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Preface

Microorganisms have long been used in various areas of biotechnology. Microbial 
diversity and community dynamics provide insights into their potential to degrade 
organic matter, which otherwise is regarded as environmental pollutants. Associating 
bioremediation process with energy generation is an economical proposal for reduc-
ing pollution and managing biowastes. Biological processes driven by a single bac-
terial strain are always at the risk of getting contaminated and destabilized leading 
to lower efficiency. This major limitation can be circumvented through the use of 
defined cultures, which can withstand adverse conditions, outcompete contaminat-
ing microorganisms, and drive the process successfully. In the recent times what has 
gained importance is the communication among microbes, known as quorum sens-
ing (QS). QS allows a large bacterial population to work together in a coordinated 
manner to carry out metabolic activities, which individual bacterium cannot. 
Fascinating information has been generated on understanding the significance of 
QS. So far, the major objective of studying QS was to understand their role in caus-
ing infectious diseases and identifying drug targets to inhibit the process of QS 
especially the virulence factors. This area of QS in medical processes is still in its 
incipient stage and it may take some more time before we can exploit it to fight 
bacterial atrocities. It is advisable that we shift the focus on exploiting QS for other 
biotechnological applications such as in generating bioproducts, bioenergy, biore-
mediation, biosensors, health and agricultural activities. It is becoming an integral 
part of synthetic biology for genetic circuits for producing: (i) novel products, (ii) 
biosensors, (iii) bioactive molecules, etc. Here, we are covering a few biotechno-
logical applications of QS in Environment, Bioremediation, Energy, Agriculture, 
and Health sectors. This piece of scientific documentation is intended to explore 
these diverse possibilities, present scholarly views and opinions, and to serve man-
kind with novel, innovative, and long-lasting strategies, in the book entitled: Quorum 
Sensing and its Biotechnological Applications. It is the contributions of passionate 
scientists, who are always working hard to gain insights into the unknown world 
and have volunteered to share their wonderful knowledge with the curious minds of 
young researchers and develop strategies for the economic benefits of human beings. 
This book is a vivid reflection of the sincerity with which scientific minds are dedi-
cated to the welfare of the community. These contributions will help to steer the 
researchers around the globe into an interesting and healthy future. I have been truly 
inspired by my author colleagues and associates as this piece of work has taken this 
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shape only because of their faith in me and the constant and untiring support of – 
my parents – Mr. R.B. Kalia and Late Mrs. Kanta Kalia (parents); Daksh and Bhrigu 
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Dube,  Dr Amit Ghosh  (mentor), friends – Rup Lal, Hemant J. Purohit, Ramesh C. 
Kuhad, Tapan K. Adhya, Yogendra Singh, Prince Sharma, Amulya K. Panda, Appa 
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1Quorum Sensing and Its Inhibition: 
Biotechnological Applications

Vipin Chandra Kalia, Jyotsana Prakash, Shikha Koul, 
and Subhasree Ray

Abstract
Microorganisms have long been used in various areas of biotechnology. In the 
recent times what has gained fascination is the communication among microbes, 
known as Quorum sensing (QS). Fascinating information has been generated on 
understanding the significance of QS, and its inhibition (QSI), especially in 
plant, animal and human pathogenesis. Focus has now shifted on exploiting QS 
and QSIs for biotechnological applications in designing: (i) genetic circuits for 
producing novel products, (ii) biosensors, (iii) molecules for cancer therapy, etc. 
Here, we cover a few applications in Health, Agriculture, Aquaculture, Energy 
and Bioremediation sectors.
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Plants · Pathogens · Quorum sensing
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Abbreviations

3OC12HSL	 N-(3-oxododecanoyl)-L-HSL
3OC6HSL	 N-(3-oxohexanoyl)-L-HSL
3OC8HSL	 N-(3-oxooctanoyl)-L-HSL
3OHC6HSL	 N-(3-hydroxyhexanoyl)-L-HSL
AHL	 Acylhomoserine lactone
AI	 Autoinducer
AIP	 Autoinducing peptides
C10-HSL	 N-decanoyl-L-HSL
C12HSL	 N-dodecanoyl-L-HSL
C12HSL	 N-dodecanoyl-L-HSL
C4HSL	 N-butanoyl-L-homoserine lactone
C6HSL	 N-hexanoyl-L-HSL
HSL	 Homoserine lactone

1.1	 �Introduction

Microbial associations exist with plants (rhizosphere and phyllosphere), animals 
and human beings (skin surface and gut) (Doebeli and Ispolatov 2010; Ryall et al. 
2012). A few of these associations especially the pathogenic, lead to economic 
losses. Efforts are being made to inhibit microbial growth and pathogenicity and 
restrict the damage. The discovery of antibiotics was hailed as a boon and perceived 
as a solution to fight off all bacterial attacks. However, bacteria were quick to 
respond to this threat to render the novel drug – antibiotic – ineffective (Davies and 
Davies 2010). The pharmaceutical industries are getting apprehensive and are not 
keen on investing in R&D for developing novel antibiotics. On the other hand, sci-
entists are looking for novel and innovative ways to deal with pathogenic microbes.

Infectious diseases are generally caused by biofilm forming microbes, through a 
cell density dependent phenomenon – quorum sensing (QS). Biofilm shield bacte-
ria, which can now resist antibiotic concentrations, up to 1000 times more than 
those which are enough to kill their free living counterparts (Rasmussen and 
Givskov 2006). QS allows bacteria to sense their neighbouring cell density through 
the release of signal molecules, leading to the expression of virulent behaviour. 
Inhibiting the synthesis or interaction of signal molecules with receptors and their 
transcription, also known as QS inhibition (QSI) can repress virulence and the bio-
active molecules so employed can act as drugs to fight diseases (Kalia 2013). On the 
other hand, this biofilm formation can also be exploited in scenarios like bioreme-
diation, where it can act as “immobilization” support and ensure high cell density.

V. C. Kalia et al.
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1.2	 �Biotechnological Applications of Quorum Sensing 
Systems

A few areas, where QS has been found to have the potential to generate bioproducts 
of high values include bioenergy, waste treatment, food preservatives, biosensors, 
health, and agricultural activities, etc.

1.2.1	 �Bio-energy

Bio-hydrogen (H2) has been recognised as the cleanest fuel of the future. Microbes 
have an ability to produce H2 from different substrates including bio-wastes (Patel 
and Kalia 2013; Yasin et al. 2013). An innovative strategy can be to combine H2-
production with biofilm formation abilities of potential H2-producers: Bacillus, 
Clostridium, Streptococcus, Sinorhizobium, Enterobacter, Klebsiella, 
Caldicellulosiruptor and Escherichia (Kalia and Purohit 2008; Pawar et al. 2015). 
QS has also been reported to be of use in bioethanol and biodiesel production. 
Generation of bioelectricity by Microbial Fuel Cells and H2 and biomethane by 
Microbial Electrolysis Cells require strong biofilms (Zhou et  al. 2013; Hu et  al. 
2015).

1.2.2	 �Bioremediation

Bioremediation process is limited by the insolubility and hence availability of the 
pollutants to the bacteria. Bio surfactants – Rhamnolipids and Surfactins produced 
through QS, find use in removal of oil and toxic metals from contaminated sites and 
soils (Chakraborty and Das 2014; Oslizlo et al. 2014). QS mediated processes like 
denitrification, ammonium oxidation and exoenzyme production are reported to 
enhance biodegradation (Shukla et al. 2014; Yong et al. 2015).

1.2.3	 �Food and Health

QS signalling molecules – AIPs -Nisin, Bacteriocins or lantibiotics, produced by 
Lactococcus lactis, Bacillus, etc. have antimicrobial properties useful for pharma 
industries and as preservatives in food industry (Nishie et al. 2012; Dobson et al. 
2012; Camargo et al. 2016). Various other lantibiotics including cinnamycin, plan-
taricin C, pep5, epidermin, MU1140, hold a potential as novel antibiotics with some 
under clinical trials (Dischinger et al. 2014; Field et al. 2015; Li and Tian 2015).

1  Quorum Sensing and Its Inhibition: Biotechnological Applications



6

1.2.4	 �Detecting Metals and Pathogens

QS has also been used to design plasmid biosensors by integrating AHL receptors 
in RP4 vector, for detecting microbes in the environment (Choudhary and Schmidt-
Dannert 2012; Hsu et al. 2016).

1.2.5	 �Cancer Therapy

Certain oligopeptides of gut microbiota are reported to promote the angiogenesis 
having a potential to influence metastasis. The toxins, cytokines, tumor antigens can 
be exploited as a novel and effective treatment of cancer (Hong et al. 2014; Kwon 
et al. 2014; De Spiegeleer et al. 2015; Wynendaele et al. 2015).

1.2.6	 �Industrial Products

Microbial QSS produces various extracellular products such as enzymes, rhamno-
lipids, isobutanol and 1,3-propanediol, 2,3-butanediol with commercial applica-
tions (Bernstein and Carlson 2012; Liu and Lu 2015; Chang et al. 2015).

1.2.7	 �Genetic Devices

Engineering based techniques have long been used in biology to construct synthetic 
gene networks (Davis et al. 2015). Engineered LuxI/LuxR system fused with anti-
gen proteins have been used to produce vaccines (Choudhary and Schmidt-Dannert 
2012; Sturbelle et al. 2013; Chu et al. 2015).

1.3	 �Biotechnological Applications of QSI

The topic has been reviewed during the last few years (Kalia and Purohit 2011; 
Kalia 2013). The information described below emphasizes on the developments on 
the biotechnological applications of QSI, during the last 3 years.

1.3.1	 �Food Industry

Fruits and vegetables processing industries face economical as well as safety issues 
due to bacteria which are responsible for problems like. Plant and fruit extracts 
known as phytochemicals including limonoids, flavanoids, polyphenols, furocou-
marins, phenolics, etc. have been tested and reported to act as QSIs to prevent food 
poisoning and spoilage (Kerekes et al. 2015; Zhu et al. 2015; Oliveira et al. 2016; 
Venkadesaperumal et al. 2016). Essential oils such as from ginger, eucalyptus, rose 

V. C. Kalia et al.



7

and tea tree are reported to have anti-QS effects and may find use as sanitizers and 
as food preservatives (Kerekes et al. 2015).

1.3.2	 �Aquaculture

Aquaculture being an important food producing industry world-wide suffers heavy 
losses due to aquatic pathogens like Vibrio spp.and Aeromonas spp. killing fishes, 
prawns, shrimps and molluscs (Niu et  al. 2014; Zhao et  al. 2014). Halogenated 
furanones have been holding great promise in protecting fishes (Defoirdt et al. 2007; 
Benneche et al. 2011). However, thiophenones are proving to be less toxic (Defoirdt 
et  al. 2012; Yang et  al. 2015). Supplementation of fish feed with variant of lac-
tonases and peptides have been reported to inhibit QS mediated pathogenicity 
(Zhang et al. 2015; Sun and Zhang 2016).

1.3.3	 �Health Care

In infectious diseases, such as cystic fibrosis, bacterial endocarditis, chronic prosta-
titis, oral cavities, etc., bacteria express their virulent behaviour through QS medi-
ated biofilm formation. Recent efforts have been focussed on developing a strategy 
to effectively disarm a pathogen through the use of QSIs. Bioactive molecules and 
nanoparticles are being searched aggressively for they have the potential usage as 
antimicrobials and QSIs (Gui et  al. 2014; Arasu et  al. 2015; Balakrishnan et  al. 
2015; Bandyopadhyay et  al. 2015; Bose and Chatterjee 2015; Dobrucka and 
Długaszewska 2015; Go et  al. 2015; Szweda et  al. 2015; Begum et  al. 2016; 
Wadhwani et al. 2016; Ahiwale et al. 2017; Azman et al. 2017; Saini and Keum 
2017).

1.3.3.1	 �QSIs from Microbes
Prokaryotes being easy to culture and handle, become a choice of many when it 
comes to the need of producing novel health care products (Karumuri et al. 2015; 
Shiva Krishna et al. 2015; Jeyanthi and Velusamy 2016; Varsha et al. 2016; Sanchart 
et al. 2017; Thakur et al. 2017). Norspermidine, Maniwamycins, Solonamides play 
role in QSI – inhibit biofilm formation in S. aureus, S. epidermis and E. coli (Nesse 
et  al. 2015; Baldry et  al. 2016; Qu et  al. 2016). Efforts have also been made to 
develop synthetic compounds – Thiazolidinedione (TZD) that could inhibit QS in 
gram negative as well as in gram positive bacteria (Lidor et al. 2015).

1.3.3.2	 �QSIs of Plant Origin
Epigallocatechin-3-gallate (EGCG), a major catechin in Camellia sinensis, green 
tea leaves is known for its antioxidative, anticancerous and antimicrobial properties 
(Yin et al. 2015; Fournier-Larente et al. 2016). Secondary metabolites produced by 
plants – dietary phytochemicals – ajoene, iberin, limonoids, furocoumarins, through 
their antimicrobial and QSI activities are known to provide health benefits (Kazemian 

1  Quorum Sensing and Its Inhibition: Biotechnological Applications
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et al. 2015; Sarkar et al. 2015; Brackman et al. 2016). Plant extracts such as Piper 
betle extract, vanillin, flavanoids, etc. also inhibit biofilm formation and thus hold 
the potential to be used as antifouling agents (Igarashi et al. 2015; Siddiqui et al. 
2015). Quercetin, a flavanol is found in various fruits and vegetables such as apples, 
grapes, onion and tomatoes and finds use as anticancerous, antiapoptotic and anti-
oxidative agent (Ouyang et al. 2016).

1.3.3.3	 �QSIs of Animal Origin
Meat extracts such as those from turkey and beef patties, chicken breast and beef 
steak have shown AI-2 signalling inhibition (Lu et  al. 2004; Soni et  al. 2008). 
Cattle’s milk has anti-QSIs compounds (Abolghait et al. 2016; Hernández-Saldaña 
et al. 2016). Mare colostrum inhibits biofilm forming and virulence factors produc-
ing characteristic of S. aureus (Srivastava et al. 2015).

1.3.4	 �Anti-biofouling

Quenching the bacterial communication to target bio-fouling might be a boon to a 
number of sectors including aqua industries, naval departments and water treatment 
plants (Ponnusamy et al. 2013; Cheong et al. 2014; Lee et al. 2014; Kim et al. 2015; 
Wu et al. 2015).

1.3.5	 �Agriculture

Rhizospheric bacteria, certain epiphytes, essential oils, facilitates easy clearance of 
pathogen (Corral-Lugo et  al. 2016; Des Essarts et  al. 2016). Biocontrol agents 
Bacillus spp. A24 as well as Pseudomonas fluorescens expressing aiiA gene showed 
reduced rot and gall symptoms by the phytopathogens (Helman and Chernin 2015; 
Sánchez-Elordi et al. 2015; Kang et al. 2016).

1.4	 �Synergism Between Antibiotics and QSIs

Another encouraging feature in this battle against pathogens, is the potential syner-
gism between QSI and antibiotics (Zhang et al. 2011; Ma et al. 2012).

1.5	 �Fais Attention à QSI

A few studies have shown evidence of emergence of microbial resistance to QSI 
(Kalia et al. 2014; García-Contreras et al. 2016; Koul et al. 2016). Hence, we may 
need to be more cautious and look for QSI which are QS signal independent (Lee 
et al. 2015).

V. C. Kalia et al.
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1.6	 �Field Trials

In spite of the fact that mechanisms of QS and QSI have been widely studied, their 
testing at field and clinical level has been limited (Reuter et al. 2016). Application 
of QSI under field conditions is necessary before the same can be extended for com-
mercialization (Kim et al. 2014, 2017).

1.6.1	 �Protecting Plants

Chromobacterium sp. has been successfully employed to control ginseng and pep-
per from Alternaria and Phytophthora infections (Kim et al. 2008, 2010, 2014). The 
pre-treated plants of rice, tomato and wheat were protected from their respective 
pathogens in a large scale trial (Kim et al. 2017).

1.6.2	 �Drinking Water

In order to tackle the trouble caused by biofouling encountered during drinking 
water treatment, QSI enzyme-acylase coated nanofiltration membranes and by 
using encapsulated bacteria were shown to be stable and enzymatic activity (Kim 
et al. 2011; Jahangir et al. 2012; Maqbool et al. 2015; Lee et al. 2016).

1.6.3	 �Health Sector

Short term clinical trial on guinea pig and 24 h trial on human volunteers were tried 
with QSIs – fimbrolides or furanones. Clinical trial on employing QSI as therapeu-
tics for treating cystic fibrosis in human patients was reported by Prof. Givskov and 
his team (Smyth et al. 2010). A QSIs formulation patented by Colgate-palmolive for 
oral care to inhibit biofilm formations is an encouraging sign (Grandclément et al. 
2016).

1.7	 �Opinion

Human trials on the effects of QSIs on infectious diseases have been conducted on 
a limited scale. We may have to wait for some more time till the confidence level 
goes up. In this scenario, a stop-gap arrangement has to be made to provide QSIs 
through: (i) the use of dietary sources rich in phyto-nutrients, (ii) use as inducers to 
cause pseudo-induction of QS and make bacteria susceptible to immune system, 
and eradicate pathogens with low antibiotic doses, and (iii) attack those bacteria 
which promote QSS in pathogens.

1  Quorum Sensing and Its Inhibition: Biotechnological Applications
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Abstract
Bacteria constitute a large domain of prokaryotic microorganisms which have 
been cohabiting with us for a very long time. Nevertheless, understanding them 
is a magnificent task. Communication among bacteria, both inter-species and 
intra-species constitutes a highly specific but complicated process known as 
‘Quorum sensing’. Many essential group behaviours (such as bioluminescence, 
virulence, swarming, nodulation, biofilm formation and many more) in bacterial 
population are guided by quorum sensing which involves production of mole-
cules, acting as signals. Recognition of the signals results in gene expression, 
which ultimately regulates the collective behaviour beneficial for bacterial sur-
vival. The signalling molecules are different for Gram-positive and Gram-
negative bacteria. In this chapter, we have discussed various classes of signalling 
molecules, their production, recognition and signal transduction.
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Abbreviations

3-hydroxy-7-cis-C14-HSL	� N-(3-hydroxy- 7-cis-tetradecenoyl)-L-homoserine 
lactone,

3-oxo-C10-HSL	 N-3-oxo-decanoyl-L-homoserine lactone,
3-oxo-C12-HSL	 N-3-oxo-dodecanoyl-L-homoserine lactone,
3-oxo-C6-HSL	 N-3-oxo-hexanoyl-L- homoserine lactone,
3-oxo-C8-HSL	 N-3-oxo-octanoyl-L-homoserine lactone,
7-cis-C14-HSL	 N-(7-cis-tetradecenoyl)-L-homoserine lactone,
ACP	 Acyl carrier protein,
agr	 Accessory gene regulator,
AHL	 Acyl homoserine lactone,
AI-2	 Autoinducer 2,
AIP	 Autoinducing peptide,
AMR	 Antimicrobial resistance,
C10-HSL	 N-decanoyl-L-homoserine lactone,
C12-HSL	 N-dodecanoyl-L-homoserine lactone,
C14-HSL	 N-tetradecanoyl-L-homoserine lactone,
C4-HSL	 N-butanoyl-L-homoserine lactone,
C6-HSL	 N-hexanoyl-L-homoserine lactone,
C8-HSL	 N-octanoyl-L-homoserine lactone,
CAI-I	 Cholera autoinducer 1,
DPD	 4,5-dihydroxy-2,3-pentanedione,
DPO	 3,5-dimethylpyrazin-2-ol,
DSF	 Diffusible signal factor,
HPK	 Histidine protein kinase,
HSL	 Homoserine lactone,
PQS	 Pseudomonas quinolone signal
qrr	 Quorum regulatory,
QS	 Quorum sensing,
RR	 response regulator,
SAM	 S- adenosylmethionine

2.1	 �Introduction

The collective behaviour in bacteria is regulated by a cell-to-cell communication 
pathway known as Quorum sensing (QS). Through this QS process, bacteria control 
essential group behaviours in their community such as production of biolumines-
cence, virulence factor secretion, biofilm formation and so on (Koul et al. 2016; 
Papenfort and Bassler 2016). QS process in bacteria is regulated by various chemi-
cal signalling molecules which act like the ‘specific language’ for communication 
(Bassler 2002). These signalling molecules are referred to as autoinducers. Bacteria 
are known to produce signalling molecules for both intra- and inter-species 
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communication. For intra-species communication, the signalling molecules pro-
duced act like a ‘secret language’ for a particular species of bacteria. On the con-
trary, for inter-species communication, a dedicated signalling pathway is conserved 
in the bacterial world and a ‘universal language’ is used for this purpose. Most of 
the Gram-negative bacteria use acyl homoserine lactones (AHLs) as their secret 
language of communication. Each species of Gram-negative bacteria produces 
AHLs specific to them. Similarly, Gram-positive bacteria mainly use autoinducing 
peptide (AIP) as their secret language. The universal language used for inter-species 
communication is the same for all bacteria which is called as autoinducer-2 (AI-2). 
The concentration of signalling molecules increases in the external environment as 
bacteria grow in their population. Through recognition of different signalling mol-
ecules, bacteria are capable to track the changes in the population of their own spe-
cies as well as the population of other species. Once bacteria reach the threshold 
population density, necessary genes are expressed which regulate the corresponding 
group behaviour. Herein, we will discuss about various signalling molecules, mainly 
focusing on AHL and AIP. The details of signal production, recognition and trans-
duction will be described for these two major classes of signalling molecules. In the 
end, other classes of signalling molecules will also be discussed briefly.

2.2	 �Acyl Homoserine Lactone (AHL) Based Quorum Sensing

AHLs are the signalling molecules used by Gram-negative bacteria for communica-
tion (Fig.  2.1 and Table  2.1). They are synthesised from S-adenosylmethionine 
(SAM) and fatty acid biosynthesis intermediates which contain a fatty acyl group. 
However, it has been discovered recently that non-fatty acyl groups can also be 
incorporated into the homoserine lactone-based signalling molecules (Schaefer 
et al. 2008). AHLs have two major properties. They are readily diffusible into the 
cell membrane and are bound by specific receptors either inside the cytoplasm or 
the inner membrane of the bacteria. AHLs, on binding to the receptors lead to a 
process called autoinduction which results in increased synthesis of the signalling 
molecule. This in turn stimulates quorum sensing and establishes a feed-forward 
loop which promotes expression of a particular gene in the bacterial population. The 
first AHL based system was discovered in the marine bacterium Vibrio fischeri. 

Fig. 2.1  General chemical 
structure of AHLs
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Some bacteria use a more complicated system for quorum sensing which involves 
more than one component either of the same kind or of different kind. For example, 
Pseudomonas aeruginosa uses four types of quorum sensing signalling systems, 
two of which are AHL-based systems and the other two are quinolone signal based 
(PQS) and carbaldehyde signal based (IQS) systems (Williams et al. 2007). All the 
four systems are inter-linked and are together responsible for quorum sensing in P. 
aeruginosa. Despite many different signalling systems found in Gram-negative bac-
teria, AHL-based quorum sensing is the most explored and commonly found. In this 
section, we will briefly discuss about AHL-based signalling molecules; their bio-
synthesis, signal recognition and transduction.

2.2.1	 �AHL-Based Signalling Molecules

Natural AHLs consist of L-homoserine lactone ring as the core which is N-acylated 
at the α-position and unsubstituted at the β and γ positions (Fig. 2.1 and Table 2.1). 
The acyl chain varies from bacterium to bacterium. The acyl chain may have modi-
fications and consists of 4–18 carbon atoms (Galloway et al. 2011; Koul and Kalia 
2017). Therefore, all AHLs produced by bacteria have a conserved homoserine lac-
tone moiety with diversity in the acyl chain. Various AHL signals used by different 
bacteria are listed in the table below (Table 2.1).

The first AHL based system was discovered in the marine Gram-negative bacte-
rium Vibrio fischeri which uses the signalling molecule, N-3-oxohexanoylhomoserine 
lactone (3-oxo-C6 HSL) to regulate the property of bioluminescence. P. aeruginosa 
uses two AHL-based signalling molecules, namely 3-oxo-C12-HSL which activates 
the LasI/LasR signalling system and C4-HSL which activates the RhlI/RhlR signal-
ling system. LasI/LasR and RhlI/RhlR systems are LuxI/LuxR homologous sys-
tems. LuxI and LuxR type proteins are involved in signal production and signal 
recognition of AHL-based signalling molecules in Gram-negative bacteria respec-
tively. The details about signal production and detection are discussed in the follow-
ing sections.

2.2.2	 �Signal Production

The proteins responsible for synthesis of AHLs are usually LuxI synthases or they 
can be LuxI homologues as well. For example, two LuxI-type synthases have been 
found in P. aeruginosa, namely LasI and RhlI (Lee et al. 2013). LuxI/LuxI homo-
logues are present in combination with their corresponding LuxR/LuxR homolo-
gous receptors. LuxI homologous proteins consist of about 200 amino acid residues. 
Certain conserved residues are present in the amino-terminal domain of LuxI homo-
logues which are important for their enzymatic activity. Conserved amino acid resi-
dues present in the carboxy terminal domain are necessary for Acyl Carrier Protein 
(ACP) selection (Whitehead et al. 2001). The stepwise mechanism of AHL biosyn-
thesis is outlined in Fig. 2.2. In the AHL structure, the homoserine lactone moiety is 
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contributed by the S-adenosylmethionine (SAM). SAM binds to the active site of 
the LuxI/LuxI-homologous enzyme and the acyl group is transferred to this com-
plex from ACP substrates. Therefore, ACP also plays a crucial role by integrating 
the acyl group to homoserine lactone moiety, thus leading to production of the final 
AHL signalling molecule. The homoserine lactone ring formation takes place 
through a basic lactonization mechanism. The amino donor in SAM attacks an 
intermediate of fatty acid biosynthesis and finally leads to the formation of N-acyl 
homoserine lactone through an addition-elimination mechanism (Hentzer and 
Givskov 2003; Rasmussen and Givskov 2006). There are some AHL-based signal-
ling molecules which are not synthesized by LuxI or LuxI homologues. For exam-
ple, the synthesis of 3-oxo-C4-HSL requires a LuxLM protein which does not show 
any structural similarity with LuxI homologues (Bassler et al. 1993; Schauder and 
Bassler 2001).

2.2.3	 �Signal Recognition and Transduction

Bacteria encounter complex mixtures of signalling molecules in heterogeneous 
environments. To ensure that they extract information from the right signalling mol-
ecule, they have receptors; either cytoplasmic or membrane-bound, which are 
highly specific for a particular signalling molecule. In case of AHLs, the LuxI or 
LuxI homologous synthases have complimentary LuxR-type receptors. These 
receptors recognize their respective signalling molecules and thus enable communi-
cation through quorum sensing. The LuxR receptors are one- component cytoplas-
mic receptors. AHL ligands passively diffuse out of the cell and are sensed by 
receptors inside the neighbouring cells when the ‘specific quorum’ of bacterial 
population is reached (Moore et al. 2015). As the bacterial population increases, the 
local concentration of the AHL also increases. On achieving a threshold population, 
the AHL binds with the LuxR or LuxR homologous receptor. This binding activates 
the quorum sensing target genes (Moore et al. 2015).

Fig. 2.2  Schematic diagram showing the synthesis of AHL
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The LuxR proteins consist of two functional domains- (1) Amino (N)-terminal 
ligand binding domain and (2) Carboxy (C)-terminal DNA binding domain. The 
signalling molecule binds to the amino-terminal of the receptor protein (Smith et al. 
2006). The N-terminal has three tryptophan moieties which interact with the HSL 
backbone of the AHL-based signalling molecule and define the orientation of bind-
ing. Residues present in the N-terminal, providing hydrophobic and van der Waal’s 
interaction are less conserved and decide specificity. The LuxR receptor protein 
binds to the DNA through the C-terminal. The binding with DNA takes place when 
the LuxR-type receptor forms a complex with the signalling molecule (Smith et al. 
2006). In the absence of signalling molecules, the LuxR or LuxR homologue pro-
teins do not fold and degrade. LuxR-proteins bound to their respective AHL mole-
cule dimerize and bind to DNA (Swem et al. 2009). AHL-LuxR complexes associate 
with DNA sequences which are known as ‘lux boxes’. Lux boxes are present 
upstream of the target genes. On binding of the AHL-LuxR complex to these ‘lux 
boxes’, genes promoting the production of signalling molecules and genes coding 
for processes like virulence, biofilm formation, luminescence get activated (Fig. 2.3). 
For example, the signalling molecule used by V. fischeri to activate bioluminescence 
is 3-oxo-C6-HSL.  As the population density increases, the signalling molecule 
binds to LuxR receptor. LuxR is the cytoplasmic receptor for 3-oxo-C6-HSL and 
also the transcriptional activator of the luciferase luxICDABE operon (Engebrecht 
et al. 1983; Ng and Bassler 2009). The structures of four LuxR type receptors are 

Fig. 2.3  Schematic representation of AHL-based QS system. AHLs are produced by LuxI/LuxI 
homologous enzymes present in bacterial cells. These AHLs are recognised by the receptor pro-
teins LuxR/LuxR homologues specific to the bacterial cell. In a heterogeneous bacterial popula-
tion, a variety of AHLs are present in the surroundings. At a threshold concentration of signalling 
molecule, the LuxR/LuxR homologue bound to AHL form a homodimer complex. This dimer 
complex then binds to the specific DNA sequence (lux box) that triggers gene expression to regu-
late group behaviour

2  Talking Through Chemical Languages: Quorum Sensing and Bacterial…



26

known- TraR from Agrobacterium tumefaciens and Rhizobium sp. NGR234 
(Vannini et al. 2002; Zhang et al. 2002), QscR from P. aeruginosa (Lintz et al. 2011) 
and CviR from Chromobacterium violaceum (Chen et al. 2011). The structure of the 
ligand-binding site of LasR from P. aeruginosa has also been studied (Bottomley 
et al. 2007). LuxR-proteins achieve AHL- specificity through variation in the amino 
acid side chain residues and also through flexibility of the binding pocket. Apart 
from the LuxR-receptors which work in partnership with LuxI-synthases, there 
exist solo LuxR-receptors as well. About 76% of the LuxR receptors do not have 
any accompanying LuxI or LuxI homologous synthases (Hudaiberdiev et al. 2015). 
QscR from P. aeruginosa is an example of LuxR-solo receptor. It has slightly 
relaxed ligand binding specificity as opposed to non-solo LuxR-type receptors. As 
a result of this, it activates gene expression at nanomolar concentrations of various 
AHLs like C8-HSL, C10-HSL, 3-oxo-C10-HSL, C12-HSL, 3-oxo-C12-HSL and 
C14-HSL (Lee et al. 2006). Because of this relaxation in specificity, QscR may be 
used by P. aeruginosa to detect autoinducers that are produced by other cohabiting 
species.

In addition to the cytoplasmic LuxR or LuxR-homologous receptors, one more 
class of receptors is found in Gram-negative bacteria. These are the two-component 
receptors which consist of membrane-bound histidine kinases that signal to cyto-
plasmic transcription factors through phosphorylation. An example of AHL based 
signalling molecule which is detected by a membrane bound receptor is 3-OH 
C4-HSL which is found in Vibrio harveyi. The receptor involved in the detection is 
LuxN (Swem et  al. 2008). The receptor for this signalling molecule is a two-
component system consisting of the periplasmic protein, LuxN and the cytoplasmic 
domains, LuxU and LuxO.

2.3	 �Peptide Based Quorum Sensing

Gram-positive bacteria use peptides as their communication language. The signal-
ling peptides are called as autoinducing peptide (AIP) as they induce the communi-
cation process through activation of quorum sensing circuit. The structure and size 
of the peptide signalling molecules may vary depending on bacterial species and 
their functions. For example, there exist linear peptides as the signalling molecules 
that govern various group behaviours in certain Gram-positive bacteria. For exam-
ple, Streptococcus pneumoniae regulates the competence by using a 17-residue lin-
ear peptide (Håvarstein et  al. 1995). Bacillus subtilis also uses a series of linear 
peptides that regulate sporulation and competence (Lazazzera 2001). Similarly, 
Bacillus cereus and Enterococcus faecalis use various linear peptides to regulate the 
expression of virulence factors and plasmid-mediated conjugation respectively 
(Slamti and Lereclus 2002; Clewell et al. 2002). However important may the linear 
peptides be for certain bacteria, the more well-known class of peptide signalling 
molecules are cyclic in structure. A recent study suggested that the cyclic peptide 
based quorum sensing circuit is conserved among a large number of Gram-positive 
bacteria (Wuster and Babu 2008). Therefore, herein we focus our discussion on the 
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cyclic class of peptide signalling molecules. We will discuss the structural variation 
in cyclic peptides and role of various parameters in guiding the signal induction. 
Biosynthesis of these peptides and their specificity towards receptors will be dis-
cussed in detail. To the end, we will narrate how the signal recognition and trans-
duction take place that lead to gene expression and thereby regulate the group 
behaviour in bacterial world.

2.3.1	 �Peptide Signalling Molecules

Peptide signalling molecules regulate the autoinducing circuit that control bacterial 
communication in Gram-positive bacteria. The cyclic peptide signals were first dis-
covered in S. aureus and later on similar molecules have been identified in many 
other bacterial species. These include Streptococcus mutans (Kaur et  al. 2015), 
Enterococcus faecalis (Nakayama et al. 2001; Nishiguchi et al. 2009), Lactobacillus 
plantarum (Sturme et al. 2005; Fujii et al. 2008), Listeria monocytogenes (Autret 
et al. 2003; Riedel et al. 2009), Clostridium perfringens (Ohtani et al. 2009; Vidal 
et al. 2009), Clostridium botulinum (Cooksley et al. 2010) and many more. To date, 
four different AIPs are mostly characterized as chemical languages, namely AIP 
I-IV (Fig. 2.4). Despite the structural diversity of these peptides, they share some 
common structural features. For example, all the AIPs consist of Cys→C-terminus 
macrocyclic thiolactone core comprising a 5-amino acid sequence (shown in Red) 
along with an exocyclic tail of two to four amino acid residues (shown in Black). 
They may differ in amino acid sequence however; all of them possess an increased 
hydrophobicity from their N- to C-terminal end in the peptide structure. At the end 
of the sequence to the C-terminal positions, AIPs are found to have amino acids 

Fig. 2.4  Chemical structure of AIPs used by Gram-positive bacteria S. aureus
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with hydrophobic side chains such as methionine (AIP I and IV), phenylalanine 
(AIP II) and leucine (AIP III). Detailed investigations have been performed to 
understand the essential structural motif through extensive structure-activity rela-
tionship (SAR) studies (Mayville et al. 1999; Lyon et al. 2000, 2002; MDowell et al. 
2001; Tal-Gan et al. 2013, 2016; Yang et al. 2016). The cyclic ring structure is cru-
cial for AIP to function as it has been found that corresponding linear peptide ana-
logues or hydrolysis of the thioester moiety inactivates its functions as a signalling 
molecule (Ji et al. 1997). The thioester moiety present in the macrocyclic ring is also 
crucial as an ester moiety was found to inactivate the signalling capability of the 
peptide. Moreover, upon removal of the N-terminal exocyclic residues, the AIP 
loses its signalling capability. Rather it has been reported that macrocyclic ring of 
AIP-I, AIP-II or AIP-IV without the exocyclic tail functions as the signal inhibitor 
(Lyon et al. 2000, 2002). Therefore, both the macrocyclic ring as well as the exocy-
clic tail of the AIPs is essential for its signalling property.

2.3.2	 �Signal Production

The AIP based quorum sensing system is controlled by a regulatory cascade known 
as accessory gene regulator (agr). All the necessary genes are located in this agr 
locus that regulate the process of signal production, recognition and transduction. 
This locus consists of two divergent transcripts, referred to as RNAII and RNAIII 
(Janzon et al. 1989; Novick et al. 1995). The transcript RNAII which is an operon 
of four genes agrBDCA encodes the factor responsible for signal production and 
thereby switches on the response regulatory cascade (Fig. 2.5). Two components, 
AgrD and AgrB are involved in the biosynthesis of AIPs. While the AgrD functions 
as the precursor propeptide that gets converted into AIP after a series of transforma-
tions, the membrane bound protein AgrB plays an important role in this process by 
acting as an enzyme.

2.3.2.1	 �AgrD
The precursor propeptide AgrD can be structurally divided into three distinct 
regions; (1) the N-terminal residue, (2) the middle domain that encodes the residue 
for AIP and (3) the C-terminal residue. While the N-terminal domain is amphipathic 
in nature, the C-terminal domain is enriched with negatively charged residues. This 
structural feature of AgrD is well conserved among all the AIPs produced by vari-
ous bacterial species (Novick and Geisinger 2008). Although the amino acid resi-
dues in N-terminal region can differ significantly, the amphipathic nature is 
conserved. This amphipathic region of AgrD propeptide is responsible for associa-
tion with the cell membrane that in turn makes possible the interaction with AgrB 
(Zhang et al. 2002) leading to further processing for AIP biosynthesis. The middle 
region of AgrD comprising of AIP residues significantly differs among the bacterial 
species however, the cysteine residue is found to be conserved (Dufour et al. 2002). 
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This amino acid residue is responsible for the thiolactone ring structure of AIP upon 
cyclization. Exceptions also exist to this; serine is present in place of cysteine in 
several bacterial species such as S. intermedius, S. pseudintermedius, and S. del-
phini. These bacteria produce AIPs with lactone moiety instead of thiolactone. The 
C-terminal region is the most conserved region in AgrD.

Highly conserved, the first nine residues are necessary for the complete produc-
tion of AIP (Dufour et al. 2002). The first two amino acid residues of this domain, 
namely aspartate and glutamate are essential that are found to be conserved among 
the Staphylococci species however; this conservation rule is not followed in other 
Gram-positive bacteria (Dufour et al. 2002). It has also been seen that mutations in 
the aspartate or glutamate residues prevent the AIP production in S. aureus, which 
highlights the importance of these residues.

2.3.2.2	 �AgrB
The membrane bound protein AgrB is the enzyme for processing the propeptide 
AgrD into AIP (Saenz et al. 2000). There exist many reports in literature that sup-
port the endopeptidase activity of AgrB (Zhang et al. 2002; Qiu et al. 2005; Thoendel 

Fig. 2.5  Schematic representation of AIP-based QS system. The agr locus consists of two diver-
gent transcripts referred to as RNAII and RNAIII, which are regulated by the promoters P2 and P3 
respectively. The signalling molecule, AIP is produced from the precursor peptide AgrD with the 
help of membrane bound proteins AgrB and SpsB. Once the threshold concentration of signalling 
molecules is achieved in the bacterial population, binding of AIP with receptor protein AgrC leads 
to phosphorylation of the response regulator AgrA. This in turn activates the P2 and P3 promoters, 
which results in gene expression to regulate the collective behaviour of bacteria
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and Horswill 2009). The enzymatic activity of AgrB results in removal of C-terminal 
region of AgrD, which leads to AIP biosynthesis proceeding in forward direction. 
Additionally, two amino acid residues His-77 and Cys-84 were reported to be essen-
tial for proteolysis activity (Qiu et al. 2005), which remain well conserved among 
all the Gram-positive bacterial species. Taken together, this suggests that AgrB 
plays an important role in AIP biosynthesis by functioning as a cysteine protease. 
Moreover, AgrB is a unique protein that does not possess any homologous similar-
ity with the other proteins present in various quorum-sensing systems (Novick et al. 
1995). Although the AgrB sequence significantly differs from bacterium to bacte-
rium, the overall features remain conserved. For example, the hydrophobic region 
of AgrB that forms the transmembrane portion is maintained in all bacteria 
(Thoendel et al. 2011). Similarly, the N-terminal region (specially the first 34 resi-
dues) of AgrB is found to be highly conserved in all four S. aureus type AIP produc-
ing bacteria.

2.3.2.3	 �Mechanism of AIP Production
The mechanism of AIP biosynthesis pathway has been proposed through a series of 
experimental observations (Thoendel and Horswill 2009, 2010). The proposed 
mechanism consists of five consecutive steps as outlined in Fig. 2.6. In the first step, 
the precursor peptide AgrD associates with the membrane with the help of amphipa-
thic N-terminal region. Then, in the second step AgrB accomplishes a nucleophilic 
reaction through a cysteine moiety, which results in removal of C-terminal residue 
of AgrD (Fig.  2.6). In this process AgrB gets covalently linked with AgrD via 
thioester bond. In the next step, the -SH group of cysteine residue in AgrD attacks 
on this covalently linked intermediate leading to a thiolactone ring structure fol-
lowed by cleavage of the covalent linkage of AIP precursor and AgrB. The fourth 
step is associated with transportation of AIP precursor from inner leaflet to outer 
leaflet of the membrane. In the final step, SpsB cleaves the N-terminal region of AIP 
precursor to produce the AIP molecule.

Fig. 2.6  The proposed mechanism of AIP biosynthesis pathway

M. M. Konai et al.



31

2.3.3	 �Signal Recognition and Transduction

Signal recognition and response transduction of AIP based quorum sensing system 
consists of two components, AgrC and AgrA. Peptide signal is recognized through 
transmembrane receptor AgrC and signal transduction takes place through response 
regulator (RR) AgrA. Like the signal producing components (AgrD and AgrB), the 
signal recognizing and transducing components AgrC and AgrA are also regulated 
by the factor encoding in transcript RNAII (Fig. 2.5). It is noteworthy that there are 
some Staphylococcal species that possess AgrC homologue as the signal receiver 
instead of AgrC (Dufour et al. 2002). The other Gram positive bacteria C. perfrin-
gens (Lyristis et al. 1994; Ohtani et al. 2009), L. monocytogenes (Riedel et al. 2009), 
E. faecalis (Qin et  al. 2000) and L. plantarum (Sturme et al. 2005) also possess 
AgrC homologues that are capable to sense cyclic peptides consisting of either lac-
tone or thiolactone groups in the signalling molecule. At an optimum concentration 
of extracellular AIP, effective binding with the sensory domain in AgrC results in 
autophosphorylation (Lina et al. 1998). This process in turn activates the response 
regulator (RR) AgrA and the response transduces via phosphotransfer with aspartic 
acid residue of RR. At the end, this phosphorylated RR binds to DNA leading to 
regulation of necessary gene expression (Fig. 2.5).

2.3.3.1	 �AgrC
AgrC belongs to histidine protein kinases (HPKs) family. Structurally, it can be 
divided into several distinct regions. The N-terminal domain that spans across the 
membrane is referred to as the sensory domain (Tusnády and Simon 1998). This 
domain is actually the receiver of peptide signal. The specificity towards a particular 
AIP is brought about by the specific interaction of this transmembrane domain and 
AIPs. Followed by this sensory domain, an intracellular subdomain is present that 
comprises of a dimerization and histidine phosphotransfer site which is referred to 
as DHp. After that, a highly coiled region exists with an autophosphorylation site 
formed by a conserved histidine residue (Lupas 1996). Finally at the C-terminal 
end, a catalytic region is located consisting of ATP binding site denoted as CA. Both, 
the DHp and CA regulate the autokinase activity of AgrC, whereas the phos-
photransfer and phosphatase activity is regulated only by DHp (Gao and Stock 
2009).

2.3.3.2	 �AgrA
AgrA is the transcriptional regulator that transduces signal response through activa-
tion of agr P2 and P3 promoters (Novick et al. 1993, 1995). Structure of AgrA has 
been determined experimentally. DNA binding experiments with the C-terminal 
residue of AgrA suggested that a sequence of minimum 15 bp is required for opti-
mum interaction between ArgA and DNA. This 15 bp sequence consists of con-
sensus 9 bp sites along with flanking 3 bp on either side of DNA (Sidote et al. 
2008). Moreover, the crystal structure of AgrA in complex with oligonucleotide 
duplex is solved that suggests a 10 β-stranded topology of AgrA along with a 
two-turn α helix. In the complex, AgrA bends about 38° that results in a concave 
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DNA-binding region. This slanted orientation of AgrA possibly leads to effective 
binding with the successive major grooves of DNA along the same face. Additional 
experimental studies confirm that AgrA interacts through dimer formation, where 
the N-terminal residues are involved in protein-protein interactions and the 
C-terminal residues remain apart from each other. Only two residues of C-terminal 
domain (H169 and R233), specifically bind with the major grooves of DNA and a 
third residue (N201) interacts with water in the minor groove, which were identified 
as essential for AgrA as mutations of these residues resulted in lesser DNA binding 
(Sidote et al. 2008).

2.4	 �Other Signalling Molecules

In addition to AHL-based and AIP-based quorum sensing, many other signalling 
systems are present in the bacterial world, which constitute an important role in 
regulating various biological processes in them (Fig. 2.7). In this section, we will 
briefly discuss the other signalling molecules that have been discovered in recent 
years.

2.4.1	 �Autoinducer 2 (AI-2)

AI-2 is a set of interconverting molecules derived from 4,5-dihydroxy-2,3-
pentanedione (DPD) (Schauder and Bassler 2001). The structure and role of AI-2 has 
been explored well for the species V. fischeri (Fig. 2.7). LuxS is the synthase enzyme 
of DPD, which is present in many bacterial species (Pereira et al. 2013). The starting 
material for AI-2 synthesis is SAM. (Federle and Bassler 2003). DPD can cyclise to 
form different furanone molecules. Different forms of DPD act as AI-2 signals for 
different bacteria. The highly reactive nature of DPD leads to its quick inter-conver-
sion into various moieties. The chemical nature of AI-2 is the same for many differ-
ent bacteria. This suggests that AI-2 is used for inter-species communication to detect 
other bacterial populations. In V. harveyi, the active AI-2 signal is boronated whereas 

Fig. 2.7  Other signalling molecules used by bacteria
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in Escherichia coli and Salmonella species, the active AI-2 signal is non-boronated 
(Miller et al. 2004). In AI-2 based quorum sensing, the signal recognition and trans-
duction take place through a two-component pathway. The first component consists 
of two proteins, LuxP and LuxQ.  The second component constitutes the phos-
photransferase protein LuxU and a cytoplasmic response regulator LuxO.  There 
exist two LuxPQ complexes which form a symmetric heterotetramer in the absence 
of AI-2. Upon binding with AI-2, this tetramer undergoes a conformational change. 
This conformational change prevents the phosphorylation of the cytoplasmic pro-
teins, LuxU and LuxO, which terminates the expression of quorum regulatory genes 
(qrr genes). Finally, LuxR is produced which leads to gene expression to guide quo-
rum sensing behaviours (Fig. 2.8). This recognition system is used for the detection 
of AI-2 in Vibrio species which use boronated AI-2 as the signalling molecule.

2.4.2	 �DSF-Family

The diffusible signal factor (DSF) constitutes an interesting class of signalling mol-
ecules, mainly found in Gram-negative bacteria (Deng et al. 2011; Ryan et al. 2015; 
Zhou et  al. 2017). Quorum sensing system based on this class of signalling 

Fig. 2.8  QS system circuit involving AI-2 in Vibrio species. At a threshold population density, 
AI-2 binds to the LuxPQ heterotetramer. This prevents the phosphorylation of the cytoplasmic 
domains, LuxU and LuxO. This leads to the production of LuxR which results in gene expression 
guiding the collective behaviour of bacteria

2  Talking Through Chemical Languages: Quorum Sensing and Bacterial…



34

molecules has emerged as another important communication tool with a distinct 
mechanism of signalling pathways. The signalling system was first identified in 
plant bacteria Xanthomonas campestris (Wang et al. 2004). This bacterium uses cis-
11-methyl-2-dodecenoic acid as the signalling molecule which is the first member 
of the DSF-family (Fig. 2.7). In the recent past however, many other DSF-signalling 
molecules have been discovered as a result of rapid research progress in this field 
(Huang and Lee Wong 2007; Deng et al. 2008; Davies and Marques 2009; He et al. 
2010). Till date, various classes of plant and human bacterial pathogens are known 
that produce DSF signalling molecules as communicating language. Like the other 
signalling systems, DSF based quorum sensing also regulates various essential pro-
cesses in bacteria such as cell growth, virulence factor production and biofilm for-
mation, which are critical for their survival and pathogenesis.

2.4.3	 �PQS and IQS

PQS is referred to pseudomonas quinolone signal. 2-heptyl-3-hydroxy-4-quinolone 
is used by P. aeruginosa as a chemical language (Pesci et al. 1999; Heeb et al. 2011) 
for QS (Fig. 2.7). The signalling molecule is generated by the proteins encoding in 
the genes pqsABCDH. However, the function of PQS quorum sensing is connected 
with AHL-based quorum sensing (Lee and Zhang 2015) in this bacterium. In combi-
nation with AHL-based quorum sensing, the PQS signal controls many essential bio-
logical processes in P. aeruginosa, which include virulence factor production, biofilm 
formation and so on. Additionally, P. aeruginosa uses another signalling molecule 
2-(2-hydroxyphenyl)-thiazole-4-carbaldehyde (Fig. 2.7), also known as IQS which 
is synthesized by proteins encoding in the gene cluster ambBCDE (Lee et al. 2013). 
The signal receptor of IQS based quorum sensing is yet to be discovered.

2.4.4	 �CAI-1

The cholera autoinducer 1, CAI-1 was first discovered in cholera causing bacteria 
Vibrio cholerae (Higgins et al. 2007). This bacterium produces CAI-1 at its high cell 
density in order to terminate the virulence factor production, which is nothing but 
the indication to leave the host and enter in the environment to infect other hosts in 
a large number (Higgins et al. 2007). In the recent past, many other Vibrio species 
are reported to produce this class of signalling molecules. CAI-1 based quorum 
sensing is mainly used for the intra-species bacterial communication. Therefore, 
each Vibrio species produces structurally different CAI-1 signal as their secret lan-
guage. While, V. cholerae uses (S)-3-hydroxytriecan-4-one as the signal, V. harveyi 
uses (Z)-3-aminoundec-2-en-4-one (Fig.  2.7). However, the presence of an acyl 
long chain is the main characteristic feature of this class of signalling molecules. 
The signalling molecule is produced by the synthase enzyme CqsA and the signal is 
received by the receptor protein CqsS, which are mostly conserved among Vibrio 
species (Ng et al. 2011).
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2.4.5	 �DPO

DPO (3,5-dimethylpyrazin-2-ol) is the most recent class of signalling molecules 
(Papenfort et  al. 2017) (Fig. 2.7). Like CAI-1, this signalling molecule was also 
discovered in V. cholerae. DPO-based signalling system functions through activa-
tion of the transcription factor VqmA. DPO binding regulates the VqmA activity 
leading to expression of the vqmR gene which controls biofilm formation and viru-
lence factor production in this species of bacteria.

2.5	 �Conclusion

Quorum sensing, the bacterial communication system regulates the collective 
behaviour in bacterial population. Through this process, bacteria can function like 
multicellular organisms to take necessary action against harsh environmental condi-
tions. They produce signalling molecules to communicate with other members of 
their own species as well as the members of other species. While, Gram-negative 
bacteria produce AHLs for intra-species communication, Gram-positive bacteria 
use AIP. For universal communication, only one class of signalling molecules, AI-2, 
is used by bacteria. In the recent past, many other interesting classes of signalling 
molecules have been discovered. DSF, which comprises of an aliphatic chain as a 
characteristic feature is mainly used by Gram-negative bacteria as communication 
signal. In addition to AHL-based signalling systems, P. aeruginosa uses other spe-
cific signalling systems (such as PQS and IQS) for their QS purpose. Similarly, 
human pathogenic bacteria V. cholerae is known to use CAI-1 and DPO-based sig-
nalling systems to control the pathogenicity.

2.6	 �Opinion

The distinct importance of QS is already established in regulating bacterial patho-
genesis. In the production of virulence factors and biofilm formation by bacteria, 
QS constitutes an important role. In the recent past, research in this field has reached 
a new level of understanding. The application of QS has emerged in various biotech-
nological fields, which include bioenergy, bioremediation, bio-sensors, anti-cancer 
therapy, genetic engineering, marine industry, agricultural crops and so on. However, 
more investigation is required to identify the signalling molecules that still remain 
unrevealed. Additionally, the quorum sensing pathway of these unrevealed signal-
ling molecules needs to be explored. Future research should focus more in under-
standing the pathogenic behaviour of disease-causing bacteria, especially the ones 
which cause a major threat to human health globally. A clear challenge in this field 
is to understand how quorum sensing regulates the disease-causing nature of patho-
genic bacteria in real scenario under in-vivo settings. The field of inter-species quo-
rum sensing should also be forayed into further. Other than AI-2, other signalling 
molecules which bacteria probably use for inter-species communication need to be 
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investigated. Moreover, it is important to know whether pathogenic bacteria use any 
specific signalling molecules to modulate the behaviour of commensal bacteria 
present in the host that makes their disease-causing event successful. Probably, this 
understanding will result in a better strategy to prevent the diseased state caused by 
pathogenic bacteria. At present, there is no clear understanding of how quorum 
sensing regulates the Antimicrobial Resistance (AMR) development in bacteria. 
Future research should focus to find the link between quorum sensing and AMR. A 
detailed understanding will possibly lead to the development of effective strategies 
in resolving this unsolved problem, which has created a major threat to mankind 
causing an enormous rate of mortality and morbidity every year.
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Abstract
Bacteria are ubiquitous and it is reported that among them surface attached bac-
teria is over 99% population wise. However, the attached growth or sessile life of 
bacteria poses a different problem in human life. Chronic infection, contamina-
tion in food industries and biofouling in industrial materials are serious chal-
lenges which need to overcome. It is imperative to understand the bacterial 
adhesion and subsequent biofilm development to study biofilm-associated 
deceases and mitigating biofouling. In the present book chapter, the technical 
know-how of bacterial biofilm development has been depicted. A thorough 
understanding of the fundamental principles of bacterial biofilm would help to 
perceive new aspects of biofouling and pathogenicity associated with biofilm 
and how fouling could be controlled and contamination can be prevented. In this 
chapter, parameters affecting biofilm formation, the role of extracellular poly-
meric substances (EPS) and eDNA, the factors of materials which influence 
attachment and detachment of biofilm have been clearly described. The present 
chapter highlights the major factors involved in the signaling system to promote 
Biofilm formation.
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3.1	 �Introduction

Biofilm is a thin but strong layer of mucilage adhering to a surface which contains an 
organized community of microorganisms. The cells in biofilms differ from free-living 
cells for the reason that their low growth rate, extracellular matrix formation, and type of 
gene regulation. Free bacteria and bacteria growing in a biofilm express different sets of 
genes. Both extracellular, as well as intracellular signals are needed to express the genes 
needed to construct the biofilm. Studies have shown that attachment of microbes to a 
solid surface enhances their rate of growth, a phenomenon known as “bottle effect”. This 
shows that a biofilm confers several advantages on bacteria (Donlan 2002). The 
formation of biofilm is a multistage process. In the first stage, a conditioning layer 
is formed that provides nutrients to the microbes in the biofilm. This is followed by 
bacterial adhesion, growth, and expansion. It can exist on various kinds of surfaces 
like soil, metal, wood, glass, plastic, food products, etc. A single or multiple species can 
form biofilms in monolayer or multilayer with three-dimensional structure.

3.2	 �Biofilm Structure

Biofilms are comprised of microbes on a matrix of extracellular polymeric sub-
stances. Biofilm development in flow cells is monitored by Confocal Scanning 
Laser Microscope (CSLM), which aids in examining the biofilm without disrupting 
the microbial community. The composition of biofilm has been determined success-
fully using CSLM. 15% of the biofilm is composed of microbial communities and 
the rest 85% is extracellular polymers. The extracellular polysaccharides (EPS) are 
mainly comprised of polysaccharides, which are neutral or anionic. The anionic 
properties of EPS are confirmed by the presence of uronic acids (mannuronic; 
D-galacturonic; D-galacuronic) or ketal linked pyruvate. These anionic linkages in 
combination with divalent cations like calcium or magnesium help in crosslinking 
and confer greater binding force in a developed biofilm. These extracellular poly-
meric substances (EPS) backbone comprises of 1, 3 or 1, 4 β linked hexose residues 
(Bishop 1997). The quantity of EPS production is directly related to the age of the 
biofilm, that is, more the age of a biofilm, greater is the amount of EPS produced. 
EPS synthesis is upsurge by the limitation of nitrogen, phosphate, and potassium.

3.3	 �Role of Biofilms in Microbial Communities

Microbial communities adopt biofilm strategy because of the following reasons:

3.3.1	 �Protection from Environment

The bacteria which inhabit the biofilm are sheltered by the EPS. The EPS matrix 
acts as an anion exchanger hence preventing the contact of antimicrobial substances. 
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It also limits the diffusion of harmful substances from the environment into the 
biofilm. Furthermore, PS sequesters toxins, metal ions, and cations. It also protects 
the microbes from different environmental stresses like UV radiation, pH shift and 
osmotic shock (Flemming 1993).

3.3.2	 �Nutrient Availability

The water channels are an effective means for nutrient exchange and the transfer of 
metabolic intermediates with the main part of the aqueous phase, which enhances 
the nutrient accessibility and elimination of potential toxins. The small colonies in 
biofilm usually comprise a wide variety of microbial populations, which can be 
metabolically cooperative, therefore, their closeness enables interspecies substrate 
transport, exchange, and removal of metabolic intermediates (Bishop 1997). Biofilm 
offers an ideal situation for the formation of syntrophic relations.

3.3.3	 �Acquisition of New Genetic Trait

Horizontal gene transfer is a vital feature in a biofilm where the transmission of 
DNA between different genomes occurs in a manner other than traditional repro-
duction. It is vital for growth and genetic variety of a microbial population. Acquiring 
new genetic traits increases the probability of a microbial community to copy the 
essential genes to become a lively member of biofilm populations. It is well estab-
lished that the biofilm forming communities transcribe different genes and the phe-
notypic character is the expression of specific genotypic characters. For example, 
alginate production is increased four times in biofilm-associated cells in which algC 
gene was transcribed than that in planktonic cells. Studies have shown that pulmo-
nary isolates are mucoid because of the synthesis of large amounts of alginate. 
Furthermore, sigma factor undesirably controls the synthesis of flagellum but it 
positively regulates alginate synthesis. Hence, when the synthesis of EPS and algi-
nate are increased in the microbes associated with the biofilm, the synthesis of fla-
gella decreases. Accordingly, the bacteria must differentiate into biofilm-associated 
cells to become an effective member of biofilm community (Christensen et  al. 
1998). Hence, the synthesis of flagella must be repressed because it destabilizes the 
biofilm.

3.4	 �Factors Favoring Biofilm Formation

Following are the various factors which affect the formation of biofilms:
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3.4.1	 �Substratum Effect

The microbial colonies upsurge faster in rough surfaces due to high surface area. 
The wettability of surfaces indicated high surface free energy. It was reported that 
low surface energy of the surface prevents bacterial attachment. However, surfaces 
with high surface free energies tend to be more hydrophilic. Usually, these surfaces 
demonstrate more bacterial attachment than hydrophobic surfaces (Watnick and 
Kolter 2000).

3.4.2	 �Conditioning Film

Conditioning film is the coating of polymers on a solid surface when it is exposed 
to the aqueous medium. The rate and range of bacterial attachment are affected by 
this chemical modification. “Acquired pellicle” formed on tooth enamel surface 
consists of albumin, lysozyme, glycoprotein, phosphoproteins, and lipids. The pel-
licle conditioned surfaces are colonized by the bacteria residing in the oral cavity 
within hours of contact with these surfaces. The attachment of bacteria to biomateri-
als is affected by host produced conditioning films like blood, saliva, urine, tears 
and respiratory secretions (Costerton et al. 1999).

3.4.3	 �Hydrodynamics

Studies have shown the biofilm response is altered by hydrodynamic conditions 
such as turbulent and laminar flow. Bacterial biofilms grown under both these con-
ditions were found ‘patchy’; nevertheless, the ones grew under laminar flow con-
sisted of patchy cell masses parted by interstitial voids, and the ones grown under 
turbulent flow are elongated ‘streamers’ and they oscillate in the bulk fluid. Cell size 
and motility also affect the association of cells with the surface (Kostakioti et al. 
2013).

3.4.4	 �Characteristics of Aqueous Medium

The biofilm formation and microbial attachment in various aqueous systems are 
affected by season. Several physicochemical characteristics of aqueous medium 
like pH, ionic strength, nutrient levels also play a vital role in the rate of bacterial 
attachment to the surfaces. Studies have shown that the increase in concentration of 
various cations like calcium, sodium, ferric ions helps in neutralization of negative 
charge in cell surface and EPS. This eventually reduces the repulsive forces between 
the cell surface and glass substrate; helps in the attachment of Pseudomonas fluore-
scens (Dufour et al. 2010).
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3.4.5	 �Interaction of Bacterial Cells with Water Molecules

Various techniques are adopted to investigate the relative hydrophilicity of the 
microbial cells. They are as follows:

	1.	 Adherence to polystyrene.
	2.	 The separation of two-phase system containing hydrocarbon (hydrophobic part) 

and aqueous phase containing dextran polymer and polyethylene glycol clubbed 
with hydrophobic groups.

	3.	 Hydrophobic interaction chromatography using octyl agarose gel preparations 
(Flemming 1993).

There is a high chance that none of the methods effectively measures the degree 
of hydrophobicity (or hydrophilicity). Charged or to neutral surface polymers can 
also cause hydrophobicity. For instance, the presence of neutral O-specific side-
chain polysaccharides of the lipopolysaccharide dominating cell surface causes the 
R-forms of Salmonella typhimurium to indicate both hydrophobic and charged 
hydrophilic properties whereas the S-forms to indicate only extensive non-charged 
hydrophilicity. A significant range of relative surface hydrophobicity or hydrophi-
licity has been observed by the implementation of these methods to a several types 
of bacteria. The surface of oral streptococci is highly hydrophobic. Environmental 
conditions may play a major determinative role. Proteins and amphipathic polymers 
are the surface components which may contribute to hydrophobicity. Surface 
M-protein and lipoteichoic acid both are considered to be the primary components 
to both the hydrophobic properties and adherence of streptococci to eukaryotic 
cells. More exposure of lipid A at the surface of the outer membrane in R-forms of 
S. typhimuriuma rendered high degree of hydrophobicity in R-forms as compared to 
S-forms (Garrett et al. 2008).

3.4.6	 �Signaling System to Promote Biofilm Formation

A biofilm is made of a matrix of polysaccharides, glycopeptides and lipids onto 
which bacteria are embedded. The bacterial population in a biofilm can be either 
homogeneous or homogeneous. The formation of a biofilm occurs in four distinct 
stages and each stage requires the expression of a different set of genes depending 
on internal and environmental stimuli which includes physical parameters tempera-
ture and pressure of the surface and biological parameters like cell density. Hence, 
the cells in a biofilm need to communicate with each other to regulate gene expres-
sion and form a complex structure that can be either monolayered or multilayered. 
The external stimuli can be registered and transmitted into the cell via three sys-
tems: the two-component system (TCS), quorum sensing (QS) and extra cytoplas-
mic function (ECF). Triggering biofilm formation also involves secondary 
messengers like cyclic guanosine monophosphate (c-di-GMP).
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Two-component signaling system comprises of GacS which is a histidine kinase 
(HK) that has a C-terminal kinase domain and an N-terminal ligand-binding domain 
and GacA which is a response regulator (RR) protein which is a transcriptional 
regulator (Fig. 3.1). The phosphorylation of a specific conserved histidine residue in 
HK is succeeded by the phosphorylation and activation of an aspartate residue in 
RR (Hall-Stoodley et al. 2004). The activated RR then encourages the expression of 
Rsm genes which code for RsmY and RsmZ which regulate the change between 
planktonic and sedentary forms. Two additional HKs associated with the Gac sys-
tem are RetS, which suppresses formation of biofilm and LadS, which activates the 
formation of biofilms. Various organisms including Pseudomonas aeruginosaand 
Staphylococcus auereus have adopted TCS (Fig.  3.2). In gram-positive bacteria, 
biofilm formation is regulated by oligopeptides that do not travel into the cells but 
are recognized by sensor kinases present on the surface of the cell. An important 
protein involved in biofilm formation is PIA or polysaccharide intercellular adhe-
sion which is encoded by the Ica operon and regulated by the regulator protein, 
IcaR, which suppresses PIA. The IcaABCD genes are vital for the development of 
biofilms and convey virulence to the bacteria.

The ECF signaling pathway comprises of a sigma factor and an antisigma factor 
which binds to and inhibits the sigma factor (Gupta et al. 2016). The periplasmic 
proteins, on receiving extracellular signals, degrade the antisigma factor that 
releases the free sigma factor that leads to the transcription of genes involved in 
biofilm formation (Sutherland 2001). In P. aeruginosa, the sigma factor is AlgU and 
the antisigma factor is Muc A whose C-terminal periplasmic domains are sliced by 
the act of a protease AlgW, thus releasing AlgU which activates the algUmucABCD 
operon. The algUmucABCD operon is involved in the production of EPS alginate 
and type IVA pili assembly that in turn facilitate in the proliferation of biofilm.

Fig. 3.1  Adhesion of bacteria and development of biofilm
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3.4.6.1	 �Quorum Sensing (QS)
Biofilm formation takes place when bacteria present in a local community come 
together to form an adherent layer of cells. As such, a cell to cell communication 
protocol is necessary to regulate the genes involved in the formation of biofilms 
(Kim et al. 2011). QS is a mechanism, used by bacteria, for interspecies as well as 
intraspecies cell to cell communication. It plays an important role in many bacterial 
population behaviors like biofilm formation, virulence and antibiotic resistance in 
which bacteria need to alter their gene expression based on the local bacterial cell 
density. QS is mediated by chemical signals that are synthesized and secreted to the 
local environment by bacteria. These signaling molecules can pass down a concen-
tration gradient, through the plasma membrane into the cytoplasm. The density of 
these chemical signals in the extracellular environment is proportional to the num-
ber of cells and acts as a measure of the cell density, allowing all the bacteria to 
express a specific gene at the same time, that is, in unison. This capability is crucial 
to certain process like virulence where the bacteria need to go undetected till they 
have reached a threshold concentration (Kumar and Anand 1998).

QS Systems were first observed in the marine bacteria Vibrio fischeriwhere they 
are involved in the regulation of bioluminescence. Since, then they have been observed 
in many other bacterial species, including, Escherichia coli, Salmonella enterica, 
Streptococcus pneumoniae and Yersinia. QS system can be broadly categorized into 
three types on the basis of the nature of the signaling molecules being used. Gram-
positive bacteria use oligopeptides while gram-negative bacteria use AHLs (Huma 

Fig. 3.2  GacS (HK)/GacA (RR) based 2-component signaling system for biofilm development in 
P. aeruginosa
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et al. 2011). The third class of molecules called autoinducer 2 or AI-2, a furanosyl 
borate diester, is used by both the groups of bacteria (Vipin Chandra Kalia 2014a).

The V. fischeri QS system, which uses N-(3-oxohexanoyl)-homoserinelactone 
(HSL) as the QS signaling molecule, can be taken as model for the QS systems pres-
ent in all gram-negative bacteria. The basic V. fischeri QS system consists of two 
proteins luxI, an enzyme that produces the auto-inducer HSL and luxR, a protein 
with a DNA-binding domain. The luxR is activated by the auto-inducer and after 
being activated, luxR goes and binds to the promote of the luxABCDE operon 
which contains luciferase gene, responsible for bioluminescence (Kalia et al. 2014).

QS System is studied extensively in P. aeruginosa which is implicated in causing 
chronic infections in immune-compromised patients in hospitals in developed coun-
tries. The gram-negative bacteria operate by forming a biofilm that protects the bacteria 
from adverse environmental factors, helps in horizontal gene transfer and improves 
antibiotic resistance. The importance of the QS system, in P. aeruginosa, has been 
established by studies that show that up to 11% of all the genes are under AHL-
dependent regulation (Kalia 2014b). As such, P. aeruginosa has becomes a model 
organism for studying biofilm formation, QS and the role of QS in biofilm formation.

The P. aeruginosa has two AHL-dependent QS systems. The las system com-
prises of the transcriptional regulator LasR that binds to the corresponding AHL 
signaling molecule, N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12- 
HSL), while the RhI systems comprises of the transcriptional regulator RhI that 
binds to the corresponding AHL signaling molecule, N-butyryl-L-homoserine lac-
tone (C4-HSL). Studies have shown that the biofilm formed by lasI-’strains was flat, 
undifferentiated and highly unstable, dispersing from the substratum on exposure to 
Sodium Dodecyl Sulphate (SDS) while the biofilm formed by the wild type strain 
remained intact. While, no such effect was observed in RhI− strains, subsequent 
studies have shown that RhI has a role in biofilm formation but the exact mechanism 
is still unknown (Kalia 2013).

The cells are held on the biofilm by a matrix extracellular polymeric substance 
(EPS) that consists of polysaccharides, proteins and DNA.  Out of the five gene 
clusters in P. aeruginosa that are assumed to function in EPS synthesis, only one, 
the pel biosynthetic operon has been shown definitively to be under QS regulation. 
The pel operon has seven genes pelABCDEFG that code for proteins accountable 
for the formation of glucose-rich biofilm exo-polysaccharide which imparts a wrin-
kled colony phenotype to the biofilm (Kalia et al. 2014). The P. aeruginosa cells 
grown in the presence of DNAse I completely dissolved and could not form biofilm. 
Biofilms formed by lasI and RhI QS mutants’ showed lower extracellular DNA 
levels and improved susceptibility to SDS treatment. This shows that, while poly-
saccharides are an important structural section of the biofilm matrix, extracellular 
DNA is a crucial component that holds the bacterial cells together. In P. aeruginosa 
biofilms, the extracellular DNA comes from the lysis of cells which takes place by 
a QS regulated pathway. There is a second QS independent pathway but, it gener-
ates substantially less DNA (Miller and Bassler 2001).

Rhamnolipids are amphipathic glycolipids that have multiple roles in formation 
and maintenance of P. aeruginosa biofilm. Their production is under the control of 
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their genes, RhIA, RhIB and RhIC all which are under the control of the QS system. 
They help in the formation and maintenance of the open channels surrounding 
micro-colonies that provide access to nutrients and oxygen and help in removal of 
waste products (Vipin Chandra Kalia 2014a). Therefore, inhibition of QS molecules 
and quorum quenching has become a potent approach to mitigate bacterial biofilm 
dispersion or preventing film formation (Koul and Kalia 2017).

3.4.7	 �Extracellular Polymeric Substances (EPS)

EPS is a high density complex compound released by bacteria to their surroundings. 
EPS endowed both structural and functional unity to bacterial biofilm. The quality 
of EPS determines the physiochemical properties. The EPS consists of major exo-
polysaccharides along with protein, lipid, DNA and humic materials. EPS are con-
sidered as cement materials for biofilm which facilitate biofilm to hold firmly on the 
surface for sessile growth.

Bacteria produce a wide array of polysaccharides which includes exo-
polysaccharides. It is composed of monosugar blended with a few non carbohydrate 
compounds like acetate, pyruvate, phosphate etc. EPS is therefore considered as an 
important raw material in different food processing and pharmaceutical manufac-
turing units. Efforts have been made to utilize gum like EPS which is potential 
enough to replace traditional plant and algal gums. Dextran, a major component in 
EPS has been used in panettone and other breads in the bakery industry (Flemming 
et al. 2007). EPS plays an important role in biofilm protection. Bacterial pathoge-
nicity is bestowed with capsular EPS which protects biofilm from host immune 
system. Few strains of lactic acid bacteria, e.g., Lactococcuslactissub sp. cremoris 
get a gelatinous texture to fermented milk products due to EPS. Rhizodeposits con-
sists of EPS helps N2 fixing bacteria to attach to plant roots and cause infection 
mediated by EPS (Flemming et al. 2007). Various roles of EPS in bacterial biofilm 
development have been tabulated elsewhere (Table  3.1). The di-valent cation is 
important for EPS to form biofilm structure which facilitates in binding opposite 
charged link of EPS and form flock in activated sludge. It was found that sulfate 
groups (−SO3

−) and carboxylic groups (−COO−) in polysaccharide and protein of 
EPS helps in bridging with divalent cations (Gacesa 1998). EPS has the significant 
function in bioaggregation, which is a common natural process and plays an impor-
tant part in biological wastewater treatment technology. The flocculability, settle-
ability, and dewater-ability for flocs, granules and shear resistance for biofilms 
largely depend on EPS mediating bioaggregation (Ding et al. 2015).

3.4.8	 �Role of eDNA

Extracellular DNA (eDNA) plays a significant part in biofilm formation. The eDNA 
produced due to autolysis of the cell as a consequence of controlled quorum sens-
ing. The eDNA is the major component of biofilm matrix that helps in initial 
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adhesion of bacteria to surface. The eDNA was found in the biofilm of P. aerugi-
nosa; Enterococcus faecalis; Streptococcus mutans. Researchers have found a new 
avenue to target eDNA in the matrix to dismantle biofilm. Most of the studies 
showed that DNAase treatment is useful in dispersing biofilm at the initial stage of 
its formation. DNAase I along with antibiotic treatment was found very effective in 
mitigating biofilm. However, production of DNAase is made from bovine pancreas. 
The cost of this enzyme limits its usage when the bulk amount of is required to get 
rid of bacterial biofilm. Currently, a cheaper and promising way has been adopted 
where DNAase production started using extracellular nucleases in E. coli. The long-
term stability and efficacy of bacterial nuclease must be explored in order to its bulk 
use in industry (Montanaro et al. 2011).

3.5	 �Bacterial Adhesion- Steps Involved in Biofilm 
Development

3.5.1	 �The Sessile Mode of Bacterial Growth

In nature, bacteria usually grow as part of a rigid local community that forms an 
adherent layer called biofilm. The transition of from a free floating planktonic mode 
of growth to sessile mode of growth confers many benefits upon the bacteria 
(Watnick and Kolter 2000). The bacterial biofilm surface comprises of a very fluid 
and intricate interface with the environment which must be upheld by the bacterium 
for surviving amongst the omnipresent antibacterial agents and factors in nature. 

Table 3.1  Different role of EPS in bacterial biofilm development

Nature of EPS component
Effect of EPS 
component Role in biofilm References

Neutral polysaccharides Constructive Structural 
component

Flemming et al. 
(2007)

Amyloids Structural 
component

Charged or hydrophobic 
polysaccharides

Sorptive Ion exchange, 
sorption

Bishop (1997)

Amphiphilic Surface-active Interface 
interactions

Flemming et al. 
(2007)

Membrane vesicles Export from cell, 
sorption

Lectins Informative Specificity, 
recognition

Flemming et al. 
(2007)

Nucleic acids Genetic information
Extracellular enzymes Active Polymer 

degradation
Bishop (1997)

Bacterial refractory polymers Redox active Electron donor or 
acceptor

Ding et al. (2015)

Various polymers Nutritive Source of C, N, P Ding et al. (2015)
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Such surfaces strengthen the differences between bacteria growing in natural and 
pathogenic ecosystems, therefore, novel and innovative techniques have been devel-
oped for the better understanding of these bacterial surfaces, i.e., for visualizing the 
bacterial surface structures as well as for stabilizing them (Fig. 3.3).

3.5.2	 �Bacterial Glycocalyx In Vivo In Vitro

The bacterial glycocalyces are complex substances containing polysaccharides 
moiety. They are present in the peptidoglycan layer in gram positive cells, whereas 
in gram negative cells, they are present outside the integral elements of the outer 
membrane. They have two subcategories, S layers and Capsules. S layers made up 
of regular arrays of glycoprotein subunits and while capsules are composed of 
fibrous matrix on the cell surface (McLean et al. 2001).

3.5.3	 �Microcolony Formation by Adherent Bacteria

Cells of the organisms in natural and pathogenic ecosystems most often replicate 
within a hydrated exo-polysaccharide matrix because of universal bacterial glycoca-
lyx production, so that the daughter cells are trapped and forms micro-colonies of 
identical cells. The glycocalyxes facilitate both, micro-colony formation and adhe-
sion, which results in the formation of micro-colonies on surfaces where they multiply 
and in due course come together to form an adherent biofilm (Fig. 3.2). If nutrients are 

Fig. 3.3  RetS and LadS signaling system for P. aeruginosa biofilm formation
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present, they are trapped and used by a very efficient bacterial strategy and the bacte-
rial cells flourish in the glycocalyx-enclosed microcolonies which are adherent as well 
as mature to bigger dimensions, but are seldom macroscopic. This approach also pro-
vides them safety from unwanted chemicals, antibodies, surfactants, antibacterial sub-
stances and phagocytic amoebae and leukocytes (Singh et al. 2006).

3.5.4	 �Consortium Formation by Adherent Bacteria

Homologous species in consortia contribute to a wide variety of bacterial processes 
in natural ecosystems. The bacterial members of the same consortium hold on to 
their initial substratum, and are also attached to form cluster, hence forming an 
organized microbial community within which substrate transfer and hydrogen 
transfer is facilitated. According to studies, butyrate-oxidizing and methane-
generating group in consortia can form mixed micro-colonies, even when they are 
cultivated in a liquid medium. Such observations have given rise to the idea of an 
inherent interbacterial affinity. Bacteria that reside in the gastrointestinal tract usu-
ally attack the digestive substrata in a muchfocused manner. The bacteria within an 
adherent micro-colony that are in an environment which has more nutrition produce 
a “critical mass” of cells and exoenzymes and products in order to generate a 
microniche and erode the substratum immediately beneath the micro-colony. 
Because of this topographically focused nature of natural bacterial processes, pits 
arise in the digestible substrata. The cellulose and metal plays important role in 
developing a micro-colony that sinks into the pit as it develops (Garrett et al. 2008).

3.6	 �Occurrence of Bacterial Biofilm: Predominance 
in Aquatic System

According to studies, a stream can be considered as a “microbiological reactor” 
which flows past bacterial biofilm populations on submerged surfaces and carries a 
few detached bacteria and dissolved nutrients. Sessile bacteria are predominant, 
they are also not limited to only natural aquatic ecosystems, they have also been 
discovered in hundreds of industrial systems from heat exchangers to the injection 
tubes (McLean et al. 2001).

3.7	 �Physiology of Biofilm Population

Bacterial cell tends to grow on suitable moister surfaces, if the nutrient is available 
on the solid-aqueous interface; they are suitable for bacterial colonization. Hence, 
surfaces in aquatic environments are rapidly deposited with an organic coating 
which is rich in polysaccharides of microbial origin and this organic layer is retained 
by the surface which is colonized by adherent bacteria. Enormous quantities of 
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fibrous glycocalyx material are produced by the bacteria soon after initial adsorp-
tion to a surface, and to convert their reversible adhesion to irreversible adhesion, 
they fix themselves onto the surface. Most of the chemical structures of glycocaly-
ces are observed to comprise polyanionic matrices which might behave like ion-
exchange resins, which attract Ca+2 type cations and molecules. Glycocalyces of 
biofilm bacteria makes up the ion-exchange matrix and it “loads” from its exposed 
surface, hence to have favored access to the rare ligands, the cells are expected to get 
closer to the exposed surface (de la Fuente-Núñez et al. 2013). Nonetheless, in this 
mode of growth, large amounts of the fibrous matrix make up individual biofilms 
and deeper cells are not hindered by overlying cells, hence it encourages the access 
of the cells preset farther from the surface to common nutrients. It can be concluded 
from several experiments that an adherent biofilm called as “quasitissue” which is 
comprised of micro-colonies of different types of aquatic bacteria that may have 
measurable rates of respiration and nutrient uptake.

3.8	 �Effects of Material Properties on Bacterial Adhesion

Properties of material surface have profound influence on initial bacterial adhesion 
and biofilm development. Surface charge, hydrophobicity, topology, roughness are 
important parameters affecting bacterial adhesion and biofilm formation. It was 
noticed that surfaces having negatively charged or super hydrophobic surfaces, 
super hydrophilic surfaces, and nm-scale surface roughness has the tendency to 
repel bacteria and prevent fouling (Song et al. 2015). However, several other factors 
like effect of surface stiffness and topography (except for roughness) on bacterial 
adhesion is still not unveiled clearly.

3.8.1	 �Surface Charge

Surface charge plays an important role in determining the binding force between 
bacteria and the surface, and it has long been known to affect biofilm formation. 
Most bacterial cells are negatively charged; thus, in general, a positively charged 
surface is more prone to bacterial adhesion, and a negatively charged surface is 
more resistant to bacterial adhesion. Meanwhile, surfaces presenting certain cat-
ionic groups, such as quaternary ammonium and polyethylenimines, have antimi-
crobial activities and thus can kill the attached cells.

In principle, controlling bacterial adhesion with surface charge may not work in 
static systems since the dead cells present a barrier that reduces the charge and 
facilitates the adhesion of other bacterial cells. It was observed that some positively 
charged surfaces like quaternary ammonium ion showed antimicrobial properties. 
Coating of these materials on the material surface is therefore a strategy to avoid 
biofouling. Nevertheless, bacteria have remarkable ability to break these resistances 
by producing EPS to negate repelling effect and subsequently form biofilms.
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3.8.2	 �Surface Energy

The surface energy indicated hydrophobicity of the surface. In most cases hydrophobic-
ity of the surface helps bacteria to develop biofilm on surface. Hydrophilic surface 
brings wettability which sometimes hindered film formation. Recently, it was found that 
both super-hydrophobic and super-hydrophilic surfaces can facilitate in resisting bacte-
rial attachment and biofilm development. For an example, lotus leaf with a high contact 
angle of 170○ due to wax coating can resist adhesion. The low surface energy of waxes 
renders super-hydrophobicity to protect leaves from all kind of unwanted attachment.

3.8.3	 �Roughness and Topography

The topography and surface roughness plays important role in bacterial binding to 
surface. It is assumed that more surface roughness can increase effect contact area 
of material surface to attach bacteria. Roughness also helps bacteria to protect it 
from shear force. Henceforth, smooth surface can prevent biofilm formation. A 
roughness Ra of 0.2 μm was found threshold to prevent attachment of bacteria. 
Nevertheless, the efficacy of designed roughness on bacterial attachment can vary 
with size and shape of bacterial cells and other physicochemical factor.

3.9	 �Measuring Biofilm

Several methods have been adopted to study the bacterial adhesion and biofilm 
development. The development of biofilm and its structure, roughness, thickness 
can be analyzed using confocal laser scanning (CLSM), atomic force (AF), scan-
ning electron (SE), and transmission electron (TE) microscopy. The ruthenium red 
can be applied to detect the specific polysaccharide in order to observe its associa-
tion with cells. To understand the metabolism of biofilm, research explored the fluo-
rescent in-situ hybridization (FISH) and quantified using CLSM. FISH has been 
widely used to check the viability of the cells in biofilm. Fluorescent stains are 
required to stain biofilm and different part associated with this. These stains are 
designed in such a manner that these will excite consequently emit light at a specific 
wavelength. Several of these stains like DAPI (4′, 6-diamidino-2-phenylindole), 
Syto 9 are targeted to probe DNAs and RNAs. The different fluorescent probes used 
in biofilm studies have been provided in Table 3.2. Customized flow cells are gener-
ally used to grow biofilm on different surface under varied physicochemical condi-
tions (Gupta et al. 2016). Recently, researchers used two noninvasive technologies 
for study related to bacterial adherence and biofilm formation experiments. The 
quartz crystal microbalance (QCM) is a nanogram sensitive technique that utilizes 
acoustic waves generated by oscillating a piezoelectric, single crystal quartz plate to 
measure bacterial mass. QCM with dissipation monitoring (QCM-D) helps us to 
understand the viscoelastic properties of biomass adhered on the quartz plate or  
sensor (Dixon 2008). Optical coherence tomography (OCT) is other industrial 
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nondestructive testing (NDT) imaging technique that uses coherent light to capture 
micrometer-resolution, two- and three-dimensional images from within optical 
scattering biofilm. The technology is based on low-coherence interferometry, typi-
cally employing near-infrared light (Wagner and Horn 2017).

3.10	 �Removal of Biofilms

Cellular proliferation and exopolysaccharide production increases the biomass of 
biofilm, whereas cell destruction, dispersion of biofilm, and “grazing” by benthic 
microorganisms decreases the biomass, which gives rise to cyclic life of biofilms. It 
is very difficult to get rid of a biofilm; biofilm cannot be dispersed spontaneously. 
The applications of antimicrobial agent or biocide to eradicate bacterial biofilm 
from a colonized surface are often end with failure. Biofilms can develop continu-
ously for very prolonged periods of time with a favourable environment, even with 
unfavorable condition, it can thrive (Sharma and Lal 2017). The main strategy to 
prevent biofilm formation is to clean and disinfect regularly before bacteria attach 
firmly to surfaces, therefore prevention of biofilm formation is a more rational 
option over its treatment. Chlorine, ozone, hydrogen peroxide are some chemical 
agents acts effectively to remove biofilms, these agents acts as an oxidizing antimi-
crobial agents which often generates free radicals which can have the ability to 
destroy both bacterial cell membrane biofilm matrix, hence physically removing the 
biofilm from the surface. UV radiation along with ozone was found efficient in get-
ting rid of bacteria and dissolving biofilm matrices in studies of desalination plants 
(Kalia et al. 2017).

Table 3.2  Different fluorescent probe used in biofilm studies

Mode of action Fluorescent probe

Probes 
excitation/
emission Reference

RNA, DNA intercalating 
agent (dead live cell kit)

Propidium iodide 530/615 Stiefel et al. 
(2015)

conjugated to lectins, 
antibodies, ficols, dextrans; 
binds to proteins

Fluorescein isothiocyanate 
(FITC)

490/520 Karygianni 
et al. (2012)

Detects esterase activity Fluoroscein diacetate 495/520 Feng et al. 
(2014)

Detects neutral lipid and 
phospholipids

Nile red 450/530 Kokare et al. 
(2009)

Stains DNA and RNA Acridine orange 490/530 Neu et al. 
(2001)

Calcium indicator Fluo-3 506/526 Kokare et al. 
(2009)

Binds to proteins, coupled 
with antibodies, lectins,

Tetramethylrhodamine 
isothiocyanate (TRITC)

540/572 Neu et al. 
(2001)

pH indicator NCECF 500/530 or 
620

Kokare et al. 
(2009)
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3.10.1	 �Removal of Biofilms

Cellular proliferation and exopolysaccharide production increases the biomass of 
biofilm, whereas cell death, objectivity at the smooth exterior, and “feeding” by 
benthic microorganisms decreases the biomass, which gives rise to cyclic life of 
biofilms. It is very difficult to get rid of a biofilm; neither natural nor biocide-driven 
slaying of microorganisms inside a biofilm spontaneously separates the biofilm 
from a populated surface. Biofilms occupies underwater planes in marine environs 
for extended eras of time. It has also been reported that some widespread biofilms 
comprise of lifeless microorganisms inside their wide matrices (Sharma and Lal 
2017). Chlorine is effective in the removal of biofilms, it works as an oxidizing 
biocide which can together suppress bacterial growth and eliminate the polymeric 
components of the biofilm background that anchor this construction to the popu-
lated exterior, hence physically removing the biofilm from the surface. Bleach treat-
ment method (using 5% NaClO) has been very effective in getting rid of 
microorganisms and softening biofilm backgrounds.

3.10.2	 �Regulation of Biofilm Formation

The chemical nature of the surface is one of the major determinants for the rate of 
bacterial adhesion for initial biofilm formation in experimental aquatic environ-
ments. Nonetheless, this noticeable influence of the chemical composition of the 
surface on the biofilm development is noticeably altered by the fact that all such 
planes are covered by a sheet of organic elements and also by other circumstances, 
that consequent biofilm growth is heavily dependent on the bacterial cell prolifera-
tion and cell to cell bond inside the biofilm background (Kalia et  al. 2017). On 
comparing different surfaces within an aquatic system that have developed thick 
mature bacterial biofilms, hardly noticeable variances are observed among sup-
porter cell quantities and thickness of the biofilm on the different surfaces like 
wood, rock, and plastic.

3.11	 �Conclusions

Understanding of biofilms plays a vital role in antimicrobial drug resistance, which 
is a very useful contribution towards public health perspective. Research on bio-
films has risen steeply in recent years thanks to the increased awareness of the 
extensiveness and impact of biofilms on natural and industrial systems, also on 
human health. Pharmaceutical industries are threatened by the resistance of micro-
bial communities that dwell in biofilms towards various types of antimicrobial 
agents because biofilms cost billions of dollars every year in product contamination, 
energy losses, equipment damage and medical infections (Kalia 2014). Therefore, it 
is advised to prevent its formation than treatment. But biofilms are not just harmful, 
they can also offer huge potential for biofiltering municipal and industrial water and 
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wastewater, bioremediation of various waste sites, also they can be used to form 
bio-barriers to protect soil and groundwater from contamination. The study of bio-
film activity and behavior is complex; hence it entails interdisciplinary research 
from biochemistry, engineering, mathematics and microbiology. Further studies are 
being done in order to come up with most effective control strategies to prevent 
biofilm formation, methods for total eradication of biofilms, using biofilms for bio-
remediation and a complete understanding of the differences between biofilm and 
planktonic phenotypes.
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Abstract
The quorum sensing (QS) is a well-characterized phenomenon in the microbial 
world for cellular communication and being exploited for intraspecies, interspe-
cies and even interkingdom interactions. This robust and widely distributed 
social networking cascade assists the microbes to emerge as strong parasites for 
the hosts. Moreover, the colonization with more efficient cross talk among the 
microbes further intensifies their infections. Here, we will be focusing to deci-
pher the evolutionary status of the QS regulators (LuxI and LuxR) in the pro-
karyotic world. LuxI is a signal synthase, while LuxR is the recipient for sensing 
internal (cognate LuxR/solos LuxR) and external (solos LuxR) signals. These 
regulators are reported to evolve vertically as well as borrowed through horizon-
tal gene transfer w.r.t. ecological niche. Their universal distribution in the micro-
bial world further corroborates the need for targeting multiple signaling system 
regulators.
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4.1	 �Introduction

Quorum sensing (QS) allows the phenotypic transformation of bacteria from unicel-
lular to multicellular lifestyle (Atkinson and Williams 2009). It emerged as an 
imperative cell density dependent social network among prokaryotes, which accom-
plished through the help of various signaling molecules termed as quorum sensing 
signaling molecules (QSSMs) (Rajput et al. 2015 2016). The QSSMs are consid-
ered to be species-specific i.e. Acyl-homoserine lactones (AHLs) among Gram-
negative bacteria (Parsek and Greenberg 2000; Rajput et al. 2016), quorum sensing 
peptides (QSPs) in Gram-positive bacteria (Wynendaele et al. 2013), etc. Due to the 
difference in their composition and conformation, they exhibit different mecha-
nisms for secretion and perception among bacteria via one-component (AHLs) and 
two-component systems (QSPs) (Santos et al. 2012). The majorly used signaling 
molecule is AHLs with the alkyl group (varied length and saturation) attached to 
homoserine lactone ring (Churchill et al. 2011).

In 1965, Tomasz et  al. firstly discovered the cell-to-cell communication in 
Streptococcus pneumoniae, a Gram-positive bacteria (Rajput et al. 2015). Later on, 
in 1970 the phenomenon was established in Vibrio fischeri, a marine luminescent 
Gram-negative bacterium. The lux operon is responsible for synthesis and percep-
tion of AHLs in Gram-negative bacteria. It contains regulatory (luxIR) and struc-
tural genes (luxCDABFE) (Rajput and Kumar 2017a). The operon encodes the key 
proteins LuxI and LuxR, which are responsible for synthesis (autoinducer synthase) 
and perception of AHLs (transcriptional regulator) respectively. The mechanism of 
QS in bacteria is provided in Fig. 4.1.

The LuxI is an autoinducer synthase (InterPro ID: IPR001690) that transfers the 
acyl moiety between acyl-acyl carrier protein (acyl-ACP) and S-adenosylmethionine 
(SAM) and led to the formation of AHLs with different degree of length and 

Fig. 4.1  Mechanism of quorum sensing among bacteria
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saturation. While the LuxR regulators are responsible for perceiving and responding 
to AHLs. It is ~250 amino acid long cytosolic protein with two modules i.e. 
N-terminal (the 2/3rd portion of LuxR) or autoinducer-binding domain (ABD) 
(InterPro ID: IPR005143) and C-terminal (1/3rd portion of LuxR) or DNA binding 
domain (InterPro ID: IPR000792). The C-terminal domain is accountable for DNA 
binding, transcriptional activation, and expression of luxICDABEG. Moreover, it also 
constitutes about 60 amino acids, helix-turn-helix (HTH) motif that is responsible for 
binding to promoters. In general, N-terminal domain is a repressor of the C-terminal 
domain in absence of AHLs’ quorum in the vicinity. Although, the interaction of 
LuxR-AHL is important for bacteria to discriminate AHLs produced by its own spe-
cies from others. LuxR solos (orphan or bachelor LuxR) are the separate class of 
response regulator, which does not have LuxI in their vicinity (~3000 bp or 3400 bp) 
(Hudaiberdiev et al. 2015). They are reported to possess same topology as cognate 
LuxR with ligand binding and DNA binding domains (Patankar and Gonzalez 2009). 
Unlike cognate LuxR, they are responsible for responding to external and internal 
signals (Subramoni and Venturi 2009). Intriguingly, solos LuxR are reported to be 
involved in interspecies and interkingdom communication through various AHL and 
non-AHL ligands (Subramoni and Venturi 2009; Rajput and Kumar 2017a, b).

Phylogenomics is the intersection field of evolution and genomics, which is help-
ful in deciphering the evolution pattern of gene family, prediction of horizontal gene 
transfer (HGT), gene functions, establishing the evolutionary relationships etc. 
(Pennisi 2008; Subramoni and Venturi 2009; Gupta et al. 2016; Rajput and Kumar 
2017a). Therefore, reconstructing the evolutionary relationship of the particular 
gene among the species is important to complete our knowledge about the function 
of that gene. Moreover, the actual information about the evolutionary history of the 
gene is accomplished by comparing with the phylogenetic tree of conserved house-
keeping genes like 16S rRNA. The phylogenetic tree of the conserved genes like 
16S rRNA, rpoB, etc. clearly showed the distant positioning of all the groups 
(Rajput and Kumar 2017a). However, the intermixing of the sequences from differ-
ent groups with good statistical bootstrapping support showed the possibility of 
HGT among the groups.

The distribution of QS regulators i.e. LuxI and LuxR among Gram-negative bac-
teria is well characterized. However, their presence in other groups of microbes like 
Gram-positive bacteria, and Archaea strengthen the concept of multilevel commu-
nication among the microbial world. Moreover, it poses several questions regarding 
the extent of occurrence, mode of transfer, and evolution.

4.2	 �LuxI and LuxR Regulators Among Gram-Negative 
Bacteria

The Gram-negative bacteria are characterized to possess LuxI/LuxR regulators for 
synthesizing and utilizing AHLs for completing QS cascade. A major phylum of 
Gram-negative bacteria is Proteobacteria, which is further sub-divided in alpha, 
beta, gamma, delta, and epsilon. In 2001, Gray and Garey checked the evolutionary 
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pattern of LuxI and LuxR in Proteobacteria. The results showed that these  
regulators were evolved as regulatory cassettes in Proteobacteria along with the 
instances of HGT in a few species where multiple copies of LuxIR regulators were 
reported. The coevolved LuxI/LuxR homologs include TraI and TraR proteins of 
Agrobacterium tumefaciens; RhiI and RhiR of Rhizobium leguminosarum despite 
being non-adjacent in  location. While SdiA regulator (a LuxR homolog) of 
Escherichia coli and Salmonella typhimurium seemed to be evolved through HGT 
from RhlR of P. aeruginosa (Rajput and Kumar 2017b).

In 2004, Lerat and Moran revealed the evolutionary history of QS systems (LuxI/
LuxR and LuxS) among bacteria by checking the frequency of transfer and extent 
of the exchange of genes in this QS system via HGT or coevolution. They found that 
luxR gene transferred horizontally to several lineages of bacteria from Firmicutes 
e.g. carR genes of Erwinia carotovora and Serratia marcescens. The LuxI/LuxR 
system evolved together along with few instance of HGT especially in the case of 
gamma- Proteobacteria (Rajput and Kumar 2017b).

Albeit checking the evolutionary status of QS regulators in Proteobacteria, many 
groups scanned specific clades of Proteobacteria like Aeromonas (Jangid et  al. 
2007), Vibrionaceae (Purohit et al. 2013; Rasmussen et al. 2014), Roseobacteriacea 
(Cude and Buchan 2013), etc. In the individual studies, they found that the QS regu-
lators are distributed in entire clades, with the instances of their horizontal and verti-
cal evolution. Jangid et al. confirm the universality of LuxI and LuxR among the 
Aeromonas genus, which is known as “emerging pathogens”. They confirm the 
presence of AHLs mediated response in all the 73 strains when tested via dot blot 
hybridization method. Further, the phylogenetic tree reconstruction was done to 
check their evolutionary status (Jangid et al. 2007). Purohit et al. checked the pres-
ence of AHLs in 57 members of Vibrionaceae family, through high-performance 
liquid chromatography-tandem mass spectrometry (HPLC-MS) and mapped on the 
16 s rDNA phylogeny (Purohit et al. 2013). Rasmussen and coworkers decipher the 
global and phylogenetic distribution of AHLs in Vibrionaceae, and concluded that 
AHLs are responsible for intra- and inter-species communication (Rasmussen et al. 
2014). Clude and Buchan reviewed the AHL-based QS among Roseobacter clade 
through 43 genomes and decipher their evolutionary pattern and found their overall 
conserved gene topologies with complex functional roles (Cude and Buchan 2013).

In 2015, Subramoni et al. performed bioinformatics survey of LuxR solos on the 
basis of their distribution, conservation, and probable function among bacteria 
(majorly Proteobacteria). They found that multiple LuxR solos from the same 
genome possess different level of the conservation of the invariant amino acids for 
AHL binding, thus exhibits a wide range of sensing ligands (Subramoni et al. 2015). 
Therefore, the LuxR solos emerged as an important component for multi level 
communication.

Thus, on checking the distribution and evolutionary context of QS regulators in 
Proteobacteria confer their universal distribution among clades and sub-clades of 
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the phylum along with the instance of their evolution and lateral transfer from other 
member groups. Moreover, the ligands specificity of the LuxR solos, varies due to 
substitution at invariant amino acids for AHL binding.

4.3	 �LuxI and LuxR Regulators Among Gram-Positive 
Bacteria

The cell density based signaling in Gram-positive bacteria is accomplished through 
QSPs. Interestingly, the presence of LuxI/LuxR regulators in few studies were 
reported (Biswa and Doble 2013; Bose et al. 2017). Further, in 2012 Santos et al. 
described the phylogenomics distribution and functional diversity of LuxR regula-
tors in Actinobacteria (a phylum of Gram positive bacteria). Among 53 genomes, 
only 991 proteins were reported to possess LuxR domains, moreover, 59% (maxi-
mally REC, receiver domain) possess extra domains. However, it was suggested that 
the occurrence of LuxR domains depends on genetic, ecological, and metabolic 
variables. Moreover, the evolution of LuxR regulators was considered though gene 
fusion/fission and duplication events especially through HGT and gene loss (Santos 
et al. 2012). In 2015, Polkade et al. reviewed the Actinobacteria phylum and deci-
pher the functionality of gamma-butyrolactone signaling system (structural homo-
log of AHLs) along with methylenomycin furans, AI-2, and AHLs as the source of 
interspecies communication signals (Polkade et al. 2016).

Recently, our group studied overall Gram-positive bacteria (Actinobacteria and 
Firmicutes) for the presence of LuxI/LuxR system using conservational, functional, 
and phylogenetic aspects (Rajput and Kumar 2017b). Our study revealed the pres-
ence of putative LuxI/LuxR, having outnumbered LuxR as compared to LuxI, which 
possess similarity with Gram-negative bacteria, and are the result of HGT between 
Gram-negative and Gram positive bacteria. The similarity-based analyses were per-
formed using amino acid composition, domain analyses, and multiple sequence 
alignment. All the similarity profiles confirm the likeness of LuxI and LuxR’s 
among Gram positive with Gram-negative bacteria. Functional annotation of QS 
regulators of the Gram-positive bacteria showed that they have potential to synthe-
size and respond to ubiquitous signaling molecules including AHLs, gamma-
butyrolactones, c-di-GMP, peptides, and many more. Moreover, authors also checked 
the transfer pattern of individual LuxI or LuxR as well as the complete cassette of 
LuxI and LuxR among Gram-positive bacteria and found that they possess both 
cases of individual transfer and complete cassette transfer between both groups of 
bacteria. Moreover, the instances of HGT are ecological niche specific among the 
groups for LuxI and LuxR.

The evolutionary history of LuxI/LuxR regulators in Gram positive bacteria sug-
gests that they share the lateral gene transfer events with Gram-negative bacteria 
and thus possess the ability of undergo interspecies communication.

4  Phylogenomics and Evolutionary Perspective of Quorum Sensing Regulators…
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4.4	 �LuxI and LuxR Regulators Among Archaea

The Archaea kingdom was also scanned for the putative LuxI/LuxR regulators. Our 
group accomplished the study to decipher their presence in Archaea (Rajput and 
Kumar 2017a). The Archaea was explored computationally through taxonomic, 
probable function, distribution, and evolutionary characteristics. Interestingly, the 
Archaea reported to possess only LuxR regulators, which are similar to Gram-
negative bacteria. Moreover, the functional characterization studies revealed that 
they hold the ability to sense and respond to AHLs, peptides, gamma-butyrolactones, 
nucleic acids, and many more. Additionally, the functional annotation using Gene 
Ontology, showed their involvement in the signal transduction cascade. Furthermore, 
the transfer of LuxR regulators in Archaea is the result of HGT events with  
Gram-negative bacteria.

Therefore, the Archaea able to receive and respond the signals from another 
group of microbes like Gram-negative bacteria, rather than secrete them. Thus, 
involved in inter kingdom cross-talk with bacteria.

4.5	 �LuxI and LuxR Regulators Among Prokaryotic Kingdom

In natural conditions, the prokaryotes like bacteria and Archaea are the inhabitant of 
same ecological niche, like in biofilms (Rajput et al. 2018). The individual clade 
specific studies of the evolutionary distribution of QS regulators were performed in 
the literature. While the exact status of QS regulators among the microbial world 
can be deciphered through phylogenomics study of individual LuxI and LuxR 
regulators.

Interestingly, the LuxI regulators are exclusively present in bacteria and absent in 
Archaea. The LuxI containing proteins among Gram-negative and Gram-positive 
bacteria showed the lateral exchange of LuxI between both the groups. For example 
Asanoa ferruginea and Methylobacterium spp.; Streptomyces purpuroge-
neiscleroticus and Methylobacterium spp.; Mumia flava with Burkholderia sp.; etc. 
The detailed overview of the phylogenetic tree of LuxI containing proteins is  
provided in Fig. 4.2.

The LuxR regulators are found distributed in the entire prokaryotic world. Both 
cognate and solos LuxR are reported in bacteria (Gram-positive and Gram-negative 
bacteria). While the Archaea possess solos LuxR regulators rather than cognate.

The phylogenomics analyses showed that instances of HGT among all the  
three groups of microbes with good bootstrap support. For example,  
Euryarchaeota archaeon, Ruminococcaceae bacterium D16 and Clostridium sp.; 
Pseudoxanthobacter soli and Candidatus Nomurabacteria bacterium; Asanoa  
ferruginea and Methylobacterium spp.; Mumia flava with Burkholderia sp.;and 
many more.

The diagrammatic representation of phylogenetic tree for LuxR containing  
proteins among Gram-negative bacteria, Gram-positive bacteria, and Archaea are 
provided in Fig. 4.3.
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4.6	 �Application

Coexistence of different species in the same community is a natural process. The 
evolutionary pattern of QS regulators would be helpful in understanding the concept 
of their occurrence in prokaryotes. Although, the LuxI/LuxR system is responsible 
for synthesis and responds against AHL signaling molecule in Gram-negative bacte-
ria, but their presence in other groups strengthen the concept of multilevel communi-
cation like intraspecies, interspecies, and interkingdom. Previously, it was considered 
that LuxR regulators are only responsible for causing virulence in the hosts by Gram-
negative bacteria (Dubern and Diggle 2008). But, their presence and functionality in 
Gram-positive bacteria and Archaea decipher them as a potential target against vari-
ous diseases caused by Mycobcterium spp., Clostridium spp., etc. (Santos et  al. 
2012). Moreover, the multilevel communication among various species, led to 
change the gene expression of the neighboring organism, and is one amongst the 
reason for antibiotic resistance (Kroger et  al. 2016). However, the knowledge of 
LuxR regulator among the consortium of microbes would help in designing the 
inhibitors that in turn impede signaling cascade by blocking LuxR regulators.

Fig. 4.2  Phylogenetic tree reconstruction of LuxI containing protein of Gram-negative and Gram-
positive bacteria using Maximum likelihood method through 1000 bootstrap support
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4.7	 �Conclusion

This book chapter is mainly focused on deciphering the evolutionary status of QS 
regulators (LuxI/LuxR) in whole prokaryotic kingdom. Putative LuxI homologs are 
distributed in both Gram-negative as well as in Gram-positive bacteria but absent in 
Archaea. While potential LuxR homologs are present in the complete microbial 
world and outnumbered LuxI. Phylogenetic analysis revealed the vertical evolution 
of these regulators with a number of instances of horizontal gene transfers among 
prokaryotes. These regulators assist in the establishment of QS-based biological 
processes like biofilm formation and virulence etc. (Kalia and Purohit 2011; Kalia 
et al. 2014; Sharma and Lal 2017). These, in turn, make the organisms more patho-
genic towards human or plant hosts. Therefore, the therapeutic strategies need to be 
updated by not only targeting the specific signaling system for a particular group of 
organism but also universal regulators like LuxR, which is able to sense a broad 
range of ligands.
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Fig. 4.3  Phylogenetic tree reconstruction of LuxR containing protein of Gram-negative, Gram-
positive bacteria, and Archaea using Maximum likelihood method through 1000 bootstrap 
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Abstract
Quorum sensing (QS) is a bacterial signaling phenomenon wherein bacteria reg-
ulate gene expression as per the concentration of signaling molecule. In the 
microbial milieu, bacteria use QS to sense their immediate environment and in-
turn adjust QS genes. Our knowledge of this continuous process of biosensing 
and biomonitoring of QS signaling molecule and QS circuits has evolved over a 
period of time. Herein, we attempt to follow impact of newer bioanalysis tech-
niques in understanding this QS phenomenon based on only recent technology 
platforms. Some of the technology platforms are at proof of concept stage 
wherein feasibility for QS studies is being demonstrated. We attempt to under-
stand the enormous possibilities/potential these technologies withhold. 
Advancements in QS systems led researchers to attempt potential application of 
QS systems itself as technology platform. In this book chapter, few specific 
applications of QS system towards biosensing and biomonitoring are explored 
and covers above mentioned topics in four sections: (a) advanced structural 
based techniques involved in QS study (b) advanced biosensing and biomonitor-
ing technologies (c) microarray technology (d) QS technologies for biosensing 
and biomonitoring activity. Specific examples are elaborated in details and for 
comprehensive reading on technology platform reader could refer to the refer-
ences. In summary, advanced technology towards bioanalysis and applications of 
QS itself as biosensing and biomonitoring technology are discussed. The critical 
analysis, current trends, potential technology applications and the path forward 
are touched upon in key opinion and conclusion.
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Abbreviations

AHL		 Acylhomoserine lactone
AI		  Autoinducer
AI-2		 Autoinducer -2
CDA		 Cis-2-decenoic acid
CRM	 Confocal Raman microspectroscopy
DESI	 Desorption electrospray ionization
EPS		  Extracellular polymeric substances
GABA	 Gamma-aminobutyric acid
GRAS	 Generally regarded as safe
IMS		  Imaging mass spectrometry
IR		  Infrared
MALDI	 Matrix-assisted laser desorption–ionization
MS		  Mass spectroscopy
NMR	 Nuclear magnetic resonance
OC8-HSL	 N-(3-oxooctanoyl) homoserine lactone
OdDHL	 N-(3-oxododecanoyl) homoserine lactone
PDMS	 Polydimethylsiloxane
QQ		  Quorum quenching
QS		  Quorum sensing
RE		  Restriction endonuclease
SDP		  Sporulation delaying protein
SECM	 Scanning electrochemical microscopy
SIMS	 Secondary-ion mass spectrometry
SKF		  Sporulation killing factor
SWV	 Square wave voltammetry
TOF		 Time of flight
UME	 Ultramicroelectrode
WHO	 World Health Organization

5.1	 �Introduction

In a complex natural habitat, bacteria continuously engage in biosensing and bio-
monitoring of their microenvironment. They accomplish this activity by employing 
different signaling molecules, called auto-inducers (AIs) that diffuse into the 
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surroundings. Upon reaching a critical density, these AIs induce gene expression in 
the AI receiving cells that may be of same species or different species. This entire 
phenomenon of sending and receiving signals culminating in determination of bac-
terial population size is referred to as quorum sensing (QS).

Early travel logs of Greek and Roman sea travelers gestated the bioluminescence 
phenomenon, which was later attributed to marine microorganisms and was deci-
phered to as autoinduction by microbiologist Kenneth H. Nealson, Terry Platt and 
J. Woodland Hastings in 1970. During this deciphering phase, the role of tools and 
methodologies employed for understanding has played a critical role (Kalia 2015). 
Various microorganisms and different AIs have been discovered since then using 
classical microbial methodologies as well as recent methods of cell confinement 
technologies among others. The cell confinement technology provides insight into 
the role of QS amongst small groups of cells as well as in study of uncultivable 
bacteria. We employed microdroplet technology, a technology wherein picoliter 
droplets generated from water in oil emulsion act as a test tube and is used for inter-
rogations of various biochemical phenomenon, to study QS diffusion of signaling 
molecule N-(3-oxododecanoyl) homoserine lactone (OdDHL) and intraspecies QS 
phenomenon (Shim et al. 2011; Bai et al. 2013).

5.2	 �Recent Microbiological Techniques for Deciphering QS

From early discovery till today, researchers are engaged in deciphering QS phenom-
enon with many more aspects of this bacterial communication still being explored. 
Some of these AIs maybe multifunctional in nature like imparting color to bacterial 
colonies. These pigment producing bacteria have been identified and suggested to 
have potential antimicrobial, anti-cancer, and anti-malarial activity as well. Shiva 
Krishna and colleagues combined the classical methods of isolation of marine bac-
teria, biochemical characterization with newer tools of molecular identification 
using 16S rRNA for strain identification to isolate novel pigments (Shiva Krishna 
et al. 2015). The potential AI was extracted by pigment extraction method and its 
antibacterial activity was determined. The simplicity involved in execution of this 
work underlies the wide variety of sources for AI that may interact with equally 
varied species. This can be exemplified with gamma-aminobutyric acid (GABA) – a 
plant hormone essential for cell-cell signaling. Its concentration increases as soon 
as a wound is inflicted in plant tissue. Interestingly, GABA inactivates N-(3-
oxooctanoyl)homoserine lactone (OC8-HSL) – the AI of Agrobacterium lactonase 
AttM (Chevrot et  al. 2006). As an experimental proof, transgenic tobacco plants 
with enhanced GABA expression had higher resistance to infection by Agrobacterium 
tumefaciens C58. Thus, application of GABA on plants can be utilized for design-
ing of inhibitory methods for A. tumefaciens. Sanchart et al. identified Kung-Som as 
a substrate for biosynthesis of GABA using lactic acid bacteria like Lactobacillus 
futsaii (Sanchart et al. 2017). A detailed description on various plant QS inhibitors 
have been reviewed by Kalia (2013).
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The presence of diversity of quorum quenching genes is remarkable. An experi-
mental validation was executed by Huma et al. for acylhomoserine lactone (AHL) 
(Huma et al. 2011). The group screened nearly 800 bacterial isolates and identified 
quorum quenching (QQ) AHL-lactonase gene (aiiA) to be present in 42 strains. 16s 
rRNA sequencing method revealed the dominance of Bacillus species in this cohort. 
In silico restriction endonuclease (RE) digestion using 14 different Type II REs on 
AHL lactonase gene (aiiA) sequences led to identification of nucleotide fragments 
of varying sizes. Analyses of only four REs viz. AluI, DpnII, RsaI, and Tru9I led to 
generation of possible information while data from other REs was not analyzable. 
Further, polymorphism in AHL lactonase was observed among the different Bacillus 
species. In Bacillus sp. strain MBG11, the unique polymorphism (115 Alanine > 
Valine) could augment stability to AHL lactonase. Highly stable AHL lactonase is 
preferable for designing quorum quenchers and this AHL lactonase could be an 
ideal candidate for large scale application. Further, Kalia and group identified 
Hyphomonas neptunium ATCC15444, Deinococcus radiodurans R1, and 
Photorhabdus luminescens subsp. laumondii TTO1 to possess genes that encode for 
both AHL-lactonase and –acylase (Kalia 2014). Presence of multiple copies of the 
QQ enzymes in bacteria would suggest application in industries involving Generally 
Regarded As Safe (GRAS). This was validated by a comparative genomic analysis 
using sequences of AHL-lactonase from Bacillus sp. SB4 and AHL-acylase from 
Ralstonia sp. XJ12B (Koul and Kalia 2017).

In these communications, the key components are small signaling molecules 
(bacterial language) and QS circuits (language sensing and producing machinery). 
The bacterial language comprises predominately homoserine lactone and peptides. 
Different bacterial species employ their own QS circuits and the complexity and 
interdependence of QS circuits is still being deciphered. Likewise, new bacterial 
languages are being discovered and are added in bacterial lexicon. Towards under-
standing of QS and its eventual application as a biosensor and biomonitoring sys-
tem, various analytical techniques and technology platforms ranging from traditional 
shake flask culture to current more sophisticated analytical technique that senses 
heterogeneity are used towards deciphering QS phenomenon.

5.2.1	 �Structural: Determination Based Analytical Techniques 
for QS Study

The detection and identification of small signaling molecule was initially carried 
out using standard structural elucidation techniques such as Proton Nuclear mag-
netic resonance (1DNMR), mass spectrometry (MS), infrared (IR) etc. However, 
the identification and three dimensional structural elucidations of big biological 
macromolecules involved in QS circuits required much more sophisticated tech-
niques such as X-ray crystallography and solution phase 2DNMR (Krishnan and 
Rupp 2012). Most of the proteins or macromolecules involved in QS circuits were 
crystalisable and the X-ray crystallographic techniques helped in deciphering struc-
ture of QS circuits. X-ray gives near perfect static picture of a protein at proximate 
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atomic level precision and it has no size limitation. Nevertheless, it requires the 
protein in crystal form, whereas 2D NMR techniques can be used even when the 
protein is not in crystal. It also gives information on dynamic state of proteins but it 
is limited to size below 50 kDa. The following table gives summary of X-ray crys-
tallography and NMR techniques that were used to study QS systems (Table 5.1).

Sometimes structures of protein are predicted using homology model. For exam-
ple, proteins involved in QS circuits of A. baumannii were predicted using homol-
ogy modeling (Bhargava et al. 2015). AHL synthase (AbaI) of A. baumannii showed 
46% similarity and 27.5% identity to LasI autoinducer synthase of Pseudomonas 
aeruginosa. Likewise, the tertiary structure of Acinetobacter baumannii AbaR was 
predicated based on P. aeruginosa AHL receptor (LasR) using protein homology 
modeling server CPH models 3.2. For a detailed discussion on homology model as 
a tool in predicting structure of Acinetobacter baumannii QS protein please, refer to 
book (Kalia 2015).

5.2.2	 �Advanced Biosensing and Biomonitoring Technologies

In previous section, we saw that application of analytical techniques helped in deci-
phering the QS circuits and understand the structure of the QS proteins and signal-
ing molecule. The traditional analytical techniques played important role in 
understanding QS at molecular and microscopic level under homogenous labora-
tory conditions. However, in order to understand QS in their microenvironments, 
which are at its heterogeneous natural state, requires advanced bio-sensing and bio-
monitoring technologies. The ideal technology platform should be able to

	(a)	 Quantitatively analyze chemical environment of complex QS community,
	(b)	 Provide new insights into QS bacterial habitat, and
	(c)	 Detect single cell or single colony level

Towards, the above goal we will discuss pros and cons of few emerging tech-
nologies. Advanced techniques include electrochemical techniques such as scan-
ning electrochemical microscopy (SECM), mass spectrometry based techniques 
such as imaging mass spectrometry, matrix-assisted laser desorption–ionization 
(MALDI)–mass spectrometry, desorption electrospray ionization (DESI)–mass 
spectrometry and secondary-ion mass spectrometry (SIMS).

5.2.2.1	 �Scanning Electrochemical Microscopy (SECM)
SEM initially applied to probe the topography and surface reactivity of solid-state 
materials recently employed in bioanalysis of heterogeneous quorum sensing sys-
tem. The SECM works on redox principle wherein ultramicroelectode (UME) is 
held at biofilm mounted on SECM stage. The potential of electrode is held at the 
standard potential of the analyte, leading to reduction or oxidation of analyte at 
electrode tip. Redox potential is recorded and data transformed into real time three-
dimensional analyte concentration readout.
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Table 5.1  Structures of macromolecules involved in QS

Title Ligand name
PDB 
ID

3-D structure of the QS protein 
TraR bound to its AI and target 
DNA

Homoserine lactone, selenomethionine, 
3-Oxooctanoic acid

1H0M

Crystal structure of the QS protein 
TraM from Agrobacterium 
tumefaciens

– 1US6

Crystal structure of the master 
transcriptional regulator, SmcR, in 
Vibrio vulnificus: DNA recognition 
mechanism

Selenomethionine, sulfate ion 3KZ9

Crystal structure of the AI-2-bound 
form of Vibrio harveyi LuxP – 
periplasmic domain of LuxQ 
complex

3a-methyl-5,6-dihydro-furo[2,3-D][1,3,2]
dioxaborole-2,2,6,6a-tetraol

2HJ9

Nickel (II) ion 2HJE

Crystal structure of E. coli LsrG – 3QMQ
Crystal structure of RpfF – 3M6N
Crystal structure of LasR LBD-
QslA complex from Pseudomonas 
aeruginosa

N-3-oxo-dodecanoyl-L-homoserine lactone 4NG2

Crystal structure of QS 
transcriptional activator from 
Yersinia enterocolitica

Acetic acid, 1,2-ethanediol, selenomethionine, 
sulfate ion

5L07

Bacillus subtilis LuxS – 1.2 Å 
structure

Cysteinesulfonic acid, Zn ion 1J98

Crystal structure of the AHL 
synthase, EsaI

– 1KZF

Crystal structure of QS antiactivator 
TraM

– 1RFY

Regulatory mechanism of the QS 
repressor RsaL in P. aeruginosa

– 5J2Y

Crystal structure of luxp from V. 
harveyi complexed with AI-2

3a-methyl-5,6-dihydro-furo[2,3-D][1,3,2]
dioxaborole-2,2,6,6a-tetraol, calcium ion

1JX6

QS signal integrator LuxO – 
catalytic domain

Acetate ion 5EP1

Structure, regulation, and inhibition 
of the QS signal integrator LuxO

Adenosine-5′-triphosphate, 1,2-ethanediol, 
4-(2-hydroxyethyl)-1-piperazine 
ethanesulfonic acid

5EP4

High resolution crystal structure of 
LuxS – quorum sensor molecular 
complex from Salmonella typhi at 
1.58 Å

3-sulfinoalanine,(2r,4s)-2-methyl-2,3,3,4-
tetrahydroxytetrahydrofuran, zinc ion, 
methionine

5E68

SdiA in complex with 3-oxo-C6-
homoserine lactone

3-oxo-N-[(3S)-2-oxotetrahydrofuran-3-Yl] 
hexanamide, sulfate ion

4Y15

Crystal structure of Helicobacter 
pylori LuxS

Methionine, selenomethionine, zinc ion 1J6X

(continued)
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Pyocyanin Concentration Determination in Biofilm
Pyocyanin is a multifaceted secondary metabolite produced by P. aeruginosa. It is 
known for imparting the blue coloration to P. aeruginosa colonies in cultures on 
agar plates. It is involved in inhibiting and restricting its microbial competitors as 
well as it participates in quorum signaling. Further, pyocyanin is zwitter ion and 
hence can act in multiple ways. Koley et al. used SECM to measure the concentra-
tion and redox state of pyocyanin present in the biofilm (Koley et al. 2011). They 
engineered a utility of square wave voltammetry (SWV) for detection of pyocyanin 
dependent current which had a high sensitivity and minimal detection limit of ≈ 
0.7 pA (that corresponds to ≈ 0.6 μM pyocyanin). Extending the detection in the z 
axis using SECM, it was discovered that a gradation of pyocyanin concentration is 
present in the biofilm which ranges over 400 μm from the biofilm surface.

Interestingly, Pyocyanin receives the electron instead of oxygen in the usual 
electron flow from cytochrome bc1 to oxygen. In a similar way, pyocyanin can also 
reduce Fe3+ to Fe2+ (soluble form) even in presence of oxygen at pH 7. Koley et al., 

Table 5.1  (continued)

Title Ligand name
PDB 
ID

Structure of the P. aeruginosa LasR 
ligand-binding domain bound to its 
AI

Selenomethionine, N-3-oxo-dodecanoyl-L-
homoserine lactone

2UV0

Crystal structure of an anti-
activation complex in bacterial QS

3-oxo-octanoic acid 
(2-oxo-tetrahydro-furan-3-Yl)-amide

2Q0O

QS control repressor, QscR, bound 
to N-3-oxo-dodecanoyl-L-
homoserine lactone

N-3-oxo-dodecanoyl-L-homoserine lactone, 
sodium ion

3SZT

Crystal structure of LUXS Glycerol, cysteinesulfonic acid, zinc ion 1IE0
Bacillus subtilis luxs/
ribosilhomocysteine complex: the 
2.2 Å resolution

2-amino-4-mercapto-butyric acid, 
cysteinesulfonic acid, zinc ion

1JVI

Solution structure and dynamics of 
LuxU from V. harveyi, a 
phosphotransferase protein involved 
in bacterial QS

– 1Y6D

Crystal structure and catalytic 
mechanism of the QQAHL 
hydrolase

Glycerol, homoserine lactone, zinc ion 2BR6

Structure of apo form of Vibrio 
cholera CqsA

Sulfate ion 2WK7

Crystal structure of the periplasmic 
domain of V. cholera LuxQ

– 3C38

LasR-OC12 HSL complex N-3-oxo-dodecanoyl-L-homoserine lactone 3IX3
Solution structure of E. coli 
SdiA1-171

N-(2-oxotetrahydrofuran-3-yl) octanamide 2AVX

NMR structure of TPC3 in TFE Amino group 2I2H
NMR structure of UA159sp in TFE Amino group 2I2J
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found that addition of Fe3+ in the environment allows pyocyanin gradient to change 
as soluble iron could be assimilated. Thus, the density gradient of pyocyanin is a 
function of external Fe. This also suggests preferential presence of P. aeruginosa in 
areas with Fe2+ over Fe3+ rich microenvironment. This report signifies the role of 
biofilm in nutrient assimilation and thus the regulation and dynamics of biofilm size 
(Fig. 5.1).

Hydrogen Peroxide Monitoring
Oral microflora has a plethora of microbes that is in a continuous dynamic flux. One 
of the common beneficial members of this flora is Streptococcus gordonii. It gives 
competition to pathogenic bacteria by its presence and production of inhibitory lev-
els of hydrogen peroxide. S. gordonii utilizes the sugars to produce lactic acid as an 
end product. Further, opportunistic oral pathogen Aggregatibacter actinomycetem-
comitans circumvents the hydrogen peroxide levels by utilizing lactic acid produced 
by S. gordonii. Hydrogen peroxide induces expression of katA and apiA in A. acti-
nomycetemcomitans that make it resistant to host innate immunity response. Since 
hydrogen peroxide is promptly acted upon by catalase, it is necessary to study its 
effective concentration in a complex microenvironment.

Liu et al. quantified local hydrogen peroxide concentrations in a solution above 
a S. gordonii biofilm by SECM (Liu et al. 2011). The authors report the first such 
application of SECM in the real-time recording of hydrogen peroxide concentration 
present in a complex structure of a biofilm. Further, it was also used over a period 
of time for the identifying the consumption rate of hydrogen peroxide. The authors 
determined the concentration of hydrogen peroxide is in the range of 0.7 mM and 
1.6 mM when bacteria were grown in 10 mM glucose for 2–8 h. The results were 
also validated using fluoremetric analyses. The significance of biofilm can be appre-
ciated by the fact that planktonic S. gordonii had less hydrogen peroxide in vicinity 
in comparison to that in biofilm. When the two bacteria were present together in a 
biofilm contributed by both, then hydrogen peroxide levels varied with ratio and 
number of bacteria of each species. Usually, the concentration of hydrogen peroxide 
near the biofilm surface that is produced by S. gordonii was sufficient to prevent 

Fig. 5.1  The central figure shows generic schematic diagram of the SECM apparatus. The biofilm 
is grown on polydimethylsiloxane (PDMS)/polycarbonate material placed in petri dish. The 
change in redox is recorded with help of reference, UME and Tungsten electrodes. This can be 
applied for measurement of pyocyanin diffused from the biofilm (left) or for measurement of 
hydrogen peroxide released from the biofilm with S. gordonii and A. actinomycestemcomitans 
(right)
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growth of various bacteria. Thus, the application of SECM gave insight in the mass 
transfer in the intricate dynamic system of biofilms that are otherwise difficult to 
experimentally determine.

5.2.2.2	 �Imaging Mass Spectrometry
Imaging mass spectrometry (IMS) technique was first demonstrated in 1960, how-
ever it has been underutilized and researchers have started applying it in microbiol-
ogy very recently. IMS is a conglomeration of various ionization techniques and 
includes MALDI–mass spectrometry, DESI–mass spectrometry, SIMS etc. IMS 
provides two-dimensional information at atomic and molecular level and hence has 
the potential to analyze the bacterial microcolony at the molecular level in three 
dimensions. This technique is incredibly powerful, particularly in understanding 
chemical process involved in heterogeneous complex biofilms (Table  5.2). The 
working principle of IMS is simple. It first ionizes the material source that is oper-
ated by computer controlled X-Y motor stage. After raster, based upon single mass 
from mass spectrum, an ion image is displayed and its relative abundance is shown 
as a false color scaling wherein each sampling coordinate is indicated by color 
intensity within pixel (Fig. 5.2).

5.2.2.3	 �Microarray Technology
In the previous section we discussed how advanced analytical techniques helped in 
our understanding of both homogenous and heterogeneous QS circuits at molecular 
level. In this section, microarray technology enabled QS understating at genetic 
level is discussed. The microarray technology involves orderly arrangements of 
samples wherein base paring rule is used for matching known and unknown DNA 
samples. The focused discussion on recent valuable information generated using 
microarray technology is illustrated. A detailed discussion on strength and weak-
ness of microarray technology in analysis of quorum sensing system and detail 
transcriptome studies of individual bacterial species is beyond the scope of this 
book chapter, please refer Vasil (2003). P. aeruginosa is one of the most widely 
studied QS microorganism. The P. aeruginosa biofilm is responsible for life threat-
ening consequences for patients with chronic illness history. Rahmani-Badi and 
colleagues used microarray technology for examination of cis-2-decenoic acid 
(CDA) signaling network within P. aeruginosa (Rahmani-Badi et al. 2015). CDA 
has been implicated in inducing biofilm formation and is crucial for inter-kingdom 
signaling. Components of CDA signaling pathway within P. aeruginosa were deter-
mined through transcriptome analysis by a comparative pair of experiment – one 
with CDA and other lacking it. Protein-protein interaction linkage analyses as con-
structed using STRING and Cytoscape identified 666 genes are differentially 
expressed in presence of CDA. The functionality associated with these genes was 
performed using gene ontology that associated CDA with induced enhanced motil-
ity, metabolic activity and virulence. Further, CDA synthesis and its perception was 
mediated through a constellation of five genes (viz. PA4978, PA4979, PA4980, 
PA4982, PA4983).
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Table 5.2  Recent imaging MS techniques used for QS

Imaging mass 
spectrometry 
technique Molecule biosensed/finding

Invention summary/future 
trend Reference

Imaging between 
liquid time-of 
flight (ToF)-SIMS 
and super 
resolution 
florescence 
microscopy

Extracellular polymeric 
substance (EPS) material: 
Fatty acids (e.g., palmitic 
acid), quinolone signal, and 
riboflavin fragments are 
found to respond after the 
biofilm is treated with Cr 
(VI)

First chemical mapping of 
EPS of Shewanella 
oneidensis biofilm

Ding 
et al. 
(2016)

New avenue opened for 
mechanistic in-sight of QS 
communications using in 
situ IMS

MALDI MS and 
confocal Raman 
microspectroscopy 
(CRM)

EPS materials such as 
glycolipids, rhamnolipids, 
polysaccharides and secreted 
proteins were identified

The comparative study of 
structural and chemical 
features of planktonic and 
biofilm cells of the 
bacterium P. aeruginosa and 
found out that three day old 
biofilm showed dramatic 
difference compared to 
planktonic culture

Masyuko 
et al. 
(2014)

MALDI-guided 
SIMS

Bioactive secondary 
metabolites, including 
rhamnolipids and quinolones, 
were detected and visualized 
on both macro- and 
microscopic size scales

The technological 
improvisation wherein 
challenges of locating 
microscopic chemical of 
interest was addressed

Lanni 
et al. 
(2014)

First (MALDI) MSI used to 
obtain low-resolution 
molecular maps of a sample. 
The molecular map guided 
direct subsequent 
microscopic SIMS imaging 
and tandem mass 
spectrometry (MS/MS) 
experiments

MALDI-TOF-IMS Sporulation killing factor 
(SKF) and sporulation 
delaying protein (SDP) 
cannibalism peptides of B. 
subtilis

Specificity and 
heterogeneity associated 
with signaling molecule of 
the genetically identical 
Bacillus subtilis strains 
studied

Shank 
and 
Kolter 
(2011)

DESI-MS Polyhydroxyanthraquinones 
secondary metabolite that 
inhibit QS

The spatial and temporal 
distribution of the 
polyhydroxyanthraquinone 
was examined

Figueroa 
et al. 
(2014)

First example of 
employment of DESI-MS 
imaging technique to scan 
polyhydroxyanthraquinone 
in a guttate-forming fungus

(continued)
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The QS regulon of AHL functioning in acidophilic chemolithoautotrophic 
Acidithiobacillus ferrooxidans ATCC 23270 through transcriptomic analyses was 
performed by Mamani and group using AHL super agonist analog (Mamani et al. 
2016). The tetrazole analog was used to stimulate adherence of bacteria on sulfur 
coupons and DNA microarray assays to determine genes involved in early biofilm 
formation. DNA microarray analyses revealed that nearly 60 genes are related to 
biofilm formation. These majorly include induction of phosphate and ammonium 
transporters and genes encoding F0-ATPase; and repression of genes for carbohy-
drate metabolism. Balasubramanian and Mathee reviewed comparative transcrip-
tome analyses of P. aeruginosa (Balasubramanian and Mathee 2009). Recently, 
comparison of metabolic pathways for absorption of n-alkane (C10–C16) in P. aeru-
ginosa strains viz. ATCC 33988 and PAO1 (with >99% average nucleotide identity) 
through an array of assays was performed to determine cause of how AT33988 
consumed faster in comparison to PAO1 (Grady et al. 2017). These tests included 
proteomics, small-molecule LC-MS, Ribo-seq, RNA-seq and microarray as a single 
experiment. The integration of –omics data revealed lack of lasI/lasR arm of QS 
response in ATCC 33988 causing absence of rhamnolipid production, and as an 
alternative to expressing QS genes, it upregulates operons for alkaline proteases and 
sphingosine metabolism.

Overall, transcriptional analysis for confirmation of gene expression through 
usage of DNA microarrays has been generating valuable information over a period 
of time in various species and strains.

5.3	 �QS Technologies

The role of advanced analytical and molecular biological techniques used for bio-
monitoring and understanding of QS phenomenon were discussed in previous sec-
tion. In turn, the QS phenomenon by itself serves as an interesting platform that is 
being exploited to be developed for industrial or commercial use. In this section, we 
will discuss recent focused applications of QS technology in biomonitoring and 
biosensing mechanisms.

Table 5.2  (continued)

Imaging mass 
spectrometry 
technique Molecule biosensed/finding

Invention summary/future 
trend Reference

MALDI-imaging 
HRMS

Spatial distribution of QS 
molecules AHL in the 
biosensor strain, C. 
violaceum

First to quantify and 
visualize the spatial 
distribution of the QS 
molecules in the biosensor 
strain, C. violaceum

Kusari 
et al. 
(2014)

MALDI TOF Secondary metabolite Studied interaction between 
B. subtilis and Streptomyces 
coelicolor using MALDI-
TOF IMS

Yang 
et al. 
(2009)
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5.3.1	 �Population Level Oscillator for Arsenic Detection

Synthetic biology has been limited with robust circuits in microenvironment with 
various clatters of signals. Presence of noise lowers the specificity of signal over a 
long range. Microbial communities directed towards detection of low available 
metabolites and its simultaneously signalling can be better utilized by signal ampli-
fication. Synchronization of signals emitted by a small population when based on 
oscillation provides a scalable and future ready option.

Probe

MS Rastering

Sample
Molecular image

generation

Image generation Image generation

Data processing

m/z m/z

Molecular image
generation

Fig. 5.2  Overview of the workflow in imaging mass spectrometry. Microbial samples are pre-
pared by either as cryosection or isolated and fixed on slide. The area on the slide is selected and a 
raster grid is prepared for it. Mass spectra data is collected for the sample and all information is 
combined into a single image with pseudo colors (green or red). Algorithms are applied to merge 
the multiple images and consolidate it as a single image. m/z, mass-to-charge ratio
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An oscillatory fluorescence-generating circuit was developed by Prindle and col-
leagues that not only synchronized local but global sensing systems for variable 
arsenic concentration (Prindle et al. 2011). This was achieved by synchronization 
among oscillating colonies of modified E. coli arranged within 500 “biopixels”, 
where each biopixel represented ~5000 individual E. coli cells as an array in an area 
of centimeter-length. This is a significant increase from previously established size 
of millimeter scale (Danino et al. 2010) which, if directly extrapolated over a longer 
dimension, is slower for generating macroscopic oscillation. Hence, these smaller 
oscillations by smaller colonies needed synchronization by designing another level 
of circuitry for faster communication. The oscillations among the biopixel were 
achieved by coupling AHL QS within each colony with gas-phase redox signaling 
(H2O2 based). Application of gas-phase signaling allowed detection of unsynchro-
nized, low globally synchronized oscillations and high low globally synchronized 
oscillations for low (mild repression of the lux promoter), intermediate and very 
high H2O2 (permanent activation of the lux promoter) production respectively.

The gene circuit was coupled with arsenic sensor using variations of oscillation 
period. In essence, the presence of arsenic changed the oscillation period within the 
microbial colony present as biopixel. Consequentially, varying amount of arsenic 
caused proportional GFP oscillation period that propagated among the biopixels of 
the array. Thus, presence of two systems for communication within the device archi-
tecture permitted microbial colony as well as the arrays of colonies to be treated sepa-
rately. This system had high sensitivity of 0.2 μM (as per World Health Organization, 
WHO that recommends detection of minimum 0.5 μM arsenite) and was integrated as 
a handheld sensor device. This device had liquid crystal display (LCD)– like macro-
scopic clock built on above mentioned stage to make it simple, handy and cost effec-
tive. Thus, a macroscopic biosensor involving a defined population of cells was made 
for arsenic detection within WHO sensitivity limits. Nonetheless, many more exam-
ples involving synthetic consortia or circuits for biosensing applications are required.

5.3.2	 �Genetic Clocks

Synchronized clocks form an underlying mechanism to coordinate rhythmic behav-
ior amongst individual components in a community or a large complex system. 
Various biological functions are based on intercellular coupling mechanisms includ-
ing respiration, cardiac activity, and circadian rhythms among others (Glass 2001; 
Young and Kay 2001). The rhythm generation by few thousand cells present in the 
mammalian suprachiasmatic nuclei successfully circadian clock of the body. 
Presence of autoinducer has been reported to induce synchronized oscillations in a 
cellular population (Garcia-Ojalvo et al. 2004).

In order to utilize quorum sensing systems for regulated clock work, a critical 
microbial density would be required. Danino and colleagues designed a synchro-
nized oscillator to exemplify usage of microbes in making macroscopic biosensor 
(Danino et al. 2010). This was achieved by combining cellular features of V. fisheri 
and B. thurigensis. Specifically, luxI (origin: V. fischeri), aiiA (origin: B. thurigen-
sis) and yemGFP genes were placed under the control of three same copies of the 
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luxI promoter. LuxI synthase catalyzes production of AHL that is negatively regu-
lated by aiiA. The network circuitry so formed with an activator causes activity of 
its own repressor that is similar to system used in synthetic oscillators and is neces-
sity for circadian clock complex. In addition, the authors used variable sized micro-
fluidic devices for environmental volume reduction. The devices incorporated 
designs for a nutrient channel to feed the confined cells with nutrients or inducers in 
their respective chamber. Further, the excess population of cells, if generated, would 
be pushed towards the channel leading to waste port. Thus, sustainable population 
with a uniform number of cells could be maintained within the device. The research 
concluded to a size 100 × (80–100) μm2 was best suited for examining intercellular 
oscillation activity. The modified cells when allocated in their chambers showcased 
stable synchronized oscillations. Overall, coupling of quorum sensing with genetic 
clocks created synchronized oscillations in the controlled population. This approach 
could be used for increasing the sensitivity and identifying the signal from noise to 
be utilized as potential biosensor.

5.4	 �Conclusion

In this chapter we have attempted to review impact of newer bioanalysis techniques 
and microbiological techniques in understanding QS phenomenon. Recent micro-
biological assays and advanced analytical techniques such as X-ray, microarray, 
NMR etc. deciphered QS phenomenon in homogenous state. However, since QS 
phenomenon is heterogonous in natural environment involving biofilm that com-
prised of diverse bacterial population, it was an eminent requirement of sophisti-
cated techniques for understanding biosensing and biomonitoring. Thus, newer 
sophisticated technologies such as SECM and imaging microscopy, traditionally 
applied in physical sciences, as a probe to topography and surface reactivity are cur-
rently being employed to understand heterogonous QS phenomenon. On one side 
technologies are unraveling QS mysteries, a new trend is also being observed 
wherein QS itself is used as a technology like in genetic clock and detection of 
arsenic level. In summation, the newer bioanalysis techniques are uncovering QS 
phenomenon like never before and QS technology matured to a point wherein it is 
being now pursued as a technology platform for biosensing and biomonitoring.

5.5	 �Opinion

The advanced biosensing and biomonitoring technologies capable of resolution in 
time and three-dimensional space domain are needed to unravel heterogeneous QS 
system. Towards this endeavor, we reviewed newer sophisticated technologies such 
as SECM and imaging microscopy. However, these technological applications are at 
proof of concept stage and we believe it is high time these technologies could be 
applied to answer fundamental question. The need of an hour is collaborative efforts 
between QS scientist and technologist towards breakthrough in understanding of 
heterogeneous QS system. We also feel that prospective are bright towards use of 
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QS system itself as a technology for biomonitoring and biosensing purpose. We are 
optimistic that newer orthogonal bioanalysis techniques could lead to major break-
through in understanding of heterogeneous QS system. We also hope to see QS 
based biosensing and biomonitoring technology could become market reality.
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6Application of Microbial Quorum 
Sensing Systems for Bioremediation 
of Wastewaters
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and Shikha Koul

Abstract
Environmental pollution due to the use of naturally occurring and manmade 
recalcitrant compounds is a major cause of worry among Environmental and 
Health Department managers. Incidentally, microorganisms have the unique 
ability to catabolize a wide range of such pollutants. Bioremediation with the 
help of microbes is limited by their slow growth rate within the bioreactor. On 
the other hand, in continuous culture digestions, the rate of effluent discharge is 
quite high and cause an imbalance of food to microbe ratio. In order to retain 
bacteria, immobilization on different support materials have been recommended. 
However, Biofilm formation by quorum sensing system (QSS) has been envis-
aged as a novel approach to entrap microbes within the bioreactor. A few bacteria 
possessing QSS and ability to catabolize pollutants have been exploited for bio-
remediation of waste waters.
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6.1	 �Introduction

The role of bacterial metabolism in bioremediation process has been well estab-
lished. The continuous culture process is limited by the slow rate of bacterial multi-
plication within the reactor and a much faster washout with the effluent. The 
efficiency of the bioreactor is greatly influenced and even enhanced by higher reten-
tion of bacterial population. At high Food to Microbe ratio, the degradation process 
is not at its best. A lowering the Food to Microbe ratio by higher retention of bacte-
ria helps to enhance the degradation process. Biofilms are known to help dramati-
cally in achieving this target. Within the biofilm diverse bacterial populations stay 
together as a community and are able to resist environmental stress. In fact, it has 
been reported that biofilm formation is initiated as a result of bacterial exposure to 
various environmental stresses such as those caused by antibiotics and pollutants 
(Ahmed et  al. 2009; Vaysse et  al. 2009; Kang and Park 2010a; Sharma and Lal 
2017). Biofilm formation due to the expression of Quorum sensing (QS) phenome-
non has been well documented (Niu et  al. 2008). QS signal molecules, acyl-
homoserine lactones (AHLs) have been reported to contribute significantly in 
treating wastewaters. The various processes involved in this degradation are: (i) 
granule formation in aerobic sludge (Ren et al. 2010, 2013; Tan et al. 2014), (ii) 
stabilization of microbes within the community (Valle et al. 2004) and (iii) produc-
tion of enzymes (Chong et  al. 2012). QS system (QSS) has also been shown to 
control phenol degradation (Valle et al. 2004; Yong and Zhong 2010), hexadecane 
degradation (Kang and Park 2010a), ammonium oxidation (De Clippeleir et  al. 
2011) and denitrification (Toyofuku et al. 2007, 2008). Among the various organ-
isms in which QS mediated biofilm formation has been reported include: (i) 
Acinetobacter (Baldi et al. 1999; Niu et al. 2008; Sarkar and Chakraborty 2008; 
Tomaras et al. 2008), (ii) Pseudomonas (Kang et al. 2007; Toyofuku et al. 2008; 
Schertzer et al. 2009; Yong and Zhong 2010; Yong et al. 2015), (iii) Marinobacter 
hydrocarbonoclasticus (Vaysse et  al. 2009), (iv) Ochrobactrum sp. (Imran et  al. 
2014), (v) Oleiphilus (Golyshin et al. 2002), (vi) Sphingomonas (Willison 2004), 
(vii) Mycobacterium (Bastiaens et al. 2000), (viii) Burkholderia (Matsumiya et al. 
2007; Wattanaphon et al. 2008). Although the phenomenon of biofilm formation is 
an expression of QS pathogenicity of bacteria associated (Kalia 2013), however, it 
can be exploited as a mechanism to treat waste water and pollutants present in 
industrial effluents (Stach and Burns 2002; Zhang et al. 2011).

6.2	 �Biodegradation and QSS

The beginning of the confirmed role of QSS was well addressed by looking into the 
bacterial community in an industrial wastewater treatment plant. Among the several 
proteobacterial strains, Thauera, Comomonas and Pseudomonas spp. were found to 
be involved in phenol degradation (Valle et al. 2004). A good correlation between 
QSS and prevalent of aromatic degraders was reported through in silico study (Yeon 
et al. 2008; Huang et al. 2013). Samples collected from soil, wetland and marine 
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waters, revealed the presence of Sphingomonadales and Rhizobiales, which had 
abilities to degrade phenanthrene- or pyrene and possessed AHL-production system 
as well. The production of AHL by Sphingomonads was confirmed through gas-
chromatography-mass-spectrum and thin-layer-chromatography. This report of 
combination of aromatics-degradation and QSS was envisaged to open new avenues 
for developing bioremediation technologies (Huang et al. 2013).

6.2.1	 �Pseudomonas

Pseudomonas is a genus comprised of genetically diverse organisms (Bhushan et al. 
2013). This genetic diversity is reflected in their equally diverse and efficient metab-
olisms. The most important are their abilities to degrade pollutants. Incidentally, 
this bacterium also causes very lethal infectious diseases, which provoked research-
ers to look for the mechanisms to control their pathogenicity (Kalia and Purohit 
2011; Kalia 2013). Among the various mechanisms, biofilm formation by 
Pseudomonas through QSS has been identified as the most relevant target for drugs. 
Here, is the opportunity to exploit the two characteristics of Pseudomonas and 
reduce pollution, especially that caused by waste waters.

Pseudomonas aeruginosa strain CGMCC 1.860 can produce AHLs and degrade 
aromatic compounds. AHL production continued while metabolism of aromatic 
compounds such as including salicylate, benzoate, naphthalene, p-hydroxy-
benzoate, and phenol was observed. The role of QS during phenol biodegradation 
was evident under diverse conditions: (i) exogenously addition of AHL extracts, (ii) 
endogenous over-production of QS signals, (iii) inhibition by abolishing the QS 
signal molecule production, and (iv) was not affected if extracts without AHLs were 
added. The results indicated that AHL was involved in the process of biodegradation 
of pollutants (Table  6.1) (Yong and Zhong 2010, 2013a). In addition to direct 
involvement of QSS, certain aromatic compounds are degraded through multiple 
steps. Here, QS plays an indirect role. Biodegradation of anthranilate was influ-
enced by AHL molecules in a QSS, which was LuxR-independent (Chugani and 
Greenberg 2010). Addition of AHLs such as C4HSL, C8HSL and C10HSL helped 
in enhancing the transcription of catB, a gene responsible for encoding catechol-1, 
2-dioxygenase (Chugani and Greenberg 2010). In a similar kind of study, meta-
cleavage of catechol by catechol 2, 3-dioxygenase by P. aeruginosa strain CGMCC 
1.860 (Yong and Zhong 2013b).

Naphthalene and its metabolic products such as reactive oxygen species are 
highly toxic to a wide range of organisms (Yong et al. 2015). It is thus necessary to 
search bacteria, which must be resistant to these compounds and degrade them as 
well (Park et al. 2004; Kang et al. 2006). Metabolism of naphthalene and related 
compounds was dramatically enhanced by Pseudomonas sp. strain As1, which con-
tained plasmid constructs conferring expression of antioxidant enzymes and super-
oxidase dismutase (Kang et al. 2007). A positive correlation between QS mediated 
biofilm formation and degradation of polycyclic aromatic hydrocarbons (PAHs) 
such as pyrene and phenanthrene was recorded with Pseudomonas mendocina strain 
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NR802 and P. aeruginosa strain N6P6 (Mangwani et al. 2013, 2015). Phenanthrene 
degradation of up to 86% was observed after a period of 7 days. This degradation 
was negatively influenced by QS inhibitor – tannic acid, which also affected biofilm 
formation and other QS mediated expressions such as pyocyanin production 
(Mangwani et al. 2015), Bioremediation of PAHs is enhanced by their bioavailabil-
ity, which was achieved by biosurfactants. Microbes can be employed to produce 
these biosurfactants during the dispersion phase of biofilm (Makkar and Rockne 
2003; Wattanaphon et al. 2008). Biosurfactants such as rhamnolipids can be pro-
duced by biofilm forming P. aeruginosa (Boles et  al. 2004; Müller et  al. 2012; 
Shukla et al. 2014).

Biological metabolism of nitrate and nitrite rich wastewater can be achieved 
through the phenomenon of denitrification (Yong et al. 2015). The basic enzymes 
involved in this process are nitrate reductase, nitrirte reductase, nitrous oxide reduc-
tase and nitrogen dioxide reductase. In P. aeruginosa PAO1, the denitrification 
enzymes are under the control of QSS system- rhlR (Yoon et al. 2002; Toyofuku 
et al. 2007). It was subsequently shown that Pseudomonas quinolone signal (PQS) – 
mediated QSS is also critical for denitrification process. PQS system chelates iron 
and inhibits NO3

− dependent respiration and other reductases (Toyofuku et al. 2008).

6.2.2	 �Acinetobacter

Acinetobacter can metabolize a wide range of hydrocarbons (HCs) (Throne-Holst 
et al. 2007; Yoon et al. 2007; Fischer et al. 2008; Jung and Park 2015). The degrada-
tion of alkane HCs takes place by the adsorption of bacterial cells on HCs or by 
development of biofilm on the interface of HCs and water (Baldi et  al. 1999). 
Biofilm formation helps in effective degradation of HCs (Kang and Park 2010b; 
Bhargava et al. 2012). A close correlation between QS mediated biofilm (Table 6.1) 
(Kang and Park 2010c), and the HC degradation ability of Acinetobacter was shown 
through the use of wild type strain DR1 and its variants, which included rifampin 
resistant strain DR1R and aqsI mutant, which has lost the ability to synthesize 
AHLs. aqsI mutant strain showed severe defects in growth and mineralization of 
hexadecane. Addition of QS signals to the medium where aqsI was mineralizing HC 
resulted in improved process efficiency. C12-AHL and its derivatives such as 3-oxo, 
3-hydroxy, or other 3-substituted QS signal molecules (Kang and Park 2010a). 
Phenol degrading Acinetobacter calcoaceticus strain PHEA-2 and dye decolorizing 
strain of A. calcoaceticus YC210 were obtained from waste water samples (Chen 
et al. 2011; Zhan et al. 2012). A. calcoaceticus YC210 could efficiently (94.5%) 
decolorize VBR in the pH range of 5–7 and this ability was well maintained up to 
450  mg/L (Chen et  al. 2011). Acinetobacter sp. isolated from soil contaminated 
with petroleum was observed to produce biosurfactant, which proves helpful in effi-
cient degradation of organic pollutants by increasing the bioavailability of the sub-
strate (Chen et al. 2012). Acinetobacter gerneri strain P7 was characterized for the 
production of polyurethanase enzymes using p-nitrophenyl-propanate where it 
recorded an activity of 37.58 U mg/L. The organism formed strong complex with 
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polyurethane (Howard et al. 2012). Comparative genomic analysis of three strains 
of Acinetobacter species with distinct characteristics: (i) A. baumannii AYE, a 
human pathogen, (ii) A. baylyi ADP1, a strain adapted to soils, and (iii) a phenol 
degrader A. calcoaceticus PHEA-2 revealed horizontal gene transfer among them 
and a larger number of transport-related proteins were found in PHEA-2 rather than 
in ADP1 and AYE.  It implied higher adaptation of PHEA-2 towards phenol-
contaminated waste waters (Zhan et al. 2012). Genome sequencing of hydrocarbon 
degrading Acinetobacter venetianus strains RAG-1 and VE-C3 revealed the genetic 
basis of their adaptation to these pollutants (Fondi et al. 2012, 2013).

6.2.3	 �Other Potential Organisms

6.2.3.1	 �Marinobacter
The role of biofilm formation and hydrocarbon degradation ability of M. hydrocar-
bonoclasticus strain SP17 was established through proteomic analysis of the com-
pounds present at their interphase (Klein et  al. 2008; Vaysse et  al. 2009). Cells 
within the biofilm showed that out of 1144 proteins, 576 showed modulation in 
comparison to those observed in planktonic cells. Within the biofilm cells, the most 
remarkable was the over expression of protein encoded by MARHY0478 – respon-
sible for transportation of hydrophobic compounds (Vaysse et al. 2009).

6.2.3.2	 �Ochrobactrum
Bacteria present in the rhizosphere have generally been found to prove beneficial to 
plants for their growth and development. Ochrobactrum strain Pv2Z2 is a rhizo-
spheric isolate which showed plant growth promoting features, antipathogenic 
properties, ability to degrade phenol and possessed QSS as well (Imran et al. 2014). 
Another strain of Ochrobactrum sp. NW-3 showed growth enhancement of cucum-
ber plants (Xu et al. 2015).

6.2.3.3	 �Sphingomonas
Sphingomonas members are known to catabolize a large number of naturally occur-
ring recalcitrant and anthropogenic compounds such as furans, biphenyl, oestradiol, 
napthalenes, chlorinated phenols etc. (Gan et al. 2014; Verma et al. 2017). The pres-
ence of QSS in Sphingomonas was reported by comparative genomic analysis of 62 
sequenced genomes. It revealed luxI/R type of QSS in Sphingomonas japonicum 
and S. lactosutens (Gan et al. 2014). However, a direct involvement of QS in biore-
mediation is still being elucidated.

6.3	 �Opinion

The concept of combining QSS and ability to catabolize pollutants has a very great 
potential as this will ensure availability of requisite microbial population within the 
bioreactor. Another possibility can be using two different microbes each with either 
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of the property. It will also prove beneficial as they will be behaving in a comple-
mentary manner. The need is to evaluate the ability of a large number of biofilm 
formers to degrade pollutants and thus help in bioremediation of waste waters. 
Another important factor, which emerges from this QS mediated biofilm is the fact 
that the system has to be protected against bacterial and QS inhibitors (Kalia 2013, 
2014; Gui et al. 2014; Begum et al. 2016; Koul et al. 2016; Jeyanthi and Velusamy 
2016; Varsha et al. 2016; Wadhwani et al. 2016; Ahiwale et al. 2017; Azman et al. 
2017; Kalia et al. 2017; Koul and Kalia 2017).
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lux Gene: Quorum Sensing, Engineering 
and Applications

Bhagwan Rekadwad 

Abstract
Phenotypes and genotypes of the microorganisms develop over a period of time 
as per the environmental conditions. Numbers of reason are responsible to make 
change outlook and characteristics of microorganisms. These include natural 
phenomenon such as quorum sensing, mutations, horizontal gene transfer that 
plays a critical part in bacterial quorum sensing development and has major clini-
cal significance in bacterial evolution. This is the key to comprehend the compo-
nents and energy of hereditary changes. Common change is the driving 
component for horizontal gene transfer in various genera of microscopic organ-
isms. These changes may be due the necessity feel by microorganism allows to 
express their genes/environmental factors triggers the activation of genes. This 
book chapter present straightforward applications of lux-system in biotechnology 
and bioprocesses with industrial value.

Keywords
Biophotonic imaging · Dip-sticks · Lux-system · QS system · Luciferase · 
Reporter genes 

7.1	 �Introduction 

The blend of latest imaging innovations and advancement of luciferase (lux)-based 
bioluminescent system give a touchy and basic non-obtrusive identification tech-
nique (biophotonic imaging) for the investigation of diverse biological procedures 
and remedial intercessions (Bruckbauer et al. 2015). Bioluminescence is the era of 
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light by living life forms subsequently of vitality discharged when the light emanat-
ing particle luciferin experiences oxidation catalyzed by luciferase within the sight 
of oxygen. Bioluminescence capacities for pulling in mates, catching prey, and for 
countershading in night time amphibian life forms to avoid predators. It happens 
over a wide scope of life forms include plants animals and microorganisms. In 
microorganisms, quorum sensing is the phenomenon that regulates biofilm forma-
tion (Koutsoudis et al. 2006; Vidal et al. 2011; Fatima et al. 2010; Kalia 2015; Koul 
et al. 2016; Koul and Kalia 2017) governs quorum sensing system (QS system) on 
a certain extent (Kalia 2014; Rekadwad and Khobragade 2017a, b). Bacteria such 
Photobacterium spp., Photorhabsus sp. and Vibrio sp. exists in soil as well as in 
water (both fresh and marine) as commensals or pathogens take part in QS system. 
Bioluminescent microorganisms or their lux system can be applicable as biosensors 
for detection of water quality, lethality testing, for the discovery of anti-toxin depos-
its and pathogens in sustenance. Therefore, lux system is the part of QS system as a 
result of luciferase enzyme quality (Molina et al. 2016). Hence, up to date, biolumi-
nescent microscopic organisms are not yet investigated in the direction as potential 
new bioresources of anti-infection agents to battle with the pathogens. 

7.2	 �lux-Based Natural Transformation 

A very touchy framework permits the location of a change occasion straightfor-
wardly from a bacterial populace with no partition step or choice of cells (Choi et al. 
2012). The framework depends on the bacterial luciferase operon (lux system) from 
Photorhabdus luminescens. The unique sub-atomic assembly comprises of the use-
ful modules luxCDE and luxAB, which include a replicative plasmid and an integra-
tive quality tape. An entrenched host for bacterial hereditary examinations, 
Acinetobacter baylyi ADP1, is utilized as the model bacterium for quorum sensing 
(McConnell et al. 2013; Jung and Park 2015). A common change taken after by 
homologous recombination or plasmid recircularization can be promptly recog-
nized in both effectively developing and static biofilm-like communities, including 
exceptionally uncommon change occasions (). The framework permits the discov-
ery of common change inside 1 h of bringing test DNA into the way of life. This 
strategy gives a helpful intends to concentrate the energy of characteristic change 
under factor various conditions (Santala et al. 2016).

7.3	 �Vector for Gene Targeting 

Uses of vector for gene targeting have biomedical and industrial applications viz. as 
biomarker, in curation of dental biofilm through product induced gene expression 
(Kalia 2015; Kalia and Kumar 2015; Kaur et al. 2015; Pooja et al. 2015; Ray and 
Kalia 2017). Genes such as pyrG can be used a quorum sensing marker in fungi viz. 
A.  Niger. The DNA sequence arrangement can be done in such a ways that two 
pieces of the pyrG gene permits the homologous recombination of the newly 
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amplified recombinant DNA (rDNA) at the pyrG locus. The 5′ end of the strand 
focusing on a tape contains a nonutilitarian and truncated pyrG g open perusing out-
line (initial 112 nucleotides erased) and the 3′ untranslated area (3′ UTR). While at 
3′ end of DNA strand, the focusing on tape comprises of the 3′ flanking area of the 
pyrG quality. A one of a kind NotI gene site between the flanks permits the inclusion 
of a quality of intrigue. The linearized focusing on tape is changed to the pyrG gene 
in A. niger mutant strain AB4.1 or a subsidiary thereof. The utilization is constitu-
tively communicated by luciferase (mluc)-reporter gene. Few bacterial luciferase 
capable to tolerate high temperature. This thermostable bacterial luciferase can acts 
as a reporter in plants (Cui et al. 2014). A bacterial luciferase gene (lux) acts to mea-
sure, performance of transformants in which mluc correspondent was coordinated at 
the pyrG gene locus, appeared practically identical and reproducible lux exercises. 
Results indicate that the new pyrG focusing on vector is a vital change to the current 
strategy for quality focusing in A. niger. Despite the fact that the vector (vehicle) is 
particular for A. niger, the introduced outline and loom is effectively pertinent for 
building mix vehicles/vectors for other parasites (Arentshorst et al. 2015).

7.4	 �Dip-Stick Type Biosensor for the Detection of Water 
Toxicity

Microbial entire cell bioreporters are hereditarily adjusted microorganisms that 
deliver a quantifiable yield because of the nearness of dangerous chemicals or dif-
ferent anxiety elements (Yagur-Kroll and Belkin 2014). To make use of microorgan-
isms many phenomena are exists in nature such as quorum sensing. Artificially 
quorum sensing can be visualised using different experiments. A dip-stick is a new 
platform developed has applications in classification and identification toxicants in 
aqueous environments. It is comprises eight (08) optically color-coded (fluores-
cence) functional alginate beads. Each bead acts as fluorescent microbead beads 
each encapsulate bioluminescent bacteria. The plasmids with specific stress pro-
moter were taken either from Photorhabdus luminescent or Vibrio fischeri (Mitchell 
et al. 2005; Renoz et al. 2017). Specific stress promoter such as luxCDABE genes 
was constructed based on plasmids based either on pDEW201 or pUCD615. The 
color coded microbeads were prepared and fabricated. The optically coded func-
tional microbead biosensor is 85.250 × 8.0 × 1.50 mm in size with ten apertures 
holes having diameter 1.25  mm. The reverse trapezoid top and bottom sections 
avoid are the escape of the microbeads. A microbead has its own color code gener-
ated due to bioluminescent nature of bacteria included as per the needs. It can be 
easily detected using the bioluminescent reader (Fig. 7.1). 

When we add portable dip-stick in water in the environment. It helps to detect 
any toxicity caused by water pollutants or contaminants which resulted in cell sur-
face damage, DNA damage, protein deterioration (damage) in the response of bac-
teria to the toxicants or toxic and heavy chemicals (Jung et al. 2014). Practically, it 
is a helpful tool for detecting the status of biodiversity in vitro as well as invivo.
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7.5	 �Applications of Quorum Sensing (QS) in Synthetic 
Biology Systems 

Quorum sensing (QS) manages numerous changes in microbiota and environment 
such as normal phenotypes, destructiveness, biofilm arrangement, anti-infection, 
pathogen resistance. All these applications nowadays are engineered and microor-
ganisms made carrying their properties as hereditary character empowered by genes 
(Shukla et al. 2014; Siddiqui et al. 2015; Soma and Hanai 2015; Scott and Hasty 
2016; Kalia et al. 2017). For instance, a library of Escherichia coli lsr-operon gave 

Polluted river

Sample collection

Preparation of microbeads (dip-stick)

Each microbead contain eight different
bacteria

Entry into dip-sticks

LIGHT Emission
(fluorescence)

Toxicants

85.25 mm

8 mm

1.5 mm

Fig. 7.1  Application of dip-stick type biosensor in quorum sensing and detection of environmen-
tal pollution. Fluorescence (bioluminescence) generated when microbeads on dip0stick come in 
contact with toxicants
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an organism with higher antibiotic resistance over the local promoter (tet(C) gene). 
This happens because of several changes in the QS repressor-LsrR gene (Hooshangi 
and Bentley 2011; Brito et al. 2013). The site-directed mutagenesis reestablishment 
in p-lsrR-box sites shows that two promoter regions EP01rec and EP14rec exhibits 
enhanced expression and their variants retained the LsrR-mediated QS switching 
activity. The fusion of these promoters will encourage future applications of 
QS-regulation in synthetic biology, protein expression and metabolic engineering 
(Tien et al. 2016; Hauk et al. 2016).

7.6	 �Regulation of Bioluminescence 

Vibrionaceae is the family contains certain proteobacteria showing biolumines-
cence activity. In bioluminescence, pheromone signalling pathway plays a central 
role in regulation of production of light (Urbanczyk et al. 2010; Bjornsdottir-Butlera 
et al. 2016). But, certain microorganisms such as Photobacterium strains bypasses 
above regulation methods. Photobacterium strain possesses insertions in genes 
encoding important components which are necessary for the luciferase reaction 
-viz. operon- lux, lum, and rib- as well as other loci. This study can be performed 
using transposon mutagenesis and screening of intensity of luminescence which 
may be decreased (Aguirre-Ramirez et  al. 2012; Bazire and Dufour 2014; Dunn 
et al. 2015; Shivak et al. 2016). In other review, it was accounted for that constitu-
tive light expression is not metabolically expensive to Citrobacter rodentium and 
underpins the view that bioluminescent adaptations of organisms can be utilized as 
a substitute for their non-bioluminescent guardians to concentrate bacterial conduct 
in a wide assortment of situations (Read et al. 2016). Further in depth research is the 
necessity and needs to be carried out to discover roles and regulation of biolumines-
cence in Photobacterium strains.
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Abstract
Slackness in the quality control of food and water consumed by human and other 
animals has become a significant issue which enhances the possibilities of cross-
contamination with harmful pathogenic microbes. Intake of the contaminated 
food and water are the causes for the over abundance of infectious diseases in 
both animals and humans, and this has thus emerged as a global health concern. 
Detection of microbial contamination in food and water has relied on conven-
tional methods which demand intensified pre-enrichment steps followed by labo-
rious biochemical identification techniques. Recently, most promising and 
advanced techniques in biological sensor development have dragged all the sci-
entist’s attention which primarily deals with rapid real-time sensing applications 
due to its selectivity, sensitivity and specificity. In this book chapter, the possible 
routes of pathogenic infections have been outlined along with its various detec-
tion mechanisms. Additionally, strategies for the biosensor development have 
also been elaborated based on their transducing properties.
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8.1	 �Introduction

Microorganisms are present in our environment from the beginning of life and have 
become one of the essential parts of the nature for maintaining the eco-system. The 
microorganism, such as viruses and bacteria are found in every facet of the environ-
ment, due to their high adaptable nature. Among all the microorganisms, bacteria 
play an important beneficial role towards animals and human, but certain potentially 
harmful bacteria can have a profound negative impact on people due to their patho-
genicity. Infringement of bacterial contamination leads to disastrous infectious dis-
eases worldwide and can affect human health in two possible ways. Firstly, due to 
the lack of quality control in food processing sectors, contamination of food by 
bacterial pathogens (such as Escherichia coli, Salmonella typhimurium, 
Campylobacter jejuni, Legionella pneumophila, Staphylococcus aureus, 
Streptococci, etc.) results in numerous food borne diseases (Doyle and Buchanan 
2012). It is estimated that infectious diseases cause about 40% of approximately 50 
million total annual deaths worldwide (World Health Organization 2008). Secondly, 
inadequate access to safe and portable clean water along with poor hygiene and 
sanitation facilities can lead to contamination with pathogenic bacteria such as E. 
coli O157:H7, Vibrio cholerae, Salmonella enterica, Pseudomonas aeruginosa, 
etc.) (Connelly and Baeumner 2012). Waterborne pathogens are capable of causing 
10–20 million deaths and non-fatal infection of more than 200 million people each 
year (Berry et al. 2006). These food and waterborne pathogenic bacteria are resis-
tant to environmental conditions, and most of the human population is susceptible 
to these pathogens which cause high fatality rate (World Health Organization 2008). 
Examples of these are the incidents that took place in 1997 Hudson ground beef 
recall and the 1996 incident where more than 9000 fell ill, and 313 died due to 
E.coli O157:H7 contamination (Ivnitski et al. 2000).

The current general practices for controlling the outspread of microbial diseases 
include careful control of various kinds of pathogenic bacteria by food safety, water 
quality control and environmental monitoring. Conventional techniques for detection 
and identification of pathogenic bacteria mainly depend upon accurate microbiologi-
cal and biochemical identifications (Ferreira et al. 2011). Most of these methods can 
be sensitive and inexpensive and give both qualitative and quantitative analysis of the 
tested bacteria, but still have some ambiguities due to its low efficacy for detection of 
pathogens in samples with a less initial load of microbes. For example, standard meth-
ods like NF EN ISO 11290-1 method for the detection of Listeria monocytogenes 
needs nearly about 7 days to produce results as they rely on the ability of these micro-
organisms to produce visible colonies. Compared to this technique, some newer 
microbiological based test like ALOA® method (AES laboratories) uses chromo-
genic medium in combination with Listeria monodisk for the detection of L. monocy-
togenes which can decrease the detection time down to 3 days. This still presents 
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difficulties in the quality control of semi-perishable foods (Kumar 2013). Additionally, 
the transformation of bacterial cells into a dormant state which are viable, but non 
culturable (VBNC) makes the detection of such pathogens more difficult. Biosensors 
are recently emerging as a rapid method of detection of microbes in food and water 
(Mehrotra 2016). This chapter covers a different aspect of the development of biosen-
sors for the detection of food and waterborne pathogens. Various types of biosensors 
with their mechanisms are described. Additionally, a major part of the chapter is 
devoted to describing the pathogenicity of water and foodborne pathogens and the 
primary mechanistic principle for the detection of these pathogens using biosensors. 
Furthermore, possible drawbacks of the existing biosensor technologies with the com-
parison of commercial technologies are also discussed.

8.2	 �Importance of Food and Waterborne Pathogens

Numerous sufferings and deaths are caused by foodborne pathogens worldwide. 
Around five million deaths are calculated in a year under the age of 5  in Latin 
America, Asia and Africa due to gastroenteritis (Lanata et al. 2013). Campylobacter 
induced enteritis is a significant illness in children aged 0–4 years in Mexico and 
Thailand. Statistics on foodborne pathogens showed decrease in occurrences from 
1996–1998 to 2005 for Shigella, Yersinia, L. monocytogens, Campylobacter spe-
cies, E.coli O157:H7, and S. typhimurium but upsurges for S. enteritidis, S. heidel-
beg, and S. javiana. Many of the foodborne pathogens are spread through reservoirs 
like animals and poultry. Milk, meat and egg products may act as vehicles for E. coli 
O157:H7, C. jejuni, L. monocytogenes, S. enterica, and Yersinia enterocolitica 
(Ferens and Hovde 2011). Novel approaches to control the pathogens at farm level 
help to decrease the pathogen load in processing industries. However, ready-to-eat 
(RTE) food products are in serious concern since RTE products do not receive any 
treatment before consumption (Martinović et  al. 2016). Several foodborne out-
breaks have happened recently as the result of consumption of minimally processed 
fruits and vegetables, undercooked or processed dairy products, and RTE meats 
(Centers for Disease Control and Prevention (CDC) 2006).

Apart from gastroenteritis, the food and water borne pathogens cause autoim-
mune polyneuritis, autoimmune disease (allergic encephalitis), atherosclerosis, 
hemolytic-uremic syndrome (Shiga like toxin from E. coli O157:H7), chronic rheu-
matoid conditions, and Guillain-Barre syndrome (Campylobacter infections). 
Based on the eating habits, some foodborne infections exist in specific countries 
(Martinović et al. 2016). Consumption of raw fish in Japan and meat and vegetables 
in Scandinavian and middle/eastern countries are the reasons for Vibrio parahaemo-
lyticus and botulism cases, respectively (Brandl 2006).

Around seven decades ago, the primary pathogens transmitted through food and 
water were Clostridium botulinum, Clostridium perfringens, Salmonella, and S. 
aureus. During these periods, the food borne illnesses were viewed as a trouble only 
for a day or two rather than a danger to life (Velusamy et al. 2010). Most of the coun-
tries did not have a systematic reporting program, except UK and USA. In most of the 
situations, the outbreak was due to the improper handling and poor storage conditions 
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of food, especially poultry and meat. Campylobacter, E. coli O157:H7, L. monocyto-
genes and Y. enterocolitica were emerging when the food service establishments were 
educated to handle the problems with Clostridium, Salmonella and Staphylococcus 
(Mor-Mur and Yuste 2010). Though the new pathogens were emerging, it took several 
years for the health service providers to understand the seriousness of these new 
pathogens. Large outbreaks during 1985 and 1993 from L. monocytogenes and E. coli 
O157:H7, respectively, in the US, has paved way for changes in food safety policies 
in the US and several other countries (Kramer et al. 2006).

Through some unexplored reasons, there is always the emergence of new patho-
gens or re-emergence of old pathogens those are responsible for the increased 
occurrences of foodborne diseases (Martinović et al. 2016). Food and water borne 
outbreaks are not only causing human sufferings and fatalities but also distressing 
financial losses to food processors and producers. The reasons like (1) increased 
surveillance and reporting, (2) changes in the food manufacturing and agricultural 
practices, (3) changes in eating habits, (4) increased vulnerable populations, (5) 
improved detection methods, and (6) emerging pathogens with tolerance to stressed 
conditions are reported to be the possible reasons for the greater numbers of out-
breaks in recent years (Bhunia 2008).

8.3	 �General Routes of Infection and Spreading Diseases

Three forms of diseases caused by foodborne pathogens are foodborne infection, 
intoxication, and toxicoinfection. Because of water and food are major reservoirs 
for foodborne illness, oral route and intestine are the primary route and site of infec-
tion, respectively. To make a successful infection, microorganism must have to pass 
several hurdles, and several factors have to work in a host cooperatively. The food 
and water borne pathogens can be transmitted even through direct contact with an 
infected animal or human, through soil or an arthropod vector (Conner and Schmid 
2003). Following are the factors which determine the success of an infection by a 
foodborne pathogen (Cossart and Sansonetti 2004):

	 (i)	 Pathogens must be present in adequate numbers to initiate the infection 
process.

	(ii)	 Pathogens are able to endure the changing environment of the host and must be 
able to multiply (presence of capsules or not).

	(iii)	 Pathogens should find a place for their colonization through adhesion and inva-
sion factors, and chemotaxis.

	(iv)	 Pathogens must have some mechanisms (toxins and enzymes) to escape from 
the host immune system.

	(v)	 Pathogens must damage the host tissues and cells by their component or 
metabolites (exotoxins, endotoxins, enzymes, etc.) that cause cell death by 
necrosis or apoptosis and encourage bacterial survival and multiplication.

Intact living microorganisms are necessary to initiate the foodborne infection. Upon 
intake with food or water, pathogens reach the intestine after passing the stomach 
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environment. Colonization starts in the intestine followed by crossing the intestinal 
barrier through the invasion process or through translocation by phagocytic M cells 
(Ribet and Cossart 2015). Few pathogens cause localized damage, and some may 
spread to the liver, spleen, lymph nodes, brain or to other extraintestinal sites. Acute 
food borne infections are quick and last only for short duration due to fast clearance 
of microorganisms by immunological mechanisms. Chronic food borne infections 
are long and immunological removal is not effective against pathogens. Patients 
recovering from a foodborne infection releases pathogens to the environment for a 
while. The infectious dose of the pathogens varies from 50 to 109 CFU (Colony 
Forming Units) per gram of food for live bacteria or 103–105 numbers for spores or 
10–100 particles of virus or 10–100 cysts for protozoa (Kent et al. 2015). This dif-
ference in numbers depends on the infective potential of the organism, immunologi-
cal nature of the host, type of food consumed, and presence and absence of the 
antibiotics in the host body. The human body is gifted with several mechanisms to 
protect itself from the invasion of the pathogens. Mucus and fluids constantly wash 
the epithelial cell surface of the gastrointestinal tract. Human body constantly 
attempts to expel the pathogens by mucus production, peristaltic movements, and 
by epithelial ciliary sweeping action. The presence of bile salts, proteolytic enzymes, 
and resident microflora also prevent colonization of the pathogens in the gastroin-
testinal tract (Martinović et al. 2016). After reaching the intestine, the pathogens 
must be able to attach themselves to the intestine and cross the intestinal barrier by 
the mechanisms listed in Table 8.1. Ingestion of preformed toxins (botulinum toxin, 
Bacillus cereus toxin, staphylococcal enterotoxin, and seafood toxins) results in the 
food borne intoxication. Actively growing pathogen releases toxins in the food 
which are ingested. Toxins must be ingested and absorbed in the epithelial lining of 
the gastrointestinal tract to cause the inflammation which evokes diarrhoea or vom-
iting. In case of foodborne toxiconfection, ingested bacteria along with food colo-
nize the mucosal surface and produce exotoxins in the intestine (Iwamoto et  al. 
2010). Exotoxins either damage the local cells or tissues or enter the blood stream 
to induce the disease. Toxins of enterotoxigenic E. coli (heat-labile and heat-stable), 
V. cholerae (cholera toxin) and enterotoxins of C. perfringens are examples of exo-
toxins (Sibley 2004; Bhunia 2007; Ray and Bhunia 2007).

8.4	 �Detection of Pathogens in Food and Water

The food industry increasingly adopts several measures to improve the safety and 
quality of food (Scognamiglio et al. 2014). Hazard Analysis Critical Control Point 
(HACCP), a management tool highly promoted by various regulatory agencies in 
many countries is to attain a safer food supply and coordination of trading values. 
Rapid methods of monitoring are desirable to make the HACCP efficient (Aung and 
Chang 2014). Testing for the presence of specific pathogens like C. jejuni, E. coli 
O157:H7, L. monocytogenes and others is required to validate the HACCP. Hence, 
it is very essential to have rapid methods for the detection of the pathogens. Food 
and water borne pathogens are detected by several techniques (Fig.  8.1) which 
include culture based methods, electrical methods, methods based on ATP 
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bioluminescence, microscopy techniques, immunological techniques, genetic tech-
niques, and techniques using biosensor (Leonard et al. 2003). Comparison of the 
detection methods established for food borne pathogens is given in Table 8.2.

Culture methods detect the pathogens by growing or keeping them alive in a 
nutrient medium. Culture medium mainly comprises six components like amino-
nitrogen compounds (peptones, other protein hydrolysates, infusions or extracts), 
energy sources (e.g. glucose), buffer salts (e.g. soluble phosphate salts, acetates and 
citrates), mineral salts and metals (phosphates, sulfates, calcium, magnesium, iron, 
manganese and trace metals), growth promoting factors (blood, serum, vitamins, 
NADH, etc.), and gelling agents (agar, gelatin, alginates, gums, etc). The basic cul-
ture medium can be made selective to allow the growth of the specific pathogens 
from food samples by adding selective compounds to which the pathogen of interest 
should be resistant (Blommel et al. 2007). Inorganic salts (sodium azide, lithium 
chloride, potassium tellurite added to control Gram negative bacteria; tetrathionate 
and sodium selenite are added to control Gram positive bacteria and coliforms), 
dyes (acriflavine, crystal violet, brilliant green, and malachite green), surface active 
agents (bile salts, cetrimide, lauryl sulphate and tergitol), and antibiotics are added 
to basic medium to give selective features. Apart from selective agents, components 
which provide differential features to the basic medium can also be added to make 
the basic medium a differential culture medium. Indicator dyes to indicate the pH 

Fig. 8.1  Different detection methods of food and water borne pathogens
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change in the medium (e.g. phenol red, neutral red, bromocresol purple), chromo-
gens which can act as substrates for specific enzymes and changes the color of the 
medium, fluorogens which can produce fluorescence that can be detected when 
observed under UV illumination) (Sharma and Mutharasan 2013). Virulence factors 
of the pathogens can also be detected by adding blood (hemolysin), egg yolk emul-
sion and lecithin (phospholipase), and rabbit plasma fibrinogen (coagulase) (Jia 
et al. 2010). Altering the incubation conditions (pH, temperature and gaseous atmo-
sphere) of the culture medium will also be helpful in selectively growing the tar-
geted pathogen by suppressing the growth of others. Resuscitation media were 
developed to recover the injured cells by adding components which will reduce the 
damage to the targeted pathogen (e.g. blood, pyruvate, catalase, and cysteine to 
protect cells from reactive oxygen species). Several commercial kits are in the mar-
ket (PetrifilmTM, CLONdiscTM, BD Biosciences, Oxoid Salmonella Rapid Test, 
Salmosyst®, Colilert®, ColiTrak®, and Quanti-Tray®) working based on culture 
methods for qualitative and quantitative analysis of food borne pathogens. Culture 
methods form the basis for all the detection techniques for pathogen in food. Culture 
based methods of detection are widely accepted due to their reliability, lower cost, 
ease of use, and universal acceptance (Stephens 2003; Alahi and Mukhopadhyay 
2017).

An electrical method determines the response of microbial cultures to alternating 
current (AC) at specific frequencies. Electrolysis of growth medium and killing of 
microbes occurs at high currents, whereas the mediators (lipoic acid) present at the 
cell surface save the cells at lower current. Electrodes are required to be immersed 
in the growth medium or food homogenate (Luo et al. 2015). Impedance and con-
ductance are the two parameters required to be determined either alone or in com-
bination. Impedance is the measure of the AC equivalent of resistance to a direct 
current (DC) current. Capacitance and resistance are the two components of imped-
ance at any frequency (cycles per second, Hz). Properties of the electrode, changes 
and conductance occurring between electrodes are related to capacitance (Singh 
et  al. 2014). Reciprocal of the conductance is resistance. Impedance of the pure 
water and salt solutions is solely their conductance due to zero capacitance, whereas 
microbiological media have capacitance due to the presence of macromolecular 
content and microorganisms (Puttaswamy and Sengupta 2010). Changes in biomass 
results in changes in impedance but changes in conductance are the results of the 
effect of microbial metabolism on the charge-carrying capacity of the medium. Low 
molecular weight products produced through metabolism of proteins and carbohy-
drates are good charge carriers than the large molecular weight products. Hence, 
every growth medium has an impedance value based on the composition of the 
chemicals and inoculum (Sharma and Mutharasan 2013). Among the components 
of media, salts have major effect on impedance and hence the salty foods need dilu-
tion. Electrical methods are not useful in detecting pathogens in selective media 
with high salt levels. The assay temperature needs to be controlled due to the high-
temperature coefficient of impedance which is 2% per degree (Gibson 2003; Alahi 
and Mukhopadhyay 2017).
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ATP bioluminescence assay makes use of the availability of adenosine triphos-
phate (ATP) in all living cells as a energy donor. The intracellular concentration of 
ATP is measured to detect viable cells (Falzoni et al. 2013). Chemical energy asso-
ciated with ATP is converted into light by luciferase-luciferin complex. Light detect-
ing devices measures the emitted light and it is directly proportional to the ATP 
concentration. The theoretical sensitivity of this assay is high due to the availability 
of instruments which can detect every single photon emitted during the reaction. 
However, the presence of ATP in food (somatic cells) must be taken care before the 
assay. Somatic cells must be selectively lysed with non-ionic detergents (Triton 
X-100) and the released ATP of somatic cells must be enzymatically or chemically 
destructed. Cationic detergents are subsequently used to extract the ATP from 
microbes and are then measured by luciferase-luciferin. Microbial cell number is 
derived from the standard curves of ATP concentration or from emitted light in RLU 
(relative light units) to cell counting units (CFU/ml). ATP bioluminescence assay is 
made specific to particular pathogens by recognizing the target bacteria using anti-
bodies or by specific bacteriophages followed by ATP assay (Griffiths and Brovko 
2003; Noble and Weisberg 2005).

	 Luciferin ATP O Oxyluciferin AMP CO PPi Light+ + ® + + + +2 2 	

Interactions between specific antibodies and selective antigens on the pathogens 
are the basic mechanisms of the immunological techniques. Antibodies are targeted 
against the components on the outer cell wall, a protein on the flagella, or a metabo-
lite or toxin produced by the pathogens during growth (Tlaskalová-Hogenová et al. 
2011). Antibodies targeted against antigens on flagella are highly specific whereas 
the antibodies for somatic antigens are weak due to the sharing of antigens among a 
wide range of bacteria. Immunological methods are considered to be presumptive 
methods due to the sharing of common antigens across the microbial genus. The 
results from immunological methods are usually confirmed by culture based meth-
ods. Among the immunological methods ELISA (enzyme-linked immunosorbent 
assay) is the most widely used methods. ELFA (enzyme-linked fluorescent assays), 
a variant of ELISA, uses fluorescence based detection (Yeni et al. 2014). Magnetic 
beads coated with antibodies are used in IMS (immunomagnetic separation) to sep-
arate the target pathogen from the food components or other microbes. Different 
commercial kits based on immunological principles are available in the market for 
the detection of Salmonella, Listeria, Campylobacter, and E. coli O157:H7. Lateral 
flow devices are membrane based devices which rely on the immune-chromatography 
principle and provides rapid end-point testing. Apart from these techniques, simple 
agglutination tests are also widely accepted for the detection of food borne patho-
gens (Baylis 2003; McCarthy 2003).

Very precise detection of pathogens is possible by targeting specific sequences in 
DNA and RNA.  Several methods are available for the amplification of specific 
sequences on the target pathogen. Polymerase Chain Reaction (PCR) technique 
relies on a thermostable polymerase, set of primers and nucleotide bases to amplify 
the specific sequence recognized by the primers. The amplified sequences are visu-
alized by staining with ethidium bromide after agarose gel electrophoresis for the 
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presence of a band or bands of the expected size. There are several types of PCR 
developed by improving the sensitivity of the traditional PCR (Girones et al. 2010). 
Nested PCR uses two sets of primers which flank the target sequence to be ampli-
fied. Reverse transcriptase (RT-PCR) amplifies the sequences in RNA. Simultaneous 
detection and quantification of a nucleotide signal in Real-time PCR is made pos-
sible by continuously measuring a fluorescent reporter during the reaction. NASBA 
(nucleic acid sequence-based amplification) is an isothermal amplification tech-
nique which involves the simultaneous activity of avian myoblastosis virus-reverse 
transcriptase (AMV-RT), ribonuclease H, and T7 RNA polymerase. Target 
sequences in the pathogens can also be detected by hybridization technique in which 
the single stranded nucleotides are annealed together based on the complementarity. 
The techniques mentioned above do not identify several pathogens simultaneously 
(Singh et al. 2014). Microarray technologies facilitate the simultaneous detection of 
several pathogens at a time. Advances in sequencing technologies and bioinformat-
ics have led to a tremendous increase in the use of molecular subtyping protocols for 
the identification of pathogens. The chemotaxonomic method of identification is 
based on the analysis of antigenic characteristics, whole cell protein analysis and 
composition of fatty acids (Fizgerland and Swaminathan 2003; Sanderson and 
Nicholas 2003).

Detection of pathogenic bacteria using DNA amplification method has shown 
promising outcomes in the field of pathogen detection where PCR is used to enhance 
the sensitivity of the nucleic acid based assay. Target nucleic acid segment of defined 
length and sequence are amplified by following three steps of PCR such as denatur-
ation, annealing, and extension of oligonucleotide primers by using thermostable 
DNA polymerase (Mandal et  al. 2011). PCR technique has different advantages 
over culture and other conventional methods due to its specificity, sensitivity and 
rapid accuracy. However, there are still some difficulties due to its polymerase 
enzyme specificity towards environmental contaminants which leads to difficulties 
in quantifying the generation of false positives through the detection of naked 
nucleic acids, non-viable micro-organisms, or contamination of samples in the labo-
ratory (Lampel et al. 2000). From industrial application point of view, regular detec-
tion of bacterial contamination (food and water borne) using PCR technique can be 
expensive and complicated which requires highly skilled personnel with accuracy 
(Singh et al. 2014).

Among all the conventional techniques for pathogen detection, immunological 
detection with the use of antibodies has shown some positive result for the detection 
of the bacterial cells, spores and viruses (Iqbal et al. 2000). Polyclonal antibodies 
can be raised rapidly and cheaply as compared to monoclonal antibodies. However, 
the limitation of polyclonal antibodies regarding specificity encourages the devel-
opment of hybridoma techniques along with recombinant antibody phage display 
technology (Harris et al. 2004). Since last few years, immunological methods for 
the detection of bacterial pathogens have become more accurate, sensitive and 
reproducible with many commercial immunoassays available in the market 
(Uematsu et  al. 2006). Even though both nucleic acid-based and antibody-based 
detection has been able to decrease the time consumed for the assay, they are still 
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deficient in the ability to detect pathogens in “real-time”. The requirement for a 
more sensitive, reliable and less time consuming and specific method of detecting a 
target analyte, at low cost, is the focus of many research, in particular for applica-
tions in environmental samples (Leonard et al. 2003).

The biosensor technology is one of the newly emerging techniques which offers 
the potential for detecting pathogens in real time. However, it still requires time-
consuming pre-enrichment to detect small numbers of pathogenic bacteria in food 
and water. Advancement in the antibody dependent sensing techniques along with 
the emergence of phage displayed peptide biosensors show increased possibilities 
for the detection of water and foodborne bacteria (Benhar et al. 2001; Goodridge 
and Griffiths 2002).

8.5	 �Mechanism of Biosensors

A biosensor is an analytical device that consists of a bio-recognition element cou-
pled to a signal transducer to detect an analyte of interest by converting a biological 
response to an electrical signal (Turner 2013). In most cases, “real-time” observa-
tion of a particular biological event (such as antigen-antibody reaction) can be done 
successfully by using this technology. Biosensors can enable the detection of ana-
lytes with a broad spectrum present in complex sample matrices and have shown 
promising outcome in areas such as food analysis, clinical diagnostics and environ-
mental monitoring (Fitzpatrick et  al. 2000). Common bio-recognition elements 
such as oligonucleotide probes, antibodies, enzymes, aptamers, cell-surface mole-
cules and phages are called as bio-receptors which can recognize the target analyte 
molecules. Similarly, another major part of the biosensor is a transducer,which can 
be further classified into different aspects such as optical, electrochemical, thermo-
metric, piezoelectric, magnetic and micromechanical or a combination of one or 
more than one of these techniques mentioned above (Arya et al. 2011). Biosensor 
devevloped to detect food and water borne pathogens must be having higher effi-
cacy and real time validation. They should also have some basic and essential ideal-
istic characteristics such as accuracy towards the pathogen detection with low or 
preferably zero probability of false positive and falst negative results (Rider et al. 
2003). It has to be quick enough to produce a “real-time” response in case of perish-
able food analysis. The sensitivity of the biosensor has to be high to determine the 
pathogenic bacteria in food or water sample with a lower concentration, and it 
should detect false positive results efficiently. Additionally, along with higher sensi-
tivity, the biosensor has to be highly specific for the target analyte; it should dis-
criminate between target pathogen, toxin and other microorganisms. Along with 
these main features, a biosensor has to be reproducible, robust, and user-friendly 
(Zhao et al. 2014).

Nanotechnology has emerged as an elementary division of material science 
receiving global attention, owing to its wide array of applications. Nanoparticles are 
of great interest due to its small size, large surface to volume ratio and other novel 
characteristics (Dasgupta et al. 2015). Due to the wide range of applicability of this 
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nanoscience and technology, it has a simulated group of scientists to fabricate a 
nanomaterial based device for bio-analysis (combining nanomaterials with biologi-
cal molecules). These bio recognition devices are capable of rapid and sensitive 
detection which can detect even a single cell of food and water borne pathogens 
within a few minutes (Arora et  al. 2011). Development of nano-based materials 
such as nanoparticles, nanobelt, nanowire, nanofiber and nano-flakes have trans fig-
ured clinical and molecular biology by their significant use as bioanalyzer and bio-
detector. Yang et al. (2007) have described the application of polymeric nano-particles 
conjugated with biomolecules such as antibiotics, antibodies, adhesion molecules 
and particular DNA sequence for specific pathogen detection.

In general biosensors consist of two basic key components (Fig.  8.2) (1) 
Recognition element which can be categorized in to different substances such as, 
biological, enzymatic or cellular components (oligonucleotides, peptides, DNA 
sequence, and aptamers, etc.) basically termed as bio-receptors or bio-analyzers and 
(2) transducer (signal conversion unit). In addition, all biosensors consist of input/
output interface (an electronic component which interacts with the instrument). The 
recognition element (bio-receptor/bioanalyzer), a ligand which binds directly or 
indirectly to the target molecule or component (analyte) is mainly responsible for 
producing a primary signal (Perumal and Hashim 2014). The transducer is the com-
ponent that responds to the main signal from the recognition element and converts 
it into a form that can be amplified, stored, manipulated, displayed and analyzed. 
The signal produced by the recognition element can be generated by the direct inter-
action of ligand and analyte molecule which further can be analyzed directly with 
the help of a detector. This kind of biosensors is known as a direct (label free) bio-
sensor (Ronkainen et al. 2010). Similarly, in some biosensors, generation of pri-
mary signal relies on the presence of any secondary molecules such as fluorescence 
labelled marker molecules which lead to the indirect detection of the target analyte. 
This type of biosensors is known as an indirect biosensor. Transducers work based 
on many physical principles including fluorescence, electrochemistry, optics, mass 

Fig. 8.2  Basic key components of a biosensor
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detection, etc. For the selection of a biosensor ligand (bio-receptor), two main crite-
ria are followed such as affinity and specificity. Antibodies are broadly used as 
ligands in both direct and indirect biosensors due to their specific characteristics, 
versatility, and strong and stable binding specific antigens. Biosensors that use anti-
bodies as the recognition element are called as immunosensors. Commercial anti-
bodies are readily available for many food and waterborne pathogens. Most suitable 
recognition elements that appear to have potential outcomes for biosensor applica-
tions includes antibody fragments (Fab) and recombinant variation of antibody 
fragments (Emanuel et al. 2000). Antibodies in immunosensors can be produced by 
genetic immunization which involves the transfer of DNA specific for the antigen to 
stimulate antibody production and peptides by phage display techniques (Goldman 
et al. 2000). In the following chapters, different strategies behind the biosensors, 
their mechanisms and functionality will be discussed briefly.

8.6	 �Different Strategies for Pathogenic Bacteria Detection

Biosensors can be classified on the basis of their basic elementary part of the sens-
ing system such as type of bio-receptors and transducer (Fig. 8.3). Additionally, for 
the detection of food and waterborne pathogens, several techniques have been 
described that allows the direct measurement of contamination from different liquid 

Fig. 8.3  Classification of biosensors
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or solid interfaces (Mascini and Tombelli 2008). Several strategies have been devel-
oped to detect either the component (surface antigens, nucleic acids, and transmem-
brane proteins) or the metabolites produced by the pathogens (Fig. 8.4). In general, 
biosensors can be classified in two broad catagories (1) Direct biosensors and (2) 
Indirect biosensors.

8.6.1	 �Direct (Label Free) Biosensors

Direct (label free) biosensors are based on the direct measurement of a physical 
phenomenon occurring during a biochemical reaction on a transducer surface. 
Signal parameters such as a change in oxygen concentration, pH gradient and ion 
consumption, potential difference and current, resistance and optical properties can 
be monitored by using different electrochemical or optical transducers and ampli-
fied for the data storage and analysis. This direct technique can be further classified 
according to the process used for signal transduction (Perumal and Hashim 2014).

8.6.1.1	 �Optical Biosensors
Optical biosensors have gained popularity as the direct (label free) method for the 
detection of food and waterborne pathogenic bacteria amongst all of the other tech-
niques due to their high selectivity and sensitivity. These sensors are capable of 
detecting tiny changes in refractive index or thickness, which occurs during the 
attachment of target cells or analyte component on the transducer surface. Amidst 
all other optical biosensors, very first commercially available sensor is fiber-optic 
which was marketed by Research International (Monroe, WA). The basic principle 
behind the detection mechanism of the fibre optic sensor relies upon the fluores-
cently labelled pathogen (target analyte) or toxins which when bound to the receptor 
molecules on the transducer surface gets excited by the laser wave at 635 nm (Tait 
et  al. 2005). Fluorescent signals generated by continuous laser excitation were 
detected by the fluorescence detector in the real time system (Bhunia 2008). Various 
optical biosensors for the detection of pathogenic bacteria (Baeumner et al. 2003), 
toxins (Bae et al. 2004) and other contaminants from water and food samples have 
been developed so far, and out of them, the fluorescent biosensor has shown 

Fig. 8.4  Different strategies for detection of food and water borne pathogens
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promising outcome due to its outstanding sensitivity and specificity. In fluorescent 
biosensors, a fluorescent compound attached to antibodies enhances the efficacy of 
pathogen detection. FTIC (fluorescein isothiocyanate) is a regularly used fluores-
cent marker (Li et al. 2004). Other than this technique, few recently developed tech-
niques for pathogen detection use techniques such as the Raman spectroscopy, 
surface plasmon resonance, laser, etc. (Yoo and Lee 2016).

8.6.1.2	 �Raman and Fourier Transform Infrared Spectroscopy 
Biosensor

Spectroscopies based on the vibrational energy such as Raman spectroscopy and 
Fourier transform infrared (FT-IR) are the more recurrently reported whole organ-
ism fingerprinting techniques (Kloß et al. 2013). There is always a need of culturing 
the microorganisms for the detection of the specific analyte from the mixture of 
samples to get the highest amount of biomass. Raman spectroscopy is an optical 
technique based on the principle of light scattering and it has been utilized by many 
researchers as a mean of rapid detection of bacterial pathogens from food and water 
samples. Schmilovitch et al. (2005) employed a disperse system of the spectropho-
tometer with a 785 nm diode laser to detect both Gram-positive and Gram-negative 
bacteria which showed clear dissimilarity between samples containing bacteria and 
control (without bacteria). In this approach, a pathogen of interest along with target 
analytes are separated from the sample with the help of capture biomolecules, which 
add an extra layer of specificity there by synergistically enhancing the efficacy of 
the sensors.

8.6.1.3	 �Surface Plasmon resonance Biosensor
Surface plasmon resonance (SPR) works based on the principle of optical illumina-
tion can be utilized for biomolecular analysis (Scarano et al. 2010). Additionally, 
plasmon represents the excited free electron present in the outer surface of the metal 
layer. Compatible light energy photons are the source of this resonant excitement. 
The amplitude of this resulting plasmon electromagnetic wave is the maximum at 
the interface (Anker et al. 2008). Direct label free detection of food and waterborne 
pathogens is also possible with this method. Application of SPR based biosensors 
have been described by several researchers for the detection of food and water borne 
pathogen such as L. monocytogenes, C. jejuni (Koubova et al. 2001; Taylor et al. 
2006; Ray and Bhunia 2007), Salmonella (Oh et al. 2004), and E. coli O157:H7 
(Subramanian et al. 2006). Additionally, many commercial SPR based biosensors 
have been employed by many researchers for the detection of food and waterborne 
pathogens in recent years. Spreeta™ biosensors was used for the detection of E. coli 
O157:H7 (Waswa et al. 2007). Biacore 3000 was utilized by Leonard et al. (2004) 
for the detection of L. monocytogenes.

In Spreeta™ biosensors, the incident light from LED reflects off a gold surface, 
the angle and intensity analogous to the SPR minimum is measured representing the 
changes in the refractive index which corresponds to the coupling of antigen-
antibody complex at the sensor surface (Waswa et al. 2007). This real-time assay 
was conducted, and the results were obtained after 30 min. The sensitivity of the 
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assay was nearly 102–103 CFU/mL. Specificity of the assay was confirmed from the 
sensorgram as other pathogens (such as E. coli K12 and Shigella) did not show any 
changes during the analysis. Balasubramanian et al. (2007) also described the label 
free detection of S. aureus with the help of lytic phage as immensely precise and 
selective bio-recognition element and SPR based Spreeta™ sensor was chosen as a 
detection platform.

8.6.1.4	 �Evanescent Wave Biosensor
Generation of an evanescent wave can be defined as the total reflection of incident 
light at a particular angle. Under such conditions, an energy field is generated which 
penetrates a short distance past the reflecting surface. The circulation of the gener-
ated evanescent wave relies on the optical properties of the thin layer of the medium 
adjacent to the reflecting surface. These phenomena can be applied to the detection 
of pathogenic bacterial contamination in different food and water samples. Many 
fibre optics sensors use evanescent wave physics (Marazuela and Moreno-Bondi 
2002). Evanescent based immunosensors are having a limit of detection (LOD) 
range between 1 and 10 ng/mL for large (>30 kDa) proteins (Nedelkov et al. 2000) 
depending on the molecular weight of the antigen and its affinity towards the anti-
body. Direct measurement of low molecular weight molecules such as mycotoxins 
with the molecular weight of 750 Da yield higher LODs as compared to the larger 
analytes. For the detection, at low range (LOD) various indirect methods such as a 
sandwich method or competitive assays are often used (Rasooly 2001).

8.6.1.5	 �Resonant Crystal Biosensors or Piezoelectric Biosensors
Resonant crystal biosensors are one of the widely used biosensors due to their sim-
ple mechanism of sensing technology and low cost. It is also known as quartz crys-
tal microbalance (QCM) and piezoelectric biosensor (Marrazza 2014). The primary 
mechanism of this sensing technology relies on the changes of the acoustic resonant 
frequency of a quartz crystal during the attachment of a target analyte to the crystal 
surface. Quartz disk attached to electrodes works as a transducer in this sensor 
which can amplify the signal produced as an acoustic wave generated by application 
of an external oscillating electric potential across the device. The acoustic wave is 
generated through piezoelectric (PZ) effect resonating on the crystal at a particular 
frequency which is dependent on the mass of the analyte bound to the sensor sur-
face. Resonant crystal biosensor allows real-time, direct and label free analysis of 
larger antigens which leads to the successful detection of pathogenic bacteria pres-
ent in water and food samples (Law et al. 2015). Piezoelectric immunosensors were 
developed for V. cholerae (Chen et al. 2010) and S. typhimurium (Arora et al. 2011). 
Specificity of sensors are based on the receptor-analyte reaction, for example, in the 
immunogravimetric microbial assay (Kazemi-Darsanaki et al. 2012), for the detec-
tion of Candida albicans an anti-C. albicans antibody coated with PZ crystal was 
used and the sensitivity of the assay was in the range of 106–108 CFU/mL. Therewas 
no attachment of other species except C. albicans in the reaction, and no significant 
shifts in the frequencies were observed due to non-specific adsorption.
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8.6.1.6	 �Bioluminescence Sensors
The emergence of bioanalytical sensing tools by using the ability of certain enzymes 
to produce a photon as a byproduct of their biochemical reactions have shown 
promising outcome for pathogen detection. This phenomenon is known as biolumi-
nescence and can be used for the detection of physiological conditions of cells. 
Ulitzur and Kuhn (1987) first described the application of this bioluminescence for 
bacterial detection by luciferase reporter phages. In their work, they have intro-
duced the luciferase gene in the genome of a bacteriophage, which can infect the 
bacterial cell. Bioluminescence sensors have been used for the detection of a wide 
range of bacteria (VanDorst et al. 2010). Blasco et al. (1998) have demonstrated the 
development of an accurate and sensitive method for the detection of Salmonella 
spp. and E. coli. They have used bacteriophages for the specific lysis of bacteria and 
the cell content released was measured by ATP bioluminescence. An increment in 
the sensitivity was obtained by focusing on bacterial adenylate kinase as the cell 
marker instead of using ATP. Emission of light was measured as proportional to the 
cell numbers over three orders of magnitude, and 103 cells were easily detectable in 
a 0.1 ml sample volume (Tallury et al. 2010).

8.6.1.7	 �Electrical Impedance Based Biosensor
Impedance is termed as the total resistance of a conductive system in AC supply and 
consists of two major basic part (1) capacitance which depends on the characteris-
tics of the electrode and (2) conductance, which depends on the conductivity of the 
medium. In the case of impedance based biosensors, microbial metabolism results 
in an increase in capacitance and conductance due to the conversion of larger mac-
romolecules and another component to its monomeric smaller form which led to 
increasing the charge carrying capacity (Varshney and Li 2009). This increment in 
the capacitance and conductance resulted in the decrease in the impedance. 
Therefore, the alteration of impedance, capacitance and conductance are only dif-
ferent ways of monitoring the test system and are all inter-related (Shimazaki et al. 
2015). The relationship between impedance (Z), resistance (R), capacitance (C), 
and frequency (f) of a resistor and a capacitor series is articulated as follows (Miller 
et al. 2010):

	
Z R pfC2 2 2

1 2= + ( )/
	

Bridge circuit measures this impedance phenomenon. There is always a need for 
a reference module to measure and exclude the nonspecific changes in the test mod-
ule. Due to this requirement, one pair of electrode is used in these sensors. The 
reference module serves as a controller for evaporation, changes of dissolved gases, 
temperature and most importantly degradation of culture medium (Singh et  al. 
2014).

This impedance method is widely used by most of the researchers, and the 
Association of Official Analytical Chemists International (AOAC) accepted it as a 
first action method (Monaci and Visconti 2010). This approach is well established 
for the detection of specific food pathogens. A significant parameter for the 
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pathogen in food and water sample is cell viability. Viable cells can be measured by 
using a microscope after suspending the cells in a dye such as Trypan Blue. A new 
emerging biosensor for real time monitoring of the concentration of growth and 
physiological state of cells was proposed by Monaci and Visconti (2010). This bio-
sensor is based on the measurement of alteration in impedance during the growth of 
adherent cells on integrated electrode structures (Zeng et al. 2016). The impedance 
of the biosensor changes according to the cell density, growth and long-term behav-
iour of the cells grown on the electrode at different time interval. Most impedance 
analysis is completed within 20–25 h. Gracias and McKillip (2004) investigated the 
detection of Salmonella using this method in 250 food samples. Food samples for 
the analysis were pre-enriched 14–16 h at 37 °C in peptone water.

8.6.1.8	 �Potentiometric, FET and LAPS-Based Biosensors
These are amongst the least common directly measurable biosensors used for patho-
gen detection. The working principle is based on the detection of ions present in the 
test solution. There is always need of one inert reference electrode and one working 
electrode in contact with the sample. Detection of pathogenic bacteria is possible 
with these biosensors by continuous monitoring of the pH changes or fluctuation in 
ionic concentration during the in-situ analysis conditions. Bergveld (2003) employed 
the use of ion-selective field effect transistor (ISFETs) for biological detection 
events. They have also demonstrated the fabrication of this type of biosensor using 
p-type silicon substrate with two n-doped regions, one acting as a source and another 
as a drain with a gate in between which acts as an insulator due to the presence of 
SiO2 covered region, which is further over encrusted by ion selective membrane. 
Another new technique has been evolved for the detection of food borne pathogen 
by combining ISFET and potentiometry with optical detection. It is known as 
a light-addressable potentiometric sensor (LAPS) (Perumal and Hashim 2014; Wu 
et al. 2015).

8.6.2	 �Indirect Biosensors

8.6.2.1	 �Fluorescence Labelled Biosensors
Microorganisms are composed of various biological entities like proteins and poly-
saccharides which act as antigens in immunogenic reaction. This phenomenon per-
mits the development of immunoassay techniques for pathogenic bacterial detection. 
In fluorescent immunoassay (FIA), immunoglobulins are labelled with fluoro-
chromes which absorb short-wavelength light and then emit light at higher wave-
lengths which can be detected using fluorescent microscopy. Fluorescein 
isothiocyanate and rhodamine isothiocyanate-bovine serum albumin are most com-
monly used fluorochromes to tag antibodies for the detection of bacteria contami-
nated samples in both direct and indirect methods (Parkinson and Pejcic 2005). For 
detection of food borne bacteria by using FIA, food samples are pre-enriched with 
culture mediums because of less number of viable bacterial cells in food sample and 
also to reduce the interference caused by the background fluorescence producing 
food particulates (Perumal and Hashim 2014).
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Similarly, detection of waterborne pathogenic bacteria in water samples can be 
done by concentrating the bacterial cells through membrane filtration. Polycarbonate 
filters are commonly used in this procedure (Mandal et al. 2011). Using this tech-
nique, detection of waterborne pathogenic bacteria E.coli O157:H7 was possible in 
the range of 105–109 CFU/ml within 4 h of assay time periods. Additionally, it has 
also been utilized for the detection of S. typhimurium and Klebsiella pneumoniae. 
Chowdhury et al. (1995) used a similar kind of technique for detecting V. cholerae 
O1 and O139. Bacterial cells were incubated with yeast extract in the presence of 
nalidixic acid which leads to the growth of substrate responsive viable bacterial 
cells with elongated and enlarged shape and was readily detectable using fluores-
cent antibody.

8.6.2.2	 �Cell Based Biosensor
These biosensors also serve as a dependable tool for the detection of pathogens in 
food and water samples. Working principle of cell based assays depends upon the 
electrical properties of cells to figure out the changes in the cell’s vicinity (Singh 
et al. 2013). Due to the presence of various biological molecules at the cell surface, 
it functions like a capacitor where fluid acts as a resistance element. Electrical 
impedance detects the minute alteration in cell growth, density as well as the differ-
ences in the regular activities of the cell due to the influence of the external environ-
ment. Detection of the pathogenic bacteria in food has been done with the help of 
mammalian cells (Gray 2004). The detection of enzymes and cofactors from the cell 
system has become easier due to the massive release of metabolites (chemical com-
pounds) into the culture medium during the assay (Fratamico and Bhunia 2005).

8.6.2.3	 �Amperometric Biosensor
Amperometric biosensors can detect the electrochemically active analyte which can 
be oxidized or reduced on the electrode. Amperometric biosensors consist of thin 
film construction made of gold (Au), carbon or platinum. For screen printing, the 
electrodes, substrates (glass, plastic or ceramic) are coated with thin films of ink in 
a particular pattern. Different inks can be applied to get various dimensions and 
shapes of the biosensor. It includes a series of basic steps, selection of the screen, 
selection and preparation of inks, selection of substrate and finally drying and cur-
ing stages (Arora et al. 2011). The main advantages of this technology are design 
flexibility, process automation, good reproducibility and a wide choice of materials. 
In recent years, screen printed electrochemical cells, which are cheap, affordable 
and can be produced in large scale, are widely used for developing the amperomet-
ric biosensors for the detection of various foods and waterborne pathogens (Lazcka 
et  al. 2007; Velusamy et  al. 2010). Disposable nature of these sensors lead to 
decrease in chance of contamination during electrode fouling due to the over growth 
of microorganism which results in loss of sensitivity and accuracy of the biosensor. 
Amperometric biosensor depends upon the enzyme functionality which helps to 
convert electrochemically inactive analyte to electrochemically active analyte 
through a catalytic process. Horse radish peroxidase and alkaline phosphatase have 
been used commonly as the functional enzymes. These biosensors are used to 
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develop immunosensors and genosensors for pathogen detection (Palchetti and 
Mascini 2008; Arora et al. 2011).

8.6.2.4	 �Microbial Metabolism-Based Biosensors
These types of biosensors have been developed for the detection of bacterial patho-
gens by their metabolic pathways. The amperometric transducers are used for track-
ing the biochemical reactions in the bacterial cell metabolism. In general, Clark 
type oxygen electrode is used for the measurement of oxygen consumed by the 
bacterial cells (Patel 2002; Timur et al. 2003). The detection of pathogens was car-
ried out by the measurement of the cathodic peak current of oxygen during the 
proliferation period of bacterial cells (Ruan et al. 2002). One more detection mecha-
nism using electrochemical transducer relies on the detection of specific marker 
enzymes after culturing the test sample in a suitable medium. By using this strategy, 
detection of coliforms in water and food samples have become readily possible due 
to the mere presence of enzymes such as β-D-glucuronide glucuronosohydrolase 
(GUS) and β-D-galactosidase (β-GAL). Detection of E.coli using conventional 
approaches to detect GUS enzymes or β-GAL is a much more lengthy process 
which relies on spectrometric detection of the bacterium. Conventionally, the bacte-
rial cells are first treated with chromogenic substrates such as p-nitrophenyl-β-D-
glucuronide (PNPG) and then monitored spectrometrically, until the release of 
chromophore indicators (p-nitrophenyl (PNP) and d-glucuronic acid) confirming 
the presence of E. coli in the test sample. To overcome this time-consuming proto-
col Mulchandani et al. (2005) developed an efficient electro-oxidative method for 
GUS detection using bacteria-based biosensor. They have immobilized food borne 
pathogenic bacteria on a carbon paste electrode that can degrade PNP and produces 
hydroquinone (intermediate) for oxidation at a lower potential. A rapid detection 
method for viable E. coli cells was developed by Pérez et al. (2001) using enzyme 
β-D-galactosidase that can convert 4-aminophenyl-β-D-galactopyranoside 
(4-APGal) to 4-aminophenol (A-AP) after hydrolysis.

8.6.2.5	 �Immunosensors
These types of biosensors work based on the principle of immunology where 
antigen-antibody interaction takes place. Specific antibodies are used for the detec-
tion of specific antigen or toxin of microorganisms. Due to the specific binding 
phenomenon, it has a high level of sensitivity towards the detection of particular 
water and food borne pathogens. Antibodies for this sake can be immobilized on the 
surface of the electrodes or magnetic beads that lead to differentiation of two differ-
ent kinds of immunosensors (1) immunosensors based on antibody immobilized on 
the electrode surface and (2) immunosensors based on antibody attached on the 
surface of the magnetic beads (Arora et  al. 2011). In this biosensors, enzyme-
substrate catalysis happen in the presence of antibody and produces products such 
as ions, pH variation, or oxygen consumption, which further lead to the generation 
of electrical signal with the help of a transducer. Numerous approaches have been 
used in the immune-module operations of biosensors, which includes an antibody-
based system for the detection of food and waterborne pathogens such as E.coli 

8  Strategies Behind Biosensors for Food and Waterborne Pathogens



132

O157:H7 and Salmonella spp. Immunomagnetic beads have also been utilized to 
enhance the selectivity of amperometric biosensors (Liu et  al. 2001; Abbaspour 
et  al. 2015). In this technique, S. typhimurium is sandwiched between antibody 
coated magnetic beads, and alkaline phosphatase (enzyme) labelled antibody. After 
that, by using a magnet, beads are localized onto the surface of a disposable graphite 
ink based electrode in a multiwell plate format. The presence of bacterial cells is 
detected by the oxidation of the electroactive enzyme product. This technique offers 
a LOD of 8 × 103 cells/ml in buffer sample within 80 min (Gehring et al. 1996).

8.6.2.6	 �DNA Based Biosensors
In recent years, newly emerged DNA based biosensorshave shown promising out-
come in the field of pathogen detection. These biosensors consists of short nucleic 
acid sequences also known as probes with the specificity towards a particular bacte-
rium conjugated on the surface of a transducer. The probe DNA sequence binds to 
the complementary DNA sequence of the target bacterium and leads to the detection 
of the pathogenic bacteria; this event is also known as hybridization. The level of 
hybridization indicates the presence of a complementary sequence in the sample 
which finally leads to the detection of the target pathogen (Nordin et  al. 2016). 
Some reviewers (Kerman et al. 2003) have demonstrated the application of electri-
cal transducers with the combination of DNA based detection. Different pathogenic 
bacteria can be detected easily by using disposable low-density genosensor arrays. 
This can be fabricated by using a screen-printed array of Au electrodes having 
immobilized thiol-tethered oligonucleotide and biotinylated signalling probes 
(Farabullini et al. 2007) for complimentary sequence detection. Analysis strategy 
depends on the identification of a toxin produced by the specific bacteria responsi-
ble for the production of toxin. This can be termed as one of the most crucial steps 
for the detection technique as the encoded gene of the target bacteria can frequently 
express toxin in food samples (Singh et al. 2014). Wang (2002) have successfully 
developed one novel detection method for the detection of Cryptosporidium, E.coli, 
and Giardia by using genosensor technology. Bacterial immobilization of specific 
oligonucleotides was done by using carbon pasted electrode, and chronopotentio-
metric techniques. Further simultaneous monitoring of hybridization outcomes 
were measured by real-time sensors for pathogen detection.

8.6.3	 �Nano-biosensors

The interplay between nanomaterials and biological system creates an emerging 
research field of vast importance. Unique features of nanoparticles such as small 
size, large surface to volume ratio and other novel characteristics make them tre-
mendously applicable. In particular, application of nanomaterials for the develop-
ment of nano-based biosensors for sensing applications has received considerable 
attention (McFarland and Van Duyne 2003). Integration of one dimensional (1D) 
nanomaterials, such as nanowires, or two dimensional (2D) nanotubes in electric 
devices offer substantial advantages for the detection of pathogenic bacteria and 
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have more advantages over conventional optical bio-detection methods (Gruner 
2006). Optical-affinity biosensors based on SPR do the qualitative and quantitative 
measurements of biomolecular interactions between immobilized biomolecule on a 
metal surface and target analyte in the test solution. Application of nanotechnology 
in the field of optical bio-detection has emerged significantly in recent years (Kumar 
et al. 2015). To enhance the sensitivity of an SPR based biosensor, Au nanoparticles 
(NPs) have been utilized to amplify their detection level. Joung et  al. (2008) 
employed Au NPs in a signal amplification system to enhance the sensitivity for the 
detection of E. coli 16s rRNA by using peptide nucleic-acid probes with an SPR 
biosensor system. DNA based biosensor for the detection of particular pathogens 
has become a widely used technique. Recent advancements in nanotechnology have 
also resulted in the development of bio-barcode assay which can provide amplifica-
tion without the use of PCR and can detect many target pathogens in one sample (Li 
et al. 2005; Stoeva et al. 2006). This method is based on the bio-functionalization of 
Au NPs with a ds-DNA or ss-DNA bio-barcode, bio-receptor (such as antibody or 
oligonucleotide) or single component modified microparticles (MMPs) containing 
another bio-receptor capable of binding with the target analyte. Complexes formed 
by sandwiching an analyte molecule between two bio-functionalized particles are 
then separated using a magnet (Rowland et  al. 2016). The DNA bio-barcode is 
released and detected by using a chip-based detection method consisting of silver 
(Ag) enhanced Au NPs or a fluorophore bound to the bio-barcode (Oh et al. 2006). 
Magnetic nanoparticles have also been utilized by many researchers for the devel-
opment of a sensing technology with higher specificity and sensitivity at a lower 
cost. One example is the work done by Koets et al. (2009) who have employed the 
development of magneto-resistant sensor using supermagnetic particles as detection 
labels for E. coli and Salmonella. Additionally, there are many examples in the lit-
erature for novel NPs-based materials for electrochemical bio-sensing which 
enhances the specificity and efficacy of real-time analysis (Kumar et al. 2015). For 
example, screen printed carbon electrode modified with Au NPs display a 13.1-fold 
increase in detection of E. coli O157:H7 compared to the traditional screen printed 
carbon electrode with a working range of 102–107 CFU/mL (Lin et al. 2008).

8.6.4	 �The Electronic Nose

Electronic nose system has gained popularity rapidly during the last few years, the 
majority of its applications concentrate in the field of pathogenic bacterial detection 
in different food and water samples. Electronic nose system comprises of sophisti-
cated software, data preprocessing, and statistical analysis of collected data by pat-
tern recognition (PR) software (Loutfi et al. 2015). This technology has been used 
extensively in the field of sensors due to its potential for detecting target samples 
based on acoustic waves, conducting polymers or semiconducting materials. Several 
reports can be found in recent years on the use of electronic nose to detect or iden-
tify bacteria. Schiffman et al. (2001) have investigated the efficacy of the electronic 
nose using 15 different kinds of metal-oxide sensors to classify bacteria and fungi. 
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Due to the microbial metabolism, they produce some volatile organic compounds 
along with gases during the growth period. These metabolic products can be moni-
tored by these sensors because they have tremendous information potential and 
respond to both odorous and odourless volatile compounds. Magan et al. (2001) 
have demonstrated the application of electronic nose biosensor using 14 conducting 
polymeric sensors to detect volatile profiles produced by non-inoculated skimmed 
milk media and media inoculated with B. cereus and Candida pseudotropicalis. 
Bacteria present in the test sample were detected by the automated headspace ana-
lyzer which consists of conducting polymer sensors (Osmetech Microbial Analyzer, 
OMA). Each of the sensors is having different sensing abilities towards various 
volatile organic compounds. This system was also used for screening urine speci-
mens by sampling urine headspace and analyzing the output of the multi-detector 
response (Aathithan et al. 2001).

8.7	 �Conclusion

The upsurge of infectious diseases caused by water and foodborne pathogens are 
perilous global health issues. Technologies which can rapidly, sensitively, and cor-
rectly detect their presence in accordance with water and food safety regulations at 
clinically significant levels are essential for the upgradation of health and quality of 
life for millions of people. In this chapter, note on water and foodborne pathogens, 
infectious diseases caused by them and their specific route of infections have been 
discussed briefly. Additionally, numerous strategies for the development of advanced 
sensing techniques (biosensors) for the detection of food and waterborne pathogens 
have been described along with their advantages over the conventional approaches. 
Biosensors have great potential in detection of food and waterborne bacterial patho-
gens. The sensitivity of different biosensors discussed in this chapter vary relying 
on transducer properties and specific biological recognition elements (bio-recep-
tors). Though several sensing strategies are developed through research, only a few 
approaches have shown their potential to reach the commercial market. Many of the 
newly developed biosensors can detect single or few analytes, but a future aspect of 
biosensing will be the multiple-sensing element instruments. For example, immu-
nosensors based on the use of different antibodies are placed in an orderly arrange-
ment in the 2-dimensional format of the chip. Using this technique, various antigens 
of water and foodborne pathogenic bacteria can be detected by their binding to 
specific antibodies at unique positions. Similarly, DNA based biosensors have also 
demonstrated their efficacy at low concentrations, but they require a purification 
process in upstream which is time-consuming.

Current and future research need to be concerned in two important cases (1) 
detection of pathogens in their actual environment matrixes and (2) pre-processing/
pre-enrichment steps required for the analysis. Additionally, it involves miniaturisa-
tion strategies, material research and emphasis on multiplexing so that various 
pathogenic target analytes can be detected at once in “real-time” scale. Taken 
together, this technology can provide novel approaches capable of providing high 
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sensitivity, specificity and speed to replace the current and conventional strategies. 
This would hopefully, improve access to safe drinking water and safe food for con-
sumption thereby reducing the global health issues due to water and foodborne 
diseases.
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Abstract
Cutting edge sequencing (NGS) technology is a sound methodologically for 
exploration of information of to carry out advanced research in the various field 
of biology such as microbiology, biotechnology, agricultural microbiology, 
microbial ecology and community analyses for determination of cellular activi-
ties and gene expression under adverse environmental conditions. For the tran-
scriptome analyses and its quantification, RNA-Seq has provided unlimited 
access to modern bio-analysis. This chapter presents an awful description of quo-
rum sensing, quorum quenching, transcriptome analyses, NGS and correlation as 
well as an association of microorganism with other organisms such as human, 
plants, animal, microorganisms (eukaryotes and prokaryotes) and viruses are 
explained as well. Thus, transcriptome analysis widens the possibilities to get 
more in-depth/to get more top to bottom information about the modern RNA 
world in genetically similar cells or in single cell and viruses.

Keywords
Quorum sensing · Quorum quenching · Plant-microbe interactions · Next genera-
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Abbreviations

Dtr machinery	 DNA transfer and replication machinery
HOHL	 N-(3-hydroxy-octanoyl)-homoserine lactone (3OH,C8-HSL)
T4SS	 Type-4 secretion system

9.1	 �Introduction

Microorganisms are inescapable. They are discovered wherever on the planet in dif-
ferent environmental specialities. They could be useful, pathogenic, saprophytic or 
advantageous in nature. Microorganisms have particular resistance. They are 
equipped for creating assortments of little or vast biomolecules either intracellular 
oozed outside or extracellular fit for infiltrating inside theirselves or others incorpo-
rate proteins, catalysts, chitin, exopolysaccharides, peptidoglycan which have the 
part in the start of resistance or immunity. Higher living beings (Human, plants and 
creatures or animals) and microorganisms are related with endophytic microscopic 
organisms in plants and microorganisms or human and creatures as the microbiome, 
particularly in the gut. Microorganisms capable of triggering persistent and appar-
ent defence mechanism which do not harm to the host or producers (Fig. 9.1). Such 
microorganisms have better adjustment and adaptability with quickly changing 
unfriendly conditions. Microbial cooperation i.e. relationship with human, creature 
(animals- native and genetically modified animals), plants (native and genetically 
modified animals) and microorganisms (both eukaryotes and prokaryotes) are con-
trolled systemically and managed or auto-directed by independent assortment of 
genes worked by the data put away in genes particularly in RNA. In this way, RNA 
sequencing is speedy and favored strategies for the top to the bottom portrayal of 
parts of transcriptome and their action in various ecological unfavorable conditions. 
The “transcriptomology” is defined as “utilization of cutting edge sequencing tech-
nology to assure total mRNAs from the genes of organisms expressed in hostile 
conditions in same cell or organisms in same time and vice versa”. There are some 
possibilities we won’t deny the involvement of virus genome (DNA/RNA) or virus 
gene involved in may help/modify/disrupt functions of transcriptome while expres-
sion of genes in quorum sensing and quorum quenching. Evaluation, monitoring 
and expression of thousands of genes albeit provide an unexplained view of work-
ing adaptive responses of all together total genes in response to extrinsic and intrin-
sic stimuli. This part depicts few of these uses of advances for viable applications 
spreading over biotechnology field.
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9.2	 �Role of Transcriptome Analysis

9.2.1	 �In Revealing Plant-Microbe-Human and Human-Microbe-
Animal Association

Microorganisms especially bacteria are associated with rhizosphere and in the rhizo-
spheric soil, with phyllosphere and endosphere specifically as the microbiome. These 
entire have beneficial, detrimental or many times neutral associations influence 
always on health and development of plants (Chaparro et al. 2014; Kalia 2014, 2015; 
Mendes et al. 2014; Kalia et al. 2014; Kalia and Kumar 2015; Kothari et al. 2016). 
Next generation tolls such as meta transcriptomics and metabolomics are powerful 

Fig. 9.1  Genealogy of new generation sequencing for quorum sensing and applications in 
biotechnology
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tools which can generate great and comprehensive frontline of actively involved 
microbiome at the specific time (Kaur et al. 2015; Kalia et al. 2017; Kim et al. 2017).

Regardless of interaction with indirectly, they have the specific role in the growth, 
development and increasing productivity of plants (Rekadwad and Khobragade 
2017a, b). Like, quorum sensing with plants microorganisms inhabiting gut (espe-
cially human gut, carnivores and grazing animals) possesses its core microbiome 
occupied from the external environment. These have beneficial effects takes part 
in localization or disposal or degradation of unwanted large molecules and improve 
health.

9.2.2	 �For Identification of Quorum Sensing Regulation

Agrobacterium tumefaciens strain P4 (ATP4) is the natural strain proficient to create 
AHls (Hao et  al. 2012) as a product of its metabolic process which enacts 
Agrobacterium tumefaciens strain NT1 (ATNT1). ATNT1 is quorum sensing indi-
cator strain reacts (sense) to long chain AHLs (Kim et al. 2015; Schikora et al. 2016; 
Prateeksha et al. 2017). While, another strain Chromobacterium violaceum strain 
CVO26 is quorum sensing marker (indicator strain) which sense short chain AHLs 
(Gonzalez and Keshwan 2006; Zhu et al. 2011). The TLC spot shape and Rf esteem 
demonstrate that quorum sensing molecule secreted by ATP4 might be HOHL. The 
genome of Agrobacterium tumefaciens strain P4 (ATP4) contains luxI like quality 
which displays 783 bp ORF and encodes a protein (29.6 kDa; 260 amino acids). 
This obscure quality was named as cinI quality. The inclusion mutagenesis in the 
cinI quality and transcriptome examinations allowed the recognizable proof of 32 
cinI-controlled qualities in ATP4. Proteins encoded by these genes are responsible 
for the conjugative transfer (Mondy et al. 2013; Cabezón et al. 2015) of ATP4. The 
targeted in this study were cinR, cinI, cinX, avhB5, avhb11, AGROTU_05920, traA, 
traG, gyrB, blcR etc. These genes perform distinctive functions. The avhB gene 
encodes a T4SS which forms conjugation apparatus. tra gene encodes Dtr machin-
ery, cinI and two (2) luxR orthologs. Conjugation experiments confirm the conjuga-
tive transfer of pAtP4 is regulated by HOHL. Root colonization showed that quorum 
sensing regulation of the conjugation of the pAtP4 does not present a pickup or lost 
wellness to the bacterial host in the tomato plant rhizosphere (Hartmann et al. 2014; 
Mhedbi-Hajri et al. 2016).

9.2.3	 �For Detection of Cell-Cell (Bacteria-Other Prokaryotes/
Eukaryotes) Communication

Microscopic organisms are much wiser than we can consider. They embrace diverse 
survival procedures to make their life agreeable (Seymour et al. 2017). Investigates 
on bacterial correspondence to date recommend that microorganisms can speak 
with each other utilizing compound flagging atoms and additionally utilizing parti-
cle channel intervened electrical flagging. Despite the fact that in recent decades the 
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extents of compound flagging have been explored widely, those of electrical flag-
ging have gotten less consideration. Bacteria timely conduct and share information 
and develop biofilm through quorum sensing and electrical signalling under low 
nutrient supplementation (Kalia 2014; Koul et  al. 2016; Koul and Kalia 2017; 
Majumdar and Pal 2017; Ray and Kalia 2017). This brings up the issue of whether 
individual bacterial ancestries react to the nearness of their nearby relatives by 
changing their gene expression or, rather, regardless of whether gatherings essen-
tially go about as the arithmetic addition of their individual segments. The transcrip-
tome sequencing helps to answer the raised question (Kumar et  al. 2017). The 
transcriptomes of two firmly related strains of extreme halophile Salini bacterruber 
developed axenically and in dual culture/coculture. The strains utilized here co-
occurred in the indigenous habitat and are 100% indistinguishable in their 16S 
rRNAgene, and each strain harbors an extra genome about 10% of its total genome. 
Generally, transcriptomic designs from unadulterated societies were fundamentally 
the same as for both strains. Expression was recognized along for all intents and 
purposes the entire genome but with a few qualities at low levels. A subset of quali-
ties was profoundly communicated in both strains, including qualities coding for the 
light-driven proton (H+) pump xanthorhodopsin, gene taking part in the anxiety 
reaction, and genes coding for transcriptional controllers(González-Torres et  al. 
2015; Krause et  al. 2017). Expression contrasts between unadulterated societies 
influenced fundamentally qualities required in ecological detecting. At the point 
when the strains were developed in coculture, there was an unobtrusive however 
critical change in their individual interpretation designs contrasted with those in 
unadulterated culture. Each strain detected the nearness of the other and reacted in 
a particular way, which focuses to fine intraspecific transcriptomic tweak 
(Charbonneau et al. 2017; Long et al. 2017).

9.2.4	 �Role in Regulation of Nitrogen Oxide(s) Fluxes 
in Nitrification Process

Varieties of microorganisms especially bacteria produce/sense diffusible molecules 
in the form of chemical signals include acyl-homoserine lactones (AHLs). Bacteria 
participating in the conversion of ammonia to nitrate through nitrite during aerobic 
oxidation process produce AHLs. These nitrogen oxides (NO2, N2O, NO) takes part 
in global warming. These greenhouse gases produced during microbial processes 
have an impact in microbial culture system such production of important enzymes, 
protein or small biochemical or macromolecules. Hence, inhibition of nitrogen 
oxide production is necessary to avoid the issues created by inhibitory molecules 
(Mellbye et al. 2016). Thus, there should inhibition of quorum sensing mechanism 
(Basavaraju et al. 2016). This has important role in the control of biofouling like 
situations. Such type of issues and problem would be overcome by using modern 
techniques such as the quorum quenching transcriptomic technique for the in-depth 
analyses of quorum sensing bacteria participating in nitrogen cycle such as 
Nitrobacter winogradskyi. It was revealed that there is link between nitrogen oxides 
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metabolism and quorum sensing in N. winogradskyi and N. winogradskyi like nitri-
fying microorganisms. Quorum quenching transcriptomics experiments helps to 
understand that N. winogradskyi and N. winogradskyi like nitrifying bacteria acts as 
nitrogen sinks or source of nitrogen oxides and nitrous oxides (Pérez et al. 2015; 
Sayavedra-Soto et  al. 2015; Feltner et  al. 2016; Shen et  al. 2016; Welsh and 
Blackwell 2016).

9.3	 �Single-Cell Genomics (SSGs) and Single-Cell 
Transcriptomics (SSTs) for Assessing Biology of Single-
Cell (SC)

Strategies, for example, microarrays and all the more as of late cutting edge sequenc-
ing are broadly used to comprehend the relationship amongst phenotype and geno-
type. Apparently, it has provided glimpses at the genome-wide scale (Tang et al. 
2009; Picelli et al. 2013; Shapiro et al. 2013; Deng et al. 2014; Wu et al. 2014). NGS 
methods, for example, single-cell transcriptome (SST) sequencing system and 
single-cell genome (SSG) sequencing strategy are the promising genetic tools giv-
ing the measurement of genes and their inconsistent expression among individual or 
same cell. Be that as it may, these have a few constraints i.e. it will evaluate either 
genome or single-cell. Presently, there no any utilitarian innovative and functional 
technology is available to investigate and correlation amongst genes and their con-
stant expression in the same cell (Grün et al. 2014; Junker and van Oudenaarden 
2014). Here we portray a strategy to at evaluate both the genome and transcriptome 
of a similar cell in the same cell and at the same time. Since the bacterial mRNA has 
the half-life around a couple of minute shifts from not as much as the single moment 
to 20 min. In eukaryotes like human normal half-existence of mRNA is around 10-h 
changing between 30 min and 24 h (Sciencing; http://sciencing.com/degradation-
mrna-6196816.html). This would be conceivable to some degree through sequenc-
ing both genomic DNA (gDNA) and mRNA from a similar cell permits to compare 
genome variability and transcriptome heterogeneity of the same cell. The quasilin-
ear intensification gDNA and mRNA permitted to discover the genes with high 
cell-to-cell fluctuation in transcript numbers, by and large, have brought down 
genomic duplicate numbers, and the other way around, recommending that copy 
number may drive inconstancy in gene expression among individual cells (Dey 
et  al. 2015; Wei et  al. 2016; Shirota and Kinoshita 2016; Guan and Rosenecker 
2017). Utilisation of modern sequencing methodology could extend from picking 
up bits of knowledge into, quorum sensing, bacterial evolution, and human diseases, 
especially in tumor biology.
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9.4	 �Applications of QS in Decision Taking Cell Through Viral 
Genome for Defence or Resistance or Eradication 
of Disease

Signalling molecules such as AHLs in many Gram-negative bacteria are produced 
in quorum sensing. In vivo these molecules may trigger selective response by which 
bacteria can act in such a way that cell infected by lytic virus may be turned to lyso-
genic phase due to induction of alternative paradigm for prophage induction due to 
signal produced by high number of host cell either infected or healthy (Ghosh et al. 
2009; Høyland-Kroghsbo et al. 2013). This may happen due to the presence of bac-
terial genes in incorporated into the viral genome. For instance, bacteriophage 
phiCDHM1 is a virus of Clostridium difficile. It is closely related to the mycovi-
ruses which infect C. difficile. It was discovered that it has many genes (ArcB, ArcC, 
ArcD) which are ever not reported in any bacteriophage. The discovery of quorum 
sensing genes virus/phage homologous with their hot could influence their bacterial 
abundance/population. The transfer of genes/genetic material through horizontal 
gene transfer and distribution within the species may results in alteration of func-
tions or production some specific molecules (Hargreaves et  al. 2014). As stated 
earlier, viruses/phages belong to the SPbeta group can produce small molecules for 
communication by which they would capable of coordinating between them and 
take the decision on cell cycle to be carried out for infected cell i.e. lytic or lyso-
genic decisions on infected cell. Infecting viruses use a phage/virus specific peptide 
communication code for taking the lysogenic decision. This is called as the arbi-
trium system. Arbitrium system has three genes- aimP (for peptide production), 
aimR (production of intracellular peptide receptor) and aimX (for negative regula-
tion of lysogeny). This system allows descendant bacteriophages to communicate 
and take decision its predecessors so that they decide to take either take up the lytic 
or lysogenic cycle (Erez et al. 2017).
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in Production of Green Fuels
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Abstract
Microorganisms have been used in diverse areas of biotechnology. The focus in 
recent times has been on exploiting the microbial communication for biofuel 
production. This communication known as Quorum sensing (QS) helps bacteria 
to sense their environments and enable them to survive in diverse habitats. QS 
based communication works through signal molecules. Exploiting the communi-
cation signals for the production of energy can help overcome the increasing 
energy crisis. A number of areas in energy sector including bio-hydrogen, bio-
diesel, bio-ethanol and bio-electricity production have started using QS for the 
improving the efficiency of theses bioprocesses. Here, we present recent advances 
in improving the efficiency of bioenergy production process by exploiting bacte-
rial cell-cell communication.
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10.1	 �Introduction

The interaction of microbes with plants, animals and among themselves has served 
numerous purposes. Such interactions have paved the ways to develop efficient bio-
remediation, bioenergy production, agricultural practices and in preventing bacte-
rial infections (Deshmukh et al. 2016; Lun et al. 2016; Valim et al. 2016; Ahiwale 
et al. 2017; Das et al. 2017). In recent times, biological processes in food, agricul-
ture, medical or energy sector, have gained immense interest (Begum et al. 2016; 
Hernández-Saldaña et al. 2016; Varsha et al. 2016; Saini and Keum 2017). The main 
reasons are rapid depletion of fossil fuels and increasing deterioration of the envi-
ronment due to the use of chemical processes.

Talking about energy production, emissions from electricity generation, coal 
mining, oil refineries and gas extraction cause an immense pollution (Jaramillo and 
Muller 2016). This makes such processes worthy of condemnation when healthy 
environment is a priority. However, with increasing industrialization, the world’s 
energy demand is supposed to increase up to 18 billion tonne of oil equivalent 
(Btoe) by 2035 (International Energy Agency 2011). The increase in energy produc-
tion will be associated with increased greenhouse gas emissions, posing a huge risk 
to human survival. The requirement is thus of an alternative, clean and sustainable 
energy source. Among renewable energy sources, biological energy production 
holds promise to provide a rescue from such crisis.

Biological energy production uses biomass, which is converted by microbes into 
a range of products including ethanol, diesel, hydrogen (H2) and methane (Cavinato 
et al. 2011; Patel and Kalia 2013; Yasin et al. 2013; Arasu et al. 2015; Bandyopadhyay 
et al. 2015; Gomma et al. 2015; Shiva Krishna et al. 2015). The brilliantly armed 
bacteria can utilize a whole range of substrates as food materials (Go et al. 2015; 
Spier et al. 2015; Kurm et al. 2017). These bacteria once thought to be mute organ-
isms are now well known for their efficient social interactions. These bacteria can 
sense their environment and through cell-cell communication can modulate their 
gene expressions. Such a bacterial interaction is known as Quorum sensing (QS) 
(Montgomery et al. 2013; Kalia et al. 2014). Humans have evolved to exploit their 
surroundings for self-benefit and with such abilities they have not let bacterial world 
untouched. The amazing bacterial communication is well researched and is exploited 
for human benefits. Energy production is one such area that has attracted microbial 
support. Here, we deal with microbial communication as an aid to bioenergy 
production.

10.2	 �Applications of Quorum Sensing in Bioenergy

Microbes produce a host of bioactive molecules and undergo physiological and 
metabolic changes to withstand environmental pressures (Sanchart et  al. 2017; 
Sharma and Lal 2017; Thakur et al. 2017). One of the most interesting strategies 
adopted by certain microbes is to change their behaviour from a single celled organ-
ism to a “multi-cellular” organism. This shift in behaviour is regulated through a 
cell density dependent system – QS system (QSS) (Montgomery et al. 2013). It has 
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been observed to operate in various microbial activities such as bioluminescence, 
bio-film formation, virulence, antibiotic production, swarming, conjugation, toxin 
secretion, exo-enzyme production, bio-corrosion, and symbiosis (Kalia 2013). QS 
operates via diffusible signals, where these molecules allow microbes to sense their 
outer environment and communicate with other microbes by making appropriate 
responses. These signals and responses represent bacterial languages, which might 
be used for species specific communication or for inter-species correspondence. 
Microbes, especially pathogens have a repertoire of multiple QSS to communicate 
at personal/commercial levels (Koul et al. 2016).

Bacteria have developed QSS for their personal usage. However, it has been real-
ized that by defining the physiological conditions under which QSS operates, the 
same can be exploited for human benefits. A few areas, where QS has been found to 
have the potential to generate bioproducts of high values include bioenergy, waste 
treatment, food preservatives, biosensors, health, and agricultural activities (Kalia 
and Purohit 2011; Pastorella et al. 2012; Kalia 2013; Kaur et al. 2015).

10.2.1	 �Bio-hydrogen Production

Bio-H2 has been recognised as the cleanest fuel for the future. Fermentative H2 pro-
duction has made significant advancements using diverse microbes (Kalia et  al. 
2003, 2016; Porwal et al. 2008; Kumar (P) et al. 2013, 2015a; Patel et al. 2015). 
However, H2 yields have been found to be quite low and virtually stagnant in a nar-
row range of 0.3–3.8  mole/mole hexose sugars like glucose (Patel et  al. 2012). 
Efforts to retain large bacterial population within the bioreactors have proven effec-
tive in enhancing H2 yields. An obviously effective approach has been to immobi-
lize H2-producers on different support materials (Patel et al. 2010). However, a more 
innovative strategy can be the use of self-flocculating or biofilm forming bacteria. 
These hold greater promise to retain large population of fermenting organisms. 
Within the bioreactor, exopolysaccharides (EPS) secreting microbes allow large 
population of bacteria to be entrapped within the mucilage, which are thus pre-
vented from being washed away (Keskin et al. 2012; Abe et al. 2013; Ercan and 
Demirci 2015).

Among a number of potential H2-producers, quite a few of them have an ability 
to express QS mediated biofilm formation, which include bacterial species belong-
ing to Bacillus, Clostridium, Streptococcus, Sinorhizobium, Enterobacter, 
Klebsiella, Caldicellulosiruptor and Escherichia (Kalia and Purohit 2008). Biofilm 
formers can be easily identified using simple screening tests (Kalia et  al. 2017). 
These biofilms can be exploited by using them as support for immobilizing microbes 
within the bioreactors for effective H2 production. Co-cultures of thermophillic bac-
teria, Caldicellulosiruptor species have been used for biofilm formation to enhance 
H2 production. The two bacteria together resulted in 2.5 times enhanced H2 yield 
and 5 times higher H2 productivity to the tune of 20 mmol/L/h at a dilution rate of 
>1.0  h−1 in Up-flow anaerobic reactors, in comparison to individually employed 
cultures. These enhancements in H2 productivity and yield were reported to be due 
to an increased biofilm formation in co-cultures, which is dependent upon QS 
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mediated high production of c-di-GMP (Table 10.1) (Brune and Bayer 2012; Pawar 
et al. 2015). In another recent study, biofilm forming Bacillus amyloliquefaciens 
strain CD16 was shown to produce 1.18 times more H2 than the non-biofilm form-
ing counterpart Bacillus thuringenesis strain EGU45 in a continuous culture system 
(Prakash et al. 2017). The two strains had similar H2 producing efficiency in a batch 
system. However, when switched to continuous mode the biofilm forming bacteria 
proved to be more effective in retaining larger cell mass in the system and resulted 
in higher yields of H2 (Prakash et al. 2017).

Biofilm formation also holds opportunity in increasing H2 production through 
Microbial electrolytic cells (MECs). Biofilm in these fuel cells may prevent the 
microbial dispersion and hence increase the effective gas production. QS can be 
used as an effective strategy to form and control biofilm formation in such fuel cells 
for their efficient performance (Zhou et al. 2013). Addition of small chain length 
acyl-homoserine lactones (AHLs  – QS signalling molecules) to regulate biofilm 
formation on bioelectrodes in MECs has shown to enhance H2 yields. An increase 
of 81.82% in H2 yield was recorded at an external voltage of 0.4 V. Overall reactor 
performance including energy efficiency, electron recovery efficiency and coulom-
bic efficiency were also enhanced (Cai et al. 2016).

Apart from biofilm formation, genetic approaches may be used to redirect the 
metabolic pathways towards the synthesis of desired products. RNAseq of 
Rhodopseudomonas palustris CGA009 has revealed the presence of a transcript 
antisense to QS regulatory protein rpaR. Such intergenic regions could have regula-
tory roles in microbes, engineering of which can redirect the metabolic flux towards 
the H2 production (McKinlay 2014).

10.2.2	 �Bio-electricity Production by Fuel Cells

An attractive way to generate electricity is through bio-electrochemical devices 
known as microbial fuel cells (MFCs) (Manogari and Daniel 2015). The electrons 
generated by the microbial oxidation of substrate are transferred to the electrodes 
for electricity generation. This transfer of electrons require electron shuttles either 
produced by the microbes or added exogenously (Kumar (R) et al. 2015b). To avoid 
the use of exogenous addition of electron shuttles, exoelectrogens can be used. 
Exoelectrogens are the microbes capable of producing molecules that can exoge-
nously transfer the electrons to electrodes (Kumar (R) et al. 2015b). QS plays an 
important role in the development of biofilms in a number of exoelectrogens (Diggle 
et al. 2003; Allesen-Holm et al. 2006; Kumar (R) et al. 2015b). The formation of 
biofilm in MFCs has been reported to increase the current output substantially. 
Microbes able to produce thick biofilms have proved to be potent current producers 
than those producing monolayer biofilms (Wrighton et al. 2011; Zhou et al. 2013).

QS mediated production of pyocyanins and phenazines are known to act as redox 
mediators in MFCs. These have been reported to increase the energy output from 
5% to 50% in biofuel cells (Table  10.1) (Rabaey et  al. 2005). A wild type 
Pseudomonas aeruginosa PA14 used for bio-electricity generation showed a 28-fold 
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Table 10.1  Potential applications of quorum sensing in production of green fuels

Organism QS mediated effect Fuel production References
Bio-hydrogen
Caldicellulosiruptor 
saccharolyticus and C. 
owensensis

C-di-GMP production 
and increase in biofilm 
formation

2.5 times enhanced H2 
yield and 5 times 
higher productivity

Pawar et al. 
(2015)

Bacillus 
amyloliquefaciens strain 
CD16

Biofilm formation 1.18 times more H2 
production than 
non-biofilm former

Prakash et al. 
(2017)

Mixed microbial culture Addition of AHLs for 
biofilm regulation on 
MEC’s bioelectrodes

81.82% increase in 
yields

Cai et al. (2016)

Bio-electricity
Geobacter 
sulfurreducens

Biofilm formation Current increased from 
1.4 to 5.2 mA with 
increase in biofilm 
pillar height from 10 to 
40 μM

Kumar (R) et al. 
(2015b)

Pseudomonas 
aeruginosa

Pyocyanins and 
phenazines production

Increased energy 
output from 5% to 50%

Rabaey et al. 
(2005)

P. aeruginosa PA14 Lactones, phenazines 
and retS mutant

28 to 48-fold increase 
in current generation

Venkataraman 
et al. (2010)

P. aeruginosa Overexpression of 
phzM – pyocyanins 
production

Enhanced power output 
up to 166.68 μW/cm2 
by MFC

Yong et al. 
(2014)

Shewanella oneidensis 
MR-1

AHLs regulated Ptac 
controlled LuxR

Regulated current 
generation

Hu et al. (2015)

Halanaerobium 
praevalens

Biofilm formation by 
exogenous addition of 
100 nM quinolone

30% increase in energy 
generation

Monzon et al. 
(2016)

Bio-ethanol
Wild yeasts and Lactic 
acid bacteria (LAB)

Biocides production Killing of wild yeasts 
and lactic acid bacteria 
increasing ethanol 
producing yeast 
population

Brexó and 
Sant’Ana 
(2017)

Saccharomyces 
cerevisiae

Upregulation of 
transcription factors 
Mig1p and Cat8p

Increased stress 
tolerance by yeast

Westman and 
Franzén (2015)

Zymomonas mobilis Increased signalling 
by addition of AI-2

50% enhancement in 
fuel production

Yang (2011)

Bio-diesel
Algal cells QS containing 

Escherichia coli 
symbiotically 
associated with algal 
cells

Nitrogen stress induced 
biodiesel production

Wyss (2013)

Butanediol
Aeromonas hydrophila 
AH-1N

Exogenous AHLs 
addition

Fivefold increase in 
productivity

Houdt et al. 
(2007)

(continued)
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increase in current output with exogenous addition of QS signalling molecules (lac-
tones). The enhanced phenazines production by the strain resulted in 48-fold 
increase in current generation. A 45-fold increase in current generation by retS 
mutant was also observed clearly indicating the effect of QS on the production of 
current (Venkataraman et al. 2010). The study thus paves the way for the develop-
ment of high energy generating biofuel cells. A number of other studies have also 
shown an increased energy output with the over-production of phenazines or pyo-
cyanins in Pseudomonas (Yong et al. 2014, 2015). One of such study reported 1.6-
fold increase in pyocyanins (electron shuttles) production by overexpression of 
phzM in P. aeruginosa. This caused an enhanced power output up to 166.68 μW/cm2 
by MFC (Yong et al. 2014).

Genetic engineering approaches have been used to design MFCs, the electricity 
generation of which is controlled by exogenous addition of QS signals. The engi-
neered MFC contains IPTG controlled Ptac promoter and Ptac controlled LuxR (QS 
signal regulator) in Shewanella oneidensis MR-1 (amtrA knockout mutant). This 
AND logic gate construction allows the current generation in the presence of AHLs 
(QS signals) and Isopropyl β-D-1-thiogalactopyranoside (IPTG), thus allowing a 
regulated current production (Hu et al. 2015).

Engineered MFC that can generate electricity from high salinity wastewaters has 
been designed. The fuel cell used extremophile Halanaerobium praevalens for elec-
tricity generation. An exogenous addition of QS signals (100 nM quinolone) was 
used to enhance biofilm formation by the bacterium resulting in 90% increase in cell 
mass and 30% increase in energy density generated (Monzon et al. 2016).

10.2.3	 �Bio-ethanol and Bio-diesel Production

Another important class of biofuels is bioethanol and biodiesel. The biofuels being 
cleaner alternatives to fossil fuels have gained immense attraction. A number of 
studies suggest the potential involvement of QS in ethanol fermentation (Kuipers 
et al. 1998; Di Cagno et al. 2011; Branco et al. 2014). Certain cyclic peptides and 
higher alcohols act as QS signalling molecules in yeasts. Such a signalling among 
wild yeasts and lactic acid bacteria (LAB) through QS tend to dominate ethanol 

Table 10.1  (continued)

Organism QS mediated effect Fuel production References
Acetic acid
Gluconacetobacter 
intermedius

Blocking of QS 
system GinI/GinR

30% enhancement in 
productivity

Lida et al. 
(2008)

Isobutanol
E. coli Blocking QS genes 

luxS or lsrA
Threefold increase in 
yield

Huo et al. 
(2011)
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producing yeasts population, causing loss to ethanol industry. Stimulation of bio-
cides through QS in the fermentation might provide an economical alternative to 
prevent such losses (Table 10.1) (Brexó and Sant’Ana 2017). Another strategy to 
use QS for increasing ethanol yields is the regulation of QS responsive genes in S. 
cerevisiae. This might lead to stationary phase induction maintaining a lower bio-
mass and higher ethanol production (Chen and Fink 2006; Dickinson 2008; 
Albuquerque and Casadevall 2012; Mas et al. 2014).

A number of stress tolerant genes are also reported to be activated by QS in S. 
cerevisiae. The aromatic alcohols, tryptophol and phenylethanol are the important 
QS signalling molecules in yeast (Hlavácek et al. 2009). These are known to upreg-
ulate transcription factors such as Mig1p and Cat8p, helping the high cell density 
yeast cells to tolerate the stress during ethanol production (Westman and Franzén 
2015). QS mediated flocculation might also be involved in increased stress toler-
ance by ethanol producing yeast culture (Gasch et al. 2000; Zi et al. 2013; Conrad 
et  al. 2014). Addition of QS signals AI-2 during bioethanol production by 
Zymomonas mobilis has shown a 50% enhancement in fuel production (Yang 2011). 
Genetic engineering approaches to create AI-2 synthesizing and ethanol producing 
strains may further stimulate biofuel production.

QS system when incorporated into Escherichia coli, has been used for biodiesel 
production by algal cells. The QS containing E.coli allowed the symbiotically asso-
ciated algal cells to sense their high cell densities. This triggered nitrogen stress in 
algal cells inducing biodiesel production (Wyss 2013).

10.2.4	 �Others

QS has been exploited to increase the production efficiency of a number of other 
value added products. Exogenous addition of QS signalling molecules – AHLs has 
shown to increase butanediol production by fivefold in Aeromonas hydrophila 
(Houdt et al. 2007). Blocking QS system GinI/GinR in Gluconacetobacter interme-
dius resulted in enhanced bacterial growth leading to a 30% increase in acetic acid 
production (Lida et al. 2008). Deletion of QS genes luxS or lsrA has also shown to 
be associated with an increase in isobutanol production. An approximate increase of 
66% in isobutanol yield was observed on blocking QS genes (Huo et al. 2011).

10.3	 �Conclusion

QS being an important means of communication in microbial world can help us 
exploit microbial metabolism. Inhibition of such microbial cross talk can help us 
fight infections. On the other hand, the same communication can lead to the produc-
tion of various industrially important compounds. The increasing energy crisis 
demands energy production through cheap alternatives. QS has proved to be an 
effective strategy in the production of bioelectricity and biofuels.
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Abstract
Microbes in the biofilm coordinate themselves for a proper electron transfer 
inside the microbial fuel cell. Certain microbes use external mediators for the 
effective electron transfer. There are few exoelectrogens which can directly 
transfer the electrons to the anode via cytochromes and others through an indi-
rect electron transfer, where the mechanism either takes place by bacteria’s own 
mediators or by some chemical mediators added in the anode chamber. Bacteria 
in order to observe their population density, they use an autoinducer ligand and 
this process is so called quorum sensing.

Keywords
Biofilm · Acylhomoserine lactones · Exopolysaccharides · Electron acceptors · 
Redox

11.1	 �Introduction

Quorum sensing (QS) is used to designate an environmental sensing system that 
permits microbe to coordinate their genetic expression and physiological behavior 
in a cell-density dependent manner (Bassler and Losick 2006). Based on the 
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signaling molecules, the Quorum sensing is classified into three categories namely 
acyl homoserine lactones (AHL), autoinducing peptides and autoinducer-2 which 
are used by gram positive, gram negative bacteria and both the species respectively 
for cell communication (Shrout and Nerenberg 2012; Lade et al. 2014). The anodic 
biofilm forms the basis for the bioelectricity production in wastewater treatment via 
microbial fuel cell. This biofilm is the major biological factor influencing the 
Microbial Fuel Cell (MFC) performance. Biofilms in general can be efficiently used 
for the bioenergy production from biological wastes and a wide range of microbes 
can contribute for the biodiesel and biohydrogen production etc. (Kalia et al. 2016). 
The electricity is generated by converting the organic biomass and carbohydrates 
with the help of catalytic activity of microorganism used by microbial fuel cell. In 
our search for clean and renewable sources of energy, the Microbial Fuel Cell is 
considered to have a favourable chance of success. Exoelectrogens is the name 
given to the bacteria that transfer electrons to the anode in Microbial Fuel Cells.

11.2	 �Biofilm Formation

Most of the bacteria form biofilm which includes gram positive bacteria such as 
Staphylococcus sp. and lactic acid bacteria, gram negative bacteria such as Escherichia 
coli and Pseudomonas aeruginosa. During the biofilm formation on the surface, the 
bacteria themselves communicate to each other by quorum sensing products such as 
AHL. The biofilm is usually composed of extracellular polymeric substances (EPS) 
which is a combination of exopolysaccharides, few proteins and nucleic acids (Branda 
et al. 2006). The EPS acts as scaffold that holds the cells together and the biofilm 
matrix accounts to 3–6% exopolysaccharides, 2–5% microbial cells and a majority 
portion of water (Branda et al. 2005). The composition of EPS alters according to the 
type of microbial group and the environmental conditions and also the thickness of the 
EPS increases with the biofilm maturity (Flemming and Wingender 2002; Kolter and 
Greenberg 2006). Quorum Quenching is a mechanism by which the molecules that 
are capable of quenching the QS system can be identified and this can be attained by 
disturbing the biofilm architecture (Kalia and Purohit 2011). To screen the microbes 
which produce more biofilm, a method employing medium 16 supplemented with 
Casein enzyme hydrolysate (CEH) was used (Kalia et al. 2017).

11.3	 �Energy Generation from MFC

The important function of MFC technology is to produce electricity from chemical 
energy present in a biomass catalyzed by microbes. According to the Carnot cycle, 
the limited thermal efficiency is ignored and theoretically a highest change compe-
tence can be achieved (>70%) similar to traditional chemical fuel cells. Chaudhuri 
and Lovley (2003) explored that R. ferrireducens could give a maximum electron 
yield of 80% of electricity. Similarly, there is also a report where 89% of energy 
recovery was achieved (Rabaey et al. 2003).
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Tender et al. (2002) showed that even with high coulombic efficiency, the MFC 
power generation is still very low. One way to overcome this low rate of power 
generation is to store the electricity in batteries and then distribute it later to end 
users (Ieropoulos et al. 2003). MFC Technology thus shows great potential for sus-
tainable long-term power applications. But first the technology must resolve the 
health and safety issues that can arise due to the usage of microoganisms.

11.3.1	 �Electron Transfer Mechanism

Direct electron transfer and indirect electron transfer are two electron transfers used 
in MFC’s (Xi and Sun 2008). The Direct electron transfer mechanism usually needs 
an efficient binding between the microbial cell surface attachment and the surface 
of the electrode. The electrons are accepted from the cytochromes present in the 
external part of the cell. Shewanella putrefaciens, Geobacter sulferreducens, 
Rhodoferax ferrireducens etc. has the ability to switch over electrons from the cell 
to e- acceptors via biofilms which are highly conductive appendages called pili and 
c-type cytochromes (Lovley 2008). In an indirect electron transfer, the mechanism 
either takes place by bacteria’s own mediators or by some chemical mediators added 
in the anode chamber. Mediators assist the microbes to produce electrochemically 
effective output. The cell can be penetrated by the reduced form of mediator, which 
receives electrons from the e- transporter to the anode surface (Lovley 2006).

Electron transfer by mediators: The electron transfer in this mechanism either 
takes place by bacteria’s own mediators thereby promoting extracellular electron 
transfer or with the help of some chemical mediators added in the anode chamber. 
Mediators offer a dais for the microbes to produce electrochemically energetic 
products (Lovley 2006). Thionine, Methylene blue, Neutral red, Phenazines, anthra-
quinone-2, 6-disulfonate and iron chelates are some of the redox intermediaries that 
are commonly used in MFC (Du et al. 2007). E. coli, Pseudomonas species, Proteus 
vulgaris require a mediator as they are unable to transfer electrons outside the cell. 
An active mediator must enter the cell membrane and capture the electrons from the 
carrier in the Electron transport, must be stable even after long periods of redox 
cycling and should not harm the microbes (Du et al. 2007; Osman et al. 2010).

11.4	 �Role of Quorum Sensing in Microbial Fuel Cell

Among the gram negative microorganisms, Pseudomonas sp. has been predominantly 
reported for the bioelectricity production (Rabaey et al. 2004). There are few reports 
pertaining to the biofilm development in this microbe by pyocyanin pigment (Dietrich 
et al. 2008, 2013) which is regulated by Quorum sensing system (Yong et al. 2015). 
There are two AHL-based QS systems (LasI-LasR and RhlI-RhlR) (Duan and Surette 
2007) and a Pseudomonas quinolone signal-based QS system (PQS) (de Kievit 2009) 
used by P. aeruginosa. These QS systems rely on self-generated signaling molecules 
to coordinate gene expression in response to population density. Along with the 
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increase of the cell population density, the concentration of autoinducer increased 
significantly accordingly, this would then trigger the QS systems and positively regu-
late the pyocyanin (PYO) production (Recinos et  al. 2012). The increase of PYO 
production would promote more and more P. aeruginosa cells adhered to the anode 
surface to form biofilm and facilitate the interfacial electron transfer (Qiao et al. 2015). 
Here, it is speculated that the integrated aerobic-anaerobic strategy allowed much fast 
growth of P. aeruginosa PAO1 which might quickly reach the threshold cell density to 
active the hierarchical cascade QS systems during the aerobic start-up stage, which 
would induce an increased PYO production and anode biofilm formation, thus might 
finally enhance the electricity output of MFC.

G. sulfurreducens is a Gram-negative bacterium, having the ability to oxidize 
acetate into electrons and protons and thus efficiently reduce Fe (III) oxides 
(Orellana et al. 2013). In its monolayer biofilms, the transfer of electron is aided by 
outer-membrane c-Cyts or through the riboflavin secretion that interacts with c-Cyts 
to transport the electrons out of the cell. Conductive proteinaceous pili made of PilA 
monomer units are present on the other side of the multilayer biofilms that are pro-
duced by G. sulfurreducens (Inoue et al. 2010; Malvankar and Lovley 2012). There 
are more reports supporting the electron transfer mechanism using pili in the micro-
bial fuel cell system (Inoue et al. 2010; Kotloski and Gralnick 2013). There is an 
interesting study related to the interspecies electron transfer between Pelotomaculum 
thermopropionicum, and a methanogen, Methanothermobacter thermautotrophicus 
with the help of electrically conductive appendages was observed (Pham et  al. 
2008). The confirmation proposes that bacteria communicate with other species 
within the biofilm via the quorum sensing (QS) chemicals (e.g., p-coumaroyl-
homoserine lactones and fatty acyl-homoserine lactones) (Schaefer et al. 2008).

11.4.1	 �Bacterial Role in MFC

MFC is purely dependent to oxidation reduction reaction (Redox). MFC contains 
two different types of compartments, anode and cathode. Both anode and cathode 
portion holds an electrode and that are alienated by cation permeable membrane. 
Acetate is an electron donor present in anode chamber is oxidized by respiratory 
bacteria in the deficiency of oxygen producing protons and electrons. Protons are 
transported across the cell membrane to adenosine triphosphate (ATP) while elec-
trons are moved through an electron transport chain (ETC).

11.4.2	 �Recent Studies on Quorum Sensing in P. aeruginosa

Biofilm formation in P. aeruginosa requires the process of Quorum Sensing, as 
recent studies have discovered. LasI mutants do not build up into established 
biofilm, instead of that they prevent the biofilm formation at the micro colony 
stage (Davies et al. 1998). These mutants are supplemented to wild type biofilm 
secretion by exogenous addition of the LasI contingent HSL autoinducer 
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N-(-3-oxododecanoyl)-homoserine lactone. P. aeruginosa is one of the basic patho-
gens found in human lung affected with cystic fibrosis (CF). Analysis of CF sputum 
samples confirms the presence of P. aeruginosa biofilm in vivo. It was also detected 
the presence of LasI and Rh1I autoinducers in the sputum sample of the patients 
affected by CF (Parsek and Greenberg 2000; Singh et al. 2000). Thus it was con-
cluded that biofilm formation by P. aeruginosa could prove to be lethal for human 
lungs and so antimicrobial treatments could be effective for CF treatment.

11.5	 �Waste Used in MFC Till Date

MFC is a recent technology which mostly uses waste to generate energy. Earlier, 
researchers have concentrated much on treating wastewater both industrial and 
domestic. In recent times, some have reported work on agrowastes such as starch-
rich wastewater during the starch production from cassava (Kaewkannetra et  al. 
2009). The highest power density obtained was 22.19 W/m3 with a single-chambered 
MFC utilizing cassava mill wastewater (Prasertsung et al. 2012). These results evi-
dently show that cassava mill wastewater can be used as a biodegradable waste in 
MFC. An interesting research of using biodiesel waste for the simultaneous produc-
tion of biohydrogen and polyhydroxyalkanoates has been reported (Patel 2015). 
These categories of study construct a path for the forthcoming scientists to use a 
single waste product to generate multiple valuable products.

Certain studies in MFC are pertained to cellulose for power production. Rismani 
et al. (2007) have carried out an experiment on cellulose for bioelectricity genera-
tion by means of rumen microbes from cattle (Rismani et al. 2007). Sedky et al. 
(2012), have resorted cellulose as substrate for generation of electricity using a 
dual-chambered MFC where Streptomyces enissocaesilis KNU and Nocardiopsis 
sp. KNU were employed for cellulose dilapidation in the anode chambers (Sedky 
et  al. 2012). Vegetable waste was used for bioelectricity production in MFC by 
Clauwaert et al. (2008). There are few reports available which use slaughter house 
wastewater for electricity generation. A slaughterhouse wastewater with an anaero-
bic mixed sludge as a source of inoculum was fed in a dual-chambered microbial 
fuel cell was used (Katuri et al. 2012). Chaturvedi and Verma (2013), preformed a 
work on dilapidation of chicken feathers by P. aeruginosa with associated electric-
ity production in MFC.

However, recently much work has been done on various waste products which is 
been utilized to generate power in a long term basis. An interesting approach of 
using human waste has received a wide publicity where Prof. Caitlyn Butler has 
developed a latrine that is efficient enough to purify the human waste simultane-
ously converting them to good compost for agriculture. This was installed in Ghana 
where the sanitation facilities are poor. The fuel is the waste organic matter which 
is filtered before use and nitrate is the oxidant used in the cathode. Similarly, scien-
tists developed EcoBot-III, a robot which used human waste to produce energy 
(Ieropoulo et al. 2010). Table 11.1 shows the types of MFC’s and the corresponding 
bioenergy production.
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11.6	 �Exoelectrogens Involved in MFC

Both pure cultures and mixed cultures have been used in Microbial fuel cells and the 
power production has been monitored using a multimeter. The most studied micror-
ganism in this field are Geobacteria and Shewenella which gave better results when 
inoculated as pure cultures.

The most well-known bacterial groups used in Microbial Fuel Cells are 
Geobacteraceae family and Shewanella genus. When compared with Shewanella 
putrefaciens, Geobacter sulfurreducens provides a 3000-fold increase in electron 
movement (Coates et al. 1996; Bond and Lovely 2003). Geobacteraceae family and 
S. putrefaciens are not the only microbial groups capable of Fe (III) reduction with 
surface-active cytochromes. Clostridium butyricium, Clostridium beijerinckii, 
Desulfotomacum reducens, Thiobacillus ferroxidans Rhodobacter capsultatus and 
Geovibrio genus are all competent of usage in a mediatorless fuel cell (Park et al. 
2001). Klebsiella pneumoniae, Saccharomyces cerevisiae, Staphylococcus aureus 
and sewage sample used in MFC produced a higher voltage production (Aishwarya 
et  al. 2011). Some Gram-positive bacteria including Staphylococcus carnosus, 
Bacillus subtilis and Micrococcus luteus were studied by cyclic voltammetry, an 
electrochemical method and also shown to achieve direct electron transfer, 

Table 11.1  Types of MFC’s and bioenergy production

MFC type Source/substrates
Power/current 
density References

Single chamber Desulfovibrio vulgaris 0.30 V Lojou et al. 
(2002)

Single chamber Geobacter sulfurreducens 2.4–12 A/m3, 
0.40 V

Dumas et al. 
(2008)

Dual Chamber- 
batch fed

Acinetobacter calcoaceticus 110 A/m3 
(7.8 W/m3)

Rabaey et al. 
(2008)

Dual chamber – 
continuously fed

Enrichment culture 120 A/m3, 
0.50 V

Rozendal et al. 
(2008)

U-tube MFC Ochrobactrum anthropi 89 mW/m2 Rezaei et al. 
(2009)

U-tube MFC Enterobacter cloacae/Cellulose 0.02 mA/cm2 Justin Biffinger 
et al. (2009)

MFC array Shewanella sp. and Arthrobacter 
sp.

2.69 mW/m2 and 
1.86 mW/m2

Vega and 
Fernandez 
(1987)

Plant MFC Paddy crop with compost 700 mV Xi and Sun 
(2008)

Algal MFC in 
terrocotta pots

Mixed algal culture 44 μW Lovley (2008)

Algal MFC Synechococcus leopoliensis/BG-11 
medium

42.5 W m−3 Kristen and 
Brastad (2013)

Desalination MFC Anaerobic and aerobic sludge/
Synthetic anode solution with 
acetate

13.16 mA Coates (1996)
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presenting a potentially prevalent ability among bacteria. Enterobacter aerogenes, 
facultative anaerobes, are well known, powerful and resourceful producers of 
hydrogen. Ochrobactrum anthropi YZ-1, exoelectrogenic bacteria which was iso-
lated from U-tube-shaped MFC produced power using acetate as the electron donor 
(Yi et  al. 2008). Table  11.2 shows the list of microbial sources used in 
MFC. Combination of two bacteria such as B. cereus and E. cloacae has proved to 
produce much higher hydrogen when compared to the mixed or pure cultures (Patel 
2014).

11.7	 �Opinion

The research area of Microbial fuel cell is very limited in terms of Quorum sensing. 
More reports are expected in future to expose the bacterial population response to 
the environment. The mediators which aid in the electron transfer in the microbial 
fuel cell should be studied for all the microbes in detail. This should be well corre-
lated with the quorum sensing inducers or inhibitors in the forthcoming years. Till 
now most of the microbes which are studied in microbial fuel cell research are 

Table 11.2  List of Microbial sources and their respective power output in MFC

Inoculum Substrate pH Power References
Hydrogen producing 
mixed culture

Composite/combined 
chemical wastewater

5.5 0.747 mA Venkata Mohan 
et al. (2008)

Geobacter species Dairy manure 
wastewater and potato 
water

8.3, 
6.1

0.9 V Patrick et al. 
(2011)

Anaerobes Anaerobic sludge, 
Sodium Acetate as 
carbon source

7.0 377 ± 
6 mWm−2

Boris Tartakovsky 
et al. (2011)

Domestic wastewater 
consortium

Biodiesel waste, 
Glycerin media

7.0 470 ± 5 mV Yujie Feng et al. 
(2008)

Anaerobic mixed 
consortia

Synthetic wastewater 5.5 274 mW/g Venkata Mohan 
(2007)

Thermincola 
carboxydophila

Marine Marsh Sediment 6.8 209–254 mA/
m2

Mathis et al. 
(2008)

Domestic wastewater 
consortium

Cellulose 6.48–
6.54

1070 mW/
m−2

Logan et al. 
(2006)

Lactic acid bacteria Whey 6.46 ± 
0.19

29.1 ± 4.9 W/
m2

Kassongo (2011)

γ-Proteobacteria Acetate and 2-furfural 7.0 3490 mW/m2 Abhijeet et al. 
(2009)

Enterobacter 
aerogenes

Glucose 7.0 0.41–
0.42 mA,

Zhuang et al. 
(2011)

E. coli Luria–Bertani (LB) 
medium

7.0 263.94 mW/
m2

Xi and Sun 
(2008)

Acetogenic bacteria Formate 5.0 1 mA Phuc et al. (2008)
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gram-negative bacteria. May be in the near future, gram positive bacteria and their 
QS systems should be focused.

References

Abhijeet PB, Jonathan RM, Tatiana AV, Choo Y, Hamilton (2009) Controlling accumulation of 
fermentation inhibitors in biorefinery recycle water using microbial fuel cells. Biotechnol 
Biofuels 2:7. https://doi.org/10.1186/1754-6834-2-7

Aishwarya D, Dalvi, Neha M, Shinde OA, Kininge PT (2011) Microbial fuel cell for production of 
bioelectricity from whey and biological waste treatment. Int J Adv Biotechnol Res 2:263–268

Bassler BL, Losick R (2006) Bacterially speaking. Cell 125:237–246. https://doi.org/10.1016/j.
cell.2006.04.001

Bond DR, Lovley DR (2003) Electricity production by Geobacter sulfurreducens attached 
to electrodes. Appl Environ Microbiol 69:1548–1555. https://doi.org/10.1128/
AEM.69.3.1548-1555.2003

Boris T, Poonam M, Bourque JS, Serge RG (2011) Electrolysis-enhanced anaerobic digestion of 
wastewater. Bioresour Technol 102:5685–5691. https://doi.org/10.1016/j.biortech.2011.02.097

Branda SS, Vik S, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 
13:20–26. https://doi.org/10.1016/j.tim.2004.11.006

Branda SS, Chu F, Kearns DB, Losick R, Kolter R (2006) A major protein compo-
nent of the Bacillus subtilis biofilm matrix. Mol Microbiol 59:1229–1238. https://doi.
org/10.1111/j.1365-2958.2005.05020.x

Chaturvedi V, Verma P (2013) Metabolism of chicken feathers and concomitant electricity genera-
tion by pseudomonas aeruginosa by employing microbial fuel cell (MFC). J Waste Manag. 
https://doi.org/10.1155/2013/282798

Chaudhuri SK, Lovely DR (2003) Electricity generation by direct oxidation of glucose in media-
torless microbial fuel cells. Nat Biotechnol 21:1129–1232. https://doi.org/10.1038/nbt867

Clauwaert P, van der Ha D, Verstraete W (2008) Energy recovery from energy rich vegetable 
products with microbial fuel cells. Biotechnol Lett 30:1947–1951. https://doi.org/10.1007/
s10529-008-9778-2

Coates JD, Phillips EJP, Lonergan DJ, Jenter H, Lovely DR (1996) Isolation of Geobacter spe-
cies from diverse sedimentary environments. Appl Environ Microbiol 62:1531–1536 PMCID: 
PMC167928

Davies DG, Parsek MR, Pearson JP, Iglewski BH, Costerton JW, Greenberg EP (1998) The 
involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–
298 PMID: 9535661

de Kievit TR (2009) Quorum sensing in Pseudomonas aeruginosa biofilms. Environ Microbiol 
11:279–288. https://doi.org/10.1111/j.1462-2920.2008.01792.x

Dietrich LEP, Teal TK, Price-Whelan A, Newman DK (2008) Redox-active antibiotics control 
gene expression and community behavior in divergent bacteria. Science 321:1203–1206. 
https://doi.org/10.1126/science.116061

Dietrich LEP, Okegbe C, Price-Whelan A, Sakhtah H, Hunter RC, Newman DK (2013) Bacterial 
community morphogenesis is intimately linked to the intracellular redox state. J  Bacteriol 
195:1371–1380. https://doi.org/10.1128/JB.02273-12

Du Z, Li H, Gu T (2007) A state of the art review on microbial fuel cells: a promising technology 
for wastewater treatment and bioenergy. Biotechnol Adv 25:464–482. https://doi.org/10.1016/j.
biotechadv.2007.05.004

Duan K, Surette MG (2007) Environmental regulation of Pseudomonas aeruginosa PAO1 Las and 
Rhl quorum-sensing systems. J Bacteriol 189:4827–4836. https://doi.org/10.1128/JB.00043-07

D. Jothinathan et al.

https://doi.org/10.1186/1754-6834-2-7
https://doi.org/10.1016/j.cell.2006.04.001
https://doi.org/10.1016/j.cell.2006.04.001
https://doi.org/10.1128/AEM.69.3.1548-1555.2003
https://doi.org/10.1128/AEM.69.3.1548-1555.2003
https://doi.org/10.1016/j.biortech.2011.02.097
https://doi.org/10.1016/j.tim.2004.11.006
https://doi.org/10.1111/j.1365-2958.2005.05020.x
https://doi.org/10.1111/j.1365-2958.2005.05020.x
https://doi.org/10.1155/2013/282798
https://doi.org/10.1038/nbt867
https://doi.org/10.1007/s10529-008-9778-2
https://doi.org/10.1007/s10529-008-9778-2
https://doi.org/10.1111/j.1462-2920.2008.01792.x
https://doi.org/10.1126/science.116061
https://doi.org/10.1128/JB.02273-12
https://doi.org/10.1016/j.biotechadv.2007.05.004
https://doi.org/10.1016/j.biotechadv.2007.05.004
https://doi.org/10.1128/JB.00043-07


175

Dumas C, Basseguy R, Bergel A (2008) Microbial electrocatalysis with Geobacter sulfurreducens 
biofilm on stainless steel cathodes. Electrochim Acta 53:2494–2500. https://doi.org/10.1016/j.
electacta.2007.10.018

Flemming HC, Wingender J  (2002) Extracellular polymeric substances (EPS): structural, eco-
logical and technical aspects. In: Bitton G (ed) Encyclopedia of environmental microbiology. 
Wiley, New York, pp 1223–1231

Ieropoulo SI, Greenman J, Melhuish C, Horsfield I, EcoBot-III-A (2010) Robot with guts. ALIFE 
733–740 at https://mitpweb2.mit.edu/sites/default/files/titles/alife/0262290758chap131.pdf

Ieropoulos I, Greenman J, Melhuish C (2003) Imitation metabolism: energy autonomy in bio-
logically inspired robots. In: Proceedings of the 2nd international symposium on imitation of 
animals and artifacts, pp 191–194

Inoue K, Leang C, Franks AE, Woodard TL, Nevin KP, Lovley DR (2010) Specific local-
ization of the c-type cytochrome Omc Z at the anode surface in current producing bio-
films of Geobacter sulfurreducens. Environ Microbiol Rep 3:211–217. https://doi.
org/10.1111/j.1758-2229.2010.00210.x

Justin B, Meghann R, Bradley R, Jeremy P, Steven F, Kenneth N (2009) Characterization of 
electrochemically active bacteria utilizing a high-throughput voltage-based screening assay. 
Biotechnol Bioeng 102:436–444. https://doi.org/10.1002/bit.22072

Kaewkannetra P, Imai T, Garcia-Garcia FJ, Chiu TY (2009) Cyanide removal from cassava 
mill wastewater using Azotobactor vinelandii TISTR 1094 with mixed microorganisms in 
activated sludge treatment system. J  Hazard Mater 172:224–228. https://doi.org/10.1016/j.
jhazmat.2009.06.162

Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug 
targets. Crit Rev Microbiol 37:121–140

Kalia VC, Prakash J, Koul S (2016) Biorefinery for glycerol rich biodiesel industry waste. Indian 
J Microbiol 56:113–125

Kalia VC, Prakash J, Koul S, Ray S (2017) Simple and rapid method for detecting biofilm forming 
bacteria. Indian J Microbiol 57:109–111. https://doi.org/10.1007/s12088-016-0616-2

Kassongo J, Togo CA (2011) Performance improvement of whey-driven microbial fuel cells by 
acclimation of indigenous anodophilic microbes. Afr J Biotechnol 10(40):7846–7852. https://
doi.org/10.5897/AJB11.206

Katuri KP, Enright AM, O’Flaherty V, Leech D (2012) Microbial analysis of anodic biofilm in a 
microbial fuel cell using slaughter house wastewater. Bioelectrochemistry 87:164–171. https://
doi.org/10.1016/j.bioelechem.2011.12.002

Kolter R, Greenberg EP (2006) Microbial sciences: the superficial life of microbes. Nature 
441(7091):300–302. https://doi.org/10.1038/441300a

Kotloski NJ, Gralnick JA (2013) Flavin electron shuttles dominate extracellular electron transfer 
by Shewanella oneidensis. MBio 4:e00553–e00512. https://doi.org/10.1128/mBio.00553-12

Kristen S, Brastad ZH (2013) Water softening using microbial desalination cell technology. 
Desalination 309:32–37. https://doi.org/10.1016/j.desal.2012.09.015

Lade H, Paul D, Kweon JH (2014) Quorum quenching mediated approaches for control of mem-
brane biofouling. Int J Biol Sci 10:550. https://doi.org/10.7150/ijbs.9028

Logan BE, Hamelers B, Rozendal R, Schroder U, Keller J, Freguia S, Aelterman P, Verstraete 
W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 
40:5181–5192 PMID: 16999087

Lojou E, Durand MC, Dolla A (2002) Hydrogenase activity control at Desulfovibrio vulgaris cell-
coated carbon electrodes: biochemical and chemical factors influencing the mediated bioelec-
trocatalysis. Electroanalysis 14:913–922

Lovley DR (2006) Bug juice: harvesting electricity with microorganisms. Nat Rev Microbiol 
4:497–508. https://doi.org/10.1038/nrmicro1442

Lovley DR (2008) The microbe electric: conversion of organic matter to electricity. Curr Opin 
Biotechnol 19:1–8. https://doi.org/10.1016/j.copbio.2008.10.005

11  Applications of Quorum Sensing in Microbial Fuel Cell

https://doi.org/10.1016/j.electacta.2007.10.018
https://doi.org/10.1016/j.electacta.2007.10.018
https://mitpweb2.mit.edu/sites/default/files/titles/alife/0262290758chap131.pdf>
https://doi.org/10.1111/j.1758-2229.2010.00210.x
https://doi.org/10.1111/j.1758-2229.2010.00210.x
https://doi.org/10.1002/bit.22072
https://doi.org/10.1016/j.jhazmat.2009.06.162
https://doi.org/10.1016/j.jhazmat.2009.06.162
https://doi.org/10.1007/s12088-016-0616-2
https://doi.org/10.5897/AJB11.206
https://doi.org/10.5897/AJB11.206
https://doi.org/10.1016/j.bioelechem.2011.12.002
https://doi.org/10.1016/j.bioelechem.2011.12.002
https://doi.org/10.1038/441300a
https://doi.org/10.1128/mBio.00553-12
https://doi.org/10.1016/j.desal.2012.09.015
https://doi.org/10.7150/ijbs.9028
https://doi.org/10.1038/nrmicro1442
https://doi.org/10.1016/j.copbio.2008.10.005


176

Malvankar NS, Lovley DR (2012) Microbial nanowires:a new paradigm for biological elec-
tron transfer and bioelectronics. ChemSusChem 5:1039–1046. https://doi.org/10.1002/
cssc.201100733

Mathis BJ, Marshall CW, Milliken CE, Makkar RS, Creager SE, May HD (2008) Electricity gen-
eration by thermophilic microorganisms from marine sediment. Appl Microbiol Biotechnol 
78:147–155. https://doi.org/10.1007/s00253-007-1266-4

Orellana R, Leavitt JJ, Comolli LR, Csencsits R, Janot N, Flanagan KA, Gray AS, Leang C, 
Izallalen M, Mester T (2013) U(VI) reduction by a diversity of outer surface c-type cyto-
chromes of Geobacter sulfurreducens. Appl Environ Microbiol 79:6369–6374. https://doi.
org/10.1128/AEM.02551-13

Osman MH, Shah AA, Walsh FC (2010) Recent progress and continuing challenges in bio-fuel 
cells part II: microbial. Biosens Bioelectron 26:953–963

Park HS, Kim SK, Shin IH, Jeong YJ (2001) A novel electrochemically active and Fe (III)-reducing 
bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel 
cell. Anaerobe 7:297–300

Parsek MR, Greenberg EP (2000) Acylhomoserine lactone quorum sensing in gram-negative bac-
teria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad 
Sci U S A 97:8789–8793. https://doi.org/10.1073/pnas.97.16.8789

Patel SKS, Kumar P, Mehariya S, Purohit HJ, Lee JK, Kalia VC (2014) Enhancement in hydrogen 
production by co-cultures of Bacillus and Enterobacter. Int J Hydrogen Energy 39(27):14663–
14668. https://doi.org/10.1016/j.ijhydene.2014.07.084

Patel SKS, Kumar P, Singh M, Lee JK, Kalia VC (2015) Integrative approach to produce hydrogen 
and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 
176:136–141. https://doi.org/10.1016/j.biortech.2014.11.029

Patrick DK, Roland C, Douglas FC, Priscilla AS, John MR, Bruce EL (2011) Anode micro-
bial communities produced by changing from microbial fuel cell to microbial electrolysis 
cell operation using two different wastewaters. Bioresour Technol 102:388–394. https://doi.
org/10.1016/j.biortech.2010.05.019

Pham TH, Boon N, Aelterman P, Clauwaert P, Schamphelaire LD, Vanhaecke L, Maeyer KD, 
Hofte M, Verstraete W, Rabaey K (2008) Metabolites produced by Pseudomonas sp. enables a 
gram positive bacterium to achieve extracellular electron transfer. Appl Microbiol Biotechnol 
77:1119–1129. https://doi.org/10.1007/s00253-007-1248-6

Phuc TH, Beomseok T, Chang IS (2008) Performance and bacterial consortium of microbial fuel 
cell fed with formate. Energy Fuel 22:164–168. https://doi.org/10.1021/ef700294x

Prasertsung N, Reungsang A, Ratanatamskul C (2012) Alkalinity of cassava wastewater fed in 
anodic enhance electricity generation by a single chamber microbial fuel cells. Eng J 16:17–28

Qiao Y, Qiao YJ, Zou L, Ma CX, Liu JH (2015) Real-time monitoring of phenazines excretion in 
Pseudomonas aeruginosa microbial fuel cell anode using cavity microelectrodes. Bioresour 
Technol 198:1–6. https://doi.org/10.1016/j.biortech.2015.09.002

Rabaey K, Lissens G, Siciliano SD, Verstraete W (2003) A microbial fuel cell capable of convert-
ing glucose to electricity at high rate and efficiency. Biotechnol Lett 25:1531–1535 PMID: 
14571978

Rabaey K, Boon N, Siciliano SD, Verhaege M, Verstraete W (2004) Biofuel cells select for micro-
bial consortia that self-mediate electron transfer. Appl Environ Microbiol 70:5373–5382. 
https://doi.org/10.1128/AEM.70.9.5373-5382.2004

Rabaey K, Read ST, Clauwaert P, Freguia S, Bond PL, Blackall LL, Keller J (2008) Cathodic oxy-
gen reduction catalyzed by bacteria in microbial fuel cells. ISME J 2:519–527

Recinos DA, Sekedat MD, Hernandez A, Cohen TS, Sakhtah H, Prince AS, Price-Whelan A, 
Dietrich LEP (2012) Redundant phenazine operons in Pseudomonas aeruginosa exhibit 
environment-dependent expression and differential roles in pathogenicity. Proc Natl Acad Sci 
U S A 109:19420–19425. https://doi.org/10.1073/pnas.1213901109

Rezaei F, Xing D, Wagner R, Regan JM, Richard TL, Logan BE (2009) Simultaneous cellulose 
degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl 
Environ Microbiol 75:3673–3678. https://doi.org/10.1128/AEM.02600-08

D. Jothinathan et al.

https://doi.org/10.1002/cssc.201100733
https://doi.org/10.1002/cssc.201100733
https://doi.org/10.1007/s00253-007-1266-4
https://doi.org/10.1128/AEM.02551-13
https://doi.org/10.1128/AEM.02551-13
https://doi.org/10.1073/pnas.97.16.8789
https://doi.org/10.1016/j.ijhydene.2014.07.084
https://doi.org/10.1016/j.biortech.2014.11.029
https://doi.org/10.1016/j.biortech.2010.05.019
https://doi.org/10.1016/j.biortech.2010.05.019
https://doi.org/10.1007/s00253-007-1248-6
https://doi.org/10.1021/ef700294x
https://doi.org/10.1016/j.biortech.2015.09.002
https://doi.org/10.1128/AEM.70.9.5373-5382.2004
https://doi.org/10.1073/pnas.1213901109
https://doi.org/10.1128/AEM.02600-08


177

Rismani YH, Christy AD, Dehority BA, Morrison M, Yu Z, Tuovinen OH (2007) Electricity gen-
eration from cellulose by rumen microorganisms in microbial fuel cell. Biotechnol Bioeng 
97:1398–1407. https://doi.org/10.1002/bit.21366

Rozendal RA, Jeremiasse AW, Hamelers HVM, Buisman CJN (2008) Hydrogen production with 
a microbial biocathode. Environ Sci Technol 42:629–634. https://doi.org/10.1021/es071720+

Schaefer AL, Greenberg EP, Oliver CM, Oda Y, Huang JJ, Banin G, Peres CM, Schimdt S, 
Juhaszova K, Sufrin JR, Harwood CS (2008) A new class of homoserine lactone quorum-
sensing signals. Nature 454:595–599. https://doi.org/10.1038/nature07088

Sedky H, Hassan A, Kim YS, Oh S (2012) Power generation from cellulose using mixed and pure 
cultures of cellulose-degrading bacteria in a microbial fuel cell. Enzym Microbiol Technol 
51:269–273. https://doi.org/10.1016/j.enzmictec.2012.07.008

Shrout JD, Nerenberg R (2012) Monitoring bacterial twitter: does quorum sensing determine the 
behavior of water and wastewater treatment biofilms? Environ Sci Technol 46:1995–2005. 
https://doi.org/10.1021/es203933h

Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP (2000) Quorum-
sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 
407:762–764. https://doi.org/10.1038/35037627

Tender LM, Reimers CE, Stecher HA, Holmes DE, Bond DR, Lowy DA et al (2002) Harnessing 
microbially generated power on the seafloor. Nat Biotechnol 20:821–825. https://doi.
org/10.1038/nbt716

Vega CA, Fernandez I (1987) Mediating effect of ferric chelate compounds in microbial fuel cell 
with Lactobacillus planetarium, Streptococcus lactis and Erwinia dissolvens. Bioelectrochem 
Bioenerg 17:217–222

Venkata MS, Veer RS, Srikanth S, Sarma PN (2007) Bioelectricity production by mediatorless 
microbial fuel cell under acidophilic condition using wastewater as substrate: influence of sub-
strate loading rate. Curr Sci 92(12):1720–1726

Venkata MS, Mohanakrishna G, Purushotham RB, Saravanan R, Sarma PN (2008) Bioelectricity 
generation from chemical wastewater treatment in mediatorless (anode) microbial fuel cell 
(MFC) using selectively enriched hydrogen producing mixed culture under acidophilic micro-
environment. Biochem Eng J 39:121–130. https://doi.org/10.1016/j.bej.2007.08.023

Xi MY, Sun YP (2008) Preliminary study on E. coli microbial fuel cell and on-electrode taming of 
the biocatalyst. Chin J Process Eng 8(6):1179–1184

Yi Z, Defeng X, John MR, Bruce EL (2008) Isolation of exoeletrogenic bacterium Ochrobactrum 
anthropi YZ-1 by using a U-tube microbial fuel cell. Appl Environ Microbiol 74:3130–3137. 
https://doi.org/10.1128/AEM.02732-07

Yong YC, Wu XY, Sun JZ, Cao YX, Song H (2015) Engineering quorum sensing signal-
ing of Pseudomonas for enhanced wastewater treatment and electricity harvest: a review. 
Chemosphere 140:18–25. https://doi.org/10.1016/j.chemosphere.2014.10.020

Yujie F, Xin W, Bruce EL, He L (2008) Brewery wastewater treatment using air-cathode microbial 
fuel cells. Appl Microbiol Biotechnol 78:873–880

Zhuang LS, Zhou YY, Liu T, Wu Z (2011) Development of Enterobacter aerogenes fuel cells: from 
in situ biohydrogen oxidization to direct electroactive biofilm. Bioresour Technol 102:284–289

11  Applications of Quorum Sensing in Microbial Fuel Cell

https://doi.org/10.1002/bit.21366
https://doi.org/10.1021/es071720+
https://doi.org/10.1038/nature07088
https://doi.org/10.1016/j.enzmictec.2012.07.008
https://doi.org/10.1021/es203933h
https://doi.org/10.1038/35037627
https://doi.org/10.1038/nbt716
https://doi.org/10.1038/nbt716
https://doi.org/10.1016/j.bej.2007.08.023
https://doi.org/10.1128/AEM.02732-07
https://doi.org/10.1016/j.chemosphere.2014.10.020


Part III

Agriculture



181© Springer Nature Singapore Pte Ltd. 2018
V. C. Kalia (ed.), Quorum Sensing and its Biotechnological Applications, 
https://doi.org/10.1007/978-981-13-0848-2_12

B. Rekadwad (*) 
National Centre for Microbial Resource, National Centre for Cell Science, Pune, India 

P. K. Ghosh 
Microbiology Laboratory, Department of Marine Science, Ballygunge Science College, 
Calcutta University, Kolkata, West Bengal, India

12Pseudomonas: A Quorum Sensing 
System for Improved Crop Production

Bhagwan Rekadwad and Pallab Kumar Ghosh

Abstract
The soil is a unique and ultimate home of the variety of beneficial and biotech-
nologically important inhabitant microorganisms. These microorganisms com-
ply such a best services especially beneficial agriculture in turn farmers benefitted. 
Effective management of agriculture ecosystem and proper use of microorgan-
isms such as Pseudomonas and Pseudomonas-like can improve crop health, 
increase crop yield and productivity, maintain the health of soil over a period of 
long time span. Bacterium Pseudomonas associated species in the six groups in 
the Pseudomonadaceae family capable of sensing and generating biomolecules 
having short and long chains. These include quorum sensing (QS) molecules, 
hydrolytic enzymes, proteins, siderophores, antibiotics and much many antibac-
terial and antifungal compounds under various environmental situations such as 
high or low temperature, high or low salt concentrations, in the presence and 
absence of contaminants (chemicals, bio-chemicals and hydrocarbons), in 
response to specific ions and in response to specific signalling molecules. All 
these characteristics possessed and activities carried out by Pseudomonas have 
biotechnological applications especially in agriculture. Pseudomonas have major 
application in crop production by acting as biocontrol agent due to its infection 
ability, recognising and sending QS molecules, as an antagonistic, as phyto-
pathogens, as plant growth promoting (PGP) agent in the form of individual cell 
(solid, liquid, spray), in mixed culture and co-culture, as individual or mixed 
culture inoculums etc. All these characteristics of genus Pseudomonas make a 
suitable and biotechnologically important cellular model for the variety of appli-
cation in agriculture and horticulture.
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182

Keywords
PGPR · Plant growth promotion activity · AHLs · Cell-cell communication · Crop 
yield

Abbreviations

VOCs	 Volatile organic compounds

12.1	 �Introduction

The genus Pseudomonas exhibits a broad spectrum of traits and it shows a remark-
able adaptability in nature under environmental extremes. The family 
Pseuodomonadaceae currently has six major groups and more than 200 identified 
species. Quorum sensing (QS) is operated and regulated by collective behaviour 
through communication by molecules called as auto-inducers based on release, sig-
nal and recognition (Ng and Bassler 2009; Rutherford and Bassler 2012; O’Loughlin 
et al. 2013; Kalia 2014). Bacteria use quorum sensing to coordinate certain type of 
behaviours as biofilm formation, virulence activity and resistance capacity based on 
the density of bacterial population (Kalia et al. 2014; Kalia 2015; Kalia and Kumar 
2015; Kaur et al. 2015; Pooja et al. 2015). QS can occur within same bacterial spe-
cies or between different species. These bacteria have an ability to produce natural 
products with exceptional biological activity and curing properties (Krishna et al. 
2015; Kumar et al. 2015). This process can regulate different processes of the host 
within the environment and different variety of molecules can be used as signalling. 
Many researchers worldwide working in this area to dig out answer that helps us to 
get better crop yield (Gewin 2010; Manogari and Daniel 2015; Rani et al. 2017). QS 
molecule’s carry out signal transduction and trigger during plant-microbe interac-
tion in the rhizospheric region which help to check plant-microbe i.e. cell to cell 
communication (Koul et al. 2016, Koul and Kalia 2017; Kalia et al. 2017). In this 
context, this review describes the roles of QS and bio-molecules produced by 
Pseudomonas having utility in crop production and in green biotechnology with 
selective emphasis on it as the model organism.

12.2	 �Application in Agriculture for Improved Crop 
Production

Pseudomonas has biotechnological application in improved production of crop 
plants and thereby increases a crop yield through the production of agriculturally 
important bio-molecules helpful. The roles of Pseudomonas spp. and molecules 
produced by them are illustrated.

B. Rekadwad and P. K. Ghosh
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12.2.1	 �Biocontrol Agent

Pseudomonas is well known to bio-control agent because of its well-regulated QS 
system. Variety of naturally occurring compounds are related to QS system of 
Pseudomonas viz. antibiotics and effective antifungal chemicals including hydro-
gen cyanide (HCN), 2, 4-di-acetyl-phloro-glucinol, pyrrolnitrin, pyoluteorin and 
phenazines (Mezaache-Aichour et al. 2016) and the pcoIR system in Pseudomonas 
fluorescens(Wu et al. 2010; Bauer et al. 2016; Pandin et al. 2017). In a similar fash-
ion, the biocontrol capacity by Pseudomonasaureofaciens30–84 strain positively 
regulates the phzFABCD operon for synthesizing phenazine. Serratia plymuthica is 
universal inhabitant in the rhizospheric soils and a proven antagonist of soil-borne 
plant pathogens. The QS molecules – acylhomoserine lactones (AHLs) molecules 
produced by Pseudomonas act as triggering molecules, which is very crucial in bio-
control activity/response of strainHRO-C48.AHLs communicate information and 
allows Pseudomonas to exude hydrolytic enzymes-mainly chitin and protein, pyr-
rolnitrin and VOCs, which play a major role in anti-fungal activity (Kilani and 
Fillinger 2016; Shehata et al. 2016; Gupta et al. 2017; Yang et al. 2017). Several 
species of Pseudomonas spp. have been studied by different research groups world-
wide (Table 12.1).

12.2.2	 �Plant Growth Promoting Agent (PGPR)

Pseudomonas acts as a good bio-control agent (Borges et al. 2016). Many strains of 
Pseudomonas were more effective and useful in co-culture or in mixed culture as 
the bio-control agent. For instance, bio-control agent P. fluorescens strain PF1 along 
with biofertilizer Azospirillum brasilensestrain TNAU was developed as talc based 
bioformulation. This individual, as well as mixed bioformulation, can be used for 
soil application, seed application/treatment, as the spray for seedlings and foliar 
parts in groundnut. It was observed that P. fluorescens strain PF1 have the ability to 
enhance lateral root growth. The combination of both bacteria complies develop-
ment of shoot. Collectively, Pseudomonas bacterium is useful both individual and 
in combination as for plant growth promotion and enhanced crop yield (Andhare 
and Babu 2017).

12.2.3	 �Beneficial Infections and Quorum Sensing in Gram 
Negative Bacteria for Survival in Cold Environments

Many useful plants found in the cold environments are capable of resistant to cold 
but not for productivity. Productivity in the sense growth of vegetative parts, flower-
ing, fruit formation and production of biotechnologically important bio-molecules. 
They undergo in the condition somehow we called it as dormancy. Gram-negative 
psychrophilic bacteria, especially from glacier environment, have application in 
growth and development of plants due to their inherent ability to survive under 
extremely low temperatures.

12  Pseudomonas: A Quorum Sensing System for Improved Crop Production



184

Ta
bl

e 
12

.1
 

P
se

ud
om

on
as

 s
pp

. b
io

-c
on

tr
ol

lin
g 

ag
en

ts
 r

eg
ul

at
ed

 b
y 

qu
or

um
 s

en
si

ng

P
se

ud
om

on
as

 s
tr

ai
ns

B
io

co
nt

ro
l m

ol
ec

ul
es

A
pp

lic
at

io
n

R
ef

er
en

ce
s

P.
 c

hl
or

or
ap

hi
s 

30
–8

4,
 P

. 
ch

lo
ro

ra
ph

is
 G

P7
2

Ph
en

az
in

e
W

he
at

 d
is

ea
se

L
iu

 e
t a

l. 
(2

01
6)

P.
flu

or
es

ce
ns

D
7

C
el

l f
re

e 
fil

tr
at

e
Fi

el
d 

cr
op

s
B

an
ow

et
z 

et
 a

l. 
(2

00
8)

, C
al

dw
el

l e
t a

l. 
(2

01
2)

, a
nd

 H
ar

di
ng

 a
nd

 R
ai

za
da

 
(2

01
5)

P.
 fl

uo
re

sc
en

sB
R

G
10

0
G

ra
nu

le
s

Pl
an

t p
ro

te
ct

io
n

P.
flu

or
es

ce
ns

W
H

6
C

el
l f

re
e 

fil
tr

at
e

Pl
an

t p
ro

te
ct

io
n

P
se

ud
om

on
as

 s
pe

ci
es

 (
P.

 
ae

ru
gi

no
sa

, P
. fl

uo
re

sc
en

s,
 P

. 
fr

ag
i, 

P.
 s

yr
in

ga
e 

an
d 

P.
pu

ti
da

C
el

l f
re

e 
ex

tr
ac

t
B

io
su

rf
ac

ta
nt

A
w

ad
a 

et
 a

l. 
(2

00
5)

P
se

ud
om

on
as

 s
pp

.
Ph

en
as

in
 2

,4
- 

di
-a

ce
ty

l-
ph

lo
ro

-g
lu

ci
no

l, 
fla

ge
lli

n,
 F

e+
3  c

he
la

tin
g 

si
de

ro
ph

or
es

A
ga

in
st

 F
us

ar
iu

m
 a

nd
 

F
us

ar
iu

m
-l

ik
e 

pl
an

t p
at

ho
ge

ns
, 

in
se

ct
s

W
ac

ho
w

sk
a 

et
 a

l. 
(2

01
3)

, L
ak

sh
m

i 
et

 a
l. 

(2
01

5)
, a

nd
 K

er
gu

nt
eu

il 
et

 a
l. 

(2
01

6)
P.

flu
or

es
ce

ns
, P

. a
ur

eo
fa

ci
en

s 
2–

79
, 3

0–
84

) 
P.

flu
or

es
ce

ns
Pf

-5
, 

Q
2–

87
, F

11
3

Pl
t, 

Pr
n,

 D
A

PG
, H

C
N

A
s 

an
tif

un
ga

l a
ge

nt
 a

ga
in

st
 

R
hi

zo
ct

on
ia

 s
ol

an
i, 

P
yt

hi
um

 
ul

ti
m

um

W
el

le
r 

(2
00

7)

P.
au

re
of

ac
ie

ns
 T

X
-1

Sp
ot

 le
ss

, b
io

-j
et

A
s 

an
tif

un
ga

l a
ge

nt
 a

ga
in

st
 R

. 
so

la
ni

, P
yt

hi
um

Ju
na

id
 e

t a
l. 

(2
01

3)

P.
flu

or
es

ce
ns

A
50

6
Fr

os
tb

an
A

ga
in

st
 B

un
ch

 r
ot

, fi
re

 b
lig

ht
P.

au
re

of
ac

ie
ns

 3
0–

84
Ph

en
az

in
e

R
eg

ul
at

io
n 

of
 p

hz
FA

B
C

D
 o

pe
ro

n 
fo

r 
sy

nt
he

si
zi

ng
 p

he
na

zi
ne

Su
n 

et
 a

l. 
(2

01
6)

P.
 p

ut
id

a
A

cy
lh

om
os

er
in

e 
la

ct
on

es
 (

A
H

L
s)

C
on

fe
r 

sy
st

em
ic

 r
es

is
ta

nc
e 

ag
ai

ns
t A

lt
er

na
ri

a 
al

te
rn

at
e 

in
 

to
m

at
o 

pl
an

t

C
ha

tu
rv

ed
i a

nd
 K

um
ar

 2
01

4 
Sh

an
g 

et
 a

l. 
(2

01
4)

, V
ai

ku
nt

ap
u 

et
 a

l. 
(2

01
4)

, 
Ja

ya
pr

ad
ha

 a
nd

 Y
es

u 
R

aj
a 

(2
01

6)
, a

nd
 

M
ee

na
 e

t a
l. 

(2
01

6)

B. Rekadwad and P. K. Ghosh



185
P

se
ud

om
on

as
 s

tr
ai

ns
B

io
co

nt
ro

l m
ol

ec
ul

es
A

pp
lic

at
io

n
R

ef
er

en
ce

s
Fl

uo
re

sc
en

t P
se

ud
om

on
as

Py
ol

ut
eo

ri
n/

ph
en

az
in

e
A

nt
ag

on
is

t o
f 

a 
br

oa
d 

sp
ec

tr
um

 
of

 p
hy

to
pa

th
og

en
ic

 
m

ic
ro

or
ga

ni
sm

s 
is

ol
at

ed
 f

ro
m

 
th

e 
m

ai
ze

 r
hi

zo
sp

he
re

 a
nd

 s
oi

l 
bo

rn
e 

ph
yt

op
at

ho
ge

ns
 s

uc
h 

as
 

F
us

ar
iu

m

M
ou

ba
ra

k 
an

d 
A

bd
el

-M
on

ai
m

 (
20

11
),

 
M

eh
ra

bi
 e

t a
l. 

(2
01

6)
, K

un
ov

a 
et

 a
l. 

(2
01

6)
, a

nd
 V

ac
he

ro
n 

et
 a

l. 
(2

01
6)

P.
 e

nt
om

op
hi

la
To

xi
ns

E
nt

om
op

at
ho

ge
n

R
ui

u 
(2

01
5)

P.
 fl

uo
re

sc
en

s 
E

PS
62

e
A

nt
ag

on
is

tic
E

rw
in

ia
am

yl
ov

or
a,

 c
au

sa
tiv

e 
of

 
fir

e 
bl

ig
ht

C
ab

re
fig

a 
et

 a
l. 

(2
00

7)

P
se

ud
om

on
as

 s
pp

.
A

nt
ag

on
is

tic
F

us
ar

iu
m

 c
au

sa
tiv

e 
of

 w
ilt

 o
f 

ch
ic

kp
ea

A
be

d 
et

 a
l. 

(2
01

6)

P.
 a

er
ug

in
os

a 
LV

Pr
od

uc
e 

an
tib

io
tic

 li
ke

 s
ub

st
an

ce
A

ga
in

st
 p

la
nt

 
pa

th
og

en
X

an
th

om
on

as
ar

­
bo

ri
co

la

da
 S

ilv
a 

V
as

co
nc

el
lo

s 
et

 a
l. 

(2
01

4)

P.
ch

lo
ro

ra
ph

is
 P

C
L

13
91

Ph
en

az
in

e
E

xh
ib

it 
an

ta
go

ni
st

ic
 o

f 
F.

 
ox

ys
po

ru
m

, w
hi

ch
 c

au
se

s 
to

m
at

o 
fo

ot
 a

nd
 r

oo
t r

ot

E
ga

m
be

rd
ie

va
 e

t a
l. 

(2
01

7)
, a

nd
 

Je
nd

ou
bi

 e
t a

l. 
(2

01
7)

P
se

ud
om

on
as

 s
pp

.
A

nt
ag

on
is

tic
A

ga
in

st
 R

hi
zo

ct
on

ia
 s

ol
an

i a
nd

 
Sc

le
ro

ti
um

 r
ol

fs
ii

Ja
ni

 e
t a

l. 
(2

01
5)

, K
ot

as
th

an
e 

et
 a

l. 
(2

01
5)

, a
nd

 v
an

 L
en

te
re

n 
et

 a
l. 

(2
01

8)
P.

 p
ut

id
a,

 P
.fl

uo
re

sc
en

s 
2–

79
, P

. 
pr

ot
eg

en
s 

Pf
-5

, a
nd

 P
. 

br
as

si
ca

ce
ar

um
Q

8r
1–

96

B
io

-c
on

tr
ol

 a
ct

iv
iti

es
A

s 
an

 e
nd

op
hy

te
s 

ag
ai

ns
t p

la
nt

 
pa

th
og

en
de

B
ru

ijn
 a

nd
 R

aa
ijm

ak
er

s 
(2

00
9)

, 
M

av
ro

di
 e

t a
l. 

(2
01

2)
, K

ha
n 

et
 a

l. 
(2

01
4)

, O
te

in
o 

et
 a

l. 
(2

01
5)

, a
nd

 
K

an
de

l e
t a

l. 
(2

01
7)

P.
 fl

uo
re

sc
en

s 
1–

11
2,

 2
–2

8,
 4

–6
V

ol
at

ile
s 

su
ch

 a
s 

ph
en

az
in

e-
1-

ca
rb

ox
yl

ic
 

ac
id

 a
nd

 H
C

N
A

pp
lic

at
io

n 
du

ri
ng

 s
to

ra
ge

 o
f 

ap
pl

e.
 K

ill
s 

bl
ue

 m
ol

d
W

al
la

ce
a 

et
 a

l. 
(2

01
7)

12  Pseudomonas: A Quorum Sensing System for Improved Crop Production



186

Psychrophilic bacteria such as Escherichia coli strain pJBA132, Chromobacterium 
violaceum strain CV026,Pseudomonas putida strain F117 and strain pKR-C12 
could sense long and short AHLs and capable of producing diverse molecules under 
varied experimental conditions. These bacteria possess AHLs mediated QS is regu-
lated by gene LuxR transcriptional regulator harboured in bacterial genome (De 
Maayer et al. 2014; Abraham and Thomas 2015; Dharmaprakash et al. 2016).

12.2.4	 �Pseudomonas as Plant Growth Promoting (PGP) Microbial 
Inoculums

Indian conventional agricultural method was very good and beneficial agricultural 
practice. The use of manure and original varieties which are highly resistant to patho-
genic attack occurred during the cropping season and changes in weather. The current 
scenario is more painful and reflects some farmer are fell as prey due to uncontrolled 
use of chemical fertilizer. Global warming incurs the increase in environmental tem-
perature. These artificial and natural calamity cause damage to the crop plants and 
hamper their yield. The use of manure and bio-inoculum are the best option to solve 
existing problem. The use of microbial inoculum such Methylobacterium organophi­
lum capable of growth at elevated temperature(Rekadwad 2014), use of biopolymers 
and spores (Rekadwad et al. 2016), bacterial biofilms (Rekadwad and Khobragade 
2017b), nutrient recycling bacteria (Rekadwad and Khobragade 2017b), salt and 
chemical tolerating bacteria (Rekadwad and Khobragade 2015, 2017c) etc.

The eco-friendly approaches such as the use of the whole bacterium, bacterial 
powdered form include talc and embedded bioformulation, solid and liquid bioin-
oculants etc., are the solutions to solve above-explained problems. Microorganisms 
such as Pseudomonas, Bacillus, Rhizobium, Microbacterium, Agrobacterium, 
Chryseobacterium, Ensifer and Rhodococcus many other include fungi are helpful 
microorganism to do best agriculture and horticulture practice. These microorgan-
isms help plant through the variety of ways such as producing and sensing QS 
microorganisms, by growing plants, growing rhizospheric sites and as endophytes 
in diverse environments (Abbamondi et al. 2016; Papenfort and Bassler 2016).

12.2.5	 �Increased Crop Productivity by Pseudomonas Siderophore

The iron specific chelating agents i.e. siderophores are produced by bacteria in soil, 
water-fresh and marine and by endophytes facilitating plant growth (Fig. 12.1). The 
majority of bacteria found in the marine environment are belonging to alpha-
proteobacteria and gamma-proteobacteria (Rekadwad and Khobragade 2017a). 
Siderophores produced by Pseudomonas species complies biological control of 
plant pathogens such as fungi (phytopathogens). The application of siderophore-
producing bacteria in soil, on plants or as endophytes. Either of these practices 
should help to control the adverse effects of phytopathogens on plants. The sidero-
phore has biotechnological applications and promotes plant growth by increasing 
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plant biomass (Sasirekha and Srividya 2016; Sah et al. 2017). Farmer will benefit 
due to increase in shoot length of the plant, the length of root help to absorb more 
nutrient and water, increase in cob length, increase in a number of healthy grains per 
plant and increase in iron content in the leaves, stem, roots and seeds.
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Abstract
Food spoilage and food borne diseases are still a significant problem even with 
the application of contemporary food preservation techniques. Microbial spoil-
age of food has led to serious public health consequences and led to the emer-
gence of multi drug resistant strains. Quorum signaling mechanism in many of 
these spoilage and pathogenic bacteria for the management of phenotypic char-
acteristics, including virulence determination has been well documented. 
Appreciating the knowledge on microbial ecosystem of food and their QS medi-
ated signaling mechanism may aid in combating the microbial infections in food 
and food processing industries. Owing to abundant literatures on basics of quo-
rum sensing, in this chapter we have narrowed down to microbial ecosystem of 
food, food borne pathogens and their QS regulatory mechanism. In addition, we 
have also attempted to throw up light on (i) quorum signals in food spoilage, (ii) 
QS mediated biofilms in food and food processing industries, (iii) detection of 
food spoilage using QS-biosensors and, (iv) several food based QS inhibitors 
(QSIs) as food preservatives and eventual approach which has to be given inter-
est to further reveal the underlying mechanism of QS signaling in food system 
and potential food based QS inhibitors for the management of microbial infec-
tions as a novel food intervention strategy to ensure food safety and quality.
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13.1	 �Introduction

In recent years, rapid strides have been made on the microbiology of food spoilage. 
Food spoilage is of major concern in the food industry owing to the severe public 
health consequences in the population and considerable economic losses. Food 
safety is one of the major challenges of food industry in the rapidly melding market 
with ecumenical shipping and consumption of fresh, raw and miserly processed 
food. Presently, foodborne diseases are a major worry for the public health in both 
developed and developing nations (Shi and Zhu 2009). The antibiotics that were 
discovered for managing these foodborne pathogens have brought relief from a 
huge number of life-threatening communicable diseases. The unwarranted and hap-
hazard usage of these antibiotics has led to the surfacing of bacterial strains which 
were resistant to conventional antibiotics (Davies and Davies 2010). Therefore, 
there is a need for a substitute which possibly renders the control of bacterial infec-
tions without stressing the microbial cells and thus reducing the emergence of mul-
tiple drug resistant strains.

Various bacterial species known to manage their physiological expressions by 
communicating among each other in a population-reliant approach called Quorum 
sensing (QS). A diverse cluster of food associated bacteria use to stimulate and 
response correlated to population density by discharging small, dispersible signal-
ing particles known as autoinducers (Waters and Bassler 2005). In Gram-negative 
bacteria, N-acyl homoserine lactones (AHLs) act as autoinducing elements pro-
duced by the components of LuxI homologues (autoinducer synthases). These sig-
nal molecules binds to the receptor protein (LuxR homologues) to activate the target 
gene expressions.

Biofilm formation by infectious bacteria is the prime concern that endures 
throughout the world. Most of the spoilage bacteria were found to form biofilms on 
the food matrix, or the processing surfaces leading to public health problems and 
economic losses. Many foodborne pathogens like Yersinia sp., Pseudomonas sp., 
Klebsiella sp., Enterobacter sp., Erwinia sp., and Ralstonia sp. produces metabolic 
end products like proteolytic, lipolytic, and chitinolytic enzymes which directly 
associated with the spoilage process of food products (Bai and Rai 2011). Biofilms 
are complex aggregates of microorganism sheath in a self-produced exopolysac-
charide (EPS) matrix to mature and endure in structured communities on solid sur-
faces. These biofilms act as proficient blockades against antimicrobials and host 
immune system resulting in relentless colonization and infection at the site of for-
mation. Also, it renders protection from external stress, biocides and dehydration 
(Annous et al. 2009).

The identification of quorum signals in food produce has grabbed the attention of 
food technologists to study the possible role of quorum signaling in the process of 

V. Gopu et al.



195

food spoilage. It has been reported that several bacterial phenotypes like EPS pro-
duction, biofilm formation, proteolytic, and pectinolytic activities related with the 
food spoilage are governed by quorum sensing (Skandamis and Nychas 2012). 
Many physical and chemical techniques including low-pressure oxygen plasma and 
water soluble polymers to deal with the bacterial biofilms on processing equipment 
and other solid surfaces were established to be effectual. On the other hand, consid-
ering the surfacing of multi-drug resistant bacterial strains (Koul et al. 2016), unset-
tling the bacterial signaling apparatus might play a mean part in regulating microbial 
gene expression associated with food spoilage and foodborne infection.

The involvement of AHLs based quorum signaling in regulating various 
QS-dependent phenotypes in foodborne pathogens has led to the search of active 
components that can interrupt the AHL signaling in particular. It is envisaged that 
the emergence of multi-drug resistant strains may be decreased by such compounds 
which can chunk the expression of virulence genes without inhibiting the bacterial 
growth. Halogenated furanones from Delisea pulchra was found to exhibit pro-
nounced QS inhibitory activity by competitively inhibiting the binding of AHL sig-
nals to the receptor proteins (Manefield et  al. 2002). Rasmussen et  al. (2000) 
evidenced that furanones have inhibited biofilm formation and the AHL-based regu-
lation of virulence factors in Pseudomonas aeruginosa. However, furanones were 
found to be unstable in nature and due to its toxicity it cannot be used in mammalian 
cells has provoked the hunt for stable, nontoxic compounds from natural sources. 
The identification of plant-based quorum sensing inhibitors has elevated the pros-
pects of finding a promising source of QS inhibitory compounds from the plenty of 
natural resources, and the examination of their toxicological nature may smooth the 
progress of using QS inhibitors as food preservatives.

Although quorum sensing bacteria and their communicating molecules have 
been identified in food systems, the precise function played by them in the process 
of food spoilage is not apparent. Several synthetic and natural compounds have 
been demonstrated for their QS inhibitory activity against a broad range of patho-
gens, but the mechanistic activity lies behind their inhibitory nature have not been 
well documented so far. The overall objective of this chapter is to discuss about the 
bacterial ecosystem and their communication mechanism in food system. In addi-
tion to disclose reported food based QS inhibitors and their potential application as 
food preservatives as a novel food intervention strategy.

13.2	 �Bacterial Communication

One of the remarkable recent advances in the study of microbial gene expression is 
the verity that many bacterial species correspond among their population through a 
dedicated intracellular signaling mechanism. This communication system enables 
bacteria to control the broad spectrum of activities by sensing and integrating the 
information from its surroundings and thereby activating or repressing the particu-
lar gene expression. This population dependent signaling mechanism of bacteria is 
known as quorum sensing (QS) (Li and Tian 2012).
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Quorum sensing bacteria diverges in signaling mechanism, transduction of sig-
naling molecule and regulating genes (Galloway et al. 2011). Many Gram-negative 
bacteria uses the signaling mechanism mediated by fatty acid derivative (N-acyl-
homoserine lactone) detected by promoters and transcriptional factors. On the other 
hand cyclic peptides and a membrane-correlated factor retort regulatory structure 
drives the signaling mechanism in Gram-positive bacteria. Many known bacterial 
species including Pseudomonas, Enterobacter, Yersinia, Klebsiella, Vibrio and 
Agrobacterium utilizes QS circuit for the regulation of virulence factor synthesis. 
Quorum sensing mechanism found to regulate biofilm formation, exotoxins and 
anti-microbial peptides in bacterial genera like Streptomyces, Enterococcus, 
Bacillus and Staphylococcus (Rutherford and Bassler 2012). The nitrogen fixation 
in the Rhizobium genus is regulated through QS mechanism. Conversely, Vibrio 
harveyi shares the characteristics of both Gram-positive and Gram-negative QS sys-
tems. Like Gram-negative bacteria, it synthesize and sense acylated homoserine 
lactones whereas, the signal transduction of acylated homoserine lactones happens 
by membrane-bound histidine kinases like Gram-positive bacteria (Waters and 
Bassler 2005).

Food safety has become one of the top priorities in the era of modern globaliza-
tion with global shipping and consumption of raw, unsullied and modestly pro-
cessed foods. It has been estimated that in developing counties like India 30% of 
people suffered from outbreaks of food borne pathogens (Scallan et al. 2011). Fresh 
products such as fruits, vegetables, meat and sea foods were found to be contami-
nated most likely by food-borne pathogens such as Campylobacter spp., Escherichia 
coli, Listeria monocytogenes, Salmonella spp., Staphylococcus aureus, and others 
(Dhama et al. 2015). Microbial activity is measured to be of immense import for the 
materialization of food spoilage as they produce proteolytic, lipolytic and pectino-
lytic enzymes whose end metabolites are allied with food deterioration (Ragaert 
et  al. 2007). The discovery of quorum signals in food products has grabbed the 
attention of food technologists to study the possible role of quorum signaling in the 
process of food spoilage. It has been reported that several bacterial phenotypes such 
as EPS production, biofilm formation and other phenotypic expressions related with 
the food spoilage are governed by quorum sensing. Recently, several research 
groups has started to focus on quorum sensing based strategies to combat microbial 
pathogenesis in the context of food spoilage. Owing to the preponderance of current 
literature on the other aspects of quorum sensing, in this chapter we have taken 
efforts to afford insights into the part of bacterial signaling in food putrefaction, 
signaling mechanisms in food system, food based QS inhibitors and its potential 
role as food preservatives, bio-sensors based detection of food spoilage and the 
future research perspectives to investigate the “gray” or “black” side of bacterial 
communication in food system to exploit its benefits to ensure food preservation 
and food safety.
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13.3	 �Microbial Ecosystem of Food

Microbes are ubiquitous in nature, as food substances comprise lots of nutrients, it 
is acting as a milieu for a diverge variety of organisms. Food is an ideal niche for a 
dynamic microbial ecosystem with high degree of complexity. It comprises of a 
broad range of bacteria, yeasts and filamentous fungi, in which they live, interact 
and communicate each other. The microbial interaction among the consortia is sup-
posed to be fundamental to arrive at desired characteristics of a food product. As 
customary, the microbial inhabitants of food are categorized into beneficial and 
pathogenic organisms that cause betterment and spoilage of food respectively.

Fermentation is one of the best technologies to develop nutritious food products 
using beneficial microbes from time immemorial. Lactic acid bacteria (LAB) have 
become indispensable in food industries to produce fermented foods. They rapidly 
acidify the food materials by producing organic acid especially lactic acid. They can 
also produce acetic acid, ethanol, antimicrobials, aromatic compounds, exopolysac-
charides and industrially important enzymes (Pessione 2012). As they are much 
beneficial they have also been used as probiotics in food and pharmaceutical prod-
ucts. Moreover, food fermentation is mostly carried out by complex microbial con-
sortia, which operate the process altogether and resulting in food product. As 
consortia the microbes can able to execute intricate activities and possess more 
versatility and robustness than pure cultures (Smid and Lacroix 2013).

Ercolini et al. (2012) have reported the microbiota involved in the manufacture 
of water buffalo mozzarella cheese. They observed that some thermophilic LAB 
could carry on fermentation, while the mesophilic LAB such as Lactobacillus lactis 
are relatively fewer during the production. Similarly in a parallel study, the ascen-
dance of common cheese bacteria was demonstrated. In furtherance, the difference 
in microbiota of pasteurized and raw milk cheeses and association between 
Lactobacillus populations and cheese maturation was also exemplified (Quigley 
et al. 2012). A culture-independent study delineated the effect of NaOH treatment 
on the microbiota of fermentation of table olives. As reported in the study, usual 
fermentation of the olives was initiated by halophilic bacteria and subsequently 
replaced by Lactobacillus at the later phase of fermentation. Whereas in the NaOH 
treated olives, they were dominated by enterobacteria. Moreover, significant disrup-
tion was found in the diversity of Lactobacillus plantarum biotypes (Cocolin et al. 
2013). In another report, ecological succession of microbiota of rye and wheat sour-
dough preparation was elaborated. Throughout the fermentation, variation of ratio 
between dominant and subdominant populations of L. sakei, Leuconostoc spp., 
Weissella spp., and Lactococcus lactis was described (Ercolini et al. 2013). In gen-
eral, the application of high throughput sequencing is highly constructive to com-
prehend the microbial functions and behavior corresponding to various process 
conditions. Further, metagenomic approaches will help to scrutinize the molecular 
evolution of various strains and to ascertain the quality of product, process effi-
ciency and food safety (De Filippis et al. 2017).
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13.4	 �Food Spoilage and Pathogenic Bacteria

Food spoilage is a multifarious process done by microbes causing lose of 25% 
world’s food supply and a vast degree of illness. The economical burden and food 
borne diseases by spoilage of food is continuing in the contemporary technical 
advancement. Any undesirable physical or chemical change in the texture, flavor or 
odor by microbial growth or its metabolism is defined as microbial food spoilage. In 
moist atmospheric conditions, Pseudomonas has been found to adhere swiftly to 
meat surfaces (Sohaib et al. 2016). In the meat stored at aerobic refrigeration condi-
tions, the genera Moraxella, Psychrobacter and Acinetobacter causes spoilage. 
Although Gram-negative, motile and non-motile aerobic rods are the dominant 
members of meat spoilage microbiota, varying degree of Gram-positive bacteria 
majorly Micrococci, lactic acid bacteria and Bronchothrix thermosphacta are also 
present (Skandamis and Nychas 2012).

Raw milk spoilage by lactic acid bacteria has turned out to be unfamiliar since 
from the arrival of refrigeration. However, a wide range of psychrotrophic bacteria 
have been identified from milk. Gram negative bacteria such as Pseudomonas, 
Acinetobacter, Enterobacter, Klebsiella, Achromobacter, Flavobacterium, 
Aeromonas, Alcaligenes and Gram-positive such as Bacillus, Corynebacterium, 
Micrococcus, Microbacterium and Clostridium were identified as psychrotrophic 
milk spoilers. Similarly, psychrotrophic Gram-negative rods such as Alcaligenes, 
Achromobacter, Flavobacterium and Pseudomonas can cause intolerable odors and 
flavors in soft cheeses by producing proteolytic and lipolytic enzymes (Oliveira 
et  al. 2015). Cereals are fouled with several yeasts such as Candida spp., 
Debaryomyces spp., Hansenula spp., Pichia spp., Saccharomyces spp., 
Saccharomycopsis spp. and filamentous fungi such as Stemphylium spp., Ulocaldium 
spp., Penicillium spp., Aspergillus spp., Eurotium spp. throughout harvest and post-
harvest processing.

Food borne pathogens are not necessarily to cause food spoilage but, cause food 
borne illness to the consumers. Food borne diseases are caused predominantly by 
bacteria especially Listeria monocytogenes, Campylobacter jejuni, Salmonella spp., 
Yersinia enterocolitica, Clostridium spp. S. aureus, Bacillus cereus and E. coli. As 
reported by Wirtanen and Salo (2003) the foresaid pathogens are potential biofilm 
formers and not responding to disinfectants used to clean the surfaces in the food 
industry.

13.4.1	 �Campylobacter spp.

Campylobacter jejuni and C. coli are the leading etiological agents of Campylobacter 
enteritis in humans (Serichantalergs et al. 2017). C. jejuni is accountable for 80–90% 
of campylobacteriosis. In Europe, as an average 51.6 per 100,000 populations were 
affected with campylobacteriosis. Overall, it has been estimated that nearly 2.5 mil-
lion cases per year are recorded with Campylobacter infection in the US, and 80% 
of them have arrived from food-borne transmission (Kaakoush et al. 2015).
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13.4.2	 �Listeria monocytogenes

Fecal material of healthy birds is comprised of L. monocytogenes and that may 
contaminate the poultry meat while processing (Ishola et al. 2016). L. monocyto-
genes has been reported to be found in a broad range of food commodities such as 
raw and fermented meat products, raw and cooked poultry, raw and smoked fish, 
raw vegetables, raw and improperly pasteurised milk, ice creams and cheeses 
(Jemmi and Stephan 2006). Even though, L. monocytogenes is a non spore-forming 
bacterium it has the potential to persist in detrimental conditions such as freezing, 
drying and heating. It can survive and grow even up to 3 °C, pH 4.4 and at salinity 
of 14%. L. monocytogenes is chiefly causing nosocomial and food-borne illness and 
it also transmitted through animal contact. Nevertheless, food-borne Listeria infec-
tions are less frequent when compared with other food borne pathogens, but it can 
cause serious infections such as Listeriosis. It is a life threatening issue for elderly 
people with an exhausted immune system and it can even cause miscarriage preg-
nant women by infecting the fetus. L. monocytogenes is the one having the highest 
mortality rate of about 28% among all the food borne pathogens (Wesley 2009).

13.4.3	 �Salmonella spp.

Salmonella is the most common food borne pathogen of animal origin. It is ubiqui-
tous in nature, overall nearly 2400 serovars are identified and all are found to be 
human or animal pathogens. The S. enteritidis and S. typhimurium are the prevalent 
serotypes mainly in poultry and meats. A vast range of foods have been found with 
various serotypes of Salmonella such as poultry, eggs, meats, fish, shrimp, milk and 
dairy products, cream-filled desserts, cake mixes, cocoa, chocolate, peanut butter, 
yeast, coconut, sauces, dried gelatine and in dried chillies. Generally Salmonella 
serotypes were identified from egg shells but S. enteritidis is used to dwell inside the 
egg especially in yolk (Kim et al. 2014). The most widespread food borne illness 
caused by this genus is Salmonellosis and developing as one of the foremost public 
health problems. Every year millions of patients are hospitalized and resulting 
deaths in thousands. In Europe, the spread of S. enteritidis and S. typhimurium 
makes increased disquiet. In furtherance, the development of multi drug resistance 
in Salmonella is emerging as a huge obstacle for clinicians to treat salmonella asso-
ciated infections worldwide (Jackson et al. 2013; Doumith et al. 2016).

13.4.4	 �Yersinia enterocolitica

Yersiniosis caused by Y. enterocolitica is one the important food borne illnesses 
next to campylobacteriosis and salmonellosis. Developing countries in temperate 
zone is struggling with high prevalence of yersiniosis even leads fatality (Kanan and 
Abdulla 2009; Okwori et al. 2009). Y. enterocolitica has been isolated from various 
food sources such as meat products, mussels, egg products, shrimp, fish, poultry and 
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vegetables such as carrots, mushrooms, celery and cabbage (Rahman et al. 2011). Y. 
enterocolitica infections are highly linked with ingestion of raw or improperly 
cooked meat especially pork and has also been isolated from pasteurized milk 
(Fredriksson-Ahomaa et  al. 2006). Several biotypes of Y. enterocolitica were 
reported with drug resistance against commonly prescribed antibiotics such as car-
benicillin, ticarcillin, cephalothin, amoxicillin/clavulanic acid and cefoxitin 
(Fredriksson-Ahomaa et al. 2001).

13.4.5	 �Campylobacter

Campylobacter is known as the prime etiological agent of foodborne gastroenteritis 
in the US and also one of the recurrent pathogens causing acute bacterial enteritis 
worldwide. In fact, it is too hard to discriminate the Campylobacter gastroenteritis 
from diarrheal disease caused by Salmonella and Shigella. Authoritative diagnosis 
needs isolation and identification of bacteria from stool sample from afflicted 
patients. Nearly 95% of campylobacter enteritis is caused by C. coli and C. jejuni, 
these both are clinically indistinguishable (Kaakoush et al. 2015). In Canada, the 
tetracycline resistance in C. jejuni has increased from 19% to 55% since 1985–
1995. In US at 1999, 54% of Campylobacter isolates were found resistant to at least 
one antimicrobial agent and 20% of them were resistant to two or more antimicrobi-
als. According to the report by national antimicrobial resistance monitoring system 
49% of isolates were found to be resistant to tetracyclines, 22% to quinolones and 
2% of the isolates were found to be resistant to macrolides (Iovine 2013).

13.4.6	 �Escherichia coli

In general, E. coli is a commensal organism that restrains the colonization of patho-
genic bacteria and synthesizing considerable amount of vitamins. Nevertheless, 
many strains of E. coli are acting as a pathogen by causing variety of diseases. So 
far, pathogenic E. coli are sorted into six groups with distinct virulence characteris-
tics. E. coli O157:H7 is the most frequently identified pathogenic E. coli strain 
causing significant mortality and morbidity in humans (Nguyen and Sperandio 
2012). Quite a lot of outbreaks of pathogenic E. coli have been linked with con-
sumption of meat or meat products. Other than beef, meat from goats, sheep, pigs, 
wild deer and seagulls, feral pigeons are also found with pathogenic E. coli. Cheeses 
have also been identified as an important source of outbreaks of pathogenic E. coli 
(Ferens and Hovde 2011).
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13.5	 �Quorum Sensing Signals in Food Spoilage

Recently, the function of QS in food spoilage has been recognized by detecting the 
QS signaling molecule in spoiled food. Expression of several degradative enzymes 
in food spoilage such as protease, lipase, chitinase and pectinase has been identified 
to be controlled by quorum sensing. Lu et al. (2004) have identified high level of 
AI-2 activity in frozen fish samples and also in tomato, cantaloupe, carrots, tofu and 
milk by using a reporter strain Vibrio harveyi BB170. Major quorum sensing signal-
ing molecules such as AI-1 and AI-2 have been identified in many essential food 
substances such as meat, milk and vegetables (Pinto et al. 2007). Christensen et al. 
(2003) identified that sprI gene mutant of S. proteamaculans is unable to spoil the 
pasteurized milk, whereas the same can lead the milk spoilage by addition of 3- 
oxo-C6-HSL. Thus the role of QS in milk spoilage was demonstrated. The role of 
QS in raw and pasteurized milk spoilage have been determined by identifying AHLs 
produced by psychrotrophic Pseudomonas spp., Serratia spp., Enterobacter spp., 
and Hafnia alvei (Pinto et al. 2007). A variety of AHL molecules have been detected 
and their role in spoilage of cold stored meat and poultry has been established (Jay 
et  al. 2003). H. alvei and Serratia spp. are found to be the dominant organisms 
among AHL producing Enterobacteriaceae in the spoilage of vacuum-packed meat 
products (Ravn et al. 2003). Interestingly, Ammor et al. (2008) have reported that 
aerobically refrigerated spoiled minced pork have been detected with higher level of 
QS signaling molecules than meat stored at 20 °C. Gram et al. (1999) have demon-
strated the ability of food spoilage bacteria to produce AHLs at very low cell den-
sity. Recently, Zhu et al. (2015) have reported that the two cyclic dipeptides have 
acted as the major QS signaling molecule of Shewanella baltica in spoilage of yel-
low croaker fish. Consequently, interrupting the quorum-sensing system can be an 
ideal way to control the microbial gene expression associated with food spoilage 
and infection. Further, in depth research on the function of QS signaling molecule 
in food deterioration will be helpful in the improvement of food preservation strate-
gies using effective quorum-sensing inhibitors.

13.6	 �Biofilms in Food and Food Processing Industries

Bacterial biofilm is a ubiquitous, sedentary population of bacterial cells embedded 
in hydrated polymeric matrices to have the benefit of increased resistant to environ-
mental invectives like antimicrobial agents and antibiotics (Christensen et al. 2012). 
In socio-microbiology it is revealed that, these bacterial communities express QS 
signal molecules for both inter-species and intra-species communication within the 
matrices. Biofilm community in a food processing settings may be dwelled with 
copious diverse species in slam vicinity (Habimana et al. 2010). Cell-to-cell syner-
gisms have been exhibited to play a key part in formation of biofilm structure and 
resisting the communal bacterial species against antimicrobial proxies. Mono-
species biofilms were found to be less stable than diverse species biofilms (Van der 
Veen and Abee 2011). Bacterial biofilm construction has major impact on several 

13  Significance and Application of Quorum Sensing in Food Microbiology



202

human deeds and they can form on any surfaces like stainless steel, wood, rubber, 
animal tissues, teeth, medical devices and so on (Bai and Rai 2011). In food indus-
try biofilms formed by spoilage and pathogenic bacteria remains as continual source 
of serious health hazards, food contamination and severe economic losses 
(Skandamis and Nychas 2012).

The capability of bacteria to append to the inanimate planes and form biofilms is 
a cause of distress for many food industries, including aquaculture and meat pro-
cessing industries. Several studies has evidenced the ability of food borne pathogens 
to attach to various food contact surfaces and from robust biofilms, including Y. 
enterocolitica (Venkadesaperumal et  al. 2016a), L. monocytogenes (Renier et  al. 
2011; Skandamis and Nychas 2012), S. enterica (Giaouris et  al. 2012), E. coli 
(Dourou et al. 2011; Simpson Beauchamp et al. 2012), C. jejuni (Hanning et al. 
2008). In addition to food borne pathogens, the biofilm forming ability of several 
other bacterial genera which are concerned in the spoilage of fresh, treated and 
minimally processed foods includes, P. aeruginosa (Venkadesaperumal et  al. 
2016a), K. pneumoniae (Venkadesaperumal et al. 2016b), Lactobacillus (Bove et al. 
2012), Leuconostoc (Leathers and Bischoff 2011) have been studied in great detail.

In meat and meat processing industries, the attachment and subsequent biofilm 
formation remains as a serious threat since it leads to cross-contamination and 
severe economic losses due to spoilage of the product. Chagnot et al. (2012) studied 
the adherence of E. coli to beef cadaver. Morild et al. (2011) studied the biofilm 
formation by Y. enterocolitica and L. monocytogenes on red meat coat. Pseudomonas 
was found to co-exist with Listeria and forms biofilms on stainless steel surface by 
producing profuse quantity of exopolysaccharides. In the cultivation of aquatic 
organisms like shrimp and molluscs aquatic pathogens like V. harveyi, Aeromonas 
hydrophila and Aeromonas salmonichida persists as infecting agents by forming 
biofilms in the tanks and pipes. Biofilms on food processing surfaces are different 
than those on fresh produce. Fett (2000) reported the biofilms on sprouts like broc-
coli and alfalfa. The biofilm formations on leafy produce were found to be predomi-
nant on veins, stomata and cell wall junctions. Biofilm formation on fresh produce 
like cabbage (Patel and Sharma 2010), spinach (Niemira and Cook 2010) and let-
tuce (Olmez and Temur 2010) were reported on many studies.

Various studies has supported that the bacterial infections predominates on the 
injured parts of fresh produce. It has been demonstrated by Khalil and Frank (2010) 
that the injured parts of leafy fresh produces hold up the growth of bacterial patho-
gens and initiate the discrete infection site in numerous fresh produce. It was also 
shown that the injured skin parts of pepper disks were infected by Salmonella spp. 
more than the uninjured skin Liao and Cooke (2001). Conversely, another group 
(Seo and Frank 1999) has studied the entrapment of E. coli O157:H7  in injured 
corners over stomata under confocal laser electron microscope. It has to be noted 
that the fresh produce has been contaminated by the bacterial pathogens at any time 
point from the farm to plate, and the infection may be severed by the existence of 
biofilms on either inured or non-injured surface of the fresh produce.
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13.7	 �Quorum Sensing in Biofilm Formation

Quorum sensing has been shown to govern the biofilm formation and maturation in 
many bacterial species (Kalia et al. 2017; Brackman et al. 2011). The correspon-
dence amid quorum sensing and biofilm formation in many food borne bacteria was 
reported by Yoon and Sofos (2010). The possible role of QS in inhibition of biofilm 
structure of S. enteritidis by the food spoilage bacterium H. alvei was evidenced by 
Chorianopoulos et al. (2010). Quorum sensing found to play a major role in regulat-
ing the nutritional demand in biofilms. Barrios et al. (2006) studied a novel QS regu-
lator molecule MqsR, B3022 is responsible for biofilm formation in E. coli. It has 
been evidenced that non-QS mutants have been revealed to form slimmer and more 
nebulous biofilms against the wild types (Priha et al. 2011). The QS mechanism of 
Serratia marcescens manages its pathogenicity by fabrication of virulence factors 
and its biofilm formation (Bakkiyaraj et al. 2012). H. alvei, 071 hall mutant strains 
showed the loss of biofilm forming ability due to the loss of hall showing that the 
QS molecules are essential for the formation of biofilms (Tan et al. 2014).

Quorum signals were found to be implicated in the different stages of biofilm 
configuration and maturation. The metabolic programs of the bacterial species in 
the biofilm architecture are different from their free living counter parts. S. pneu-
moniae strain in the sessile state form biofilm establishes localized infections better 
than their free living forms (Oggioni et al. 2006). The QS expression in many food 
borne pathogens were found to be induced by various extraneous and innate food 
factors (Bai and Rai 2011). Quorum sensing signaling compound regulates the tar-
get gene expression for virulence factor such as biofilm formation, motility, bacte-
riocins production or sporulation when the signaling molecule reaches its threshold 
level. It is shown that the protease, pectinase and siderophore production in 
Enterobacteriaceae and Pseudomonas spp. on beans sprouts has been regulated by 
the 3- oxo-C6-HSL (Rasch et al. 2005). Numerous studies have evidenced the quo-
rum sensing regulated biofilm development by food associated bacteria. It was pre-
sumed that the quorum signaling has involved in biofilm formation of H. alvei 071 
as AHL molecules were detected in their biofilms. The mutant strain of H. alvei 071 
halI was found to be non-biofilm producer. The differentiation of H. alvei 071 cells 
into complex, multicellular biofilm structure was found to be mediated by QS sig-
naling mechanism (Viana et  al. 2009). The biofilm formation in dairy isolate H. 
alvei is found to be synchronized by AHL mediated quorum sensing mechanism 
(Vivas et al. 2010). On the other hand few studies have also reported that there is no 
correlation between the quorum sensing mechanism and biofilm formation by food 
related bacteria. However, the quorum sensing signals were found to stimulate the 
increased resistance of biofilms against the antimicrobial agents.

Biofilm formation by bacterial pathogens in food processing environments is a 
persistent issue. Even though, quorum signals have been identified in various bio-
films, defined part of these signals in the biofilm formation is not clear. The role of 
quorum signals in various stages of biofilm formation and maturation has to be 
elucidated by advanced studies which may contribute for the precise regulation of 
biofilm formation and thus to minimize the food spoilage (Annous et al. 2009). As 
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discussed above the role of quorum sensing and its signaling molecules in the bio-
film formation by food borne bacteria is evidenced strongly but the molecular 
mechanism and their exact role has to be studied in detail. It is clear that the many 
food spoilage compounds or enzymes like protease, lipase, chitinase, cellulase, pec-
tin lyase and pectate lyase were regulated by quorum sensing mechanism. Hence, 
control over the food spoilage can be achieved by impeding the bacterial cross-talk 
and thereby ensuring the improved shelf-life and safety of the food products.

13.8	 �Food Based Quorum Sensing Inhibitors as Preservatives

The mechanism of food spoilage which renders the undesirable product for con-
sumption, often associated with the microbial association which produces extracel-
lular enzymes like cellulase, protease, chitinase, lipase and others. The phenomenon 
of these microbial associations is found to be regulated by QS (Liu et al. 2007; Van 
Houdt et al. 2007). Considering the vital role of QS in food spoilage and in regulat-
ing virulence factors of food borne pathogens, in the past few years immense impor-
tance has been given to the research of potential compounds or mechanism which 
can hinder the signaling mechanism. Quorum quenching (QQ) can be regarded as 
every feasible means of interrupting bacterial signaling which may be accomplished 
either by mimicking or degrading the signaling molecule, inhibiting the synthesis of 
signaling molecules like acylated homoserine lactones (AHLs) or by the analogues 
tumbling the activity of AHL cognate receptor proteins (Dembitsky et al. 2011).

The very first technique for disrupting the QS mechanism was aimed at inhibit-
ing the biosynthesis of signaling molecule. The effective quorum sensing inhibitors 
should be stable and highly specific to the quorum sensing regulator. Numerous 
potent QS inhibitors (QSIs) have been known to date, many of which have been 
isolated from natural and ensuing organic chemistry. One such group of promising 
QSI is halogenated furanones isolated from D. pulchara represses the AHL-
regulated phenotypes in Streptococcus liquefaciens and P. aeruginosa by interfering 
with the receptor proteins. It was evidenced that various food materials contains 
furanones structurally similar to the one isolated from D. pulchara (Hentzer et al. 
2003). The identification of plant-based quorum sensing inhibitors has elevated the 
prospects of finding a promising source of QS inhibitory compounds from the 
plenty of natural resources, and the examination of their toxicological nature may 
smooth the progress of using QS inhibitors as food preservatives. Hence, identify-
ing a novel food based quorum sensing inhibitor would be of immense potential in 
this regard.

Recently, many food based substances have been assessed for their ability to 
impede QS. Jakobsen et al. (2012) examined the extracts of several food products 
and edible plants for the QSI activity against the common opportunistic pathogen 
and demonstrated Iberin, an isothiocyanate from horseradish. Food phytochemicals 
like reservatorol, cinnamaldehyde, ellagic acid and rutin were demonstrated to 
reduce the AHLs concentration in Y. enterocolitica and E. carotovora (Truchado 
et al. 2012). Extract of fruits, vegetables, spices and herbs have been demonstrated 
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Table 13.1  lists the several fruits extracts which have been demonstrated as potential QS inhibi-
tors against food borne pathogens and spoilage bacteria

Source Targeted pathogen Biological effect References
Curcumin from 
Curcuma family

Escherichia coli, 
Pseudomonas 
aeruginosa PAO1, 
Proteus mirabilis and 
Serratia marcescens

Inhibition of Biofilm, 
exopolysaccharide 
production, alginate 
production, swimming and 
swarming motility

Kalia (2013) and 
Packiavathy et al. 
(2014)

Limonene, 
α-pinene, 
terpinene-4-ol and 
linalool

Escherichia coli, 
Bacilius cereus and 
Pseudomonas putida

Inhibition of Biofilm Kerekes et al. 
(2013)

Albiza 
schimperiana root 
methanol extract

AHL-QQ activity in 
E. coli based reporter 
strain AI1-QQ.1

AHL induced cell lethality Bacha et al. (2016)

Justica 
schimperiana seed 
petroleum ether 
extract
Polyphenolic 
extract from Rosa 
rugosa tea

Escherichia coli and 
Pseudomonas 
aeruginosa

Inhibition of Biofilm Zhang et al. (2014)

Essential oils of 
cumin, fennel and 
pepper

Salmonella 
typhimurium, 
Escherichia coli and 
Klebsiella 
pneumoniae

Inhibition of Biofilm Venkadesaperumal 
et al. (2016c)

Quercetin Pseudomonas 
aeruginosa, Yersinia 
enterocolitica and 
Klebsiella 
pneumoniae

Inhibition of biofilm 
formation, 
exopolysaccharide (EPS) 
production, motility and 
alginate production

Venkadesaperumal 
et al. (2015a)

Thyme essential 
oil, carvacrol, and 
thymol

Pseudomonas 
fluorescens

Inhibition of biofilm 
formation, and motility

Myszka et al. (2016)

Salvadora persica 
L. methanolic 
extracts

Pseudomonas 
aeruginosa PAO1 
and Staphylococcus 
strains

Inhibition of biofilm 
formation, and motility

Noumi et al. (2017)

Phytol P. aeruginosa twitching motility, flagella 
motility and pyocyanin 
production

Pejin et al. (2015)

α-Terpineol and 
cis-3-nonen-1-ol

P. aeruginosa pyocyanin inhibition Ahmad et al. (2015)

Resveratrol Campylobacter 
jejuni, C. coli and A. 
butzleri

Inhibition of biofilm Duarte et al. (2015)

(continued)
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Table 13.1  (continued)

Source Targeted pathogen Biological effect References
Agaricus blazei 
hot water extract

P. aeruginosa Inhibition of biofilm, 
pyocyanin production, 
twitching and swimming 
motility

Sokovic et al. 
(2014)

Lavandula 
angustifolia 
(lavender oil)

E. coli [pSB401] and 
E. coli [pSB1075]

Light production Yap et al. (2014)

Centella asiatica 
L.

P. aeruginosa PAO1 Inhibition of pyocyanin, 
elastolytic and proteolytic 
enzyme production, 
swarming motility, and 
biofilm formation

Vasavi et al. (2016)

Quercetin and 
Quercetin-3-O-
arabinoside from 
Psidium guajava 
L

P. aeruginosa PAO1 Inhibition of pyocyanin, 
elastolytic and proteolytic 
enzyme production, 
swarming motility, and 
biofilm formation

Vasavi et al. (2014)

Amomum tsaoko S. aureus, 
S. Typhimurium and 
P. aeruginosa

Inhibition of swarming 
motility, and biofilm 
formation

Rahman et al. 
(2017a)

Zingerone P. aeruginosa PAO1 Inhibition of swarming 
motility, and biofilm 
formation rhamnolipid, 
elastase, protease, 
pyocyanin, cell free and 
cell bound hemolysin

Kumar et al. (2015)

Linalool Acinetobacter 
baumannii

Inhibition of biofilm 
formation

Alves et al. (2016)

Murraya koenigii Pseudomonas 
species

Inhibition of EPS 
production, and preventing 
biofilm maturation

Bai and Vittal 
(2014)

Colostrum 
hexasaccharide

Staphylococcus 
aureus

Inhibition of biofilm 
formation

Srivastava et al. 
(2015)

Cinnamon bark oil P. aeruginosa, E. coli 
O157:H7 (EHEC)

Inhibition of biofilm 
formation

Kim et al. (2015)

Carvacrol P. aeruginosa Inhibition of biofilm 
formation

Tapia-Rodriguez 
et al. (2017)

Phytol from Piper 
betle

S. marcescens Prodigiosin, protease, 
biofilm and 
hydrophobicity

Srinivasan et al. 
(2016)

Punicalagin Salmonella Motility Li et al. (2014)
[6]-gingerol, 
[6]-shogaol and 
zingerone

P. aeruginosa Inhibition of biofilm 
formation

Kumar et al. (2014)

(continued)
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as potential quorum quenchers (Kalia 2013). The evidence of antimicrobial activity 
of several food extract are abundant but several QS inhibitors have been identified 
to date (Venkadesaperumal et al. 2016c). Table 13.1 lists the several fruits extracts 
which have been demonstrated as potential QS inhibitors against food borne patho-
gens and spoilage bacteria. The QS inhibitory activity of these fruits extracts were 
primarily attributed to their phytochemicals such as flavanoids, anthocyanins, tan-
nins and lignans (Jakobsen et al. 2012). Recently, Venkadesaperumal et al. (2015a, 
b) evidenced the ability of black jamun (Syzygium cumini) rich in anthocyanins and 
flavanoids, inhibits the exopolysaccharide production and biofilm formation in Y. 
enterocolitica and P. aeruginosa by binding with AHL receptor proteins. It was also 
demonstrated that the QS inhibitory activity of black jamun attributes to the antho-
cyanin, quercetin which efficiently binds with LasR receptor protein than the natu-
ral ligand, evidenced through molecular docking and simulation studies 
(Venkadesaperumal et  al. 2016d). The phenolic extract of Eugenia brasiliensis, 
inhibited the violacein production in C. violaceum and swarming motility in Serratia 
marcescens (Rodrigues et al. 2016)

Koh and Tham (2011) demonstrated that the fruits of Moringa oleifera Lam 
inhibited the violacein production in C. violaceum. Flavanones rich extract of 
orange has substantially curtailed the concenration of 3-Oxo-C6-hexanoyl homo-
serine lactones (HHL) and C6-HHL secreted by Y. enterocolitica (Truchado et al. 
2012). Numerous research groups have not only examined the QS inhibitory and 
anti-biofilm activity of fruit extracts but also attempted to discover and separate the 
bioactive compounds accountable for the inhibitory action. Though several fruit 
extracts and their phytochemical compounds exert the QS inhibitory activity many 
of the fruits fails to demonstrate the positive result in the screening.

Extract of Amomum tsaoko was reported to inhibit QS mediated swarming, 
motility and biofilm formation by Staphylococcus, Salmonella and Pseudomonas 
(Rahman et al. 2017a). Recently, Rahman et al. (2017b) proved that the extract of 
star anise (Illicium verum) inhibited exopolysaccharide production, biofilm forma-
tion and swarming motility in S. aureus in a dose-dependent manner. Broccoli 
extracts not only lowered AI-2 production, but also swimming and swarming motil-
ity in E. coli O157:H7 in a dose-dependent behavior (Lee et al. 2011). The ability of 

Table 13.1  (continued)

Source Targeted pathogen Biological effect References
Honey with 
curcumin

P. aeruginosa PAO1 Inhibition of pyocyanin, 
pyoverdin, pyochelin, 
LasA protease, LasB 
elastase, and hemolysin

Jadaun et al. (2015)

Pelargonidin, 
cyanidin and 
delphinidin

P. aeruginosa PAO1 Inhibition of biofilm 
formation and pyocyanin

Pejin et al. (2017)

Alpha-bisabolol 
Padina 
gymnospora

S. marcescens Inhibition of biofilm, 
prodigiosin, protease and 
swarming

Sethupathy et al. 
(2016)
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a methanolic extract of caper (Capparis spinosa) as quorum quencher has been 
evidenced using the biosensor C. violaceum (Abraham et  al. 2011). It was also 
proved to regulate several virulence elements such as swimming and swarming 
motility, biofilm formation, and exopolysaccharide production in P. aeruginosa 
PAO1, E. coli, Proteus mirabilis and S. marcescens in a dose-dependent way, with 
no change in the pattern of bacterial growth. Extracellular virulence components 
such as pyoverdin, alginate, phospolipase and hemolysin production in P. aerugi-
nosa has been studied to be inhibited by the garlic extract (Harjai et  al. 2010). 
Extract of clove has been demonstrated for its efficiency to mitigate the lecA gene 
expression, swarming and pyocyanin production in P. aeruginosa PAO1 (Krishnan 
et al. 2012).

On the investigation of herbal products as QS inhibitors, the essential oils (EOs) 
of several plant materials were found to be effective agents. Essential oils of juniper, 
vanilla, tea, rosemary, ginger and several others have illustrated restrained or severe 
QS inhibitory activity (Kerekes et al. 2013; Alvarez et al. 2012). It has been also 
evidenced that numerous EOs were potent against biofilms produced by pathogens 
like Salmonella, Listeria, Pseudomonas and Staphylococcus (Desai et  al. 2012; 
Valeriano et al. 2012). Recently, Venkadesaperumal et al. (2016c) has demonstrated 
that enhanced QS inhibitory activity of essential oils in their nanoemulsion form. 
The nanoemulsions of pepper, cumin and fennel seeds were demonstrated for their 
efficient inhibition against the biofilm formation of E. coli, S. typhimurium and K. 
pneumoniae than their essential oils as such.

Bacterial enzyme which has the quorum quenching potential has been classified 
based on their mechanistic action to degrade the QS signals. Enzymes which cleave 
the acyl side chains were classified as AHL-acylase and deaminase whereas, 
enzymes which hydrolyse the lactone ring were classified as AHL-lactonase and 
decarboxylases. Most of these enzymes harbor pronounced QS inhibitory activity. 
AHL-lactonases has been reported from various Bacillus spp. (Huma et al. 2011). 
AHL lactonases of B. thuringiensis, B. subtilis and B. cereus has shared 90% homol-
ogy of their amino acid sequences (Dong and Zhang 2005). Pseudomonas and 
Ralstonia sp. produces AHL acylases which were quite diverse in their amino acid 
sequences. Tait et al. (2009) has reported that, molecule specific activity of the lac-
tonases shares 32–36% resemblance. These enzymes were also found to be species 
specific. Sio et al. (2006) has demonstrated the long chain AHL-acylase activity of 
P. aeruginosa. It was shown that the enzyme degraded the C12-HSL but it was 
found to be inactive against C4-HSL.  Similarly, the AHL-acylase produced by 
Streptomyces sp. was found to be active against the six or more carbon AHLs (Park 
et al. 2005).

Shepherd and Lindow (2009) have reported Hac A and C, two potent acylases of 
Pseudomonas syringae B728a which degrades AHLs. Cirou et al. (2009) reported 
the AHL-oxidase of Bacillus megaterium which degrades 4-C and 12-C homoserine 
lactones. Few other species of Bacillus like, B. megaterium was known to produce 
cytochrome P450, a wide range AHL oxidase to degrade AHLs (Chowdhary et al. 
2007). It is reported that the novel quorum quenching bacterium, Bacillus macror-
estinctum which was noted to reduce Pectobaceirum caroovorum induced soft 
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rotting of potato tubers. Tenacibaculum maritimum, a fish borne pathogen demon-
strated for its biofilm formation through short chain HSLs were found to degrade 
long chain HSLs by means of AHL-acylase (Romero et al. 2012). In addition to 
bacterial species which show the presence of either AHL-acylases or lactonases, 
few organism were know to produce several degrading enzymes and on the other 
hand few organism were known to be both quorum sensors and quorum quenchers 
(Kalia 2014). Bentley et al. (2002) reported the non-quorum sensor B. thuringiensis 
shows AHL-lactonase activity. Perpetually, Kalia and Purohit (2011) have reported 
that the comparative genomic analysis of bacterial strains such as Photorhabdus 
luminescens, Deinococcus radiodurans and Hyphomonas neptunium. It was shown 
that these bacterial strains posses the genes which codes for both AHL-acylases and 
lactonases. Uroz and Heinonsalo (2008) have reported that Rhodococcus erythropo-
lis which produces different AHL degrading enzymes.

Also, Zhang and Dong (2004) showed that the strain of A. tumefaciens produces 
mid range AHLs and also the AHL-lactonase which degrades the produced signal 
molecule under starvation. Similar conditions were also noted in P. aeruginosa, 
Acinetobacter and Burkholderia spp., in which the QS-dependent pathways get 
silenced during the AHL degradation activity (Chan et al. 2011). Venkadesaperumal 
et al. (2016a) has studied the AHL-lactonase activity of E. ludwigii isolated from 
beef against zoonotic pathogen Y. enterocolitica. The presence of aiiA gene which 
codes for lactonase of Metallo-β-lactamase super family was demonstrated. Also, 
the affinity of the enzymes towards the AHL-lactonase complex was found to be 
less than that of natural ligand was evidenced through the tertiary structure predic-
tion and molecular docking analysis.

13.9	 �Detection of Food Spoilage Using QS Bio-sensors

As QS plays a key part in food spoilage, detecting the QS signaling molecule in 
food or microbes isolated from food can be a paragon method to improve the quality 
control strategies. It can be identified from extract of food or cell free culture super-
natants (CFCS) of food bacteria (Venkadesaperumal and Shetty 2016). The biosen-
sor is easier, economic and faster than analytical techniques to detect QS signals. In 
general, biosensor strains possess a functional protein of LuxR family cloned with 
a relevant target promoter. As they do not synthesis AHL, the reporter gene will get 
expressed only by exogenous AHL and thus resulting in phenotypic response. As 
reported by Steindler and Venturi (2007), cross streaking of test organism near to 
biosensor strain have responded well to detect the AHL released by the test strain 
streaked proximally to biosensor. The AHLs can be extracted from CFCS of late log 
phase culture by organic solvents and then the extracts can be separated by thin 
layer chromatography (TLC). The QS signals separated in TLC plate can be identi-
fied by formation of spot of phenotypic expression such as colour development as 
overlaying TLC plate with the biosensor strain (Turovskiy et al. 2007). Burmolle 
et al. (2003) have developed an E. coli biosensor strain with a high copy plasmid 
containing lux operon from V. fischeri combined with green fluorescent protein 
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(GFP). The expression of GFP by sensing the external AHL can be analysed by flow 
cytometry. Mostly, the biosensor strains exhibit a high degree of specificity to rec-
ognize AHL and are the detection of related AHL is bleak. Hence, many reporter 
strains are required to detect a range of AHLs. Reporter strains with less stringency 
to detect AHLs would be helpful to detect a broad range of signals. A. tumefaciens 
NT1 strain is one such reporter strain that possesses less specificity to C6 – C8 AHL 
with or without 3-oxo group. It is harboring plasmids pDCI41E33 and pDSK519 
with traG::lacZ fusion and traR respectively.

As AI-2 is comparatively instable among QS signals detection of AI-2 by chemi-
cal method is quite difficult. Hence, at present the detection of AI-2 is relying on 
biosensors. V. harveyi BB170 reporter strain with luxN::Tn5 can produce all three 
important auto inducers but detects merely AI-2 (Henke and Bassler 2004). E. coli 
O157:H7 TEVS232 strain is used as a biosensor to detect AI-3 signals through lacZ 
reporter gene fused with LEE1 regulatory region (Sperandio et al. 2002). Detection 
of auto inducer peptides is mostly based on nisin inducible bioluminescence or fluo-
rescence by bacterial luciferase genes (lux) or GFP gene respectively induced by 
nisin inducible nisA promoter (Immonen and Karp 2007). The 2-Alkyl-4-quinolones 
(AHQs) and 2-heptyl-4-quinolone synthesized by Pseudomonas spp. can be traced 
by using the lux based P. aeruginosa AHQ reporter strain. The signaling molecule 
can be detected by either TLC or microtiter assay (Fletcher et al. 2007).

13.10	 �Future Perspectives

Quorum sensing plays a prime function in regulating food spoilage and food borne 
diseases. Thus proper and in depth understanding of QS system in those microbes is 
very much essential. As discussed in the present chapter, many biosensor strains are 
available to detect the QS signaling molecule from food products as well as from the 
food borne bacteria. Nevertheless, a broad spectrum reporter strain possesses the 
ability to detect a variety of signals ranging from AHLs, AIs and AIP is highly 
needed. So far, the reporter strains are qualitative in terms of detecting QS signals. 
However, quantity of signaling molecule in a food sample is also a determining fac-
tor for food spoilage. Hence, a quantitative biosensor would be more efficient to 
identify food spoilage. Meanwhile, several food based anti QS agents have been 
reported, consequently synergistic interaction between those bioactive principles 
can be studied and novel natural preservative formulation can be developed to 
antagonize food spoilage and pathogenic bacteria. With increasing information 
becoming available, QS based strategies could be used in increasing the shelf life of 
perishable food stocks as wells as innovative strategies in managing food borne 
pathogens. QS circuit can also be integrated to develop rapid detection kits for food 
spoilage detection and screening. Leads in anti QS system in biofilm disruption and 
increasing susceptibility of pathogens to antibiotics could further be explored to 
develop combination medicines for better management of food borne pathogens.
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Abstract
Although understanding how CRISPR and its associated systems are controlled 
is at the infant stages, recent studies present exciting discoveries in this fast-
moving field. A number of studies find that CRISPR-Cas systems regulate quo-
rum sensing (QS) genes by targeting and degrading lasR mRNA, while QS 
systems can also modulate the CRISPR-Cas as revealed in more recent reports. 
The importance of the QS system for bacterial pathogenicity is well recognized 
and the indispensable features of CRISPR-Cas in adaptive immunity and bio-
technology application are gaining great attention. Analyzing interaction between 
QS and CRISPR-Cas systems represents an interesting field as CRISPR-Cas sys-
tems are not only the adaptive immunity of bacteria, but also the regulators of 
their own genes. Undoubtedly, the continued understanding of molecular basis of 
CRISPR-Cas action and regulation may indicate novel strategies for treatment of 
bacterial infections.
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14.1	 �Introduction

The quorum sensing (QS) system in many bacterial species plays a significant role 
in cell growth, development and differentiation as an intercellular signaling system 
that relies on cell density (Hurley and Bassler 2017). Recent studies found that QS 
regulates a spectrum of critical functions of bacteria, such as synthesis of extracel-
lular enzymes and toxins from pathogens, formation of biofilm and production of 
drug resistance (Atkinson and Williams 2009; Das et  al. 2015; Tan et  al. 2015; 
Vuotto et al. 2017). Hence, research into QS signaling may indicate targets to design 
novel and effective anti-microbial therapeutics. Despite a great deal of efforts in 
understanding QS regulation, the detailed mechanism of QS gene expression and 
function has remained largely unknown.

Clustered regularly interspaced short palindromic repeats (CRISPR) and 
CRISPR-associated (Cas) systems are the essential adaptive immunity to microbes. 
It is commonly believed that more than 90% archaea and 40% eubacteria possess 
one or more types of CRISPR-Cas systems (Marraffini and Sontheimer 2010). 
CRISPR loci are a special DNA sequence located in the bacterial and archaea 
genomes, often consisting of a leader, a plurality of highly conserved repeats and 
multiple spacers that were derived from the predators, bacteriophages. Analyzing 
the flanking sequence of the CRISPR site revealed that there was a polymorphic 
family gene in the vicinity thereof. The family encodes a group of proteins that 
contain a functional domain that interacts with the nucleic acid and acts together 
with the CRISPR region and is named CRISPR associated gene, abbreviated as Cas 
(Song 2017). When the phage containing the DNA that matches with any of the 
spacer invades again, the CRISPR-Cas system will cleave the nucleic acids to pro-
tect the bacterium itself from killing (Puschnik et al. 2017). CRISPR-Cas systems 
are categorized to two main classes, 6 types and 19 subtypes, based on the signature 
Cas protein and other nomenclature features. Currently, there is outstanding interest 
in understanding the CRISPR-Cas9 biology and function of bacterial S. pyogenes 
due to the powerful gene-editing function and potential application in medicine and 
biotechnology; however, the original roles of CRISPR-Cas in various aspects of 
bacterial physiology and immunity are relatively understudied.

Although the best-known Type II CRISPR-Cas (Cas9) was reported to play roles 
in mammalian host defense (Heidrich and Vogel 2013), it remains unknown whether 
other CRISPR-Cas systems, such as Type I and Type III CRISPR-Cas, are also 
involved in host immunity by targeting bacterial endogenous genes. We have recently 
revealed a new function for Type I-F CRISPR-Cas system which consists of 6 impor-
tant proteins (Csy1, Csy2, Csy3, Csy4 and Cas1/Cas3 survey complex) in the control 
of QS associated gene expression in Pseudomonas aeruginosa. This study shows 
that the Type I-F CRISPR immune system of PA14 (a strain of P. aeruginosa) modu-
lates the master QS regulator LasR by degrading its mRNA, thus protecting the bac-
teria to evade recognition by host Toll-like receptor 4 (TLR4), and inhibiting host 
pro-inflammatory response. Hence, targeting the CRISPR-Cas system which regu-
lates quorum-sensing and alters pathogenesis may open a new avenue to tackle the 
drug resistance of P. aeruginosa (Li et al. 2016). Here, we discuss the potential role 
of CRISPR-Cas systems in regulating endogenous genes to alter virulence.
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14.2	 �CRISPR-Cas in Regulating Virulence and Altering 
Mammalian Defense

The first study reporting that Type II CRISPR-Cas, namely Cas9, is involved in 
regulating bacterial endogenous genes was observed in Francisella novicida 
(Sampson et al. 2013). This study demonstrated that Cas9 is necessary for the bac-
terium to evade detection by Toll-like receptor 2 (TLR2) and cause serious disease. 
In particular, the Cas9 functions were associated with tracrRNA and crRNA. The 
authors show that Cas9 alters the stability of endogenous transcript encoding bacte-
rial lipoprotein (BLP) that is essential for its virulence and can be recognized by 
TLR2. CRISPR-Cas mediates repression of BLP expression by degrading the 
mRNA and decreasing transcript levels. Hence for the first time, scientists may 
recognize the CRISPR-Cas components play a key role in pathogenesis of bacteria 
in causing disease in mammalian systems through self-regulation of their gene 
expression (Heidrich and Vogel 2013).

Since then, several studies demonstrated that different types of CRISPR-Cas sys-
tems were involved in bacterial physiology by targeting the endogenous genes 
besides silencing of foreign nucleic acids (Yosef et al. 2012; Heussler et al. 2016; 
Fu et al. 2017). One of the most remarkable examples is the CRISPR-Cas system of 
P. aeruginosa was reported to regulate its biofilm formation (Cady and O’Toole 
2011; Heussler et al. 2016; Li et al. 2016). The detailed mechanism is not yet under-
stood but conventional wisdom is that the CRISPR-Cas systems interact with the 
target genes in the chromosomally integrated prophage to abolish the generation of 
biofilm. P. aeruginosa is lysogenized by bacteriophages and it is clear that the pro-
cess requires the Cas proteins (Zegans et al. 2009). Biofilm and QS have inseparable 
relationship. They are two important information departments for bacterial com-
munication. One is for surface-associated communities and the other is for intercel-
lular signaling. How they communicate with each other is known thanks to many 
recent intense studies but there is much to be learned. In addition to Vibrio harveyi 
and yellow Myxococcus xanthus, the population effect of Gram-negative bacteria is 
generally regulated by LuxR/I-ty information systems  (Schaefer et  al. 2013). 
Studies reported that QS systems may play key roles in regulating the biofilm for-
mation for many bacterial species (Shao et al. 2012; Yu et al. 2012). Recently, Lan 
and his collaborators found a cascade regulatory pathway to regulate the Rhl popu-
lation induction system, Crc-Hfq / Lon / RhlI in P. aeruginosa, which added knowl-
edge of QS in regulating biofilm (Cao et al. 2014). In recent years, the discoveries 
of microbial QS system and its relationship with some drug resistance via biofilm 
provide new perspective and means for the study of drug resistance mechanism. 
Altogether, these studies provide good theoretical basis for the hypothesis that 
CRISPR-Cas regulates QS and biofilm to alter pathogenesis. CRISPR-Cas systems 
may be a new target for bacterial resistant treatments.

Studies reveal that the link between the CRISPR-Cas and QS systems are increas-
ing. A recent paper reported that the QS regulation leads to enhanced expression of 
the CRISPR-Cas systems in Serratia especially for high cell density situation 
(Patterson et al. 2016; Semenova and Severinov 2016). On the contrary, Zuberi’s 
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team found that CRISPR interference (CRISPRi) inhibited biofilm by repressing 
the luxS QS gene expression in E. coli (Zuberi et al. 2017). Consistently, Li et al., 
demonstrate that self-targeting CRISPR spacers bear sequences for degrading tran-
scription factor mRNA of lasR and that CRISPR-Cas systems can control the QS 
response in some cases (Li et al. 2016). The LasR/LasI system consists of transcrip-
tional activator LasR and acetyl homoserine lactone (AHL) synthase LasI protein in 
the Gram-negative bacteria QS system with AHL as a self-inducing agent. LasI 
guides the synthesis of 3-OXO-C-HSL and is secreted into the extracellular spaces 
by active transport, which binds to LasR at a certain threshold and activates gene 
transcription, including alkaline protease, exotoxin A, elastase, and other virulence 
factors. Hence, LasR plays a key role in increasing the expression of P. aeruginosa 
virulence related genes (Lee and Zhang 2015). Li et al. revealed mechanistically 
that CRISPR-mediated mRNA degradation needs the “5′-GGN-3′” (protospacer 
adjacent motif [PAM]) sequence and the HD and DExD/H domains of Cas3 protein 
for recognition in lasR mRNA (Li et  al. 2016). As the consequence, LasR is 
decreased, the PA14 strain with CRISPR-Cas shows decreased bacterial phagocyto-
sis by host alveolar macrophages and lower mouse survival than the CRISPR-Cas 
deleted one. This implicates that the CRISPR-Cas regulates innate immunity, which 
is exerted via TLR4-initiated signaling as upstream events. These studies have 
opened up new fields to elucidate the interaction between QS and CRISPR-Cas 
system and develop new drugs for treating infection (Fig. 14.1).

Once CRISPR-Cas components are activated, the crRNA12 structure and 
Cascade (Csy1–4 complex) will interact with lasR mRNA (or other potential genes) 
through a sequence matching with crRNA12. Then lasR mRNA will be cleaved by 
Cas3 protein. The degradation of lasR mRNA and the changes of downstream genes 
alter bacterial behaviors and subsequent host inflammatory responses.

A potential function of CRISPR-Cas systems in endogenous gene regulation as 
well as in pathogenesis may be to acquire self-targeting crRNAs with spacer 
sequences complementary to chromosomally encoded genes. By analyzing 
CRISPRs from 330 organisms, Stern et  al., found that only approximately 0.4% 
spacers are potentially self-targeting and that frequent targeting non-moving genes 
occurs in 18% of all bacteria containing a type of CRISPR-Cas (Stern et al. 2010). 
The result of self-targeting is likely deleterious chromosomal cleavage and deletion, 
thus is considered to be detrimental effects to the body of bacteria, hence termed 
“autoimmunity”. In terms of existing knowledge, the Cas proteins, such as Cas9, 
bind with target genes and inhibit transcription capacity (Qi et al. 2013), while other 
Cas proteins like Cas1 protein and Cas2 protein are reported to prevent the acquisi-
tion of new crRNAs to protect the loss of previously acquired crRNAs (Westra and 
Brouns 2012). This suggests that the inhibition and destruction of Cas proteins or 
the process of autoimmunity may be involved in endogenous gene regulation, which 
may also potentially impact virulence and pathogenesis in some aspects. crRNAs 
are originally known to target DNA, but a recent study reported that RNA also can 
be targeted in F. novicida (Sampson et al. 2013). The mechanisms and consequences 
of autoimmunity as well as their types and substrate specificities in bacteria are 
totally unknown. Much needs to be done to clearly elucidate how autoimmunity and 
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CRISPR-Cas systems contribute to the regulation of bacterial genes (such as viru-
lence, biofilm and proliferation associated genes) and pathogenesis. Accomplishing 
these pursues will be very helpful for designing new strategies for anti-infective 
therapy.

14.3	 �Discussion

CRISPR-Cas systems as the newly emerging genome editing tool to identify and 
edit target genes have built an extremely efficient platform for gene placement tech-
nology. It is well publicized in scientific research and application due to its high 
efficiency, simple and economic features, indicating enormous biotechnology and 
therapeutic values. However, as an adaptive immune system for prokaryotes and 
archaea, CRISPR-Cas’ own superior functions in virulence regulation are at much 
slower paces and require strong efforts to further explore. The function of CRISPR-
Cas systems in regulating endogenous genes and altering pathogenesis is undoubt-
edly the great entry point of research. The release of virulence factors is the main 
form of bacterial infection especially for Gram-negative bacteria that have up to six 
(type I, II, III, IV, V and VI) types of special secretion systems to transfer virulence 

Fig. 14.1  Model of type I-F CRISPR-Cas modulates inflammatory response by temporal mRNA 
repression of QS genes (lasR)

14  CRISPR-Cas Systems Regulate Quorum Sensing Genes and Alter Virulence…



228

factors to neighboring cells or animal host (Green and Mecsas 2016). Moreover, 
most of the Gram-negative bacteria possess more than two types of QS systems. 
There is much to learn about QS and other virulence factors in interaction with 
CRISPR-Cas systems as just a little is known about the role and mechanism of 
CRISPR-Cas in targeting endogenous genes. CRISPR-Cas systems may also be 
powerful regulators in virulence by controlling endogenous genes in addition to the 
most effective tools for gene editing. More and more structures of CRISPR-Cas 
associated proteins have been characterized with the progress of technology (Liu 
et al. 2017a, b; Pausch et al. 2017; Wright et al. 2017).These finding will provide 
important structural biology to delve in the molecular mechanism by which 
CRISPR-Cas systems function and interact with other genes. The discovery of 
structure will greatly broaden our understanding about how the CRISPR-Cas sys-
tems target to QS or other endogenous genes and improve the transformation and 
utilization value of CRISPR-Cas systems. For example, the revelation of the Cas13a 
structure (Liu et al. 2017a, b) may add value in developing RNA research tools and 
extending CRISPR’s application in gene editing because Cas13a is one of the few 
proteins that can degrade RNA in Class II CRISPR-Cas system.

Besides the mechanism that CRISPR-Cas systems degrade QS mRNA. A recent 
study indicates small RNA ReaL regulates P. aeruginosa QS networks due to the 
activity of RpoS provides a new perspective to explore the relationship between QS 
and CRISPR-Cas systems that may be through small RNAs (Carloni et al. 2017). 
The role of small non-coding RNAs in mammals has been recognized while its 
function in prokaryote is almost unknown. The research prospect of small RNAs for 
bacterial physiology is immense and much less is known about their interactions 
with CRISPR-Cas systems. The roles of QS in diverse fields, especially human 
health and disease, are being dissected. Inhibiting the bacterial QS by deactivating 
their chemical signaling molecules or by producing competitors may help in design-
ing approaches to treating infectious diseases. On contrary, bacteria constantly 
evolve new strategies to battle with drugs and antibiotics. Like the CRISPR-Cas 
systems, the QS is diverse with strains and species, therefore unravelling the molec-
ular detail in the cross-roads may open new avenues for fighting bacteria.
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15Understanding the Connect of Quorum 
Sensing and CRISPR-Cas System: 
Potential Role in Biotechnological 
Applications

Anoop Singh, Mohita Gaur, and Richa Misra

Abstract
Quorum sensing is employed by bacteria to control gene expression, by com-
municating through signals, necessary to confer advantageous traits in a com-
munity. We now understand that to counter susceptibility to phages in 
communities, bacteria evolved specialized adaptive immune system called 
CRISPR-Cas (clustered regularly interspaced short palindromic repeats and 
CRISPR-associated proteins) system that may use quorum sensing for its regula-
tion. As a countermeasure, phages have also evolved diverse mechanisms to 
evade the defense strategies. The chapter discusses the dynamics of this co-
evolutionary war, understanding of which will help pave way for many biotech-
nological applications. An important aspect includes refining tools such as 
quorum-sensing inhibition and phage therapy that are utilized to control many 
biofilm-forming bacterial infections.

Keywords
Quorum sensing · CRISPR-CAS system · Biotechnology

15.1	 �Introduction

Although bacteria are unicellular organisms, they are capable of organizing them-
selves in a community for mutual benefit, for which they need to work in a coordi-
nated manner. They live in diverse niches, from sporadic population to dense 
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communities, like biofilms, cell chains and microcolonies (Hall-Stoodley et  al. 
2004), which impact various physiological processes. Though bacterial cells col-
lectively provide several advantages to its population, a major drawback could be 
the increased vulnerability to phage infections (Abedon 2012) and invading foreign 
mobile genetic elements (Pinedo and Smets 2005). Thus, the formation of bacterial 
colonies is of advantage only in case of low phage densities, or if the threat can be 
countered by heightened bacterial defense response (Abedon 2012).

In bacterial context, “Quorum” word is frequently used to indicate the minimal 
density of cells that leads to altered gene expression in a population of bacteria. In 
other words, it describes a phenomenon of bacterial cell-cell communication 
wherein collective gene regulation happens in a bacterial community in reaction to 
alteration in bacterial cell-population density (Platt and Fuqua 2010). Quorum sens-
ing bacteria secrete signaling molecules known as ‘autoinducers’ that fluctuate in its 
level as a response to bacterial cell-population density. Once autoinducers attain a 
threshold level, at that phase the bacterial community is contemplated to be ‘quor-
ate’, which leads to activation of downstream pathways that direct the bacteria 
jointly to modulate the gene expression and, therefore, group behavior adaptation 
(Kalia 2014a).

15.2	 �Difference in Quorum Sensing Systems

The process of quorum sensing regulates a wide range of physiological deeds such 
as motility, conjugation, sporulation, production of antibiotics, competence, viru-
lence, and biofilm formation in both Gram-negative and Gram-positive bacteria. 
However, while Gram-positive bacteria utilizes oligo-peptides and two-component 
systems for quorum sensing, the Gram-negative bacteria use N-Acyl-L-homoserine 
lactones (AHLs) as autoinducers to communicate with each other (Miller and 
Bassler 2001; Huma et al. 2011; Rutherford and Bassler 2012; Kalia 2014b).

15.2.1	 �LuxI- and LuxR-Type Quorum Sensing: Example in Gram-
Negative Bacteria

The simple signal-response system described in Gram-negative bacteria based on 
cell-density-dependent mechanism generally belongs to the LuxI/LuxR quorum 
type sensing system (Whitehead et al. 2001). This system consists of autoinducer 
synthases belonging to LuxI family and transcriptional regulators that falls in LuxR 
family. LuxI-like enzymes are responsible to produce the specific signaling mole-
cule known as acylated homoserine lactone signaling molecule (acyl-HSL) which 
functions like an autoinducer. This AHL synthase enzyme, a product of luxI gene, 
catalyzes the acylation and lactonization reactions by coupling the acyl-side chain 
of a defined acyl-acyl carrier protein (acyl-ACP), an intermediary in fatty acid bio-
synthesis pathway, with the homocysteine moiety of S-adenosylmethionine (SAM). 
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This leads to formation of an amide bond between acyl-ACP and the amino group 
of the homocysteine molecule of SAM. The lactonisation of the ligated intermediate 
thus form the acyl-HSL with the release of the methylthioadenosine as a by-product 
of the reaction. Acyl-HSL produced in the reaction act as an autoinducer and gets 
freely diffused across the cell membrane, leading to its increase in concentration in 
the external environment in concomitance with increased cell population (Fuqua 
et al. 1994; Parsek and Greenberg 2000; Schauder and Bassler 2001).

The transcription of luxI is subjected to autoregulation, i.e. gene product increases 
as AHL accumulates in the cell. This is achieved through another protein called 
LuxR, a transcriptional activator as well as cytoplasmic receptor which bind cog-
nate HSL autoinducer which has reached a critical threshold concentration (forming 
the desired cell density i.e. ‘quorum’ of bacteria). This autoinducer binding to LuxR 
converts the LuxR into an active form. In the absence of HSL, the LuxR protein is 
not stable and may degrade rapidly (Whitehead et al. 2001). The LuxR-AHL com-
plex which is thus formed recognizes a consensus sequence (lux box), upstream of 
the luxICDABE operon and activates the expression of various genes (Stevens et al. 
1994). It has been found that LuxR proteins appear to homodimerize in presence of 
a cognate signal during binding to the lux box and the amount of this dimerization 
is dependent on the concentration of the ligand (Li and Nair 2012). This process of 
activation of LuxI by LuxR has been shown to be tightly regulated by the rapid 
degradation of the LuxR receptor when unbound to autoinducer, allowing for a 
positive-feedback loop (Gray and Garey 2001).

Many of the Gram-negative bacteria are shown to possess luxI and luxR homo-
logs and are known to use LuxI/LuxR-type quorum sensing, with some members 
having an additional complexity in these LuxI/LuxR systems to regulate a wide 
range of cellular processes. Unique AHLs with specific concentration are produced 
by different species; as a consequence, members belonging to the same species 
recognize and respond to its own signal molecule (Bassler 1999). This specificity is 
determined by the interaction of the correct acyl side chain moiety of the acyl-ACP 
with a specific LuxI-type protein. Thus, the LuxI/LuxR gene products form a func-
tional pair, with LuxI as an autoinducer synthase and LuxR as the receptor 
(Rutherford and Bassler 2012; Schaefer et  al. 2013). Quorum sensing was first 
shown to regulate the bioluminescence of marine bacterium Vibrio fischeri, a phe-
nomenon where transcriptional regulation of luciferase genes responsible for lumi-
nescence was connected to the attainment of threshold cell density in the system 
(Nealson et al. 1970). With regards to control of pathogenicity via the quorum sens-
ing systems, one of the most well-characterized examples is of Pseudomonas aeru-
ginosa, an opportunistic pathogen, which primarily infects immunocompromised 
individuals. It produces an extensive array of virulence factors many of which are 
under control of a complex network of quorum sensing regulators. Currently, four 
quorum sensing pathways are known in P. aeruginosa: two LuxR and LuxI-type 
systems called LasR and LasI and RhlR and RhlI, and few alternative non-AHL 
signaling molecule generating PqsR-controlled quinolone system and the IQS sys-
tem (Papenfort and Bassler 2016).
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15.2.2	 �Oligo-Peptides: Example in Gram-Positive Bacteria

Unlike Gram-negative bacteria, Gram-positive bacteria mainly exploit oligopep-
tides that are modified structurally as autoinducers in quorum-sensing based com-
munication for guarded gene expression system (Ji et  al. 1995; Ng and Bassler 
2009). As these peptides are impermeable, i.e. cannot freely move in and out from 
biological membranes, their secretion is usually mediated with the help of some 
specialized transporters. The other prime dissimilarities between LuxI/R-type and 
peptide-based quorum-sensing system is the localization of the cognate receptors; 
for example, in Gram-positive bacteria the sensors for the oligopeptide autoinducers 
are membrane-bound, whereas it is cytoplasmic for Gram-negative bacteria. These 
membrane-bound receptors are members of the two-component signaling system 
and involve series of phosphorylation events for signal transduction. The secretion 
of these oligopeptide autoinducer increases with the increase in the cell density. The 
autophosphorylation activity of the membrane-bound receptor is stimulated by 
these oligopeptides, resulting in ATP-driven phosphorylation of the conserved resi-
due which thus transfers the phosphate group to the response regulator in order to 
activate it, allowing further activation of the target genes (Miller and Bassler 2001; 
Ng and Bassler 2009). The typical example of a two-component system is a histi-
dine kinase receptor, which is membrane-bound along with a cognate cytoplasmic 
response regulator. In most cases, genes producing this oligopeptide precursor, the 
histidine kinase receptor, and the response regulator is a part of an operon and the 
expression of these genes are auto-induced by quorum sensing (Ji et al. 1997). The 
oligo-peptide autoinducers of Gram-positive bacteria don’t show variations on a 
single core molecule, which usually is employed by Gram-negative bacterial AHLs. 
Rather, these are genetically encoded, and each species is thus capable of producing 
a unique peptide signal with a unique sequence (Novick and Geisinger 2008). 
Examples include agr system that regulates pathogenesis in Staphylococcus aureus; 
com system that modulates competence and development in Streptococcus pneumo-
nia; ComP/ComA system that regulates competence and sporulation in Bacillus 
subtilis and fsr system of Enterococcus faecalis (Ng and Bassler 2009).

15.3	 �CRISPR-Cas Systems Utilize Quorum Sensing

One of the potential drawbacks to a community life is that as the bacterial popula-
tion attains a high cell density, they become more prone to foreign invasion. To 
encounter susceptibility to the phage infections, bacteria have evolved various 
defense mechanisms to limit the foreign invaders such as prevention of phage 
attachment to the host cell wall, assembly interference, restriction-modification and 
CRISPR-Cas system (Seed 2015). The discovery of CRISPR-Cas system in the past 
decade has unraveled newer aspects of bacterial defense strategies and opened up 
our understanding of bacterial adaptive immunity, a mechanism earlier associated 
with only vertebrates. CRISPR-Cas system is known to impart adaptive immunity 
to many prokaryotes against viral infections or invading foreign genetic elements, 
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but there are many shreds of evidence that show these systems also regulate other 
processes like gene regulation, group behavior, and virulence (Westra et al. 2014). 
CRISPR might also provide information regarding bacterial adaptation to a particu-
lar niche and evolution. A CRISPR locus contains an ordered series of CRISPR 
repeats, which is interrupted by the short variable DNA sequences known as ‘spac-
ers’, and the presence of the nearby diverse set of cas genes. Repeats with no cas 
genes are known as orphan CRISPRs. The characteristic features of a CRISPR 
repeat are the presence of a leader sequence, spacers, dyad symmetry, characteristic 
secondary structure, containing a stretch of three to four identical bases, and related 
cas genes (Bolotin et al. 2005). CRISPR-Cas system involves three different mecha-
nistic steps: adaptation, expression, and interference. Adaption requires the acquisi-
tion of foreign DNA fragment as a new spacer into a CRISPR array. The spacer 
sequences behave as a memory and give protection against future invasion from the 
same virus or plasmid. The expression stage involves transcription of CRISPR 
RNAs (crRNAs). Interference stage involves recognition and target cleavage by 
crRNAs aided by Cas proteins (Barrangou 2013; van der Oost et al. 2014).

CRISPR-Cas systems have been classified into two different classes on the bases 
of effector module organization. Effector module is mainly involved in Interference. 
Class I systems are composed of multi-subunit effector complex, whereas Class II 
systems utilize single subunit effector complex. Each class is divided into three 
types and each type is further subdivided into many subtypes (Makarova et  al. 
2015). It is now known that in many bacteria CRISPR-Cas systems and quorum 
sensing are the two major mechanisms, that work together at a community level to 
structure, protect, and provide various advantages to a bacterial population at a high 
cell density.

15.3.1	 �Quorum Sensing Controls CRISPR-Based Adaptive 
Immunity in Serratia sp.

Serratia sp. is a Gram-negative bacterium, possessing commonly found LuxI/
LuxR-type quorum sensing circuit and three types of CRISPR-Cas systems i.e., 
type I-E, I-F, and III-A each with minimum one CRISPR locus (Thomson et  al. 
2000). In Serratia, luxI-luxR homologs, smaI and smaR are known to regulate sec-
ondary synthesis, biofilm formation, and motility (Fineran et al. 2005). SmaI pro-
duces an autoinducer, N-butanoyl-L-homoserine lactone and SmaR produces a 
transcriptional modulator acting as a DNA binding repressor. It has been earlier 
reported in Serratia that smaI transcription and AHL level increases with increased 
cell density (Patterson et al. 2016). High cell density causes accumulation of AHLs, 
which in turn bind to SmaR, thereby suppressing its ability to bind to DNA. Inhibition 
of SmaR results in enhanced gene expression via a de-repression process (Fineran 
et al. 2005). The effect of quorum sensing signaling on CRISPR-Cas system has 
also been examined in Serratia sp. ATCC39006 (Patterson et al. 2016). In this study, 
CRISPR and cas operons’ expression was assessed in wild-type and smaI mutant 
strains. Significant reduction in expression of type I-E CRISPR1 and type I-F 
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CRISPR2, and their cas operons including Type III-A cas operon was observed in 
the absence of AHL signal production in smaI mutants. Further, deletion of smaR 
gene results in restored expression of CRISPR array and cas operons in smaI 
mutants throughout growth, indicating that SmaR functions as a suppressor of 
CRISPR-Cas systems in absence of AHL production (Slater et  al. 2003). These 
results strengthened the notion that defense system at high cell density needs to be 
elevated against invaders like phages or foreign genetic elements (Abedon 2012). To 
ascertain whether the changes in quorum sensing signal correlated with the CRISPR-
Cas modulation, Patterson et al. introduced Serratia cells propagating in a highly 
dense population to donor bacteria which transfers its plasmids via conjugation pro-
cess. These plasmids possess sequences mimicking the previously exposed intrud-
ers. These sequences were complementary to the spacer one of CRISPR1 (type I-E), 
CRISPR2 (type I-F), and CRISPR3 (type III-A) systems. In the wild-type popula-
tion, CRISPR-Cas system mediated interference of their respective targets was 
robust. However, smaI mutants displayed a remarkable decline in interference capa-
bilities for all three types. Surprisingly, type I-E system showed the lowest correla-
tion between interference and quorum sensing signal despite having highest effect 
on the cas8e promoter. It might be due to the requirement of other type I-E compo-
nents to provide overall interference. The weakened interference in all types was 
restored on the addition of exogenous quorum sensing signals (Patterson et  al. 
2016). Together, these results demonstrated that the quorum sensing signals regu-
lates interferences and elevate the defense system at high cell density. Since 
CRISPR-Cas interference is very costly to cell (Vale et al. 2015), its expression is 
needed to be reduced in low cell density as horizontal gene transfer or phage spread 
is less likely in such conditions, whereas in case of high cell density risk to the 
phage infections increase and it becomes necessary for cells to heighten the 
CRISPR-Cas mediated immunity. Therefore, cell-cell communication is important 
in simulating population level immunity (Fig. 15.1).

15.3.2	 �Quorum Sensing Controls CRISPR-Dependent Adaptive 
Immunity and CRISPR Controls Biofilm Regulation in P. 
aeruginosa

In another example of adaptive immunity regulation, it is seen that bacterium P. 
aeruginosa uses quorum sensing to activate CRISPR-Cas system to target foreign 
DNA at high cell densities (Hoyland-Kroghsbo et al. 2017). It has also been earlier 
demonstrated that Type I-F CRISPR-Cas system in P. aeruginosa might be involved 
in controlling virulence (Zegans et al. 2009). CRISPR regions have been known to 
provide bacterial resistance to many lytic bacteriophage infections (Barrangou et al. 
2007). In P. aeruginosa, the targeting of phage DMS3 by CRISPR also displays 
alternate functions like inhibition of swarming motility and biofilm formation with-
out affecting the normal planktonic growth of bacteria and the efficiency of plaque 
formation by the DMS3 phage (Cady and O’Toole 2011). It is seen that several 
spacers in CRISPR loci are complementary to the bacteriophage genome. While 
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some of them are perfectly complementary to the target sequence known as proto-
spacer, others have many mismatches (Zegans et  al. 2009). Further investigation 
revealed that mismatches present on CR2_sp1 (CRISPR2_spacer1) to the integrated 
phage genome were involved in phage-dependent loss of swarming motility as well 
as biofilm formation. Earlier it was thought that this might be due to the crRNA-
guided cleavage of RNA, but it was later proven that the phage-dependent inhibition 
of swarming and biofilm formation is a result of an imperfect base pairing between 
integrated prophage DNA and crRNA, which causes DNA damage and apoptosis 
during biofilm formation. Interestingly, the same crRNA with reduced mismatches 
provides partial resistance to DMS3 phage and the entire removal of mismatches 
results in complete phage resistance (Cady et al. 2012).

In P. aeruginosa, four Cas proteins (Csy 1-4) along with crRNA assembles to 
form an effector complex called Csy complex or CRISPR-associated complex for 
antiviral defense (Cascade) (Wiedenheft et al. 2011). Csy complex identifies and 
binds to foreign DNA in a sequential manner: at first it identifies a protospacer rec-
ognition motif (PAM) consisting of two consecutive GC base pairs adjacent to the 
protospacer followed by subsequent base pairing of the seed region (first 8 bases of 
crRNA) to the target DNA, which is crucial for high-affinity binding (Hoyland-
Kroghsbo et al. 2017). Binding of Csy complex to the target with precise base pair-
ing to the PAM, seed region, and rest of the protospacer recruits trans-acting Cas3 
protein, which acts as a helicase and an HD family of nucleases required for the 

Fig. 15.1  Modulation of CRISPR-Cas system via quorum sensing in Serratia sp. Downregulation 
of cas genes at low cell density by SmaR (left). Inhibition of SmaR by AHLs i.e., SmaI at high cell 
density leads to upregulation of cas genes (right). Expression of the Cas protein complex helps the 
bacterium to cleave the incoming viral DNA (orange threads)
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target cleavage (Wiedenheft et al. 2011). Nonetheless, the imperfect base pairing of 
crRNA to target although not lethal but is sufficient enough to recruit Cas3 and trig-
ger DNA damage till a threshold enough to trigger RecA, a DNA-repair and SOS 
response protein (Heussler et al. 2015). Activated RecA induces activation of lysis 
genes such as pyocin, which is generally switched off in the bacterial cells growing 
on a surface but due to RecA activation, these bacterial cells are unable to repress 
these lysis genes, leading to apoptosis, which in turn inhibits swarming and biofilm 
formation (Fig. 15.2). In this case, we could say this kind of alternative CRISPR-
Cas function is a type of side effect of the main immunity function and perhaps not 
a direct result of natural selection process. Since the biofilm formation and swarm-
ing in P. aeruginosa is monitored by several other pathways, the suggested mecha-
nism of CRISPR-Cas modulation via the imperfect base pairing of spacer sequence 
to the target offers poor regulation of quorum sensing and appears to be dispensable 
for the bacteria (Karatan and Watnick 2009).

Though foreign DNA recognition and recruitment of Cas3 has been well-
established, RNA targeting by this complex has not been discovered yet. A recent 
study in Francisella novicida has shown that this system is also efficient in crRNA 
guided mRNA targeting and monitors the expression of some virulence genes (Li 

Fig. 15.2  Eradication of viruses by CRISPR/Cas system in P. aeruginosa. Targeting by CRISPR/
Cas system is mainly done by two mechanisms. DNA targeting occurs through binding of DNA by 
CRISPR RNA-guided surveillance complex (Cascade I-F or Csy), which depends on recognition 
of a double-stranded PAM and base pairing at the seed. For RNA targeting such as repression of 
lasR mRNA (lasR gene associated with virulence) requires base pairing at the opposite end of the 
CRISPR RNA (crRNA), a region called the “core”, and recognition of a single-stranded PAM-like 
sequence. In both cases, target binding recruits Cas3 for degradation
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et al. 2016). Similarly, in P. aeruginosa Li et al. tried to demonstrate the function of 
crRNA in modulating virulence gene expression. They demonstrated that deletion 
of certain components of CRISPR-Cas systems is associated with upregulation of 
certain virulence genes and enhanced pathogenicity. Particularly, they recognized a 
spacer with partial complementarity to the lasR gene involved in detecting quorum-
sensing signals. Deletion of CRISPR or its associated genes results in upregulation 
of lasR and other factors important for virulence (Li et al. 2016). Zegans et al. sug-
gested that perhaps a CRISPR-mediated alteration of group behavior in P. aerugi-
nosa is a mechanism by which bacterium prevent its community from bacteriophage 
dissemination (Zegans et al. 2009).

15.3.3	 �Regulation of Fruiting Body Formation by CRISPR-Cas 
in Myxococcus xanthus

Myxococcus xanthus is a type of Gram-negative, predatory, and a soil-dwelling bac-
terium. It swarms over a solid surface to take up other bacteria and detritus from its 
surroundings as a source of nutrition. Though M. xanthus communicates using 
AHL-mediated quorum sensing signaling, it is unable to produce AHLs itself. It 
depends on exogenous AHLs produced during signaling among other bacteria, 
known as xenic quorum sensing signaling (Lloyd and Whitworth 2017). It uses 
AHLs as a marker of a nutrition rich environment and it is also known to activate 
collective germination of spores and release of proteases to digest its prey. In starva-
tion conditions i.e., low exogenous AHLs, sporulation is triggered. Sporulation pro-
cess involves among many intercellular signals, activation of an A-signal which 
induces the expression of fruA, a transcription factor involved in fruiting body gen-
eration (Lloyd and Whitworth 2017). A-signaling includes secretion of density-
dependent diffusible signals consisting of mixtures of proteases, peptides, and 
amino acids.

Regulation of fruA by CRISPR-Cas systems has also been reported in M. xan-
thus (Boysen et  al. 2002). The importance of type I-C CRISPR-Cas systems in 
sporulation was evident from a transposon mutagenesis study, in which it was 
shown that cas7 and cas5 gene disruption by the transposon lead to reduced spore 
formation (Thony-Meyer and Kaiser 1993). Further, cas8c mutants also showed 
slow aggregation and reduced sporulation due to the decrease in fruA expression 
(Boysen et al. 2002). Additionally, it has been seen that expression of cas gene is 
only restricted to fruiting body and absent in the cells present in peripheral layer 
(Julien et al. 2000). Expression of cas gene is probably activated through a positive 
feedback loop, which initiates on binding of FruA to one of the modulatory units 
linked with cas locus. Currently, the mechanism of action is uncertain but it is 
strongly evident that cas gene expression and fruiting body formation regulatory 
circuit is connected (Viswanathan et al. 2007). So, we can say that decrease in con-
centration of exogenous AHLs act as an indirect signal for the starvation condition, 
which may in turn result in activation of A-signaling and further downstream path-
ways but it is currently unclear how M. xanthus responds to AHLs. Currently, 
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Haliangium ochraceum is the only known myxobacterium that produces complete 
LuxR homolog with an N-terminal autoinducer binding site. The P2TF DNA-
binding protein database (Ortet et al. 2012) enlists 12 proteins in M. xanthus that 
possess a LuxR DNA binding domain at its C-terminal. Six of these proteins have 
no identifiable sensory domain and five of these contain two-component system 
receiver domains at N-terminal, including FruA (Lloyd and Whitworth 2017). 
Hence, the presence of a receiver domain on FruA provides a strong evidence that 
there might be a strong connection between quorum sensing and CRISPR-Cas sys-
tem in fruiting body generation in M. xanthus.

15.3.4	 �Quorum Sensing and CRISPR-Cas Regulation in Other 
Bacteria

Since quorum sensing and CRISPR-Cas system gene homologs are widely distrib-
uted throughout the bacterial world, their interdependence would also be prevalent. 
In favor of this statement, Patterson et  al. used published microarray data of 
Pectobacterium atrosepticum (Bowden et al. 2013) for further analysis and observed 
a significant decrease in the expression of type I-F cas genes in an AHL synthase 
mutant (Patterson et al. 2016). Similarly, in a transcriptomic study of Burkholderia 
glumae, mutant strain of luxI displayed reduced expression of type I-F cas genes 
(Gao et  al. 2015). In Escherichia coli, the decrease in AHL-dependent receptors 
limits the infections from λ and phages. As E. coli do not produce AHLs, it encodes 
a LuxR sensor, which might impart protection against phages preying on nearby 
bacteria (Hoyland-Kroghsbo et al. 2013).

On the other hand, the importance of quorum sensing and its role in physiologi-
cal processes such as biofilm formation remains relatively less understood in myco-
bacteria, one of the clinically most significant genera, which include the highly 
infectious pathogen, Mycobacterium tuberculosis. An indication of quorum sensing 
based regulation is mainly indirect in Mycobacterium. Given the fact that quorum 
sensing is generally associated with biofilm formation and several species belong-
ing to Mycobacterium genus such as M. tuberculosis, have been shown to produce 
drug-resistant biofilms in vitro, it is hypothesized that quorum sensing must be 
existing in both the non-pathogenic and pathogenic mycobacteria. This hypothesis 
gains strength from the fact that LuxR homologs are present in many mycobacterial 
species along with the presence of second messengers such as c-di-GMP, facilitat-
ing biofilm formation; however, direct experimental evidence of quorum sensing 
mechanism is still lacking (Sharma et al. 2014; Polkade et al. 2016). The phyloge-
netic discovery of CRISPR-Cas system in Mycobacterium in recent years (He et al. 
2012; Freidlin et al. 2017), has refueled the interest to explore the functional signifi-
cance of occurrence of these systems and questions their role in persistence and 
antibiotic resistance frequently encountered in pathogenic species. Table 15.1 sum-
marizes the information on bacteria where association of CRISPR-Cas system and 
quorum sensing has been established.
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15.4	 �Smartness of the Phages

In a microbial community, there is a constant evolutionary pressure between phages 
and bacteria. As quorum sensing can regulate host defense, phages have also evolved 
diverse mechanisms to influence the bacterial defense system and use it to its own 
advantage (Hargreaves et  al. 2014). A common way for phages to evade the 
CRISPR-Cas immunity is by random mutagenesis which can interfere crRNA inter-
action with the protospacer or the PAM recognition (Samson et al. 2013). Some 
distinct ‘anti-CRISPR’ genes have also been discovered in the genome of P. aerugi-
nosa which interfere with the working of CRISPR-Cas complexes (Bondy-Denomy 
et al. 2013). Surprisingly, Vibrio cholerae serogroup O1phages express their own 
CRISPR-Cas machinery for targeting phage-inhibitory chromosomal islands pres-
ent in its bacterial host. During infection, the phage releases crRNAs and Cas pro-
teins that can inactivate the bacterial CRISPR–Cas systems and help in the infection 
process (Seed et al. 2013).

15.5	 �CRISPR-Cas and Quorum Sensing: Applications 
and Future Direction

As we have understood, quorum-sensing signals contributes to pathogenesis through 
synchronized production of toxins and other such virulence factors. Furthermore, it 
adds to the ability of bacteria to resist antimicrobial drugs by modulating commu-
nity behaviour such as biofilm formation. Discovery of quorum sensing inhibitors 
(or quorum quenchers) paved way for its varied applications in biotechnology and 
has been extensively reviewed over time (Kalia and Purohit 2011; Kalia 2013, 
2015a, b; LaSarre and Federle 2013; Kalia and Kumar, 2015a, b; Kalia et al. 2015; 
Kumar et al. 2015). Nonetheless, evidence suggests that quorum-sensing inhibition 
has variable efficacy against different pathogens. A better understanding of how 
quorum sensing is regulated in microbial populations has had a significant impact 
on utilizing and developing quorum-quenching molecules in a more efficacious 
manner. In the recent past, the area of CRISPR biology research has also evolved 
quickly and has shown its merit in diverse biotechnological applications. In a recent 
study, CRISPR-derived interference system was utilized to downregulate a quorum-
sensing gene (luxS) in E. coli to hinder the biofilm formation. This can a major 
impact in tackling E. coli population during enteric infections, neonatal sepsis, uri-
nary tract infections, and medical devices-associated nosocomial infections (Zuberi 
et  al. 2017). This approach has a potential to tackle other such biofilm-forming 
bacteria in environmental or healthcare settings. Another way by which biofilms can 
be tackled is exemplified by the use of quorum-sensing inhibitors in tackling P. 
aeruginosa. The use of anti-quorum sensing compounds not only can repress viru-
lence of P. aeruginosa making it more susceptible for clearance by the human 
immune system, but also dispose it to be killed by phage control by inhibition of the 
CRISPR-Cas immune system (Hoyland-Kroghsbo et  al. 2017). Such synergistic 
efficacy can only be achieved if we have in-depth knowledge about the 
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co-evolutionary strategy of both the systems in microbes. In such cases, a combina-
tion quorum-sensing–inhibition-phage therapy can be readily utilized for biotech-
nological applications.

Using phages as a biocontrol agent requires in-depth knowledge of bacterial anti-
phage strategies so that inadvertently selection of phage-resistant bacteria does not 
happen. These agents are especially useful in bacterial infections that do not respond 
well to antibiotics. The potential use of phages as biocontrol mediators has been 
tested in skin ulcers, purulent infections, burns, wounds, methicillin-resistant S. 
aureus (MRSA) mediated infections, respiratory tract infections, gastrointestinal 
ailments among many others (Abedon et al. 2011; Arora et al. 2017). The Food and 
Drug Administration, USA accepted phage-based control of Listeria monocyto-
genes by spraying meat and cheese with phages in 2006. Nonetheless, the use of 
phages in clinical practice is not very popular in all parts of the world, considering 
the fear of adverse reactions in absence of complete knowledge about the microbe-
phage interaction. In this direction, knowledge about various counter strategies 
employed by both phages and bacteria is essential for the development of biotech-
nological tools for therapy.
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Abstract
Currently space exploration is possible thanks to the advanced technology that 
allow humans to survive on Space. However, for future long space mission it is 
necessary to investigate new technologies to ensure human life. Nowadays 
humans can survive at Space in the International Space Station (ISS) for a lim-
ited period of time i.e. almost 6 months at ISS whereas 40 days is foreseen for 
the Chinese Space Laboratory to be ready by 2020. Longer times of space explo-
ration can be achieved if food oxygen and water (among other products) could be 
produced continuously without resupplying products from Earth. Several 
research groups have investigated about this possibility using Controlled 
Ecological Life-Support Systems (CELSS). Among those systems is the 
MELiSSA project that uses microorganism such as bacteria, cyanobacteria and 
higher plants to use human waste and convert it into water, oxygen and food.

The use of microorganism in these recycling systems needs special attention 
at different levels e.g. technical, environmental and biological parameters. In the 
frame work of the MELiSSA project some of the technical challenges include 
bioreactors design, the monitoring and control systems. Microorganisms behav-
ior at space can be affected by environmental conditions such microgravity, 
space ionizing radiation as well as intrinsic biological behavior such genetic 
instability, metabolism and cell-to-cell communication also termed as quorum 
sensing. The aim of this chapter is to focus on that microbiological behavior and 
its possible effects on the MELiSSA loop.
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16.1	 �Introduction

Currently humans can live in space at the International Space Station (ISS) for a 
maximum period of 1 year. The daily demand of an astronaut is 1 k of oxygen, 2.8 k 
of drinking water, 2.7 kg of food (freeze-dried and canned food) and produces daily 
1.2 kg of CO2 (Farges et al. 2008). Astronauts needs such as food, fuel and other 
supplies are sent from Earth (and return to it) every 6  months approximately. 
However, for future long-term human manned exploration, it is needed to rely on 
life support systems that can continuously provide all the requirements to sustain 
the crew for years since resupplying from Earth will not be possible.

In this context, during the past years leading institutions have been studying the 
feasibility of live support systems. Several projects have been developed around the 
world e.g. The BIOS-3 experiments from Russia (Bartsev et al. 1996), The Advanced 
Life Support-ALS from United States (Erickson et al. 1996), The Micro-Ecological 
Life Support System Alternative-MELiSSA project from Europe (Gòdia et  al. 
2002), The Closed Equilibrated Biological Aquatic System-CEBAS from Germany 
(Bluem and Paris 2003), The Closed Ecological Experiment Facility-CEEF from 
Japan (Tako et al. 2010). Detailed information of each project can be found else-
where (Nelson et al. 2009; Pycke 2009). With the exception of the MELiSSA pro-
gram reports of active quorum sensing or the influence of it on each life support 
program is currently not available.

16.1.1	 �MELiSSA Project

MELiSSA stands for Micro-Ecological Life Support System Alternative, this sys-
tem was inspired by a natural lake ecosystem (Mergeay et al. 1988). The concept of 
this loop is to rely on five interconnected compartments that will use organic and 
inorganic waste produced by the astronauts and transform it into fresh water, oxy-
gen and food (Fig. 16.1). The main objective of the MELiSSA project was to acquire 
insights for developing regenerative life support systems for long term space mis-
sions (Lasseur et al. 2010).

Compartment I (CI) – The thermophilic compartment: the aim of this compart-
ment is to degrade crew waste such as feces, urine and non-edible part of plants 
from compartment IVb among others. This compartment is colonized by a consor-
tium of bacteria selected from human fecal material that allows allowed a higher 
biodegradation efficiency when compared to axenic cultures (Lasseur et al. 2010). 
Biodegradation is performed under anaerobic thermophilic (55  °C) conditions at 
acidic pH (5.5) in order to avoid methanogenesis (Poughon et al. 2013).

The outputs of this compartment are volatile fatty acids (VFAs) e.g. acetic, 
butyric acid and propionic acid as well as ammonium and CO2 (Gòdia et al. 2004). 
To achieve separation of liquid fermentation products from undigested solid waste 
an ultrafiltration membrane is used. The use of this membrane allows the recovery 
of 95% of VFA and ammonia-N produced in CI (Poughon et al. 2013)
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Previous studies of compartment CI at pilot scale have shown that it is possible 
to reach a 90% of degradation efficiency by applying complementary technologies 
that helps in liquefaction of fiber (using Fibrobacter succinogenes), liquefaction 
and sanitation of recalcitrant organic matter (by high-pressure and temperature unit) 
and raw waste using hyper-thermophilic organisms (Lasseur et al. 2010).

Compartment II (CII)  – The photoheterotrophic compartment: This compart-
ment is colonized by Rhodospirillum rubrum S1H (ATCC25903), a spontaneous 
mutant from R. rubrum S1 (ATCC11170, parent strain). Unlike S1 strain S1H con-
tains an increased amount of L-threonine deaminase (15–20-fold) when grown in 
medium containing malate and ammonium salt (Ning and Gest 1966). This charac-
teristic could be beneficial since it can help to overcome growth inhibition in 
case of increased amino acids concentration in the loop.

R. rubrum is cultivated under anaerobic photoheterothrophic conditions. This 
bacterium has been studied at bench scale in a bioreactor of 2.5 l illuminated with 
halogen lamps. In parallel, pH, temperature and oxygen are measured whereas mix-
ing is done using an internal helix. Design and cultivation conditions have been 
tested also at pilot scale using carbon sources such as acetate, propionate and butyr-
ate separately. However after long cultivation periods R. rubrum cells forms aggre-
gates that adhere to the photobioreactor wall, when acetic acid is used as carbon 
source (Cabello 2007). 

Fig. 16.1  The Micro-Ecological Life support system Alternative (MELiSSA). (Credits: European 
Space Agency)
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Compartment III (CIII) – The nitrifying compartment: this compartment is colo-
nized by a co-culture Nitrobacter winogradskyi ATCC14123 and Nitrosomonas 
europaea ATCC19178. The aim of this compartment is to convert ammonium into 
nitrate, needed in compartment IVa (Gòdia et  al. 2002). Ns. europaea oxidizes 
ammonium (NH4

+) to nitrite (NO2
−) whereas Nb. winogradskyi converts nitrite to 

nitrate (NO3
−). The bioreactor consists of immobilized cells packed-bed column. 

Cells are fixed as a biofilm on the surface of 4 mm polystyrene beads. Parameters 
such as pH, dissolved oxygen and temperature are measured and mechanical mixing 
is done using a magnetic stirrer, gas flow and liquid recirculation (Gòdia et  al. 
2004).

Compartment IVa and b – Photoautotrophic compartment: Compartment IV has 
been divided in IVa and IVb. The aim of this compartment is to produce oxy-
gen, food and remove CO2 (Hendrickx et al. 2006). Compartment IVa is colonized 
by Arthrospira sp. PCC8005, a filamentous cyanobacterium that photosynthetically 
fixes CO2 and produces O2. Arthrospira is a natural crucial source of food to many 
large aquatic organisms, such as fishes. Many Arthrospira species are also edible for 
man and are used as nutritious and health promoting food supplements. A gas-lift 
photobioreactor of 77 dm3 of total volume was used to grow Arthrospira sp., which 
had provisions to regulate temperature, carbon dioxide (gas phase), dissolved oxy-
gen, light and biomass. A stable functioning has been obtained in a batch model as 
well as in the MELiSSA pilot plant (MPP) where even a mathematical model that 
allows the estimation of mass productivity during long cultivation periods has been 
tested (Gòdia et al. 2004).

In compartment IVb higher plants e.g. lettuce, red beet and wheat were included 
in order to provide a healthy diet and improve the recycling system. Water produced 
during evapotranspiration of higher plants will be used for human consumption to 
some extent and recycled for the loop. It is foreseen that plants should be cultivated 
in isolated chambers in order to control environmental changes e.g. temperature, 
humidity, pressure (Lasseur et al. 2010).

Compartment V - The Crew: All the previous compartments should be able to 
provide the needs of the crew such as water, oxygen and food using as starting mate-
rial the crew organic (urine, feces, non-edible part of plants, etc.) and inorganic 
(CO2) waste.

16.1.2	 �Integration of the MEliSSA Loop

Currently active research is going on in order to fully integrate the MELiSSA loop. 
Besides these efforts only partial integration has been assessed at bench or pilot 
scale. At pilot scale interconnection of CIII and CIVa has been tested at the liquid 
phase (Gòdia et al. 2002). A subsequent bench scale integration of CII (2.5 l), CIII 
(600 ml) and CIVa (2.5 l) compartments has been tested using as initial medium a 
mixture of VFA (acetate, propionate and butyrate). During this integration, analysis 
of substrate consumption have shown that some VFAs are not completely used in 
CII however they can be consumed in the following compartments. Concerning CIII 
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it was observed that the nitrite that was not converted into nitrate passes to CIVa and 
there it can be used by Arthrospira sp. as long as other nitrogen sources are not pres-
ent (Gòdia et al. 2004). Further integration of CI, CIVb and CV compartments is 
foreseen to be incorporated at MPP. In the context of the BIORAT project prelimi-
nary studies using mice in a closed environment allowed to study the gas exchange 
between the compartments (Poughon et al. 2009).

16.2	 �Quorum Sensing in the MELiSSA Loop

So far different QS systems have been described for bacteria, Gram-negative bacte-
ria uses molecules like AHL, AI2 among others for cell-to-cell communication. 
These molecules also named autoinducers are synthesized by synthases such as 
LuxI, LuxS, LuxM (Papenfort and Bassler 2016). Communication molecules for 
Gram-positive bacteria are via peptides in a two component system (TCS). A mem-
brane receptor (sensor kinase) and a cytoplasmic transcription factor are needed to 
allow the expression of QS genes in a TCS (Ng and Bassler 2009). In the MELiSSA 
loop Gram-negative and Gram-positive species are used in compartments CI 
whereas in CII and CIII only Gram-negatives are present. In the MELiSSA loop QS 
activity has been reported for R. rubrum S1H under anaerobic photoheterotrophic 
and aerobic heterotrophic modes of growth in cultures at batch and bioreactor scale 
(Cabello 2007; Pycke 2009) as well as under simulated microgravity conditions 
(Mastroleo et  al. 2013). The study of QS in a close life support system such 
MELiSSA is critical since the presence of active QS signals could act as natural 
micropollutants that could compromise the other compartments (Pycke 2009). For 
instance possible transfer of AHLs from CII to CIII could disrupt Ns europeae and 
Nb winogradskyi biofilm since both strains display a QS system based on AHLs.

Another possible effect of AHLs on the loop is at the level of CV, the crew. For 
instance it was reported that 3-oxo-C12-HSL exerts upregulation of pro-
inflammatory mediators and induction of apoptosis at higher concentrations (Shiner 
et al. 2006). Another example of the interaction between the eukaryote and prokary-
ote world was reported in Rhodopseudomonas palustris. This bacterium employs an 
acyl-HSL synthase for producing p-coumaroyl-HSL, by using precursors such as 
p-coumarate, a plant metabolite (Schaefer et al. 2008).

16.2.1	 �Compartment I

As mentioned above compartment I is colonized by a bacterial consortium, the spe-
cies conforming this group is not  fully characterized yet. However a first study 
reported two species, Ruminococcus bromii and Petrotoga mobilis identified by 
PCR (Cabello 2007). A second study reported Bacteroides sp. and Clostridium sp. 
as representatives of Gram-negative and Gram-positive respectively. Both genera 
were found the most prevalent within the consortium when analyzed by denaturing 
gradient gel electrophoresis (Poughon et al. 2013).
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R. bromii a Gram-positive bacterium abundant in the large human bowel (Abell 
et al. 2008) has been appointed to play a key role in the degradation of resistant 
starch in the human colon (Ze et al. 2012). Currently there are no reports of active 
QS system in R. bromii however in close related species Ruminococcus flavefaciens 
and Ruminococcus albus found in the intestine, AI-2 has been detected in culture 
supernatants (Mitsumori et al. 2003; Lukás et al. 2008). Regarding P. mobilis there 
are no reports on QS in this bacterium or in a close relative.

Autoinducer AI-2 is used by for interspecies and intra-species communication 
(Schauder et al. 2001). Therefore it could be possible a cross-communication among 
CI colonizing species affecting for instance their biodegradation capacity. An exam-
ple of interspecies communication is the one observed between Ruminococcus 
obeum and Vibrio chloerae during the recovery phase after an acute diarrhea infec-
tion. It was observed that AI-2 produced by R. obeum repressed several V. cholerae 
colonization factors (Hsiao et al. 2014).

As mentioned above CI works under acidic thermophilic conditions, to our 
knowledge acidic conditions favors the presence of AHL however high tempera-
tures could disrupt their chemical structure (Yates et al. 2002).

16.2.2	 �Compartment II

As mentioned above CII is colonized by R. rubrum S1H and it should metabolize 
substrates coming from CI such as VFAs. In this context basic research at bench and 
batch scale have been performed in order to generate knowledge about VFAs metab-
olism specifically using acetate, propionate and butyrate (Cabello 2007; Leroy et al. 
2015).

Identification of an active QS system was assessed by detecting AHLs in R. 
rubrum cultures grown under photoheterotrophic conditions using succinate as car-
bon source. LC-MS/MS profiles showed as the most abundant 3-OH-C8-HSL 
(Pycke 2009). At the genomic level R. rubrum displayed a gene (Rru_A3396) 
encoding a putative AHL synthase (a LuxI-type) and six LuxR-type regulators, one 
located upstream the synthase and the rest of them distributed in the genome. 
Moreover homologues to AHL-degrading enzymes such as lactonase AiiA and 
acylase PvdQ were also identified indicating that R. rubrum could degrade AHLs 
(Carius et al. 2013).

Confirmation that gene Rru_A3396 encoded a AHL synthase was assessed by 
constructing a knockout mutant of gene Rru_A3396 by double homologous recom-
bination, this QS-mutant strain was named M68. This study revealed that the main 
AHL synthase is rruI and that probably there is a second AHL-synthase since AHL 
were detected in extracts from M68 cultures. Genome comparison analysis suggests 
that the second synthase could be a HdtS type. Moreover 3-OH-C8-HSL was also 
found as the main AHL under relevant MELiSSA culture conditions (Condori et al. 
2016) as reported elsewhere (Pycke 2009; Carius et al. 2013; Mastroleo et al. 2013).

Continuous culturing of R. rubrum at bioreactor scale under photoheterotrophic 
(using acetate as the sole carbon source) conditions leads to the formation of cells 
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aggregates and subsequently a thick biofilm over the bioreactor wall (Cabello 2007). 
Contrary to CIII, biofilm formation in CII is not expected since it blocks completely 
the external light source therefore the bioreactor has to be stopped.

The fact that QS is active in R. rubrum raised the question that it could influence 
the biofilm formation observed in CII bioreactor. The relation of biofilm formation 
and QS has been reported for several Gram-negative species such as Pseudomonas 
aeruginosa where QS influence biofilm maturation (Bassler and Losick 2006). 
Likewise in R. rubrum, QS influence biofilm formation this was observed when R. 
rubrum WT and the QS mutant M68 were grown in a flow cell system where M68 
did not form biofilm as the WT (Condori 2016). The influence of QS was also stud-
ied at the transcriptomic and proteomic level under MELiSSA conditions at batch 
scale. Results showed that almost the 8% of the genome was differentially expressed, 
genes encoding proteins related to flagellar structures were downregulated in M68 
(Condori 2016). Evidence of positive QS regulation of motility has been reported 
for Vibrio harveyi, probably the same regulation occur in R. rubrum since M68 
showed lower motility when compared to WT. However whether is a positive or 
negative regulation remains to be investigated (Yang and Defoirdt 2015).

It is well known  that Spaceflight conditions influence  bacterial behavior, for 
instance microgravity can enhance virulence in Escherichia coli and Salmonella 
typhimurium (Rosenzweig et al. 2010) or promote biofilm formation as observed in 
Pseudomonas aeruginosa (Kim et al. 2013). Interestingly simulated microgravity 
conditions influence QS in R. rubrum by increasing production of three AHLs (C10-
HSL, C12-HSL and 3-OH-C14-HSL) independently of cell density (Mastroleo 
et al. 2013). Currently there are no reports on the genes regulated by each AHLs in 
R. rubrum, further investigation on the effect of each AHL will unravel the specific 
response in Space. R. rubrum was sent twice to the ISS in order to study the effects 
of Spaceflight conditions, samples were analyzed post-flight at the transcriptomic 
and proteomic level. Moreover ground-based studies using ionizing radiation 
showed that low dose radiation (2mGy) induce stress only at the transcriptomic 
level (Mastroleo et al. 2009).

16.2.3	 �Compartment III

CIII colonizers grow in biofilm, this configuration was selected due to the very low 
bacterial growth rate and because these cells will not be used as food therefore its 
production is not needed (Gòdia et al. 2002). Currently there are no reports of QS 
activity in this compartment. However other studies reported AHL production e.g. 
C6-, C8- and C10-HSL by Ns. europaea strain Schmidt. AHLs synthesis is possibly 
accomplished by NE1184 (Burton et al. 2005) an homolog of the HdtS synthase 
(Laue et al. 2000). Regarding Nb winogradsky, it display an active AHL-based QS 
that is similar to the LuxIR system, it contains an AHL synthase nwiI and its cognate 
regulator nwiR. A first study on the identification of AHL reported the production of 
C10-HSL and C10:1HSL (Mellbye et al. 2015). Further studies increased the list to 
C7-HSL, C8-HSL, C9-HSL, C10-HSL and C10:1-HSL, it also reports a new AHL 
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7,8-trans-N-(decanoyl) homoserine lactone (Shen et al. 2016). Both studies suggest 
that QS has an effect on the nitrification process by influencing the production and 
consumption of environmentally important nitrogen gases (NO, NO2 and N2O) 
(Mellbye et al. 2016).

16.2.4	 �Compartment IV

At the present time there are no studies reporting the communication system used 
by Arthrospira PCC8005. However AHL-based communication does not restrict to 
the bacterial world for instance the cyanobacterium Gloeothece PCC6909 base its 
communication system on AHL, specifically in C8-HSL. However QS function on 
biofilm formation remains unclear (Sharif et al. 2008). Regarding the role that QS 
could play on cyanobacteria, proteomic studies in Spirulina platensis suggest a 
potential role under low temperature stress condition since S-adenosyl homocyste-
ine (SAH) hydrolase was found upregulated during cold-induced stress studies 
(Hongsthong et al. 2008). Interestingly cyanobacteria is also equipped with quorum 
quenching genes for instance Anabaena sp. PCC7120 possesses AiiC an AHL-
acylase (Romero et al. 2008). In nature, the presence of this enzyme could serve as 
a defense mechanism against foreign AHL since these molecules inhibit growth and 
can have a toxic effect in Anabaena (Romero et al. 2011).

16.3	 �Possible Inhibition of QS in the MELiSSA Loop

Currently only in CII unwanted biofilm was formed endangering the functioning of 
the MELiSSA loop. Biofilm formation in R. rubrum is related to QS. Among the 
possible solutions to avoid biofilm formation are: replacing the WT by strain M68 
or the addition of QS inhibitors. As mentioned above the mutant strain M68 do not 
form biofilm and exhibit a similar growth rate than WT (at batch scale) when grow-
ing under photoheterotrophic conditions using acetate as the sole carbon source 
(Condori et al. 2016). However genetic modified organisms are not allowed to be 
part of the MELiSSA loop. Therefore QS inhibitors could be a solution to avoid the 
biofilm observed in the bioreactor. Since R. rubrum produces AHLs, QS inhibition 
could be achieved by different methods i.e. using AHL analogues, decreasing AHLs 
production or inhibition of AHL synthesis (Kalia 2013). Addition of QS inhibitors 
in CII requires a complete understanding of the QS system in R. rubrum at the level 
of gene regulation since it is unknown which AHL binds to which regulators and 
subsequently which of these form complexes. By adding analogues of AHL the 
LuxR-type regulators could be inhibited however as mentioned above R. rubrum 
display six regulators and the genes under the control of each one remains unknown. 
Identification of such genes would allow to define the choice of QS inhibitors. 
Regarding the source of the QS inhibitors; the best choice would be from a prokary-
otes organism than eukaryote source since some of the latter require calcium ion for 
activity (Kalia 2013).
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As mentioned for AHL, the use of analogues imply a possible effect over the 
complete loop since they could pass from CII into the other compartments. The 
same potential risk is latent if external AHL-degrading enzymes, antibodies or any 
molecule is added to the loop. Perhaps a better solution could be to take advantage 
of the genes encoding putative AHL-degrading enzymes lactonase AiiA and acylase 
PvdQ present in R. rubrum. As reported previously the best choice would be to take 
advantage of an lactonase instead of an acylase since the latter depends on acyl 
chain length.

16.4	 �Opinion

As presented in this chapter the biotechnological solution for crew survival to long 
space manned mission is the life support system that includes the use of microor-
ganisms. Several projects have been studied over the past 50 years. However quo-
rum sensing which represents one of the factors that influence bacterial behavior, 
was not intensively studied in life support systems so far. Recently the relation of 
QS and biofilm formation in the compartment II of the European project MELiSSA 
showed the importance of studying cell-to-cell communication.
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Abstract
Quorum sensing (QS) systems are a vital network in Pseudomonas aeruginosa 
for regulating cell to cell communication. Many of this bacterial virulence fac-
tors are controlled by or associated with QS. As QS system may directly regulate 
up to 10% genes of P. aeruginosa, this system is of fundamental importance in 
bacterial physiology and pathogenesis. However, it is still unclear how the QS 
genes regulate their targets and how QS circuits are modulated by other regula-
tors. Here, we review how a series of recently identified critical regulators, 
named “super-regulators” in P. aeruginosa, participate in QS signaling to modu-
late the expression of its effectors.
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QsrO	 QS-repressing ORF
RpoN	 RNA polymerase sigma-54 factor
RpoS	 RNA polymerase, sigma S
VqsM	 Virulence and QS modulator
VqsR	 Virulence and quorum-sensing regulator

17.1	 �Introduction

P. aeruginosa is a Gram-negative opportunistic bacterial pathogen that can cause 
acute and chronic pulmonary infection in immunocompromised individuals, such as 
patients with Cystic fibrosis (CF), Chronic Obstructive Pulmonary Disease (COPD), 
severe burns or cancer (Chugani and Greenberg 2007; Lyczak et al. 2000, 2002; 
Sousa and Pereira 2014). A number of critical genes in this bacterium govern the 
pathogenesis and physiology to coordinate a massive invasion to its mammalian 
hosts. For example, at least three different quorum sensing (QS) systems are found 
in P. aeruginosa: two LuxI/LuxR-type QS circuits LasI/LasR, RhlI/RhlR, and non-
LuxI/LuxR-type QS circuits Pseudomonas quinolone signal (PQs) system. The QS 
system is a global regulatory mechanism controlling hundreds of genes including a 
large cluster of virulence factors. Up to 10% of the predicted 5570 genes are thought 
to be regulated by QS systems (Schuster and Greenberg 2006). Correspondingly, 
there are quite a few super-regulators participating in QS circuit regulation though 
the underlying mechanisms remain to be further elaborated.

Two-component systems (TCS), consisting of a sensor histidine protein kinase 
(HK), and a response regulator protein (RR), play a key role in sensing environmen-
tal challenges (Stock et al. 2000). Normally, HK is a membrane protein and RR is a 
cytoplasmic partner. HK is stimulated by extracellular signal and autophosphory-
lates itself. Then the activated HK phosphotransfers to the RR, and in turn the phos-
phorylated RR regulates the downstream effectors in response to the stimuli (Stock 
et al. 2000). More than 100 TCS genes have been found in P. aeruginosa (Rodrigue 
et al. 2000; Stover et al. 2000). However, the interactions between TCSs and QS are 
poorly understood (Rodrigue et al. 2000; Wang et al. 2013; Cao et al. 2014).

In recent years, we have witnessed a huge amount of fundamental discoveries in 
QS functions and novel regulators that impact QS expression and action. Herein, we 
review the progress in super-regulators of QS and TCS, dealing with the latest 
understanding of their functions and underlying molecular mechanisms.

17.2	 �RsaL

RsaL is a global regulator in P. aeruginosa (controlling more than 340 genes), which 
is involved in inhibiting secreted virulence factors, decreasing twitching and swarm-
ing motility, and promoting biofilm formation (Rampioni et  al. 2009). The rsaL 
gene is located at the intergenic region between lasR and lasI (so named due to its 
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location nearby the Las genes), encoding an 11 kDa protein (Gambello and Iglewski 
1991; de Kievit et al. 1999), which can be activated by N-(3-oxododecanoyl)-L-
HSL (3OC12-HSL). Previous research found that rsaL mutation strain produced 
elevated levels 3OC12-HSL, indicating RsaL repressing lasI transcription (Rampioni 
et al. 2006). Researchers reported that RsaL and LasR shared similar binding sites 
in lasI promoter (Rampioni et al. 2006). Recently, the Liang Lab performed ChIP-
seq assay and found that RsaL promotes expression of pqsH and cdpR by binding to 
the intergenic region between pqsH and cdpR (Kang et  al. 2017). Thus, RsaL is 
regulated by QS, and in turn, RsaL may participate in regulation of other genes by 
the QS pathway, forming an RsaL-QS circuit.

17.3	 �CdpR

A new QS regulator PA2588 was found in P. aeruginosa and named as CdpR, regu-
lating expression of virulence factors and pathogenicity (Zhao et al. 2016). CdpR is 
indicated as an AraC-family regulator and functions in the downstream of PQs 
effector gene pqsH. Previously, CdpR was reported to be regulated by LasI and 
VqsM by directly targeting the promoter (Liang et al. 2014; Zhao et al. 2016). CdpR 
shares the promoter region with pqsH and hence binds to the promoter motif of 
pqsH, which regulates the transcription of pqsH and activates PqsH to impact QS 
systems (Zhao et al. 2016).

17.4	 �VqsM

VqsM is a global QS modulator that was first reported in 2005 (Dong et al. 2005). 
Approximately 100 genes that are promoted by VqsM are also shown to be regu-
lated by QS systems, including rhlR, rsaL, vqsR, lasI and rhlI (Dong et al. 2005). As 
a QS regulator, VqsM promotes the production of N-acyl homoserine lactones 
(AHLs) through VqsR, RpoS and PprB (Dong et al. 2005). The expression of VqsM 
may be influenced by a negative QS regulator QsrO (Köhler et al. 2014). Recent 
research reveals that VqsM directly binds to the promoter of lasI and correspond-
ingly controls the transcription of lasI, while indirectly regulates the Rhl system 
(Liang et al. 2014). Despite the recent insight into the role of VqsM in QS signaling, 
the underlying regulatory mechanisms and the interactive network remain to be 
further characterized.

17.5	 �RpoN

RpoN participates in regulating the production of many virulence factors, including 
alginate, rhamnolipid, and lipase (Studholme and Buck 2000; Hendrickson et al. 
2001). Many virulence activities controlled by RpoN are also regulated by Rhl. 
Thompson and colleagues find that transcription of rhlI is reduced in the rpoN 
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deletion mutant strain in an M9 minimal medium, while equivalent results are not 
observed in the complex medium (Thompson et al. 2003). RpoN positively regu-
lates RhlI by binding its promoter, which is consistent with previous reports 
(Studholme and Buck 2000; Thompson et al. 2003). However, the detailed mecha-
nisms of how RpoN regulates virulence in P. aeruginosa are elusive. Recently, two 
scientific papers demonstrate that RpoN regulates QS signaling by modulating PQs 
molecules pqsR and pqsE (Cai et al. 2015; Viducic et al. 2016). Transcription of 
pqsA is significantly lower in mutant strain than the wild-type (Cai et  al. 2015). 
RpoN regulates PqsR by binding with the pqsR sequence (Cai et al. 2015; Schulz 
et al. 2015). However, another report shows opposite results in which rpoN mutant 
promotes the expression of pqsA, pqsH, and pqsR versus their corresponding con-
trols (Viducic et al. 2016).

17.6	 �QsrO

QsrO (PA2226) is a novel regulator of QS found in 2014 and is located at the 
upstream of vqsM (Kohler et al. 2014). QsrO is able to inhibit three different QS 
systems in P. aeruginosa (Kohler et al. 2014). Deletion of QsrO results in a subdued 
QS phenotype with both PAO1 and PA14 strains by reducing activities of VqsM, 
etc. Co-expression of QsrO and PA2225 can block the activation of the type III 
secretion system, suggesting that QsrO is a negative-regulator for the QS intracel-
lular circuits in P. aeruginosa.

17.7	 �QscR

QscR is an orphan LuxR-type homolog regulator that binds to 3OC12HSL (Lee 
et al. 2006; Oinuma and Greenberg 2011). QscR can also form heterodimers with 
LasR and RhlR, thereby inhibiting QS signaling (Ledgham et al. 2003a).

17.8	 �VqsR

VqsR is also a global regulator in P. aeruginosa (controlling approximately 200 
genes). VqsR promotes QS signaling and production of virulence factors confirmed 
by vqsR deletion mutation (Juhas et al. 2004, 2005). VqsR is activated by las system 
via binding the las box (Hentzer et al. 2003; Li et al. 2007). VqsR expression is also 
inhibited in pqsA, pqsR and pqsE mutant strains (Viducic et al. 2017). Furthermore, 
RpoS is also reported to participate in the interaction between PQs and VqsR 
(Viducic et al. 2017), and in turn, VqsR promotes QS intercellular communication 
by binding to an inverted repeat sequence in qscR (Liang et al. 2012).
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17.9	 �BfmR/S

The BfmR/S TCS is critical regulators of biofilm formation and their expression is 
highly induced in cystic fibrosis patients (Son et al. 2007). BfmR is also negatively 
regulated by BfmS (Cao et al. 2014). BfmR, like LasR and Vfr, directly binds to the 
rhlR promoter, reducing the production of N-butanoyl-L-homoserine lactone 
(C4-HSL) (Croda-Garcia et al. 2011; Balasubramanian et al. 2013; Cao et al. 2014). 
It is possible that BfmR/S TCS takes part in the regulation of P. aeruginosa viru-
lence in cystic fibrosis disease.

17.10	 �Conclusion

The QS signaling involves a global regulatory system. Transcription of hundreds of 
genes are controlled by the QS system (Schuster and Greenberg 2006). Recent 
progress suggests that super-regulators critically regulate QS circuits. A number of 
researchers continuously discover new regulators and their action mechanisms for 
QS regulatory network to broaden our horizons to better understand the complex 
signaling circuits (Table 17.1 and Fig. 17.1).

In brief, four different patterns are currently described in super-regulators for 
regulating QS systems. The first mechanism is directly promoting or inhibiting the 
transcription of QS genes by targeting the related promoters (Albus et  al. 1997; 
Siehnel et al. 2010). The second is binding to the LasR or RhlR and form dimers for 
inhibiting Lux-R, such as QscR (Ledgham et al. 2003a, b; Lee et al. 2006; Oinuma 
and Greenberg 2011). The third mechanism is that super-regulators may control the 
first group of the super-regulators and subsequently regulate the expression of QS 
genes (Zhao et al. 2016). Finally, sRNAs are also involved in regulating the expres-
sion of QS molecules, such as RsmY and RsmZ (Kay et al. 2006; O’Callaghan et al. 
2011).

P. aeruginosa is the most common hospital opportunistic pathogen, causing 
great threat to nosocomial infection for immunocompromised patients (Lyczak 
et al. 2000, 2002; Chugani and Greenberg 2007; Sousa and Pereira 2014). QS sig-
naling is an important mechanism for P. aeruginosa to produce a series of virulence 
factors and thereby enhancing its pathogenicity. P. aeruginosa QS may serve as a 
therapeutic target for curing cystic fibrosis patients by downregulating its virulence. 
The master QS factor LasR is located at the top of QS circuits (Rutherford and 
Bassler 2012). Virulence factor production and initial infection are known to be 
LasI/LasR dependent (Rutherford and Bassler 2012). It is highly likely that LasR 
inhibitors can be used as an effective treatment method. Some studies on inhibitor 
development have revealed that LasR antagonists or autoinducer (AI) analogues 
with the conserved ligand binding to LasR may inhibit the function of LasR (Kim 
et al. 2008; Mattmann and Blackwell 2010; McInnis and Blackwell 2011).
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Table 17.1  QS super-regulators in P. aeruginosa

Regulators Quorum sensing targeting References
AlgR2 Down-regulate transcription of lasR and 

rhlR (not discussed in the chapter)
Ledgham et al. (2003b)

BfmR Down-regulate transcription of rhlR Cao et al. (2014)
CdpR Down-regulate transcription of pqsH Zhao et al. (2016)
DksA Down-regulate transcription of rhlI (not 

discussed in the chapter)
Branny et al. (2001) and Jude et al. 
(2003)

GacA/S Up-regulate transcription of lasR and rhlR 
(not discussed in the chapter)

Parkins et al. (2001)

QslA Negative regulator (anti-activator) of LasR 
and PqsR proteins (not discussed in the 
chapter)

Seet and Zhang (2011) and Fan 
et al. (2013)

QteE Down-regulate transcription of lasR and 
rhlR (not discussed in the chapter)

Siehnel et al. (2010)

QscO Down-regulate transcription of QS Kohler et al. (2014)
QscR Negative regulator (anti-activator) of LasR 

protein
Ledgham et al. (2003a, b); Lee 
et al. (2006) and Oinuma and 
Greenberg (2011)

PprB Up-regulate transcription of lasI, rhlI and 
rhlR (not discussed in the chapter)

Dong et al. (2005) and Pugsley 
(2008)

RpoN Down-regulate transcription of lasR and 
rhlR

Heurlier et al. (2003) and 
Thompson et al. (2003)

RpoS Down-regulate transcription of rhlI Schuster et al. (2004)
RsaL Down-regulate transcription of lasI and 

pqsH
Rampioni et al. (2006) and Kang 
et al. (2017)

RsmA Down-regulate transcription of lasI (not 
discussed in the paper)

Pessi et al. (2001)

Vfr Up-regulate transcription of lasR and rhlR 
(not discussed in the chapter)

Albus et al. (1997)

VqsM Up-regulate transcription of lasI Dong et al. (2005) and Liang et al. 
(2014)

VqsR Up-regulate transcription of pqsR Liang et al. (2012)

New super-QS-regulators, such as Vfr, VqsM, and VqsR, are also global regula-
tors in P. aeruginosa, responsible for bacterial virulence factor production, biofilm 
formation, etc. (Albus et al. 1997; Dong et al. 2005; Liang et al. 2012, 2014). These 
new regulators provide broader targets for switching on or off the QS systems, indi-
cating potential for controlling bacterial infection.

17.11	 �Opinion

P. aeruginosa is an important, common opportunistic pathogen, causing severe infection 
in immunocompromised patients, with threatening mortality. Some known inhibitors 
for LuxI/LuxR may provide a therapeutic method for controlling a P. aeruginosa in vivo 
by reducing its virulence. We posit a presumption that super-regulators of QS can also 
be new targets to design improved treatments for acute or chronic respiratory infection.
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18Applications of Serine/Threonine 
Protein Kinases (STPK): A Bus 
for Dormancy Exit

Bhagwan Rekadwad

Abstract
As the response to unfavorable growth conditions, bacteria transform into the 
dormant state with the concomitant formation of the specialized dormant forms/
structure characterized by low metabolic activity and resistance to hostile condi-
tions. Such dormant cells can be reactivated under the influence of several factors 
including proteins of such as muropeptides, Resuscitation promoting factor 
(Rpf) and STPKs family, which possess peptidoglycan hydrolase activity were 
considered to belong to the group of the autocrine growth factors of the bacteria. 
Remarkable interest toward Rpf-STPKs family is determined by its participation 
in resuscitation of the dormant forms of various bacteria and their genes, what in 
turn into its application in microbial processes and in biotechnology such as 
breaking bacterial/endospore dormancy, in host pathogen interaction, in depres-
sion of neurons, in cell shape control and cell division etc.

18.1	 �Introduction

The bacterial spores possesses an outer multilayered shell called as coat that pro-
tects the bacterial dormant genome during stressful conditions such acid and alka-
line environment, low water activity, high or low temperature, in the presence of 
harmful ions etc. (McKenney et al. 2013). The bacterial endospore composed of 
dozens of proteins helps them during the period of dormancy and in breaking the 
dormancy (Boone and Driks 2016; Korza et al. 2016).

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0848-2_18&domain=pdf
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It is an exceptionally fascinating practical component of bacterial endospore is 
that spores are metabolically inert/lethargic however have high imperviousness to 
the unforgiving condition can break torpidity with extraordinary move inside as 
moment of detecting fitting signs through empowering little particles which might 
be protein, chemical, sugar or amino acid and change over theirs into to utilitarian 
and functional vegetative cell with intrinsic characters.

Number of molecules either inherent or exists in surrounding environments such 
as muropeptides, STPKs, lipooxygenases, siderophores through signalling path-
ways break the dormancy of spores and allow them to develop into dividing cell 
with full native characters (Fischer et al. 2017; Grandchamp et al. 2017; Donato 
et  al. 2017). The microbial communities involved signalling pathways/quorum 
sensing has ability to complete complicated tasks and communicate among and 
between the members of communities regardless of their active or inactive forms 
(Kalia et al. 2015; Koul and Kalia 2017). The present chapter describes the applica-
tions of such small molecules having applications in microbial processes and in 
biotechnology.

18.2	 �Applications of Bacterial Serine/Threonine Protein 
Kinases (STPK): Sending Wake Up Signal to Break 
Bacterial Endospore Dormancy

Germination of bacterial endospores (e.g. in Bacillus) triggered by the impacted by 
nutrients when passes through the inner side of spore membrane and by sending 
membrane binding protein kinases. Muropeptides are found in environment as well 
as in the bacterial cell wall (Dworkin and Shah 2010; Boudreau et  al. 2012). In 
bacteria, muropeptides are normally released during growth of bacteria i.e. during 
cell division or doubling. It is required in less than pictogram per millilitres quan-
tity. Normally, in the environment, muropeptides found in environment at high con-
centration. This will trigger the spore germination. Therefore, Gram-positive 
bacteria spore are germinated in the environment through the signal produced by the 
muropeptide may be initiated by unique phenomenon quorum sensing (Fatima et al. 
2010; Vidal et al. 2011; Shukla et al. 2014; Kalia and Kumar 2015; Siddiqui et al. 
2015; Scott and Hasty 2016; Rekadwad and Khobragade 2017a). Not only muro-
peptide, amino acid such as meso-diaminopimelate (Dpm) ineffectively elicits spore 
germination in the Bacillus subtilis (Setlow 2006, 2008; Shah et  al. 2008). Like 
muropeptides, bryostatin of the PrkC family is a well activator of STPK. There are 
many clues given by the scientist worldwide on germination of bacterial endo-
spores. Germination of endospores added a new dimension and more study needs to 
be carried out in this context i.e. pathways exist for germination of spores (Fig. 18.1) 
by muropeptides and SPTK (Pompeo et al. 2016; Nikitushkin et al. 2016; Arora 
et al. 2017).
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18.3	 �Role of STPK in Host Pathogen Interaction

In host pathogen interaction bacterial adaptation to the host environment and dis-
ruption in host immune system and its responses are crucial. This type of host 
pathogen interactions mediated by quorum sensing i.e. through the sensor or signal-
ling molecules produced protein molecules belonging to STPK family. It seems to 
be a molecular quorum sensing (Kobir et al. 2011; Cousin et al. 2013; Bazire and 
Dufour 2014; Kalia 2014, 2015; Kaur et  al. 2015; Pooja et  al. 2015; Koul et  al. 
2016; Koul and Kalia 2017; Kalia et al. 2017; Ray and Kalia 2017; Rekadwad and 
Khobragade 2017a, b). These protein/enzymes produced have dual roles viz. it 
sense the environment and to weaken the specific host immune system/processes 

Fig. 18.1  SPTK mediated breaking of bacterial endospore dormancy

18  Applications of Serine/Threonine Protein Kinases (STPK): A Bus for Dormancy Exit
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involved in defence mechanism of hosts immune system (Echenique et al. 2004; 
Hussain et  al. 2006; Alber 2009; Kristich et  al. 2007; Molle and Kremer 2010; 
Canova and Molle 2014). STPK protein produced by different bacterial species hav-
ing eukaryotic STPK like characteristic exist in genus such as Enterococcus faeca-
lis, Mycobacterium, Listeria monocytogenes, Pseudomonas aeruginosa, 
Staphylococcus aureus, Streptococcus spp. and Yersinia spp. (Greenstein et  al. 
2005; Truong-Bolduc et  al. 2008; Wehenkel et  al. 2008; Beltramini et  al. 2009; 
Truong-Bolduc and Hooper 2010; Ulrych et al. 2016)

18.4	 �Role STPK in Depression of Neurons

The adenylate cyclase inhibitor (ACI) is inhibitor of large group of kinases 
(Makhnovskii et al. 2011). In common snail, the reversible depression is linked with 
activation of variety of STPK enzymes. It was observed that it follows the mathe-
matical model confirmed from experimental data and calculation from obtained 
results (Makhnovskii et al. 2013; Pivovarov et al. 2014a, b).

18.5	 �Role of STPKs in Cell Shape Control and Cell Division

Intensive genome examination of Corynebacterium glutamicum uncovered the 
nearness of four putative qualities (PknA, PknB, PknG, and PknL) encoding STPKs, 
all of which have a place with the PKN2 group of prokaryotic protein kinases (PKs) 
that are most firmly identified with the eukaryotic STPKs (Goldová et al. 2011). 
These have role in control of cell shape and synthesis of peptidoglycan amid cell 
division. Above four genes have different functions; one’s functions rely on other. It 
was proved that PknA, PknB and PknL exhibits autokinase activity while PknG 
assumes vital part in falls of phosphorylation whose systems completely depend on 
PknA action. The confinement of phosphor acceptors differs from one kinases to the 
next. If there should be an occurrence of Corynebacterium glutamicum impedance 
either in PknG or PknL brings about creation of reasonable mutants having a model 
morphotypes and shifted development rate. Some restrictive mutants contain half-
way exhaustion of PknA and PknB qualities. As consequences of quality expression 
cells were lengthened i.e. there was deformity in cell division (Wehenkel et al. 2006; 
Fiuza et al. 2008; Margolin 2009; Molle and Kremer 2010). Be that as it may, over 
articulation of said PknA and PknB qualities stops apical development on bar 
formed bacterium which mightily empower cell to take a coccoid-like morphology 
(Donovan and Bramkamp 2014; Monteiro et  al. 2015; Zhou et  al. 2016; Kysela 
et al. 2016; Errington 2017). More work should be completed to see how the prede-
termined number of kinases perceives a vital number of substrates and how they 
take an interest in numerous mind boggling flagging pathways.
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