
Chapter 8
Advanced Devices and Architectures

Masato Motomura, Masanori Hariyama and Minoru Watanabe

Abstract The last chapter of this book is for advanced devices and brand new
architectures around FPGAs. Since the basic logic blocks of FPGAs are consist-
ing of LUTs, they are called fine-grained reconfigurable architectures. In contrast,
coarse-grained reconfigurable architectures use processing elements to improve the
performance per power for computation-centric applications. Dynamic reconfigura-
tion is also easily done in such an architecture, and the configuration data set is called
a hardware context. By switching hardware context frequently, they can achieve bet-
ter usage of semiconductor area. The next part is asynchronous FPGA which can be
a breakthrough of high-performance operation with low-power consumption. The
handshake mechanism, a key component of such architectures, is explained in detail.
3D implementation is another new trend, while 2.5D is now in commercial use. The
last part of this chapter is for activities of optical techniques around FPGAs for drastic
improvement I/O and reconfiguration performance.

Keywords CGRA · Hardware context · Asynchronous FPGAs
Optical I/O · Optical reconfiguration

8.1 Coarse-Grained Reconfigurable Architecture

As was explained in Chap.1, FPGAs started as devices for prototyping small-scale
logic circuits. As they become larger in accordance with the shrink in transistor
size, the idea to use FPGAs as acceleration devices is getting more popular, as

M. Motomura
Hokkaido University, Sapporo, Japan
e-mail: motomura@ist.hokudai.ac.jp

M. Hariyama (B)
Tohoku University, Sendai, Japan
e-mail: hariyama@tohoku.ac.jp

M. Watanabe
Shizuoka University, Shizuoka, Japan
e-mail: tmwatan@ipc.shizuoka.ac.jp

© Springer Nature Singapore Pte Ltd. 2018
H. Amano (ed.), Principles and Structures of FPGAs,
https://doi.org/10.1007/978-981-13-0824-6_8

207

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0824-6_8&domain=pdf
http://dx.doi.org/10.1007/978-981-13-0824-6_1

208 M. Motomura et al.

demonstrated in Chap.7. This approach, known as reconfigurable computing or
reconfigurable systems, is becoming more important as CPUs performance improve-
ment are slowing down. It is natural to use an array of LUTs when the main purpose
of an FPGA is prototyping.

As a device for reconfigurable computing, however, it may make more sense to
use other primitive elements. To fit better for the acceleration of computing functions,
such elements might be less versatile, but they should be more efficient in computing
than LUTs. This is how coarse-grained reconfigurable architectures (CGRAs) have
been proposed and investigated.

8.1.1 CGRA Basics and History

Starting from the 1980s, CGRAs have been mostly presented by universities and
startups. The well-known ones are PipeRench from CMU and XPP from PACT, in
addition to others [1]. Recently proposed good examples of such architectures, both
in Japan, are CMA from Keio University [2] and LAPP from NAIST [3]. As shown
in Fig. 8.1, a CGRA can be represented as an array of operation units and memo-
ries, associated with a network structure connecting them. As for the operation units
granularity, there are varieties such as: 4, 8, 16, and 32 bits. The finer the architecture
is the more it becomes like an FPGA. On the other hand, the coarser it is the more
it becomes like a traditional parallel processor. As for the instruction set, traditional
arithmetic logic operations are commonly found, as well as extended instructions
for customized acceleration of target applications. The array configuration may not
necessarily be a two-dimensional one as in FPGAs, but also a one-dimensional array
when a target application is sufficient with linear processing. Either dynamic switch-
ing on-chip routing networks or static switching interconnection fabrics are used for
the network in Fig. 8.1.

8.1.2 CGRA Design Space

Since CGRAs are equipped with operation units customized for given applications,
they surpass FPGAs, in general, in processing performance and density. High density
means more parallel operation units can be integrated into the same area. This also
translates into better processing performance. In addition, configuration information
can become much smaller compared to FPGAs. It is known that a major portion of
configuration information is spent on interconnections: FPGA architectures require
specifying bit-level interconnections. While in the CGRA case, interconnections are
bundled to the coarse granularity specified by the architecture. Another important
CGRA merit to note is its familiarity to design tools. This is very important since
software programmers, in the reconfigurable computing field, are the users who map
target applications onto the CGRA architecture.

http://dx.doi.org/10.1007/978-981-13-0824-6_7

8 Advanced Devices and Architectures 209

Fig. 8.1 Generalized CGRA architecture

There are also drawbacks in the CGRA approach. First, they become less gen-
eral purpose when compared to FPGAs because of their structure. Considering that
FPGAs have occupied a large portion of the market, because it is a general-purpose
device (at least from the HW prototyping point of view), this is a major issue to
be carefully considered. Many CGRA architectures ended up being just research
prototypes because of this reason.

Another issue to carefully consider when defining the CGRA architecture is to
efficiently utilize the hardware-based computation as much as possible. For example,
when choosing a single bit from an 8-bit data, an FPGA needs just to wire the desired
bit. Whereas in the CGRA case, an 8-to-1 selector or shifter is required. This means
that an overhead is incurred both in performance and area.

Based on considerations such as the ones above, CGRA architectures are mainly
considered as a tightly coupled accelerator to a CPU core, but not a replacement to
FPGA. For example, CMA and LAPP allow the CGRA core to directly access CPU
registers so that it can accelerate sub-tasks of a CPU (such as frequently executed
loops).

210 M. Motomura et al.

8.1.3 Dynamically Reconfigurable Architecture

When an FPGA is used as a computation device, a resource limitation issue may
rise; i.e., what should be done when the required computation does not fit within the
hardware resources of a given FPGA? This problem is easy to solve when FPGAs
are considered for prototyping: Just increase the number of FPGA chips and make
the connection between them. If only computation is concerned, just like software
does, a reconfigurable computation solution should robustly account for variously
sized applications. This is the reason why dynamically reconfigurable architectures
were investigated.

One of the earliest works in this area is WASMII from Keio University, Japan [4].
Thiswork proposed quite an advanced conceptwhere hardware is considering as a set
of pages, which can swap in and out (Fig. 8.2). In conventional operating systems, a
virtual memory allows a largememory space that does not fit in a physically available
memory, to be allocated to applications using a page-by-page swapping method.
Similarly to virtual memory, in WASMII, the page-oriented hardware architecture
allows virtual hardware, where a virtually large hardware can be put on a physically
existing small reconfigurable device.

Fig. 8.2 WASMII execution
model

....

FPGA Chip

FPGA
circuit

M
ul

tip
le

xe
r

Config.
 RAM1
Config.
 RAM2
Config.
 RAM3

Config.
 RAMn

Backup RAM

8 Advanced Devices and Architectures 211

8.1.4 Case Study: DRP

Dynamically Reconfigurable Processor (DRP) is a coarse-grained, dynamically
reconfigurable architecture proposed by NEC Corporation in 2002 [5]. The archi-
tecture was mainly developed for an IP core integrated into an SoC. This section
overviews DRPs as an example of dynamically reconfigurable architectures (they
are also an example of a CGRA described in the previous section).

Figure8.3 shows its basic architecture. A processing element (PE), that constitutes
a two-dimensional array, is composed of two general-purpose 8-bit ALU, register
file, and instruction memory. The two ALUs have bit-manipulation instructions such
as bit mask/select, so that it can cover bit-level operations that FPGA can handle
well. PEs are interconnected to each other with an 8-bit-width hierarchical bus. Bus
selectors connect those ALUs and a register file with vertical/horizontal buses.

An instruction memory stores a set of hardware configurations, from which one
configuration is selected, i.e., hardware dynamic reconfiguration. Each instruction
includes operation codes for the two ALUs, as well as control bits for the bus selec-
tors. For example, it is possible to bypass the register file in a PE and connects the
ALU outputs to inputs of other PEs in a flow-through manner. Ordinary processors
store outputs produced at one cycle into registers and then read those registers for
following cycles. The PEs in a DRP, on the other hand, spatially connect plural PEs
for constructing a customized datapath.

The PE array is associated with an state transition controller (STC), which is
responsible for managing the dynamic reconfiguration. A basic role of an STC is to
dispatch instruction pointer to the array: Each PE receives the pointer, then selects,
and reads a specified instruction. The STC has a sequencer which keeps track of
the state transitions of a given application. When a new pointer is dispatched, all
the instructions of PEs, as well as all the interconnections in the PE array, change at
once. This operation can be interpreted such that the hardware configuration changes
among the datapath contexts stored in the memory. This makes it similar to theWAS-
MII’s concept explained in Fig. 8.2. Conditional state transitions require branches
which need to examine branch conditions. Information required for this examination
is returned back from the datapath as event signals to the STC.

A DRP core is made up of multiple tiles of PEs. Each tile has its own STC to
control the reconfiguration. Hence, multi-tiled DRPs can runmultiple state machines
in parallel. There is also a mechanism to connect multiple tiles and control them by
a single state machine.

The execution model of DRPs is usually learned from high-level synthesis tool
which is a tool to compile a program written in high-level language like C to an
executable hardware. Generally speaking, a program has control flows which are
composed of conditional branches and loops, etc., and data flows which are trees of
data handling operations. High-level synthesis tools compile control flows to finite-
state machines, and data flows to hardware datapaths. DRP architectures feature
clear one-to-one correspondence with this generic high-level synthesis model: STCs
manage finite state machines, and PE arrays handle datapath. Here, a datapath asso-

212 M. Motomura et al.

Fig. 8.3 DRP architecture

ciated with each state is called “context.” Contexts are generated when (1) they are
associated with states in the control flow, or (2) when there is a resource limitation
and a context should be divided into multiple ones.

DRPs feature GUI-based high-level synthesis-oriented tool flow (Fig. 8.4). Con-
text generation is all handled by this tool, and designers do not have to worry about
how to decompose hardware datapaths. TheDRP core, which is now owned by Rene-
sasElectronics and a commercially used dynamically reconfigurable architecture, has
been used in products such as video cameras and digital cameras.

8 Advanced Devices and Architectures 213

Fig. 8.4 DRP design tool

8.1.5 Relation to Parallel Processors

An important consideration in conducting dynamic hardware reconfiguration is the
need to load large amount of configuration information at once. Typically, dynam-
ically reconfigurable architectures feature one to several clock cycle latencies for
this hardware context switch (for DRP, it is less than a single cycle). This is the
reason why such architectures, including DRPs, adopt CGRAs in order to reduce
configuration information.

Dynamically reconfigurable CGRA hardware may look very similar to on-chip
many-core parallel processors (such asXeon Phi from Intel). The difference becomes
clear when their execution models are examined:

• Dynamically reconfigurable CGRA: A block of instructions are first spatially
mapped on an array of processing elements (it constitutes a hardware context).
Then, the hardware contexts are multiplexed in time (space to time order).

• On-chip many-core parallel processor architecture: It first assigns a block of
instructions to a single processor as a thread. Then, multiple threads are mapped
onto a processor array among which the synchronization will take place from time
to time (time to space order).

214 M. Motomura et al.

8.1.6 Other Architecture Examples

FPGA-based (i.e., fine-grained) dynamically reconfigurable hardware architectures
were proposed in Tabula [1]. Tabula exploits dynamic reconfiguration for speeding
up FPGA operational frequency. That is, it divides the critical path into several
segments and maps them to different hardware contexts. Tabula was proposed for
realizing over-GHz rangeFPGAfor high-end applications (the projectwas suspended
in 2015).

8.2 Asynchronous FPGA

8.2.1 Problems of Conventional Synchronous FPGAs

In conventional synchronous circuits, some serious problems become obvious as
the miniaturization of semiconductor process continues. Figure8.5 shows the global
clock network of synchronous FPGAs. The global clock network is connected to
the clock inputs of all registers. A register loads data only at the rising edge of the
clock pulse. As soon as the data is loaded, it appears on the output. The data on the
register output is used as the input of the logic circuits. The result of these circuits is
used as the input of the following register. FPGAs usually have much larger circuits
and have much more registers than application-specific integrated circuits (ASICs).
Therefore, conventional synchronous FPGAs have larger parasitic capacitance of the
global clock network and require much more clock buffers to reduce clock skews.
This causes the following problems:

• The clock network consumes larger power.
• The speed is limited by the clock skews.

As for conventional synchronous FPGAs, lowering the power consumption is not
so easy compared to ASICs due to the following reasons:

Difficulty to use clock gating: Clock gating is a major technique to reduce the power
consumption in ASICs. It prevents the input of a circuit from causing unnecessary
signal transitions when the circuit is unused. When using clock gating for ASICs,
designers should carefully design the customized clock network to avoid clock skews,
and the clock network is fixed at the manufacturing phase. As for FPGAs, the clock
network cannot be customized for a certain circuit since various circuits are imple-
mented on FPGAs. Moreover, it is not recommended to use the clock network that
can be reconfigured for the clock gating, since reconfiguring the clock network causes
faults due to clock skews.
Difficulty to use power gating: Power gating is another major method to reduce the
power consumption in ASICs. It turns the circuits power off when they are not in use
and wake them up just before being used. The power gating requires control circuits

8 Advanced Devices and Architectures 215

Fig. 8.5 Global clock network of synchronous FPGAs

and dedicated connections to distribute these control signals. Especially in FPGAs,
these overheads are significantly large due to the flexibility of FPGAs.

8.2.2 Overview of Asynchronous FPGAs

In order to solve the problems of the synchronous FPGAs, FPGAs based on asyn-
chronous circuits are proposed. Figure8.6 shows the basic behavior of an asyn-
chronous circuit. Data transfers between processing modules are done using a hand-
shake protocol as follows. At first, the sender sends the data and a request signal to
the receiver. The request signal is used to inform the receiver of the data arrival. After
receiving the request signal, the receiver takes the data in and sends the acknowledge
signal to the sender. The acknowledge signal is used to inform the sender that the

Fig. 8.6 Basic behavior of
an asynchronous circuit

216 M. Motomura et al.

receiver has completed receiving the data. After the acknowledge signal reception,
the sender sends a new data in the same manner.

The advantages of asynchronous circuits over synchronous ones are summarized
as follows:

No dynamic power consumption in the inactive state: An asynchronous circuit
does not consume power consumption when not processing data. This is because it
does not have the global clock network that always transfers the clock pulse.
Low peak power or peak current: In asynchronous circuits, processing modules
start to process data after they receive it. Since the data arrival times vary from
each other, the durations of the power consumption peaks (and current peaks) of the
modules vary from each other as well. As a result, the average power consumption
of the whole circuit becomes low.
Low-Level electromagnetic radiation: Since the peak current is low as described
before, the level of the electromagnetic radiation is also low.
Robust to the fluctuation of the supply voltage: Even when the supply voltage
decreases slightly, it is guaranteed that the output of the circuit is correct thanks to
its clock-less operation.

The major disadvantage of asynchronous circuits is their larger amount of hard-
ware for control, e.g., circuits that detect data arrival, and the additional wires for
acknowledge and request signals.

In asynchronous circuits, there are three major types of handshake protocols [6]:

(1) Bundled data protocol,
(2) Four-phase dual-rail protocol, and
(3) Level-encoded dual-rail (LEDR) protocol.

The bundled data protocol is also called single-rail protocol. It represents one
bit of data by using a single-rail-like synchronous circuits. A word to be transferred
consists of multiple data bits and 1-bit request signal. Hence, the overhead for control
is only 1-bit per word, which can be considered as very small. The disadvantage of
the bundled data protocol is that it requires a timing constraint for the request signal;
the request signal must arrive at the receiver module after the data. In order to ensure
this, a delay buffer is usually inserted into the request signal wire as shown in Fig. 8.7.

Figure8.8 shows the data transfer and the encoding of the four-phase dual-rail
protocol. In this protocol, a word to be transferred from the sender has 2 bits: 1
bit for data and 1 bit for the request signal, as depicted in Fig. 8.8a. The receiver
sends the 1-bit acknowledge signal back to the sender. In general, 1-bit acknowledge
signal is enough for multiple words. Figure8.8b illustrates the encoding. Data “0”
and “1” is represented by code words (Dt , D f) = (0, 1) and (Dt , D f) = (1, 0),
respectively. As a separator between data, the spacer (Dt , D f) = (0, 0) is used.
Note that (Dt , D f) = (1, 1) is invalid. Let us consider an example of data transfer
represented in Fig. 8.8c, where data “1”, “1”, “0”, and “0” are transferred. Since the
sender sends a code word and the spacer alternatively, the receiver can detect the
data. In the four-phase dual-rail protocol, the racing problem caused by the arrival
timings of data and the request signal does not occur. In other words, Dt and D f do

8 Advanced Devices and Architectures 217

Fig. 8.7 Bundled data
protocol

Fig. 8.8 Four-phase
dual-rail protocol

(a)

(b)

(c)

not change at the same time. This is because the code words are designed such that
the Hamming distance between any two code words is one. Hence, the four-phase
dual-rail protocol is more robust for timing variations than the single-rail protocol.

The circuit of the four-phase dual-rail protocol is simpler than that of the LEDR
protocol, described below, since the data corresponds to a single code word. The
disadvantage of the four-phase dual-rail protocol over the LEDR protocol is its lower
throughput due to the insertion of the spacer.

The LEDR protocol is suitable for high-throughput data transfer. Figure8.9 shows
the data transfer and the encoding of the LEDR protocol. The way of data transfer
is the same as the four-phase dual-rail protocol, as presented in Fig. 8.9a. The big
difference between the four-phase dual-rail and LEDR protocols is the encoding,
as demonstrated in Fig. 8.9b. Data “0” is encoded by two different code words:
(V, R) = (0, 0) in phase 0 and (V, R) = (0, 1) in phase 1. Data “1” is also encoded
by two different code words: (V, R) = (1, 1) in phase 0 and (V, R) = (1, 0) in
phase 1. Let us consider an example of a data transfer using the phases, as shown in
Fig. 8.9c, where data “1”, “1”, “0”, and “0” are transferred. In the LEDR protocol,
the code word in phase 0 and the code word in phase 1 are alternatively transferred.
The receiver can detect the change of data by detecting the change of phases. Since
the LEDR protocol dose not need spacers, it can achieve high throughput. The dis-
advantage of this protocol is that it requires larger circuits since one data value has
two different code words.

218 M. Motomura et al.

Fig. 8.9 LEDR protocol (a)

(b)

(c)

Hereafter, we explain asynchronous FPGAs. Asynchronous FPGAs using the
bundled data protocol have been proposed [7, 8]. Although they benefit from the
used small circuits, the main disadvantage is their low performances due to the large
delay buffers inserted in the request signal wire to ensure the correct behavior for
various datapaths.

As for asynchronous FPGAs protocol, the dual-rail protocol is ideal since it can
avoid the racing problemmentioned above without any timing constraints on the data
nor the request signal. Figure8.10 shows a basic architecture based on the dual-rail

Fig. 8.10 Asynchronous FPGA based on the dual-rail protocol

8 Advanced Devices and Architectures 219

Fig. 8.11 LUT for the four-phase dual-rail protocol (2-input LUT)

protocol [9]. Similar to conventional synchronous FPGAs, logic blocks (LBs) are
connected to each other via connection blocks (CBs) and switch blocks (SBs). An
interconnection unit consists of wires for code words and the acknowledge signal.

Among the dual-rail protocols, the four-phase dual-rail protocol is employed to
implement small circuits [10, 11]. Figure8.11 shows the structure of an look-up table
(LUT), where, for simplicity, the numbers of inputs and outputs are limited to two and
one, respectively. The four-phase dual-rail protocol is suitable for dynamic circuits
which are used for area-efficient design. This is because the pre-charge signals and
the evaluation signal are easily generated from the spacer. The number of bits of
the configuration memory is 2N for an N -input LUT like conventional synchronous
FPGAs. In the case of Fig. 8.11, the 2-input LUT has a 4-bit configuration memory
(M00, M01, M10, M11). The output (OUTt , OUTf) is determined according to the
configuration memory and the external inputs (At , A f) and (Bt , B f).

8.2.3 Design for Low Power, High Throughput,
and Modularity

For low power, asynchronous circuits can provide some design information, and
intelligent control is realized based on this information. For example, the receiver
module can detect the data arrival by using the request signal; the sender module
can know whether the receiver module is ready to load data. In [12], fine-grained
adaptive control of the supply voltage is proposed to reduce the dynamic power
consumption. According to the state of the receiver module, the sender module
adaptively controls its supply voltage and processing speed. In [13], fine-grained
power gating is proposed to reduce the static power consumption caused by the
leakage current of transistors. Each module detects the arrival of its inputs data by

220 M. Motomura et al.

using the request signal that is sent from the sender module. If the inputs do not arrive
within a predefined time, the module automatically turns the supply voltage of the
core circuit off. When the inputs come, the module wakes its core circuit up [13].

In order to achievehigh throughput, fine-grainedpipelining is frequently employed
for high throughput datapaths [11, 14–16]. From the point of view of data trans-
fer, the protocol hybrid architecture is proposed, where the LEDR protocol is used
for high-throughput data transfer and the four-phase dual-rail protocol is used for
simple datapaths [9, 17]. Moreover, the hybridization of synchronous circuits and
asynchronous circuits is proposed [18]. When a significant amount of input data
continuously arrives, synchronous circuits are considered to be efficient in terms
of power consumption. On the other hand, asynchronous circuits are efficient for
the case when the data arrival is less uniform. Based on this observation, an LUT
is designed to be used in both asynchronous circuit and synchronous circuit while
sharing the circuit. Depending on the used applications, the blocks of LUTs are con-
figured as asynchronous or synchronous circuits. Note that both of asynchronous and
synchronous circuits can coexist on a single FPGA. High throughput and low power
can be optimally achieved by combining the asynchronous and synchronous circuits
based on their aptitudes for different applications.

One major problem in asynchronous circuits is their difficulty to program. The
reason is that the design for modularity is not easy in asynchronous circuit. To solve
this problem, design methods using handshake components are proposed for general
asynchronous circuits [19, 20]. Handshake components are basic building blocks to
describe the data flow and control flow, including arithmetic/logic operations, condi-
tional branch, and sequence control. Designing circuits is easily done by connecting
such handshake modules. In [21], an asynchronous FPGA is proposed whose logic
blocks are suitable to implement the handshake components.

8.3 3D FPGA

As described before, FPGAs consist of a configurationmemory, programmable inter-
connection units, and programmable logic circuits to achieve a high degree of flexi-
bility. Such redundant resources lead to a lower area efficiency compared to ASICs.
Moreover, the complex interconnection causes a large delay and degrades the per-
formance. These problems will be more serious in the near future since the minia-
turization of the semiconductor manufacturing process nears the physical limit.

Based on this background, applying 3D integration technologies such as TSV
(Through Silicon Vias) [22–24] to FPGAs is strongly desired. 3D FPGAs are clas-
sified into two types: heterogeneous and homogeneous.

Figure8.12 shows the conventional 2D FPGA architecture and the 3D heteroge-
neous architecture. As shown in Fig. 8.12 (bottom), different resources such as logic
blocks, routing blocks, and a configuration memory are distributed into different lay-
ers; the resources in different layers are connected by using interconnections such as
TSV. Therefore, the heterogeneous architecture can increase the resource density per

8 Advanced Devices and Architectures 221

Fig. 8.12 3D FPGA (heterogeneous architecture)

footprint [25–28]. The scalability along the vertical direction of the heterogeneous
architecture is lower than that of the homogeneous architectures, described below,
since the number of layers is limited by the number of resource types.

Figure8.13 shows the 3D homogeneous architecture. Each layer has the same
functions as a 2D FPGA, that is, logic blocks, routing blocks, a configuration mem-
ory. The routing block is designed such that it connects the logic blocks in the same
layer and also connects the routing blocks in different layers via vertical connec-
tions [29–32]. Hence, the homogeneous architecture is an extension of the 2D FPGA
architecture to the third dimension. When the number of stacked layers increases
in accordance with the progress of the 3D integration technology, the total circuit

222 M. Motomura et al.

Fig. 8.13 3D FPGA (homogeneous architecture)

size of a 3D FPGA can also increase linearly. Moreover, the performance could be
improved compared to 2D FPGAs. When mapping circuits with complex topology
onto a conventional 2D FPGA, the connected circuit blocks are not always mapped
onto near logic blocks. As a result, it may result in mapping with long wires. 3D
FPGAs can map such circuits onto near logic blocks by using different layers.

Hereafter, the issues of 3D FPGAs are summarized. The first issue is the challenge
facing the technologies to use for the vertical connections, which should be cheap and
highly reliable. Moreover, when increasing the number of layers in the homogeneous
architecture, the thermal radiation can be critical as well as CAD support [33–39].

8.4 High-Speed Serial I/O

Microsoft recently announced a server using the Stratix V FPGAs to be used in its
data center for Bing search engine [40]. Although the introduction of FPGAs has
increased the power consumption by 10%, it enhanced the throughput by 95% when
compared to the software implementation. Thus, this has emphasized the effective-
ness of FPGAs. In this implementation, the 10-Gbps high-speed communication port
of the FPGA is used for a mutual network that is indispensable in a data center. In
recent years, this case underscores the further emerging importance of networks that
can leverage FPGA applications.

As described in Chap.3, recent FPGAs provide many general-purpose inputs/
outputs (GPIOs) that can accommodate various devices such as memories. GPIOs
readily realize an interface with various devices connected to an FPGA at a high
bandwidth. Recent FPGAs are equipped with serial I/Os that allow high-speed com-
munications of Gbps order in addition to GPIOs, as highlighted in the data center
case described above. Accordingly, short-distance communications between FPGA

http://dx.doi.org/10.1007/978-981-13-0824-6_3

8 Advanced Devices and Architectures 223

chips, middle-distance communications between systems including FPGA chips,
and long-distance network communications between systems including FPGA chips
have been implemented at higher speeds. Xilinx Inc. and Altera Corp. mutually com-
pete in terms of performance, and they are locked in a development race to mount
more high-speed serial I/Os on their own cutting-edge FPGAs. As a result, FPGAs
communication performance has improved rapidly in recent years. The importance
of serial I/Os in FPGAs is anticipated to further increase in the future. Therefore,
this section describes these high-speed serial I/Os in the Stratix family devices, as
an example.

8.4.1 LVDS

The Stratix family supports differential interfaces of small amplitude such as Low
Voltage Differential Signaling (LVDS) [41], Mini-LVDS [42], and Reduced Swing
Differential Signaling (RSDS) [43]. Mini-LVDS and RSDS are standards derived
from LVDS for computer displays, formulated, respectively, by Texas Instruments
Inc. and National Semiconductor. This section describes LVDS, which has been
standardized by ANSI/TIA/EIA-644. The Stratix family adopts LVDS that satisfies
this standard [44, 45].

LVDS is a one-way signal transmission standard under which a signal is trans-
mitted from a transmitting side to a receiving side using two lines, as indicated in
Fig. 8.14. For example, in cases where a signal “1” is transmitted from the trans-
mitting side, transistors (1) and (2) in Fig. 8.14 are turned ON for transmission. In
this event, the current flows from the current source on the transmitting circuit to the
upper line via transistor (1). A terminator is mounted on the receiving circuit. The
great portion of the current flows into the terminator and returns to the transmitting
circuit via the other line to flow into VSS via transistor (2). At this time, the poten-
tial between both terminals of the terminator on the receiving side rises to about
+350 mV. A differential amplifier on the receiving circuit detects this state. Then,
the receiving circuit determines it as a signal of “1”.

On the other hand, when transmitting a signal of “0”, transistors (3) and (4) on the
transmitting circuit are turnedON. Thereby, the current flows from the current source
through the lower line. Similarly to the description above, the current passes through
the terminator, returns to the transmitting terminal via the upper line, and flows into
VSS via transistor (3). At this time, a potential of−350 mV occurs at the terminator.
Consequently, the current flows in an opposite direction according to the transmitted
value of “1” or “0”, and a potential of +350 mV occurs on the receiving circuit. The
receiving circuit judges whether the transmitted value is “0” or “1” by detecting this
potential. This small amplitude allows high-speed and low-power communications.

The Stratix IV GX 40-nm FPGAs are equipped with 28–98 LVDS ports that sup-
port high-speed communications up to 1.6 Gbps [46]. The number of ports described
above is expressed by the number of full-duplex channels through which transmis-
sion and reception are conducted simultaneously; e.g.,“28 ports” denote that there

224 M. Motomura et al.

Fig. 8.14 Schematic view of LVDS transmitting and receiving circuits

are 28 LVDS ports for transmission and 28 LVDS ports for reception. The number
of available ports might be different depending on the package, even for FPGAs of
the same size. Meanwhile, the Stratix V manufactured by the 28-nm TSMC process
supports LVDS ports up to 1.4 Gbps [44]. The Stratix V GX device is equipped with
66–174 full-duplex LVDS ports [45].

The Stratix family I/Os for high-speed communications have a built-in hardmacro
serializer/deserializer (SerDes) circuit up to 10 bit. It is difficult to build a commu-
nication circuit that can directly operate as fast as 1.4–1.6 Gbps inside an FPGA.
However, the hard macro of the serializer can easily convert a signal from a parallel
transmitting circuit using, for example, a 10-bit FIFO operating at a low clock fre-
quency into a high-speed serial signal as fast as 1.4–1.6 Gbps. The block diagram of
a transmitting circuit is presented in Fig. 8.14. The deserializer at a receiving circuit
can convert a 1-bit high-speed serial signal to a 10-bit parallel signal in the sameway,
so that a receiving circuit can be constructed with a FIFO operating at a low clock
frequency. Furthermore, a resistance of 100� that terminates the differential signal
at the receiving side of an LVDS is programmable in the Stratix V, so that high-speed
communications between FPGA chips can be easily implemented without extra parts
just with the board design considering the impedance. A guideline for board design is
provided from Altera. One report of the relevant literature is particularly useful [46]
in describing the board design (Fig. 8.15).

8.4.2 28-Gbps High-Speed Serial I/O

Stratix still supports more high-speed serial I/O in addition to LVDS. For instance,
Stratix V GX FPGA and Stratix V GS FPGA are equipped with up to 66 high-speed
communication ports that operate at 12.5 Gbps. The Stratix V GT FPGA is equipped
with four 28-Gbps high-speed communication ports in addition to 32 14.1-Gbps
communication ports.

8 Advanced Devices and Architectures 225

Fig. 8.15 Schematic block diagram of LVDS transmitting circuit of Stratix V

Fig. 8.16 Stratix V 28-Gbps transmitting circuit

The Stratix has an embedded hard macro of a serializer/deserializer between
128 and 1 bit, so that 128-bit parallel data (provided via FIFO) is converted into
a 1-bit high-speed serial signal by the hard macro of the serializer. Finally, the sig-
nal is transmitted via a driver circuit in the same manner as the LVDS, previously
described in Fig. 8.16. Similarly, at the receiving side, the deserializer parallelizes the
received 28-Gbps high-speed serial signal into 128 bits to pass it through low-speed
FIFO. An error-free receiver circuit includes a clock data recovery (CDR) circuit
which can detect a phase shift between the internal clock and received data and can
correct it continually. Xilinx also supplies FPGAs that support such high-speed serial
communications. For example, the Virtex-7 HT FPGA has 28-Gbps communication
ports, which provide excellent communication performance.

8.4.3 FPGA with 120-Gbps Optical I/O

As described above, a transfer rate of the order of Gbps can be implemented even
withmetal wiring. However, optical communications are beneficial in terms of power

226 M. Motomura et al.

Fig. 8.17 Appearances of 0.7424-mm pitch LGA sockets mounted on Stratix IV package (left)
with MicroPOD optical modules (Avago Technologies Ltd.) (right)

consumption for a distance of 10 m or more, as indicated in a report by Altera.
Optical modules have been adopted by Xilinx and Altera and have been mounted
on FPGA boards in recent years to support optical communications on the board
level. However, Altera and Avago Technologies developed and announced a more
pioneering optical FPGA with an optical communication interface mounted on an
FPGA chip in March, 2011 [47]. Although it is only a trial chip, and no plans for
marketing have been announced, its advanced architecture is introduced hereafter.

This optical FPGA is prototyped based on Stratix IV GT FPGA with 11.3-Gbps
I/Os for high-speed communications. The salient difference in this optical FPGA
from conventional FPGAs is that two of the four corners on its package are provided
with sockets of a 0.7424-mm pitch land grid array (LGA), as presented in Fig. 8.17:
one for transmission and the other for reception. Each socket is plugged with a
dedicated optical module for optical communications supplied by Avago.

This Stratix IV GT FPGA has 32 full-duplex I/O ports for high-speed communi-
cations, 12 of which are allocated to these optical I/Os. Twelve 11.3 Gbps high-speed
serial I/Os on the FPGA are connected to the sockets for transmission, and 12 11.3
Gbps high-speed serial I/Os are connected to the sockets for reception. The optical
communication module is as small and compact as 8.2mm × 7.8mm, as illustrated
in Fig. 8.18.

Twelve vertical cavity surface emitting lasers (VCSELs) are embedded in opti-
cal communication modules of the transmitting side, whereas 12 GaAs PIN pho-
todiodes are mounted in the optical communication module of the receiving side.
Optical communications are conducted through a 12-core fiber cable. The VCSEL
lasers can be aligned in two dimensions like common transistors on an integrated
circuit. The VCSEL can build a compact laser array [48]. This optical module allows
10.3125-Gbps data transfer per channel consisting of one VCSEL and one GaAsPIN
photodiode. In all, 12 channels in the module realize an overall transmission speed of
120 Gbps. In spite of such high-speed communications, a multimode fiber of OM4
grade accommodates long-distance transmissions as far as 150 m. It is highly likely
that such optoelectronics will become indispensable when ultra-high-speed I/Os over
28 Gbps become necessary in the future.

8 Advanced Devices and Architectures 227

Fig. 8.18 A MicroPOD optical module is mounted on an FPGA package with an LGA socket. Its
packaging area is 8.2mm × 7.8mm

8.4.4 Optically Reconfigurable Architecture

Optically Reconfigurable Architecture by Caltech: Caltech announced an opti-
cally reconfigurable gate array (ORGA) using a holographic memory in April,
1999 [49]. This ORGA, the world’s first FPGA that can be reconfigured optically,
consists of a holographic memory, a laser array, a photodiode array, and an FPGA
component. Because its gate array component has a fine-grained gate array structure
that is identical to that of conventional FPGAs, its fundamental function appears to
be the same as that of the existing FPGAs to device users. However, unlike conven-
tional FPGAs, its programming method is optical reconfiguration. The holographic
memory of this optically reconfigurable gate array is used as a read only memory
(ROM). Multiple circuit information can be stored in the holographic memory in
advance. Then, this circuit information is addressed by the laser array. It is read out
as a two-dimensional diffraction pattern. This diffraction pattern is then recognized
by the photodiode arrays, transferred serially to the FPGA, and reconfigured. Studies
at Caltech have demonstrated the benefits of this optically reconfigurable gate array:
It can use large-scale properties of the holographic memory, it can carry multiple
circuit information, and its circuit information is programmable within 16–20µs
(Fig. 8.19).

8.4.5 Japanese-Made ORGA

Research on ORGAs was also started at Kyushu Institute of Technology in Japan
in January 2000. The research base was later moved to Shizuoka University. The
research is still in progress. Since Caltech has reported no research on optically
reconfigurable devices since, Japan is presumably the only research base for ORGAs
in theworld at present. JapaneseORGAsunder development are introduced hereafter.

Several types of ORGAs are undergoing research and development in Japan,
including ORGAs that adopt an electrically rewritable spatial light modulation

228 M. Motomura et al.

Fig. 8.19 Optically
reconfigurable gate array
(Shizuoka University)

element as a holographic memory [50, 51] and ORGAs that employ a laser array and
microelectromechanical systems (MEMSs) together to address a holographic mem-
ory [52]. An ORGA of a simple architecture, similar to that by Caltech, consisting
of a holographic memory, a laser array, and a gate array VLSI is introduced here.

ORGAs under development in Japan adopt a fine-grained gate array like Caltech’s
ORGA, so that the function of the gate array is the same as the existing FPGAs.
However, Japanese devices employ a fully parallel configuration, different from Cal-
tech’s, where the gate array has many photodiodes. Two-dimensional light patterns
generated by the holographic memory are read in a fully parallel mode by these
photodiodes. This optical reconfiguration approach allows dynamic reconfiguration
of the gate array in a cycle of 10 ns using large amounts of circuit information stored
in advance in the holographic memory. To date, ORGAs with circuit information of
256 types have been developed.

An ORGA stores circuit information in a holographic memory. Theoretically, a
holographic memory can store as much as 1 Tbit of information within a volume
of one lump of sugar. So, its high capacity is expected to be promising also for the
next-generation optical memories [53]. The aim of the ORGA is to implement a
virtual large-scale gate array by storing much circuit information in a holographic
memory using its high capacity [54, 55].

A holographic memory has no fine structures as it is the case for those of existing
SRAMs, DRAMs, or ROMs. It can be made simply by consolidating materials such
as photopolymers. Accordingly, its production is extremely simple and inexpensive.
Information is written on a holographic memory with a dedicated writer using the
interference of light. The writer splits a coherent laser beam into two optical paths,
an object light representing the binary pattern of circuit information and a reference
light, and records the interference pattern of these two light waves on the holographic
memory. Greater amounts of information can be recorded by varying the incident
angle of a reference light and the irradiation position on a hologram. The stored
information can be read out using a laser beam with the identical coherent light as

8 Advanced Devices and Architectures 229

the reference light. In the case of an ORGA, circuit information is usually written in
with a writer before the device starts to operate. Its holographic memory is used as a
ROMwhile the device is in operation. Because a large amount of circuit information
can be stored in a holographic memory, it is possible to select it with a laser array
and to dynamically conduct the reconfiguration.

The holographic memory has a characteristic that it can be used even if it has been
contaminated by impurities or partial defects. Holographic memory is usually irradi-
ated with a coherent laser beam as a reference light when reading information. This
light undergoes phase modulation or amplitude modulation in the holographic mem-
ory and is read out from it. The intensity of light at an arbitrary point is determined
by the phase of the gathered light from the whole holographic memory. A collection
of lights in phase brightens the point, whereas a collection of lights of diverse phases
darkens it. Because information is read out by the superposition of many light waves,
the holographic memory has long been known as a robust memory that is useful even
if it has defects. Research on radiation-hardened ORGAs is in progress using this
characteristic of robustness of the holographic memory. The optoelectronic device
has not been used widely yet. However, it might overcome obstacles that are difficult
to resolve solely by using integrated circuits in the far future.

References

1. R. Tessier, K. Pocek, A. DeHon, Reconfigurable computing architectures, in Proceedings of
the IEEE, vol. 103, no. 3, pp. 332–351 (March 2015)

2. K.Masuyama, Y. Fujita, H. Okuhara, H. Amano, A 297MOPS/0.4 mWultra low power coarse-
grained reconfigurable accelerator CMA-SOTB-2, in Proceedings of The 10th International
Conference on Reconfigurable Computing and FPGAs (ReConFig) (Dec 2015)

3. J. Yao, Y. Nakashima, N. Devisetti, K. Yoshimura, T. Nakada
4. X.-P. Ling, H. Amano, WASMII: a data driven computer on a virtual hardware, in IEEE

Workshop on FPGAs for Custom Computing Machines, pp. 33–42 (April 1993)
5. T. Toi, T. Awashima, M.Motomura, H. Amano, Time and space-multiplexed compilation chal-

lenge for dynamically reconfigurable processors, inProceedings of the 54th IEEE International
Midwest Symposium on Circuits and Systems (MWSCAS), pp. 31–39 (Aug 2011)

6. T.E. Williams, M.E. Dean, D.L. Dill, Efficient self-timing with level-encoded 2-phase dual-
rail(ledr), in Proceedings University of California/Santa Cruz Conference Advanced Research,
VLSI (1991)

7. R. Payne, Self-timed FPGA systems, in Proceedings International, Workshop Field Program
Logic, Applications (1995)

8. V. Akella, K. Maheswaran, PGA-STC: programmable gate array for implementing self-timed
circuits. Int. J. Electron. 84(3) (1998)

9. M. Kameyama, Y. Komatsu, M. Hariyama, Anasynchronous high-performance FPGA based
on LEDR/four-phase-dual rail hybrid archicture. Proc. 5th Int. Symp. HEART (2014)

10. R. Manohar, Reconfigurable asynchronous logic, in Proceedings IEEE Custom Integrated,
Circuits Conference (2006)

11. R. Manohar, J. Teifei, An asynchronous dataflow FPGA architecture. IEEE Trans. Comput.
53(11) (2004)

12. M. Hariyama, M. Kameyama, S. Ishihara, Z. Xie, Evaluation of a self-adaptive voltage control
scheme for low-power FPGA. J. Semicond. Tech. Sci. 10(3) (2010)

230 M. Motomura et al.

13. M. Kameyama, S. Ishihara,M. Hariyama, A low-power FPGA based on autonomous fine-grain
power gating. IEEE Trans. VLSI Syst. 19(8) (2011)

14. Achronix SpeedSter22 HP (2011), http://www.achronix.com/products/speedster22ihp.html
15. B. Devlin, M. Ikeda, K. Asada, A 65 nm gate-level pipelined self-synchronous FPGA for high

performance and variation robus operation. IEEE J. Solid-State Circuits 46(11) (2011)
16. B. Devlin, M. Ikeda, K. Asada, A gate-level pipelined 2.97 GHz self synchronous FPGA in

65 nm FPGA CMOS. Prof. ASP-DAC (2011)
17. M. Kameyama, Y. Komatsu, H. Hariyama, An asynchronous high-performance FPGA based

on LADR/four-phase-dual-rail hybrid architecture. Proc. HEART (2014)
18. Y. Tsuchiya, M. Komatsu, H. Hariyama, M. Kameyama, R. Ishihara, Implementation of a low-

power FPGA based on synchronous/asynchronous hybrid architecture. IEICE Trans. Electron.
E94-C(10) (2011)

19. A. Bardsley, Implementation balsa handshake circuits. Ph.D. Thesis (Eindhovan Universithy
of Technology, 1996)

20. M. Roncken, R. Saeijs, F. Schalij, K. Berkel, J. Kessels, The VLSI programming language
trangram and its translation into handshake circuits, in Proceedings European Conference in
Design Automation, EDAC (1991)

21. M. Kameyama, Y. Komatsu, H. Hariyama, Architecture of an asynchronous FPGA for
handshake-component-based design. IEICE Trans. Fund. E88-A(12) (2005)

22. A.W. Topol, D.C. La Tulipe, L. Shi, D.J. Frank, K. Bernstein, S.E. Steen, A. Kumar, G.U.
Singco, A.M. Young, K.W. Guarini, M. Ieong, Three-dimensional integrated circuits. IBM J.
Res. Develop. 50(4), 5 (2006)

23. G. Katti, A. Mercha, J. Van Olmen, C. Huyghebaert, A. Jourdain, M. Stucchi, M. Rakowski,
I. Debusschere, P. Soussan, W. Dehaene, K. De Meyser, Y. Travaly, E. Beyne, S. Biesmans, B.
Swinne, 3D stacked ICs using Cu TSVS and die to wafer hybrid collective bonding. IEEE Int.
Electron Dev. Meeting IEDM (2009)

24. K. Banerjee, S.J. Souri, P. Kapur, K.C. Saraswat, 3-D ICs: a novel chip design for improving
deep-submicrometer interconnect performance and sisytes-on-chip intergration. Proc. IEEE
89(5) (2001)

25. M. Lin, A. El Gamal, Y.-C. Lu, S. Wong, Performance benefits of monolithically stacked 3-D
FPGA. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 26(2) (2007)

26. R. Le, S. Reda, R. Iris Bahar, High-performance, const-effective heterogeneous 3D FPGA
Architectures, in Proceedings the 19th ACM Great Lake Symposium VLSI (2000)

27. T. Naito, T. Ishida, T. Onoduka, M. Nishigoori, T. Nakayama, Y. Ueno, Y. Ishimoto, A. Suzuki,
W. Chung, R. Madurawe, S. Wu, S. Ikeda, H. Oyamatsu, World’s first monolithic 3D-FPGA
with ifi SRAM over 90 nm 9 layer Cu CMOS, in Proceedings Symposium VLSI Technology
(2010)

28. Y.Y. Liauw, Z. Zhang, Z. Zhang, W. Kim, A.E. Gamal, S.S. Wong, Nonvolatile 3D-FPGA with
monolithically stacked RRAM-based configuration memory. ISSCC (2012)

29. A. Gayasen, V. Narayanan, M. Kandemir, A. Rahman, Designing a 3-D FPGA: switch box
architecture and thermal issues. IEEE Trans. VLSI Syst. 16(7) (2008)

30. F. Furuta, T. Matsumura, K. Osada, M. Aoki, K. Hozawa, K. Takeda, N. Miyamoto, Scalable
3D-FPGA using wafer-to-wafer TSV interconnect of 15 Tbps/w, 33 Tbps/mm2. IEEE Trans.
VLSI Syst. (2013)

31. M.J. Alexander, J.P. Cohoon, J.L. Colflesh, J. Karro, G. Robins, Three-dimensional field-
programmable gate arrays, in Proceedings of 8th Annual IEEE International ASIC Conference
and Exhibit (1995)

32. S.A. Razavi, M.S. Zamani, K. Bazargan, A tileable switch module architecture for homoge-
neous 3D FPGAs, in Proceedings IEEE International 3D System Integration (2009)

33. A. Rahman, S. Das, A.P. Chandrakasan, R. Reif, Wiring requerement and three-dimensional
integration technology for field programmable gate arrays. IEEETrans.VLSISyst.11(1) (2003)

34. C. Ababei, H.Mogal, K. Bazargan, Three-diminsional place and route for FPGAs. IEEE Trans.
Comput. Aided Design Integr. Circuits Syst. 25(6) (2006)

http://www.achronix.com/products/speedster22ihp.html

8 Advanced Devices and Architectures 231

35. M. Amagasaki, Y. Takeuchi, Q. Zhao, M. Iiea, M. Kuga, T. Sueyoshi, Architecture exploration
of 3D FPGA to minimize internal layer connection, in ACM/IEEE International Conference
on 3D Systems Integration (2015)

36. M.J. Alexander, J.P. Cohoon, J.L. Colflesh, J. Karro, E.L. Peters, G. Robins, Placement and
routing for three-dimensional FPGAs, in 4th CanadianWorkshop Field ProgrammableDevices
(1996)

37. M. Lin, A. El Gamal, A routing fabric for monolithically stacked 3D FPGA, in Proceedings
ACM/IEEE International Conference on FPGA (2007)

38. N. Miyamoto, Y. Matsuomto, H. Koike, T. Matsumura, K. Osada, Y. Nakagawa, T. Ohmi,
Development of a CAD tool for 3D-FPGAs, in IEEE International Conference on 3D Systems
Integration (2010)

39. Y. Kwon, P. Lajevardi, A.P. Ch, D.E. Troxel, A 3-D FPGA wire resource prediction model
validated using a 3-D placement and routing tool, in Proceedings of SLIP ’05 (2005)

40. A. Putnam, et al., A reconfigurable fabric for accelerating large-scale datacenter services, in
ACM/IEEE 41st International Symposium on Computer Architecture (ISCA), pp. 13–24 (2014)

41. The Telecommunications Industry Association (TIA), Electrical characteristics of low voltage
differential signaling (LVDS) interface circuits, PN-4584 (May 2000)

42. National Semiconductor: RSDS Intra-panel Interface Specification (May 2003)
43. Texas Instruments, mini-LVDS Interface Specification (2003)
44. Altera Corporation: Stratix IV Device Handbook, vol. 1 (June 2015)
45. Altera Corporation: Stratix V Device Handbook, vol. 1 (June 2015)
46. Altera Corporation: High speed board design Ver.4.0, Application Note 75 (Nov 2001)
47. M. Peng Li, J. Martinez, D. Vaughan, Transferring high-speed data over long distances with

combined FPGA and multichannel optical modules (2012)
48. H. Li, K. Iga, Vertical-cavity surface-emitting laser devices, in Springer Series in Photonics,

vol. 6 (2003)
49. J. Mumbra, D. Psaltis, G. Zhou, X. An, F. Mok, Optically programmable gate array (OPGA).

Opt. Comput. (1999)
50. H. Morita, M. Watanabe, Microelectromechanical configuration of an optically reconfigurable

gate array. IEEE J. Quant. Electron. 46(9), 1288–1298 (Sept 2008)
51. Y. Yamaguchi,M.Watanabe, Liquid crystal holographic configurations for ORGAs. Opt. Com-

put. 47(28), 4692–4700 (2008)
52. Y. Yamaji, M. Watanabe, A 4-configuration-context optically reconfigurable gate array with a

MEMS interleaving method, in NASA/ESA Conference on Adaptive Hardware and Systems,
pp. 172–177 (June 2013)

53. A. Ogiwara, M. Watanabe, Optical reconfiguration by anisotropic diffraction in holographic
polymer-dispersed liquid crystal memory. Appl Opt 51(21), 5168–5188 (July 2012)

54. H.J. Coufal, D. Psaltis, G.T. Sincerbox, Holographic data storage, in Springer Series in Optical
Sciences, vol. 76 (2000)

55. S.-L.L. Lu, P. Yiannacouras, R. Kassa, M. Konow, T. Suh, An FPGA-based Pentium in a com-
plete desktop system, in ACM/SIGDA 15th International Symposium on Field Programmable
Gate Arrays, pp. 53–59 (2007)

	8 Advanced Devices and Architectures
	8.1 Coarse-Grained Reconfigurable Architecture
	8.1.1 CGRA Basics and History
	8.1.2 CGRA Design Space
	8.1.3 Dynamically Reconfigurable Architecture
	8.1.4 Case Study: DRP
	8.1.5 Relation to Parallel Processors
	8.1.6 Other Architecture Examples

	8.2 Asynchronous FPGA
	8.2.1 Problems of Conventional Synchronous FPGAs
	8.2.2 Overview of Asynchronous FPGAs
	8.2.3 Design for Low Power, High Throughput, and Modularity

	8.3 3D FPGA
	8.4 High-Speed Serial I/O
	8.4.1 LVDS
	8.4.2 28-Gbps High-Speed Serial I/O
	8.4.3 FPGA with 120-Gbps Optical I/O
	8.4.4 Optically Reconfigurable Architecture
	8.4.5 Japanese-Made ORGA

	References

