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Kentaro Sano and Hiroki Nakahara

Abstract Just implementing with hardware is almost nothing to contribute to
achieve high performance. The performance of FPGA computing is depends on
how to use efficient hardware algorithms for the target application. This chapter
introduces various types of hardware algorithms useful for FPGA implementation.
First, pipelining is the most popularly used technique. Recently, it is often automat-
ically formed with HLS design tool. Then, general parallel processing techniques
are introduced along Flynn’s classic taxonomy. Systolic algorithms and data-flow
models are also classic methods researched in 1970s’ and 1980s’, but they have been
practically used after large-scale FPGAs are available for computation. Then, stream
processing, simple but powerful framework, is introduced with a practical example.
Next, cellular automaton, hardware sorting and pattern matching which are important
in network processing a killer application of FPGAs are introduced.

Keywords Pipeline processing - SIMD processing - Systolic algorithm
Data-flow machines * Streaming processing - Cellular automaton - Hardware
sorting - Pattern matching

A hardware algorithm is a procedure suitable for hardware implementation and
the target hardware model. This chapter presents an outline of several hardware
algorithms used for processing implementation in hardware, with specific emphasis
on parallelism, control, and data-flow of processing.
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6.1 Pipelining
6.1.1 Principle of Pipelining

Pipelining is a technique for speeding up many processing iterations done contin-
uously. The flow production at a production plant is a typical example. Figure 6.1
presents the pipelining concept. Figure 6.1a depicts the non-pipelining case where
processing iteration 2 is done sequentially after the completion of iteration 1. With
the pipelining shown in Fig.6.1b, we divide a processing iteration into n stages of
uniform proportion. The processing iterations start without waiting for the comple-
tion of all stages of a preceding processing iteration. Figure 6.1b portrays an example
of five-stage pipelining in which each processing iteration has five stages: n = 5. In
the non-pipelining case, each processing iteration is completed within a time length
L. In pipelining, a processing iteration is started in each time length of L/n after the
processing of iteration 1 has finished. Therefore, throughput speedup is achieved by
five times at most, where five is the number of processing iterations per unit time.
In the five-stage example shown in Fig.6.1b, six processing iterations are done in
two time lengths of the non-pipelining case. Parallel processing with different parts
of the entire sequential process is the principle of pipelining, which is understood
as five stages processed in parallel when stage 5 of processing iteration 1 is started
[1, 2].
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6.1.2 Performance Improvement by Pipelining

Actually, n stage pipelining does not necessarily mean five times speedup. Here,
we develop the expression of the speedup factor, a measurement of performance
improvement using pipelining, for a time length of one processing iteration L, N
processing iterations to be done, and n stages in a single processing iteration.

Figure6.1a shows that N processing iterations by a non-pipelining operation
require 7(N) = LN time length for completion. We can derive the time length
Tpipe(N) for completion of N processing iterations for pipelining with n stages,
as described below. First, the completion of processing iteration 1 requires L time
length. However, the next processing iteration finishes L/n later after the comple-
tion of processing iteration 1. Consequently, N — 1 processing iterations, except for
processing iteration 1, complete at intervals of L/n. These N operations end after
Tpipe(N) =L+ (N —1)L/n = (n+ N — 1)L/n time length.

The speedup factor by pipelining described above, S ;. (N), is the ratio of T'(N)
to T)ipe(IN), and can be calculated as:

T(N) _ nN n

SieN: = =
PP( ) Tpipe(N) n+N_1 1+er;l

If n < N, then Sp;p.(N) = n and the speedup factor over non-pipelining is n: the
number of stages. However, this just means that n times higher throughput can be
achieved while the latency of each processing iteration is not shortened. Although n
times improvement of performance means the reduction of the whole time length for
N processing iterations, it does not bring about the shortening of the time length for
each processing iteration. If this is compared to the flow production in the automotive
industry, then the car production per day (throughput) might increase by dividing a
processing iteration into segments. However, the time between the car order and the
delivery of the parts of that car to factories and the completion of production of that
car (latency) does not change.

If the number of stages, 7, is not much greater than that of processing iterations
N, then the speedup by pipelining remains much smaller than . For pipelining with
n =6and N =5, forexample, S,;,.(5)is 6/(1 + 1) = 3 and the time of processing
iteration is reduced to just one-third. Considering that the maximum speedup by
pipelining with n stages is n, the pipelining efficiency, which is the percentage of the
actually achieved speedup to the maximum, is given as:

Spipe(N 1 N
Epipe(naN)Z Pﬂ:l( )=

1+ T Nn—1

For the example presented above, E ;. (6, 5) is SJF‘% = 0.5. This means that the
speeding up is just 50% at maximum. A long time length of insufficient parallelism
has led to this small decrease in efficiency. In Fig. 6.1b, only one process is executed
at the first stage of iteration 1. When the fifth processing stage of iteration 1 starts,
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the number of parallel processing iterations never attains 5, the maximum degree
of parallelism. Consequently, at the beginning of pipeline processing, there exists
a prologue period where perfect parallelism is not achieved. Quite similarly, at the
end of pipeline processing, there exists an epilogue period during which the degree
of parallelism decreases step by step. Perfect elimination of the prologue and epi-
logue periods is impossible. However, if the number of processing iterations, N, is
sufficiently large, then the lengths of the prologue and epilogue periods are dimin-
ished in comparison to the total processing time. Consequently, the speedup factor
approaches the maximum value of n. In contrast, if N is small, then the effects of
prologue and epilogue periods are greater in a relative sense. Therefore, the speedup
factor is smaller.

For other several reasons not mentioned above, hardware pipelining can intrinsi-
cally block the performance improvement. Thus, a lot of attention must be devoted
during the pipelining design. The hardware configuration for pipelining is depicted in
Fig.6.2. Figure 6.2a presents the hardware configuration for a non-pipelining-based
system, where the total processing is implemented by one combinational logic cir-
cuit. When the register of the preceding processing iteration is updated at the rising
edge of the clock signal, a new data is outputted to the combinational logic circuit
after the propagation delay of the register. Inputted data propagates through the com-
binational logic circuit. Then, the processed data arrive at the register of the next
processing iteration after a certain delay in the critical path. Here, the critical path
is that which provides the maximum delay in the circuit. After the period of setup
time, which is necessary to secure correct latching of the arrived data by flip-flop,
the processed data are written in the register by inputting a clock signal. Thereby,
the processing iteration terminates. Consequently, one cycle time, which is equal to
the time interval between two successive clock signal inputs, must be longer than the
sum of the propagation delay, the delay in the critical path of the combinational logic
circuit, and the setup time. This sum represents the upper bound of the maximum
operation frequency.

Pipelining a circuit boosts the throughput by increasing the maximum operation
frequency. Figure 6.2b depicts an example of a circuit with four pipeline stages: n =
4. A circuit can be divided into stages by inserting pipeline registers. With them, the
combinational logic circuits on which the data must propagate are shortened. Even the
critical paths of combinational logic circuit could be perfectly divided into uniform
circuits, the cycle time might not be shortened to 1/n because of the existence of
clock skew, which is the misalignment of clock signals supplied to each register, and
because of the propagation delay and setup time in pipeline registers. Furthermore,
dividing a combinational logic circuit into n uniform stages is sometimes impossible.
Such a case is illustrated by the third pipeline stage in Fig. 6.2b. In this situation, one
stage usually has a longer delay time than others and becomes the critical path, which
happens quite often. Consequently, n = 4 might not increase the operation frequency
by four times because the maximum delay is longer than one-fourth.

These difficulties generally become more deleterious with an increasing number of
stages. Although an operation frequency improvement can be obtained by increasing
the number of stages of shallow pipelining with a few stages, fine divisions such as
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Fig. 6.2 Hardware structure for pipelining

dozens or hundreds might halt the operation frequency augmentation and might
even degrade the performance due to clock skew and other factors. However, adding
few pipeline stages instead of finely dividing the already existing ones is different.
Actually, the increase in the entire circuit’s latency by pipelining when compared to
non-pipelining-based systems should be carefully investigated. Such delay can be
caused by overhead related to pipeline registers or non-uniform staging, as shown in
Fig.6.2b.

6.2 Parallel Processing and Flynn’s Taxonomy

6.2.1 Flynn’s Taxonomy

To design high-performance hardware, we should consider processing parallelism.
The taxonomy of architectures which Flynn proposed in 1965 is useful for consider-
ing parallelism for hardware [2, 3]. Hereafter, we refer to this as Flynn’s taxonomy.
Flynn’s taxonomy classifies general-purpose computer architectures in terms of the
concurrency degree in an instruction stream for control and a data stream to be pro-
cessed (Fig.6.3). It includes Single Instruction stream Single Data stream (SISD),
Single Instruction stream Multiple Data stream (SIMD), Multiple Instruction stream
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Fig. 6.3 Flynn’s taxonomy

Single Data stream (MISD), and the Multiple Instruction stream Multiple Data stream
(MIMD). Although this taxonomy is oriented to architectures of general-purpose
processors that execute a sequence of instructions intrinsically, it is useful for clas-
sifying more general architectures of parallel processing hardware if we recognize
the instruction stream as control in a broader sense.

In Flynn’s taxonomy, computer architecture comprises the four components of
the processing unit (PU), control unit (CU), data memory, and instruction memory.
In SISD shown in Fig. 6.3a, one CU controls one PU based on the instruction stream
read from the instruction memory. PU executes processing for a single data stream
read from the data memory based on the controls directed by CU. Consequently,
SISD does not perform parallel processing and represents the architecture of general
and sequential processor without parallel processing. In the following, the other three
items in the taxonomy are explained.

6.2.2 SIMD Architecture

In SIMD in Fig. 6.3b, a single CU reads out an instruction stream and controls mul-
tiple PUs simultaneously. Each PU executes common processing based on common
controls but for different instruction streams. Consequently, SIMD is an architecture
making use of data parallelism. The data memory can be accessed by all the PUs as
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local memories of the PUs or a single-shared memory common to all the memory.
Because the SIMD architecture is suitable to process numerous data synchronously
with a single sequence of instructions, it is used as the designated processor for image
processing.

In addition, a microprocessor can incorporate SIMD instructions to provide itself
with the function of parallel data processing. For example, Intel Corp., aiming at
speeding up 3D graphics, designed a microprocessor, the Pentium MMX, with
SIMD-type extended instructions. It was commercially produced in 1997 [4, 5].
The MMX Pentium can perform four 16-bit integer operations simultaneously based
on one SIMD instruction. Furthermore, AMD Corp. introduced a new product of
K6-2 processors equipped with 3DNow! Technology, which provides SIMD-type
extended instructions for floating-point operations in 1998. Later, Intel processors
were augmented with Streaming SIMD Extensions (SSE), an SIMD-type instruction
set for floating-point operation. Then, Pentium Il included SSE extended instructions
and Pentium IV received extended instructions SSE2 and SSE3. Currently available
microprocessors have been augmented with instructions of 128-bit integers and dou-
ble precision floating-point operations in addition to other operations for compression
of video images, as outlined above. They are prevailing as mainstream microproces-
sors. Now it is indispensable to make use of these SIMD-type extended instructions
to take full advantage of the operational performance of microprocessors [5].

6.2.3 MISD Architecture

In the MISDs shown in Fig. 6.3c, multiple CUs read out instruction streams that differ
from each other and which control multiple PUs. Although each PU works based
on different controls, MISD processes a single data stream successively, regarding
it as a whole. It is difficult to find a commercial product of this type in the market. A
coarse-grained pipeline, in which in-line PUs work as stages of the pipeline and one
provides each stage with different controls, might seem to be an MISD architecture.
Because we recognize that CUs provide different functions to PUs in performing
parallel processing with MISD, it earns the designation of architecture for functional
parallelism. Application-specific hardware such as an image processor array that
executes different processes of conversion of pixel values, edge detection, cluster
classification, and others form each stage of pipeline corresponds to MISD-type
architecture if each processing iteration is controlled by an instruction stream [6, 7].

6.2.4 MIMD Architecture

Regarding MIMD in Fig. 6.3d, multiple CUs read out instruction streams that differ
from each other and which control multiple PUs independently. Different from MSID,
each PU performs parallel processing based on different controls and for different
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data streams. Accordingly, MMID has an architecture simultaneously accommodat-
ing data parallelism and functional parallelism. It might perform different processes
for multiple data based on different instruction streams. A tightly coupled multipro-
cessor like a symmetric multiprocessor (SMP), for which multiple processors and
multiple processor-cores are connected on a common memory system, is an example
of MIMD-type architectures. A cluster-type computer in which computation nodes
made of memory and microprocessor are connected by the interconnection network
is another example of MIMD-type architectures.

6.3 Systolic Algorithm

6.3.1 Systolic Algorithm and Systolic Array

Systolic algorithm is a general name for algorithms in which a systolic arrays [8, 9]
are used to realize parallel processing. A systolic array is a regular array of many
processing elements (PEs) for simple operations. It has the following characteristics:

1. PEs are arrayed in a regular fashion: they have the same structure or a few
different structures.

2. The neighboring PEs are connected allowing the data movement to be local-
ized with the connection. If a bus connection is used in addition to the local
connection, then the array is designated as a semi-systolic array [8].

3. PE repeats simple operations and related data exchange.

4. All PEs perform operations in synchronization with a single clock signal.

Each PE performs its own operation in synchronization with the data exchange
between neighboring PEs. Data to be computed flow into an array periodically, and
the pipeline and parallel processing are performed while the data propagate in the
array. Operations in the PE and the data stream caused by the data exchange between
neighboring PEs resemble a bloodstream driven by the rhythmic systolic movement
of the heart, hence the name systolic array. A PE is also designated as a cell.

Because the systolic array can scale the performance according to the array size
by arranging PEs with simple structures and localized data movement, it is suitable
for the implementation in an integrated circuit. Many applications were proposed for
systolic arrays in 1980s and 1990s. Figure 6.4 portrays typical systolic arrays and
systolic algorithms [9]. Systolic arrays have three types: 1D arrays having a linear
array, 2D arrays having a lattice-like array, or a tree structure array with a tree-like
connection. Many systolic algorithms for these arrays have been suggested, including
signal processing, matrix operation, sorting, image processing, stencil calculation,
and calculation in fluid dynamics.

Although the initial systolic array assumed hardwired implementation of fixed
structures and functions, a general-purpose systolic array with a programmable or
reconfigurable structure was proposed later [10]. Classification of systolic arrays in
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Fig. 6.4 Representative systolic arrays and systolic algorithms [9]

terms of general versatility is shown in Table 6.1 [10]. In this table, “Programmable”
denotes the capability to dynamically change the function of the circuit by program-
ming the fixed circuit. The “Reconfigurable” is the capability to statically change the
circuit function by circuit reconfiguration. With the increasing scale of the systolic
array, high-frequency operations with globally maintained synchronization become
difficult sue to the propagation delay of the clock signal and other factors. Kung pro-
posed the wave-front array, introducing data-flow to a systolic array to cope with this
difficulty [11]. In his method, a PE, designed as an asynchronous circuit, operates
with its own speed without the synchronization to a single clock signal. Furthermore,
the data exchange between neighboring PEs is done using the handshake method.

Examples of systolic arrays and algorithms for 1D and 2D systolic arrays are
introduced in the following sections.

6.3.2 Partial Sorting by 1D Systolic Array

An operation of rearranging a given data row according to a given order is referred to
as sorting. Sorting operations are important and are used in many applications. Here,
we introduce a systolic algorithm that rearranges a given data row of n numerical
elements in the descending order and returns the upper N data. Figure 6.5a depicts
a 1D systolic array and its PEs, which partially rearrange the upper N data [12].
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Fig. 6.5 Systolic algorithm of partial sort

Each of N PEs arrayed in the one-dimensional row has a register keeping the tem-
porary maximum value, Xmax. Furthermore, if the input Xin is greater than Xmax,
then Xmax is replaced with Xin. Consequently, the temporary maximum value is
updated. If the update is made, the former temporary maximum value is sent to the
right PE. If not, then Xin is sent to the right PE. When the last input data are sent to
the Nth PE repeating the procedure described above, the upper maxima N are kept
in the registers beginning with the left-end PE. An example of these operations is
illustrated in Fig. 6.5b. Partial sorting of n data takes (N + n — 1) steps using a systolic
array with N PEs.

Figure 6.5a shows that three control signals of reset, mode, and shiftRead are
inputted to the systolic array. When the reset signal is asserted, the temporary max-
imum numbers in all PEs are reset to the possible maximum negative value. The
mode control signal specifies a request: either the sorting operation or the reading
out of the sorting result. In the former, 1 is inputted, whereas 0 is inputted in the latter.
The shiftRead control signal asks to read out the result of sorting one by one in the
descending order. As presented at t = 6 in Fig. 6.5b, the maximum values are lined
up in a descending order starting with the left-end PE which has input and output
ports. These values are read out by a systolic array used as the shift register through
Zout and Zin connections. The control signal for shift is shiftRead.
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Fig. 6.6 Systolic algorithm of matrix-vector multiplication

6.3.3 Vector Product of Matrices by 1D Systolic Array

A 1D systolic array can perform the operation of vector product Y = AX. The
operation of an N x N matrix requires N PEs. The systolic algorithm used for
vector product of N = 4 matrices is depicted in Fig.6.6. In PEs arrayed in the 1D
row, the operation proceeds as follows: elements in X enter the left-end PE, whereas
elements in matrix A enter each PE from above, both successively. Each PE has a
register y; to keep a temporary value of the element in the Y vector in addition to input
x element of vector X and an element of matrix A. All PEs execute the calculation
of y; = y; + ax at each step and output x to the right neighbored PE.

At the beginning of the operation, y; of each register is initialized to 0. Then,
y1 = 0+ ayx; is calculated in PE1. In the next step, y; = y1 + ajpx; is executed
in PE1 and y, = 0 4 ay;x; in PE2, both being done in parallel. The inputs to PEI
through PE4 are done in a manner where the input to a PE occurs one step later than
that to the left neighboring PE. This sends the data to the PE in a timely manner. When
these operations are repeated until PE4 keeps the last matrix element, all elements
of vector Y, from y; to ya, are stored in the PE array. The columns of matrix A are
inputted one element after another. Therefore, the total steps of operations become
2N — 1.
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Fig. 6.7 Systolic algorithm of product of matrices

6.3.4 Product of Matrices by 2D Systolic Array

By extending the 1D systolic array discussed in the previous section to a 2D systolic
array (with a lattice of PEs), it is possible to perform product operations of two
matrices: C = AB. An N x N matrix multiplication requires an N x N systolic
array with N2 PEs. Figure 6.7 is an example of such an operation with N = 4. As in
the vector product of matrices done by 1D systolic array, row and column elements
are input from left and above top, shifting rows and columns. The function of a PE is
the same as that in the previous section. All the internal registers are to be initialized
to 0 at the beginning of the operation. When the last matrix elements of P E4y4, 44,
and by, are input, all the resulting elements of Matrix C are in all the PEs. The
number of required steps is 3N — 2.

6.3.5 Programmable Systolic Array for Stencil Computation
and Fluid Simulation

Although the examples introduced in the previous sections were those of simple PE
operations, programmable systolic arrays oriented to many stencil computations, and
applications for computational fluid dynamics (CFD) and others have been proposed
[13-15].

The structure of a systolic computational-memory array and its PE designed for
stencil computation is shown in Fig. 6.8. This array has a 2D scheme of vertically and
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horizontally connected PEs. As shown in Fig.6.8b, a PE comprises a computation
unit, a local memory, a switch to send data to all directions of (W, E, S, and N) and
a sequencer to control these elements using a microprogram. Because each PE has a
large local memory and because the whole array is a memory not only for operations
but also for data storage, this systolic array is considered as a computational memory.
The computation unit can execute floating-point multiplications and additions. The
computational sub-lattice data are stored in the local memory. A PE can perform
various computations with a microprogram by repeating data read operations from
the local memory or the neighboring PEs.

As shown in Fig. 6.8a, the systolic computational-memory array operation is made
from many control groups (CGs). PEs in the same CG are controlled by a common
sequence. They perform parallel processing of SIMD style. In this example, there
are nine CGs inside the 2D array, with four sides and four corners because, in fluid
dynamic computation and others, the computation in a regular pattern is done inside,
whereas computation of different types is done for the boundary condition.

Figure 6.9 depicts pseudo-codes for stencil computation and an example of a 2D
lattice with a 3 x 3 star-stencil computation of. As shown in Fig.6.9b in stencil
computation, an operation for a lattice point is done using data from neighboring
points and the data on which the lattice point is renewed. The neighboring domain,
where the data is referred, is designated as a stencil. The 3 x 3 star stencil shown in
the figure, a fundamental one, is widely used. In 2D operations, the data at all lattice
points are renewed after the same operations with the same stencil are performed
over the lattice.

Figure 6.9a shows pseudo-codes for the 2D stencil computation. It has a triple
loop structure consisting of loops for vertical and horizontal directions, and one
for iterating them in a time step n. Function F(), the loop body, represents any
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operation using data stored in a stencil. The product-sum operation using a weighting
coefficient, shown below, is commonly used as F().

v(i, j):=c0+clv(i, j)+c2v@i — 1, j) +c3v@ + 1, j) +cdv(@, j — 1) +cSv(, j+ 1)

Here “:=" stands for the value update after the operation is written at the right-hand
side. The PE in Fig. 6.8b performs the operation shown above for the partial lattice
stored in the local memory, by using a microprogram in a sequencer. Sano et al. have
derived the stencil algorithm by a fractional-step method for fluid dynamical phe-
nomena. There, they repeated stencil calculations with different coefficients shown
above and proved the calculations execution with the systolic computational-memory
array. Further details can be found in [13-15].

6.3.6 Data-flow Machine

A data-flow machine [16, 17] is a computer architecture that directly contrasts the
traditional von Neumann architecture or control flow architecture. It does not have
a program counter (at least conceptually), and the executability and execution of
instructions is solely determined based on the availability of input arguments to the
instructions, so that the order of instruction execution is unpredictable. Figure 6.10
compares the data-flow machine with the von Neumann one. Since the data-flow
machine has no instructions, it can eliminate the bottleneck caused by the instruction
memory fetch of the modern computer execution time.

Although no commercially successful general-purpose computer hardware has
used a data-flow architecture, it has been successfully implemented in specialized
hardware such as in digital signal processing, network routing, graphic processing,
telemetry, and more recently in data warehousing.

A data-flow machine executes the data-flow graph for a given program as shown
in Fig. 6.11. “Fork” copies the given data, “Primitive Operation” outputs the result of
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Fig. 6.10 A Comparison Von Neumann machine (Left) with a data flow machine (Referred by
[16])
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Fig. 6.11 Examples of a data flow node

the executed operation, “Branch” executes the conditional jump corresponding to the
signal (True or False), and “Merge” selects the signal corresponding the conditional
signal. Figure 6.12 shows the data-flow graph which executes the operations shown
in Fig.6.10. In Fig.6.12, “(0” denotes the data to be executed, and it is called by the
“Token.” Here we show the value of token in the circle. First, the adder starts the
operation, since two tokens have their values. Then, it generates the execution result.
Next, the latter multiplier and subtractor starts the operation since it has received the
input token. In this manner, it is possible to easily know the inherent data parallelism
in the program to be processed.

Similar to the von Neumann machine, the data-flow machine can realize the con-
ditional jump and loop operations. Figure 6.13 shows an example of the conditional
jump. It can be realized by the Branch and the Merge nodes. When the token arrives
at the Branch node, it executes the branch operation, then, it sends the token to the
selected operational node. Finally, the Merge node selects the output correspond-
ing conditional signal. Figure 6.14 shows an example of the loop operation. While
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if( cond == T){

z=xoply;
}else {

z=Xo0p2y; -
}

updating the initial value at the Merge node, it repeats the execution node through the
Branch when the condition is satisfied. There are two types of data-flow machines
that realize programs including loops. One is a static data-driven method, and the
other is a dynamic data driven one. The static one expands all the loops and repre-
sents them as a flatten data-flow, while the dynamic one shares the executing unit
with the processing of the subsequent loops using the data-flow of the loop body.
The static data-driven method is based on a concept of a pure-driven method with a
static data-flow graph. However, in many cases, since the size of the data-flow graph
becomes too large to realize it with a data-flow machine which has a limited hard-
ware resources. On the other hand, in the dynamic data-driven method, execution
nodes in the loop body are shared by computing units, such as adders, subtractors,
and multipliers. Thus, a control circuit must be provided. Otherwise, if multiple
tokens between iterations exist, it is not possible to guarantee the computation result.
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Fig. 6.14 A loop operation
for a data flow graph
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Figure 6.13 and 6.14 explains such a scenario. If y is updated before updating x in
the loop, the computation result will differ from the expected one.

In the dynamic data-driven method, a tag is attached to the token in order to
distinct present/next tokens in the iteration. It is called a tagged token method, or a
colored (tokenized) one. By using tagged tokens, operations on tokens with the same
tag can be guaranteed.

6.3.7 Static Data-Driven Machine

In the static data-driven method, it is often used to represent the operation and the
operand of a node in a mixed manner. In the data-driven machine proposed by
Dennis [18], the node information of the data-flow graph has the necessary data
for the operation, the storage type of the calculation, and the destination for the
storage. By using this node information as a token packet, the data-driven processing
is realized. Note that, the token does not have tag information. It focuses on the static
data-flow which does not include the loop processing. Figure 6.15 shows a hardware
structure and each operand cell for the static data-driven architecture. In Fig. 6.15a,
the operand cell stores the above information, and it represents the data-flow graph
as an instruction of the data-driven machine in the whole instruction having valid
information.

Hereafter, we explain the processing steps. When the operands are complete, the
operation packet is sent through the arbitration network (ANET). This packet includes
all information of the instruction cell, the operation type, and the storage destination
for the result. The operation’s result is transformed as a data token through the
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Fig. 6.15 A static data flow machine (Referred by [17])

distribution network (DNET). Then, it is written to the operand part in the instruction
according to the storage destination (d1, d2, in Fig. 6.15b). Next, the instruction with
the operands sends the operation packet at any time. By following these steps, a
series of data driving driven processes is done.

6.3.8 Dynamic Data-Driven Machine

In the dynamic data-driven method, it separately represents the execution unit and
the operation of the node. This representation can separate the flow graphs and data.
Therefore, there is an advantage that loop processing can be considered by using a
tagged token.

As shown in Fig. 6.16a, Arvind proposed a data-driven machine [19], which con-
sists of N PEs with an N x N crossbar. Figure 6.16b shows the operand for the
machine; “op” denotes an operation, “nc” denotes the number of constant to be stored,
“nd” denotes the number to destinations, “constant 1”” and “constant 2 denote the
destination address, “‘s” denotes a statement number for the destination operand, “p”’
denotes the input port number for the destination operand, “nt” denotes the number
of tokens for the destination operand, and “af”” denotes an assignment function to be
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Fig. 6.16 A dynamic data flow machine (Referred by [17])

used for the determination of a PE assignment. The af has four parameters. Operands
only represent a data-flow, while the execution data are represented by data tokens.
That is, the program (data-flow) and the data are separated. The data token consists
of the statement number for the destination operand, the tag (color), the input port
number, and the destination operand data. By changing the tag, the data-flow graph
can execute the loop operation.

Figure 6.16c shows the structure of the PE and the execution steps are conducted
as follows. The input unit receives the data token from the interconnection network
or the output of its own PE. It is executed until receiving the operand data which are
necessary for the execution of the operation. That is, associative search is performed
on the operand memory for the statement number and tags of the data token. Two
operands are necessary considering the case of performing binomial operation. If one
operand has already been received, it is stored in the register. By associative search,
it is possible to check whether the necessary operands for the operation are received.
When the reception of the necessary operands is completed, the next instruction
fetch unit reads the operation information from the instruction memory using the
statement number of the storage destination. The newly arrived operand is read from
the waiting part. At the same time, another received operand is read from the operand
memory. As a result, the necessary information is completed. Then, the calculation
is performed in the ALU. Finally, the operation result as a data token is sent to the
destination storage following the instruction.
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Note that, the “I structure,” which is similar to an array, provides a queuing
function for a simple data structure. In array access in data-driven method, the data
reading of certain array elements may occur before the data generation of ones. After
data writing, a 1-bit existence (presence) bit is used for each element of the memory
in order to guarantee reading. If its value is 1, it indicates that it has been written;
otherwise, it is unwritten. If the presence bit is zero at the reading, it is suspended
until the writing is completed. Thus, it is possible to guarantee synchronous data
access with hardware.

The above is an overview of two data-driven methods and architectures, i.e., static
and dynamic ones. Both of them are different when it comes to arithmetic opera-
tion control. This chapter outlined the earliest first-generation data-driven machines;
however, regarding the second-generation machines, refer to [20].

6.4 Petrinet

A petrinet (also known as a place/transition (PT) net) is a directed bipartite graph, in
which the nodes represent transitions and places. For example, events may occur, and
they are represented by bars, while conditions are represented by circles. The directed
arc denotes pre- and/or post-conditions for the transitions specified by arrows. The
petrinets were introduced in 1939 by Carl Adam Petri for the purpose of describing
chemical processes. A variation of the petrinet is a signal transition graph (STG),
which is used to describe parallel or asynchronous systems.

By converting the data-flow graph shown in Fig. 6.17 to a petrinet, we have a new
graph as shown in Fig. 6.18. The place corresponding to the input data has a token
which represents the data. A condition to activate the transition, which represents
the operation, is that there are at least more than one token on all the input places
connecting the transition. After the activation, it generates a token to the place corre-
sponding to the output. This means that the petrinet can easily represent both the data
flow and its operation for the data-driven method. Figure 6.19 shows basic operations
for the petrinet, e.g., parallel operation and synchronization. For more details about
the petrinet and its parallel description, please refer to [21].

6.5 Stream Processing

6.5.1 Definition and Model

A processing method by which successive operations are done for successively
inputted rows of data is referred to as stream processing [22—24]. The data element
might be a single scalar data or a vector data including several words. Although the
processing time is proportional to the number of elements (stream length), because
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only one iteration of the processing is executed at a given time, it can process any
giant dataset in a sufficient time. The device for stream processing is not equipped
with memory for all stream data. Data are supplied usually from an external mem-
ory, a network, or sensors. The device is used to process data that are too large to be
stored in its own memory. A use case can be found in statistical information where
inquiries are coming to a server through the Internet. In addition, when using stream
data stored in external memory, an efficient use of data bandwidth by reading out
data regularly with continuous addresses might be expected.

The processing of one element of stream data is designated as a processing kernel.
Figure 6.20 depicts a model of stream processing by a single kernel. Here, the input
is a data stream, but the output might be a data stream or might not be dependent on
processing. Additionally, stream processing might be done by connecting processing
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Fig. 6.20 Stream processing
with a single kernel
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kernels according to their dependency, as shown in Fig.6.21. This is an expression
of stream processing by a data-flow graph where the processing kernel is a node in

the graph.

6.5.2 Hardware Implementation

Several methods exist to realize the stream-processing concept. As a means to accom-
plish stream processing of high throughput by implementing software, it is possible to
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incorporate vector instruction or SIMD instruction into a general-purpose micropro-
cessor. These instructions can rapidly process vector data of definite length. How-
ever, a general-purpose microprocessor presents many limitations on parallelism
and inefficient input and output data streaming caused by deep memory hierar-
chy. Consequently, high-performance stream processing generally requires hardware
implementation.

Designing a high-throughput stream-processing hardware usually depends on a
structure that performs many operations included in a unit processes in parallel. This
structure requires a hardware design based on a parallel processing model such as
pipelining, systolic algorithm, and data-driven approaches. As shown in Fig. 6.21, to
realize stream processing for multiple kernels, given sufficient hardware resources,
kernels designed as pipeline modules can be connected to each other and thereby
statically implement a giant pipeline. If sufficient hardware resources are available to
implement all necessary kernels simultaneously, high-speed stream computing can
be achieved where we can input and output stream elements at each cycle.

What should be managed if sufficient hardware resources are not available? In
such a case, not all the necessary processing kernels can be implemented. Hardware
designers might opt for a design where different kernels share the same hardware
resources and the processing of one stream data element is performed over a longer
time. One discussing an example of such a case, shown in Fig. 6.21, the question that
could be asked is: Where can we implement only half of the hardware resources for
processing kernels? In this case, we can implement a module for kernel 1 and kernel 2
and another module for kernel 3 and kernel 4, and then we switch the mode, as shown
in Fig.6.22a. This resembles folding the original data-flow graph to get a smaller
one and making the hardware mapping on it. Therefore, this method is referred
to as folding. When using folding, the hardware works in time-sharing mode, as
shown in Fig. 6.22b. First, the processing of kernel 1 for the input data occurs. Then,
the mode is switched to execute kernel 2. Similar processing is done for kernels 3
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and 4. Although the cycle time is doubled and the throughput decreases by half, with
a small amount of hardware resources, stream processing can be accomplished.

In the example given above, all kernels work all the time and the operation rate
is 100%. In this case, the operation rate of the folded processing kernel node is
greater than 100%. The throughput decreases as a result. However, as in the case of
conditional branching processing, the rate of operation is naturally less than 100%.
Some kernels might have an operation rate less than 100%, even if aggregated with
the operations of other kernels. Under these circumstances, the hardware resource
consumption might be reduced without lowering the rate of operation in expense of
a complicated control. Figure 6.23 demonstrates a simple example of folding with a
rate of operation which is less than 100 Fig. 6.23a including conditional branching,
two operations x + y * z and x % y + z are performed simultaneously. The signal
selector outputs the results of the operation in two kernels with proportions of 90%
and 10%, respectively. Accordingly, the real operation rates of both kernels are less
than 100%. For this case, a module that can process both formulae, while consid-
ering common operations, can be implemented. The computation unit is shared in
this design. Figure 6.23b illustrates an example. A multiplier and an adder are imple-
mented for each formula, and one selector is inserted to switch the operations of the
formulae. Only one operation is necessary for one formula. Therefore, the consump-
tion of hardware resources can be reduced without increasing the number of cycles
for one processing iteration of one element of stream data.

In addition, a stream-processing iteration, where some dependence relations
exist between successive elementary processing iterations, might be implemented
by inserting a delay buffer memory. This buffer sends intermediate data of stream
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processing to the next elementary processing iteration in a delayed fashion. In the
example presented in Fig. 6.24, in addition to the current output result from process-
ing kernel 1, delay buffer memories to send past data of to processing kernel 2 are
inserted. Stream processing of stencil calculation applying delay buffer memory is
introduced in the next section.
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6.5.3 Examples of Stream Processing

An example of stream processing to find the average of a scalar array is depicted
in Fig.6.25. The processing kernel has two registers: acc and num;otal. They are
initialized to zero at the beginning of the operation. Whenever scalar data are inputted,
it is added to acc and num;otal is incremented by 1. At the end of one cycle, acc is
divided by num;otal to get avg; it is outputted as the average of the input data up to
that moment.

Figure 6.26 displays an example of hardware for stream processing of 2D iter-
ative stencil computation. This example is for the 2D iterative stencil computation
shown in Fig.6.9. It generates data stream of lattice data v; ; by traversing the 2D
computational lattice, as shown in Fig.6.9b in the x direction. In the processing
kernel, the value at lattice point (i, j) is evaluated by function F() using 5 data of
Vi j+1, Vit1,j, Vi—1,j, Vi, j—1 ina3 x 3 star stencil. In this case, a delay buffer memory
is used because the previous and subsequent elements are necessary in addition to
the current input element of input data [25]. This buffer memory is referred to as the
stencil buffer memory.

Let X be the width of a 2D computational lattice. The stencil buffer is a 2X + 1
long shift register with a five readout ports for v; j11, Vi41,j, Vi—1,j, Vi, j—1 as shown
in Fig. 6.26. After X cycles, after inputting the data at the current lattice point (i, j),
the data appear exactly at the center of the stencil buffer. The five data in the star-
stencil become readable simultaneously. The operation module makes use of this
data and outputs calculated values at lattice point (Z, j). A stencil computation for
2D lattice requires buffers that are proportional to the lattice width. Although the 3D
lattice requires buffers that are proportional to the cross-sectional area of the lattice, it
needs more buffer memory than the 2D one does. Therefore, on-chip memory cannot
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provide sufficient capacity for a large 3D lattice. In this case, the calculation lattice
can be divided into smaller partial lattices which are then computed one by one.

A hardware example of multiple computing stages for stream processing of incom-
pressible fluid dynamics is shown in Fig.6.27. As depicted in Fig.6.27a, the algo-
rithm, based on the fractional-step method used in CFD, comprises four stages of
operations [13, 26]. Itis known that each stage is of stencil computation, which refers
to neighbors of each lattice point in the orthogonal lattice. For this reason, each step
is implemented by stream-processing hardware which is composed of the stencil
buffer memory and the computation module, as shown in Fig. 6.26. It is possible to
construct stream-processing hardware to perform fluid computation for a single time
step by the in-line connection of hardware for each computing stage [26]. Part of the
iterative solution of a Poisson equation is implemented using a fixed construction
with an n element array of hardware for one-iteration stencil calculation. This result
is based on the experience that, although sufficient implementation has been done
with conventional iteration methods to reduce the residual to a sufficiently small
magnitude, the iterations were normally less than a definite number. The description
above is a proposed solution to the case in which there is no definite number of
iterations. However, the method and conditions should be thoroughly examined to
address any practical problem.
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6.6 Cellular Automaton

A cellular automaton is a discrete model studied in computability theory, mathemat-
ics, physics, complexity science, theoretical biology, and microstructure modeling.
The concept was originally discovered in the 1940s by von Neumann [27]. It consists
of a regular grid of cells, each in one of a finite number of states, such as on and
of f [28]. The grid can be in any finite number of dimensions. For each cell, a set
of cells (referred to as neighborhood) is relatively defined to the specified cell. An
initial state (time t = 0) is elected by assigning a state for each cell. A new generation
is created according to some fixed rules that determine the new state of each cell in
terms of the current state of the cell and the states of the cells in its neighborhood.
Typically, the rule for updating the state of cells is the same for each cell and does not
change over time and is applied to the whole grid simultaneously, though exceptions
are known.

Figure 6.28 shows an example of the neighborhood. Let K be the number of
states for each cell. Then, five cells including the center have K5 states. Thus, there
are K K rules of cellular automaton based on the neighborhood. The well-known
cellular automaton is a life game which can be specified with the following rules for
K=2.

e Born: If there are more than or equal to three living cells around the dead cell, then
it lives in the next step.

e Living: If there are two or three living cells around a living cell, then it survives
in the next step.

e Dead: Otherwise, it dies in the next step.

A finite cell is widely used to simulate the cellular automaton. Generally, although
it is implemented assuming a finite rectangle, an implementation of the boundary
becomes a problem. There is a method of treating all boundaries as a constant; how-
ever, the disadvantage is that the number of rules increases. Another way is to make
it as a torus [29], which simulates an infinite rectangle by connecting upper, lower,
left, and right respectively, and filling an infinite plane with the same rectangle in the
same plane. Figure 6.29 shows a cellular automaton circuit using a torus connection
by placing PEs in a 3 x 3 grid pattern. In the case of the game of life, the PE has the
state of each cell, and it executes the above rules for each step. Then, it updates the
state of the cell in the next step.
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Since all the inputs and outputs in a cellular automaton circuit are parallel, it is
highly compatible with FPGA implementation. Also, it has the possibility to surpass
the existing von Neumann architecture. In practice, as the number of rules to be
computed increases, the throughput can be improved using pipeline circuits. In recent
years, an attempt has been applied to build more physical cellular automata from the
viewpoint of materials, rather than circuits or devices [30]. It is expected to replace
the existing von Neumann-type architecture by applying these realizations to FPGAs.

6.7 Hardware Sorting

In computer science, a sorting is an algorithm that puts n elements of a list in a
certain order. The most-used orders are numerical order and lexicographical order.
FPGA-based hardware accelerations for sorting are widely used for database, image
processing, and data compression. Here, we introduce a sorting network and a merge
sort tree that are suitable for hardware implementation.

The simplest sorting algorithm for hardware implementation is the sorting network
[31], based on the bubble sort. This algorithm sorts the neighboring elements in
parallel. Figure 6.30 shows the sorting network of four elements. It consists of the
exchange units (EUs) which sort the neighboring elements. In this circuit, the number
of wires is n. Each element passes at most n — 1 EUs. In this case, since it can be
performed in parallel, we can realize a fully pipelined EU circuit to increase the
throughput. Note that, since it requires n-parallel wires, the amount of hardware
tends to be large. The known sorting network on FPGA is the Batcherfs odd—even
merge sort [32].

The other type of hardware sorting algorithms is the merge sort tree [33], which
is based on the binary tree structure where each vertex is realized by the EU. This
circuit has many FIFOs in the input and output, and performs the sorting in parallel.
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Fig. 6.31 An example of a marge sort tree for four elements

Figure 6.30 shows an example of the merge sort tree for four elements. In the merge
sort tree, the input is a sequence to be sorted, and in each level of the tree, the
sorted sequence is sent to the next level through the FIFO. Therefore, it is possible
to increase the throughput by inserting a pipeline register for each level. To realize a
high speed and small area on the FPGA, a combination of sorting network and merge
sort tree shown in Fig. 6.31 has been proposed [34].
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6.8 Pattern Matching

One of the killer applications for FPGA is the pattern matching which finds a given
pattern in the data. Pattern matching algorithms are roughly categorized to an exact
matching, a regular expression matching, and an approximate matching. In this
section, we introduce the different algorithms for these matchings.

6.8.1 Exact Matching

An exact matching finds a fixed pattern; however, each element of the pattern takes
three values, i.e., one, zero, and don’t-care which can take both zero and one. Typi-
cally, the exact matching can be realized by a content addressable memory (CAM)
[35]. Here, we introduce the index generation unit (IGU) N6.8-3 which is a CAM
emulator, then we implement it on FPGA.

Let us suppose that the index generation function f is as shown in Figs. 6.32 and
6.34 shows the decomposition chart for f. In Fig.6.34, the label in the right side
denotes X = (x2, x3, x4, x5), the label in the left side denotes X, = (x1, x6), and the
entry denotes the function value. Note that, each column has at most one nonzero
element. Thus, f can be realized by a main memory whose input is only X;. The
main memory maps a 2" sets to k + 1 sets. This is an ideal case; however, in most
cases, we must check X, since f may cause mismatch. To do this, first, we store the
correct X, to an auxiliary (AUX) memory. Then, we use a comparator to generate a
correct f when f is equal to X»,; otherwise, it generates zero. Figure 6.33 shows the
IGU. First, we read the ¢ from the main memory corresponding to p bit X;. Then,
X0, is read from the AUX memory corresponding to q. Next, g is generated if X0,
is equal to X»; otherwise, it generates zero.

Figure 6.35 shows an example of the IGU realizing the index generation function
shown in Fig.6.32. When (x1, x2, x3, x4, x5, x6) = (1, 1, 1, 0, 1, 1), the index “g6”
corresponding to X = (x2, x3, x4, x5) = (1, 1, 0, 1) is read. Then, X0, = (x1, x6) =
(1, 1) corresponding to X0, = (x1,x6) = (1, 1) is read. Next, the correct signal is sent

Fig. 6.32 An example of an X1 x2
index generation function 0 0 0 0

5
1

0 1 0 0 1 0
1
|

0 0 | 0
0 0 | |
0 0 0 0 0 1

~1 > h B o=
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Fig. 6.34 An example of a decomposition chart for an index generation function
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Fig. 6.35 Operation for an IGU

to the AND gate, then “g6” is generated. Since the IGU realizes a mapping which
generates k + 1 sets from given 2n sets, its memory size is drastically reduced from
0 (2") to O(27). The theoretical analysis of the IGU is introduced in [36], and the
applications for the IGU are presented in [37, 38].
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6.8.2 Regular Expression Matching

A regular expression consists of a character and a metacharacter which represents
a set of a strings. Various network applications use regular expression matchings
to detect malicious data in incoming packets. Regular expression matchings spend
a considerable fraction of the total computation time for these applications. The
throughput using the Perl compatible regular expression (PCRE) library on a general-
purpose MPU is up to hundreds of megabits per second (Mbps), which is too slow
for most applications. Thus, a dedicated circuit for regular expression matchings is
required. For network applications, since the high-mix low-volume production and
the frequent update for new protocols are required, FPGAs are widely used. With
the advent of FPGAs embedding dedicated high-speed transceivers for high-speed
networks, we expect extensive use of FPGAs in the future.

Regular expressions are detected by finite automata (FA). In a deterministic finite
automaton (DFA), for each state and each input, there is a unique transition. While in
a non-deterministic finite automaton (NFA), for each state and each input, multiple
transitions may exist. In an NFA, there exist e-transitions to other states without
consuming input characters.

Most of the proposed regular expression matching circuits are based on finite
automata. An Aho—Corasick DFA (AC-DFA) [39] is a known algorithm. A combina-
tion of the bit-partitioned AC-DFA and the MPU is proposed [40]. Also, Baeza-Yates
proposed the NFA algorithm based on a shift and bitwise AND operations [41], and
its hardware realization on an FPGA is proposed [42]. A resource-efficient FPGA
realization by prefix and postfix sharing of regular expressions [43], and mapping
repeatedly appearance parts of regular expressions into a Xilinx FPGA primitive
(SRL16) [44] have been also published.

Hereafter, we introduce the NFA-based regular expression matching algorithm
which is suitable for FPGA realization. Figure 6.36 shows a conversion from a regular
expression to NFA. In Fig. 6.36, € denotes the e-transition, and the gray circle denotes
the accept state. Figure 6.37 shows the NFA representing the regular expression
“abc(ab) * a”, and shows the state transition for the input string “abca”. For each
element in the vector corresponding to the state in the NFA, and ‘1’ denotes the active
state. Figure 6.38 shows the circuit for the NFA shown in Fig. 6.37. To emulate this
NFA, a memory is used to detect a corresponding character, and the detection signal
is sent to the matching element (ME). The ME emulates the state transition, and
generates the match signal. In the ME, the FFs store the vector shown in Fig.6.37,
where i denotes the transition signal from the previous state; o denotes the transition
signal to next state; ¢ denotes the character detection signal from the memory; ei and
eo denote the in/out signals from the e-transition.

Figure 6.39 compares the NFA [42] with the DFA [40] with respect to the com-
plexity of the parallel execution hardware. Even if we apply the bit-partition which
reduces the amount of hardware, the complexity still holds O (X*"™). When the num-
ber of rules for the regular expression increases, the amount of memory tends to be
exponentially large for the DFA based realization, while the NFA-based one does
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not increase the amount of memory. Thus, the NFA-based one is suitable for FPGA
implementations.

6.8.3 Approximate Matching

An approximate matching consists of finding an edited pattern in a text. It finds a
corresponding pattern in the text while deleting, replacing, and inserting a character.
Many approximate matchings are based on dynamic programming. Approximate
matching is used in bioinformatics to evaluate similarity between the DNA sequences.

Let “ACG” be a text, and “TGG” be a pattern. Then, we compute the edit distance:

. Delete “A” from the text “ACG,” then we have “CG.”

. Delete “C” from “CG,” then we have “G.”

. Insert “G” to “G,” then we have “GG.”

. Insert “T” to “GG,” then we have the text “TGG,” which corresponds to the given
pattern.

5. Terminate.

B W N =

In this example, we set the editing score for both the insertion and deletion to
1. Since the replacement includes insertion and deletion, its score is 2. The above
example showed that the editing score between “ACG” and “TGG” is 4.

Figure 6.40 shows a system for an approximate matching. The host PC sends a
text and a pattern. The matching system reads the text from the buffer memory, and

Fig. 6.40 System for an Address (Text index)

approximate matching ]
Edit
Text | EqitDist. | Distance
: Controller
Calculation
Buffer
mem Addlress Min. Edit
(Text index) Distance
Edit distance
Pattern Text index FIFO
Text I s
. Ctrl sig.

Host PC
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then the editing calculating circuit computes the editing score for a part of the text
and the pattern. The controller stores the address whose position of the text and its
minimum editing score to the FIFO. The system shifts the text for calculating the
score. When all the text is matched, the host PC reads the position of the matched pat-
tern and its minimum score from the FIFO. Then, the edited pattern is computed. For
approximate matching, since the calculation time for the editing score is dominant,
FPGA accelerators are desired.

The editing score between two strings can be calculated using dynamic program-
ming. The Needleman—Wunsch (NW) algorithm [45] computes the minimum value
of the editing score of the entire text and a pattern, while the Smith—Waterman (SW)
algorithm [46] computes the editing score of a part of text and a pattern. Here, we
introduce the basic algorithm for calculating the minimum value of the editing score
between two strings using dynamic programming.

Let P = (pl, ..., pn) be a pattern, and T = (t1, ..., tm) is a text. Suppose that
the matching graph for an approximate string, which has (n + 1) x (m + 1) vertices
labeled by each column and row. For a coordinate (i, j), a vertex v;, g; is placed. We
assume that the upper-left vertex is set to (0,0), and the coordinates (i, j) increase
toward the lower-right vertex (n, m). For0 <=i <=n —1and0 <= j <=m — 1,
there are edges connecting v; ; to v; 41, ; and others connect v; ; to v; j41. Also, there
are diagonal edges connecting v; ; t0 V41, j+1. Figure 6.41 shows an example of the
approximate matching graph for the text ACG and the pattern TGG.

Let s4.; be an editing score for deletion, sins the score for insertion, and sy,
the score for replacement. Here, we set sz = 1, s;,5 = 1, and sy, = 2. For each
vertex v; ;, we must make sure to edit score of a subpattern P' = (p1, p2, ..., pi)
and subtext 7! = (11, o, ..., ¢ 7). We define that the vertex score denotes the editing
score for each vertex. The minimum vertex score for v; ; is obtained by the following
expression:
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Vi—1,j-1

— mi 0 if pi=t
Vij = min y Vi—1,;j + Sins + { Ssub otherwise (61)

Vi j—1 1 Sdel

By applying the above expression recursively from the vertex vg o to v, ,,, Wwe can
obtain the minimum editing score. The following algorithm shows how to obtain the
minimum editing score:

Algorithm

Input: Text T with length m, and pattern P with length n.
Output: Minimum editing score at vertex vy ,.

Liviog«<i,i=0,1,...,n),v; < j1(j=0,1,...,m)
2:for j < 1until j <m + n — 1 begin

3: fori < 1untili < n begin

4 if0 < j—i+1<m,compute v; j_;;; with Eq.6.1.
5 i<—i+1

6: end

7 j<«—j+1

8: end

9: Let v, ,, be edit distance and stop.

Here, we assume that n < m. For example, for an alignment in bioinformatics,
n =10 and m = 10°. An algorithm, which calculates the minimum editing score
by dynamic algorithm, is called the Naive method. It uses a processing element (PE)
[47] to calculate each column of the approximate matching in parallel. Figure 6.42
shows the architecture of the PE for the Naive method. In this figure, s denotes the
number of bits for each character, n denotes the number of characters in the pattern.
To directly perform recurrent expression, the naive method receives a text (tin) and a
pattern (p in). Then, it selects the replacement score or not through the corresponding
detection circuit. At that time, for each vertex, it calculates the editing score. Then,
it selects the minimum score selector to generate the minimum one.

Each PE calculates the score corresponding vertex, then outputs it in parallel.
Note that, t denotes the time stamp. We consider the data dependency to compute
the vertex v; ; by the PEi. To compute v; ;, three pieces of data for v; j_1, v;i_1,;,
and v;_; j_; are necessary. At time (t — 1), since v; j_; is the output value of the
PE,;, it is obtained by the feedback loop. Also, v; j_; is obtained by the output of
PE;_. Attime (t —2), v;_y,j— is obtained by P E;_; and is retained by a register.
The cascaded PEs shown in Fig. 6.42 computes the approximate matching graph in
parallel. In other words, it performs the naive method shown in steps 3-6 of the
above algorithm. Thus, its computation complexity becomes O (m). More details of
the circuit on FPGA have been demonstrated in [48].
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