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π Fraction-Based Optimization
of the PBM Antenna Benchmarks

Richard A. Formato

Abstract Real-world optimization problems often require an external “modeling
engine” to compute fitnesses, and these programs often have much longer runtimes
than evaluating fitnesses solely with built-in compiler routines. Using a stochastic
optimizer on real-world problems can be quite challenging because every run returns
a different “best” fitness. This issue is addressed by making many runs, often hun-
dreds, possibly even thousands, in order to generate meaningful statistics, but doing
so can be prohibitive with external modeling. And even then the statistical nature
of the results may obscure true global extrema. Additionally, real-world problems
do not come with well-defined, clearly appropriate objective functions (at least most
of the time). The practitioner must define an appropriate function, which in itself
can be a daunting task made more difficult using a stochastic optimizer. π frac-
tions mitigate these issues by introducing pseudorandomness in an otherwise truly
randommetaheuristic, for example, genetic algorithm. This paper illustrates the util-
ity of π fractions by using them in two different optimizers, one deterministic and
the other probabilistic. These optimizers are applied with quite good results to the
PBMantenna benchmarks, a set of difficult real-world engineering problems, thereby
demonstrating the utility of π fractions in all types of optimizers.

Keywords Optimization · Global search and optimization · π fractions · CFO
GASR · Genetic algorithm · PBM · PBM antenna benchmarks · Antenna
Deterministic algorithm · Stochastic algorithm · Pseudorandomness
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2 R. A. Formato

1 Introduction

The utility of π fractions in global search and optimization is investigated by apply-
ing theπ fraction-based algorithms Central Force Optimization (πCFO) andGenetic
AlgorithmwithSiblingRivalry (πGASR) to thePantoja et al. [1] benchmarks (PBM).
PBM is a group of typical real-world engineering problems that do not have known
analytical solutions. They are designed to test the effectiveness of antenna optimiza-
tion algorithms using the Numerical Electromagnetics Code [2] (NEC) as the mod-
eling engine. A major concern when external modeling is required is having to make
multiple runs if a stochastic optimizer is employed, for example, genetic algorithm.
π fractions mitigate this issue by making stochastic algorithms pseudorandom, in
effect deterministic. πCFO and πGASR data are compared to the published PBM
data and to CFO implemented without π fractions. The results are quite good. They
demonstrate the general utility of π fractions in global search and optimization, in
particular in rendering deterministic an otherwise probabilistic algorithm.

2 The PBM Suite

PBMcomprises five problems inwhich the antenna directivity is the fitness (objective
function) to be maximized. Each problem has a unique landscape (fitness’ topology
over the decision space, DS). Four of the problems are two-dimensional (2D), while
the fifth is (Nel−1)D where Nel is the number of elements in a co-linear dipole array.
Table 1 summarizes PBM’s characteristics (λ is the free space wavelength), and the
appendix contains geometries for the five antennas and perspective landscapes for
the four 2D problems.

Table 1 Properties of the PBM benchmark problems

PBM
benchmark

Problem characteristics (in each case objective is to maximize directivity)

1 Variable length center-fed dipole. 2D, unimodal, single global maximum,
strong local maxima

2 Uniform 10-element array of center-fed λ
2 -dipoles. 2D, added Gaussian noise,

single global maximum, multiple strong local maxima

3 Eight-element circular array of center-fed λ
2 -dipoles. 2D, highly multimodal,

four global maxima

4 Vee Dipole. 2D, unimodal, single global maximum, “smooth” landscape.

5 Collinear Nel-element array of center-fed λ
2 -dipoles. (Nel − 1) D, unimodal,

single global maximum
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3 π Fractions

The π fractions comprise a set of random numbers extracted from the constant π

that are uniformly distributed on the interval [0, 1). They are generated by the Bailey,
Borwein, and Plouffe hexadecimal digit extraction algorithm [3]. In an inherently
deterministic algorithm like CFO, the π fractions can improve DS exploration by
adding a measure of pseudorandomness [4, 5]. Used in an inherently stochastic algo-
rithm like GASR [6], the π fractions render the algorithm effectively deterministic.

A major advantage of determinism is that every optimization run with the same
setup yields precisely the same results. This characteristic allows the algorithm
designer to quickly andwith certainty evaluate the effects of changes such as different
run parameters or different fitness functions. By contrast, such evaluations using a
stochastic algorithm require many independent runs, often hundreds or thousands, to
generate adequate statistics, and even then the results are imprecise because of their
statistical nature. Having to make so many runs can be a very serious limitation in
real-world optimization problems, especially ones that require long-running external
modeling engines (NEC being an example with highly segmented antennas) [5].

Alternatives to the π fraction approach include using a compiler’s built-in random
number generator or a separately coded routine employing the same “seed” value
on successive runs in order to generate a repeatable sequence of “random” numbers.
These approaches, however, run the risk of creating undesirable bi-dimensional cor-
relations in high dimensionality decision spaces, an effect seen, for example, in
Halton and van der Corput low-discrepancy sequences [7]. In contrast, undesirable
correlations in the π fractions are readily avoided by not using them in their order
of occurrence [7].

In the present work, algorithms πCFO and πGASR both employ the following π

fraction pseudocode instead of using a compiler’s built-in random number generator.
This procedure generates random real numbersa≤ ri <b andmitigates the correlation
problems discussed above (note that initialization values are completely arbitrary).

πi : {π fractions in order of occurrence; i=1,.., Nπ}
Initialize: Nπ ← 215 830 : init1 ← 17
init2 ← 22 : inc ← 5 : i ← init1

Procedure Rπ : generates a random number
in [a,b) using π fractions

ri � a + (b-a) πi

i ← i + inc
if i > Nπ then i ← init2

End

Pseudocode π fraction Random Numbers
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4 Algorithms Compared

Data from three algorithms,CFO,πCFO, andπGASR, are compared to the published
PBM data. The PBM suite was initially studied using completely deterministic CFO
without the pseudorandomness introduced by π fractions [8]. Initial probe accelera-
tions were set to zero, the repositioning factor

(
Frep

)
was initialized and incremented

deterministically, and a deterministic “Probe Line” Initial Probe Distribution (IPD)
was used (for details, see [8], which includes the source code listing). By contrast,
the present version, πCFO, is pseudorandomized using π fractions to compute the
initial probe accelerations, Frep, and the IPD. Run parameters were the same as in
[8] with DS shrinking and early termination checking. Only a single πCFO run was
made for each benchmark because the algorithm remains completely deterministic
with the π fractions.

The second randomized algorithm applied to PBM is πGASR (Genetic algorithm
with sibling rivalry, discussed in detail in [7]).BecauseGASR is inherently stochastic,
calls to the compiler’s built-in random number generator were replaced by the π

fraction procedure above (run parameters otherwise the same as in [7]). The best
πGASR fitness over multiple runs is reported here because the very purpose of
using π fractions is to eliminate true randomness by replacing it with deterministic
pseudorandomness.

A question raised in the initial PBM/CFO study was how well NEC recovered the
published PBMdata. Generally, NEC4 recovers those results well, but there are some
noteworthy differences discussed in detail in [8] and briefly summarized here. On
PBM #1 and #2, NEC4’s computed directivities are slightly lower. But on problems
#3 and #4, they are lower by a wider margin. The best agreement is on problem #5
where the NEC4 and PBM data show very good agreement. An explanation of these
discrepancies is elusive (see [8] for further discussion). There are several possibilities,
ranging fromdifferent versions ofNEC to compiler differences to slight but important
differences in the antenna models (for example, excitation source modeling). The
validation data in [8] show that NEC4 can be used effectively to assess an algorithm’s
performance against PBM, but precise agreement is not to be expected.

5 Results

Table 2 compares the best fitness results for algorithms CFO, πCFO, and πGASR
to the published PBM data. While there are slight differences, overall the maximum
directivity data are quite similar for all five problems. Consistency is very high on
PBM #5 and somewhat lower on the others. In all cases, the best fitness is close
to the reported PBM data, but, as pointed out above, some (minor) questions arise
concerning the accuracy of some of the published PBM results. A fair reading of
these data is that all the tested algorithms provide maximum directivities close to
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Table 2 Best fitness

PBM benchmark Maximum directivity

PBM CFO πCFO πGASR

1 3.32 3.20627 3.24340 3.25837

2a (no noise)
2b (noisy)

18.3a

nrb
18.3654
18.6880

18.2810
19.7609

17.9473
18.8314

3 7.05a 6.48634 6.57766 6.57658

4 5.8a 5.71479 5.29663 5.29663

5 (6 el) ~11.25c 11.2202 11.2202 11.2202

5 (7 el) nr 13.1826 13.0918 13.1826

5 (10 el) ~19b 19.0985 19.0985 19.0985

5 (13 el) nr 25.0611 25.0035 25.0035

5 (16 el) ~31b 30.9742 30.9742 30.9742

5 (24 el) ~47b 46.8813 46.8813 46.8813

Notes avalues estimated from the figures in [1]
bnr—not reported in [1]
cvalues marked with ~ are estimated from Fig. 13 in [1]

the actual maxima, and that the π fraction approach is effective in making stochastic
πGASR deterministic so that only a single run actually is required instead of many.

Coordinates for the best fitnesses are shown in Table 3. These data also show
a high degree of consistency between the tested algorithms except for πGASR on
PBM #2a where the x1 coordinate is different from the other two algorithms. This
disagreement also shows up to a lesser degree in πGASR’s maximum directivity in
Table 2. On PBM #5, the dipole element separations are all close to 0.99λ with the
greatest variability returned by algorithm πCFO. The differences in di , however,
have no effect on the best fitness as seen in the remarkably consistent data in Table 2.

6 Conclusion

π fractions have been shown to be an effective approach to mitigating the incon-
sistency inherent in stochastic global search and optimization. The case for using π

fractions is made by way of example using the PBM antenna benchmarks as rep-
resentative real-world problems requiring an external modeling engine to calculate
fitnesses. Stochastic algorithms require multiple runs to build meaningful statistics,
often runs numbering in the hundreds. This requirement usually is not a limitation
when optimizing analytical benchmarks because built-in routines are used, but it eas-
ily becomes a very significant impediment when a long-running external modeling
engine is required as often is the case for real-world problems. π fractions address
this concern by rendering deterministic (pseudorandom) an otherwise probabilistic
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Table 3 Best fitness coordinates

PBM
bench-
mark

PBM CFO πCFO πGASR

x1 x2 x1 x2 x1 x2 x1 x2

1 2.58λ 0.63 2.5509λ 0.6181 2.5896 0.6195 2.5845 0.6198

2a (no
noise)

~5.85λ 1.5730 5.9236λ 1.5569 5.9246 1.5554 6.9270 1.5467

2b
(noisy)

nra nr 6.9360λ 1.5472 5.8877 1.5560 9.8907 1.5230

3 0.5 1.5730 0.4802 1.5733 2.4806 1.5611 1.5201 1.5704

4 1.5λ 0.834 1.4952λ 0.7110 1.4913 0.7176 1.4942 0.7317

Min/Max di , i � 1, . . . , Nel − 1

5 0.99λ 0.983/1λ 0.974/1.199λ 0.987/1λ

Notes anr—not reported in [1]

optimizer so that only a single run is required. π fractions also are useful in inher-
ently deterministic algorithms by injecting a measure of pseudorandomness that may
improve an algorithm’s ability to explore the decision space.

Appendix: PBM Antenna Geometries and Objective
Function Landscapes

Benchmark #1: Variable Length Center-Fed Dipole

The antenna geometry for Problem#1 is shown in Fig. 1. The objective is tomaximize
a center-fed dipole’s directivity, D, as a function of its total length, L , and the polar
angle, θ . A perspective view of the 2D landscape appears in Fig. 2. It is smoothly
varying with a single global maximum and two local maxima of similar amplitude.

Benchmark #2: Uniform Dipole Array

The problem #2 antenna is the uniform array of half-wave dipoles shown in Fig. 3.
All elements are center-fed with in-phase equal amplitude sources. The figure also
shows the standard right-handed Cartesian coordinate system used by NEC, as well
as the polar angle θ and azimuth angle φ. The objective is to maximize directivity
D(d, θ ) in the plane φ � 90◦ as a function of element separation d and polar
angle θ with and without the presence of additive Gaussian noise. Figure 4a shows
the landscape without noise and Fig. 4b with it. As in [1], noise is generated by
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Fig. 1 Dipole

Fig. 2 Benchmark #1 topology, perspective view

adding to the NEC4-computed directivity a normally distributed zero-mean, 0.2-
variance random variable z, here computed using the Box–Muller method [9, 10] as
z � μ+σ

√−2 ln(s) cos(2π t), whereμ and σ , respectively, are the mean (zero) and
standard deviation (0.4472), and s and t are random variables uniformly distributed
on [0, 1). s and t are generated using the π fraction random number pseudocode
described above.
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Fig. 3 Uniform array of half-wave center-fed in-phase dipoles

Benchmark #3: Circular Array of Half-Wave Dipoles

The antenna for problem #3 is the circular array of half-wave dipoles shown in Fig. 5.
The array comprises eight dipoles parallel to the z-axis uniformly deployed on a one-
wavelength radius circle. All elements are center fed by equal amplitude sources.
But, following [1], the phase varies as αn � − cos [2π β (n − 1)], n � 1, . . . , 8.
The unit-amplitude excitation is therefore Vn � cosαn + j sin αn . The objective
is to maximize the directivity D(β, θ ) in the plane φ � 0◦ as a function of the
dimensionless phase parameter 0 ≤ β ≤ 4 and the polar angle θ . The range for β

produces the four global maxima at
(
βi � i − 0.5, i � 1, . . . , 4; θ � π

2

)
as seen in

the perspective topology plot in Fig. 6.

Benchmark #4: Vee Dipole

Benchmark #4 is the vee dipole antenna as shown in Fig. 7. It comprises two arms of
equal length Larm with inner angle 2α connected by a feed segment of length 2L feed

fed at its midpoint. The objective is to maximize the directivity D(L total, α) along the
+X-axis as a function of the total dipole length 0.5λ ≤ L total � 2Larm+2L feed ≤ 1.5λ
and the inner half-angle π

18 ≤ α ≤ π
2 with L feed � 0.01λ.
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Fig. 4 a Uniform half-wave dipole array without noise, perspective view. b Uniform dipole array
with additive Gaussian noise, perspective view

Topology of the Vee dipole’s decision space appears in Fig. 8. This objective
function is unimodal with a single global maximum at D(L total, α) � (1.5λ, 0.834).
The surface is smoothly varying without pronounced local maxima.
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Fig. 5 Circular array of half-wave dipoles (1λ radius)

Fig. 6 Circular array landscape, perspective view

Benchmark #5: N-element Collinear Dipole Array

Benchmark #5 is a collinear array of Nel half-wave dipoles as shown in Fig. 9.
All elements are center-fed in-phase with equal amplitudes sources. The objective
is to maximize directivity D(di , i � 1, . . . , Nel − 1) in the plane φ � 0◦ as a
function of the element center-to-center spacings 0.5λ ≤ di ≤ 1.5λ. Because there
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Fig. 7 Vee dipole

Fig. 8 Vee dipole decision space topology, perspective view

are Nel −1 spacings in an Nel array, the dimensionality of this problem is (Nel −1)D,
unlike the previous four benchmarks each of which is 2D. As discussed at length in
[1], maximum directivity occurs at di � 0.99λ ,∀i , independent of the number of
elements, that is, with all dipoles spaced 0.99λ regardless of the array size. Of course,
the value of the directivity does depend on the array size, increasing approximately
in proportion to the length.
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Fig. 9 Nel-element collinear dipole array
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Benchmark Function Generators
for Single-Objective Robust Optimisation
Algorithms

Seyedali Mirjalili and Andrew Lewis

Abstract Test problems are considered essential when designing optimisation algo-
rithms. The two main conflicting characteristics of a proper test function are sim-
plicity and complexity. The former feature is to allow analysing the behaviour of
algorithms, whereas the latter is to mimic real-world problems. Despite the impor-
tance of the test functions, however, there are currently neither empirical studies
on the suitability of the existing test functions nor benchmark generator to generate
them in the field of robust optimisation. This motivates our attempts to analyse the
current test functions and propose a new set of benchmark generators to generate
test functions with different levels of difficulty. To examine the proposed test func-
tions, robust particle swarm optimisation and robust genetic algorithms are used.
The results and analysis first reveal the drawbacks of the current test functions as
simplicity, low dimensionality, symmetric search space and lack of scalability. The
results then demonstrate the merits of the proposed benchmark generators in allevi-
ating these drawbacks and providing challenging test beds for robust optimisation
algorithms.

Keywords Optimisation · Benchmark problems · Robust optimisation
Uncertainties · Test problems

1 Introduction

Meta-heuristics belong to the class of stochastic optimisation techniques, which have
become very popular over the last decade. There are many studies in improving the
current techniques or proposing new algorithms [1]. One of the common aspects of
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these studies is the use of test problems for benchmarking purposes [2]. Test prob-
lems are mostly mathematical functions, which mimic the difficulties of real-world
search spaces. The shape of test problem is highly associated with the assessment
purposes of a designer. For example, a multi-modal mathematical function is useful
for benchmarking the local optima avoidance mechanism of meta-heuristics [3].

In single-objective optimisation, the performance of an algorithm is measured
mostly in terms of the accuracy of the obtained optimum and convergence rate.
The terms exploration and exploitation are also used in the literature for these two
issues [4]. There are several benchmark functions in the literature dividing into
three main groups: unimodal [5], multi-modal [6], and composite [7, 8]. Unimodal
problems have only one global optimum and there is no local optimum, so they have
been designed to test the convergence speed and exploitation of an algorithm. The
second group, however, has a huge number of local optima and is beneficial for
examining the local optima avoidance ability and exploration. Finally, the composite
test functions, which have a massive number local optima and composite shapes of
unimodal and multi-modal, are helpful for benchmarking the balance of exploration
and exploitation combined.

Despite themerits of the current test problems, there is a key factor in real problems
called uncertainties that have attracted much less attentions in the literature. The
uncertainties may occur in parameters, output, operating conditions and constraints
[9, 10]. Considering such uncertainty during the optimisation process to minimise
their negative impacts is called robust optimisation. To the best of our knowledge,
there is a small number of test functions for benchmarking robustmeta-heuristics. The
authors have proposed several test functions for benchmarking robust algorithms in
[1–4].However, thiswork proposes three test function generators that allowdesigners
to generate test functions with different difficulty levels. The remainder of the paper
is organised as follows.

Section 2 discusses the preliminaries and essential definitions robust optimisation.
A brief review of the current specific test problems for evaluating robust algorithms
is also provided in Sect. 2. The proposed unconstrained benchmark problems are
proposed in Sect. 3. Section 4 presents the experimental results of Robust Particle
Swarm Optimisation (RPSO) and Robust Genetic Algorithm (RGA) on the current
and proposed benchmark problems. Eventually, Sect. 5 concludes the work and
recommends a number of future works.

2 Robust Optimisation

2.1 Methods of Handling Uncertainties in Parameters

As discussed above, an algorithm is called robust if it finds a solution that is error
tolerant. To do so, uncertainties should be considered before, during, or after the
optimisation process. Before the optimisation process, we have to identify the type
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Fig. 1 A conceptual example of a robust optimum versus a non-robust optimum

and degree of uncertainties. For instance, if the resolution on a device is 1, 1 mm
uncertainty might occur in the parameters. This means that if an optimisation algo-
rithm might find a decision variable for a problem with the value of x, this value
might fluctuate during manufacturing (±1mm). After identifying the type and level
of uncertainty, we then consider this degree of error when evaluating the solutions
during optimisation. The robustness of a solution can be tested after the optimisation
for confirmation as well. In this work, we consider such undesirable perturbations
since they are of the most common types of uncertainty.

Without the loss of generality, a robust optimisation problem when considering
uncertainties in decision variables is formulated as a maximisation problem as fol-
lows:

Maximise : F
(
�x + �δ

)
(2.1)

Subject to : gi
(
�x + �δ

)
≥ 0, i � 1, 2, 3, . . . ,m − 1,m (2.2)

h j

(
�x + �δ

)
� 0, j � 1, 2, 3, . . . , p − 1, p (2.3)

Lk ≤ xk ≤ Uk, k � 1, 2, 3, . . . , n − 1, n (2.4)

where the vector �x includes all parameters, �δ contains the maximum uncertainty
for each parameter in �x , o is the number of objective functions, m is the number
of inequality constraints, p is the number of quality constraints and [Li ,Ui ] is the
boundary of ith variable.

A conceptual example of robust and non-robust optima is illustrated in Fig. 1.
It can be seen that the left peak is not robust since perturbation (δ) of the solution
at this point degrades the objective value significantly as opposed to the right peak.
The right peak is not the global maximum, but it is robust and reliable in case of
perturbations.
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Fig. 2 A conceptual example of a landscape and its expected landscape using an expectation
measure

To find such robust solutions, the current techniques can be divided into three
classes [5]: expectation measures, variance measures and multi-objective [6]. Since
the last method is out of the scope of this paper, the first two methods are discussed
below.

In the first method, the average area in the vicinity of solution is calculated using
the following integral if it is possible [5]:

Maximise : E(x) � 1

|Bδ(x)|
∫

y∈Bδ(x)

f (y)dy (2.5)

where Bδ(x) shows δ-radius neighbourhood of the solution x, and |Bδ(x)| indicates
the hypervolume of the neighbourhood.

If the analytical integral is difficult to calculate, Monte Carlo estimation is a
reliable alternative as follows:

E(x) � 1

H

H∑
i�1

f (x + δi ) (2.6)

where H is the number of samples.
In Eq. (2.6), it is evident that the average objective of H points is calculated as

the average area of the neighbourhood around the solution x. No matter how the
expectation measure is calculated, the key point is that the objective function is
replaced. Figure 2 shows how this change of landscape causes a global optimum,
which is not robust, to become a local optimum.

One of the first expectation measures in the field of stochastic optimisation was
proposed byDeb andGupta [5]. They named thismethod ‘type I’ robust optimisation.
There are other expectation measures in the literature as well that follow the same
concepts [7–12]. In most of them, different sampling techniques or equations are
used to improve the accuracy of calculating the expected objective function.
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Fig. 3 A conceptual example of how a variance measure makes a non-robust region infeasible

In the second class of robust optimisation, there is no expectation measure to be
replaced by the main objective function. Instead, there is a variance measure that is
used as a constrained for an optimisation problem. This measure is defined as follows
[5]:

Maximise : f (x) (2.7)

Subject to : V (x) � ||F(x) − f (x)||
|| f (x)|| ≤ η (2.8)

where F(x) is as effective mean or the objective value of the worst solution between
the H selected solutions, η is a vector of thresholds in [0, 1] and S indicates the
feasible search space.

Equation (2.8) shows that the variance measure first calculates the difference
between the average (or worst) of the objective values of points in the neighbourhood
and the objective value of the current solution. It then divides it by the current
objective value. This gives a number in the interval of [0, 1] and defines the robustness
of a solution. With chanting η, a desired level of perturbation can be simulated for
the solutions. Note that this type of robust optimisation is called ‘type II’.

A conceptual example of the impacts of a variance measure is shown in Fig. 3. It
can be seen that the non-robust global optimum is an infeasible solution when using
a variance measure.

2.2 Current Test Functions for Robust Optimisation

In the field of robust optimisation, there is a large number of test functions. However,
there is a small number of such test functions in the literature of robust optimisation.
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TP5 TP6 TP7 TP8

TP9 TP10 TP11 TP12

TP1 TP2 TP3 TP4

Fig. 4 A set of test functions obtained from the literature for benchmarking robust algorithms
[12–15]

Thirteen test functions specifically designed to benchmark robust algorithms are
presented in this subsection [12–15]. Figure 4 shows the shape and the details can
be found in the original papers.

It is evident in Fig. 4 that most of these test functions are not highly multi-
modal. A large number of them have less than 10 dimensions and are not scalable as
well. This prevents them from providing enough difficulties to benchmark a robust
optimisation algorithm efficiently. The authors have proposed several test functions
for benchmarking robust algorithms in [1–4]. However, this work proposes three
test function generators that allow designers to generate test functions with diverse
difficulty levels.

3 Proposed Benchmark Generators and Test Functions

This section proposes the benchmark generators.

3.1 Benchmark Function Generator I

This benchmark generator is designed to create a search landscape with two optima.
The key point is that a designer is able to make the global optimum wide and narrow
to change the robustness level. The mathematical equation is as follows:
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Fig. 5 Benchmark function generator I allows adjusting the robustness of the global optimum

Fig. 6 Effect α of on the robustness of the global optimum

f (x) � 1√
2π

e−0.5( x−1.5
0.5 )

2

+
2√
2π

e−0.5( x−0.5
α )

2

(3.1)

where α indicates the robustness of the global optimum by narrowing or widening
it.

The shape of different test functions that be generated with this benchmark gen-
erator is shown in Fig. 5. It can be seen that the robustness of the global optimum is
decreased proportional to the value of the parameter α.

The two-dimensional version of this function is defined as follows:

f (x, y) � 1√
2π

e
−0.5

(
(x−1.5)2+(y−1.5)2

0.5

)2

+
2√
2π

e
−0.5

(
(x−0.5)2+(y−0.5)2

α

)2

(3.2)

Figure 6 shows that the parameter α has the similar effect on the robustness of
the global optimum compared to Eq. (3.1).

The benchmark generator I is defined as follows:
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Minimise : f (x) �
⎛
⎝

⎛
⎝ 1√

2π
e
−0.5

( ∑n
i�1(xi−1.5)2

0.5

)2
⎞
⎠ +

⎛
⎝ 2√

2π
e
−0.5

( ∑n
i�1(xi−0.5)2

α

)2
⎞
⎠

⎞
⎠

(3.3)

Where : 0 ≤ xi ≤ 2 (3.4)

where n is the maximum number of variables.
The local optimum is always located on (0.5, 0.5, . . . , 0.5) and the global opti-

mum is at (1.5, 1.5, . . . , 1.5). This benchmark generator offers a global optimum
with alterable degree of robustness that would allow us to benchmark the perfor-
mance of a robust algorithm in terms of favouring a robust solution. By changing
the global optimum’s robustness, algorithm designers would be able to observe the
resistance of a robust meta-heuristic dealing with a non-robust global optimum. In
addition, it may be seen in Eq. (3.3) that this benchmark generator is able to gen-
erate scalable test functions with desirable number of variables. The test functions
generated by this benchmark generator have the following features:

• Test functions are not readily solvable by simple optimisation methods.
• The search space is non-linear, non-separable, and non-symmetric.
• The robustness of global optimum is alterable.
• The robustness of global optimum does not affect the optimal values of both local
and global optima.

• Both local and global optima can play the role of the robust optimum based on the
α parameter and considered perturbation in the parameters.

• Test functions are scalable.

3.2 Benchmark Generator II

The second benchmark generator generates a desirable number of local non-robust
solutions. In other words, a multi-modal search space with one global optimum, one
robust optimumand several local non-robust optima can be created by this benchmark
generator. The mathematical formulation of this benchmark generator is as follows:

Minimise : f (x) � −G(x) × H(x1) × H(x2) + ω (3.5)

Where : H(x) � e−2x2 sin
(
λ × 2π

(
x + π

4λ

)) − xβ

3
+ 0.5 (3.6)

G(x) � 1 + 10

∑N
i�3 xi
N

(3.7)

0 ≤ xi ≤ 1 (3.8)

λ ≥ 1 (3.9)
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 optima

Fig. 7 Shape of the search space with controlling parameters constructed by benchmark generator
II

Fig. 8 Effect of parameter λ on the shape of search space

β ≥ 1 (3.10)

As may be seen in Fig. 7, this benchmark generator allows generating (λ + 1)2

number of local optima through the search space. The effect of this parameter on the
landscape can be observed in Fig. 8. This figure shows that the search space becomes
more challenging as λ increases.

Another characteristic of this benchmark generator is scalability. The function
G(x) is responsible for supporting three or more variables. Since G(x) is a kind of
penalty function, an algorithm should find zero values for x3 − xn . The characteris-
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Fig. 9 An example of the search space that can be constructed by the benchmark generator III

tics of the test functions generated by this benchmark generator are summarised as
follows:

• Test functions are not readily solvable by simple optimisation methods.
• The search space is non-linear, non-separable and non-symmetric.
• The number of local optima can be adjusted.
• The robustness of optima is increased inversely proportional to the objective value.
The last worst local optimum can be the most robust optimum when considering
a certain level of uncertainty.

• Test functions are scalable.

3.3 Benchmark Generator III

This benchmark generator aggregates four current test functions in the literature of
global optimisation. It divides the search space into four sections and allows user
to define different functions in each section. The mathematical formulation is as
follows:

Minimize : f (x) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f1(x) (x1 ≤ 0) ∧ (x2 ≥ 0)

f2(x) (x1 ≥ 0) ∧ (x2 ≤ 0)

f3(x) (x1 > 0) ∧ (x2 > 0)

f4(x) (x1 < 0) ∧ (x2 < 0)

(3.11)

Any type of function with robust and non-robust optima can be integrated instead
of f1 to f4. For instance, Fig. 9 shows a search space constructed using sphere,
Ackley, Rastrigin and pyramid-shaped functions. It is evident from the figure that
the sphere function has the most robust optimum.
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In order to provide scalability for this benchmark function generator, there can be
two possibilities. Each of the subfunctions can be chosen with different numbers of
variable or the functionG(x) from the second proposed benchmark function generator
can be multiplied by the results of each function as follows:

f (x) �

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

f1(x) × G(x) (x1 ≤ 0) ∧ (x2 ≥ 0)

f2(x) × G(x) (x1 ≥ 0) ∧ (x2 ≤ 0)

f3(x) × G(x) (x1 > 0) ∧ (x2 > 0)

f4(x) × G(x) (x1 < 0) ∧ (x2 < 0)

(3.12)

G(x) � 1 + 10

∑N
i�3 xi
N

(3.13)

The characteristics of the test functions generated by this benchmark generator
are summarised as follows:

• Test functions are not readily solvable by simple optimisation methods.
• The search space is non-linear, non-separable and non-symmetric.
• There can be desirable number of local, global and robust optima.
• Test functions are scalable.

3.4 Test Functions Generated by the Benchmark Generator

With the proposed benchmark generators, three test functions are generated in this
subsection. Table 1 presents name, specifications and search landscape of the three
proposed test functions. Note that we name them TP14, TP15 and TP16 since we
will be comparing them with TP1 to TP12.

The next section investigates the effectiveness of these test functions in practice.

4 Results and Discussion

In order to test the difficulties of test functions, PSO and GA are employed in this
section. We use 20 search agents for each algorithm and allow them to find the
robust optima of the current/proposed test functions over 500 iterations. In addition,
we require PSO and GA to consider 10% fluctuation in the parameters of search
agents to simulate uncertainties. Handling uncertainties are done by an expected
measure that is calculated by re-sampling and averaging 50 random solutions in the
neighbourhood of search agents at each iteration. The statistical results are provided
in Table 1 in the form of average± standard deviation.
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Table 1 Generated test functions

Name Specifications Search space

TP14 Benchmark generator I:
α � 0.05
Dimension�2
Search space : �x ∈ [−4, 4]N

Input noise : �δ ∼ �U (−0.5, 0.5)

Robust optimumfitness ≈ −0.4

Robust optimum location : (1.5, 1.5)

TP15 Benchmark generator II:
λ � 4

β � 1
Dimension�2
Search space : �x ∈ [0, 1]N

Input noise : �δ ∼ �U (−0.02, 0.02)

Robust optimumfitness ≈ −0.05

Robust optimum location ≈ (0.98, 0.98)

TP16 Benchmark generator III:

f1(�x) �
∑N

i�1
x2i

f2(�x) � max
i

{|xi |, 1 ≤ i ≤ N }

f3(�x) �
∑N

i�1
x2i

[
x2i − 10 cos(2πxi ) + 10

]

f1(�x) � −20e

(
−0.2

√
1
n

∑n
i�1 x

2
i

)

− e

(
1
N

∑N
i�1 cos(2πxi )

)
+ 20 + e

N�2
Dimension�2
Search space: �x ∈ [−4, 4]N

Input noise: �δ ∼ �U (−0.2, 0.2)
Robust optimum fitness ≈ −0.8
Robust optimum location� (−2, 2)
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Table 2 Statistical results of algorithms

Algorithm TP1 TP2 TP3

PSO 0.0186±5.20E−05 0.9274±0.0044 0.2107±0.0166

GSA 0.0195±0.0001722 0.9272±0.0065 0.2155±0.0021

TP4 TP5 TP6

PSO 0.294960±2.8E−05 4.2E-09±8.72E−25 −1.3366±0.48765

GSA 0.295021±0.000119 0.0201±0.006302 −1.8867±0.030969

TP7 TP8 TP9

PSO 0.3843±0.1770 −2.0000±0.0000 −1.61374±0.000716

GSA 0.2708±0.0186 −2.0000±0.0000 −1.61023±0.001679

TP10 TP11 TP12

PSO −19.1423±3.1883 −1.500±0.7071 −3.9994±0.00055

GSA −20.0798±0.2038 −1.000±0.0000 −3.9995±0.000545

TP13 TP14 TP15

PSO −1.2306±0.078981 0.12319±0.46783 –0.39279±0.002322

GSA –1.2689±0.051873 −0.1480±0.029463 −0.39135±0.002133

TP16

PSO −0.44723±4.42E−06

GSA −0.44721±2.05E−05

The box plots of the statistical results of Table 2 are illustrated in Fig. 10. The
first thing that may be observed in the results is the similar performance of PSO
and GA on a number of test functions such as TP4, TP8 and TP11. This shows that
most of the current test functions can be readily solved, so the performance of robust
algorithms cannot be benchmarked thoroughly.

The results of both algorithms on TP1 and TP9 follow similar behaviours. These
two functions are unimodal and the robust optima are located near to the global
optima. Since we consider δ � 1 for TP1, the robust optimum is located in [0.2, 0.2]
with the value of 0.02. The global optimum is at [0, 0] with the value of 1. The results
show that the GA algorithm provides better results as Table 2 shows. The shape of
the TP1 is very similar to that of TP9, in which there is one global optimum (located
at [0.2, 0.2] with the value of 0) and the robust optimum is located based in the same
valley based on the degree of perturbation. In our case study, we considered δ � 0.2,
so the robust optimum is at [0, 0] with the value of −1.6. The results of Table 2
again suggest that the GA algorithm performs better than PSO in finding the robust
optimum.

In contrast to the results of the TP1 to TP13, Table 2 shows that the results of
RPSO and RGA on TP14 to TP16 are very different compared to other results. None
of the algorithms found the robust optimum for TP14 and TP16. These results show
that the test functions generated by the benchmark generators are very challenging
test beds. The reason for poor performance of both algorithms is due to employed
expectation measure. The expectation measure calculates the average fitness of 50
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Fig. 10 Box plots of PSO and GA

neighbouring solutions for each candidate solution. The results can be improvedwith
increasing the number of sampled point. However, this is out of the scope of this work
since the main objective was the comparison of algorithms on the test functions.

To further observe the behaviour of both algorithms, we ran each algorithm over
100 iterations and illustrate some of the search history in Figs. 11 and 12. The first
distinct behaviour of algorithms is that both algorithms show reasonable exploration
of the search space and exploitation near the robust optima. According to the results
of Table 1, it seems that GAbalances exploration and exploitationmore appropriately
for finding the robust optimum. However, it is clear from these results that these two
test functions are simple for both algorithms and there is no significant superiority
for the GA algorithm.

Figure 12 shows the search history of both algorithms when solving the three
proposed test functions. Search history of RPSO and RGA on TP14 shows that both
algorithms are able to find the robust optimum with the considered perturbation.
However, they failed to find the optimum in TP15. In addition, RPSO outperforms
RGA in TP16. These results evidence the difficulties of the proposed test functions
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Fig. 11 Search histories on
TP1, TP3, TP4 and TP9
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compared to other test functions.With increasing the number of variables, obviously,
the difficulties of the test functions would also be increased.

To sum up, the results first demonstrates that the current text functions are read-
ily solvable by robust meta-heuristics. The simplicity is the main reason for this.
However, the results proved that the proposed test functions can provide much more
challenging test beds for effectively benchmarking the performance of robust meta-
heuristics.

5 Conclusion

This paper contributed to the literature of robust optimisation with proposing three
benchmark generators. The gaps targeted were simplicity, low dimensionality, high
symmetrically, and lack of scalability of the current test function for evaluating robust
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Fig. 12 Search histories on
TP14, TP15 and TP16

RPSO RGA

TP14

TP15

TP16

single-objective optimisation algorithms. In order to alleviate these shortcomings,
the paper proposed three novel benchmark function generators for generating test
functions with different characteristics. The paper employed the RPSO and RGA to
prove the disadvantages of the current test functions and demonstrate the merits of
the proposed benchmark function generator and benchmark functions. The results
showed that the proposed test functions are able to benchmark the performance of
robust algorithms effectively from different perspectives: resistance of an algorithm
in converging towards non-robust but global solutions, and ability to avoid non-robust
local optima. The paper also considered the comparison of RPSO and RGA on the
rest functions. It was observed that the RGA shows high exploration, whereas the
RPSO provides good exploitation around robust optima.

For futurework, it is recommended to integrate some constraints to the benchmark
function generator in order to generate constrained robust test functions.
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Convergence of Gravitational Search
Algorithm on Linear and Quadratic
Functions

Anupam Yadav, Anita and Joong Hoon Kim

Abstract Convergence characteristic of any optimization algorithm is a very impor-
tant aspect. Several studies have been performed to discuss the convergence of non-
deterministic optimization algorithms. In this article, the convergence of gravitational
search algorithm (GSA) is discussed over linear and quadratic functions. A theoreti-
cal proof of convergence for GSA is provided for linear and quadratic functions. The
article ensures the convergence of GSA over linear and quadratic functions.

Keywords Convergence · Gravitational Search · Optimization

1 Introduction

The modeling of optimization problems played a major role in engineering over
the years, as many real-life engineering problems can be modeled as an optimiza-
tion problem. To achieve the optimal solution of these problems always remains
an important point. In order to provide the better results of these problems, many
optimization algorithms are proposed in the literature. Since the traditional determin-
istic techniques had their own limitations, therefore, non-deterministic optimization
algorithms came into the existence. Current status of research in the area of non-
deterministic optimization algorithms is moving on the wheels of the swarm intel-
ligence, evolutionary computation, and other hybrid methodologies. Based on these
ideas, a significant number of optimization algorithms are proposed such as genetic
algorithm [1], particle swarm optimization [2, 3], differential evolution [4], artificial
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bee colony [5], gravitational search algorithm [6–10], and many more. As the no free
lunch theorem concludes that no algorithm can solve all kind of optimization prob-
lems, the choice of a particular optimization algorithm always remains a big question.
Many methodologies are proposed in the literature to judge the optimization ability
of any optimization algorithm such as its testing of benchmark problems, computa-
tional time, number of functions evaluation, success performance, success rate, and
convergence. Each mentioned point is very important to understand the quality of
any optimization algorithm. In this article, it is focused to study the convergence
behavior of algorithms. Some articles are reported in the literature to discuss the
convergence of non-deterministic techniques. One of them is the study performed
in the case of PSO [11]. Based on the inspiration from the above article, the con-
vergence behavior of gravitational search algorithm (GSA) is discussed over linear
and quadratic functions. The next section provides a brief detail of the gravitational
search algorithm, and afterward some theoretical establishments are made to study
the convergence behavior of GSA.

2 Gravitational Search Algorithm

Gravitational search algorithm is a recent optimization algorithm inspired by the
natural laws of motion. It is designed from the idea of Newton’s basic laws of motion
and active gravitational force between two masses. As GSA is also a population-
based optimization algorithms, the population of the GSA is termed as agents and
these agents mimic the celestial bodies in the universe. The mass of each agent is
defined in a very specific manner as a function of fitness values, and these masses
are designed to work as moving bodies with some acceleration which follows the
following two natural laws of motion:

1. Law of gravity: The working force of attraction between two bodies is directly
proportional to the product of theirmasses and inversely proportional to the square
of their distances [12].

2. Law of motion: The force exerted upon anybody is directly proportional to the
acceleration of the body.

These two laws are the basis of the GSA and they are inspired from the Newton’s
law of gravity and law of motion, respectively. Let the position of the i th agent at
any instant t in a D-dimensional search space be Xt

i (x
t
i1, x

t
i2, . . . , x

t
i D) for i = 1. . .n.

The force of attraction on the i th agent to j th agent is defined as follows:

Ft
i j D = Gt × Mt

pi × Mt
aj

Rt
i j

× (xtjd − xtid) (1)

where Mpi is the passive gravitational mass related to agent i,Maj is the active
gravitational mass related to agent j , Gt is gravitational constant, and Ri j is the
Euclidian distance between two agents i and j at any time t . The Euclidian distance
between the two agents i and j is given by the following equation:



Convergence of Gravitational Search Algorithm on Linear and Quadratic Functions 33

Rt
i j = ‖Xt

i , X
t
j‖2 (2)

The gravitational constant Gt is defined as in Eq. 3

Gt = Gt0 × exp

((
−α

i ter

i termax

))
(3)

where Gt0 is the initial value of the gravitational constant, i tr is the current iteration,
i trmax is the total number of iterations, and α is a constant.

2.1 Formulation of Gravitational Search Algorithm

The total working force of attraction by the i th agent at time t in a D-dimensional
space is given by Eq. 4

Ft
id =

ps∑
j=1,i �= j

rand()Ft
i jd (4)

where d = 1, 2, . . .D and rand() is a random number in the interval [0,1]. The law
of motion says the acceleration of i th agent is given by the following equation:

actid = Ft
id

Mt
ii

(5)

where Mt
ii is the inertial mass of the i th agent. The velocity and position of agents

are calculated as follows (Table 1):

V t+1
id = rand() × V t

id + actid (6)

xt+1
id = xtid + V t+1

id (7)

The gravitational and inertial mass will be updated with the help of following equa-
tions:

Mai = Mpi = Mii for i = 1, 2. . .ps (8)

mt
i = fitti − worstt

bestt − worstt
(9)

Mt
i = mt

i∑ps
i=1 m

t
i

(10)

where fitti represents the fitness value of the i th agent at time t, and bestt&worstt may
be defined in the following equations:
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Table 1 Working procedure of GSA

bestt = min(fittj ), j ∈ {1, . . .ps} (11)

worstt = max(fittj ), j ∈ {1, . . .ps} (12)

The flowchart of GSA is depicted in Fig. 1.
The next section proposes the idea of convergence of GSA over linear and

quadratic optimization problems.

3 Convergence of Gravitational Search Algorithm

In order to establish theoretical discussion on the convergence of GSA, the following
mathematical computations are performed by creating the difference equation of
position update procedure. As we know, the velocity update equation of GSA is as
follows:

V t+1 = rand() × V t + act (13)

Position update equation
Xt+1 = Xt + V t+1 (14)
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Fig. 1 Flowchart of GSA
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using Eqs. 13 and 14

Xt+1 − Xt = c1(X
t − Xt−1) + Ft

Mt
(15)

where c1 = rand(). Now using Eq. 4 and in Eq. 15, we get

Xt+1 − Xt = c1(X
t − Xt−1) + f (XtG)

cXt
(16)

where f is the fitness function and c is the constant. Equation 16 may be written as

Xt+1 − (1 + c1)X
t + c1X

t−1 + c2 f (Xt )

Xt
= 0 (17)

where c2 = G
c . Let at t = 0 and t = 1 the position of the particle is Xt=0 = X0 and

Xt=1 = X1. Characteristic equation of Eq. 17 is given by
Case 1: When f is linear

λ2 − (1 + c1)λ + c1 = 0, (18)

=⇒ λ1 = 1,λ2 = c1,
The explicit solution of the recurrence relation Eq. 17 is given by

Xt = a1 × c + a2 × λt
1 + a3 × λt

2 (19)

where a1 = −c, a2 = X0 − c − X0−X1

1−c1
and a3 = X0−X1

1−c1
. The necessary and sufficient

condition for the convergence of Eq. 17 is

lim
t→+∞(a1 × c + a2λ

t
1 + a3λ

t
2) = 0 (20)

if ||λ2|| < 1 then the condition of the convergence will be satisfied and Eq. 17 will
converge to a1c.
Case 2: When f is quadratic
Then, the form of Eq. 17 will be

Xt+1 − (1 + c1 + c2)X
t + c1X

t−1 = 0 (21)

The characteristic equation of Eq. 21 will be

λ2 − (1 + c1 + c2)λ + c1 = 0, (22)

=⇒ λ1 = 1+c1+c2+ν
2 ,λ2 = 1+c1+c2−ν

2
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where ν = √
(1 + c1 + c2)2 − 4c1. Hence, the explicit solution of Eq. 21 is

Xt = a2 × λt
1 + a3 × λt

2 (23)

where a1 = (ν−λ1)X0−X1

ν
, a2 = λ1X0−X1

ν
.

Again necessary and sufficient condition for the convergence of Eq. 21 will be

lim
t→+∞(a2λ

t
1 + a3λ

t
2) = 0 (24)

This will hold when max(||λ1||, ||λ2||) < 1 and in this case it will converge to zero.
In order to check the convergence of GSA numerically. The convergence plot of

GSA is plotted for the following quadratic and linear order functions:

F1(x) =
n∑

i=1

x2i

F2(x) =
n∑

i=1

|xi |

F1 is a quadratic function and F2 is a linear order function. As a case study, it has
been tried to justify the theoretically established result. Multiple runs of GSA are
plotted against the iteration for F1 and F2, and they show a very clear convergence
toward the optimal solution in Figs. 2 and 3.
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4 Conclusion

In this article, the convergence ofGSA is studied. Apart fromnumerical convergence,
a theoretical proof of the convergence of GSA is established by using the concept
of difference equations. It has been proved that the GSA has the guaranteed conver-
gence; in this case, the problem has linear and quadratic functions. As a case study,
one linear and quadratic function is tested using GSA algorithms and their fitness
convergence is plotted against the iterations which justifies the theoretical proof of
the convergence.

References

1. Goldberg, D.E., Samtani, M.P.: Engineering optimization via genetic algorithm. In: Electronic
Computation: ASCE, pp. 471–482 (1986)

2. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm theory. In: Micro Machine
and Human Science, 1995. MHS’95, Proceedings of the Sixth International Symposium on,
IEEE, pp. 39–43 (1995)

3. Yadav, A., Deep, K.: Shrinking hypersphere based trajectory of particles in pso. Appl. Mathe-
matics and Comput. 220, 246–267 (2013)

4. Storn, R., Price, K.: Differential evolution-a simple and efficient heuristic for global optimiza-
tion over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

5. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function opti-
mization: artificial bee colony (abc) algorithm. J. Global Optim. 39(3), 459–471 (2007)

6. Rashedi, E., Nezamabadi-Pour, H., Saryazdi, S.: Gsa: a gravitational search algorithm. Inf. Sci.
179(13), 2232–2248 (2009)



Convergence of Gravitational Search Algorithm on Linear and Quadratic Functions 39

7. Yadav, A., Deep, K., Kim, J.H., Nagar, A.K.: Gravitational swarm optimizer for global opti-
mization. Swarm Evolutionary Comput. 31, 64–89 (2016)

8. Yadav,A.,Deep,K.: Constrained optimization using gravitational search algorithm.Natl. Acad.
Sci. Lett. 36(5), 527–534 (2013)

9. Yadav, A., Deep, K.: An efficient co-swarm particle swarm optimization for non-linear con-
strained optimization. J. Comput. Sci. 5(2), 258–268 (2014)

10. Yadav, A., Yadav, N., Kim, J.H.: A study of harmony search algorithms: Exploration and
convergence ability. Harmony Search Algorithm 53–62 (2016)

11. Van Den Bergh, F., Engelbrecht, A.P.: A study of particle swarm optimization particle trajec-
tories. Inf. Sci. 176(8), 937–971 (2006)

12. Newton, I..: The Principia: Mathematical Principles of Natural Philosophy. Univ of California
Press (1999)



An Algorithm of Multivariant
Evolutionary Synthesis of Nonlinear
Models with Real-Valued Chromosomes

Oleg Monakhov and Emilia Monakhova

Abstract We propose a new multivariant evolutionary algorithm for solving the
problem of construction of nonlinear models (mathematical expressions, functions,
algorithms, and programs) based on the given experimental data, sets of variables,
basic functions, and operations. The proposed algorithm ofmultivariant evolutionary
synthesis of nonlinear models includes a linear representation of a chromosome by
real variables, simple operations in decoding of a genotype into a phenotype for
interpreting a chromosome as a sequence of instructions, and also a multivariant
method for presenting a set of models (expressions) using a single chromosome. We
compare the proposed algorithm with the standard genetic programming algorithm
(GP) and the Cartesian genetic programming (CGP) one. We show that the proposed
algorithm exceeds the GP and CGP algorithms both in the time required for search
for a solution (more than by an order of magnitude in the most cases) and in the
probability of finding a given model.

Keywords Multivariant evolutionary synthesis · Genetic algorithm · Genetic
programming · Cartesian genetic programming

1 Introduction and Basic Definitions

We consider a solution to the problem of building nonlinear models in the form of
mathematical expressions, functions, formulas, algorithms, and programs based on
the given experimental data, sets of variables, basic functions, and operations. The
problem consists in finding amathematical expression f ∗ which best describes a non-
linear computation model defined by a set of input (X ) and output (Y ) experimental
data, i.e., it is necessary to select a functionY = f ∗(X ) that represents the dependence
of Y on X with a minimum error. Sometimes, this problem is called symbolic regres-
sion or system identification. The search of the expression f is performed based on
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a given set of basic functions and operations F1 = {fi | fi : R × . . . × R → R} and
a given set of variables and constants T1 = {xi, ci}, which are used for automatic
creation of analytical expressions (formulas) representing the model, and comput-
er programs for their computation. We assume that the objective function (fitness
function) FF calculates the sum of the squared deviations of the output data of the
expression Y ′

i = f (Xi) from the given reference values Yi for certain subsets of the
input data of the expression Xi, 1 ≤ i ≤ N :

FF =
N∑

i=1

(f (Xi) − Yi)
2,

where N is the amount of the experimental data. The goal of the algorithm is to
determine minf ∈D(F1,T1) FF(f ),whereD(F1,T1) is the set of models defined by a set
of basic functions and operations and a set of variables and constants.

The known approaches to this problem include the genetic programming (GP)
[1, 3, 7], which is focused primarily on solving the problems of automatic synthesis
of programs on the basis of learning data through evolutionary search for models
that minimize the representation error. Chromosomes have tree structures that are
automatically generated using genetic operators in theGP and represent after an inter-
pretation some expressions and computer programs of various sizes and complexities
that implement the expressions.

This paper presents a new algorithm for multivariant evolutionary synthesis
(MVES) of nonlinear models. In Sect. 2, we describe a new algorithm for multivari-
ant evolutionary synthesis of nonlinear models. In Sect. 3, we compare our algorithm
with two known systems of genetic programming and show that the MVES algo-
rithm has a higher efficiency of evolutionary search. We close with some concluding
remarks and suggestions for future work in Sect. 4.

2 Algorithm of Multivariant Evolutionary Synthesis

The multivariant evolutionary synthesis (MVES) algorithm is based on evolutionary
computations and simulation of natural selection in a population of individuals, each
being points in the space of solutions of the optimization problem, but not a only
solution, as in the standard genetic programming algorithm (GP) [1, 2] and in Carte-
sian genetic programming (CGP) [4, 5], which has a representation of a program in
the form of a finite graph. Individuals are data structures (chromosomes), namely, se-
quences of real-valued numbers, which encode mathematical expressions (formulas
and programs). Each population is a set of chromosomes, and each chromosome in
this algorithm defines a set of expressions (formulas) arising from it after decoding.
The basic idea of the synthesis algorithm is evolutionary transformation of a set of
chromosomes (formulas) in the process of natural selection for “the strongest” to
survive. In our case, these individuals are expressions that have the smallest value
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of the objective function. The algorithm begins with the generation of an initial
population. All the individuals in this population are created randomly, and then
the best individuals are selected through decoding of the genotype (chromosome)
into a phenotype (expression) and calculation of the fitness function. To create the
next-generation population (subsequent iteration), new individuals are produced via
genetic operations of selection, mutation, and crossover. We assume that the objec-
tive function FF calculates the sum of the squared deviations of the output data of the
expression Y ′

i = f (Xi) from the given reference values Yi for certain subsets of the
input data. In practice, if a few solutions with the same value of the objective function
are obtained, then a solution with the minimum estimate of structural complexity is
chosen, i.e., with the less total length (the sum of the number of elements) of the
solution formulas.

The stages of simulation of the evolution process in the MVES algorithm are as
follows.

1. Creating an initial population from randomly generated solutions (chromo-
somes) as sequences of real-valued numbers. Note that a solution is presented
in the chromosome in an encrypted form, i.e., as a genotype.

2. Evaluating the population by the fitness function, which shows how well each
individual solves the given problem. In so doing, a genotype is decoded to
a phenotype to interpret the chromosome as a program for calculation of the
fitness function.

3. Creating a next-generation population using the following evolutionary opera-
tors as in the standard genetic algorithm (GA) :

3.1. Selection of the best solution in the population and copying the chromosome
into the next generation.

3.2. Creation of new chromosomes by the crossover method.
3.3. Creation of new chromosomes by the mutation method.
4. Repeating points 2 and 3 until a decision meeting a specified criterion is found

or the maximum number of generations is reached.

In the MVES algorithm, a new approach is suggested to decode the main da-
ta structures, chromosomes. This approach relies on representing the chromosome
linear structure as a sequence of three-address instructions and producing a linear
operator structure for calculation of expressions (formulas) encoded in the chromo-
some. To this end, a sequence of real-valued numbers (a chromosome) is divided into
groups of three elements (triplets) (h1, h2, h3) with 0 < hi < 1. Each such group is
interpreted as a three-address instruction as follows:< oper >< adr1 >< adr2 >,
where the operation oper is applied to operands in the instructions with the numbers
adr1 and adr2, which are calculated by the following formulas:

oper = �h1 ∗ |F |�,
adr1 = �(h2 ∗ (I − 1))� + 1, (1)

adr2 = �(h3 ∗ (I − 1))� + 1,

if oper = 0 then adr1 = �(h2 ∗ |T |)� + 1,
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where |F | is the cardinal number of the set of basic functions, oper is the element
number in this set, i.e., the number of the function being executed in the current
instruction, I is the number of the current instruction, adr1, adr2 are the numbers of
the preceding instructions, the execution results of which are used as operands in the
current instruction, and |T | is the cardinal number of the terminal set. If oper=0, then
the instruction is interpreted as a loading operator, and the terminal symbol with the
number adr1 is loaded.

Thus, decoding of a chromosome into an expression (function) results in repre-
sentation of the function in the form of interpretable code. Each instruction of the
code will be considered as a separate function, which includes all the preceding in-
structions. The first operation will always call in the variable of this function. The
execution runs top-down; only precedent records instructions with lower numbers
being possible arguments of the instructions. Hence, the execution turns out to be
linear. The genetic solution in this case is a set of expression functions, i.e., sequences
from the first operator to each current one. This enables, in contrast to the standard
GP, simultaneous evaluation of a set of expressions in the form of sequence of oper-
ators and reduction in the time of search for the optimal solution. Here, the estimate
of a certain chromosome from the set of variants obtained is selected as the estimate
of expression that has a minimum value of the objective function. The variables and
constants in the formula f make a set of terminal symbols T , and operations used in
the formula f make a set of nonterminal ones F .

Let f = (x + 2)/eax−5. For F = {L,+,−, /, ∗, exp, sin} and T = {x, a, 2, 5}, we
have |F |=7 and |T |=4 (L is the operation of loading (call) of a variable or a constant
from the set T the number ofwhichwas calculated from the first address). An example
of representation of this expression of f in the form of a sequential operator structure
with an interpretable code and in a symbolic form is shown in Table 1, where I
is the instruction number, K is the chromosome (0.11, 0.14,…, 0.91) divided into
triplets, M is the result of decoding of the triplet via simple operations (1), CM is
the instruction itself in a mnemonic record, E is the resulting expression (formula)
for this instruction in a symbolic form, and FC is the expression value for each
instruction (for x = 1, a = 2).

Below, there is an example of decoding the instruction I = 5 by formulas (1): K =
0.66:0.91:0.08; the operation number oper = �0.66 ∗ 7� = 4 means the multiplica-
tion operation ∗ in F , wherein the first element L has the number 0 here and the first
operand adr1 = �0.91 ∗ (5 − 1)� + 1 = 4, for the instruction with the number I1=4
we haveE4 = a andF4 = 2, and the second operand adr2 = �0.08 ∗ (5 − 1)� + 1 =
1, for the instructionwith the number I2=1we haveE1 = x andF1 = 1,which implies
M5=4:4:1, CM5 = ∗ 4, 1, E5 = E4 ∗ E1 = ax, and F5 = F4 ∗ F1 = 2.

Note that for the given chromosome K, the set of expressions E is found; the value
of the objective function is calculated for each expression, and chromosome fitness
is defined as the fitness of the best expression encoded by this chromosome. Thus,
unlike the GP and CGP algorithms, which encode one solution in a chromosome,
this algorithm encodes several solutions in a chromosome, which is also done in the
multi-expression programming (MEP) [6], but not using the chromosome as a simple



An Algorithm of Multivariant … 45

Table 1 Example of representation of expression in the form of chromosome (K), sequence of
operators (CM), and symbols (E)

I K M CM E FC

1 0.11:0.14:0.97 0:1:- L x E1 = x F1 = 1

2 0.13:0.55:0.15 0:3:- L 2 E2 = 2 F2 = 2

3 0.19:0.16:0.79 1:1:2 + 1, 2 E3 = x + 2 F3 = 3

4 0.08:0.31:0.47 0:2:- L a E4 = a F4 = 2

5 0.66:0.91:0.08 4:4:1 * 4, 1 E5 = ax F5 = 2

6 0.04:0.79:0.81 0:4:- L 5 E6 = 5 F6 = 5

7 0.35:0.80:0.87 2:5:6 −5, 6 E7 = ax − 5 F7 = −3

8 0.77:0.96:0.19 5:7:- exp 7 E8 = eax−5 F8 = 0, 0498

9 0.52:0.26:0.91 3:3:8 / 3, 8 E9 =
(x + 2)/eax−5

F9 = 60, 2566

vector of real-valued numbers and a standard GA for their evolution, and instead of
this organizing evolution on a set of programs.

The process of evolution of population of chromosomes (the vectors of reals) in
the MVES involves standard genetic algorithm operators. Let us define an initial
population consisting of M arbitrary random vectors of real-valued numbers of a
given length l, each number in the interval (0, 1) and l is a multiple of 3. Then, we
apply the genetic operators of mutation, crossover, and selection to this population.

Mutation is a replacement of each element of the vector, independent of the others,
with a random number in the interval (0, 1) with a probability pm ∈ [0, 1].

Crossover. From a population consisting ofM vectors, arbitrary pairs are selected
M times, and with the probability pc ∈ [0, 1] a pair is subjected to the crossover
operation as follows: this pair of vectors is divided in an arbitrary position into two
parts, which are swapped.

Selection. The objective functions of the new vectors obtained through mutation
and crossover are calculated, and the vectors (chromosomes) are decoded into ex-
pressions and programs as described above. If their objective functions are less than
those of some vectors of the population, then “the worst” vectors in the population
(with large values of the objective function) are replaced with the “best” ones, i.e.,
those having the smallest value of the objective function.

For search for the optimum of a given objective function FF , the iterative process
of calculations in the genetic algorithm is organized as follows.

The first iteration: generation of an initial population. A random operator creates
all the individuals of the population, which produce the values for each element of the
vector in the initial population (these values are uniformly distributed in the interval
(0, 1)), with subsequent calculation of the objective function.

Intermediate iteration: the step from the current population to the next one. The
essence of the algorithm is the creation of a new generation of individuals on the basis
of the current population using operations of mutation, crossover, and selection. At
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each iteration, there are madeM (the size of the population) attempts to select pairs
of individuals, which are subjected to operations of crossover (with a probability pc),
mutation (with a probability pm), and selection.

Last iteration: stopping criterion. The algorithm is completed when a vector with
FF = 0 is found or after a given number of iterations (generations) t.

Note that the algorithm developed for the multivariant evolutionary synthesis of
nonlinear models combines the advantages of the genetic algorithm (simple genetic
operations on real-valued vectors, the constant size of which prevents the effect of
unreasonable growth of expressions) and genetic programming (automatic synthesis
of mathematical expressions and computer programs of various sizes and complex-
ities that implement these expressions). The MVES algorithm combines a linear
representation of a chromosome, simple operations (1) in decoding of a genotype
into a phenotype for interpretation of a chromosome as a sequence of commands, and
also the multivariant method for representing a set of models (expressions) through
a single chromosome.

3 Experimental Results

To compare the efficiency of the multivariant evolutionary synthesis algorithm and
other genetic programming algorithms for the problem of search for an analytical de-
scription of a model on the basis of the given experimental data, the sets of variables,
basic functions and operations, we select ten test functions:
Test1: sin(exp(sin(exp(sin(x))))), Test2: sin(x2 + x4), Test3: sin(x3) + ex, Test4:
x4 + x3 + x2 + x, Test5: (x + a)/sin(2x − 4), Test6: 2sin(x)exp(a), Test7: sin(x) +
sin(a2), Test8: x5 − 2x3 + x, Test9: sin(x) + sin(x2 + x), and Test10: sin(x2)
exp(x) − 1.

The values of each function at 20 randompoints in the range (0, 2) were used in the
experiments. The set of basic functions for Test1–Test4 is F1 = {+, ∗, sin, exp}, for
Test5–Test10—F2 = {+,−, ∗, /, sin, exp}, the terminal symbols are for Test1–Test4
and Test8–Test10—T1 = {x}, and for Test5–Test7—T2 = {x, a, 2, 5}.

The following parameters of the compared algorithms are applied: a crossover
probability of 0.80, a mutation probability of 0.15, a population size of 100, and a
maximum number of generations of 250. The length of the chromosomes is 30; in the
GP, the initial depth of the expression tree is set equal to 6; in CGP, the dimensions
of the functional network are set as 32 = 2*16; the maximum number of evolution
strategy generations (1+4)-ES for the functions Test1–Test4 is equal to 10,000, for
Test5–Test10—75,000. The program was executed 100 times for each algorithm and
each test function, and the results were averaged.

The algorithmof themultivariant evolutionary synthesis has been implementedus-
ing the resources of the Information and Computing Center (ICC) of the Novosibirsk
National Research State University (NSU) on 12-core processor Intel Xeon X5670,
2.93 GHz (Westmere). We compare the MVES algorithm implemented in MATLAB
with the following open implementations of genetic programming algorithm (GP)
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Table 2 Frequency of successful search for test functions

GP CGP MVES

Test1: sin(exp(sin(exp(sin(x))))) 0.9 0.25 1

Test2: sin(x2 + x4) 0.05 0.35 1

Test3: sin(x3) + ex 0.67 0.12 1

Test4: x4 + x3 + x2 + x 0.317 0.27 1

Test5: (x + a)/sin(2x − 4) 0 0 0.035

Test6: 2sin(x)exp(a) 0.03 0.71 1

Test7: sin(x) + sin(a2) 0.05 0.875 1

Test8: x5 − 2x3 + x 0.083 0.17 1

Test9: sin(x) + sin(x2 + x) 0 0.5 1

Test10: sin(x2)exp(x) − 1 0 0.25 0.32

[1, 2] and the Cartesian genetic programming (CGP) [4, 5] in MATLAB: for GP
- GPLAB v.4.02 (http://gplab.sourceforge.net), for CGP - cgpmatlab (http://www.
cartesiangp.co.uk/resources).

One of the main indicators used to measure the efficiency of evolutionary algo-
rithms is the probability (frequency) of success, i.e., the probability that the algorithm
has detected (synthesized) an expression coinciding exactly with the reference func-
tion. This is the ratio of the number of successful experiments, when the algorithm
found a correct expression, to the total number of experiments with the given pa-
rameters. Table 2 presents the probabilities (frequencies) of success for different
algorithms. It can be seen from the table that the probability of success in the MVES
is higher than with other algorithms in all cases. This result is explained by the ability
of the MVES to represent several expressions in one chromosome, which leads to a
higher chance of finding a solution.

The second indicator used in this paper to measure the effectiveness of evolu-
tionary algorithms is the average time of search for test functions, i.e., the average
algorithm execution time before the algorithm has detected (synthesized) a speci-
fied expression or has fulfilled a required number of generations. Table 3 presents
the average time (in sec.) of search for test functions for the compared algorithms.
The algorithms can be arranged in order of descending solution time as follows:
GP > CGP > MVES. This table shows that the MVES has the smallest time for
finding a solution (more than by an order of magnitude in most cases). This result
can be explained by (1) the simplicity of genetic operations and chromosome struc-
tures in the MVES and (2) the direct execution of instructions during decoding of
chromosomes “on the fly”, without obtaining the whole expression separately in the
form of a string and interpreting the latter, as in the GP and the CGP algorithms.

http://gplab.sourceforge.net
http://www.cartesiangp.co.uk/resources
http://www.cartesiangp.co.uk/resources
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Table 3 Average time of search for test functions

GP CGP MVES

Test1: sin(exp(sin(exp(sin(x))))) 23.6 4.4 0.26

Test2: sin(x2 + x4) 309.7 3.8 0.26

Test3: sin(x3) + ex 118.6 4.1 0.3

Test4: x4 + x3 + x2 + x 783.2 3.9 0.27

Test5: (x + a)/sin(2x − 4) 11265 277 3.6

Test6: 2sin(x)exp(a) 4425 135.7 0.32

Test7: sin(x) + sin(a2) 4746 106.7 0.33

Test8: x5 − 2x3 + x 5540 217.9 0.88

Test9: sin(x) + sin(x2 + x) 10468 203.3 0.49

Test10: sin(x2)exp(x) − 1 9377 214.7 2.5

4 Conclusion and Future Work

We have considered a new approach to addressing the problem of construction of
nonlinear models (mathematical expressions, functions, algorithms, and programs)
on the basis of the given experimental data, sets of variables, basic functions, and
operations. A multivariant evolutionary synthesis algorithm has been developed for
such models. The algorithm combines the advantages of genetic algorithm and ge-
netic programming. It uses a linear representation of chromosome, simple operations
in decoding of a genotype into a phenotype for interpretation of chromosome as a
command sequence, and also themultivariantmethod for representing a set ofmodels
(expressions) using a single chromosome. The proposed multivariant evolutionary
synthesis algorithm has been realized and compared with the standard genetic pro-
gramming algorithm using a tree representation of chromosome and the Cartesian
genetic programming algorithm using a representation of a program in the form of
a finite graph. The experiments show that the proposed approach exceeds the GP
and CGP algorithms both in the time of search for a solution (more than an order
of magnitude in the most cases) and in the probability of finding a preset function
(model). The main limitation of the research is using it for the synthesis of simple
test functions as models. In the future, we will apply our approach to solve some
of the real problems for more complex nonlinear models from the fields of biology,
financial mathematics, physics, and chemical processes.

References

1. Koza, J.: Genetic Programming II: Automatic Discovery of Reuseable Programs. MIT Press,
Cambridge, Massachusetts (1996)

2. Koza, J.R.: Genetic programming as a means for programming computers by natural selection.
Statist. Comput. 4, 87–112 (1994)



An Algorithm of Multivariant … 49

3. Langdon, W.B., Poli, R.: Foundations of Genetic Programming. Springer, Heidelberg (2002)
4. Miller, J.F.: Cartesian Genetic Programming. Springer, Heidelberg (2011)
5. Miller, J.F., Thomson, P.: Cartesian Genetic Programming. In: Proceedings of the 3rd European

Conference on Genetic Programming. LNCS, vol. 1802, pp. 121–132, Springer, Heidelberg
(2000)

6. Oltean M.: Multi Expression Programming, Technical Report, Babes-Bolyai Univ, Romania
(2006)

7. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. Lulu.com, San
Francisco (2008)



An Artificial Bee Colony Based
Hyper-heuristic for the Single Machine
Order Acceptance and Scheduling
Problem

Sachchida Nand Chaurasia and Joong Hoon Kim

Abstract This paper presents an artificial bee colony based hyper-heuristic for solv-
ing the order acceptance and scheduling (OAS) problem in a single machine envi-
ronment. The OAS problem gives the flexibility to accept or reject an order where
the systems have limited production capacity and on-time delivery constraints. The
OAS problem, which is a typical NP-hard problem, becomes more complex when
a sequence-dependent setup time is incurred between two consecutive orders. Solv-
ing an NP-hard problem through exact approaches is computationally expensive
and they fail to solve large-size instances. Therefore, we proposed hyper-heuristic in
which artificial bee colony (ABC) algorithm is employed as a searchmethodology for
the OAS problem. Hyper-heuristic works on the search space of heuristics, whereas
ABC algorithm works on the solution space of the problem. A guided heuristic,
which works on search space of heuristics, is developed to search the best heuristic
from a set of heuristics residing at the lower level of hyper-heuristic. The proposed
approach is comparedwith the state-of-the-art approaches. The computational results
show that the integration of ABC algorithm into hyper-heuristic outperformed the
other approaches in terms of average and minimum deviation from the upper bound.
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1 Introduction

In a competitive production system, limited production capacity and tight delivery
constraints force the system to accept a limited number of orders so that all the
accepted orders can be delivered on time and also can generate maximum revenue
from the processed orders. A build-to-order (BTO), also referred to asmake-to-order,
is a manufacturing system which gives flexibility to the system to customize the
processing of the orders. The OAS problem [1] addresses both acceptance of orders
and scheduling of the accepted orders. A balanced trade-off between acceptance
and rejection of orders increases the chance of maximum revenue gain from the
production system. The acceptance of an order and on-time delivery maximize earn
revenue and also goodwill of customers. On the other hand, rejection of an order
avoids the production overload and boosts the production.

In the last two decades, different characteristics and objectives based on OAS
problems have been studied. For the detailed study of OAS problems and algorithms
to solve them, the literature survey on OAS problem by Keskinocak and Tayur [2]
and Slotnick [3] can be referred. The OAS problem can be considered as a mix of
subset selection and permutation problem. The joint decision, acceptance of orders
and scheduling of the accepted orders, of the OAS problem makes it a complex
problem. The OAS problem is proven toNP-hard [4–6] due to its complex decision
procedure.

TheOAS problem has application inmany real-world complex optimization prob-
lems such as printing [7], lamination [4], laundry services [8], and steel production
[9]. The OAS problem has two folds—first is to determine which orders should be
accepted and the second is to determine the sequence of processing of the accepted
orders. The number of incoming orders is fixed, and all the orders are put at a time
in a processing sequence.

TheOASproblem is solved by theCPLEX solverwith 3600s of limited time using
mixed-integer linear programming formulation [4]. Cesaret et al. [10] developed
three algorithms for the OAS problem, viz., a modified apparent tardiness cost rule-
based approach (called m − ATCS), a simulated annealing based algorithm (called
ISFAN ), and a tabu search-based algorithm (called TS). The tabu search (TS) uses
the problem-specific information to make a compound move such as iterative drop,
add, and insertion operations. A database keeps the record of two factors. The first
factor keeps the status of accepted as well as rejected orders, whereas the second
factor keeps the record of a processing sequence of the orders. Using the information
from the database, the acceptance and scheduling of orders are done simultaneously.
Further, a local search is applied to each solution generated by the TS algorithm to
improve the solution quality.

In [11], Lin and Ying developed a swarm-based artificial bee colony algorithm to
solve theOASproblem.The neighborhood solutions are produced by either crossover
[12] or IG algorithm [13]. The IG algorithmhas two phases—first is destruction phase
and the second is construction phase.
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In [14], Chaurasia and Singh proposed two metaheuristics, viz., steady-state
genetic algorithm (SSGA) and evolutionary algorithmwith guidedmutation (EA/G).
Both SSGA and EA/G were coupled with a problem-specific local search to improve
the solution. The local search was applied to a solution where the fitness difference
between the global best and the current fitness is more than some fixed percentage
of the global best.

In this paper, we present an artificial bee colony based hyper-heuristic for the OAS
problem in a single machine environment. In the last two decades, hyper-heuristics
have received huge attention from the research community and practitioner due to
their flexibility toward the selection of heuristic. Hyper-heuristic is considered as an
automated heuristic which works on the search space of the heuristic rather than the
solution space of the problem.

The major contribution of this paper is as follows: (i) an ABC-based hyper-
heuristic is presented for order acceptance scheduling problem; (ii) different from the
ABC of [11], the search procedure of scout bee is improved to avoid worse solution.
Hereafter, the proposed approach will be referred to as ABC-HH.

We have compared our ABC-HH with the TS [10], ABC [11], hybrid SSGA, and
hybrid EA/G [14] approaches on the same test instances.

The remainder of this paper is organized as follows: Sect. 2 describes the problem
formulation of the OAS problem. Section 3 is focused on the overview of ABC
algorithm and hyper-heuristic. Section 4 describes our ABC algorithm-based hyper-
heuristic for the OAS problem. Section 5 is dedicated to the computational results
and their analysis. Finally, conclusion and some recommendation for future studies
are provided in Sect. 6.

2 Problem Description

We followed the same formulation notation, as given in [11, 14], to describe the
order acceptance and scheduling (OAS) problem in a single machine environment.
The OAS problem is formally defined as follows:

N number of incoming orders.
Ri released date of order i. Processing of order i cannot start

before its release date.
Pi processing time of order i.
Ci completion time of order i.
Di due date of order i.
Di dead line of order i.
Sij (i �= j) a sequence-dependent setup time between orders i and j

is incurred when order i is processed before order j in the
sequence.

Ei the revenue gain for order i.
Wi =

Ei

(Di−Di)
, Di < Di the per unit time tardiness penalty of an order i.
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Based on the above information about the orders, the objective of theOASproblem
is finding a sequence of all the accepted orders on the single machine that maximizes
the total net revenue (TNR). It is assumed that all the orders have equal precedence
and will be processed without any interruption. In other words, processing of any
order can start any time (after the release date of that order) and once the processing
starts, it cannot be stopped before its completion. The mathematical formulation of
the objective function of the OAS problem is given in Eq. (1).

TNR = max
N∑

i=1

xi ∗ (Ei − Wi ∗ Ti) (1)

where N is the number of orders, Ti = max(0, Ci − Di) is the tardiness of an order
i. xi ∀i ∈ {1, 2, . . . ,N } are boolean variables. xi = 1 means order i is accepted and
xi = 0 means order is rejected. Here, it is to be noted that any order i, whereCi ≥ Di,
is rejected by setting its associated boolean variable xi to zero.

3 Overview of Hyper-heuristic and ABC

3.1 Hyper-heuristic

Many problem-independent heuristics and metaheuristics have been developed and
successfully applied to combinatorial optimization problems. However, difficulties
come when one needs to reconstruct an algorithm or have to do time-consuming
parameter tuning for the already existing algorithm for a new problem or even for
a new instance for the same problem. To overcome the shortcoming of heuristics
or metaheuristics, an automated heuristic, called hyper-heuristic, is used as an alter-
native to solve the problem with least changes in the, already, existing algorithm.
Hyper-heuristic uses a heuristic, called search methodology, to search a heuristic or
construct a heuristic [15–17]. Generally, hyper-heuristics perform their tasks at two
levels—higher level and lower level. The higher level works on search space and it is
independent of the problem domain knowledge and mainly engaged in constructing
or generating a best possible heuristic from the set of heuristics which reside at the
lower level of hyper-heuristic. The lower level directly works on the solution space
of the problem and each low-level heuristic can search the solution space, modify the
solution, and construct a new solution using the problem domain knowledge [18].

3.2 Artificial Bee Colony (ABC) Algorithm

The artificial bee colony (ABC) algorithm is a recent addition to the class of swarm
intelligence algorithms which is developed by Karaboga [19] in 2005. The ABC
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algorithm is inspired by the intelligence behavior of natural honey bees in the search
of nectar sources. The collaborative and co-operative work of natural honey bees
swarm is mapped to the artificial bee colony algorithm. The real bees are distributed
into three groups—employed bees, onlooker bees, and scout bees. Employed bees
do the job of exploitation of the food source. Employed bees bring the nectar of food
sources to the hive and share the information with onlooker bees in the form of dance
in the dance area of the hive. The nature and duration of the dance depend on the
nectar content of its food source as well as the location of food source with respect
to the hive. Onlooker bees watch several dances and choose the best food source.
Hence, good food sources, always, have more chance to get selected by onlooker
bees. Scout bees do the job of exploration and randomly explore the surroundings
of the hive for a new food source. Whenever onlooker and scout bees search a food
source, it becomes employed bee.

The ABC algorithm begins with a certain number of randomly generated food
sources, and each of these food sources is associated with an employed bee. Each
generation of ABC consists of two phases, viz., the employed bee phase and the
onlooker bee phase. In employed phase, each employed bee search a new food source
in the neighborhood of its associated food source. The employed moves to the new
food source if the nectar content of the new food source is higher than its associated
food source.

After the completion of employed bee phase, the onlooker bee phase begins and
each onlooker bee selects a good food source by applying a probability-based selec-
tionmethod such as roulette wheel selectionmethod and binary tournament selection
method and then searches a new food source in the neighborhood of its associated
food source. After determining all the food sources, each onlooker bee takes a move
to the best food source.

If the food source has not improved for the predetermined number of generations
limit, then that food source is abandoned and it becomes a scout bee. This scout bee
becomes employed bee by associating with a new food source. For a detailed study
on the ABC algorithm and its applications, interested readers may refer to [20, 21].

4 ABC-Based Hyper-heuristic (ABC-HH) for the OAS
Problem

The proposedABC-HH approach is designed in such away that it maintains trade-off
between exploration and exploitation in the search process. To the best of authors’
knowledge, this is the first ABC-based hyper-heuristic to solve the OAS problem.
Hyper-heuristics are automated search method which explore the search space of the
solution by. At the higher level of the hyper-heuristic, an ABC algorithm is employed
as a search methodology, whereas at the lower level, a set of heuristics which directly
work on the solution space of the problem is employed. The subsequent subsections
describe the components of the proposed ABC-HH approach.
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Algorithm 1 Pseudo-code of ABC-HH
1: Randomly generate initial population of Neb solutions;
2: bsol ← Select the best solution from initial solution population; � bsol is the global best solution
3: while (termination condition not satisfied) do
4: for (i ← 1 to Neb) do
5: eb ← Determine_Neighboring_Solution(ebi); � Use Algorithm 2 to select a heuristic

and then apply that heuristic on ebi to generate a new solution eb
6: if (fitness(eb) > fitness(ebi)) then
7: ebi ← eb;
8: else
9: if (ebi has not changed over last limit generations) then
10: ebi ← Randomly_Generate_Solution(); � Use initial population generation

method to generate a new solution
11: end if
12: end if
13: if (fitness(ebi) > fitness(bsol )) then
14: bsol ← ebi;
15: end if
16: end for
17: for (i ← 1 to Nob) do
18: si ← bst(eb1, eb2, . . . , ebNeb ); � bst is a binary tournament selection function that

returns an index of an employed bee from the set of employed bees Neb
19: obi ← Determine_Neighboring_Solution(ebsi ); � Algorithm 2 is used to

select a heuristic and then the selected heuristic is applied to the solution ebsi to generate a new
solution obi

20: if (fitness(obi) > fitness(bsol ) ) then
21: ebsi ← obi;
22: end if
23: end for
24: if (fitness(obi) > fitness(bsol )) then
25: bsol ← obi;
26: end if
27: end while
28: return bsol ;

4.1 Solution Representation

We followed the same solution representation method as used in [11, 14]. Each
solution η = (η1, η2, . . . , ηN ) is a linear permutation of all the N orders. An order ηi
in the permutation sequence is accepted if the completion time, Cηi , is less than the
dead line Dηi .

4.2 Fitness Evaluation

The fitness function is same as the objective function (Eq. 1) and evaluates the fitness
of only accepted orders in the permutation η. In Algorithm 1, fitness is a function
that calculates the fitness of the accepted orders using Eq. 1.
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4.3 Initial Population

The initial population is generated randomly with the motive to maintain diversity
in the population. A random sequence or permutation η of N orders is generated.

4.4 Determination of Neighborhood Solution

Neighborhood solution is determined by using higher level search methodology. The
higher level search methodology returns a heuristic Hi, and then the heuristic Hi is
applied on the solution which is passed in the Determine Neighboring Solution()
function in Algorithm 1.

I. Higher level searchmethodology: Higher level searchmethodology is the higher
level of hyper-heuristic, and it is used to select a heuristic from a set of heuristics
which reside at the lower level of hyper-heuristic. The proposed higher level
search methodology uses two steps to select a heuristic. The first step is credit
assignment rule and the second step is heuristic selection rule. credit assignment
rule is used to assign probability to each heuristic hi. In heuristic selection rule,
a heuristic is selected using the probability vector δ.

A: Credit assignment rule: In a two-dimensionalmatrix ofW rows andH columns,
where W and H represent the size of window and number of heuristics, respec-
tively, fHij represents the fitness returned by the heuristic Hi at stage j in the
current generation. After each generation, the fitness matrix fmatrix is updated
using first-in-first-out (FIFO). FIFOmeans, when theW + 1 fitness is appended
into the window, then the first will be removed.

fmatrix =

(W
)
W
in
do
w
si
ze

H heuristics⎡

⎢⎢⎢⎣

f1H1 f1H2 · · · f1Hh

f2H1 f2H2 · · · f2Hh

...
...

. . .
...

fWH1 fWH2 · · · fWHh

⎤

⎥⎥⎥⎦

The fmatrix is initialized using W × H number of solutions. The probability δHi

is initialized using Eq. (2). fjHi is the fitness of Hi at stage j and max(fjHi ) is the
best fitness returned by heuristic Hi for j = 1, 2, . . . ,W .

δHi = max(fjHi )∑
fjHi

, j = 1, 2, . . .W, i = 1, 2, . . .H (2)

The probability vector δH is updated after each generation using Eq. (3). In Eq.
(3), Z (1 ≤ Z ≤ W ) is size of partial window, i.e., last Z rows in fmatrix. For
example, after each generation, the probability vector is updated using Eq. (3).
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Variable Z is equal to the size of parent.

δHi = (1 − λ) × δHi + λ × max(fjHi )∑Z

k=1
fkHi

, i = 1, 2, . . .H , j = 1, 2, . . .W (3)

where λ is a learning rate. The larger the value of λ more contribution from the
current window, the smaller value of λ means more contribution from the parent
window.

B: Heuristic selection rule: It is inspired by theguidedmutation of [22]. The guided
heuristic (GH) (Algorithm 2) is developed to choose a heuristic from a set of
heuristics. Similar to guided mutation, the guided heuristic (GH) uses both the
global information which is stored in the form of probability δH and the location
information about the fitness of the parent heuristics to generate a neighborhood
solution. In Algorithm 2, a random value rand is generated uniformly in [0, 1]
and if the value rand is less than the probability, δHi , of heuristic Hi then the
heuristic Hi is applied to generate a new solution. Otherwise, the heuristic is
selected which has highest probability among all the heuristics.

Algorithm 2 Guided heuristic

1: for each heuristic Hi ∈ H do
2: if (rand < δHi ) then
3: return heuristic Hi
4: else
5: return the heuristic, Hi , whose probability, δHi , is highest among all the heuristics;
6: end if
7: end for

II. Lower level heuristics: The lower level of hyper-heuristic consists of a set of
heuristics. Each heuristic Hi has its own advantage. Some of the heuristics are
developed with the purpose to explore the solution space, and some are developed
with the purpose to exploit the solution space. For example, heuristic H1 is used
to exploit the solution space. Heuristic H3 is used to explore the solution space.
The detailed description of all the heuristics is given in Table 1.

5 Computational Results

The proposed ABC-HH has been implemented in C language and executed on a
Linux-based system having 3.30 GHz Intel Core i5-4590 processor and
4GB RAM.gcc 5.4.0 compiler with O3 flag has been used to compile theC code.
For the developed ABC-HH approach, we set Neb (number of employed bees) = 50,
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Table 1 Constructive low-level heuristics for the OAS problem

H1 Mutation operator [14]: The mutation operator is used to maintain diversity in the
solution population. The proposed mutation operator begins with randomly deleting a
fixed number, Md , of orders and then the deleted orders are assigned with the help of
Assignment operator [14]

H2 Multi-swap [23]: Two different positions of orders are selected uniformly at random and
orders at the selected positions are swapped. This process is repeated mwp of times

H3 Crossover operator [14]: As the OAS problem has characteristics of subset selection and
permutation problem, we developed a problem-specific crossover to generate a new
solution. After crossover operation, some orders remain unsigned. These unassigned
orders are assigned with the help of Assignment operator [14]

H4 Local Search [14]: Improve the solution iteratively by interchanging the adjacent orders

Nob (number of onlooker bees) = 50, limit = 10, λ = 0.70, mwp = 4, andMd = 4. The
number of generation is set to 250.

The proposed ABC-HH approach has been tested on the same instances which
have been used for the state-of-the-art approaches [10, 11, 14]. The details about the
test instances can be found in [10]. The evaluation criterion of the performance of
the approaches is the percentage deviation of total net revenue (TNR) returned by
each approach from the upper bound (UB) on each of the 250 instances of with 15
orders. The percentage deviation is calculated using Eq. (4).

%Deviation from UB = (UB − TNR)

UB
× 100% (4)

where TNR indicates the total net revenue obtained by the approach under consider-
ation and UB is the upper bound obtained by Cesaret et al. [10]. We have reported
the maximum, average, and minimum percentage (%) deviations from the UB of
various approaches on each group of 10 instances with same N (number of orders),
τ (tardiness factor), and R (due date range). Table 2 reports the results obtained by
TS [10], ABC [11], HSSGA [14], EA/G-LS [14], and ABC-HH approaches for the
instances with 15 orders. In Table 2, Max., Min., and Avg. are maximum, minimum,
and the average deviation from UB, respectively. Columns of Table 2 also report the
number of optimal solutions found in each group of 10 instances by each of the 5
approaches and their average execution times. As TS [10] and ABC [11], HSSGA
[14], and EA/G-LS [14] approaches were executed on the systems whose configura-
tion is different from the system used to execute ABC-HH approach, and therefore,
execution times of different approaches in these tables cannot be compared directly.
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6 Conclusions

In this work, we have presented an artificial bee colony based hyper-heuristic for the
order acceptance and scheduling (OAS) problem in a single machine environment
with release date and sequence-dependent setup time. The developed approach is
compared with the state-of-the-art approaches, viz., tabu search, artificial bee colony
algorithm, steady-state genetic algorithm, and evolutionary algorithm with a guided
mutation. The computational results show that the hyper-heuristic can be used as
an alternative to heuristics and metaheuristics. As a future work, we would like to
develop other swarm- and evolutionary-based hyper-heuristics for the OAS problem
in the multi-machine environment. Similar to the proposed ABC algorithm-based
hyper-heuristic, other metaheuristics such as genetic algorithm, particle swarm opti-
mization, etc. based on hyper-heuristic can be proposed to solve the OAS problem.

Acknowledgements Thisworkwas supportedby the grant fromTheNationalResearchFoundation
(NRF) of Korea, funded by the Korea government (MSIP) (No. 2016R1A2A1A05005306).
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10. Cesaret, B., Oğuz, C., Salman, F.: A tabu search algorithm for order acceptance and scheduling.
Computers & Operations Research 39, 1197–1205 (2012)

11. Lin, W., Ying, K.C.: Increasing the total net revenue for single machine order acceptance
and scheduling problems using an artificial bee colony algorithm. journal of the Operational
Research Society 64, 293–311 (2013)

12. Davis, L.: Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York (1991)
13. Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation

flowshop scheduling problem. European Journal Operational Research 177, 2033–2049 (2007)



An Artificial Bee Colony Based Hyper-heuristic for the Single … 63

14. Chaurasia, S.N., Singh, A.: Hybrid evolutionary approaches for the singlemachine order accep-
tance and scheduling problem. Applied Soft Computing Journal 52, 725–747 (2017)

15. Burke, E.K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Woodward, J.R.: A Classification
of Hyper-heuristic Approaches, pp. 449–468. Springer US, Boston, MA (2010)

16. Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-
heuristics: a survey of the state of the art. Journal of the Operational Research Society 64(12),
1695–1724 (2013)

17. Sabar, N.R., Ayob, M., Kendall, G., Qu, R.: Automatic design of a hyper-heuristic framework
with gene expression programming for combinatorial optimization problems. IEEE Transac-
tions on Evolutionary Computation 19(3), 309–325 (2015)

18. Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., Schulenburg, S.: Hyper-Heuristics: An
Emerging Direction in Modern Search Technology, pp. 457–474. Springer US, Boston, MA
(2003)

19. Karaboga, D.: An idea based on honey bee swarm for numerical optimization. Tech. rep. (2005)
20. Karaboga, D., Akay, B.: A survey: algorithms simulating bee swarm intelligence. Artificial

Intelligence Review 31(1), 61–85 (2009)
21. Karaboga, D., Gorkemli, B., Ozturk, C., Karaboga, N.: A comprehensive survey: artificial bee

colony (abc) algorithm and applications. Artificial Intelligence Review 42(1), 21–57 (2014)
22. Zhang,Q., Sun, J., Tsang, E.:An evolutionary algorithmwith guidedmutation for themaximum

clique problem. IEEE Transactions on Evolutionary Computation 9, 192–200 (2005)
23. Sundar, S., Singh, A.: A swarm intelligence approach to the early/tardy scheduling problem.

Swarm and Evolutionary Computation 4, 25–32 (2012)



A New Evolutionary Optimization
Method Based on Center of Mass

Jesús-Adolfo Mejía-de-Dios and Efrén Mezura-Montes

Abstract Physical phenomena have been the inspiration for proposing different
optimization methods such as electro-search algorithm, central force optimization,
and charged system search among others. This work presents a new optimization
algorithm based on some principles from physics and mechanics, which is called
Evolutionary Centers Algorithm (ECA). We utilize the center of mass definition for
creating new directions for moving the worst elements in the population, based on
their objective function values, to better regions of the search space. The efficiency
of the new approach is showed by using the CEC 2017 competition benchmark func-
tions. We present a comparison against the best algorithm (jSO) in such competition
and against a classicalmethod (SQP) for nonlinear optimization. The results obtained
are promising.

Keywords Optimization · Center of mass · Evolutionary algorithm
Physics-inspired

1 Introduction

Nowadays, real-world optimization problems are complex to solve due to different
sources of difficulty, e.g., highly nonlinear objective function and constraints and
large number of variables. There are several population-based algorithms, which are
competitive to solve optimization problems [4]. Twomain types can be distinguished:
evolutionary algorithms (EAs), e.g., genetic algorithms, differential evolution, etc.,
[3, 10, 13], and swarm intelligence, e.g., artificial bee colony, ant system, particle
swarm optimization, etc. [7, 8]. In this work, we are focused on EAs.
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EAs have provided successful results when solving complex bound-constrained
optimization problems [13]. However, most popular EAs usually are those which
design keeps simple and their number of parameters is low so as to facilitate the
fine-tuning process when a particular problem is solved.

Motivated by the abovementioned,wepropose a physics-inspired algorithmbased
on the center of mass concept on a D-dimensional space for real-parameter single-
objective optimization. The general idea is to promote the creation of an irregular
body using K mass points in the current population, then the center of mass is
calculated to get a new direction for the next population.

Single-objective optimization problems are defined as follows: for an objective
function f (x), an algorithm needs to find the variables of a vector x that minimizes
or maximizes the function f . It is assumed that the number of variables in x is D, i.e.,
x = (x1, x2, . . . , xD). The search space is assumed to be convex,where each variable
has its boundaries x j,min, x j,max for j = 1, 2, . . . , D. Problems are often found
where the objective function is not explicitly known, then classical optimization
methods in this type of problem are hardly applicable [6].

There are different algorithms based on biological or physical metaphors with
different characteristics. Some of them use the current population distribution to
generate new solutions, i.e., swarm intelligence algorithms such as particle swarm
optimization (PSO) [8] and the artificial bee colony (ABC) [7]. There are also algo-
rithms inspired by physical phenomena such as Newton’s Law of Universal Gravi-
tation (CFO) [2, 5]. The relationship among those algorithms is their mathematical
formulation for generating solutions through an iterative process:

xi+1 = xi + vi+1, (1)

where each algorithm updates vi+1 as follows:

– PSO:
vi+1 = ωvi + c1r1,i (xpbest,i − xi ) + c2r2,i (xgbest,i − xi ),

where ω is a inertia weight used for balancing the global search and local search;
xpbest,i and xgbest,i are the best position reached by solution i so far and the best
solution in the population, respectively; c1 and c2 are two positive constants; and
r1,i , r2,i are random numbers with uniform distribution in the range [0, 1].

– ABC:
vi+1 = φi (xi − xr ),

where xi is the current solution, xr is a randomly chosen solution, and φi is a
randomly produced number with uniform distribution in the interval [−1, 1].

– CFO:
vi+1 = ωvi + λFi/mi ,
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where vi is the current solution, λ is a uniformly distributed random variable in
[0, 1], ω is the user-defined weight 0 < ω < 1, mi , Fi are the mass and force
functions, respectively, both defined by the authors.

In the three previous cases, the v value depends on the population distribution at
current generation i .

Section 2 describes our algorithm and how it relates to what has been described
above. Section 3 presents the results obtained. Section 4 summarizes our conclusions
and Sect. 5 indicates the future work.

2 Evolutionary Centers Algorithm

In this section, evolutionary centers algorithm (ECA) is detailed. Also, experiments
are presented.

2.1 Motivation

The center of mass is a geometric property of any object. Intuitively, it is the average
location of the weight of an object. We can completely describe the motion of any
object through space in terms of the translation of the center of mass of the object
from one place to another, and the rotation of the object about its center of mass
if it is free to rotate. This is the motivation for using the center of mass concept,
and we translate the population to places where the mass of the entire population is
maximum.

We present ECA details. First, we introduce the center of mass in physics terms
[9, 12].

Definition 1 The center of mass is the unique point c at the center of a distribution
of mass U = {u1, u2, . . . , uK } in a space that has the property that the weighted
sum of position vectors relative to this point is zero. That is,

K∑

i=1

m(ui )(ui − c) = 0, implies c = 1

M

K∑

i=1

m(ui )ui , (2)

where m(ui ) is the mass of ui and M is the sum of the masses of vectors inU . Here,
m is a nonnegative function.

Note 1 Similar as in statistics, the center ofmass is themean location of a distribution
of mass in space.

The concept of center of mass is, by far, not new. It was introduced by the ancient
Greek physicist, mathematician, and engineer Archimedes of Syracuse. Archimedes
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worked with some assumptions about gravity in a uniform field, so as to get the
mathematical properties of what we now call the center of mass [9].

For this work, the following proposition is required for ensuring stability and keep
ECA solutions into the convex space.

Proposition 1 If c is the center of mass of a system of particles U, then for all
u ∈ U:

d(c, u) ≤ diam(U ).

Here, diam(U ) := sup{d(u, v) | u, v ∈ U }.
In other words, the center of mass of U is never out of the minimum convex set that
contains U . We are assuming Euclidean distance and U ⊂ R

D [14].
In this work, the objective function of the optimization problem represents the

mass of each solution in the population, i.e., we set f = m.Without loss of generality,
we assume that we want to maximize the nonnegative function f .

2.2 Algorithm Description

For each solution xi in the population P = {x1, x2, . . . , xN } of N solutions, we select
a subsetU ⊂ P with K solutions; then, fromU we obtain the center of mass c. After
that, based on a randomly chosen solution ur ∈ U , and the already generated center
of mass c, we generate a direction to locate a new solution hi . We suggest using the
following strategy:

hi = xi + ηi (ci − ur ), (3)

where

ci = 1

W

∑

u∈U
f (u) · u, W =

∑

u∈U
f (u). (4)

Note 2 If f is constant, then the center of mass of U is the geometric center of U .
That is, assume that f (x) = α for every x ∈ R

D , with α a positive constant. The
center of mass is

ci = 1

Kα

∑

u∈U
α · u = 1

K

∑

u∈U
u. (5)

Thus, for a constant mass function, we have the center of mass converging to the
geometric center. In real-world problems, functions can be flat in some regions, and
then this algorithm may find some difficulties when dealing with such issue.

Note 3 The bias is given by Eq. (4) because for a solution with the highest mass, the
position of the center of mass is nearest to its position, see Fig. 1.
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Fig. 1 cm is center of mass, cg is geometric center of black points. Black point radius is its mass.
Note the bias given by the weighted sum

Algorithm 1 ECA pseudocode
1: procedure ECA(K = 7, ηmax = 2)
2: N ← 2K ∗ D
3: Generate and evaluate start population P with N elements
4: while the end criterion is not achieved do
5: A = ∅
6: for each x in P do
7: Generate U ⊂ P such that card(U ) = K
8: Calculate c using U with (4)
9: η ← rand(0, ηmax)

10: h ← x + η ∗ (c − u) where u ∈ U random
11: if f (x) < f (h) then
12: Append h in A
13: end if
14: end for
15: P ← best elements in P ∪ A
16: end while
17: Report best solution in P
18: end procedure

Note that ECA has only two parameters: the number of neighbors K and the step
size ηmax. For large K values, ECA could converge faster, and we suggest K = 7,
a value obtained experimentally. Figure 2 shows a representation of ECA solution
update.

2.3 Experiments

Algorithm 1 details the procedure for the implementation of ECA. Such algorithm
was coded in C language using a PC with quad-core 2.4 GHz CPU and 8 GB of
RAM, and it was tested in 30 functions of CEC 2017 competition on real-parameter
single-objective optimization [1].
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Fig. 2 Schematic diagram representing a generation of ECA. Gray points represent elements inU

Table 1 Representative functions from CEC 2017 benchmark. This set of functions is shifted and
rotated. The search range is [−100, 100]D
Function Formula

Bent cigar function f1(x) = x1 + 106
D∑

i=2

x2i

Sum of different power functions f2(x) =
D∑

i=1

|xi |i+1

Zakharov function f3(x) =
D∑

i=1

x2i +
(

D∑

i=1

0.5xi

)2

+
(

D∑

i=1

0.5xi

)4

Rastrigin function f5(x) = 10D +
D∑

i=1

(x2i − 10 cos(2πxi ))

High conditioned elliptic function f11(x) =
D∑

i=1

(106)

i − 1

D − 1 x2i

Discus function f12(x) = 106x21 +
D∑

i=2

x2i

Griewanks function f15(x) =
D∑

i=1

x2i
4000

−
D∏

i=1

cos

(
xi√
i

)
+ 1

For this experimentation, D = 10 was considered. Here, the optimal values for
the test functions are known (see Table 1 where representative functions are shown).
There is also a maximum number of evaluations equal to 10,000D. The parameters
in all experiments were K = 7, ηi is a uniform random number between in (0, 2].
The size of the population was N = 2K ∗ D.
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3 Results

The statistical results obtained by ECA are reported in Table 2. It is worth noting that
ECA obtained results close to the optimum while reporting low standard deviation
values. Therefore, ECAbehavior can be considered as robust and suitable to dealwith
different types of search spaces. Furthermore, we compared ECA against a nonlinear
optimization algorithm (SQP) [11], and the most competitive algorithm in the CEC
2017 competition on real-parameter single-objective optimization (jSO), which is

Table 2 Results of 51 independent runs of ECA on CEC17 problems for D = 10

f Best Worst Median Mean Std.

f1 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

f2 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

f3 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

f4 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

f5 9.94967E−01 1.54772E+01 7.95967E+00 7.93134E+00 3.77745E+00

f6 4.74662E−07 1.87951E−03 1.87537E−05 7.68970E−05 2.64095E−04

f7 1.11988E+01 2.87323E+01 1.82470E+01 1.79819E+01 4.13487E+00

f8 0.00000E+00 1.39919E+01 3.97988E+00 5.20411E+00 3.44675E+00

f9 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00

f10 2.48759E+01 1.08470E+03 7.38475E+02 7.15419E+02 1.72816E+02

f11 0.00000E+00 6.57982E+00 9.94986E−01 1.40699E+00 1.58245E+00

f12 0.00000E+00 2.55756E+02 1.14822E+02 7.23057E+01 6.74642E+01

f13 0.00000E+00 1.36689E+01 2.44396E+00 3.57464E+00 3.36532E+00

f14 0.00000E+00 9.86504E+00 9.94959E−01 1.62895E+00 2.14527E+00

f15 4.70850E−03 3.29460E+00 1.13397E+00 1.03424E+00 7.22193E−01

f16 3.90059E−01 2.42227E+01 2.14109E+00 3.42342E+00 3.81635E+00

f17 6.04248E+00 4.77547E+01 3.68447E+01 3.65033E+01 6.29621E+00

f18 1.91438E−02 2.54001E+00 4.26493E−01 5.91709E−01 5.31956E−01

f19 3.15884E−02 1.56140E+00 2.90525E−01 5.22549E−01 4.57284E−01

f20 1.30976E+00 4.53821E+01 2.69242E+01 2.45399E+01 9.82172E+00

f21 1.00000E+02 2.04138E+02 1.00000E+02 1.02042E+02 1.44386E+01

f22 0.00000E+00 1.01678E+02 1.15631E+01 4.87450E+01 4.90438E+01

f23 3.43302E−08 3.20754E+02 3.09754E+02 3.03630E+02 4.32143E+01

f24 1.98982E−07 3.31138E+02 1.00000E+02 1.11616E+02 5.65212E+01

f25 3.97743E+02 4.43546E+02 3.98009E+02 3.99730E+02 8.83947E+00

f26 3.00000E+02 3.00000E+02 3.00000E+02 3.00000E+02 0.00000E+00

f27 3.88861E+02 3.97791E+02 3.93436E+02 3.92839E+02 1.83721E+00

f28 3.00000E+02 3.00000E+02 3.00000E+02 3.00000E+02 0.00000E+00

f29 2.31919E+02 2.87909E+02 2.57749E+02 2.57882E+02 9.95923E+00

f30 3.94649E+02 4.08051E+02 3.95237E+02 3.98513E+02 5.55498E+00
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an adaptive algorithm based on differential evolution. The comparison based on 51
independent runs by each algorithm is presented in Table 3. As we can see, ECA,
based on the 95%-confidence Wilcoxon rank-sum test, was able to outperform jSO
in five test functions; it reached similar results in seven test problems, and finally

Table 3 Comparison of results between ECA, jSO, and SQP in D = 10 CEC 2017 test problems.
Wilcoxon rank-sum test (α = 0.05) was computed. “+” means that ECA outperformed jSO/SQP
in the function in the corresponding row, “−” means that jSO/SQP outperformed ECA, and “≈”
means that no significant difference was observed between algorithms. Note that SQP algorithm
was outperformed by ECA in 29 of 30 functions

f ECA jSO SQP

f1 0.00000E+00 ≈ 0.00000E+00 3.220300E−04 +
f2 0.00000E+00 ≈ 0.00000E+00 6.065700E+20 +
f3 0.00000E+00 ≈ 0.00000E+00 0.000000E+00 ≈
f4 0.00000E+00 ≈ 0.00000E+00 6.253000E−01 +
f5 7.93134E+00 − 1.67777E+00 2.685479E+02 +
f6 7.68970E−05 − 0.00000E+00 9.300540E+01 +
f7 1.79819E+01 − 1.20817E+01 5.279684E+02 +
f8 5.20411E+00 − 1.91188E+00 1.641353E+02 +
f9 0.00000E+00 ≈ 0.00000E+00 4.765000E+03 +
f10 7.15419E+02 − 3.83851E+01 1.582000E+03 +
f11 1.40699E+00 − 0.00000E+00 8.694410E+01 +
f12 7.23057E+01 − 3.55067E−01 5.889026E+02 +
f13 3.57464E+00 ≈ 2.68638E+00 2.617198E+02 +
f14 1.62895E+00 − 1.36563E−01 1.054084E+02 +
f15 1.03424E+00 − 3.00324E−01 9.494020E+01 +
f16 3.42342E+00 − 5.49544E−01 6.348346E+02 +
f17 3.65033E+01 − 5.25569E−01 8.089248E+02 +
f18 5.91709E−01 − 2.17729E−01 1.050214E+02 +
f19 5.22549E−01 − 7.72037E−03 8.497336E+02 +
f20 2.45399E+01 − 3.36657E−01 5.496386E+02 +
f21 1.02042E+02 + 1.42465E+02 3.480549E+02 +
f22 4.87450E+01 + 1.00000E+02 1.470100E+03 +
f23 3.03630E+02 − 3.01261E+02 6.704390E+02 +
f24 1.11616E+02 + 2.96919E+02 4.196612E+02 +
f25 3.99730E+02 + 4.12195E+02 4.360669E+02 +
f26 3.00000E+02 ≈ 3.00000E+02 1.591800E+03 +
f27 3.92839E+02 − 3.89468E+02 4.350638E+02 +
f28 3.00000E+02 + 3.40596E+02 4.037759E+02 +
f29 2.57882E+02 − 2.34365E+02 2.005400E+03 +
f30 3.98513E+02 − 3.94521E+02 3.957100E+08 +
Mean 116.9022 99.03207 2.021900E+19
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Fig. 3 Convergence graphs at the run located in the median of 51 independent runs. Log scale is
used for visualization purposes

ECA was outperformed by jSO in 18 functions. ECA was then competitive in 12 test
problems. Moreover, ECA is more simple to implement than jSO and requires less
mechanisms to operate. Note that ECA outperformed SQP most of the time.

Figure 3 shows ECA convergence graphs. Those plots show that ECA is able to
converge fast in most cases, which can be suitable for computationally expensive
real-world optimization problems.

4 Conclusions

A new metaheuristic optimization algorithm, denoted as evolutionary centers algo-
rithm, inspired by the center of mass of a system of particles was proposed. The
results showed the capability of ECA to consistently reach the vicinity of the global
optima in different types of search spaces. ECA also provided a competitive, but still
not better, performance against the winner of the CEC 2017 competition on real-
parameter single-objective optimization. ECA is a simple algorithm which requires
the fine-tuning of just two parameters, besides the population size.

5 Further Work

Implementing a self-adaptive technique for the ECA parameters and solving con-
strained optimization problems are part of the future work derived from this current
research.
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Adaptive Artificial Physics Optimization
Using Proportional Derivative
Controllers

Liping Xie, Jianchao Zeng, Qiongqiong Yang and Richard A. Formato

Abstract APO (Artificial Physics Optimization) is a physicomimetics-inspired
population-based global search and optimization heuristic that can be modeled as
a second-order dynamical system. A central concept of physicomimetics is that the
tools and techniques of modern physics and engineering may be applied directly
to optimization algorithms such as APO. The extended algorithms described in this
paper are a realization of this concept. Using the state-space Z-transform, APO’s
performance is improved by introducing backward and forward PDCs (Proportional
Derivative Controllers). AlgorithmAPO-PD1 employs a backward PDC architecture
that allows each particle to predict its location in the optimization landscape based on
its then current state of motion. An error signal computed from the distance between
the particle’s predicted position and the swarm-weighted position is used to adjust
the particle’s velocity through the decision space (DS) with the result that APO-PD1
is measurably better than APO. APO-PD2 further improves APO by utilizing the
same error signal in a forward PDC architecture in which both the particle’s current
state of motion and its trajectory history are used to predict its future location. This
modification improves performance even more by allowing the swarm’s particles
to change trajectories more quickly. Numerical experiments on a suite of widely
employed high-dimensionality benchmarks show that APO-PD2 outperforms both
APO-PD1 and APO.
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1 Introduction

Because analytical solutions either are not possible or require excessive computer run
time, many difficult global search and optimization problems (GSO) are addressed
using heuristic algorithms. These algorithms usually are proffered without a firm
mathematical basis, at least initially, and fall into two general categories, evolutionary
algorithms (EA) and swarm intelligence (SI) algorithms. They are widely used for
difficult “real world” problems in a wide range of disciplines, typically engineering,
science, medicine, and economics, and they provide excellent results.Most heuristics
are based on natural phenomena that often but not always are drawn from biology. SI
and EA algorithms mimic some natural process to create an intelligent and efficient
search strategy without necessarily knowing anything about the topology of a fitness
(objective) function defined on the Decision Space (DS). The topology is referred to
as the problem’s “landscape”.

Anexample of awell-established andwidely usedbiology-basedEA is theGenetic
Algorithm (GA) [1]. It comprises several “operators” that simulate the Darwinian
strategy of “survival of the fittest” in the evolution of living organisms. Operations
of inheritance, selection, crossover, and mutation, all of which occur in Nature, are
applied in a heuristic algorithm that “evolves” a solution to the GSO problem. By
contrast, SI algorithms analogize the collective behavior of a group of animals or
insects, typical examples being schooling fish, flocking birds, or swarming bees [2,
3]. A well-established and widely used heuristic is Particle Swarm Optimization
(PSO) [4, 5], which was the first SI algorithm used in GSO. It mimics the swarm-
ing behavior of birds searching for food. Many other heuristics are biology-based
and extend even to mimicking the behavior of individual cells, as, for example, do
Artificial Immune System (AIS) and Clonal Selection Algorithm (CSA) [6, 7]. AIS
simulates the processes involved in mammalian immunology, while CSA mimics
clonal selection in the body’s immune response to “non-self” cells invading a living
organism.

While biology-based algorithms are quite popular and effective, recent years have
seen the development of a new class of heuristics that analogize physical laws. These
algorithms are inspired by the lawsof physics drawn typically from thefields of classi-
cal and quantummechanics, electricity andmagnetism, and thermodynamics. Exam-
ples include Simulated Annealing (SA) [8], Central Force Optimization (CFO) [9],
Artificial Physics Optimization (APO) [10], Gravitational Search Algorithm (GSA)
[11], Electromagnetism-like algorithm (EM) [12, 13], Quantum-Inspired Genetic
Algorithm (QGA) [14], Quantum-Inspired Particle Swarm Optimization (QPSO)
[15], and Big Bang-Big Crunch (BB-BC) [16]. SA, one of the earliest physics-based
algorithms, simulates the statistical mechanics of thermal equilibrium. The “Q” algo-
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rithms QGA and QPSO invoke quantum physics in their analogies to Nature, while
BB-BC simulates the grand-scale creation and destruction of the physical Universe.
On a more macro level, EM uses Coulomb’s Law of electric force between static
charges to find GSO solutions.

Another field of physics that has become popular in developing new heuristics is
gravitational kinematics, the study of the motion of masses in a gravitational field.
Examples include APO, CFO, and GSA which invoke modified forms of Newton’s
Universal Law of Gravitation. These algorithms create a group or swarm of “probes,”
“particles”, or “individuals”, each of which has an associated “mass,” that move
through the GSO problem’s landscape on paths governed by the force of gravity as
defined on the problem’s metaphorical DS. For example, CFO’s force law resem-
bles Newton’s. Its gravitational force is proportional to the product of two particles’
masses divided by the separation distance raised to the second power (but the algo-
rithm designer is free to change that exponent). An inverse proportionality is used
in GSA, while direct proportionality is invoked in APO. Of course, the algorithm
designer is free to modify these force laws in any desired manner because the DS is
metaphorical in nature. For example, while the CFO and GSA force laws create only
an attractive gravitational force, the APO force can be either attractive or repulsive.
In the real Universe, of course, gravity is attractive and mass always positive definite.
These algorithms also differ in another important respect. CFO is inherently deter-
ministic, but is easily randomized, whereas GSA and APO are inherently stochastic
and cannot easily be made deterministic.

APO was motivated by two considerations: (i) how well Physicomimetics or
“Artificial Physics” (AP) [17] performed in controlling the behavior of multi-robot
systems and (ii) the growing popularity and effectiveness of other physics-based
algorithms. In the AP environment (“AP space”), each robot senses various environ-
mental parameters, for example, other individuals’ velocity and mass, and responds
by moving through space along trajectories governed by algorithmically created
“virtual” forces. The philosophy underlying AP is that any metaphorical system for-
mulated using the laws of physics can be analyzed and controlled using all the tools
and approaches common in state-of-the-art engineering and physics, whatever their
nature, empirical or theoretical. The work described in this paper is an example; it
uses a linear system theory to analyze APO.

AP’s robots are considered to be physical “particles” or “individuals” that are
characterized by their mass, vector velocity (speed and direction), and momentum,
their motion being determined by a gravitational force law that analogizes the real
force of gravity. Its physicomimetic framework creates the virtual forces that move
individuals through DS searching for the objective function’s extrema, a process that
is analogous to real masses moving through our physical Universe. The general AP
force law has the same functional form as Newton’s and is defined as

F � G
mim j

r p
. (1)
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The force between particles i and j with masses mi and mj is F (magnitude), r
is their separation distance, and the force is bounded from above as F < Fmax.
Exponent p is a user-defined parameter, usually in the range [−5, 5]. While its value
is 2 in our Universe, in AP space the user is free to assign an entirely different force
variation (in APO, for example, p � −1 so that the force actually is proportional
to r instead of varying inversely to some power). In most cases the “gravitational
constant” G is set at initialization, but, of course, its value is determined by the
algorithm designer and in some implementations it is variable. The physicomimetics
AP framework has been used successfully to control distributed robot swarms and
to perform a variety of tasks such as robot formation [18], obstacle avoidance [19],
and coverage [20, 21]. AP also is effective in GSO as demonstrated by APO [22].

APO solves GSO problems, and its structure resembles that of many other GSO
algorithms. Like many physics-based heuristics, each feasible GSO solution in APO
is ametaphorical “particle” or “individual” characterized by the physical attributes of
mass and motion (vector velocity and position in DS). A random sample of feasible
solutions comprises APO’s initial population or “swarm.” The “mass” of a particle
in APO-space is a user-defined function of the value of the objective function (“fit-
ness”) being optimized, not necessarily the fitness itself. APO’s virtual force law
preferentially drives individuals toward other particles with larger masses with the
result that the swarm generallymigrates toward regions in DS, where the fitnesses are
better. This process constitutesAPO’s searchmechanism through theGSOproblem’s
landscape.

There are two important user-defined properties in a metaphorical AP space,
namely (i) the gravitational force law, and (ii) the definition of “mass,” both of which
are key elements in APO’s performance. The balance between “exploitation” and
“exploration,” that is, local versus global search, is determined by how well the user-
defined force law drives particles to efficiently searchDS. Specifying different values
in APO for exponent p in Eq. (1) results in quite different search mechanisms.

The definition of “mass” in APO-space is another critical factor in the algorithm’s
performance. The virtual forces created in APO tend to move individuals toward
others with larger mass (better fitness) and away from those with less mass (worse
fitness). If, for example, APO is used to solve a GSOmaximization problem its user-
defined particle “mass” is some mathematical function whose value increases with
increasing objective function value (fitness), whereas just the opposite occurs in a
minimization problem, that is, APO’s particle mass then increases with decreasing
fitness. In both cases, the use of a linear force law increases the gravitational force
of attraction proportionately with the product of the masses as shown in Eq. (1).

Of course, the algorithmdesigner can choose anydesired function to define “mass”
in APO-space, and some will be better than others for certain GSO problems or per-
haps even for classes of problems, for example, unimodal versus multimodal, low
versus high dimensionality, and so on. Published work provides some guidance by
suggesting basic requirements and by proposing specific algorithm design method-
ologies [23, 24]. Often, the curvilinear nature of the proposed mass functions is used
to group candidate functions into various categories, representative examples being
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linear, convex, or concave. Numerical experiments with APO show that concave
functions generally outperform the other types.

APO’s gravitational force may be attractive or repulsive which uniquely, and
significantly, distinguishes it from other gravitational algorithms. Each particle in
the swarm exerts an attractive force on all other particles with less mass (lower
fitness) while repelling any particle whose mass is greater. The “best” individual
(particle with the greatest mass in the swarm) attracts all others, but itself is neither
attracted nor repelled by the others. Compared to other force laws, APO’s linear
attractive–repulsive law results in more efficient searches in the regions of DS with
better fitnesses.

The unique attractive–repulsive force law is illustrated in Fig. 1, where it is applied
to three particles in a two-dimensional (2-D) DS. The individuals labelled i, j, and l,
respectively, have objective function values f (Xi ), f (X j ), f (Xl) with correspond-
ing massesmi ,m j ,ml . When APO performs minimization, fitnesses that are related
as f (Xl ) < f (Xi ) < f (X j ) creates masses whose relationship is asml > mi > m j .
The larger circles in Fig. 1 correspond to greater mass, that is, “bigger” individuals
that produce greater attraction. APO’s attractive–repulsive force law results in indi-
vidual i being attracted by individual l but repelled by individual j, thus exerting
both an attractive force Fil and a repulsive force Fi j on individual i. In metaphorical
APO-space, as in the real Universe, the motion of particle i is determined by the total
applied force, Fi , which is the vector sum of forces Fil and Fi j . Fi is updated step
by step throughout the APO run, and it determines particle i’s velocity at each step,
hence its trajectory through DS.

APO has been effectively applied to many GSO problems, among them multi-
objective optimization [25], constrained optimization [26, 27], and swarm robot
search [28, 29]. But, like most if not all other EAs, APO can exhibit premature con-
vergence under certain circumstances, in particular on complex high-dimensionality
problems. However, techniques are available to address this behavior. For example,
the earliest versions of APO retained only the best particle’s then current position
in DS, thereby ignoring its search history even though that information likely would
be useful in improving the algorithm’s exploration. The algorithm consequently was
modified to include fitness history in an extended version, EAPO [30], which has

Fig. 1 Typical 2D APO decision space
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been proven to converge using linear system theory [31]. An improved vector model
of APO is described in [32], and [33] extends it to include a multidimensional search
strategy that improves local exploitation. Yet another extension combines dissipative
structure theory and population diversity to mitigate stagnation in APO’s swarm evo-
lution [34]. Further enhancements include introducing two selection schemes for vmax

(constant and adaptive) that were investigated using a group of high-dimensionality
problems [35]. Simulation results show that adaptive vmax generally yields better
results.

Invoking the philosophy of physicomimetics, APO has been proven to converge
using the theory of linear systems that are widely employed in various engineer-
ing disciplines. APO was modeled as a discrete-time linear system in which each
particle’s position is treated as a stochastic vector. Each possible APO algorithm
was uniquely characterized by a nonnegative 3-tuple of run parameters {mi, w, G},
and its convergence guaranteed when these parameters satisfy explicitly developed
conditions. Parameter selection guidelines also were developed [36]. Of particular
importance is the gravitational constant G because it has a significant impact on
APO’s convergence. Two strategies for specifying G were studied and reported, a
constant value and an adaptive one [37]. A series of numerical experiments with
recognized benchmarks showed that the algorithm with adaptive G outperforms a
constant G implementation. Perhaps most importantly, the work demonstrating con-
vergence shows that APO is a controllable and observable second-order dynamic
system just as one would expect in the physicomimetics framework.

This paper recasts the APO architecture using another technique in the linear
system toolbox, theZ-transform.Backward and forward proportional derivative (PD)
controllers are introduced that improve an APO particle’s ability to utilize historical
data to anticipate and respondquickly to status changes. These characteristics result in
improvingAPO’s exploration, that is, its global search capability. Section 2 describes
the second-order dynamical system framework forAPO.Section3describes a version
of APO that includes a backward PD controller (algorithm APO-PD1) and analyzes
its convergence properties. Section 4 describes a parallel development of APO with
a forward PD controller (algorithmAPO-PD2). Section 5 compares the performance
of these three algorithms using several recognized benchmark functions, and Sect. 6
presents conclusions and suggestions for future work.

2 The APO Algorithm

The APO algorithm addresses the GSO problem of locating the global minima of an
objective function f (x) defined on a bounded hyperspace; that is, determine

min{ f (X ) : X ∈ � ⊂ Rn}, f : � ⊂ Rn → R (2)
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wherein � :� {X |xmin
k ≤ xk ≤ xmax

k , k � 1, . . . , n} is the (bounded) region of
feasible (allowable) solutions (DS), in which

n problem dimensionality.
xmax
k upper bound for each DS dimension.

xmin
k lower bound for each dimension.
f (X ) pointer to the function being minimized

The problem’s “landscape” (topology over DS) is defined as L =Ω
⋃

f (X), X ε Ω .

2.1 The APO Framework

APO comprises three main procedures: (a) Initialization, (b) Force Calculation, and
(c)Motionwhose algorithmic framework (pseudocode) appears in Fig. 2. Throughout
the remainder of this paper, the following terms are used interchangeably: “step”,
“time step”, “iteration”, and “generation”, “individual”, and “particle”, and “swarm”
and “population.”

Initialization creates a randomly selected swarm of particles in the n-dimensional
DS (upper caseNpop is the number of individuals). The individuals’ velocities usually
are initialized to zero (of course, nonzero values also can be used at the algorithm
designer’s discretion). The function pointer f (X ) is used to calculate each individ-
ual’s fitness (objective function value). The location in DS (position vector) of the
particle with the greatest fitness at step t is denoted Xbest (global best position at that
iteration).

Fig. 2 APO algorithmic
framework
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InForce Calculation, the APO force law is used to calculate the total gravitational
force exerted on each particle based on the “masses” of all particles and the distances
between them. The APO force law extends the physicomimetics force law of Eq. (1).
Of course, before applying the force law “mass” in APO spacemust be defined.Mass
is a user-defined function of the value of the objective function to be optimized. In
minimization mi � g( f (Xi )), where mi ∈ (0, 1] and the function g is greater than
or equal to zero, bounded, and monotonically decreasing. The mass is normalized
to the interval (0,1] as a matter of convenience. There exists a plethora of functions
meeting these requirements, some undoubtedly better than others for specific GSO
problems or perhaps classes of problems. The essential requirement is that the best
individual’s mass has the largest value, that is, mbest � 1, and all other particles
with worse (lower) fitnesses have smaller mass values. The followingmass functions
provide typical examples: g1(x) � ex , g2(x) � arctan(x), g3(x) � tanh(x) � ex−e−x

ex+e−x ,
x ∈ [−∞,+∞] in which gk(x) ∈ [a, b] is mapped onto the interval (0, 1]. Of
course,which specificmass function is chosen does depend onwhethermaximization
or minimization is the goal. It must be monotonically increasing or decreasing,
respectively, for maximization or minimization thereby guaranteeing greater mass
with better fitness and consequently a greater attractive force.

Equation (3) provides an example of a suitable minimization mass function that
was successfully used in previous APO implementations and which is adopted in
this formulation:

mi � e
f (Xbest)− f (Xi )

f (Xworst)− f (Xbest) , ∀i (3)

in which f (Xbest) is the value of the objective function at the position of individual
“best”, where best � arg{min f (Xi ), i ∈ S }, and f (Xworst) is the objective func-
tion’s value at the position of individual “worst”, where worst � arg{max f (Xi ), i ∈
S }, and S is the set of particle indices {1, …, Npop}. Each individual’s mass varies
from step by step as APO evolves, and the order of the differences in Eq. (3) insures
that the exponent is in the interval [−1, 0] as desired.

APO’s next step is computing component by component the vector forces exerted
on each individual by all other individuals using APO’s unique proportional force
law. Hence,

Fi j,k �
{
Gmim j (x j,k − xi,k) if f (X j ) < f (Xi )

−Gmim j (x j,k − xi,k) if f (X j ) ≥ f (Xi )
, ∀i 
� j and i 
� best (4)

where Fi j,k is the kth component of force exerted on an individual i by individual j,
and xi,k and x j,k are the kth-dimension coordinates of particles i and j, respectively.
If f (X j ) < f (Xi ) Eq. (4) shows that X j attracts Xi because force Fi j,k is attractive.
However, if f (X j ) ≥ f (Xi ), then X j repels Xi because force Fi j,k is repulsive. Since
the forces are vector quantities, the kth component of the total force Fi,k exerted on
an individual i by all other particles is computed by summing over all other particles,
that is,
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Fi,k �
Npop∑

j�1

Fi j,k ∀i 
� best (5)

The total force on each particle is the vector sum of all the forces created by every
other particle. Note that under Eq. (4)’s force law each particle neither attracts nor
repels itself (the total self -exerted force is zero). Equation (5), therefore, can include
particle i’s self-exerted force because the addend is zero. Note, too, that particle
best is excluded because it is neither attracted nor repelled by other individuals (its
position is fixed). Excluding best is equivalent to setting the total force exerted on it
to zero.

APO’s final procedure is Motion, which computes the movement of the swarm’s
particles throughDS. The total force is used to calculate each individual’s “velocity”,
which is used to update the particle’s position. This calculation is made for each
particle in the swarm. Equations (6) and (7), respectively, are used to update the
velocity and coordinates of the individual i at the next iteration at a time t + 1.

vi,k(t + 1) � wvi,k(t) + α
Fi,k
mi

, ∀i 
� best (6)

xi,k(t + 1) � xi,k(t) + vi,k(t + 1), ∀i 
� best (7)

where vi,k(t) and xi,k(t), respectively, are the kth components of particle i’s velocity
and coordinates at the previous iteration (generation) t. The quantity α is a random
variable (RV) uniformly distributed on [0,1]. The inertia weight 0 ≤ w < 1 is a user-
specified parameter that determines how easily the previous velocity can be changed.
Larger values result in greater velocity changes. Each particle’s motion throughDS is
restricted so that it remains in the domain of feasible solutions xi,k ∈ [xmin

k , xmax
k ].

Its velocity is similarly constrained vi,k ∈ [vmin
k , vmax

k ]. Importantly, under the
scheme in Eqs. (6) and (7), the best individual’s position is fixed. It does not move
away from its current position nor does its velocity change.

Once the positions of all particles have been updated as described, the corre-
sponding objective function fitnesses are updated at each individual’s new location.
A new best individual is determined by the new fitness values with its position vector
replacing Xbest from the previous generation APO’s processes of Force Calculation
and Motion are repeated until some termination criterion is met, a variety of which
are typically used. Commonly employed criteria are a specified maximum number
of iterations or some number of successive iterations with no substantial change in
particle best’s position or its corresponding mass.

2.2 Modeling APO as a Second-Order Dynamical System

APO can be analyzed by considering it to be a second-order dynamical system. In
linear system theory, a second-order system is described by the following differential
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equation: d2 y
dt2 +2ςωn

dy
dt +ω2

n y � kdcω2
nu(t) in which kdcω

2
nu(t) is the forcing function,

kdc the DC gain, ωn the natural frequency, ς the damping ratio, and t the contin-
uous time variable. The time domain system may be Laplace transformed into the
frequency domain as follows: Y (s) � G(s)X (s), where Y (s) and X (s), respectively,
are the system output and input, and L{·} is the Laplace transform with (complex)

frequency variable s. The corresponding transfer function is G(s) � kdcω2
n

s2+2ςωns+ω2
n
. For

discrete-time systems, the Laplace transform is replaced by the Z− transform. The
system’s behavior as t → ∞ may be obtained by applying the Final Value Theo-
rem (FVT). If lim

t→∞ f (t) exists then the system’s time domain behavior as t → ∞
may be computed in the frequency domain as lim

t→∞ f (t) � lim
s→0

(s · L{ f (t)}) with an

analogous result for the discrete-time Z− transform case.
The first step in applying linear system theory to APO is rewriting the velocity

update Eq. (6) by substituting Eq. (5) to obtain

vi,k(t + 1) � wvi,k(t) + α

Npop∑

j�1

Fi j,k/mi , ∀i (8)

Define Ni � { j | f (X j ) ≤ f (Xi ),∀ j ∈ S}, in which, as before, S is the set of
all individuals, Ni is the subset of all particles with fitnesses better than individual
i’s fitness, and Mi � { j | f (X j ) > f (Xi ),∀ j ∈ S}, where Mi is the subset of all
particles whose fitnesses are worse than individual i’s. It is evident that S � Ni ∪Mi .

With these definitions, APO’s velocity update Eq. (8) becomes

Vi,k(t + 1) � wVi,k(t) +
Npop∑

j�1
j 
�i

α j Fi j,k/mi

� wVi,k(t) −
∑

j∈Ni

α j Gm j (Xi,k(t) − X j,k(t))

+
∑

j∈Mi

α jGm j (Xi,k(t) − X j,k(t))

� wVi,k(t) + (
∑

j∈Mi

α j Gm j −
∑

j∈Ni

α j Gm j )Xi,k(t)

+
∑

j∈Ni

α j Gm j X j,k(t) −
∑

j∈Mi

α j Gm j X j,k(t) (9)

And, with the following definitions

GNi �
∑

j∈Ni

α j Gm j (10)

GMi �
∑

j∈Mi

α j Gm j (11)
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GNMi � GNi − GMi (12)

Qi,k � 1

GNMi

(
∑

j∈Ni

α j Gm j X j,k(t) −
∑

j∈Mi

α jGm j X j,k(t)) (13)

Eq. (9) simplifies to

Vi,k(t + 1) � wVi,k(t) + GNMi (Qi,k − Xi,k) (14)

It is apparent from Eq. (14) that Qi,k represents the swarm-weighted position
relative to particle i which can be used to compute the total force exerted on particle
i by all other individuals in the swarm.

Substituting Eq. (14) into (7) yields the following relation for the position vector

Xi,k(t + 1) � (w + 1)Xi,k(t) − wXi,k(t − 1) + GNMi (Qi,k(t) − Xi,k(t)) (15)

Z-transforming Eq. (15) yields

Xi,k(z) � GNMi z

z2 − (w + 1)z + w
(Qi,k(z) − Xi,k(z)) (16)

Defining

H (z) � GNMi z

z2 − (w + 1)z + w
(17)

Eq. (16) simplifies to

Xi,k(z) � H (z)(Qi,k(z) − Xi,k(z)) (18)

This last step completes APO’s characterization as a linear system, because
Eq. (18) defines the second-order linear dynamical system shown diagrammatically
in Fig. 3.

APO can be thought of as a second-order dynamical system with time-varying
input Qi,k and output Xi,k(z). This system has a unique equilibrium point that exists
only for particle best. It occurs when X j∈Mi

j,k
� X j∈Ni

j,k
= Qi,k . As the swarm con-

verges all particles except the best gradually approach Qi,k , but equilibrium cannot
be reached until an individual actually becomes best. Convergence alone, however,
does not assure discovering a global optimum because it is possible for the swarm

, ( )i kQ z

−
+

, ( )i kX z

Fig. 3 APO system architecture
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to converge prematurely on a suboptimal solution. Such local trapping is common
across all optimization algorithms, and APO is no exception. It, therefore, is advan-
tageous if particle best can influence other individuals to explore different solutions
by having them move toward best while exploring for still better solutions along the
way. If the probability of locating the global best position as its equilibrium point
is high, then APO should exhibit good global convergence while avoiding prema-
ture convergence. This objective is achieved by introducing into APO a proportional
derivative controller (PDC), because a PDC is capable of tracking and responding
quickly to changes in the system’s inputs.

3 APO with Backward PD Controller

In this section, a backward PDC is introduced into APO, and the resulting algorithm
is named APO-PD1.

3.1 APO-PD1 Model

APO-PD1’s linear system architecture appears in Fig. 4. The controller C(z) creates
an error signal that is used to alter the system’s behavior so as to minimize the error.
In this implementation, the error is the difference between a particle’s predicted
position and the swarm-weighted position which is used to modify the particle’s
velocity through the optimization problem’s landscape.

The PDC is C(z) defined by the following Z-transform whose “controller coeffi-
cient” or “control gain” is Kp and whose “derivative gain” is TD:

C(z) � KP

(

1 + TD
z − 1

z

)

(19)

This system’s output, Xi,k(z), is given by

Xi,k(z) � [Qi,k(z) − Xi,k(z) · C(z)] · H (z) (20)

which can be written as

H(z)
, ( )i kQ z , ( )i kX z

−
+

C(z)

Fig. 4 APO-PD1 system architecture
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Xi,k(z) � H (z)

1 + C(z) · H (z)
Qi,k(z) (21)

Substituting Eq. (19) into (21) yields

Xi,k(z) � GNMi z

z2 − (w + 1)z + w + GNMi K p(z + TDz − TD)
Qi,k(z)

� GNMi z

z2 + [GNMi K p(1 + TD) − (w + 1)]z + w − GNMi K pTD
Qi,k(z) (22)

APO’s time-domain behavior is obtained by inverting Z-transformed Eq. (22),
which results in the following expression for the swarm particle’s positions:

Xi,k(t + 1) � (w + 1)Xi,k(t) − wXi,k(t − 1) + GNMi [Qi,k(t)

− Kp(1 + TD)Xi,k(t) + KpTDXi,k(t − 1)] (23)

The associated velocity update equation may be written as follows by noting that
Vi,k(t + 1) � Xi,k(t + 1) − Xi,k(t) and Vi,k(t) � Xi,k(t) − Xi,k(t − 1):

Vi,k(t + 1)

� Xi,k(t + 1) − Xi,k(t)

� (w + 1)Xi,k(t) − Xi,k(t) − wXi,k(t − 1) + GNMi [Qi,k(t)

− KpXi,k(t) − KpTD (Xi,k(t) − Xi,k(t − 1)]

� w(Xi,k(t) − Xi,k(t − 1)) + GNMi [Qi,k(t) − KpXi,k(t) − KpTD�Xi,k(t)]

� wVi,k(t) + GNMi [Qi,k(t) − Kp(Xi,k(t) + TD�Xi,k(t))] (24)

or, equivalently,

Vi,k(t + 1) � wVi,k(t) + GNMi [Qi,k(t) − Kp(Xi,k(t) + TDVi,k(t))] (25)

Equation (25) is the final form of the velocity update equation for algorithm
APO-PD1.

The term Xi,k(t)+ TDVi,k(t) represents each particle’s “predicted” position based
on its trajectory history, and is defined as the new quantity X

′
i,k(t) � Xi,k(t) +

TDVi,k(t). The derivative gain TD ∈ [0, 1] can be thought of as a parameter that
controls this prediction step. The backward PDC allows each individual in the swarm
to “predict” its future position based on its previous history. The particle then adjusts
its velocity through DS based on an “error signal” that is computed as the distance
between the predicted position and the swarm-weighted position. Numerical testing
shows that this approach improves APO’s performance.
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3.2 Convergence Analysis of APO-PD1

Convergence of the APO-PD1 algorithm is analyzed in this section. The equation
describing the system architecture of Fig. 4 may be written as

Xi,k(z)

Qi,k(z)
� H (z)

1 + C(z) · H (z)

� GNMi z

z2 − (w + 1 − KPGNMi − KPGNMi TD)z + w − KPGNMi TD
(26)

where

Xi,k(z)

� GNMi z

z2 − (w + 1 − KPGNMi − KPGNMi TD)z + w − KPGNMi TD
Qi,k(z) (27)

Without loss of generality, and as a matter of convenience, the controller coeffi-
cient may be set equal to unity (KP � 1 hereafter).

Applying the FVT discussed in Sect. 2.2,

lim
t→∞ xi,k (t) � lim

z→1
(z − 1)xi,k (z)

� lim
z→1

(z − 1)

[
GNMi z

z2 − (w + 1 − KPGNMi − KPGNMi TD)z + w − KPGNMi TD
· z

z − 1
· Qi,k

]

� Qi,k (28)

which is equivalent to

lim
t→∞ xi,k(t) � Qi,k� 1

GNMi

⎛

⎝
∑

j∈Ni

α j Gm j X j,k(t) −
∑

j∈Mi

α j Gm j X j,k(t)

⎞

⎠ (29)

Equation (29) may be written as

GNMi lim
t→∞ xi,k (t) − (

∑

j∈Ni

α j Gm j X j,k (t) −
∑

j∈Mi

α j Gm j X j,k (t)) � 0

⇒ (
∑

j∈Ni

α j Gm j −
∑

j∈Mi

α j Gm j ) lim
t→∞ xi,k (t) − (

∑

j∈Ni

α j Gm j X j,k (t) −
∑

j∈Mi

α j Gm j X j,k (t)) � 0

⇒
∑

j∈Ni

α j Gm j ( lim
t→∞ xi,k (t) − X j,k (t)) −

∑

j∈Mi

α j Gm j ( lim
t→∞ xi,k (t) − X j,k (t)) � 0 (30)

and because
∑

j∈Ni
α jGm j and

∑
j∈Mi

α j Gm j in Eq. (30) are nonzero RV’s, algo-
rithm APO-PD1 converges to Xbest(Xbest ∈ Ni ) if and only if lim

t→∞ xi,k(t) � X j∈Ni
j,k

�
X j∈Mi

j,k
. This analysis provides the precise conditions that guaranty algorithm APO-

PD1’s convergence. It realizes the physicomimetics concept that the tools and tech-
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niques of modern physics and engineering, in this case, linear system theory, can be
effectively applied to GSO problems.

3.3 APO-PD1 Procedure

Pseudocode for both algorithms APO-PD1 and APO-PD2 appears in Fig. 5, because
they differ only in the position/velocity update in Step (3) as discussed below.

4 APO with Forward PD Controller

APO is extended in this section by introducing a forward PD controller. The new
implementation is algorithm APO-PD2.

4.1 APO-PD2 Model

The APO/PDC architecture is shown diagrammatically in Fig. 6. In this case, the
controller C(z) creates a different error signal that includes the particle’s and the
swarm’s trajectory history which, as before, is used to modify the particle’s velocity
through the optimization problem’s landscape.

This system’s output Xi,k(z) is

Xi,k(z) � C(z)H (z)[Qi,k(z) − Xi,k(z)] (31)

(1): Initialize each coordinate , min max[ , ]i kx x x∈ and velocities min max
, [ , ]i k k kv v v∈  with random numbers.

(1.1): calculate the fitness for each individual and select the best and worst, bestX and worstX . 
(2): Compute the total force exerted on each individual.

(2.1): calculate the mass of each individual at time t, Eq. (3).
(2.2): calculate NMi

G , Eq. (12).

(2.3): calculate ,i kQ , Eq. (13).
(3): Update each particle's velocity and position vector using Eqs. (7) and either Eq. (25) [APO-PD1] or Eq. (35) [APO-PD2].
(4): Compute each individual's fitness and update the global best and worst positions, bestX and worstX .
(5): If termination criteria are met, output the best solution; otherwise, go to (2).

Fig. 5 APO-PD1/APO-PD2 pseudocode

C(z)

−
+

, ( )i kQ z
, ( )i kX zH(z)

Fig. 6 APO-PD2 system architecture
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Substituting Eqs. (17) and (19) into (31) yields

Xi,k(z) � KP(1 + TD
z − 1

z
)

GNMi z

z2 − (w + 1)z + w
[Qi,k(z) − Xi,k(z)] (32)

Following the same procedure used for APO-PD1, Z-transforming Eq. (32) and
inverting the result yields the following time domain expression for the swarm’s
particle positions

Xi,k(t + 1) � (w + 1)Xi,k(t) − wXi,k(t − 1)

+ GNMi KP[(1 + TD)(Qi,k(t) − Xi,k(t)) − TD(Qi,k(t − 1) − Xi,k(t − 1))]
(33)

Noting that Vi,k(t + 1) � Xi,k(t + 1) − Xi,k(t), Vi,k(t) � Xi,k(t) − Xi,k(t − 1),
�Qi,k(t) � Qi,k(t)− Qi,k(t − 1), and �Xi,k(t) � Xi,k(t)− Xi,k(t − 1), APO-PD2’s
velocity update equation becomes

Vi,k(t + 1)

� Xi,k(t + 1) − Xi,k(t)

� (w + 1)Xi,k(t) − Xi,k(t) − wXi,k(t − 1)

+ GNMi KP
[
(1 + TD)(Qi,k(t) − Xi,k(t))− TD(Qi,k(t − 1) − Xi,k(t − 1))

]

� w(Xi,k(t) − Xi,k(t − 1)) + GNMi KP[(Qi,k(t) − Xi,k(t))

+ TD(Qi,k(t) − Xi,k(t)) − TD(Qi,k(t − 1) − Xi,k(t − 1))]

� wVi,k(t) + GNMi KP[(Qi,k(t) − Xi,k(t)) + TD(Qi,k(t)

− Qi,k(t − 1)) − TD(Xi,k(t) − Xi,k(t − 1))]

� wVi,k(t) + GNMi KP[(Qi,k(t) − Xi,k(t)) + TD�Qi,k(t) − TD�Xi,k(t)]

� wVi,k(t) + GNMi KP[(Qi,k(t) + TD�Qi,k(t)) − (Xi,k(t) + TD�Xi,k(t))] (34)

which may be simplified to

Vi,k(t + 1) � wVi,k(t) + GNMi KP[(Qi,k(t) + TD�Qi,k(t)) − (Xi,k(t) + TD�Xi,k(t))]
(35)

Without loss of generality, as a matter of convenience, the time step can be set to
unity (�t � 1) with the results �Qi,k(t) � VQi,k (t) · �t � VQi,k (t) and �Xi,k(t) �
Vi,k(t) · �t � Vi,k(t). Equation (35) then becomes

Vi,k(t + 1) � wVi,k(t) + GNMi KP[(Qi,k(t) + TDVQi,k (t)) − (Xi,k(t) + TDVi,k(t))]
(36)

In (36) VQi,k (t) � �Qi,k(t) is swarm Qi,k‘s velocity at time t . The quantity
Qi,k(t)+TDVQi,k (t) is its predicted future position. Following the analysis of Sect. 2.2,
the swarm-weighted predicted position taking into account the swarm’s directional
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history is given by the term Q
′
i,k(t) � Qi,k(t) + TDVQi,k (t). As before, the derivative

gain TD ∈ [0, 1] can be thought of as a user-specified prediction factor that controls
the prediction step.

Taking into account its directional history and total force it experiences, particle i’s
predicted position is given by X

′
i,k(t) � Xi,k(t)+TDVi,k(t), which simplifies Eq. (36)

to

Vi,k(t + 1) � wVi,k(t) + GNMi KP[Q
′
i,k(t) − X

′
i,k(t)] (37)

Because Q
′
i,k(t) includes a history increment in Qi,k , Eq. (37) implies that swarm

Q
′
i,k(t)’s velocity will be greater than Qi,k’s in converging on individual best. Stated

differently, the APO-PD2 architecture increases the probability of converging on the
global optimum because the problem’s landscape is explored more efficiently.

The forward PDC provides APO’s swarm with more information that can be
used to improve exploration. Each particle predicts its future position based on its
own trajectory history as well as on the swarm-weighted position history. These
data then are used in updating the particle’s velocity. The effect of this procedure
is to discourage quick convergence on the current swarm-weighted position, thus
allowing each individual to adjust its velocity while taking into account its distance
from the swarm-weighted’s predicted position (the error signal introduced above).
This process is rapid and generally improves APO-PD2’s exploration.

4.2 Convergence Analysis of APO-PD2

As was done with APO-PD1, this section develops a proof of convergence for algo-
rithm APO-PD2. It parallels the previous development. APO-PD2’s architecture in
Fig. 3 is described by the following equation:

Xi,k(z)

Qi,k(z)
� C(z) · H (z)

1 + C(z) · H (z)

� KPGNMi (z + TDz − TD)

z2 − (w + 1 − KPGNMi − KPGNMi TD)z + w − KPGNMi TD
(38)

which may be written as

Xi,k(z) � KPGNMi (z + TDz − TD)

z2 − (w + 1 − KPGNMi − KPGNMi TD)z + w − KPGNMi TD
Qi,k(z)

(39)

Again applying FVT (see Sect. 2.2),
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lim
t→∞ xi,k (t) � lim

z→1
(z − 1)xi,k (z)

� lim
z→1

(z − 1)

[
KPGNMi (z + TDz − TD)

z2 − (w + 1 − KPGNMi − KPGNMi TD)z + w − KPGNMi TD
· z

z − 1
· Qi,k

]

� Qi,k (40)

Thus,

lim
t→∞ xi,k(t) � Qi,k� 1

GNMi

(
∑

j∈Ni

α j Gm j X j,k(t) −
∑

j∈Mi

α j Gm j X j,k(t)) (41)

Rewriting

GNMi lim
t→∞ xi,k (t) − (

∑

j∈Ni

α j Gm j X j,k (t) −
∑

j∈Mi

α j Gm j X j,k (t)) � 0

⇒ (
∑

j∈Ni

α j Gm j −
∑

j∈Mi

α j Gm j ) lim
t→∞ xi,k (t) − (

∑

j∈Ni

α j Gm j X j,k (t) −
∑

j∈Mi

α j Gm j X j,k (t)) � 0

⇒
∑

j∈Ni

α j Gm j ( lim
t→∞ xi,k (t) − X j,k (t)) −

∑

j∈Mi

α j Gm j ( lim
t→∞ xi,k (t) − X j,k (t)) � 0 (42)

As in the previous development, because
∑

j∈Ni
α j Gm j and

∑
j∈Mi

α j Gm j in
Eq. (42) are nonzero RV’s, if and only if lim

t→∞ xi,k(t) � X j∈Mi
j,k

� X j∈Ni
j,k

, then

algorithm APO-PD2 converges to Xbest (Xbest ∈ Ni ). QED.

4.3 The Procedure of APO-PD2

Pseudocode for algorithm APO-PD2 is shown in Fig. 5.

5 Numerical Experiments

Five recognized GSO benchmarks were used to compare the performance of algo-
rithms APO-PD1, APO-PD2, and APO (collectively APO*). Three of the test func-
tions are multimodal with many local optima, viz., Ackley and the two Penalized
Functions. Rosenbrock is multimodal but with a few local optima, and likewise
Schwefel Problem 2.26. The Rosenbrock is characterized by a banana-shaped land-
scape surrounding its global optimum and sometimes is referred to as the “Rosen-
brock Banana Function.” Ackley, on the other hand, has a narrow basin containing
its global optimum. Schwefel’s landscape is “multi-funnel,” one whose complexity
is characterized by deep local optima that are distant from the global optimum. The
Schwefel Problem 2.26 is an especially robust benchmark because it is difficult to
locate the global extremum if an algorithm converges prematurely, which may be the
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case if a substantial portion of APO*’s swarm falls into one of the Schwefel’s deep
local optima.

The test functions are defined as follows:

• Ackley

f2(x) � −20 exp(−0.2
√

1
n

∑n
i�1 x

2
i ) − exp( 1n

∑n
i�1 cos(2πxi ) + 20 + e), where

|xi | ≤ 32.0 and f2(x∗) � f2(0, 0, . . . , 0) � 0
• Rosenbrock

f1(x) �
n−1∑

i�1
(100(xi+1 − x2

i
)2 + (xi − 1)2), where |xi | ≤ 30.0 and f1(x∗) �

f1(1, 1, . . . , 1) � 0
• Penalized #1

f3(x) � π
n {10 sin2(πy1) +

∑n−1
i�1 (yi − 1)2[1 + 10 sin2(πyi+1)] +(yn − 1)2} +

∑n−1
i�1 u(xi , 10, 100, 4),

where |xi | ≤ 50.0, u(xi , a, k,m) �

⎧
⎪⎨

⎪⎩

k(xi − a)m, i f xi > a

0, i f − a ≤ xi ≤ a

k(−xi − a)m, i f xi < −a

, yi � 1+ 1
4 (xi +

1), and f3(x∗) � f3(1, 1, . . . , 1) � 0
• Penalized #2

f4(x) � 0.1{sin2(3πx1) +
∑n−1

i�1 (xi − 1)2[1 + sin2(3πxi+1)] +(xn − 1)2[1 +
sin2(2πxn)]} +∑n−1

i�1 u(xi , 5, 100, 4)
where |xi | ≤ 50.0 and f4(x∗) � f4(1, 1, . . . , 1) � 0

• Schwefel Problem 2.26

f5(x) � −
n∑

i�1
(xi sin(

√|xi |)), where |xi | ≤ 500.0 and f5(x∗) �
f5(420.9687, 420.9687, . . . , 420.9687) ≈ −418.9829n

All APO* runs were made with the same empirically determined parameters as
follows:

(1) w � 0.9− t
MAXITER×0.5 (inertiaweight),wherein t is the step (iteration) number

and MAXITER the maximum number of steps that automatically terminates a
run.

(2) in APO the gravitational constant is G � 10 for all test functions.
(3) in APO-PD1 and APO-PD2, the gravitational constant is G � 10 for Rosen-

brock, Penalized #1 and Penalized #2; G � 0.008 for Schwefel Problem 2.26;
and G � 5 for Ackley.

(4) in APO-PD1, Kp � 0.7, TD � 0.1; and in APO-PD2, Kp � 0.1, TD � 0.9.
(5) for 30-dimensional problems, n � 30, the swarm population is set to Npop �

30; for higher dimensionality problems, n � 50, 100, 200, 300, the population
was set to Npop � 100.

(6) velocity threshold vmin
k set to DS’s lower bound.

(7) vmax
k set to DS’s upper bound.

(8) the maximum number of steps for run termination was related to the problem’s
dimensionality as MAXITER � 50n.
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Table 1 Ackley function

Dimension Algorithm Mean STD

30 APO 3.507931e+000 1.116182e+000

APO-PD1 5.887218e−016 0.000000e+000

APO-PD2 5.887218e−016 0.000000e+000

50 APO 1.086667e+000 3.981407e−001

APO-PD1 5.887218e−016 0.000000e+000

APO-PD2 5.887218e−016 0.000000e+000

100 APO 6.143348e−002 2.980632e−002

APO-PD1 5.887218e−016 0.000000e+000

APO-PD2 5.887218e−016 0.000000e+000

200 APO 1.884757e+000 7.572034e−003

APO-PD1 5.887218e−016 0.000000e+000

APO-PD2 5.887218e−016 0.000000e+000

300 APO 2.823220e+000 1.348221e−001

APO-PD1 5.887218e−016 0.000000e+000

APO-PD2 5.887218e−016 0.000000e+000

Thirty separate runs were made for each numerical experiment, and the following
performance data recorded: (i) average best function value (Mean) and (ii) its standard
deviation (STD) over the 30 runs. The average best fitness as a function of iteration
is plotted in Figs. 7, 8, 9, 10, and 11 using the same 20 sample points for each plot.
Performance data for each algorithm are summarized in Tables 1, 2, 3, 4, and 5 in
which the best returned values appear in bold type..

It is apparent from Table 1 that for the Ackley APO’s solutions lie only in the
global optimum’s vicinity, while in contrast both APO-PD1 and APO-PD2 in fact
locate the known global optimum. Their performance cannot be distinguished based
on accuracy or efficiency (measured by the number of function evaluations, FEs).
From the fitness plots in Figs. 7, 8, 9, 10, and 11 it is apparent that APO-PD1 and
APO-PD2 converge at a similar rate.

All APO* variants had trouble with Rosenbrock, each returning a local minimum
at nearly the same position (0, 0, 0, …, 0)n instead of the actual minimum’s location
[fitness of zero at (1, 1, 1,…, 1)n]. APO-PD2 did perform somewhat better than APO
and APO-PD1 for n ≤ 50, while for n ≥ 100 APO-PD1/2’s performance was similar
and better than APO’s.

For the other test functions, all APO* implementations converge on local extrema
in the vicinity of the known global minimum. For n ≤ 50, APO returned a slightly
better solution thanAPO-PD1/2 on Rosenbrock, Schwefel, and both Penalized Func-
tions. However, APO-PD1’s STD was slightly better than APO’s for Penalized #2,
which indicates that APO-PD1 exhibits better stability than APO. By contrast, for
n ≥ 100 APO-PD1’s solutions were of better quality than APO’s. The performance
of APO and APO-PD1, therefore, is mixed. By contrast, the test data show that
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Table 2 Rosenbrock function

Dimension Algorithm Mean STD

30 APO 2.899009e+001 7.045900e−003

APO-PD1 2.899993e+001 7.178198e−005

APO-PD2 2.894036e+001 1.461165e−002

50 APO 4.899675e+001 1.252448e−003

APO-PD1 4.899980e+001 1.955173e−004

APO-PD2 4.893962e+001 1.517006e−002

100 APO 1.002528e+002 8.417579e−001

APO-PD1 9.900000e+001 0.000000e+000

APO-PD2 9.893687e+001 1.478572e−002

200 APO 3.585296e+003 8.376577e+002

APO-PD1 1.989984e+002 5.889333e−004

APO-PD2 1.989351e+002 1.359424e−002

300 APO 6.645564e+004 1.261125e+004

APO-PD1 2.989997e+002 2.978742e−004

APO-PD2 2.989396e+002 1.388029e−002

Table 3 Schwefel problem 2.26

Dimension Algorithm Mean STD

30 APO −6.180069e+003 2.041997e+002

APO-PD1 −6.120724e+003 2.000111e+002

APO-PD2 −6.274354e+003 2.030197e+002

50 APO −5.647666e+003 1.197372e+002

APO-PD1 −8.161097e+003 2.253472e+002

APO-PD2 −8.850338e+003 2.676209e+002

100 APO −8.722049e+003 1.299973e+002

APO-PD1 −1.290723e+004 5.839660e+002

APO-PD2 −1.772176e+004 5.715952e+002

200 APO −1.162446e+004 2.080767e+002

APO-PD1 −2.210786e+004 9.548621e+002

APO-PD2 −3.678811e+004 1.820679e+001

300 APO −1.342185e+004 1.987825e+002

APO-PD1 −3.186174e+004 1.288484e+003

APO-PD2 −5.484869e+004 1.787830e+001
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Table 4 Penalized 1 function

Dimension Algorithm Mean STD

30 APO 1.467692e+000 2.335548e−002

APO-PD1 1.579828e+000 2.873102e−002

APO-PD2 1.430841e+000 3.742797e−002

50 APO 1.353991e+000 1.409452e−002

APO-PD1 1.134589e+007 1.115519e+007

APO-PD2 1.257534e+000 1.841566e−002

100 APO 1.296102e+000 4.272975e−003

APO-PD1 1.283348e+000 1.016297e−002

APO-PD2 1.210165e+000 1.079314e−002

200 APO 1.356963e+000 2.030752e−002

APO-PD1 1.232687e+000 4.236398e−003

APO-PD2 1.194904e+000 4.887244e−003

300 APO 1.600399e+000 6.083825e−002

APO-PD1 1.218252e+000 2.278210e−003

APO-PD2 1.186042e+000 2.894729e−003

Table 5 Penalized 2 function

Dimension Algorithm Mean STD

30 APO 2.900961e+000 5.744124e−003

APO-PD1 2.964067e+000 6.876373e−003

APO-PD2 2.908425e+000 1.121417e−003

50 APO 4.897998e+000 6.254901e−003

APO-PD1 4.964973e+000 7.184687e−003

APO-PD2 4.902154e+000 7.414638e−004

100 APO 9.963455e+000 8.905394e−003

APO-PD1 9.945704e+000 7.829821e−003

APO-PD2 9.897933e+000 2.890774e−003

200 APO 2.252701e+001 9.613815e−001

APO-PD1 1.992891e+001 7.335306e−003

APO-PD2 1.989362e+001 2.383790e−003

300 APO 1.439755e+004 3.916375e+003

APO-PD1 2.992930e+001 7.248343e−003

APO-PD2 2.988707e+001 4.707260e−003
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Fig. 7 Performance comparison among APO variants for n � 30 test functions

APO-PD2 outperforms both APO and APO-PD1 on all benchmarks over all dimen-
sions, which likely reflects APO-PD2’s greater diversity that results in improved
exploration.

On rate of convergence, the data show thatAPOconvergedmuchmore slowly than
the other variants on both n� 30 Penalized functions, on the n� 50 Rosenbrock, and
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Fig. 8 Performance comparison among APO variants for n � 50 test functions

on the n� 200 Penalized #1. But its performancewas better on the other benchmarks.
APO-PD1 and APO-PD2 exhibit similarly rapid convergence.

The reasonable interpretation of these data is that generally APO-PD2 exhibits the
best overall performance, while APO-PD1 performs better than APO, especially in
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Fig. 9 Performance comparison among APO variants for n � 100 test functions

high dimensions. The physicomimetics approach ofmodelingAPOas a second-order
linear system has led to improved GSO algorithms and to proofs of the conditions
under which these algorithms are guaranteed to converge.
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Fig. 10 Performance comparison among APO variants for n � 200 test functions



Adaptive Artificial Physics Optimization Using … 101

Fig. 11 Performance comparison among APO variants for n � 300 test functions



102 L. Xie et al.

6 Conclusion and Future Work

This paper describes two new population-based, stochastic, swarm intelligent algo-
rithms for multidimensional GSO: APO-PD1 and APO-PD2. Both algorithms are
variants of the physicomimetics APO system created by introducing backward and
forward PD controllers into the original APO architecture. APO’s global perfor-
mance is improved as a result. APO-PD1 utilizes a backward PDC to forecast each
particle’s future position in DS. APO-PD2 utilizes a forward PDC that predicts
both the particle’s future position as well as the future swarm-weighted position.
This architecture results in a higher probability of converging on the global maxi-
mum, because it responds quickly to changes in an individual’s fitness and location.
Numerical experiments on recognized benchmark functions have shown that APO-
PD2 exhibits faster convergence and better performance than both APO-PD1 and
APO. These experiments also show that the prediction factor, TD , is a particularly
important parameter in addition to the gravitational constant G and the PDC coeffi-
cient Kp. It remains an open question as to how to best assign these parameter values.
Future work will address this issue with a view toward further improving algorithm
APO-PD2.
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NSGA-II Based Decision-Making
in Fuzzy Multi-objective Optimization
of System Reliability

Hemant Kumar and Shiv Prasad Yadav

Abstract This paper presents an approach to determine the optimal value of
multi-objective optimization of a reliability-based system design problem. For this
purpose, an over-speed protection system for a gas turbine is designed with mutually
conflicting objectives such as the system reliability and system cost. This is a multi-
objective nonlinear mixed integer programming problem subject to the upper limits
on design constraints such as weight and volume. To solve the problem, a fuzzy
approach is adopted to specify the goals in terms of the membership functions. This
approach is effective in modeling the vague and imprecise information involved in
the system. NSGA-II is employed to obtain the Pareto solutions efficiently. Finally,
one out of these solutions is obtained by the decision-making methods such as TOP-
SIS and Shannon’s entropy approach. The efficiency of the proposed approach is
compared with the existing approach.

Keywords System reliability · Multi-objective optimization · Fuzzy optimization
Membership function · NSGA-II · Crowding distance · Rank · Decision-making

1 Introduction

Reliability is characterized by the performance of a system under some specified
conditions. It is a necessary aspect of an engineering system design. In many prac-
tical situations, a design engineer needs to improve the reliability with reduction
of other resource consumptions such as cost, weight, and volume. Formulation of
system design in multi-objective programming problem is a better adaptation in such
situations. Many multi-objective approaches in reliability-based system design can
be seen in [1–4]. Ideally, a multi-objective optimization presents a group of non-
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dominated solutions in the form of trade-offs, where the desired solution is then
selected by some high-level information involved in the problem [5]. Classical opti-
mization methods [6] are not able to fulfill such demands. Evolutionary algorithms
[7] are useful alternatives in a multi-objective optimization problem, where a collec-
tive Pareto solutions is obtained simultaneously. The basic concepts and approaches
of multi-objective evolutionary algorithms (MOEAs) can be viewed in Coello et al.
[7]. Elitist non-dominated sorting genetic algorithm (NSGA-II) [6] is one of the
second-generation MOEAs. It finds a much better convergence and spread of solu-
tions near the true Pareto front [6] compared to two other elitist MOEAs such as
PAES [8] and SPEA [9]. The applications of NSGA-II have now increased due to
its elitism, parameter-less sharing approach, and low computational requirements
[6]. Salazar et al. [10] showed the competency of NSGA-II to classify a set of opti-
mal solutions (Pareto front) in solving constrained reliability problems. Wang et al.
[11] used NSGA-II to solve multi-objective redundancy allocation problem (RAP)
and compared their results with single-objective approaches. Kishore et al. [12]
proposed an interactive approach to fuzzy multi-objective reliability optimization
problem using NSGA-II. Safari [13] proposed a variant of NSGA-II in solving a
multi-objective RAP. Khalili-Damghani et al. [14] proposed a decision-support sys-
tem for multi-objective RAPs. Fuzzy-based multi-objective reliability problems are
solved by Garg and Sharma [15] and Garg et al. [16] using PSO and GA. Recently,
Sharifi et al. [17] present NSGA-II algorithm for solving multi-objective RAP for
series–parallel and k-out-of-n subsystems with three objectives.

In this paper, a methodology is developed to achieve the optimal value of multi-
objective reliability-based system design problem. First, the multi-objective problem
of system design is formulated in the fuzzy environment and then solved by using
NSGA-II. In order to find a concrete solution, decision-making methods such as
TOPSIS [20] and Shannon’s entropy [21] are implemented on the basis of the ideal
and anti-ideal points (solutions) specified by the decision-maker. The optimal values
are shown graphically in the objective space. The proposed method is compared with
one of the existing approaches [15]. The rest of the paper is organized as follows.
In Sect. 2, a mathematical model of the problem is constructed. Section 3 presents a
concise depiction of the NSGA-II algorithm. In Sect. 4, the proposed methodology
is described. Section 5 gives the results and with its discussion and Sect. 6 gives the
conclusion.

2 Mathematical Model of the Problem

In this work, a four-stage over-speed protection system model [1] for a gas turbine
is considered. The system diagram is shown in Fig. 1.

Over-speed detection is constantly arranged by the electrical and mechanical
systems. When an over-speed occurs, the fuel supply goes cut off. In this way, four
control valves (V1–V4) get locked. The control system is formed as a 4-stage series
system. A constant failure rate occurs for all components in the system. The goal is
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Fig. 1 A symbolic diagram
of the over-speed protection
system

to determine the optimal design variables R j and
∣
∣X j

∣
∣ at each stage j such that the

minimization of the system cost and the maximization of the system reliability can
be achieved simultaneously.
Notation:

RS System reliability;
CS cost of the total system;
R j reliability of a component at stage j;
∣
∣X j

∣
∣ number of the redundant component at stage j;

WS total system weight;
VS total system volume;
Wlim upper limit on the system weight;
Vlim upper limit on the system volume;
Wj weight of each component at stage j;
Vj volume of each component at stage j;
γ j , δ j physical quantities representing characteristics of each component at stage j;
M number of stages;
τ operating time

The mathematical model of the problem is given as follows:

Max RS �
M
∏

j�1

[

1 − (1 − R j
)|X j |]

, (1)

MinCS �
M
∑

j�1

γ j

( −τ

ln (R j )

)δ j [∣
∣X j

∣
∣ + exp

(∣
∣X j

∣
∣/4
)]

, (2)

subject to

WS �
M
∑

j�1

Wj

∣
∣X j

∣
∣ exp
(∣
∣X j

∣
∣/4
) ≤ Wlim, (3)
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VS �
M
∑

j�1

Vj
(∣
∣X j

∣
∣
)2 ≤ Vlim, (4)

1 ≤ ∣∣X j

∣
∣ ≤ |Xmax|, Rmin ≤ R j ≤ Rmax, j � 1, 2, . . . , M ;

∣
∣X j

∣
∣ ∈ Z

+, R j ∈ R
+,

(5)

where exp
(∣
∣X j

∣
∣/4
)

represents the interconnecting hardware, |Xmax| denotes the
maximum number of components given at each stage, Rmin and Rmax denote the
minimum and maximum values on the reliability of each component.
Assumptions:

(i) The cost–reliability relation is

C(R j ) � γ jλ
−δ j

j (6)

(ii) Each component of the system has a constant failure rate λ j that follows an
exponential distribution. The reliability of each component is obtained by

R j (τ ) �
∞∫

τ

λ je
−λ j τdτ � e−λ j τ (7)

From (6) and (7), the cost of each component is

C(R j ) � γ j
[−τ/ ln (R j )

]δ j (8)

3 NSGA-II

Non-dominated sorting genetic algorithm (NSGA) was initially suggested by Srini-
vas and Deb [18]. It uses Goldberg’s domination criterion [19] to assign ranks for
the solutions and utilization of fitness sharing for maintaining the diversity in the
solution set. It has some difficulty in regarding computational complexity, non-elitist
approach, and highly dependent on the parameters of fitness sharing. Deb et al. [6]
extended this algorithm in the form of NSGA-II by giving some new features like
fast non-dominated sorting, crowding distance, and comparison operator.

NSGA-II assigns a rank for solutions employing non-dominated sorting procedure
and emphasizes good solutions throughout this algorithm. The overall complexity
governed by this process is O(kN2), where k and N denote the number of objectives
and population size, respectively [6]. See Fig. 2a.

For maintaining the diversity in the solution set, NSGA-II calculates the crowding
distance of each solution. It is basically defined as those solutions that contain the
same rank. A partial order comparison operator is applied to determine a better
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Fig. 2 a Sorting procedure of a population. b Crowding distance estimation of a solution. c Eval-
uation cycle of the NSGA-II algorithm

solution between two solutions. According to this operator, if both the solutions
belong to the same rank, then preference is given to the solution that contains a
higher crowding distance value. A higher crowding distance value gives the lesser
crowded region and vice versa [6]. See Fig. 2b.

Deb et al. [6] proposed constraint-dominance based binary tournament selection
method in constraint handling procedure. A search space is divided by the constraints
into two regions—feasible and infeasible. Accordingly, a solution α is defined as a
constrained-dominate to a solution β if

(i) α is feasible and β is infeasible.
(ii) α and β are infeasible, but α contains a lower overall constraint violation.
(iii) α and β are feasible, but α dominates β.

The pseudocode of NSGA-II algorithm (See Fig. 2c) is given as follows:
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Step 1. Initializing randomly a parent population P0 of size N . Setting k = 0.
Step 2. Assigning fitness (rank) according to non-domination level and crowded-

comparison operator.
Step 3. while k < number of maximum generation do

(i) Creating an offspring population Qk of size N applying reproduction,
crossover, and mutation.

(ii) Combining via Rk � Pk∪Qk .
(iii) Sorting on Rk and classifying them into non-dominated fronts (Pareto

fronts) PFi , i � 1, 2, . . . , etc.
(iv) Setting a new population Pk+1 � ∅ and i � 1.

while the parent population size |Pk+1| + |PFi | < N do
(i) Calculating the crowding distance of PFi .
(ii) Adding the i th non-dominated front PFi to the parent population

Pk+1.
(iii) i � i + 1.

end while
(v) Sorting the PFi using the crowding distance-based comparison oper-

ator.
(vi) Filling the parent population Pk+1 with the first N − |Pk+1| solutions

of PFi .
(vii) Generating the offspring population Qk+1.
(viii) Setting k � k + 1.

end while

Step 4. Collecting the non-dominated solutions in the vector P.

4 Proposed Methodology

The problem given in Sect. 2 is solved by the following steps:

Step 1. Constructing the membership functions of fuzzy objectives (Fig. 3).

(a) Monotonically increasing function            (b) Monotonically decreasing function                    

Fig. 3 Linear membership function for a system reliability b system cost
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μR̃S
�

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, RS ≤ Rmin
S ,

RS−Rmin
S

Rmax
S −Rmax

S

, Rmin
S < RS < Rmax

S ,

1, RS ≥ Rmax
S ,

(9)

where Rmin
S and Rmax

S are the minimum and maximum values on the system reli-
ability, respectively. This range is fixed by the decision-maker according to his/her
requirements.

μC̃S
�

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, CS ≤ Cmin
S ,

Cmax
S −CS

Cmax
S −Cmin

S

, Cmin
S < CS < Cmax

S ,

0, CS ≥ Cmax
S ,

(10)

similarly, Cmin
S and Cmax

S are the minimum and maximum values on the system
cost, respectively. This range is decided by the decision-maker according to his/her
investment capacity.

Step 2. Formulating the problem in the form of fuzzy objectives.

Maximize
(

μR̃S
, μC̃S

)}

(11)

subject to the constraints given in (3)–(5).

Step 3. Setting the parameters as given in Tables 1 and 2, and then applying the
NSGA-II algorithm to get the Pareto front in (11).

Step 4. Constructing the decision matrix of objectives (criteria) as follows:

D �
⎡

⎢
⎣

μ11
R̃S

μ21
R̃S

. . . μm1
R̃S

μ12
C̃S

μ22
C̃S

. . . μm2
C̃S

⎤

⎥
⎦

T

�
[

μ
i j

R̃S ,C̃S

]

; i � 1, 2, . . . ,m; j � 1, 2. (12)

Step 5. Finding the best alternative in the decision matrix given by (12).

To determine the best alternative, we apply the decision-making method as fol-
lows:
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4.1 TOPSIS Approach

In the present work, we applied the TOPSIS method [20] on membership values of
the objective functions. The ideal membership value is taken as 1 for the upper limit
of each objective and the anti-ideal membership value is taken as 0 for the lower
limit of each objective. The Euclidean distances of each membership value of the
objective function from the anti-ideal and ideal points are calculated, respectively,
as follows:

D−
i �
√
√
√
√

2
∑

j�1

(

μ
i j
RS ,CS

− 0
)2

, i � 1, 2, . . . ,m (13)

D+
i �
√
√
√
√

2
∑

j�1

(

μ
i j
RS ,CS

− 1
)2

, i � 1, 2, . . . ,m (14)

In this method, Di (relative closeness of ith alternative) is calculated as

Di � D−
i

D−
i + D+

i

(15)

Table 1 Designing data for the problem

Number of stages (M) 4

1 ≤ ∣∣X j
∣
∣ ≤ 10, 0.5 ≤ R j ≤ 1 − 10−6, j � 1, 2, 3, 4;

∣
∣X j
∣
∣ ∈

Z
+, R j ∈ R

+

Stage 105 γ j δj vj wj

Upper limit on Ws 500.0 1 1.0 1.5 1 6

Upper limit on Vs 250.0 2 2.3 1.5 2 6

Operating time (τ ) 1000 h 3 0.3 1.5 3 8

4 2.3 1.5 2 7

Table 2 The parameter settings for the given problem

The parameters are set to NSGA-II and GA

Population
size

80 Rmin
s Rmax

s Cmin
s max

Maximum
generation

100 0.75 0.99 25 100

Crossover rate 0.9 Ideal point = (25, 0.99)

Mutation rate 0.1 Anti-Ideal point � (100, 0.75)

Random seed 0.1234
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Therefore,

Abest
i � max(Di ). (16)

4.2 Shannon’s Entropy Approach

Entropy [21] is calculated to measure the disorder in the given discrete probability
distribution of the system. It is observed that a broad distribution gives a more uncer-
tainty than a sharply packed distribution. Consider Hi j in the decision matrix D as
follows:

Hi j � μ
i j
RS ,CS

m∑

i�1
μ
i j
RS ,CS

, i � 1, 2, . . . ,m; j � 1, 2. (17)

Shannon’s entropy is calculated by

E j � −M
m
∑

i�1

Hi j ln Hi j , M � 1/ ln(m) (18)

The degree of deviation is obtained by

DVj � 1 − E j (19)

The weight of jth fuzzy objective is calculated by

Wj � DVj
∑2

j�1 DVj

(20)

Finally,

Yi �
2
∑

j�1

Hi jW j ; i � 1, 2, . . . ,m (21)

Therefore,

Abest
i � max(Yi ). (22)

Formulation of the problem for the genetic algorithm (GA) [19]-based decision-
making
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Maximize

(

1 ∧ α1

W1

)

∧
(

1 ∧ α2

W2

)

(23)

subject to

α1 � μR̃S
, α2 � μC̃S

,W1,W2 ∈ (0, 1] (24)

WS �
M
∑

j�1

Wj

∣
∣X j

∣
∣ exp
(∣
∣X j

∣
∣/4
) ≤ Wlim, (25)

VS �
M
∑

j�1

Vj
(∣
∣X j

∣
∣
)2 ≤ Vlim, (26)

1 ≤ ∣∣X j

∣
∣ ≤ 10, 0.5 ≤ R j ≤ 1 − 10−6, j � 1, 2, 3, 4;

∣
∣X j

∣
∣ ∈ Z

+, R j ∈ R
+ (27)

where∧ representsmin operator as the aggregate operator,W1 andW2 are theweights
of the objectives suggested by the decision-maker, α1 and α2 are the degree of satis-
faction of the objectives.

5 Results and Discussion

Theproblempresented in Sect. 2 is aRAPproblem.A real number of encoding is used
in a vector of design variables [(R1, |X1|), (R2, |X2|), (R3, |X3|), (R4, |X4|)]. The
SBX and polynomial operators [5] are used for crossover and mutation, respectively.
Based on rigorous experimentation, results are obtained in Table 3. In Table 3, the
proposed approach is compared with heuristic method GA where the problem is
converted to single objective using aggregation operator. To make a fair comparison,
same parameters are used and equal weight given to each objective. One of the
best solutions is chosen from 10 independent runs in GA. In Fig. 4, the results are
displayed on the basis of membership functions. There are 29 solutions found by
NSGA-II in the first front. The decision-making methods are applied on the basis
of the Euclidean distances from the ideal and anti-ideal points. Figure 5 shows the
Pareto front and the best results obtained by the decision-making methods such as
TOPSIS and Shannon’s entropy.

6 Conclusion

In this piece of work, an approach is developed to determine the optimal value of
fuzzymulti-objective reliability-based system design. Amathematical model of real-
world problem of the over-speed protection system is presented. To avoid any kind
of aggregator operators, NSGA-II is employed to solve the problem. At the decision-
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Table 3 Comparison of optimal solutions with the existing method

NSGA-II based decision-making GA-based
decision-making

TOPSIS Shannon’s entropy
method

W � [0.5, 0.5]

(R1, |X1|) (0.73947, 3) (0.73349, 3) (0.72315, 3)

(R2, |X2|) (0.65557, 3) (0.67206, 3) (0.66142, 3)

(R3, |X3|) (0.83512, 3) (0.84847, 3) (0.80802, 3)

(R4, |X4|) (0.65311, 3) (0.69319, 3) (0.66382, 3)

μR̃s
0.669 0.728 0.739

μC̃s
0.731 0.659 0.709

Rs 0.91726 0.93192 0.92729

Cs 45.16 50.57 46.81

Ws 477.58 469.55 498.78

Vs 76.72 72.21 77.54
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Fig. 4 The optimal values based on membership functions

0.75 

0.8 

0.85 

0.9 

0.95 

1

0 20 40 60 80 100

Ideal point

Anti-ideal point TOPSIS
approach 

Shannon's entropy 
approach SR

SC

Fig. 5 The optimal values based on objective functions

making stage, we modify the decision-making methods in terms of membership
function and find the best optimal value according to the Euclidean distances from
the ideal and anti-ideal points (solutions) in the objective space. In order to show the
efficiency of the proposed approach, it is compared with the existing approach. The
obtained results are found encouraging. Thus, the proposed methodology can be a
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better adaptation in finding the concrete solution in multi-objective reliability-based
system design problem.
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GA-Based Task Scheduling Algorithm
for Efficient Utilization of Available
Resources in Computational Grid

Shipra Singh, Anuradha Aggarwal, Harendera Kumar
and Pradeep Kumar Yadav

Abstract In the grid computing environment, systematic scheduling of tasks/jobs
on hand resource is the important parameter for performance evaluation of computa-
tional grid. Traditional algorithms cannot produce a load balancing schedule. In the
paper, a genetic approach for grid task scheduling has been considered to achieve bet-
ter solutionswithin a reasonable period of time. The present study aims atminimizing
the make-span and flow-time at the same time and also achieves equiponderant prac-
tical application of a set of “n” available computing agents of a grid computing to get
the average load balancing. The simulation results show that the proposed approach
is more efficient than the GA approach reported in the literature.

Keywords Scheduling · Computational grid · Expected computation time
Inter-task communication time · Optimization · Genetic algorithm

1 Introduction

Grid computing is a gathering of computer resources from many places to reach a
similar target. Grid computing is emerging as a new and significant field that can
be considered as an enhanced form of distributed computing [1]. That includes non-
interactive workloads, which contain a large number of files. Users can share grid
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computing agents by assigning tasks to the computational grid. Task scheduling in
grid environments poses a great challenge due to the heterogeneity of resources.
Utilization of all the resources should be done in an efficient manner. Because under-
utilized resources will result in worst scheduling. At present researchers are using
nature-inspired meta-heuristics mechanisms to solve computational grid problems
due to increasing the size of search space. Various heuristic approaches have been
reported in the literature for scheduling the tasks/jobs in the computational grid.
These include economic heuristic [2], population-based heuristic [3], meta-heuristic
[4], simple heuristic [5], and hybrid heuristic [6, 7].

The major challenges when using GAs to solve task scheduling problems are: (a)
to generate and keep the diversity in the populations, which is crucial for avoiding
the premature convergence to the local optima and (b) to evolve robust solutions that
are able to track the optimal [8]. A Task Duplication-Based Scheduling Algorithm on
GA in Grid Computing Systems, has been reported by Lin andWu [9]. In the present
study, we consider a multipurpose scheduling problem in the computational grid in
which two objectives make-span and flow-time are optimized simultaneously with
the objective of optimum utilization of a set of “n” available modalities. We have
extended our previous work [10, 11], where the genetic algorithm based scheduling
did not consider the task’s computational load and computing capacity of resources.
In this paper, the implementation of task’s computational load and computing capac-
ity of resources makes the whole strategy better than previous.

Notations

The notations used throughout the paper are as follows:

m Number of tasks
n Number of computing agents
M {1, …, m}
N {1, …, n}

2 Problem Statement

The main purpose of scheduling in the computational grid is a skilled mapping
for a set of “n” computing agents available by applications. Due to the diversity
of computing agents in the grid computing environment, mapping of the tasks to
computing agents is a challenging global optimization problem. In this paper, “m”
tasks are considered for scheduling onto “n” computing agents and developed an
algorithm for the efficient utilization of available resources to achieve the objective.
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3 Description of Inter-communication Time

The tasks/jobs can be explained as massive applications with inter-task communica-
tion time of communicating tasks. In the present paper, the communication time is
taken in the form of Inter-Task Communication Time Matrix

ITCTM(, ) � [ctik]m∗m

where, ctik is the Inter-Task Communication Time between ith and kth tasks.

4 Expected Time of Computation

Execution time of a task depends on the computational agents, to which it is allocated
and the work to be performed by the task. The execution time of each task on all
the computational agents are given in the form of Expected Time to Computation
(ETC) matrix, ETC ()� [etij]m*n, where etij represents the expected time needed for
the completion of ith task on jth computational agent. All etij can be computed as
the ratio of the coordinates of WL and CC vectors that is to say:

ei j � wli
cc j

(1)

wli represented the computational load parameter for every ith task, which is
expressed in Millions of Instructions (MIs) [12]. On the behalf of historic
data/predictions, necessities about computation need of the tasks can be known from
terms provided by the user [13]. WL� [wl1, wl2, …, wlm] denotes the workload
parameters and also represent the coordinates of a workload vector. Gaussian prob-
ability distribution has used to generate the values of wli and ccj.

Each jth computing agent in the system is represented by the parameter ccj, where
ccj is computing capacity of the jth computational agent, that can be represented in
Millions of Instructions Per Second (MIPS), we denote by CC� [cc1, cc2, cc3 …,
ccn], a computing capacity vector.

5 Schedule Representation

Dissimilar types of scheduling representation are reported in the literature. We use
one of them called direct representation. In direct representation, the schedule is
encoded in the form of a vector whose size is assumed to be the task numbers. The
elements of the present vector are natural numbers lies between 1 and n. In this type
of representation, processing agents can appear more than once.
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i.e., the schedule is encoded as

Schedule � {p1, p2, p3, p4, . . . pn} (2)

6 Scheduling Criteria

Two different modes, i.e., hierarchical and simultaneous can be used to optimize the
variables of multi-objective functions. All the variables of the objective function are
optimized at the same time in hierarchical mode, and the priority has been defined for
the optimization criteria, according to their importance in the model. In the present
paper scheduling criteria is defined as a multi-objective optimization problem in
which make-span and flow-time will be minimized simultaneously considering the
steady utilization of all the processing agents. Make-span is usually known as a
finishing time of the latest task, i.e., if FT (i) denotes the finishing time of task i eM,
then

Makespane � min
s∈schedule max

i∈M FT (i)

In terms of ETC and ITCT, the make-span is expressed as

Makespane � min
s∈schedule max

i∈M Tj (3)

where Tj is the total time on jth processing agents and it is calculated as

Tj �
m∑

i�1

eti j xi j +
m∑

i�1

m∑

k�1

n∑

l�1

ctik xi j xkl (4)

where

xi j �
{
1, if i th task is assigned to j th computing agent

0, otherwise

And

xkl �
{
1, if kth task is assigned to lth computing agent

0, otherwise

The flow-time is defined as the summation of finalization times of all the tasks,
i.e.,

Flowtime � min
s∈schedule FT (i)
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In terms of ETC and ITCT, the flow-time is defined as

Flowtime � min
s∈schedule T

“T” is the total time on all the processors and it is calculated as

T �
n∑

j�1

Tj (5)

7 Constraints

To conclude the suitable allocation, first of all average load of every computing agent
must be determined.

If the finishing time of ith task on jth computing agent is etij, the average load on
every computing agent is as shown in Eq. (6)

Lavg
(
Pj

) �
∑m

i�i etin
n

(6)

To get the balanced utilization of “n” available computing agents, it assumed that
the number of tasks/jobs to allocated any computing agents is equal to m

n

8 Working Mechanism of GAs

Begin

Initialize population

Optimum 
Solution?

T=T+1

Selection

Crossover

Mutation             

N 

Evaluate Solutions

Y 

Stop

T =0
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9 Proposed Algorithm

Themapping of tasks to processors takes place according to the following algorithm:

(1) Generate the initial population of random individuals and select only those
which satisfy the constraint.

(2) Evaluate the fitness of each individual.
(3) While not termination condition do.
(4) While not termination condition do.
(5) Perform selection operator.
(6) Perform crossover according to pc (pc>�0.8)
7) Perform Mutation according to pm (pm<=0.1).
(8) Evaluate the fitness of the modified individual.
(9) End while.
(10) Choose only those childs, which suit the constraint.

10 Results and Discussions

To verify the performance of the presented algorithm (GA), the data has been taken
from the literature reported by [10] and some simulation cases will be tested. Param-
eters used in the present study are as follows and shown in Table 1. We use the
notation N (a, b) for the Gaussian probability distribution.

The computation has been repeated 30 times under the same arrangement of
parameters. Computational results for the make-span and flow-time values are pre-
sented in Table 2. Simulation results demonstrate that more iterations or population
sizes obtain the better solution since more solutions were generated as displayed in
Table 2.

The algorithm reported by [10] can minimize the only one parameter at a time
either Make-span or flow-time. The algorithm in the present paper minimizes the
Make-span and flow-time simultaneously and achieves equilibrado utilization of
available resources by processing fruitfully tasks onto resources. The authentication
of the statistical significance of the results has been conducted through a two-way

Table 1 Values of key parameters

Small Medium Large

Total no. of tasks 18 24 36

Workload of tasks N(5000, 800)

Resource Cap. (in
MHZ cpu)

N(30, 10)

Crossover probability pc �0.8

Mutation probability Pm �0.1
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Table 2 Results

Task,
resource

Population size

800 1000

Iterations Iterations

100 200 100 200

Make-
span

Flow-
time

Make-
span

Flow-
time

Make-
span

Flow-
time

Make-
span

Flow-
time

18, 6 14,604.29 3008.70 14,462.88 2791.11 14,368.55 2684.35 14,339.94 2684.35

24, 6 22,804.40 3999.84 22,746.92 4013.49 22,732.93 4037.30 22,775.11 4055.48

24, 8 23,947.98 3302.18 23,784.81 3186.54 23,723.58 3245.70 23,669.56 3290.45

36, 6 47,182.62 8229.78 47,314.55 8168.60 47,115.66 8227.07 46,971.52 8168.60

Table 3 Comparison of “F” value for make-span and flow-time results

Objectives Source of
validation

SS df MS F P-value Fcrit

Flow-time Rows 1.10E+09 4 2.75E+08 666.1653 5.66E−14 3.25916

Columns 2,072,441 3 690,813.6 1.672766 0.022546 3.490295

Error 4,955,722 12 4.13E+05

Total 1.11E+09 19

Make-span Rows 77,073,912 4 19,268,478 3541.51 2.57E−18 3.259167

Columns 26,966.43 3 8988.809 1.652126 0.22978 3.490295

Error 65,289.03 12 5440.752

Total 77,166,167 19

ANOVA test. The conclusion of this test is the acceptance or rejection of the null
hypothesis (H0) which states that any difference in the results is purely random. The
null hypothesis is rejected if “F” value is greater than “Fcrit”. Table 3 represents
that “F” value of rows is greater than “Fcrit” and therefore H0 is rejected. This
indicates that make-span and flow-time in the row of table are statistically significant.
Therefore, it is proven that the proposed method most effective in both make-span
and flow-time reductions with increased Iterations and population size.

The algorithm was studied with more and more runs and the reason for the size
of the population and iterations was found. The present algorithm will be validated
in our next study by developing the simulator for real environment.
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Statistical Feature Analysis of Thermal
Images from Electrical Equipment

Tamal Dutta, Deepjyoti Santra, Chee Peng-Lim, Jaya Sil
and Paramita Chottopadhyay

Abstract This investigation focuses on intelligent monitoring systems by
assessing thermal images from electrical equipment. During modeling of any intelli-
gent system, a variety of attributes are normally used to ensure that all the necessary
information is present, which not only increases the computational complexity but
also reduces classification accuracies. In this study, widely used features of ther-
mal images like first order histogram, statistical gray level co-occurrence matrix
(GLCM) and component based features are considered. The novelty of the work is
that the combination of data mining techniques and clustering quality of the data in
the selected feature space helps to determine the best classifier independent feature
set suitable for thermal monitoring. Interestingly it is found that maximum inten-
sity; average intensity and skewness are identified as the best feature set. Based on
experimental verification, it has been demonstrated that the selected feature set gives
better classification accuracies than those using all the original features. Therefore,
an effective feature selection method is able to greatly improve the performance of
classifiers as well as reduce the computational cost.
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1 Introduction

Excessive heating is one of the root causes pertaining to themajority failure of electri-
cal equipment. In this domain, Infrared Thermography (IRT) plays a significant role
in fault detection at the early stage. It is a non-contact and non-invasive temperature
monitoring technique. Indeed, IRT of electrical equipment is gaining importance in
the area of condition monitoring and fault diagnosis [1–7]. Thermo ionic radiations
can be divided into four groups according to their wavelength, as shown in Fig. 1.
For monitoring and diagnosis of electrical equipment, far-infrared (FIR) radiations
are utilized [5, 8].

At present, intelligent digital image processing is important in various fields
including thermal monitoring and fault diagnosis of electrical equipment. In any
intelligent and machine learning based approach [9], feature extraction [10–12] and
feature selection play an important role. In the literature, intelligent thermal monitor-
ing techniques [10–15] have been investigated by many researches. Various feature
selection methods have also been reported [12–17]. Each method has unique crite-
ria to identify suitable features for solving image classification problems. In many
papers [10–17], the selected feature sets have been validated using the performance
of different classifiers, e.g. MLP, RBF, and SVM.

In this paper a classifier independent Davies-Bouldin (DB) Index is used to mea-
sure the feature quality; obtained from various feature selection techniques. The
most suitable features are then proposed for thermal monitoring of electrical equip-
ment using infra-red images. The schematic representation of the proposed method
is shown in Fig. 2.

2 Acquisition of Thermal Images

For thermal image acquisition, a special camera is used to capture infrared radiation
emitted from objects. An infrared camera detects infrared energy emitted from an

Infrared wavelength (0.75-1000 μm)

Near infrared Middle infrared Far infrared Extreme   
infrared

Fig. 1 Different types of infrared radiations
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Fig. 2 Block diagram of the proposed method

Fig. 3 Different classes of thermal images of rheostat

object, converts it to temperature, and displays the image in terms of temperature
distribution. There are several thermo graphic cameras which can detect radiation
in the infrared range (roughly 0.1–1000 µm). In the present investigation, thermal
images are taken by using RayCam C.A 1886 camera. The spectral range of the
camera is 8–14 µm. Therefore, it can measure the FIR radiation of the object under
study.

For thermal image acquisition purposes, electrical current through a rheostat is
varied, and the images are taken at various levels of current flowing through it. Up
to the rated current, the images are labeled as ‘Normal’, for a moderate value, it is
labeled as ‘Incipient’, and ‘Faulty’ is for high a value of current. Some typical images
of these three classes are presented in Fig. 3.

3 Statistical Features of Thermal Images

Thermal images have several features which can distinguish among various classes.
Those features can be sub-divided into three categories, namely component based
intensity features, first order histogram based features, and gray level co-occurrence
matrix (GLCM) based features [10–12]. The image characteristic can be visualized
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through its features. In the classification process of thermal images, statistical features
of IR images are useful to classify the condition of electrical equipment.

3.1 Component Based Intensity Features

The following components based intensity features are extracted for the analysis of
thermal images.

Maximum intensity(F1) � max[I_c(i, j)]

Minimum intensity(F2) � min[I_c(i, j)]

Average intensity(F3) �
∑M

i�1

∑N
j�1 I_c(i, j)

M ∗ N |I_c �� 0

where i �1, 2, …, M and j �1, 2, …, N and I_c(i, j) � segmented image with
component only and the background as black.

Mean intensity is the average pixel value, which determines the brightness or
darkness of the defined connected component. If the intensity values are arranged in
ascending order, the middle value is defined as the median intensity value (F4).

3.2 First Order Histogram Based Intensity Features

First order histogrambased intensity features are similar to component based features.
The features are described as follows:

Average gray level intensity (F5)
For that image, the average gray level intensity can be represented by,

Average gray intensity ormean �
∑M

i�1

∑N
j�1 I (i, j)

M ∗ N

where I(i, j); where i �1, …, M and j �1, …, N , M & N are number of rows and
columns respectively.

Standard deviation (F6)
It determines the deviation of pixel intensities and calculated as follows:

Standard deviation �
√

∑M
i�1

∑N
j�1 [I (i, j) − Mean]2

M ∗ N
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Energy (F7)
Energy shows how the gray levels are distributed. When the number of gray level is
low the energy is high.

Energy �
∑M

i�1

∑N
j�1 I (i, j)

2

M ∗ N

Entropy (F8)
It measures randomness of the input image. If the information content of an image is
high, the image entropy becomes high. Similarly, if the information content is low,
the entropy value is low.

Entropy �
∑M

i�1

∑N
j�1 I (i, j) ∗ [− log I (i, j)]

M ∗ N

Skewness (F9)

Skewness �
∑M

i�1

∑N
j�1[I (i, j) − Mean]3

M ∗ N ∗ Standard deviation2

Kurtosis (F10)
Kurtosis measures the peakness or flatness of the intensity distribution with respect
to the normal distribution.

Kurtosis �
∑M

i�1

∑N
j�1 [I (i, j) − Mean]4

M ∗ N ∗ Standard deviation4

3.3 Statistical Features Using Gray Level Co-occurrence
Matrix (GLCM)

A GLCM is a square matrix which has an equal number of rows and columns as the
number of gray levels in the image.

Contrast (F11)
It is a measure of the intensity contrast between a pixel and its neighbor over the
whole image.

Contrast �
∑

i, j

|i − j |2P(i, j)
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Correlation (F12)
It is a measure of how correlated a pixel is to its neighbor over the whole image. Cor-
relation is 1 or−1 for a perfect positively or negatively correlated image. Correlation
is NaN (not a number) for a constant image.

Energy (F13)
Energy is the sum of square elements in the GLCM.

Energy �
∑

i, j
P(i, j)2

Homogeneity (F14)
It returns a value that measures the closeness of the distribution of elements in the
GLCM with respect to the GLCM diagonal.

Homogeneity � P(i, j)

1 + |i − j |
where 1�possible intensity level of the image.

4 Feature Selection

Feature selection is a one of the feature reduction technique widely used in data min-
ing for improvement of the data quality and enhances the performance of classifiers.
It works on the basis of an evaluation functions following evaluation strategies like
ranking, sequential search, heuristic search. On the basis of evaluation function, the
feature selection technique can be categorized into two parts like filter and wrapper
based methods. In Filter methods, features are selected based on a performance mea-
sure whereas in Wrapper methods, the feature space is recognized using a particular
classifier to measure the importance of a feature subset.

In literature, the quality of the data is assessed with the help of different validity
indices. In this study, Davies–Bouldin index (DBI) is utilized to find the goodness
of features. The DBI calculates the average of resemblance between two similar
clusters. A lower DBI indicates condensed and separated clusters. In this investiga-
tion sequential feature selection (SFS), best first search (BFS), relief based feature
selection (RBFS) and class based feature selection (CBFS) are used. The DB index
is employed to determine the best feature space.
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5 Results and Discussions

Different machine learning techniques like MLP, SVM, decision tree and KNN are
applied to evaluate the quality of the original feature set and selected feature sub-set.
The goodness of the feature sets are measured by the DBI. Separateness of data
distribution in the selected feature space, with the DBI values in the best 3D feature
spaces are shown in Fig. 4, where green denotes ‘Normal’, blue denotes ‘Incipient’,
and red denotes ‘Faulty’.

A lower value of the DBI indicates the ability to identify the appropriate choice of
feature selection technique, for recognition of three types of thermal images associ-

Fig. 4 Data distribution for 3D features using optimal feature subsets
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Table 1 Selection of optimal feature subset using the DB index

Feature selection techniques Feature space DB index (DBI)

All features 8.7662

Sequential search based
feature selection (SSBFS)

F1, F3, F9 0.7374

Best first search (BFS) F1, F2, F3 0.8683

Sequential search based
feature selection (SSBFS)

F2, F3, F9 1.1012

Relief based feature selection
(RBFS)

F8, F1, F7 11.4884

Class based feature selection
(CBFS)

F8, F5, F7 21.6599

Huda and Taib approach [12] F1, F3, F4 1.0508

ated with electrical equipment. Finally the sequential search based feature set (Max-
imum intensity (F1), Average intensity (F3) and Skewness (F9)), have the lowest
DB value, therefore yielding the optimal feature subset. The optimal feature subset

Table 2 Results obtained using 10 fold cross validation using different classifiers

Feature
selection
techniques

Feature space MLP SVM Decision tree KNN

All features 96.98 98.79 94.57 97.59

Sequential
feature
selection
(SFS)

F1, F3, F9 98.19 96.38 96.98 98.19

Best first
search (BFS)

F1, F2, F3 98.19 97.59 95.78 98.79

Sequential
feature
selection
(SFS)

F2, F3, F9 98.19 98.19 96.98 98.79

Relief based
feature
selection
(RBFS)

F8, F1, F7 97.59 96.38 95.78 97.59

Class based
feature
selection
(CBFS)

F8, F5, F7 96.98 97.59 92.16 96.38

Huda and Taib
approach [12]

F1, F3, F4 98.79 97.59 95.78 98.79
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(a) (b)

(c)

Fig. 5 Performance of different classifiers: using a Relief Based Feature Selection, b Best First
Search (BFS) based Feature Selection and c Class Based Feature Selection (CBFS)

Table 3 Sequential feature selection: performance using different classifiers

Feature set Classifiers

MLP SVM Decision tree KNN

All features 96.98 98.79 94.57 97.59

F1, F3, F9 98.19 96.38 96.98 98.19

F2, F3, F9 98.19 98.19 96.98 98.79

F1, F3, F4 from Huda and Taib approach [12] 98.79 97.59 95.78 98.79

selected using the DB indexes are tabulated in Table 1. Classification accuracies
obtained using MLP, SVM, Decision Tree and KNN are presented in Table 2.

The performance of each classifiers using different feature selection algorithms
are depicted in Fig. 5. Accuracies obtained using different classifiers for 10 fold cross
validation using the SFS method are shown in Table 3.
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6 Conclusion

Statistical features of thermal images play a key role in image classification. How-
ever, irrelevant features make the system computationally exhaustive and produce
poor classification accuracy. Feature selection techniques in accompanied with data
mining offer an efficient solution to deal with these problems. This paper has demon-
strated that the usefulness of the selected features from various feature selection tech-
niques in the area of thermal monitoring of electrical equipment based on infrared
thermal images. Among several validity indices, the DBI has been used in this work.
The applicability of intelligent thermal monitoring with experimental verification
has been demonstrated in this paper.
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Performance of Sine–Cosine Algorithm
on Large-Scale Optimization Problems

Puneet Kumar Pal, Kusum Deep and Atulya K. Nagar

Abstract The focus of this paper is the recently proposed sine–cosine algorithm
(Mirjalili, Knowl-Based Syst 96:120–1330, [23]) for nonlinear continuous function
optimization. The purpose of this paper is to inspect the effect of the sine–cosine algo-
rithm on solving large-scale optimization problems. For this purpose, the algorithm
is implemented on five common scalable problems appearing in literature, namely,
Ackley, Griewank, Rastrigin, Rosenbrock, and Sphere functions. The dimensions of
these problems are varied from 100 to 1000, and results have been recorded for fixed
10,000 iterations. The results are presented in numerical and graphical form. These
results indicate that sine–cosine algorithm is a powerful nature-inspired optimization
algorithm for solving all of these problems, except Sphere andRosenbrock functions.
Furthermore, the applicability of this algorithm is demonstrated by solving a real-life
problem, i.e., gear train design problem.

Keywords Sine–cosine algorithm · Large-scale problems · Gear train design
problem · Optimization

1 Introduction

Numerous nature-inspired optimization techniques have emerged to solve nonlin-
ear optimization problems. They are particularly well suited in situations where
traditional computing techniques perform unsatisfactorily. The advantages of these
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methods are their ability to solve various standard or application-based problems
successfully without any prior knowledge of the problem space. Moreover, these
algorithms are more likely to obtain the global optima of a given problem. Continu-
ity and/or differentiability of the objective functions and/or constraints is not needed
for these algorithms. Also, they work on a randomly generated population of solu-
tions instead of one solution. They are easy to be programmed and can be easily
implemented on a computer.

Some of the most popular nature-inspired optimization techniques are genetic
algorithms [1], particle swarmoptimization [2], differential evolution [3], glowworm
swarm optimization [4, 5], artificial bee colony optimization [6], spider monkey
algorithm [7], ant colony optimization [8], bacterial foraging optimization algorithm
[9], gravitational search algorithm [10], central force optimization [11, 12], harmony
search algorithm [13], water drop algorithm [14], ant lion algorithm [15, 16], firework
algorithms [17], teaching learning based optimization [18], water weed optimization
[19], kidney-inspired optimization [20], and moth-flame optimization algorithm [15,
16]. An excellent review of nature-inspired optimization techniques is presented in
[21, 22].

The focus of this paper is the Sine–Cosine Algorithm (SCA) [23]. The original
paper performs an extensive experimentation on multimodal functions, unimodal
functions, and fixed-size function as well as a number of engineering design prob-
lems. The problem size that has been considered is 20. The objective of this paper
is to study the performance of SCA on large-scale optimization problems. With this
in mind, a set of five benchmark functions have been selected and SCA is used to
solve these five problems for problem size 100–1000.

The rest of the paper is organized as follows: In Sect. 2, the working of SCA
algorithm is explained. Section 3 describes the five benchmark problems considered
in this study. Section 4 explains the results in the form of numerical and graphical
data. Section 5 describes a real-life problem. The conclusions are drawn in Sect. 6.

2 The Sine–Cosine Algorithm

This is a population-based optimization technique and starts the optimization process
with a set of random solutions. This random set of solutions is evaluated repeatedly
by an objective function and improved using the following mathematical model:

Xt+1
i �

⎧
⎨

⎩

Xt
i + r1 × sin(r2) × ∣

∣r3 · Pt
i − Xt

i

∣
∣, r4 < 0.5

Xt
i + r1 × cos(r2) × ∣

∣r3 · Pt
i − Xt

i

∣
∣, r4 ≥ 0.5

(1)

where Xt
i is the position of the current solution in ith dimension at ith iteration,

r1/r2/r3 are the random numbers, Pt
i is the position of the destination point in ith

dimension, and r4 is a random number in [0, 1].|. | indicates the absolute value. The
parameter r1 tells the movement direction. The parameter r2 is the distance for the
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Fig. 1 Pseudocode of the SCA algorithm

movement either toward or outward the destination. The parameter r3 puts a random
weight on the destination to stochastically emphasize (r3 > 1) or deemphasize
(r3 < 1) the effect of destination in defining the distance and r4 is to equally switch
between the sine and cosine components. Due to the use of sine and cosine in this
formulation, this algorithm is named Sine–Cosine Algorithm (SCA).

Due to the cyclic pattern of sine and cosine functions, a solution is repositioned
around another solution and this can guarantee exploitation of the space defined
between two solutions. For exploration, the solutions should be able to search outside
the space between their corresponding destinations as well and this can be achieved
by changing the range of the sine and cosine functions.

The random location either inside or outside is achieved by defining a random
number for r2 in [0, 2 π] in Eq. (1). Therefore, this mechanism guarantees explo-
ration and exploitation of the search space, respectively. To balance exploration and
exploitation, the range of sine and cosine in Eq. (1) is changed using the following
equation:

r1 � a − a
t

T

where

t is the current iteration,
T is the maximum number of iterations, and
a is the constant.

The pseudocode of this algorithm is presented in Fig. 1.

3 Applications

The performance of SCA algorithm is evaluated on Ackley function, Griewank func-
tion, Rastrigin function, Rosenbrock function, and Sphere function. These functions
have been selected particularly because these problems are conflicting in nature with
respect to their landscapes and difficulty features and are difficult to solve by a sin-
gle algorithm simultaneously. These are unimodal as well as multimodal functions.
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They are scalable, and hence their complexity can be increased by increasing the
dimension of the problems by the user.

i. Ackley Function
Due to exponential terms, the surface of this function has many local minima.
Many search algorithms get trapped in local optima due to the dependency on
gradient information, but a search strategy that analyzes a wider region will be
able to escape the valley among the optima. Global minimum of Ackley test
function is at (0, 0, …, 0) with fmin � 0. The mathematical form is given by

f (x) � 20 + e − 20e

(

− 1
5

√

1
n

n∑

1
x2i

)

− e

(
1
n

n∑

i�1
cos(2πxi )

)

, for xi ∈ [−32, 32]

ii. Griewank Function
When dimension of Griewank function increases, its number of local minima
increases. A multistart algorithm is able to determine global minimum of this
function more easily when the dimension increases. The global minimum of
this function is at (0, 0, …, 0) with fmin � 0.

f (x) �
n∑

i�1

x2i
4000

−
n∏

i�1

cos

(
xi√
i

)

+ 1, forxi ∈ [−600, 600]

iii. Rastrigin Function
This test function is the extended form of sphere function with a modulator term
α* cos(2πxi). This has a great number of local minima solutions whose value
increases with the distance to the global minima solutions. Its global minima
solution is at (0, 0,…, 0) with fmin � 0

f (x) � 10n +
n∑

i�1

(
x2i − 10 cos(2πxi )

)
for xi ∈ [−5.12, 5.12]

iv. Rosenbrock Problem
Rosenbrock function or banana function is a unimodal, non-separable, and
differentiable test problem. Its complexity lies due to nonlinear interaction
between parameters. The global optimum of this function is inside a long narrow
parabolic-shaped flat valley. The global minimum of this function is at (1, 1, …,
1) with fmin � 0.

f (x) �
n−1∑

i�1

(100
(
xi+1 − x2i

)2
+ (xi − 1)2), for xi ∈ [−30, 30]
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v. Sphere Problem
Sphere function is a continuous, convex, and unimodal test problem. The func-
tion has numerous local minima, whereas there are only one global minima
solution at (0, 0, …, 0) with fmin � 0.

f (x) �
n∑

i�1

x2i for xi ∈ [−100, 100]

4 Results and Discussion on Benchmark Functions

Asmentioned earlier, themain focus of presenting this paper is to calibrate the useful-
ness of implementing SCA on large-scale problems. Therefore, the abovementioned
five well-known problems are chosen. For all the problems, 30 runs are performed.
The computer code was run on an i3 processor and 4 GB RAM using MATLAB
2015a. The parameters of SCA are kept the same as proposed by Mirjalili [23]. For
30 runs, theminimum,maximum, average value, and standard deviation of the objec-
tive function value are recorded in Tables 1, 2, 3, 4, and 5 corresponding to dimension
100–1000 for fixed 10,000 iterations. These values are plotted using box plots for
better visualization. The convergence curves for each dimension and for each func-
tion has been plotted to show the behavior as number of iterations increases. The
tables for each function are given as follows:

Table 1 and boxplot for Ackley function represent that dimension does not affect
the optimum values much. It changes a little only. This suggests that the problem
is solvable using SCA. In Tables 2 and 3, the performance of SCA is observed on
Rastrigin and Griewank functions. The boxplots for these functions with the tables
suggest that the results are good. As the dimension increases, it would be matter of
a worry a little. Table 4 represents the data of Rosenbrock function which clearly

Table 1 Average, standard deviation, maximum, minimum, and median objective function values
over 30 independent runs for Ackley function

Dimension Average Std. dev Max. Min. Median

100 1.72E+01 7.38E+00 2.06E+01 1.73E−03 2.05E+01

200 1.88E+01 4.80E+00 2.07E+01 3.34E+00 2.06E+01

300 1.78E+01 5.08E+00 2.08E+01 5.44E+00 2.07E+01

400 2.01E+01 2.33E+00 2.08E+01 1.15E+01 2.07E+01

500 1.94E+01 3.63E+00 2.08E+01 8.40E+00 2.08E+01

600 2.02E+01 2.90E+00 2.08E+01 4.87E+00 2.08E+01

700 1.96E+01 3.56E+00 2.08E+01 7.98E+00 2.08E+01

800 1.76E+01 4.92E+00 2.08E+01 8.35E+00 2.08E+01

900 1.86E+01 4.14E+00 2.08E+01 8.52E+00 2.08E+01

1000 1.92E+01 3.55E+00 2.08E+01 1.02E+01 2.08E+01
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Table 2 Average, standard deviation, maximum, minimum, and median objective function values
over 30 independent runs for Rastrigin function

Dimension Average Std. dev. Max. Min. Median

100 7.54E+01 6.24E+01 1.89E+02 7.06E−07 6.68E+01

200 3.71E+02 1.55E+02 8.57E+02 1.65E+02 3.29E+02

300 5.87E+02 3.26E+02 1.30E+03 4.03E+01 4.74E+02

400 8.40E+02 3.56E+02 1.75E+03 3.42E+02 8.53E+02

500 1.16E+03 5.60E+02 2.20E+03 3.44E+02 1.09E+03

600 1.12E+03 4.73E+02 2.28E+03 3.59E+02 1.03E+03

700 1.26E+03 4.79E+02 2.43E+03 4.58E+02 1.23E+03

800 1.35E+03 5.98E+02 2.94E+03 3.62E+02 1.30E+03

900 1.60E+03 6.48E+02 3.17E+03 7.61E+02 1.44E+03

1000 1.72E+03 9.18E+02 4.31E+03 4.10E+02 1.59E+03

Table 3 Average, standard deviation, maximum, minimum, and median objective function values
over 30 independent runs for Griewank function

Dimension Average Std. dev. Max. Min. Median

100 3.80E−01 4.14E−01 1.31E+00 3.42E−09 1.70E−01

200 7.67E+01 7.11E+01 3.49E+02 5.66E+00 5.43E+01

300 2.37E+02 9.47E+01 4.58E+02 1.11E+02 2.24E+02

400 4.32E+02 1.51E+02 7.51E+02 1.14E+02 4.16E+02

500 6.75E+02 3.10E+02 1.37E+03 2.60E+02 5.94E+02

600 1.09E+03 3.43E+02 1.66E+03 5.29E+02 1.11E+03

700 1.35E+03 5.13E+02 2.28E+03 2.91E+01 1.43E+03

800 1.65E+03 5.46E+02 3.08E+03 8.08E+02 1.60E+03

900 2.00E+03 6.87E+02 3.67E+03 7.47E+02 1.91E+03

1000 2.61E+03 9.14E+02 4.23E+03 7.57E+02 2.78E+03

Table 4 Average, standard deviation, maximum, minimum, and median objective function values
over 30 independent runs for Rosenbrock function

Dimension Average Std. dev. Max. Min. Median

100 4.60E+05 8.10E+05 3.58E+06 7.95E+02 1.04E+05

200 6.81E+07 3.76E+07 2.01E+08 7.38E+05 6.33E+07

300 2.98E+08 8.82E+07 5.00E+08 1.64E+08 3.10E+08

400 4.53E+08 1.04E+08 7.08E+08 2.63E+08 4.30E+08

500 8.14E+08 1.31E+08 1.06E+09 5.65E+08 8.15E+08

600 1.15E+09 2.11E+08 1.45E+09 6.79E+08 1.18E+09

700 1.32E+09 2.32E+08 1.65E+09 7.53E+08 1.36E+09

800 1.54E+09 2.38E+08 1.98E+09 1.08E+09 1.52E+09

900 1.81E+09 3.50E+08 2.43E+09 1.09E+09 1.79E+09

1000 2.18E+09 4.61E+08 2.95E+09 1.31E+09 2.25E+09
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Table 5 Average, standard deviation, maximum, minimum, and median objective function values
over 30 independent runs for Sphere function

Dimension Average Std. dev. Max. Min. Median

200 6.94E+03 5.74E+03 2.48E+04 3.81E+02 4.93E+03

300 3.00E+04 1.40E+04 6.21E+04 7.69E+03 2.81E+04

400 5.71E+04 2.51E+04 1.07E+05 2.98E+04 4.83E+04

500 7.59E+04 3.53E+04 1.52E+05 2.25E+04 6.60E+04

600 1.06E+05 4.00E+04 1.80E+05 4.13E+04 1.02E+05

700 1.50E+05 7.29E+04 3.68E+05 4.62E+04 1.38E+05

800 2.25E+05 6.32E+04 3.84E+05 1.32E+05 2.23E+05

900 2.37E+05 8.17E+04 3.79E+05 1.09E+05 2.35E+05

1000 2.76E+05 8.80E+04 4.69E+05 8.85E+04 2.62E+05

says that SCA cannot perform good for this function. So, this problem is not solvable
using SCA. Table 5 is for Sphere function. For this case, as the dimension increases
the results get poor.

Figure 2 represents the boxplots for different functions. Figures 3, 4, 5, 6, and 7
represent the convergence curves for the functions. These figures give a better insight
into the performance of SCA.

5 Gear Train Design Problem

The term gear ratio is used interchangeably with velocity ratio. For a pair of matching
gears, the velocity or gear ratio N is given by

N �
∣
∣
∣
∣
ωo

ωi

∣
∣
∣
∣ � ti

to

where ωo is the angular velocity of the output shaft and ωi is the angular velocity of
the input shaft. The ratio is, thus, inversely proportional to the number of teeth on
the input and output gears.

Now consider the gear train and it is desired to produce a gear ratio as close as
possible to 1/6.931. The gear ratio for the gear train may be written as

n � 1/6.931 � TdTb
TaT f
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function values over 30 independent runs for all five functions
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Fig. 3 Convergence curves for Ackley function over dimension 100–1000
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Fig. 4 Convergence curves for Griewank function over dimension 100–1000
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Fig. 5 Convergence curves for Rastrigin problem over dimension 100–1000
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Fig. 6 Convergence curve for Rosenbrock problem over dimension 100–1000
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Table 6 Objective function
values of gear train design
problem

Dimension 4

Average 3.57E−13

Std dev. 4.71617E−13

Max. 1.79E−12

Min. 4.59E−16

where Td , Tb, Ta, T f are the number of teeth on gears a, b, d, and f, respectively. If
we let the design variables be the number of teeth on each gear, we have the variables
in standard form and

�X � [X1, X2, X3, X4]
T � [

Td , Tb, Ta, T f
]T

where 12 ≤ X1, X2, X3, X4 ≤ 60

If we minimize the square of the difference between the desired gear ratio and the
current design gear ratio, the objective function can be expressed as

Min(X ) �
(

1

6.931
− TdTb

TaT f

)2

�
(

1

6.931
− X1X2

X3X4

)2

.

For this particular case, the problem is unconstrained in nature. The solution gener-
ated is listed in Table 6.

X1 X2 X3 X4

12 12 35.1342 28.4071

From the table of gear train design problem, it is clear that the problem is solvable
using the SCA (Fig. 8).

6 Conclusion

In this paper, the sine–cosine algorithm is studied for the problems of large dimen-
sions. Any algorithm cannot solve all the problems. In this work, it is shown that
not all five benchmark problems are solvable using this sine–cosine algorithm. A
set of five well-known benchmark functions is taken, and SCA code is run 30 times
for problem size 100–1000. The maximum number of iterations is 10,000. Based on
the presentation of numerical and graphical results, it is concluded that SCA could
easily solve all problems up to problem size 1000, except Rosenbrock and Sphere
functions for large dimensions. Further, the gear ratio of a real challenging problem
is optimized using SCA. It is therefore recommended to think of means to modify
or hybridize SCA so that it can solve Rosenbrock and Sphere functions for large
dimensions.
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Necessary and Sufficient Optimality
Conditions for Fractional
Interval-Valued Optimization Problems

Indira P. Debnath and S. K. Gupta

Abstract In this paper, we consider the class of fractional interval-valued program-
ming problems. Utilizing the concept of LU optimal solution, the solution concepts
of such type of problems have been discussed. Further, the Fritz John and KKT opti-
mality conditions for the nondifferentiable fractional interval-valued functions have
also been established.

Keywords Fractional problem · Interval-valued problem · LU optimal solution
KKT conditions · Fritz John conditions

1 Introduction

In recent years, several researchers have contributed in the development of interval
optimization problems. In general optimization problems, the parameters involved
in the objective function and the constraints functions are real numbers. However, in
real-world problems, the data involves much indistinctness, which makes the param-
eters involved in the objectives and the constraints uncertain. Interval optimization
problems deal with such problems where the uncertain parameters are represented in
the form of closed intervals both in the objective and the constraint set of functions.

In dealing with a multiobjective fractional programming problem, the paramet-
ric approach or some kind of transformation is utilized ending up with an equiva-
lent multiobjective programming problem [1]. Motivated by this fact, the class of
nondifferentiable fractional interval optimization problem has been studied in this
paper, which is further reduced to equivalent bi-objective nondifferentiable fractional
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interval optimizationproblems. In literature, numerouswork is availablewhichdevel-
ops the optimality conditions and duality relations in interval optimization problems,
few of them are [2–5]. In the meantime, differentiable interval-valued programming
problems have been an interesting topic of research. Taking the objective functions
as interval- and real-valued constraints, both differentiable, Jayswal et al. [6] devel-
oped the conditions for optimality and duality relations for such problems. By con-
structing the interval-valued Lagrangian function, Wu [7] established Lagrangian
interval-valued duality results. The duality relations between an interval optimiza-
tion problem and its Wolfe’s dual has been explored byWu [8]. The KKT conditions
for single-objective differentiable interval-valued problem has been obtained by Wu
[9] which further has been extended to the multiobjective case in Wu [10]. Further,
Osuna-Gmez et al. [11] developed new necessary and sufficient efficiency condi-
tions for multiobjective interval-valued problems under new generalized convexity
notions. On the other hand, Antczak [12] derived the Fritz John and KKT necessary
optimality conditions for a nonsmooth multiobjective interval-valued optimization
problem and established duality results for a multiobjective Mond–Weir dual prob-
lem under convexity assumptions. Very recently, Ghosh [13] proposed a Newton
method to obtain efficient solutions for the optimization problems with interval-
valued objective functions using the generalized Hukuhara differentiability of mul-
tivariable interval-valued functions.

If any of the interval objective function or the constraint function or both are not
differentiable, the problem is called nondifferentiable interval optimization prob-
lems. Recently, researchers have started exploring in the field of nondifferentiable
interval optimization problems. Using the concept of LU optimality, Sun and Wang
[14] studied the nondifferentiable interval optimization problems having real-valued
constraints. Recently, sufficient optimality conditions for a feasible point to be LU
optimal for a nonsmooth interval optimization problems under invexity assump-
tions have been studied by Jayswal et al. [15]. Further, Wolfe and Mond–Weir type
duality and the saddle point optimality conditions have also been discussed. Using
the concept of convexifactors in interval optimization problems, sufficient optimal-
ity conditions and duality results have been developed in Jayswal et al. [16] under
generalized δ∗-convexity assumptions. Eventually, Bhurjee and Panda [17] investi-
gated the necessary and sufficient optimality conditions and the duality results for an
interval optimization problem having both the objectives and the constraints nondif-
ferentiable. To the authors’s knowledge, no results of sufficient optimality conditions
have yet been available in the literature for the nondifferentiable fractional interval
optimization problems. Henceforth, the main focus of our work is to explore the
conditions for optimality for a nondifferentiable fractional interval-valued problem.

2 Problem Formulation and Preliminaries

Let X be a real vector space which is also locally convex having dual space X ′ and
let the open convex set S ⊆ X .
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Consider the nondifferentiable fractional interval-valued problem as

Min
[f L(x), f U (x)]
[gL(x), gU (x)]

s. t.
hi(x) ≤ 0, i = 1, 2, . . . ,m,

x ∈ S,

which further reduces to the problem

Min
[ f L(x)
gU (x)

,
f U (x)

gL(x)

]

s. t.
hi(x) ≤ 0, i = 1, 2, . . . ,m,

x ∈ S,

where

(i)
f L

gU
,
f U

gL
: X → R, f L(x), f U (x) ≥ 0 are continuous functions and convex, gL(x),

gU (x) > 0 are continuous functions and concave and x ∈ S,
(ii) hi : X → R, hi(x), x ∈ X are continuous functions, also convex for i = 1, 2 . . .m.

Set f L = pL, gU = qL, f U = pU , and gL = qU . The above problem reduces to

(NIVP)Min
[pL
qL

(x),
pU

qU
(x)

]

s. t.
hi(x) ≤ 0, i = 1, 2, . . . ,m,

x ∈ S.

Let χ be the feasible set for the problem (NIVP).
Before we proceed further, some preliminary concepts of the operations on inter-

vals need to be discussed:

Let
A

B
=

[aL
bL

,
aU

bU

]
and

C

D
=

[ cL
dL

,
cU

dU

]
be two fractional closed intervals with

al

bL
≤ aU

bU
, and

cL

dL
≤ cU

dU
, bL, bU , dL, dU 	= 0.

(i)
A

B
+ C

D
= [a

L

bL
+ cL

dL
,
aU

bU
+ cU

dU
],
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(ii) −A

B
= [−aU

bU
,−aL

bL
],

(iii)
A

B
− C

D
= A

B
+ (−C

D
) = [a

L

bL
− cU

dU
,
aU

bU
− cL

dL
]

(iv) β
(A
B

)
=

⎧⎪⎨
⎪⎩

[aL
bL

,
aU

bU

]
if β ≥ 0,

[aU
bU

,
aL

bL

]
if β < 0.

The ordering relation between two intervals
A

B
and

C

D
are defined as

(i)
A

B

LU

C

D
iff

aL

bL
≤ cl

dL
and

aU

bU
≤ cU

dU
.

(ii)
A

B
≺LU

C

D
iff

A

B

LU

C

D
and

A

B
	= C

D
, equivalently,

⎧⎪⎨
⎪⎩

aL

bL
<

cL

dL

aU

bU
≤ cU

dU
,

or

⎧⎪⎨
⎪⎩

aL

bL
≤ cL

dL

aU

bU
<

cU

dU
,

or

⎧⎪⎨
⎪⎩

aL

bL
<

cL

dL

aU

bU
<

cU

dU
,

Now, we will be using the following definitions throughout the paper.

Definition 2.1 [14] For the set S, the normal cone at x0 ∈ S is defined as

NS(x0) = {z ∈ X ′|(x − x0)
T z ≤ 0,∀x ∈ S}.

Definition 2.2 [14] η ∈ X ′ will be called as the subgradient of a convex function g
at a point x0 ∈ X , if

g(x) − g(x0) ≥ (x − x0)
Tη,∀x ∈ X .

Definition 2.3 η ∈ X ′ will be called as the subgradient of a strictly convex function
g at x0 ∈ X , if ∀x ∈ X ,

g(x) − g(x0) > (x − x0)
Tη, x 	= x0.

The set of all the subgradients of ψ at x0 is said to be the subdifferential of ψ at x0
and denoted by ∂ψ(x0).

Definition 2.4 [18] At x0 ∈ X , a functionalψ will be called as quasidifferentiable, if
there exists c+ψ(x0; h) and someweak∗ convex set P(x0) ⊆ X ′,which is also closed,
such that

c+ψ(x0; h) = max
x∗∈P(x0)

hT x∗, h ∈ X .

The set P(x0) is said to be quasidifferential.
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Remark 2.1 Ifψ is a continuous and a convex function at x0, then the above equation
gives P(x0) = ∂ψ(x0).

The following proposition for a single-objective function, given by Borwein [19],
leads an efficient role in our further discussion.

Proposition 2.1 Assume that 0 ≤ ϕ1 : X → R is convex and 0 < ϕ2 : X → R is

concave at x0, then δ(x) = ϕ1

ϕ2
is quasidifferential at x0 and

P(x0) = 1

ϕ2(x0)

[
∂ϕ1(x0) − δ(x0)∂ϕ2(x0)

]
,

where ∂ϕ2(x0) is the subdifferential of ϕ2 at x0.

Definition 2.5 A feasible point x̄ is said to be an LUoptimal solution for the problem
(NIVP) if there does not exist any x ∈ χ such that

[pL
qL

(x),
pU

qU
(x)

]
<LU

[pL
qL

(x̄),
pU

qU
(x̄)

]
.

Consider two independent fractional problems as given below:

(FP1)Min
pL

qL
(x)

subject to
pU (x) ≤ ωU (x̂)qU (x)

hi(x) ≤ 0, i = 1, 2, . . . ,m

x ∈ S

and

(FP2)Min
pU

qU
(x)

subject to
pL(x) ≤ ωL(x̂)qL(x)

hi(x) ≤ 0, i = 1, 2, . . . ,m

x ∈ S,

where

ωL(x̂) = pL

qL
(x̂) andωU (x̂) = pU

qU
(x̂).
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The following lemma connects the problem (NIVP) and the problems (FP1) and
(FP2).

Lemma 2.1 x̂ is an LU optimal solution of the problem (NIVP) iff x̂ is the optimal
solution for the problems (FP1) and (FP2).

Proof Let x̂ be optimal for the problems (FP1) and (FP2). On the contrary, suppose
that x̂ is not LU optimal for the problem (NIVP).

Therefore, ∃ an x ∈ χ in such a way that

[pL
qL

(x),
pU

qU
(x)

]
<LU

[pL
qL

(x̂),
pU

qU
(x̂)

]
.

Thus,wehave

⎧⎪⎪⎨
⎪⎪⎩

pL

qL
(x) ≤ pL

qL
(x̂)

pU

qU
<

pU

qU
(x̂),

or

⎧⎪⎪⎨
⎪⎪⎩

pL

qL
(x) <

pL

qL
(x̂)

pU

qU
≤ pU

qU
(x̂),

or

⎧⎪⎪⎨
⎪⎪⎩

pL

qL
(x) <

pL

qL
(x̂)

pU

qU
<

pU

qU
(x̂),

which is a contradiction to the fact that x̂ is the optimal solution for the problems
(FP1) and (FP2).

Conversely, suppose x̂ is an LU optimal solution for the problem (NIVP) and does
not solve (FP1).

Therefore, there exists x ∈ χ such that

pL

qL
(x) <

pL

qL
(x̂)

and
pU (x) ≤ ω(x̂)qU (x),

which, therefore, contradicts that x̂ is LU optimal for (NIVP). Hence, x̂ is optimal
for (FP1).

Using the similar arguments as above, it can also be shown that x̂ is an optimal
solution for (FP2). �

Following is an example illustrating Lemma 2.1.

Example 2.1 Consider the problem

(FPP)Min
F

G
(x) = [f L, f U ]

[gL, gU ] = [x2 + 1, 2x2]
[x + 1, x + 2] =

[x2 + 1

x + 2
,

2x2

x + 1

]

s. t.
−x + 1 ≤ 0.
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Therefore, the feasible set is χ = {x| − x + 1 ≤ 0, x ∈ C}. We see that the point
x = 1 is feasible. So, we have

pL

qL
(x = 1) = 2

3
and

pU

qU
(x = 1) = 1.

Next, we show that x = 1 is LU optimal for (FPP).

We have
pL

qL
(x) − pL

qL
(1) = 3x2 − 2x − 1

3(x + 2)

= 1

3(x + 2)

[(√
3x − 1√

3

)2 −
( 2√

3

)2]

= 1

3(x + 2)

[(√
3x + 1√

3

)
(
√
3x − √

3)
]

> 0,∀1 	= x ∈ χ

and
pU

qU
(x) − pU

qU
(1) = 2x2 − x − 1

x + 1

= 1

x + 1

[(√
2x − 1

2
√
2

)2 −
( 3

2
√
2

)2]

= 1

x + 1

[(√
2x + 1√

2

)
(
√
2x − √

2)
]

> 0,∀1 	= x ∈ χ.

Thus, we see that there exists no x ∈ χ such that

⎧⎪⎪⎨
⎪⎪⎩

pL

qL
(x) ≤ pL

qL
(x = 1)

pU

qU
<

pU

qU
(x = 1),

or

⎧⎪⎪⎨
⎪⎪⎩

pL

qL
(x) <

pL

qL
(x = 1)

pU

qU
≤ pU

qU
(x = 1),

or

⎧⎪⎪⎨
⎪⎪⎩

pL

qL
(x) <

pL

qL
(x = 1)

pU

qU
<

pU

qU
(x = 1),

Hence, the point x = 1 is LU optimal for (FPP).
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We now construct the problem (P1) and (P2) as follows:

(P1)′ Min
x2 + 1

x + 2

subject to
2x2 − x − 1 ≤ 0

−x + 1 ≤ 0

and

(P2)′ Min
2x2

x + 1

subject to
3x2 − 2x − 1 ≤ 0

−x + 1 ≤ 0

The optimal solutions for both the problems (P1)′ and (P2)′ are at x = 1.
Consider another example verifying Lemma2.1.

Example 2.2 Consider the problem

(FPP)1 Min
F

G
(x) = [f L, f U ]

[gL, gU ] = [x2 + y2, (x2 + y2)e(x+y)]
[x + 1, x + y + 1]

=
[ x2 + y2

x + y + 1
,
(x2 + y2)e(x+y)

x + 1

]

subject to
x − 2 ≤ 0

y − 2 ≤ 0

x ≥ 0, y ≥ 0.

Therefore, the feasible set is

χ = {(x, y)|x − 2 ≤ 0, y − 2 ≤ 0, x, y ≥ 0(x, y) ∈ C}.

We see that (x, y) = (0, 0) is a feasible solution. So, we have

f L

f U
((x, y) = (0, 0)) = 0 and

gL

gU
((x, y) = (0, 0)) = 0.
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Now, we show the point (x, y) = (0, 0) is LU optimal solution for (FPP)1.

We have
pL

qL
(x, y) − pL

qL
(0, 0) = x2 + y2

x + y + 1
> 0,∀x ∈ χ.

See Fig. 1.
and

pU

qU
(x, y) − pU

qU
(0, 0) = (x2 + y2)e(x+y)

x + 1
> 0,∀x ∈ χ.

See Fig. 2.

Fig. 1 Graph of over

Fig. 2 Graph of over
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Thus, we see that there exists no x ∈ χ such that

⎧⎪⎪⎨
⎪⎪⎩

pL

qL
(x, y) ≤ pL

qL
(0, 0)

pU

qU
(x, y) <

pU

qU
(0, 0),

or

⎧⎪⎪⎨
⎪⎪⎩

pL

qL
(x, y) <

pL

qL
(0, 0)

pU

qU
(x, y) ≤ pU

qU
(0, 0),

or

⎧⎪⎪⎨
⎪⎪⎩

pL

qL
(x, y) <

pL

qL
(0, 0)

pU

qU
(x, y) <

pU

qU
(0, 0).

Hence, (x, y) = (0, 0) is LU optimal for (FPP)1.
We now construct the problem (P1) and (P2) as follows:

(PP)1 Min
x2 + y2

x + y + 1

subject to
(x2 + y2)e(x+y) ≤ 0

x − 2 ≤ 0

y − 2 ≤ 0

x, y ≥ 0

and

(PP)2 Min
(x2 + y2)e(x+y)

x + 1

subject to
(x2 + y2) ≤ 0

x − 2 ≤ 0

y − 2 ≤ 0

x, y ≥ 0.

The optimal solutions for both the problems (PP)1 and (PP)2 are at (x, y) = (0, 0).
Hence, Examples 2.1 and 2.2 verify Lemma 2.1. �
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3 Necessary Conditions for Optimality

In this section, utilizing a deterministic approach for optimization problem, we
establish the necessary conditions for optimality for the nondifferentiable fractional
interval-valued problem (NIVP). For this, we state the following lemma which will
be needed in the sequel [18].

Lemma 3.1 x̂ is LU optimal solution for (NIVP) iff x̂ minimizes
pL

qL
(x) the constraint

set

Ni = {x ∈ X |p
U

qU
≤ pU

qU
(x̂), hi(x) ≤ 0}.

The deterministic optimization problem is considered as follows:

(D)Minϕ(x) = u(x)

v(x)

s. t.
νi(x) ≤ 0, i = 1, 2, . . . ,m

x ∈ S,

where the functions involved are assumed to be quasidifferential.

We state the theorem for the problem (D) as given in [18]:

Theorem 3.1 If x̂ solves the problem (D), then there exist μ̂0 ≥ 0, and μ̂ = (μ̂1, μ̂2,

. . . , μ̂m) ≥ 0, μ̂ 	= 0 such that

0 ∈ μ̂0P0(x̂) +
m∑
i=1

μ̂i∂νi(x̂) + NS(x̂)

μiνi(x̂) = 0, i = 1, 2, . . . ,m,

where

P0(x̂) = 1

v(x̂)
[∂u(x̂) − ϕ(x̂)∂v(x̂)].

Here, we see that x̂ is LU optimal for ϕ(x), having the set of constraints as

H = {x ∈ X |z ∈ S νi(x) ≤ 0, i = 1, 2, . . . ,m}.

Therefore, following Lemma 3.1, at x̂ the minimum value of
pL

qL
(x) is achieved

with the constraint
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F = {x ∈ H |p
U

qU
≤ pU

qU
(x̂)}

= {x ∈ H |pU (x) −
[pU
qU

(x̂)
]
qU (x) ≤ 0}.

In the following, we establish the Fritz John necessary conditions for optimality
for the nondifferentiable fractional interval-valued problem (NIVP).

Theorem 3.2 Suppose x̂ is an LU optimal solution for the problem (NIVP), then
there exists η = (ηL̂, ηÛ ) ≥ 0 and ξ̂ = (ξ̂1, ξ̂2, . . . , ξ̂m) ≥ 0, (ξ̂, ηL̂, ηÛ ) 	= 0, such
that, for i = 1, 2, . . . ,m,

0 ∈ ηL̂P1(x̂) + ηÛP2(x̂) +
m∑
i=1

ξ̂i∂hi(x̂) + NS(x̂)

ξ̂ihi(x̂) = 0,

where

P1(x̂) = 1

qL(x̂)
[∂pL(x̂) − ωL(x̂)∂qL(x̂)],

P2(x̂) = 1

qU (x̂)
[∂pU (x̂) − ωU (x̂)∂qU (x̂)],

ωL(x̂) = pL(x̂)

qL(x̂)
andωU (x̂) = pU (x̂)

qU (x̂)
.

Proof Since x̂ is LU optimal for (NIVP), therefore, by the Lemma 3.1, x̂ is optimal
for the fractional scalar objective nondifferentiable problem

(PP1)MinωL(x) = pL

qL
(x)

subject to
pU (x) − ωU (x̂)qU ≤ 0

hi(x) ≤ 0, i = 1, 2, . . . ,m

x ∈ S.

Thus, using Theorem 3.1, there exist η = (ηL̂, ηÛ ) ≥ 0 and μ̂ = (μ̂1, μ̂2, . . . , μ̂m) ≥
0, μ̂ 	= 0 such that
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0 ∈ ηL̂P1(x̂) + ηÛ
1 ∂[pU (x̂) − ωU (x̂)qU (x̂)] +

m∑
i=1

ξ̂i∂hi(x̂) + NS(x̂), (1)

ηÛ
1 (p

U (x̂) − ωU (x̂)qU (x̂)) = 0,

ξihi(x̂) = 0, i = 1, 2, . . . ,m.

Now,
∂[pU (x) − ωU (x̂)qU (x)] = qU (x)P2(x),

where

P2(x) = 1

qU (x)
[∂pU (x) − ωU (x̂)∂qU (x)].

Therefore, when x = x̂, we have

∂[pU (x̂) − ωU (x̂)qU (x̂)] = qU (x̂)P2(x̂).

From (1), we have

0 ∈ ηL̂P1(x̂) + ηÛ
1 q

U (x̂)P2(x̂) +
m∑
i=1

ξ̂i∂hi(x̂) + NS(x̂).

Let ηÛ
1 q

U (x̂) = ηÛ . Therefore, we have

0 ∈ ηL̂P1(x̂) + ηÛP2(x̂) +
m∑
i=1

ξ̂i∂hi(x̂) + NS(x̂),

ξihi(x̂) = 0, i = 1, 2, . . . ,m.

Hence, the required result. �
Before proceeding to obtain the KKT conditions for the problem (NIVP), it is essen-
tially important to discuss the Slater’s constraint qualification for the constraints of
(FP1) and (FP2).

Let x̂ ∈ X be an LU optimal solution of (NIVP).
Slater’s constraints qualification for (FP1) Assume ∃ x∗ ∈ X in such a way that
x∗ ∈ S, hi(x∗) < 0, i = 1, 2, . . . ,m and pU (x∗) − ωU (x̂)qU (x∗) < 0.
Slater’s constraint qualification for (FP2) Assume ∃ x∗ ∈ X in such a way that
x∗ ∈ S, hi(x∗) < 0, i = 1, 2, . . . ,m and pL(x∗) − ωL(x̂)qL(x∗) < 0.We shall use the
above constraint qualification, in the sequel, in order to derive the KKT conditions
for the nondifferentiable fractional interval optimization problem (NIVP), following
the one given by Borwein [19].

The KKT optimality condition due to Borwein [19] is as follows:
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Theorem 3.3 Let x̂ solves the problem (D) and also hi(x), i = 1, 2, . . . ,m satisfies
some constraint qualification. Then there exist ξ̂ = (ξ̂1, ξ̂2, . . . , ξ̂m) ≥ 0, ξ̂ 	= 0 such
that for i = 1, 2, . . . ,m,

0 ∈ P0(x̂) +
m∑
i=1

ξ̂i∂hi(x̂) + NS(x̂)

ξihi(x̂) = 0,

where

P0(x̂) = 1

v(x̂)
[∂u(x̂) − ϕ(x̂)∂v(x̂)].

Theorem 3.4 Let x̂ be an LU optimal solution for (NIVP) and both the Slater’s
constraint qualification for (FP1) and (FP2) are satisfied, then there exist η =
(ηL̂, ηÛ ) > 0 and ξ̂ = (ξ̂1, ξ̂2, . . . , ξ̂m) ≥ 0, such that i = 1, 2, . . . ,m,

0 ∈ ηL̂P1(x̂) + ηÛP2(x̂) +
m∑
i=1

ξ̂i∂hi(x̂) + NS(x̂)

ξ̂ihi(x̂) = 0,

where

P1(x̂) = 1

qL(x̂)
[∂pL(x̂) − ωL(x̂)∂qL(x̂)],

P2(x̂) = 1

qU (x̂)
[∂pU (x̂) − ωU (x̂)∂qU (x̂)],

ωL(x̂) = pL(x̂)

qL(x̂)
andωU (x̂) = pU (x̂)

qU (x̂)
.

Proof Let x̂ be LU optimal for (NIVP). Therefore, x̂ is optimal for the problems

(FP1) and (FP2). Hence, using Lemma 3.1, at x̂ the minimum value of
pL

qL
(x) is

obtained with the constraint

NL = {x ∈ S|pU (x) − ωU (x̂)qU (x) ≤ 0, hi(x) ≤ 0, i = 1, 2, . . . ,m},

and
pU

qU
(x) with the constraint set

NU = {x ∈ S|pL(x) − ωL(x̂)qL(x) ≤ 0, hi(x) ≤ 0, i = 1, 2, . . . ,m}.
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By Theorem 3.3, we have nonnegative constraints ρLk , ρUk , k = L,U with ρLL =
ρUU = 1 and ν1k , ν2k , . . . , νmk , k = L,U such that

0 ∈ ρLkP1(x̂) + ρUkP2(x̂) +
m∑
i=1

νik∂hi(x̂) + NS(x̂) (2)

and
ξikhi(x̂) = 0, i = 1, 2, . . . ,m (3)

for every k = L,U .
Summing (2) and (3) over k = L,U , we get

0 ∈ (1 + ρLU )P1(x̂) + (1 + ρUL)P2(x̂) + 2NS(x̂) +
m∑
i=1

(νiL + νiU )∂hi(x̂) = 0,

(4)
(νiL + νiU )hi(x̂) = 0, i = 1, 2, . . . ,m. (5)

Setting η̂L = 1 + ρLU > 0, η̂U = 1 + ρUL > 0 and ξ̂i = (νiL + νiU ) ≥ 0.
Thus, from (4) and (5), it yields

0 ∈ η̂LP1(x̂) + η̂UP2(x̂) +
m∑
i=1

ξ̂i∂hi(x̂) + NS(x̂) = 0,

ξ̂ihi(x̂) = 0. i = 1, 2, . . . ,m.

Hence, the KKT conditions for the problem (NIVP) have been proved. �

4 Sufficient Conditions for Optimality

In this section, we derive the sufficient conditions for optimality for the problem
(NIVP).

First,we establish theFritz John conditions for sufficiency for the problem (NIVP).

Theorem 4.1 Suppose that there exist η = (ηL̂, ηÛ ) ≥ 0, ξ̂ = (ξ̂1, ξ̂2, . . . , ξ̂m) ≥ 0,
and (η̂, ξ̂) 	= 0, such that

0 ∈ ηL̂P1(x̂) + ηÛP2(x̂) +
m∑
i=1

ξ̂i∂hi(x̂) + NS(x̂), (6)

ξ̂ihi(x̂) = 0, i = 1, 2, . . . ,m, (7)
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where P1(x̂) and P2(x̂) are defined as in Theorem 3.2. Further, assume that

(i) pL, pU ,−qL,−qU are convex.
(ii) hi are convex functions for all i = 1, 2, . . . ,m, i 	= k, also for i = k, ξ̂k > 0, and

hk is strict convex.

Then, x̂ is LU optimal for (NIVP).

Proof From the fact that

P1(x̂) = 1

qL(x̂)
[∂pL(x̂) − ωL(x̂)∂qL(x̂)],

P2(x̂) = 1

qU (x̂)
[∂pU (x̂) − ωU (x̂)∂qU (x̂)],

we have from (6) 0 ∈ ηL̂ 1

qL(x̂)
[∂pL(x̂) − ωL(x̂)∂qL(x̂)] + ηÛ 1

qU (x̂)
[∂pU (x̂) − ωU

(x̂)∂qU (x̂)]
+

m∑
i=1

ξ̂i∂hi(x̂) + NS(x̂).

Now, there exists uL̂1 ∈ ∂pL(x̂), uÛ2 ∈ ∂pU (x̂), vL̂1 ∈ ∂qL(x̂), vÛ2 ∈ ∂qU (x̂) and ŵi ∈
∂hi(x̂), i = 1, 2, . . . ,m and ẑ ∈ NS(x̂) in such a way that

ηL̂ 1

qL(x̂)
[uL̂1 − ωL(x̂)vL̂1 ] + ηÛ 1

qU (x̂)
[uÛ2 − ωU (x̂)vÛ2 ] +

m∑
i=1

ξ̂iŵi + ẑ = 0,

which, in turn, yields

(x − x̂)T
[
ηL̂ 1

qL(x̂)
[uL̂1 − ωL(x̂)vL̂1 ] + ηÛ 1

qU (x̂)
[uÛ2 − ωU (x̂)vÛ2 ] +

m∑
i=1

ξ̂iŵi + ẑ
]
= 0.

(8)

We now claim that x̂ is LU optimal for the problem (NIVP). On the contrary, suppose
that x̂ is not a LU optimal solution for the problem (NIVP). Then there exists x ∈ X0

such that

⎧⎪⎪⎨
⎪⎪⎩

pL

qL
(x) ≤ pL

qL
(x̂)

pU

qU
<

pU

qU
(x̂),

or

⎧⎪⎪⎨
⎪⎪⎩

pL

qL
(x) <

pL

qL
(x̂)

pU

qU
≤ pU

qU
(x̂),

or

⎧⎪⎪⎨
⎪⎪⎩

pL

qL
(x) <

pL

qL
(x̂)

pU

qU
<

pU

qU
(x̂),

which imply
pL(x) − ωL(x̂)qL(x) ≤ pL(x̂) − ωL(x̂)qL(x̂)

pU (x) − ωU (x̂)qU (x) < pU (x̂) − ωU (x̂)qU (x̂)
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or
pL(x) − ωL(x̂)qL(x) < pL(x̂) − ωL(x̂)qL(x̂)

pU (x) − ωU (x̂)qU (x) ≤ pU (x̂) − ωU (x̂)qU (x̂)

or
pL(x) − ωL(x̂)qL(x) < pL(x̂) − ωL(x̂)qL(x̂)

pU (x) − ωU (x̂)qU (x) < pU (x̂) − ωU (x̂)qU (x̂).

From hypothesis (i), it implies that pL − ωL(x̂)qL and pU − ωU (x̂)qU are convex,
and therefore, we have

(x − x̂)T [uL̂1 − ωL(x̂)vL̂1 ] ≤ 0

(x − x̂)T [uÛ2 − ωU (x̂)vÛ2 ] < 0,

or,
(x − x̂)T [uL̂1 − ωL(x̂)vL̂1 ] < 0

(x − x̂)T [uÛ2 − ωU (x̂)vÛ2 ] ≤ 0,

or,
(x − x̂)T [uL̂1 − ωL(x̂)vL̂1 ] < 0

(x − x̂)T [uÛ2 − ωU (x̂)vÛ2 ] < 0.

From the fact that ηL̂ 1

qL(x̂)
≥ 0 and ηÛ 1

qU (x̂)
≥ 0, we have

(x − x̂)T
[
ηL̂ 1

qL(x̂)
(uL̂1 − ωL(x̂)vL̂1 ) + ηÛ 1

qU (x̂)
(uÛ2 − ωU (x̂)vÛ2 )

]
≤ 0. (9)

Since ξ̂i ≥ 0, hi(x̂) ≤ 0, so ξ̂ihi(x̂) = 0, i = 1, 2, . . . ,m, therefore, we obtain

ξ̂ihi(x) ≤ ξ̂ihi(x̂). (10)

Hypothesis (ii) and (9) gives

(x − x̂)T
m∑
i=1

ξ̂iŵi < 0. (11)

Again,
ẑ ∈ NS(x̂) ⇒ (x − x̂)T ẑ ≤ 0. (12)
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Summing up (9), (11), and (12), we have

(x − x̂)T
[
ηL̂

1

qL(x̂)
[uL̂1 − ωL(x̂)vL̂1 ] + ηÛ

1

qU (x̂)
[uÛ2 − ωU (x̂)vÛ2 ] +

m∑
i=1

ξ̂iŵi + ẑ
]
< 0,

which contradicts (8).
Hence, x̂ is an LU optimal solution for the problem (NIVP). �

Now, we derive the KKT sufficient conditions for the problem (NIVP).

Theorem 4.2 Suppose that for a feasible point x̂, there exists (ηL̂, ηÛ ) > 0, ξ̂ =
(ξ̂1, ξ̂2, . . . , ξ̂m) ≥ 0, not all ξ̂i = 0, i = 1, 2, . . . ,m such that for i = 1, 2, . . . ,m,

0 ∈ ηL̂P1(x̂) + ηÛP2(x̂) +
m∑
i=1

ξ̂i∂hi(x̂) + NS(x̂), (13)

ξ̂ihi(x̂) = 0, (14)

where P1(x̂) and P2(x̂) are defined as in Theorem 3.2. Further, assume that

(i) pL, pU ,−qL,−qU , hi, i = 1, 2, . . . ,m are convex.

Then, x̂ is an LU optimal solution of (NIVP).

Proof Since ηL̂ 1

qL(x̂)
> 0 and ηÛ 1

qU (x̂)
> 0, we have from (8)

(x − x̂)T
[
ηL̂ 1

qL(x̂)
(uL̂1 − ωL(x̂)vL̂1 ) + ηÛ 1

qU (x̂)
(uÛ2 − ωU (x̂)vÛ2 )

]
< 0. (15)

From hypothesis (ii), i = 1, 2, . . . ,m gives from (15)

(x − x̂)T
m∑
i=1

ξ̂iŵi ≤ 0. (16)

Adding (15) and (16), we have

(x − x̂)T
[
ηL̂

1

qL(x̂)
[uL̂1 − ωL(x̂)vL̂1 ] + ηÛ

1

qU (x̂)
[uÛ2 − ωU (x̂)vÛ2 ] +

m∑
i=1

ξ̂iŵi + ẑ
]
< 0,

which contradicts (8).
Hence, x̂ is an LU optimal solution for the problem (NIVP). �
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Application of Constrained Spider
Monkey Optimization to Solve Portfolio
Optimization Problem

Kavita Gupta, Kusum Deep and Atulya K. Nagar

Abstract Portfolio optimization problem has attracted the attention of researchers
since ages because of its practical application. This problem is constrained in nature
and deals with answering the question what amount of wealth should be invested in a
particular asset. In this paper, portfolio optimization problem has been solved using
Constrained Spider Monkey Optimization (CSMO) algorithm. The objective behind
this work is the application of CSMO for solving a real-world optimization problem.
For the experiment purpose, basic mean-variance optimization model is considered.

Keywords Constrained spider monkey optimization · Portfolio optimization
Metaheuristics · Markowitz model

1 Introduction

A portfolio is a collection of two or more risky/riskless assets held by an institution
or an individual. Suppose a user wants to invest money in n assets. Then, its portfolio
is represented by n-tuple

(
x1, x2, . . . , xn

)
, where xi denotes the amount of fund to

be invested in the ith asset. Each of the assets in a portfolio has a return and risk
associated with them. Portfolio optimization problem deals with maximizing the
profitable returns while minimizing the associated risk of the portfolio. Markowitz
[7] was the first to develop an optimization model based on this idea. Since then,
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various optimization models which are variations of basic Markowitz’s model have
been developed. Various metaheuristics like genetic algorithm [2], particle swarm
optimization [3, 10], artificial bee colony [9], bacterial foraging optimization [8],
etc. have been applied to solve different models of portfolio optimization problem.

The rest of the paper is organized as follows: In Sect. 2, mean-variance optimiza-
tion model has been discussed. In Sect. 3, a brief introduction of constrained spider
monkey optimization has been provided. In Sect. 4, experimental setup is provided.
In Sect. 5, the experimental results have been discussed. The chapter is concluded in
Sect. 6.

2 Mean-Variance Model

Markowitz mean-variance model [6] is the basic model for solving portfolio opti-
mization problem. Mathematical formulation for the mean-variance model is given
below:

Let return of the ith asset is denoted by a random variable say Ri , xi is the amount
of fund to be invested in ith asset.

Asset return is the amount of return which can be calculated for a given period of
time. Mathematically, it may be defined as

Return � (closing price of current period − closing price of previous period +
dividend collect during the period)/(closing price of previous period)

rit � (pit ) − (pit−1) + (dit )

(pit−1)
,

where pit is the closing price of the asset during the period t,
dit is the dividend collected during the period.

The aim is to minimize the expected return on the portfolio and maximize the
risk.

r(x1, x2, . . . , xn) � E

[
n∑

i�1

Ri xi

]

�
n∑

i�1

E[Ri ]xi �
n∑

i�1

ri xi , (1)

where ri is the expected return on the ith asset and ri � E[Ri ].

ri � E[Ri ] � 1

T

T∑

t�1

rit (2)

The covariance σi j between the asset returns Ri and R j can be expressed as
follows:
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σi j � E
[
(Ri − E[Ri ])

(
R j − E

[
R j

])] � 1

T

T∑

t�1

(rit − ri )
(
r jt − r j

)
. (3)

The portfolio risk is characterized by the variance of returns on that portfolio. The
variance of return on a portfolio is then expressed as follows:

v(x1, x2, . . . , xn) �
n∑

i�1

n∑

j�1

σi j xi x j . (4)

The mathematical formulation of the Markowitz’s mean-variance optimization
model is given in model M(1).

M(1) min f (x) �
n∑

i�1

n∑

j�1

σi j xi x j ,

subject to

n∑

i�1

ri xi � r0 (5)

n∑

i�1

xi � 1 (6)

xi ≥ 0, i � 1, 2, . . . , n. (7)

From the model of the problem M(1), it can be seen that it is a constrained
optimization problem with equality constraints only. Objective function f is actually
the risk v(x1, x2, . . . , xn). r0 in Eq. (5) denotes the amount of return desired by
the investor. Equation (5) makes sure that the expected portfolio return should be
equal to the amount of return desired by the investor. Equation (6) represents the
capital budget constraint on the assets. Equation (7) makes sure that the value of
proportion to be invested in an asset should be nonnegative. From these constraints,
it can be concluded that the value of r0 cannot be chosen arbitrarily. Though a high
portfolio return is always desirable, aspiring it to be very high can make the problem
infeasible. The value of r0 lies between rmin and rmax. Here, rmin is the portfolio
return corresponding to the minimum risk. This value can be obtained by solving
the problem described in model M (1) after removing the constraint represented by
Eq. (5). rmax is the maximum feasible value of r0 and it is given by the maximum
mean return among the mean return of all the assets.
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3 Constrained Spider Monkey Optimization (CSMO)

Spidermonkey optimization [1] is a newmember of the swarm intelligent algorithms.
Thebasic SMOcan solve unconstrained optimization problemsonly.Deb’s technique
[4] has been used for constraint handling inConstrainedSpiderMonkeyOptimization
(CSMO) [5]. Deb’s technique follows the three feasibility rules:

• Between a feasible solution and an infeasible solution, a feasible solution will be
chosen.

• Between two feasible solutions, the one with higher fitness value will be chosen.
• Between two infeasible solutions, the one with less constraint violation will be
chosen.

The main steps of CSMO are given below:
Initialization: In CSMO, the initial swarm is randomly generated between lower

and upper bounds of the decision variables using uniform distribution. Since there is
no assumption about the feasibility of the initial swarm, both feasible and infeasible
solutions appear in the initial swarm.

Algorithm 1: Calculation of fitness value of solutions

For i = 1 to SwarmSize Do

If (violationi = 0) Thenitnessi = f(SMi)
Else 

itnessi =  fworst + violationj
m

j=1
End If

End For 

Local Leader Phase: This phase allows the spider monkeys to update their posi-
tions based on the perturbation rate. A new position for a spider monkey is generated
using its current position, position of the local leader and position of a randomly
selected member of the group. The fitness value of newly generated position of a
spider monkey is calculated and compared with its old position. This new position is
adopted only if it is better than the old one. Algorithm 2 provides the update equation
and execution steps of this phase.
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Algorithm 2: Local Leader Phase

For k = 1 to NumberOfGroups Do

For i = Index[k][0] to Index[k][1] Do

For j = 1 to Dim Do

If Rand (0, 1) ≥ Pr Thensmnewj = smij + Rand(0,1) × llkj − smij +Rand(−1,1) × (smrj − smij )
Else smnewj = smij
End If

End For

Apply Deb’s Three Feasibility Rules on SMnew and SMi to select the better solution

End For

End For

Global Leader Phase: This phase allows the spider monkeys to update their
position based on their probability. This probability is fitness proportionate which
indicates that the probability of a highly fit spider monkeywill be higher as compared
to low fit spidermonkeys. In this phase, a new position for the selected spidermonkey
is generated based on its current position, position of the global leader and position
of the randomly selected member of the group. The update equation and execution
steps of this phase are provided in Algorithm 3.
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Algorithm 3: Global Leader Phase

For k = 1 to NumberOfGroups Do

GroupSize = size of kth group

counter = 0, i = 1

While (counter<SswarmSize) Do

For i = 1 to GroupSize Do

If (Rand(0,1)< probabilityi) Then

counter = counter+1

Randomly select j from {1,2,…, Dim} 

Randomly select SMr from kth groupsmnewj = smij + Rand(0,1) × glj − smij +Rand(−1,1) × (smrj − smij )
End If

Apply Deb’s Three Feasibility Rules on  SMnew and SMi to select the better solution

End For

i = i+1

If (i = SwarmSize) Then 

i = 1

End If

End While

End For

Global Leader Learning Phase: This phase is meant for the selection of global
leader of the swarm in each iteration. The spider monkey with best fitness value
is selected as the global leader of the swarm. Algorithm 4 provides the steps for
selecting the global leader.

Algorithm 4: Global Leader Learning Phase

//Apply Deb’s Three Feasibility Rules to update position of the global leader of the swarm

If (position of global leader is updated from previous position) Then

GlobalLimitCount = 0

Else 

GlobalLimitCount = GlobalLimitCount +1

End If

Local Leader Learning Phase: This phase is meant for selecting the local leader
of every group. The spider monkey with best fitness value in every group is selected
as the local leader of that group. The execution procedure of this phase is explained
in Algorithm 5.
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Algorithm 5: Local Leader Learning Phase

For k =1 to NumberOfGroups do

// Apply Deb’s Three Feasibility Rules to update position of the leader of the group

If (position of local leader is updated from previous position) ThenLocalLimitCountk = 0

Else LocalLimitCountk= LLCk + 1

End If

End For

Local Leader Decision Phase: In this phase, the groups are re-initialized if their
local leaders are not making progress for the specified local leader limit. The update
equation and execution steps of this phase are explained in Algorithm 6.

Algorithm 6: Local Leader Decision phase

For k = 1 to NumberOfGroups Do

If (LocalLimitCountk> LocalLeaderLimit) ThenLocalLimitCountk = 0

For i =Index[k][0] to Index[k][1] Do

For j =1 to Dim Do

If (Rand(0, 1) ≥ Pr) Then= + (0,1) × ( − )
Else =  + (0,1) × − + (0,1) × ( − )
End If

End For

End For

End If

End For

Global LeaderDecisionPhase: This phase ismeant to check if there is stagnation
in the swarm based on the specified global leader limit. Algorithm 7 explains the
procedure for executing this phase.
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Algorithm 7: Global Leader Decision phase

If (GlobalLimitCount > GlobalLeaderLimit) Then

GlobalLimitCount = 0

If (NumberOfGroups < MaximumGroups) Then

NumberOfGroups = NumberOfGroups +1

Else 

NumberOfGroups = 1

End If

Apply Local Leader Learning Phase

End If

Pseudocode of CSMO is provided in Algorithm 8.

Algorithm 8: Pseudocode for CSMO

Generate the initial swarm using uniform distribution

Initialize LocalLeaderLimit, GlobalLeaderLimit, Pr, MaximumGroups

Set Iteration = 0

Apply Algorithm 1 to Calculate fitness value of each spider monkey in the swarm

Apply Deb’s three feasibility rules to select global leader and local leaders 

While (termination criterion is not fulfilled) do

//Apply Algorithm 2

//Calculate Probability of each spider monkey

//Apply Algorithm 3

//Apply Algorithm 4

//Apply Algorithm 5

// Apply Algorithm 6

// Apply Algorithm 7

Iteration = iteration +1

End While
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4 Experimental Setup

4.1 Parameter Setting and Termination Criteria

The setting of control parameters has been adopted from Gupta et al. [5].
SwarmSize�50
Perturbation rate (Pr)� linearly increasing ([0.1, 0.4])
Maximum number of groups (MaxGroups)�5
LocalLeaderLimit�1500
GlobalLeaderLimit�50
Total number of runs�25
Stopping criterion�20,000 function evaluations

4.2 Optimization Model and Input Data

The mean-variance model described in Sect. 2 has been taken for the experiment.
In order to understand the working of this portfolio optimization model, the data
of a real-world problem has been taken for illustration purpose. The retail industry
has been chosen for experiment because it contributes a big percentage of the gross
domestic income. The 11 retail companies, listed onNational StockExchange (NSE),
have been selected as assets to construct portfolios. The list of these companies has
been provided in Table 1. Our sample data includes the closing prices of these 11
assets from 1 April 2015 to 31 March 2016. The reason behind choosing these
particular 11 companies is that our sample data has been extracted from Capitaline
and these were the only companies listed on NSE during the financial year 2015–16
whose data was available.

Average monthly returns of these 11 assets are provided in Table 2. The expected
return, variance and covariance for these assets have been provided in Tables 3 and
4, respectively.

Using the optimization modelM(1) and entries in Tables 2, 3 and 4 as input data,
the optimization model M(2) is formulated:

M(2)min f(x) � 1.28733x1x1 + 0.32512x1x2 + 0.96732x1x3
+ 0.30506x1x4 + 0.44927x1x5 + 0.39730x1x6
+ 0.33890x1x7 + 0.20332x1x8 + +0.22915x1x9
+ 0.42335x1x10 + 0.31637 * x1x11 + 0.84620 * x2x2
+ 0.08426 * x2x3 + 0.04178x2x4 + 0.16766x2x5
+ 0.32539x2x6 + 0.02563x2x7 + 0.27929x2x8 − 0.20748x2x9
− 0.03959x2x10 + 0.07751x2x11 + 1.24506x3x3 + 0.53418x3x4
+ 0.51028x3x5 + 0.09637x3x6 + 0.27569x3x7
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Table 1 List of retail companies (assets)

Company NSE name Allocation of funds

Aditya Birla Fashion & Retail Ltd. ABFRL x1

Cantabil Retail India Ltd. CANTABIL x2
Future Enterprises-DVR FELDVR x3

Future Enterprises Ltd. FEL x4

Future Lifestyle Fashions Ltd. FLFL x5

Provogue (India) Ltd. PROVOGE x6

Shoppers Stop Ltd. SHOPERSTOP x7

Store One Retail India Ltd SORILINFRA x8
Trent Ltd. TRENT x9
V2 Retail Ltd. V2RETAIL x10
VMart Retail Ltd. VMART x11

+ 0.11821x3x8 + 0.23926x3x9 + 0.19023x3x10 − 0.04089x3x11
+ 0.51375x4x4 + 0.41437x4x5 + 0.13632x4x6
+ 0.03128x4x7 + 0.10967x4x8 + 0.09818x4x9 + 0.24445x4x10
+ 0.00358x4x11 + 0.45578x5x5 + 0.24846x5x6
+ 0.07455x5x7 + 0.26494x5x8 + 0.07977x5x9 + 0.28799x5x10
+ 0.11858x5x11 + 0.64313x6x6 + 0.04808x6x7
+ 0.02623x6x8 + 0.00280x6x9 + 0.35585x6x10 + 0.42780x6x11
+ 0.14967x7x7 + 0.07379x7x8 + 0.15905x7x9
+ 0.03754x7x10 + 0.09046x7x11 + 0.84003x8x8 + 0.00414 * x8x9
+ 0.40828x8x10 + 0.05099x8x11 + 0.31191x9x9
+ 0.06612x9x10 + 0.12249x9x11 + 0.97290x10x10
+ 0.30167x10x11 + 0.44687x11x11,

Such that

x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 � 1 (8)

0.1617x1 + 0.2972x2 + 0.4546x3 + 0.1723x4 + 0.1189x5 + 0.0486x6
−0.0329x7 + 0.3958x8 + 0.0515x9 + 0.2553x10 − 0.0561x11 � r0

(9)

xi ≥ 0, i � 1, 2, . . . , n. (10)
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Table 3 Expected return of
assets

Company Average monthly return

ABFRL 0.16171

CANTABIL 0.29716

FELDVR 0.45460

FEL 0.17230

FLFL 0.11887

PROVOGE 0.04858

SHOPERSTOP −0.03290

SORILINFRA 0.39580

TRENT 0.05153

V2RETAIL 0.25534

VMART −0.05611

5 Discussion of Experimental Results

In order to solve the model M(2), the expected value of return, i.e. r0, should be
assigned. In Sect. 2, it has been mentioned that value of r0 lies between rmin and rmax.
So, the above problem has been solved in two parts.

In solution phase I, the range of r0 is determined. rmin is calculated by omitting the
constraint represented by Eq. (5) from modelM(2) and solving the remaining model
using CSMO by using the parameter setting and termination criterion described in
Sect. 4.1 of Sect. 4. The computational result has been provided in Table 5 and based
on this result, the value of rmin can be calculated using Eq. (5). rmin is 0.114457.
From Table 3, it can be seen that rmax is 0.4546. Thus, we have obtained the range
in which r0 lies.

In solution phase II, the objective function value, i.e. risk, has been minimized
for different values of r0 between rmin and rmax. Ten uniform random numbers have
been generated in [rmin, rmax]. These ten random numbers give ten different values
of r0. By using these ten values of r0 in Eq. (5) one by one, ten different portfolios
have been generated by solving the model M(2) using CSMO and the results have
been summarized in Table 6. This table contains the expected portfolio return, the
proportion of fund to be invested in a particular asset and the associated risk. It can
be observed that the portfolio risk level increases with an increase in the expected
portfolio return. This relationship always holds in portfolio optimization problem.
The average execution time taken by CSMO per run (in seconds) is given in Table 7.
From the table, it can be seen that the execution time for generating these 10 portfolios
is very small.

The efficient frontier of the obtained portfolios has been shown in Fig. 1. X-axis
represents the different values of expected returns, i.e. r0, and Y -axis represents the
associated risk presented in Table 7. It can also be seen that as the level of expected
return increases, the level of risk also increases.
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Table 5 Result of portfolio
selection using variance

Risk Allocation Value

0.12251 x1 0

x2 0.03842

x3 0

x4 0.22077

x5 0.02689

x6 0.03302

x7 0.28191

x8 0.09185

x9 0.03031

x10 0.1512

x11 0.12555

Fig. 1 Efficient frontier
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6 Conclusions

CSMO has been applied to solve Markowitz’s mean-variance model. The above-
explained procedure to solve the portfolio optimization problem can be helpful in two
ways. First, if the investor has a particular choice for the expected return in advance
without having the concern for the associated risk, then the optimal portfolios can be
generated directly using the solution phase II. If the investor does not have a particular
choice and want to see different possible portfolio returns with associated risks, then
the problem can be solved using the above method in which various portfolios can be
generated and the investor can choose any portfolio according to his/her choice. In
Markowitz’s mean-variance model, variance has been taken as a measure for risk. In
future, other optimization models based on different risk measures can be considered
for experiment.

In this paper, the results of CSMO have not been compared with any other meta-
heuristic algorithms. The reason which is explained in the forthcoming lines depends
upon the case when the investor does not have a predefined choice of portfolio return.
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Table 7 Average execution
time taken by CSMO per run
(in seconds)

Portfolio Execution time

Portfolio 1 0.14

Portfolio 2 0.13624

Portfolio 3 0.13688

Portfolio 4 0.14124

Portfolio 5 0.13688

Portfolio 6 0.13816

Portfolio 7 0.13812

Portfolio 8 0.14008

Portfolio 9 0.14064

Portfolio 10 0.14376

It can be seen from the solution procedure explained in Sect. 5 that the final solution
is obtained after solution phase II and the input for the solution phase II is generated
from the results of solution phase I. So, we cannot compare different algorithms
here because the results generated by different algorithms after solution phase I will
be different. Consequently, different algorithms will have different input values for
solution phase II and it is not fair to compare the results if the input values are differ-
ent. But if an investor has a particular expected return in mind, then comparison can
be made among different algorithms. But this case has been avoided here because it
can be seen as biasness towards the selection of input value.

Also, the model considered for solving portfolio optimization model is the
Markowitz’s mean-variance model which is the most basic model which has limita-
tions also [6]. There are various other advanced models which overcome the limita-
tions of this basic portfolio optimization model with better risk measures for solving
portfolio optimization problems [2, 3, 8–10]. But there are few reasons for choosing
this optimization model for experiment in comparison to various other advanced ver-
sions of portfolio optimization models. Portfolio optimization problem is one of the
most prominent optimization problems with varying complexities depending upon
the portfolio optimization model under consideration. So, application of SMO for
solving it will introduce it to the researchers working in the field of finance for using
this algorithm for different types of financial optimization problems. Moreover, in
order to develop SMOas a powerful tool for solving portfolio optimization problems,
it is necessary to study its behaviour on the basic portfolio optimization models. This
study will help in recognizing the strengths and limitations of SMO in solving these
problems. These limitations can be overcome, and better versions of SMO can be
designed for solving different types of financial problems.
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Optimal Configuration Selection
in Reconfigurable Manufacturing System

Kamal Kumar Mittal, Pramod Kumar Jain and Dinesh Kumar

Abstract Reconfigurable manufacturing system (RMS) is considered as a major
resource of providing variable production capacities and capabilities by different
manufacturing companies. For different products needed in small quantities and
with short delivery lead time, this is achieved through reconfiguring the system
elements over the time. In the present work, various characteristics of RMS have
been discussed and formulated. Weighted sum theory has been used for the selection
of best manufacturing system. An illustration is given to analyze the applicability of
the proposed methodology on a given system.

Keywords Reconfigurable manufacturing system (RMS) · Products
Reconfigurable machine tool (RMT) · Convertibility · Diagnosability

1 Introduction

For quick production of products with high gain and low cost, the conventional
manufacturing systems are not sufficient in a volatile and competitive market. To
overcome these issues and become more responsive, a new type of manufacturing
system, i.e., reconfigurable manufacturing system (RMS), has been proposed. Koren
et al. [10] have described a reconfigurablemanufacturing system as ideally consisting
of the following characteristics:modularity, convertibility, diagnosability, scalability,
customization, and integrability.
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Since global market mostly focuses on outsource or insource production, it can
rapidly and cost-efficiently react to random changes in the factorymanagement. Each
part of product needed different operations to give it final shape. These operations are
done on single, double or multiple machines. The arrangement of basic modules and
auxiliary modules of single, double or multiple machines in the system will develop
the different configurations.

For global competition, the reconfigurability can be achieved at the system level
and also at the machine level. At the system level, it can be achieved by changing
the serial configuration into parallel configuration. Gupta et al. [6] have defined a
specific system configuration for producing parts. At the machine level, it can be
achieved by changing or readjusting the auxiliary modules. The index for combining
the RMS characteristics decides which parameter needsmore attention for increasing
the reconfigurability of the RMS. A weighted sum theory is used to combine the
various RMS characteristics.

2 Literature Review

The literature review has been carried out for the existing published work on model-
ing and design of reconfigurable manufacturing systems. A vast literature is available
on the machine-level design issues but a very little work has been discussed to com-
prehensively model an RMS. The major difference between the design of RMS
system and the design of other manufacturing system is that system configuration of
RMS progress rapidly over the time period. The capacity and functionality in case
of dedicated manufacturing system (DMS) and FMS are designed for the projected
future requirements. But for global manufacturing systems, responsiveness is a cru-
cial attribute that can be achieved by developing RMS that has a production capacity
that is highly adaptable tomarket demand [4, 5, 16]. RMS is considered as the vibrant
system, while DMS and FMS are said to be static systems because RMS offers the
exact functionality and capacity, exactly when it is needed [14, 9, 15].

Scheduling in RMS also suggests the selection of best configuration during recon-
figuration.According toYuet al. [21], “Schedulingproblems in a reconfigurableman-
ufacturing system, a state-of-the-art manufacturing system designed at the beginning
for fast alterations in its software and hardware components.” He has suggested that
total problem can be divided into subproblems. The subproblems are input sequenc-
ing and operation/machine selection. Erschler et al. [3], Hiltz [7], Smith and Steck
[17], and Steck [19] have suggested various methodologies for input sequencing in
manufacturing systems.

Koren et al. [11] have developed reconfigurable machine tools as modular
machines comprising different modules. The RMTs have various combinations of
basicmodules and auxiliarymodules. TheRMTs can be reconfigured intomany other
configurations by keeping its base modules and just adding/removing or adjusting
the auxiliary modules.



Optimal Configuration Selection in Reconfigurable … 195

Abdi and Labib [1] used an analytical hierarchy process (AHP) for choosing the
best manufacturing system among feasible alternative solutions based on an RMS
study.

Son et al. [18] described a genetic algorithm approach for automatically generat-
ing machining system configurations. He suggested a capacity scalability approach
for the homogeneous paralleling flow lines. He developed some alternative system
configurations that pleased the demand for all demand periods, and then he developed
many configuration paths selecting single-period configuration as starting point.

Clark and Paasch [2] presented a methodology based on diagnosability which
detects and diagnoses the major reason for final product defects. It also rectified the
defects rapidly.

Koren et al. [12] have studied system performance with respect to productivity
and convertibility for different system configurations. This will give a quantitative
measurement in terms of responsiveness.

RMS involvesmainly the selection of configuration atmachine level. RMS involv-
ing selection of configuration considering multiple machines simultaneously is very
few and research on these systems has not explained the RMS characteristics. The
detail of RMS characteristics is required for better understanding and obtaining the
best configuration.

3 Methodology

In this section, different characteristics of RMS and responsiveness of machine have
been quantified. Finally, an index is given to measure the reconfigurability both at
system level and at machine level. The objective of this methodology is to find best
manufacturing system.

3.1 RMS Characteristics

In this section, modularity, convertibility, and diagnosability characteristics of RMS
have been discussed.

Modularity. According to Tanaka et al. [20], “In a reconfigurable manufacturing
system, all major components are modular (e.g., structural elements, axes, controls,
software, and tooling).When necessary, the components can be replaced or upgraded
to better suit new applications.”

Holtta et al. [8] have described modularity which depends upon the connectivity
of different machines. The modularity is related to singular values of design sys-
tem matrix (DSM). Design system matrix contains binary values. The value “1” is
assigned to the machines which are connected to each other and vice versa value
of “0” is assigned. From design system, matrix singular values are achieved after
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applying singular value decomposition method. To measure modularity, singular
value modularity index (SVMI) is used as

SVMI � 1 − 1

N ∗ σ1

N−1∑

i�1

σi (σi − σi+1) (1)

where N is the number of machines used in a particular manufacturing system con-
figuration and σi are the singular values of the design system matrix.

Convertibility. Koren et al. [12] have explained convertibility in terms of ability of
a system to regulate production functionality when a new product is introduced.

Convertibility Cc′ can be measured as

Cc′ � R ∗ X

I
(2)

where R is the number of routing connections in each manufacturing system config-
uration of machines; X is the number of machine at a particular stage; and I is the
least increment of conversion. The value of I decreases from serial configuration to
parallel configuration.

The normalized value of Cc′ is given by using equation

Ccnormalised � 1 +

⎡

⎣
log

(
Cc′

Cc′serial

)

log
(
Cc′parallel
Cc′serial

)
∗ 1/9

⎤

⎦ (3)

where Cc′ serial is convertibility values of a serial configuration and Cc′ parallel is
convertibility values of a parallel configuration.

Diagnosability. Diagnosability is nothing but a property of a manufacturing sys-
tem for checking and finding the reasons for product defects and therefore rectifies
operational defects rapidly.

According to Kukushkin et al. [13], “As production systems aremademore recon-
figurable, and their layouts are modified more frequently, it becomes essential to
rapidly tune the newly reconfigured system so that it produces quality parts.”

Diagnosability (D) can be obtained using the following equation:

D �
∑n

i�1

[
PIi

(
1
Ci

− 1
Ctotal

)]

(
1 − 1

Ctotal

) ∑n
i�1 PIi

(4)

where PIi is the probability at each stage, Ci is the machine at each stage, and Ctotal

is the total number of machines.
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3.2 Reconfigurability Index

The reconfigurability of a system RS (x) of an object x is described as a weighted
sum of its relevant value dimensions. The overall assessment of reconfigurability is
defined as

RS(x) �
n∑

i�1

wi c(x) (5)

where w is the weight evaluating the impact of the ith characteristic on the overall
evaluation and n is the different RMS characteristics, and

∑
wi � 1 (6)

Since characteristics values are on a scale of 0–1, the value of cumulative recon-
figurability also lies on a 0–1 scale.

4 Case Study

In this case, eight machines are taken and four types of manufacturing systems are
taken. The different systems are pure series, pure parallel, and combination of series
and parallel.

The different types of manufacturing systems are shown in Fig. 1.
To calculate the reconfigurability of the differentmanufacturing systems, consider

the following steps.

Step 1: Initially, design system matrix (DSM) is formed to calculate modularity.
Here, we represent the computations for the system type (a) as shown in Fig. 2.

Here,MC1,MC2,MC3,MC4,MC5,MC6,MC7, andMC8 are themachines shown
in Fig. 2.

DSM = MC1 MC2 MC3 MC4 MC5 MC6 MC7 MC8

MC1 0 1 0 0 0 0 0 0

MC2 1 0 1 0 0 0 0 0

MC3 0 1 0 1 0 0 0 0

MC4 0 0 1 0 1 0 0 0

MC5 0 0 0 1 0 1 0 0

MC6 0 0 0 0 1 0 1 0

MC7 0 0 0 0 0 1 0 1

MC8 0 0 0 0 0 0 1 0
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(a)

(b)

(c)

(d)

Fig. 1 Manufacturing system with eight machines

MC1 MC2 MC3 MC4 MC5 MC6

MC7MC8

Fig. 2 Manufacturing system (a) with eight machines

Now to find the singular values applying singular value decomposition method
on design system matrix using MATLAB.
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S= σ1 0 0 0 0 0 0 0

0 σ2 0 0 0 0 0 0

0 0 σ3 0 0 0 0 0

0 0 0 σ4 0 0 0 0

0 0 0 0 σ5 0 0 0

0 0 0 0 0 σ6 0 0

0 0 0 0 0 0 σ7 0

0 0 0 0 0 0 0 σ8

Table 1 Modularity values for manufacturing systems (a) to (d)

System σ 1 σ 2 σ 3 σ 4 σ 5 σ 6 σ 7 σ 8 Modularity

(a) 1.879 1.879 1.532 1.532 1.000 1.000 0.347 0.347 0.8589

(b) 1.618 1.618 1.618 1.618 0.618 0.618 0.618 0.618 0.8750

(c) 1.618 1.000 1.000 1.000 1.000 1.000 1.000 0.618 0.8932

(d) 0.000 0.000 0.000 0.000 0.000 0.00 0.00 0.00 1.0000

The different singular values are σ1 � 1.8794, σ2 � 1.8794, σ3 � 1.5321,
σ4 � 1.5321σ5 � 1.0000,σ6 � 1.0000σ7 � 0.3473, andσ8 � 0.3473, respectively.
Using Eq. 1, modularity is obtained as 0.8150. Table 1 shows the modularity of the
different systems.

Step 2: Now, we have to find convertibility (Cc′) of different manufacturing systems.
For manufacturing system (a), it can easily be examined that R=9, X=1, and I=1.
Using Eq. 2, convertibility is obtained as 9. Normalizing Cc′ using the equation is
given below:

Ccnormalised � 1 +

⎡

⎣
log

(
Cc′

Cc′
serial

)

log(
Cc′

parallel

Cc′
serial

) ∗ 1/9

⎤

⎦

� 1 + 0(Cc′ � Cc′
serial)

� 1

Table 2 shows the convertibility of the different systems.

Table 2 Convertibility
values for manufacturing
systems (a) to (d)

Systems I R X Cc′ Cc

(a) 1.00 9 1 9 1.000

(b) 0.50 10 2 40 3.836

(c) 0.25 12 4 192 6.818

(d) 0.125 16 8 1024 10.000
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Table 3 Diagnosability values for manufacturing systems (a) to (d)

Systems Types of machines Probability at each stage Diagnosability

(a) 8 1/8 1.00

(b) 4 1/4 0.4286

(c) 2 1/2 0.1429

(d) 1 1 0.00

Table 4 Reconfigurability values for manufacturing systems (a) to (d)

Systems Modularity (M) Convertibility
(C)

Diagnosability
(D)

Reconfigurability
of systems (RS)

(a) 0.8589 0.100 1.00 0.6530

(b) 0.8750 0.3836 0.4286 0.5624

(c) 0.8932 0.6818 0.1429 0.5726

(d) 1.0000 1.0000 0.00 0.6666

Step 3: Next, we have to find diagnosability (D) of different manufacturing systems.
The value ofCi for a serialmanufacturing system is 1 and the total number ofmachine
(Ctotal) is 8. It is assumed that probability at each stage is equal. Now using Eq. 4

D �
∑8

i�1

[
1
8

(
1
1 − 1

8

)]
(
1 − 1

8

) × 1

� 1

Table 3 shows the diagnosability of the different systems.

Step 4: Using Eq. 5 and taking equal weights of RMS characteristics, for a serial
system

RS � (1/3) × 0.8589 + (1/3) × 0.1 (1/3) × 1

� 0.6530

Table 4 shows the reconfigurability of the different systems.
The values of convertibility are divided by 10 to make it on a scale of 0–1.
From Fig. 3, reconfigurability of a pure parallel manufacturing system is high-

est among all the manufacturing system. Hence, system (d) is given priority for
manufacturing of products in comparison to other systems.
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0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

0.66

0.68

(a) (b) (c) (d)

Reconfigurability 

Fig. 3 Reconfigurability values for manufacturing systems (a) to (d)

5 Conclusion and Recommendation for Future Scope

It has been observed that reconfigurability depends upon both machine level and
system level. The weightage of different characteristics also decides the reconfigura-
bility values. If quality is given the priority, then diagnosability should be assigned
with higher weightage than others.

All the attributes are first found out and then combined together to give reconfig-
urability index. It can be interpreted that system (d) is having the higher values.

This research is a base for future research on measuring reconfigurability of man-
ufacturing systems. By quantifying other RMS characteristics, reconfigurability val-
ues can be improved. In the present work, six machines are considered to find the
reconfigurability. This methodology can be applied by considering more than eight
machines and the behavior of reconfigurability index can be compared. Besides that,
effects of material handling system, tooling systems, etc. can also be added in eval-
uation of reconfigurability of the system.
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A Comparative Study of Regularized
Long Wave Equations (RLW) Using
Collocation Method with Cubic B-Spline

Nini Maharana, A. K. Nayak and Pravakar Jena

Abstract A collocation technique is successfully formulated for regularized long
wave equations (RLW). This method is based on the cubic B-spline finite element.
The stability analysis has been discussed by using the Fourier method and shown to
be marginally stable. The accuracy, efficiency, and the invariants of motion related to
conservation of mass, momentum, and energy are investigated. We have also studied
the propagation of single solitary wave motion and two solitary waves interaction.
It has been observed that the obtained numerical results are acceptable and more
accurate.

Keywords Collocation method · Cubic B-spline · Solitary wave equations

1 Introduction

The motions of the solitary wave were first presented in 1834 by John Scott Russel
[1]. After a long year, the significance of this invention played an important role in
the stable state of nonlinear system and then it has become a wide area of research
in the field of numerical analysis.

Actually, this type of nonlinear system represents hump-shaped wave packets
or pulses called as solitary wave and it appears in many areas such as physical
phenomena, plasma physics, laser physics [2], optical fibers, and solid-state physics.
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A soliton is a solitary wave packet that retains its shape and velocity properties after
a collision with other solitons.

The RLW equation can be represented as

∂U (x, t)

∂t
+

∂U (x, t)

∂x
+ δU

∂U (x, t)

∂x
− μ

∂

∂t

(
∂2U (x, t)

∂x2

)
� 0 (1)

where μ and δ are positive constants, is a class of partial differential equation, which
has soliton solution. This equation was originally introduced by Peregrine [3]. Equa-
tion (1) has been solved by different types of finite element method methods like
Galerkin method, least square method, homotopy perturbation method, differential
transformation method, subdomain method, Petrov Galerkin method, collocation
method.

Consider the following Generalized RLW equation:

∂U (x, t)

∂t
+

∂U (x, t)

∂x
+ δU P (x, t)

∂U (x, t)

∂x
− μ

∂

∂t

(
∂2U (x, t)

∂x2

)
� 0 (2)

where P is a positive integer.
The GRLW equation is numerically evaluated by Zhang [4] and Kaya [5] using

finite difference method for a Cauchy problem and the Adomian decomposition
method (ADM), respectively. Gardner et al. [6] discussed a numerical computation
scheme for modified regularized long wave (MRLW) equation using the collocation
method with quintic B-spline.

The RLW equation, the KdV (Korteweg de Vries) equation, the EWE (Equal
Width Wave) equation are mostly in nonlinear dispersive form in which they have
solitary wave solution. So, in the present work, we will set up the general forms of
the GRLW equations giving solitary wave solution.

In fact, finding the analytical solutions for the nonlinear equations generally is
difficult and probably impossible for the propagation of more than one solitary wave.
So, evaluating the accurate approximate solutions for these equations are the main
aims for many researchers in order to study solitary waves on a wide range and to
investigate their properties.

There are numerous techniques to evaluate the approximate solution and its appli-
cation of the nonlinear differential equations by collocation method with a cubic
spline and cubic B-spline. So, some properties of the cubic spline collocationmethod
are summarized as follows:

(1) The resulting framework leads to a diagonal structure to provide an easy imple-
mentation of algorithms.

(2) Cubic spline method is formulated in a very easy way and the computational
cost is also very low.

Saka and Dag [7] investigated modified cubic B-spline and splitting method for the
numerical solution of RLW equation. Solutions based on collocation method using
cubic B-spline are discussed by Raslan [8].
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Jain et al. [9] provide an approximate solution for the propagation of single solitary
wave based on collocation algorithm. The motion of interactions of solitary waves
and development of an undular bore is studied by Bhardwaj et al. [10]. Mittal and
Jain [11] continued the same method to obtain the solution of nonlinear Fisher’s
reaction–diffusion equation and Zaid et al. [12] have used a numerical method based
on the simplification of Laplace ADM.

All of the above-mentioned works deals with collocation method with spline
to develop the numerical solution for RLW, GRLW, or MRLW equation. In this
paper, we have tried to implement the method of collocation together with B-spline
approximation in cubic sense for the solution of GRLW equation and the solution
procedure is tested by implementing some test functions.

2 Exact Solution of the GRLW Equation

Let us take the trial function

U (x, t) � f (η) (3)

where η � x − υt and υ represents the constant velocity of a wave.
Then from Eq. (3), we get

∂U

∂t
� −υ

∂ f

∂η
,

∂U

∂x
� ∂ f

∂η
,

∂2U

∂x2
� ∂2 f

∂η2
,

∂

∂t

(
∂2U

∂x2

)
� −υ

∂3 f

∂η3
(4)

Substituting Eq. (4) into Eq. (2), we get

(1 − υ)
∂ f

∂η
+ δ f P

∂ f

∂η
+ μυ

∂3 f

∂η3
� 0 (5)

Integrating Eq. (5) w.r.t η, it follows that

(1 − υ) f +
δ

(P + 1)
f P+1 + μυ

∂2 f

∂η2
� g1 (6)

where g1 is a constant of integration. Now, we multiply Eq. (6) by 2 ∂ f
∂η

2(1 − υ) f
∂ f

∂η
+

2δ

(P + 1)
f P+1

∂ f

∂η
+ 2υμ

∂ f

∂η

∂2 f

∂η2
� 2g1

∂ f

∂η
(7)

Integrating both sides w.r.t η, we obtain

(1 − υ) f 2 +
2δ

(P + 1)(P + 2)
f P+2 + υμ

(
∂ f

∂η

)2

� 2g1 f + g2 (8)
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where g2 is another constant of integration.
Suppose that f → 0 ∂ f

∂η
→ 0 as |η| → ∞, so the constants of integration g1 and

g2 are zero, then from Eq. (8),

(
∂ f

∂η

)2

� f 2

υμ
(υ − 1 − m f P ), wherem � 2δ

(P + 1)(P + 2)
(9)

Taking positive square root on both sides, we have

∂ f

∂η
� f√

μ(υ + 1)
(υ − m f P )1/2 (replacing υ into υ + 1) (10)

Integrating Eq. (10), we get
∫

∂ f

f (υ − m f P )1/2
� 1√

μ(υ + 1)

∫
∂η (11)

Using the transformation, m f P � υ sec h2θ , so that mP f P−1∂ f �
2υ sec h2θ tanh θ∂θ , we get

2

P
√

υ

∫
∂θ � 1√

μ(υ + 1)

∫
∂η (12)

⇒ θ � P
2

√
υ

μ(υ+1) (η − g3), where g3 is another constant of integration.

f P � υ

m
sec h2

[
P

2

√
υ

μ(υ + 1)
(x − (υ + 1)t − g3

]

U (x, t) �
(

υ(P + 1)(P + 2)

2δ
sec h2

[
P

2

√
υ

μ(υ + 1)
(x − (υ + 1)t − g3

])1/ P
(13)

which is the exact solution of Eq. (2).
Taking P � 1, the exact solution for RLW equation is given by

U (x, t) � 3υ

δ
sec h2

[
1

2

√
υ

μ(υ + 1)
(x − (υ + 1)t − g3

]
(14)

3 Implementation of the Proposed Method

Substituting δ � 1 and P � 1 in Eq. (2), we obtained the RLW equation as follows:

∂U (x, t)

∂t
+

∂U (x, t)

∂x
+U (x, t)

∂U (x, t)

∂x
− μ

∂

∂t

(
∂2U (x, t)

∂x2

)
� 0 (15)
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Table 1 The cubic B-splines ϕ j (x) and its derivatives ϕ′
j (x), ϕ

′′
j (x) at different node points

x x j−2 x j−1 x j x j+1 x j+2

ϕ j 0.0 1.0 4.0 1.0 0.0

ϕ′
j 0.0 3

h 0.0 − 3
h 0.0

ϕ′′
j 0.0 6

h2
− 12

h2
6
h2

0.0

subject to the initial and boundary conditions

U (x, 0) � f (x), J1 < x < J2 (16)

U (J1, t) � ψ0(t), U (J2, t) � ψ1(t), 0 ≤ t ≤ T (17)

and

U → 0 as x → ±∞, t > 0 (18)

Let us consider the domain [J1, J2], which is uniformly partitioned at the knots
x j , such that

J1 � x0 < x1 < · · · < xN � J2, h � x j+1 − x j � J2 − J1
N

, j � 0, . . . .., N .

Let
{
ϕ j

}N+1
j�−1 be the cubic B-splines defined at the knots x j ; and the group of splines

formulates a basis function over [J1, J2]. The solution in global form, UN (x, t) is
expressed with cubic B-splines as

UN (x, t) �
N+1∑
j�−1

ξ j (t)ϕ j (x) (19)

where ξ j are transient parameters and determined using boundary, initial, and the
collocation points. The cubic B-splines ϕ j (x) and its derivatives ϕ′

j (x), ϕ
′′
j (x) at node

points are shown in Table 1.
Using Eq. (19) and the above-tabulated values, we can calculate the nodal values

Uj and its first and second derivativesU ′
j andU

′′
j , respectively, at the mesh x j in the

form of ξ j as follows:

Uj � ξ j−1 + 4ξ j + ξ j+1

U ′
j � 3

h

(
ξ j+1 − ξ j−1

)

U ′′
j � 6

h2
(
ξ j−1 − 2ξ j + ξ j+1

)
(20)
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Now, Eq. (15) can be represented as

∂

∂t

(
U − μ

∂2U

∂x2

)
+

∂U

∂x
+ u

∂U

∂x
� 0 (21)

By using a finite difference scheme, we can approximate the time derivative by

∂

∂t
U � Un+1 −Un

k
, where k � 
t � tn+1 − tn

Then, let us consider U � Un+1+Un

2 . So, Eq. (21) yields

Un+1 − μ

(
∂2U

∂x2

)n+1

−Un + μ

(
∂2U

∂x2

)n

+
k

2

((
∂U

∂x

)n+1

+

(
U

∂U

∂x

)n+1

+

(
∂U

∂x

)n

+

(
U

∂U

∂x

)n
)

� 0 (22)

Now, linearizing the nonlinear term

(
U

∂U

∂x

)n+1

j

� Un+1
j

(
∂U

∂x

)n

j

+Un
j

(
∂U

∂x

)n+1

j

−Un
j

(
∂U

∂x

)n

j

(23)

Then Eq. (22) becomes

Un+1
j − μ

(
∂2U

∂x2

)n+1

j
−Un

j + μ

(
∂2U

∂x2

)n

j
+
k

2

((
∂U

∂x

)n+1

j
+Un+1

j

(
∂U

∂x

)n

j
+Un

j

(
∂U

∂x

)n+1

j

)

− k

2

(
Un

j

(
∂U

∂x

)n

j
+Un

j

(
∂U

∂x

)n−1

j
+Un−1

j

(
∂U

∂x

)n

j
−Un−1

j

(
∂U

∂x

)n−1

j
+

(
∂U

∂x

)n

j

)
� 0

(24)

Substituting Eq. (20) into Eq. (24) yields(
ξn+1j−1 + 4ξn+1j + ξn+1j+1

)
− 6μ

h2

(
ξn+1j−1 − 2ξn+1j + ξn+1j+1

)
−

(
ξnj−1 + 4ξnj + ξnj+1

)

+
6μ

h2

(
ξnj−1 − 2ξnj + ξnj+1

)
+
k

2

[
3

h

(
ξn+1j+1 − ξn+1j−1

)
+

(
ξn+1j−1 + 4ξn+1j + ξn+1j+1

)(
3

h

(
ξnj+1 − ξnj−1

))

+
(
ξnj−1 + 4ξnj + ξnj+1

)(
3

h

(
ξn+1j+1 − ξn+1j−1

))
−

(
ξnj−1 + 4ξnj + ξnj+1

)(
3

h

(
ξnj+1 − ξnj−1

))

+
(
ξnj−1 + 4ξnj + ξnj+1

)(
3

h

(
ξn−1
j+1 − ξn−1

j−1

))
+

(
ξn−1
j−1 + 4ξn−1

j + ξn−1
j+1

)(
3

h

(
ξnj+1 − ξnj−1

))

−
(
ξn−1
j−1 + 4ξn−1

j + ξn−1
j+1

)(
3

h

(
ξn−1
j+1 − ξn−1

j−1

))
+
3

h

(
ξnj+1 − ξnj−1

)]
� 0 (25)

Equation (25) can be re-written as
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(
1 − 6μ

h2
− 3k

2h
+
k

2
L j
2 − 3k

2h
L j
1

)
ξ n+1
j−1 +

(
4 +

12μ

h2
+ 2kL j

2

)
ξ n+1
j

+

(
1 − 6μ

h2
+
3k

2h
+
k

2
L j
2 +

3k

2h
L j
1

)
ξ n+1
j+1

� L j
1 − 6μ

h2
L j
5 +

k

2
L j
1L

j
2 − k

2
L j
2 − k

2
L j
1L

j
4 − k

2
L j
3L

j
2 +

k

2
L j
3L

j
4, 0 ≤ j ≤ N

(26)

where we have

L j
1 � ξ n

j−1 + 4ξ n
j + ξ n

j+1, L j
2 � 3

h

(
ξ n
j+1 − ξ n

j−1

)
, L j

3 � ξ n−1
j−1 + 4ξ n−1

j + ξ n−1
j+1

L j
4 � 3

h

(
ξ n−1
j+1 − ξ n−1

j−1

)
, L j

5 � ξ n
j−1 − 2ξ n

j + ξ n
j+1, j � 0, 1, . . . ., N

Also, if we put

b j � 1 − 6μ

h2
− 3k

2h
+
k

2
L j
2 − 3k

2h
L j
1, c j � 4 +

12μ

h2
+ 2kL j

2

d j � 1 − 6μ

h2
+
3k

2h
+
k

2
L j
2 +

3k

2h
L j
1,

G j � L j
1 − 6μ

h2
L j
5 +

k

2
L j
1L

j
2 − k

2
L j
2 − k

2
L j
1L

j
4 − k

2
L j
3L

j
2 +

k

2
L j
3L

j
4,

Then, the system (26) can be written as

b jξ
n+1
j−1 + c jξ

n+1
j + d jξ

n+1
j+1 � G j , j � 0, 1, . . . , N (27)

These equations establish a recurrence relation with parametric values and can be
expressed in a vector form as dn � (ξ−1, ξ0, ξ1, . . . .., ξN ), where (N + 1) equations
involve (N + 3) unknowns at nth time level, satisfying U (J1, t) � ψ0(t),U (J2, t) �
ψ1(t)

ξ−1 � ψ0 − 4ξ0 − ξ1

ξN+1 � ψ1 − 4ξN − ξN−1 (28)

Using the Eq. (28), we can eliminate the parameters ξ−1 and ξN+1, and hence the
system of equations represented by Eq. (27) can be represented as
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0 − 4b0 d0 − b0 0 0 . . . 0 0 0

b1 c1 d1 0 . . . 0 0 0
. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

0 0 0 . . . . bN−1 cN−1 dN−1

0 0 0 . . . . 0 bN − dN cN − 4dN

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξn+10

ξn+11

.

.

.

ξn+1N−1

ξn+1N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G0 − b0ψ0

G1

.

.

.

GN−1

GN − dNψ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The above matrix represents a tridiagonal system.
From Eq. (14), we can evaluate the initial conditions at two time levels (t � 0, k)

f (x) � U (x, 0) � 3υ

δ
sec h2

[
1

2

√
υ

μ(υ + 1)
(x − g3)

]
(29)

ζ (x) � U (x, k) � 3υ

δ
sec h2

[
1

2

√
υ

μ(υ + 1)
(x − (υ + 1)k − g3)

]
(30)

At time level n � 0(t � 0)

UN (x j , 0) �
N+1∑
j�−1

ξ 0
j ϕ j (x j ) �ξ 0

j−1 + 4ξ 0
j + ξ 0

j+1 � f (x j ), j � 0, 1, . . . , N (31)

Also, at time level n � 1(t � k)

UN (x j , k) �
N+1∑
j�−1

ξ 1
j ϕ j (x j ) �ξ 1

j−1 + 4ξ 1
j + ξ 1

j+1 � ζ (x j ), j � 0, 1, . . . ., N (32)

In order to eliminate the unknowns from the Eqs. (31) and (32), we apply the
following boundary conditions at the initial level as

Ux (x0, 0) � 0 � Ux (xN , 0) (33)

Ux (x0, k) � 0 � Ux (xN , k) (34)

From the boundary conditions (33) and with Eq. (20), we get

3

h
ξ 0
1 − 3

h
ξ 0
−1 � 0 ⇒ ξ 0

−1 � ξ 0
1

3

h
ξ 0
N+1 − 3

h
ξ 0
N−1 � 0 ⇒ ξ 0

N+1 � ξ 0
N−1

⎫⎪⎬
⎪⎭ (35)

From the boundary conditions (34) and with Eq. (20), we get
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3

h
ξ 1
1 − 3

h
ξ 1
−1 � 0 ⇒ ξ 1

−1 � ξ 1
1

3

h
ξ 1
N+1 − 3

h
ξ 1
N−1 � 0 ⇒ ξ 1

N+1 � ξ 1
N−1

⎫⎪⎬
⎪⎭ (36)

From Eqs. (31) and (35), we get the following tridiagonal matrix system (N +
1) × (N + 1) as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 2 0 0 . . . 0 0 0
1 4 1 0 . . . 0 0 0
. . . . . . . .

. . . . . . . .

. . . . . . . .

0 0 0 0 . . . 1 4 1
0 0 0 0 . . . 0 2 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ 0
0

ξ 0
1

.

.

.

ξ 0
N−1

ξ 0
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

f (x0) + h
3 f

′
(x0)

f (x1)
.

.

.

f (xN−1)

f (xN ) − h
3 f (xN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(37)

By simple implementation of Thomas algorithms, we can obtain the solution for the
above-mentioned tridiagonal system.

Similarly, from Eqs. (32) and (36), we also get the following tridiagonal matrix
system (N + 1) × (N + 1), as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 2 0 0 . . . 0 0 0
1 4 1 0 . . . 0 0 0
. . . . . . . .

. . . . . . . .

. . . . . . . .

0 0 0 0 . 1 4 1
0 0 0 0 . 0 2 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ξ 1
0

ξ 1
1

.

.

.

ξ 1
N−1

ξ 1
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ζ (x0) + h
3 ζ

′
(x0)

ζ (x1)
.

.

.

ζ (xN−1)

ζ (xN ) − h
3 ζ

′
(xN )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(38)

Hence, we can easily determine the initial time parameters ξ 0
j and ξ 1

j by solving the
above tridiagonal system.

4 Stability Analysis

The stability analysis of our scheme is presented by applying the Fourier method.
First, linearized the nonlinear term in Eq. (1) and rewrite the Eq. (22) as
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ξ n+1
j−1 + 4ξ n+1

j + ξ n+1
j+1 − 6μ

h2
(
ξ n+1
j−1 − 2ξ n+1

j + ξ n+1
j+1

) − (
ξ n
j−1 + 4ξ n

j + ξ n
j+1

)

+
6μ

h2
(
ξ n
j−1 − 2ξ n

j + ξ n
j+1

)

+

t

2

[
(1 +U )

(
3

h

(
ξ n+1
j+1 − ξ n+1

j−1

))
+ (1 +U )

(
3

h

(
ξ n
j+1 − ξ n

j−1

))]
� 0 (39)

Or
((

1 − 6μ

h2

)
−

(
3
t

2h
+
3U
t

2h

))
ξ n+1
j−1 +

(
4 +

12μ

h2

)
ξ n+1
j

+

((
1 − 6μ

h2

)
+

(
3
t

2h
+
3U
t

2h

))
ξ n+1
j+1

�
((

1 − 6μ

h2

)
+

(
3
t

2h
+
3U
t

2h

))
ξ n
j−1 +

(
4 +

12μ

h2

)
ξ n
j

+

((
1 − 6μ

h2

)
−

(
3
t

2h
+
3U
t

2h

))
ξ n
j+1 (40)

j � 0, 1, . . . , N

Now, using the Fourier method

ξ n
j � χ̂nαik jh (41)

with k as mode number and h as element length, into the Eq. (41) yields

(X − Z )χ̂n+1αik( j−1)h + Y χ̂n+1αik jh + (X + Z )χ̂n+1αik( j+1)h

� (X + Z )χ̂nαik( j−1)h + Y χ̂nαik jh + (X − Z )χ̂nαik( j+1)h (42)

where

X �
(
1 − 6μ

h2

)
, Y �

(
4 +

12μ

h2

)
, Z �

(
3
t

2h
+
3u
t

2h

)

Using the von Neumann stability theory, we will get the growth of Fourier mode
as

χ̂n+1 � gχ̂n (43)

where g is the growth factor.
Substituting Eqs. (43) into (42), we get

g[2X cosβ + Y + i2Z sinβ] � 2X cosβ + Y − i2Z sin β (44)
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where β � kh, i � √−1
So, we have

g � l − iq

l + iq
(45)

where l � 2X cosβ + Y, q � 2Z sin β, then we get |g| � 1 (46)

Hence, marginal stability is justified for this cubic scheme.

5 Numerical Experiments

The RLW equation has the following three invariances of motion given by

I1 �
∞∫

−∞
Udx, I2 �

∞∫
−∞

(
U 2 + μ

(
∂U

∂x

)2
)
dx, I3 �

∞∫
−∞

(
U 3 + 3U 2

)
dx (47)

relating to mass, momentum, and energy conservation equations.
Accuracy and efficiency are tested by using the following L2 and L∞ error norms:

L2 � ∥∥U exact −UN
∥∥
2 	 h

N∑
j�0

∣∣U exact
j −UN

j

∣∣2 (48)

L∞ � ∥∥U exact −UN
∥∥∞ 	 max

j

∣∣U exact
j −UN

j

∣∣ (49)

6 Motion of Single Solitary Wave

RLW equation subject to the initial condition

U (x, 0) � 3υ

δ
sec h2

[
1

2

√
υ

μ(υ + 1)
(x − g3)

]
(50)

and boundary conditions as ψ0 � 0 and ψ1 � 0.
We validated our scheme in a numerical and analytical sense by using the error

norms L∞ and L2. The conservation properties are determined by using the quantities
I1, I2 and I3 from Eq. (47).

We choose υ � 0.1, μ � δ � 1, 
t � 0.1, h � 0.5, and g3 � 0. We computed
the results up to t � 20 with range [−40, 80]. In this computation, it is found that
the conserved quantities I1 and I2 are changed fewer by 5 × 10−4 and 1 × 10−4.
While the changes of invariant I3 tends to zero. Table 2 represents invariants with
error norms at different time levels for single solitary wave at different time levels,
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Table 2 Invariants and error
norms for single solitary wave

T I1 I2 I3 L2 L∞
0 3.97993 0.81046 2.57901 0 0

4 3.97993 0.81046 2.57901 0.20890 0.13013

8 3.97993 0.81046 2.57900 0.66604 0.22277

12 3.97993 0.81046 2.57901 1.08953 0.27056

16 3.97994 0.81046 2.57901 1.35798 0.29033

20 3.97994 0.81046 2.57901 1.49386 0.29695

(a) (b)
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Fig. 1 Single solitary wave for υ � 0.1 at time level a t�0, b t�20
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Fig. 2 Error at time level t�20, v=0.1

t ≤ 20 with amplitude�0.3, 
t � 0.1, h � 0.5, in the region −40 ≤ x ≤ 60
(Figs. 1 and 2).
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Fig. 3 Motion of two solitary waves at a t�0, b �10, c �20, d �30

7 Motion of Two Solitary Waves

The cooperation between unidirectional solitary waves in well-separated form with
a variation of amplitude is studied in this section.

The RLW equation with initial conditions:

U (x, 0) � 3υ1 sec h
2(r1(x − x1)) + 3υ2 sec h

2(r2(x − x2)), (51)

where r j �
√

υ j

4μ(υ j+1)
, j � 1, 2, x j and υ j are arbitrary constants.

For a numerical solution, we take the parameter values: υ1 � 2.0, υ2 � 0.8,
x1 � 15, x2 � 35, μ � δ � 1, h � 
t � 0.1 with domain [0, 160]. The motion of
two solitary waves and its invariants at different time levels is shown in Fig. 3 and
Table 3.
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Table 3 Motion of invariants for two solitary waves with v 1 � 2.0, v2 � 0.8, x1 � 15.0, x2 �
35.0, h � 
t � 0.1, 0 ≤ x ≤ 160

T I1 I2 I3

0 27.37111 89.02151 644.04212

10 27.37119 89.02434 644.05806

20 27.37120 89.03049 644.09313

30 27.37120 89.04379 644.17033

8 Conclusion

This paper presents a collocation technique for the numerical solution of the RLW
equation based on cubic B-spline. The proposed method successfully implemented
the propagation of solitary waves. A linear stability analysis of the proposed method
is made and found to be unconditionally stable. The present scheme is verified by
considering the single solitary waves where the analytical solution is known. Further-
more, our technique is extended to find the solution for two solitarywaves interaction,
for which no analytical solution exists.
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An Enhanced Fractal Dimension Based
Feature Extraction for Thermal Face
Recognition

Sandip Joardar, Arnab Sanyal, Dwaipayan Sen, Diparnab Sen
and Amitava Chatterjee

Abstract Variance in pose during data acquisition poses a serious challenge for any
biometric system which uses the human face as a physiological biometric feature. In
this paper, we present an enhanced patchwise fractal dimension based feature extrac-
tion technique for the purpose of pose-invariant face recognition. We have presented
an improved version of the Differential Box Counting (DBC) based fractal dimen-
sion computation technique which is used for feature extraction of thermal images of
the human face. A Far-Infrared (FIR) imaging based human face database, called the
JU-FIR-F1: FIR Face Database, was developed in the Electrical Instrumentation and
Measurement Laboratory, Electrical Engineering Department, Jadavpur University,
Kolkata, India for testing the accuracy, stability, and robustness of our proposed fea-
ture extractionmethodology.Wehave included the results obtained through extensive
experimentation to elaborate the superiority of our proposed algorithm over its other
well-known counterparts.

Keywords FIR imaging · Face recognition · Fractal dimension · DBC

1 Introduction

Some of the most well-known and extensively used biometric physiological features
include iris [1, 18], palmprint [3], and palm dorsal vein pattern [9–11], however, the
human face [4, 6–9] has beenprovedover time tobeoneof themost reliable and robust
physiological features that has been put to use in a biometric identification system.
However, utilizing the human face as a physiological biometric feature has its own
share of tough challenges like age variance [15], emotion variance [17], and pose
variance [5], which are certainly very difficult to address in a real-time biometric
system. This paper is organized as follows: Sect. 2 presents the methodology of
database acquisition and creation, an elaboratemathematical analysis of our proposed
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feature extraction algorithm and a brief discussion about our biometric recognition
strategy are discussed in Sect. 3 and, finally, in Sect. 4, we provide the results obtained
through extensive experimentation and conclude this paper with the inference of the
experimental results and analysis.

1.1 Thermal Imaging of the Human

Although, the human face is one of the most extensively used physiological feature
of a biometric person identification system it, however, can be posed with stiff chal-
lenges when we use its visual spectrum image. Therefore, in this research work, we
have used the thermal images of real human subjects captured using the FIR imag-
ing technology. Visual spectrum images of the human face are extremely sensitive
towards lighting conditions, it is very difficult for the visual imaging technology to
differentiate between the face of a real human and that of the picture of a human face,
the visual images can have drastic variations depending upon pose and expression
variances [2], however, thermal images remain largely insensitive and unaffected
by the aforementioned challenges of face recognition using the visual images of the
human face [2]. Consequently, in this research, we have opted for the thermal images
of the human face as a biometric feature for identification of real human subjects.

1.2 Fractal Dimension Based Feature Extraction

Fractal Dimension (FD) is a measure of the roughness of the image [13, 16] and has
been widely and extensively used for image compression, classification, recognition,
and segmentation. FD is also a statistical index of the self-similarity of an image [12,
16]. In this paper, we elaborately discuss how we have formulated an enhanced FD
computation approach using an improved version of DBC [16]. Here, instead of
computing the FD of the whole image, we have computed FDs of patches into which
the whole image is segregated and, subsequently, we achieve to compute matrices
which are patchwise FDs of the original image. This is done to preserve the self-
similarity and the roughness indices of the whole image. Thereafter, an inter-grid
similarity measure is proposed which is used to compute the final feature vector.

1.3 Biometric Identification

We have developed a database of thermal images of the human face called the JU-
FIR-F1: FIR Face Database at the Electrical Instrumentation and Measurement Lab-
oratory, Electrical Engineering Department, Jadavpur University, Kolkata, India on
which our proposed feature extraction algorithm was tested. We have also tested
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some of the most well-known and widely used feature extraction algorithms on this
database and presented a comparative study of all the results obtained through exten-
sive experimentation.

2 JU-FIR-F1: FIR Face Database

In the aforementioned section, we discussed how the visual image of the human face
can be sensitive to and affected by many factors like lighting conditions, synthetic
images rather than real human subjects and expression variance. Consequently, we
have chosen to implement the thermal images of real human subjects as the physio-
logical feature of our biometric identification system. Now, FIR imaging is to a large
extent insensitive towards lighting condition and images can be acquired even in the
complete absence of visual spectrum light. It is invariant towards expression changes
during data acquisition and one if its most significant advantages is that it can quite
easily differentiate between real human subjects and synthetic images of the human
face. In this section, we present an elaborate discussion on data acquisition and the
subsequent database formation.

2.1 Thermal Image Acquisition

We have utilized the FIR imaging technology for data acquisition. The KT-384 [14],
shown in the following Fig. 1, thermal imager (Manufacturer: Sonel®, Poland), a
fully radiometric camera, was used for thermal image acquisition of the human face.

It provides nine different palettes for data acquisition which are shown in the
following Fig. 2. We have used the grayscale palette to avoid overloading the mem-

Fig. 1 Sonel® KT-384 [14]
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Fig. 2 Sonel® KT-384 [14] image acquisition palettes
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ory of the system and, hence, enhancing the computational complexity of it. The
images were acquired at the Electrical Instrumentation and Measurement Labora-
tory, Electrical Engineering Department, Jadavpur University, Kolkata, India. They
were acquired under normal laboratory environmental condition of temperature
about 22–24 °C and humidity about 95%. The dimension of each image acquired is
(100 × 64).

One of the significant aspects of our data acquisition and database creation is
that we have not implemented any form of image processing before the raw images
are incorporated into the database. This highlights the fact that all forms of noises
and artifacts that get included during the data acquisition phase remain intact. This
was done with the sole intention to develop and test the robustness of our feature
extraction and biometric identification algorithms.

2.2 Database Creation

Subsequently, after data acquisition, the raw images were incorporated into the JU-
FIR-F1: FIR Face Database created in the Electrical Instrumentation and Measure-
ment Laboratory, Electrical Engineering Department, Jadavpur University, Kolkata,
India. There are in total 13 images acquired from 17 distinct subjects with a con-
sistent gap of 5 min between two consecutive image acquisition phases. In this
research, we have tried to address the challenge posed by pose variance during
image acquisition. Consequently, we have incorporated deterministic pose variance
during our data acquisition phase along the pitch and yaw axes. The subject was
asked to undergo±15°, 30°, and 45° pitch and yaw displacements resulting in 12
poses and the 13th pose is the frontal face image. Therefore, these are the 13 images
of a particular subject with prespecified pose variations.

3 Feature Extraction and Biometric Identification

Through the discussion in the previous sections, we have highlighted the implemen-
tation of an enhanced fractal dimension based feature extractionmethodology. In this
section, we elaborately present the detail mathematical analysis of the methodology
behind the feature extraction and biometric identification algorithms.

3.1 Feature Extraction

With an image img ∈ �m×n , we can compute the FD of the image using DBC [16]
by considering the size m × n of the image to be the two coordinates (x, y) and
the pixelwise intensity value to be the third coordinate (z) of a three-dimensional
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space (x, y, z) [16]. Consider, now that the image is scaled down to a size ms × ns
where m/2 ≥ ms > 1 and n/2 ≥ ns > 1. Moreover, ms and ns must be integers.
Subsequently, we have an estimate r � 2s/(M + N ) for which the FD is given by
the following expression (1) [16]:

FDimg � log(Nr )

log(1/r )
(1)

Now, the (x, y) space of the image img ∈ �m×n is broken down into windows
of size ms × ns and the third coordinate (z) of a three-dimensional space (x, y, z)
is divided into sections of size s ′ such that on each grid, we have three-dimensional
boxes of size ms × ns × s ′ [16]. The s ′ is given by the following expression (2) [16]:

s ′ � G(ms + ns)

(m + n)
(2)

The G in the expression (2) is the total number of distinct intensity levels present
in the image img ∈ �m×n . Now, the Nr in expression (1) is given by the following
expression (3) [16]:

Nr �
∑

i, j

nr (i, j) (3)

In the expression (3), nr (i, j) is the contribution of the (i, j) grid towards the
fractal dimension, Nr , and is given by the following expression (4) [16]:

nr (i, j) � [bmax] − [bmin] + 1 (4)

In the aforementioned expression (4), bmax ∈ �ms×ns×s ′
and bmin ∈ �ms×ns×s ′

are
the three-dimensional boxes in which the maximum and minimum intensity values
of the image img ∈ �m×n fall respectively and [•] indicates the integral box number.

However, in this paper, we have utilized FD of image patches rather than the
FD computed of the whole image together [12]. This is because utilizing the FD of
the whole image for face recognition has two very significant shortcomings [12].
First, two local image regions with different patterns or textural information may be
having the same FD and, second, pixels located near the corners and boundaries tend
to become smaller than regions representing pixels which are located well within
the image. Consequently, we have opted for computation of patchwise FD with an
improved version ofDBC.Our proposed feature extraction algorithmusing enhanced
FD is given in Table 1.

The enhanced FD proposed by us is computed using expression (5) and it is quite
clear from the expression that it takes into account the median intensity value of
each patch and, therefore, enhances the local intensity information of each patch
in FD computation which increases the distinctiveness of each patch from the oth-
ers. The feature vectors of all the thermal images are then incorporated into a dic-
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Table 1 Feature extraction of thermal images using patchwise enhanced FD

Step Description

1 The image img ∈ �m×n is extended using circular padding [16] giving us a new
image imgpad ∈ �M×N

2 The following operations are then carried out for each of the M × N pixels of the
imgpad

2.1 The patch size is determined, imgpatch ∈ �p×q into which the image
imgpad ∈ �M×N is segregated

2.2 The FD for imgpatch is computed with the expression (1), however, the nr (i, j)
computation is modified and done with the following expression (5):

nr (i, j) �
[(

[bmax]−[bmin]+[bmed]
)

(M+N )/2

]
(5)

where, bmed ∈ �p×q×s′ is the box in which the median of the intensity values of
imgpatch fall

3 After, computation of enhanced FD of each patch we arrange the FD values in a
matrix according to the central pixel location of the image patch and, thereby,
obtaining the matrix FDmat img ∈ �m×n consisting of FDs of local patches

4 Next, we compute the inter-grid similarity between the grids of FDmat by dividing
it into grids of size (a × b). The inter-grid similarity measure between two grids is
computed by the following expression (6):√∑i�a, j�b

i� j�1 {FDmat1(i, j)−FDmat2(i, j)}2
a•b (6)

5 Finally, the inter-grid similarity scores are stored in a vector
Fvect img ∈ �(

mn(mn + ab)
/
2a2b2

) × 1 sequentially

tionary D ∈ �V×T , where T is the total number of images in the database and
V � (

mn + ab/2a2b2
)
, which is then put to use for the eventual biometric identifi-

cation.

3.2 Biometric Identification

We have used the Collaborative Representation based Classification (CRC) algo-
rithm [19, 20] which has the Standard Tikhonov Regularization [7] for ill-posed
problems at its heart. The biometric identification algorithm is given in Table 2.

4 Experimental Results

Finally, the feature extraction algorithm, Table 1, followed by the biometric identifi-
cation algorithm, Table 2, is tested on the JU-FIR-F1: FIR Face Database. First, the



224 S. Joardar et al.

Table 2 Biometric identification algorithm

Step Description

1 Tr number of training samples per class is chosen and a separate training dictionary
DTRAIN ∈ �V×(Tr •TNS) is formed. The training samples for each of the TNS
subjects are chosen randomly. Therefore, the testing dictionary is given by
DTEST ∈ �V×(T−Tr •TNS)

2 The columns of both the training and testing dictionaries are normalized such that
they have unit Euclidean norm [18, 19]

3 The following operations are then carried out for each of the column vectors,
dTEST ∈ �V×1 which are actually reshaped test images post feature extraction, of
the testing dictionary DTEST ∈ �V×(T−Tr •T NS)

3.1 The test vector dTEST ∈ �V×1 is coded over the training dictionary
DTRAIN ∈ �V×(Tr •T NS) as a collaborative linear combination using the optimized
reconstructed vector given by the following expression (7):

â � argmin
α

⎡

⎣ ‖dTEST − DTRAINα‖22+
λ‖α‖22

⎤

⎦ (7)

3.2 The α̂ vector is computed using the following expression (8):

α̂ � (
DT
TRAINDTRAIN + λI

)−1
DT
TRAINdTEST (8)

3.3 The reconstruction residual for each class, which are physically human subjects, is
computed using the following expression (9):

ri �
(‖dTEST−[DTRAIN]i α̂i‖2‖α̂i‖2

)
(9)

where [DTRAIN]i and α̂i are the local training dictionary and the local
reconstruction vector of class i, respectively

3.4 Finally, the test sample is classified to that class i which has the least reconstruction
residual

optimal patch size was determined from results obtained through extensive experi-
mentation. For this phase of experimentation, a total of 5 training samples per class
were selected for each class and the patch size was varied from 3 to 23 pixels where
each patch is of square shape. The results so obtained are tabulated in Table 3.

The results tabulated in Table 3 were obtained with grid size (20 × 16). The
experiments for the results provided in Table 3 were run for a total of 200 times and
then the mean recognition rate and the standard deviation were reported.

Finally, we compared our feature extraction algorithm with some of its state of
the art and extensively used counterparts and the results so obtained are tabulated
in the following Table 4. It should be noted that for raw images and Kouzani et al.
[12], Step 5 of Table 2 was computed so that the feature dimension remains constant
during the comparative study and, then, the classification is done using the biometric
identification algorithm given in Table 2.

The results given in Table 4 confirm that the feature extraction algorithm proposed
by us has shown higher accuracy, with a major leap in the mean recognition rate, and
stability compared to its other well-known counterparts.
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Table 3 Comparative study with different patch sizes

Patch size Recognition rate (Mean±Standard deviation) (in %)

3 85.55±3.09

5 86.16±3.02

7 88.64±3.18

9 90.51±3.22

11 91.53±2.82

13 91.78±2.79

15 93.18±2.68

17 92.08±2.85

19 91.25±2.71

21 90.15±2.99

23 89.82±3.31

The best result among all has been emboldened

Table 4 Comparative study with different feature extraction algorithms

Feature extraction algorithm Recognition rate (Mean± standard deviation) (in %)

Raw images 86.20±2.92

Eigen face 82.61±3.14

LDA 84.40±3.42

Kouzani et al. [16] 90.71±3.82

This Paper 93.18±2.68

The best result among all has been emboldened

5 Conclusion

This paper discusses a novel method of feature extraction using enhanced Frac-
tal Dimension computed using improved Differential Box Counting approach. This
paper aims to address the pose variance that occurs during any real-time data acqui-
sition of a human subject for biometric identification. We have developed a thermal
face database wherein predetermined pose variations were incorporated during the
data acquisition phase. Subsequently, on application of our proposed algorithm on
the developed face database, we found that our algorithm shows higher accuracy
and stability compared to its other widely used counterparts. Moreover, our pro-
posed algorithm has shown considerable robustness as there is no image processing
involved into the database creation phase. This was an intentional decision to keep
the noises and artifacts of the data acquisition phase intact and test the robustness of
the subsequent algorithms.
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Seismic Analysis of Multistoried Building
with Optimized Damper Properties

Dipti Singh, Shilpa Pal and Abhishek Singh

Abstract In today’s scenario where space is an issue, the increase in population has
led to a boom in the construction industry. With the lack of land for construction, the
buildings are becoming higher and more complex, so with the increase in the num-
ber of stories, it is necessary to make them safe under adverse seismic conditions.
Dampers are one way to make the structure earthquake resistant and the optimization
of their properties is sometimes required. In this study, the damper properties, i.e.,
damping and stiffness have been optimized using self-organizing migrating genetic
algorithm (SOMGA) and genetic algorithm (GA) technique on a model of 10-storey
building which has equal mass, stiffness, etc. on all the floors. The optimized damper
properties obtained from SOMGA result in the reduction of 52% of the storey dis-
placement while that of GA is 60% as compared to the undamped model. Both
techniques provide better optimized damper properties. It is observed that the opti-
mized damper helps in significant reduction of the seismic response of the structure,
thus justifying the need of optimized parameters of dampers.

Keywords Optimization · Genetic algorithm · Self-organization migrating
algorithm · Supplement damper · Structural control · SAP 2000

1 Introduction

One of the most devastating hazards of nature is earthquake which destroys the
lives and homes of virtually every continent. Their effect of destruction is almost
instantaneous and the damage is entirely associated with the man-made structures.
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Moreover, there is no or very little warning unlike other natural disasters which
makes earthquake engineering an important area of study.

There are control devices which are aimed to prevent structural damage caused
by structure vibration in case of earthquake loads. These devices consist of dampers
and base isolators which control and reduce the response of the structure during
an earthquake. The most basic dampers are active and passive [10]. In the passive
dampers, the damper modifies the structure response without external power supply
while in the active damper, the response is reduced by generating the required forces
to oppose the work done by earthquake forces with the help of external power supply.
Now, moving to the semi-active dampers, they use both the properties of active and
passive dampers, and the hybrid dampers use various combination of the above
dampers [12].

For dampers to work properly, the properties of the dampers have to be designed
so that the response of the structure can be reduced. Hadi and Arfaidi [6] conducted a
study on a 10-storey shear building to optimize the properties of tuned mass damper
on the 10th floor. Asahina et al. [2] used linear viscous damper (LVD) for the opti-
mization. Tovar and Lopez [14] optimized the number and location of the damper of
5-storey moment resisting frame using simplified method, similar work of optimiz-
ing the number and location of actuators has been worked out by Abbasi andMarkazi
[1] using gentic algorithm. Murudi and Mane [11] observed that TMD was found
to be the most effective damping device to get the minimum relative displacement.
Islam and Ashan [8] optimized the parameters for tuned mass damper for a multi-
storey building, using EVOP technique. Kaveh et al. [9] optimized the parameters for
TMD to minimize the dynamic response of multistorey structure under seismic load
using charged system search (CSC). Hadi and Arfaidi [5] investigated optimized the
placement of the dampers using the hybrid genetic algorithm. Sebt et al. [13] applied
genetic algorithm to get the optimum location and properties for TADAS dampers
in a moment resisting steel structure.

When these dampers are used in multi-degree of freedom (MDOF) systems, the
optimization of the properties of the damper is important from economical point. Sev-
eral techniques and methods have been proposed for the optimization of these prop-
erties, i.e., damper mass, stiffness and damping coefficient in the past few decades
as mentioned above. Most of these techniques take storey displacement as the min-
imizing criteria when optimizing the above-said parameters [2]. In this paper, opti-
mization of the stiffness and damping properties of the damper has been done using
genetic algorithm (GA) andoneof its hybrid variant self-organizingmigratinggenetic
algorithm (SOMGA). The computational steps and working methodology of these
algorithms can be found in Davendra and Zelinka [3] and Deep and Dipti [4]. The
paper is organized as follows: in Sect. 1 introduction and literature review is given;
in Sect. 2, problem statement and analysis using SAP software are given; Sect. 3
highlights the analysis without optimization; Sect. 4 elaborates the problem formu-
lation; Sect. 5, result and analysis with optimization has been discussed and finally
conclusions are drawn in Sect. 6..
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Fig. 1 RC model of
building without dampers

2 Problem Statement

In this study, a 10-story RC moment resisting frame, one bay along X-direction and
Y -direction with following material properties has been analyzed using SAP 2000
as shown in Fig. 1.

2.1 Material Properties

Reinforced concrete of gradeM-20 andFe-415grade steel has been taken for concrete
and steel respectively. The stress–strain relationship is as per I.S. 456-2000 [7] and
the basic properties taken while modeling are as follows:

• Modulus of Elasticity of concrete, EC �22,360,680 kN/m2

• Density of concrete is 25 kN/m2

• Poisson’s ratio�0.15
• Concrete Compressive Strength f’c�20,000 kN/m2

• Modulus of Elasticity of steel, Es �1.999×108 kN/m2

• Minimum yield stress, f y �415,000 kN/m2

• Minimum tensile stress, f u �498,000 kN/m2

• Expected yield stress, f ye �518,750 kN/m2

• Expected tensile stress, f ue �622,500 kN/m2

• Poisson’s ratio�0.3.
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2.2 Model Geometry

Both the columns and beams are modeled as rigid and the details of the structure are
given below:

• Number of stories�10
• Number of bays along X-direction�1
• Number of bays along Y -direction�1
• Storey height�3.5 m
• Bay with along X-direction�6.0 m
• Bay width along Y -direction�6.0 m.

2.3 Section Dimensions

The column size is 300 mm × 450 mm and the beam size is also 300 mm × 450 mm
are taken for all ten floors. The building has a uniform mass of 12,561.63 kg and
uniform stiffness of 284,937.65 kN/m at all stories. Mass proportional coefficient is
0.7563 and stiffness proportional coefficient is 0.002448 for the building.

2.4 Loading Case

The problem has been analyzed for various load cases, i.e., dead load, seismic load,
etc. and also the combination of the above said loads as per IS codes. The structure has
been analyzed for the load combinationwhich gives themaximumdisplacement. The
major horizontal component of the El Centro earthquake has been taken to analyze
the problem.

2.5 Damper Properties

A damper is placed on the top storey of the structure as shown in Fig. 2 whose
properties have been calculated as per IS 1893-2002 (Part 1). It was assumed that
the mass of the damper is 5% of the total mass of the structure and the stiffness and
damping were calculated for the first modal frequency using the following formulae.

md = 5% × 12561.3 kg � 6280.8 kg
First modal period � 1.319 s
f � 0.7577 s−1

ω � 2πf � 2 × 3.14 × 0.7577
ω � 4.762
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Fig. 2 RC model of
building with dampers

ω2 � kd /md

kd � 142427 kN/m
cd � 2 ζ ω md � 2 × 0.05 × 4.762 × 6280.8
cd � 2990.9 kN-s/m.

3 Result and Analysis Without Optimization

Nonlinear time history analysis was done for both the undamped and damped model
as discussed in Sect. 2 and the following results are obtained without optimized
parameters. The dampedmodel has a significant reduction in the storey displacement
as compared to the undampedmodel as shown inTable 1. The top storey displacement
reduces by approx. 44%.

4 Problem Formulation

The RC model of the building in SAP with damper has reduced top storey dis-
placement. In the problem, objective is to minimize the storey displacement and the
function “f” is defined in terms of displacement of each storey as given in Eq. 1.
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Table 1 Results for 10-storey undamped and damped model using SAP software

Storey Undamped (A) 5% Damping (B) A–B (m) % Age reduction in
displacement

Displacement (m) Displacement (m)

1 0.0212 0.0129 0.0083 39.15

2 0.0566 0.0342 0.0224 39.57

3 0.0934 0.0553 0.0381 40.79

4 0.1283 0.0736 0.0547 42.63

5 0.1598 0.0875 0.0723 45.24

6 0.1875 0.0965 0.091 48.53

7 0.2109 0.1099 0.101 47.88

8 0.2295 0.1236 0.1059 46.14

9 0.2432 0.1347 0.1085 44.61

10 0.2526 0.1422 0.1104 43.70

Minimize f � x2
1 + x2

2 + x2
3 + . . . + x2

10 (1)

Subject to

M Ẍ + C Ẋ + K X � eẍg (2)

where

M diag [m1 m2 m3 …… mN md]
Ẍ storey acceleration matrix for damped building.
Ẋ storey velocity matrix for damped building.
X storey displacement, when damper is placed on 10th floor
e diag[−m1 −m2 −m3 …… −mN −md]T

X [x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, 0]T

K �

⎡
⎢⎢⎢⎢⎢⎣

k1 + k2 −k2 . . .

−k2 k2 + k3 −k3 . .

. . . . .

−kn kn + kd −kd

−kd kd

⎤
⎥⎥⎥⎥⎥⎦

C �

⎡
⎢⎢⎢⎢⎢⎣

C1 + C2 −C2 . . .

−C2 C2 + C3 −C3 . .

. . . . .

−Cn Cn + Cd −Cd

−Cd Cd

⎤
⎥⎥⎥⎥⎥⎦
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M is the mass matrix, C is the damping matrix, and K is the stiffness matrix along
with e and ẍg being the matrix-induced ground acceleration and ground acceleration,
respectively. And X is the displacement matrix with dot indicating as derivative with
respect to time.

This study considers the stiffness and damping coefficient of the damper as design
parameters for optimizing performance. During the optimization process, the param-
eters which are to be optimized are changed continuously to get the optimal results
within the desired range such as

0 < Cd < 1000 kN-s/m

0 < Kd < 4000 kN/m

x1 < x2 < x3 < x4 < x5 < x6 < x7 < x8 < x9 < x10

where for the structure,

xg � 0.313g ( PGA for El Centro1940 )

m1 � m2 � m3 � . . . . . . . . . . . . � m10 � 12,561.63 kg

k1 � k2 � k3 � . . . . . . . . . . . . . . . � k10 � 284,937.65 kN/m

c1 � c2 � c3 � . . . . . . . . . . . . . . . . � c10 � 5981.85 kN-s/m

md � mass of damper i.e.6280.8 kg (5% of total structure mass)

Ẍ � [0.865, 1.965, 3.009, 3.929, 4.608, 5.068, 5.445, 5.840, 6.095, 6.412, 0.00]T

Ẋ � [0.0779, 0.2047, 0.3413, 0.4869, 0.6504, 0.8185, 0.9777, 1.114, 1.2186, 1.2884, 0.00]T

5 Result and Analysis with Optimization

The objective function was to minimize the storey displacement and get the opti-
mal values for Cd and Kd . The optimization of the damper properties has been
done using optimization techniques namely genetic algorithm and SOMGA. The
optimized parameters of the damper, maximum displacement of all stories and the
percentage reduction of the displacement are given in Tables 2, 3, and 4, respec-
tively, using both techniques. The percentage reduction with the optimized values of
the dampers obtained from both the techniques has been compared and is shown in
Table 5. The average peak displacement reduction for all the stories in theX-direction
using GA is 58%while using SOMGA the reduction percentage is 52% as compared
to the undamped model.

Figure 3 shows the storey displacement for all the cases. It is observed that the
damped displacement results obtained from the GA and SOMGA reduce the struc-
ture response significantly. Also, it can be seen that both GA and SOMGA give
approximately same results.
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Table 2 Optimized parameters of the damper

Technique Optimized parameters

Mass (kg) Damping coefficient
(kn-s/m)

Stiffness (kn/m)

Analytical 6280.8 2990.9 142,427.46

SOMGA 6280.8 169.997 1316.1

GA 6280.8 548.852 1382.33

Table 3 Peak displacement for the 10-storey model

Storey Undamped (Model
A)

5% Damping
(Model B)

GA results (Model
C)

SOMGA results
(Model D)

Displacement (m) Displacement (m) Displacement (m) Displacement (m)

1 0.0212 0.0129 0.0087 0.0100

2 0.0566 0.0342 0.0236 0.0271

3 0.0934 0.0553 0.0395 0.0451

4 0.1283 0.0736 0.0552 0.0627

5 0.1598 0.0875 0.0702 0.0792

6 0.1875 0.0965 0.0840 0.0940

7 0.2109 0.1099 0.0963 0.1068

8 0.2295 0.1236 0.1068 0.1172

9 0.2432 0.1347 0.1115 0.1249

10 0.2526 0.1422 0.1207 0.1298

Table 4 Percentage reduction in displacement

Storey A–B (m) % Age A–C (m) % Age A–D (m) % Age

1 0.0083 39.15 0.125 58.96 0.0112 52.83

2 0.0224 39.57 0.033 58.30 0.0295 52.12

3 0.0381 40.79 0.0539 57.70 0.0483 51.71

4 0.0547 42.63 0.0731 56.97 0.0656 51.13

5 0.0723 45.24 0.0896 56.07 0.0806 50.43

6 0.091 48.53 0.1035 55.20 0.0935 49.86

7 0.101 47.88 0.1146 54.33 0.1041 49.35

8 0.1059 46.14 0.1227 53.46 0.1123 48.93

9 0.1085 44.61 0.1317 54.15 0.1183 48.64

10 0.1104 43.70 0.1319 52.21 0.1228 48.61
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Table 5 Comparison between SOMGA and GA Technique

Storey Model A–C Model A–D

Percentage reduction Percentage reduction

1 58.96 52.83

2 58.30 52.12

3 57.70 51.71

4 56.97 51.13

5 56.07 50.43

6 55.20 49.86

7 54.33 49.35

8 53.46 48.93

9 54.15 48.64

10 52.21 48.61

0 

0.05

0.1

0.15

0.2

0.25

0.3

undamped

Analy cal

SOMGA

GA

Fig. 3 Variations in displacement for all the cases

6 Conclusion

This study signifies the utilization of optimization techniques namely GA and
SOMGA to optimize the properties of tuned mass damper of a 10-storey building.
The building was modeled in SAP software keeping equal storey mass, stiffness and
damping at all storey and a nonlinear dynamic time history analysis was done with
El Centro as the base excitation earthquake. The optimized values of the damper on
the top storey of the structure were obtained using optimization techniques keeping
the displacement as a constraint and the analysis was done. Following are the main
conclusions:

• Analytical analysis of the model with damper shows a reduction of storey dis-
placement by 48% w.r.t. undamped model.

• The storey displacement reduces by 58 and 52%, respectively, with optimal param-
eters of damper obtained from GA and SOMGA w.r.t. model without damper.
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• The storey displacement reduces by 10 and 6%, respectively, with the optimal
parameters of damper obtained from GA and SOMGA w.r.t. analytical analysis
with damper.

• Both the techniques of optimization show a close range of reduction in storey
displacement with the optimized values of damper properties. Both the above
techniques can be used for the optimization problem of similar cases.
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Effect of Upper Body Motion on Biped
Robot Stability

Ruchi Panwar and N. Sukavanam

Abstract Achieving stability of biped robot during walking is a tough task. In this
paper, we generate polynomial cubic spline for ankle joints, hip joints, and upper
body so that the resulting walk is stable. Stability is assured by calculating zero
momentum point with largest stability margin in Matlabs.

Keywords ZMP · Inverse kinematics · Trajectory generation · Upper body

1 Introduction

During 1970s, the study of biped robots started. Many technical and scientific efforts
have been used to design and develop humanoid robots with human-like gait using
artificial intelligence. Vukobratovic et al. [1] worked on dynamic stability of legged
machines.McGeer [2] investigated the passivewalkingwith knees. To realize human-
likewalk of a biped robot, trajectory planning is considered themost important factor.
Narvez-Aroche et al. [3] have obtained a kinematic model which generated satisfac-
tory results for the positions. Huang et al. [4] proposed an iterative computation
trajectory generation method for hip and foot by specifying walking speed and step
length to obtain the largest dynamic balance margin base on the ZMP. An approach
presented by Erbatur and Kurt [5] improved the iterative computation trajectory gen-
eration by specifying a desired ZMP reference trajectory. Zhu Xiaoguang and Hu
Ruyi [6] presented a humanoid robot gait planning. The authors in [6, 7] presented
a cubic Hermitian polynomial interpolation algorithm to implement biped walking.
Recently,much attention has been focused on neural-network-based inverse kinemat-
ics solutions in robotics. In [8, 9], several neural network structures used for solving
the inverse kinematics problem were analyzed. Stability is a critical issue in bipedal
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walking. The most widely used dynamic balance criterion is the zero-moment point
(ZMP). ZMP for human walk can be either a fixed ZMP [3, 4] typically at the center
of the sole in the single-support phase, or a moving ZMP that changes in a periodic
fashion during locomotion as Erbatur et al. [5]. In human locomotion, the ZMP never
stays at a fixed position, but moves forward in the direction of locomotion [6, 7, 9,
11]. Liu et al. [10] proposed a control, which is based on the motion of the upper
body tomaintain good stability of the biped and to relief from knee bending problem.

In this paper, first we generate trajectories for ankle, hip and upper body and then
find the ZMP stability. To ensure stability, we generate three type of upper body
motion and whichever give the best ZMP trajectory with largest stability margin
will be chosen. The inverse kinematics is solved using artificial neural network. In
Sect. 2, we discuss the robot model. Section3 describes planning of leg trajectories
for biped robot’s walk with suitable conditions. This is followed by Sect. 4 which
includes the forward kinematics and inverse kinematics of robotmodel. ZMPstability
is calculated in Sect. 5. Upper body mass trajectories are discussed in Sects. 6 and 7
includes simulation results with graphs and discussion.

2 Robot Model

In this simple model, each leg of biped robot have 2 degrees of freedomwith flat foot
as in Fig. 1. All the joints are revolute which are called hip joint (H), knee joint (K)
and ankle joint (A). Center of Gravity of upper body is denoted by (U). Total length
of leg is (l1 + l2) and length of foot is l3. It is assured that the length and mass of
both legs are the same and the details of parameters are given in Table1.

Robot walking can be considered as a repetition of one-step motion. The walking
sequence can be determined by computing the trajectory of the hip, ankle and upper
body. For hip trajectory, we consider stable ankle joint as a base and hip as the end
effector, and for ankle trajectory, we consider swing leg’s hip as base and its ankle
joint as the end effector. Flat foot is attached at ankle joint.

3 Trajectory Generation

Consider the coordinates frame F with coordinates axes x-y-z. The planes xy, yz and
xz respectively are called transverse plane, frontal plane and sagittal plane and biped
robot walks in x-direction. The motion range of the legs in the frontal plane and the
transverse plane is negligible compared to the motion in the sagittal plane. Here, we
assume that the robot walk in sagittal plane (xz-plane). Total time is tf .
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Fig. 1 Schematic 3D biped model

Table 1 Parameters

Link Length Value (in.) Mass Value (kg)

HK l1 14 m1 4

KA l2 14 m2 4

HU l5 10 m6 60

HH l0 8 m5 4

3.1 Foot Trajectory

We assume that swing leg’s ankle joint follow a cubic polynomial trajectory is
given by

xA(t) = a1 + b1t + c1t
2 + d1t

3; (1)

zA(t) = l1 + m1xA(t) + n1xA(t)
2 + p1xA(t)

3; (2)

with boundary conditions
xA(t0) = xi; xA(tf ) = xi + xf ; ẋA(t0) = 0; ẋA(tf ) = 0.
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zA(x0) = 0; zA(xf ) = 0; zA(xm) = h1; żA(xf ) = 0.
Here, h1 is step height, xi is initial position, xf is step length and xm is x-coordinate
at which maximum height is achieved.
Considering these boundary conditions, the x and z coordinates of ankle joint at time
tε(t0, tf ) are given below:

xA(t) = xi +
(
3xf
t2f

)
t2 −

(
2xf
t3f

)
t3; (3)

zA(t) = h(−(xf + xi)2xi)

(xm − xi)(xm − xf − xi)2
+ h(xf + xi)(xf + 3xi)xA(t)

(xm − xi)(xm − xf − xi)2

−h((2xf + 3xi)xA(t)2 + hxA(t)3)

(xm − xi)(xm − xf − xi)2
(4)

3.2 Hip Trajectory

For biped robot walking on a plane, we assume that the stable leg moves like an
inverted pendulum considering its ankle joint as base and hip as end effector. During
walking, humans do not fold their stable leg as the whole body weight is on this leg.
The hip follows a circular path with center at ankle joint A and radius (l1 + l2) with
suitable boundary conditions. During the time interval (t0, tf ), the hip trajectories in
x and z direction are computed by the polynomial.

xH (t) = q0 + q1t + q2t
2 + q3t

3; (5)

zH (t) =
√
(l1 + l2)2 − (xH (t) − (xi + xf /2))2; (6)

with boundary conditions
xH (t0) = xi + xf /4; xH (tf ) = xi + 3xf /4; ẋH (t0) = vs; ẋH (tf ) = ve.

zH (t0) = h; zH (tf ) = h; żH (t0) = vzs; żH (tf ) = vze.

where h maximum hip height of the robot’s hip at time t2, h0 is hip height of the
robot at starting and end position.
Hence, hip trajectory during the time (t0, tf ) is given below:

xH (t) = xf
4

+ vst +
(
(ve − vs)

2tf
− r4

3tf
2

)
t2 − 2

(
xf
2t3f

− (vs + ve)

2t2f

)
t3; (7)

zH (t) =
√
(l1 + l2)2 − (xH (t) − (xi + xf /2))2 (8)

where r4 = −2
(

xf
2t3f

− (vs+ve)

2t2f

)
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4 Forward and Inverse Kinematics

Forward kinematics of a biped means finding the position and orientation of the
end effector for given joint variables and dimensions of the links. The kinematics
equations of swing leg’s ankle are obtained by considering hip (H) as the base and
ankle (A) as the end effector. So the forward kinematic equations of the swing leg are

xA(t) − xH (t) = l1cosθ1(t) + l2cos(θ1(t) + θ2(t)); (9)

zA(t) − zH (t) = l1sinθ1(t) + l2sin(θ1(t) + θ2(t)); (10)

where (xA(t), zA(t)) and (xH (t), zH (t)) are defined earlier.
Stable leg’s ankle joint is fixed on the ground (x-axis) and knee joint is locked (no

rotation) while hip is moving. Thus, the stable leg moves like single link manipulator
with A as base and H as end effector. Its forward kinematic equations are

xH (t) −
(
xi + xf

2

)
= (l1 + l2)cosθ3(t); (11)

zH (t) = (l1 + l2)sinθ3(t); (12)

where
(
xi + xf

2 , 0
)
is the position of the stable leg’s ankle joint fixed on xz-axis. θ1,

θ2, θ3 are joint angles.
In this paper, we are solving the inverse kinematics problem for the robot legs to

follow the hip and ankle trajectories using a feed-forward neural network which has
two input neurons, one hidden layer with 10 neurons and 2 output neurons as shown
in Fig. 2. The transfer function for the hidden layer is the sigmoid function given by

y = 1

(1 + e−x)
(13)

At particular instant of time t, we find the position from the trajectory (xoi, yoi)
and use it as a input in neural network for finding θ1 and θ2 (as output). After that,
we put θ1 and θ2 in the 2 link manipulator forward kinematics equations and find the
position (xnn, ynn) from neural network. Then, compare the original and the neural
network value and find the error,

E = ((xoi − xnn)
2 + (yoi − znn)

2) (14)

The objective is to minimize this error using artificial neural network. This is done
by updating weights by partially differentiate the error with respect to weights.

δ(i, j) = ∂E

∂W (i, j)
i = [1 : 2], j = [1 : 10] (15)

δ(j, k) = ∂E

∂W (j, k)
j = [1 : 10], k = [1 : 2] (16)
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Fig. 2 NN with 2 input, 2 output, 10 neurons in hidden layer

Equation (15) calculates delta (δ) for input layer and Eq. (16) calculates delta (δ) for
hidden layer. We update the weights by the following formulas by using delta and
the learning rate α,

Wn+1(t) = Wn(t) − αδ 0 < α < 1. (17)

Here, n represents the iteration number and learning rate (α) is taken according
to the problem. The weights are initialized to 0.1, and the maximum number of
iterations is 3200 for ankle trajectory and 50 for hip trajectory. The neural network
stops processing if the error reaches below a certain threshold.

5 ZMP Stability Analysis

Zero-moment point (ZMP) is defined as the pointwhere the netmoment of the inertial
forces and the gravity forces along the axes parallel to the ground is equal to zero. If
the ZMP is within the supported region which is the convex hull of all contact points
on the floor support, the biped robot is stable and able to walk. In Huang et al. 2001
[4], the value of two scalars representing the ZMP is given as below:

xZMP =
∑n

i=1 mi(xi(z̈i + g) − ẍizi)∑n
i=1 mi(z̈i + g)
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yZMP =
∑n

i=1 mi(yi(z̈i + g) − ÿizi)∑n
i=1 mi(z̈i + g)

where n is the number of links, mi is the mass of links, and g is gravity.
In typical human locomotion, the ZMP never stays in a fixed position but moves
forward in the direction of locomotion.

6 Upper Body Motion

Modern walking robots usually have heavy upper body as electronic circuits and
batteries are there and this mass affect the stability. To ensure stable walking, ZMP
must be within the support region. For this, we change the parameters of upper body,
try to find the ZMP trajectory which moves in a desired manner. The total mass of
upper body is assumed to be a single mass point for planning its trajectory.

6.1 Upper Body Motion on a Frontal Plane

On the frontal plane, upper body mass shifts from one position to another and its tra-
jectory in y-direction highly affects the y-ZMP trajectory. In order to find a desirable
ZMP trajectory, we generate three type of upper body mass trajectory in y-direction
and choose the one which ensures the higher stability margin. These trajectories are
determined by cubic polynomials as given below:
Case-1: As the robot start its step, upper body starts to move from middle of hips to
the side of the stable leg’s hip during time t0 to t1, stay there during time t1 to t3, then
again starts moving towards the middle of legs between t3 and tf time in y-direction
where t1 = tf /4 and t3 = 3tf /4. So themovingmass trajectory in y-direction is given
below:

yM (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yl + yvt +
(
3(ya−yl)

t12
− 2yv

t1

)
t2 +

(−2(ya−yl)
t13

− yv
t12

)
t3 t0 ≤ t ≤ t1

ya t1 ≤ t ≤ t3(
ya + (−3tf t23+t33 )(yl−ya)

(t3−tf )3
+ tf t23yv

(t3−tf )2

)
(
6tf t3(yl−ya)
(t3−tf )3

− (t23+2tf t3)yv
(t3−tf )2

)
t +

(−3((yl−ya)(t3+tf )
(t3−tf )3

+ yv(4t3+2tf )
2(t3−tf )2

)
t2 +

(
2(yl−ya)
(t3−tf )3

− yv
(t3−tf )2

)
t3 t3 ≤ t ≤ tf

Case-2: As robot start its step, upper body mass starts to move from middle of hip
to stable leg’s hip during t ∈ (t0, tf /8), fixed there during t ∈ (tf /8, 7tf /8) and then
returns back in time t ∈ (7tf /8, tf ). Then the moving mass trajectory can be calcu-
lated by case-1 equation by putting t1 = tf /8 and t3 = 7tf /8.
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Case-3: As the robot starts its step, upper body starts to move from middle of both
legs to the side of the stable foot from time t0 to t2, then again starts moving towards
middle of both legs between t2 and tf time in y-direction. So the moving mass tra-
jectory in y-direction is given below:

yM (t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

yl + yvt +
(
3(ya−yl)

t22
− 2yv

t2

)
t2 +

(−2(ya−yl)
t23

− yv
t22

)
t3 t0 ≤ t ≤ t2(

ya + (−3tf t22+t32 )(yl−ya)
(t2−tf )3

+ tf t22yv
(t2−tf )2

)
(
6tf t2(yl−ya)
(t2−tf )3

− (t22+2tf t2)yv
(t2−tf )2

)
t +

(−3((yl−ya)(t2+tf )
(t2−tf )3

+ yv(4t2+2tf )
2(t2−tf )2

)
t2 +

(
2(yl−ya)
(t2−tf )3

− yv
(t2−tf )2

)
t3 t2 ≤ t ≤ tf

where yl middle position between both hip, ya is final position of upper body mass,
and yv > 0 is initial velocity of moving mass.

7 Result

The parameters of the biped robot are total length of foot is 6 andwidth is 4, and initial
and end velocity for ankle is 0. Ankle is attached at middle of foot so initial position
of ankle is xi = 3. The ankle joint follows a step length xf =14 from initial position
to the final position xi + xf with step height h=2.5. yl =4 is middle position of hip,
ya =8.5 in y-direction. Swing foot is at the position 0 < x < 6 and −2 < y < 2 and
stable foot is at the position 7 < x < 13 and 6 < y < 10. These units are in inches.
Figure3 presents the desired trajectory graph for the ankle and hip.

The inverse kinematics of these trajectories are calculated using neural network
in Matlab. Figures4 and 5 show the swing leg and stable leg follows the desired
trajectories. Joint angles of swing leg and stable leg are calculated using neural
network given in Figs. 6 and 7 respectively.

Fig. 3 Ankle and hip
trajectory in xz-plane
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Fig. 4 Swing leg following
the given trajectories

Fig. 5 Stable leg following
the given trajectories

Fig. 6 Joint angles θ1 and
θ2 of swing leg tε(0, tf )
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Fig. 7 Joint angles θ3 of
stable leg tε(0, tf )

Fig. 8 Error of swing leg’s
ankle trajectory

Figures8 and 9 show the error in the NN output for the position of the swing leg’s
ankle and stable leg’s hip (vertical axis) versus the neural network iteration number
(horizontal axis). Each curve in Figs. 8 and 9 represents the error graph at a time
instant t = 0.1i, where i = 1, 2, 3 . . . 40.

Figures10, 12 and 13 present the x- and y-ZMP graph of this biped robot for three
step in tf = 3s.

As we can see from figure that the ZMP varying trajectory is inside the support
polygon for case-1,-3 and providing the stable walking for the modeled trajectories.
But when we decrease the time then only upper body trajectory in case-3 gives the
most stable ZMP trajectory (see Figs. 11 and 14) as given in Table1 because in this
case, upper bodymoves slowly frommiddle of hip to stable leg’s hip and then returns
back in the same manner.



Effect of Upper Body Motion on Biped Robot Stability 247

Fig. 9 Error of stable leg’s hip trajectory

Fig. 10 Stable ZMP trajectory in 3 s of case-1

Figure14 shows the stable ZMP trajectory for case-3 for tf = 1.5s.
Whole body motion in 3D for one step with case-3 upper body trajectory is given

in Fig. 15.
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Fig. 11 Unstable ZMP
trajectory 1.5 s of case-1

Fig. 12 Unstable ZMP
trajectory in 3 s of case-2

Fig. 13 Stable ZMP
trajectory in 3 s for case-3
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Hip Upper body ZMP
Velocity (in/s) Time (s) Trajectory Initial velocity (in/s) Stability
vs=2.3 3 Case-1 yv = 10 Stable
vs=3.5 2 Case-1 yv = 15 Stable but

small margin
vs=4.7 1.5 Case-1 yv = 20 Unstable
vs=2.4 3 Case-2 yv = 16 Unstable
vs=3.5 2 Case-2 yv = 20 Unstable
vs=4.7 1.5 Case-2 yv = 22 Unstable
vs=2.3 3 Case-3 yv = 7.3 Stable
vs=3.5 2 Case-3 yv = 10.3 Stable
vs=4.7 1.5 Case-3 yv = 11 Stable

Fig. 14 Stable ZMP
trajectory in 1.5 s for case-3

Fig. 15 Biped walk in 3D
for one step
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Ant Colony Algorithm for Routing
Alternate Fuel Vehicles in Multi-depot
Vehicle Routing Problem

Shuai Zhang, Weiheng Zhang, Yuvraj Gajpal and S. S. Appadoo

Abstract AMulti-depot Green Vehicle Routing Problem (MDGVRP) is considered
in this paper. An Ant Colony System-based metaheuristic is proposed to find the
solution to this problem. The solution for MDGVRP is useful for companies, who
employ the Alternative Fuel-Powered Vehicles (AFVs) to deal with the obstacles
brought by the limited number of the Alternative Fuel Stations. This paper adds
an important constraint, vehicle capacity to the model, to make it more meaningful
and closer to real-world case. The numerical experiment is performed on randomly
generated problem instances to understand the property of MDGVRP and to bring
the managerial insights of the problem.

Keywords Vehicle routing · Multi-depot · Alternative fuel-powered vehicle
operations · Fuel tank capacity limitation · Capacitated vehicle

1 Introduction

Recent years, green logistics has become a high-profile research field because of
the growing environmental and of the pollution concern worldwide. The current
production and distribution system has triggered various environmental problems,
which lead to an unsustainable environmental situation.

Under this background, more and more researchers have concentrated on the
Green Vehicle Routing problem (GVRP) [1–3]. Different from the classical Vehicle
Routing Problem (VRP) which only focuses on the selection of the optimal route by
minimizing total transportation cost generated in the process of distribution services,
the GVRP emphasizes not only on the optimal economic cost of delivery, but also
on addressing sustainable issues in delivery distribution of supply chains [2]. The
design of GVRP requires the use of the Alternative Fuel-powered Vehicles (AFV),
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which relies on greener fuel source such as electricity, natural gas, hydrogen, etc. [1].
However, there are two main obstacles encountered when replacing the conventional
vehicles with the AFVs: (1) the limited capacity of the fuel tank or batteries of AFVs,
and (2) the scarcity of Alternative Fuel Stations (AFSs). Because of these obstacles,
problem formulation and algorithm design of GVRP become more complex than
those of VRP [1].

At the same time, the Multi-depot Vehicle Routing Problem (MDVRP) has also
attracted a lot of attention [4–6]. In the MDVRP, the fleet of vehicles serves cus-
tomers from several depots and returns back to the same depot [6]. Research about
the MDVRP is meaningful for companies that have a wide range of business scope
and havemore than one depot because the solution ofMDVRP could help these com-
panies reduce their transportation costs and improve their financial performances.

In recent years, many large-scale multinational companies such as UPS, Coca-
Cola, and GM have especially paid attention to their environmental sustainable per-
formances and update their sustainability reports every year. They are exhausting
their ability to keep a balance between economic performance and environmental
protection. For these companies, the solutions for GVRP or MDVRP cannot provide
an optimal solution they desired. Most of the GVRP solutions methods only work
in situations where there is only one depot and most of the results for the MDVRP
only focus on minimizing the transportation cost and ignore the sustainable issues.

Therefore, in this paper, a new variety of problem called the Multi-depot Green
Vehicle Routing Problem (MDGVRP), is addressed. In the MDGVRP, the AFVs
departure fromdifferent depots, serve customers, and at the end come back to original
depots. Due to the limited capacity of the fuel tank of AFVs and the scarcity of AFSs,
each AFV needs to go back its original depot or the nearest AFS to refuel. Based on
the two main constraints above, the objective of MDGVRP is to minimize the route
distance of the AFV fleets. Thus, compared with MDVRP or GVRP, MDGVRP has
more constraints and subsequently, is more different to formulate and solve.

It is widely known that VRP is an NP-hard problem, which means that increasing
the size of the problem leads to exponential growth in the computational effort
required tofind the corresponding solution.Because theMDGVRP is a special variant
of the VRP, it can be determined that the MDGVRP is also NP-hard. Therefore, in
this paper, the ant colony algorithm is proposed to find solutions for MDGVRP.

The structure of the rest of this paper is organized as follows. In Sect. 2, related
literature review is presented. Section 3 describes the MDGVRP problem. Section 4
presents the proposed ant colony algorithm. Numerical experiments are presented in
Sect. 5 and are followed by the conclusion in Sect. 6.

2 Literature Review

Because the MDGVRP is a quite new variety of problem, there is no literature
focusing on this area. However, the MDGVRP is based on the GVRP and MDVRP;
therefore, some important previous studies are reviewed in the following sections.
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2.1 GVRP

The research of the GVRP just began about 10 years before. However, the GVRP has
received extensive attention from researchers because people are becoming aware
of the importance of environment protection. According to the comprehensive lit-
erature survey on the GVRP of Lin et al. [2], there are mainly two categories of
GVRP: Pollution-Routing Problem (PRP) and Green-VRP. Although both these two
categories of GVRP focus on economic cost and environment cost simultaneously,
the PRP reduces environment cost by minimizing the fuel consumption or mini-
mizing the Green House Gas (GHG) emissions, while the Green-VRP alleviates the
environmental damage by using AFVs instead of conventional vehicles. Erdoĝan
and Miller-Hooks [1] first addressed that the conventional vehicles can be replaced
by the AFVs. They proposed a model to help companies which apply the AFVs to
optimize the transportation routes in order to overcome the limited capacity of fuel
capacity of the AFVs. Based on their work, Schneider et al. [3] added the customer
time window constraints to the VRP for electric vehicles. The MDGVRP considered
in this paper is based on the Green-VRP of Erdoĝan andMiller-Hooks [1]. However,
compared with their model, our model considers the demands of customers and can
be used to solve the multi-depot problem instead of the single-depot problem.

2.2 MDVRP

The MDVRP was first described in the research of Cassidy and Bennett [4], and is
a generalization of the standard VRP, in which there are multiple depots [5]. The
MDVRP is very easy to be described. However, an NP-hard problem, the MDVRP
is extremely difficult to solve. Therefore, the research of MDVRPmainly focuses on
proposing and developing new methods and algorithms to solve the problem. The
work of Montoya-Torres et al. [6] revealed that most researchers tend to solve the
MDVRP by heuristics or meta-heuristics. For example, Vidal et al. [7] solved the
MDVRP by using a hybrid genetic algorithm. In the research of Yu et al. [5], they
changed the MDVRP to Single-depot VRP (SVRP) by adding a virtual depot in the
first step, and then they applied an improved Ant Colony Optimization (ACO) to
solve the SVRP. Therefore, the development of the research on MDVRP is followed
by the continually improving the algorithms. In this paper, the ant colony algorithm
is developed to solve the MDGVRP.

3 Problem Description

A standard MDGVRP can be described as the problem of designing least distance
routes from the Ns’ depots to a set of geographically scattered points (customers).
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AFVs start from different depots and serve customers one by one, and finally, they
return their original depots. Each customer ci ∈ C (customer set) is associated with
a non-negative demand qi to be delivered. To ensure the efficiency of delivery, each
customer is visited by the AFVs one time and the demand of customer would be
satisfied after this visit. During the service process, the AFVs need to return their
original depots to reload to ensure that the remaining cargos always can satisfy the
demand of the next customer. Besides, if it is necessary to refuel during the service
process, the AFVs have to visit the AFSs or return their original depots to refuel. It is
assumed that the number of AFSs visited by an AFV in a tour can be more than one.
Besides, a particular AFS can be visited more than once on a given vehicle route. The
objective of the problem is to minimize the total distance traveled by all vehicles.

4 Solution of MDGVRP

The proposed algorithm first assigns a customer to its nearest depot. Then a single-
depot GVRP is solved for each depot using the Ant Colony System (ACS) algorithm.

4.1 Ant Colony System (ACS) Algorithm for Single-Depot
GVRP

We solve the single-depot GVRP by using the Ant Colony System (ACS) algorithm.
The problem consists of the depot and associated customers. Ants always can find the
shortest route between their nest and the food. Through simulating the food-seeking
behaviors of ant colonies in nature, the Ant Colony System (ACS) algorithm was
developed [8].During the past several years, theACS algorithmhas been successfully
applied to solve the VRP and its variants (e.g., Lin et al. [2], Yu et al. [5], Montoya-
Torres et al. [6], Dorigo et al. [8], Bell and McMullen [9], Gajpal and Abad [10],
etc.).

In the ACS algorithm, some artificial ants are created to find the feasible solutions
based on constraints and trail intensity generated or accumulated during previous
iterations. The paths in solutions (routes) with a higher value of the objective function
(shorter route distance) accumulate a higher level of trail intensity. The paths with a
higher level of trail intensity have a higher chance to be selected by artificial ants in
the next iteration. In this way, after several iterations, the near-optimal solution can
be found. The fundamental procedures of ACS are as follows:

Step 1: Initialize the trail intensity matrix, create m artificial ants.
Step 2: Repeat the following steps until the termination condition is fulfilled.

• Generate a solution for each ant based on trail intensity.
• Optimize the solutions by local search.
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• Update elitist ants.
• Update trail intensity matrix based on the elitist ant solutions.

Step3: Record the best solution of all generated solutions so far.

4.1.1 Ant Solution Generation

Every GVRP is first simplified as a Traveling Salesman Problem (TSP) and the ACS
algorithm is applied to seek the feasible solutions. The feasible solutions of each TSP
are the route set which only consists of the original depot and customers. Finally,
in the third phase, the TSP solutions found in the second phase are used to build
the routes of GVRP. The rules to build these routes are included: (1) insert an AFS
or the original depot when the remaining fuel is not enough to support the AFV to
reach the next customer on the TSP route or return its original depot and (2) insert
the original depot when the remaining products are not able to satisfy the demand of
the next customer on the TSP route. In this way, each GVRP can be solved.

In every iteration, there are n number of artificial ants to create n number of TSP
solutions (n is the number of customers in the problem). The artificial ants select the
next customer mainly based on two factors: the saving value and the trail intensity
between two customers.

The saving value Sij represents the saved traveling distance between the customers
i and j who are served by one AFV instead of two. The following function shows
how to calculate Sij and dij denotes the distance between the customer i and j:

Si j � d0i + d j0 − di j

The trail intensity τi j is defined as the intensity of serving customer j from the
customer i and the trail intensity records the information on the visit between two
customers. Therefore, at the beginning, all elements in the τi j matrix are same and
are set to 0.01 in this paper.

The saving value (Sij) and trail intensity (τi j ) between two customers constitute
the attractiveness value ξi j between these two customers. And,

ξi j � [
Si j

]α[
τi j

]β

In this equation, α and β are the biases of saving value and trail intensity, respec-
tively. These two parameters are set at the beginning of the algorithm execution and
the values of them need to be altered according to different problem scenarios.

Based on the attractiveness value, the probability of selecting customer j as the
next customer from customer i is calculated by the following function:

Pi j � ξ i j
∑q

k�1 ξ i xk
, 1 ≤ k ≤ q
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In this function, Xk represents the element of unvisited customer set �q . The set
�q contains q number of elements, whichmeans that there are q numbers of unvisited
customers. xk represents the kth element of set �q .

According to the probability calculation function, the m number of artificial ants
generates m number of TSP routes in every generation. In the next step, m number
of GVRP routes would be generated from TSP route based on the following rules:

1) Insert the depot if the remaining load of the vehicle cannot satisfy the demand
of the next customer;

2) Insert the nearest available fuel station if the remaining fuel level is not enough
to get the next customer.

However, sometimes, the quality of the solutions generated in this way is not
good enough. To improve the quality of these solutions, the local search is necessary.
Local search improves the quality (objective function value) of a solution (a GVRP
route) by changing the visiting consequence of a customer to checkwhether the value
objective function can decrease and local search is applied in every iteration after the
artificial ants generating new solutions. In this way, the solutions of every iteration
can be improved.

4.1.2 Trail Intensity Update

At the end of every iteration, the trail intensity between two customers τi j needs to
be updated to ensure the artificial ants can generate high-quality solutions in the next
iteration. To update trail intensity, the elitist ant set which contains λ number of ants
(represent λ best solutions in the past iterations) need to be set first. Then, τi j will
be updated according to the solutions of elitist ant set. The function to change τi j is
as follows:

τ new
i j � τ old

i j × ϕ +
λ∑

θ�1

τ θ
i j , i �� j and i, j � 1, 2, . . . , n

In this equation, τ old
i j represents the old trail intensity accumulated until the last

iteration and ϕ is the trail persistence which is between 0 and 1. The number of ϕ

determines the decreasing speed of pheromone density, and is set as 0.95. The second
term of the equation represents the pheromone increase brought by the elitist ant θ .
And the value of τ θ

i j is determined by

τ θ
i j �

{
0 if the edge between customer i and j is not in the elitist ant route.
1
lθ otherwise.

lθ represents the route length of θ th elitist ant solution.
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Table 1 Strategic location of AFS

Pattern Number of AFSs Details

1 2 The grid is horizontally divided into two equal
sections with each AFS randomly assigned to the
two sections

2 4 The grid was divided into four equal sections with
each assigned an AFS

3 6 This is similar to pattern 2 except that the two
additional AFSs are distributed using pattern 1

4 8 This is similar to pattern 3 with the grid vertically
divided into two equal section and the two
additional AFSs are randomly assigned to each
section

5 Numerical Experiment and Analysis

To test the validity of the proposed algorithm, the numerical experiment is designed.
Totally, 48 problem instances are created. In every instance, the different partic-
ipants in the MDGVRP are set in a 330 by 300 miles grid. The first 24 instances
(MDGVRP1-24) have 4 depots and other instances (MDGVRP25-48) have 6 depots.
Two locating schemes of AFSs are considered. To be specific, in the instances
MDGVRP1-12 andMDGVRP25-36, the AFSs are located strategically according to
the principles shown in Table 1. In the instance MDGVRP 13-24 and MDGVRP37-
48, the AFSs are located randomly. In addition, each instance has different numbers
of customers and AFSs. The detailed characteristics of instances are given in Table 2.

In the experiment, the capacity of fuel tank is set as 60 gallons. The vehicle
capacity is assumed to be 300 units of particular cargos. The fuel consumption rate
is set at 0.2 gallons per mile. One of the rules for generating the data used in the
experiment is that one tank of fuel is enough for a vehicle to reach to a customer
from depot via an AFS.

The construction of algorithm is coded in C programming and implemented on
AMD Opteron 2.3 GHz with 16 GB of RAM. The result of instances with strategic
AFS location and random AFS location are shown in Tables 2 and 3 respectively.
All problem instances are solved in seconds.

The results reported in Tables 2 and 3 show that the ACS can solve the MDGVRP
in seconds. The solved instances vary in terms of the number of customers, AFSs,
and depots and show the scalability of the proposed ACS on solving the MDGVRP.
Further, the results show that the strategic location of AFSs can minimize the total
route length, because the average route length of instances with the strategic AFSs
location is less than that of instances with random AFSs locations. However, this
observation does not hold for every instance used.

It is also worth to mention that the growth in the number of depots leads to the
decrease in the route length. However, more depots can raise the maintenance costs
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Table 2 Results of instances with strategic AFS location

Instance Quantity of
customers

Quantity of AFSs Number of
depots

Distance

MDGVRP1 25 2 4 958.933

MDGVRP2 50 2 4 1420.91

MDGVRP3 75 2 4 1870.26

MDGVRP4 25 4 4 1072.3

MDGVRP5 50 4 4 1499.85

MDGVRP6 75 4 4 1714.51

MDGVRP7 25 6 4 974.518

MDGVRP8 50 6 4 1418.11

MDGVRP9 75 6 4 1845.3

MDGVRP10 25 8 4 1106.49

MDGVRP11 50 8 4 1336.83

MDGVRP12 75 8 4 1817.46

MDGVRP25 25 2 6 815.249

MDGVRP26 50 2 6 1494.85

MDGVRP27 75 2 6 1876.56

MDGVRP28 25 4 6 1106.16

MDGVRP29 50 4 6 1354.45

MDGVRP30 75 4 6 1683.09

MDGVRP31 25 6 6 1022.31

MDGVRP32 50 6 6 1300.97

MDGVRP33 75 6 6 1746.58

MDGVRP34 25 8 6 871.961

MDGVRP35 50 8 6 1235.61

MDGVRP36 75 8 6 1788.41

Average 1388.81

and increase the vehicle used in delivery. Therefore, future research can focus on
determining the optimal quantity of depots in the distribution network.

6 Conclusion

In this paper, the formulation of the MDGVRP is proposed and the algorithm based
on the ACS is designed to solve this problem. The ACS algorithm seeks the shortest
tour when considering the vehicle capacity and the fuel tank capacity.

Numerical experiments illustrate that the proposed algorithm performs well and
can be used to deal with different instances. The results of numerical experiments
also show some implications to the company who has employed the AFVs or intends
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Table 3 Results of instances with random AFS location

Instance Quantity of
customers

Quantity of AFSs Number of
depots

Distance

MDGVRP13 25 2 4 1166.79

MDGVRP14 50 2 4 1417.87

MDGVRP15 75 2 4 2269.84

MDGVRP16 25 4 4 976.786

MDGVRP17 50 4 4 1451.22

MDGVRP18 75 4 4 1778.68

MDGVRP19 25 6 4 1151.4

MDGVRP20 50 6 4 1466.59

MDGVRP21 75 6 4 1886.86

MDGVRP22 25 8 4 1028.35

MDGVRP23 50 8 4 1497.78

MDGVRP24 75 8 4 1631.41

MDGVRP37 25 2 6 1149.69

MDGVRP38 50 2 6 1433.49

MDGVRP39 75 2 6 2193.64

MDGVRP40 25 4 6 900.919

MDGVRP41 50 4 6 1433.75

MDGVRP42 75 4 6 1846.76

MDGVRP43 25 6 6 1125.36

MDGVRP44 50 6 6 1394.92

MDGVRP45 75 6 6 1863.23

MDGVRP46 25 8 6 945.133

MDGVRP47 50 8 6 1486.94

MDGVRP48 75 8 6 1671.45

Average 1465.37

to use in the future. The first implication is that the company has to decide the
number of depots based on the calculation of benefits induced by the AFSs and the
additional costs induced by depots maintenance. In addition, we also find that the
limited fuel tank capacity of AFVs creates more complexity to the routing problem.
This situation is quite different from the classic routing problemwhere the traditional
fuel tank capacity is large enough traveling for a fairly long distance.
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Semidefinite Approximation of Closed
Convex Set

Anusuya Ghosh and Vishnu Narayanan

Abstract Approximation of convex sets takes a major role in optimization theory
and practice. Approximation by semidefinite representable set draws more attention
as semidefinite programming problems can be solved very efficiently using numer-
ous existing algorithms. We contribute a technique by which a closed convex set
can be approximated by a compactly semidefinite representable set. Further, we
extend the technique of approximation and we prove that a closed convex set can be
approximated by semidefinite representable set. These results give new techniques
in semidefinite programming.

Keywords Semidefinite representation · Convex set · Approximation
Semidefinite representable set

1 Introduction

The approximation of convex sets takes an important role in modern convex opti-
mization. Several types of approximations have been discussed. Approximating a
norm in any vector space or generally approximating the Minkowski functional of a
convex body in vector space by a polynomial is contributed in [1]. Approximating an
Euclidean ball [2], a zonoid [3], a symmetric convex body [4], any convex body [4],
a cut-norm [5], a second-order cone [6] and a p-order cone [7] have been developed.

An ellipsoidal approximation is defined in [8]. For any convex body K , there
exists a unique ellipsoid E such that E has the largest volume among all ellipsoids
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contained in K [8, Theorem 9.3]. The ellipsoid is known as the John ellipsoid of K .
If the convex body K is symmetric, then the John ellipsoid is centred at the origin.

The approximation of a convex body B in real vector space V by a set X is
discussed in [4] such that the membership question: “given an x ∈ V , does x belongs
to X ?” can be evaluated efficiently. Several optimization problems provide various
convex bodies for which the membership question is very hard to solve. So, the main
aim of approximating any convex body B by an efficient computable set X lies in the
fact that the membership question can be solved easily. The convex body B is called
symmetric if B = −B. A norm is ‖‖ associated with the convex body B such that

‖b‖ = inf{λ > 0 : b ∈ λB}.

Approximation of the convex body B by a set X is equivalent to the problem of
approximating its norm ‖‖ by an efficient function f . Thus, the symmetric convex
body B can be efficiently approximated by algebraic hyper-surfaces as given in [4,
Theorem 2.2]. The set X = {v ∈ V : p(v) ≤ 1} where p is a homogeneous polyno-
mial from V to R, which approximates the symmetric convex body B efficiently.

Any convex body B can be arbitrarily well approximated by a polytope X [4,
Sect. 3]. The size of the polytope X plays a main role in this context. The bound

on the size of the set X is given by |X | ≤ (
1 + 2

ε

)d
[9] for any symmetric con-

vex body B in d -dimensional vector space V and for any 1 > ε > 0. The bound
on the size of set X is given by |X | ≥ exp

{
d
2α2

}
for a unit ball B ⊆ R

d such that
conv(X ) ⊆ B ⊆ α conv(X ) [8].

It is discussed in [4] that any convex bodyK in vector spaceV can be approximated
by a section of a polytope P. The main idea is to construct a vector space W ⊃ V
and a polytope P ⊆ W such that P ∩ V approximates B. Sections and projections
are inter-related. A section of a polytope with at most n vertices can be represented
as a projection of a polytope with at most n facets. But the interesting feature of
approximations of symmetric convex body B by sections or projections is that they
break symmetry. So, we need to approximate a symmetric convex body B by a
polytope P which may not be symmetric. The paper [8] shows that the unit ball
cannot be approximated tightly by a polytope, although the unit ball can be efficiently
approximated by a projection of a polytope or by a section of a polytope [4, Sect. 4.4].
This approach of approximating the unit ball has been generalized in Sect. 4.5 [4].
In Sect. 6, [4] the approximation of a convex body B by a section of the cone of
positive semidefinite quadratic forms has been contributed. The main application of
this approach is associated with the cut polytope [10].

Let K be a convex compact semi-algebraic set in R
n. In [11, Lemma 5.1] the set

K is being characterized as a projection of a semi-infinite semidefinite representable
set S∞. The semi-infinite set S∞ is defined by finitely many LMIs involving matrices
of infinite dimension and countably many variables. A procedure is developed in
[11, Corollary 5.2(b)] to obtain a sequence of monotone non-increasing outer con-
vex approximations of K . Each outer convex approximation of K is semidefinite
representable and its semidefinite representation can be obtained by finite truncation
of the representation of S∞.
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Let Ak be the intersection of cone of positive semidefinite quadratic forms with
affine subspaces for any k = 1, 2, . . .. Approximation of any convex body B in a
vector space by the sequence of set {Ak}∞k=1 has been discussed in [12]. It is shown
[12] that each Ak is contained in convex body B. This approximation can be applied
for symmetric travelling salesman polytope.

Wemove to the problemof polyhedral approximation ofLorentz cone [6, Theorem
1.1]. This problem is equivalent to the problemof converting conic quadratic problem
to a linear programming problem. To the best of our knowledge the software for
conic quadratic programming problem is capable of handling problems with tens
of thousands of conic quadratic constraints with severe restrictions on the design
dimensionof the problem (a few thousandvariables). In linear programmingproblem,
we can solve routine problems with even hundreds of thousands of variables and
constraints. So, polyhedral approximations play a vital role in optimization. The
construction of polyhedral approximation of the Lorentz cone is discussed in Sect. 2
of [6].

It is proved in [13] that any closed convex setK can be approximated by boundedly
polyhedral set P. A technique has been developed to obtain boundedly polyhedral
approximation of closed convex setK in theTheorem6.3 [13].Wegeneralize ‘bound-
edly polyhedral set’ as ‘compactly semidefinite representable set’ as we discussed in
Sect. 2. In this chapter, we contribute a technique to approximate any closed convex
set K by a compactly semidefinite representable set P.

To optimize a linear function over a convex set, say K , is a hard problem. But
optimizing the linear function over the semidefinite representable set which approx-
imates the convex set K is easy to solve as there exists numerous efficient algorithms
[14–16] to solve semidefinite programming problems [17]. So, our approximation
technique is significant in optimization.

Contribution

This chapter presents results on approximating any closed convex set, say K , by a
compactly semidefinite representable setP.We develop a technique to construct such
compactly semidefinite representable set P from the closed convex set K such that
P efficiently approximates set K . We show that there exists a sequence of compactly
semidefinite representable sets which give tighter approximation of K gradually. We
discuss the convergence of the sequence of compactly semidefinite representable sets
to closed convex set K , where we show that the recession cone of K and recession
cones of compactly semidefinite representable sets say {Pi}∞i=1 are equal.

Notation

The set A(x, ε) is the union of all open ε-neighbourhoods of the points of X . The
relative interior of a set S is relint(S). The set theoretic operations union, intersection
and difference are denoted by ∪,∩ and \, respectively. The Hausdorff distance,
dH (X ,Y ) between two sets X and Y in R

n is defined as the greatest lower bound of
numbers d such that X ⊆ A(Y , d) and Y ⊆ A(X , d). The Hausdorff distance may
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be infinite when the sets are unbounded. For any a, b in R
n, the closed interval

[a, b] = {λa + (1 − λ)b : 0 ≤ λ ≤ 1}. The transpose of a vector c is cT . The set Nμx

is the neighbourhood of the point x.

2 Approximation of Convex Set by Compactly Semidefinite
Representable Set

This section deals with the approximation of any closed convex set K by a com-
pactly semidefinite representable set P. The technique to construct the compactly
semidefinite representable set P from the closed convex set K is established in the
Theorem 1. It is given below.

Theorem 1 Suppose K is a closed convex subset of R
n, K contains no line, and

μ is a continuous function on K to ]0,∞[. Then, there is a compactly semidefinite
representable set P such that P ⊆ K ⊆ ∪x∈PA(x,μx).

Proof The proof is divided into several steps and the steps are given below.

• Step 1: Let p be any point in K . Let us consider C as the recession cone of K such
that C = {x : [0,∞[x ⊆ K − p}. As C contains no line, C◦ is not contained in any
hyperplane of R

n. So, C◦ must have interior points. It is clear that C◦ is a closed
convex cone with vertex 0.

• Step 2: Let us consider a set F such that F = {f ∈ R
n : f > 0 on C \ {0}}. We get

F = − int(C◦). Thus F is a convex cone with vertex 0.
• Step 3: Let us consider a closed half-space in R

n as {x : f T x ≤ r}. Any translate of
the half-space is {x : f T x ≤ s}. For any f ∈ F , the set {x : f T x ≤ s} ∩ K contains
no ray and is thus a bounded set.

• Step 4: Let us consider that m0 = infk∈K f T k and m0 > 0. Let us consider the set
Km0r1 to be Km0r1 = {x : m0 ≤ f T x ≤ r1} ∩ K . The set Km0r1 is compact. Let us
consider that dr1 = μKm0r1 , where dr1 > 0. Let us consider

Kmiri+1 = {x : mi ≤ f T x ≤ ri+1} ∩ K, (1)

where ri+1 > mi + δ,mi = ri and r1 > m0 for any i = 1, 2, 3, . . . andwhere δ > 0
is a small real number. Thus there exists an increasing sequence rα in [m0,∞] such
that

K ⊆ ∪∞
i=1A

(
Kmi−1ri ,

1

2
dri

)
. (2)

• Step 5: Let F1 be a compact set in relint(Km0r1) such that Km0r1 ⊆ A
(
F1,

1
2dr1

)
and

B1 = conv(F1) where B1 is semidefinite representable. As F1 ⊆ relint(Km0r1) and
hence, B1 ⊆ relint(Km0r1) and Km0r1 ⊆ A

(
B1,

1
2dr1

)
.

• Step 6: Let conv(B1 ∪ Km2r3) = J13 and it is trivially compact set such that J13 \
Km2r3 ⊆ relint(K). So, J13 ∩ Km1r2 ⊆ relint(Km1r2). It is thus possible to produce
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semidefinite representable set B2 such that

J13 ∩ Km1r2 ⊆ B2 ⊆ relint(Km1r2) ⊆ Km1r2 ⊆ A

(
B2,

1

2
dr2

)
.

• Step 7: In this way we obtain a sequence Bn of semidefinite representable sets such
that

J(n−1)(n+1) ∩ Km(n−1)rn ⊆ Bn ⊆ relint(Km(n−1)rn ) ⊆ Km(n−1)rn ⊆ A

(
Bn,

1

2
drn

)
⊆ A(Bn, drn )

(3)
for each n ≥ 2.

• Step 8: Let us consider that P = conv(∪∞
i=1Bi).

x ∈ P =⇒ x ∈ conv(∪∞
i=1Bi)

=⇒ x = (1 − λ)u + λv; u, v ∈ Bi for some i

=⇒ x = (1 − λ)u + λv; u, v ∈ Km(i−1)ri for some i

=⇒ x = (1 − λ)u + λv; u, v ∈ K

=⇒ x ∈ K

Thus, P ⊆ K and for each n it is true that

A

(
Km(n−1)rn ,

1

2
drn

)
⊆ A(Bn, drn) ⊆ ∪x∈BnA(x,μx).

So

∪∞
n=1A

(
Km(n−1)rn ,

1

2
drn

)
⊆ ∪∞

n=1[∪x∈BnA(x,μx)].

• Step 9: We say

K ⊆ ∪∞
n=1A

(
Km(n−1)rn,

1

2
drn

)
⊆ ∪∞

n=1[∪x∈BnA(x,μx)]
=⇒ K ⊆ ∪∞

n=1[∪x∈BnA(x,μx)]
=⇒ K ⊆ ∪x∈KA(x,μx).

Thus, we get P ⊆ K ⊆ ∪x∈KA(x,μx).
• Step 10: Let us consider i < j < k and Bi,Bj,Bk are semidefinite representable
sets. Let p ∈ Bi and q ∈ Bk and j = i + 1, k = i + 2, then the segment joining p
and q intersects Kmir(i+1) . So, it intersects Bi+1. Thus, every segment from Bi to Bk

intersectsBj. The set conv(Bi ∪ Bj ∪ Bk) is the union of all segments [p, q] such that
q ∈ Bk and p ∈ [v,w] for some v ∈ Bi andw ∈ Bj. For such p, q, v, w the segment
[q, v]must intersect Bj at some point s and [p, q] ⊆ conv{w, s, q} ∪ conv{w, s, v}.
Thus,
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conv(Bi ∪ Bj ∪ Bk) = conv(Bi ∪ Bj) ∪ conv(Bj ∪ Bk). (4)

An application of Eq. (4) shows that

P = ∪∞
i=1 conv(Bi ∪ B(i+1)).

• Step 11: P is an unbounded set and is the infinite union of bounded sets of the
form conv(Bi ∪ Bi+1), where Bi,Bi+1 are compact semidefinite representable sets.
So, conv(Bi ∪ Bi+1) is compact semidefinite representable set. Let us consider any
compact semidefinite representable set B intersecting the set P. As B is bounded, B
intersects only finite number of sets of the form conv(Bi ∪ Bi+1), say B intersects
m number of sets of the form conv(Bi ∪ Bi+1). Thus, we get

P ∩ B = [∪∞
i=1 conv(Bi ∪ B(i+1))] ∩ B,

= [∪m
i=1 conv(Bi ∪ B(i+1))] ∩ B,

= conv(B1 ∪ . . . ∪ Bm+1) ∩ B.

As B1, . . . ,Bm+1 are compact semidefinite representable sets, conv(B1 ∪ . . . ∪
Bm+1) is semidefinite representable. Thus, B ∩ conv(B1 ∪ . . . ∪ Bm+1) is semidef-
inite representable. So, P is compactly semidefinite representable set.

Hence, the proof is complete. �
Corollary 1 If K is a closed convex subset of R

n and ε > 0, there are compactly
semidefinite representable sets P and Q such that P ⊆ K ⊆ A(P, ε) and K ⊆ Q ⊆
A(K, ε).

Proof Let us assume that K contains no line. Using Theorem 1, we have

P ⊆ K ⊆ ∪x∈PA(x,μx), (5)

where μ : K →]0,∞[ is a continuous function. We know that A(x,μx) is the set of
union of all μx-neighbourhoods of x where x ∈ P ⊆ K . Let us assume that μx = ε.
So, we have

A(x,μx) = A(x, ε),

=⇒ ∪x∈PA(x,μx) = ∪x∈PA(x, ε),
= A(P, ε).

Thus, we get a compactly semidefinite representable set P such that

P ⊆ K ⊆ A(P, ε). (6)

Let us consider the set cl convA(K, ε) which is a closed convex set in R
n. We apply

the above result and using Eq. (6) we get
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Q ⊆ cl convA(K, ε) ⊆ A(Q, ε), (7)

where Q is a compactly semidefinite representable set. Let us assume that Q ⊆ K .
We get

Q ⊆ K,

=⇒ A(Q, ε) ⊆ A(K, ε),

=⇒ A(Q, ε) ⊆ cl convA(K, ε).

This is a contradiction to the fact that cl convA(K, ε) ⊆ A(Q, ε) Eq. (7). Thus, Q �

K .
Let us assume that K ∩ Q = φ. Then cl convA(K, ε) ⊆ A(Q, ε) is not possible.

So, K ∩ Q = φ is not true.
We know

K ⊆ cl convA(K, ε) ⊆ A(Q, ε), (8)

=⇒ A(K, ε) ⊆ A(Q, ε).

Let us consider thatK � Q andK intersectsQ at some points. Then neitherA(K, ε) ⊆
A(Q, ε) nor A(Q, ε) ⊆ A(K, ε) is true. This is a contradiction to Eq. (8). Thus, this
case is false.

Hence, we get K ⊆ Q. We write

K ⊆ Q ⊆ cl convA(K, ε) ⊆ A(Q, ε). (9)

Now, we have

K ⊆ Q,

=⇒ A(K, ε) ⊆ A(Q, ε).

Hence, either Q ⊆ A(K, ε) or A(K, ε) ⊆ Q is true. If A(K, ε) ⊆ Q holds true, we
get cl convA(K, ε) ⊆ Q. This is a contradiction to Eq. (7). So, we get Q ⊆ A(K, ε).
Thus, we get

K ⊆ Q ⊆ A(K, ε). (10)

We combine Eqs. (6) and (10). Hence, the proof is complete. �
If ε > 0 andK is a bounded convex set with boundaryW , thenK can be ε approx-

imated in the way discussed in Corollary 1 by a set conv(Y ) where Y ⊆ W and by
semidefinite representable sets which are intersections of supporting half-spaces of
W . When K is unbounded set then compactly semidefinite representable approxi-
mations of this type may not exist. The circular cone cannot be approximated by
compactly semidefinite representable set. There exists another type of characteriza-
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tion of all convex sets. These types of weaker uniform approximations give us future
research direction.

3 Existence of a Sequence of Compactly Semidefinite
Representable Sets

This section establishes the existence of a sequence of compactly semidefinite rep-
resentable sets say {Pi}∞i=1. The result is given below.

Theorem 2 Suppose K is a closed convex subset of R
n, K contains no line, and μ

is a continuous function on K to ]0,∞[. Then there exists a sequence of compactly
semidefinite representable sets {Pi}∞i=1 such that

P1 ⊆ P2 ⊆ . . . ⊆ Pn ⊆ Pn+1 ⊆ . . . ⊆ K

⊆ ∪x∈P1A(x,μx) ⊆ ∪x∈P2A(x,μx) ⊆ . . . ⊆ ∪x∈PnA(x,μx) ⊆ ∪x∈Pn+1A(x,μx) ⊆ . . .

Proof From Theorem 1, Eq. (3) we have the following relation:

J(n−1)(n+1) ∩ Km(n−1)rn ⊆ Bn ⊆ relint(Km(n−1)rn) ⊆ Km(n−1)rn

⊆ A

(
Bn,

1

2
drn

)
⊆ A(Bn, drn).

Let us consider another polytope or a compact semidefinite representable set An such
that conv(Bn ∪ An) = B′

n. We have

J(n−1)(n+1) ∩ Km(n−1)rn ⊆ Bn ⊆ B′
n ⊆ relint(Km(n−1)rn) ⊆ Km(n−1)rn

⊆ A

(
Bn,

1

2
drn

)
⊆ A(Bn, drn).

Let us consider the set conv(∪∞
i=1B

′
i) = P′. Let us consider any point x in P′. Then,

we get

x = (1 − λ)u + λv; u, v,∈ B′
i for some i,

=⇒ x = (1 − λ)u + λv; u, v,∈ K,

=⇒ x ∈ K .

Thus, we get P′ ⊆ K and it is obvious from the construction of P′ that P ⊆ P′ ⊆
K ⊆ ∪x∈PA(x,μx). Let us consider any element y in ∪x∈PA(x,μx). So, we get
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y ∈ ∪x∈PA(x,μx),
=⇒ y ∈ Nμx for any x ∈ P,

=⇒ y ∈ Nμx for any x ∈ P′ as P ⊆ P′,
=⇒ y ∈ ∪x∈P′A(x,μx).

So, we get ∪x∈PA(x,μx) ⊆ ∪x∈P′A(x,μx). Thus, we say that

P ⊆ P′ ⊆ K ⊆ ∪x∈PA(x,μx) ⊆ ∪x∈P′A(x,μx).

Repeating the above technique, we get a sequence of compactly semidefinite repre-
sentable sets such that

P1 ⊆ P2 ⊆ . . . ⊆ Pn ⊆ Pn+1 ⊆ . . . ⊆ K

⊆ ∪x∈P1A(x,μx) ⊆ ∪x∈P2A(x,μx) ⊆ . . . ⊆ ∪x∈PnA(x,μx) ⊆ ∪x∈Pn+1A(x,μx) ⊆ . . . .

So, the sequence of compactly semidefinite representable sets {Pi}∞i=1 gradually gives
tighter approximation of closed convex set K . The proof is complete. �

3.1 Convergence

This subsection deals with the case where we show that the sequence of compactly
semidefinite representable sets {Pi}∞i=1 converge to the convex setK .We define strong
convergence.

Definition 1 (Strong convergence) Let us consider a sequence of unbounded closed
sets {Pi}∞i=1 in R

n. The sequence {Pi}∞i=1 strongly converges to an unbounded closed
set K if rec(Pi) = rec(K) for any i.

We show that the recession cone of the compactly semidefinite representable set
Pi is equal to the recession cone of the convex set K for any i.

• (⇒) For the sequence of compactly semidefinite representable sets {Pi}∞i=1, we
know

P1 ⊆ P2 ⊆ . . . ⊆ Pn ⊆ Pn+1 ⊆ . . . ⊆ K . (11)

Thus, it is very trivial to say that rec(Pi) ⊆ rec(K) for all i.
• (⇐) Now we prove rec(Pi) ⊇ rec(K) for any i. By definition of recession cone,
we say that

rec(K) = {d ∈ R
n : x + αd ∈ K,α ≥ 0, for all x ∈ K}.
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As x, x + αd ∈ K we get

x + αd ∈ Kmprp+1 and x ∈ Kmqrq+1 for some p + 1, q + 1,

=⇒ x + αd ∈ Bp+1 and x ∈ Bq+1 for some p + 1 and q + 1,

=⇒ x + αd , x ∈ Pi for some i ∈ [1, 2, . . . , n, n + 1, . . . ].

So, there exists d ∈ R
n such that x + αd ∈ Pi and α ≥ 0, x ∈ K . Thus, we say

d ∈ rec(Pi). So, we get rec(K) ⊆ rec(Pi).

We combine the above cases and we conclude that rec(Pi) = rec(K) for some
i ∈ [1, 2, . . . , n, n + 1, . . . ].

The recession cone of compactly semidefinite representable set, Pi and the reces-
sion cone of convex set K are equal. So, we say that the sequence of compactly
semidefinite representable sets strongly converges to the closed convex set K .

4 Approximation of Convex Set by Semidefinite
Representable Set

Any closed convex set, say Q can be uniformly approximable by polyhedral set in
R

n [13, Theorem 6.7]. First we give the definition of uniform approximation.

Definition 2 (Uniform approximation by semidefinite representable set) Let us con-
sider a closed convex set Q in R

n. The set Q is uniformly approximable by semidef-
inite representable set means for each arbitrary positive number ε, there exists a
semidefinite representable set P at Hausdorff distance ε such that P approximatesQ.

We see that parabola cannot be approximated by polyhedral set. This example
motivates us to generalize the result. Our conjecture is given below. We also give the
idea of the proof.

Theorem 3 If a closed convex subset Q of R
n is a finite Hausdorff distance d from

some semidefinite representable set P and Q ⊆ X + rec(Q), where X is a compact
convex set, then Q is uniformly approximable by means of semidefinite representable
sets.

(Outline of the proof). Without loss of generality, we consider d < 1. We divide
the proof in two cases. It is given below.

• Case 1: Let us consider that the unit ball U ⊆ R
n is contained in P. For each

f ∈ R
n, let us define μf and νf such that

μf = sup
p∈P

f T p,

νf = sup
q∈Q

f T q.
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Now, we get

|μf | = | sup f T p|, (12)

≥ |f T p|,
= ‖f ‖‖p‖| cos θ0|(θ0 is the angle between f and p),

≥ ‖f ‖| cos θ0|,
≥ ‖f ‖ as 0 ≤ | cos θ0| ≤ 1.

So when ‖f ‖ = 1, we say μf ≥ ‖f ‖. The Hausdorff distance between the sets P
and Q is d and P ⊆ {p : f T p ≤ μf }, Q ⊆ {q : f T q ≤ νf }, where {p : f T p ≤ μf },
{q : f T q ≤ νf } are the supporting half-spaces ofP andQ, respectively. So,we have
|νf − μf | ≤ d . As |νf − μf | ≤ d , we have either (νf − μf ) ≤ d or (μf − νf ) ≤
d . Thus, we get

(νf − μf ) ≤ d ≤ dμf , (13)

=⇒ νf ≤ (1 + d)μf .

Again we have

(μf − νf ) ≤ d ≤ dμf , (14)

=⇒ νf ≥ (1 − d)μf .

We combine (13) and (14) and we get

νf ∈ [1 − d , 1 + d ]μf whenever ‖f ‖ = 1. (15)

Let us assume that F is a set defined as

F = {f ∈ R
n : ‖f ‖ = 1 and μf < ∞}. (16)

For each convex set K in R
n with 0 ∈ K , let us assume that

βK = {f ∈ R
n : [0, 1[f ⊆ K and ]1,∞[f ⊆ R

n \ K}. (17)

We need to prove that

βP◦ =
{(

1

μf

)
f : f ∈ F

}
. (18)

The set βP◦ is defined as

βP◦ = {x ∈ R
n : [0, 1[x ⊆ P◦ and ]1,∞[x ⊆ R

n \ P◦}. (19)
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Weprove
{(

1
μf

)
f : f ∈ F

}
⊆ βP◦. Let us consider anypoint x in

{(
1
μf

)
f : f ∈F

}

such that x =
(

1
μf

)
f , ‖f ‖ = 1 and μf < ∞. We know 0,

(
1
μf

)
f ∈ P◦. As P◦ is

a convex set, we say [0, 1]
(

1
μf

)
f ⊆ P◦. We know P◦ is a compact convex set, so

there exists α ∈ [1,∞[ such that α
(

1
μf

)
f /∈ P◦. This implies

[1,∞[
(

1
μf

)
f � P◦,

[1,∞[
(

1
μf

)
f ⊆ R

n \ P◦.

So there exists
(

1
μf

)
f ∈

(
1
μf

)
F such that

[0, 1[
(

1
μf

)
f ⊆ P◦ and ]1,∞[

(
1
μf

)
f ⊆ R

n \ P◦,

=⇒
(

1
μf

)
f ∈ βP◦,

=⇒
(

1
μf

)
F ⊆ βP◦.

We prove P◦ = [0, 1]βP◦ = [0, 1]
(

1
μf

)
F . We consider the set α

(
1
μf

)
F for all

α ∈ [0, 1]. If α = 0, 0 ∈ P◦ and if α = 1,
(

1
μf

)
f ∈ P◦. As P◦ is convex, we get

that [0, 1]
(

1
μf

)
F ⊆ P◦. It implies [0, 1]βP◦ ⊆ P◦. As βP◦ = bd P◦, we get P◦ =

[λ, 1 − λ]βP◦ for all λ ∈ [0, 1]. Thus, we get P◦ ⊆ [0, 1]βP◦ as P◦ is a compact

convex set. So, we getP◦ = [0, 1]βP◦. Similarly, we get βQ◦ =
{(

1
νf

)
f : f ∈ F

}

and Q◦ = [0, 1]βQ◦. Since, P◦ is a compact semidefinite representable set, βP◦
must be compact set. So, using the result in Eq. (15), we say that βQ◦ is also

compact. We know βP◦ =
(

1
νf

)
F and βQ◦ =

(
1
μf

)
F . Thus, F is a compact set.

Hence, we get sup νF = s and s is finite.
Now we prove [0,∞[βQ◦ = [0,∞[P◦.

x ∈ [0,∞[βQ◦, (20)

=⇒ x = 0 + t.x; t > 0 and x ∈ βQ◦,

=⇒ x = 0 + t.x; t > 0 and x =
(

1

νf

)
F,

=⇒ x = 0 + t.x; t > 0 and x ∈
[

1

1 + d
,

1

1 − d

] (
1

μf

)
F,

=⇒ x = 0 + t.x; t > 0 and x ∈
[

1

1 + d
,

1

1 − d

]
βP◦,
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=⇒ x = 0 + t.x; t > 0 and x ∈
[

1

1 + d
,

1

1 − d

]
P◦,

=⇒ x = 0 + t.α.x; t.α > 0, y ∈ P◦,
=⇒ x ∈ [0,∞[P◦,
=⇒ [0,∞[βQ◦ ⊆ [0,∞[P◦.

Now we prove that [0,∞[βQ◦ ⊇ [0,∞[P◦.

x ∈ [0,∞[P◦, (21)

=⇒ x = 0 + t.y; t > 0 and y ∈ P◦,
=⇒ x = 0 + t.y; t > 0 and y ∈ [0, 1]βP◦,
=⇒ x = 0 + t.y; t > 0 and y = 0 + u.w;w ∈ βP◦, u ∈ [0, 1],
=⇒ x = 0 + t.y; t > 0 and y = 0 + u.w;w ∈

(
1

μf

)
F, u ∈ [0, 1],

=⇒ x = 0 + t.y; t > 0 and y = 0 + u.w;w ∈ [1 − d , 1 + d ]
(

1

νf

)
F, u ∈ [0, 1],

=⇒ x = 0 + t.y; t > 0 and y = 0 + u.w;w ∈ [1 − d , 1 + d ]βQ◦, u ∈ [0, 1],
=⇒ x = 0 + t.y; t > 0 and y = 0 + u.γ.z; z ∈ βQ◦, γ ∈ [1 − d , 1 + d ], u ∈ [0, 1],
=⇒ x = 0 + t.y; t > 0 and y = 0 + u.γ.z; z ∈ βQ◦, u.γ ∈ [0, 1],
=⇒ x = 0 + t.y; t > 0 and y = 0 + v.z; z ∈ βQ◦, v ∈ [0, 1],
=⇒ x = 0 + t.(0 + v.z); z ∈ βQ◦,
=⇒ x = 0 + 0 + t.v.z; t.v > 0, z ∈ βQ◦,
=⇒ x ∈ [0,∞[βQ◦,
=⇒ [0,∞[P◦ ⊆ [0,∞[βQ◦.

We combine Eqs. (20) and (21) and we get

[0,∞[P◦ = [0,∞[βQ◦. (22)

Let us consider the set Y such that Y = βQ◦ ∩ rext[0,∞[P◦.
Let ε be an arbitrary positive number. Since βQ◦ is compact, we get a compact
semidefinite representable set Z such that Y ⊆ cl Y ⊆ Z ⊆ βQ◦. We get

Y ∪ {0} ⊆ cl Y ∪ {0} ⊆ Z ∪ {0} ⊆ βQ◦ ∪ {0},
=⇒ conv(Y ∪ {0}) ⊆ conv(cl Y ∪ {0}) ⊆ conv(Z ∪ {0}) ⊆ conv(βQ◦ ∪ {0}),
=⇒ conv(Y ∪ {0}) ⊆ conv(cl Y ∪ {0}) ⊆ M ⊆ conv(βQ◦ ∪ {0}).
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The setM is a compact semidefinite representable set such that βM ⊆ [
1 − ε

s , 1
]

βQ◦. Let us consider that Pε = M and τ f = sup f TPε for any point f ∈ R
n. We

get

βM ⊆
[
1 − ε

s
, 1

]
βQ◦,

=⇒ conv(βM ) ⊆
[
1 − ε

s
, 1

]
conv(βQ◦),

=⇒ M ⊆
[
1 − ε

s
, 1

]
Q◦,

=⇒ Q ⊆
[
1 − ε

s
, 1

]
M ◦,

=⇒ Q ⊆
[
1 − ε

s
, 1

]
Pε,

=⇒ Q ⊆
[
1 − ε

s
, 1 + ε

s

]
Pε,

=⇒ f TQ ∈
[
1 − ε

s
, 1 + ε

s

]
f TPε,

=⇒ sup f TQ ∈
[
1 − ε

s
, 1 + ε

s

]
sup f TPε,

=⇒ νf ∈
[
1 − ε

s
, 1 + ε

s

]
τ f ,

=⇒ |νf − τ f | ≤ ε

s
,

=⇒ |νf − τ f | ≤ ε,

=⇒ h(Pε,Q) ≤ ε.

Thus, we get the semidefinite representable set Pε which gives tighter approxima-
tion of the closed convex set Q.

• Case 2: We consider the case where the unit cell is not contained in the set P.
Let us consider a closed convex set Q and a semidefinite representable set P
such that h(P,Q) = d < 1. Let X is compact semidefinite representable set in
R

n such that P + X ⊃ U . Then h(P + X ,Q + X ) = h(P,Q) = d . Without loss
of generality, we consider that d < 1. Using the proof in Case 1, we say that
there exists a semidefinite representable set Y such that h(Y ,Q + X ) < ε. Let us
consider a set Z such that Z = {y ∈ Y : y + X ⊆ Y }. So, Z is a closed convex
set and Z + X = Y . It implies that Z + X = P + X and we get Z = P. Thus,
Z is semidefinite representable. So, it follows that dH (Z,Q) < ε. The proof is
complete.

Remark 1 We mention that βP◦ ⊆
(

1
μf

)
F , which we could not prove. This proof

will be included in our future research topic.
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5 Future Research Prospect

We proved Theorem 1, Corollary 1, Theorem 2 on approximation of any closed
convex set by compactly semidefinite representable set. Further, we proved that
the sequence of compactly semidefinite representable sets strongly converge to the
convex set K in Sect. 3.1.

Any closed convex set can be approximated by polyhedral set [13, Theorem 6.7].
In this context, we say that the parabola in R

2 cannot be approximated by polyhedral
set. So, it will be challenging to extend the Theorem 6.7 from [13]. The extension of
this Theorem gives a technique to approximate any closed convex set by semidefinite
representable set as semidefinite representable set generalizes polyhedron.

The approximation of any closed convex set by compactly semidefinite repre-
sentable set gives very tight approximation. But, there exist few sets such as circu-
lar cones which cannot be approximated by compactly semidefinite representable
set, as we discussed in Sect. 2. So, we develop another approximation technique
which gives an approximation of the convex set which cannot be approximated by
compactly semidefinite representable set. This approximation technique provides a
uniform approximation of closed convex set under some condition. The general-
ized version of this approximation technique gives another research direction in this
approximation theory.
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