-mintill 200 634
3 Grass-pasture 200 297
4 Hay-windrowed 200 289

5 Soybean-notill 200 768
6 Soybean-mintill 200 2268

7 Soybean-clean 200 414
8 Woods 200 1094
Total 1600 6998

Table 2. Number of training and testing samples along with selected classes used from the
University of Pavia DataSet.

ID Class Train Test

1 Asphalt 200 6431
2 Meadows 200 18449

3 Gravel 200 1899
4 Trees 200 2864

5 Sheets 200 1145
6 Bare soil 200 4829
7 Bitumen 200 1130

8 Bricks 200 3482
9 Shadows 200 747

Total 1800 40976

Table 3. Number of training and testing samples along with selected classes used from salinas
dataset.

ID Class Train Test

1 Broccoli greenweeds 1 200 1809

2 Broccoli-greenweeds 2 200 3526
3 Fallow 200 1776
4 Fallow rough plow 200 1194

5 Fallow smooth 200 2478
6 Stubble 200 3759

7 Celery 200 3379
8 Grapes untrained 200 11071
9 Soil vineyard develop 200 6003

10 Corn-green weeds 200 3078
11 Lettuce romaine, 4wk 200 868

12 Lettuce romaine, 5wk 200 1727
13 Lettuce romaine, 6wk 200 716
14 Lettuce romaine, 7wk 200 870

15 Vineyard untrained 200 7068
16 Vineyard vertical trellis 200 1607
Total 3200 50929
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3.2 Comparative Analysis

For comparison, we randomly select 200 samples per class for training and all
remaining samples for testing. The basic purpose of selecting 200 samples per class is
to evaluate our proposed method with the state of the art approaches reported in [11].
To successfully accomplish all the experiments the CNN Tensor flow framework [16]
is used on GPU GTX1060.

Table 4 provides a comparative analysis of classification among the proposed
method and the one reported in [11]. The contextual deep CNN used in [11] has 9
convolutional layers while our proposed network has twelve layers, we can say that our
network is much deeper than contextual deep CNN [11]. It is obvious that our network
has much better performance as compare to contextual deep CNN on all datasets. To
further evaluate our network we compare our performance with state-of-the-art RBF
kernel-based SVM method [17], which consist two convolutional and two fully con-
nected layer much shallower than our technique. In recent research [18], for a diver-
sified Deep Belief Networks(D-DBN) has much better performance as compared to
[17], we also use (D-DBN) as a baseline to in our comparative analysis. For all the
datasets, we also use other types of methods which are evaluated in [11]: two-layer NN,
three-layer NN, shallower CNN and LeNet-5.

Our proposed network out-performs the baseline approaches on all the datasets.
More specifically as compared to [11] for Indian Pines dataset the proposed network
gained more than 2% accuracy while in the cases of University of Pavia and Salinas
datasets, it gained 1.3% and 2.04% classification accuracy respectively. The significant
performance of proposed architecture is just because of its deeper nature which proves,
that digging more in the convolutional network leads to high classification accuracy.
Figure 3 shows the classification maps of each data set corresponding to their ground
truth images.

3.3 Impact of Epochs

During network training weights are updated due to back propagation phenomena, One
round of updating the network or the entire training dataset is called an epoch [19].
Figure 4 shows validation loss and classification accuracy on the bases of epoch size.
From validation loss plotted in Fig. 4a we observe the performance of the proposed
network i.e. the number of lost samples decreased when the number of epochs increased
meanwhile the classification accuracy is improved significantly as can be seen in Fig. 4b.

For all the data sets these observations proved that deepness of our network greatly
improves overall accuracy meanwhile preserving lower validation loss.

Table 4. Classification accuracy comparison among proposed networks and the base lines on
three datasets(%). The best performances among all methods are indicated in bold

Data sets Two-Layer
NN [11]

RBF-SVM
[11]

Three-layer
NN [11]

LeNet-5
[11]

Shallower
CNN [11]

D-DBN
[18]

DCNN
[11]

Proposed
Network

Indian Pines 86.49 87.60 87.93 88.27 90.16 91.03 93.61 96.13

University
of Pavia

– 90.52 – – 92.56 93.11 95.97 97.32

Salinas – 91.66 – – 92.60 – 95.07 97.11
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4 Conclusion

In this letter, we propose a CNN-based classification method for remote sensing data.
The proposed method is much deeper, faster and utilizes more spatio-spectral features
for the classification of hyperspectral images. The proposed method and existing

Fig. 3. RGB compositions of resulted classification map by proposed network along with
ground truth are shown for University of Pavia, Salinas and Indian Pines datasets.

Fig. 4. Classification performance under different set of parameters for all experimental data
sets. (a)Validation loss vs. Number of epochs, (b) Classification accuracy over the course of
epochs.
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state-of-art techniques are compared using three data sets. It is shown that our method
achieves better classification accuracy. Simulation results demonstrate the superiority
of the proposed method. The future research prospects include to combine the proposed
network with a shallower convolutional based network for more enhanced classifica-
tion performance.
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