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Abstract This paper presents an approach to determine the optimal value of
multi-objective optimization of a reliability-based system design problem. For this
purpose, an over-speed protection system for a gas turbine is designed with mutually
conflicting objectives such as the system reliability and system cost. This is a multi-
objective nonlinear mixed integer programming problem subject to the upper limits
on design constraints such as weight and volume. To solve the problem, a fuzzy
approach is adopted to specify the goals in terms of the membership functions. This
approach is effective in modeling the vague and imprecise information involved in
the system. NSGA-II is employed to obtain the Pareto solutions efficiently. Finally,
one out of these solutions is obtained by the decision-making methods such as TOP-
SIS and Shannon’s entropy approach. The efficiency of the proposed approach is
compared with the existing approach.

Keywords System reliability · Multi-objective optimization · Fuzzy optimization
Membership function · NSGA-II · Crowding distance · Rank · Decision-making

1 Introduction

Reliability is characterized by the performance of a system under some specified
conditions. It is a necessary aspect of an engineering system design. In many prac-
tical situations, a design engineer needs to improve the reliability with reduction
of other resource consumptions such as cost, weight, and volume. Formulation of
system design in multi-objective programming problem is a better adaptation in such
situations. Many multi-objective approaches in reliability-based system design can
be seen in [1–4]. Ideally, a multi-objective optimization presents a group of non-
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dominated solutions in the form of trade-offs, where the desired solution is then
selected by some high-level information involved in the problem [5]. Classical opti-
mization methods [6] are not able to fulfill such demands. Evolutionary algorithms
[7] are useful alternatives in a multi-objective optimization problem, where a collec-
tive Pareto solutions is obtained simultaneously. The basic concepts and approaches
of multi-objective evolutionary algorithms (MOEAs) can be viewed in Coello et al.
[7]. Elitist non-dominated sorting genetic algorithm (NSGA-II) [6] is one of the
second-generation MOEAs. It finds a much better convergence and spread of solu-
tions near the true Pareto front [6] compared to two other elitist MOEAs such as
PAES [8] and SPEA [9]. The applications of NSGA-II have now increased due to
its elitism, parameter-less sharing approach, and low computational requirements
[6]. Salazar et al. [10] showed the competency of NSGA-II to classify a set of opti-
mal solutions (Pareto front) in solving constrained reliability problems. Wang et al.
[11] used NSGA-II to solve multi-objective redundancy allocation problem (RAP)
and compared their results with single-objective approaches. Kishore et al. [12]
proposed an interactive approach to fuzzy multi-objective reliability optimization
problem using NSGA-II. Safari [13] proposed a variant of NSGA-II in solving a
multi-objective RAP. Khalili-Damghani et al. [14] proposed a decision-support sys-
tem for multi-objective RAPs. Fuzzy-based multi-objective reliability problems are
solved by Garg and Sharma [15] and Garg et al. [16] using PSO and GA. Recently,
Sharifi et al. [17] present NSGA-II algorithm for solving multi-objective RAP for
series–parallel and k-out-of-n subsystems with three objectives.

In this paper, a methodology is developed to achieve the optimal value of multi-
objective reliability-based system design problem. First, the multi-objective problem
of system design is formulated in the fuzzy environment and then solved by using
NSGA-II. In order to find a concrete solution, decision-making methods such as
TOPSIS [20] and Shannon’s entropy [21] are implemented on the basis of the ideal
and anti-ideal points (solutions) specified by the decision-maker. The optimal values
are shown graphically in the objective space. The proposed method is compared with
one of the existing approaches [15]. The rest of the paper is organized as follows.
In Sect. 2, a mathematical model of the problem is constructed. Section 3 presents a
concise depiction of the NSGA-II algorithm. In Sect. 4, the proposed methodology
is described. Section 5 gives the results and with its discussion and Sect. 6 gives the
conclusion.

2 Mathematical Model of the Problem

In this work, a four-stage over-speed protection system model [1] for a gas turbine
is considered. The system diagram is shown in Fig. 1.

Over-speed detection is constantly arranged by the electrical and mechanical
systems. When an over-speed occurs, the fuel supply goes cut off. In this way, four
control valves (V1–V4) get locked. The control system is formed as a 4-stage series
system. A constant failure rate occurs for all components in the system. The goal is
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Fig. 1 A symbolic diagram
of the over-speed protection
system

to determine the optimal design variables R j and
∣
∣X j

∣
∣ at each stage j such that the

minimization of the system cost and the maximization of the system reliability can
be achieved simultaneously.
Notation:

RS System reliability;
CS cost of the total system;
R j reliability of a component at stage j;
∣
∣X j

∣
∣ number of the redundant component at stage j;

WS total system weight;
VS total system volume;
Wlim upper limit on the system weight;
Vlim upper limit on the system volume;
Wj weight of each component at stage j;
Vj volume of each component at stage j;
γ j , δ j physical quantities representing characteristics of each component at stage j;
M number of stages;
τ operating time

The mathematical model of the problem is given as follows:

Max RS �
M
∏

j�1

[

1 − (1 − R j
)|X j |]

, (1)

MinCS �
M
∑

j�1

γ j

( −τ

ln (R j )

)δ j [∣
∣X j

∣
∣ + exp

(∣
∣X j

∣
∣/4
)]

, (2)

subject to

WS �
M
∑

j�1

Wj

∣
∣X j

∣
∣ exp
(∣
∣X j

∣
∣/4
) ≤ Wlim, (3)
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VS �
M
∑

j�1

Vj
(∣
∣X j

∣
∣
)2 ≤ Vlim, (4)

1 ≤ ∣∣X j

∣
∣ ≤ |Xmax|, Rmin ≤ R j ≤ Rmax, j � 1, 2, . . . , M ;

∣
∣X j

∣
∣ ∈ Z

+, R j ∈ R
+,

(5)

where exp
(∣
∣X j

∣
∣/4
)

represents the interconnecting hardware, |Xmax| denotes the
maximum number of components given at each stage, Rmin and Rmax denote the
minimum and maximum values on the reliability of each component.
Assumptions:

(i) The cost–reliability relation is

C(R j ) � γ jλ
−δ j

j (6)

(ii) Each component of the system has a constant failure rate λ j that follows an
exponential distribution. The reliability of each component is obtained by

R j (τ ) �
∞∫

τ

λ je
−λ j τdτ � e−λ j τ (7)

From (6) and (7), the cost of each component is

C(R j ) � γ j
[−τ/ ln (R j )

]δ j (8)

3 NSGA-II

Non-dominated sorting genetic algorithm (NSGA) was initially suggested by Srini-
vas and Deb [18]. It uses Goldberg’s domination criterion [19] to assign ranks for
the solutions and utilization of fitness sharing for maintaining the diversity in the
solution set. It has some difficulty in regarding computational complexity, non-elitist
approach, and highly dependent on the parameters of fitness sharing. Deb et al. [6]
extended this algorithm in the form of NSGA-II by giving some new features like
fast non-dominated sorting, crowding distance, and comparison operator.

NSGA-II assigns a rank for solutions employing non-dominated sorting procedure
and emphasizes good solutions throughout this algorithm. The overall complexity
governed by this process is O(kN2), where k and N denote the number of objectives
and population size, respectively [6]. See Fig. 2a.

For maintaining the diversity in the solution set, NSGA-II calculates the crowding
distance of each solution. It is basically defined as those solutions that contain the
same rank. A partial order comparison operator is applied to determine a better
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Fig. 2 a Sorting procedure of a population. b Crowding distance estimation of a solution. c Eval-
uation cycle of the NSGA-II algorithm

solution between two solutions. According to this operator, if both the solutions
belong to the same rank, then preference is given to the solution that contains a
higher crowding distance value. A higher crowding distance value gives the lesser
crowded region and vice versa [6]. See Fig. 2b.

Deb et al. [6] proposed constraint-dominance based binary tournament selection
method in constraint handling procedure. A search space is divided by the constraints
into two regions—feasible and infeasible. Accordingly, a solution α is defined as a
constrained-dominate to a solution β if

(i) α is feasible and β is infeasible.
(ii) α and β are infeasible, but α contains a lower overall constraint violation.
(iii) α and β are feasible, but α dominates β.

The pseudocode of NSGA-II algorithm (See Fig. 2c) is given as follows:
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Step 1. Initializing randomly a parent population P0 of size N . Setting k = 0.
Step 2. Assigning fitness (rank) according to non-domination level and crowded-

comparison operator.
Step 3. while k < number of maximum generation do

(i) Creating an offspring population Qk of size N applying reproduction,
crossover, and mutation.

(ii) Combining via Rk � Pk∪Qk .
(iii) Sorting on Rk and classifying them into non-dominated fronts (Pareto

fronts) PFi , i � 1, 2, . . . , etc.
(iv) Setting a new population Pk+1 � ∅ and i � 1.

while the parent population size |Pk+1| + |PFi | < N do
(i) Calculating the crowding distance of PFi .
(ii) Adding the i th non-dominated front PFi to the parent population

Pk+1.
(iii) i � i + 1.

end while
(v) Sorting the PFi using the crowding distance-based comparison oper-

ator.
(vi) Filling the parent population Pk+1 with the first N − |Pk+1| solutions

of PFi .
(vii) Generating the offspring population Qk+1.
(viii) Setting k � k + 1.

end while

Step 4. Collecting the non-dominated solutions in the vector P.

4 Proposed Methodology

The problem given in Sect. 2 is solved by the following steps:

Step 1. Constructing the membership functions of fuzzy objectives (Fig. 3).

(a) Monotonically increasing function            (b) Monotonically decreasing function                    

Fig. 3 Linear membership function for a system reliability b system cost
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μR̃S
�

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, RS ≤ Rmin
S ,

RS−Rmin
S

Rmax
S −Rmax

S

, Rmin
S < RS < Rmax

S ,

1, RS ≥ Rmax
S ,

(9)

where Rmin
S and Rmax

S are the minimum and maximum values on the system reli-
ability, respectively. This range is fixed by the decision-maker according to his/her
requirements.

μC̃S
�

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, CS ≤ Cmin
S ,

Cmax
S −CS

Cmax
S −Cmin

S

, Cmin
S < CS < Cmax

S ,

0, CS ≥ Cmax
S ,

(10)

similarly, Cmin
S and Cmax

S are the minimum and maximum values on the system
cost, respectively. This range is decided by the decision-maker according to his/her
investment capacity.

Step 2. Formulating the problem in the form of fuzzy objectives.

Maximize
(

μR̃S
, μC̃S

)}

(11)

subject to the constraints given in (3)–(5).

Step 3. Setting the parameters as given in Tables 1 and 2, and then applying the
NSGA-II algorithm to get the Pareto front in (11).

Step 4. Constructing the decision matrix of objectives (criteria) as follows:

D �
⎡

⎢
⎣

μ11
R̃S

μ21
R̃S

. . . μm1
R̃S

μ12
C̃S

μ22
C̃S

. . . μm2
C̃S

⎤

⎥
⎦

T

�
[

μ
i j

R̃S ,C̃S

]

; i � 1, 2, . . . ,m; j � 1, 2. (12)

Step 5. Finding the best alternative in the decision matrix given by (12).

To determine the best alternative, we apply the decision-making method as fol-
lows:
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4.1 TOPSIS Approach

In the present work, we applied the TOPSIS method [20] on membership values of
the objective functions. The ideal membership value is taken as 1 for the upper limit
of each objective and the anti-ideal membership value is taken as 0 for the lower
limit of each objective. The Euclidean distances of each membership value of the
objective function from the anti-ideal and ideal points are calculated, respectively,
as follows:

D−
i �
√
√
√
√

2
∑

j�1

(

μ
i j
RS ,CS

− 0
)2

, i � 1, 2, . . . ,m (13)

D+
i �
√
√
√
√

2
∑

j�1

(

μ
i j
RS ,CS

− 1
)2

, i � 1, 2, . . . ,m (14)

In this method, Di (relative closeness of ith alternative) is calculated as

Di � D−
i

D−
i + D+

i

(15)

Table 1 Designing data for the problem

Number of stages (M) 4

1 ≤ ∣∣X j
∣
∣ ≤ 10, 0.5 ≤ R j ≤ 1 − 10−6, j � 1, 2, 3, 4;

∣
∣X j
∣
∣ ∈

Z
+, R j ∈ R

+

Stage 105 γ j δj vj wj

Upper limit on Ws 500.0 1 1.0 1.5 1 6

Upper limit on Vs 250.0 2 2.3 1.5 2 6

Operating time (τ ) 1000 h 3 0.3 1.5 3 8

4 2.3 1.5 2 7

Table 2 The parameter settings for the given problem

The parameters are set to NSGA-II and GA

Population
size

80 Rmin
s Rmax

s Cmin
s max

Maximum
generation

100 0.75 0.99 25 100

Crossover rate 0.9 Ideal point = (25, 0.99)

Mutation rate 0.1 Anti-Ideal point � (100, 0.75)

Random seed 0.1234
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Therefore,

Abest
i � max(Di ). (16)

4.2 Shannon’s Entropy Approach

Entropy [21] is calculated to measure the disorder in the given discrete probability
distribution of the system. It is observed that a broad distribution gives a more uncer-
tainty than a sharply packed distribution. Consider Hi j in the decision matrix D as
follows:

Hi j � μ
i j
RS ,CS

m∑

i�1
μ
i j
RS ,CS

, i � 1, 2, . . . ,m; j � 1, 2. (17)

Shannon’s entropy is calculated by

E j � −M
m
∑

i�1

Hi j ln Hi j , M � 1/ ln(m) (18)

The degree of deviation is obtained by

DVj � 1 − E j (19)

The weight of jth fuzzy objective is calculated by

Wj � DVj
∑2

j�1 DVj

(20)

Finally,

Yi �
2
∑

j�1

Hi jW j ; i � 1, 2, . . . ,m (21)

Therefore,

Abest
i � max(Yi ). (22)

Formulation of the problem for the genetic algorithm (GA) [19]-based decision-
making
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Maximize

(

1 ∧ α1

W1

)

∧
(

1 ∧ α2

W2

)

(23)

subject to

α1 � μR̃S
, α2 � μC̃S

,W1,W2 ∈ (0, 1] (24)

WS �
M
∑

j�1

Wj

∣
∣X j

∣
∣ exp
(∣
∣X j

∣
∣/4
) ≤ Wlim, (25)

VS �
M
∑

j�1

Vj
(∣
∣X j

∣
∣
)2 ≤ Vlim, (26)

1 ≤ ∣∣X j

∣
∣ ≤ 10, 0.5 ≤ R j ≤ 1 − 10−6, j � 1, 2, 3, 4;

∣
∣X j

∣
∣ ∈ Z

+, R j ∈ R
+ (27)

where∧ representsmin operator as the aggregate operator,W1 andW2 are theweights
of the objectives suggested by the decision-maker, α1 and α2 are the degree of satis-
faction of the objectives.

5 Results and Discussion

Theproblempresented in Sect. 2 is aRAPproblem.A real number of encoding is used
in a vector of design variables [(R1, |X1|), (R2, |X2|), (R3, |X3|), (R4, |X4|)]. The
SBX and polynomial operators [5] are used for crossover and mutation, respectively.
Based on rigorous experimentation, results are obtained in Table 3. In Table 3, the
proposed approach is compared with heuristic method GA where the problem is
converted to single objective using aggregation operator. To make a fair comparison,
same parameters are used and equal weight given to each objective. One of the
best solutions is chosen from 10 independent runs in GA. In Fig. 4, the results are
displayed on the basis of membership functions. There are 29 solutions found by
NSGA-II in the first front. The decision-making methods are applied on the basis
of the Euclidean distances from the ideal and anti-ideal points. Figure 5 shows the
Pareto front and the best results obtained by the decision-making methods such as
TOPSIS and Shannon’s entropy.

6 Conclusion

In this piece of work, an approach is developed to determine the optimal value of
fuzzymulti-objective reliability-based system design. Amathematical model of real-
world problem of the over-speed protection system is presented. To avoid any kind
of aggregator operators, NSGA-II is employed to solve the problem. At the decision-
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Table 3 Comparison of optimal solutions with the existing method

NSGA-II based decision-making GA-based
decision-making

TOPSIS Shannon’s entropy
method

W � [0.5, 0.5]

(R1, |X1|) (0.73947, 3) (0.73349, 3) (0.72315, 3)

(R2, |X2|) (0.65557, 3) (0.67206, 3) (0.66142, 3)

(R3, |X3|) (0.83512, 3) (0.84847, 3) (0.80802, 3)

(R4, |X4|) (0.65311, 3) (0.69319, 3) (0.66382, 3)

μR̃s
0.669 0.728 0.739

μC̃s
0.731 0.659 0.709

Rs 0.91726 0.93192 0.92729

Cs 45.16 50.57 46.81

Ws 477.58 469.55 498.78

Vs 76.72 72.21 77.54

0 
0.2
0.4
0.6
0.8

1 

0 0.2 0.4 0.6 0.8 1 
sC

µ ~

sR
µ ~

Ideal point

Anti-ideal 
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TOPSIS
approach 

Shannon's 
entropy 
approach 

Fig. 4 The optimal values based on membership functions
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0.95 

1
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Ideal point

Anti-ideal point TOPSIS
approach 

Shannon's entropy 
approach SR

SC

Fig. 5 The optimal values based on objective functions

making stage, we modify the decision-making methods in terms of membership
function and find the best optimal value according to the Euclidean distances from
the ideal and anti-ideal points (solutions) in the objective space. In order to show the
efficiency of the proposed approach, it is compared with the existing approach. The
obtained results are found encouraging. Thus, the proposed methodology can be a
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better adaptation in finding the concrete solution in multi-objective reliability-based
system design problem.
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