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Busy Period Analysis of GI/G/c
andMAP/G/c Queues

Srinivas R. Chakravarthy

Abstract The busy period analysis of queueing systems, in general, is very involved
and complicated. Even for the simplest queueing model, namely M/M/1, the prob-
ability density function of the busy period is obtained in terms of modified Bessel
function. A number of approaches using complex analysis, combinatorics, lattice
path, and matrix-analytic methods have been applied to study some selected queue-
ingmodels.While the steady-state analysis involving queue length and waiting times
of queueingmodels, in general, has been receiving considerable and significant atten-
tion in the literature from both analytical and algorithmic points of view, the same
cannot be said (relatively speaking) about busy period analysis. This is inherent in
the nature of the busy period more than by choice. In this paper, after establishing
the complexity involved in the study of the busy period, we record some interesting
observations on the busy period under a wide variety of scenarios through simula-
tion approach. The main purpose is to help researchers to look for novel theoretical
and/or numerical approach to solving functional equations which naturally arise in
the study of busy periods and use the simulated results here as one of the ways to
confirm/validate their results.

Keywords Queueing · Busy period · Matrix-analytic method · Algorithmic
probability · Simulation

1 Introduction and Notation

In this paper, we define the busy period (BP) to be the duration of the time interval
that begins with an arrival of a customer to an empty system and ends with the system
becoming empty again at the departure of a customer. This will be the case even for
a multi-server queueing system. In the literature (see, e.g., [1, 2]), several authors
recourse to full and partial busy periods when dealing with multiple-server system.

S. R. Chakravarthy (B)
Departments of Industrial and Manufacturing Engineering & Mathematics,
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2 S. R. Chakravarthy

Our definition here for multiple-server system is referred to as partial busy period.
A full busy period is the one that starts with all servers becoming busy until at least
one server becomes free. Note that in a single-server queueing system, the partial
and full busy periods are the same.

The busy period analysis in queueing systems, in general, is very involved
and complicated (see, e.g., [3–6]). Even for the simplest queueing model, namely
M/M/1, the probability density function of the busy period is obtained in terms of
modified Bessel function. A number of approaches using complex analysis, combi-
natorics, lattice path, and matrix-analytic methods have been applied to study some
selected queueing models. While the steady-state analysis involving queue length
and waiting times of queueing models, in general, has been receiving considerable
and significant attention in the literature from both analytical and algorithmic points
of view, the same cannot be said (relatively speaking) about busy period analysis.
This is inherent in the nature of the busy period more than by choice. In fact, the busy
period analysis got a new focus since the introduction of matrix-analytic methods
by Neuts [7, 8] in the context of M/G/1 and GI/M/1 paradigms. In this paper,
after establishing the complexity involved in the study of the busy period, we record
some interesting observations on the busy period under a wide variety of scenarios
through simulation approach.

The purpose of this paper is twofold. First one is to show the complexity involved
in the study of the busy period. Secondly, we want to record some interesting obser-
vations on the busy period of queueing systems in general context through simulation
approach. This will help researchers to look for novel theoretical and/or numerical
approach to solving functional equations which naturally arise in the study of busy
periods.

In the following, we will denote by f (.) and F(.), respectively, the probability
density and probability distribution function of the inter-arrival times. Similarly, we
define by h(.) and H(.) to be, respectively, the probability density and probability
distribution function of the service times. We will also assume that means of F(.)

and H(.) exist and are given by

1

λ
=
∫ ∞

0
[1 − F(t)]dt and

1

μ
=
∫ ∞

0
[1 − H(t)]dt, (1)

so that λ denotes the rate of arrivals to the system and μ gives the rate of services.
Let Y denote the busy period of the queueing system under study, and let Φ(.)

and φ(.) denote, respectively, the probability distribution and the density function of
Y . We will denote by NY the number of customers served during the busy period, Y .

The Laplace–Stieltjes transforms (LST ) of F(.), H(.), and Φ(.) are defined as

f ∗(s) =
∫ ∞

0
e−st dF(t),

h∗(s) =
∫ ∞

0
e−st dH(t), (2)
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and

φ∗(s) =
∫ ∞

0
e−st dΦ(t), Re(s) ≥ 0.

The probability generating function, N (z) = E[zNY ], is

N (z) =
∞∑
n=1

zn P(NY = n), |z| < 1. (3)

The rest of the paper is organized as follows. In Sect. 2, we present known key
results for the busy period for the classical M/G/1- and M/G/1-type queues. The
corresponding known results for the classical GI/M/1- and GI/M/1-type queues
are presented in Sect. 3. In Sect. 4, we look at GI/G/1 queues, and in Sect. 5,
we look at multi-server queueing systems. A brief summary of some known papers
dealing with algorithmic analysis of busy periods is presented in Sect. 6. Validation
of our simulated results against some queueing models for which numerical results
are reported is done in Sect. 7. Some interesting and illustrative simulated examples
are discussed in Sect. 8. Finally, in Sect. 9, some concluding remarks are presented.

2 M/G/1-Type Queue

In this section, we will look at the classical (scalar) M/G/1- and the M/G/1-type
queues.

2.1 Classical (Scalar) M/G/1 Queue

Here we look at the case of Poisson arrivals, and the service times following a general
probability distribution function. That is,

F(t) = 1 − e−λt , t ≥ 0, and f ∗(s) = λ

λ + s
, Re(s) ≥ 0. (4)

In this case, Takacs [9] introduced a novel idea in obtaining the LST of the busy
period (as it does not depend on the type of service discipline unlike the waiting time
distribution) and showed (see also [6]) that φ∗(s) and N (z) satisfy the following
equations.

φ∗(s) = h∗[s + λ − λφ∗(s)], Re(s) ≥ 0, and N (z) = h∗[λ(1 − N (z)], |z| < 1.
(5)
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Moments of busy period: Suppose that μ
(k)
Y denotes the kth moment of the busy

period and σ 2
h denotes the variance of the service time. Let ρ = λ

μ
. The following

can be easily verified.

μ
(1)
Y = −dφ∗(s)

ds

]
s=0

= 1

μ(1 − ρ)
,

μ
(2)
Y = −d2φ∗(s)

ds2

]
s=0

= σ 2
h + 1

μ2

(1 − ρ)3
, σ 2

Y = σ 2
h + ρ 1

μ2

(1 − ρ)3
. (6)

The mean and the variance of the number of customers served during a busy period
can be verified to be

μ(NY ) = 1

1 − ρ
and σ 2

NY
= ρ(1 − ρ) + λ2(σ 2

h + 1
μ2 )

(1 − ρ)3
. (7)

2.2 M/M/1-Queue

Here we look at the case of Poisson arrivals, and the service times are exponentially
distributed. That is,

F(t) = 1 − e−λt , t ≥ 0, H(t) = 1 − e−μt , t ≥ 0,

f ∗(s) = λ

λ + s
, h∗(s) = μ

μ + s
, Re(s) ≥ 0. (8)

It is easy to verify that

(i) The LST of the busy period is given by [9]

φ∗(s) = μ

μ + s + λ(1 − φ∗(s))
→ φ∗(s)

= 1

2λ

[
(λ + μ + s) −

√
[(λ + μ + s)2 − 4λμ]

]
. (9)

(ii) N (z) = z
μ

μ + λ(1 − N (z))
.

(iii) The density of the number served can be obtained explicitly as (see, e.g., [6, 9])

P(NY = n) = 1

n

(
2n − 2

n − 1

)
ρn−1(1 + ρ)1−2n, n ≥ 1. (10)
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As part of transient analysis of this queueing system, Leguesdron et al. [10]
obtained explicit expressions for the probability distribution function of Y and NY .
Defining

θ = λ + μ, a = μ

θ
, b = 1 − a, (11)

the probability distribution function of Y is obtained using Bessel function as

P(Y ≤ t) =
∞∑
n=1

e−θ t (θ t)
k

k!
� n−1

2 �∑
k=0

(
2k

k

)
ak+1bk

k + 1
, t ≥ 0, (12)

and

P(NY = n) =
(
2n − 2

n − 1

)
anbn−1

n
, n ≥ 1. (13)

Note that (10) and (13) are identical, as it should be. Also, we refer to [3, 11–14] for
different approaches to getting the LST of the busy period.

2.3 M/G/1-Type Queues

Understanding the important role of the busy period in the classical (scalar) M/G/1
queue, Neuts generalized it to the M/G/1-type queues using matrix formalism. We
will briefly summarize the key results pertinent to our discussion here and refer the
reader to [7, 8, 15–17] for full details. Consider a Markov renewal process (MRP)
with transition probability matrix given by

Q(x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

B0(x) B1(x) B2(x) B3(x) · · ·
A0(x) A1(x) A2(x) A3(x) · · ·

A0(x) A1(x) A2(x) · · ·
A0(x) A1(x) · · ·

A0(x) · · ·
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (14)

where the entries are block matrices and govern transitions within each level. While
thematrices Ak(x), k ≥ 0, x ≥ 0, representing possibly defective probability distri-
butions on [0,∞) are square, the others are rectangular, and in someapplications, they
may also be square. The matrix, A(x) = ∑∞

i=0 Ai (x), is a stochastic semi-Markov
matrix, and A(∞) is a stochastic matrix. Further, Q(∞) is a stochastic matrix. Note
that the levels may represent the number of customers in the system and the auxiliary
variable within the level may represent the phase of the service.

Due to simple boundary conditions (see [7, 8] for more complex boundary cases),
the fundamental period (to be defined below) will be the busy period as defined in
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this paper. We will assume that the MRP is irreducible, which is the case in most
applications.

Let T (i + r, j; i, k) denote the first passage time from state (i + r, j) to the state
(i, k), for i, r ≥ 1, 1 ≤ j, k ≤ m. That is, T (i + r, j; i, k) is the duration that the
semi-Markov process Q(.) starting in state (i + r, j) visits level i for the first time
by entering the state (i, k). Let V (i + r, j; i, k) denote the number of transitions
involved in the MRP during the first passage time T (i + r, j; i, k).

The joint probability function of T (i + r, j; i, k) and V (i + r, j; i, k) plays a key
role in M/G/1-type queues. Suppose that we define the matrix G(r)(n, x) such that
its ( j, k)th entry gives the joint probability as follows (note that these matrices do
not depend on i due to the structure of Q(x)):

g(r)
j,k(n, x) = P{T (i + r, j; i, k) ≤ x, V (i + r, j; i, k) = n}, r ≥ 0, 1 ≤ j, k ≤ m, n ≥ 0,

(15)
where we take

g(0)
j,k(n, x) =

⎧⎨
⎩
1, j = k, n = 0, x = 0,

0, elsewhere.
(16)

It can be verified that G(r)(n, x) = Gr (n, x). Also note that G(n, x) = G(1)(n, x),
n ≥ 1, x ≥ 0, is such that g j,k(n, x) is the conditional probability that thefirst passage
time from (i + 1, j) to (i, k), for i ≥ 1, 1 ≤ j, k ≤ m, occurs in exactly n transitions
and no later than x .

Denoting A∗
r (s) to be the LST of Ar (.), the joint LST , G(z, s), defined as

G(z, s) =
∞∑
n=1

zn
∫ ∞

0
e−sxdG(n, x), |z| ≤ 1, Re(s) ≥ 0, (17)

satisfies [8]

G(z, s) = z
∞∑
r=0

A∗
r (s)G

r (z, s). (18)

The substochastic matrix, G(x) = ∑∞
n=0 G(n, x), gives the matrix distribution for

the fundamental period. That is, g j,k(x) is the conditional probability that the first
passage time from (i + 1, j) to (i, k), for 1 ≤ j, k ≤ m, occurs no later than x .

The sequence, {Ĝ(n) = G(n,∞)}, n ≥ 1, of matrices gives the matrix-mass
functions for the number of transitions during a fundamental period. That is,
ĝ j,k(n), 1 ≤ j, k ≤ m, n ≥ 1, is the conditional probability that exactly n transitions
occur during the first passage time from (i + 1, j) to (i, k).

The matrix G = G(∞) = ∑∞
n=1 Ĝ(n) is such that its ( j, k)th entry gives the

conditional probability that the MRP eventually visits the state (i, k) for the first
time starting in state (i + 1, j). This matrix plays an important role in M/G/1-type
queues like R in GI/M/1-type queues (see [7, 8, 15]).
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3 GI/M/1-Type Queues

In this section, we will look at the classical (scalar) GI/M/1- and the GI/M/1-type
queues.

3.1 Classical (Scalar) G I/M/1 Queue

Herewe look at the general independent and identically distributed inter-arrival times
and exponential services. That is,

H(t) = 1 − e−μt , t ≥ 0, h∗(s) = μ

μ + s
, Re(s) ≥ 0. (19)

Let {tk : k ≥ 0} with t0 = 0 denote the time points at which kth arrival occurs. Thus,
for k ≥ 0, (tk+1 − tk), denotes the duration of the time between kth and (k + 1)st
arrivals. Note that the nonnegative random variable τk+1 = tk+1 − tk has distribution
function F(.) that is independent of k. Let N (t) denote the number of customers in
the system at time t , and let Nk = N (tk − 0), k ≥ 0, denote the number of customers
in the system just before the kth arrival.

The process {(Nn, τn) : n ≥ 0} is a Markov renewal process (MRP) with TPM
given by

Q(x) =

⎛
⎜⎜⎜⎜⎜⎝

b0(x) a0(x) · · ·
b1(x) a1(x) a0(x) · · ·
b2(x) a2(x) a1(x) a0(x) · · ·
b3(x) a3(x) a2(x) a1(x) · · ·

...
...

...
...

. . .

⎞
⎟⎟⎟⎟⎟⎠

, (20)

where ak(x) = ∫ x
0 e−μt (μt)k

k! dF(t), k ≥ 0, gives the probability that k departures (or
service completions) occur during an arrival that occurs at or before time x , and
bk(x) = 1 −∑k

i=0 ai (x), k ≥ 0, t ≥ 0.
Thus, we need to look at the imbedded Markov chain to study GI/M/1 queue.
For use in sequel, we define the taboo probability, i p

(k)
i,i+1(t), as the conditional

probability that the MRP with TPM given in (20) starting in state i at time 0 makes
k transitions by avoiding state i and visits state i + 1 at the kth transition which
occurs no later than time t . Note that due to the structure of the TPM, this conditional
probability does not depend on i .

Define r(t), t ≥ 0, as

r(t) =
∞∑
k=1

i p
(k)
i,i+1(t). (21)
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Note that r(t) gives the expected number of visits to state i + 1 during min{t, τ }
units of time before first return to state i given that the MRP started in state i . Here
τ is the epoch at which the first return to state i occurs starting from state i .

Then it is easy to see (see, e.g., [9, 18]) that φ∗(s) satisfies

φ∗(s) = μ(1 − r∗(s))
s + μ(1 − r∗(s))

, Re(s) ≥ 0, (22)

where r∗(s) is obtained as the solution to

r∗(s) =
∞∑
n=0

(r∗(s))n
∫ ∞
0

e−(s+μ)t (μt)
n

n! dF(t) = f ∗[s + μ(1 − r∗(s))], Re(s) ≥ 0.

(23)

3.2 M/M/1-Queue

We will now revisit M/M/1 queue via GI/M/1 approach. Here we take F(t) =
1 − e−λt ], t ≥ 0. Then, we have

(i) f ∗(s) = λ
s+λ

(ii) It is easy to verify that

r∗(s) = λ

λ + s + μ(1 − r∗(s))
→ r∗(s)

= 1

2μ

[
(λ + μ + s) −

√
[(λ + μ + s)2 − 4λμ]

]
, (24)

from which it can be seen that

φ∗(s) = μ

λ
r∗(s) → φ∗(s)

= 1

2λ

[
(λ + μ + s) −

√
[(λ + μ + s)2 − 4λμ]

]
, (25)

which (as it should be) is same as the one we got earlier [see (9)].

3.3 GI/M/1-Type Queues

Here we will look at the GI/M/1-type queues that were introduced and studied
extensively by Neuts [7]. Consider a Markov renewal process (MRP) with transition
probability matrix given by
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Q(x) =

⎡
⎢⎢⎢⎣

B0(x) A0(x) · · ·
B1(x) A1(x) A0(x) · · ·
B2(x) A2(x) A1(x) A0(x) · · ·

...
...

...
...

. . .

⎤
⎥⎥⎥⎦ , (26)

where the matrices An(x) and Bn(x), for n ≥ 0 and for x ≥ 0, are square matrices of
order m representing possibly defective probability distributions on [0,∞). Further,
Q(∞) is a stochastic matrix.

The MRP of the type given in (26) occurs naturally in many stochastic models
including thewell-known ones such asGI/PH/1 and SM/M/1. Also, the one given
in (26) has a simple boundary condition and more complex boundary conditions also
occur naturally, and we refer the reader to [7] for more details.

Before we proceed further, we will summarize some key concepts needed for
discussion in the sequel.

Recall that if P is the TPM of a DTMC, then the (i, j)th entry of the matrix∑∞
n=0 P

n gives the expected number of visits to state j starting in state i .
Suppose that H is a subset of the state space,Δ, of aDTMC. The taboo probability

denoted by H p(n)
i, j is the probability that starting in state i , the DTMC visits state j

at time n without visiting any of the states in H . The taboo probabilities play an
important in stochastic modeling, and Neuts used this concept extensively in the
development of matrix-analytic methods.

Referring to the TPM given in (26), we define the level (or set) of states as follows.

i = {(i, j) : 1 ≤ j ≤ m}. (27)

Suppose we define the matrix R(k)(t) = {(r (k)
j,l (t))}, 1 ≤ j, l ≤ m, k ≥ 0, such

that (by convention we take R(0)(t) = I, an identity matrix of dimension m)

r (k)
j,l (t) =

∞∑
n=0

i p
(n)

(i, j),(i+k,l)(t). (28)

Note that i p
(n)

(i, j),(i+k,l)(t) gives the conditional probability that theMRP, Q(.), starting
at time 0 in state (i, j) makes n transitions during (0, t] by avoiding the level i and
that the nth transition results in MRP being in state (i + k, l). Observe from the
structure of Q(.), the taboo probabilities do not depend on i but rather depend only
on the submatrix obtained from Q by deleting all rows and columns with indices
(l ′, j ′), l ′ ≤ i, 1 ≤ j ′ ≤ m. Also, note that these submatrices are identical for all
i ≥ 0.

Also note that r (k)
j,l (t) gives the expected number of visits during the time interval

(0,min(t, τ )] (here τ is the epoch of the first return to level i) to the state (i + k, l)
starting in state (i, j) before the first return to level i .
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We will denote R(1)(t) by R(t). Let R∗(s) denote the LST of R(t). Suppose that
A∗
n(s) denote the LST of An(x). Then, it is known (see [18]) that R(s) is the minimal

nonnegative solution (in the class of all suchmatrices whose spectral radius is at most
one) to the matrix nonlinear equation:

R∗(s) =
∞∑
n=0

(R∗(s))n A∗
n(s), Re(s) ≥ 0. (29)

This matrix, R∗(0) = R(∞), is the well-known rate matrix (see [7]).

3.4 GI/PH/1 Queue

As seen in earlier sections, the busy period analysis tends to be very complicated.
The first paper, to our knowledge, that dealt with non-exponential services is that of
Conolly [19] who studied GI/Ek/1 queue. The methodology (based on difference
equations) used in [19] is that of the one applied by the same author [20] in the
context of GI/M/1 queue.

Aftermore than three decades since the studyofGI/Ek/1queue,Ramaswami [18]
used probabilistic arguments (developed and popularized by Neuts through his
matrix-analytic methods) to develop transform-free methods for analyzing busy
period for a large class of queues that possess matrix-geometric steady-state prob-
ability vector. We will briefly outline the key steps here and refer the reader to
Ramaswami [18] for full details.

Let the service times be of phase type (PH ) with representation (β, S) of order n
(see [7]). Recall that the service rate is given by μ = [β(−S)−1e]−1. In the sequel,
we will assume that the queue is stable implying that λ < μ. The probability density
function, the distribution function, and the LST of service times are given by

h(t) = βeSt S0, H(t) = 1 − βeSt e, t ≥ 0, h∗(s) = β(s I − S)−1S0, Re(s) ≥ 0.
(30)

Suppose that {N (t)} denotes the counting process associatedwith a PH -renewal pro-
cess. That is, {N (t)} denotes the number of renewals if the times between renewals
follow a PH -distribution with representation (β, S). Define the matrix P(n, t),
whose (i, j)th element is given by pi j (n, t) = P[N (t) = n, J (t) = j |N (0) = 0,
J (0) = i]. That matrix P(n, t) satisfies (see, e.g., [7])

P ′(0, t) = P(0, t)S, P ′(n, t) = P(n, t)S + P(n − 1, t)S0β, n ≥ 1, t ≥ 0,
(31)

with P(n, 0) = δn0 I, where δn0 is the Kronecker delta.



Busy Period Analysis of GI/G/c and MAP/G/c Queues 11

The matrices, Ak(t) and Bk(t), in the GI/PH/1 case are given by

Ak(t) =
∫ t

0
P(k, u)dF(u), k ≥ 0, Bk(t) =

∞∑
r=k+1

∫ t

0
P(k, u)eβdF(u), k ≥ 0.

(32)

Suppose that the (i, j)th element of the matrix Ck(t) of dimension m denotes the
conditional probability that the busy period starts at time 0 with an arrival which sees
k customers already present in the system and the service phase at time 0 is i , the
busy period ends by time t with exactly k + 1 services, and that the next busy period
starts in phase j . It can be verified (see, e.g., [18]) that

Ck(t) =
∫ t

0
P(k, u)eβ[1 − F(u)]du, k ≥ 0. (33)

Let C∗
n (s) denote the LST of Ck(t). One can get C∗

n (s) in terms of A∗
k(s) as

follows (see, e.g., [18])

C∗
0 (s) = [I − A∗

0(s)](s I − S)−1S0β,

C∗
k (s) = [C∗

k−1(s) − A∗
k(s)](s I − S)−1S0β, k ≥ 1. (34)

Let gi (t), 1 ≤ i ≤ m, denote the distribution function of the busy period that starts
with an arrival of a customer whose service phase will be in state i . Defining g(t) to
be the vector of dimension m whose i th component is given by gi (t) and g∗(s) to
be the LST of g(t), we register the explicit expression for the (vector) LST of the
busy period distribution as obtained by Ramaswami [18] as follows.

g∗(s) =
∞∑
n=0

[R∗(s)]nC∗
n (s)e = [I − R∗(s)][I − h∗(s)R∗(s)]−1(s I − S)−1S0, Re(s) ≥ 0.

(35)

We will look at the simplifications of Ramaswami’s expression given in (35) for
two special queueing models.

3.4.1 GI/M/1 Queue

In this case, the expression given in (35) reduces to (note that g∗(s) and R∗(s) are
scalars)

g∗(s) = μ(1 − R∗(s))
s + μ(1 − R∗(s))

, Re(s) ≥ 0, (36)
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and R∗(s) is obtained as the solution to

R∗(s) =
∞∑
n=0

(R∗(s))n
∫ ∞
0

e−(s+μ)t (μt)
n

n! dF(t) = f ∗[s + μ(1 − R∗(s))], Re(s) ≥ 0,

(37)
which agrees with (23).

3.4.2 M/M/1 Queue

In this case, verify that

(i) f ∗(s) = λ
s+λ

(ii) R∗(s) is obtained as the solution to

R∗(s) = λ

λ + s + μ(1 − R∗(s))
→ R∗(s) = 1

2μ

[
(λ + μ + s) −

√
[(λ + μ + s)2 − 4λμ]

]
,

(38)

from which it can be seen that

g∗(s) = μ

λ
R∗(s) → g∗(s) = 1

2λ

[
(λ + μ + s) −

√
[(λ + μ + s)2 − 4λμ]

]
, (39)

which agrees with (9).

4 GI/G/1-Queue

The earliest known study on the busy period of GI/G/1 queue is by Finch [21] in
which expressions for the LST of the busy period and the density of the number
served during a busy period are obtained using combinatorial approach. The expres-
sions are not only complicated but also numerically unstable due to alternating signs
appearing in those expressions. For the sake of completeness, we will reproduce the
results (just to show the complexity involved in the busy period analysis), and for
details, we refer the reader to [21].

Suppose that ξn(t), n ≥ 1, t ≥ 0 denotes the joint probability of Y and NY such
that

ξn(t) = P(Y ≤ t, Ny = n), n ≥ 1, t ≥ 0, (40)

and ξ ∗
n (s) denote the LST of ξn(t). Denoting by F (n)(.) to be the n-fold convolution

of F(.) with itself, and H (n)(.) to be that of H(.), and

a∗
n(s) =

∫ ∞

0
e−st [1 − F (n)(t)]dH (n)(t), n ≥ 1, Re(s) ≥ 0, (41)
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Finch showed that the LST of the joint probability function, ξn(t), to be

ξ ∗
n (s) =

∑
(−1)k1+k2+···+ kn+1

k1!k2! · · · kn!
(
a∗
1(s)

)k1(a∗
2(s)

2

)k2

· · ·
(
a∗
n(s)

n

)kn

, (42)

where n ≥ 1, Re(s) ≥ 0 and the summation is over all nonnegative integers kr such
that

∑n
r=1 rkr = n.

From (42), it can be verified that, for n ≥ 1, Re(s) ≥ 0,

P(NY = n) = ξ ∗
n (0) =

∑
(−1)k1+k2+···+ kn+1

k1!k2! · · · kn!
(
a1
)k1(a2

2

)k2

· · ·
(
an
n

)kn

, (43)

where an = a∗
n(0) = ∫∞

0 [1 − F (n)(t)]dH (n)(t), n ≥ 1.

Bertsimas et al. [22] analyzed the busy period by formulating it as Hilbert fac-
torization problem using two-dimensional Lindley process. Subsequently, Bertismas
and Nakazato [23] applied the method of stages by assuming the arrivals and ser-
vices are of mixed generalized Erlang distributions and obtained the LST for the
busy period.

It should be noted that Pakes [24], using duality results for GI/G/1 queue,
derived expressions for the (a) probability of number served during a busy period of
a GI/G/1 queue and (b) LST of GI/M/1 queue in which the first customer start-
ing the busy period has a different service-time distribution compared to the other
customers in that busy period.

In Baltrunas et al. [25, 26], the authors study the tail behavior of the busy period
of a stable GI/G/1 queue with subexponential services.

5 Multi-server Queues

So far, we looked at single-server queueing systems under various scenarios. In this
section, we will briefly summarize a few models dealing with multi-server case for
which results are reported.

– Chae and Lim [27] derive the joint transform of the length of a busy period, the
number of customers served during the busy period, and the remaining inter-arrival
times at the instant the busy period ends for GI/M/c queue with n-policy. By
taking n = 1, theirmodel reduces to the classicalGI/M/c queue. Some numerical
results are reported.

– Natvig [28] derives the first- and second-ordermoments of the (partial) busy period
aswell as the distribution of the number of customers served by looking at a general
birth-and-death queueing model with multiple servers.
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– Omahen and Marathe [29] apply the technique of decomposition of busy periods
to M/M/c queueing system and derive recursive formulas for computing the LST
of the (partial) busy period as well as the first two moments of the busy period.

– Artalejo and Lopez-Herrero [1] present an algorithmic analysis of the busy period
in the context of M/M/c queueing model. They obtain the LST as the solution
of a finite system of linear equations. Further, they provide recurrent relations for
computing the moments of the distribution of the length of the busy period as
well as the number of customers served during a busy period. Some numerical
examples are presented.

– Ghahramani and Wolff [30] provide a probabilistic proof for conditions that will
guarantee (full) busy periods to have finite moments.

6 Algorithmic Analysis of Busy Periods

With a genuine concern for algorithmic feasibility of solutions of stochasticmodels to
be useful in practice, Neuts [7] developed phase-type distribution, (batch)Markovian
arrival processes, matrix-geometric methods, and later on matrix-analytic methods
in stochastic modeling. In queueing theory, for what Neuts will be remembered
(among many things) most in years to come, is the introduction and the development
of the matrix-analytic methods (MAMs) for the solution of a wide variety of practical
problems.

In the invited article published by European Journal of Operational Research [31],
Neuts passionately says, “...The history of the matrix methods (so called for brevity)
is short, butworth telling... I tackled a number ofmodels involving embeddedMarkov
renewal processes, evidently with some measure of success, since the papers were
published in noted journals and some academic recognition camemyway. It privately
bothered me that, as the papers grew longer and the analysis more complex, the
explicit or qualitative results in them became fewer and fewer.” He continues further,
“...In the history of mathematics, a similarity of formalism has always indicated
similarity of structure and an ultimate level of understanding is that of unifying
structure.”

Stochastic modeling occurs naturally in many walks of life. The mathematical
tools needed to solve a specific problem vary depending on the application of the
stochastic model. Telecommunications area first adopted MAMs soon after their
introduction. Itswell-known self-similarity property is seen in ethernet traffic,WWW
traffic, signaling traffic,multi-media traffic, and other high-speed network traffic, and
hence, Poisson/exponential distributions are not well suited formodeling such traffic.
The benefit of using Markov-modulated Poisson process (which is a special class of
Markovian arrival processes (MAP)) has been well documented.

Since the introduction of MAMs by Neuts, the users of this methodology have
grown from within queueing community to other areas due to solutions that are
transparent, implementable, and probabilistic in nature. The practitioners benefiting
from Neuts’ contributions come from various fields such as health care, computer
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and communications engineering, production and manufacturing, industrial engi-
neering, electrical engineering, actuarial science, transportation, and wireless sensor
networks. Neuts’ work has inspired many researchers from all over the world as can
be seen from constant publications of research papers dealing with MAMs in many
diverse fields of applications.

While the steady-state analysis ofmanyqueueingmodels under a variety of scenar-
ios can be performed both analytically and algorithmically using MAMs, only very
few papers exist that address the busy period analysis in the same spirit. Again, this is
inherent in the complexity of the busy period analysis as opposed to the choice of the
methodology. As seen in previous sections, the busy period analysis is very complex.
Even for the simplest queue in continuous time, namely M/M/1, the expression for
the probability distribution function of the busy period is quite complex. Due to this
complexity, many authors have resorted to deriving expressions, some of which are
not algorithmically suited under a wide variety of parameters of the queueing model
under study. Since most expressions are given in terms of LST , Abate andWhitt [32,
33] pioneered the numerical methods for computing LST expressions in the context
of queueing models.

Some notable early papers, in addition to the ones mentioned earlier, dealing with
computational aspects of the busy period include the following.

– Conolly [20] applied difference equations technique to derive probability distri-
butions associated with the busy period for GI/M/1 queue and performed a few
numerical comparisons in the case of M/M/1 and D/M/1 queues.

– Abate et.al. [34] show that the probability density of the busy period can be numer-
ically inverted without the need to use iterative procedure for solving Kendall’s
functional equation. They apply their technique to M/G/1 queue with gamma
service-time distribution.

– Garikiparthi et al. [35] derive the joint LST for the busy period and the number
of customers served during a busy period for a finite QBD-process and propose
algorithms for computing the moments of the busy period and the number served.
Also, illustrative examples are presented.

– Artalejo and Gomez-Corral [36] using catastrophe method derived the LST of
the busy period for an M/G/1 retrial queue with finite orbit size and discuss
illustrative examples with the help of numerical inversion of transforms.

– Using lattice path approach, the authors in [37–40] study the busy period. They
also discuss illustrative numerical examples for special cases under a wide range
of values for the parameters of the model.

– In the context of M/Ek/1 queue, Baek et al. [41] give a closed form expression
for the queue length within a busy period and discuss some illustrative numerical
examples. It should be pointed out that the authors do not give expressions for the
density of the busy period but rather the queue length during that busy period.

– Novak et al. [42, 43] provide analysis of the distribution of the number of arrivals
in a subinterval of a busy period of an M/D/1 queue as well as for M/G/1
queue using Takacs’ ballot theorem and its generalization. The authors compare
simulated results to the actual density function.
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– Assuming the inter-arrival and service times of a customer are correlated, Lan-
garis [44] gives a closed form expression for the joint transform of the busy period
and the number served during that period and discuss a few numerical results.

7 Validation of the Simulated Model

In the literature, to the best of our knowledge, there are very few exact and approx-
imate results for the tail probabilities as well as for complementary distribution
function for the busy period are available and that too for limited queueing models.
We will use these results to validate/compare our simulated results.

We used ARENA [45] to get our simulated results for the busy period for various
queueing systems. We simulated the model using 5 replications and for 1,000,000
units (which in our case is minutes) for each replicate.

7.1 Abate and Whitt for M/G/1 Queueing Model

In this section, we will compare the results given in Abate andWhitt [33] wherein the
authors provide exact (through transform inversion) tail probabilities for various time
points. These time points depend on the type of queueing model as well as the value
of ρ. They fix the mean service time to be 1 in all cases and take the arrival rate so as
to obtain a given value for ρ. Two queueing models, M/E4/1 and M/Γ (2, 0.5)/1,
are considered in [33] under three scenarios by varying ρ. We denote by Γ (α, β), a
gamma distribution with shape parameter given by α and the scale parameter is β.
Recall that the density function, f (t), of Γ (α, β) is given by

f (t) = 1

βαΓ (α)
tα−1e−t/β, α > 0, β > 0, t ≥ 0,

where Γ (α) = ∫∞
0 tα−1e−t dt.

In Table 1, we display the (absolute) error percentages of P(Y > t) by comparing
the results given in [33] with our simulated ones. The absolute error percentage, here
and elsewhere, is defined as

100

∣∣∣∣
reported − simulated

reported

∣∣∣∣%.

By looking at the entries in Table 1,we notice that, in general, our simulated results
agree very well with the ones reported in [33]. The ones that have somewhat large
error percentages (e.g., the largest one is 7.28%) we noticed that the underlying prob-
abilities are very small and generally the values differ in the fifth or sixth decimal
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Table 1 Absolute error percentages for M/G/1 queue

ρ =
0.50

t 0.5 1 2 3 5 9 12 15 20 32

M/E4/1 0.51% 0.15% 0.1% 0% 0.15% 0.21% 1.19% 1.27% 0.55% 5.14%

t 0.1 1 2 5 8 15 20 30 40 60

M/Γ (2, 0.5)/1 6.46% 0.6% 1.77% 3.3% 3.28% 2.29% 1.42% 1.77% 3.65% 13.4%

ρ =
0.75

t 0.5 1 2 6 10 15 30 40 80 120

M/E4/1 0.36% 0.09% 0.03% 0.06% 0.22% 0.41% 1.22% 0.25% 1.12% 6.75%

t 0.1 1 5 8 15 30 60 80 120 250

M/Γ (2, 0.5)/1 6.39% 1.76% 1.58% 1.98% 1.57% 1.35% 0.55% 1.07% 1.54% 6.39%

ρ =
0.90

t 0.5 1 5 15 30 60 120 200 400 600

M/E4/1 0.36% 0.04% 0.04% 0.32% 0.05% 0.19% 1.52% 0.93% 2.72% 3.49%

t 0.1 1 5 10 20 50 100 250 500 1000

M/Γ (2, 0.5)/1 6.31% 1.58% 2.19% 2.23% 2.24% 1.55% 1.68% 2.13% 6.41% 7.28%

places. For example, corresponding to the scenario, ρ = 0.9, M/Γ (2, 0.5)/1, the
simulated value for P(Y > 32) is 0.00043577, whereas the reported value (see [33])
is 0.000470. So, the actual (absolute) difference is 0.00003423, which is a small num-
ber, but the percentage-wise it results in 7.28%. This is the case for other percentages
too.

7.2 Adan and Resing for M/M/1 Queueing Model

In their book on queueing theory, Adan and Resing [46] report results on selected tail
probabilities for M/M/1 queue by considering three values for the traffic intensities,
ρ = 0.8, 0.9, 0.95, and fixing the mean service time to be 1. The tail probabilities
are reported using two decimal places, and hence, we did the same so as to compare
the results properly. In Table 2, we display the error percentages of our simulated
results compared to the ones in [46]. Obviously, we notice that the results agree very
much in all cases. In fact, only one error percentage is different from zero.

Table 2 Absolute error percentages for M/M/1

t 1 2 4 8 16 40 80

ρ = 0.80 0% 0% 0% 0% 0% 0% 0%

ρ = 0.90 0% 0% 0% 0% 0% 0% 0%

ρ = 0.95 0% 2.7% 0% 0% 0% 0% 0%
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Table 3 Absolute error percentages for M/M/5

ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

μY 0.02% 0.13% 0.10% 0.11% 0.14% 0.17% 0.02% 0.07% 0.31%
σY
μY

0.17% 0.16% 0.06% 0.02% 0.07% 0.01% 0.23% 0.23% 0.08%

E(NY ) 0.10% 0.08% 0.09% 0.11% 0.16% 0.16% 0.04% 0.07% 0.32%
σNY
E(NY )

0.21% 0.11% 0.05% 0.08% 0.05% 0.04% 0.27% 0.25% 0.06%

7.3 Artalejo and Lopez-Herrero for M/M/5 Queueing Model

Here we look at a multi-server system. Artalejo and Lopez-Herrero [1] consider
M/M/5 queueing system by fixing the mean service time to be 1 and vary ρ from
0.1 through 0.9. Unlike the previous sections, the authors here report the various
moments of the busy period and the number of customers served during a busy
period. In Table 3, we display the (absolute) error percentages for the (a) mean busy
period, μY ; (b) coefficient of variation of the busy period, σY

μY
; (c) mean number of

customers served during a busy period, E(NY ); and (d) coefficient of variation of
the number served during a busy period,

σNY
E(NY )

.
It is clear from the entries in the above table that simulated results agree very well

with the ones reported in [1].

7.4 Blanc for M/G/1 and GI/M/1 Queueing Models

In [47], the author replaces the original contour integral involving implicitly known
functions with alternative contour integrals with known transforms and numerically
inverts the transforms. The author provides numerical examples forGI/M/1 queue-
ing model by considering Erlang and gamma arrivals and M/G/1 queueing model
by considering Erlang and gamma distributions for services. For all scenarios, the
arrival rate is fixed at 0.8 and the service rate to be 1, so that the traffic intensity is set
at ρ = 0.8. In Table 4, we display the (absolute) error percentages of our simulated
results with the ones provided in [47].

A quick look at the entries in Table 4 indicates that generally our simulated
results seem to be closer to the ones reported in [47] in all scenarios except for a few
scenarios involving M/Γ (8, 0.125)/1 and Γ (10, 0.125)/M/1 queues. For example,
for theΓ (8, 0.125) services, we notice the error percentages to be very large for a few
tail probabilities. We increased the simulation run for each replicate from 1,000,000
units to 10,000,000 units to see whether a longer run is warranted and thus possibly
explain the higher values for the error percentages. That increase in the simulation
run pretty much yielded the same results. In other comparisons (see Tables 1 and
5) involving service distributions having gamma distribution, we never noticed that
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Table 5 Absolute error percentages for Γ (5, 0.4)/M/c

c μY σY E(NY ) σNY

1 0.06% 0.21% 0.00% 0.34%

2 0.08% 0.17% 0.04% 0.03%

3 0.11% 0.09% 0.00% 0.00%

high error percentages making us believe that the results in [47] may need to be
checked for possible numerical inversion problems.

7.5 Chae and Lim for GI/M/c Queueing Model

Looking at GI/M/c queue, Chae and Lim [27] present numerical results by consid-
ering inter-arrivals to follow a gamma distribution with shape parameter to be 5 and
scale parameter to be 0.4 so that the mean time between arrivals is 2 and the mean
service time to be 1. They vary c from 1 to 3 and present the mean and standard
deviation of the (a) busy period and (b) number served during a busy period. In Table
5, we display the (absolute) error percentages of our simulated results with the ones
reported in [27].

Once again, the entries in Table 5 reveal that the simulated results agree very well
with the reported ones.

8 Illustrative Examples Based on Simulation

In this section, we will discuss a few illustrative and interesting examples obtained
through simulation. We look at several classes of queueing systems of the type
GI/G/c and MAP/G/c. In all our simulation examples, we used 5 replicates and
each replicate of length 1,000,000 units (in our case, minutes). Unless otherwise
specified, we will fix the service mean to be 1. That is, we fix μ = 1, and vary λ so
that a given traffic intensity, ρ = λ

cμ , is achieved.

8.1 GI/G/c

Here we look at four scenarios for arrival processes, Erlang, Poisson, hyperexpo-
nential, and two-parameter Weibull. For ease of reference, we list the type of arrival
processes (T AP) and the type of service times (T S) with appropriate labels.
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TAP 1: Erlang (ERA): Here we consider an Erlang distribution of order 2 with
rate 2λ.
TAP 2: Exponential (EXA): This corresponds to the classical Poisson process with
rate λ.
TAP 3: Hyperexponential (HEA): We look at a mixture of two exponentials with
rates 1.9λ and 0.19λ, respectively, with probabilities 0.9 and 0.1.
TAP 4:Weibull (WEA):We consider a two-parameterWeibull whoseCDF is given
by

FWB(x) =
{
1 − e−(0.5λx)0.5 , x ≥ 0,
0, x < 0.

TS 1: Erlang (ERS): This is Erlang of order 2 with rate 2 in each stage.
TS 2: Exponential (EXS): This is an exponential distribution with mean 1.
TS 3: Hyperexponential (HES): Here we look at mixture of two exponentials with
rates 1.9 and 0.19, respectively, with mixing probabilities 0.9 and 0.1.
TS 4: Shifted exponential (SXP): The shifted exponential with a shift of magnitude
0.2 one with CDF given by

FSE (x) =
{
1 − e−1.25(x−0.2), x ≥ 0.2,
0, x < 0.2.

T S 5: Weibull (WES): We consider a two-parameter Weibull whose CDF is given
by

FWB(x) =
{
1 − e−(2x)0.5 , x ≥ 0,
0, x < 0.

First note that the coefficient of variation of the four arrival processes labeledERA,
EXA, HEA and WBA are, respectively, 0.7071, 1, 2.2447, and 2.2361. Similarly, the
coefficient of variation of the 5 service times labeled ERS, EXS,HES, SXP, andWES
are, respectively, 0.7071, 1, 2.2447, 0.8, and 2.2361.

Recall from queueing literature (see, e.g., [3, 5, 6]) that the mean waiting time in
the system is known to increase as the variability in the arrival (or services) increases
(assuming that all other parameters are fixed). So, we decided to explore whether
such a behavior is seen for the mean busy period.

In Table 6, we display the mean busy period under various scenarios. A quick
look at the table reveals the following interesting observations.

– While for c = 1 and c = 2, we notice that themean busy period appears to increase
with increasing variability in the arrival processes, for c = 5, we notice a different
trend. For example, by looking at the mean busy period when there are 5 servers
in the system, a larger variability in the services such as HES appears to yield a
smaller value as compared to ERS which has a smaller variability. This appears
to be the case for ρ = 0.80 and ρ = 0.95.

– We notice the mean busy period to be very large when c = 5. This is not surprising
since we use partial busy period in that the busy period starts when an arriving



22 S. R. Chakravarthy

Table 6 Mean busy period time for GI/G/c queue

ρ = 0.80 ρ = 0.95

c T S ERA EX A HE A W BA ERA EX A HE A W BA

1 ERS 3.644 4.978 14.795 14.261 14.037 20.117 68.954 64.184

EXS 3.843 4.991 13.001 13.207 14.827 19.873 60.423 58.397

HES 4.067 4.991 9.738 11.422 16.297 20.305 41.998 49.159

SX P 3.679 5.016 14.337 14.084 14.267 20.168 66.311 64.772

WBS 4.217 5.012 9.039 10.220 17.125 20.174 38.821 43.708

2 ERS 4.462 5.129 11.913 10.466 18.233 20.448 50.256 46.046

EXS 4.313 5.004 10.606 10.014 16.922 19.839 45.208 44.887

HES 3.889 4.614 8.512 9.051 14.904 18.040 36.172 38.325

SX P 4.337 5.058 11.672 10.387 17.685 20.571 51.164 45.354

WBS 4.147 4.717 7.753 8.486 16.125 18.478 32.714 36.034

5 ERS 31.685 19.607 12.939 12.483 191.903 100.306 52.459 53.448

EXS 24.753 19.072 14.331 14.106 136.366 96.104 59.261 61.007

HES 17.771 16.846 20.078 18.803 86.935 76.748 86.111 80.807

SX P 29.623 19.225 13.806 13.009 178.140 98.166 55.653 56.053

WBS 17.864 17.539 17.863 18.518 89.381 83.636 80.676 79.937

customer finds all servers to be idle and ends when a departure leaves all servers
idle. However, if one looks at full busy period wherein the busy period starts with
all servers becoming busy at an arrival and ends as soon as a server becomes idle
at a departure point, one will see the difference. This will be explained later on.

– It is interesting to point out that for c = 5, the mean busy period as well as the ratio
for Erlang arrivals are large compared to others for all types of service distribution.
This is due to using the partial busy period as opposed to full busy period.

Now, we display the ratio, μY /μW , of the mean busy period to the corresponding
mean waiting time in the system under various scenarios in Table 7. First, note that
as is to be expected this ratio is 1 for M/M/1 queue. For other scenarios, we notice
the following interesting observations.

– When dealing with GI/ERS/c and GI/SX P/c queues, for all scenarios we
notice that μY > μW .

– In the case of M/M/c, for c > 1, we notice μY > μW .
– When dealing with GI/HES/c and GI/WBS/c queues, we see an interesting
pattern. For c = 1 and c = 2, μY < μW ; however, for c = 5, μY > μW .

– Generally, we notice that ERS appears to have a larger ratio as compared to those
of HES, indicating the less variability in the service times appears to have a larger
busy period on the average.

– As the number of servers is increased, the HEA/G/c queue appears to be insen-
sitive to the type of services. However, this is not the case with other service
types.
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Table 7 Ratio of μY /μW GI/G/c queue

ρ = 0.80 ρ = 0.95

c T AP ERS EXS HES SX P W BS ERS EXS HES SX P W BS

c = 1 ERA 1.28 1.00 0.34 1.17 0.36 1.37 1.00 0.30 1.23 0.31

EX A 1.25 1.00 0.38 1.17 0.38 1.31 1.00 0.33 1.18 0.35

HEA 1.26 0.99 0.44 1.19 0.42 1.26 0.97 0.47 1.23 0.41

WBA 1.18 1.00 0.52 1.13 0.48 1.19 0.97 0.51 1.16 0.44

c = 2 ERA 2.46 1.93 0.70 2.25 0.74 3.28 2.21 0.57 2.80 0.64

EX A 2.19 1.80 0.75 2.05 0.76 2.58 1.95 0.65 2.34 0.64

HEA 1.91 1.59 0.82 1.84 0.75 1.87 1.56 0.80 1.84 0.69

WBA 1.66 1.47 0.87 1.61 0.82 1.65 1.48 0.79 1.63 0.73

c = 5 ERA 25.50 18.07 7.78 23.24 7.67 70.52 38.28 8.30 60.36 8.35

EX A 13.76 12.24 6.76 13.18 6.94 27.55 21.44 6.92 25.38 7.45

HEA 4.50 4.71 4.99 4.76 4.40 4.68 4.85 4.44 4.91 4.15

WBA 4.29 4.61 4.63 4.45 4.58 4.79 4.88 4.20 4.87 4.18

Table 8 Mean full busy period and the ratio of μYF to μW for GI/G/5 queue when ρ = 0.95

Mean full busy period μYF /μW

T S ERS EXS HES SX P W BS ERS EXS HES SX P W BS

ERA 2.582 2.999 4.278 2.712 4.326 1.05 1.19 2.45 1.09 2.48

EX A 3.721 3.985 4.899 3.848 4.770 0.98 1.12 2.26 1.01 2.35

HEA 13.217 11.683 9.678 12.825 8.733 0.85 1.05 2.00 0.88 2.23

WBA 12.693 11.666 10.513 12.596 9.147 0.85 1.04 1.89 0.88 2.13

– As pointed out earlier, the partial busy period will be large for c > 1 as compared
to the full busy period. Irrespective of whether one looks at partial or full busy
period for any particular scenario, the mean waiting time in the systemwill remain
the same. Hence, the ratio is large as c is increased.

In order to confirm that the partial busy period will be at least as large as the full
busy period for any particular scenario (note that the busy periods will be identical
only in the case of single-server queueing system), we ran our simulation for a few
scenarios, and in Table 8, we display the mean busy period as well as the ratio of the
mean full busy period to the corresponding mean waiting time in the system. It is
clear from the entries in that table that there is a significant reduction in the entries
as compared to those given in Tables 6 and 7 corresponding to ρ = 0.95 and c = 5.

It should be pointed that mean busy period of the system can be less than or
greater than or equal to the mean waiting time in the system of a customer for a
specific queueing model. As is known for M/M/1 queue, μY = μW = 1/(μ − λ).
However, there are other queueing models for which μY < μW or μY > μW . While
we noticed this in our simulated examples, one can intuitively explain this as follows.
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Table 9 Complementary distribution of Y for GI/G/c queue for ρ = 0.95, c = 1, 2

c T AP T S P(Y >

1)
P(Y >

2)
P(Y >

4)
P(Y >

8)
P(Y >

16)
P(Y >

40)
P(Y >

80)

1 ERA ERS 0.553 0.381 0.259 0.173 0.112 0.060 0.035

EXS 0.468 0.329 0.226 0.154 0.101 0.056 0.034

HES 0.297 0.183 0.119 0.084 0.060 0.036 0.024

SX P 0.517 0.357 0.243 0.164 0.108 0.059 0.034

WBS 0.281 0.200 0.140 0.096 0.066 0.039 0.025

EX A ERS 0.609 0.435 0.302 0.205 0.137 0.076 0.046

EXS 0.519 0.376 0.265 0.181 0.122 0.069 0.043

HES 0.345 0.221 0.146 0.101 0.071 0.043 0.028

SX P 0.580 0.414 0.288 0.195 0.131 0.073 0.045

WBS 0.309 0.224 0.158 0.110 0.075 0.045 0.029

HEA ERS 0.696 0.572 0.460 0.355 0.258 0.159 0.106

EXS 0.589 0.486 0.389 0.297 0.216 0.132 0.088

HES 0.420 0.310 0.229 0.170 0.123 0.077 0.052

SX P 0.677 0.555 0.446 0.344 0.252 0.154 0.103

WBS 0.345 0.273 0.211 0.158 0.114 0.070 0.047

WBA ERS 0.756 0.584 0.410 0.264 0.154 0.060 0.022

EXS 0.665 0.523 0.375 0.245 0.145 0.058 0.023

HES 0.493 0.347 0.243 0.171 0.111 0.052 0.025

SX P 0.734 0.569 0.402 0.260 0.153 0.060 0.022

WBS 0.416 0.326 0.242 0.167 0.106 0.050 0.023

Whenever the customers arrive in short intervals to, say, a single-server system, the
waiting time in the system of these customers will be large while the busy period
consisting of only the service times will be relatively small. Suppose the customers
arrive pretty regularly such that their waiting time in the queue is very marginal but
the busy period will be longer resulting in a larger mean for busy period as compared
to the mean waiting time in the system.

We conclude this section by displaying the complementary distribution function of
Y , namely P(Y > t), for selected values of t and for ρ = 0.95 under different arrival
and service times in Tables 9 and 10. Generally, we see the role of the variability
either in the arrivals or in services in these probabilities.

8.2 MAP/G/c

Before we discuss simulated results for MAP/G/c queueing systems, we briefly
review the MAP in continuous time. Suppose that there is an underlying Markov
chain which is irreducible with generator given by Q∗ = D0 + D1, where D0 =
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Table 10 Complementary distribution of Y for GI/G/c queue for ρ = 0.95, c = 5

c
T AP T S P(Y >

1)
P(Y >

2)
P(Y >

4)
P(Y >

8)
P(Y >

16)
P(Y >

40)
P(Y >

80)

2 ERA ERS 0.671 0.529 0.397 0.282 0.188 0.097 0.052

EXS 0.553 0.432 0.321 0.227 0.153 0.082 0.047

HES 0.358 0.235 0.158 0.112 0.077 0.045 0.028

SX P 0.638 0.496 0.368 0.259 0.172 0.090 0.049

WBS 0.313 0.238 0.175 0.124 0.086 0.050 0.032

EX A ERS 0.692 0.537 0.395 0.276 0.184 0.098 0.055

EXS 0.583 0.454 0.335 0.237 0.160 0.087 0.051

HES 0.396 0.264 0.180 0.129 0.090 0.053 0.034

SX P 0.666 0.515 0.377 0.266 0.177 0.095 0.054

WBS 0.339 0.258 0.191 0.136 0.093 0.055 0.035

HEA ERS 0.779 0.660 0.522 0.386 0.272 0.158 0.100

EXS 0.665 0.563 0.448 0.332 0.234 0.138 0.089

HES 0.485 0.365 0.273 0.206 0.148 0.091 0.059

SX P 0.766 0.644 0.509 0.376 0.265 0.156 0.100

WBS 0.388 0.315 0.247 0.184 0.132 0.080 0.052

WBA ERS 0.741 0.599 0.460 0.340 0.244 0.151 0.100

EXS 0.650 0.524 0.403 0.298 0.211 0.128 0.086

HES 0.494 0.363 0.263 0.192 0.138 0.085 0.057

SX P 0.725 0.581 0.445 0.328 0.236 0.144 0.095

WBS 0.404 0.320 0.243 0.179 0.127 0.077 0.052

5 ERA ERS 0.894 0.875 0.852 0.817 0.768 0.669 0.552

EXS 0.757 0.728 0.700 0.665 0.613 0.517 0.411

HES 0.582 0.509 0.445 0.391 0.343 0.270 0.206

SX P 0.897 0.873 0.843 0.805 0.754 0.645 0.525

WBS 0.432 0.390 0.357 0.328 0.294 0.240 0.192

EX A ERS 0.875 0.837 0.789 0.727 0.647 0.500 0.356

EXS 0.762 0.722 0.678 0.624 0.555 0.433 0.314

HES 0.589 0.504 0.432 0.377 0.326 0.250 0.187

SX P 0.871 0.826 0.777 0.713 0.630 0.483 0.344

WBS 0.448 0.404 0.368 0.333 0.294 0.236 0.184

HEA ERS 0.903 0.810 0.671 0.524 0.386 0.231 0.141

EXS 0.806 0.734 0.630 0.513 0.395 0.248 0.157

HES 0.672 0.571 0.480 0.412 0.345 0.253 0.182

SX P 0.900 0.808 0.679 0.536 0.399 0.241 0.149

WBS 0.516 0.466 0.412 0.358 0.305 0.226 0.167

WBA ERS 0.877 0.778 0.652 0.518 0.386 0.233 0.144

EXS 0.796 0.719 0.621 0.512 0.394 0.250 0.159

HES 0.655 0.546 0.456 0.390 0.327 0.239 0.173

SX P 0.862 0.768 0.652 0.520 0.391 0.242 0.151

WBS 0.412 0.378 0.349 0.323 0.293 0.246 0.201
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(d(0)
i j ) and D1 = (d(1)

i j ). Suppose that d(0)
i i = −λi , 1 ≤ i ≤ m, d(0)

i j = λi p
(0)
i j , for j 
= i

and d(1)
i j = λi p

(1)
i j , 1 ≤ i, j ≤ m. At the end of a sojourn time in state i , that is expo-

nentially distributed with parameter λi , one of the following two events could occur:
With probability p(1)

i j , the transition corresponds to an arrival and the underlying

Markov chain is in state j with 1 ≤ i, j ≤ m; with probability p(0)
i j , the transition

corresponds to no arrival and the state of the Markov chain is j , j 
= i . Note that the
Markov chain can go from state i to state i only through an arrival. By assuming D0

to be a nonsingular matrix, the inter-arrival times will be finite with probability one
and the arrival process does not terminate. Hence, we see that D0 is a stable matrix.

Thus, D0 governs the transitions corresponding to no arrival and D1 governs
those corresponding to an arrival. It can be shown that MAP is equivalent to Neuts’
versatile Markovian point process. The point process described by the MAP is
a special class of semi-Markov processes. For further details on MAP and their
usefulness in stochastic modeling, we refer to [8, 16, 48], and for a review and
recent work on MAP , we refer the reader to [49–51].

Let η be the stationary probability vector of the Markov process with generator
Q∗. That is, η is the unique (positive) probability vector satisfying ηQ∗ = 0, ηe = 1,
where e is a column vector of 1’s of appropriate dimension. We denote the average
arrival rate, the average service rate, and the average retrial rate by, respectively, λ,μ,
and θ . These are given by λ = ηD1e, μ = [α(−T )−1e]−1, θ = [β(−S)−1e]−1.

Here we look at two MAP which have correlated arrivals. The representation
matrices D0 and D1 are given by

TAP 5: MAP with negative correlation (MNCA):

D0 =
⎛
⎝−1.00222 1.00222 0

0 −1.00222 0
0 0 −225.75

⎞
⎠ , D =

⎛
⎝ 0 0 0

0.01002 0 0.9922
223.4925 0 2.2575

⎞
⎠

TAP 6: MAP with positive correlation (MPCA):

D0 =
⎛
⎝−1.00222 1.00222 0

0 −1.00222 0
0 0 −225.75

⎞
⎠ , D =

⎛
⎝ 0 0 0
0.9922 0 0.01002
2.2575 0 223.4925

⎞
⎠ .

Note that the above two MAP processes will be normalized so as to have a speci-
fied arrival rate. While the above two processes have identical means and identical
standard deviations, they are qualitatively different in that MN A and MPA, respec-
tively, have negative and positive correlation for two successive inter-arrival times
with values −0.4889 and 0.4889.

In Table 11,we display the twomeasures,μY andμY /μW , under various scenarios
by looking at the above two MAPs as input processes. A quick look at these tables
reveals some interesting observations.
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Table 11 Mean busy period and the ratio of μY to μW for MAP/G/c queue

Mean busy period μY /μW

ρ = 0.80 ρ = 0.95 ρ = 0.80 ρ = 0.95

c T S MN A MPA MN A MPA MN A MPA MN A MPA

1 ERS 7.028 7.840 27.402 32.586 1.65 0.03 1.75 0.03

EXS 7.265 8.347 28.905 34.510 1.39 0.03 1.42 0.04

HES 7.744 8.647 30.179 31.258 0.58 0.04 0.51 0.04

SX P 7.073 8.060 27.791 29.487 1.56 0.03 1.63 0.03

WBS 7.423 8.761 28.700 35.733 0.57 0.03 0.49 0.03

2 ERS 5.540 6.199 21.976 22.808 2.30 0.05 2.73 0.05

EXS 6.003 6.255 23.933 24.351 2.12 0.05 2.30 0.05

HES 6.113 6.204 23.437 27.106 0.98 0.05 0.82 0.05

SX P 5.508 6.304 21.663 26.233 2.19 0.05 2.52 0.05

WBS 6.473 6.790 25.389 24.334 1.05 0.05 0.90 0.06

5 ERS 16.146 11.285 80.786 56.840 11.22 0.22 21.93 0.26

EXS 18.510 10.710 92.186 50.818 11.80 0.21 20.02 0.26

HES 18.579 10.027 82.727 49.102 7.42 0.20 7.26 0.24

SX P 15.658 10.993 76.737 52.807 10.66 0.22 19.57 0.26

WBS 22.097 10.378 102.538 44.418 8.72 0.20 9.01 0.23

– While for c = 1 and c = 2, μY is relatively large for positively correlated arrivals
as opposed to the negatively correlated ones, we see for c = 5, it is the negatively
correlated arrivals that yield a larger value for μY compared to the positively
correlated ones.

– Under all scenarios, we notice the ratio, μY /μW , to be small for positively corre-
lated arrivals, MPA.

– The ratio appears insensitive to the type of service times in the case of positively
correlated arrivals, MPA.

– In the case of MN A/HES/c queue with c small, we notice μY < μW whereas
μY > μW when c = 5.

– Like we outlined earlier for GI/G/c case, the partial busy period as compared to
full busy period will go up as c is increased for MN A arrivals; however, for MPA,
as noted in the literature (see, e.g., [51]), the mean waiting time in the system is
still large enough to have the ratio μY

μW
to be small.

The complementary distribution function, namely P(Y > t), for selected values
of t , for MN A and MPA, respectively, are displayed in Tables 12 and 13. Generally,
we notice that MN A arrivals appear to have a larger value for this function compared
to MPA. There are some scenarios for which this appears to be not the case but
because the probabilities are small enough that they may be attributable to random
(simulation) error.
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Table 12 Complementary distribution of Y for MN A/G/c queue

c ρ T S P(Y >

1)
P(Y >

2)
P(Y >

4)
P(Y >

8)
P(Y >

16)
P(Y >

40)
P(Y >

80)

1 0.8 ERS 0.870 0.586 0.350 0.198 0.100 0.031 0.008

EXS 0.754 0.520 0.325 0.191 0.103 0.036 0.012

HES 0.553 0.322 0.196 0.128 0.082 0.040 0.020

SX P 0.846 0.558 0.339 0.195 0.101 0.032 0.009

WBS 0.457 0.320 0.213 0.136 0.083 0.039 0.019

0.95 ERS 0.877 0.624 0.420 0.283 0.187 0.104 0.062

EXS 0.764 0.551 0.380 0.258 0.173 0.099 0.062

HES 0.565 0.348 0.225 0.155 0.109 0.066 0.043

SX P 0.853 0.594 0.403 0.272 0.181 0.101 0.062

WBS 0.464 0.333 0.233 0.161 0.110 0.065 0.042

2 0.8 ERS 0.751 0.519 0.329 0.182 0.081 0.016 0.002

EXS 0.686 0.495 0.327 0.190 0.093 0.023 0.005

HES 0.480 0.302 0.197 0.132 0.081 0.034 0.014

SX P 0.711 0.499 0.319 0.178 0.082 0.017 0.003

WBS 0.449 0.329 0.230 0.150 0.089 0.037 0.015

0.95 ERS 0.774 0.585 0.426 0.297 0.198 0.105 0.059

EXS 0.707 0.544 0.402 0.282 0.189 0.103 0.061

HES 0.502 0.336 0.233 0.168 0.117 0.069 0.044

SX P 0.739 0.559 0.409 0.285 0.189 0.101 0.058

WBS 0.461 0.351 0.260 0.185 0.128 0.075 0.048

5 0.8 ERS 0.889 0.805 0.693 0.542 0.350 0.103 0.014

EXS 0.817 0.740 0.650 0.530 0.373 0.144 0.031

HES 0.636 0.510 0.407 0.332 0.259 0.149 0.068

SX P 0.861 0.773 0.664 0.519 0.337 0.101 0.014

WBS 0.552 0.480 0.417 0.354 0.285 0.175 0.089

0.95 ERS 0.913 0.861 0.797 0.718 0.618 0.447 0.297

EXS 0.847 0.796 0.739 0.671 0.584 0.440 0.310

HES 0.681 0.575 0.486 0.421 0.362 0.275 0.204

SX P 0.893 0.835 0.769 0.689 0.589 0.423 0.280

WBS 0.577 0.517 0.467 0.422 0.373 0.298 0.229

9 Concluding Remarks

In this paper, after pointing out the complexity involved in the study of the busy
period, we recorded some interesting observations on the busy period of queueing
systems in general context through simulation. We also compared the mean busy
period with the corresponding mean waiting time in the system for queues of the
type GI/G/c and MAP/G/c. The main purpose of this study through simulation is
to help researchers to compare/validate their future novel theoretical and/or numer-
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Table 13 Complementary distribution of Y for MPA/G/c queue

c ρ T S P(Y >

1)
P(Y >

2)
P(Y >

4)
P(Y >

8)
P(Y >

16)
P(Y >

40)
P(Y >

80)

1 0.8 ERS 0.453 0.191 0.063 0.021 0.013 0.011 0.009

EXS 0.402 0.205 0.084 0.030 0.015 0.011 0.009

HES 0.246 0.124 0.075 0.048 0.028 0.014 0.010

SX P 0.415 0.190 0.070 0.024 0.013 0.011 0.009

WBS 0.261 0.163 0.095 0.051 0.027 0.014 0.010

0.95 ERS 0.467 0.218 0.084 0.029 0.015 0.013 0.011

EXS 0.409 0.221 0.101 0.040 0.019 0.013 0.011

HES 0.255 0.134 0.081 0.054 0.033 0.017 0.012

SX P 0.428 0.212 0.087 0.032 0.016 0.012 0.011

WBS 0.264 0.168 0.101 0.057 0.031 0.017 0.012

2 0.8 ERS 0.506 0.251 0.081 0.023 0.016 0.013 0.009

EXS 0.436 0.247 0.103 0.033 0.017 0.013 0.010

HES 0.269 0.140 0.083 0.052 0.028 0.014 0.010

SX P 0.466 0.239 0.086 0.026 0.016 0.013 0.009

WBS 0.273 0.179 0.107 0.057 0.029 0.015 0.010

0.95 ERS 0.531 0.290 0.112 0.035 0.021 0.017 0.013

EXS 0.453 0.274 0.129 0.046 0.022 0.017 0.013

HES 0.283 0.154 0.093 0.059 0.034 0.018 0.013

SX P 0.490 0.273 0.113 0.038 0.021 0.017 0.013

WBS 0.282 0.190 0.119 0.067 0.036 0.018 0.014

5 0.8 ERS 0.686 0.531 0.338 0.158 0.069 0.037 0.023

EXS 0.565 0.441 0.300 0.159 0.071 0.036 0.022

HES 0.375 0.247 0.166 0.118 0.079 0.039 0.023

SX P 0.656 0.500 0.322 0.155 0.068 0.036 0.022

WBS 0.326 0.250 0.185 0.129 0.082 0.040 0.024

0.95 ERS 0.733 0.609 0.442 0.254 0.126 0.067 0.046

EXS 0.605 0.500 0.375 0.232 0.121 0.063 0.043

HES 0.407 0.286 0.202 0.151 0.108 0.062 0.042

SX P 0.707 0.578 0.419 0.247 0.122 0.066 0.045

WBS 0.342 0.273 0.213 0.158 0.110 0.062 0.041

ical approach to solving functional equations involving Laplace transforms, which
naturally arise in the study of busy periods, with our reported results here. The focus
of this paper is on the classical queueing models, and hence, this can be generalized
in a number of ways. These include (a) queueing models with group arrivals; (b)
queueing models with finite capacity; (b) queues with balking; (c) infinite-server
queueing system; (d) queues with catastrophes; (e) queues with priority; (f) retrial
queues; and (g) queueswith different types of policies such as N -policy and threshold
policy. The results of these and other models will be presented elsewhere.
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Solving LP Models for Multi-objective
Matrix Games with I-Fuzzy Goals

Sandeep Kumar

Abstract The principal objective of this work is to obtain the optimal strategies for
a multi-objective two-person zero-sum matrix game with intuitionistic fuzzy goals
(MOMGIFG). In this problem, the fuzziness in aspiration levels of both players are
characterized by intuitionistic fuzzy sets. The developed linear models are solved in
maxmin–minmax way using linear membership function (mf ) and non-membership
function (nmf ). A numerical example is incorporated to demonstrate the proposed
solution procedure.

Keywords Matrix games · Intuitionistic fuzzy goals · Optimal strategies
Intuitionistic fuzzy sets

1 Introduction

Multi-objective game theory optimizes those multi-objective problems that involve
two or more than two decision makers. In fact, real game problems cannot be charac-
terized precisely because of fuzzy information about their elements. Various studies
about the zero-summatrix game models with two players have been done so far, e.g.,
[6–8, 10, 16] and references therein, where fuzziness in payoffs and goals are charac-
terized by fuzzy sets. But, a situation in which an element feels a hesitation to belong
or not belong to a subset of universe cannot be represented by fuzzy sets. Intuitionistic
fuzzy sets (I-fuzzy sets) [4] can give a suitable description of such kind vague in-
formation. Firstly, Atanassov [5] used I-fuzzy set in game models. Thereafter, many
researchers studied single- and multi-objective two-person zero-sum matrix game in
I-fuzzy environment [1, 2, 11–13, 17, 18] and references therein.
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The focus of this paper is introducing a solution approach for MOMGIFG. The
notion for the proposed technique is inspired from max–min principle of classical
game theory.

The outline of this research work is as follows: Sect. 2 introduces some prelimi-
naries which are relevant to this work such as I-fuzzy set, maxmin–minmax solution
and decision-making principle in I-fuzzy environment. In Sect. 3, a single-objective
game model in matrix form with I-fuzzy goals is reviewed under some assumptions.
A solution procedure forMOMGIFGwith a set of assumptions is proposed in Sect. 4.
In Sect. 5, an example is given to demonstrate the effectiveness of present work.

2 Preliminaries

Present section concerns some necessary definitions and one principle which are
used throughout this paper.

Definition 1 (I-fuzzy Set) An I-fuzzy set ˜T on space S is defined by two functions,
μ+ and μ−, such that μ+(s) ∈ [0, 1] represents the grade of membership of s in ˜T
and μ−(s) ∈ [0, 1] represents the grade of non-membership of s in˜T with condition
0 ≤ μ+(s) + μ−(s) ≤ 1. The expressionμh(s) = 1 − μ+(s) − μ−(s) is called degree
of hesitancy of s in ˜T . An I-fuzzy set ˜T is denoted by

˜T = {〈s, μ+(s), μ−(s)〉 | s ∈ S} .

In this paper, the goals for each player are viewed as I-fuzzy sets. The meaning of
the value ofμ+(s) for an I-fuzzy goal is the grade of satisfaction of I-fuzzy goal for an
expected payoff, whereas the value of μ−(s) represents the degree of dissatisfaction
of I-fuzzy goal. Recently, some I-fuzzy and fuzzy programming in term of goal
programming have been found in [9, 14, 15].

A MOMGIFG is described by multi-payoff matrices M 1,M 2, . . . ,Mr . In this
problem, Player I and II are denoted by P1 and P2, respectively. Suppose that I-fuzzy
goal for kth payoff forP1 andP2 is denoted by g̃kP1

and g̃kP2
, respectively. It is supposed

that the r objectives of P1 are also the objectives for P2.

Definition 2 The maxmin–minmax value w. r. t. the grade of satisfaction of an
aggregated I-fuzzy goal to P1 is

max
p ∈ Um

min
q ∈ Un

min
k

{μg̃kP1+(pTM kq)} (1)

min
p ∈ Um

max
q ∈ Un

max
k

{μg̃kP1−(pTM kq)} (2)

where Um/Un is mixed strategy space to P1/P2. Such a strategy p∗ is known as the
maxmin–minmax solution of matrix game with aggregated I-fuzzy goal for P1.



Solving LP Models for Multi-objective Matrix Games with I-Fuzzy Goals 35

Similarly, the maxmin–minmax value w. r. t. the grade of satisfaction of an ag-
gregated I-fuzzy goal to P2 is

max
q ∈ Un

min
p ∈ Um

min
k

{μg̃kP2+(pTM kq)} (3)

min
q ∈ Un

max
p ∈ Um

max
k

{μg̃kP2−(pTM kq)}. (4)

Such a strategy q∗ is known as the maxmin–minmax solution of matrix game with
aggregated I-fuzzy goal for P2.

Definition 3 (Angelov’s Decision-Making Principle) Suppose that there arem goals
A1,A2, . . . ,Am and n constraints B1,B2, . . . ,Bn in a domain of alternatives �. All
these goals (A′

is) and constraints (B′
js) are I-fuzzy sets on �. Angelov [3] proposed

that an I-fuzzydecisionwhich is evaluated by a suitable aggregation of the I-fuzzy sets
Ai(i = 1, 2, . . . ,m) and Bj(j = 1, 2, . . . , n). He used fuzzy intersection and fuzzy
union as aggregation operators. Therefore, an I-fuzzy decisionD which is an I-fuzzy
set, defined by μD+ : � → [0, 1] given by μD+(ω) = min

i,j

(

μAi+(ω), μBj+(ω)
)

and

μD− : � → [0, 1] given by μD−(ω) = max
i,j

(

μAi−(ω), μBj−(ω)
)

.

The optimal decision can be obtained as max
ω

μD+(ω) and min
ω

μD−(ω).

According to this principle, the crisp version of above I-fuzzy optimization prob-
lem in linear programming (LP) form can be formulated as follows:

max (α+ − α−)

s.t.,

μAi+(ω) ≥ α+,

μAi−(ω) ≤ α−, (i = 1, 2, . . . ,m),

μBj+(ω) ≥ α+,

μBj−(ω) ≤ α−, (j = 1, 2, . . . , n),

α+ + α− ≤ 1,

α+ ≥ α−, α− ≥ 0, ω ≥ 0. (5)

Here, the optimal solution of model (5) is denoted by (ω∗,α+∗,α−∗).

3 Single-Objective Matrix Game with I-Fuzzy Goal
(SOMGIFG)

Present section demonstrates in what way a SOMGIFG can be solved through a pair
of linear programming problem (LPP).
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Let M = [mij]m×n denote a payoff matrix of real constants for P1. Since game is
zero-sum, so −M = [−mij]m×n is payoff matrix for P2. Here, Um/Un represents a
set of mixed strategies for P1/P2. The sets Um and Un are defined as:

Um = {p = (p1, p2, . . . , pm)T |
∑

i=1 to m

pi = 1, pi ≥ 0},

and
Un = {q = (q1, q2, . . . , qn)

T |
∑

j=1 to n

qj = 1, qj ≥ 0}.

In this work, the goals of P1 and P2 are characterized by I-fuzzy sets. Suppose that
v̄a is the aspiration level for P1 with tolerance error pa and v̄r is the rejection level
for P1 with tolerance error pr . For P2, let va be aspiration level with tolerance error
qa and vr be rejection level with tolerance error qr .

To solve two-person zero-sum SOMGIFG, the following conditions are assumed
as:

(H1) The I-fuzzy goals of both players P1 and P2 are represented by linearmf and
nmf ;

(H2) For P1, v̄r−pr ≤ v̄a−pa & v̄r ≤ v̄a;
(H3) For P2, va + qa ≤ vr + qr & va ≤ vr .

Using (H1)–(H2), the solution for optimization problem of P1 will be produced as:

Theorem 1 [11] The maxmin–minmax solution for P1 is equivalent to the solution
of a LPP which is described as

max (λ+ − λ−)

s.t.,

∑

i=1 to m

mijpi + pa − v̄a ≥ paλ+,

∑

i=1 to m

mijpi − v̄r ≥ −prλ− , (j = 1, 2, . . . , n),

∑

i=1 to m

pi = 1, 0 ≤ λ+,λ− ≤ 1,

λ+ + λ− ≤ 1,λ+ ≥ λ−, p ≥ 0. (6)

Theorem 2 [11] The maxmin–minmax solution for P2 with assumptions (H1) and
(H3) is equivalent to the solution of a LPP which is described as:
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max (η+ − η−)

s.t.,

∑

j=1 to n

mijqj − va − qa ≤ − qaη+,

∑

j=1 to n

mijqj − vr ≤ − qrη− , (i = 1, 2, . . . , m),

∑

j=1 to n

qj = 1, 0 ≤ η+, η− ≤ 1,

η+ + η− ≤ 1, η+ ≥ η−, q ≥ 0. (7)

4 Solution Procedure to MOMGIFG

In a multi-objective matrix game, each player has more than one objective and each
objective is represented by a payoff matrix. Suppose that both players (P1 and P2)
have same r objectives.

For this matrix game problem, following conditions are assumed as:

(H4) The payoff values in each payoff matrix are real numbers;
(H5) The fuzziness in aspiration level of each objective is represented by an I-fuzzy

set; and
(H6) mf and nmf for each I-fuzzy goal are linear.

Now, amethodology is proposed to obtain themodels inLP form for strategic problem
to P1 and P2, respectively, as follows:
Optimization problem for P1

Suppose that mf and nmf of the I-fuzzy goal for kth objective of P1 are denoted by
μg̃kP1+(pTM kq) and μg̃kP1−(pTM kq), respectively. Using (H4)–(H6), μg̃kP1+(pTM kq)
can be represented as

μg̃kP1+(pTM kq) =

⎧

⎪

⎨

⎪

⎩

0 , pTM kq < v̄k
a−pka,

1 − v̄ka−pTM kq
pka

, v̄k
a−pka ≤ pTM kq < v̄k

a ,

1 , v̄k
a ≤ pTM kq,

(8)

and nmf μg̃kP1−(pTM kq) is

μg̃kP1−(pTM kq) =

⎧

⎪

⎨

⎪

⎩

1 , pTM kq < v̄k
r −pkr ,

1 − pTM kq−(v̄kr −pkr )
pkr

, v̄k
r −pkr ≤ pTM kq < v̄k

r ,

0 , v̄k
r ≤ pTM kq,

(9)

with conditions v̄k
r −pkr ≤ v̄k

a−pka and v̄k
r ≤ v̄k

a .
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Using [3],mf and nmf for aggregated I-fuzzy goal to P1 can be formed in respec-
tive order as:

min
k

{μg̃kP1+(pTM kq)} (10)

and,
max

k
{μg̃kP1−(pTM kq)} (11)

Assuming that

(H7) The calculating mf in (10) and nmf in (11) are linear.

The maxmin–minmax value in terms of degree of acceptance of an aggregated
I-fuzzy goal to P1 is

max
p ∈ Um

min
q ∈ Un

min
k

{μg̃kP1+(pTM kq)},

min
p ∈ Um

max
q ∈ Un

max
k

{μg̃kP1−(pTM kq)}.

Theorem 3 The maxmin–minmax solution for P1 with assumption (H7) is equiva-
lent to the following LP model

max (λ+ − λ−)

s.t.,

∑

i=1 to m

mk
ijpi + pka − v̄k

a ≥ pkaλ+,

∑

i=1 to m

mk
ijpi − v̄k

r ≥ −pkrλ− , (j = 1, 2, . . . , n),

∑

i=1 to m

pi = 1, 0 ≤ λ+,λ− ≤ 1,

λ+ + λ− ≤ 1,λ+ ≥ λ−, p ≥ 0, (12)

where k = 1, 2, . . . , r.

Proof The maxmin–minmax problem for P1 is

max
p ∈ Um

min
q ∈ Un

min
k

{μg̃kP1+(pTM kq)},

min
p ∈ Um

max
q ∈ Un

max
k

{μg̃kP1−(pTM kq)}.
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For mf

max
p ∈ Um

min
q ∈ Un

min
k

(

1 − v̄k
a − pTM kq

pka

)

= 1

pka
max
p ∈ Um

min
q ∈ Un

min
k

⎛

⎝

∑

i= 1 to m

∑

j= 1 to n

mk
ijpiqj + ck

⎞

⎠

= 1

pka
max
p ∈ Um

min
k

min
q ∈ Un

∑

j= 1 to n

⎛

⎝

∑

i= 1 to m

mk
ijpi + ck

⎞

⎠ qj

= 1

pka
max
p ∈ Um

min
k

min
j∈ J

⎛

⎝

∑

i= 1 to m

mk
ijpi + ck

⎞

⎠ .

Let min
j ∈ J

(

∑

i= 1 to m

mk
ijpi + ck

)

= λk+ and further let min
k

λk+ = λ+. In similar

way, for nmf, lettingmax
k

λk− = λ−. Themaxmin–minmax problem forP1 reduces

to LP model (12).

Optimization problem for P2

Letmf and nmf of an I-fuzzy goal for kth objective ofP2 be denoted byμg̃kP2+(pTM kq)

and μg̃kP2−(pTM kq), respectively. Using (H4)–(H6), μg̃kP2+(pTM kq) can be repre-
sented as

μg̃kP2+(pTM kq) =

⎧

⎪

⎨

⎪

⎩

1 , pTM kq < vk
a,

1 − pTM kq−vka
qka

, vk
a ≤ pTM kq < vk

a + qka,

0 , vk
a + qka ≤ pTM kq,

(13)

and μg̃kP2−(pTM kq) is

μg̃kP2−(pTM kq) =

⎧

⎪

⎨

⎪

⎩

0 , pTM kq < vk
r ,

pTM kq−vkr
qkr

, vk
r ≤ pTM kq < vk

r + qkr ,

1 , vk
r + qkr ≤ pTM kq,

(14)

with conditions vk
a + qka ≤ vk

r + qkr and vk
a ≤ vk

r for k = 1, 2, . . . , r.
Using [3],mf and nmf for aggregated I-fuzzy goal can be calculated in respective

order as
min

k
{μg̃kP2+(pTM kq)} (15)
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and,
max

k
{μg̃kP2−(pTM kq)} (16)

In similar to problem of P1, assuming that

(H8) The calculating mf in (15) and nmf in (16) are linear.

The maxmin–minmax value in terms of the degree of acceptance of an aggregated
I-fuzzy goal to P2 is

max
p ∈ Um

min
q ∈ Un

min
k

{μg̃kP2+(pTM kq)},

min
p ∈ Um

max
q ∈ Un

max
k

{μg̃kP2−(pTM kq)}.

Theorem 4 The maxmin–minmax solution for P2 with assumption (H8) is equiva-
lent to the following LP model

max (η+ − η−)

s.t.,

∑

j=1 to n

mk
ijqj − vk

a − qka ≤ − qkaη+,

∑

j=1 to n

mk
ijqj − vk

r ≤ −qkrη− , (i = 1, 2, . . . , m),

∑

j=1 to n

qj = 1, 0 ≤ η+, η− ≤ 1,

η+ + η− ≤ 1, η+ ≥ η−, q ≥ 0, (17)

where k = 1, 2, . . . , r.

Proof Proof is similar to Theorem 3.

5 Example

This section consists of an example of MOMGIFG which shows the validity of the
proposed work.

The payoff matrices M 1,M 2 are separately indicated as:

M 1 =
(

4 2 − 1
−2 0 1

)

,M 2 =
(

10 24 9
7 15 11

)
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Here, we assume that
v̄1
a = 3, p1a = 4, v̄1

r = 2, p1r = 6 and v̄2
a = 10, p2a = 5, v̄2

r = 7, p2r = 4.

Now, model (12) becomes,
max (λ+ − λ−)

s.t.,

4p1 − 2p2 + 1 ≥ 4λ+ , 2p1 + 1 ≥ 4λ+,

−p1 + p2 ≥ 4λ+ , 10p1 + 7p2 − 5 ≥ 5λ+,

24p1 + 15p2 − 5 ≥ 5λ+ , 9p1 + 11p2 − 5 ≥ 5λ+,

4p1 − 2p2 − 2 ≥ −6λ− , 2p1 − 2 ≥ −6λ−,

−p1 + p2 − 2 ≥ −6λ− , 10p1 + 7p2 − 7 ≥ −4λ−,

24p1 + 15p2 − 7 ≥ −4λ− , 9p1 + 11p2 − 7 ≥ −4λ−,

p1 + p2 = 1 , λ+ + λ− ≤ 1,

p1, p2 ≥ 0 , λ+ ≥ λ−,λ− ≥ 0. (18)

The optimal solution for P1 is obtained as;
(

p∗ = (0.3750, 0.6250)T , λ+∗ = 0.3125, λ−∗ = 0.2917
)

.

ForP2,we takev1
a = −2, q1a = 5, v1

r = 0, q1r = 4andv2
a = 7, q2a = 4, v2

r =
10, q2r = 5.

Model (17) is reduced as follows,
max (η+ − η−)

s.t.,

4q1 + 2q2 − q3 − 3 ≤ −5η+ , −2q1 + q3 − 3 ≤ −5η+,

10q1 + 24q2 + 9q3 − 11 ≤ −4η+ , 7q1 + 15q2 + 11q3 − 11 ≤ −4η+,

4q1 + 2q2 − q3 ≤ −4η− , −2q1 + q3 ≤ −4η−,

10q1 + 24q2 + 9q3 − 10 ≤ −5η− , 7q1 + 15q2 + 11q3 − 10 ≤ −5η−,

q1 + q2 + q3 = 1 , η+ + η− ≤ 1,

q1, q2, q3 ≥ 0 , η+ ≥ η−, η− ≥ 0. (19)

The optimal solution for P2 is obtained as;
(

q∗ = (0.25, 0, 0.75)T , η+∗ = 0.25, η−∗ = 0.0625
)

.
These results are calculated by TORA software.

6 Conclusions

A solution procedure is introduced for MOMGIFG in this paper. This work shows
that the strategic problems for both players are equivalent to two LPP. An example is
given to show the existence of this theory. The author intends to study a case in which
assumption (H4) is violated, i.e., entries of payoffmatrices having fuzziness in future.
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Fuzzy Integrated Super-Efficiency Slack
Based Measure Model

Alka Arya and Shiv Prasad Yadav

Abstract Super-efficiency slack based measure (SESBM) model is a non radial
approach proposed by Tone (J Oper Res 143:32–41, [19]) to rank the efficient
DMUs. This model is extended to the additive SBM model by Du et al. (Eur J
Oper Res 204(3):694–697, [12]). In additive SBM model, first find the efficient–
inefficient DMUs and then apply the super-efficiency model to determine the super-
efficiencies for efficient DMUs. This is time consuming model. Guo et al. (Omega
67:160–167, [14]) proposed an integrated super-efficiency SBM (ISESBM)model to
find the super-efficiencies of the efficient DMUs. In this paper, we extend ISESBM
model proposed by Guo et al. (Omega 67:160–167, [14]) to the fuzzy ISESBM using
expected values of fuzzy numbers. Also, we propose a new approach to find the fuzzy
input–output projections which help to make inefficient DMUs as efficient one in
fuzzy environment.

Keywords Additive SBM model · Integrated super-efficiency SBM model
Fuzzy integrated super-efficiency SBM model · Fuzzy input–output projections

1 Introduction

Data envelopment analysis (DEA) is a linear programming based non-parametric
technique for determining the relative efficiencies of decision making units (DMUs)
which produce multiple outputs by making use of multiple inputs. Charnes et al.
[5] proposed CCR DEA model which determines the performance efficiencies of
DMUs. CCR DEA model is a radial efficiency model. In radial efficiency model,
a DMU is weakly efficient if efficiency score is equal to one and at least one slack
is zero and a DMU is strongly efficient if efficiency score is equal to one and all
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slacks are zero [5]. Charnes et al. [6] proposed an additive DEA model to determine
the efficiencies of DMUs in terms of input excesses and output shortfalls directly.
In additive DEA model, a DMU is efficient if slacks (excesses and shortfalls) are
zero. Tone et al. [18] proposed a non-radial measure model based on slacks directly
which is known as slack based measure (SBM) model. Andersen et al. [2] proposed
a super-efficiency SBM (SESBM) model which is based on constant returns to scale
(CRS), and the efficiencies of efficient DMUs in SESBM model are greater than
or equal to one. The super-efficiency model may be infeasible if SESBM model is
based on variable returns to scale (VRS) [8–10, 16]. Du et al. [12] extended the super-
efficiency SBM model to additive super-efficiency SBM model. In this model, we
first find the efficient DMUs and then apply additive super-efficiency SBM model
to determine the super-efficiencies of efficient DMUs. Guo et al. [14] proposed a
model to determine the efficiencies and super-efficiencies, and this model is known
as integrated SESBM (ISESBM) model.

Real world problems have some input–output data which possess some degrees of
imprecision or uncertainties. The imprecision can take the form of ordinal relations,
intervals, fuzzy numbers, etc. [20, 21] There are some studies of fuzzy DEA (FDEA)
in different areas [1, 4, 11, 17]. Hsiao et al. [15] proposed fuzzy SESBM (FSESBM)
model. Due to uncertainty in data of real life problems, we extend crisp integrated
SESBM (ISESBM) model to fuzzy integrated SESBM (FISESBM) model using
fuzzy numbers in DEA. FISESBM model represents real world applications more
realistically than the conventional ISESBM model. FISESBM model determines
both the efficiencies and super-efficiencies of DMUs in one step. In this paper, we
also extend crisp posterior super-efficiency (PSE) to fuzzy posterior super-efficiency
(FPSE) by making the use of fuzzy numbers specially triangular fuzzy numbers
(TFNs). Also, this study determines the fuzzy input projections and fuzzy output
projection for inefficient DMUs.

The rest of the paper is organized as follows: Section 2 presents the preliminar-
ies. Section 3 presents the proposed fuzzy integrated super-efficiency SBM model.
Section 4 presents the illustrative example. Section 5 presents the conclusions of the
study.

2 Preliminaries

Definition 1 (Fuzzy Number (FN)) An FN ˜M [3] is defined as a convex fuzzy set
˜M of the real line IR such that

(1) there exists exactly one x0 ∈ IR with μ
˜M (x0) = 1. x0 is called the mean value of

˜M ,
(2) μ

˜M : IR → [0, 1] is a piecewise continuous function, called the membership
function of ˜M .
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Definition 2 (Triangular Fuzzy Number (TFN)) The TFN ˜M [3] is an FN denoted
by ˜M = (a, b, c) and is defined by the membership function μM̃ given by

μM̃ (x) =
⎧

⎨

⎩

x−a
b−a , a < x ≤ b,
c−x
c−b , b ≤ x < c,
0, elsewhere,

for all x ∈ IR, where b is the modal value of (a, b, c) and (a, c) is called the support
of (a, b, c).

Definition 3 (Arithmetic operations on TFNs) Let ˜M1 = (a1, b1, c1) and ˜M2 =
(a2, b2, c2) be two TFNs. Then, the arithmetic operations on TFNs [3] are given
as follows:

– Addition: ˜M1 ⊕ ˜M1 = (a1 + a2, b1 + b2, c1 + c2).
– Subtraction: ˜M1 � ˜M2 = (a1 − c2, b1 − b2, c1 − a2).
– Multiplication: ˜M1 ⊗ ˜M2 = (min(a1a2, a1c2, c1a2, c1c2), b1b2,max(a1a2, a1c2,
c1a2, c1c2))

– Scalar multiplication:

λM̃1 =
{

(λa1,λb1,λc1), for λ ≥ 0
(λc1,λb1,λa1), for λ < 0

Definition 4 (Expected values of FNs) [13] The expected interval (EI) [3] of a TFN
˜M = (a, b, c) defined as follows:
EI(M̃ ) = [EL(˜M ),EU (M̃ )], where EL(˜M ) = a+b

2 and ER(˜M ) = b+c
2 .

Expected value (EV) of a TFN ˜M = (a, b, c) defined as follows:
EV (˜M ) = 1

2 (E
L(˜M ) + EU (M̃ )) = a+2b+c

4 .

Definition 5 (Ordering of TFNs) [7] Let ˜M1 = (a1, b1, c1) and ˜M2 = (a2, b2, c2) be
the two TFNs. Then
˜M1 ≥ ˜M2 ⇐⇒ EV (˜M1) ≥ EV (˜M2)
˜M1 ≤ ˜M2 ⇐⇒ EV (˜M1) ≤ EV (˜M2)
˜M1 = ˜M2 ⇐⇒ EV (˜M1) = EV (˜M2)
˜M1 ≤ ˜M2 or ˜M2 ≥ ˜M1 if min(˜M1, M̃2) = ˜M1
˜M1 ≥ ˜M2 or ˜M2 ≤ ˜M1 if max(˜M1, M̃2) = ˜M1.

2.1 Slack-Based Measure (SBM) Model

Assume that the performance of a set of n homogeneous DMUs (DMUj, j =
1, 2, 3, . . . , n) be measured. The performance ofDMUj is described by a production
process of m inputs xij (i=1,2,3,…,m) to produce s outputs yrj (r=1,2,3,…,s) [3].
Let xij be the amount of the ith input used and yrj be the amount of the rth output
produced by DMUj [3]. Assume that the input–output data are positive. The primal
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Table 1 SBM and SESBM models

SBM model SESBM model

min ρk =
1−(1/m)

m
∑

i=1
w−
ik /xik

1+(1/s)
s

∑

r=1
w+
rk/yrk

min τk =
1
m

m
∑

i=1
xi/xik

1
s

s
∑

r=1
yr/yrk

xik =
n
∑

j=1
xijμjk + w−

ik ∀i s.t. xi ≥
n
∑

j=1, �=k
xijμjk ∀i,

yrk =
n
∑

j=1
yrjμjk − w+

rk ∀r yr ≤
n
∑

j=1, �=k
yrjμjk ∀r,

μjk ≥ 0, ∀j = 1, 2, 3, . . . , n,
∀k = 1, 2, 3, . . . , n,

μjk ≥ 0, ∀j = 1, 2, 3, . . . , n,
∀k = 1, 2, 3, . . . , n

w−
ik ≥ 0 ∀i = 1, 2, 3, . . . ,m, w+

rk ≥ 0
∀r = 1, 2, 3, . . . , s.

xi ≥ xik ∀i = 1, 2, 3, . . . ,m, 0 ≤ yr ≤
yrk ∀r = 1, 2, 3, . . . , s.

SBM model [18] for DMUk is given by the SBM model in Table 1. In Table 1, w−
ik

is ith input slack and w+
rk is the rth output slack of DMUk .

Definition 6 ρk is called SBMefficiency (SBME) ofDMUk . Let ρ∗
k be optimal value

of ρk . DMUk is SBM efficient if ρ∗
k = 1 [18].

Theorem 1 ρ∗
k = 1 ⇐⇒ w−∗

ik = 0 and w+∗
rk = 0, i.e., no input excesses and no

output shortfalls in optimal solution; otherwise, DMUk is inefficient [18].

SBM model determines the efficiencies of the DMUs and also determines the
efficient and inefficient DMUs. If DMUs are efficient, then we apply super-efficiency
SBM (SESBM) model which is given in Table 1.

SESBM efficiencies greater than or equal to one for efficient DMUs. SESBM
model provides the efficiency equal to one for inefficient DMUs. Therefore, we
cannot differentiate the efficient and inefficient DMUs by SESBMmodel if SESBM
efficiency is equal to one.

2.2 Additive SBM (ASBM) and Additive SESBM (ASESBM)

Charnes et al. [6] developed an additive SBM (ASBM) model to determine the
efficiencies of DMUs. ASBM model is given in Table 2. In Table 2, s−ik and s+rk are
the input excess and output shortage, respectively.

Du et al. [12] proposed an additive SESBM (ASESBM) model which is given in
Table 2. In Table 2, t+ik and t−rk are the input saving and output surplus, respectively.

The posterior additive efficiency [14] of ASBM model is defined as follows

α∗
k =

1
m

∑m
i=1 (xik − s−∗

ik )/xik
1
s

∑s
i=1 (yrk + s+∗

rk )/yrk
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Table 2 ASBM and ASESBM models

ASBM model ASESBM model

max ak =
m
∑

i=1
s−ik +

s
∑

r=1
s+rk min bk =

m
∑

i=1
t+ik +

s
∑

r=1
t−rk

s.t.
n
∑

j=1
xijμjk = xik − s−ik ∀i, s.t.

n
∑

j=1, �=k
xijμjk ≤ xik +

m
∑

i=1
t+ik , ∀i,

n
∑

j=1
yrjμjk = yrk + s+rk ∀r,

n
∑

j=1, �=k
yrjμjk ≥ yrk −

s
∑

r=1
t−rk ∀r,

μjk ≥ 0 ∀j = 1, 2, 3, . . . , n,
∀k = 1, 2, 3, . . . , n,

μjk ≥ 0, ∀j = 1, 2, 3, . . . , n,
∀k = 1, 2, 3, . . . , n, j �= k,

s−ik ≥ 0 ∀i = 1, 2, 3, . . . ,m, s+rk ≥ 0
∀r = 1, 2, 3, . . . , s.

t+ik ≥ 0 ∀i = 1, 2, 3, . . . ,m, t−rk ≥ 0
∀r = 1, 2, 3, . . . , s.

where s−∗
ik and s+∗

rk are the optimal values of s−ik and s
+
rk of ASBMmodel, respectively.

The posterior additive super-efficiency (ASE) [14] of ASESBMmodel is defined
as follows

ᾱ∗
k =

1
m

∑m
i=1 (xik + t+∗

ik )/xik
1
s

∑s
i=1 (yrk − t−∗

rk )/yrk

where t+∗
ik and t−∗

rk are the optimal values of t+ik and t−rk of ASESBM model, respec-
tively.

Similar to SBM and SESBM models, ASBM model is used to determine the
efficiencies of DMUs and the efficient and inefficient DMUs are determined. Then
ASESBM model is applied to measure the efficiency of efficient DMUs.

3 Proposed Fuzzy Integrated Super-Efficiency SBMModel

3.1 Integrated Super-Efficiency SBM (ISESBM) Model

Guo et al. [14] proposed an integrated SESBM (ISESBM) model. In Model 1, s−ik
and s+rk are the inefficiency slacks, and t+ik and t−rk are the super-efficient slacks [14].
In this model, Guo et al. [14] determined the super-efficiency slacks first and then
inefficiency slacks i.e., t+ik + t−rk is first minimized and then s−ik + s+rk is maximized.

Model 1 min ηk =
m
∑

i=1
t+ik +

s
∑

r=1
t−rk − ε(

m
∑

i=1
s−ik +

s
∑

r=1
s+rk)

s.t.
n

∑

j=1, �=k
xijμjk = xik + t+ik − s−ik , ∀i,

n
∑

j=1, �=k
yrjμjk = yrk − t−rk + s+rk , ∀r,
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μjk ≥ 0, ∀j = 1, 2, 3, . . . , n, j �= k, ∀k = 1, 2, 3, . . . , n,
t−rk ≥ 0, t+ik ≥ 0, s−ik ≥ 0, s+rk ≥ 0 ∀i = 1, 2, 3, . . . ,m,
∀r = 1, 2, 3, . . . , s.

Let s−∗
ik , s+∗

rk , t+∗
ik , t−∗

rk be the optimal values of s−ik , s+rk , t+ik , t−rk . Then the pos-
terior efficiency (PE) of the ISESBM model is denoted by δ∗

k and is defined by

δ∗
k =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1
m

m
∑

i=1
(xik−s−∗

ik )/xik

1
s

s
∑

r=1
(yrk+s+∗

rk )/yrk
, if (

m
∑

i=1
t+∗
ik +

s
∑

r=1
t−∗
rk ) = 0,

1
m

m
∑

i=1
(xik+t+∗

ik )/xik

1
s

s
∑

r=1
(yrk−t−∗

rk )/yrk
, elsewhere.

Definition 7 DMUk is said to be efficient if δ∗
k > 1 and is said to be inefficient if

δ∗
k ≤ 1.

3.2 Fuzzy Integrated Super-Efficiency SBM (FISESBM)
Model

In conventional ISESBM model, the input data and output data are crisp values. But
in the real world applications, these data may have fuzzy values [3]. Therefore, in
this paper, we have taken fuzzy input–output data as TFNs. Let x̃ij be the fuzzy input
and ỹrj be the fuzzy output for DMUj. Model 1 reduces to Model 2 as given below:

Model 2 min η̃k =
m
∑

i=1
t+ik +

s
∑

r=1
t−rk − ε(

m
∑

i=1
s−ik +

s
∑

r=1
s+rk)

s.t.
n

∑

j=1, �=k
x̃ijμjk = x̃ik + t+ik − s−ik , ∀i,

n
∑

j=1, �=k
ỹrjμjk = ỹrk − t−rk + s+rk , ∀r,

μjk ≥ 0, ∀j = 1, 2, 3, . . . , n, j �= k, ∀k = 1, 2, 3, . . . , n,
t−rk ≥ 0 t+ik ≥ 0, s−ik ≥ 0, s+rk ≥ 0, ∀i = 1, 2, 3, . . . ,m, ∀
r = 1, 2, 3, . . . , s.

Model 2 is known as FISESBM model. The posterior efficiency (PE) of the FIS-
ESBM model is denoted as δ̃∗

k and is defined as given below:

δ̃∗
k =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

1
m

m
∑

i=1
(x̃ik−s−∗

ik )/x̃ik

1
s

s
∑

r=1
(ỹrk+s+∗

rk )/ỹrk
, if (

m
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t+∗
ik +

s
∑

r=1
t−∗
rk ) = 0,

1
m

m
∑

i=1
(x̃ik+t+∗

ik )/x̃ik

1
s

s
∑

r=1
(ỹrk−t−∗

rk )/ỹrk
, elsewhere.
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Taking x̃ij = (xlij, x
m
ij , x

u
ij) and ỹrj = (ylrj, y

m
rj , y

u
rj), Model 2 is reduced to Model 3.

Model 3 min(ηk) =
m
∑

i=1
t+ik +

s
∑

r=1
t−rk − ε(

m
∑

i=1
s−ik +

s
∑

r=1
s+rk)

s.t.
n

∑

j=1, �=k
μjk(xlij, x

m
ij , x

u
ij) = (xlik , x

m
ik , x

u
ik) + t+ik − s−ik , ∀i,

n
∑

j=1, �=k
μjk(ylrj, y

m
rj , y

u
rj) = (ylrk , y

m
rk , y

u
rk) − t−rk + s+rk , ∀r,

μjk ≥ 0, ∀j = 1, 2, 3, . . . , n, j �= k, ∀k = 1, 2, 3, . . . , n,
t−rk ≥ 0 t+ik ≥ 0, s−ik ≥ 0, s+rk ≥ 0, ∀i = 1, 2, 3, . . . ,m,
∀r = 1, 2, 3, . . . , s.

Model 3 is known as the proposed FISESBM model. Using expected values of
TFNs, Model 3 is reduced to Model 4.

Model 4 min ηk =
m
∑

i=1
t+ik +

s
∑

r=1
t−rk − ε(

m
∑

i=1
s−ik +

s
∑

r=1
s+rk)

s.t.
n

∑

j=1, �=k
μjk(xlij + 2xmij + xuij)/4 = (xlik + 2xmik + xuik)/4 + t+ik − s−ik , ∀i,

n
∑

j=1, �=k
μjk(ylrj + 2ymrj , y

u
rj)/4 = (ylrk + 2ymrk + yurk)/4 − t−rk + s+rk , ∀r,

μjk ≥ 0, ∀j = 1, 2, 3, . . . , n, j �= k, ∀k = 1, 2, 3, . . . , n,
t−rk ≥ 0 t+ik ≥ 0, s−ik ≥ 0, s+rk ≥ 0, ∀i = 1, 2, 3, . . . ,m,
∀r = 1, 2, 3, . . . , s.

3.3 Proposed Posterior Super-Efficiency (PPSE)

The posterior super-efficiency of the Model 4 is denoted by χ∗
k and is defined by

χ∗
k =

⎧
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m
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ik +

s
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r=1
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1
m

m
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((xlik+2xmik+xuik )/4+t+∗

ik )/(xlik+2xmik+xuik )/4

1
s

s
∑
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, elsewhere.

Definition 8 Let χ∗
k be optimal value of χk . Then, DMUk is said to be efficient if

χ∗
k > 1 and inefficient if χ∗

k ≤ 1.
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3.4 Projection

The projection frontier of DMUk is (x̄ik = xik + t+∗
ik − s−∗

ik , ȳrk = yrk − t−∗
rk + s+∗

rk )

for ISESBM model [14]. The projection frontier of DMUk is (˜Xik = x̃ik + t+∗
ik −

s−∗
ik ,˜Yrk = ỹrk − t−∗

rk + s+∗
rk ) for PFISESBM model.

4 Illustrative Example

In this section, we provide an example to illustrate the PFISESBM model. Let there
be taken two fuzzy inputs: (i) x̃1j, (ii) x̃2j, and two fuzzy outputs: (i) ỹ1j, (ii) ỹ2j as
shown in Table 3, j=1,2,3,…,10.

The inefficiency slacks and SE slacks of each DMU are determined using PFIS-
ESBM model (Model 4) as shown in Table 4. The PPSE, χ∗

k , for each DMUk is
determined and is shown in Table 4. In Table 4, DMUs 1 and 4 are inefficient other
DMUs are efficient.

Finally, we determine the fuzzy input projections (˜X1j and ˜X2j) and fuzzy output
projections (˜Y1j and ˜Y2j) discussed in Subsection 3.4 which are shown in Table 5.
From fuzzy input projections, we conclude that for DMU 1, the first fuzzy input
should be increased from (2.8, 3.6, 4.4) to (3.4, 4.2, 5) to become efficient. Similar
conclusion can be drawn for other DMUs.

Table 3 Fuzzy input and fuzzy output data for 10 DMUs

DMUs Fuzzy inputs Fuzzy outputs

x̃1j x̃2j ỹ1j ỹ2j

1 (2.8, 3.6, 4.4) (5.8, 6.4, 7.3) (6.9, 7.3, 7.7) (3.8, 4.6, 4.9)

2 (1.8, 2.5, 3.2) (3.5, 3.9, 4.5) (2.8, 3.5, 4.0) (5.2, 5.8, 6.6)

3 (4.2, 4.7, 5.2) (3.1, 3.5, 3.9) (2.1, 2.7, 3.3) (4.9, 5.6, 6.2)

4 (2.2, 2.6, 3.0) (3.5, 4.0, 4.5) (3.7, 4.2, 4.7) (7.9, 8.5, 9.1)

5 (5.5, 6.0, 6.7) (4.6, 5.1, 5.6) (5.2, 5.5, 5.7) (6.8, 7.6, 8.4)

6 (3.1, 3.5, 3.9) (4.5, 4.5, 4.5) (3.6, 3.9, 4.2) (7.1, 7.5, 7.9)

7 (4.6, 4.9, 5.2) (6.2, 6.8, 7.2) (1.9, 2.5, 3.1) (8.1, 8.5, 8.9)

8 (4.3, 4.8, 5.3) (6.1, 6.3, 6.5) (1.3, 1.7, 2.1) (3.1, 3.7, 4.3)

9 (5.9, 6.5, 7.4) (5.1, 5.6, 6.4) (2.6, 2.9, 3.2) (7.1, 7.6, 8.1)

10 (7.6, 7.9, 8.2) (4.6, 5.0, 5.4) (2.7, 2.9, 3.1) (3.2, 3.5, 3.8)
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Table 4 Slacks and efficiencies

DMUs Input slacks Output slacks Input slacks Output slacks PPSEs

s−1j s−2j s+1j s+2j t+1j t+2j t−1j t−2j χ∗
j

1 0 0 0 9.284 0.6087 0 0.5012 0 1.5512

2 0 0.1038 0.588 2.32 0 0 0 0 0.444

3 0.0053 2.32 0 0.975 1.862 0 0 0 0.0053

4 2.5789 0 0 0 1.169 0.846 0 0.4230 2.5789

5 2.88 0 0 1.014 0 0 0 0 0.0378

6 0.575 0 0.825 2.062 0 0 0 0 0.343

7 0.5125 0 4.5875 5.843 0 0 0 0 0.1308

8 0.705 0 4.915 9.6875 0 0 0 0 0.0588

9 2.8862 0 3.058 4.459 0 0 0 0 0.285

10 4.65 0 2.35 7.125 0 0 0 0 0.3509

Table 5 Fuzzy input–output projections for 10 DMUs

DMUs Fuzzy input projections Fuzzy output projections
˜X1j ˜X2j ˜Y1j ˜Y2j

1 (3.4, 4.2, 5) (5.8, 6.4, 7.3) (6.39, 6.79, 7.19) (13.1, 13.8, 14.2)

2 (1.8, 2.5, 3.2) (3.39, 3.79, 4.39) (3.38, 4.08, 4.58) (7.5, 8.1, 8.9)

3 (6.05, 6.55, 7.05) (0.781.18, 1.58) (2.1, 2.7, 3.3) (5.87, 6.5, 7.17)

4 (0.79, 1.19, 1.59) (4.34, 4.84, 5.36) (3.7, 4.2, 4.7) (7.47, 8.07, 8.66)

5 (2.62, 3.12, 3.82) (4.6, 5.1, 5.6) (5.2, 5.5, 5.7) (7.81, 8.61, 9.41)

6 (2.52, 2.92, 3.32) (4.5, 4.5, 4.5) (4.42, 4.72, 5.02) (9.16, 9.56, 9.96)

7 (4.08, 4.38, 4.68) (6.2, 6.8, 7.2) (6.48, 7.08, 7.68) (13.94, 14.34,
14.74)

8 (3.59, 4.09, 4.59) (6.1, 6.3, 6.5) (6.21, 6.61, 7.01) (12.78, 13.38,
13.98)

9 (3.0, 3.6, 4.51) (5.1, 5.6, 6.4) (5.65, 5.95, 6.25) (11.55, 12.05,
12.56)

10 (2.95, 3.25, 3.55) (4.6, 5.0, 5.4) (5.05, 5.25, 5.45) (10.32, 10.62,
10.92)

5 Conclusion

The realworld applications’ data have somedegree of uncertainties. To dealwith such
data, we have considered them as TFNs. In this paper, we extended the work of Guo
et al. [14] and proposed fuzzy integrated super-efficiency SBM (FISESBM) model.
Also, we have proposed a proposed posterior super-efficiency (PPSE) to determine
the super-efficiencies of DMUs. To ensure the validity of the proposed models, we
have considered the performance of 10 DMUs with two fuzzy inputs and two fuzzy
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outputs. We also determined the fuzzy input–output projections of DMUs (Table 5).
The FISESBM model is more effective for real world applications.

The uncertainty in this paper is limited to fuzzy environment. In future, we plan
to extend the present work to the intuitionistic fuzzy environment to determine the
super-efficiencies of real world applications.
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Prioritizing Factors Affecting
the Adoption of Mobile Financial
Services in Emerging Markets—A Fuzzy
AHP Approach

Kriti Priya Gupta and Rishi Manrai

Abstract Mobile financial services (MFSs) such as ‘mobile banking’ and ‘mobile
payments’ have revolutionized the global banking and financial industry by bringing
financial services closer to the consumers. Successful diffusion of various types of
MFSs depends on their acceptance and adoption by the end-users (customers). Also,
customers make trade-offs while choosing MFSs on the basis of various factors that
are important to them. The present study attempts to find the relative importance
of various factors that influence the customers’ choice of MFSs. The study also
prioritizes three MFSs, namely mobile banking, prepaid instruments (PPIs) and pay-
ments banks on the basis of multiple factors. The present problem is modelled as a
multiple-criteria decision-making (MCDM) problem, wherein fuzzy analytic hier-
archy process (FAHP) is used to rank the potential factors of MFS selection and to
evaluate various MFSs. The findings of the study reveal that functional benefits and
economic benefits dominate over trust and perceived risks in customers’ decision-
making regarding the selection of MFSs. With regard to the evaluation of the three
MFSs, the findings indicate that payments bank is the superior choice as it offers best
economic and functional benefits and involves minimum risks. The findings of the
study may helpMFS providers, to evaluate critical factors of adoption of MFSs. This
may help them in achieving cost-effective implementation of MFSs by efficiently
managing their resources.
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1 Introduction

Over the past few years, the proliferation of mobile technology to use banking and
financial services has been a major development in the financial services market.
The use of mobile phones for providing financial services has changed the dynamics
of the banking and financial industry, bringing financial services closer to the con-
sumers. Mobile financial services (MFS) encompassing mobile banking and mobile
payment have become increasing prevalent nowadays. The MFSs in emerging mar-
kets like India can be segmented into three categories: mobile banking, PPIs (prepaid
instruments or mobile wallets) and payment banks. Mobile banking is offered by
banks wherein customers can carry out most of their bank transactions by using their
smartphones through a mobile application. These transactions may include transfer-
ring of funds, checking account activity, viewing balance, applying for chequebook,
paying loan amount, opening a term deposit, recharging phone, or booking movie
tickets. Examples of various mobile banking applications in emerging markets like
India include—Kotak Bank App for Kotak Mahindra bank, iMobile for ICICI bank
and SBI freedom app for State bank of India [1]. PPI or Mobile wallet (e.g. gift
cards by Axis Bank, food card issued by HDFC Bank; Metro Card, Flipkart e-wallet,
Oxigen, Paytm,Mobikwik) is a cashless payment service, provided by certain service
providers, wherein people can load a certain amount of money that can be spent at
online and offline merchants listed with the mobile wallet service provider [2]. PPIs
can be used for paying bills, shopping, booking movie tickets, etc. PPIs can be issued
by banks or Non-Banking Finance Companies (NBFCs) in the form of smart cards,
magnetic stripe cards, mobile accounts, mobile wallets, paper vouchers and any such
instrument which can be used to access the prepaid amount. Payment Banks is a
recent initiative of the GoI which has been launched in 2014 on the lines of Kenya’s
payments bank ‘M-Pesa’. Payment Banks are stripped-down type of banks, which
can be promoted by existing nonbank PPI issuers, NBFCs, corporate Business Cor-
respondents (BCs), mobile telephone companies, supermarket chains, etc. and can
provide services like acceptance of demand deposits, issuance of ATM/debit cards,
payments and remittance services through various channels, distribution of non-risk
sharing simple financial products like mutual fund units and insurance products [3].

Successful diffusion of various types of MFSs depends on their acceptance and
adoption by the end-users (customers). Technical issues, perceived risks, lack of trust
and security concerns are generally found to be the major reasons behind customers’
resistance to adopt these services [4–7], whereas value-added services and perceived
monetary and non-monetary benefits are found to be the factors which motivate the
users to use these services [8–10, 20]. Hence, it is pertinent to understand and address
the needs and behavioural patterns of the customers so as to optimize their experience
with MFSs. Moreover, with the availability of several options for MFSs, it is worth-
seeing which options are more preferred by customers as different options have their
pros and cons. MFS providers can increase their competitiveness if they are able to
improve their performance in meeting the demands of customers. Consequently, it
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is important for them to understand the requirements of MFS users and the relative
weights of the factors that determine the users’ needs.

Though substantial research has been done towards determining the factors affect-
ing the adoption of variousMFSs, viz. mobile banking, mobile payments, most of the
previous researches in this area have focused on the general factors related to MFS
adoption using multiple regression analysis and structural equation modelling. The
present study addresses the problem of MFS selection on the basis of multiple selec-
tion criteria (factors). The study attempts to prioritize three MFSs, namely mobile
banking, PPIs and payments banks, on the basis of multiple factors which may be
considered by the MFS users in India for selecting a particular MFS. Since assess-
ing these factors includes multiple criteria, it can be modelled as a multiple-criteria
decision-making (MCDM) problem. This study applies fuzzy analytic hierarchy pro-
cess (FAHP), one of the MCDM methods, to evaluate the potential factors of MFS
adoption/selection and to prioritize three different types of MFSs. Firstly, various
factors are identified on the basis of the extant literature review, and their weights
(priorities) are determined using AHP. Then, on the basis of these multiple criteria,
the three types of MFSs are evaluated by determining their ranks. Practical implica-
tions that can be drawn from the findings of this study will assist service providers in
understanding customers better and making appropriate decisions regarding delivery
of services by allocating their limited resources to the most important factors. The
rest of the paper is organized as follows: the next section gives an overview of the
related researches. The proposed research methodology is discussed in Sect. 3. The
data analysis is done in Sect. 4. Results and discussions are then presented in Sect. 5.
Finally, the paper is concluded in Sect. 6.

2 Literature Review

The theoretical background to this study is derived from the literature areas of tech-
nology adoption and diffusion of innovation theory concerning consumer adoption
of mobile banking and mobile payments. Previous researches have employed many
such models such as the theory of planned behaviour (TPB) [11]; the diffusion of
innovation theory (DOI) [12]; the technology acceptance model (TAM) [13]; the
unified theory of acceptance and use of technology (UTAUT) [14], to study the fac-
tors that influence customers’ decisions to adopt/use mobile banking and mobile
payments. The constructs used in these models are defined in Table 1.

Apart from the models/theories discussed in Table 1, some researchers have used
Initial TrustModel (ITM) [15] andTheory of InnovationResistance (TIR) [16] to
explain the customers’ behaviour towards adoption ofMFS. Trust comprises of three
factors: institution-based trust factors (which include firm’s characteristics such as
size, capability, credibility, integrity, reputation, brand); environmental forces (which
include structural assurances relevant to enhancing trustworthiness such as service
guarantees); and personal trust propensity [15]. According to TIR, there are several
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Table 1 Technology/innovation adoption models/theories

Model/Theory Variables Definition Reference

TPB Attitude Attitude towards a
behaviour is the
degree to which
performance of the
behaviour is positively
or negatively valued

Aizen [11]

Subjective norms The perceived social
pressure to engage or
not to engage in a
behaviour

Perceived behavioural
control

People’s perceptions
of their ability to
perform a given
behaviour

DOI Relative advantage Degree to which an
innovation is seen as
being superior to its
predecessor

Rogers [12]

Complexity Degree to which an
innovation is seen by
the potential adopter
as being relatively
difficult to use and
understand

Compatibility The degree to which
an innovation is seen
to be compatible with
existing beliefs,
values, experiences
and needs of adopters

Trialability Degree to which an
idea can be
experimented with, on
a limited basis

Observability Degree to which the
results of an
innovation are visible

TAM Perceived usefulness Degree to which a
person believes that
using a particular
system would enhance
his or her performance

Davis et al. [13]

Perceived ease of use Degree to which a
person believes that
using a particular
system would be free
of effort

(continued)
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Table 1 (continued)

Model/Theory Variables Definition Reference

UTUAT Performance
expectancy

Degree to which an
individual believes
that using a particular
system would improve
his or her performance

Venkatesh et al. [14]

Effort expectancy Degree of simplicity
associated with the use
of a particular system

Facilitating conditions Degree to which an
individual believes
that technical
infrastructure exists to
support the use of a
particular system

Social influence Degree to which an
individual perceives
that others believe he
or she should use a
particular system

barriers, viz. usage, value, risk, tradition and image barriers, due to which customers
resist the use of an innovation [16].

Various researchers have employed the above-discussedmodels/theories and their
extensions to study how customers formulate their perceptions, attitudes, intentions
and behaviour towardsMFSs. Many researchers have combined the constructs of the
traditional models and theories (TPB, DOI, TAM and UTAUT) with trust and other
value-based constructs, viz. perceived risks and perceived benefits to study the user’s
intentions to use MFSs. Table 2 summarizes various studies conducted in different
contexts for studying the factors influencing customer’s intentions to adopt MFSs
(mobile banking or mobile payments).

It can be noticed from Table 2 that relative advantage [17–19]; effort expectancy
and performance expectancy [20, 21]; and perceived usefulness and perceived ease of
use [22–24] significantly influence customers’ behavioural intentions to adoptMFSs.
This indicates that customers are motivated to use a mobile financial service because
they perceive it to be more beneficial over the traditional banking as it is easy to
use and saves their time and effort. Facilitating conditions [20, 21] and compatibility
[5, 17, 18] are also found to have positive effects on customers’ intentions towards
adopting MFSs. This implies that an individual who has the technical infrastructure
and knowledge required for using mobile banking will be more likely to use the
same. The society (friends, relatives, etc.) also plays an important role in influencing
individuals for adopting the MFS, especially in the developing countries. Subjective
norm is the most influential factor of mobile banking adoption in Thailand [25] and
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Table 2 Mobile banking/payment adoption studies

Adoption
model/theory

Studies Country Main Findings regarding factors
influencing customer’s intentions to
adopt mobile banking/mobile payment

TPB Tinga et al. [53] Malaysia Attitude, subjective norm and perceived
behavioural control have positive effect
on intention to use mobile payment

UTAUT2 and
DOI

Oliveira et al.
[54]

Portugal Compatibility, perceived technology
security, performance expectations,
innovativeness and social influence have
significant direct and indirect effects
over the adoption of mobile payment

UTAUT2 and
Trust

Alalwan et al.
[20]

Jordan Behavioural intention is significantly
and positively influenced by
performance expectancy, effort
expectancy, facilitating conditions,
hedonic motivation, price value and trust

Extended
UTAUT

Alam [21] Bangladesh Individual intention to adopt mobile
banking is significantly influenced by
social influence, effort expectancy,
performance expectancy, facilitating
conditions and perceived financial cost

Extended TAM
and Trust

Gu et al. [23] Korea Perceived usefulness is directly affected
by perceived ease of use, trust and
system quality. Perceived ease of use
affects behavioural intention through
perceived usefulness

Extended TAM Amin et al. [22] Malaysia Human intentions to adopt mobile
banking are significantly affected by
perceived usefulness, perceived ease of
use, perceived credibility, the amount of
information and normative pressure

Extended TAM Luarn and Lin
[24]

Taiwan Perceived self-efficacy, financial costs,
credibility, ease of use and usefulness
have positive effects on intention to
adopt mobile banking

TAM, TPB and
IDT

Riquelme and
Rios [34]

Singapore Usefulness, social norms and risk
influence the intention to adopt mobile
banking

TAM, DOI and
Trust

Koenig-Lewis
et al. [5]

Germany Perceived usefulness, compatibility and
risk have significant influence, while
perceived costs, ease of use, credibility
and trust do not have significant
influence on consumer’s intentions

(continued)
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Table 2 (continued)

Adoption
model/theory

Studies Country Main Findings regarding factors
influencing customer’s intentions to
adopt mobile banking/mobile payment

DOI and TPB Puschel et al.
[19]

Brazil Relative advantage, visibility,
compatibility and perceived ease of use
significantly affect attitude; attitude,
subjective norm and perceived
behavioural control ultimately enrich the
customers’ intention to adopt mobile
banking

TAM and TPB Sripalawat et al.
[25]

Thailand Subjective norm is the most influential
factor, followed by perceived usefulness

Extended TAM Dasgupta et al.
[55]

India Perceived usefulness, ease of use, image,
perceived value, self-efficacy and
credibility significantly affect intentions
towards mobile banking usage

DOI and
Decomposed
TPB

Brown et al. [4] South Africa Relative advantage, trialability, number
of banking services and risk significantly
influence mobile banking adoption

DOI Lee et al. [17] Relative advantage, compatibility,
trialability and complexity play a
considerable role in forming customers’
attitudes towards mobile banking
adoption

DOI Lin [18] Relative advantage and compatibility are
the key drivers of customers’ attitudes
towards mobile banking

Brazil [19]. Individual intention to adopt mobile banking is significantly influenced
by social influence in Bangladesh [21] and by normative pressure in Malaysia [22].

Various researchers suggest that trust plays a vital role in influencing the cus-
tomers’ intentions to adopt MFS [20, 23]. Kim et al. [26] have explained initial trust
in mobile banking by trust propensity, structural assurances and firm reputation.
The authors argue that structural assurance in the form of guarantees of protection
of information, assurance of transactional confidentiality, and contractual terms and
conditions can build the initial trust and confidence in mobile banking services. Zhou
[7] has empirically supported the considerable role of a bank’s reputation, informa-
tion quality, service quality and system quality in shaping the customers’ initial trust
in mobile banking.

On the basis of TIR, Laukkanen et al. [6] have studied five barriers, namely usage,
value, risk, tradition and image barriers in adopting mobile banking. Through inves-
tigating 1525 usable respondents from a large Scandinavian bank, Laukkanen et al.
[6] have identified that the value and usage barriers are the most intense barriers to
mobile banking adoption, while tradition barriers (such as preferring to chat with
the teller and patronizing the banking office) are not an obstacle. Perceived risk has
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been commonly observed as a negative factor which hinders the customers’ willing-
ness to adopt mobile financial services [4–6]. Brown et al. [4] have also highlighted
that perceived risks associated with the use of mobile banking restrain customers
from adopting the same. In spite of the numerous benefits of MFS, concerns of risks
regarding privacy, security and financial issues are still imperative to the users.

Many studies have emphasized the role of perceived benefits in the adoption of
mobile financial services. Brown et al. [4] opine that customers’ intentions to adopt
mobile banking are influenced by the number of banking services offered by banks
through mobile banking. Hence, customers find the mobile banking advantageous
if they get a wide range of services through mobile itself without physically going
to the bank [4]. Kim et al. [27] opine that customers prefer mobile banking because
it provides those benefits to them which traditional offline banking channels cannot
provide.Many studies onMFShave concentrated on their functional or non-monetary
values, e.g. mobility, convenience, accessibility, time value, usefulness, ease of use,
performance expectancy [7, 8, 10], whereas others have focused on their monetary
or price value [9, 20].

All the studies discussed above have used statistical techniques such as multiple
regression analysis and structural equationmodelling to empirically examine the gen-
eral factors which influence customers’ behavioural intentions to adopt MFSs. There
are very few studies which have used the MCDM techniques for studying the factors
influencing customers’ decisions to selectMFSs. Natarajan et al. [28] have usedAHP
to study customers’ choices amongst self-service technology (SST) channels in retail
banking. The authors conclude that purpose, perceived risks, benefits and require-
ments are the main criteria to influence customers to choose banking channels. Chou
et al. [29] have employed AHP to understand the m-commerce payment systems.
Komlan et al. [30] have employedAHP to evaluate and rank the different factors asso-
ciated with perceived risks that contribute in the adoption of mobile banking in West
Africa. Komlan et al. [31] have used AHP to evaluate mobile banking’s perceived
value on the basis of perceived benefits, perceived costs and perceived risks. Lin [32]
have used with an extent analysis approach to develop a fuzzy evaluation model for
prioritizing the relative weights of mobile banking quality factors. Recently, Osmani
et al. [33] have used AHP method to evaluate e-payment system factors influencing
mobile banking use in Iranian banks.

To summarize, we can conclude that traditional studies into customers’ adoption
of MFS focus on factors which affect their behavioural intentions such as effort
expectancy, performance expectancy [20, 21]; perceived usefulness, perceived
ease of use [22–24]; social influence [25, 34]; and facilitating conditions [20, 21],
whereas studies that take a value-based approach involve assessment of factors
that address the potential benefits [4, 8, 10], costs [20, 9], trust [23, 26] and the
likely risks [5, 6]. However, certain factors in value-based approaches, viz. potential
benefits, are derived on the basis of the constructs of traditional approaches, viz.
performance expectancy, effort expectancy, relative advantage and ease of use.
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3 Conceptual Framework

Since the purpose of the present study is to deal with the problem of MFS selection,
the study focuses on the value-based approach, to identify the criteria which may
be considered by the MFS users to select a particular MFS. The study particularly
focuses on the benefits of the MFSs, perceived risks associated with the MFSs and
the trust on the MFSs, to constitute the MFS selection criteria. On the basis of the
theories and studies presented in the previous section, four main factors (main cri-
teria) have been identified which are relevant to the selection of various MFSs in
the context of India. These four criteria are ‘economic benefits’ (based on the ‘price
value’ construct of UTAUT2, ‘performance expectancy’ construct of UTAUT and
‘usefulness’ construct of TAM); ‘functional benefits’ (based on ‘relative advantage’,
complexity’ and ‘compatibility’ constructs of DOI model, ‘effort expectancy’ con-
struct of UTAUT and ‘ease of use’ construct of TAM); ‘perceived risks’ (based on
TIR model) and trust (based on institution-based trust, environmental trust of ITM).
The four main factors are further categorized into 12 sub-factors as discussed in
Table 3.

The present problemofMFS selection has beenmodelled in a hierarchy consisting
of four levels as depicted in Fig. 1. Level 1 is the general goal of the study, i.e.
‘selection of MFS’. Level 2 comprises of the four main factors (main criteria) which
are considered by the customers for selecting/adopting a particular MFS. Level 3
consists of the sub-factors (sub-criteria), and level 4 represents the three alternatives
(MFSs), i.e. mobile banking, PPI and payment bank services.

4 Fuzzy AHP Methodology

The present study employs fuzzy AHP (FAHP) method to evaluate three MFSs
(mobile banking, PPIs and payment banking services) on the basis of 12 criteria.
The AHP is widely used to determine the relative importance of a set of activities
in a multi-criteria decision-making problem (MCDM) [35]. When applying AHP,
a hierarchical decision model is constructed by decomposing the MCDM into its
decision criteria. The importance or preference of the decision criteria is compared
by making pairwise comparisons with regard to the criterion preceding them in
the hierarchy [35]. The use of such pairwise comparisons to collect data from the
decision-makers is advantageous as it allows the decision-maker to focus on the
comparison of just two objects (factors/criteria), thereby making the observation
free from extraneous influences, as far as possible [36]. Despite its popularity and
simplicity, AHP is often criticized for its inability to adequately handle the inherent
imprecision and uncertainty associated with the mapping of decision-maker’s per-
ception to crisp values [37]. The use of fuzzy theory allows the decision-makers to
incorporate unquantifiable, incomplete and non-obtainable information into a deci-
sion model [38]. As a result, fuzzy analytic hierarchy process (FAHP) is developed
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Table 3 Conceptual framework

Main factors
(main criteria)

Based on existing
models/Theories

Sub-factors
(sub-criteria)

Explanation Literature

Economic
benefits

UTAUT2 (price
value)

Monetary
benefits

Value for money
received by using
MFSs (e.g.
interest on
savings, less
transaction
charges)

Oliveira et al. [9,
20], Alam [21],
Natarajan et al.
[28], Komlan
et al. [30, 31]

UTAUT
(performance
expectancy);
TAM
(usefulness)

Time
effectiveness

Saving of time as
a result of using
MFS

Taylor and Todd
[10], Lee [8],
Zhou [7],
Natarajan et al.
[28], Komlan
et al. [30, 31]

Functional
benefits

DOI (relative
advantage,
complexity,
compatibility);
UTAUT (effort
expectancy);
TAM (ease of
use)

Simplicity Effortlessness in
using the MFS in
terms of ease of
use and minimum
requirement of
technical skills.

Nikou and Mezei
[56], Taylor and
Todd [10], Lee
[8], Zhou [7]

Convenience Accessibility and
suitability of
using the MFS in
terms of 24 × 7
availability,
relaxation of
KYC (know your
customer) norms,
minimum
requirement of
documents, etc.

Chou et al. [29],
Luarn and Lin
[24]

Interoperability Ability to operate
with different
handsets (mobile
phones) without
deteriorating the
performance

Nava and
Madhoushi [57],
Osmani et al.
[33], Puschel
et al. [19]

Variety of
services

Wide range of
banking and
financial services
that can be
availed through
MFS

Brown et al. [4],
Amin et al. [22],
Komlan et al.
[30, 31]

(continued)
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Table 3 (continued)

Main factors
(main criteria)

Based on existing
models/Theories

Sub-factors
(sub-criteria)

Explanation Literature

Value additions Additional
services (other
than banking and
financial
services)
provided by the
MFS provider
(e.g. free
talktime, mobile
recharge,
insurance)

Nikou and Mezei
[56], Amin et al.
[22]

Perceived risks TIR (perceived
risks)

Financial risk Potential for
monetary loss
due to transaction
errors or due to
hidden costs

Lee [8],
Featherman and
Pavlov [58],
Grewal et al.
[59], Riquelme
and Rios [34],
[6], Natarajan
et al. [28],
Komlan et al.
[30, 31]

Privacy/Security
risk

Possible loss of
control over
personal
information

Performance risk The possibility
that the MFS will
malfunction or
not provide the
expected services

Trust ITM
(institution-based
trust,
environmental
trust)

Trust in MFS
provider

Trust in MFS
provider’s
credibility, brand
image,
reputation, etc.

Amin et al. [22],
Zhou [7], Kim
et al. [26],
Koenig-Lewis
et al. [5]

Structural
Assurance

Trust in service
quality in terms
of effective
delivery of
services,
guarantees of
protection of
information,
assurance of
transactional
confidentiality,
etc.

Gu et al. [23],
Zhou [7], Kim
et al. [26]
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Selection of MFS

Level 1:
Goal

Level 2:
Main Factors 

(Main Criteria)

Level 3: 
Sub-Factors

(Sub-Criteria) 

Economic 
Benefits 

Monetary Benefits

Time Effectiveness

Trust

Trust in 
MFS Provider

Structural 
Assurance

Functional 
Benefits Interoperability

Convenience

Simplicity

Variety of Services

Value Additions

Perceived 
Risks

Financial Risk

Security/Privacy
Risk

Performance Risk

Mobile
Banking

PPI

Payment Bank 
Services 

Level 4: 
Alternatives 

(MFSs)

Fig. 1 AHP hierarchy

to solve alternative selection and justification problems, which is capable of captur-
ing a human’s appraisal of ambiguity especially when complex MCDM problems
are considered. There are many FAHP methods proposed by various researchers.
Laarhoven and Pedrycz [39] proposed triangular membership functions for compar-
ing fuzzy ratios, while Buckley [40] compared the fuzzy comparison ratios by using
trapezoidal membership functions. Mikhailov [42] proposed to obtain optimal crisp
priorities from fuzzy pairwise comparison judgments based on a-cuts decomposition
of the fuzzy judgments into a series of interval comparisons. Chang [43] introduced
a new extent analysis approach for the synthetic extent values of the pairwise com-
parison for handling FAHP, wherein triangular fuzzy numbers (TFNs) are used as a
pairwise comparison scale for deriving the priorities of factors and sub-factors. In
the literature, FAHP has been used for solving many MCDMs such as evaluation
of computer-integrated manufacturing alternatives [44], selection of the best loca-
tion for a facility and in the evaluation of catering firms in Turkey [45], prioritizing
customer requirements in quality function deployment [46] and selection of operat-
ing system [47]. Büyüközkan [48] used FAHP to prioritize mobile commerce user
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requirements, whereas Shieh et al. [49] and [56] applied FAHP for prioritizing the
factors that affect the adoption of mobile services.

In this study, we use Chang’s extent analysis as it is simple and easy to implement
for prioritizing decision variables as compared with the other FAHP approaches [43].
The steps of the FAHP employed in the present study are discussed below:

Step I: Structuring the problem into a hierarchical framework

• Identify the factors (criteria), sub-factors (sub-criteria) and alternatives to be used
in the model.

• Structure the model into a hierarchy such that the objective is in the first level, fac-
tors and sub-factors are in the second and third levels, respectively, and alternatives
are in the fourth level.

Step II: Data Collection

• Design a questionnaire for pairwise comparing the relative importance of the
factors (criteria) and sub-factors (sub-criteria) and comparing the preferences of
the alternatives with respect to each sub-factor.

• Collect the responses from experts by using the linguistic scales given in Table 4.

Step III: Construction of fuzzy comparison matrices

• Use triangular fuzzy numbers (TFNs) given in Table 4, to construct fuzzy com-
parison matrices for the factors, sub-factors and alternatives.

• Each fuzzy comparison matrix is a square matrix of order n (n �number of
attributes (factor/sub-factor/alternatives) being compared), which is constructed
as follows:
Ã � [

ãi j
]
nXn where ãi j is a fuzzy number constructed by attribute i and attribute

j as follows:

ãi j �

⎧
⎪⎪⎨

⎪⎪⎩

1 for i � j

(li j ,mi j , ui j ) for i < j

(ãi j )−1 � (1/ui j , 1/mi j , 1/ li j ) for i > j

(1)

Table 4 Linguistic scales for importance

Linguistic scale Triangular fuzzy number Triangular fuzzy reciprocal
number

Just equal (1, 1, 1) (1, 1, 1)

Equally important (1/2, 1, 3/2) (2/3, 1, 2)

Weakly more important (1, 3/2, 2) (1/2, 2/3, 1)

Strongly more important (3/2, 2, 5/2) (2/5, 1/2, 2/3)

Very strongly more important (2, 5/2, 3) (1/3, 2/5, 1/2)

Absolutely more important (5/2, 3, 7/2) (2/7, 1/3, 2/5)
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In a TFN (l,m, u), l and u, respectively, represent the minimum and maximum
values of the triangular membership function, while m is the mean of the interval.

Step IV: Checking the consistencies of the fuzzy matrices

• Convert the fuzzy matrix Ã � [
ãi j

]
nXn into the corresponding crisp matrix

A � [
ai j

]
nXn by defuzzifying the TFNs using geometric means [40]. A fuzzy

comparison matrix is consistent if the corresponding crisp matrix (defuzzified
matrix) is consistent [41]. Check the consistency of the crisp matrix A as follows:

• A matrix A is said to be consistent if

AW � nW (2)

Equation (2) is an eigenvalue problem. It is assumed that the largest eigenvalue
λmax is greater than or equal to n [35]. The closer λmax is to n, the more consistent
is the matrix A. λmax is calculated by solving the following equation:

AW � λmaxW (3)

• Calculate consistency ratio (CR) by using the following formula:

CR � CI

RI
(4)

where CI is the consistency index given by the following formula:

CI � λmax − n

n − 1
(5)

and RI is a random index. Different numbers of criteria (n) correspond to different
values of RI (Table 5).

• If CR is ≤0.10, the level of inconsistency of comparison matrix A is considered
acceptable.

Step V: Aggregation of fuzzy comparison matrices

• Aggregate the fuzzy comparison matrices of all the decision-makers by using geo-
metric mean method [40] for all the factors and sub-factors and for the alternatives
on the basis of each sub-factor.

Table 5 Table of random index [35]

n 1 2 3 4 5 6 7 8 9 10 11 12 13

RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51 1.58 1.56
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• The aggregated fuzzy comparison matrix for a particular attribute is P̃ � [
p̃i j

]
nXn

where p̃i j is the aggregated TFN of the judgements of N decision-makers, calcu-
lated as follows:

p̃i j �
(

N∏

i�1

ãi jk

)1/N

(6)

Step VI: Computation of fuzzy synthetic extent

• Calculate the fuzzy synthetic extent Si with respect to the ith attribute (factor/sub-
factor/alternative) as follows:

Si �
n∑

j�1
p̃i j ⊗

[
n∑

i�1

n∑

j�1
p̃i j

]−1

where
n∑

j�1
p̃i j �

(
n∑

j�1
l j ,

n∑

j�1
m j ,

n∑

j�1
u j

)

and
n∑

i�1

n∑

j�1
p̃i j �

(
n∑

j�1
li ,

n∑

j�1
mi ,

n∑

j�1
ui

)

(7)

The above calculations on the TFNs can be performed by using algebraic opera-
tions of addition (⊕), multiplication (⊗) and inverse

(−1
)
of TFNs. For two TFNs

M1 � (l1,m1, u1) and M2 � (l2,m2, u2),

M1 ⊕ M2 � (l1 + l2,m1 + m2, u1 + u2) (8)

M1 ⊗ M2 � (l1 · l2,m1 · m2, u1 · u2) (9)

M−1
1 � (l1,m1, u1)

−1 � (1/u1, 1/m1, 1/ l1) (10)

Step VII: Calculation of weights (priorities)

• Compute the degree of possibility that Si ≥ Sj (i, j � 1, 2, . . . , n) by using the
following equation:

V
(
Si ≥ Sj

) �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, if mi ≥ m j

0 if l j ≥ ui
l j−ui

(mi−ui )−(m j −l j)
, otherwise

(11)

• Calculate the degree of possibility that Si ≥ all other (n − 1) fuzzy synthetic
extents Sj as follows:

V
(
Si ≥ Sj | j � 1, 2, 3, . . . , n; j �� i

) � minV
(
Si ≥ Sj

)
for j ∈ (1, . . . , n); j �� i

(12)
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• Determine the non-fuzzy relative weight (priority) vector W ′ �(
w′

1, w
′
2, . . . , w

′
n

)T
for the fuzzy comparison matrix Ã where

w′
i � minV

(
Si ≥ Sj

)
for j ∈ (1, . . . , n); j �� i (13)

• Determine the normalized weight vectorW � (w1, w2, . . . , wn)
T by normalizing

the weights as follows:

wi � w′
i∑n

i�1 w′
i

(14)

5 Results and Discussion

For the present study, the data has been collected through a structured questionnaire
from 20 experts consisting of 5 researchers who have been involved in the research
related to technology adoption and 15 practitioners who are involved in promoting
mobile financial services. All the experts have more than 20 years of experience in
their respective areas. Since AHP is not a statistics-based methodology, it does not
always require a statistically significant sample size [50]. In AHP, it is not necessary
to use a representative sample, because unit of analysis are the decisions made, and
not who made the decisions [51]. Moreover, AHP is usually used to survey people
who have knowledge about the topic under investigation and therefore a large number
of samples are not needed [52]. Hence, the sample of 20 respondents may not be
very large, but it is appropriate for the present study as all the respondents are quite
experienced to provide the required information for the study. The questionnaire
used for the data collection captured pairwise importance comparisons of all the
three main factors and 12 sub-factors and pairwise preference comparisons of all the
three alternatives (mobile banking, PPI, payment bank services) on the basis of each
sub-factor, by using the linguistic scales given in Table 4.

After collecting the data, the aggregated fuzzy comparison matrices are con-
structed by using Eq. (2) for all the factors, sub-factors and alternatives. The con-
sistency ratios (CR) for all the comparison matrices are calculated by using Eq. (4)
for checking the consistencies of the judgments. The CR values for all the matrices
have been found to be <0.1, indicating the acceptable level of consistency. The fuzzy
synthetic extent values Si are calculated by using Eq. (7), and the relative weightsw′

i
and normalized weights wi are computed by using Eqs. (13) and (14), respectively.
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Table 6 Fuzzy comparison matrix and the weight analysis of main factors

Economic
benefits

Functional
benefits

Perceived
risks

Trust Si w′
i wi

Economic
benefits

(1, 1, 1) (0.74,
0.92,
1.17)

(1.06,
1.31,
1.62)

(1.11,
1.36,
1.66)

(0.20,
0.28,
0.38)

0.8112 0.3399

Functional
benefits

(0.85,
1.09,
1.36)

(1, 1) (1.29,
1.61,
1.94)

(1.21,
1.50,
1.80)

(0.23,
0.31,
0.43)

1.0000 0.4190

Perceived
risks

(0.62,
0.76,
0.94)

(0.52,
0.62,0.77)

(1, 1, 1) (0.80,
0.91,
1.04)

(0.15,
0.20,
0.26)

0.2417 0.1013

Trust (0.6, 0.73,
0.90)

(0.56,
0.67,
0.82)

(0.96,
1.10,
1.25)

(1, 1, 1) (0.16,
0.21,
0.28)

0.3339 0.1399

λmax �4.00200, CR�0.000742

Table 7 Fuzzy comparison matrix and the weight analysis of sub-factors of economic benefits

Monetary
benefits

Time
effectiveness

Si w′
i wi

Monetary
benefits

(1, 1, 1) (0.59, 0.76,
0.98)

(0.34, 0.43,
0.55)

0.4568 0.3136

Time
effectiveness

(1.02, 1.32,
1.69)

(1, 1, 1) (0.43, 0.57,
0.75)

1.0000 0.6864

λmax �2.00, CR�0.00

5.1 Determining Weights of Main Factors and Sub-factors

This section discusses the weight analysis for the main factors and the sub-factors.
The aggregated fuzzy comparison matrices and the values of Si , w′

i and wi for the
main factors are presented in Table 6.

Tables 7, 8, 9 and 10 show the aggregated fuzzy comparison matrices, and the
values of Si ,w′

i andwi for the sub-factors: economicbenefits (EB), functional benefits
(FB), perceived risks (PR) and trust (TR), respectively.

Table 11 shows the local and global weights of the factors influencing the selec-
tion of MFSs. It can be observed that among the four main factors, functional ben-
efits and economic benefits occupy the topmost rankings with weights 0.4190 and
0.3399, respectively. This is followed by trust (weight�0.1399) and perceived risks
(weight�0.1013). These findings imply that the relative advantages in terms of vari-
ous functional benefits and economic benefits play a predominant role in customers’
decision-making regarding the selection of MFSs. On the other hand, trust and per-
ceived risks play a relatively less important role in influencing customers’ minds
while selecting a particular MFS.
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Table 9 Fuzzy comparison matrix and the weight analysis of sub-factors of perceived risks

Financial risk Security/Privacy
risk

Performance
risk

Si w′
i wi

Financial risk (1, 1, 1) (0.94, 1.18,
1.49)

(1.17, 1.35,
1.54)

(0.30, 0.39,
0.49)

1.0000 0.4961

Security/Privacy
risk

(0.67, 0.85,
1.07)

(1, 1, 1) (0.98, 1.16,
1.36)

(0.26, 0.33,
0.42)

0.6773 0.3360

Performance
risk

(0.65, 0.74,
0.85)

(0.73, 0.86,
1.02)

(1, 1, 1) (0.23, 0.29,
0.35)

0.3386 0.1680

λmax �3.00004, CR�0.0000328

Table 10 Fuzzy comparison matrix and the weight analysis of sub-factors of trust

Trust in MFS
provider

Structural
assurance

Si w′
i wi

Trust in MFS
provider

(1, 1, 1) (0.94, 1.06,
1.21)

(0.45, 0.52,
0.59)

1.0000 0.5677

Structural
assurance

(0.83, 0.94,
1.07)

(1, 1, 1) (0.43, 0.48,
0.55)

0.7614 0.4323

λmax �2.00, CR�0.00

Table 11 Local and global weights

Main
factors
(level 2)

Weights Sub-factors
(level 3)

Local weights Global weights Global rank

Economic
benefits

0.3399 Monetary
benefits

0.3136 0.1066 4

Time
effectiveness

0.6864 0.2876 1

Functional
benefits

0.4190 Simplicity 0.1490 0.0624 7

Convenience 0.3382 0.1417 2

Interoperability 0.0035 0.0015 12

Variety of
services

0.2830 0.1186 3

Value additions 0.2263 0.0948 5

Perceived
risks

0.1013 Financial risk 0.4961 0.0502 9

Privacy/security
risk

0.3360 0.0340 10

Performance
risk

0.1680 0.0170 11

Trust 0.1399 Trust in MFS
provider

0.5677 0.0794 6

Structural
assurance

0.4323 0.0605 8
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Within the functional benefits (which is the most important factor), convenience
(local weight�0.3382) is found to be the most important sub-factor followed by
variety of services (local weight�0.2830), value additions (local weight�0.2263),
simplicity (local weight�0.1490) and interoperability (local weight�0.0035). The
highest importance of convenience indicates that customers want the MFS to be
hassle-free which can be used as per their convenience. This implies that customers
prefer that MFS which is accessible anytime anywhere and requires minimum terms,
conditions and documents. Availability of a wide range of banking and financial ser-
vices alongwith other value-added benefitswhich can be additionally availed through
the use of a MFS such as reward points, free talktime, free mobile recharge is also
important for the customers while choosing MFSs. Simplicity and interoperability
are found to be least important within functional benefits. This implies that difficulty
in using MFSs is less of a concern for the customers as most of the MFSs have
user-friendly interfaces. In addition, since use of smartphones is common nowadays,
the issues related to interoperability are immaterial for the customers.

Economic benefits are found to be second important factor influencing the cus-
tomers’ decisions of selecting MFSs. Within economic benefits, time effectiveness
(local weight�0.6864) is found to be more important than monetary benefits (local
weight�0.3136). This indicates that time is more important than money, for the
customers. The high importance of time effectiveness is due to the reason that nowa-
days, people are very busy with their hectic schedules and want to utilize their time
effectively. Hence, they prefer those MFSs, which save their time, and carry out their
financial transactions quickly and effectively.

Trust is the third important factor which influences the customers’ choice of
MFSs. Within trust, trust in MFS provider (local weight�0.5677) is reported to
be more important than structural assurance (local weight�0.4323). This indicates
that customers pay more importance to the credibility of the service provider than
the structural assurance. This may be due to the reason that customers associate the
structural assurance with the service provider only. They perceive that if the service
provider is trustworthy, then the service quality and assurance will automatically be
guaranteed.

Perceived risks are found to be the least important factor which may influence
customers’ decisions to select MFSs. The least importance of this factor may be due
to the reason that nowadays customers are confident in using mobile interfaces and
therefore the risks associated with MFSs do not restrain them from using these ser-
vices.However,within perceived risks, financial risk (localweight�0.4961) is found
to be most important followed by privacy/security risk (local weight�0.3360) with
less emphasis on performance risk (local weight�0.1680). The highest importance
of financial risk indicates that customers are concerned about potential monetary
losses which may occur due to transaction errors while using MFSs. Similarly, the
importance of privacy/security risk indicates the customers’ concerns about identity
thefts and frauds. The least importance of performance risk implies that customers
do not care much about the risk of malfunctioning of MFSs. Hence on the basis of
risks, customers prefer that MFS which involves least financial and privacy/security
risks.
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Table 12 Weights of alternatives with respect to sub-factors of economic benefits

Monetary
benefits

Time
effectiveness

Alternative
Weight

Rank

Sub-factor
weight

0.1066 0.2876

Alternative

Mobile banking 0.3149 0.2727 0.1120 3

PPI 0.3020 0.3180 0.1236 2

Payments bank
services

0.3831 0.4093 0.1585 1

An examination of global ranks of the sub-factors indicates that ‘time effective-
ness’, ‘convenience’, ‘variety of services’, ‘monetary benefits’ and ‘value additions’
are the top five factors that influence the customers’ choice of MFSs. This implies
that customers prefer that MFS which does not take much time for financial trans-
actions, and is convenient to use, i.e. accessible round the clock and has minimum
documentary requirements and conditions. Customers also look for availability of
wide range of services in the MFS as they want to use the MFS for most of their
banking andfinancial services.Monetary benefits and value additions also attract cus-
tomers towards a particular MFS. Customers are inclined towards that MFS which is
cost-effective, provides monetary advantages in terms of high interest rates and also
provides additional benefits such as free talktime, mobile recharge, insurance.

5.2 Determining Weights of Alternatives

After achieving the normalized non-fuzzy weights for all the main factors and sub-
factors, the same methodology has been applied to find the respective values for the
three alternatives,wherein the alternatives are pairwise comparedwith respect to each
sub-factor. That means, this analysis should be repeated for 12 more times for each
sub-factor. However, it will be burdensome to show the fuzzy comparison matrices
for each of the 12 sub-factors. Hence, the final normalizedweights for the alternatives
are presented in this section. Tables 12, 13, 14 and 15 show the normalized non-fuzzy
weights for the three alternatives with respect to the sub-factors of economic benefits,
functional benefits, perceived risks and trust.

The findings indicate that payments banks services are the most preferred ones
with regard to all the factors, except for trust. This indicates that payments banks
are better than PPI and mobile banking as they are more economical, provide more
functional benefits and are least risky. As compared to PPIs and mobile banking,
payments banks are more economical in terms of both time and money as they
provide higher interest rates and faster transactions. Similarly, payments banks are
more beneficial, in terms of convenience and value additions. As payments banks
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Table 13 Weights of alternatives with respect to sub-factors of functional benefits
Simplicity Convenience Interoperability Variety of

services
Value
additions

Alternative
weight

Rank

Sub-factor
Weight

0.0624 0.1417 0.0015 0.1186 0.0948

Alternative

Mobile
banking

0.2446 0.1816 0.4607 0.6240 0.2875 0.1429 2

PPI 0.4155 0.3596 0.2338 0.0122 0.2651 0.1038 3

Payments
bank
services

0.3399 0.4588 0.3055 0.3638 0.4474 0.1722 1

Table 14 Weights of alternatives with respect to sub-factors of perceived risks
Financial risk Security/Privacy

risk
Performance risk Alternative weight Rank

Sub-factor
Weight

0.0502 0.2354 0.0170

Alternative

Mobile banking 0.0993 0.3719 0.4734 0.1006 3

PPI 0.5027 0.3980 0.2786 0.1237 2

Payments bank
services

0.3980 0.8835 0.2479 0.2322 1

Table 15 Weights of alternatives with respect to sub-factors of Trust

Trust in MFS
provider

Structural
assurance

Alternative
weight

Rank

Sub-factor
Weight

0.0794 0.0605

Alternative

Mobile banking 0.8207 0.4103 0.090005 1

PPI 0.1395 0.3181 0.030315 2

Payments bank
services

0.0398 0.2716 0.019585 3

offer awide range of banking and financial serviceswith bareminimum requirements
from the customers in terms of documents and other terms and conditions, payments
banks are preferred over PPIs and mobile banking. Along with providing convenient
banking and financial services, payments banks also provide more value additions,
which make them the first choice of the customers. Payments banks also involve
least risks as compared to PPIs and mobile banking. Since payments banks do not
involve the use of Internet, they are less prone to the financial and security/privacy
risks, which may be associated with PPI and mobile banking which require Internet
for financial transactions. However, payments banks are least preferred on the basis
of trust. This can be attributed to the fact that payments banks are relatively new
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Table 16 Weights of alternatives with respect to main factors

Economic
benefits

Functional
benefits

Perceived
risks

Trust Alternative
weight
(overall)

Overall
rank

Sub-factor
weight

0.33987 0.41897 0.10125 0.13991

Alternative

Mobile
banking

0.1120 0.1429 0.1006 0.090005 0.120724 2

PPI 0.1236 0.1038 0.1237 0.030315 0.102278 3

Payments
bank
services

0.1585 0.1722 0.2322 0.019585 0.152289 1

in the MFS market where PPI and mobile banking have already built their strong
foundations. Hence, payments banks are yet to earn the trust of the customers.

The findings also indicate that PPIs are preferred over mobile banking with regard
to economic benefits and perceived risks. PPIs are less time-consuming than mobile
banking as they are relatively quicker at completing the financial transactions. More-
over, mobile banking is more risky as compared to PPIs as it is prone to data thefts
and fraudulent transactions in case of mobile SIM swapping.

Further, it has been found that mobile banking is preferred over PPIs with regard
to functional benefits. This is due to the reason that mobile banking covers the
full range of banking and financial services as compared to PPIs, which majorly
provide payment services only. Moreover, mobile banking also offers more value-
added services to the customers as compared toPPIs. It can also be noticed thatmobile
banking is themost preferredMFS among the threeMFSswith regard to trust. This is
because mobile banking is offered by full-fledged banks which are more trustworthy
than the service providers of PPIs and payments banks which include private players
also.

The overall weights of the three alternatives with respect to the main factors
are presented in Table 16. The results indicate that the overall preference of the
three MFSs on the basis of all the factors taken together is as follows: payments
banks (weight�0.152289) followed by mobile banking (weight�0.120724) and
PPIs (weight�0.102278). This implies that payments bank is the most preferred
MFS, whereas PPI is the least preferred MFS.

6 Conclusion

The study hasmade an attempt to prioritize threeMFSs, namelymobile banking, PPIs
and payments banks on the basis of multiple factors including economic benefits,
functional benefits, perceived risks and trust. The problem has been modelled as a
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multiple-criteria decision-making (MCDM) problem, wherein fuzzy analytic hierar-
chy process (FAHP) has been employed to rank the potential factors ofMFS selection
and to evaluate various MFSs. The findings of the study reveal that functional ben-
efits and economic benefits dominate over trust and perceived risks in customers’
decision-making regarding the selection ofMFSs.With regard to the evaluation of the
three MFSs, the findings indicate that payments bank is the superior choice because
it offers best economic and functional benefits and is least risky.

This study represents a worthwhile direction by examining MFSs which, so far,
have not been well evaluated in the Indian context. The hierarchy of influencing
factors constructed in this study uses the factors that experts consider to be important
for selection of MFSs. The assessment of the relative priorities of these factors
using FAHP reveals the weightage of each factor. This approach differs from the
previous examinations of MFSs, which have used statistical techniques like multiple
regression analysis or structural equation modelling, for investigating the significant
influencing factors.

The results of this study have provided clues for MFS providers about the impor-
tant roles of ‘functional benefits’ and ‘economic benefits’. Therefore, MFS providers
should focus on providing time- and cost-effective services which are convenient to
use and not only include a wide range of banking and financial services but also offer
additional value-added services. Service providers should be sure about the ability
of MFS to conduct financial transactions efficiently within less time along with the
availability of information required by customers to successfully use the services.
Additionally, service providers should offer monetary benefits in terms of less trans-
action handling fees and attractive interest rates on the savings, so that customers
feel attracted towards using these services. Service providers can also provide value
additions, viz. free talktime, mobile recharge, gift vouchers, to attract the customers.
The evaluations of the three MFSs provide insights for the service providers in mak-
ing appropriate decisions regarding delivery of services by allocating their limited
resources to the relevant factors. As payments banks are found to be least trustworthy,
the services providers of payments banks services should emphasize on establishing
a relationship of trust with the customers through advertising and marketing cam-
paigns. Similarly, PPI service providers should focus on providing more benefits to
the customers by lowering their transaction handling charges, providing interest on
savings and increasing the range of services. Finally, with regard to mobile banking,
service providers should focus on reducing the associated financial and security risks
in order to increase their customer base.

It is imperative to note that the MFS industry is a developing industry, and the
factors affecting the adoption of various MFSs are changing constantly. Therefore,
despite the fact that the researchers have tried to collect all the relevant influencing
factors in the present study, it is possible that a more complete hierarchy of factors
can be constructed for future study. Also, some factors selected for the model may
have interrelationships, which are not explained by FAHP in the present study. In
that case, analytic network process (ANP) can be a better option. Hence, this study
can be further extended by considering some other factors influencing the choice of
MFSs and applying ANP in the revised model.
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Design of Reliability Single Sampling
Plan by Attributes Based on
Exponentiated Exponential Distribution

A. Loganathan and M. Gunasekaran

Abstract This paper considers designing of reliability single sampling plans for
exponentiated exponential distribution assuming that the life test is conducted under
hybrid censoring. Median of this distribution can be calculated easily using its closed
form, whereas mean has to be computed using digamma functions. The computa-
tional difficulties can be overcome using appropriate computer programmes. This
paper also attempts to study the efficiency of the reliability single sampling plans
designed using median lifetime and mean lifetime of the products. Efficiency of
these two kinds of sampling plans is analyzed with respect to the sample size and
the sampling risks. Parameters of the sampling plans are determined using binomial
probabilities with an objective of safeguarding producer and consumer simultane-
ously with specified risks.

Keywords Reliability sampling plan · Operating characteristic function
Hybrid censoring · Exponentiated exponential distribution

1 Introduction

Acceptance sampling provides statistical tools to carry out inspection of incoming
rawmaterials and/or outgoingfinished products. The items are sampled and inspected
against the specified standards of quality characteristic(s). Lifetime is a quality char-
acteristic for some products. Sampling inspection for such products is carried out by
conducting suitable life tests. Sampling plans developed for conducting such sam-
pling inspection may be called as reliability sampling plans. Censoring schemes may
be employed while conducting the life test for various reasons including reduction in
the time and cost of conducting the life test. Among different schemes, application
of hybrid censoring method enables to reduce both test time and cost of life testing.
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Reliability sampling plan is designed using the lifetime distribution of the product
considered for inspection. One of the approaches to handle this problem is finding the
minimum sample size and the acceptance number ensuring themean/median lifetime
of the product for given producer’s risk (PR) and consumer’s risk (CR). Epstein [5],
as a pioneering attempt, designed sampling plans for exponential distribution under
hybrid censoring scheme. Under the same conditions, Balasooriya and Saw [4] made
an attempt to determine the plan parameters for inspecting the products under pro-
gressive censoring scheme. Kantam et al. [8] and Rosaiah et al. [10] obtained the plan
parameters under hybrid censoring scheme for log–logistic and exponentiated log–
logistic distributions, respectively. Recently, Sriramachandran and Palanivel [14]
determined sampling plans based on exponentiated inverse Rayleigh distribution.
Attempts ondesigning reliability samplingplans canbe found in the literature for gen-
eralized exponential distribution [1, 3, 12], Birnbaum–Saunders [2],Marshall–Olkin
extended exponential [13], and Maxwell [9] distributions. All these works assumed
that the sampling inspection is carried out under the hybrid censoring scheme. Also,
the plan parameters were obtained considering the risk for consumer only. The risk
of the producer due to rejection of the lots of good quality products is ignored.

The exponentiated exponential distribution was first introduced by Gupta and
Kundu [6] and has been used as a lifetime distribution. This distribution is found
to be more appropriate for some lifetime data than other frequently used lifetime
distributions.

This paper aims to study the efficiency of the reliability single sampling plans
designed using median lifetime and mean lifetime of the products with respect to the
sample size and the sampling risks, when the lifetime distribution is the exponenti-
ated exponential. Sampling plans are obtained using binomial probabilities consid-
ering the risks of both producer and consumer. Operating characteristic function of
the reliability single sampling plan is derived in Sect. 2. Plan designing method is
explained in Sect. 3. In Sect. 4, construction of tables of optimum sampling plans is
discussed. Also, selection of the plan parameters for given requirements from the
tables is explained. Performance of the two sampling plans is compared in Sect. 5.
Results are summarized in Sect. 6.

2 Operating Characteristic Function of Reliability Single
Sampling Plan under the Conditions of Exponentiated
Exponential Distribution

A reliability single sampling plan under hybrid censoring scheme may be defined by
a set of four parameters N (lot size), n (sample size), c (acceptance number), and t
(test termination time). According to a given sampling plan, if the number of failures
X = x in a life test conducted for n sampled products exceeds c at time t or earlier,
the lot is rejected. If x ≤ c at time t, the lot is accepted.
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Let T denote the lifetime of the products, which has the exponentiated exponential
distribution (EE (θ, λ)). The probability density function of this distribution is given
by

f (t; θ, λ) = θ

λ
e− t

λ

(
1 − e− t

λ

)θ−1
, t > 0, θ > 0, λ > 0 (1)

The cumulative distribution function of this distribution is given by

FT (t; θ, λ) =
(
1 − e− t

λ

)θ

, t > 0, θ > 0, λ > 0 (2)

Mean and variance of the EE (θ, λ) distribution are, respectively,

μ = E(T ) = λ[ψ(θ + 1) − ψ(1)] (3)

and

σ 2 = V (T ) = λ2[ψ ′(1) − ψ ′(θ + 1)] (4)

where ψ(·) and ψ ′(·) are, respectively, the digamma and polygamma functions, i.e.,

ψ(u) = d

du
Γ (u), ψ ′(u) = d

du
ψ(u)

and Γ (u) = ∫ ∞
o yu−1e−ydy.

Median of the EE (θ, λ) distribution is given by

m = Median(T ) = −λ ln
(
1 − (

1
2

) 1
θ

)
(5)

The lot fraction nonconforming, p, can be calculated corresponding to each value
of t/μ and t/m, respectively, from

FT (t/μ) = p (6)

FT (t/m) = p (7)

A sampling plan may be analyzed and its performance may be compared with other
sampling plans using its operating characteristic (OC) function. The OC function
of the reliability sampling plan based on the EE (θ, λ) distribution under hybrid
censoring scheme is given by
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Pa(p) = P(X ≤ c) =
c∑

x=0

P(X = x)

Values of Pa(p), for different levels of p, may be computed using hypergeometric,
binomial and Poisson probabilities. As pointed out by Schilling and Neubauer [11],
when N is large and n/N ≤ 0.10, the distribution of X can be approximated by
the Binomial (n, p) distribution. Under these circumstances, here, it is proposed to
calculate the value of Pa(p) using

Pa(p) =
c∑

x=0

(
n

x

)
px (1 − p)n−x (8)

3 Determination of Plan Parameters under the Conditions
of the EE (θ, λ) Distribution

Usually, a sampling plan is determined considering two points, namely (p1, 1 − α)
and (p2, β) on the OC curve of the plan. Here, p1 represents the acceptable quality
level,α denotes the PR, p2 represents the limiting quality level, andβ denotes theCR.
Such sampling plan protects the producer and consumer simultaneously at ensured
levels. An optimum reliability single sampling plan can be obtained by satisfying
the following two conditions,

Pa(p1) ≥ 1 − α

Pa(p2) ≤ β

Based on the binomial probabilities, these conditions may be rewritten as

c∑
x=0

(
n

x

)
px1 (1 − p1)

n−x ≥ 1 − α (9)

c∑
x=0

(
n

x

)
px2 (1 − p2)

n−x ≤ β (10)

It may be noted that the values of p1 and p2 are calculated corresponding to the
specified lifetime of the product as expected by producer and consumer, respectively.

If γ1 and γ2 are the quantitative measurements of the lifetime of the product
representing, respectively, the producer’s quality (PQ) and consumer’s quality (CQ),
then the values of p1 and p2 can be calculated from
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FT (t/γ1) = p1 (11)

FT (t/γ2) = p2 (12)

Optimum values of the plan parameters n and c may be obtained applying the fol-
lowing iterative procedure for each given set of values of θ , t, γ1, γ2, α and β with
γ1 > γ2.

Step 1: Calculate λ1 and λ2 using λ = h∗(θ, γ ).

Step 2: Determine p1 and p2 using (11) and (12).
Step 3: Set c = 0
Step 4: Find the largest n, say nL , such that Pa(p1) ≥ 1 − α

Step 5: Find the smallest n, say nS , such that Pa(p2) ≤ β

Step 6: If nS ≤ nL , then the optimum plan is (nS , c); otherwise increase c by 1.
Step 7: Repeat Steps 4 through 6 until optimum values of n and c are obtained.

Suppose that γ = h(θ, λ) and λ = h∗(θ, γ ) exist for some functions h(·) and
h∗(·). If γ = μ, then λ = h∗(θ, γ ) can be determined from (3). Similarly, if γ = m,
then λ = h∗(θ, γ ) can be determined from (5). The sampling inspection may be
carried out using the optimum values of n and c for a submitted lot under hybrid
censoring scheme as described in Sect. 2.

4 Construction of Tables

Based on the procedure described in the preceding section, plan parameters of
the optimum reliability sampling plans are obtained for some combinations of
θ, t, μ1, μ2, α, and β. The PR and CR are considered as α =0.05 and β =0.10 respec-
tively. Various values taken for themean lifetime of the PQ areμ1 =5000, 6000, 7000,
8000, 9000 and 10,000h. Values considered for t and θ are t =500h and θ =2. Eleven
different values of μ2 such as μ2 = 1000, 1200, 1400, 1600, 1800, 2000, 2200, 2400,
2600, 2800 and 3000h are considered. The values of p1 and p2 are computed for
each combination of t , μ1 and μ2 from (11) and (12), respectively, taking γi = μi ,
i=1, 2. Values of n and c are computed applying the iterative procedure discussed in
Sect. 3 and are presented in Table 1.

Various levels of the median lifetime of the products as expected by the producer
are taken asm1 =5000, 6000, 7000, 8000, 9000 and10,000h respectively. Themedian
lifetime of the product as expected by the consumer are taken as m2 =1000, 1200,
1400, 1600, 1800, 2000, 2200, 2400, 2600, 2800 and 3000h. Using the values of
m1,m2 and t , the values of p1 and p2 are computed from (11) and (12), respectively,
taking γi = mi , i=1, 2. Values of (n, c) are presented in Table 2. Procedure for
selection of the plan parameters from these tables for given specifications is illustrated
as follows.
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Table 1 Parameters of reliability single sampling for the EE (2, λ) distribution based on mean
lifetime with t = 500h, α = 0.05, β = 0.10

μ1 5000 6000 7000 8000 9000 10,000

t/μ1 0.10000 0.08333 0.07143 0.06250 0.05556 0.05000

μ2 t/μ2 p2 p1
0.01940 0.01381 0.01032 0.00801 0.00639 0.00522

1000 0.5000 0.27840 (13,1) (13,1) (13,1) (13,1) (13,1) (8,0)

1200 0.41667 0.21598 (17,1) (17,1) (17,1) (17,1) (17,1) (17,1)

1400 0.35714 0.17202 (30,2) (22,1) (22,1) (22,1) (22,1) (22,1)

1600 0.31250 0.14004 (37,2) (37,2) (27,1) (27,1) (27,1) (27,1)

1800 0.27778 0.11612 (56,3) (45,2) (33,1) (33,1) (33,1) (33,1)

2000 0.25000 0.09779 (67,3) (53,2) (53,2) (39,1) (39,1) (39,1)

2200 0.22727 0.08345 (94,4) (79,3) (63,2) (63,2) (46,1) (46,1)

2400 0.20833 0.07203 (127,5) (91,3) (73,2) (73,2) (53,1) (53,1)

2600 0.19231 0.06279 (166,6) (126,4) (105,3) (84,2) (84,2) (61,1)

2800 0.17857 0.05522 (233,8) (143,4) (120,3) (95,2) (95,2) (95,2)

3000 0.16667 0.04893 (313,10) (188,5) (162,4) (135,3) (108,2) (108,2)

Table 2 Parameters of reliability single sampling for the EE (2, λ) distribution based on median
lifetime with t = 500h, α = 0.05, β = 0.10

m1 5000 6000 7000 8000 9000 10,000

t/m1 0.10000 0.08333 0.07143 0.06250 0.05556 0.05000

m2 t/m2 p2 p1
0.01335 0.00946 0.00705 0.00546 0.00435 0.00355

1000 0.5000 0.21050 (17,1) (17,1) (17,1) (17,1) (10,0) (10,0)

1200 0.41667 0.16039 (23,1) (23,1) (23,1) (23,1) (23,1) (14,0)

1400 0.35714 0.12605 (41,2) (30,1) (30,1) (30,1) (30,1) (30,1)

1600 0.31250 0.10156 (51,2) (37,1) (37,1) (37,1) (37,1) (37,1)

1800 0.27778 0.08353 (79,3) (63,2) (46,1) (46,1) (46,1) (46,1)

2000 0.25000 0.06987 (94,3) (75,2) (75,2) (55,1) (55,1) (55,1)

2200 0.22727 0.05930 (133,4) (111,3) (89,2) (65,1) (65,1) (65,1)

2400 0.20833 0.05095 (180,5) (130,3) (103,2) (103,2) (75,1) (75,1)

2600 0.19231 0.04424 (236,6) (179,4) (150,3) (119,2) (119,2) (87,1)

2800 0.17857 0.03877 (333,8) (205,4) (171,3) (136,2) (136,2) (99,1)

3000 0.16667 0.03425 (448,10) (269,5) (194,3) (194,3) (154,2) (154,2)
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Illustration 1: Suppose that the probability distribution of the lifetime of products
under inspection is EE(θ = 2, λ). The mean lifetime of the products corresponding
to PQ and CQ are, respectively, μ1 =8000h and μ2 =2000h. If the test termination
time is fixed as t =500h, then the values of p1 and p2 can be calculated, respectively,
as 0.00801 and 0.09779. If α and β are prescribed as 0.05 and 0.10, respectively,
then the plan parameters may be obtained from Table 1 as n=39 and c=1.

The sampling plan can be implemented as follows: 39 products may be selected
randomly from the lot and life test may be conducted to all the sampled products. If
the number of products failed till t =500h is one, the lot may be accepted. On the
other hand, if the second failure occurs before t =500h, terminate the life test. The
lot may be rejected.
Illustration 2: Let the lifetime distribution of the products be the EE (2, λ) distri-
bution. Let the test termination time be prescribed as t =500h. If the median life-
time of the products corresponding to PQ and CQ are, respectively, m1 =5000h and
m2 =1800h, then the values of p1 and p2 can be calculated using (11) and (12)
respectively as p1 =0.01335 and p2 =0.08353. Now, (n, c) may be selected from
Table 2 corresponding to α =0.05 and β =0.10 as n=79 and c=3. The reliability
sampling plan may be implemented as follows: Select 79 products randomly from
the lot submitted for inspection and conduct the life test to all the 79 products. If,
during 500h, not more than three failures are observed, then the lot may be accepted.
Otherwise, the lot may be rejected.

5 Comparison of Mean and Median Lifetime-based
Sampling Plans

According to Gupta [7], population median can describe the population relatively
better than the population mean, when the probability distribution of the lifetime is
a positively skewed distribution. Implementation of mean-based reliability sampling
plan may affect sampling risks. In view of elaborating this, true sampling risks of
matched plans of both kinds are compared using the values of their OC functions.

Suppose that the lifetime expected by the producer is 6000h, α =0.05, the lifetime
expected by the consumer is 2400h, β =0.10 and test termination time is 500h.
Corresponding to this strength, the values of (n, c) for mean lifetime-based sampling
plan and median lifetime-based sampling plan can be selected from Tables1 and 2,
respectively, as (91, 3) and (130, 3). The PR, CR, and the total sampling risk (TR)
due to these two plans are computed. Values are presented in Table3.

It may be noted from Table3 that the PR due to the implementation of the mean
lifetime-based and median lifetime-based sampling plans are, respectively, 3.77 and
3.57%. It indicates thatmean lifetime-based sampling planwill yield relatively 0.20%
additional risk to the producer. Similarly, observation can be made with respect to
CR also. Median lifetime-based sampling plan reduces relatively 0.18% risk of con-
sumer. In total, 0.39% of TR can be reduced by implementing median lifetime-based
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Table 3 PR, CR, and TR

(n,c) p1 p2 Pa(p1) Pa(p2) PR CR TR

Mean-
based
sampling
plan

(91,3) 0.01381 0.07203 0.96227 0.09946 0.037732 0.099461 0.137193

Median-
based
sampling
plan

(130,3) 0.00946 0.05095 0.96434 0.09763 0.035661 0.097634 0.133295

sampling plan. Though median lifetime-based sampling plan requires inspection of
additional number of products, it reduces the PR, CR, and TR.

6 Conclusion

Reliability single sampling plans are designed in this paper for carrying out life
test-based sampling inspection under the hybrid censoring scheme assuming the
exponentiated exponential distribution as the lifetime distribution. The plans will
safeguard both producer and consumer at ensured levels. It is noted that implemen-
tation of the mean lifetime-based reliability sampling plan will increase the PR, CR,
and the TR compared to the median lifetime-based sampling plan. Implementation
of the median lifetime-based sampling plan may require relatively more number of
products for inspection compared with the mean lifetime-based sampling plan. It
may be noted further that if the hybrid censoring scheme is employed to carry out
the life test, implementation of the corresponding sampling plans will reduce the
time and cost of conducting the life test.
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Availability Prediction of Repairable
Fault-Tolerant System with Imperfect
Coverage, Reboot, and Common Cause
Failure

Madhu Jain and Pankaj Kumar

Abstract In this article, we consider two Markov models with standbys and
imperfect coverage for the performance prediction of a repairable redundant sys-
tem. Model I deals with a redundant system comprising one operating unit and one
standby unit. In model II, some realistic features such as common cause failure,
reboot, and recovery are taken into account to analyze a two-unit system. The relia-
bility and MTTF analyses have been carried out using Laplace transform approach
for model I. The availability analysis of the system studied in model II has also
been evaluated by implementing the recursive approach. The analytic expressions
for predicting the availability and other performance measures of the systems are
presented. Furthermore, the numerical results obtained from the analytical expres-
sions are compared with the hybrid soft computing technique based on adaptive
neuro-fuzzy inference system (ANFIS).

Keywords Reliability · MTTF · Availability · Standby support · Imperfect
coverage, ANFIS

1 Introduction

Reliability modeling with redundancy is a common approach to study the reliability,
availability, and maintainability (RAM) related issues of a computer system as well
as complex engineering systems. Redundancy is a key element of real-time systems
such as distributed networks and communication systems, manufacturing systems,
banking and healthcare systems, cloud computing and data centers, telecommunica-
tions and power plants, etc. In several fault-tolerant systems, redundancy is employed
to obtain high reliability and availability as well as safety of the systems operating
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under certain techno-economic constraints. The system redundancy via standby sup-
port is a common feature used in many real-time systems to tackle unexpected faults
and failures. Redundancy techniques are commonly used to enhance the reliability
and to achieve the desired goal of output/production. A detailed account of reliability
analysis of repairable systems can be found in Osaki and Nakagwa [15]. With the
provision of standbys, the repairable redundant system has been discussed by Kumar
and Agarwal [10, 11], Gupta et al. [2], Goel and Shrivastava [1], and others. To make
repairable redundant systems analysis more realistic, the feature of common cause
failure (CCF) can be taken into account. In the last few decades, the concept of CCF
has been discussed in different setup (cf. [6, 12, 16]. Recently, Jain et al. [7] dis-
cussed a Markovian multicomponent system by incorporating some features such as
working vacation, unreliable server, and F-policy. In their study, they have evaluated
the steady-state probabilities of various states by implementing the successive-over-
relaxation (SOR) method. Furthermore, several indices to examine the reliability
characteristics of the system have been established.

Sometimes, the failures are not detected or covered successfully in repairable
redundant system; this is referred to as imperfect coverage. The notions of coverage
probability, reboot, recovery, and common cause failure can be considered for the
performance of real-time fault-tolerant systems (FTS). Initially, Pham [17] studied
a high voltage system in which imperfect failure time was considered as a constant.
Later work by Moustafa [14] enhanced Pham’s approach for the reliability anal-
ysis of k-out-of -n: G configuration by incorporating imperfect failure. Wang and
Chiu [20] studied an availability model by incorporating imperfect coverage and
standby provisioning and also carried out a cost analysis. Wang et al. [19] studied
the availability of two systems with different imperfect coverage. Recently, Jain [3]
discussed the performance analysis of a redundant system with imperfect repair and
facilitated the numerical simulation by using the Runge–Kutta method. Yuge et al.
[21] studied the reliability indices of a k-out-of -n: G configuration with CCF. In this
study, they focused on the Marshall–Olkin model by considering the failure gov-
erned by an exponential distribution. Jain and Meena [4] proposed the performance
model of an FTS machining system by including the concept of working vacation,
F-policy, standby support, and imperfect coverage. The steady-state probabilities of
various states are determined to predict the system performance using successive-
over-relaxation (SOR) method.

The soft computing technique has made a revolutionary contribution in the indus-
trial scenarios to achieve tractability and robustness in an effective and efficient
manner. The soft computing approach is also used to reduce the imperfection and
uncertainty to enhance the reliability, availability, and maintainability of real-time
systems. The composition of two approaches, namely artificial neural network and
fuzzy logic, has been employed to develop a hybrid soft computing technique, viz.
ANFIS. The contributions of ANFIS in different areas can be found in the literature
(cf. [8, 9, 13, 18]. The comparative study of performance results determined using
Runge–Kutta approach with ANFIS approach has been done by Jain and Meena [5]
for a fault-tolerant system (FTS).
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In this paper, tomake a repairable redundant fault-tolerant systemcloser to realistic
situations, imperfect fault coverage, common cause failure, and reboot are taken into
considerationwhile developing twoMarkovmodels for a two-unitmachining system.
The rest of this paper is organized as follows. Section 2 presents the assumptions and
notations of the model. The mathematical analysis of the reliability model is done
in Sect. 3. Section 4 presents the numerical simulation by taking an illustration. The
conclusion and future scope of the study done are presented in Sect. 5.

2 System Description

We consider two Markov models for a repairable redundant system comprising an
active and a standby unit. The replacement of the failed unit by the standby unit is
considered to be imperfect as such detection of the faulty unit is usually not perfect.
The fault of the active (standby) unit is assumed to be not covered by the coverage
probability c (cs). To formulate the Markov models for a two-unit redundant system,
we use the following assumptions:

• The failure characteristics of the standby unit when in full operating mode are
the same as that of the active unit. The active units are regularly monitored by
a failure detection tool. Both the units may fail independently of the state of the
other operating/standby units. The lifetimes of operating and standby units are
exponentially distributed with rates λ and λs(0 ≤ λs ≤ λ), respectively.

• Both units of the system are repairable, and if the active unit fails, then it is either
sent for repair or replaced by standby with probability c as soon as possible. The
repair time of the failed unit is exponentially distributed with mean time 1/μ. If
the fault is not detected successfully with coverage probability c, then it is cleared
by the reboot process which is exponentially distributed with parameter β. The
reboot delay and recovery time of the system are exponentially distributed with
mean time 1/β and 1/σ , respectively.

• If the operating unit fails and is replaced by a standby unit, then the replaced unit
begins to work in the same manner as operating unit. The system may also fail
due to common cause failure (CCF) following an exponential distribution with
rate λc. The common cause failure (CCF) duration as well as repair time of the
units failed due to CCF is exponentially distributedwithmean time 1/λc and 1/μc,

respectively.

The other notations used to formulate the model are as follows:

MTTF: Mean time to failure of the repairable system
AV (∞): Availability of the repairable system
Pi, j (t): Probability that the system is residing in the (i, j)th state, where i �

1, c; j � 0, 1, D.

P∗
i, j (s): Laplace transform of Pi, j (t), i.e., P∗

i, j (s) � ∫ ∞
0 e−stPi, j (t) dt,
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(i, j) � {(1, 1), (1, 0), (1, D), (C, 1), (0, 0)}

Pi, j Steady-state probability of the (i, j) state, i.e.,

Pi, j � lim
t→∞ Pi, j (t)

3 Reliability Model

To predict the system behavior, we establish some performance indices of the
repairable redundant system. The reliability indices such as MTTF and availabil-
ity of the redundant system are obtained analytically.

3.1 Reliability and MTTF

The state transition diagram for model I for different system states is depicted in
Fig. 1.

The differential difference equations of the system in terms of Laplace transforms
of state probabilities are framed by using the birth–death process as follows:

sP∗
1,1(s) � 1 − (λ + λs)P

∗
1,1(s) + μP∗

1,0(s) (1)

sP∗
1,0(s) � −(λ + μ)P∗

1,0(s) + (λc + λscs)P
∗
1,1(s) (2)

sP∗
0,0(s) � λP∗

1,0(s) + λP∗
1,D(s) (3)

sP∗
1,D(s) � −λP∗

1,D(s) + λscs P
∗
1,1(s) (4)

sP∗
C,1(s) � λcP∗

1,1(s) (5)

On solving the above system of linear Eqs. (1)–(5), we get

Fig. 1 State transition
diagram for the reliability
model I
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P∗
1,1(s) � s + λ + μ

(s + λ + λs)(s + λ + μ) − μ(λc + λscs)
(6)

P∗
1,0(s) � λc + λscs

(s + λ + λs)(s + λ + μ) − μ(λc + λscs)
(7)

P∗
0,0(s) � λ[(λc + λscs)(s + λ) + λsμcs]

s(s + λ)[(s + λ + λs)(s + λ + μ) − μ(λc + λscs)]
(8)

P∗
1,D(s) � λscs(s + λ + μ)

(s + λ)[(s + λ + λs)(s + λ + μ) − μ(λc + λscs)]
(9)

P∗
C,1(s) � λc(s + λ + μ)

s[(s + λ + λs)(s + λ + μ) − μ(λc + λscs)]
(10)

In thismodel, we assume that initially the system is in the operating state (1, 1). So
that P1,1(0) � 1, P1,0(0) � 0, P0,0(0) � 0, P1,D(0) � 0 and PC,1(0) � 0. Let T be
the mean time to failure of the system. The state probabilities P0,0(t) and PC,1(t) are
the probabilities of failed states of the system at time t. Thus, the reliability function
is obtained as follows:

RT (t) � P1,1(t) + P1,0(t) + P1,D(t) (11)

The MTTF is obtained as

MTTF �
∫ ∞

0
RT (t)dt � λ2(1 + c) + λ(μ + λs) + μλscs

λ[(λ + λs)(λ + μ) − μ(λc + λscs)]
(12)

3.2 The Availability Analysis of the System

The transition diagram of model II to describe the different states is displayed in
Fig. 2. To explore the availability measures of the repairable redundant system with
CCF, the steady-state difference equations are constructed as follows:

(λ + λs + λc)P1,1 � μP1,0 + μc P0,0 (13)

(λ + μ)P1,0 � (λc + λscs)P1,1 + μP0,0 + σ P1,D + βPC,1 (14)

(λs + β)PC,1 � λcP1,1 (15)

(λ + σ )P1,D � λscs P1,1 (16)

(μ + μc)P0,0 � λP1,0 + λP1,D + λs PC,1 + λc P1,1 (17)

Equations (15)–(19) are solved to obtain the state probabilities in terms of P1,1 as
follows:
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Fig. 2 State transition
diagram for the availability
model II

P1,0 � μc

μc(λ + μ) + μ2

[

(λc + λscs) +
μ(λ + λs + λc)

μc
+

σλscs
λ + σ

+
βλc

λs + β

]

P1,1

(18)

P1,D � λscs
(λ + σ )

P1,1 (19)

PC,1 � λc

(λs + β)
P1,1 (20)

P0,0 � μ

μc(λ + μ) + μ2

[
λ(λ + λs + λc)

μ
+

λλscs
λ + σ

+
λλsc

λs + β
+ λc

]

P1,1 (21)

Using the normalizing condition

P1,1 + P1,0 + P1,D + PC,1 + P0,0 � 1, (22)

we get the probability P1,1 as

P1,1 � 1
[
1 + (μ+μc)(λ+λs+λc)

μc(λ+μ)+μ2 + λc
(λs+β) +

λs cs
(λ+σ )

] (23)

Now, the availability of the system is obtained as

A �
1 + μc

μc(λ+μ)+μ2

[
(λc + λscs) +

μ(λ+λs+λc)
μc

+ σλs cs
λ+σ

+ βλc
λs+β

]
+ λs cs

λ+σ
[
1 + (μ+μc)(λ+λs+λc)

μc(λ+μ)+μ2 + λc
(λs+β) +

λs cs
(λ+σ )

] (24)
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Fig. 3 Membership function for i θ � λ, λs , ii μ, iii cs , and iv β

3.3 Frequencies of Encountering of Individual States

The notion of frequency is very useful for the understanding of the system perfor-
mance. The frequencies of encountering of all the individual states in the state space
diagram for the availability model II (see Fig. 2) are obtained as follows:

f1 � (λ + λs + λc)[
1 + (μ+μc)(λ+λs+λc)

μc(λ+μ)+μ2 + λc
(λs+β) +

λs cs
(λ+σ )

] (25.1)

f2 �
μc

μc(λ+μ)+μ2

[
(λc + λscs) +

μ(λ+λs+λc)
μc

+ σλs cs
λ+σ

+ βλc
λs+β

]
(λ + μ)

[
1 + (μ+μc)(λ+λs+λc)

μc(λ+μ)+μ2 + λc
(λs+β) +

λs cs
(λ+σ )

] (25.2)

f3 � λscs[
1 + (μ+μc)(λ+λs+λc)

μc(λ+μ)+μ2 + λc
(λs+β) +

λs cs
(λ+σ )

] (25.3)
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f4 � λc
[
1 + (μ+μc)(λ+λs+λc)

μc(λ+μ)+μ2 + λc
(λs+β) +

λs cs
(λ+σ )

] (25.4)

f5 �
μ

μc(λ+μ)+μ2

[
λ(λ+λs+λc)

μ
+ λλs cs

λ+σ
+ λλs c

λs+β
+ λc

]
(μ + μc)

[
1 + (μ+μc)(λ+λs+λc)

μc(λ+μ)+μ2 + λc
(λs+β) +

λs cs
(λ+σ )

] (25.5)

4 Numerical Simulation

This section presents the computational results for various performance indices
obtained analytically based on the expression from the previous section using MAT-
LAB.

(i) Effects of different parameters on MTTF

Figure 4i shows that the MTTF decreases with an increase in the failure rate of
the operating unit. It is noticed that initially, the MTTF decreases rapidly with an
increase in λ and, later, when the failure rate further increases, MTTF decreases
at a slower rate before becoming almost constant. Figure 4ii shows that expected
MTTF increases with the increase in repair rate. For the lower value of the coverage
factor, the effect of µ is not very significant. Also, the variation in MTTF is not
very significant for small values of the coverage factor c. Figure 4iii shows that
MTTF decreases rapidly initially with an increase in λs, but the variation in MTTF
diminishes for higher values of λs. In Fig. 4iv, we observe that MTTF increases very
slowly by increasing the coverage factor of the standby unit.

(ii) Effects of different parameters on availability

In Fig. 5i, we notice that the availability decreases when the failure rate λ of the
operating unit increases. Further, the availability increases as the coverage probability
increases. In Fig. 5ii, we observe that the availability increases with an increase in
the repair rate μ. From this figure, we notice that the availability increases sharply
with a slight increase in the value of μ, but later on the impact diminishes. Further,
the availability increases as the coverage factor increases. Figure 5iii shows that the
availability can be improved by increasing the reboot rate (β). Also, availability is
high for large values of c as can be seen from Fig. 5i–iii.

The ANFIS approach is also implemented to compute the system indices of
the repairable redundant system. The membership function of input parameters
λ, λs, cs, μ, and β are taken as a Gaussian function (see Fig. 3i–iv) by considering
linguistic values as very small, small, average, high, and very high for parameters
θ, μ, cs andβ, respectively. The ANFIS results are computed by using the neuro-
fuzzy tool in MATLAB software; the results obtained analytically are compared
with the results of ANFIS. The results for the MTTF and availability by the ANFIS
approach are depicted in Figs. 4i–iv and 5i–iii by tick marked over the curves drawn
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Fig. 4 Plot of MTTF versus i λ, ii μ, iii λs, and iv cs for different value of c

based on analytical results. From these figures, we conclude that the analytical results
and the ANFIS results are quite similar.

5 Conclusion

In this paper, we have derived explicit expressions for various indices for the perfor-
mance prediction of a two-unit system by incorporating the features of redundancy
and imperfect coverage. The explicit expressions for MTTF and availability derived
for the system can be further used to design a suitable maintenance policy. Moreover,
the results obtained analytically are found to be at par with the results obtained by
ANFIS. Future work will extend this study for multicomponents redundant systems
with dissimilar standby units.
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Software Reliability Growth Model
in Distributed Environment Subject
to Debugging Time Lag

Ritu Gupta, Madhu Jain and Anuradha Jain

Abstract With the growing complexity of software in distributed computing
environment, it is necessary to have knowledge of debugging process and testing
coverage to make certain sure about achieved software reliability. This investigation
is concerned with the reliability growth evaluation of the software system operating
in the distributed development environment by considering the coverage factor and
power function of testing time. The concept of delay effect factor is also taken into
account which reveals the delay in removals of identified faults at any time. Based
upon the cost and reliability criterion, the optimal policies for the software testing
are suggested. Runge–Kutta technique is used to obtain the expected fault removals
in a fixed time interval and others software reliability indices.

Keywords Fault removal process · Software reliability · Coverage factor · Fault
dependency · Delay effect · Distributed software system

1 Introduction

With the remarkable advances in modern technology, software embedded systems
have become an integral part of many industrial operations and day today human
activities. With the wide applicability of Internet, the development and testing of
the software for the distributed environment are one of the biggest challenges for
the software developing enterprises. The main goals of software design in the dis-
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tributed environment are to pull off the high degree of quality which includes several
attributes such as reliability, efficiency, security, transparency, scalability, portability,
reusability.

The reliability improvement of the software is one of the key concerns for the
developers and programmers. To fulfill this objective, from time to time, many ana-
lytical software reliability growth models (SRGMs) representing fault identification
and removal phenomenon in different frameworks have been proposed by many
researchers [1–6]. Fault identification and its removal processes require different
strategies, resources, and efforts during testing of the software. In the literature,
many researchers have categorized multiple types of faults according to their sever-
ity levels [7, 8]. A discrete software system consisting of some new, and reused
components have been proposed by Khatri et al. [9]. They assumed the simple faults
in reused components only, whereas new components contain hard and complex type
of faults.

The occurrence of software failures may be due to many factors like imperfect
debugging, error generation, debugging time lag. Recently, some researchers have
also contributed in the area of testing resource allocations and models based on
testing efforts. A testing effort-based SRGM has been suggested by Kapur et al.
[10] by including the error generation and debugging criterion. In this direction, a
Markovian model has also discussed by Jain et al. [11]. The fault identification and
fault correction process reflect the failure occurrence rate. The fault reduction factor
(FRF) plays an important feature to overcome the problem of failure occurrence by
enhancing the growth of software reliability. Pachauri et al. [12] have developed
the inflection S-shaped model by incorporating the fault reduction function. A new
attempt in reliability improvement has been made by Dar et al. [13]. They considered
a software system containing several types of faults and make provision of testing
efforts which are required to remove them.

Testing coverage in software systems stands as a key factor for both developers
and customers. The testing coverage can be measured in terms of block, branch,
computation-use, and predicate-use. It reveals that in what manner testing efforts
are required and how much testing efforts can be spent during software testing. This
information is useful for the software developers and provides the confidence to
the customers for using the software product. Malaiya et al. [14] discussed the test
coverages to examine the software testing thoroughly. Testing coverage-dependent
software reliability growth models have also been analyzed by taking block (or
statement) measure [15]. Another interesting study on analyzing SRGM using test
coverage and failure data simultaneously was given by Wang et al. [16]. They gave
two different models: one is continuous based on testing time and another one is dis-
crete based on test cases. Further, Wang et al. [17] extended their previous work and
developed two models by considering executed test cases. Pham [18] also presented
two new SRGMs under the assumption of testing coverage wherein fault identifica-
tion rate follows log–log distribution. More recent developments on the same track
were done by Anniprincy and Sridhar [19] by considering Cobb–Douglas produc-
tion function for the removed faults. Pawar et al. [20] studied the improved coding
structure of software via block-branch coverage.
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The problem of optimal testing time to release the software is a major concern.
Many researchers have proposed software release policies to resolve this problem
in different discipline. In the past, the software release policies have been studied to
minimize the maintenance cost subject to desired reliability objective [21–27]. As
per requirement in global competition, Singh et al. [28] explored multiple release
policies to preserve the effect of high levels of severe faults generated in the software.

The testing process of the software faults is not only liable for complete removal of
faults, and it is also important to develop SRGMs that should include testing time and
testing coverage effects together. A few researchers have come forward in developing
SGRM with testing time and test coverage for the detection or removal processes of
the faults by taking testing coverage factor dependent on faults detection/removal rate
[29]. In the present investigation, we study the software reliability by assuming that
the testing coverage of the faults is exponentially related with the testing time which
is the new study in this direction. Furthermore, faults removal process complete
in multistages as per increasing complexity in distributed software systems. The
prime goal of present investigation is to develop SRGM for distributed software
system. The fault removal process that incorporates coverage factor and testing time
in power function form has been considered. The remaining contents of the paper
are arranged section-wise. In next Sect. 2, the SRGMmodel is presented to elaborate
the problem. The governing equations and analysis for the fault removal process
have been provided in Sect. 3. The features of time lag and fault removal process are
outlined in Sect. 4. Various performance indices are derived in Sect. 5. In Sect. 6,
some optimal release policies are discussed. Numerical results and conclusions are
given in Sects. 7 and 8, respectively.

2 Model Description

In this section, we consider distributed software system with reused as well as new
components. It consists of total Y software components in which two components are
reused and remaining are new components. For the modeling purpose, we assume
that the removal of faults from the two reused components is completed in one-stage
process and the faults which are present in newly developed components are removed
in two, three, or more stages depending on the severity of the faults.

The basic assumptions concerned with the fault identification (observa-
tion/isolation) and removal processes in distributed software environment dependent
to NHPP are given as:

• The number of fault removals depends upon the instructions executed in the S/w.
The fault identification/removal rate is assumed as function of testing time in power
function form.

• The detected faults which are dependent may not be removed immediately as well
as perfectly, i.e., no other error is introduced during the debugging.

For the formulation of SRGM, the following notations are used.
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aik Initial fault content per unit time in ik th component of software.
b

′
ik

Failure observation/fault isolation rate per unit time in ik th component of
software.

i The number of individual components of software system.
z Constant parameter.
α Any index representing the power of testing time (α ≥ 0).
k The number of steps of fault removal process.
x Mission time of the software
C(t) Test coverage function.
p(t) Function of instructions.
�t Delay effect factor.
C0 Cost of setup for software.
C1 Testing cost incurred in unit time.
C2 Fault removal cost during testing incurred in unit time.
C3 Cost incurred per unit on a fault removal during warranty period.
C4(T ) Opportunity cost function.
C5(T ) Cost associated with the S/w failure.
T Software testing time.
Tw Warrantyperiod.
δ Discount rate in testing.
ut Expected time for a fault removal during the testing.
uw Expected time for a fault removal during the warranty/operation period.
v0 The scale coefficient of delay in releasing the software.
v1 The intercept value of delay in releasing the software.
v2 The opportunity loss rate attributed to delay in releasing the S/w.
mFik

(t) Mean number of faults observed in ik th component of the software in (0,
t].

mIi,k j (t) Mean number of faults isolated in ik th component of the software in (0, t],
where j �2, 3,…, k−2.

mRik
(t) Mean number of faults removed in ikth component of S/w in (0, t].

Rs(x/t) Reliability function in (t, t +x].
R0 Minimum required reliability.
EC(T ) Expected maintenance cost

3 Fault Removal Phenomenon for Software

Now we establish the relation between the expected number of fault removals and
testing coverage function that also represents a function based on expected number
of instructions executed during testing. Thus,

dmR(t)

dt
� dmR(t)

dp(t)

dp(t)

dt
(1)
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The second part of Eq. (1) represents the instructions. It has assumed that the
number of instruction of testing time in power function forms due to exponential
learning of debuggers which is given as

dp(t)

dt
� ztα, α ≥ 0 (2)

If we consider the effort to increase the coverage, then removal rate of the faults
can be increased and the coverage of software depends on the test cases which are
being used for testing of the software. Hence, we assume that coverage of software
with respect to removal rate follows exponential distribution. The equation for the
fault removal process is framed as

dmR(t)

dp(t)
� C ′(t)

1 − C(t)
[a − mR(t)] (3)

where c(t) � [1 − e−bt ]; C ′(t) reveals the rate of coverage and 1−C(t) represents
percentage remaining uncovered part of the software faults.

Substituting the results of Eqs. (2) and (3) in (1), we yield

dmR(t)

dt
� b′tα[a − mR(t)] (4)

where b′ � zb.
Now,we present the fault removal processes depending upon the number of stages

of faults removal for a distributed software system.

3.1 One-Stage Removal Process

In this case, one type of faults in two reused components of software has considered.
Here we consider that the faults’ removal is completed in one-stage process. Further,
reused components of the software are not affected by severity of the faults as such
the faults are simple faults and they are immediately removed without requiring any
time in observation/isolation processes. Thus,

dmRi1
(t)

dt
� b′

i1 t
α
[
ai1 − mRi1

(t)
]

(5)

3.2 Two-Stage Removal Process

In this case, the fault removal process for new components of the software that takes
sometime for the fault observation in comparison with one-stage removal process.
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The faults can be removed in two stages and categorized as hard faults. It can be
modeled as given below:

dmFi2
(t)

dt
� b′

i2 t
α
[
ai2 − mFi2

(t)
]

(6)

dmRi2
(t)

dt
� b′

i2 t
α
[
mFi2

(t) − mRi2
(t)
]

(7)

3.3 Three-Stage Removal Process

Sometimes removal process of the faults in new componentsmay take time to observe
the faults, and then after spending sometime to isolate the faults (due to complexity
of faults), the faults’ removal process is performed in three-stage process. In this
case, the faults are defined as complex faults. Now

dmFi3
(t)

dt
� b′

i3 t
α
[
ai3 − mFi3

(t)
]

(8)

dmIi3
(t)

dt
� b′

i3 t
α
[
mFi3

(t) − mIi3
(t)
]

(9)

dmRi3
(t)

dt
� b′

i3 t
α
[
mIi3

(t) − mRi3
(t)
]

(10)

3.4 Multiple Stage Removal Process

The removal process for k-stages can be used due to high severity of faults in new
components of software. There may be multiple types of faults which need more
than three-stage removal processes. Since all faults are observed at one time but the
isolation of faults is done in one or more stages, once all the faults are isolated, then
they can be easily removed. The k-stage removal process for the newly developed
components is framed as:

dmFik
(t)

dt
� b′

ik t
α
[
aik − mFik

(t)
]

(11)

dmIi, k1
(t)

dt
� b′

ik t
α
[
mFik

(t) − mIi, k1
(t)
]

(12)

dmIi, k j
(t)

dt
� b′

ik t
α
[
mIi, k j−1

(t) − mIi, k j
(t)
]
, j � 2, 3, . . . , k − 2 (13)

dmRik
(t)

dt
� b′

ik t
α
[
mIi, kk−2 (t) − mRik

(t)
]

(14)

The boundary conditions are
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mFik
(t � 0) � mIi, k1

(t � 0) � · · · � mIi, kk−2
(t � 0) � mRik

(t � 0) � 0 (15)

The fault observation process is given in Eq. (11). Fault isolation processes are
taken into consideration by Eqs. (12) and (13), whereas fault removal process is
given in Eq. (14). Solving the above differential Eqs. (11)–(14) and using (15) and
y � ∑k

τ�1 yτ , we get

mFik
(t) � aik

{
1 − exp

(
− b′

ik

(s + 1)
t (α+1)

)}
(16)

mIi, k1
(t) � aik

{
1 −

(
1 + b′

ik

tα+1

(α + 1)

)
exp

(
−b′

ik

t (α+1)

(α + 1)

)}
(17)

mIi, k j
(t) � aik

{

1 −
(

1 + b′
ik

t (α+1)

(α + 1)
+

j∑

��2

b′�
ik

�!

(
t (α+1)

(α + 1)

)(�)
)

exp

(
−b′

ik

t (α+1)

(α + 1)

)}
,

j � 2, 3, . . . , k − 2. (18)

mRik
(t) � aik

⎧
⎪⎨

⎪⎩
1 −

⎛

⎜
⎝

k−2∑

q�0

[
b′
ik

t (α+1)

(α+1)

]q

q!

⎞

⎟
⎠ exp

(
−b′

ik

t (α+1)

(α + 1)

)
⎫
⎪⎬

⎪⎭
(19)

The total fault removal for the distributed software system can be given as:

y∑

i�1

mRik (t) �a11

{
1 − exp

(
− b′

11

(α + 1)
t (α+1)

)}
+ a21

{
1 − exp

(
− b′

21

(α + 1)
t (α+1)

)}

+
Y∑

k�3

ηk

⎡

⎣1 −
⎛

⎝
k−2∑

q�0

θ
q
(q+2)

q!

⎞

⎠e−θk

⎤

⎦ (20)

where akk−1 � ηk , θk � b′
kk−1

t (α+1)

(α+1) .
Also b′

11 � b′
21 , b

′
32 � b′

43 � · · · � b′
Yk

, a � a11 + a21 + a32 + a43 + · · · + a(Yk ).
This mean value function for the proposed SRGM can be given in this form

m(t) �
Y∑

i�1

mFik
(t) +

Y∑

i�1

k−2∑

j�1

mIi, k j
(t) +

y∑

i�1

mRik
(t) (21)

4 Debugging Time Lag in Removal Process

In practical phenomenon, the detected faults cannot be removed immediately due to
severity of the faults. Due to the complexity of faults, removal is a time-consuming
process and shows the time delay in fault detection process. We denote the delay
effect factor by �t.
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Nowwe consider the delay effect of the fault detection process for k-stages. Thus,

mRik
(t) � mFik

(t − �t) (22)

(i) If we take one-stage process and faults are immediately removed as they are
identified, so in that case �t �0, then

mRi1
(t) � mFi1

(t) (23)

(ii) For two-stage process, the time delay in the correction process of fault cannot
be negligible. Thus,

t − �t �
{

tα+1 − (α + 1)

b′
ik

log

(
1 +

b′
ik

(α + 1)
tα+1

)} 1
(α+1)

(24)

(iii) In three-stage process, the debugging time lag in faults detection and removal
is given by

t − �t �
{

tα+1 − (α + 1)

b′
ik

log

(

1 +
b′
ik

(α + 1)
tα+1 +

b′2
ik

2

(
tα+1

(α + 1)

)2
)} 1

(α+1)

(25)

(iv) The debugging time lag for k-stages removal process reflects the ability of
human learning. Thus,

t − �t �

⎧
⎪⎨

⎪⎩
tα+1 − (α + 1)

b′
ik

log

⎛

⎜
⎝

n∑

q�0

(
b′
ik

tα+1

(α+1)

)q

q!

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭

1
(α+1)

(26)

5 Performance Indices

The effect of fault removal process on the reliability andmaintenance cost is desirable
factors to evaluate. In this section, we present some performance measures to judge
the performance and improvement of concerned SRGM as follows:

(i) Failure intensity function is formulated by

λ(t) � dm(t)

dt
(27)
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(ii) The reliability of the distributed software is computed by using

Rs(x/T ) � exp[−{m(T + x) − m(T )}] (28)

(iii) The average total maintenance cost in incurred on the S/w is

EC(T ) � C0 + C1T
δ + C2m(T )ut + C3[m(T + Tw) − m(T )]uw + C4(T ) + C5(T ) (29)

where the risk cost due to software failure after releasing the software is computed
using

C5(T ) � C5{1 − Rs(x/T )} (30)

and opportunity cost of software due to delaying the release time is computed by
using

C4(T ) � v0(v1 + T )v2 . (31)

6 Optimal Release Policies

The delay in software releasing could not be tolerated by manufacturer as well as
customer viewpoint. Moreover, if it is released to customer before complete removal
of all types of faults, then maintenance cost may be very higher. Thus, it is very
important to find an optimum cost under some desired reliability level so that the
quality of the software should be controlled and maintained. To evaluate the optimal
testing time, the total expenditure on the software will be minimized.

The cost optimization problem can be structured as

Minimize EC(T ) � C0 + C1

T+Tw∫

T

eμ tdt + C2

⎡

⎣
T∫

0

λ(t)eμ tdt

⎤

⎦ut + C3

⎡

⎣
T+Tw∫

T

λ(t)eμ tdt

⎤

⎦uw

+C5[1 − Rs (x/T )] + v0(v1 + T )v2

subject to Rs (x/(T + Tw)) > R0,

(32)

The optimum testing policies are stated as follows:
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Optimal Testing Policy 1:

OPT 1.1: If λ(0) > λ(T ) then T ∗ � T
OPT 1.2: If λ(0) ≤ λ(T ) then T ∗ � 0

Optimal Testing Policy 2:

Let Tr denote the optimal testing time when the reliability constraint is satisfied.
OPT 2.1: If λ(0) > λ(T ) and Rs(x/0) < R0 then T ∗ � max{T, Tr }
OPT 2.2: If λ(0) > λ(T ) and Rs(x/0) ≥ R0 then T ∗ � T
OPT 2.3: If λ(0) ≤ λ(T ) and Rs(x/0) < R0 then T ∗ � Tr
OPT 2.4: If λ(0) ≤ λ(T ) and Rs(x/0) ≥ R0 then T ∗ � 0

7 Numerical Results

The analytical reliability indices and expected number of faults which are removed
in (0, t] are computed by taking a numerical example. To facilitate the sensitivity
analysis, the results are shown in Figs. 1, 2 and 3. The behavior of different parameters
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Fig. 1 i Reliability versus testing time by varying a11. ii Reliability versus testing time by varying
a21. iii Reliability versus testing time by varying a32. iv Reliability versus testing time by varying
a43
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Fig. 2 i Reliability versus testing time by varying b11. ii Reliability versus testing time by varying
b21. iii Reliability versus testing time by varying b32. iv Reliability versus testing time by varying
b43

on the reliability is shown in Figs. 1 and 2 by varying testing time (T ). Runge–Kutta
fourth-order method is used to obtain MVFs which are displayed in Fig. 3.

Figures 1 and 2 exhibit reliability Rs(x/T ) by varying T for distinct initial number
of faults (a11, a21, a32, a43) and error detection rates (b11, b21, b32, b43) in reused or
new components of the software. The default parameters are taken as a11 �150, a21
�50, a32 �50, a43 �100, b11 �0.5, b21 �0.1, b32 �0.5, x �0.0002, b43 �0.5, s �
2.

It is noticed that by increasing T , the reliability initially decreases sharply and
then after increases steeply and it attains almost constant value for higher testing time
T . In Fig. 1i–iv, we note the higher values of reliability for lower values of initial
number of faults up to a certain value of T , then after it does not vary significantly.
In Fig. 1ii, iv, for increasing the value of a21 and a43, respectively, Rs(x/T ) has lower
value up to T �5, after that there is no significant effect.

Figure 2i–iv depict the trendofS/w reliabilityRs(x/T ) for different values of failure
detection rates b11, b21 (in reused components) and b32, b43 (in new component). In
the beginning reliability decreases sharply up to T �2; then after as time goes on,
it increases sharply up to its desired level. In Fig. 2i, S/w reliability growth seems
to be enhanced for higher values of b11. In Fig. 2ii, iv, it is noticed that there is no
significant effect of b21 and b43, respectively, on the reliability on increasing T . We
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Fig. 3 MVF versus testing time by varying i a �100 ii a �10 iii b �0.5 iv b �0.8

also see in Fig. 2iii that initially reliability decreases slightly for higher b32 up to T
�2, and then after it increases moderately and then it shows asymptotic behavior.

The numerical results for theMVF depicting fault removals in (0, t] from differen-
tial Eqs. (11)–(14) are obtained usingRunge–Kutta approach. The default parameters
are taken as a �10, b �0.5, and s �2. In Fig. 3, m(t) is shown by considering the
removal process for the faults in five stages. We set the values of a �100 in Fig. 3i,
a �10 in Fig. 3ii and b �0.5 in Fig. 3iii while b �0.9 in Fig. 3iv. It is observed that
m(t) increases for one-stage process.

Overall we conclude the findings of numerical experiment as follows:

• The reliability of the software first starts to decrease, then increase and finally it
becomes almost constant with the increase in testing time.

• As we expect based on real-world experience, by increasing initial number of
faults, Rs(x/T ) decreases but on increasing the error detection rates, reliability
increases.

• The number of fault removals experienced in (0, t], increases significantly time
grows, but finally becomes constant.
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8 Conclusion

The S/w reliability growth is investigated to determine the optimal value for testing
time in distributed environment where faults come to surface during testing with
high severity. The SRGM developed has incorporated the FRR based on testing
coverage and testing time. Our study provides an insight to the software developer
how the software reliability can be improved. The noble feature of our model is the
realistic assumption of debugging time lag for fault removal. It is worth noting that
for the prediction of measures of effectiveness of the concerned software system, the
testing coverage facilitating power function of testing time is taken into account. The
numerical illustration facilitated provides the valuable insight to determine optimal
testing time. The proposed release policies of SRGM can be implemented in a wide
range of distributed software to examine the different types of faults in the S/w design
so as to resolve the issues related to faults before releasing the software in the market.
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Imperfect Software Reliability Growth
Model Using Delay in Fault Correction

Bhoopendra Pachauri, Ajay Kumar and Sachin Raja

Abstract Software reliability growth models (SRGMs) are very useful tool to
calculate the probability of software failure. A lot of mathematical models have
been formulated to predict software reliability growth behavior. In the literature,
most of the SRGMs is developed under consideration that the reliability growth of
the software depends on testing time, and when a failure is occured, fault is immedi-
ately removed. In this article, an approach has been used which considers the testing
effort and delay in removing the faults.Where testing time and testing effort are taken
together. The combined effect of testing time and testing effort is considered using
Cobb Douglas production function. Proposed model works in imperfect debugging
environment where new faults may introduce in the fault detection and correction
process. Time used by the testing team to remove any fault is also considered with
some delay. The parameters are estimated using nonlinear regression. The devel-
oped model is validated on the real data sets. The performance of proposed study is
compared based on mean square error (MSE) with existing models in the literature.

Keywords SRGM · NHPP · Optimal release policies · Cobb-douglus production
function

1 Introduction

Software reliability growth models (SRGMs) can be specified in two types, paramet-
ric and nonparametric models. Parametric models are depend on the priori assump-
tions of the software failure nature, probability of failure occurrence and development
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environment, etc. However, the reliability metrics are predicted based on the failures
history in nonparametric models. In any software, a failure means, the occurrence
of an undesired result as an output for an input that is inward with specified
conditions [19].

In parametric models, non-homogeneous Poisson process (NHPP)-based models
are widely used. A lots of SRGMs have been discussed in existing literature consid-
ering different environmental conditions [9, 15–19, 24]. In 1979, Goel and Okumoto
[2] proposed the NHPP-based -dependent failure rate model in perfect debugging
environment. Inflection S-shaped model is given by Obha [12]. Musa studied the
basic execution time model in [10]. After some time, log Poisson model is studied
byMusa andOkumoto [11]. TheK-Stage Erlangianmodelwas proposed in [8]. Ohba
[13] and Yamada et al. [25] attributed time delay effect between the fault detection
and fault removal process. In this article, they showed that the skill level of the soft-
ware testing team decreases in the later stages. Kapur et al. [5] studied an SRGM by
considering three different types of faults that was modeled using delayed S-shaped,
exponential, and three-stage Erlang distribution. Pham and Zhang [20] discussed
a model in imperfect environment with time-dependent fault detection rate using
delayed S-shaped function. Kapur et al. [6] discussed a integrated modeling frame-
work to develop a SRGM in imperfect debugging environment. Pachauri et al. [14]
studied the uncertainty of a imperfect debugging SRGM using fuzzy. At the same
time period, some imperfect debugging models were also developed.

In the conventional SRGMs, it has been seen that one common assumption, fault
that causes failure, is immediately removed. But it is not realistic because some time
is needed to fix a fault by the programmer. Generally, there is a reasonable time
taken to detect the fault and fix it. Basically, the fault fixing time depends on the
difficulty of the fault, skill, and experience of the programmer, manpower, and so on.
Therefore, the correction time cannot be neglected in fault correction processes [4].
On the other hand, most of the SRGMS have been discussed in one dimension that
considers the reliability of a software depends only on testing time. In the literature,
the same problem based on the NHPP has been studied in different way in [3, 26,
27]. They proposed some testing effort-dependent SRGMs where the testing time
and used resources together is governed in the software reliability growth process.
Therefore, two-dimensional SRGM is needed to capture the joint effect of testing
time and used resources [7].

In this paper, two-dimensional SRGM using combined effect of testing time
and used resources with debugging time lag is studied. Since, imperfect debug-
ging reflects the realistic situation, the model is proposed in imperfect debugging
environment. The rest of the manuscript is designed as follow: The concept of two-
dimensional model is given in Sect. 2. Proposed models with debugging time lag and
its result with discussion are shown in Sects. 3 and 4, respectively. Finally, conclusion
and future scope is given in Sect. 5.
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2 SRGM in Perfect Debugging Environment

In one-dimensional NHPP-based SRGMs, software failure/fault detection phe-
nomenon is modeled as [19]:

P(N (t) = n) = (m(t))ne−m(t)

n! , n = 0, 1, 2 . . . , (1)

where N (t) is the random variable of faults/failure, m(t) cumulative number of
faults/failure at time t, and t represents the testing time. Since, two-dimensional
SRGMs are used to govern the combined effect of testing time and used resources.
Therefore, the combined effect of testing effort and used resources is modeled using
Cobb–Douglas production function [7]. Mathematical expression of Cobb–Douglas
production function is given as follows:

τ ∼= sαu1−α, (2)

where 0≤ α ≤ 1.
Kapur et al. [7] studied a SRGM in two dimension with Cobb–Douglas produc-

tion function in perfect debugging environment. Mathematical model shows the rate
of changes in mean value function and given as follows:

m′(τ ) = b

1 + ce−bτ
(a − m(τ )), (3)

The distribution function for the number of faults at time t after using u resources is
given as follows:

m(s, u) = a(1 − e−bsαu1−α
)

1 + ce−bsαu1−α , (4)

where a, b,α, s, and u represent total initial number of faults, inflection rate, output
elasticities, testing time inweeks, and testing resources, respectively.Motivated from
Kapur et al. [7] model, in the next section, this approach is extended considering time
lag in fault debugging process in imperfect debugging environment.

3 Proposed Model

In this section, two-dimensional SRGM is discussed in imperfect debugging envi-
ronment then same is extended considering the time lag in the fault removal process.
For the proposed model, the assumptions based on the literature are as follows [1, 7,
19, 21, 22]:
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(i) The fault removal phenomena follow NHPP.
(ii) The software system is subject to failures in operation caused by faults remain-

ing in the system.
(iii) The failure rate is affected by the faults remaining in the system.
(iv) The fault detection rate is a non-decreasing time and resource-dependent func-

tion.
(v) The fault introduction rate is an exponential function of testing time.
(vi) To show the joint effect of testing time and testing resources, Cobb–Douglas

production function is used

Under these assumptions, the mathematical model for the rate of change in the
mean value function is given by

dm(τ )

dτ
= b(τ )(a(τ ) − m(τ )), (5)

a(τ ) = aeβt, (6)

b(τ ) = b

1 + ce−bτ
. (7)

where a(τ ), b(τ ), c, a, and b are the error introduction rate function, fault detection
rate function, inflection factor, number of faults initially, and constant fault detection
rate, respectively. The solution of the above differential equation is give as follows:

m(s, u) = ab

b + β

(
e(β+b)sαu1−α − 1

ebsαu1−α + c

)
. (8)

We introduced a delay factor ϕ(s) in our original equation. Delay will be only
function of time. After introduction of delay, the modified mean value function,
m(s, u), is given by

m(s, u) = m(s − ϕ(s), u) (9)

Nowwe have considered different values of delay function. These values consider
the three different cases with no delay, delayed S-shaped, and inflection S-shaped
curves of delay function.

CASE 1: When there is no delay, value of ϕ(s) = 0 and equation will remain
same as Eq. (8), but it is modeled in imperfect environment. Therefore, the results
generated will be different from base model proposed [7].

m(s, u) = ab

b + β

(
e(β+b)sαu1−α − 1

ebsαu1−α + c

)
(10)
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CASE 2: The software fault detection process is modeled by an delayed S-shaped
curvewhich can be regarded as a learning process because the tester’s skills is directly
proportional to time. Here, ϕ(s) = 1

b log(1 + bs)

m(s, u) = ab

b + β

(
e(β+b)(s− 1

b log(1+bs))
α
u1−α − 1

eb(s−
1
b log(1+bs))

α
u1−α + c

)
(11)

CASE 3: Inflected S-shaped model curve takes the inflection factor as an parame-

ter to vary the learning skills of tester’s.Here,ϕ(s) = 1
b log

(
1+ψ

1+ψe−bs

)
andour equation

will be

m(s, u) = ab

b + β

⎛
⎝e

(β+b)
(
s− 1

b log
(

ψ+1
1+ψe−bs

))α
u1−α − 1

e
b
(
s− 1

b log
(

ψ+1
1+ψe−bs

))α
u1−α + c

⎞
⎠ (12)

4 Results and Discussion

To validate the model, real data set is used which is collected from [23]. The used
resources in this data set are the CPU hours used in the testing, where the software
release consists of 100 faults after 10,000 testing resources are used during 20 testing
weeks. The detail description of data set is shown in Table1.

Table 1 Testing data and resulted output

Time (in
weeks)

Resource usages
(CPU hours)

Actual
defects

Predicted defects

Kapur’s
model

Case 1 Case 2 Case 3

1 519 16 – 11 11 10

2 968 24 – 19 19 19

3 1430 27 – 27 27 27

4 1893 33 – 34 34 34

5 2490 41 – 42 42 43

6 3058 49 – 49 49 49

7 3625 54 – 55 55 55

8 4422 58 – 63 63 63

9 5218 69 – 70 70 71

10 5823 75 98 76 75 76

11 6539 81 107 81 81 81

12 7083 86 116 85 85 85

13 7487 90 123 88 88 88

14 7846 93 129 91 90 91

(continued)
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Table 1 (continued)

Time (in
weeks)

Resource usages
(CPU hours)

Actual
defects

Predicted defects

Kapur’s
model

Case 1 Case 2 Case 3

15 8205 96 129 93 93 93

16 8564 98 134 95 95 95

17 8923 99 139 98 98 98

18 9282 100 138 100 99 100

19 9642 100 135 102 102 102

20 10000 100 133 104 105 104

Table 2 Results comparisons

Model MVF, a(τ ), b(τ ) MLE’s MSE

Kapur et al. [7] m(s, u) = a(1−e−bsαu1−α
)

1+ce−bsαu1−α â = 114 8.50

a(τ ) = a b̂ = 0.046246

b(τ ) = b
1+ce−bτ ĉ = 0.873236

α̂ = 0.811683

Proposed
model case 1

m(s, u) = ab
b+β

(
e(β+b)sαu1−α −1
ebsαu1−α +c

)
â = 121 6.7765

a(τ ) = aeβτ b̂ = 7.215E − 05

b(τ ) = b
1+ce−bτ ĉ = −0.64423

ϕ(s) = 0 α̂ = 0.0156

β̂ = 3.40E − 05

Proposed
model case 2

m(s, u) =
ab
b+β

(
e
(β+b)

(
s− 1

b log(1+bs)
)α

u1−α −1

e
b
(
s− 1

b log(1+bs)
)α

u1−α +c

) â = 116 7.5248

a(τ ) = aeβτ b̂ = 7.45E − 05

b(τ ) = b
1+ce−bτ ĉ = −0.62134

ϕ(s) = 1
b log(1 + bs) α̂ = 0.0025

β̂ = 3.42E − 05

Proposed
model case 3

m(s, u) =
ab
b+β

⎛
⎝ e

(β+b)

(
s− 1

b log

(
ψ+1

1+ψe−bs

))α
u1−α

−1

e
b

(
s− 1

b log

(
ψ+1

1+ψe−bs

))α
u1−α

+c

⎞
⎠

â = 117 6.7558

a(τ ) = aeβτ b̂ = 8.0E − 05

b(τ ) = b
1+ce−bτ ĉ = −0.59102

ϕ(s) = 1
b log

(
1+ψ

1+ψe−bs

)
α̂ = 0.0016

β̂ = 3.15E − 05

ψ̂ = 0.6863
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Fig. 1 Plots between faults and time of actual versus detected faults

The involved parameters in the model are estimated using nonlinear regression
using SPSS. The estimated value of parameters of the model for data set is given in
Table2. To show quantitative comparisons with different fault prediction models, the
mean square error (MSE) is used. From Table2, it can be observed that the proposed
model performs better than the others existing in the literaturewithminimumvalue of
MSE in all three cases. To understand the performance of proposed work, graphical
representation of cumulative fault versus actual faults with time are also shown in
Figs. 1a, b.

5 Conclusions and Future Work

We extended the two-dimensional software reliability growth model proposed in [7]
considering debugging time lag in imperfect debugging environment. The real data
set taken fromTandemComputers is used to compare the results. Comparison criteria
used is MSE calculated using actual and predicted defects. Based on MSE, it can
be concluded that the proposed models are better in comparison to previous model.
Moreover, model-3 is better among the other proposed models. Better results show
that later model used with imperfect debugging and delay is more realistic model.

In this research work, we have considered the three types of time lag in the fault
removal process. In future, other functions may be considered to model the time
lag function. Other factors like testing coverage, change point concept, number of
executed test cases, the effect of fault dependency may also be incorporated.
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F-Policy for M/M/1/K Retrial Queueing
Model with State-Dependent Rates

Madhu Jain and Sudeep Singh Sanga

Abstract In this article, F-policy for the single-server finite capacity Markovian
queueingmodelwith retrial attempts is investigated. The systemadmits the customers
to join the system till the system reaches its full capacity and then, the customers
are restricted to join the system until the queue size reduces to threshold value
‘F’. To deal with more realistic situations, the concepts of state-dependent arrivals
and service process are incorporated while developing a Markov model. On the
basis of birth–death process, Chapman–Kolmogorov equations governing the model
are developed to analyze the queueing characteristics of the system. The steady-
state queue size distributions are obtained by using recursive technique which are
further used to establish numerous performance indices to predict the behavior of
the studied model. A cost function is framed to compute the optimal service rate and
corresponding minimum cost. To investigate the behavior of the system, numerical
example, sensitivity analysis of the system, and descriptors for different indices are
presented.

Keywords Finite capacity · Retrial queue · F-policy · Recursive method
Sensitivity analysis

1 Introduction

Now-a-days, retrial queueing models play a significant role in predicting the real-
world congestion problems involved in the computer communication networks, busi-
ness, industries, etc. To examine the practical applicability of retrial queueswith finite
capacity, consider an example of call center wherein the caller may try for a call to
the center, and if the dialed number is busy, the caller gets a message of busy line.
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The caller may disconnect the call and remain in the orbit and may try after some
time with the hope that the line becomes free to connect the call. In past years, many
research works on retrial queues have appeared which dealt with Markov model. In a
survey article, Yang and Templeton [1] presented various examples including reser-
vation and packet switching networks. Some important works on Markovian retrial
queues are reported in the survey articles by Artalejo and Falin [2] and Artalejo [3].
In recent years, Dudin et al. [4] and Taun [5] presented a noble work on single-server
queue with retrial attempts by considering the group admission of the customers and
setup time, respectively.

To control the arrivals in the queueing system, is amajor issue. In order tomaintain
the quality of service rendered to the customers, the arrivals should be controlled
and this can be done by introducing the suitable optimal control policy, namely
F-policy. The control F-policy which restricts the arrivals of customers, when the
capacity of the system is full, is applicable inmany real-world situations like shopping
malls, parking lot, transmission line, communication system, production system,
and transport service. Gupta [6] developed the concept of F-policy to investigate
Markovian single-server finite queue. F-policy can be used as optimal admission
policy according towhich as the systembecomes full (sayK), nomore further arrivals
are allowed to join the system until the queue size again drops to a threshold value ‘F’.
Later,Wang et al. [7, 8] extended the F-policy concept for the analysis of single-server
Markovian queueing model to F-policy M/G/1/K and G/M/1/K queueing models.
Admission control policy for M/M/1 queueing model was investigated by Ke et al.
[9] by taking second optional services. Yang et al. [10] investigatedMarkovian queue
with singleworking vacation that operates under F-policy. A finite-capacity queueing
model was studied by Chang et al. [11] by considering two types of services that
worked under control F-policy.<p-F>-policy for M/M/1/K queueing model with
server breakdown and exponential startup timewas considered by Chang andKe [12]
for obtaining the steady-state analytical solutions. In recent years, Jain et al. [13, 14]
have developed Markovian model for control F-policy. Queueing characterization
of machine repair problem with general retrial attempts by controlling the joining
of failed machines operating under F-policy was also dealt by Jain and Sanga [15].
They obtained the steady-state probabilities of the system states and other indices by
applying the recursive method.

In several queueing systems, the rates may be state-dependent; i.e, the arrival and
service may be dependent on the number of customers present in the system. In some
queueing situations, it is seen that the server may render service with faster rate as
the queue size increases. On the contrary, sometimes it may happen that the server
becomes slow due to stress. The important work on single-server retrial queue with
state-dependent rates was done by Parthasarathy and Sudhesh [16]. Recently, Kumar
and Darsana [17] analyzed an M/M/1 queueing model with state-dependent arrival
rate and retention of reneged customers.

After the literature survey, it is noticed that no research paper has appeared on
admission control based on F-policy for M/M/1/K retrial queueing model by con-
sidering state-dependent rates. This article is focused to analyze F-policy for the
single-server finite capacity Markovian queueing model by considering the system-
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dependent arrival and service rates of the customers. After presenting some introduc-
tory and motivational issues, and concerned literature in the ongoing section, now
we outline the contents of remaining sections of the present paper as follows. The
model description is presented in Sect. 2. The steady-state Chapman–Kolmogorov
equations for the governing model are constructed in Sect. 3. Section 4 provides
some results for the system indices and the cost function. Numerical experiments
and conclusion of the investigation done are provided in Sects. 5 and 6, respectively.

2 Model Description

Consider M/M/1/K retrial queueing model operating under F-policy and state-
dependent rates. The service process follows the first-come-first-serve (FCFS) rule.
The formulation of model is done based on some assumptions which are as follows:

(i) The arriving customer enters into the system by following Poisson fashion with
rate λ.

(ii) If arriving customer sees the server free, he immediately gets served by the
following exponential distribution with rate μ.

(iii) If the arriving customer sees that the server is engaged in serving some other
customers, then he is forced to enter retrial pool. From the retrial pool, he retries
for the service with exponential distributed retrial time with mean 1/γ.

(iv) To stop the arrivals from entering the system when system capacity becomes
full, a setup job is required according to exponential distributed with rate ε.

(v) As soon as the system becomes full, the arrivals are not acceptable until the
enough customers are served and the system size further drops to prefixed level
‘F’.

The mathematical formulation of the model is done as follows:
Let at time epoch τ,N (τ ), and Y (τ ) be the random variables denoting the number

of customers in the system and states of the server, respectively. The random variable
Y (τ ) is defined as follows:

Y (τ ) �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0,
the arriving customers are admitted to join the orbit when the server is
engaged in rendering the service;

1(2),
the admission of customers are permissible (not permissible) in the system
when the server is busy

At time τ for node (i, n), system states probabilities are defined by Pj,n(τ ) �
Prob{Y (τ ) � j, N (τ ) � n}. It is noted that {Y (τ ), N (τ ) : τ ≥ 0} is a bivariate
Markov process which is discrete and continuous with respect to statespace and
time, respectively. Markov model is analyzed at steady state, i.e., when τ → ∞ and
the state probability is denoted by Pj,n � lim

τ→∞ Pj,n(τ ).
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3 Governing Equations and Recursive Technique

To investigate the admission control for finite capacity retrial model with state-
dependent rates, Chapman–Kolmogorov equations are formed based on birth–death
process for three levels when Y (τ ) takes values 0, 1, and 2, respectively. The state-
dependent rates λn andμn are taken into account for generic formulation of the retrial
model under F-policy. The in-flows and out-flows of different states of bivariate
continuous time Markov chain (CTMC) are depicted in Fig. 1.

• For j � 0 and 0 ≤ n ≤ K − 1.

−λ0P0,0 + μ1P1,0 � 0 (1)

−(λn + γ )P0,n + μn+1P1,n � 0 for 1 ≤ n ≤ K − 1. (2)

• For j � 1 and 0 ≤ n ≤ K − 1.

−(λ1 + μ1)P1,0 + λ0P0,0 + γ P0,1 � 0 (3)

−(λn+1 + μn+1)P1,n + λn P1,n−1 + λn P0,n + γ P0,n+1 � 0 for 1 ≤ n ≤ F − 2 (4)

−(λF + μF )P1,F−1 + λF−1P1,F−2 + λF−1P0,F−1 + γ P0,F + μP2,F � 0 (5)

−(λn+1 + μn+1)P1,n + λn P1,n−1 + λn P0,n + γ P0,n+1 � 0 for F ≤ n ≤ K − 2 (6)

−(ε + μK )P1,K−1 + λK−1P1,K−2 + λK−1P0,K−1 � 0 (7)

• For j � 2 and F ≤ n ≤ K − 1.

μP2,n � μP2,n+1 � εP1,K−1 for F ≤ n ≤ K − 2 (8)

For notational convenience, denote δi � λi+γ

γ
, ρi � λi

μi+1
, and Λ0,n �

n∏

j�0
λ j .

Fig. 1 Transition state diagram
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Now, we solve Eqs. (1)–(8) using recursive approach as follows:
From (1),

P1,0 � ρ0P0,0 (9)

Using result of (9) in (3), we obtain

P0,1 � ρ0(δ1 − 1)P0,0 (10)

Also, using value of P0,1 from (10) in (2), we obtain P1,1 as

P1,1 � ρ0ρ1δ1P0,0 (11)

Similarly, using (4) and (2), we obtain

P0,2 � ρ0ρ1δ1(δ2 − 1)P0,0 (12)

and P1,2 � ρ0ρ1ρ2δ1δ2P0,0 (13)

Further solving recursively, in general, we find

P1,n �
(

n∏

i�0

ρi

)⎛

⎝
n∏

j�1

δ j

⎞

⎠P0,0 for 1 ≤ n ≤ F − 1 (14)

P0,n � (δn − 1)

(
n−1∏

i�0

ρi

)⎛

⎝
n−1∏

j�1

δ j

⎞

⎠P0,0 for 1 ≤ n ≤ F − 1 (15)

Again using (5)–(7), we obtain

P1,n � Λ0,n Sn
RF

P0,0 for F ≤ n ≤ K − 2 (16)

P0,n � Λ0,n(1 − 1/δn)

ρn

Sn
RF

P0,0 for F ≤ n ≤ K − 2 (17)

P1,K−1 � Λ0,K−1

RF
P0,0 (18)

and P0,K−1 � 	0,K−1(1 − 1/δK−1)

ρK−1

1

RF
P0,0 (19)

Substituting the value of P1,K−1 from (18) in (8), we obtain

P2,n � Λ0,K−1ε

μRF
P0,0 for F ≤ n ≤ K − 1 (20)

where
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Sn � εΛn+2,K−1 + ε

K∑

i�n+3

(Λi,K−1Λn+2,i−1) +
K∏

j�n+2

μ j

δ j−1

and RF �
⎡

⎣μ1

F−1∏

j�1

μ j+1

δ j

⎤

⎦

[

εΛF+1,K−1 +
μF+1

δF
SF

]

4 Performance Measures

To explore the performance characteristics of the system, we establish some indices,
namely the average number of customers present in the system E[NS], in the queue
E[Nq ], in the retrial orbit E[NR] and throughput TP. We also establish expressions
for the probabilities of idle server (PI ), busy server (PSB) corresponding to the server
status at levels 0, 1 and 2, respectively. Now, in terms of steady-state probabilities
Pj,n , the expressions for E[NS], E[Nq ], E[NR], TP, PI , and PSB are obtained as
follows:

E[NS] �
K−1∑

n�0

nP0,n +
K−1∑

n�0

(n + 1)P1,n +
K−1∑

n�F

(n + 1)P2,n (21)

E[Nq ] �
K−1∑

n�0

nP1,n +
K−1∑

n�F

nP2,n and E[NR] �
K−1∑

n�0

nP0,n (22a, b)

TP � μn

K−1∑

n�0

P1,n + μ

K−1∑

n�F

P2,n (23)

PI �
K−1∑

n�0

P0,n and PSB �
K−1∑

n�0

P1,n +
K−1∑

n�F

P2,n (24a, b)

Cost Function
The system organizer always prefers to serve the customers with faster service

rate and thereby reduces the waiting time, but cost increases in general if the service
is improved. A cost function is formulated to determine the optimal service rate (μ∗)
and minimum cost (TC(μ∗)) of the system. To formulate the cost function, the cost
elements per unit time involved with several activities are considered.

By considering the service rate (μ) as a decision variable, the total cost per unit
is formulated by:

TC(μ) � CI PI + CB PSB + CH E[Nq ] + μCF + μnCA + COE[NR] (25)

where cost elements per unit time used are
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CI Cost incurred on the system when the server is not rendering the service
i.e., in idle state

CB Cost incurred on the systemwhen the server is busy in rendering the service
CH Holding cost spend on each customer present in the system
CA(CF) Cost for providing service to the each customers when the joining of the

customers are permitted (not permitted)
CO Cost spend on each customer in the retrial pool

5 Numerical Results

The effect of the system parameters on different system indices can be analyzed by
taking a numerical illustration. MATLAB software is used to obtain the numerical
results. The system parameters are set as K � 7, F � 4, ε � 1, μ � 10, λ � 2.9,
γ � 1. We consider the state-dependent rates as λn � λ

n+1 and μn � μ

n . Further,
three cost sets are considered as given in Table 1 to compute μ∗ and corresponding
minimum system cost (TC(μ∗)).

Heuristic method is used to evaluate μ∗ and corresponding average minimum
system cost TC(μ∗). The graphs for cost versus ‘μ’ in Figs. 2 and 3 reveal that the
cost function is unimodal and convex, and expected minimum cost is achieved. The
effect of γ on (μ∗, TC(μ∗)) for different cost sets of elements CI , CB, CH , CF , CA,
and Co is displayed in Table 2.

The sensitivity analysis is performed by varying the values of parameters λ,μ, γ.

The numerical results for demonstrating the impact of different parameters on E[Nq ],
E[NR], PI , PSB, and TC are depicted in Figs. 4, 5, 6, and 7 and Tables 3, 4, and 5.

Table 1 Different cost elements associated with cost set

Cost set CI CB CH CF CA CO

I 10 10 100 5 10 110

II 5 5 80 10 5 120

III 20 20 100 5 10 110

Table 2 Effect of γ on (μ∗,TC(μ∗))
Cost set (μ∗,TC(μ∗))

γ � 1 γ � 1.5 γ � 2

I (9.581, 248.05) (8.629, 218.05) (8.100, 201.41)

II (9.284, 241.28) (8.300, 209.70) (7.755, 192.14)

III (9.581, 258.05) (8.629, 228.05) (8.100, 211.41)
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Fig. 2 TC versus μ for three different cost sets
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Fig. 3 TC versus μ for different value of γ

• Effect of arrival rate (λ)

From Figs. 4 and 6, it is clearly seen as λ goes up, E[NS] and TP increase. Table 3
displays that the queue length E[Nq ], E[NR], and probability of busy server (PSB)
build up as λ grows, but the probability of idle server decreases with the decrease in
λ.
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Fig. 4 E[NS] versus λ for different value of γ
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Fig. 5 E[NS] versus μ for different value of γ

• Effect of service rate (μ)

Table 4 indicates that E[Nq ], E[NR], and probability of busy server PSB lower
down asμ decreases. However, the probability of idle server PI growswith the incre-
ment in service rate μ. Figure 5 demonstrates that E[NS] decreases as μ decreases.
From Fig. 7, it is clear that as μ increases, throughput TP also increases.
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Fig. 6 TP versus λ for different value of γ
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Fig. 7 TP versus μ for different value of γ

• Effect of retrial rate (γ )

Numerical results summarized in Table 5 reveal that E[Nq ], E[NR], and proba-
bility of idle server (busy server) decrease (increases) as γ increases.
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Table 3 System indices for
varying value of λ

λ E
[
Nq

]
E[NR] PI PSB TC

2 0.1066 0.2286 0.8001 0.1999 195.80

4 0.7834 0.9703 0.6131 0.3869 345.07

6 1.7264 1.5266 0.4930 0.5070 500.56

8 2.3404 1.6487 0.4258 0.5742 575.40

10 2.7372 1.6181 0.3798 0.6202 611.70

Table 4 System indices for
varying value of μ

μ E
[
Nq

]
E[NR] PI PSB TC

6 0.9531 0.8174 0.5395 0.4605 285.22

8 0.5260 0.6479 0.6428 0.3572 253.87

10 0.3171 0.5152 0.7115 0.2885 248.37

12 0.2077 0.4209 0.7588 0.2412 257.07

14 0.1453 0.3536 0.7930 0.2070 273.43

Table 5 System indices for
varying value of γ

γ E
[
Nq

]
E[NR] PI PSB TC

0.4 0.5876 1.2912 0.7172 0.2828 370.79

0.8 0.3674 0.6517 0.7121 0.2879 278.43

1.2 0.2831 0.4246 0.7111 0.2889 245.02

1.6 0.2405 0.3132 0.7107 0.2893 228.50

2 0.2152 0.2476 0.7105 0.2895 218.75

6 Conclusions

This article studies a single-server finite capacity retrial queueing model by adding
the realistic features of admission control policy and state-dependent rates. The recur-
sive method is applied to establish the steady-state queue size distributions of the
system. The system indices established can be easily used for the computation pur-
pose as validated by taking numerical illustration. Further, optimal service rate and
corresponding minimal cost of the system determined by heuristic approach may
be helpful to the system organizers and decision makers for improving the grade of
service of the existing system. This model may further be extended by taking general
retrial times and general service times.
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Time-Shared Queue with Nopassing
Restriction for the Loss–Delay
Customers and Additional Server

Madhu Jain, Shalini Shukla and Rakesh Kumar Meena

Abstract In the present chapter, we investigate the performance indices of a
multi-server queueing system in order to examine the loss and delay behavior by
incorporating the nopassing restrictions. The arriving customers who cannot wait for
their service are lost forever from the system. The arriving customers who can wait
for their turn in the queue to be served are referred as delay customers. The service
crew has permanent multi-servers as well as one additional server; both types of
servers work on the time-sharing basis. The additional repairman acts as a backup
server and follows a threshold rule so as to reduce the total cost. The queueing indices
including the waiting time are derived analytically using the product-type solution
technique. Numerical simulation has been done to facilitate the sensitivity analysis
of various parameters in the context of different performance results.

Keywords Time-shared queue · Loss and delay · Nopassing
Additional repairman · Controlled rates

1 Introduction

In the fast life of today world, both the time and money should be optimized by
improving the efficiency of various queueing systems. Everyone is in a hurry to get
their jobs to be done without any wastage of time and money. The provisioning of
time-shared servers and additional removal server can play a significant role as far as
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a better grade of service is concerned. In many congestion scenarios, it is important
to judge whether the customer would like to wait for the servers to be free for their
service or they will prefer to leave the system forever on finding all the servers
busy. Besides this, sometimes, the arriving customers are served in the same order
in which they join the system; i.e., they are served under the nopassing restriction.
The nopassing restriction according to which the customers are served in the same
chronological order in which they join the system can be found in many practical
congestion situations such as in military operation, toll check post on the highways,
check-in process at airport, manufacturing industries, message transmission, etc.

The queueing systems having the facility of additional removable server pro-
vide better service in an economic way and are also helpful in reducing the heavy
workloads. Some research works on the queueing systems with additional remov-
able servers are available in the queueing literature [7–11, 18, 20, 28, 37]. In recent
years, the queueing systems having permanent as well as additional server were also
studied by Bieth et al. [2], Huang et al. [5], Li and Jiang [26]. Sharma and Sharma
[30] proposed an optimal cost-minimization policy for a queueing system having the
provision of additional removable server.

The time-sharing behavior of all the permanent as well as additional servers will
be helpful in upgrading the performance of the system as a whole. It will also help
in reducing the expenses and time which is a desirable trait. According to time
sharing rule, more than one customer can approach a single server for the service
simultaneously. Some very important investigations (cf. [14, 16, 23, 25, 34, 36]) have
been done on queueing models with processor sharing servers in the past by many
renowned investigators. A processor sharing queueing systems with variable service
rates was studied by Litjens [27]. The discriminatory processor shared queues were
studied byAltman et al. [1],Kim [24],Yu et al. [39], and Izagirre et al. [6] by including
ergodic service time, impatient customers, and relative priorities, respectively. A
machine repair problem has also been investigated by Jain et al. [17] in which there
is a provision of permanent as well as additional servers working on time-sharing
basis.

The loss–delay phenomenon can be observed in many real-time systems in which
it is found that when the servers are busy, some customers will not like to enter the
queue as such they are lost, whereas remaining customers called delay customers join
the queue and wait for their turn for service. In the past, some research works have
been done on queueing system having both loss and delay customers (cf. [3, 19, 22,
31, 32]). A queueing systemwith loss customerswho arrive in batcheswas studied by
Kim et al. [23]. Recently, Sharma [29] investigated a single-server queueing model
with loss and delay customers and controllable arrival rates. The performance of an
optical burst switched (OBS) combined node was studied by Hayat and Afzal [4] by
developing a mixed loss delay queueing models.

The concept of nopassing was introduced by Washburn [38] for a queueing sys-
tem with infinite capacity. Due to nopassing constraint, the customers have to follow
their sequence of arrival while leaving the system even they do not require any kind
of service. Since then, somemore researchers have studied a variant of queueing sys-
tems with nopassing restrictions (cf. [12, 15, 21, 35]). In recent past, not much work
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has been done on the nopassing restriction. Srinivasan and Thiagarajan [33] investi-
gated the loss and delay queueing system with controllable arrival rates by including
the nopassing restriction on the departure of the customers. Later, Thiagarajan and
Srinivasan [35] studied an M/M/c/K loss and delay interdependent queueing model
with nopassing restrictions. Jain and Sharma [13] investigated a Markovian queue
with heterogeneous servers by considering the nopassing restriction on the departure
of the customers. In this chapter, we are aimed to analyze a time-sharing queueing
system by considering some more realistic features, namely provision of both per-
manent and the additional server, loss of proportion of customers if the server is
busy, balking behavior of the arriving customers, and departure of customers from
the system bymaintaining the chronological order of arrivals. The content-wise orga-
nization of the present paper is as follows: In Sect. 2, the mathematical problem of
the concerned queueing system has been formulated which is followed by the queue
size distribution in Sect. 3. Some performance measures have been derived in Sect. 4.
Numerical illustration and sensitivity analysis have been given in Sect. 5. Finally in
Sect. 6, the investigation done is summarized by highlighting the noble features and
future scope of the present study.

2 The Model

Consider a finite capacity time-shared queueing system having the service facility
consisting of two types of time-sharing servers, i.e., s permanent servers and one
additional removable server which gets activated at the threshold N0. The additional
server is deployed in order to cope up with the increased workload. The additional
server stops functioning or is removed as soon as the number of customers drops
below N0. On finding the permanent server busy, the arriving customers behave in
two ways, i.e., either loss or delay customer. The nopassing restriction is imposed
on the departing customers.

The state transition diagram of Markov model has been depicted in Fig. 1. For
formulating the queueing model, the underlying assumptions are as follows. The
queueing system has finite capacity L for the customers or jobs. In case when the
server is busy, (1−p) proportion of the total customers are lost and remaining p
proportion of the total customers behave as delay customers. The lifetimes and service
time of both the loss and delay customers follow the exponential distribution. The
loss (delay) customers may arrive at a rate of λL (λD) and are served by following
the FCFS rule on the time-sharing basis. The customers may also balk with the rate
β0(β1) when all permanent servers (all permanent servers along with the additional
removable server) are busy. The loss customers require no service, whereas the delay
customers require service which is governed by the exponential distribution.

The time-sharing rate of both types of servers depends on the number of customers
present in the queue. Both the service rates and the arrival rates are controlled by a
factor ε. The switching-over process of activation and deactivation of the servers is
considered to be instantaneous.
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Fig. 1 State transition diagram

The state-dependent arrival rate λn and service rate μn are obtained as follows:

λn �

⎧
⎪⎪⎨

⎪⎪⎩

{(λD + λL ) − ε}p; 0 ≤ n ≤ s

(λD − ε)β0 p; s < n < N0

(λD − ε)β1 p; N0 ≤ n < L

and μn �

⎧
⎪⎪⎨

⎪⎪⎩

n(μ − ε)φ(n); 1 ≤ n < s

s(μ − ε)φ(n); s ≤ n < N0

(s + 1)(μ − ε)φ(n); N0 ≤ n ≤ L

The steady-state probabilities of the system when there are ‘n’ customers in the
system are defined as follows:

Qn The steady-state probability that there are ‘n’ number of customers present
in the system at any instant.

QN0(1) Probability that the first permanent server is providing the service to the
customers at the threshold level N0.

QN0(2) Probability that the second additional server is providing the service to the
customers at the threshold level N0.

Chapman–Kolmogrov equations at steady state can be constructed by balancing
the inflows and outflows of each node depicted in Fig. 1. For different system states,
we obtain

−{(λD + λL) − ε}pQ0 + (μ − ε)ϕ(1)Q1 � 0 (1)

− [{(λD + λL) − ε}p + n(μ − ε)ϕ(n)]Qn + {(λD + λL) − ε}pQn−1

+ (n + 1)(μ − ε)ϕ(n + 1)Qn+1 � 0; 1 ≤ n ≤ s (2)

− [(λD − ε)β0 p + s(μ − ε)ϕ(s + 1)]Qs+1 + {(λD + λL) − ε}pQs

+ s(μ − ε)ϕ(s + 2)Qs+2 � 0 (3)

− [(λD − ε)β0 p + s(μ − ε)ϕ(n)]Qn + {(λD + λL) − ε}pQn−1

+ s(μ − ε)ϕ(n + 1)Qn+1; s + 2 ≤ n ≤ N0 − 2 (4)

− [(λD − ε)β0 p + s(μ − ε)ϕ(N0 − 1)]Q1,N0−1 + (λD − ε)β0 pQ1,N0−2

+ s(μ − ε)ϕ(N0)Q1,N0 + (μ − ε)ϕ(N0)Q2,N0 � 0 (5)

− [(λD − ε)β0 p + s(μ − ε)ϕ(N0)]Q1,N0 + (λD − ε)β0 pQ1,N0−1

+ (s + 1)(μ − ε)ϕ(N0 + 1)Q1,N0+1 � 0 (6)

−[(λD − ε)β0 p + (μ − ε)ϕ(N0)]Q2,N0 + (s + 1)(μ − ε)ϕ(N0 + 1)Q1,N0+1 � 0

(7)
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− [(λD − ε)β1 p + (s + 1)(μ − ε)ϕ(N0 + 1)]Q1,N0+1 + (λD − ε)β0 pQ1,N0

+ (λD − ε)β0 pQ2,N0 + (s + 1)(μ − ε)ϕ(N0 + 2)Q1,N0+2 � 0 (8)

− [(λD − ε)β1 p + (s + 1)(μ − ε)ϕ(n)]Q1,n + (λD − ε)β1 pQ1,n−1

+ (s + 1)(μ − ε)ϕ(n + 1)Q1,n+1 � 0; N0 + 2 ≤ n ≤ L − 1 (9)

−(s + 1)(μ − ε)ϕ(L)Q1,L + (λD − ε)β1 pQ1,L−1 � 0 (10)

3 Queue Size Distribution

On solving the governing Eqs. (1)–(10), we can obtain the queue length for the
steady-state probabilities, i.e., Qn, QN0(1), and QN0(2), recursively.

Equation (1) yields

Q1 � λ0

a1
Q0 (11)

where an � (μ − ε)φ(n).
Solving recursively for the nth nodes (1 ≤ n ≤ s), we get

Qn � (Λ)n

n! γn
Q0; 1 ≤ n ≤ s (12)

where γn � ∏n
i�1 an and Λ � {(λD − λL) − ε}p.

Further, we get the results for nth node for the range s < n ≤ N0 − 1 as

Qn � {(λD − ε)β0 p}n−s(Λ)s

(s)n−s × s! γn
Q0 (13)

Further, solving Eqs. (5)–(7) recursively and denoting A �
{

(λD−ε)β0 p
s(μ−ε)

}N0−s
(Λ)s

s! , we
get

QN0 � QN0(1) + QN0(2) (14)

where

QN0(1) � s(λD − ε)β0 p + (2s)(μ − ε)φ(N0)

(s + 1)(λD − ε)β0 p + (2s)(μ − ε)φ(N0)
× A

γN0

Q0 (15)

and

QN0(2) � s(λD − ε)β0 p

(s + 1)(λD − ε)β0 p + (2s)(μ − ε)φ(N0)
× A

γN0

Q0 (16)
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Also

QN0+1 � CB

γN0+1
Q0 (17)

where B �
[{

(λD−ε)β0 p
s(μ−ε)

}
× A

]
and C � s(λD−ε)β0 p+s(μ−ε)φ(N0)

(s+1)(λD−ε)β0 p+(2s)(μ−ε)φ(N0)
× s

s+1 .

On solving Eqs. (8)–(10) recursively, we arrive at the following result:

Qn �
{

(λD−ε)β1 p
(1+s)(μ−ε)

}n−N0−1

γn
× CBQ0; N0 + 2 ≤ n < L (18)

Thus, the queue size distribution can be obtained from Eqs. (11)–(18). To obtain
the probability Q0, the normalizing condition

∑L
n�0 Qn � 1 is used.

4 Performance Indices

In order to explore the performance of the system, the probabilities obtained in the
previous section are used to establish some performance indices as follows:

• The expected number of customers in the system is

E(n) �
L∑

n�1

nQn (19)

• The probability that only permanent servers are busy in servicing the customers is

P(PR) �
N0−1∑

n�0

Qn (20)

• The probability when both of permanent and additional servers are busy in pro-
viding the service of the customers is

P(BR) �
L∑

n�N0

Qn (21)

• The throughput of the queueing system is
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τ �
s−1∑

n�1

n(μ − ε)φ(n)Qn+
N0−1∑

n�s

s(μ − ε)φ(n)Qn+
L∑

n�N0

(s + 1)(μ − ε)φ(n)Qn

(22)

4.1 Expected Waiting Time

The expectedwaiting time of both types of customers can be obtained in the following
manner. Let E(W1) and E(W2) denote the expected waiting times of delay and loss
customers, respectively. Then, the expected waiting time for a particular customer
will be obtained by using [12]:

E(W ) � p × E(WD) + (1 − p) × E(WL) (23)

Following Jain and Singh [12] for our model, we have

E(WD) � 1

μ

[
s∑

n�0

an+1Qn+
N0∑

n�s+1

{
n − s + 1

s
+ as

}

Qn +
L∑

n�N0+1

{
n − s

s + 1
+ as+1

}

Qn

]

(24)

E(WL) � 1

μ

[
s∑

n�0

anQn+
N0−1∑

n�s+1

{
n − s + 1

s
+ as−1

}

Qn +
L∑

n�N0

{
n − s

s + 1
+ as+1

}

Qn

]

(25)

Using Eqs. (12), (13), and (16)–(18) in Eqs. (24) and (25), we get the expected
waiting time for both types of customers as

E(WD) � 1

μ

[
s∑

n�0

an+1

{
(Λ)n

n! γn

}

+
N0−1∑

n�s+1

{
n − s + 1

s
+ as

}

×
{ {(λD − ε)β0 p}n−s(Λ)s

(s)n−s × s! γn

}

+

{
n − s + 1

s
+ as

}

×
{

2s(λD − ε)β0 p + (2s)(μ − ε)φ(N0)

(s + 1)(λD − ε)β0 p + (2s)(μ − ε)φ(N0)

}

× A

γN0

+

{
n − s

s + 1
+ as+1

}

×
{

CB

γN0+1

}

+
L∑

n�N0+2

{
n − s

s + 1
+ as+1

}
{

(λD−ε)β1 p
(1+s)(μ−ε)

}n−N0−1

γn
× CB

⎤

⎥
⎦Q0 (26)



146 M. Jain et al.

E(WL) � 1

μ

[
s∑

n�0

an

{
(Λ)n

n! γn

}

+
N0−1∑

n�s+1

{
n − s + 1

s
+ as−1

}

×
{ {(λD − ε)β0 p}n−s(Λ)s

(s)n−s × s! γn

}

+

{
n − s

s + 1
+ as

}

×
{

2s(λD − ε)β0 p + (2s)(μ − ε)φ(N0)

(s + 1)(λD − ε)β0 p + (2s)(μ − ε)φ(N0)

}

× A

γN0

+

{
n − s

s + 1
+ as+1

}

×
{

CB

γN0+1

}

+
L∑

n�N0+2

{
n − s

s + 1
+ as+1

}

×
{

(λD−ε)β1 p
(1+s)(μ−ε)

}n−N0−1

γn
× CB

⎤

⎥
⎦Q0 (27)

Thus, the difference (D) between the mean waiting times of both types of cus-
tomers can be obtained using

D �μ[E(WD) − E(WL)]

�μ

[
s∑

n�0

(an+1 − an)

{
(Λ)n

n! γn

}

+
N0−1∑

n�s+1

{as − as−1}

×
{ {(λD − ε)β0 p}n−s(Λ)s

(s)n−s × s! γn

}

+

{
n − s + 1

s
− n − s

s + 1

}

×
{

2s(λD − ε)β0 p + (2s)(μ − ε)φ(N0)

(s + 1)(λD − ε)β0 p + (2s)(μ − ε)φ(N0)

}

× A

γN0

]

Q0 (28)

5 Numerical Simulation

In order to validate the applicability of the model, it is always better to evaluate the
performance of the queueing model numerically. The numerical simulation will be
of great help in making the study more practical and useful in real-life queueing
scenarios. The effect of the arrival rate (λD) of the delay customers who are waiting
to be served, the service rate (μ) of the server, balking rate (β0) of customers when
only first server is serving them on the various performance indices such as expected
number of customers in the system E(n), the throughput of the queueing system (τ ),
the probability that only permanent servers are servicing the customers P(PS), the
probability when both servers are rendering the service of the customers P(BS), the
expected waiting times of the delay customers E(W1), expected waiting times of loss
customers E(W2) and the difference (Df) between the mean waiting times of both
types of customer (Df) have been displayed in Tables 1, 2, 3 and Figs. 2 and 3. For
the computation of numerical results, some parameters are fixed as M �10, m �3,
s �2, N0 �5, β1 �0.2, λL �0.6, and ε �0.1.

(i) Effect of the arrival rate of the delay customers (λD): In any queueing system,
the arrival rate of the delay customers (λD) affects the performance of the whole
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Table 1 Performance
measures by varying λD for
different values of p

p λD P(PS) P(BS) E(W1) E(W2) Df

1.5 0.5 0.077 0.923 6.61 5.51 0.28

1.0 0.009 0.991 6.73 5.87 0.22

1.5 0.002 0.998 6.68 5.96 0.18

2.5 0.5 0.016 0.984 6.75 5.80 0.24

1.0 0.002 0.998 6.68 5.97 0.18

1.5 0.000 1.000 6.61 6.05 0.14

3.5 0.5 0.005 0.995 6.74 5.88 0.21

1.0 0.001 0.999 6.62 6.03 0.15

1.5 0.000 1.000 6.55 6.10 0.11

Table 2 Performance
measures by varying μ for
different values of p

p μ P(PS) P(BS) E(W1) E(W2) Df

1.5 0.5 0.324 0.676 5.87 4.54 0.33

1.0 0.761 0.239 2.49 1.54 0.95

1.5 0.930 0.070 1.60 0.97 1.44

2.5 0.5 0.086 0.914 6.59 5.45 0.28

1.0 0.424 0.576 2.82 2.18 0.64

1.5 0.798 0.202 1.60 1.19 0.94

3.5 0.5 0.031 0.969 6.74 5.69 0.26

1.0 0.227 0.773 3.09 2.54 0.55

1.5 0.658 0.342 1.73 1.37 0.80

Table 3 Performance
measures by varying β0 for
different values of p

p β0 P(PS) P(BS) E(W1) E(W2) Df

1.5 0.4 0.324 0.676 5.87 4.54 0.33

0.8 0.094 0.906 6.57 5.44 0.28

1.2 0.040 0.961 6.70 5.69 0.25

2.5 0.4 0.086 0.914 6.59 5.45 0.28

0.8 0.019 0.981 6.74 5.78 0.24

1.2 0.008 0.992 6.72 5.88 0.21

3.5 0.4 0.031 0.969 6.74 5.69 0.26

0.8 0.006 0.994 6.74 5.88 0.21

1.2 0.002 0.998 6.68 5.96 0.18

system to a great extent. The same is the case in the present model. It is clear
from Table 1 that with the increase in λD, the probability that only permanent
servers are servicing the customers P(PS), the expected waiting times of delay
customers E(W1) and the difference (Df) between the mean waiting times of
both types of customer (Df) and the probability when both types of servers
are doing the service of the customers P(BS) decrease, whereas the expected
waiting times of loss customers E(W2) increase continuously; however, the
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Fig. 2 E(n) by varying p for
different sets of i λD, ii μ, iii
β0
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probability when both types of servers are doing the service of the customers
P(BS) for the values of p�1.5, increases first and then decreases. Figures 2i and
3i show that the expected number of customers in the system E(n) increases,
whereas the throughput of the queueing system (τ ) decreaseswith the increment
in the arrival rate λD.

(ii) Effect of the service rate of the server (μ): Table 2 reveals that with the
increase in µ, the probability that only permanent server is servicing the cus-
tomers P(PS) and the difference (Df) between the mean waiting times of both
types of customer (Df) increase, whereas the expected waiting times of delay
customers E(W1), the expected waiting times of loss customers E(W2), and the
probability when both types of servers are doing the service of the customers
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Fig. 3 Throughput by
varying p for different sets of
i λD, ii μ, iii β0
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P(BS) decrease. Figures 2ii and 3ii depict that the expected number of cus-
tomers in the system E(n) decreases, whereas the throughput of the queueing
system (τ ) increases with the increase in the service rate μ.

(iii) Effect of the balking rate (β0): From Table 3 and Figs. 2iii and 3iii, we notice
that the increase in the balking rate of the customers when only permanent
server is in service (β0) affects the performance of the system significantly,
which is quite realistic also. All the performance measures, namely E(n),
throughput (τ ), the probabilities P(PS), P(BS), the expected waiting times
E(W1) and E(W2) decrease, whereas the difference (Df) between the mean
waiting times of both types of customers (Df) increases with the increase in
the balking rate β0.

(iv) Effect of the proportion (p): The proportion of the customers behaving as
delay customers is also an important factor and affects the performance of the
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Table 4 Performance measures by varying p

p E(n) P(PS) P(BS) τ E(W1) E(W2) Df

1.5 3.79 0.324 0.676 0.29 5.87 4.54 0.33

2.0 4.48 0.161 0.839 0.26 6.36 5.16 0.30

2.5 4.81 0.086 0.914 0.25 6.59 5.45 0.28

3.0 4.99 0.050 0.950 0.24 6.69 5.61 0.27

3.5 5.09 0.031 0.969 0.24 6.74 5.69 0.26

4.0 5.16 0.021 0.979 0.23 6.76 5.75 0.25

4.5 5.21 0.014 0.986 0.23 6.77 5.79 0.25

system significantly. It is clear from Table 4 that indices E(n), P(BS), E(W1),
and E(W2) increase, whereas the throughput (τ ), P(PS) and the difference (Df)
decrease with the increase in the values of p, keeping all the other parameters
fixed.

Overall, we can conclude that the arrival rate of the customers and the balking
factor of the delay customers should be controlled, whereas the service rate should
be kept high in order to enhance the performance of the system.

6 Discussion

The time-shared multi-component queueing system having controlled arrival rate of
the customers has investigated by including the nopassing restrictions and balking
behavior of the customers. To facilitate better grade of service, the service facility
includes both permanent servers and a single additional removable server. The ser-
vice of customers is provided on the time-sharing basis with rate dependent upon the
number of customers present in the system. The performance results obtained are
computationally tractable and provide valuable information for the improvement of
day-to-day queueing scenarios encountered in time-shared system operating under
nopassing constraints. The study done is relevant and helpful for the system ana-
lysts and decision makers in designing a reliable, economical, and practical service
systems encountered in many real-life problems. The investigation can be further
extended to bulk arrivals and multi-additional server system also.
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The Effect of Vacation Interruptions
Policy on the Queueing System with Cost
Optimization

Anupama, Anjana Solanki and Chandan Kumar

Abstract This paper analyzes a model of single-server, multiple working vacations
with vacation interruption policy and general input process. In order to economize
the cost of the system, we allow the server to take multiple vacations if there is less
customer in the system waiting for the service, but it decreases the working speed
and increases the customer’s dissatisfaction in the system. This work also includes
some performance measures that are queue length waiting for the service, waiting
time and further numerical results have been given to show the effect of the measures
on the system.

Keywords Multiple working vacations · Single server · Vacation interruption
QFSM

1 Introduction

Queueing systemwith vacations makes the queueing systemmore flexible to use and
apply in computer communication system, manufacturing and production system.
In vacation queueing model, server can go on vacation after completing the service
and utilizes the idle time by simply taking a break or doing another job or doing
same job with different service rates. Extensive work in vacations may divide in two
parts. In the first part, server that takes the vacation and stops serving the customer
during the vacation period is known as classical vacation queueing theory, whereas
in the second part, server that does not stop its service completely and serve the
customer with a cheap rate is known as working vacation. Servi and Finn were the
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first to introduce multiple working vacations in 2002 [11]. Recently Goswami et al.
[5] presented analysis of GI/M(n)/1/N queue with state dependent MWV (multiple
working vacation) in 2013. Ke, J.C. [7] analyzed general input queue with N-policy
in 2003. Doshi [4] survey gives more details about this theory. Baba [1] studied
GI/M/1 model with working vacation. Banik et al. [2] worked on working vacation
and gavemany numerical results.Working vacation policy is practically applicable in
optimal design of the system. Karaesmen and Gupta [6] investigated the same model
with server vacations. Li et al. [9] analyzed the queue with memoryless working
vacations with vacation interruptions. Kumar and Arivudainambi [8] surveyed the
retrial queue with general retrial times. Further, Chao and Rahman [3] analyzed
and presented a computer algorithm for queue. General input queue with working
vacation and vacation interruption studied by Li and Tian [10].

In this paper, we analyze a model of single-server, multiple working vacations
with vacation interruption policy and general arrival process. To economize the cost
of the system, we allow the server to take multiple vacations, in case there is less
customer in the system waiting for the service, but it also affects the working of the
system. Along with the multiple working vacation policy in which customers served
with cheap service rate, we also discuss the vacation interruption policy, where the
server come back to the normal working rate immediately when number of customers
or number of jobs increases to certain level. The vacation interruption determines
when the server ends its vacation and comes back to normal service rate to the lower
service rate.

1.1 Assumptions for the Model

• Time between two arrivals are (independently and identically distributed),
• Server takes working vacation at the end of busy period,
• Customers are served by the rule “first-in-first-out” queue discipline,
• The service times are exponentially distributed.

1.2 Notations for the Model

The expressions for μ, η, and γ which are mutually independent are given as below:

μ �
K∑

n�1

μn/K ,

η �
K∑

n�1

ηn/K ,
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γ �
K∑

n�1

γn/K ,

ρ � λ/μ

μ average service rate of regular busy period,
η average service rate of MWV period,
γ average vacation rates,
A(x) cumulative density function (c.d.f) of the inter-arrival times of successive

arrival,
A*(8) Laplace Stieltjes transform (LST) of the inter-arrival times of successive

arrival, x ≥0,
p probability of taking working vacation,
q probability of vacation interruption,
μn service rate during regular busy period, if there are n customers available in

the queue before the beginning of a service 1≤n ≤K ,
ηn service rate duringmultiple working vacations, if there are n customers avail-

able in the queue before the beginning of a service 1≤n ≤K ,
γn rate of vacation times, if there are n customers available in the system 1≤n

≤K ,
Ns(t) the number of customers present in the system including the onewho involves

in service,
U(t) inter-arrival time remaining for the customer who just going to enter the

system,

X(t)−
{
0, the server is in WVperiod,

1, the server is in regular busy period.

The joint probabilities are given as

Jn,0(x, t)dx � P{ Ns(t) � n, x < U (t) ≤ x + dx, X(t) � 0}, x ≥ 0, 0 ≤ n ≤ K ,

Jn,1(x, t)dx � P{ Ns(t) � n, x < U (t) ≤ x + dx, X(t) � 1}, x ≥ 0, 1 ≤ n ≤ K ,

2 Analysis of the Model

In the following section, analytic analysis of the model GI/M/1/K/MWV has been
done using different analysis methods such as supplementary variable and recursive
techniques.

Given that Jn,j(x) are joint probabilities of n customers and the server in state of j
at an arbitrary moment. Finding LST for above set of equations,
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−θ J ∗
0,0(θ ) � μ1 J

∗
1,1(θ ) + η1 J

∗
1,0(θ ) − J0,0(0), (1)

(ηn − θ )J ∗
n,0(θ ) � ηn+1 J

∗
n+1,0(θ ) + A∗(θ )Jn−1,0(0) − Jn,0(0), 1 ≤ n ≤ N − 1, (2)

(δn − θ )J ∗
n,0(θ ) � A∗(θ )Jn−1,0(0) + pηn+1 J

∗
n+1,0(θ ) − Jn,0(0), N ≤ n ≤ K − 1,

(3)

(δK − θ )J ∗
K ,0(θ ) � A∗(θ )

(
JK−1,0(0) + JK ,0(0)

) − JK ,0(0), (4)

(μ1 − θ )J ∗
1,1(θ ) � μ2 J

∗
2,1(θ ) − J1,1(0), (5)

(μn − θ )J ∗
n,1(θ ) � μn+1 J

∗
n+1,1(θ ) + A∗(θ )Jn−1,1(0) − Jn,1(0), 2 ≤ n ≤ N − 1 (6)

(μn − θ )J ∗
n,1(θ ) � −Jn,1(0) + A∗(θ )Jn−1,1(0) + μn+1 J

∗
n+1,1(θ ) + γn J

∗
n,0(θ )

+ qηn+1 J
∗
n+1,1(θ ), N ≤ n ≤ K − 1, (7)

(μK − θ )J ∗
K ,1(θ ) � −JK ,1(0) + A∗(θ )

(
JK−1,1(0) + JK ,1(0)

)
+ γK J

∗
K ,0(θ ) (8)

With the help of above equations, we find the following results:
Lemma 1

K∑

n�0

Jn,0(0) +
K∑

n�1

Jn,1(0) � λ (9)

Proof We obtain the above result by adding Eqs. (1)–(8), and applying the limit as
θ → 0 and

∑K
n�0 Jn,0 +

∑K
n�1 Jn,1 � 1.

2.1 Recursive Method to Find the Probabilities

We find the probabilities Jn,j(0) and J*n,j(θ) using Eqs. (1)–(8) as described below:
Substituting θ � δK in (4), we obtain

0 � A∗(δK )
(
JK−1,0(0) + JK ,0(0)

) − JK ,0(0)

�> JK−1,0(0) � JK ,0(0)(1−A∗(δK ))

A∗(δK )

(10)

From (4), we have

(δK − θ)J ∗
K ,0(θ) � A∗(θ)

(
JK ,0(0)(1 − A∗(δK ))

A∗(δK )
+ JK ,0(0)

)
− JK ,0(0).

J ∗
K ,0(θ) �

(
A∗(θ) − A∗(δK )

A∗(δK )((δK − θ))

)
JK ,0(0) (11)

In similar way, substituting θ � δn, where n �K − 1,…, N in (3), we obtain
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Jn−1,0(0) � Jn,0(0) − pηn+1 J ∗
n+1,0(δn)

A∗(δn)
n � K − 1, . . . , N (12)

From (3), we have

J ∗
n,0(θ) � A∗(θ)Jn−1,0(0) + pηn+1 J ∗

n+1,0(θ) − Jn,0(0)

(δn − θ)
n � K − 1, . . . , N (13)

Substituting θ �ηn, where n �N − 1,…1 in (2), we obtain

Jn−1,0(0) � Jn,0(0) − ηn+1 J ∗
n+1,0(ηn)

A∗(ηn)
n � N − 1, . . . 1 (14)

From (2), we have

J ∗
n,0(θ) � A∗(θ)Jn−1,0(0) + ηn+1 J ∗

n+1,0(θ) − Jn,0(0)

(ηn − θ)
n � N − 1, . . . 1 (15)

Substituting θ � μK , in (8), we obtain

0 � −JK ,1(0) + A∗(μK )
(
JK−1,1(0) + JK ,1(0)

)
+ γK J

∗
K ,0(μK )

0 � −JK ,1(0) + A∗(μK )JK−1,1(0) + A∗(μK )JK ,1(0) + γK J
∗
K ,0(μK )

JK−1,1(0) � 1 − A∗(μK )

A∗(μK )
JK ,1(0) − γK J ∗

K ,0(μK )

A∗(μK )
(16)

From (8),

J ∗
K ,1(θ) � γK J ∗

K ,0(θ) + A∗(θ)
(
JK−1,1(0) + JK ,1(0)

) − JK ,1(0)

(μK − θ)
(17)

Substituting θ �μn , where n �K − 1,…, N in (7), we obtain

Jn−1,1(0) � Jn,1(0) − μn+1 J ∗
n+1,1(μn) − γn J ∗

n,0(μn) − qηn+1 J ∗
n+1,0(μn)

A∗(μn)

n � K − 1, . . . , N . (18)

From (7),

J ∗
n,1(θ) � γn J∗

n,0(θ)+μn+1 J∗
n+1,1(θ)+qηn+1 J∗

n+1,0(θ)+A∗(θ)Jn−1,1(0)−Jn,1(0)
(μn−θ)

n � K − 1, . . . , N ,
(19)
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Substituting θ = μn , where n �N − 1,…, 2 in (6), we obtain

Jn−1,1(0) � Jn,1(0) − μn+1 J ∗
n+1,1(μn)

A∗(μn)
, n � N − 1, . . . 2. (20)

From (6),

J ∗
n,1(θ) � μn+1 J ∗

n+1,1(θ) + A∗(θ)Jn−1,1(0) − Jn,1(0)

(μn − θ)
n � N − 1, . . . 2. (21)

J ∗
1,1(θ) is obtained from (5)

J ∗
1,1(θ) � μ2 J ∗

2,1(θ) − J1,1(0)

μ1 − θ
(22)

Here, J ∗
n,0(θ)(N ≤ n ≤ K ) and J ∗

n,0(θ)(1 ≤ n ≤ N − 1) for θ � δn and θ �ηn
are, respectively, given by

J ∗
K ,0(θ) � −A∗(1)(θ)

(
JK−1,0(0) + JK ,0(0)

)
, (23)

J ∗
n,0(θ) � −(A∗(1)(θ)Jn−1,0(0) + pηn+1 J

∗(1)
n+1,0(θ)), n � K − 1, . . . , N , (24)

J ∗
n,0(θ) � −(A∗(1)(θ)Jn−1,0(0) + ηn+1 J

∗(1)
n+1,0(θ)), n � N − 1, . . . , 1. (25)

Again J ∗
n,1(θ) for θ � μn are given as

J ∗
K ,1(θ) � −

(
(γK J

∗(1)
K ,0 (θ) + A∗(1)(θ)

(
JK−1,1(0) + JK ,1(0)

))
, (26)

J ∗
n,1(θ) � −

(
γn J

∗(1)
n,0 (θ) + μn+1 J

∗(1)
n+1,1(θ) + qηn+1 J

∗(1)
n+1,0(θ) + A∗(1)(θ)Jn−1,1(0)

)
,

n � K − 1, . . . , N ,

(27)

J ∗
n,1(θ) � −

(
μn+1 J

∗(1)
n+1,1(θ) + A∗(1)(θ)Jn−1,1(0)

)
, n � N − 1, . . . , 2. (28)

Hence, we can obtain Jn, j (0), j �0, 1; j ≤n ≤K , using the above expressions.

3 Relationship of Arbitrary and Pre-arrival Instant

Weassume that J∧
n, j , j�0, 1; j≤n≤K represents the pre-arrival instant probabilities,

i.e., a customer when enters the system finds n customers already exist and j state of
the server. Using Bayes’ theorem,

J∧
n, j � lim

t→∞
P[Ns(t) � n,U (t) � 0, X(t) � j]

P[U (t) � 0]
, j � 0, 1; j ≤ n ≤ K
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Using Eq. (9) in above expression, we obtain

J∧
n, j � Jn, j (0)

λ
, j � 0, 1; j ≤ n ≤ K (29)

where λ is given by Lemma.

Theorem 1 The steady-state probabilities at arbitrary epochs are given by

JK ,0 �
(

λ

δK

)
J∧
K−1,0, (30)

Jn,0 � λ

δn

⎡

⎣J∧
n−1,0 +

(
qηn+1 − γn+1

δn+1

)
J∧
n,0 +

K−1∑

j�n+1

(
qη j+1 − γ j+1

δ j+1

)

×
j∏

s�n+1

(
pηs
δs

)
J∧
s,0

]

n � K − 1, K − 2, . . . , N , (31)

Jn,0 � λ

ηn

⎡

⎣J∧
n−1,0 +

(
γN

δN

)
J∧
N−1,0 +

(
qηN+1 − γN+1

δN+1

)
J∧
N ,0 +

K−1∑

j�N

(
qη j+1 − γ j+1

δ j+1

)

×
j∏

s�N

(
pηs
δs

)
J∧
s,0

]

n � N − 1, . . . , 1 (32)

JK ,1 � λ

μK

[(
γK

δK

)
J∧
K−1,0 + J∧

K−1,1

]
(33)

Jn,1 � λ

μn

⎡

⎣J∧
n−1,1 +

(
γn

δn

)
J∧
n−1,0 −

K−1∑

j�n

(
qη j+1 − γ j+1

δ j+1

)
×

j∏

s�N

(
ps−nηs

δs

)
J∧
s,0

⎤

⎦

n � K − 1, K − 2, . . . , N , (34)

Jn,1 � λ

μn

⎡

⎣J∧
n−1,1 +

(
γN

δN

)
J∧
N−1,0 −

K−1∑

j�N

(
qη j+1 − γ j+1

δ j+1

)
×

j∏

s�N

(
ps−nηs

δs

)
J∧
s,0

⎤

⎦

n � N − 1, N − 2, . . . , 2 (35)

J1,1 � λ

μ1

⎡

⎣
(

γN

δN

)
J∧
N−1,0 −

K−1∑

j�N

(
qη j+1 − γ j+1

δ j+1

)
×

j∏

s�N

(
ps−nηs

δs

)
J∧
s,0

⎤

⎦ (36)

J0,0 � 1 −
K∑

n�1

(
Jn,0 + Jn,1

)
(37)
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Putting θ � 0 in (2)–(8) and using (29), we find the relations (30)–(36) and using
the normalization condition J0,0 is obtained from (37).

4 System Measures

Since the steady-state probabilities at different instant are known, we can obtain the
various system measures of the queue easily as below:

Average queue length in the system (Ls) � ∑K
i�1 i

(
Ji,0 + Ji,1

)

Average queue length in the system during service period
(
Lq

) �∑K
i�1 (i − 1)

(
Ji,0 + Ji,1

)

Average queue length in the system during working vacation (Lwv) � ∑K
i�0 i Ji,0

Average waiting time of a customer in the queue
(
Wq

) � Lq
λ∧

Average waiting time of a customer in the system (Ws) � Ls
λ∧

The probability of loss or blocking Ploss � J∧
K ,0 + J∧

K ,1

where λ∧ � λ(1 − Ploss) is the arrival rate.

5 Cost Model

We express an expected cost function per unit time in which the average service rate
during working vacation (η) is the decision variable. Let

Cbp ≡ cost of regular busy period per unit time,
Cwv ≡ cost of WV period per unit time,
Cq ≡ cost for a customer waiting in the queue per unit time,
Cb ≡ cost when a customer is lost due to blocking per unit time

The total expected cost function per unit time according to the definitions of each
cost element is given by

Minimize : C(η) � Cbpμ + Cwvη + CqLq + CbPloss.

The aim is to evaluate mean service rate of vacation (η*) which minimizes the
cost function C(η). We applied QFSM to solve the above optimization problem.

6 Numerical Results

System parameters are taken as K �12, N �6, ρ � 0.5 and for 1≤n ≤K , μn �
ln(n + 0.3), ηn � ln(n + 0.1), and γn � ln(n + 0.2) with means μ �1.59681, η �
1.55021, and γ �1.57430, respectively. The cost elements are taken as Cbp �15,
Cwv �12, Cq �20, Cb �10, and stopping tolerance ∈ �10−4.
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Table 1 presents the observations that as q increases, the system characteristics
increase and model of VI results good than the model with no VI as expected in real-
world problems. Table 2 shows the effect of η on multiple working vacations with
vacation interruption and multiple working vacations without vacation interruption.
It is more clear through the visualization of the data by Fig. 1.

Table 1 Performance characteristics of E2/M(n)/1/12 queue with λ �0.80862

q �0 q �0.2 q �0.4 q �0.6 q �0.8 q �1

Lq 1.22254 1.22261 1.22269 1.22281 1.22292 1.22306

Ls 2.15649 2.15658 2.15668 2.15679 2.15692 2.15708

Ploss 0.00002 0.00002 0.00002 0.00002 0.00002 0.00002

Wq 1.51194 1.51204 1.51214 1.51224 1.511236 1.51254

Ws 2.66696 2.66708 2.66721 2.667342 2.66749 2.66765

Table 2 Effect of η on MWV and MWV-VI

η MWV-VI (Lq) MWV (Lq)

1.551 1.475 1.481

1.565 1.469 1.476

1.578 1.463 1.469

1.591 1.458 1.462

1.605 1.453 1.556

1.62 1.4504 1.4504

Fig. 1 Impact of η on Lq
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Figure 1 depicts the effect of η on average queue length (Lq) in models of VI
and with no VI for inter-arrival time distribution. Here, curve B represents multiple
working vacations and curve C represents multiple working vacations with vacation
interruption. We observe that as η increases Lq decreases and Lq converges to the
same value as η approaches μ. Further, the model with vacation interruption yields
lower queue lengths compared to model without vacation interruption.

Figure 2 shows the impact of threshold value (N) onWq waiting time in models.
It appears from the figure thatWq increases with the increase ofN in both the models
with and without vacation interruption. This trend is because as N increases more
customers are required for vacation interruption resulting in increase of waiting time.

Table 2 presents the effect of η on the total expected cost function f (η) for expo-
nential inter-arrival time distribution, and constant service rate of regular busy period,
and vacation period alsoμ �2.4, γ �0.6, and λ �1.4. Quadratic fit square method is
taken into account to find the optimal η* and the optimal cost function f (η*) (Table 3).

Fig. 2 Effect of threshold value

Table 3 Optimum service rate during working vacation period (η*)

ηa ηb ηc f (ηa) f (ηb) f (ηc) ηq f (ηq)

2.4 2.5 2.6 124.298 124.282 124.312 2.4234 124.270

2.4 2.4234 2.5 124.298 124.270 124.275 2.4221 124.270

2.4 2.4221 2.4234 124.298 124.270 124.270 2.4127 124.270

2.4 2.4127 2.4221 124.298 124.270 124.270 2.4219 124.270

2.4127 2.4219 2.4221 124.270 124.270 124.270 2.4219 124.270
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Fig. 3 Impact of η on f (η)

From Fig. 3, choosing the initial three-point pattern as (ηa, ηb, ηc) �
(2.4, 2.5, 2.6), QFSM is used for obtaining the optimal η. With the help of Table 2,
one can observe that after five iterations, minimum expected cost per unit time is
given as f (η*)�124.270 for η* �2.4219.

7 Conclusions

This chapter carried out an analysis of G1/M(n)/1/K model with multiple work-
ing vacations, vacation interruption with N-policy. Along with various performance
measures, cost optimization problem is also done using QFSM. Numerical illustra-
tions are reported to demonstrate how the various model parameters of the system
influence the behavior of the system. Finally, we conclude that queue with vacation
interruption and N-policy yield lower queue lengths and hence perform better due to
the fact of the vacation interruption during working vacation.
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Balking Strategies for a Working
Vacation Priority Queueing System
with Two Classes of Customers

Anamika Jain and Madhu Jain

Abstract In this investigation,we develop a single unreliable server queueingmodel
with working vacation and two classes of customers. The class P1 customers have
higher priority in comparison with class P2 customers, each having its own respec-
tive line. Within a priority class, the service discipline is FCFS. To deal with realistic
situation, some specific forms of balking behavior are considered. The lower priority
customers observe the queue and decide whether join the queue or balk, depending
upon the number of customers existing in the system. During the working vaca-
tion, the server continues the job with lower service rate rather than fully stopping
the service. When the server is in working mode, at any instant breakdowns may
occur randomly. The breakdown server is instantaneously sent for repair at the repair
facility. The arrivals of priority and non-priority customers are independent Pois-
son processes. The service times and the working vacation times are exponentially
distributed and indistinguishable from the respective priority classes. Thematrix ana-
lytic method is implemented to obtain steady-state probability vectors. The expected
waiting times of each class of customers in both queues are derived. For getting insight
about the total number of customers in the system, numerical results are obtained
which are also examined to facilitate the sensitivity analysis of system descriptions.

Keywords Preemptive priority · Working vacation · Balking · Unreliable server
Matrix analytic method · Queue size
1 Introduction

In the classic priority queues, the customers are categorized based on their require-
ment or type of customers and then placed into different priority groups. Among
each of priority class, the customers are scheduled in FIFO order. In a preemptive
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priority queueing system, the service of a customer is interrupted when a customer
of higher priority class arrives. In preemptive resume priority system, the customer,
whose service was interrupted, begins service from the point of interruption, as soon
as all customers of higher priority have been served. There are many applications
of the priority queueing models in computer and communication networks, i.e., in a
packet switching network, the control packets that carry virtual instructions for the
network operations are usually transmitted with a higher priority than that of data
packets. Another example would be of the multimedia system in which the voice and
data are carried in the same network; the voice packets may have accorded a higher
priority than that of the data packets owing to real-time requirements. Heijden et al.
[9] discussed Markovian multi-class queues with preemptive priorities associated
with higher priority class customers. Derbala [2] studied an operating system by
including the noble feature of priority queueing model. Dudin et al. [4] proposed the
retrial priority queueing model in which they considered the reservation of servers
with varying numbers.

It is seen that manufacturing/production systemmay not operate during the period
of breakdown with full capacity and may lead to the loss in profit, production, and
reputation. The queueing systems under random breakdown by developing priority
models have also been studied by a few researchers in different frameworks. Grey
et al. [6, 7] developed a queueingmodel with backup servers and service breakdowns.
The method for the analysis of the queue length distribution was based on matrix
geometric approach.

The customer’s behavior is also very important in the study of queues. In the
queueing system with discouragement, the customers either may not like to join the
queue or may leave the system due to the impatience after joining it without getting
service. In case of long queue, the balking behavior of the customers prevails due
to which they cannot wait and thus do not join the queue. The behavior of the low
priority customers can be treated to be discouraged as their queue becomes longer. In
queueing literature, some researchers have investigated queueingmodels by incorpo-
rating the balking probability in their models. Drekic and Douglas [5] considered the
balking behavior in a preemptive priority queue to determine the steady-state joint
distribution of both types of customers in the system. Al-Seedy et al. [1] analyzed the
multi-server queueing model with discouragement by considering both balking and
reneging and obtained transient solution. A few authors have paid attention toward
the working vacation queueing models in which the server is allowed to do some
ancillary work in vacation period with different service rate; such problems can also
realize in many industrial organizations including the manufacturing, production,
transportation. Dimitriou [3] analyzed unreliable server queue with mixed priority,
retrial attempts, and multiple vacations and obtained the stochastic decomposition
results. Zhang et al. [13] proposed the work for Markovian queues with working
vacations under equilibrium strategies for balking. Guha et al. [8] gave some balking
strategies in working vacation queueing models with renewal input batch arrival by
considering different cases for the equilibrium customer strategies. Yang et al. [12]
analyzed working vacation queue with N-policy and server breakdowns and also
suggested methodology to optimize the cost. Sun et al. [11] gave the different poli-
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cies of equilibrium to study the optimal balking strategy of customers in Markovian
queues where at least N-customers are accumulated in the queue after completion
the vacation before starting of the service again.

In this present study, we consider a single unreliable server queueing system with
balking and two classes of customers. The queueingmodel with priority, balking, and
server breakdown can be considered as the extension of Drekic and Douglas (2005)’s
model in which they have not taken the server’s breakdown into consideration. The
two categories of customers arriving in Poisson fashion from different arrival rates
and having different general service distribution are considered. The type-1 cus-
tomers have preemptive priority over type-2 customers and are served according to
FCFS rule in their respective classes. The probabilities of the number of customers
in the queue in equilibrium state and the stability condition are obtained using the
matrix geometric analytical approach. The remaining of the paper is organized as
follows. In Sect. 2, the mathematical model is described by describing the requisite
assumptions and notations. For the queueing analysis of the proposed models, the
global balance equations are constructed in Sect. 3. In Sect. 4, the steady-state proba-
bilities are obtained by employing matrix geometric approach. Various performance
measures are also established in terms of probabilities. A numerical example is given
in Sect. 5. The sensitivity analysis is done in the next Sect. 6, in order to present the
effect of different parameters on the system performance. Finally, Sect. 7 summarizes
the investigation carried out in the paper and further draws the conclusions related
to the works presented.

2 Model Description

In the presentmodel, we consider two streams of customers, i.e., class p1 (with higher
priority) and the class p2 (with lower priority). The service discipline among two
classes is assumed to be governed by preemptive priority, i.e., higher priority class (p1
type) customers can terminate the service of non-priority class (p2 type) customers.
However, inside the same class, the customers are provided service according to
the first-come-first-served order. When the server returns back from vacation and if
the queue is not empty, the first queued customers from the high priority class are
selected to be served; otherwise, the low priority customers (i.e. p2 type) are served
in FCFS manner. In such a way, if there are no customers present in the class p2,
then the server moves to a functioning (working) vacation mode for a random length
V . During the working vacation, the server is available to work in operational mode
with lower speed and renders the service if any arrival enters during the vacation
period. In other way, if the system becomes empty (there are no class p1 and class
p2 customer), then it goes for complete vacation.

The non-priority customers are assumed to follow the specific balking strategies
and decide whether balk or join the queue based on information regarding the system
size. The server is not reliable as such, may break down randomly during its busy
period.When the server breakdown, it is sent for repair immediately. The life time and
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the repair time of the server are exponentially with parameter α and β, respectively.
Class p1 customers are serviced at the service rate μ1, and the class p2 customers
are served at the rate μ2, i (μ2Vi ) during the normal (working vacation) period with
depending on the queue size ‘i’ of class p2 customers. The class p1 customers arrive
in Poisson fashionwith arrival rate λ1 in normal operation period, during the vacation
they arrive with rate λV , whereas class p2 customers arrive in Poisson fashion with
queue size-dependent rate due to the balking behavior of customers in both the states
(busy and working vacation) and is given by

λ2i �
{

λ2 θi ; 0 ≤ i < Ns

0; i ≥ Ns
, λ2 V i �

{
λ2V θli ; 0 ≤ i < Ns

0; i ≥ Ns

Here Ns is the buffer size for class p2 customers, where Ns ∈ Z+. Also, λ2 > 0 is
a given parameter; θ i is a balking parameter and the server proceeds for the working
vacation for exponential distributed durationwith parameter η to class p2. The service
rate of class p2 customers is given by

μ2i �
{

μ; 0 ≤ i < θ

μ(1 + ε); θ ≤ i ≤ Ns
, μ2Vi

�
{

μ2V ; 0 ≤ i < θ

μ2V (1 + ε); θ ≤ i ≤ Ns

Let the total number of class p1 and class p2 customers in the system be denoted by
Np1 and Np2 , respectively. We assume that Np1 ≥ 0, i.e., infinite buffer size for class
p1 customers and 0 ≤ Np2 ≤ Ns , θ is a threshold point and ε is fractional service
rate. In this present work, following two specific balking functions are considered:

I. Fractional balking function: θi � 1
i+1

II. For exponential balking function, θi � e−δi ; δ > 0

3 The Global Balance Equations

LetPT � [
PT
0 ,PT

1 ,PT
2 , . . . . . . .,P

T
n , . . . . . .

]
be the probability vector at steady state.

Also, the probability vector for state ‘n’ is

PT
n �[

PTn,0,0,P
T
n,0,1,P

T
n,0,2 . . . ,PTn,0,Ns

,PTn,1,0,P
T
n,1,1,P

T
n,1,2 . . . ,

PTn,1,Ns
,PTn,2,0,P

T
n,2,1,P

T
n,2,2 . . . ,PTn,2,Ns

]
; n ≥ 0

The triplet (n, m, k) is used for indexing the probabilities, where n is the number
of class p1 customers; m defines the states of the server and takes values 0, 1, 2; k is
used for number of class p2 customers in the system. The server state at time ‘t’ is
defined as
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G(t) �

⎧⎪⎨
⎪⎩
0; server in operating state

1; server in under repair state

2; server in working vacation mode

The global balance equations can be written as:

PT
0 A00 + PT

1 B00 � 0T (1)

PT
0 C00 + PT

1 A0 + PT
2 B0 � 0T (2)

PT
n−1 B0 + PT

n A0 + PT
n+1 C0 � 0T; n > 1 (3)

where 0T is a (Ns +1) order column vector of zeros. It can be verified that the system
under deliberation is a quasi-birth death process with the infinitesimal generator

Q �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

A00 B00

C00 A0 B0

C0 A0 B0

. . .

. . .

. .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4)

Let the balance equations C00U+A0U +B0U�A, then AINs+1 �0 and A00U+
B00U�0 where U is the column vector defined as U� [1, 1, 1,……]T and 0 is the
square matrices of order (Ns + 1). For bravely, denote 	i � (λ1 + λ2i ); i ≥ 0,

i � (

λV + λ2Vi

)
; i ≥ 0, ∇i � (

μV + μ2Vi

)
; i ≥ 0. The sub-matrices are

B00 � diag
[�Ns×(Ns+1), 0Ns×(Ns+1), λVINs+1

]
, C00�

[
ς00 τ00

0 0

]
3(Ns+1)×(3Ns+1)

,

ω00�
[

μ1 0

0 0

]
(Ns+1)×(Ns+1)

, ς00 � diag
[
�(Ns+1)×Ns , 0(Ns+1)×Ns

]
,

� � [
0, diag (λ1)

]
Ns×(Ns+1)

, τ00�
[

ω00

0

]
2(Ns+1)×(Ns+1)

A00�
[
D00 T00

M00 D01

]
(3Ns+1)×(3Ns+1)

, D00 �
⎡
⎣DB

01 U
B
0

LB
0 DB

0

⎤
⎦

2Ns×2Ns

,
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� �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 .. .. 0
μ1 0 0 .. .. 0

0 μ1 0 .. .. 0
.. .. .. .. .. ..

.. .. .. .. .. ..

0 0 0 .. .. 0
0 0 0 .. .. μ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(Ns+1)×Ns

DB01 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(
�1 + μ21 + α

)
λ21 0 . . . . . . 0 0

μ22 −(
�2 + μ22 + α

)
λ22 . . . . . . 0 0

0 μ23 −(
�3 + μ23 + α

)
. . . . . . 0 0

.. .. .. . . . . . . .. ..

.. .. .. . . . . . . .. ..

0 0 0 . . . . . . −
(
�N−1 + μ2(Ns−1) + α

)
λ2(Ns−1)

0 0 0 . . . . . . μ2Ns −
(
�Ns + μ2Ns + α

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ns×Ns

DB
0 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(λ21 + β) λ21 0 . . . . . . 0 0

0 −(λ22 + β) λ22 . . . . . . 0 0

0 0 −(λ23 + β) . . . . . . 0 0

.. .. .. . . . . . . .. ..

.. .. .. . . . . . . .. ..

0 0 0 . . . . . . −(
λ2(Ns−1) + β

)
λ2(Ns−1)

0 0 0 . . . . . . 0 −(
λ2Ns + β

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ns×Ns

UB
0 � αINs , LB

0 � βINs , T00�
[
U00

0

]
2Ns×(Ns+1)

, M00�
[
L00 0

]
(Ns+1)×2Ns

,

U00 �
[

μ21 0

0 0

]
Ns×(Ns+1)

D01 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−
0 λV0 0 . . . . . . 0 0

μ2V1
−(


1 + μ2V1
+ η

)
λV1 . . . . . . 0 0

0 μ2V2
−(


2 + μ2V2
+ η

)
. . . . . . 0 0

.. .. .. . . . . . . .. ..

.. .. .. . . . . . . .. ..

0 0 0 . . . . . . −
(

Ns−1 + μ2VNs−1

+ η
)

λVNs−1

0 0 0 . . . . . . μ2VNs
−

(

Ns + μ2VNs

+ η
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(Ns+1)×(Ns+1)

B0 � diag
[
λ1INs+1, 0Ns+1, λVINs+1

]
,C0 � diag

[
μ1INs+1, 0N+1, 0Ns+1

]
,
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A0 �
[
D10 0

M10 D20

]
(3Ns+3)×(3Ns+3)

, D10 �
⎡
⎣DB

10 U
B
10

LB
10 DB

20

⎤
⎦

2(Ns+1)×2(Ns+1)

UB
10 � αI Ns+1, L

B
10 � βI Ns+1,

M10 �
[
L10 0

]
(Ns+1)×2(Ns+1)

, L10 � diag[η,η, . . . . . . ,η](Ns+1)×(Ns+1),

L00 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 .. .. 0
η 0 0 .. .. 0

0 η 0 .. .. 0
.. .. .. .. .. ..

.. .. .. .. .. ..

0 0 0 .. .. 0
0 0 0 .. .. η

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(Ns+1)×Ns

DB10 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(
�0 + μ1 + α

)
λ20 0 . . . . . . 0 0

0 −(
�1 + μ1 + α

)
λ21 . . . . . . 0 0

0 0 −(
�2 + μ1 + α

)
. . . . . . 0 0

.. .. .. . . . . . . .. ..

.. .. .. . . . . . . .. ..

0 0 0 . . . . . . −
(
�Ns−1 + μ1 + α

)
λ2(Ns−1)

0 0 0 . . . . . . 0 −
(
�Ns + μ1 + α

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(Ns+1)×(Ns+1)

DB
20 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(λ20 + β) λ20 0 . . . . . . 0 0

0 −(λ21 + β) λ21 . . . . . . 0 0

0 0 −(λ22 + β) . . . . . . 0 0

.. .. .. . . . . . . .. ..

.. .. .. . . . . . . .. ..

0 0 0 . . . . . . −(
λ2(Ns−1) + β

)
λ2(Ns−1)

0 0 0 . . . . . . 0 −(
λ2Ns + β

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(Ns+1)×(Ns+1)

D20 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(
0 + μV + η) λV0 0 . . . . . . 0 0

μ2V1
−(
1 + ∇1 + η) λV1 . . . . . . 0 0

0 μ2V2
−(
2 + ∇2 + η) . . . . . . 0 0

.. .. .. . . . . . . .. ..

.. .. .. . . . . . . .. ..

0 0 0 . . . . . . −(

Ns−1 + ∇Ns−1 + η

)
λVNs−1

0 0 0 . . . . . . μ2VNs
−(


Ns + ∇Ns + η
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(Ns+1)×(Ns+1)
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4 The Steady-State Probability Vector of Queue Length

To establish the analytical results under which the stationary probability exists, we
outline the theorem of Neuts [10] as follows:

Theorem 1 The continuous-time Markov chain described above is positive recur-
ring if and only if the marginal nonnegative solution R to the matrix quadratic
equation (cf. see Neuts [10], Theorem 3.1.1)

R2C0 + RA0 + B0 � 0, (5)

has all its eigenvalues within the unit disk, i.e., sp(R)<1, and the finite system of
equations {

PT
0 (A00 + RB00) � 0.

PT
0 (I − R)−1UNs+1 � 1.

(6)

has a (unique) positive solution PT
0 where U� [1, 1, ……,1]T. The stationary prob-

ability vector is given by

PT
n � PT

0 Rn ; n ≥ 0. (7)

The (Ns +1) × (Ns +1) order matrix R is the key matrix which can be further used
to determine the queue size distribution and other measures of system performance.
We compute R by the following iterative procedure:

R(0) � 0.

R(n + 1) � −B0A
−1
0 − R2(n)C0A

−1
0 ; n ≥ 0 (8)

Performance Indices:

Many performance measures and probabilities characterizing the system can be
derived from the probability vectors evaluated and are given by

• The total number of customers in the system is

E(Q) �
Ns∑
i�0

∞∑
n�0

n
(
Pn,0,i + Pn,1,i + Pn,2,i

)
(9)

• Throughput is obtained using

T (P) �
(

Ns∑
i�1

μ2,i P0,0,i +
Ns∑
i�1

∞∑
n�0

μ1Pn,0,i +
Ns∑
i�1

μ2,Vi P0,2,i +
Ns∑
i�1

∞∑
n�0

μV Pn,2,i

)

(10)
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• Expected waiting time is

E(W ) � E(Q)

λeff
(11)

where

λeff �
Ns∑
i�0

∞∑
n�0

(λ2i + λ1)Pn,0,i +
Ns∑
i�0

∞∑
n�0

(
λ2Vi + λV

)
Pn,2,i (12)

• Average delay is computed using

D � E(Q)

T (P)
(13)

5 Numerical Illustration

Based on performance analysis detailed in Sects. 3 and 4, we validate the tractability
of matrix geometric approach by taking a numerical example. MATLAB software
has been used to develop the computer program for fixed parameter values chosen
as

Ns � 5, λ1 � 0.5, λ2 � 2, λV � 0.5, λ2V � 0.8, μ1 � 15, μ � 20, ε � 1,

μV � 2, θ � 2, μ2V � 5, δ � 1, α � 0.5, β � 15, η � 0.5

The sub-matrices D00, D01, D0, and the nonnegative square matrix R are evaluated
for default parameters as

D00 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−21.0996 0.0996 0 0 0 0.5000 0 0 0 0

20.0000 −21.0050 0.0050 0 0 0 0.5000 0 0 0

0 20.0000 −21.0002 0.0002 0 0 0 0.5000 0 0

0 0 20.0000 −41.0000 0.0000 0 0 0 0.5000 0

0 0 0 40.0000 −41.0000 0 0 0 0 0.5000

15.0000 0 0 0 0 −15.0996 0.0996 0 0 0

0 15.0000 0 0 0 0 −15.0050 0.0050 0 0

0 0 15.0000 0 0 0 0 −15.0002 0.0002 0

0 0 0 15.0000 0 0 0 0 −15.0000 0.0000

0 0 0 0 15.0000 0 0 0 0 −15.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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D10 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−16.0996 0.0996 0 0 0 0 0.5000 0 0 0 0 0

0 −16.0050 0.0050 0 0 0 0 0.5000 0 0 0 0

0 0 −16.0002 0.0002 0 0 0 0 0.5000 0 0 0

0 0 0 −16.0000 0.0000 0 0 0 0 0.5000 0 0

0 0 0 0 −16.0000 0.0000 0 0 0 0 0.5000 0

0 0 0 0 0 −15.5000 0 0 0 0 0 0.5000

15.0000 0 0 0 0 0 −15.0996 0.0996 0 0 0 0

0 15.000 0 0 0 0 0 −15.0050 0.0050 0 0 0

0 0 15.0000 0 0 0 0 0 −15.0002 0.0002 0 0

0 0 0 15.0000 0 0 0 0 0 −15.0000 0.0000 0

0 0 0 0 15.0000 0 0 0 0 0 −15.0000 0.0000

0 0 0 0 0 15.0000 0 0 0 0 0 −15.0000

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

D01 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−1.3679 0.3679 0 0 0 0
5.0000 −6.6353 0.1353 0 0 0

0 5.0000 −6.5498 0.0498 0 0
0 0 5.0000 −6.5183 0.0183 0
0 0 0 5.0000 −6.5067 0.0067
0 0 0 0 5.0000 −5.5000

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

D20 �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−3.8679 0.3679 0 0 0 0
5.0000 −8.6353 0.1353 0 0 0

0 5.0000 −8.5498 0.0498 0 0
0 0 5.0000 −8.5183 0.0183 0
0 0 0 5.0000 −8.5067 0.0067
0 0 0 0 5.0000 −7.5000

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

R �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.0331 0.0002 0.0000 0.0000 0.0000 0.0000 0.0011 0.0000 0.0000 0.0000 0.0000 0.0000 0 0 0 0 0 0

0 0.0333 0.0000 0.0000 0.0000 0.0000 0 0.0011 0.0000 0.0000 0.0000 0.0000 0 0 0 0 0 0

0 0 0.0333 0.0000 0.0000 0.0000 0 0 0.0011 0.0000 0.0000 0.0000 0 0 0 0 0 0

0 0 0 0.0333 0.0000 0.0000 0 0 0 0.0011 0.0000 0.0000 0 0 0 0 0 0

0 0 0 0 0.0333 0.0000 0 0 0 0 0.0011 0.0000 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0.0126 0.0007 0.0000 0.0000 0.0000 0.0000 0.0004 0.0000 0.0000 0.0000 0.0000 0.0000 0.2738 0.0118 0.0002 0.0000 0.0000 0.0000

0.0083 0.0049 0.0001 0.0000 0.0000 0.0000 0.0003 0.0002 0.0000 0.0000 0.0000 0.0000 0.1600 0.1238 0.0020 0.0000 0.0000 0.0000

0.0055 0.0033 0.0045 0.0000 0.0000 0.0000 0.0002 0.0001 0.0001 0.0000 0.0000 0.0000 0.0939 0.0726 0.1185 0.0007 0.0000 0.0000

0.0037 0.0022 0.0030 0.0045 0.0000 0.0000 0.0001 0.0001 0.0001 0.0001 0.0000 0.0000 0.0552 0.0427 0.0697 0.1180 0.0003 0.0000

0.0025 0.0015 0.0020 0.0030 0.0045 0.0000 0.0001 0.0000 0.0001 0.0001 0.0001 0.0000 0.0324 0.0251 0.0410 0.0694 0.1178 0.0001

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Further probabilities are obtainedwhich are used to calculate various performance
measures given in Eqs. (9)–(13) as
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Fig. 1 E(Q) versus λ2 for exponential balking case with variation (a) δ (b) η (c) ε (d) θ

E(Q) � 34.9953, T (P) � 53.4308, E(W ) � 2.224952, D � 0.6550.

6 Sensitivity Analysis

In order to reconnoiter the effect of different parameters on various system’s per-
formance measures, we facilitate the sensitivity analysis when the value of one or
more parameters vary and the rest parameter values remain unchanged according to
default values as fixed in numerical illustration given in the previous section.

For exponential balking case in Fig. 1a–d, the graphs ofE(Q) are plotted to see the
effect of parameter λ2 on the horizontal axis. It is observed thatE(Q) increases almost
linearly for the value of λ2. Figure 1a exhibits the decreasing trend with respect to
δ, which is quite obvious. Figure 1b illustrates the variation of E(Q) for different
values of η and indicates the increasing pattern with respect to η. In Fig. 1c, we note
that E(Q) decreases with the increase in ε. Figure 1d depicts that E(Q) increases as
θ increases.

7 Discussion

Priority queues arise quite often in many real-life queueing applications. In clas-
sic priority queues, the customers are placed into different priority classes. In this
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paper, we have analyzed an unreliable server preemptive priority queueing system
with working vacation by considering some balking strategies of the customers. The
computational procedure involves a number of matrix inversions, but by noticing
that the matrices to be inverted are tri-diagonal block matrix to determine the queue
length distribution, the matrix geometric method is employed.

The incorporation of balking parameter seems to be fitted in many real-life con-
gestion situations. Sensitivity analysis provided can be further utilized for the pre-
diction of various systems performance indices so that some observations may be
implemented to improve the grade of the service of the real time system.
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MX/G/1 Queue with Optional Service
and Server Breakdowns

Charan Jeet Singh and Sandeep Kaur

Abstract In the present study, a single server queueing system with batch arrivals
of the units is considered. The provision of optional service after availing essential
service is available in the system, and it is assumed that the server may break down
during any stage of the service of the units and provides the repair facility immedi-
ately. The server may also avail the vacation under Bernoulli vacation policy after
completion of the service of the units. The supplementary variable approach with
probability generating functions is applied to analyze the system to find the sys-
tem performance characteristics. The numerical illustration is considered to obtain
the system state probabilities and queueing/reliability indices to study the effect of
system parameters on the various performance measures.

Keywords Batch arrival · Optional service · Server breakdown
Bernoulli vacation · Reliability

1 Introduction

In mathematical analysis of queueing models, the effects of design, configuration,
and implementation of the problems are encountered in many daily routine activi-
ties as well as industrial scenario including computer networks and other operating
systems. The service phenomena of the system have significant place in queueing
modeling, which includes various kinds of services such as single service, optional
service, and phases service. Due to unpredictable breakdowns of the server, the ser-
vice interruption can be experienced in various practical situations. In real practice,
the server may break down and stops the service of the units of the queue during any
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stage of the service. The failed server needs to be repaired immediately and becomes
ready to resume its work effectively.

Themechanism of the vacation policy of the server is realistic and can be observed
in various real-time activities. The server may go for essential/optional vacation as
per the certain vacation policy for the random period of time when no units are
present in the system. On return of the vacation, if at least one unit is present in
the queue, the server begins the service. If there is no unit in the queue, the server
may avail the facility of a sequence of vacations for the period till the system is
empty. The models of queueing problems with vacations provide the performance
prediction of production and flexible manufacturing systems wherein the machines
may undergo for the preventive maintenance with fixed period to achieve the optimal
outputs. During this vacation time period, the units of the queue will have to wait.

An extensive survey on queueing problems with different variations can be
searched in the literature. The detailed accounts of analysis of stochastic models
are due to research works on optional service with unreliable server and vacation
policy. In the recent past, several researchers have contributed significantly in this
direction. Choudhury and Deka [1] have discussed a M/G/1 model in which they
have assumed that the units arrive one by one with homogeneous arrival rate to get
for two phases of essential service, and the server may break down at any instant of
the service. Singh et al. [2] have developed the MX/G/1 model of queueing system
with state-dependent arrival rates under deterministic vacation policy and analyzed
the queue size distribution and various performance indices of the system by using
the supplementary variable approach. Chakravarthy [3] studied a single server queue
with the essential/optional service and analyzed the model using supplementary vari-
able approach. Jain and Bhagat [4] have described the model for retrial bulk input
queueing system with k-essential phases of service provided to all customers by the
server under the modified vacation policy with the assumption that the server may
break down at any instant of the service.Wang [5] investigated the single arrival unre-
liable queueing system with general distributed service time under the randomized
vacation policy. In this study, they have used the supplementary variable technique
to obtain the performance indices of the system. In a survey on working vacation in
many situations of queueing models, Chandrasekaran et al. [6] have presented the
wide applications of different models with variations of behavior of the queueing
systems. Recently, Lan and Tang [7] have investigated the queueing system under
the assumption that service station may be subject to failures at random and optional
services with D-policy.

2 Mathematical Model

Consider an unreliable single server queue with batch arrival of size (ck) and arrival
rates of the units λ, λ0 � λb, λ1 � λb1 and λ2 � λb2, in terms of respective joining
probabilities b, b1 and b2 in busy, vacation, and repair states. The server provides the
first essential services as well as one of the m optional services to each arriving unit,
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with respective distribution functions B0(x) and Bi (x); i � 1, 2, . . . ,m. After all
the unit served, the server may avail the vacation facility with distribution function
V (x). It is considerable that server may fail at any stage of the essential/optional
service and undergoes for the repair immediately with distribution functions G0(x)
and Gi (x). The kth moment of repair time is assumed to be g(k)0 and g(k)i when server
fails during essential/optional service. The probabilities to opt ith optional service
and optional vacation are described as ri and p, respectively. It is also assumed that at
time t, the queue size of the system is Nq (t) with respective elapsed times of essential
(ith optional service), vacation time, and repair time of failed units during essential
(ith optional service) are identified as B0

0 (t)(B
0
i (t)), V

0(t) and G0
0(t)(G

0
i (t)). It is

also noticed that Ū (·) is considered as Laplace–Stieltjes transform (LST) of U (∗)
with usual parameters. It is noted that after completion of any stage of service, if
served unit is not satisfied, the unit may immediately join the tail of the original
queue as a feedback customer for receiving another regular service with probability
θ (0 ≤ θ ≤ 1); or it may depart from the system with probability (1 − θ ).

To analyze the model, the limiting probabilities are defined as follows:

P (0)
0 (t) � Prob.{Nq (t) � 0, X (t) � 0}; (1.1)

P (0)
n (x, t) � Prob.{Nq (t) � n, X (t) � B0

0 (t); x ≤ B0
0 (t) ≤ x + dx}; x > 0, n ≥ 0,

(1.2)

P (i)
n (x, t) � Prob.{Nq (t) � n, X (t) � B0

i (t);

x ≤ B0
i (t) ≤ x + dx}; x > 0, n ≥ 0, 1 ≤ i ≤ m, (1.3)

Vn(y, t) � Prob.{Nq (t) � n, X (t) � V 0(t); y ≤ V 0(t) ≤ y + dy}; y > 0, n ≥ 0,

(1.4)

R(0)
n (x, y, t) � Prob.{Nq (t) � n, X (t) � R0

0(t);

y ≤ R0
0(t) ≤ y + dy/B0

0 (t) � x}; x > 0, n ≥ 0, (1.5)

R(i)
n (x, y, t) � Prob.{Nq (t) � n, X (t) � R0

i (t);

y ≤ R0
i (t) ≤ y + dy/B0

i (t) � x}; x > 0, n ≥ 0, 1 ≤ i ≤ m, (1.6)

The hazard functions and probability generating functions of the system at dif-
ferent service states are as follows:

μi (x)dx � dBi (x)

1 − Bi (x)
, ν(y)dy � dV (y)

1 − V (y)
, gi (y)dy � dGi (y)

1 − Gi (y)
; 0 ≤ i ≤ m. (2.1)

R(i)(x, y, z) �
∞∑

n�0

zn R(i)
n (x, y); R(i)(x, 0, z) �

∞∑

n�0

zn R(i)
n (x, 0); P(i)(x, z) �

∞∑

n�0

zn P(i)
n (x);

P(i)(0, z) �
∞∑

n�0

zn P(i)
n (0); V (y, z) �

∞∑

n�0

znVn (y); V (0, z) �
∞∑

n�0

znVn (0). (2.2)



180 C. J. Singh and S. Kaur

3 Analysis

Consider the stochastic model, wherein the arrival of the units follows the Poisson
distribution and the service of the system is generally distributed. The supplementary
variables technique is applied to study the behavior of the system and obtain its
performance indices.

3.1 Governing Equations

The set of governing equations and boundary conditions by introducing the supple-
mentary variable approach are constructed as follows:

d

dx
P(i)
n (x) +

[
λb + αi + μi (x)

]
P(i)
n (x) � λb

n∑

j�1

c j
(
1 − δn,0

)
P(i)
n− j (x) +

∞∫

0

gi (y)R
(i)
n (x, y)dy;

x, y > 0, n ≥ 0; 0 ≤ i ≤ m, (3.1)

d

dy
Vn (y) + [λb1 + ν(y)]Vn (y) � λb1

n∑

j�1

c j (1 − δn,0)Vn− j (y); n ≥ 0, y > 0, (3.2)

d

dy
R(i)
n (x, y) +

[
λb2 + gi (y)

]
R(i)
n (x, y) � λb2

n∑

j�1

c j
(
1 − δn,0

)
R(i)
n− j (x, y);

n ≥ 0, x, y > 0, 0 ≤ i ≤ m, (3.3)

λP(0)
0 � q

⎡

⎣(1 − θ )

⎛

⎝r0

∞∫

0

μ0(x)P
(0)
0 (x)dx +

m∑

i�1

∞∫

0

μI (x)P
(I )
0 (x)dx

⎞

⎠

⎤

⎦

+

∞∫

0

ν(y)V0(y)dy, (3.4)

3.2 Boundary Conditions

The set of equations are to be solved under the boundary condition at x � 0:

P(0)
n (0) � λ

n∑

j�1

c j (1 − δn,0)P
(0)
0 +q

⎡

⎣θ

⎛

⎝r0

∞∫

0

μ0(x)P
(0)
n (x)dx +

m∑

i�1

∞∫

0

μi (x)P
(i)
n (x)dx

⎞

⎠

+ (1 − θ )

⎛

⎝r0

∞∫

0

μ0(x)P
(0)
n+1(x)dx +

m∑

i�1

∞∫

0

μi (x)P
(i)
n+1(x)dx

⎞

⎠

⎤

⎦

+

∞∫

0

ν(y)Vn+1(y)dy; n ≥ 0, (4.1)
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P(i)
n (0) � ri

∞∫

0

μ0(x)P
(0)
n (x)dx ; n ≥ 0, 1 ≤ i ≤ m. (4.2)

The boundary conditions at y � 0; i � 0, 1, 2, . . . ,m for fixed value of x are as
follows:

Vn(0) � p

⎡

⎣r0
∞∫

0

μ0(x)P
(0)
n (x)dx +

m∑

i�1

∞∫

0

μi (x)P
(i)
n (x)dx

⎤

⎦; n ≥ 0 (4.3)

R(i)
n (x ; 0) � αi P

(i)
n (x); n ≥ 0, i � 0, 1, 2, . . . ,m (4.4)

The normalizing condition of the system is defined as

P (0)
0 +

∞∑

n�0

m∑

i�0

⎡

⎣
∞∫

0

P (i)
n (x)dx +

∞∫

0

∞∫

0

R(i)
n (x, y)dxdy

⎤

⎦ +
∞∑

n01

∞∫

0

Vn(y)dy � 1

(4.5)

The stability condition for the existence of the solution at equilibrium is

ρ � λeE(X )

{
E(B0)(1 + α0g

(1)
0 ) +

m∑

i�1

ri E(Bi )
(
1 + αi g

(1)
i

)
+ pE(V )

}
< 1;

λe � λ(1 − qθ )

1 − χ1 + χ2

χ1 � qθ + λE(X )

{
E(B0)

(
b + α0g

(1)
0 b2

)
+

m∑

i�1

ri E(Bi )
(
b + αi g

(1)
i b2

)
+ b1 pE(V )

}
,

χ2 � λE(X )

{
E(B0)

(
1 + α0g

(1)
0

)
+

m∑

i�1

ri E(Bi )
(
1 + αi g

(1)
i

)
+ pE(V )

}

3.3 Queue Size Distribution

(i) The partial probability generating functions of system state and queue size are

P (0)(x, z) � [
φ1(z)(1 − χ1)[1 − B0(x)] exp{−τ0(z)x}

]
[T ]−1 (5.1)

P (i)(x, z) � [riφ1(z)(1 − χ1)B̃0(τ0(z))[1 − Bi (x)] exp{−τi (z)x}][T ]−1 ; 1 ≤ i ≤ m
(5.2)
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V (y, z) � [φ1(z)(1 − χ1)B̃0(τ0(z))p

{
r0 +

m∑

i�1

ri B̃i (τi (z))

}

[1 − V (y)] exp{−φ3(z)y}][T ]−1 (5.3)

R(0)(x, y, z) � [α0φ1(z)(1 − χ1)[1 − B0(x)] exp{−τ0(z)x}[1 − G0(y)]

exp{−φ4(z)y}][T ]−1 (5.4)

R(i)(x, y, z) � [αi riφ1(z)(1 − χ1)B̃0(τ0(z))[1 − Bi (x)] exp{−τi (z)x}
[1 − Gi (y)] exp{−φ4(z)y}][T ]−1 (5.5)

where T � [S(z) − z](1 − χ1 + χ2)

(ii) The marginal probability distribution of system state probability generating
functions is

P (0)(z) � [φ1(z)(1 − χ1)[1 − B̃0(τ0(z))]][T τ0(z)]
−1 (6.1)

P (i)(z) � [riφ1(z)(1 − χ1)B̃0(τ0(z))[1 − B̃i (τi (z))]][T τi (z)]
−1 , 1 ≤ i ≤ m (6.2)

V (z) � [φ1(z)(1 − χ1)B̃0(τ0(z))p

{
r0 +

m∑

i�1

ri B̃i (τi (z))

}
[1 − Ṽ (φ3(z))]][Tφ3(z)]

−1

(6.3)

R(0)(z) � [α0φ1(z)(1 − χ1)[1 − B̃0(τ0(z))][1 − G̃0(φ4(z))]][T τ0(z)φ4(z)]
−1 (6.4)

R(i)(z) � [αi riφ1(z)(1 − χ1)B̃0(τ0(z))[1 − B̃i (τi (z))]

[1 − G̃i (φ4(z))]][T τi (z)φ4(z)]
−1 ; 1 ≤ i ≤ m (6.5)

with

S(z) � {q(θ z + 1 − θ ) + pṼ (φ3(z))}B̃0(τ0(z))

{
r0 +

m∑

i�1

ri B̃i (τi (z))

}

φ1(z) � λ(1 − X (z)), φ2(z) � λb(1 − X (z)), φ3(z) � λb1(1 − X (z)),

φ4(z) � λb2(1 − X (z))τi (z) � φ2(z) + αi (1 − G̃i (φ4(z))), 0 ≤ i ≤ m

(iii) The probability generating function of the stationary queue size at arbitrary
epoch is
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π1(z) � (1 − χ1)

1 − χ1 + χ2

{
1 +

φ1(z)

[S(z) − z]

[
[1 − B̃0(τ0(z))]

τ0(z)

(
φ4(z) + α0[1 − G̃0(φ4(z))]

φ4(z)

)

+
m∑

i�1

ri B̃0(τ0(z))[1 − B̃i (τi (z))]

τi (z)

(
φ4(z) + αi [1 − G̃i (φ4(z))]

φ4(z)

)

+ B̃0(τ0(z))p

⎧
⎨

⎩r0 +
m∑

i�1

ri B̃i (τi (z))

⎫
⎬

⎭
[1 − Ṽ (φ3(z))]

φ3(z)

⎤

⎦

⎫
⎬

⎭ (7)

(iv) The probability generating function of the stationary queue size at departure
epoch is

π2(z) �
φ1(z)(1 − χ1)B̃0(τ0(z)){r0 +

m∑
i�1

ri B̃i (τi (z)}(q(θ z + 1 − θ ) + pṼ (φ3(z)))

[S(z) − z]λE(X )(θ z + 1 − θ )
(8)

4 Performance Measures

In queueing system, the performance can be observed by the study of the behavior
of queueing measures. In this section, we obtain the various performance character-
istics such as system state probabilities, mean queue length, mean waiting time, and
reliability indices.

4.1 System State Probabilities

The system state probabilities of the different server state are obtained and described
as follows:

PB0 (PBi ) The probability that server is busy to provide essential and ith optional
service.

PR0 (PRi ) The probability that server is under repair when it fails during essential
service and ith optional service.

PV The probability that server is under optional vacation.
PI The probability when server is in idle state.
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4.2 Mean Queue Length at Arbitrary Epoch

The mean queue length (Lq ) at arbitrary epoch is obtained by using

Lq � dπ1(z)

dz

∣∣∣∣
z�1

� 1

(1 − χ1 + χ2)

[
λE(X )χ3 +

(
λE(X2)

2
+

λE(X )

2
χ4

)

⎧
⎨

⎩E(B0)(1 + α0g
(1)
0 ) +

m∑

i�1

ri E(Bi )(1 + αi g
(1)
i ) + pE(V )

⎫
⎬

⎭

⎤

⎦

(50)

with

χ3 � κ0 +
m∑

i�1

ri
[
κi + λE(X )E(B0)(b + α0g

(1)
0 b2)E(Bi )(1 + αi g

(1)
i )

]

+ pλE(X )E(B0)(b + α0g
(1)
0 b2)E(V )

+ p
m∑

i�1

riλE(X )E(Bi )(b + αi g
(1)
i b2)E(V )

+ p

[
E(V 2)(λb1E(X ))2 + E(V )λb1E(X2)

2λb1E(X )
− λb1E(X2)

2E(X )
E(V )

]

χ4 � pE(V 2)λ(λb1E(X ))
2 + p(λb1)

2E(X )E(X2)

+ (2θq + pE(V )λb1E(X ))λE(X )[E(B0)(b + α0g
(1)
0 b2)

+
m∑

i�1

ri E(Bi )(b + αi g
(1)
i b2)] + E(B(2)

0 )(λE(X )(b + α0g
(1)
0 b2))

2

+ E(B0)λ[bE(X
2) + α0(g

(2)
0 λ(b2E(X ))

2

+ g(1)0 b2E(X
2))] + 2E(B0)(λE(X ))

2(b + α0g
(1)
0 b2))

m∑

i�1

ri E(Bi )(b + αi g
(1)
i b2)

+
m∑

i�1

ri
(
E(B(2)

i )(λE(X )(b + αi g
(1)
i b2))

2

+E(Bi )λ[bE(X
2) + αi (g

(2)
i λ(b2E(X ))

2 + g(1)i b2E(X
2))]

)

κi � E(Bi )αi g
(2)
i λb2E(X )

2
+ (1 + αi g

(1)
i )

{
E(B(2)

i )(λE(X )(b + αi g
(1)
i b2))

2

− E(Bi )λ[bE(X2) + αi (g
(2)
i λ(b2E(X ))2 + g(1)i b2E(X2))

2(λE(X )(b + αi g
(1)
i b2))

}
; 0 ≤ i ≤ m
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4.3 Mean Queue Length at Departure Epoch

The mean queue length (LD) at departure epoch is

LD � λE(X )E(B0)(b + α0g
(1)
0 b2) +

m∑

i�1

riλE(X )E(Bi )(b + αi g
(1)
i b2)

+ θ z + pE(V )λb1E(X ) − θ +
E(X2)

2E(X )
+
1

2
χ4

4.4 Mean Waiting Time

The mean waiting time (Wq ) at arbitrary epoch is considered as

Wq � Lq

λeE(X )

4.5 Reliability Indices

Reliability indices are obtained in terms of steady state availability of the server and
failure frequency of the system.

(a) The availability of the server is

Av � P0
0 +

m∑

i�0

∞∫

0

P (i)(x, 1)dx � P (0)
0 + lim

z→1

[
m∑

i�0

P (i)(z)

]

�
(
1 − χ1 + λE(X )

{
E(B0) +

m∑

i�1

ri E(Bi )

})
(1 − χ1 + χ2)

−1 (8.1)

(b) The steady state failure frequency is

Ff �
m∑

i�0

αi

∞∫

0

P (i)(x, 1) � lim
z→1

[
m∑

i�0

αi P
(i)(z)

]

�λE(X ){α0E(B0) +
m∑

i�1

αi ri E(Bi )}(1 − χ1 + χ2)
−1 (8.2)
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Table 1 Effects of arrival rates and service rates

μ � 3 μ � 3.1

p � 0.3 p � 0.7 p � 0.3 p � 0.7

λ Lq Wq Lq Wq Lq Wq Lq Wq

1.5 4.30 2.39 9.40 5.57 4.03 2.22 9.03 5.30

1.6 5.24 2.81 11.28 6.45 4.93 2.61 10.83 6.13

1.7 6.30 3.26 13.38 7.41 5.93 3.03 12.85 7.03

1.8 7.48 3.75 15.72 8.45 7.05 3.49 15.09 8.02

1.9 8.79 4.28 18.32 9.57 8.28 3.98 17.59 9.08

Table 2 Effects of number of optional services and rates of feedback customers

m � 2 m � 1 m � 0

p Lq Wq Lq Wq Lq Wq

θ � 0.01 0.1 0.77 0.47 0.66 0.40 0.10 0.06

0.2 1.40 0.87 1.28 0.79 0.60 0.35

0.3 2.06 1.31 1.92 1.20 1.14 0.66

0.4 2.75 1.77 2.60 1.65 1.70 1.00

0.5 3.47 2.27 3.30 2.13 2.29 1.38

θ � 0.05 0.1 0.79 0.49 0.69 0.42 0.11 0.06

0.2 1.43 0.90 1.30 0.81 0.62 0.36

0.3 2.09 1.33 1.94 1.23 1.15 0.67

0.4 2.77 1.80 2.62 1.68 1.71 1.02

0.5 3.49 2.30 3.31 2.16 2.3 1.39

5 Numerical Illustration

In the present section, the numerical illustration for the model is considered. It pro-
vides the validity and tractability of the investigation. The effects of parameters on
applicability of the analytical results can be examined by using sensitivity analysis.

The following default parameters are taken for the computation purpose, and the
effects of various parameters on the performance measures are displayed in Tables 1,
2, 3, and 4.

E(X ) � 2, μ1 � μ2 � 2μ0, α0 � 0.01 , α1 � 1.5α0, α2 � 2α0,

r0 � r1 � r1 � 1/3, v � 5, g0 � 10, g1 � g2 � 15, λ � 1.3, μ0 � 3.0,

b1 � 0.6, b2 � 0.5, b3 � 0.3, θ � 0.05

(i) Effects on mean queue length and waiting time

Table 1 displays the effects of parameters on mean queue length. From the table,
we observe that mean queue length and waiting time increase (decrease) with the
growth of arrival rates (service rates) of the units for the fixed values of probabilities
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Table 3 Effects of failure rates and number of optional services

m � 2 m � 1 m � 0

p Lq Wq Lq Wq Lq Wq

α0 � 0.1 0.1 1.16 0.68 1.03 0.60 0.28 0.15

0.2 1.92 1.15 1.77 1.04 0.88 0.48

0.3 2.72 1.66 2.54 1.53 1.52 0.84

0.4 3.56 2.20 3.36 2.04 2.20 1.24

0.5 4.43 2.77 4.20 2.60 2.91 1.67

α0 � 0.05 0.1 1.17 0.69 1.04 0.60 0.28 0.15

0.2 1.94 1.16 1.78 1.05 0.89 0.48

0.3 2.74 1.67 2.56 1.54 1.53 0.85

0.4 3.58 2.21 3.37 2.06 2.20 1.24

0.5 4.45 2.79 4.22 2.62 2.92 1.67

Table 4 Effects of service rates on system state probabilities

μ0 PI PB0 PB1 PB2 PV PR0 PR1 PR2

3.1 0.0555 0.5336 0.1186 0.0889 0.1654 0.0005 0.0001 0.0374

3.2 0.0712 0.5218 0.1160 0.0869 0.1669 0.0005 0.0001 0.0365

3.3 0.0862 0.5105 0.1134 0.0851 0.1685 0.0005 0.0001 0.0357

3.4 0.1007 0.4996 0.1110 0.0833 0.1698 0.0005 0.0001 0.0349

3.5 0.1145 0.4892 0.1087 0.0815 0.1712 0.0005 0.0001 0.0343

Table 5 Effects of feedback customers on system state probabilities

θ PI PB0 PB1 PB2 PV PR0 PR1 PR2

0.01 0.0509 0.5392 0.1198 0.0899 0.1618 0.0005 0.0001 0.0377

0.02 0.0480 0.5409 0.1202 0.0901 0.1623 0.0005 0.0001 0.0379

0.03 0.0450 0.5426 0.1206 0.0904 0.1628 0.0005 0.0001 0.0379

0.04 0.0420 0.5443 0.1209 0.0907 0.1633 0.0005 0.0001 0.03810

0.05 0.0390 0.5459 0.1213 0.0910 0.1638 0.0005 0.0001 0.03822

to opt optional service. From Table 2 (Table 3), the effects of the number of optional
services available in the system and feedback probability of units (failure rates of
the server) on mean queue length and waiting time are discussed. It is noticed that
with the increments of these parameters, the mean queue length and waiting time
increase.

(ii) Effects on system state probabilities

The values of system probabilities with the varying values of service rates (feed-
back probabilitiy) at different server states for fixed values of other parameters are
obtained in Table 4 (Table 5).
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Table 6 Effects of failure
rates on reliability indices

α p � 0.1 p � 0.5 p � 0.9

Av Ff Av Ff Av Ff

0.01 0.9636 0.0099 0.8354 0.0091 0.7258 0.0084

0.03 0.9619 0.0296 0.8340 0.0273 0.7246 0.0253

0.05 0.9603 0.0492 0.8326 0.0454 0.7234 0.0421

0.07 0.9586 0.0688 0.8312 0.0635 0.7223 0.0589

0.09 0.9570 0.0884 0.8299 0.0815 0.7211 0.0757

Fig. 1 Lq versus λ for m
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(iii) Effects on reliability indices

From Table 6, it is noticed that the availability of the server and failure frequency
decrease (increase) with the growth of failure rates of service system.

From Figs. 1 and 2, the effects of system parameters for different numbers of
optional services on performance characteristics are observed.
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6 Conclusion

The model investigated in the present study finds the many applications in every
sphere on routine activities. It seems to be of enormous utility for the system design-
ers and managements wherein their objective is to find the effects of the perfor-
mance parameters of new study. Moreover, the concept of number of optional ser-
vices available in the system and the unpredictable interruption in the service can be
omitted by providing the standby components in terms of saving the time and cost.
The investigation can be further extended by incorporating multi-server queue and
N-policy.
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Performance Analysis of Series Queue
with Customer’s Blocking

Sreekanth Kolledath and Kamlesh Kumar

Abstract This investigation proposes a model for simple series queues with
customer’s blocking. We consider a series queue with three service stations as
S1, S2, S3 with single server at each station. No queue is allowed to form at any
station. Since the model is a sequential model, all the customers require service at
each station. The recursive method has been employed to obtain the steady-state
probability distribution for the series queueing system analysis. For this purpose,
various performance measures, namely the average numbers of customers in the
queueing system, the proportion of customers entering the queueing system, average
waiting time, have been obtained.

Keywords Series queue · Customers · Blocking · Recursive method
Performance analysis

1 Introduction

A group of stations with finite capacities through which jobs enter in order to gratify
their service needs can be considered as a series queue with customer’s blocking. It
is because of the finite capacity of the individual station so that such phenomenon of
blocking takes place. Blocking of customer happens when limitations are enforced
upon the queue sizes (i.e., finite queues). It is complicated to solve series queue with
blocking; generally speaking, the steady-state queue length distributions of series
queue cannot be revealed to have product form solutions. Therefore, the majority
of the methods used to analyze the series queue are in the form of approximations,
simulation, and numerical methods. In the modeling of production lines, emergency
healthcare units, and performance evaluation of computer systems, the series queues
with customer’s blocking have been of great use.
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Due to the widespread prevalence of series queues with customer’s blocking and
their importance in real life, many researchers have found a great deal of attention in
the literature. Onvural [14], Perros [16], Hall and Sriskandarajah [10] have written
significant survey works on series queues with blocking and showed great influence.
Hunt [12] first time depicted the customer’s blocking effects in a sequence of wait-
ing lines. After that, [1] had studied the queueing system with arbitrary input and
regular service times’ parameters. Issues of series queues with blocking have been
addressed by numerous research publications dating back to the late 1960s. Suzuki
[18] considered Poisson arrivals in the case of two stations in series queue, arbitrar-
ily distributed service times for both stations and also derived the expressions for
the waiting time distribution. Avi-Itzhak and Yadin [5] have investigated the series
queues without buffers and blocking of the customers.

The case of blocking generally refers to the set of rules that dictates when a node
becomes blocked and unblocked. Several blocking mechanisms including blocking
after service (BAS), blocking before service (BBS), repetitive service (RS) have
been put forward in the literature in order to represent various queueing system.
Generally, three types of blocking are regarded as blocking after service; it means
that the customer gets blocked at station A even after completion of its service and
it happens due to the unavailability of vacant space at station B. Customer can move
from station A to station B only when station B is free for service. Blocking before
service is the case in which the service of customer at station A will remain blocked
unless there is an available space in station B. The customer will get service at station
A only when the station B is free. Here for getting service, the customer at station
A is completely dependent on the availability of station B. Repetitive service is the
case in which the customer at station A gets service over and over again until the
station B is available for service. In the literature, there are fundamentally only a few
blocking mechanisms which have been studied by many authors such as [4, 6–8].
Onvural and Perros [15] have discussed these types of blocking of customers in the
queueing system analysis. Akyildiz and von Brand [3] have considered a two station
tandem queue with blocking after service and provided an accurate solution with
correct stationary distribution.

Gomez-Corral [9] examined a series queue with blocking and repeated attempts
by employing matrix geometric approximation method. Avrachenkov and Yechiali
[2] considered a series queuewith a common retrial queue. Based onmean value anal-
ysis and fixed point approach, they proposed an approximation procedure. Houdta
and Alfa [11] have examined a series queues with blocking, Markovian arrivals, and
phase-type service. They presented a novel approach to obtain the response time.
Lekadir and Aissani [13] studied a series queue with blocking and non-preemptive
priority. Shin and Moon [17] developed a multi-server series queueing model with
blocking in which the service times are exponential. They also developed an approx-
imation method for throughput of queueing system. Zhanga et al. [19] studied a
series queue with blocking and evaluated several performance indices by using the
rate iterative method embedded with generalized expansion method.
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The remaining part of this paper is organized as follows. In Sect. 2, we describe
the model in detail. Section3 provides the steady-state solutions of the system gov-
erning equations by using recursive method. In Sect. 4, various performance indices
are presented. Section5 contains concluding remarks for series queue model with
customer’s blocking.

2 Model Description

A simple series queue is analyzed with three service stations as S1, S2, S3 with the
provision of single server at each station is taken into consideration. At each station,
no queue is allowed to be formed. As this model is sequential, therefore a customer
has to require service from each station. A customer is allowed to enter into the
system only when station S1 is empty irrespective of whether S2 and S3 are empty
or not. After completing the service at S1, the customer will go to S2 and then go
to S3. Customer leaves the queueing system after getting the service at station S3.
A customer completing service at S1 will go to S2 if it is empty or will wait in S1
until S2, becomes empty; i.e, the station S1 is blocked for a new customer. Likewise,
a customer after completing service at S2 will go to S3 if it is empty or will wait in
S2 until S3 becomes empty; i.e, the station S2 is blocked for a new customer. The
arrival of customers is turned away if a customer is in process at station S1 or if S2 is
blocked.

It is assumed that the customers are arrived in the queueing system in accordance
with a Poisson fashion with parameter λ and the service times at S1, S2, S3 follow
exponential distributions with parameters μ1,μ2,μ3, respectively.

Notations

To formulate the series queueing model with customer’s blocking, the following
notations are used. The steady-state probabilities Ph,i,j define that there are h number
of customers (h = 0, or h = 1) at station S1, i customer (i = 0, or i = 1) in S2 and
j customer (j = 0, or j = 1) in S3. State of the model is denoted by triplet (h, i, j),
and thus, the possible states of the queueing systems are

P0,0,0 No customer at any station S1, S2 and S3.
P1,0,0 One customer is getting service at station S1 and stations S2 and S3 are free.
P0,1,0 No customer at station S1 and S3, but one customer is getting service at

station S2.
P0,0,1 No customer at station S1 and S2, but one customer is getting service at

station S3.
P1,1,0 One customer at station S1 and one customer at station S2 are getting service

and no customer at station S3.
P1,0,1 One customer is getting service at station S1 and no customer at station S2

and also one customer getting service at station S3.
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P0,1,1 No customer at station S1, but one customer at station S2 and one customer
at station S3 are getting service.

P1,1,1 One customer at station S1, one customer at station S2 and one customer at
S3 are getting service (All the three stations are busy).

Pb,1,0 One customer after completing service blocked at station S1, but one cus-
tomer at station S2 is getting service and no customer at station S3.

P0,b,1 No customer at station S1, one customer at station S2 completed service and
blocked and one customer is getting service at station S3.

Pb,1,1 One customer after completing service blocked at station S1, but one cus-
tomer at station S2 and one customer at station S3 are getting service.

Pb,b,1 One customer at station S1 and one customer at station S2 are blocked, but
one customer at station S3 is getting service.

P1,b,1 One customer at station S1 and one customer at station S3 are getting service,
but after completing service one customer is blocked at station S3.

3 Governing Equations

By using the transition state diagram depicted in Fig. 1, the steady-state balance
equations can be written as

λP0,0,0 = μ3P0,0,1 (1)

μ1P1,0,0 = λP0,0,0 + μ3P1,0,1 (2)

(λ + μ2)P0,1,0 = μ1P1,0,0 + μ3P0,1,1 (3)

Fig. 1 State transition diagram



Performance Analysis of Series Queue with Customer’s Blocking 195

(λ + μ3)P0,0,1 = μ2P0,1,0 + μ3P0,b,1 (4)

(μ1 + μ2)P1,1,0 = λP0,1,0 (5)

μ2Pb,1,0 = μ1P1,1,0 + μ3Pb,1,1 (6)

(μ1 + μ3)P1,0,1 = μ2P1,1,0 + μ3P1,b,1 + λP0,0,1 (7)

(λ + μ2 + μ3)P0,1,1 = μ1P1,0,1 + μ2Pb,1,0 + μ3Pb,b,1 (8)

(μ1 + μ2)P1,1,1 = λP0,1,1 (9)

(μ2 + μ3)Pb,1,1 = μ1P1,1,1 (10)

μ3Pb,b,1 = μ1P1,b,1 + μ2Pb,1,1 (11)

(μ1 + μ3)P1,b,1 = λP0,b,1 + μ2P1,1,1 (12)

(λ + μ3)P0,b,1 = μ2P0,1,1 (13)

From (1), we get

P0,0,1 = λ

μ3
P0,0,0 (14)

By substituting P0,0,1 in (4), and using (13)

P0,1,0 = λ(λ + μ3)

μ2μ3
P0,0,0 − μ3

λ + μ3
P0,1,1 (15)

Using (5) and (15), we obtain

P1,1,0 = λ2(λ + μ3)

μ2μ3(μ1 + μ2)
P0,0,0 − λμ3

(λ + μ3)(μ1 + μ2)
P0,1,1 (16)

Also from (9)

P1,1,1 = λ

μ1 + μ2
P0,1,1 (17)

Substitute the value of P1,1,1 from (17) in (10), we get

Pb,1,1 = λμ1

(μ1 + μ2)(μ2 + μ3)
P0,1,1 (18)

By substituting P0,1,0 in (3), we get

P1,0,0 = λ(λ + μ2)(λ + μ3)

μ1μ2μ3
P0,0,0 − μ3

[
(2λ + μ2 + μ3)

μ1

]
P0,1,1 (19)
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By using the above P1,0,0 in (2),we get

P1,0,1 = λ(λ2 + λμ2 + μ3)

μ2μ
2
3

P0,0,0 − (2λ + μ2 + μ3)

μ1
P0,1,1 (20)

Substituting Pb,1,1 and P1,1,0 in (6), we get

Pb,1,0 = λμ1μ3(λ − μ2)

μ2(μ1 + μ2)(μ2 + μ3)(λ + μ3)
P0,1,1 − λ2μ1(λ + μ3)

μ2
2μ3(μ1 + μ2)

P0,0,0 (21)

From (13), we have

P0,b,1 = μ2

λ + μ3
P0,1,1 (22)

Using P0,b,1 and P1,1,1 in (12), we get

P1,b,1 = λμ2

[
(λ + μ1 + μ2 + μ3)

(μ1 + μ2)(μ1 + μ3)(λ + μ3)

]
P0,1,1 (23)

In (7) by using P0,1,1, P1,0,1, P1,1,0, P1,b,1, we get

P0,1,1 =
[

(μ1 + μ3)(λ + μ3)(μ1 + μ2){(μ1 + μ3)(λ
3 + λ2μ2 + λμ3) − 1}

λμ1μ
2
2μ

3
3(λ + μ2) + [(μ2μ

2
3)(μ1 + μ2)(μ1 + μ3)2(λ + μ3)(2λ + μ2 + μ3)]

− (μ1 + μ3)(λ + μ3)λ
2μ1μ2μ3(λ + μ3)

λμ1μ
2
2μ

3
3(λ + μ2) + [(μ2μ

2
3)(μ1 + μ2)(μ1 + μ3)2(λ + μ3)(2λ + μ2 + μ3)]

]
P0,0,0

P0,1,1 = δP0,0,0 (24)

where

δ = (μ1 + μ3)(λ + μ3)[(μ1 + μ2){(μ1 + μ3)(λ
3 + λ2μ2 + λμ3) − 1} − λ2μ1μ2μ3(λ + μ3)]

λμ1μ
2
2μ

3
3(λ + μ2) + [(μ2μ

2
3)(μ1 + μ2)(μ1 + μ3)2(λ + μ3)(2λ + μ2 + μ3)]

By substituting the value ofP0,1,1 in Eqs. (16)–(23), respectively,we get the following
probabilities.

P0,b,1 =
[

μ2δ

λ + μ3

]
P0,0,0

P0,1,0 =
[
λ(λ + μ3)

2 − μ2μ
2
3δ

μ2μ3(λ + μ3)

]
P0,0,0

P1,1,0 =
[

λ(λ + μ3)
2 − μ2μ

2
3δ

μ2μ3(μ1 + μ2)(λ + μ3)

]
λP0,0,0



Performance Analysis of Series Queue with Customer’s Blocking 197

P1,1,1 =
[

λδ

(μ1 + μ2)

]
P0,0,0

Pb,1,1 =
[

λμ1δ

(μ1 + μ2)(μ2 + μ3)

]
P0,0,0

P1,0,0 =
[
λ(λ + μ2)(λ + μ3) − (2λ + μ2 + μ3)μ2μ

2
3δ

μ1μ2μ3

]
P0,0,0

P1,0,1 =
[
μ1λ(λ

2 + λμ2 + μ3) − (2λ + μ2 + μ3)μ2μ
2
3δ

μ1μ2μ3

]
P0,0,0

Pb,1,0 =
[
λ(λ − μ2)μ1μ2μ

2
3δ − λ2μ1(λ + μ3)

2(μ1 + μ3)

μ2
2μ3(μ1 + μ2)(μ2 + μ3)(λ + μ3)

]
P0,0,0

P0,b,1 =
[

μ2δ

(λ + μ3)

]
P0,0,0

Pb,b,1 =
[
(μ2 + μ3)(μ1 + μ2 + μ3 + λ) + (μ1 + μ3)(λ + μ3)

μ3(μ1 + μ2)(μ1 + μ3)(μ2 + μ3)(λ + μ3)

]
λμ1μ2δP0,0,0

P1,b,1 =
[

λμ2δ(μ1 + μ2 + μ3 + λ)

(μ1 + μ2)(μ1 + μ3)(λ + μ3)

]
P0,0,0

Using the normalized condition, we get

P0,0,0 + P1,0,0 + P0,1,0 + P0,0,1 + P1,0,1 + P0,1,1 + P1,1,1 + Pb,1,1

+P1,1,0 + Pb,1,0 + P0,b,1 + Pb,b,1 + P1,b,1 = 1

⇒ P0,0,0 +
[
λ(λ + μ2)(λ + μ3) − (2λ + μ2 + μ3)μ2μ

2
3δ

μ1μ2μ3

]
P0,0,0

+
[
λ(λ + μ3)

2 − μ2μ
2
3δ

μ2μ3(λ + μ3)

]
P0,0,0

+ λ

μ3
P0,0,0 +

[
μ1λ(λ

2 + λμ2 + μ3) − (2λ + μ2 + μ3)μ2μ
2
3δ

μ1μ2μ3

]
P0,0,0

+δP0,0,0 +
[

λδ

(μ1 + μ2)

]
P0,0,0 +

[
λμ1δ

(μ1 + μ2)(μ2 + μ3)

]
P0,0,0

+
[

λ(λ + μ3)
2 − μ2μ

2
3δ

μ2μ3(μ1 + μ2)(λ + μ3)

]
λP0,0,0

+
[
λ(λ − μ2)μ1μ2μ

2
3δ − λ2μ1(λ + μ3)

2(μ1 + μ3)

μ2
2μ3(μ1 + μ2)(μ2 + μ3)(λ + μ3)

]
P0,0,0 +

[
μ2δ

(λ + μ3)

]
P0,0,0

+
[
(μ2 + μ3)(μ1 + μ2 + μ3 + λ) + (μ1 + μ3)(λ + μ3)

μ3(μ1 + μ2)(μ1 + μ3)(μ2 + μ3)(λ + μ3)

]
λμ1μ2δP0,0,0

+
[

λμ2δ(μ1 + μ2 + μ3 + λ)

(μ1 + μ2)(μ1 + μ3)(λ + μ3)

]
P0,0,0 = 1
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⇒ P0,0,0 =
[
1 + λ

μ3
+ 1

μ2μ3
α + β

]−1

(25)

where

α = λ(λ + μ2)(λ + μ3) − (3λ + μ2 + 2μ3)μ2μ
2
3δ

μ1
+ λ(λ + μ3)

2 − μ2μ
2
3δ

λ + μ3

+μ1λ(λ
2 + λμ2 + μ3) − (2λ + μ2 + μ3)μ2μ

2
3δ

μ1μ3
+ λ(λ(λ + μ3)

2 − μ2μ
2
3δ)

(μ1 + μ2)(λ + μ3)

+λ(λ − μ2)μ1μ
2
3δ − λ2μ1(λ + μ3)

2(μ1 + μ3)

μ2(μ1 + μ2)(μ1 + μ3)(λ + μ3)

and

β = μ3(μ1 + μ3)(λ + μ3)[λ(μ1 + μ2 + μ3) + (μ1 + μ2)(μ2 + μ3)(1 + μ2)]
μ3(μ1 + μ2)(μ1 + μ3)(μ2 + μ3)(λ + μ3)

+ (λ + μ1)λμ1μ2 + λμ2(μ1 + μ2 + μ3 + λ)[μ1(μ2 + μ3) + μ3]
μ3(μ1 + μ2)(μ1 + μ3)(μ2 + μ3)(λ + μ3)

4 Performance Measures

For examining the series queueing system behavior, various performance indices are
constructed using steady-state probabilities as:

(i) The proportion of customer entering the system Qs = P0,0,0 + P0,1,0 + P0,0,1

Qs =
[
1 + λ(λ + μ3)

2 − μ2μ
2
3δ

μ2μ3(λ + μ3)
+ λ

μ2

] [
1 + λ

μ3
+ 1

μ2μ3
α + β

]−1

(26)

(ii) The average number of customers in the system:

(a) If only one customer is available in the system, then its probability isP1,0,0 +
P0,1,0 + P0,0,1

(b) If only two customers are available in the system, then its probability is
P1,0,1 + P0,1,1 + P1,1,0 + Pb,1,0 + P0,b,1

(c) If only three customers are available in the system, then its probability is
P1,1,1 + Pb,1,1 + Pb,b,1 + P1,b,1

Hence, the average number of customer in the system is

Ls = 1(P1,0,0 + P0,1,0 + P0,0,1) + 2(P1,0,1 + P0,1,1 + P1,1,0 + Pb,1,0 + P0,b,1)

+3(P1,1,1 + Pb,1,1 + Pb,b,1 + P1,b,1)
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=
{[

λ(λ + μ2)(λ + μ3) − 3(2λ + μ2 + μ3)μ2μ
2
3δ

μ1μ2μ3

]
+

[
2 + 2μ2

λ + μ2

+ 3λ

μ1 + μ2
+ 3λμ1

(μ1 + μ2)(μ1 + μ + 3)

]
δ +

[
λ(λ + μ3)

2 − μ2μ
2
3δ

μ2μ3(λ + μ3)

]

+ λ

μ3
+ 2

[
λ(λ + μ3)

2 − μ2μ
2
3δ

μ2μ3(μ1 + μ2)(λ + μ3)

]
λ

+2

[
λ(λ − μ2)μ1μ2μ

2
3δ − λ2μ1(λ + μ3)

2(μ1 + μ3)

μ2
2μ3(μ1 + μ2)(μ2 + μ3)(λ + μ3)

]

+3

[
(μ2 + μ3)(μ1 + μ2 + μ3 + λ) + (μ1 + μ3)(λ + μ3)

μ3(μ1 + μ2)(μ1 + μ3)(μ2 + μ3)(λ + μ3)

]
λμ1μ2δ

+3

[
λμ2δ(μ1 + μ2 + μ3 + λ)

(μ1 + μ2)(μ1 + μ3)(λ + μ3)

]}[
1 + λ

μ3
+ 1

μ2μ3
α + β

]−1

(27)

(iii) Average amount of time spent by the customer in the system

Ws = Ls
λQs

= Ls

λ
[
1 + λ(λ+μ3)2−μ2μ

2
3δ

μ2μ3(λ+μ3)
+ λ

μ2

] [
1 + λ

μ3
+ 1

μ2μ3
α + β

]−1 (28)

(iv) The probability that all the stations are free

P0,0,0 =
[
1 + λ

μ3
+ 1

μ2μ3
α + β

]−1

(29)

(v) The probability that station S1 is busy and S2, and S3 are free

P1,0,0 =
[
λ(λ + μ2)(λ + μ3) − (2λ + μ2 + μ3)μ2μ

2
3δ

μ1μ2μ3

]
P0,0,0 (30)

(vi) The probability that no customer at S1, and S2 and S3 are busy

P0,0,1 = λ

μ3
P0,0,0 (31)

(vii) The probability that all the stations S1, S2, S3 are busy

P1,1,1 =
[

λδ

(μ1 + μ2)

]
P0,0,0 (32)
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(viii) The probability that S1 is free, but a customer is waiting in S1 and S2, S3 are
busy

Pb,1,1 =
[

λμ1δ

(μ1 + μ2)(μ2 + μ3)

]
P0,0,0 (33)

5 Conclusions

In this paper, the analysis of a series queue with three service stations and customer’s
blocking has been done. By using the recursive method, we have established the
formulae for various performance measures. We can further extend this paper by
increasing the number of service stations for the customers to study the series queue
with customer’s blocking. Also, it may be noticed that as the number of stations
increases, it becomes complicated to solve the governing equations of the series
queueing model by using recursive method. Therefore, in order to solve the system
governing equations, the numerical techniques or approximation methods are more
easy to use rather than applying the recursive method approach. It would be more
complicated to get the problem solutions for the series queue with more than three
service stations.
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Markovian Multi-server Queue
with Reneging and Provision
of Additional Removable Servers

Madhu Jain, Shivani Kumari, Rashika Qureshi and Roly Shankaran

Abstract Many queuing situations with discouragement are encountered in real life
in which the customers do not wait for a longer time and may renege from the system
after waiting for some time. To avoid this reneging behavior of the customers, the
provision of additional removable serversmay be helpful. From economic viewpoint,
the additional servers may be installed or removed from the system according to a
threshold policy on the basis of number of clients present in the system. In this paper,
a steady state solution of a finite M/M/R+r Markov model with discouragement and
operating under threshold policy for inducting the additional removable r servers
along with R permanent servers is presented. The first-come first-served discipline
is followed in providing services to the customers. The queue size distribution at
the equilibrium is obtained using a recursive approach. The formulations of vari-
ous performance measures, namely expected number of customers in the system,
throughput, have been done in terms of system state probabilities. By taking numer-
ical illustration, the system behavior via sensitivity analysis and cost optimization
has been examined.
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1 Introduction

Due to impatient nature of the customers, the arrivals in the system may or may not
like to join the long queues. To overcome this problem, the facility of additional
servers in the system can be made according to a threshold policy based on the
number of customers present in the system. In case of additional provisioning of
servers according to threshold rule, as soon as the number of customers in the system
becomes greater than the threshold value of the customers, the additional servers are
added into the system. Also, the additional servers are removed from the system
as the number of customers present in the system decreases below the threshold
value. In this investigation, Markov queueing model with crew of R permanent and
r additional servers and reneging has been investigated.

Sometimes, the impatient customers standing in the long queues leave the system
due to their impatient behavior. The impatient behavior of the customers plays a
vital role while dealing with realistic situations of congestion problems encountered
in day-to-day as well as industrial environment. It has been observed that when the
queue size becomes larger, the arriving customers may be discouraged and do not
like to wait. The queueing situation with reneging for Markovian system was first
investigated by Haight [1]. Another important early past contribution on M/M/1/N
queuing problem with balking and reneging was presented by Ancker and Gafarian
[2]. Significant work on Markov queueing system has been done by Courtois and
Georges [3] by considering the state-dependent arrival and service process.Natvig [4]
and Robert [5] have also contributed significantly in the direction of the development
of queuing models with reneging.

The queueing modeling and performance measures for an M/M/1 and M/M/c/K
queues with balking and reneging have been presented by Gross and Harris [6]
and Abou-el-ata et al. [7]. Cost analysis for the finite M/M/R queuing system with
balking, reneging, and server breakdowns was given by Wang and Chang [8]. In
queueing literature, Yue et al. [9] and many others have dealt with finite capacity
multi-server queue with reneging. Perel and Yechiali [10] obtained the performance
indices for the M/M/c queueing system with impatient customers by considering the
noble idea of the provision of slow servers. The performance prediction of M/M/1/N
queue with the provision of retention of reneged customers was done by Kumar and
Sharma [11]. The queueing analysis of finite capacity queueing systemwith reneging
was also presented by Ying-Yi et al. [12].

In the present investigation, the performance indices and cost analysis are pro-
vided to analyze the behavior of reneged customers in the queueing system with the
provision of installing and removing additional servers in the system according to a
threshold policy. Section 2 outlines the assumptions and notations that would be used
further for themodel description. In Sect. 3, queue size distribution has been obtained.
In Sect. 4, performance measures have been established. In Sect. 5, numerical illus-
trations are given by taking an example. All the numerical results derived in previous
sections are validated for the finite capacity model. Finally, Sect. 6 highlights the
noble features of the present study and future scope.
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2 Model Description

The performance analysis ofM/M/R+rMarkovian queuemodel is done by including
the concept of reneging behavior of the customers. The following assumptions have
been made for developing Markov model:

• The customers join the system in Poisson fashion, and the arrival rate for the finite
capacity model is denoted by λ.

• The service provided to the customers follows an exponential distribution, having
the following density function (Fig. 1)

Z(t) � μ exp(−μt); t ≥ 0, μ ≥ 0

• If there are k customers such that k < R, then only k servers provide service with
a rate μ.

• If the number of customers in the system are k such that K j < k ≤ K j+1, then all
R servers and j additional servers will provide the service.

• The customer while waiting in the queue may get impatient and departs from the
system following exponential process with rate υ.

The service rate for thefinite capacityMarkovmodelwith reneging is state-dependent
and can be defined based on number of available servers and number of customers
present in the system. To define effective service rate, the notations used are as
follows:

μ( j) �
j∑

i�1

μi , ψ j � Rμ + μ( j), ψr � Rμ + μ(r )

η0,k � Rμ + (k − R)ν, η j,k � Rμ + (k − (R + j))ν j + μ j

Fig. 1 Additional server queue with reneging and retrial attempts
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If the number of customers in the system are k (< R), then the customers depart
from the system after service with a rate kμ. If the number of customers is k such
that R < k ≤ K1, then all R permanent servers will be busy and k − R customers
will wait in the queue. In this case, the customer may renege with the rate v resulting
in a effective service rate Rμ + (k − R)v. Similarly, we define the service rate when
additional servers are busy. Thus, the overall effective service rate is defined by-

μk �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

kμ; 1 ≤ k ≤ R

η0,k ; R < k ≤ K1

η j,k ; K j < k ≤ K j+1; 1 ≤ j ≤ r − 1

ηr,k ; Kr < k ≤ W

3 Queue Size Distribution

The formulation of the queue size distribution at the equilibrium and the expected
number of customers in the system have been done for the finite capacity model by
considering the reneging factor into effect. A product type solution is obtained by
using the appropriate arrival and service rates. Let pk and p0 denote the probability
that there are k number of customers present in the system and the probability that
there are no customers in the system, respectively. Thus, to establish the queue size
distribution, we use the product type solution given by (Fig. 2)

pk � p0

k−1∏

i�0

λi

μi+1
(1)

where the values of p0 can be calculated as follows:

p0 �
[
1 +

W∑

R�1

(
k−1∏

i�0

λi

μi+1

)]−1

(2)

The steady state probabilities pk which represent the probability of k customers
in the system have been obtained for finite capacity model by using birth and death

Fig. 2 Transition diagram
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rates. The birth rate λk accounts for the transition of state k into a k + 1 state. If the
system is in k state and a customer departs the system after receiving the service or
due to his impatient behavior, this results in the transition from k state to k − 1 with
a rate μk . Thus, we obtain

pk �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λk

k!μk p0 ; k ≤ R

λk

R!μR(η0,k)
k−R p0 ; R < k ≤ K1

λk

R!μR(η0,k)
K1−R

(η j,k)
k−K j

j−1∏
i�1

(ηi,k)
Ki+1−Ki

p0 ; K j < k ≤ K j+1; 1 ≤ j ≤ r − 1

λk

R!μR(η0,k)
K1−R

(ηr,k)
k−Kr

r−1∏
i�1

(ηi,k)
Ki+1−Ki

p0 ; Kr < k ≤ W

.

(3)

4 Performance Measures

The performance metrics, namely carried load, throughput, expected number of cus-
tomers in the system as well as in the queue, have been established. The formulations
of the expected waiting time of the customers in system and in the queue are done
in this section. Furthermore, the probability of reneging and probability that perma-
nent and additional servers being busy are provided. Finally, a cost function and the
optimum value of the function have been computed.

4.1 Carried Load (λeff)

The effective arrival rate (λeff) is obtained as

(λeff) �
W−1∑

k�0

λk pk � λ

W−1∑

k�0

pk � λ(1 − pR)

� λ

⎡

⎢⎢⎢⎣1 − λw

R!μR
(
η0,k

)K1−R(
ηr,k

)W−Kr
r−1∏
i−1

(
ηi,k

)Ki+1−Ki

P0

⎤

⎥⎥⎥⎦ (4)
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4.2 Throughput

The service rates at different instances in a model are represented by a single service
rate, namely μeff. For finite capacity model considering reneging, the throughput is
the same as μeff and has been computed by

μeff �
W∑

k�1

μk pk

� p0

[
R∑

k�1

kμ
λk

k!μk
+

K1∑

k�R+1

(
η0,k

) λk

R!μR
(
η0,k

)k−R

+
r−1∑

j�1

K j+1∑

k�K j+1

(
η j,k

) λk

R!μR
(
η0,k

)K1−R(
η j,k

)k−K j
j−1∏
i�1

(
ηi,k

)Ki+1−Ki

+
W∑

k�Kr+1

(
ηr,k

) λk

R!μR
(
η0,k

)K1−R(
ηr,k

)k−Kr
r−1∏
i�1

(
ηi,k

)Ki+1−Ki

⎤

⎥⎥⎥⎦ (5)

4.3 Expected Number of Customers in the System

The expected number of customers in the system (LS) is

LS �
W∑

k�0

kpk

� p0

[
R∑

k�0

λk

k!μk
+

K1∑

k�R+1

λk

R!μR
(
η0,k

)k−R

+
r−1∑

j�1

K j+1∑

k�K j+1

λk

R!μR
(
η0,k

)K1−R(
η j,k

)k−K j
j−1∏
i�1

(
ηi,k

)Ki+1−Ki

+
W∑

k�Kr+1

λk

R!μR
(
η0,k

)K1−R(
ηr,k

)k−Kr
r−1∏
i�1

(
ηi,k

)Ki+1−Ki

⎤

⎥⎥⎥⎦. (6)
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4.4 Expected Waiting Time of the Customers in System

The expected time that a customer has to wait in the system (WS) is obtained using

WS � LS

λeff
(7)

where λeff and LS are determined using Eqs. (4) and (6)., respectively.

4.5 Expected Waiting Time of the Customers in Queue

The time a customer is expected to wait in the queue (Wq) is

Wq � Ws − 1

μeff
� Ls

λeff
− 1

μeff
(8)

4.6 Expected Length of the Queue

The expected number of customers present in the queue is obtained using

Lq � λeffWq � LS − λeff

μeff
(9)

where λeff, μeff and LS are given in Eqs. (4), (5) and (6), respectively.

4.7 Probability of Reneging

In case when all servers are being busy, the customers may wait for some time and
then after may leave or renege from the system due to impatience. The probability
that a customer may renege is obtained as follows:
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P(Reneging) �
W∑

k�1

(1 − νk)pk

� p0

[
K1∑

k�R+1

(1 − ν)
λk

R!μR
(
η0,k

)k−R

+
r−1∑

j�1

K j+1∑

k�K j+1

(
1 − ν j

) λk

R!μR
(
η0,k

)K1−R(
η j,k

)k−K j
j−1∏
i�1

(
ηi,k

)Ki+1−Ki

+
W∑

k�Kr+1

(1 − νr )
λk

R!μR
(
η0,k

)K1−R(
ηr,k

)k−Kr
r−1∏
i�1

(
ηi,k

)Ki+1−Ki

⎤

⎥⎥⎥⎦

(10)

4.8 Probability that Permanent Server is Busy

The probability that mth permanent server being busy is obtained as

PBPm
�

W∑

k�m

kpk

� p0

[
R∑

k�m

λk

k!μk
+

K1∑

k�R+1

λk

R!μR
(
η0,k

)k−R

+
r−1∑

j�1

K j+1∑

k�K j+1

λk

R!μR
(
η0,k

)K1−R(
η j,k

)k−K j
j−1∏
i�1

(
ηi,k

)Ki+1−Ki

+
W∑

k�Kr+1

λk

R!μR
(
η0,k

)K1−R(
ηr,k

)k−Kr
r−1∏
i�1

(
ηi,k

)Ki+1−Ki

⎤

⎥⎥⎥⎦ 1 ≤ m ≤ R (11)

4.9 Probability that Additional Server is Busy

Let PBm denote the probability that mth additional server is busy. Then
PBm � p(Km < k ≤ W ). Thus, we obtain
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PBm � p0

⎡

⎢⎢⎢⎣

r−1∑

j�m

K j+1∑

k�K j+1

λk

R!μR
(
η0,k

)K1−R(
η j,k

)k−K j
j−1∏
i�1

(
ηi,k

)Ki+1−Ki

+
W∑

k�Kr+1

λk

R!μR
(
η0,k

)K1−R(
ηr,k

)k−Kr
r−1∏
i�1

(
ηi,k

)Ki+1−Ki

⎤

⎥⎥⎥⎦ 1 ≤ m ≤ R. (12)

4.10 Total Cost

Total cost function (TC) is constructed in terms of various cost elements defined as

CH holding cost per unit time for each customer present in the system
CP cost incurred per unit time on each permanent server when rending service
CI cost incurred per unit time on each permanent server when it is idle
Cm cost incurred per unit time on mth (m �1,…, r) additional server.

Now, the cost function TC is given by

TC � CH LS + CP

(
R∑

k�1

kμ
λk

k!μk
p0 + Rμ

(
1 −

R∑

k�0

λk

k!μk
p0

)

+ CI

R∑

k�1

(R − k)
λk

k!μk
p0 +

r∑

m�1

[
CmPBmμkm+1

]
. (13)

5 Numerical Illustrations

This section presents the numerical simulation and sensitivity analysis by obtaining
the numerical results of the performancemeasures established inSect. 5. The software
“MATLAB” is used to develop computer programs. The default parameters used for
computation purpose are as follows:

μ � 0.4, r � 3, R � 3, K1 � R + 10, K2 � R + 20, K3 � R + 30, μ1 � 0.2μ,

μ2 � 0.3μ, μ3 � 0.4μ, ν � 0.35μ, ν1 � 1.1ν, ν2 � 1.2ν, ν3 � 1.3ν, W � 40.

The default parameters have been set, and the variations of cost have explored. For
computing the cost, the following default parameters have been set for finite capacity
model:
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Fig. 3 Lq versus λ by varying ν

λ � 10, μ � 2.5, r � 2, R � 2, K1 � 5R, K2 � 6R, μ1 � 0.02μ,

μ2 � 0.003μ, ν � 0.035μ, ν1 � 1.01ν, ν2 � 1.02ν, W � 40,

CH � 5, Cp � 20, CI � 10, C1 � 20, C2 � 50.

To illustrate the application of the finite capacity Markov model by considering the
realistic assumptions of additional removable servers and reneging, we consider the
example of a bankwhere two permanent servers provide service to the customers. The
customers are assumed to arrive in the bank following Poisson fashion with an arrival
rate λ.The service provided to the customers follows an exponential distribution
with a service rate μ. If both the permanent servers are busy, the customers may be
discouraged and depart from the system after waiting for some time in the system
and without getting service. Considering this reneging scenario into account, there
is provision of two additional removable servers in the system. The additional jth (j
�1, 2) server is added into the system as soon as there are K j customers present
in the system. Due to constraints on the finite waiting space (W), further arriving of
customers is not allowed, when the number of customers reaches to its full capacity.

The trends of average number of customers with respect to arrival rates for varying
values of different parameters are shown in Figs. 3, 4, 5, and 6. In Fig. 3, the variation
of queue length versus arrival rate with the different values of reneging parameter
(υ) for finite capacity model is displayed. It is noticed that by increasing the reneging
rate, the queue length decreases significantly.

In Figs. 3, 4, 5, and 6, we see that by increasing the arrival rate, there is remarkable
increment in the queue length. Figure 4depicts the variationof the queue lengthversus
arrival length with the variation of service rate (μ). As expected, by increasing the
service rate, the queue length seems to decrease for a given arrival rate. Figure 5
reveals the variation of queue length for increasing arrival rate and with the variation
of number of permanent servers (R). It is noticed that as the number of permanent
servers increases, the queue length seems to decrease due to fact that the effective
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service is improving by adding more permanent servers. Figure 6 displays the trend
of queue length for the variation of capacity (W ) of the system. There is increment
in the queue length as W increases which is what we expect in real-time system.

Figures 7, 8, 9, and 10 exhibit the variation of total cost with service rate by
varying other parameters viz. υ, K1, R, andW , respectively. The cost function seems
to be convex with respect to service rate, so the optimal rate can be obtained for the
set default cost factors. One can see from the graph plotted in Fig. 7 that the total
cost decreases with an increase in reneging rate. In Fig. 8, we notice that the cost
increases with the increase in the value of K1, which demonstrates that an additional
server should be installed at an early stage. The optimal values in this figure are
TC∗ � 197.21, μ∗ � 2.510, KL∗ � 3.

Figure 9 demonstrates the variation of total cost by the increasing the number of
permanent servers as well as service rate. It can be seen from the graph that the total
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cost increases with an increase in the number of permanent servers which can also
realized in real-time system too. Here we find the minimum cost and optimal service
rate and number of servers as TC∗ � 177.21, μ∗ � 2.608, R∗ � 2. Figure 10
displays the variation of total cost with respect to capacity of the system while
varying the service rate. It can be seen from the graph that the total cost increases
with the increase in the capacity of the system.We find theminimum cost and optimal
parameter values as TC∗ � 176.42, μ∗ � 2.583, W ∗ � 30.
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6 Conclusions

The cost analysis by establishingvarious systemmetrics for thefinite capacityMarko-
vian queuing model has been presented by considering the reneging behavior of the
customers. To reduce the adverse impact of reneging on the system efficiency, the
trade-off between the service cost and waiting cost can play an important role. The
provision of additional servers that can turn on based on workload of the system
according to a threshold policy has been analyzed. The facility of removable extra
servers along with permanent servers may be helpful to the system organizers and
decision-makers for the economic design of the concerned system. Due to high setup
cost and other factors, more number of permanent servers cannot be incorporated
in the system as such additional removable servers can be installed as and when
required.
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Analysis of Queues with Impatient
Clients: An Application to Online
Shopping

Yogesh Shukla, Nasir Khan and Sonia Shivhare

Abstract Queuing models have been largely used in the literature for obtaining
routine actions and developing employment policies. However, the majority of this
work has started a pure probabilistic point of view and has not addressed issues of
statistical conclusion. In this article, we have tried to study bounce rate of shopping
of clients with particular emphasis on online shopping operations and discuss the
various reasons for high bounce rates for five leading online shopping sites in the
Indian context. We have prepared a table and graph on the queue of the people who
visit the sites and bounce back without placing any orders. We have tried to point
out the actual arrival, service, and leaving pattern from online shopping. We have
tried to establish a relationship between various variables among this data and also
the presentation of all the sites and its effect on bounce rate.

Keywords Queuing model · Probabilistic point · Bounce rate
Ams subject classification 60K25 · 60K37 · 90B50

1 Introduction

Queuing theory has been worn in the before period to assess such things as staff
plans, working condition, effectiveness, customer holding up time, and customer
holding up condition. In online Web site, lining supposition can be utilized to eval-
uate a monstrous measure of variables, for example, treatment fill-time, customer
holding up time, customer advising time. The function of queuing theory may be of
meticulous profit in hospitals with high-volume outpatient workloads and/or those
that offer different point of examine. Lining hypothesis uses scientific models and
execution strategies to judge and hopefully improve the stream of customer through a
lining framework. Lining hypothesis has innumerable applications and has beenworn
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generally by the administration ventures. The capacity of lining hypothesis might be
of fastidious preferred standpoint in receptionists with high-volume outpatient work-
loads and additionally people that supply a few purposes of analyze, for example,
people in the Department of Veterans Affairs (VA), Department of Defense (DoD),
college well-being frameworks, and oversaw mind associations. Still we breathe in
an era who is wearing the eyeglasses of silver screen but wants to get things in
an hour or less. A epigrammatic legend told from the patient’s outlook will be of
assistance to promote demonstrate this position [8]. Presently, the retail business in
India is quickening. It is not extensively settled as the way it is conventional in Asian
partner. India is vivified to create to be a most basic rival in the retail showcase.
In view of the fact that India is a developing nation, it is tranquil not organized in
favor of it. And they are parting no stone unturned to develop into the best in retail
industry. Also India amid a high on cross-culture factor, it allows unlike companies
bringing in diversity of products targeting unusual shopper segments. Indian market
is not conquered by organized dramatis personae; however, there is planned in the
territory of retail organization also. Big organization, for example Big Bazaar, wants
to secure the advancement of its organization even in the rustic zones. There has been
an increase in the Indian working class individuals because of rapid financial growth.
Despite the fact that the number of inhabitants in utilizing Internet in India is low
as far as all things considered level of aggregate populace in any case, in absolute
figures it is high. This gives huge open doors for different online business locales
to connect with this area. The populace getting to in India is the age gather from
1845. Independent of this reality web-based distributing shapes a small 0.08% of
the whole Indian retail advertises. Market players must be more positive, reforming
and spearheading in their approach and offering to make genuine advances. In the
present market, main part of online deals is in a scope of things. This market in India
needs to jump to the following level [1].

2 Literature Review

Theprogress of online shopping is also encouraged by the growing number of Internet
users. “E-commerce proceed has grown from $7.4 billion in the middle of 2000 to
$34.7 billion in the third sector of 2007. On-line shopping is one of key business
behavior existing over the Internet,” stated an investigation with reference to the
conduct of clients in Poland [2]. This investigation confirmed the inclination observed
in America. “Among various business instruments universally available on-line since
1990s, like auctions and banking and secure payment,” mentioned in [5, 3, 10, 4],
shopping [7], electronic libraries [6], etc.”

“The number of on-line users either buying or searching for goods on-line since
2000 has generally doubled.While in 2000, 22%ofAmericans (46%of on-line users)
had some incident with buying products in fundamental shops, the ratio grew to 39%
in 2003 and reached 49% (66% of on-line users) in 2007,” found an investigation
about American Internet users performance available by Pew Internet & American
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Life Project in February 2008 [9]. This investigation states, “The inhabitants of on-
line clients grows rapidly and systematically from year to year on-line vend residue
the service existing by the highest amount of providers.”

“A rising digit of on-line shops and improved accessibility to clients world-wide
due to the use of credit card payment in on-line transactions are key attributes that
strength strong competition on the market, keep prices low (when compared to off-
line shopping) and make more and more clients interested in on-line purchasing,” as
stated in [4, 10, 11].

“However, a wide choice of on-line shops makes it not easy to physically put side
by side all the offers and selectmost favorable providers for the obligatory set of yield.
This approach is normally accepted by clients and, according to Alexa Rank, popular
price evaluation services feel right to the group of 1000most viewed sitesworld-wide:
shopping.com: 518-th place, nextag.com: 533-th place, bizrate.com: 600-th place,
shoplocal.com: 932-th place,” site popularity results registered in October 2008,
www.alexa.com. A clarification of this dilemma has been supported by software
agents purported price evaluation sites. “The thought of a worth comparator is built
on the proposal of collecting offers of many on-line shops and build a price level on
a client’s request,” stated their study.

“It is significant noting that price level built on-line on a client’s appeal articulated
in a text inquiry (product description) is a explanation to a specific case of shopping, in
which a client wants to buy a single product. Multiple item shopping is not supported
by price comparators existing in our time. As a result, price evaluation sites play the
responsibility of recommender systems which tend to become aware of a client’s
preferences and interests in order to recommend goods to buy. A part outcome of the
troubles mentioned over is the loss of client assurance,” as observed by Satzger [9].

Besides, price evaluation sites, being marketable projects, have a propensity to
optimize their incomes from directing clients to meticulous online shops.

3 Numerical Illustrations of Bounce Rate Using Online
Shopping Customer Data

Here, we analysis different–different sites for reduce the queue and improve the
service of onlineWeb site. For this, here we fix some factor for analysis this problem
like number of Web site, month of a fixed year.

Table 1 shows the percentage of people who surf different online shopping sites,
namely Amazon.in, Flipkart.com, Snapdeal.com, EBay. in, and Jabong.com. The
ranking of each Web site in India has also been mentioned on the basis of their
overall goodwill in the Indian online market. The total of clients who visit any Web
site have been classified into two categories: those who surf theWeb site on desktops
or laptops and those who surf the Web site on their smartphones, for instance, of the
total 100% of people who visit Amazon.in, 48.27 visit it on their desktop systems or
laptops and the remaining 51.73% visit it on their smart phones. The entire amount of

http://www.alexa.com
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Table 1 Overview of particulars

Parameter ↓ Name of online Web site

Amazon.in Flipkart.com Snapdeal.com EBay.in Jabong.com

Country rank 7 10 19 28 54

Desktop users
(%)

48.27 55.02 52.24 48.07 60.69

Mobile users
(%)

51.73 44.98 47.76 51.93 39.31

Total visit
(Aug 2016)

188.6M 106.2M 55.7M 36.7M 24.7M

Average daily
visits

6.739M 3.793M 1.989M 1.310M 0.865M

Average visit
duration

0:07:22 0:06:45 0:05:29 0:05:23 0:03:53

Pages per visit 8.54 7.6 4.91 5.4 4.02

Bounce rate
(%)

32.06 29.94 39.99 42.90 52.84

Table 2 Analysis of visiting users and bounce users

Parameter ↓ Name of online Web site

Amazon.in
(%)

Flipkart.com
(%)

Snapdeal.com
(%)

EBay.in (%) Jabong.com
(%)

Mobile users 51.73 44.98 47.76 51.93 39.31

Desktop users 48.27 55.02 52.24 48.07 60.69

Bounce rate 32.06 29.94 39.99 42.90 52.84

visits, average number of daily visits, and average visit durations on these websites
duringAugust’16 have also beenmentioned in Table 1 alongwith the average number
of pages surfed in a single visit.

Table 2 has been drawn to emphasize the percentage of users preferring smart-
phones for online shopping and the remaining that prefer desktops or laptops for the
same. The bounce rates of all the online shopping Web sites have been emphasized
upon in Table 2 (Fig. 1).

Now, by analyzing the graph,we see that the percentageofmobile users forEbay.in
is the highest (51.93%), very closely followed by Amazon.in with 51.73% mobile
application users. Jabong.com faces theminimumproportion (39.31%) ofmobile app
users. In contrast, Jabong faces the highest proportion (60.69%) of desktop users who
surf Jabong.com, while Amazon.in and Ebay.in face the lowest proportions of people
surfing the Web sites on their desktops with 48.27% and 48.07%, respectively.

Bounce rate is the percentage of visits that end up without any orders getting
placed. The bounce rate profile for the Web sites shows that Jabong.com has the
highest bounce rate of 52.84%, while Flipkart.com and Amazon.in have the lowest
bounce rates. In other words, Jabong.com is less capable of turning its visitors into
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clients when compared to Flipkart.com and Amazon.in. The reason for this may be
cited as the lower percentage of mobile app users of Jabong.com in comparison to
Amazon.in and Flipkart.com. It can be suggested that Jabong.com should go for
the reintroduction of their mobile application toward a more user-friendly mobile
application which people tend to prefer more than they prefer the desktop.

While Ebay.in and Snapdeal.com face almost equal visitors in terms of both desk-
top visitors and mobile app users, they face a mediocre bounce rate when compared
to Jabong.com (with the highest bounce rate) and Flipkart.com and Amazon.in (with
the lowest bounce rates).

It can be stated in general that the average bounce rate faced by the online visitors
of these Web sites is substantially high. The reasons for this may be

• Lower high-speed Internet penetration in the country;
• Impatience of the Indian clients due to low speed while browsing the sites, both
on mobile apps and desktops;

• Less techno-savvy population of the country, for example, some people surf the
various products, but are not able to place orders;

• Less user-friendly application of offers available on the sites, etc.

4 Conclusion

These bounce rates can be reduced by introducing more user-friendly online Web
sites for desktop users and more user-friendly mobile apps for smart phone users.
Also, it is worth mentioning that the best offers should be availed automatically on
these online shopping platforms, as the impatience in the Indian clients makes it hard
for them to give time to search and avail offers. Also, a higher penetration of high-
speed Internet will be substantially helpful in eradicating the problem of impatience
of the Indian clients that eventually end up increasing the bounce rate.
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Also, the products should be clearly classified in categories of offers; i.e., there
should be separate pages for all the categories of offers and for the products without
any offers. This would help the client in directly browsing the page with the required
offer that the client intends to. For instance, someone who only wishes to browse
products with offers should be able to clearly go for a page which has the products
with offers.

Also, to gain more and more clients, points should be credited to any registered
viewer who visits the site even once. Any credit point may be equated to a desired
money value, for example, Rs. 0.5. This would help in retaining a visitor on the site
and would automatically lead to an increased market share and sale.
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Designing Bulk Arrival Queue Model
to an Interdependent Communication
System with Fuzzy Parameters

Reeta Bhardwaj, T. P. Singh and Vijay Kumar

Abstract This study attempts to investigate and fuzzify the bulk queuing model of
a communication system with statistical multiplexers containing the packet voice
source and the data. In this study, we assumed that the incoming messages and
transmitted messages are correlated at the node of network that make the system
interdependent. The uncertain parameters are considered in fuzzy numbers. A set
of parametric values are developed to evaluate the bounds of system characteristic
functions at possibility level α. Numerical examples with graphical insight are also
illustrated to check the validity of the proposed approach.

Keywords Bulk arrival queue · Membership function
Trapezoidal fuzzy numbers · Statistical multiplexing voice packetized · DCE

1 Introduction

Bulk arrival queue models have applications in various systems such as telecommu-
nication,manufacturing, and computer networking. Traffic in communication system
has significantly changed with the invention of fax and Internet. In an expanded sys-
tem of data processor, computers talk to each other over public phone lines that are
analog in nature. A less degradation of analog signals over long phone lines has been
observed compared to data stream over identical lines due to high harmonic content
of the digital signals and limited frequency response of the lines. The modems are
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the data communication equipment (DCE). The sequence of events for the control
line can be summarized as:

a. Data terminal ready comes on to the modem.
b. The modem responds with data set ready on, which signals that both devices are

turned on.
c. When the terminal is ready to send the message, it will signal the modem with a

request to send activated.
d. If the modem is ready, it will reply with a clear to send.

Themodern communication systemcanbetter be analyzed in light of the stochastic
modeling of queue networks. The queue models play an important role in model-
ing voice calls also. In communication system, one can consider the messages as
customers/units, the buffer (region of physical memory storage used to temporarily
hold data) as waiting lines and the concerned activity in transmission of messages as
services. The control register supplies the information to the receive control circuit,
which counts the data bits, examines the parity and compares it to the control parity
bit and looks for only one stop bit. This fact justifies the resemblance between queue
system and communication system.

The function of packet switching is to divide data message into small bundles of
information and then transmit through communication network to their destination
using computer control switches. Nowadays, communication network sources are
managed by statistical multiplexing which reduces the delay in packet switching.

In the study of communication systems, Jenq [1], Hayashida [2] assumed that the
arrival and service processes are independent but later on other researchers observed
that these system can be better analyzed by assuming dependence between arriving
and transmitted messages. Srinivas Rao [3, 4] and Singh [5] presented stochastic
queue model to interdependent communication network in which arrival messages
were distributed geometrically and transmission at the node of network are correlated
following a bi-variate Poisson process. UsingChapmanKolmogorov equation, Singh
[5] calculated the average delay transmission and variance of number of packets in
buffer. The work was further extended by Singh and Kusum [6] and Singh and Arti
[7] who explored the interdependent queuingmodel to a communication systemwith
voice packets and data under fuzzy environment.

In many real-world problems, the arrival and service nodes are more correctly
expressed by linguistic terms (slow, moderate, and fast) as compared to probabil-
ity distribution. Due to fluctuation and variation in demands at transmission lines,
congestion occurs in communication system; therefore, the concerned activities in
transmission of messages, service patterns, etc., have been assumed uncertain in
nature. The covariance between the composite input and output transmission com-
pletion has also been considered in fuzzy parameters. Our study is more realistic than
the work done of earlier authors. This interdependent network can reduce the mean
buffer length and variability of buffer contents when the environment is uncertain
and complex.
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Singh et al. [6, 7] explored the application of interdependent queuing model to
a communication system with voice packets and data in fuzzy environment using
Yager’s and Chanes’s defuzzification formula, but the results are not so encouraging.
Recently, Bhardwaj [8] extended the work of Singh et al. [7] by considering the
system parameters and covariance through fuzzy triangular numbers. This paper is
further an extension of thework done byBhardwaj [8] in the sense that the parametric
values have been considered as trapezoidal fuzzy numbers and the model have been
developed on the basis of lower and upper bounds of system performance measure
at possibility level α. The validity of proposed approach has been checked through
numerical examples.

2 Preliminaries

2.1 Fuzzy Set and Fuzzy Logic

Fuzzy logic (many valued logic) has various application in networks and subsidized
to development in network efficiency. It deals with reasoning which is inaccurate
and uncertain rather than fixed and precised. Zadeh [9] first of all introduced the
fuzzy concept which can be demonstrated by a simple set inclusion operator, but
there is a degree of membership. The Boolean logic has just two values either true
(numerically represented by 1) and false (numerically represented by 0). The fuzzy
logic extends the values between 0 and 1 using concept of degree of membership. It
makes use of fuzzy interference tool.

In the universe of discourse X, a fuzzy subset ˜A on X is defined by membership
function μ

˜A(X ) such that μ
˜A(X ) : X → [0, 1].

2.2 α-Cut

Let ˜A be a fuzzy set onR and 0 ≤ α ≤ 1. Then,α-cut of the fuzzy set ˜A is the crisp set
A that contains all the elements of universe of discourse X, whose membership grade
in A is greater than or equal to specified value α i.e., Aα � {

x/μ
˜A(x) ≥ α, x ∈ X

} �
{

L
˜A(α),U˜A(α)

}

,where L
˜A(α) andU˜A(α) represent the lower bound andupper bound

of the α cut of ˜A, respectively.
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2.3 Trapezoidal Fuzzy Numbers

˜A �

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x − a

b − a
a ≤ x ≤ b

1 b ≤ x ≤ c

d − x

d − c
c ≤ x ≤ d

0 otherwise

3 Model Description and Notation

In this model, we assume that the incoming and transmitted packets are correlated
and succeeding a bi-variate Poisson’s law. We also assume that the buffer having
infinite capacity and the number of incoming packets are considered as a random
variable x.

3.1 Notation

λx Arrival rate of message containing x packets
∈x Covariance between packet arrival and number of completed transmis-

sion
μ Average transmission rate
λ � ∑

x λx Composite arrival rate of packets
∈� ∑

x ∈x Covariance between composite arrivals and completed transmission.

The bit dropping of flow control mechanism generates the covariance which
induces the dependence between incoming and transmitted messages. Flow con-
trol plays an important role because the sending computer may transmit information
at a faster rate than the destination computer can receive and process them. The
function of congestion control is to control the flow of data. This type of situation
arises only if the receiving computers have a heavy traffic load or has less processing
power than the sending computer. The network diagram is as shown (Fig. 1).

3.2 Assumptions

1. The probability that there is no arrival and no service in a small interval of time
�t is 1 − (λ + μ − 2 ∈)�t + o(�t).
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Fig. 1 Bit dropping or flow control

2. The probability of one arrival and no service in a small interval of time �t is
(λ− ∈)�t + o(�t).

3. The probability of no arrival and one service completion during a small interval
of time �t is (μ− ∈)�t + o(�t).

4 Mathematical Study

The model differential difference equations in steady state can be written as:

0 � −(λ + μ + 2 ∈)Pn + (μ− ∈)Pn+1 + (λ− ∈)

n
∑

r�1

Pn−rCr n ≥ 1 (1)

0 � −(λ− ∈)P0 + (μ− ∈)P1; n � 0 (2)

In order to solve, applying generating function technique

P(z) �
∞

∑

n�0

Pn Z
n, |Z | ≤ 1

C(z) �
∞

∑

n�0

CnZ
n, |Z | ≤ 1

Solving on the basis of Singh [5], we get

P(z) � (μ−∈)(1−az)P0
(μ−∈)(1−az)−(λ−∈)z for (λ− ∈) < (μ− ∈)(1 − a) , 0 < a < 1

5 Performance Measure

Using initial condition

P(1) � 1, P(0) � 1 − λ−∈
(μ−∈)(1−a)

� 1 − ρ0 where ρ0 � λ−∈
(μ−∈)(1−a)
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we ultimate find the following performance measures for the stated model:

(i) The expected number of packets in the system is
L � ρ0

(1−a)(1−ρ0)
where ρ0 � λ−∈

(μ−∈)(1−a)

(ii) The expected number of packets in buffer

Lq � ρ0

(1 − a)(1 − ρ0)
− ρ0

(iii) Variance of the number of packets in the system

Var � aρ0(1 − ρ0) + ρ0

(1 − a)2(1 − ρ0)
2 .

6 Fuzzified Model

Inmanypractical situations, the parameters are characterized subjectively; i.e., arrival
and service pattern (mess in communication system) are described in linguistic vari-
ables such as fast, slow, medium. The role of fuzzy arithmetic is very important here,
or we can say that the fuzzified model is potentially more practical than stochastic
model. To explain the model, we discussed the trapezoidal fuzzy system through α−
cut.

6.1 The Numerical Illustration

Mean Queue Length

Consider ˜λ � (2, 3, 4, 5), μ̃ � (9, 10, 11, 12), ε̃ �
(0.01, 0.02, 0.03, 0.04), a � 0.3

Using α− cut

λα � {

λlower
α , λupper

α

} � {α + 2, 5 − α}

μα � {

μlower
α , μupper

α

} � {9 + α, 12 − α}

εα � {

εlowerα , εupperα

} � {0.01α + 0.01, 0.04 − 0.01α}

(ρ0)α �
{

ρlower
0α , ρ

upper
0α

}

�
{

1.01α + 1.96

8.393 − 0.707α
,

4.99 − 1.01α

0.707α + 6.272

}
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Table 1 Mean queue length
versus α

α L lower
α Lupper

α

0 0.4352 5.5600

0.3 0.5462 3.7258

0.5 0.6317 2.9930

0.7 0.7283 2.4630

1.0 0.8996 1.8958

Fig. 2 Mean queue length versus α

Lα � {

L lower
α , Lupper

α

} �
{

ρ lower
0α

(0.7)
(

1 − ρ lower
0α

) ,
ρ
upper
0α

(0.7)
(

1 − ρ
upper
0α

)

}

�
{

1.01α + 1.96

4.5301 − 1.2019α
,

4.99 − 1.01α

1.2019α + 0.8974

}

Table 1 presents the mean fuzzy queue length of the system for the different
parametric values of α (Fig. 2).

Variance

Consider ˜λ � (1, 2, 3, 4), μ̃ � (15, 16, 17, 18), ε̃ �
(0.01, 0.02, 0.03, 0.04), a � 0.5

Using α− cut

λα � {

λlower
α , λupper

α

} � {α + 1, 4 − α}

μα � {

μlower
α , μupper

α

} � {15 + α, 18 − α}
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Table 2 Variance versus α
α V lower

α V upper
α

0 0.7739 12.087

0.2 0.9920 9.981

0.4 1.236 8.318

0.6 1.511 6.982

0.8 1.823 5.892

1.0 2.178 4.990

Fig. 3 Variance versus α

εα �
{

εlowerα , ε
upper
α

}

� {0.01α + 0.01, 0.04 − 0.01α}

Var � Vα �
{

V lower
α , V upper

α

}

�
{

aρlower
0α

(

1 − ρlower
0α

)

+ ρlower
0α

(1 − a)2
(

1 − ρlower
0α

)2 ,
aρupper

0α

(

1 − ρ
upper
0α

)

+ ρ
upper
0α

(1 − a)2
(

1 − ρ
upper
0α

)2

}

�

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(0.505α + 0.48)(8.035 − 1.515α) + (8.995 − 0.505α)(1.01α + 0.96)

0.25(8.035 − 1.515α)2
,

(1.995 − 0.505α)(1.515α + 3.49) + (0.505α + 7.48)(3.99 − 1.01α)

0.25(1.515α + 3.49)2

⎫

⎪

⎪

⎬

⎪

⎪

⎭

Table 2 presents the fuzzy variance of the system for different value of α.
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7 Conclusion

Authors observed that when the parameters (input and output transmission rate) are
considered as fuzzy, the performance measures of system can also be expressed by
fuzzy parameters which show a complete conservation of input/output information.
Since the system characteristics are represented by membership function rather than
by a crisp value, it preserves the fuzziness of input and the outcomes which can
analyze the fuzzy bulk system more accurately. As the value of α increases, lower
bound of queue length L increases and upper bound correspondingly decreases.
Authors found that uncertainty decreases. Again from the table of variance, it is
found that the variability of number of packets in buffer decreases as the dependence
between arrival of packets and transmission increases positively (Fig. 3).

The results tally with the work done by Singh and Arti [7] but in different way
analytically with more clear arguments. When α → 0, ρn � (1 − ρ0)ρ

n
0 , n > 0

gives the interdependent communication network without bulk arrivals, the results
tally with the study of Srinivas Rao et al. [3].

8 Future Scope

In the given system, the parametric values (arrival rate, service rate, and covariance
coefficient) are considered as trapezoidal fuzzy numbers. The proposed approach is
not only restricted to these parameters. Either case with arrival rate and service rate
being convex fuzzy sets can also be applicable, or the work can be extended. The
proposed work can be continued to the cases of fuzzy batch sizes which need further
research. To avoid a sudden drop in graph, a nonlinear threshold can be suggested in
which the membership function goes down to zero as slower pace. The performance
measures can also be converted into linguistic variable (short, average, medium, and
large) which needs further research.
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Transient Analysis of Markov Feedback
Queue with Working Vacation
and Discouragement

Madhu Jain, Shobha Rani and Mayank Singh

Abstract This article is concerned with the performance prediction of feedback
Markovian queueing model with working vacations. During the period of vacation,
the server continues its job with slower rate. In case when the server is on normal
busy state, the customers may be discouraged to join the queue and depart from the
system. After the service completion, the unsatisfied customer may also feedback to
the system when operating in normal busy as well as working vacation mode. The
transient solution of the system size probability distribution is obtained in terms of
modifiedBessel’s functionbyusing theprobability generating function andcontinued
fractions. The time-dependent results for various performance indices including cost
function are derived. By taking illustration, numerical simulation and sensitivity of
performance indices with respect to different parameters are provided.

Keywords Transient probabilities · Markov process · Working vacations
Feedback queue · Balking · Continued fractions · Modified Bessel’s function

1 Introduction

Recent researches in the queueing theory show the emergence of an important and
interesting topic of queueing system with working vacations which in turn has dis-
cernible effect on the queueing applications. To investigate the system behavior over
a time, we need time-dependent analysis for the queue under study. The transient
state measures are important to examine the functioning of the system. It has been
observed that a very few research works have been done on the time-dependent
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analysis of Markovian queueing system including either vacation or working vaca-
tions. Such types of queueing models have many applications in real life, especially
in globalized computer networks, manufacturing, and production systems, etc. The
main objective in this article is to study the transient behavior ofMarkovian queueing
systems with working vacation and feedback.

Sometimes, it may happen that the server may not be available at the service
counter in the absence of customers. That is the case when the server goes for the
vacation for a random length of time and remains idle. But, sometime the vacationing
servermay go passively engaged in some activity. This concept of ‘working vacation’
which actually works as a semi-vacation scheme was initiated by Servi and Finn
[11]. They generalized M/M/1 classical vacation model where the server continues
its service to the customer with a lower speed in place of stopping the service. In
the standard working vacation queueing problems, during the period of vacation, the
server may not maintain the original speed of their service. In this case, impatience
factor can also take place in the system; if the waiting line is too long, then the
customer may balks from the service area without joining the queue. The queueing
systems in which unsatisfied customers can again get a chance to be served is treated
as a feedback system.

Feedback queues are common in many congestion scenarios due to the fact that
after getting service, sometimes the unsatisfied customers demand for more service
time instead of departing from the system. Such situation of feedback can be seen
at many queueing systems including the doctors’ clinics, supermarkets, banking
services, medical stores.

A lot of research and survey have been done on the steady and transient state
analysis of Markovian queueing systems that are designed in different context to
serve the customers. Baba [6] presented the performance modeling and analysis of
G/M/1 queueing model by including the concept of multiple vacations. It was an
extension work of M/M/1/WV queueing model discussed by Servi and Finn [11].
Zhang et al. [15] presented a paper on finite capacity Markovian queue model with
reneging, balking, and server vacation and acquired the steady-state solution inmatrix
form. Altman et al. [2] have described a comprehensive analysis ofM/M/1,M/M/c,
and M/G/1 queueing models with the emergence of impatient customers and server
vacation. Jain and Agarwal [8] studied an M/Ek/1 model with vacation scheme
under the features of server breakdown and state-dependent arrival. To develop an
M/M/1 single server working vacation queueing model, Tian et al. [12] have done
the analysis and derived the distribution of the total number of the customers present
in the service area by using the birth and death process. Seddy et al. [1] gave the
analysis of transient behavior of an M/M/C Markov queue model by considering
the discouraging aspects of both balking and reneging to establish the expression of
distribution of queue length and average number of the customers in the system at
the stationary level. By applying the matrix-geometric solution technique, Xiu et al.
[14] discussed the performance ofM/M/1 vacation queue model with waiting server
and impatience customers. Jain [9] studied the queueing problem under the multiple
breakdown servers andworkingvacation to obtain the queue size distributionbyusing
the matrix analysis approach. Baba [7] developed the approximation formula of the
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queue length distribution of MX/M/1 queueing system with multiple vacations and
unreliable server by using the entropy principle. Arivudainambi et al. [5] have done
the analysis of a steady-state distribution and the total jobs in the orbit of single server
vacationing retrial queue. Vijayashree et al. [13] studied an M/M/C queue model
with multiple types of working vacations by evaluating the transient solution of the
total customers in the system. Ammar [3] discussed a single server vacation model
with an impatient factor, to derive the time-dependent probabilities in explicit form.
Ammar [4] also studied the transient study of anM/M/1 vacation queue model with
waiting server and impatience customer to obtain the transient solution in explicit
form. In recent times, Panda et al. [10] have investigated the Markovian queue with
working vacation and impatient customers to discuss its equilibrium behavior and
social optimization.

A very few papers have presented in the queueing literature on transient analysis
of Markovian queueing problems. This article attempts to figure out the transient
solution of an M/M/1 Markov queue by considering the feedback customers along
with working vacation. It has been observed that no related research work has been
done to analyze the transient probabilities for the feedback queueing problem under
the assumption of state-dependent rates, balking behavior, and working vacation,
altogether. For the solution purpose, generating function and continued fraction tech-
niques are used. The closed-form formulae of the queue size distribution and other
performance indices to examine the transient behavior of the system are provided.
The numerical illustration for the model is also discussed to look the sensitivity out-
comes of the system descriptors on several indices. The contents of the paper have
been presented as follows. In Sect. 2 we discuss the concerned model and governing
equations with suitable notations. The closed-form expressions for the generating
function of queue length distribution and system’s state probabilities have derived
in Sect. 3. The stationary distribution is also obtained by using the results of tran-
sient state probabilities in Sect. 4. Some other performance measures are obtained
in Sect. 5. Numerical simulation and sensitivity analysis have been done to demon-
strate the effects of parameters for the performance measures in Sect. 6. Finally, the
conclusion for the investigation done has been presented in Sect. 7.

2 Model Description

To interpret the transient behavior of M/M/1/WV feedback model with discourage-
ment factor, we develop the queueing model by considering the birth–death process.
We assume that if there is no customer to serve in the system, then the server goes
to vacation state for random length of time but continues his job with slower rate
instead of ceasing service completely. At the state of the busy period of the server,
the unsatisfied customer may or may not join again the waiting line. After getting the
unsuccessful service, some of the customers join the queue again for service com-
pletion; such type of queue is known as feedback queue. The impatient customers
considered here show the balking behavior, i.e., the arriving customers do not join the
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Fig. 1 Transition state diagram for the M/M/1/WV queue with feedback and balking

queue if observe that the waiting line is too long. The customers are served according
the FIFO rule by the single server in case of both normal busy period and working
vacation period. The other assumptions for model formulation are as follows (Fig. 1):

(a) The customers join the system in Poisson fashion with rate λ and λV when it
works at normal operating mode and at working vacation mode.

(b) The working vacation time follows the exponential distribution with rate γ .
(c) Both the service times during normal busy and on working vacation mode of

the server are distributed exponentially with rates μB and μV , respectively.
(d) During the working vacation after completion of the service, the feedback cus-

tomer, i.e., the unsatisfied customer may again join the queue with probability
q0 or departs from the service area with probability 1 − q0. During the busy
period when the server is rendering service in normal mode, after the service
completion, the unsatisfied customer may join the end of queue with probability
q1 or may not join the queue with probability 1 − q1.

(e) When the server is on normal busy state, the arriving customer may discourage
and enters the queue with some probability b.

(f) The arrival and service processes are mutually independent.

Let MV (t) be the total number of customers present in the system at time t and

S(t) �
{
V, working vacation state of the system at time t,

B, busy state of the system at time t.

Bivariate stochastic process {MV (t), S(t)} is governed by

Ω � {0, 0} ∪ {(i. j) : i ≥ 1, j � V or B}

Let Pi, j (t) be the probability of i customers in the system and j ∈ {V or B}; if
j � V it means that the server is on working vacation and if j � B, then the server
is in normal busy mode.
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2.1 Governing Equations

Ongoing to the forward direction, Kolmogorov differential–difference equations for
the concerned study are formed as follows:

For Working Vacation State:

P ′
00(t) � −λV P00(t) + q0μV P1V (t) + q1μB P1B(t) (1)

P ′
1V (t) � −(λV + q0μV + γ )P1V (t) + λV P00(t) + q0μV P2V (t) (2)

P ′
i,V (t) � −(λV + γ + q0μV )Pi,V (t) + λV Pi−1,V (t) + q0μV Pi+1,V (t); for i ≥ 2

(3)

For busy state:

P ′
1,B(t) � −(λb + q1μB)P1,B(t) + γ P1,V (t) + q1μB P2,B(t) (4)

P ′
2,B(t) � −(λb + q1μB)P2,B(t) + γ P2,V (t) + q1μB P3,B(t) + λbP1,B(t)

P ′
i,B (t) � −(λb + q1μB )Pi,B (t) + q1μB Pi+1,B (t) + γ Pi,v(t) + λbPi−1,B (t), for i ≥ 3 (5)

The initial conditions are P00(t) � 1; Pi, j � 0, i �� 0, j �� 0.

3 Transient Probabilities

3.1 Evaluation of Pi,B(t)

Here we obtain the value of Pi,B(t) in terms of Pi,V (t), for i ≥ 1.
Define probability generating function of busy state by

PB(z, t) �
∞∑
i�1

zi Pi,B(t) and PB(z, 0) � 0.

Solving (4) and (5), we get

∂PB (z, t)

∂t
�

∞∑
i�1

[−(λb + q1μB )Pi,B (t) + γ Pi,V (t) + q1μB Pi+1,B (t) + λbPi−1,B (t)
]
zi

which after some algebraic manipulation yields

∂PB (z, t)

∂t
�
{
−(λb + q1μB ) + zλb +

q1μB

z

}
PB (z, t) + γ

∞∑
i�1

zi Pi,V (t) − q1μB P1,B (t) (6)

Further solving Eq. (6), we get
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PB(z, t) � γ

t∫
0

[ ∞∑
m�1

zm Pm,V (y)

]
e−(λb+q1μB )(t−y)e(λbz+

q1μB
z )(t−y)dy

− q1μB

t∫
0

P1,B(y) e
−(λb+q1μB )(t−y) e(λbz+

q1μB
z )(t−y)dy (7)

Let Ii (t) be the modified Bessel’s function of first kind of order i .

If αB � 2
√

λbq1μB, βB �
√

λb
q1μB

, then we find

exp

[(
λzb +

q1μB

z

)
t

]
�

∞∑
i�−∞

(√
βBz

)i
Ii (αBt) (8)

Using (7), and then comparing the coefficients of zi on both sides for i ≥ 1, we
obtain

Pi,B(t) � γ

t∫
0

[
i−1∑
m�0

Pi−m,V (y)β
m
B Im(αB(t − y)) +

∞∑
m�1

Pi+m,V (y)β
−m
B Im(αB(t − y))

]

× e−(λb+q1μB )(t−y)dy − q1μB

t∫
0

P1,B(y)β
i
B Ii (αB(t − y)) e−(λb+q1μB )(t−y)dy

(9)

It is well known that Eq. (9) holds for i ≤ −1 with the left side probabilities
replaced by the zero value. Also, identity I−i (x) � Ii (x) holds for i ≥ 1. Thus, we
get

0 � γ

t∫
0

[ ∞∑
m�1

Pm,V (y)β
−i−m
B Ii+m(αB(t − y))

]
e−(λb+q1μB )(t−y)dy

− q1μB

t∫
0

P1,B(y)β
−i
B Ii (αB(t − y))e−(λb+q1μB )(t−y)dy (10)

Equations (8) and (9) yield
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Pi,B(t) � γ

t∫
0

[
i−1∑
m�0

Pi−m,V (y)β
m
B Im(αB(t − y)) +

∞∑
m�1

Pi+m,V (y)β
−m
B

Im(αB(t − y)) −
∞∑

m�1

Pm,V (y)β
i−m
B Ii+m(αB(t − y))

]
e−(λb+q1μB )(t−y)dy

(11)

Finally for i � 1, 2, 3, . . . we get the closed form of Pi,B(t) in terms of Pi,V (t) as

Pi,B (t) � γ

t∫
0

e−(λb+q1μB )(t−y)
∞∑

m�1

β i−m
B Pm,V (y)

[
Ii−m (αB (t − y)) − Ii+m (αB (t − y))

]
dy (12)

3.2 Evaluation of Pi,V (t)

For the evaluation of Pi,V (t), the continued fraction method is used. Now we will
express Pi,V (t) in terms of P00(t).

Denoting Laplace transformation of f (t) by f̃ (s) and taking Laplace transforma-
tion of (1) and (2), we have

f̃00(s) � 1

s + λv − q0μv
f1V (s)
f00(s)

− q1μB
f1B (s)
f00(s)

, (13)

and

f̃1V (s)

f̃00(s)
� λ

s + λv + γ + q0μv − q0μv
f2V (s)
f1V (s)

. (14)

Using (3) for i ≥ 2, we have

f̃i,V (s)

f̃i−1,V (s)
� λV

s + λV + q0μV + γ − q0μV
fi+1,V (s)
fi,V (s)

.

On iteration sequel, we get

f̃i,V (s)

f̃i−1,V (s)
� λV

s + λV + γ + q0μV − q0μV λV

s+λV +q0μV +γ−···.
. (15)

From brevity, denote pV � s + λV + γ + μV , αV � √
4λV q0μV , and βV �√

λV
q0μV

.
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Solving (13) and (14), we obtain

f̃i,V (s) � β i
V

⎡
⎣ pV −

√
p2V − α2

V

αV

⎤
⎦

i

f̃00(s). (16)

On taking inverse Laplace transform of (15), we have

Pi,V (t) � λVβ i−1
V

t∫
0

e−(λV +q0μV +γ )
[
Ii−1(αV y) − Ii+1(αV y)

]
P00(t − y)dy (17)

Using (11) and (15), for i � 1, we find

f̃1,V (s)

f̃00(s)
� βV EV (s) (18)

and
f̃1,B(s)

f̃00(s)
� γ

μB

∞∑
m�1

[η]m
[
EV (s)E

−1
B

]m
, (19)

EV (s) �
pV −

√
p2V − α2

V

αV
; EB(s) �

pB −
√
p2B − α2

B

αB
, η � βv

βB

and pB � s + λb + q1μB .

Using (17) in (12), and after some algebraic manipulation, we obtain

f̃00(s) � 2

αV

∞∑
m�0

(η)m
∑

k1+k2+k3�m

m!

k1! k2! k3!

(
βB(q0μV + γ )

λV

)k2( q0μV√
λV q0μV

)k3

×
[
AV (s)

m+k3+1AB(s)
k1+k3 − βV

βB
AV (s)

m+k3+2AB(s)
k1+k3+1

]
. (20)

The inverse Laplace transformation of Eq. (19) gives,

P00(t) � 2

αV

∞∑
m�0

(η)m
∑

k1+k2+k3�m

m!

k1! k2! k3!

(
βB(q0μV + γ )

λV

)k2( q0μV√
λV q0μV

)k3

×
[αVαB

4

{
Im+k3 (αV t) − Im+k3+2(αV t)

}
e−(λV +q0μV +γ )t

∗ {Ik1+k3−1(αBt) − Ik1+k3+1(αBt)
}
e−(λb+q1μB )t

− λbq1μB
{
Im+k3+1(αvt) − Im+k3+3(αvt)

}
e−(λv+q0μv+γ )t

∗{Ik1+k3 (αBt) − Ik1+k3+2(αBt)
}
e−(λb+q1μB )t

]
. (21)
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4 Stationary Distribution

The system size probabilities at the stationary level of M/M/1 Markov model with
working vacation and balking can be deduced from the transient probabilities pre-
sented in the last section. The stationary distribution denoted by lim

t→∞ Pi, j (t) �
πi, j , i ≥ 0; j ∈ {0, V, B} can be evaluated by using the standard properties of
the Laplace transformation given by πi, j � lim

s→0
f̃i, j (s), where i ≥ 0; j ∈ {0, V, B}.

For the steady state, we have

ρV � λV

q0μV
< 1 and ρB � λ

q1μB
< 1,

From (16), the stationary distribution for vacation state is obtained as

πi,V � lim
s→0

s f̃ (s) � 1

2i
[
ς − (ς2 − 4ρV )

1/2
] i

π0,0, i � 1, 2, 3, . . . (22)

Laplace transformation of (11) gives

f̃i,B(s) � γ f0,0(s)√
P2
B − α2

B

∞∑
m�1

β i−m
B

⎛
⎝ PV −

√
P2
V − α2

V

2μV

⎞
⎠

m

×
⎡
⎢⎣
⎛
⎝ PB −

√
P2
B − α2

B

αB

⎞
⎠

|i−m|

−
⎛
⎝ PB −

√
P2
B − α2

B

αB

⎞
⎠

i+m⎤⎥⎦. (23)

From relation (23) for i � 1, 2, 3, . . ., we get

πi,B � lim
s→0

s f̃i,B(s)
2γπ0,0

μB

[
ς +

√
ς2 − 4ρV

] i∑
m�1

ρi−m
B

1

2m
[
ς − (ς2 − 4ρV )

1/2
]m

(24)

Further, normalizing condition
∑∞

i�0 πi,V+
∑π

i�1 πi,B � 1, yields

π0,0 � (1 − ρB)(1 − AV )

(1 − ρB) − γ KV
(25)

where KV � AV

μB(1 − AV )
, AV � ς −√

ς2 − 4ρV

2
and δV � γ

ρV
.
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5 Some Performance Measures

Now we evaluate the expected values related to the time-dependent measures of the
queue size distribution as follows:

I. Let, N (t) indicate the total number of the customers at time t. So the expected
value of the total customers in the system at time t is provided by

u(t) � E(N (t)) �
∞∑
i�1

i(Pi,B(t) + Pi,V (t)) (26)

Also u(0) �
∞∑
i�1

i(Pi,B(t) + Pi,V (t)) � 0 (26a)

and u′(t) �
∞∑
i�1

i(P
′
i,B(t) + P

′
i,V (t)) (26b)

u(t) �
∞∑
i�1

i

t∫
0

(Pi,B(t
′) + Pi,V (t

′))dt ′ (26c)

The transient probabilities pi,B(t) and pi,V (t) used in above equations are given
in (11) and (17).

II. Let Y (t) denote the number of the customers in the system at time ‘t’.We obtain
the variance for the total number of customers in the system at time t as follows:

Var (Y (t)) � E(Y 2(t)) − (E(Y (t))2 (27)

Var (Y (t)) � r (t) − (u(t))2

where

r (t) � E(Y 2(t)) �
∞∑
i�1

i2(Pi,B(t) + Pi,V (t)),

and r (0) � E(Y 2(0)) �
∞∑
i�1

i2(Pi,B(0) + Pi,V (0)) (27a)

Also r ′(t) � E(Y 2(t)) �
∞∑
i�1

i2(P
′
i,B(t) + P

′
i,V (t)). (27b)

III. Let TP(t) be the throughput of the system. To explore the system utility, we
formulate TP(t) in terms of transient probabilities as
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TP(t) �
∞∑
i�0

q0μV Pi,V +
∞∑
i�0

q1μB Pi,B (28)

IV. The probabilities of the states of the server, when it is in normal busymode and
when it is in working vacation mode are denoted by pB(t) and pV (t), respectively.
Then

PB(t) �
∞∑
i�1

PiB(t),PWV(t) �
∞∑
i�0

PiV (t) (29)

V. Here we formulate the expression of the cost function for the system using the
following cost elements:

CH Holding cost of a customer per unit time in the system.
CB Cost spent/unit time in the system.
CWV Cost spent/unit time in the system.
C1 Cost/unit time spent on the service counter in busy state.
C2 Cost per unit time spent on the service counter in working vacation mode.

So, the cost function is obtained as

TC(t) � CHEN(t) + CBPB(t) + CWVPWV(t) + C1μB + C2μV (30)

6 Numerical Simulation

Here we are presenting some numerical results to look into the sensitiveness of the
studiedmodel for several performancemeasures and system cost. To demonstrate the
system behavior with respect to various system descriptors, the numerical outcomes
are displayed clearly in Tables 1 and 2. The numerical results are calculated by taking
the default parameters fixed as

λ � 0.5, λV � 0.4, b � 0.1, q0 � 0.15, q1 � 0.15 γ � 1μV � 5 and μB � 7.

In Table 1, we notice that as arrival rate goes on increasing, the throughput TP(t),
probability of normal busy state PB(t), and the total cost of the systemTC(t) increases.
This trend is expected because high arrival rate is directly increase the number of
customers as such there may be increment in TP(t), PB(t) & TC(t). It is seen that
the working vacation state probability PWV(t) decreases by increasing the arrival
rate λ. In Table 2, the results for throughput, busy state probability, and working
state probability show the increasing trend as μB increases. However as time passes,
PWV(t) decreases but TP(t) and PB(t) increase. The cost function TC(t) reveals the
increment for the higher value of μB and time both.
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Table 1 Various system indices for different value of λ with respect to t

γ λ TP(t) PB(t) PWV(t) TC(t)

2 0.5 6.0747 0.074662 0.925338 381.4559

8 6.187 0.187031 0.812969 400.9074

14 6.1876 0.187632 0.812368 400.9951

20 6.1876 0.187634 0.812366 400.9952

2 3.5 6.0763 0.076313 0.923687 382.3431

8 6.2364 0.236425 0.763575 415.4825

14 6.2457 0.245667 0.754333 417.8772

20 6.2466 0.246642 0.753358 418.1388

2 6.5 6.0778 0.077838 0.922162 383.2484

8 6.2944 0.29438 0.70562 437.3875

14 6.3293 0.329305 0.670695 448.8049

20 6.3378 0.337774 0.662226 451.6178

Table 2 Various system indices for different values of μB with respect to t

γ μB TP(t) PB(t) PWV(t) TC(t)

2 5 4.08756 0.08756 0.91244 294.8988

8 4.276375 0.276375 0.723625 326.9953

14 4.279463 0.279463 0.720537 327.4882

20 4.279519 0.279519 0.720481 327.4962

2 6 4.167396 0.083698 0.916302 339.3876

8 4.481368 0.240684 0.759316 366.9213

14 4.484275 0.242138 0.757862 367.1372

20 4.484285 0.242142 0.757858 367.137

2 7 4.240284 0.080095 0.919905 383.9108

8 4.638584 0.212861 0.787139 408.0148

14 4.640753 0.213584 0.786416 408.1142

20 4.640746 0.213582 0.786418 408.1133

For display of graphs for EN(t) and PB(t), the default parameters are chosen as
λ � 0.5, λV � 0.4, b � 0.1, q0 � 0.15, q1 � 0.15, γ � 1, μV � 1 and μB �
1.5. The numerical results for EN(t) and PB(t) are exhibited in Figs. 2, 3, 4, 5, 6 and
7, respectively.

From Figs. 2 and 4, it is clear that at the initial stage, the mean value of the total
customers present in the system increases sharply as time increases. However as time
grows higher, the increasing trend diminishes and finally becomes almost constant.
The increasing trends of EN(t) for increasing value of λ can be justified due to the
fact that there will be more customers in the system with the higher arrival rate λ

at any time. Figure 3 shows that the trends of expected number of customers for
different arrival rate of working vacation λV . The increasing trends of EN(t) for the
higher values of λv is clearly seen. From Figs. 4 and 5, it can be noticed clearly
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Fig. 2 Variation EN(t) with respect to time for different values of λ

Fig. 3 Variation EN(t) with respect to time for different values of λv

that as service rates μB and μV increase, the queue length EN(t) decreases. The
decreasing trends of EN(t) for the increment in service rate as shown in Figs. 4 and 5
are also as per our expectation due to the reason that an improvement in the service
can lower down the queue size. The larger value of service rates in both normal busy
as well as working vacation modes of the server results in lower value of EN(t). The
graphs of normal busy and working vacation probabilities for different arrival rate
are depicted in Figs. 6 and 7, respectively. It is clearly noticed from these figures that
for large values of arrival rate in busy operating mode, the probability PB(t) is high
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Fig. 4 Variation EN(t) with respect to time for different values of μB

Fig. 5 Variation EN(t) with respect to time for different values of μv

but in working vacation state, the greater the value of arrival rate, lesser is the value
of probability PWV(t). It is seen that the effects of λ and λV become significant as
time increases.
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Fig. 6 Variation PB(t) with respect to time for different values of λ

Fig. 7 Variation PB(t) with respect to time for different values of λv

7 Conclusion

In this article, an analytic approach is suggested to investigate the transient proba-
bilities for the total number of customers present in the system at time epoch ‘t’.
Transient Markov process is studied by involving the continued fraction method and
generating function technique to derive the analytical expressions of transient prob-
abilities in the explicit form forM/M/1 feedback model operating under the working
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vacation and discouragement. The queueing model is studied by involving realistic
assumptions and hasmany applications in industrial scenario, namely production and
manufacturing systems, computer and communication networks, etc. By evaluating
the performance measures such as mean and variance for the system size, the opti-
mal parameters can be determined which can be further used to improve the system
capacity/efficiency. Furthermore, the numerical simulation done by examining the
variations in different parameters facilitates the insight for the optimal control design
of the existing/new systems.
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Transient and Steady-State Behavior
of a Two-Heterogeneous Servers’
Queuing System with Balking and
Retention of Reneging Customers

Rakesh Kumar, Sapana Sharma and Gulab Singh Bura

Abstract This paper studies a two-heterogeneous servers’ queuing model with
customers’ impatience and retention. The time-dependent and steady-state analyses
of the model are performed. Some measures of effectiveness like mean number of
customers in the system, mean reneging rate, andmean rate of retention are obtained.
Finally, some particular cases are discussed.

Keywords Customers’ impatience · Heterogeneous servers · Mean retention
rate · Probability generating function

1 Introduction

The studies on queuing systems with multi-servers generally expect the servers to
serve the customers at the same rate. But such scenario occurs only if the service
system is automatic in nature; otherwise, the servers work with different rates. We
cannot expect that the work will be carried out at same rate in a queuing system with
human servers. In our daily life, we usually face situations of this kind, e.g., at check-
out counters in retail stores, in hospitals. Heterogeneity in service systems is first
presented by Morse [1]. Then, this problem is further extended by Saaty [2]. Singh
[3] analyzes a heterogeneous queuing systemwith balking. He performs comparative
studies. The steady-state probabilities of system size of a limited capacity queuing
model with heterogeneous servers are obtained by Sharma andDass [4]. Yue et al. [5]
extend Singh [3]’s work by considering the server breakdown in two-heterogeneous
servers’ queuing system. They derive variousmeasures of performance by employing
matrix-geometric method. Kumar and Madheswari [6] obtain the stationary proba-

R. Kumar (B) · S. Sharma
Department of Mathematics, Shri Mata Vaishno Devi University,
Katra 182320, Jammu and Kashmir, India
e-mail: rakesh.kumar@smvdu.ac.in

G. S. Bura
Department of Mathematics and Statistics,
Banasthali University, Vanasthali 304022, Rajasthan, India

© Springer Nature Singapore Pte Ltd. 2019
K. Deep et al. (eds.), Performance Prediction and Analytics of Fuzzy, Reliability
and Queuing Models, Asset Analytics, https://doi.org/10.1007/978-981-13-0857-4_19

251

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0857-4_19&domain=pdf


252 R. Kumar et al.

bilities of a heterogeneous queueing systems having multiple vacations. Dharmaraja
[7] obtained the time-dependent probabilities of two-processor heterogeneous sys-
tem using probability generating function technique. Sridhar and Pitchai [8] derive
the stationary probabilities of heterogeneous two-server queuing model. Ammar and
Alharbi [9] obtain the transient solution of heterogeneous queuing model with time-
dependent arrival and service rates.

A number of authors study customers’ impatience in queuing models with many
servers. Haight [10, 11] is the first to work on queues with impatience. Subba Rao
[12] studies a non-Markovian single-server queuing model with impatient customers
and service interruptions. Baccelli et al. [13] obtain the results for GI/GI/1 + GI
queuing system with impatient customers in terms of Volterra equation. Kumar and
Raja [14] obtain various system performancemeasures of amulti-server retrial queue
with feedback using matrix-geometric method. Yechiali [15] derives the stationary
probabilities of various queueing systems with catastrophes and customers’ impa-
tience. Baek et al. [16] compute the steady-state probabilities of anM /M /1 queuing
system with heterogeneous impatient customers and consumable additional items.
Vijaya Laxmi and Jyothsna [17] study a heterogeneous servers’ queue with multiple
vacations and customers’ impatience.

The concept of retaining a reneging customers is given byKumar andSharma [18].
They introduce this concept into a finite capacity, single-server Markovian queuing
model with reneging phenomenon and derive its stationary system size probabilities.
Further, they extend this model by incorporating balking in it [19]. Thiagarajan and
Premalatha [20] derived the steady-state solution of a finite waiting spaceMarkovian
single-server system with controllable arrival rates and retention.

After reviewing the literature, we can notice that the time-dependent solution of
thismodel is never carried out. Therefore, we study a queuingmodel with two servers
having different rates of service. The transient analysis of the model is performed.

The remaining paper is written as follows: Sect. 2 describes the system model.
Section 3 presents the mathematical model. In Sect. 4, the time-dependent behavior
is studied. Stationary probabilities of the model are provided in Sect. 5. Particular
cases are given in Sect. 6. Section7 is related to expected system size and variance.
Measures of effectiveness are presented in Sect. 8. Finally, the numerical analysis is
done in Sect. 9.

2 System Model

The arrivals occur one by one in a Poisson stream with intensity λ. The system has
two servers who serve the customers with different service rates μ1 and μ2. The
service time distribution is negative exponential. If both the servers are free, arriving
customers always go to server S1 for service else he joins the server who is idle. If
an arriving customer finds at least two customers in the system, he either balks with
probability 1-β or enters the queue with complementary probability. Upon joining
the queuing system andwaiting for some time, a customermay become impatient and



Transient and Steady-State Behavior of a Two-Heterogeneous Servers’ … 253

abundance the queue with probability p or gets retained with complementary proba-
bility. The probability distribution for reneging times is assumed negative exponential
with rate ξ.

3 Mathematical Model

First of all, we define some notations:

Q0,0(t) the probability that at time t the system is empty.
Q0,1(t) the probability that at time t the first server is idle and the second server is

occupied with no waiting line.
Q1,0(t) the probability that at time t the first server is occupied and the second

server is idle with no waiting line.
Qn(t) the probability that at time t the system size is n.

The queuing model is based on following equations:

dQ0,0(t)

dt
= −λQ0,0(t) + μ1Q1,0(t) + μ2Q0,1(t) (1)

dQ1,0(t)

dt
= − (λ + μ1)Q1,0(t) + λQ0,0(t) + μ2Q2(t), (2)

dQ0,1(t)

dt
= − (λ + μ2)Q0,1(t) + μ1Q2(t), (3)

dQ2(t)

dt
= − (βλ + μ)Q2(t) + λQ0,1(t) + λQ1,0(t) + (μ + ξp)Q3(t), (4)

dQn(t)

dt
= − (βλ + μ + (n − 2)ξp)Qn(t) + βλQn−1(t)

+(μ + (n − 1)ξp)Qn+1(t), n = 3, 4 . . . (5)

where μ = μ1 + μ2.
Initial condition: Q0,0(0) = 1.

4 Time-Dependent Behavior of the Model

Define p.g.f. Q(z, t) of probabilities Qn(t) by

Q(z, t) = R(t) +
∞∑

n=0

Qn+3(t)z
n+1; Q(z, 0) = 1 (6)

with
R(t) = Q0,0(t) + Q0,1(t) + Q1,0(t) + Q2(t) (7)
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Equations (1)–(5) give

∂Q(z, t)

∂t
= ξp(1 − z)

∂Q(z, t)

∂z
+ [(μ − ξp)(z−1 − 1) + βλ(z − 1)]

×[Q(z, t) − R(t)] + βλ(z − 1)Q2(t) (8)

On solving (8), we obtain

Q(z, t) = exp
{[(μ − ξp)(z−1 − 1) + βλ(z − 1)]t} +

∫ t

0
[βλ(z − 1)Q2(u)

−((μ − ξp)(z−1 − 1) + βλ(z − 1))R(u)] × exp
{[(μ − ξp)(z−1 − 1)

+ βλ(z − 1)](t − u) } du (9)

Taking a = 2
√

βλ(μ − ξp) and b =
√

βλ
μ−ξp and using the modified Bessel function

of first kind In(.), we get

exp

{(
βλz + μ − ξp

z

)
t

}
=

∞∑

n=−∞
(bz)nIn(at) (10)

4.1 Determination of Qn+2(t)

After comparison of coefficients of zn on both sides of (9), we get

Qn+2(t) = exp{−(βλ + μ − ξp)t}bnIn(at) + βλ

∫ t

0
exp{−(βλ + μ − ξp)(t − u)}

×
[
In−1(a(t − u))bn−1 − In(a(t − u))bn

]
Q2(u) du

−
∫ t

0
exp{−(βλ + μ − ξp)(t − u)}R(u)[βλIn−1(a(t − u))bn−1

−(βλ + μ − ξp)In(a(t − u))bn + (μ − ξp)In+1(a(t − u)bn+1] du; n = 1, 2, . . .

(11)

By replacing the left-hand side by zero, Eq. (11) holds for n = −1,−2,−3, . . .. For
obtaining n = 1, 2, 3, . . . , we use I−n(t) = In(t),

∫ t

0
exp{−(βλ + μ − ξp)(t − u)}R(u)[βλIn+1(a(t − u))bn−1 − (βλ + μ − ξp)

In(a(t − u))bn + (μ − ξp)In−1(a(t − u))bn+1] du
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= exp{−(βλ + μ − ξp)t}In(at)bn + βλ

∫ t

0
exp{−(βλ + μ − ξp)(t − u)}Q2(u)

×[In+1(a(t − u))bn−1 − In(a(t − u))bn] du (12)

Using (12) in (11), we get

Qn+2(t) = nbn
∫ t

0
exp{−(βλ + μ − ξp)(t − u)} In(a(t − u))

(t − u)
Q2(u) du; n = 1, 2, . . .

(13)

4.2 Determination of Q2(t)

Equations (1)–(3) in matrix notation can be written as follows:

dQ(t)
dt

= VQ(t) + μ2Q2(t)e1 + μ1Q2(t)e2 (14)

where the matrix V is given as:

V =
⎛

⎝
−λ μ1 μ2

λ −(λ + μ1) 0
0 0 −(λ + μ2)

⎞

⎠

Q(t) = (Q0,0(t) Q1,0(t) PQ,1(t))T , e1 = (0 1 0)T and e2 = (0 0 1)T

Let Q∗
n(s) denotes the Laplace transform (L.T.) of Qn(t). Taking the L.T. of

Eq. (14), we get

Q∗(s) = (sI − V )−1[μ2Q
∗
2(s)e1 + μ1Q

∗
2(s)e2 + Q(0)] (15)

with Q(0) = (1 0 0)T . To find Q∗
2(s), we have

eTQ∗(s) + Q∗
2(s) = R∗(s) (16)

where e = (1 1 1)T .
Taking

f (s) =
[
(s + βλ + (μ − ξp)) − √

(s + βλ + (μ − ξp))2 − a2
]
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When n = 0, Eq. (9) yields

R(t) = exp{−(βλ + μ − ξp)(t)}I0(at) + βλ

∫ t

0
Q2(u)

exp{−(βλ + μ − ξp)(t − u)}[I−1(a(t − u))b−1 − I0(a(t − u))] du +
∫ t

0
R(u) exp{−(βλ + μ − ξp)(t − u)}[(βλ + μ − ξp)I0(a(t − u)) −

{βλb−1I−1(a(t − u)) + (μ − ξp)bI1(a(t − u))}] du (17)

The L.T. of (17) gives

sR∗(s) = 1 + Q∗
2(s)

[
βλ

ab
{f (s)} − βλ

]
(18)

Using Eq. (18) in (16), we obtain

Q∗
2(s) = 1 − seT(sI − V )−1Q(0)

{(s + βλ) − 1
2 [f (s)] + seT(sI − V )−1[μ2e1 + μ1e2]}

(19)

Let
(sI − V )−1 = (m∗

ij(s))3×3

The inverse of matrix (sI − V ) is given by

1

| D(s) |

⎛

⎝
(s + λ + μ1)(s + λ + μ2) μ1(s + λ + μ2) μ2(s + λ + μ1)

λ(s + λ + μ2) (s + λ)(s + λ + μ2) λμ2
0 0 (s + λ)(s + λ + μ1) − λμ1

⎞

⎠

(20)

where | D(s) |= s3 + (3λ + μ)s2 + (3λ2 + λ(μ1 + μ2) + μlμ2)s + λ2(λ + μ2).
To find the characteristic roots of matrix V

| D(s) |= 0 (21)

Let ak , k = 1, 2, 3 denote the characteristic roots of (20). Then, a1 = −(λ + μ2),

a2, a3 = −(2λ+μ1)±
√

4λμ1+μ2
1

2 .
The use of (20) gives

seT (sI − V )−1Q(0) = s
3∑

j=1

m∗
j1(s) = r∗

1(s) (22)
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seT (sI − V )−1[μ2e1 + μ1e2] = s

⎡

⎣μ2

3∑

j=1

m∗
j2(s) + μ1

3∑

j=1

m∗
j3(s)

⎤

⎦

= r∗
2(s) (23)

Substituting (22) and (23) in (19), we get

Q∗
2(s) = 1 − r∗

1(s)

(s + βλ) − 1
2 [f (s)] + r∗

2(s)
(24)

Hence, (24) simplifies into

Q∗
2(s) =

∞∑

n=0

n∑

l=0

(−1)l

Ψ

(
a

2λβ

)n+1 (
1

Ψ

)l (n
l

)

[
[(s + βλ + μ − ξp) − √

(s + βλ + μ − ξp)2 − a2]n+1

an+1

(1 − r∗
1(s))(1 − r∗

2(s))
l ] (25)

where Ψ = (μ − ξp).
The Laplace inverse of (25) is

Q2(t) =
∞∑

n=0

n∑

l=0

(−1)l

Ψ

(
a

2λβ

)n+1 (
1

Ψ

)l (n
l

)
×

∫ t

0
rC(l)
2 (u − v)

×
[
exp{−(βλ + μ − ξp)u}{In(au) − In+2(au)} −

∫ u

0
r1(u − v)

× exp{−(βλ + μ − ξp)v}{In(av) − In+2(av)}dv ] du (26)

where rC(l)
2 (t) is l − fold convolution of r2(t) with itself with rC(0)

2 = δ(t),

a = 2
√

βλ(μ − ξp), b =
√

βλ
μ−ξp , and Ψ = (μ − ξp).

4.3 Determination of Q0,0(t),Q0,1(t) and Q1,0(t)

Using (20) in (15), we get

Q∗
00(s) = 1

| D(s) |
[
(s + λ + μ1)(s + λ + μ2) + μ1μ2(s + λ + μ2)Q

∗
2(s)

+ μ1μ2(s + λ + μ1)Q
∗
2(s) ] (27)
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Q∗
10(s) = 1

| D(s) |
[
λ(s + λ + μ1) + μ2(s + λ)(s + λ + μ2)Q

∗
2(s)

+ μ1μ2λQ
∗
2(s) ] (28)

Q∗
01(s) = 1

| D(s) |
[
(μ1(s + λ)(s + λ + μ1) − λμ1)Q

∗
2(s)

]
(29)

By taking the inverse of Eqs. (27), (28), and (29), we get

Q00(t) = m11(t) +
∫ t

0
[μ1m12(u) + μ2m13(u)]Q2(t − u) du (30)

Q10(t) = m21(t) +
∫ t

0
[μ2m22(u) + μ1m23(u)]Q2(t − u) du (31)

Q01(t) = m31(t) +
∫ t

0
[μ1m33(u)]Q2(t − u) du (32)

Thus, Eqs. (13), (26), (30), (31), and (32) constitute the transient solution to the
model.

5 Stationary Probabilities

Case 1: If arrival rate is not equal to service rate
In Eq. (25), we use Tauberian theorem and get

Q2 = 1
1
2 [(βλ − μ + ξp) + √

(βλ − μ + ξp)2 − a2] (33)

By taking Laplace transform of (13), we have

Q∗
n+2(s) = n

(
b

a

)n

[f (s)]nQ∗
2(s); n ≥ 1 (34)

By applying the Tauberian theorem again, we obtain

Qn+2 =
(
b

a

)n

[βλ + μ − ξp + √
(βλ + μ − ξp)2 − a2]nQ2; n ≥ 1 (35)

In the similar manner from Eqs. (30), (31), and (32), we get

Q00 = μ1μ2(2λ + μ)

λ2(λ + μ2)
Q2 (36)
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Q10 = μ2(λ + μ)

λ(λ + μ2)
Q2 (37)

and

Q01 = μ1

λ + μ2
Q2 (38)

Case 2: If arrival rate is equal to service rate
In (33), (35), (36), (37), and (38), we put λ = μ; then,

Q2 = 1
1
2 [(βλ − μ + ξp) + √

(βλ − μ + ξp)2 − a2] (39)

Qn+2 =
(
b

a

)n

[βλ + μ − ξp + √
(βλ + μ − ξp)2 − a2]nQ2 (40)

Q00 = 3μ1μ2

μ(μ + μ2)
Q2 (41)

Q10 = 2μ2

μ + μ2
Q2 (42)

and

Q01 = μ1

μ + μ2
Q2. (43)

6 Particular Cases

Case 1 If there is no balking, no reneging, and no retention i.e., (β = 0, ξ = 0, p = 1),
then the results of our model coincide with [21] with π1 = π2 = 1 in his model.
Case 2 If p = 1, then the results of our model coincide with [22].
Case 3 If there is no retention and no reneging, i.e., (p = 1 and ξ = 0), then the
results of our model coincide with [3].

7 Expected System Size and Variance

7.1 Expected System Size

At time t, the expected number of customers in the system is given by

Ls(t) = E{X (t)} = Q1,0(t) + Q0,1(t) +
∞∑

n=0

(n + 2)Qn+2(t)
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On solving, we obtain

Ls(t) = E{X (t)} = 2Q2(t) +
∫ t

0
[μ2m22(t − u) + μ1(m23(t − u) + m33(t − u))]Q2(u) du

+m21(t) +
∞∑

n=1

n(n + 2)bn
∫ t

0
exp{−(βλ + μ − ξp)(t − u)}

× In(a(t − u))

(t − u)
Q2(u) du (44)

where Q2(t) is given in Eq. (26).

7.2 Variance

At time t, the variance number of customers in the system is given by

V {X (t)} = E{X 2(t)} − [E{X (t)}]2 (45)

where

E{X 2(t)} = 4Q2(t) +
∫ t

0
[μ2m22(t − u) + μ1(m23(t − u) + m33(t − u))]Q2(u) du

+m21(t) +
∞∑

n=1

n2(n + 2)bn
∫ t

0
exp{−(βλ + μ − ξp)(t − u)}

× In(a(t − u))

(t − u)
Q2(u) du (46)

On putting the above equation in (47), we obtain

V {X (t)} = 4Q2(t) +
∫ t

0
[μ2m22(t − u) + μ1(m23(t − u) + m33(t − u))]Q2(u) du

+m21(t) +
∞∑

n=1

n2(n + 2)bn
∫ t

0
exp{−(βλ + μ − ξp)(t − u)}

× In(a(t − u))

(t − u)
Q2(u) du − [E{X (t)}]2 (47)

where Q2(t) and E{X (t)} are provided in Eqs. (26) and (46), respectively.
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8 Measures of Effectiveness

8.1 Mean Reneging Rate

Rr(t) =
∞∑

n=2

(n − 2)ξpQn(t)

8.2 Mean Retention Rate

RR(t) =
∞∑

n=2

(n − 2)ξqQn(t)

where Qn(t) is given in Eqs. (13) and (26).

9 Numerical Analysis

The numerical analysis of the model with reference to various measures of effective-
ness like the mean reneging rate (Rr(t)) and mean retention rate (RR(t)) is performed
in this section.

To compute the numerical results, we use MATLAB software. Figures1, 2, 3, and
4 presented all the numerical results. From these figures, the following observations
can be made:

1. The transient state probabilities of system size are shown in Fig. 1.
2. Figure2 shows that as the mean retention rate increases, the probability of retain-

ing a reneging customer (q) also increases.
3. In Fig. 3, the effect of the probability of retaining customer on the expected system

size is presented in transient state. We can see that the expected system size
increases as the probability of retention increases.

4. Figure4 shows the effect of mean reneging rate with respect to the change in
probability of retention. We can observe that the mean reneging rate decreases as
the probability of retention increases.
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Fig. 1 The transient state probabilities are plotted

Fig. 2 Variation in probability of retention with respect to mean retention rate
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Fig. 3 Probability of retention (q) versus expected system size

Fig. 4 Variation in probability of retention with respect to mean reneging rate
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Mehar Methods to Solve Intuitionistic
Fuzzy Linear Programming Problems
with Trapezoidal Intuitionistic Fuzzy
Numbers

Sukhpreet Kaur Sidhu and Amit Kumar

Abstract While solving real-life linear programming problems, there may exist
the situation of uncertainty and hesitancy due to several factors. To deal with such
situations, intuitionistic fuzzy data representation is widely used. Many authors have
investigated and proposed methods to find the solution of intuitionistic fuzzy linear
programming (IFLP) problems in the last decade. In this paper, the limitations of the
existing methods are pointed out and new methods (named as Mehar methods) are
proposed to overcome these limitations. Further, the proposed method is illustrated
with an example.

Keywords Intuitionistic fuzzy linear programming problem · Trapezoidal
intuitionistic fuzzy numbers · Intuitionistic fuzzy optimal solution

1 Introduction

Fuzzy set theory has been extensively used in the area where the information/data
is vague or imprecise. Zadeh [16] was the first who introduced the concept of fuzzy
sets. Atanassov [1] generalized the concept of fuzzy set to intuitionistic fuzzy set.
In intuitionistic fuzzy set [1], the degree of non-membership indicating the non-
association to a set is also included to the degree of membership of association to
a set. In fuzzy set, the sum of membership degree and non-membership degree is
always equal to one, whereas in intuitionistic fuzzy set, sum of both membership and
non-membership degree should not exceed one.

S. K. Sidhu (B)
Department of Mathematics, Akal University, Talwandi Sabo 151302, Punjab, India
e-mail: sukhpreetkaursran@gmail.com

A. Kumar
School of Mathematics, Thapar University, Patiala 147001, Punjab, India
e-mail: amitkdma@gmail.com

© Springer Nature Singapore Pte Ltd. 2019
K. Deep et al. (eds.), Performance Prediction and Analytics of Fuzzy, Reliability
and Queuing Models, Asset Analytics, https://doi.org/10.1007/978-981-13-0857-4_20

265

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0857-4_20&domain=pdf


266 S. K. Sidhu and A. Kumar

Nehi [8] introduced the concept of trapezoidal/triangular intuitionistic fuzzy num-
bers as well as the proposedmethod for ranking of intuitionistic fuzzy numbers based
on the characteristic values of membership and non-membership functions. Dubey
and Mehra [3] proposed a more general definition of triangular intuitionistic fuzzy
numbers as compared to [4] and defined a ranking function based on value and
ambiguity indexes.

Parvathi and Malathi [10] introduced symmetric trapezoidal intuitionistic fuzzy
(STIF) numbers and the arithmetic operations of symmetric trapezoidal intuitionistic
fuzzy numbers based on α−cuts.

By using α−cuts, the operations of division for triangular intuitionistic fuzzy
numbers are defined by Nagoorgani and Ponnalagu [7] and they also described scor-
ing and accuracy function to rank triangular intuitionistic fuzzy number.

Parvathi and Malathi [11] proposed intuitionistic fuzzy simplex method to obtain
the solution of such fuzzy linear programming problems in which parameters are
represented by STIF numbers.

Suresh et al. [14] presented the ranking of triangular intuitionistic fuzzy numbers
by means of magnitude and obtained the solution of IFLP problems using this rank-
ing. Sidhu and Kumar [12] pointed out error in ranking function [14] and proposed
the new ranking function.

Sidhu [13] proposed a newapproach tofind the solution of IFLPproblems inwhich
the variables/parameters are represented by STIF number. Nguyen [9] proposed new
entropy measure for intuitionistic fuzzy sets and applied it to multiple attribute group
decision making. Xu and Liao [15] presented a comprehensive study on decision
making with intuitionistic fuzzy preference relations.

In this paper, the limitations of the existing method [11] are pointed out and
new methods (named as Mehar methods) are proposed to solve IFLP problems with
trapezoidal intuitionistic fuzzy (TIF) numbers. The same methods can be applied to
solve IFLP problems with STIF numbers.

The paper is organized systematically as follows: Sect. 2 comprises of prelim-
inaries related to intuitionistic fuzzy numbers. An existing method to solve IFLP
problems is described in Sect. 3. In Sect. 4, a numerical example solved by the exist-
ing method is presented. The linearity property of the existing ranking function is
presented in Sect. 5. The limitations of the existingmethods are pointed out in Sect. 6.
Errors in the existing results are showed in Sect. 7. In Sect. 8, Mehar methods are
proposed to solve IFLP problems with TIF numbers with nonnegative coefficients
as well as unrestricted coefficients. The exact solution of the existing problem is
presented in Sect. 9. Finally, the concluding remarks are given in Sect. 10.

2 Preliminaries

In this section, some basic definitions, arithmetic operations, and comparison of TIF
numbers are presented.
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2.1 Some Basic Definitions

In this section, some basic definitions related to intuitionistic fuzzy numbers are
presented.

Definition 1 ([2]) An intuitionistic fuzzy set Ã in X is defined as a set of the form
Ã = {< x,μÃ(x), νÃ(x) >: x ∈ X } where the functions μÃ : X → [0, 1] and νÃ :
X → [0, 1] define the degree of membership and the degree of non-membership
of the element x ∈ X , respectively, and for every x ∈ X in Ã, 0 ≤ μÃ(x) + νÃ(x) ≤ 1
holds.

Definition 2 ([2]) The intuitionistic fuzzy index of x in Ã is defined as πÃ(x) =
1 − μÃ(x) − νÃ(x). It is also known as degree of uncertainty or degree of hesitancy
of the element x in Ã. So, for every x ∈ X , 0 ≤ πÃ(x) ≤ 1.

Definition 3 ([2]) An intuitionistic fuzzy set Ã = {< x,μÃ(x), νÃ(x) >: x ∈ X } is
said to be intuitionistic fuzzy normal if there exist at least two points x0, x1 ∈ X such
that μÃ(x0)=1, νÃ(x1)=1.

Definition 4 ([6]) An intuitionistic fuzzy set Ã is said to be intuitionistic fuzzy
number ÃI if it is

(a) Intuitionistic fuzzy normal.
(b) Convex for the membership function μÃI (x), i.e., μÃI (λx1 + (1 − λ)x2) ≥ min

(μÃI (x1),μÃI (x2)) for every x1, x2 ∈ R,λ ∈ [0, 1].
(c) Concave for the non-membership function νÃI (x), i.e., νÃI (λx1 + (1 − λ)x2) ≤

max(νÃI (x1), νÃI (x2)) for every x1, x2 ∈ R,λ ∈ [0, 1].
Definition 5 ([5]) An intuitionistic fuzzy number is said to be a TIF number if it has
the following membership function μÃI (x) and non-membership function νÃI (x):

μÃI (x) =

⎧
⎪⎪⎨

⎪⎪⎩

x−(a1−α)
α

, x ∈ [a1 − α, a1);
1, x ∈ [a1, a2];
a2+β−x

β
, x ∈ (a2, a2 + β];

0, otherwise.

and

νÃI (x) =

⎧
⎪⎪⎨

⎪⎪⎩

a1−x
α′ , x ∈ [a1 − α′, a1);

0, x ∈ [a1, a2];
x−a2
β′ , x ∈ (a2, a2 + β′];

1, otherwise.

where α,β,α
′
,β

′
> 0.

The TIF number is denoted by ÃI = [a1, a2,α,β; a1, a2,α′
,β

′ ].
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Definition 6 ([10]) A TIF number is called a STIF number if α = β (say h) and
α

′ = β
′
(say h

′
); i.e., if there exist real numbers a1, a2, h, h

′
where a1 ≤ a2, h ≤ h

′

and h, h
′
> 0 such that the membership and non-membership functions are as below:

μÃI (x) =

⎧
⎪⎪⎨

⎪⎪⎩

x−(a1−h)
h , x ∈ [a1 − h, a1);

1, x ∈ [a1, a2];
a2+h−x

h , x ∈ (a2, a2 + h];
0, otherwise.

and

νÃI (x) =

⎧
⎪⎪⎨

⎪⎪⎩

a1−x
h′ , x ∈ [a1 − h

′
, a1);

0, x ∈ [a1, a2];
x−a2
h′ , x ∈ (a2, a2 + h′];

1, otherwise.

The STIF number is denoted by ÃI = [a1, a2, h, h; a1, a2, h′
, h

′ ].

2.2 Arithmetic Operations on TIF Numbers

In this section, the arithmetic operations on TIF numbers are illustrated [10].
If ÃI = [a1, a2, h1, h2; a1, a2, h′

1, h
′
2] and B̃I = [b1, b2, k1, k2; b1, b2, k ′

1, k
′
2] are

two TIF numbers. Then,

(i) ÃI + B̃I = [a1 + b1, a2 + b2, h1 + k1, h2 + k2; a1 + b1, a2 + b2, h
′
1 + k

′
1, h

′
2+ k

′
2].

(ii) ÃI − B̃I = [a1 − b2, a2 − b1, h1 + k2, h2 + k1; a1 − b2, a2 − b1, h
′
1 + k

′
2, h

′
2+ k

′
1].

(iii) λÃI =
{
([λa1,λa2,λh1,λh2;λa1,λa2,λh

′
1,λh

′
2]), if λ ≥ 0;

([λa2,λa1,−λh2,−λh1;λa2,λa1,−λh
′
2,−λh

′
1]), if λ < 0.

2.3 Comparison of STIF Numbers

To obtain the intuitionistic fuzzy optimal solution of the IFLP problem, there is need
to compare intuitionistic fuzzy numbers. In this section, the method, used by the
Parvathi and Malathi [11], for comparing intuitionistic fuzzy numbers is presented.

If ÃI = [a1, a2, h, h; a1, a2, h′, h′] and B̃I = [b1, b2, k, k; b1, b2, k ′, k ′] are two
STIF numbers, then ÃI � B̃I if and only if �(ÃI ) ≥ �(B̃I ), ÃI 	 B̃I if and only if
�(ÃI ) > �(B̃I ), ÃI ≈ B̃I if and only if �(ÃI ) = �(B̃I ), where �(ÃI ) = a1 + a2 +
1
2 (h

′ − h) and �(B̃I ) = b1 + b2 + 1
2 (k

′ − k).
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Remark 1 If ÃI = [a1, a2, h1, h2; a1, a2, h′
1, h

′
2] and B̃I = [b1, b2, k1, k2; b1, b2,

k ′
1, k

′
2] are non-symmetric trapezoidal intuitionistic fuzzy numbers, then �(ÃI ) =

(a1 + a2) + 1
4 (h

′
1 + h′

2 − h1 − h2) and �(B̃I ) = (b1 + b2) + 1
4 (k

′
1 + k ′

2 − k1 − k2).

3 Solution of IFLP Problem by the Existing Method

Parvathi and Malathi [11] proposed intuitionistic fuzzy simplex method to solve the
IFLP problems with STIF numbers (P1).

Maximize/Minimize

[

z̃I ≈
n∑

j=1
cjx̃Ij

]

Subject to
n∑

j=1
aijx̃Ij �,≈,� b̃Ii , i = 1, 2, . . . ,m,

x̃Ij � 0, j = 1, 2, . . . , n.

(P1)

The steps of the existing method [11] are as below:
Step 1 Using Sect. 2.3, the problem (P1) can be modified as problem (P2).

Maximize/Minimize

[

�(z̃I ) = �
(

n∑

j=1
cjx̃Ij

)]

Subject to

�
[

n∑

j=1
aijx̃Ij

]

≤,=,≥ �(b̃Ii ), i = 1, 2, . . . ,m,

�(x̃Ij ) ≥ 0, j = 1, 2, . . . , n.

(P2)

Step 2 Using the property �
(

n∑

i=1
λiÃI

i

)

=
n∑

i=1
λi�(ÃI

i ), where λ is a real number,

the problem (P2) can be modified as problem (P3).

Maximize/Minimize

[

�(z̃I ) =
n∑

j=1
cj�(x̃Ij )

]

Subject to[
n∑

j=1
aij�(x̃Ij )

]

≤,=,≥ �(b̃Ii ), i = 1, 2, . . . ,m,

�(x̃Ij ) ≥ 0, j = 1, 2, . . . , n.

(P3)

Step 3Use any appropriate existingmethod to find the fuzzy optimal solution {�(x̃Ij )}
of the problem (P3).
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4 Intuitionistic Fuzzy Optimal Solution of the Existing
Problem by the Existing Method

In this section, the IFLP problem (P4), considered by Parvathi and Malathi [11,
Sect. 5.5, pp. 45], is solved by the existing method [11].

Example 1 ([11, Sect. 5.5, pp. 45])

Maximize
[
z̃I ≈ 5x̃I1 + 4x̃I2

]

Subject to
6x̃I1 + 4x̃I2 � [23, 25, 1, 1; 23, 25, 3, 3],
x̃I1 + 2x̃I2 � [5, 7, 2, 2; 5, 7, 4, 4],
−x̃I1 + x̃I2 � [3, 5, 4, 4; 3, 5, 6, 6],
x̃I2 � [1, 3, 2, 2; 1, 3, 4, 4],
x̃I1, x̃

I
2 � 0,

(P4)

where x̃I1 and x̃I2 are STIF numbers.

Using the existing method [11], the intuitionistic fuzzy optimal solution of problem
(P4) can be obtained as below:

Step 1Using Step 1 of Sect. 3, the problem (P4) can be modified as problem (P5).

Maximize
[�(z̃I ) = �(5x̃I1 + 4x̃I2)

]

Subject to
�(6x̃I1 + 4x̃I2) ≤ �[23, 25, 1, 1; 23, 25, 3, 3],
�(x̃I1 + 2x̃I2) ≤ �[5, 7, 2, 2; 5, 7, 4, 4],
�(−x̃I1 + x̃I2) ≤ �[3, 5, 4, 4; 3, 5, 6, 6],
�(x̃I2) ≤ �[1, 3, 2, 2; 1, 3, 4, 4],
�(x̃I1),�(x̃I2) ≥ 0.

(P5)

Step 2 Using Step 2 of Sect. 3, the problem (P5) can be modified as problem (P6).

Maximize
[�(z̃I ) = 5�(x̃I1) + 4�(x̃I2)

]

Subject to
6�(x̃I1) + 4�(x̃I2) ≤ �[23, 25, 1, 1; 23, 25, 3, 3],
�(x̃I1) + 2�(x̃I2) ≤ �[5, 7, 2, 2; 5, 7, 4, 4],
−�(x̃I1) + �(x̃I2) ≤ �[3, 5, 4, 4; 3, 5, 6, 6],
�(x̃I2) ≤ �[1, 3, 2, 2; 1, 3, 4, 4],
�(x̃I1),�(x̃I2) ≥ 0.

(P6)

Step 3 Adding slack variables �(x̃I3),�(x̃I4),�(x̃I5), and �(x̃I6) into first, second,
third, and fourth constraints of problem (P6), respectively, the problem (P6) can be
modified as problem (P7).
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Table 1 The initial simplex table

Basis
(x̃IB)

�(x̃I1) �(x̃I2) �(x̃I3) �(x̃I4) �(x̃I5) �(x̃I6) Solution

�(x̃I3) 6 4 1 0 0 0 �[23, 25, 1, 1; 23, 25, 3, 3] = 49

�(x̃I4) 1 2 0 1 0 0 �[5, 7, 2, 2; 5, 7, 4, 4] = 13

�(x̃I5) −1 1 0 0 1 0 �[3, 5, 4, 4; 3, 5, 6, 6] = 9

�(x̃I6) 0 1 0 0 0 1 �[1, 3, 2, 2; 1, 3, 4, 4] = 5

zj − cj −5 −4 0 0 0 0 �(0̃I ) = 0

Maximize
[�(z̃I ) = 5�(x̃I1) + 4�(x̃I2)

]

Subject to
6�(x̃I1) + 4�(x̃I2) + �(x̃I3) = �[23, 25, 1, 1; 23, 25, 3, 3],
�(x̃I1) + 2�(x̃I2) + �(x̃I4) = �[5, 7, 2, 2; 5, 7, 4, 4],
−�(x̃I1) + �(x̃I2) + �(x̃I5) = �[3, 5, 4, 4; 3, 5, 6, 6],
�(x̃I2) + �(x̃I6) = �[1, 3, 2, 2; 1, 3, 4, 4],
�(x̃I1),�(x̃I2),�(x̃I3),�(x̃I4),�(x̃I5),�(x̃I6) ≥ 0.

(P7)

Table1 is the initial simplex table of the problem (P7).
Since minimum {−5,−4} = −5, �(x̃I1) is entering variable. Also, minimum

{ 496 , 13
1 } = 49

6 corresponding to �(x̃I3). So, �(x̃I3) is a leaving variable. Now, after
applying the required row operations, Table2 is obtained.

Now, − 2
3 is only negative entry in zj − cj. So, �(x̃I2) is an entering variable and

minimum
{ 49

6
2
3
,

31
6
4
3
,

103
6
5
3
, 5
1

}
= 31

6
4
3

= 31
8 corresponding to�(x̃I4). So,�(x̃I4) is a leaving

variable. The next updated table is Table 3.
Since all the values of zj − cj ≥ 0, the obtained fuzzy solution is a fuzzy optimal

solution. The obtained fuzzy optimal solution is x̃I1 ≈ [ 94 , 15
4 ,

5
4 ,

5
4 ; 9

4 ,
15
4 ,

11
4 ,

11
4 ]with

�(x̃I1) = �[ 94 , 15
4 ,

5
4 ,

5
4 ; 9

4 ,
15
4 ,

11
4 ,

11
4 ] = 27

4 = 6.75; x̃I2 ≈ [ 58 , 19
8 ,

13
8 ,

13
8 ; 5

8 ,
19
8 ,

27
8 ,

27
8 ] with �(x̃I2) = �[ 58 , 19

8 ,
13
8 ,

13
8 ; 5

8 ,
19
8 ,

27
8 ,

27
8 ] = 31

8 = 3.875, and the obtained
fuzzy optimal value is z̃I ≈ [ 554 , 113

4 , 51
4 ,

51
4 ; 55

4 ,
113
4 , 109

4 , 109
4 ] with �(z̃I ) = �[ 554 ,

113
4 , 51

4 ,
51
4 ; 55

4 ,
113
4 , 109

4 , 109
4 ] = 197

4 = 49.25.

5 Linearity Property of the Existing Ranking Function

In this section, it is shown that for ranking function �, used by Parvathi and Malathi

[11], the property �
(

m∑

i=1
λiÃI

i

)

=
m∑

i=1
λi�(ÃI

i ) will be satisfied only if λi ≥ 0. But,

if λi < 0, then this property is not satisfied.
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Ta
bl
e
2

T
he

fir
st
ite

ra
tio

n
ta
bl
e

B
as
is
(x̃

I B
)

�(
x̃I 1
)

�(
x̃I 2
)

�(
x̃I 3
)

�(
x̃I 4
)

�(
x̃I 5
)

�(
x̃I 6
)

So
lu
tio

n

�(
x̃I 1
)

1
2 3

1 6
0

0
0

�[
23 6
,
25 6
,
1 6
,
1 6
;2

3 6
,
25 6
,
3 6
,
3 6
]=

49 6

�(
x̃I 4
)

0
4 3

−1 6
1

0
0

�[
5 6
,
19 6
,
13 6
,
13 6

;5 6
,
19 6
,
27 6
,
27 6

]=
31 6

�(
x̃I 5
)

0
5 3

1 6
0

1
0

�[
41 6
,
55 6
,
25 6
,
25 6

;4
1 6
,
55 6
,
39 6
,
39 6

]=
10

3 6

�(
x̃I 6
)

0
1

0
0

0
1

�[
1,
3,
2,

2;
1,
3,
4,
4]

=
5

z j
−

c j
0

−2 3
5 6

0
0

0
�[

11
5 6
,
12

5 6
,
5 6
,
5 6
;1

15 6
,
12

5 6
,
15 6
,
15 6

]=
24

5 6
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Ta
bl
e
3

T
he

fin
al
ite

ra
tio

n
ta
bl
e

B
as
is
(x̃

I B
)

�(
x̃I 1
)

�(
x̃I 2
)

�(
x̃I 3
)

�(
x̃I 4
)

�(
x̃I 5
)

�(
x̃I 6
)

So
lu
tio

n

�(
x̃I 1
)

1
0

1 4
−1 2

0
0

�[
9 4
,
15 4
,
5 4
,
5 4
;9 4

,
15 4
,
11 4
,
11 4

]=
27 4

�(
x̃I 2
)

0
1

−1 8
3 4

0
0

�[
5 8
,
19 8
,
13 8
,
13 8

;5 8
,
19 8
,
27 8
,
27 8

]=
31 8

�(
x̃I 5
)

0
0

9 24
−5 4

1
0

�[
23 8
,
65 8
,
55 8
,
55 8

;2
3 8
,
65 8
,
97 8
,
97 8

]=
10

9 8

�(
x̃I 6
)

0
0

1 8
−3 4

0
1

�[
−1

1 8
,
19 8
,
29 8
,
29 8

;1
1 8
,
19 8
,
59 8
,
59 8

]=
23 8

z j
−

c j
0

0
3 4

1 2
0

0
�[

55 4
,
11

3 4
,
51 4
,
51 4

;5
5 4
,
11

3 4
,
10

9 4
,
10

9 4
]=

19
7 4
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Let ÃI
i = [xi, yi, h, h; xi, yi, h′, h′], i = 1, 2, . . . ,m be a STIF number.

Case 1 If λi ≥ 0.
Then

�
(

m∑

i=1

λiÃ
I
i

)

= �
(

m∑

i=1

λi[xi, yi, h, h; xi, yi, h′
, h

′ ]
)

= �
(

m∑

i=1

[λixi,λiyi,λih,λih;λixi,λiyi,λih
′
,λih

′ ]
)

= �
[

m∑

i=1

λixi,
m∑

i=1

λiyi,
m∑

i=1

λih,
m∑

i=1

λih;
m∑

i=1

λixi,
m∑

i=1

λiyi,
m∑

i=1

λih
′,

m∑

i=1

λih
′
]

=
m∑

i=1

λixi +
m∑

i=1

λiyi + 1

2

m∑

i=1

λi(h
′ − h)

=
m∑

i=1

λi(xi + yi + 1

2
(h′ − h)) =

m∑

i=1

λi�(ÃI
i ),

Hence, �
(

m∑

i=1
λiÃI

i

)

=
m∑

i=1
λi�(ÃI

i ).

Case 2 If λi < 0 say λi = −ki, ki > 0.
Then

�
(

m∑

i=1

λiÃ
I
i

)

= �
(

m∑

i=1

(−ki)[xi, yi, h, h; xi, yi, h′
, h

′ ]
)

= �
(

m∑

i=1

[(−ki)yi, (−ki)xi, kih, kih; (−ki)yi, (−ki)xi, kih
′
, kih

′ ]
)

= �
[

m∑

i=1

(−ki)yi,
m∑

i=1

(−ki)xi,
m∑

i=1

kih,
m∑

i=1

kih;
m∑

i=1

(−ki)yi,
m∑

i=1

(−ki)xi,
m∑

i=1

kih
′,

m∑

i=1

kih
′
]

=
m∑

i=1

(−ki)yi +
m∑

i=1

(−ki)xi + 1

2

m∑

i=1

ki(h
′ − h)

=
m∑

i=1

(−ki)(xi + yi − 1

2
(h′ − h)) �=

m∑

i=1

λi�(ÃI
i ).

Hence, �
(

m∑

i=1
λiÃI

i

)

�=
m∑

i=1
λi�(ÃI

i ).
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6 Limitations of the Existing Method

In this section, the limitations of the existing method [11] are presented.

1. Parvathi and Malathi [11] have used the linearity property �
(∑m

i=1 λiÃI
i

)
=

∑m
i=1 λi�(ÃI

i ) in Step 2 of their proposed method. However, as proved in Sect. 5,
this property is valid only if all the coefficients cj and aij in problem (P1) are
nonnegative real numbers. Hence, if any of the coefficients cj or aij is negative
real number, then the existing method [11] cannot be used for solving problem
(P1).

2. The method, proposed by Parvathi and Malathi [11], is applicable only if vari-
ables and right-hand side vector are represented by STIF numbers. But, this
method [11] is not applicable to solve IFLP problems (P8) in which variables and
right-hand side vector are represented by non-symmetric trapezoidal intuitionistic
fuzzy(NSTIF) numbers.

Maximize/Minimize

[

z̃I ≈
n∑

j=1
cjx̃Ij

]

Subject to
n∑

j=1
aijx̃Ij �,≈,� b̃Ii , i = 1, 2, . . . ,m;

x̃Ij � 0, j = 1, 2, . . . , n.

(P8)

7 Error in the Existing Results

In Sect. 5, it is proved that if λi is a negative real number, then �
(∑m

i=1 λiÃI
i

)
�=

∑m
i=1 λi�(ÃI

i ). It is obvious that the coefficients of x̃I1 in third constraint of the
problem (P4) are the negative real number. So, �(−x̃I1 + x̃I2) �= −�(x̃I1) + �(x̃I2).

However, it is obvious from Step 2 of Sect. 4 that Parvathi and Malathi [11] have
used the property �(−x̃I1 + x̃I2) = −�(x̃I1) + �(x̃I2) to transform the problem (P5)

into problem (P6). Due to the same reason, the optimal solution of the problem
(P4), obtained by Parvathi and Malathi [11], is not satisfying the first and second
constraints of problem (P4). This is shown as given below:

(i) Putting the values of x̃I1 and x̃I2 in left-hand side of first constraint, we have
6[ 94 , 15

4 ,
5
4 ,

5
4 ; 9

4 ,
15
4 ,

11
4 ,

11
4 ] + 4[ 58 , 19

8 ,
13
8 ,

13
8 ; 5

8 ,
19
8 ,

27
8 ,

27
8 ] = [ 272 , 45

2 ,
15
2 ,

15
2 ;

27
2 ,

45
2 ,

33
2 ,

33
2 ] + [ 52 , 19

2 ,
13
2 ,

13
2 ; 5

2 ,
19
2 ,

27
2 ,

27
2 ] = [16, 32, 14, 14; 16, 32, 30, 30]

and �[16, 32, 14, 14; 16, 32, 30, 30] = 56. Right-hand side of first constraint
is [23, 25, 1, 1; 23, 25, 3, 3] and �[23, 25, 1, 1; 23, 25, 3, 3] = 49. It is obvious
that [16, 32, 14, 14; 16, 32, 30, 30] � [23, 25, 1, 1; 23, 25, 3, 3].
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(ii) Putting the values of x̃I1 and x̃I2 in left-hand side of second constraint, we have
[ 94 , 15

4 ,
5
4 ,

5
4 ; 9

4 ,
15
4 ,

11
4 ,

11
4 ] + 2[ 58 , 19

8 ,
13
8 ,

13
8 ; 5

8 ,
19
8 ,

27
8 ,

27
8 ] = [ 94 , 15

4 ,
5
4 ,

5
4 ; 9

4 ,
15
4 ,

11
4 ,

11
4 ] + [ 54 , 19

4 ,
13
4 ,

13
4 ; 5

4 ,
19
4 ,

27
4 ,

27
4 ] = [ 72 , 17

2 ,
9
2 ,

9
2 ; 7

2 ,
17
2 ,

19
2 ,

19
2 ] and�[ 72 , 17

2 ,
9
2 ,

9
2 ; 7

2 ,
17
2 ,

19
2 ,

19
2 ] = 29

2 . Right-hand side of second constraint is [5, 7, 2, 2; 5,
7, 4, 4] and�[5, 7, 2, 2; 5, 7, 4, 4] = 13. It is obvious that [ 72 , 17

2 ,
9
2 ,

9
2 ; 7

2 ,
17
2 ,

19
2 ,

19
2 ] � [5, 7, 2, 2; 5, 7, 4, 4].
Hence, the fuzzy optimal solution, obtained by Parvathi and Malathi [11], is not
valid.

8 Proposed Mehar Methods to Find the Solution of IFLP
Problems with TIF Numbers

To overcome the limitations of the existing method [11], discussed in Sect. 6, new
methods (named as Mehar methods) are proposed to find the intuitionistic fuzzy
optimal solution of (P8).

8.1 Proposed Mehar Method to Find the Solution of IFLP
Problems with TIF Numbers with Nonnegative
Coefficients

In this section, a new method is proposed to solve IFLP problem (P8) with TIF
numbers in which all the coefficients of the variables are nonnegative real numbers.
The same method can be applied to solve IFLP problems with STIF numbers in
which all the coefficients of the variables are nonnegative real numbers.

The following are the steps of proposed Mehar method.
Step 1 Using Sect. 2.3, the problem (P8) can be modified as problem (P9).

Maximize/Minimize

[

�(z̃I ) = �
(

n∑

j=1
cjx̃Ij

)]

Subject to

�
[

n∑

j=1
aijx̃Ij

]

≤,=,≥ �(b̃Ii ), i = 1, 2, . . . ,m;
�(x̃Ij ) ≥ 0, j = 1, 2, . . . , n.

(P9)
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Step 2Using the property�
(∑n

i=1 λiÃI
i

)
= ∑n

i=1 λi�(ÃI
i ), whereλ is a nonnegative

real number, the problem (P9) can be modified as problem (P10).

Maximize/Minimize

[

�(z̃I ) =
n∑

j=1
cj�(x̃Ij )

]

Subject to[
n∑

j=1
aij�(x̃Ij )

]

≤,=,≥ �(b̃Ii ), i = 1, 2, . . . ,m;
�(x̃Ij ) ≥ 0, j = 1, 2, . . . , n.

(P10)

Step 3 Since the rank of an intuitionistic fuzzy number is a real number, assuming
�(z̃I ) = z,�(x̃Ij ) = xj and �(b̃Ii ) = bi, the problem (P10) can be modified as (P11).

Maximize/Minimize

[

z =
n∑

j=1
(cjxj)

]

Subject to[
n∑

j=1
aijxj

]

≤,=,≥ bi, i = 1, 2, . . . ,m;
xj ≥ 0, j = 1, 2, . . . , n.

(P11)

Step 4 Find the optimal solution of the problem (P11) by using a suitable existing
method.
Step 5 As there exist infinite many intuitionistic fuzzy numbers which have the
same rank, if x1 = a1, x2 = a2, . . . , xn = an is an optimal solution of the problem
(P11), then all that TIF numbers x̃I1, x̃

I
2, . . . , x̃

I
n such that �(x̃I1) = a1, �(x̃I2) = a2

,…,�(x̃In) = an will be the fuzzy optimal solution of the problem (P8).

8.2 Proposed Mehar Method to Find the Solution of IFLP
Problems with TIF Numbers with Unrestricted
Coefficients

In this section, a new method is proposed to solve IFLP problems (P8). The same
method can be applied to solve IFLP problems (P1), by replacing h1j = h2j = hj and
h′
1j = h′

2j = h′
j.

The following are the steps of the proposed Mehar method.
Step 1 Substituting x̃Ij = [xj, yj, h1j, h2j; xj, yj, h′

1j, h
′
2j] and b̃Ii = [bi, gi, k1i, k2i; bi,

gi, k ′
1i, k

′
2i] into the problem (P8), the problem (P8) can be modified as problem

(P12).
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Maximize/Minimize

[

z̃I ≈
n∑

j=1
cj[xj, yj, h1j, h2j; xj, yj, h′

1j, h
′
2j]

]

Subject to
n∑

j=1
aij[xj, yj, h1j, h2j; xj, yj, h′

1j, h
′
2j] �,≈,� [bi, gi, k1i, k2i; bi, gi, k ′

1i, k
′
2i],

[xj, yj, h1j, h2j; xj, yj, h′
1j, h

′
2j] � 0.

(P12)

Step2Assuming cj[xj, yj, h1j, h2j; xj, yj, h′
1j, h

′
2j] = [pj, qj, r1j, r2j; pj, qj, r′

1j, r
′
2j] and

aij[xj, yj, h1j, h2j; xj, yj, h′
1j, h

′
2j] = [dj, ej, f1j, f2j; dj, ej, f ′

1j, f
′
2j], the problem (P12) can

be modified as problem (P13).

Maximize/Minimize

[

z̃I ≈
n∑

j=1
[pj, qj, r1j, r2j; pj, qj, r′

1j, r
′
2j]

]

Subject to
n∑

j=1
[dj, ej, f1j, f2j; dj, ej, f ′

1j, f
′
2j] �,≈,� [bi, gi, k1i, k2i; bi, gi, k ′

1i, k
′
2i],

[xj, yj, h1j, h2j; xj, yj, h′
1j, h

′
2j] � 0.

(P13)

Step 3 The problem (P13) can be modified as problem (P14).

Maximize/Minimize[

z̃I ≈ [
n∑

j=1
pj,

n∑

j=1
qj,

n∑

j=1
r1j,

n∑

j=1
r2j;

n∑

j=1
pj,

n∑

j=1
qj,

n∑

j=1
r′
1j,

n∑

j=1
r′
2j]

]

Subject to[
n∑

j=1
dj,

n∑

j=1
ej,

n∑

j=1
f1j,

n∑

j=1
f2j;

n∑

j=1
dj,

n∑

j=1
ej,

n∑

j=1
f ′
1j,

n∑

j=1
f ′
2j

]

�,

≈,� [bi, gi, k1i, k2i; bi, gi, k ′
1i, k

′
2i],[xj, yj, h1j, h2j; xj, yj, h′

1j, h
′
2j] � 0.

(P14)

Step 4 The problem (P14) can be modified as problem (P15).

Maximize/Minimize[

z̃I = �
[

n∑

j=1
pj,

n∑

j=1
qj,

n∑

j=1
r1j,

n∑

j=1
r2j;

n∑

j=1
pj,

n∑

j=1
qj,

n∑

j=1
r′
1j,

n∑

j=1
r′
2j

]]

Subject to

�
[

n∑

j=1
dj,

n∑

j=1
ej,

n∑

j=1
f1j,

n∑

j=1
f2j;

n∑

j=1
dj,

n∑

j=1
ej,

n∑

j=1
f ′
1j,

n∑

j=1
f ′
2j

]

≤,=,≥
�[bi, gi, k1i, k2i; bi, gi, k ′

1i, k
′
2i],�[xj, yj, h1j, h2j; xj, yj, h′

1j, h
′
2j] ≥ 0.

(P15)
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Step 5 Using Sect. 2.3, the problem (P15) can be modified as problem (P16).

Maximize/Minimize

[

z̃I =
n∑

j=1
pj +

n∑

j=1
qj + 1

4

(
n∑

j=1
r′1j +

n∑

j=1
r′2j −

n∑

j=1
r1j −

n∑

j=1
r2j

)]

Subject to(
n∑

j=1
dj +

n∑

j=1
ej + 1

4

(
n∑

j=1
f ′
1j +

n∑

j=1
f ′
2j −

n∑

j=1
f1j −

n∑

j=1
f2j

))

≤,=,≥
(
bi + gi + 1

4 (k
′
1i + k ′

2i − k1i − k2i)
)
,

xj + yj + 1
4 (h

′
1j + h′

2j − h1j − h2j) ≥ 0,

xj ≤ yj, h1j ≤ h′
1j, h2j ≤ h′

2j,

xj, yj are unrestricted and h1j, h2j, h
′
1j, h

′
2j ≥ 0.

(P16)

Step6Solve the problem (P16)byusing any suitable technique/method tofind the val-
ues of xj, yj, h1j, h2j, h′

1j, h
′
2j andput these values in x̃

I
j = [xj, yj, h1j, h2j; xj, yj, h′

1j, h
′
2j]

to obtain the intuitionistic fuzzy optimal solution.
Step 7 Find the intuitionistic fuzzy optimal value z̃I by substituting the values of x̃Ij

in
n∑

j=1
(cjx̃Ij ).

9 Exact Solution of the Existing Problem

In this section, the exact solution of the problem (P4) is obtained by using the pro-
posed Mehar method.
Step 1 Substituting the values of x̃I1 = [

x1, y1, h1, h1; x1, y1, h′
1, h

′
1

]
and x̃I2 =

[
x2, y2, h2, h2; x2, y2, h′

2, h
′
2

]
in the problem (P4), it can be converted into problem

(P17).

Maximize
[
z̃I ≈ 5

[
x1, y1, h1, h1; x1, y1, h′

1, h
′
1

] + 4
[
x2, y2, h2, h2; x2, y2, h′

2, h
′
2

]]

Subject to
6

[
x1, y1, h1, h1; x1, y1, h′

1, h
′
1

] + 4
[
x2, y2, h2, h2; x2, y2, h′

2, h
′
2

]

� [23, 25, 1, 1; 23, 25, 3, 3],[
x1, y1, h1, h1; x1, y1, h′

1, h
′
1

] + 2
[
x2, y2, h2, h2; x2, y2, h′

2, h
′
2

] � [5, 7, 2, 2; 5, 7, 4, 4],
− [

x1, y1, h1, h1; x1, y1, h′
1, h

′
1

] + [
x2, y2, h2, h2; x2, y2, h′

2, h
′
2

] � [3, 5, 4, 4; 3, 5, 6, 6],
[
x2, y2, h2, h2; x2, y2, h′

2, h
′
2

] � [1, 3, 2, 2; 1, 3, 4, 4],
[
x1, y1, h1, h1; x1, y1, h′

1, h
′
1

] � 0,
[
x2, y2, h2, h2; x2, y2, h′

2, h
′
2

] � 0.
(P17)
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Step 2Using Step 2 of Sect. 8.2, the problem (P17) can bemodified as problem (P18).

Maximize
[
z̃I = [

5x1, 5y1, 5h1, 5h1; 5x1, 5y1, 5h′
1, 5h

′
1

]

+ [
4x2, 4y2, 4h2, 4h2; 4x2, 4y2, 4h′

2, 4h
′
2

]]

Subject to[
6x1, 6y1, 6h1, 6h1; 6x1, 6y1, 6h′

1, 6h
′
1

] + [
4x2, 4y2, 4h2, 4h2; 4x2, 4y2, 4h′

2, 4h
′
2

]

� [23, 25, 1, 1; 23, 25, 3, 3],[
x1, y1, h1, h1; x1, y1, h′

1, h
′
1

] + [
2x2, 2y2, 2h2, 2h2; 2x2, 2y2, 2h′

2, 2h
′
2

]

� [5, 7, 2, 2; 5, 7, 4, 4],[−y1,−x1, h1, h1;−y1,−x1, h′
1, h

′
1

] + [
x2, y2, h2, h2; x2, y2, h′

2, h
′
2

]

� [3, 5, 4, 4; 3, 5, 6, 6],[
x2, y2, h2, h2; x2, y2, h′

2, h
′
2

] � [1, 3, 2, 2; 1, 3, 4, 4],[
x1, y1, h1, h1; x1, y1, h′

1, h
′
1

] � 0,[
x2, y2, h2, h2; x2, y2, h′

2, h
′
2

] � 0.
(P18)

Step 3Using Step 3 of Sect. 8.2, the problem (P18) can bemodified as problem (P19).

Maximize[
z̃I = [

5x1 + 4x2, 5y1 + 4y2, 5h1 + 4h2, 5h1 + 4h2; 5x1 + 4x2, 5y1 + 4y2,
5h′

1 + 4h′
2, 5h

′
1 + 4h′

2

]]

Subject to[
6x1 + 4x2, 6y1 + 4y2, 6h1 + 4h2, 6h1 + 4h2; 6x1 + 4x2, 6y1 + 4y2,

6h′
1 + 4h′

2, 6h
′
1 + 4h′

2

] �
[23, 25, 1, 1; 23, 25, 3, 3],[
x1 + 2x2, y1 + 2y2, h1 + 2h2, h1 + 2h2; x1 + 2x2, y1 + 2y2, h′

1 + 2h′
2, h

′
1 + 2h′

2

]

� [5, 7, 2, 2; 5, 7, 4, 4],[−y1 + x2,−x1 + y2, h1 + h2, h1 + h2;−y1 + x2,−x1 + y2, h′
1 + h′

2, h
′
1 + h′

2

]

� [3, 5, 4, 4; 3, 5, 6, 6],[
x2, y2, h2, h2; x2, y2, h′

2, h
′
2

] � [1, 3, 2, 2; 1, 3, 4, 4],[
x1, y1, h1, h1; x1, y1, h′

1, h
′
1

] � 0,[
x2, y2, h2, h2; x2, y2, h′

2, h
′
2

] � 0.
(P19)

Step 4Using Step 4 of Sect. 8.2, the problem (P19) can bemodified as problem (P20).
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Maximize[
z̃I = � [

5x1 + 4x2, 5y1 + 4y2, 5h1 + 4h2, 5h1 + 4h2; 5x1 + 4x2, 5y1 + 4y2,

5h′
1 + 4h′

2, 5h
′
1 + 4h′

2

]]

Subject to
� [

6x1 + 4x2, 6y1 + 4y2, 6h1 + 4h2, 6h1 + 4h2; 6x1 + 4x2,
6y1 + 4y2, 6h

′
1 + 4h′

2, 6h
′
1 + 4h′

2

] ≤
� [23, 25, 1, 1; 23, 25, 3, 3] ,
� [

x1 + 2x2, y1 + 2y2, h1 + 2h2, h1 + 2h2; x1 + 2x2, y1 + 2y2, h
′
1 + 2h′

2, h
′
1 + 2h′

2

] ≤
�[5, 7, 2, 2; 5, 7, 4, 4],
� [−y1 + x2,−x1 + y2, h1 + h2, h1 + h2; −y1 + x2,−x1 + y2, h

′
1 + h′

2, h
′
1 + h′

2

] ≤
�[3, 5, 4, 4; 3, 5, 6, 6],
� [

x2, y2, h2, h2; x2, y2, h′
2, h

′
2

] ≤ �[1, 3, 2, 2; 1, 3, 4, 4],
� [

x1, y1, h1, h1; x1, y1, h′
1, h

′
1

] ≥ 0,
� [

x2, y2, h2, h2; x2, y2, h′
2, h

′
2

] ≥ 0.
(P20)

Step 5Using Step 5 of Sect. 8.2, the problem (P20) can bemodified as problem (P21).

Maximize
[
z̃I = [

5x1 + 4x2 + 5y1 + 4y2 + 1
2 [5h′

1 + 4h′
2 − 5h1 − 4h2]

]]

Subject to
6x1 + 4x2 + 6y1 + 4y2 + 1

2 [6h′
1 + 4h′

2 − 6h1 − 4h2] ≤ 49,
x1 + 2x2 + y1 + 2y2 + 1

2 [h′
1 + 2h′

2 − h1 − 2h2] ≤ 13,
−y1 + x2 − x1 + y2 + 1

2 [h′
1 + h′

2 − h1 − h2] ≤ 9,
x2 + y2 + 1

2 [h′
2 − h2] ≤ 5,

x1 + y1 + 1
2 [h′

1 − h1] ≥ 0,
x2 + y2 + 1

2 [h′
2 − h2] ≥ 0,

x1 ≤ y1, x2 ≤ y2, h1 ≤ h′
1, h2 ≤ h′

2,

where x1, x2, y1, y2are unrestricted and h1, h′
1, h2, h

′
2 ≥ 0.

(P21)

Step 6Solving the problem (P21), the obtained values of x1, y1, h1, h′
1 are

3
32 ,

3
32 , 0,

89
8

and x2, y2, h2, h′
2 are 0, 0, 0,

29
4 , respectively. Hence, the intuitionistic fuzzy optimal

solution is x̃I1 = [
3
32 ,

3
32 , 0, 0; 3

32 ,
3
32 ,

89
8 ,

89
8

]
and x̃I2 = [

0, 0, 0, 0; 0, 0, 29
4 ,

29
4

]
.

Step 7 Substituting the values of x̃I1 and x̃I2 in 5x̃I1 + 4x̃I2, the intuitionistic fuzzy
optimal value is

[
15
32 ,

15
32 , 0, 0; 15

32 ,
15
32 ,

677
8 , 677

8

]
.

10 Conclusions and Future Scope

In this paper, new methods are proposed to find the solution of intuitionistic fuzzy
linear programming problems with trapezoidal intuitionistic fuzzy numbers with
nonnegative coefficients as well as with unrestricted coefficients.

To find a new method for intuitionistic fuzzy multiobjective linear programming
problems would be the future scope of work.
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