Hideharu Amano Editor

Principles
and

Structures of
FPGAS

@ Springer

Principles and Structures of FPGAs

Hideharu Amano
Editor

Principles and Structures
of FPGASs

@ Springer

Editor

Hideharu Amano
Keio University
Yokohama

Japan

ISBN 978-981-13-0823-9 ISBN 978-981-13-0824-6 (eBook)
https://doi.org/10.1007/978-981-13-0824-6

Library of Congress Control Number: 2018943376

© Springer Nature Singapore Pte Ltd. 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

Preface

The field-programmable gate array (FPGA) is one of the most important electronic
devices to emerge in the past two decades. Now we can use more than 50,000-gate
fully programmable digital devices for only 300 USD by using the free WebPACK
including sophisticated high-level synthesis (HLS) design tools. FPGA has been
used in most recent IT products including network controllers, consumer elec-
tronics, digital TVs, set-top boxes, vehicles, and robots. It is a leading technology
device for advanced semiconductors; that is, the most advanced semiconductor
chips are fabricated not for CPUs but for FPGAs. Recently, Intel acquired Altera, a
leading FPGA vendor, and has employed accelerators for various types of appli-
cations in cloud computing. Especially, big data processing and deep learning used
in artificial intelligence are killer applications of FPGAs, and “FPGAs in the cloud”
has currently become an extremely popular topic in this field.

This book introduces various aspects of FPGA: Its history, programmable device
technologies, architectures, design tools, and examples of application. Although a
part of the book is for high school or university students, the advanced part includes
recent research results and applications so that engineers who use FPGAs in their
work can benefit from the information. To the best of our knowledge, it is the first
comprehensive book on FPGA covering everything from devices to applications.

Novice learners can acquire a fundamental knowledge of FPGA, including its
history, from Chap. 1; the first half of Chap. 2; and Chap. 4. Professionals who are
already familiar with the device will gain a deeper understanding of the structures
and design methodologies from Chaps. 3 to 5. Chapters 68 also provide advanced
techniques and cutting-edge applications and trends useful for professionals.

Most of the descriptions in this volume are translated from a Japanese book
published by Ohmsha, The Principle and Structure of FPGA (2016), but new
material has been added. We are very grateful to Ohmsha for generously allowing
this kind of publishing venture.

vi Preface

The chapters are written by top-level Japanese researchers in the field. The
manuscripts were thoroughly checked and corrected by Dr. Akram Ben Armed of
Keio University and Dr. Doan Anh Vu of the Technical University of Munich.
I express my sincere gratitude for their efforts.

Yokohama, Japan Hideharu Amano
April 2018

Contents

1 Basic Knowledge to Understand FPGAs 1
Toshinori Sueyoshi

2 WhatIsan FPGA? 23
Masahiro lida

3 FPGA Structure 47

Motoki Amagasaki and Yuichiro Shibata

4 Design Flow and Design Tools 87
Tomonori Izumi and Yukio Mitsuyama

5 Design Methodology 117
Masahiro lida

6 Hardware Algorithms 137
Kentaro Sano and Hiroki Nakahara

7 Programmable Logic Devices (PLDs) in Practical
Applications 179
Tsutomu Maruyama, Yoshiki Yamaguchi and Yasunori Osana

8 Advanced Devices and Architectures 207
Masato Motomura, Masanori Hariyama and Minoru Watanabe

vii

Contributors

Motoki Amagasaki Kumamoto University, Kumamoto, Japan
Masanori Hariyama Tohoku University, Sendai, Japan
Masahiro Ilida Kumamoto University, Kumamoto, Japan
Tomonori Izumi Ritsumeikan University, Kusatsu, Japan
Tsutomu Maruyama University of Tsukuba, Tsukuba, Japan
Yukio Mitsuyama Kochi University of Technology, Kami, Japan
Masato Motomura Hokkaido University, Sapporo, Japan
Hiroki Nakahara Tokyo Institute of Technology, Tokyo, Japan
Yasunori Osana University of the Ryukyus, Ryukyus, Japan
Kentaro Sano RIKEN, Kobe, Japan

Yuichiro Shibata Nagasaki University, Nagasaki, Japan
Toshinori Sueyoshi Kumamoto University, Kumamoto, Japan
Minoru Watanabe Shizuoka University, Shizuoka, Japan

Yoshiki Yamaguchi University of Tsukuba, Tsukuba, Japan

ix

Chapter 1 ®)
Basic Knowledge to Understand FPGAs oo

Toshinori Sueyoshi

Abstract An FPGA is a wonderful digital device which can implement most of the
practically required digital circuits with much easier effort than other solutions. For
understanding FPGAs, fundamental digital design techniques such as logic algebra,
combinational circuits design, sequential circuits design, and static timing analysis
are required. This chapter briefly introduces them first. Then, the position of FPGA
among various digital devices is discussed. The latter part of this chapter is for 40-
year history of programmable devices. Through the history, you can see why SRAM
style FPGAs have become dominant in various types of programmable devices, and
how Xilinx and Altera (Intel) have grown up major FPGA vendors. Various small
vendors and their attractive trials that are not existing now are also introduced.

Keywords Digital circuits’ design - Static timing analysis - Programmable logic
devices - Field-programmable gate array

1.1 Logic Circuits

Field-programmable gate array (FPGA) is a logic device that can implement user-
desired logics by programming logic functions. To understand the structure and
design of FPGAs, the basis of logic circuits is briefly introduced in [1, 2].

1.1.1 Logic Algebra

In logic algebra, also called Boolean algebra, all variables can take either the value
0 or 1. Logic algebra is an algebraic system defined by the operators AND, OR, and
NOT applied to such logic values (0,1). AND, OR, and NOT are binary or unary
operators defined in Table 1.1. Here, we use the symbols “-”, “4”, and “~” for these

T. Sueyoshi ()
Kumamoto University, Kumamoto, Japan
e-mail: sueyoshi@cs.kumamoto-u.ac.jp

© Springer Nature Singapore Pte Ltd. 2018 1
H. Amano (ed.), Principles and Structures of FPGAs,
https://doi.org/10.1007/978-981-13-0824-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0824-6_1&domain=pdf

Table 1.1 Axioms of logic algebra

T. Sueyoshi

AND (-) OR (+) NOT (7)
0-0=0 0+0=0 0=1
0-1=0 0+1=1

1-0=0 1+0=1 1=0
1-1=1 1+1=1

Table 1.2 Theorems of logic algebra

Zero element -0=0,x+1=1

Neutral element

-1=x,x+0=x

Idempotent law

X=X, X+X=X

Complement law

x=0,x+x=1

=x

Involution law

Pl mup XXM

Commutative law CY=Y X, X+Yy=y+X
(X.y).sz.(y.Z)
x+y)+z=x+(y+2)
X-(y+z)=x-y)+(x-2)
X+(y-z2)=x+y) - x+2)

Associative law

Distribution law

Absorption X+(Xx-y)=x
X-(x+y)=x

De Morgan’s laws X+y=Xx-y
X y=x+y

three logic operators, respectively. AND (x - y) is an operation whose result is 1
when both x and y are 1. OR (x + y) is an operation whose result is 1 when either
x or y is 1. NOT (Xx) is a unary operation giving the inverse of x; that is, when x
is 0 its result is 1, otherwise its result is 0. In logic algebra, the theorems shown in
Table 1.2 are satisfied. Here the symbol “=" shows that both sides are always equal
or equivalent. By exchanging logic value 0 into 1, and operation AND into OR, the
equivalent logic system is formed. This is called a dual system. In logic algebra, if a
theorem is true, its dual is also true.

1.1.2 Logic Equation

A logic equation consists of an arbitrary number of logic operations, logic vari-
ables, and binary constants, separated by parentheses if needed to represent the
order of computation. When a logic equation is formed with n logic variables
X1, X2, X3, ..., Xy, its result is either O or 1 according to the procedure represented
with an equation by substituting 0 or 1 in the variables (2" in total), following

1 Basic Knowledge to Understand FPGAs 3

an arbitrary combination. That is, a logic equation represents a logic function
F(x1,x3,x3,...,x,). If the priority is not defined by parentheses, AND is given
a higher priority than OR. The AND operator “-” is often omitted. Arbitrary logic
functions can be represented by logic equations, but there are a lot of logic equations
for representing the same logic function. Thus, by giving some restrictions, a logic
function can be 1 to 1 corresponding to a logical equation. It is called a standard logic
form. A single variable or its inverse is called a literal. Logical AND of literals which
does not allow duplication of itself is called a product term. The sum-of-products
form is a logic equation only with logical OR of products. A product term formed
from all literals is called a minterm. A sum-of-products only containing minterms
is called sum-of-products canonical form. A product-of-sums is a dual of a sum-of-
products. A maxterm is formed with OR of literals for all inputs without duplication.
A product-of-sums canonical form is formed only with maxterms.

1.1.3 Truth Table

Truth tables and logic gates (shown later) are representations of logic functions
other than logic equations. The table which enumerates all combinations of inputs
and corresponding outputs is called the truth table. In the case of combinational
circuits, a truth table can represent all combinations of inputs, and so it is a complete
representation of the circuit. The specification of a combinational circuit is defined
in the form of a truth table. For n inputs, the number of entries of the truth table is
2". The corresponding output is also added to the entry.

A truth table is a unique representation of a logic function. Although a logic
equation also represents a unique logic function, a logic function can be represented
with various equivalent logic equations. A straightforward implementation of a truth
table is called lookup table(LUT), which is used in major FPGAs.

From a truth table, two canonical forms such as sum-of-products or product-of-
sums can be induced. The sum-of-products canonical form is derived by making
minterms of input variables when the corresponding output is 1, and then applying
the OR operator. On the other hand, the product-of-sums canonical form is derived
by making maxterms of inverted input variables when the corresponding output is
0, and then applying the AND operator. An example of making a logical equation
from a truth table is shown in Fig. 1.1.

1.1.4 Combinational Circuits

A logic circuit can be classified into combinational or sequential whether it includes
memory elements or not. In combinational circuits, which do not include memory
elements, the output is defined only with current input values. Combinational circuits
have a given number of inputs and outputs and consist of logic gates computing basic

4 T. Sueyoshi

Sum of Product canonicaform F =Xyz +Xyz+xyz+xyz+xyz+xyz
Truth Table '[

Input Output
F

—|=|= =[O0 |0| X
— = |00 —=(— oo

—|O|=|O=(O|—|O|N
—lo|=|=|=|lo|=|—

[y —

Invert of input terms ¥ \Z

Product of Sum canonical formF =X +y +2) (x +y +2)

Fig. 1.1 An example of making a logical equation

logical functions such as AND, OR, and NOT connected with wires. These logic gates
correspond to three basic operations: Logical and, logical or, and logical not are called
AND gate, OR gate, and NOT gate, respectively. Additionally, there are gates for
well-known binary operations: NAND gate, NOR gate, and EXOR gate. NAND gate,
NOR gate, and EXOR gate compute inverted AND, inverted OR, and exclusive OR,
respectively. Figure 1.2 shows their symbols (MIL symbols), truth tables, and logical
equations. @ is used for the symbol for logic operation of exclusive OR. The table
shows two inputs gates for binary operations, while gates with more than three inputs
are also used. CMOS used in most of the current major semiconductor LSIs often
includes compound gates like OR-AND-NOT or AND-OR-NOT.

Any logic circuits can be represented with the sum-of-products canonical form.
Thus, any combinational circuits can represent any arbitrary logic function by a
NOT-AND-OR form. This is called AND-OR two-stage logic circuits or AND-OR
array. AND-OR two-stage logic circuits are implemented by a programmable logic
array (PLA).

1.1.5 Sequential Circuits

Logic circuits including memory elements are called sequential circuits. While com-
binational circuits decide their outputs only with the current inputs, outputs of sequen-
tial circuits are not fixed with only current inputs. That is, the prior inputs influence
the current output.

Sequential circuits are classified into synchronous and asynchronous. In syn-
chronous sequential circuits, outputs and internal states are changed synchronously
following a clock signal, while asynchronous sequential circuits do not have a clock
signal. Here, only synchronous circuits used in most FPGA design are introduced.

1 Basic Knowledge to Understand FPGAs 5

Operation Symbol Function Equation
wo D §
oo D> G113

<000

(o]
ON
Il
>
+
=

= =
o p=
) =
(W)
| |
Q g O
N M~
I 1]
< >
+ .
— e

6610 X
EXOR ;2)) >-- ? 8| X |

Fig. 1.2 Basic logic gates

o

Outputs of synchronous circuits are determined both by the inputs and the memo-
rized values. That is, states depending on past inputs value influence the current
outputs in sequential circuits. They are represented with a model of finite-state
automaton as shown in Fig. 1.3. Figure 1.3a shows Mealy finite-state machine, while
Fig. 1.3b illustrates Moore finite-state machine. Outputs are determined by the inter-
nal states and inputs in Mealy machine, while in Moore machine, they are only
depending on their internal states. Compared with Mealy machine, Moore machine
can decrease the size of the circuits, since a smaller number of states are required
for the target function. However, outputs are directly influenced by the change of
input signals and so the signal can glitch because of the difference of gate or wiring
delay which may lead to unpredicted hazards. On the other hand, Moore machine can
directly use states to generate outputs; thus, high-speed operation without hazard can
be achieved. The circuits’ size can become large because of the increasing number
of states.

6 T. Sueyoshi
tput fi | output func. |
output func. Output output func. | Outout
7=0(x,Q 7 L z=0@Q =g
=X (Comb. circuits) jﬁ (Comb. circuits):
Inpu state func. Input state func.
 —
X E Q =86(X,Q X 1;: Q =5(X,Q
(Comb. circuits) (Comb. circuits)
o
L state L | state
(flip flops) (flip flops)
clock4T clock4T

(a) Mealy type FSM (b) Moore type FSM

Fig. 1.3 Mealy machine (a) and Moore machine (b)

1.2 Synchronous Logic Design

In synchronous logic design, all states of the system are idealized to change syn-
chronously with a clock so as to make the design simple. It is a fundamental design
policy used in FPGAs.

1.2.1 Flip-Flop

A one-bit memory element called flip-flop (FF) is used as a memory element in
sequential circuits. D-flip-flops (D-FFs), embedded in basic blocks of an FPGA,
change their outputs at the rising edge (or falling edge) of the clock. That is, they are
edge-trigger type. The symbol and truth table of a D-FF are shown in Fig. 1.4. Here,
it stores the value at D input at the rising edge of the clock and outputs it at Q-output.

1.2.2 Setup Time and Hold Time

A CMOS D-FF has a master—slave structure consisting of two latch (loop) circuits,
each of which uses a couple of transfer gates and inverters (NOT gates), as shown in
Fig. 1.5. A transfer gate takes the role of a switch, and it changes to on/off according
to CLK. The front-end latch stores the input with the inverse of the clock in order
to avoid the hazard appearing just after the change of the clock. The operation of a
D-FF is shown in Fig. 1.6.

When CLK = 0 (master operating), the D input is stored into the front-end latch,
and the back-end latch holds the data of the previous cycle. Since the transfer gate

1 Basic Knowledge to Understand FPGAs

Input D Q Output
clock > CLK Q |— NotQ
D CLK Q Q X : Don't care
— (Both L and H are OK)
X L Qn Qn
L—>H
L Jf L H Jf: (Up edge)
H— L
H Jf H L —t: (Down edge)
X H Qn | Qn
X —t Qn Qn

Fig. 1.4 D-Flip-flop

CLKN

CLK

Fig. 1.5 Master—slave D-Flip-flop

CLKP

8 T. Sueyoshi
D Doy >
Lt

Master Slave
Master transfers the input (CLK=0)

D ot 5° > L{>° Q
<l S

Master Slave
Slave transfers the input (CLK=1)

Q

>
Q)
<

Fig. 1.6 Operation of master—slave D-Flip-flop

T

-
D must be fixed g

clock

7
i
i
i
;
R

Setup time g

4

%

“Hold time

Output Q

<« 'Meta-stable
; i«— Stable Output is delayed

The standard output delay

Fig. 1.7 Setup time and hold time

connecting the front-end and back-end is cut off, the signal is not propagated. When
CLK =1 (slave operating), the data stored in the front-end is transferred to the back-
end. At that time, the signal from D input is isolated. If the data is not well propagated
between both inverters of the front-end loop when CLK becomes 1, the signal may
become unstable, taking an intermediate level called meta-stable, as shownin Fig. 1.7.
Since the meta-stable continues longer than the delay time of a gate, the data might
be stored incorrectly. To prevent this, the restriction of setup time must be satisfied.

Also if the D input is changed just after CLK=1 and the gate at the D input is
cut off, illegal data can be stored or unstable state can occur. In order to avoid it, the
restriction of hold time must also be satisfied.

For all the FFs in an FPGA, a timing limitation such as setup time and hold time
should be defined for correct operation.

1 Basic Knowledge to Understand FPGAs 9

1.2.3 Timing Analysis

Translating register-transfer level (RTL) description in hardware description lan-
guage (HDL) into a netlist (wiring information between gates) is called logic
synthesis. The design step for fitting circuits of the netlist into an FPGA imple-
mentation is called “place & route.” In an FPGA, an array of predefined circuits and
interconnections between them are provided on a chip. The FPGA design stages fix
where the circuits translated by the synthesis are located and how to connect them.

In order to verify the correct operation of the designed circuits, not only the
function (logic) must be ensured, but also the timing constraints have to be satisfied.
In the design of FPGAs, the circuits must be evaluated through the logic synthesis
and the place & route. The correctness of the logic is verified by RTL simulations.
Since dynamic timing analysis by post place & route simulations with delay requires
a large amount of computation time, static timing analysis (STA) is used instead.
STA can be executed only with a netlist, and comprehensive verification can be
done. Moreover, since it basically traces the circuits only once, the execution speed
of the STA is high. It is commonly used in other EDA tools besides FPGAs, to certify
whether the design works at a required speed to cope with recent increasing size of
target circuits.

Timing analysis includes setup and hold time analysis for timing verification. It
verifies whether the delay of the design implemented on FPGA satisfies the timing
restrictions. Wiring delay depends on the mapping and routing of the design to the
resource of the FPGA, that is, the compilation result of the place & route tool. The
design is relatively easy if the performance and number of gates of the target FPGA
are large enough, but if the size of the design uses almost all of its resources, the
place & route can require a considerable amount of time. The delay of the elements
and interconnections of all paths must be checked including the timing margin so as
to certify whether the setup time and hold time are satisfied.

1.2.4 Single-Clock Synchronous Circuits

Since FPGAs have a large flexibility in place & route, synchronous circuits are widely
used; thus, the target of STA is focused on synchronous circuits. Although the STA
is fast, the target circuits can have a certain limitation. That is, the start point and the
end point of the delay analysis must be a FF with the same clock input, and the delay
between them is accumulated. The transient time of the signal is different since the
wiring delay is not the same. Thus, an FPGA design receives all input data at FFs
and outputs all data through FFs, as shown in Fig. 1.8. In other words, the system’s
circuits work with the same edge of the same clock. Inverse clock or reverse edge is
basically not allowed, and such a single-clock system is recommended.

The precondition of the synchronous design is to deliver the clock to all FFs at
the same timing. The wiring length of real clock signals is often long, and so the

10 T. Sueyoshi

Comb. Comb.
DataD D—FF D ci?chits D D—FF D ci?chits D D—FF D

clock

Fig. 1.8 Single-clock system

wiring delay becomes large. Also, the fan-out influences the delay time. Because of
their influence, clock timing is slightly different for each FF. This effect is called the
clock skew. Jitter is a fluctuation of the clock edge by the variance of the oscillator
or distortion of the wave. In order to deliver the clock at the same time, such skew
or jitter must be managed under a certain bound.

The clock skew influences the cycle time as well as the delay of logic gates.
That is, the most important step in integrated circuits is the clock tree design. In the
case of FPGAs, the hierarchical clock tree is already embedded with global buffers
providing a high drive capability in the chip to distribute a clock to all FFs, and thus,
a low skew clock distribution can easily be achieved. Compared with ASIC designs,
in FPGAs, the design step for clock distribution is easier.

1.3 Position and History of FPGAs

Here, the position of FPGA in the logic devices is introduced, and then about 30 years
of history of development are reviewed [3, 4].

1.3.1 The Position of FPGA

Logic devices are classified into standard logic devices and custom ICs, as shown
in Fig. 1.9. In general, the performance (operational speed), density of integration
(the number of gates), and flexibility of given design are advantageous for devices
close to custom ICs. On the other hand, non-recurring engineering (NRE) cost for
IC designs becomes high and the turnaround time (TAT) from an order to its delivery
becomes longer.

Custom ICs are classified into full-custom and semi-custom ICs. The former uses
cells designed from scratch, and the latter uses standard cells. Semi-custom ICs are
further classified into various types depending on how the NRE cost and TAT are
reduced. A cell-based ASIC uses a standard cell library. On the other hand, a gate
array uses a master-slice consisting of an array of standard cells, and only steps for

1 Basic Knowledge to Understand FPGAs 11

LogicIC
Standard Custom IC
device
Standard ASSP PLD (wide sense) semi-custom IC) gy cusrom I
fogic (ASIC)

PLD (narrow sense) ‘ ‘ ‘ ‘

Simple PLD Complex PLD Gate || Embedded || e || Stuc
(PLA/PAL/GAL) (CPLD) Fre amay || aray || baged || tured

Fig. 1.9 FPGA position in semiconductor devices

wiring follow. An embedded array is a compromise method of cell-based and gate
array. The structured ASIC includes standard functional blocks such as SRAM and
PLL with a gate array part so as to minimize the design cost. They focus on reducing
the NRE cost and shortening the TAT.

Unlike application-specific standard parts (ASSPs), a programmable logic device
(PLD) canrealize various logic circuits depending on a user program. PLDs have been
widely developed by introducing the properties of field programming and freedom
of reconfiguring. An FPGA is a PLD which combines multiple logic blocks in the
device for a high degree of programming. Since it has a gate array like a structure, it
is called field-programmable gate array. FPGA can be mass-produced with a blank
(initial) state. So, it can be treated as a standard device from semiconductor vendors,
but it can also be considered as an easy-made ASIC with a small NRE cost, and
without any mask fee.

More than 40 companies have tried to join the FPGA/PLD industry so far. Here,
the history is introduced for each of the era shown in Tables 1.3 and 1.4.

1970s (The Era of FPLA and PAL)

The PLDs started from a programmable AND-OR array with a similar structure to a
programmable read only memory (PROM).

The circuit information was stored in memory elements. In 1975, Signetics Co.
(became later Philips, and now it is now known as NXP Semiconductors) sold a
fuse-based programmable field-programmable logic array (FPLA). Then NMI Co.
announced programmable array logic (PAL) which used a simpler structure but

12

Table 1.3 History of FPGA (1)

T. Sueyoshi

Age Max. num of Represented Features Companies
gates devices
1970s 10s-100 Field- User-programmable, | Signetics (join to
programmable fuse-type, one-time | Philips, now
logic array NXP
(FPLA) Semiconductors)
Programmable Fixed OR-array, NMI (join to
array logic high-speed, bipolar, | Vantis, now
(PAL) one-time Lattice
Semiconductors)
1980s 100s Genetic array Low-power CMOS | Lattice
logic (GAL) electric erasable
EEPROM
100s—1000s FPLA (field- Array of CLB Xilinx
programmable interconnect I/O
logic array) cells are
programmable
Complex Multiple AND-OR | Altera, AMD
programmable Arrays, high density, | Lattice
gate array high capacity and
(CPLD) high-speed
Anti-fuse FPGA | High-speed, Actel, Quick
non-volatile but Logic
one-time
1990s 1000s— SRAM-based New products to Altera, AT & T
Millinon’s FPGA glowing (Lucent), AMD

SRAM-based FPGA
(Flex, ORCA, VFI,
AT40K families)

(Vantis, Lattice)
Atmel

Flash-based Non-volatile GateField
FPGA electrically

re-programmable
BiCMOS FPGA | High-speed ECL DynaChip

using BiICMOS
FPGA(DL5000
family)

achieved high-speed operation using bipolar circuits. PAL was widely used by taking
a fixed OR array and bipolar PMOS. On the other hand, it consumed a large amount
of power, and the erase and re-program were not allowed.

1980s

(1) The appearance of GAL, EPLD, and FPGA:

In 1989, low-power and erase/re-programmable CMOS EPROM-/EEPROM-

1 Basic Knowledge to Understand FPGAs

Table 1.4 History of FPGA (2)

13

Age Max. num of | Represented devices | Features Companies
gates
2000s 1 Million—15 | Million-gate FPGA, | Processor-core HardIP, | Altera, Xilinx
millions SoPD (System on SoftIP, Multi-input
Prog. Device) LB, Hi-speed I/F,
Multi-platform
Startup vendors’ Low leak process or Silicon Blue,
FPGA power gating, Data Achronix,
Ultra-low-power tokens transfers, Tabula,
FPGA, High-Speed | Virtually 3D DRP Abound
ASYNC FPGA, tech., Scalable wire Logic, Tier
Dynamic Reconf. structure, Amorphas | Logic
FPGA, Si TFT techniques
A large-scale FPGA,
Monolisic 3D FPGA
2010s 20 Millions 28 nm gen. FPGA TSMC Altera, Xilinx
(28 nm)-50 20nm gen. FPGA 28 nm,20nm,16nm
millions 16/14nm gen. FIN FET Intel’s 14nm
(20nm) FPGA, New gen. FIN FET, ARM
SoPD (SoC FPGA), | embedded Zynq,
Dynamic PR FPGA, | Cyclone V SoC
3D (2.5D), FPGA Standard support of
for Automobile PR TSV, SiP
Optical FPGA AEC-Q100 standard
1SO-26262 standard
Vivado HLS OpenCL
Oligopoly Withdraw of Big 4 vendors
Quicklogic and Atmel. | Xilinx, Altera
Termination of new Lattice, Actel
FPGA vendors.
Frequent M & A
Industry Data center, [oT Big | Microsemi
consolidation data analysis, machine | acquired Actel

learning, network
virtualization,
high-performance
computing

Lattice
acquired
Silicon Blue
Intel acquired
Altera

based PLDs were pushed into the market from various vendors. In this era,
Japanese semiconductor companies grew rapidly using DRAM technologies,
while US traditional big vendors were relatively in depression. Thus, the leading
companies were mostly newly developed US venture companies. Various PLD
architectures including Lattice’s (established in 1983) generic array logic (GAL)
and Altera’s erasable PLD (EPLD) were developed, and especially GAL was
popularly used. It was upper compatible of PAL with the fixed OR array, and a
CMOS-based EEPROM was adopted as a programmable element. PLDs with

2

3)

T. Sueyoshi

a single AND-OR array such as GAL, FPLA, and PAL, described before, are
called simple PLD (SPLD). Their number of gates is about 10s—100s. Advances
in semiconductor technologies allowed to implement more gates than for GALs,
since increasing the size of a single AND-OR array was not efficient. So, as a
flexible large PLD, FPGA and CPLD were introduced.

Xilinx (established in 1984), the first to design FPGAs, was a venture company
established by Ross H. Freeman and Bernard V. Vonderschmitt who had spun
out from Zilog. Freeman adopted a basic logic cell with a combination of 4-input
1-output LUT and FF and commercialized a practical FPGA (XC2064 series)
based on CMOS SRAM technologies. William S. Carter, who joined a little later,
invented a more efficient interconnection method to connect logic cells. Their
innovations are known as famous patents in FPGA: Freeman’s patent and Carter’s
patent. Ross H.Freeman was included to the US National Inventors Hall of Fame
in 2009 for his innovation with FPGAs. Xilinx’s FPGA (the product name was
then LCA) was highly flexible where erase/re-programming can be done by
using CMOS SRAM technology, and its power consumption was low. Based on
the advanced research of Petri-net at the Massachusetts Institute of Technology
(MIT), Concurrent Logic (now Atmel) commercialized an FPGA with a partial
reconfigurable capability. Also, based on the research on virtual computer at
Edinburgh University, Algotronix (now part of Xilinx) announced a flexible
partial reconfigurable FPGA. The former was Atmel’s AT6000, and the latter
was Xilinx’s XC6200. They are the origins of the dynamically reconfigurable
FPGAs.

The second half of the 80s (Appearance of anti-fuse FPGAs and CPLD):

In the latter half of the 1980s, in order to accelerate the implementation density
and operational speed, anti-fuse FPGAs, which do not allow erase/re-program,
appeared. On the other hand, since the early FPGAs could not achieve the desired
performance, other structures of large-scale PLDs were investigated. Altera,
AMD, and Lattice, which had produced AND-OR array PLD, developed a large-
scale PLD by combining multiple blocks of AND-OR PLDs. They were called
complex PLD (CPLD) later. While their flexibility and degree of integration
could not compete with FPGAs, CPLDs had the advantage of high-speed design,
and re-writable non-volatile memory devices could be easily introduced. Thus,
CPLD was a representative of large-scale PLDs comparable to FPGAs until the
early 1990s. However, from the late 1990s, since the degree of integrity and speed
of SRAM-based FPGAs were improved rapidly, CPLDs started to be considered
as economical small devices.

Venture companies until the 80s:

FPGA industry has been mainly driven by various venture companies. Xilinx,
which first commercialized FPGAs, was established in 1984. Altera and Lattice
were established almost the same year SPLDs were commercialized, and then
entered the FPGA industry. Actel is also a venture company established slightly
later. They had grown as the big-four vendors in the FPGA industry. QuickLogic
appeared later, and these five vendors lead the industry. From major semicon-
ductor companies, only AT&T (former Lucent and Agere, whose FPGA project

1

“4)

Basic Knowledge to Understand FPGAs 15

was sold to Lattice), and Motorola (Freescale) entered the industry. AT&T was
the second source of Xilinx, and Motorola developed products with a license
from Pilkington. Consequently, there were no major semiconductor companies
which developed FPGAs from scratch. TI and Matsushita (now Panasonic) tried
to enter the FPGA industry in cooperation with Actel. Infineon and Rhom started
FPGA business with Zycad (Gatefield, later); however, all of them have with-
drawn from this initiative.

Japanese semiconductor vendors and major semiconductor vendors:

Venture companies established in the 80s such as Lattice, Altera, Xilinx, and
Actel are all fabless maker, meaning that they have no facility for producing
semiconductors. Therefore, they relied their fabrication on Japanese semicon-
ductor vendors; for example, Xilinx and Lattice relied on Seiko Epson, and Altera
relied on Sharp. Actel had a comprehensive contract with TI and Matsushita
including fabrication. In 1990s, GateField, which developed flash FPGAs, had
a comprehensive contract with Rohm. However, recently, most FPGAs are pro-
duced by Taiwan semiconductor companies such as TSMC and UMC which
provide an advanced CMOS technology. Since Japanese major semiconductor
vendors focused on DRAM as a standard product and on gate arrays as custom
products, they had no intention to enter the PLD industry.

US major semiconductor companies such as TI and National Semiconductor,
which focused on logic LSI and memory ICs, had already been part of the mar-
ket of bipolar AND-OR array. They also tried to produce CMOS EPROM- or
EEPROM-based PLDs. However, they could not compete against the aggressive
venture companies which developed new architectures, and most of them ceased
their activities in the PLD industry. Although AMD purchased MMI in 1987 and
aggressively developed new CPLD architectures, it split the activity to Vantis
and sold it to Lattice in 1999 in order to concentrate on CPU business.

1990s

(D

Increasing the size of FPGAs:

In the 1990s, both Xilinx and Altera increased the size (gate number) of their
FPGAs by improving and extending their XC4000 and FLEX architectures.
The size was increased from 1000s to 10,000 in the early 1990s and reached
to a hundred thousand in the late 1990s. A large rapid prototyping platform
using large-scale FPGAs, as shown in Fig. 1.10, was then developed. The FPGA
industry grew up rapidly, and AT&T, Motorola, and Vantis entered SRAM-based
FPGAs in these years. In Japan, Kawasaki Steel, NTT, and Toshiba tried to pro-
duce their own devices, but eventually products were never released.

It is said that some vendors gave up the production because of the risk of conflict
with Xilinx’s basic patents (Freeman’s patent and Carter’s patent). Regarding
Altera’s PLD products (FLEX family), there has been a long dispute whether
they infringe Xilinx’s patents. The case was settled in 2001, and after that, Altera

16

T. Sueyoshi

Fig. 1.10 A rapid prototype using 12 FPGAs

2

was able to start using the word “FPGA,” too. Some novel FPGAs appeared in the
late 90s. For example, GateField (currently acquired by Actel then Microsemi)
announced FPGAs with non-volatile yet erase/re-writable flash memory, and
DynaChip commercialized high-performance FPGAs with ECL logic using BiC-
MOS process. After the late 1990s, the degree of integration and operational
speed of FPGAs rapidly increased, and the difference with CPLDs widened.
From that era, FPGAs became a representative device of PLD. On the other
hand, since the performance gap between semi-custom LSIs such as gate array
or cell-based ICs has been drastically reduced, FPGAs expanded into the semi-
custom (especially gate array) market.

Through the 1990s, general-purpose FPGAs pursued their growth, and the
mixed integration of MPUs and DSPs was an inevitable result. In 1995, Altera’s
FLEX10K integrated memory blocks to expand its application, and phase-locked
loop (PLL) to manage high-speed clock signals was also provided. From this era,
FPGAs were mass-produced and widely spread. In 1997, the logic size reached
250,000 gates and the operational speed increased from 50 to 100 MHz. In 1999,
Xilinx announced an FPGA with a new architecture called Virtex-E, and Altera
announced the APEX20K for the coming million-gate era.

New companies in the 1990s:

In the early 90s, a few companies including Crosspoint, DynaChip (Dyna Logic),
and Zycad (Gatefield) entered the industry. Zycad had had a certain experience

1 Basic Knowledge to Understand FPGAs 17

as an EDA vendor based on logic emulators, but sold this project later. In this
era, four major leading companies such as Xilinx, Altera, Actel, and Quicklogic
grew steadily. Crosspoint and DynaChip canceled their projects. Crosspoint was
established in 1991, and it was the last established vendor of anti-fuse FPGAs. In
1991, it applied the basic patents and announced its products, but closed in 1996.
Crosspoint FPGA used amorphous silicon anti-fuse for through-holes between
aluminum layers to form user-programmable gate array. The finest logic cells
with a pair of transistors were used to realize similar density of integrity as
gate arrays. This type of programmable devices never appeared again. In the
late 1990s, Xilinx and Altera became so strong that there were almost no new
FPGA vendors. Instead, there were a lot of venture companies for dynamically
reconfigurable coarse-grained reconfigurable devices. However, most of them
have vanished, and none has achieved a big success.

2000s

(1) Million-gate era, and becoming a system LSI:
In the 2000s, FPGA became a system LSI. Altera’s soft-core processor Nios is
a processor IP supported by the vendor. Altera also announced “Excalibur,” the
first FPGA with hard-core processor (Fig. 1.11). Excalibur integrated an ARM

EXCALIBUR"

Fig. 1.11 First SoC FPGA excalibur

2)

T. Sueyoshi

processor (ARM922 with peripherals) and an FPGA into a chip. On the other
hand, Xilinx supported MicroBlaze as a soft-core processor and commercial-
ized a PowerPC embedded FPGA core (Virtex II Pro). For a system LSI, a
high-performance interface is important. So, FPGAs also provided serializer—
deserializer (SERDES) and low-voltage differential signal (LVDS) for high-
speed serial data transfer. In order to cope with the computational performance
requirements for image processing, dedicated computation blocks of multipli-
ers or multipliers + adders were embedded. Many-input logic blocks with high
performance and density of integration were also introduced. However, such
hard IPs are wasteful if unused, so multi-platform (or subfamily) with vari-
ous product lineups for different target application were provided. For example,
Altera introduced new products every two years: Stratix (2002, 130nm), Stratix
11 (2004, 90 nm), Stratix I1I (2006, 65 nm), and Stratix IV (2008, 40 nm). In 1995,
FLEX10K supported 100,000 gates and worked with a maximum of 100 MHz
clock. In 2009, Stratix IV E had 8400,000 gates + DSP blocks corresponding
to 1,5000,000 gates and was operational with a 600-MHz internal clock. The
number of gates was multiplied 150 times. In the case of Xilinx, Virtex II Pro
(2002, 130nm) changed every two years with Virtex-4 (2004, 90 nm), Virtex-5
(2006, 65nm), and Virtex-6 (2009, 49 nm). During that era, logic IC process
evolved every 2 years and FPGAs quickly followed that trend.

New vendors in the 2000s:

Two basic patents, Freeman’s patent and Carter’s patent which had been a great
barrier for newcomers, expired in 2004 and 2006, respectively. Some new ven-
dors then took the opportunity and entered the FPGA industry. SiliconBlue Tech-
nologies, Achronix Semiconductor, Tabula, Abound Logic (former M2000), and
Tier Logic entered at that time.

SiliconBlue focused on the power consumption which is the weak point of con-
ventional FPGAs and announced ultra-low-power iCE65 family for embedded
application using TSMC 65nm low leak process. It is an SRAM-based FPGA
with embedded non-volatile configuration memory, achieving an operational
power divided by 7 and a standby power by about 1000. Achronix commer-
cialized high-speed FPGAs, the “Speedster family,” based on the research of
Cornel University, USA. The most important characteristic is the token passing
mechanism with asynchronous circuits. A data token, which takes the role of
data and clock in a common FPGA, is passed by handshaking. The first product
SPD60 using TSMC 65 nm process achieved almost three times the throughput
of a common FPGA. The maximum throughput was 1.5 GHz.

Tabula’s FPGA reduced the cost by dynamic reconfiguration using the same
logic cells for multiple functions. ABAX series by Tabula generates a multi-
ple frequency clock from the system clock, and uses it both for the internal
logic and dynamic configuration. By time multiplexing a fixed programmable
logic region, the effective logic area can be increased. Tabula introduced a new
“time” dimension into two-dimensional chips and called their products three-
dimensional FPGAs. Abound Logic announced “Rapter” with crossbar switches
and a scalable architecture, but closed in 2010. Tier Logic developed a novel

1 Basic Knowledge to Understand FPGAs 19

3D-FPGA whose SRAM configuration is formed with amorphous silicon TFT
technology on the CMOS circuits in collaboration with Toshiba; however, due
to fund shortage, the project was terminated.

2010s

(1) Technology advances and new trends:

In 2010, Xilinx and Altera started the shipping of 28 nm generation FPGAs that
can be considered to be more advantageous than ASIC chips. Both companies
added a mid-range product line to their high-end and low-end lines. For example,
Xilinx changed its fabrication from UMC to TSMC both in Taiwan, and all
products of the Xilinx 7 series (High-end Virtex-7, mid-range Kintex-7, and
low-end Artix-7) are fabricated with a 28 nm process for low power and high
degree of functionality. At that time, both Xilinx and Altera used TSMC for their
foundries. The followings are technology trends in 28 nm generation FPGA.

(a)

(b)

(©)

The trend of new generation SoC:

Around 2000, both Xilinx and Altera shipped the first generation of SoC
products with FPGA, but their lifetime was relatively short. On the other
hand, FPGAs with soft-core processors have been widely used. The demands
for embedded hardware cores grew, and by using advanced technologies,
CPU cores with enough performance capable of fulfilling such demands
could be embedded. This promoted FPGAs for SoC, providing a 32bit ARM
processor and enhanced 1/O. They are called SoC FPGA, programmable
SoC, or SoPD (System on Programmable Device). For example, Xilinx
introduced a new family Zynq-7000 which integrates an ARM Cortex-A9
MPCore and the 28 nm 7 series FPGA programmable logic. Altera’s new
product, “SoC FPGA,” integrated dual-core ARM Cortex-A9 MPCore and
FPGA fabric into a device. A representative example is the Cyclone V SoC.
Partial reconfiguration:

Partial reconfiguration is a functionality which reconfigures a part of an
FPGA, while others are still under operation. The functions can be updated
without stopping the system. Xilinx started to support this function in their
high-end FPGA devices from Virtex-4 with its EDA tool (after ISE12).
Altera also started to support this feature from Stratix V. Since the major two
vendors started to support partial reconfiguration in their tool, this technique
is becoming widely spread.

3D-FPGA (2.5D-FPGA):

Xilinx shipped multi-chip products placing multiple FPGAs on a silicon
interposer with stacked silicon interconnect. It is called the 2.5D implemen-
tation. Unlike the 3D implementation of multiple chips with TSVs, whose
cost tends to be high, 2.5D can mount chips without TSVs. Virtex-7 2000 T
with TSMC 28 nm HPL process integrated 200 million logic cells corre-

20 T. Sueyoshi

sponding to the largest ASIC with 68 billion transistors and 20,000,000
gates.

(d) FPGAs for automobiles:
Xilinx extended the Artix-7 FPGA and shipped XA Artix-7 FPGA which
fully satisfies the AEC-Q100 standard for automobile. XA Artix-7 comple-
ments the programmable SoC XA Zyng-7000. Furthermore, the authenti-
cation of third-party tools is undergoing to satisfy the ISO-26262 standard.
Altera and Lattice also tackle automobile solutions.

(e) C language design environment:
Recently, C language design environments have become popular in FPGA
design. Xilinx Vivado HLS can translate the hardware description in C, C++,
and System C to devices directly without RTL description. It can be used
both from ISE and Vivado. On the other hand, Altera aggressively introduces
the OpenCL environment. It is a C-base programming language running on
various platforms: CPU, GPU, DSP, and FPGA and allows Altera’s FPGAs
to be used as hardware accelerators.

(f) Others:
In order to expand the I/O bandwidth of FPGAs with optical interfaces,
optical FPGAs have been introduced. Radiation-hardened FPGAs are also
being developed.

(2) The road map of process technology for FPGA:

After the 28 nm generation, Xilinx presented the 20 nm FPGA Kintex UltraScale,
and the Virtex UltraScale provided a new architecture. The largest series Virtex
UltraScale is corresponding to an ASIC with 50,000,000 gates. All of UltraScale
devices use TSMC 20 nm process, but high-end Virtex UltraScale use the TSMC
16 nm FinFET. On the other hand, Altera shipped the Arria 10 for next-generation
FPGAs, the “Generation 10” devices, and announced Stratix 10 FPGAs. They
are all SoCs with embedded processors. Generation 10 devices are fabricated by
Intel’s 14 nm generation FinFET and TSMC 20 nm technologies. The high-end
Stratix 10 can work at 1 GHz clock.

Logic IC process advances to the next generation every 2 years. The Intel processor
is a representative example of such evolution; however, since the 2000s, FPGAs
mostly caught up with that pace. On the other hand, ASICs followed the advances
until the early 2000s and stalled for about 10years at 130-90 nm, except for some
special applications such as game machines. As shown in Fig. 1.12, FPGAs have
been fabricated along with the technology road map. The pace is more than that of
general-purpose processors. FPGA will use 28 nm, 20nm, and 16/14 nm processes
and will get a similar competitive performance to ASIC with 130nm, 90nm, or
65 nm, two or three generations behind.

(3) Oligopoly and industry restructuring:
In 2010, oligopoly continued in the FPGA industry. Major FPGA vendors, Xil-
inx and Altera, occupy more than 80% of the shares, and other parts are shared
between Lattice and Actel. Actel, at the fourth place in the industry, was acquired

1 Basic Knowledge to Understand FPGAs 21

*FinFET Technology
10 nm* 10 nm*

14 nm* G hed 3 . 14 nm*
ap reached 3 generations Process technology of major k

20 nm when FPGA used 40nm in 2008. 20 nm
28 nm 28 nm
32nm \ 32nm
40 nm Gap appeared when 40 nm
45 nm FPGA used 90nm in 2005. 45 nm
The gap of technology is widen.
65 nm \ 65 nm
90 nm 90 nm
130nm Process technology of major ASICs 130nm
180 nm 180 nm

T T T
2011 2012 2013 2014 and later
[Altera Datasheet (Each first product)]

T T T T T T
2002 2003 2004 2005 2006 2007 2008 2009 2010

Fig. 1.12 Process road map of FPGA and ASIC

by Microsemi in 2010, and ships flash and anti-fuse non-volatile FPGAs as
Microsemi FPGA.

Among the FPGA vendors established in the 1980s, Quicklogic focused on
anti-fuse FPGAs, but it changed its strategy and has produced customer spe-
cific standard products (CSSP) for specific custom fields. CSSP is not an all-
programmable product, but only a part of the chip is programmable. On the other
parts, a lot of standard interface circuits are mounted to cope with customers’
needs. Also, Atmel’s FPGA technology is mostly combined with their AVR con-
trollers, and they withdrew from FPGA industry. Among the new FPGA vendors
established in the 2000s, SiliconBlue was acquired by Lattice, and Lattice intro-
duced a new line of the iCE40 family with a 40 nm process. Tabula which pro-
posed alow-cost dynamic reconfiguration finished its projects in March 2015. On
the other hand, Achronix produced the Speedster22i FPGA family with Intel’s
22 nm tri-gate process technology in 2015.

In the spring of 2016, the semiconductor industry entered a great restructuring
era, and large-scale M&As have been carried out. The FPGA industry was natu-
rally involved. Intel acquired the major FPGA vendor Altera in June 2015. The
total operation reached 167 billion dollars. It was more than the amount of yearly
sales of Altera, the largest scale in the FPGA history. Intel aims to occupy the
market of data center and IoT by the integration of processors and FPGAs. For
this purpose, Intel selected Altera’s FPGA as an essential technology.

On the other hand, Qualcomm and Xilinx announced a strategic cooperation
contract. Both companies support solutions for data center with ARM proces-
sors for servers and FPGA technologies. They focus on the basic technology

22 T. Sueyoshi

of cloud computing including big data analysis and data storage. Furthermore,
Xilinx announced a multi-year strategic cooperation contract with IBM. By com-
bining Xilinx FPGAs with IBM Power Systems and using the combination as an
accelerator for specific applications, a highly energy efficient data center can be
produced. Such systems are suitable for machine learning, network virtualiza-
tion, high-performance computing, and big data analysis. They try to compete
against the “Catapult” of Microsoft (in collaboration with Altera and Intel) with
such strategic cooperation [5].

References

1. V. Betz, J. Rose, A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs, (Kluwer
Academic Publishers 1999)

2. Z. Kohavi, Switching and Finite Automata Theory, 2nd edn. McGraw-Hill (1978)

3. S.D. Brown, RJ. Francis, J. Rose, Z.G. Vranesic, Field-Programmable Gate Array, (Kluwer
Academic Publishers 1992)

4. S.M. Trimberger, Field-Programmable Gate Array Technology, (Kluwer Academic Publishers
1994)

5. A. Putnam et al., A reconfigurable fabric for accelerating large-scale datacenter services, in
ACM/IEEE 41st International Symposium on Computer Architecture (ISCA), (2014), pp. 13-24

Chapter 2 ®)
What Is an FPGA? St

Masahiro Iida

Abstract An FPGA is a programmable logic device, which is a type of integrated
circuits that can be used to implement any digital circuit, and so the key technique
is how to make programmable ‘hardware’ devices. After the brief introduction of
the structure of traditional island-style FPGAs, the technology for programmable
devices: antifuse, EEPROM, and SRAM is explained in detail. Then, logic circuits
representation with product term, lookup table (LUT), and MUX-type basic logic
element are introduced.

Keywords Island-style FPGAs + Antifuse - EEPROM + SRAM product term
Lookup Table (LUT) - MUX-type basic logic element

2.1 Components of an FPGA

An FPGA is a programmable logic device, which is a type of integrated circuits that
can be used to implement any digital circuit. The name of FPGA originates from the
fact that a user can use a GATE ARRAY that is PROGRAMMABLE on the FIELD
of any workplace. However, the structure of an FPGA is not such as spreading gates
all over a silicon die.

Figure 2.1 shows the structure of a typical island-style FPGA. The basic part of
an FPGA is roughly divided into three parts. The first one consists of the logic ele-
ments (the logic block: LB) that realize logic circuits. The second is the input/output
elements (the input/output block, IOB) which input and output signals to and from
outside. The third is the wiring elements (the switch block, SB, and the connection
block, CB) connecting LBs and IOBs. Other than that, there are a clock network, a
configuration/scan chain, and a test circuit. Commercial FPGAs also contain circuits

M. lida (X))
Kumamoto University, Kumamoto, Japan
e-mail: iida@cs.kumamoto-u.ac.jp

© Springer Nature Singapore Pte Ltd. 2018 23
H. Amano (ed.), Principles and Structures of FPGAs,
https://doi.org/10.1007/978-981-13-0824-6_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0824-6_2&domain=pdf

24 M. lida

1/0 block (I0B)

L Switch block (SB)

Logic block(LB)

Connection block (CB)

~ Routing channel

Fig. 2.1 Overview of a traditional island-style FPGA [1, 2]

of specific functions such as processors, block memories, multipliers. The outline of
each element is shown below. More details are explained later in Chap. 3.

Logic Element There are three major program logic implementation schemes,
such as the lookup table (LUT), the multiplexer (MUX) and the product term
logic! which is used from the era of generic array logic (GAL). Either method
consists of a programmable part that can be used to realize any logic circuit, a
circuit that holds logic values such as flip-flop (FF) and selectors.

Input/Output Element It is a block that connects I/O pins and internal wiring
elements. It also has some control circuits such as pull-up, pull-down, input/output
directions, slew rate, open drain. In addition, it contains a circuit for holding values
such as flip-flops. In commercial FPGAs, it several standards are supported, such
as LVTTL, PCI, PCle, and SSTL which are single-ended standard I/Os and LVDS
of differential standard I/O.

Wiring Element It consists of wiring channels, connection blocks (CB), and
switch blocks (SB) at the connection between logical blocks and between logical
blocks and I/O blocks. Besides the island style (shown in Fig. 2.2) arranged in
a lattice pattern, there are wiring channels of hierarchical structures, and those
constituting H-trees. Each switch is programmable, and it is possible to form any
wiring route by using the built-in wiring resources.

Other Elements The logical functions and connection relations of all logical
blocks, 1/0 blocks, switch blocks, and connection blocks are determined by the
configuration memory values. The configuration chain is a path to sequentially
write the configuration data bits to all configuration memory modules. Basically,
the configuration data are serially transferred, and both set and read back are pos-
sible. Besides the configuration chain, there are other device-scale networks such

In Boolean logic, a product term is a conjunction of literals, where each literal is either a variable
or its negation. A product term logic means an AND-OR array structure.

http://dx.doi.org/10.1007/978-981-13-0824-6_3

2 What Is an FPGA? 25

as the scan path and the clock network. Others include circuits that support LSI
testing, embedded circuits for dedicated functions such as embedded processors,
block memories, and multipliers.

2.2 Programming Technology

As mentioned above, the circuit on the FPGA is controlled by a programmable switch.
This programmable switch can be made using various semiconductor technologies.
So far, EPROM, EEPROM, flash memory, antifuse, and static memory (SRAM) have
been considered. Among these technologies, the flash memory, antifuse, and static
memory are three types of programming technologies widely used in modern FPGAs.
In this section, they are compared and summarized, regarding their advantages and
disadvantages.

2.2.1 Flash Memory

The Principle of Flash Memory The flash memory is a kind of electrically erasable
programmable read-only memory (EEPROM), which is classified as a nonvolatile
memory. Figure 2.2 shows the structure of the flash memory. Although the flash
memory has roughly the same structure as a common MOSFET device, it has a
distinctive feature where the transistor has two gates instead of one. The control gate
at the top is the same as other MOS transistors, but below there is a floating gate.
Normally, this floating gate is formed of a polysilicon film and becomes a floating
gate electrode in an insulator (SiO;) that is not connected to anywhere. Because the
floating gate is electrically isolated by its insulating layer, electrons placed on it are
trapped until they are removed by another application of electric field.

The flash memory can be classified into two types depending on the writing
method. They are of NAND type and NOR type. As a feature, the write of the
NAND type is a voltage type requiring a high voltage and the NOR type is a current

floating gate polysilicon
control gate (G)
drain (D) Sio, (insulator)
source(S) 9 ? 2 control gate (G)
- 7 1
2 / x_J /L} 2 1
b -
source (S) substrate drain(D)
metal n diffusion p substrate

Fig. 2.2 Flash memory structure

26 M. Iida

type requiring a large current. Hereafter, the principles and operations are explained
using the NAND-type flash memory as an example.

In the case where the floating gate is not charged before writing, it is considered
as a depletion type in which the current is flowing even at zero bias, as shown in Fig.
2.3a. When the floating gate is charged after writing as shown in (b), it becomes an
enhancement type in which there is no current at zero bias in the control gate. By
charging the floating gate, the voltage is changed when the current flows, making the
state ‘0’ and state ‘1°. If there is an electric charge in the floating gate, current begins
to flow even when the voltage applied to the control gate is low voltage (about 1 V);
however, in the absence of electric charges, no current flows unless a relatively high
voltage (about 5 V) is applied.

When the floating gate is charged, since the electric charge does not have a route
to escape, it keeps its state permanently. In order to store electric charges in an
unconnected gate, electrons are injected into the floating gate as a tunnel current by
applying a high voltage between the drain and the control gate. When erasing, as
shown in Fig. 2.3c, by applying a high voltage to the source, electrons in the floating
gate are extracted as a tunneling current.

In addition, each bit of a general flash memory can be separately written, but at
the time of erasing, it is performed collectively on a block basis.

V,g(High voltage)

control gate (G) control gate (G)
source (S) T drain (D) source (S) T drain (D)
A Q0 00

(b) hold state

A 4

Id
V,ro(High voltage)
enhancement type (> control gate (G)
. source (S) | l drain (D)
depletion type
.0 |
0 Ve

(c) erase state

(a) program state

Fig. 2.3 Flash memory principles

2 What Is an FPGA? 27

floating gate (common)

- l -

word line \

program signal control gate (common)

Fig. 2.4 Flash programmable switch

Programmable Switch Using Flash Memory Next, programmable switches using
the flash memory in FPGAs are described by taking the Actel’s ProASIC series [3—5]
as an example.”

Figure 2.4 shows the structure of a programmable switch using a flash memory.
This switch is made of two transistors: the first one, on the left side, is a small transistor
to write/erase the flash memory. The second, on the right side, is a large transistor
which acts as a switch to control the connection of the user’s circuit implemented on
FPGA. The control gate and the floating gate are shared between these two transistors,
and the injected electrons within the programming switch directly determine the state
of the user’s switch. Having dedicated write/erase transistors in this manner not only
restricts the connection of switches for users, but also makes programming easier
because it is independent of user signals.

Actual programming of NAND-type flash memories is performed using tunneling
current as follows [3]. First, the source and drain of the programming transistor
are supplied with 5.0 V. Next, when the control gate is supplied with —11.0 V,
electrons flow in and the switch turns on. During normal operations, the control gate
voltage holds at 2.5 V. By doing so, the potential of the floating gate is maintained
approximately at the proper 4.5 V. For the erase operation (switch off), the source
and drain of the programming transistor are set to the ground level and the control
gate is set to 16.0 V. As a result, the floating gate during normal operations becomes
0V or less.

Cons and Pros of Programmable Switches Using Flash Memories The advantages
of a programmable switch using a flash memory are summarized as follows:

e Nonvolatile;
e Smaller size than SRAM;
e LAPU (Live At Power-UP: Immediate operation after power on) is possible;

2The ProASIC series is the first FPGAs using a flash memory and was originally released in 1995
as a product of the Zycad’s GateField division. Later in 1997, Zycad changed its firm name to
GateField and in 2000 was acquired by Actel, and this series then joined Actel’s lineup [6].

28 M. Iida

' ' . - tifuse
antifuse link antifuse polysilicon . an
l/ antifuse polysilicon

| \\ﬂ j

}ONO dielectric

n+ antifuse n+ antifuse 77 .<J contacts

L«
. 20nm diffusion diffusion
‘ -

2A > 2\«

Fig. 2.5 Polysilicon-type structure of PLICE

Reconfigurability;
Strong soft error resistance.

The disadvantages are as follows:

High voltage is required for rewriting;

e CMOS’s cutting-edge process cannot be used (flash process is not suitable for
miniaturization);

Restriction on the number of times it can be rewritten;

High on-resistance and load capacity.

2.3 Antifuse Technology

A switch using an antifuse [7] is initially in an open state (insulated). However, it
changes to the conducting state when it is burned out by applying a large current (in
this case, it is burned to connect). In other words, it is the reason why it is called
antifuse, because it acts in an opposite way to a fuse.*

Taking the Actel’s programmable logic interconnect circuit element (PLICE) [8]
and QuickLogic’s ViaLink [9, 10] as examples, we take a look at the structure and
features of the antifuse switch.

The structure of Actel’s antifuse switch PLICE is shown in Fig. 2.5.

PLICE adopts a structure in which polysilicon and n+ diffusion layer are used as
conductors and between them an oxide—nitride—oxide (ONO) dielectric is inserted as
an insulator. The ONO dielectric has a thickness of 10 nm or less, and it is possible
to make connections between the upper layer and the lower layer by applying a
voltage of about 10 V and a current of about 5 mA, as a standard. The size of the

3Up to 500 times for Actel’s ProASIC 3 series [4]. Whether this is enough or not depends on the
users and applications.

4The fuse is a component that protects a circuit from a current higher than the rated value, to prevent
accidents. It normally behaves as a conductor, but by cutting the current path by burning out with
its own heat (Joule effect) when the current is over the rating, it protects the target circuit.

2 What Is an FPGA? 29

. . 1
antifuse link metaalmorphous
silicon

ANw—" |

- Si0, Tungsten Plug
[; N |

7
> 2N« \metalz

Metal-to-Metal Antifuse

Tungsten
Plug Via

antifuse with metal 3
plug via

Silicon Substrate metal 2

Tungsten Plug Contact

Fig. 2.6 Metal-to-metal-type antifuse structure of ViaLink

antifuse itself is roughly the same as the contact hole.” The on-resistance of the ONO
dielectric-type antifuse is about 300-500 2 [1, 7].

On the other hand, the QuickLogic’s antifuse switch is also called a metal-to-
metal antifuse because it connects layers of wiring. Figure 2.6 shows the structure of
QuickLogic’s ViaLink. The ViaLink antifuse adopts a structure in which an amor-
phous silicon layer (insulator) and a tungsten plug (conductor) are placed between
the upper and lower metal wires. Like the polysilicon type, the size of the antifuse is
approximately the same as that of a contact hole. Also, the amorphous silicon layer
exhibits a relatively high resistance until it is programmed and is in an almost insu-
lated state. On the other hand, when program processing is performed by applying
a current, the state changes to a low resistance value almost equal to the intercon-
nection between the metal wirings. The on-resistance of ViaLink is roughly 50-80
2 (standard deviation 10 €2), and the program current is about 15 mA [1, 7].

Compared to the polysilicon type, there are two advantages of using the metal-to-
metal-type antifuse. The first one is its small area since metal wiring can be connected
directly. In the polysilicon type, even though the size of the antifuse itself is the same,
an additional region for connecting the metal wiring is absolutely necessary. The
second point is that the on-resistance of the antifuse is low. For these reasons, the
mainly used antifuses now are the metal-to-metal type.

In order to secure the device, it is necessary to take extra efforts such as encryption
for static memory-based FPGA because a configuration can be read back. On the
other hand, for the antifuse method, since there is no dedicated path at the time of
writing, reading by using the right path is impossible given the structure. In order
to read the configuration data, it is necessary to perform reverse engineering and
to judge the written contents from the state of the antifuse. However, an attempt
to reverse engineer a metal-to-metal-type antifuse FPGA by chemical etching will

31t is a hole provided to connect the gate and the upper layer wiring on the silicon substrate, or the
upper layer and the lower layer of the wiring. Via hole is almost a synonym. This term comes from
the PCB terminology.

30 M. Iida

cause the destruction of the antifuse via the only way to examine the state of each
antifuse is to cut in the cross section. However, since it is highly likely that other areas
of the chip will be destroyed, it can be said that it is practically impossible to extract
the circuit information written in the device. Therefore, the device has a remarkably
higher security when compared with the static memory-type FPGA described later.
Pros and Cons of Programmable Switches Using Antifuse The benefits of a pro-
grammable switch using an antifuse are summarized as follows:

Small size;

Low on-resistance and load capacitance;
Nonvolatile;

Reverse engineering is almost impossible;
Robust against soft errors.

The drawbacks are as follows:

Cannot be re-programmed;

In order to carry out the programming, 1-2 transistors per wire are required;
It needs a special programmer and takes time to program;

Cannot test write defects;

The programming yield is not 100%.

2.3.1 Static Memory Technology

Finally, we explain static memories used as programming technology. Figure 2.7
shows the structure of a CMOS-type static memory cell [11]. The diagram on the
left is the gate level circuit diagram showing the principle, and the diagram on the
right is the transistor level circuit diagram. The static memory consists of a positive
feedback loop (flip-flop) composed of two CMOS inverters and two pass transistors
(PT). Information is stored in the bistable state (0 and 1) of the flip-flop, and writing
is done via PT. The n-MOS type is used for PT.

An ordinary static memory is driven® by a word line (connected to the write signal
in this figure) that is generated from the address signals and can also be read via PT.
Therefore, the high level of the output of the memory cell becomes Vpp — Vin,!
which is amplified by the sense amplifier and outputted. However, since the FPGA
always needs reading, it is always outputted from the flip-flop rather than read through
the PT.

6 A normal static memory reads multiple bits (8 or 16 bits) on a word line determined by an address
all at once. At that time, it is also controlled by PT so that it will not collide with data from other
words. Here, the term ‘drive’ means to operate one-word line determined by the address.

7Vpp stands for Voltage Drain and is the supply voltage. In a CMOS circuit using a field effect
transistor (FET), since a power supply is connected to a drain terminal, such a name is used. Vth
is the threshold voltage. When the voltage applied to the gate (Gate) terminal exceeds this value, it
switches on and off.

2 What Is an FPGA? 31

VDD
¢ Write —q Write
Write ’ >O . qa J_ :”D_ J_
Data _|::_ 0O < ‘ Dataﬁ L Data
Bota__J | i ~

ol
o
Q

Fig. 2.7 Static memory principles

Many of the FPGAs using a static memory for programmable switches have a
lookup table (LUT) in the logic block and use a multiplexer or something similar to
switch the connection of the wirings. The lookup table is the memory itself storing
the truth table of the logical expression and is composed of a static memory of
several bits. On the other hand, a static memory is also used for switching a selector
to determine the connection of the multiplexer. Such an FPGA is generally called
an SRAM-type FPGA and is currently the mainstream device. The structure of the
LUT will be explained in Sect. 2.4.3.

Pros and Cons of Programmable Switches Using Static Memory The advantages
of the static memory are as follows:

e Advanced CMOS process can be used;
Reconfigurability;
No limit on the number of times of rewriting.

Also, the drawbacks are as follows:

Memory size is large;

Volatile;

Difficult to secure configuration data;
High sensitivity to soft errors;

High on-resistance and load capacity.

In this way, the static memory has many disadvantages compared to other pro-
gramming technologies; however, it overturns all the drawbacks in the single point of
‘being able to use CMOS advanced process.” Now, the static memory-based FPGA
is the process driver® of advanced CMOS process.

8 A process driver refers to a product category that leads a semiconductor process. In the past,
DRAMs, gate arrays, processors, and so on developed as state-of-the-art processes as products.
Currently, high-end processors and FPGAs are at the forefront of miniaturization of semiconductors,
and all the latest technologies are being introduced.

32 M. Iida

2.3.2 Summary of Programming Technology

Table 2.1 compares these the previously explained programming technologies [11].

The antifuse has low power consumption during standby time, and high speed
operation is possible thanks to the small on-resistance of the connection switch. Also,
since it is difficult to analyze the internal circuit, it is suitable for high confidential
use. However, since the circuit is fixed at the time of writing, circuit information
cannot be rewritten later. Also, it is difficult to miniaturize, and therefore the degree
of integration is low.

On the other hand, since the flash memory is rewritable and nonvolatile, LAPU is
possible. Since the static memory constructs one cell with a plurality of transistors,
the leak current per cell increases. On the other hand, since the flash memory con-
stitutes one cell with one floating gate transistor, the leakage current is structurally
small. In principle, this feature shows that higher integration is possible than static
memories, but the actual degree of integration is low. Furthermore, rewriting the
circuit information of the flash memory requires much higher energy than rewriting
the static memory. In other words, although the power consumption for rewriting
is large, this feature also has a secondary effect where the resistance to errors due
to radiation is high. As another feature, the flash memory has a drawback on the
limited number of rewriting (about 10,000 times). For this reason, it is not suitable
for devices that are required frequently or need dynamic reconfiguration.

An FPGA using a static memory operates by externally transferring circuit infor-
mation when power is turned on. There is no limitation on the number of rewriting of
circuit information in the static memory, and it can be rewritten any number of times.
Since the most advanced CMOS process can be applied for manufacturing, it is easy
to achieve higher integration and higher performance. On the other hand, since the
static memory is volatile, circuit information is lost and LAPU cannot be done if the

Table 2.1 Feature comparison of programming technologies

Flash memory Antifuse Static memory
Nonvolatile Yes Yes No
Reconfigurability Yes No Yes
Memory area Mid (1 Tr.) Small (none) Large (6 Tr.)
Process Tech. FLASH process CMOS CMOS process

process+Antifuse

ISP? Available None Available
Switch resistance (2) | 500-1,000 20-100 500-1,000
Switch capacitance 1-2 <1 1-2
({F)
Programing yield (%) | 100 >90 100
Lifetime 10,000 1 Infinity

4In System Programmability, circuit information can be rewritten while it is mounted on an equip-
ment

2 What Is an FPGA? 33

power supply is cut. Also, since the leakage current is large, the power consumption
during standby is large as well. In addition, there are disadvantages such as the risk
of errors due to radiation and security risks of stealing circuit information.

2.4 Logic Circuit Representation of FPGA

2.4.1 Circuit Implementation on FPGA

Hereafter, we how a design is implemented on FPGA using the majority vote circuit
depicted in Fig. 2.8.° It is a circuit that takes the majority vote out of three inputs, and
the LED glows when the result is true. In order to realize this, electronic components
such as push button switch, resistance, LED, FPGA are necessary. The circuit within
the dotted frame in Fig. 2.8 is implemented on FPGA.

Figure 2.9 shows the truth table and Karnaugh map of this majority vote circuit
with the logical formula after simplification. Since the part to be implemented on
FPGA is a logic circuit, it should be simplified so that it occupies less resources;
but, a design optimization similar to what is performed for an ASIC is not necessary.
Because the logic block of the FPGA adopts the LUT method, an arbitrary logical
function, up to the number of inputs, can be implemented. In the case of using the
product term method, it is necessary to express it in the product sum standard form.

In this explanation, it is assumed that the number of inputs of the logic block
is three. Therefore, the truth table in Fig. 2.9 can be realized with one logic block.
Figure 2.10 shows each part used to implement the above logical function on FPGA.
The input signals of the logic circuit enter from the I/O pads of the FPGA and are
inputted to the logic block through the internal wiring paths. In the logic block, the
output is determined based on the above truth table and goes back to the I/O pad
again through the wiring route. However, since the output signal needs to turn on the
LED outside the FPGA, a buffer is inserted in the output stage to improve the drive
capability.

The decomposed circuit shown in Fig. 2.10 is connected inside the FPGA, as
shown in Fig. 2.11. The circuit determines the path of a signal line by a switch that can
be programmed inside the FPGA and realizes a logic function with a programmable
memory, that is, an LUT or something similar.

2.4.2 Logical Expression by Product Term

Here, as an example of a product term where its principle is shown using a pro-
grammable logic array (PLA). Figure 2.12 illustrates the schematic structure of the
PLA.

9Detailed explanations of this circuit are omitted for now in order to focus on the concept of FPGAs.
More information will be provided later in the chapter.

34 M. lida

Fig. 2.8 Example of a majority vote circuit

Truth table
A B C|M
o0 1o 48
C 00 01 11 10
0O 1 010 —
0 1 11 0 11
1 0 0|0 1 5‘1 rI.I:;| 1i
1 0 1l1 S| | L
R M = AB + AC + BC
1 1 11
(a) Truth table of this majority (b) Karnaugh map of this majority
vote circuit vote circuit

Fig. 2.9 Truth table and Karnaugh map of this majority vote circuit

D rc
D rc
rc
=T D3 e
| E—
Routing wire in Routing wire | | Output buffer
10 pad FPGA Logic blocks (the major vote circuit) in FPGA and 10 pad

Fig. 2.10 Mapping of a majority vote circuit for FPGA

In the PLA, an AND array and an OR array are connected and each has a pro-
grammable connection as configuration. In the product term system, in order to
realize a desired circuit with fewer circuit resources, it is necessary to express the
logical function in a minimum sum-of-products (SoP) form, so the simplification of
the logic is very important in the design. The logic function expressed in the sum-
of-products form is decomposed into the logical product term and the logical sum
term which are, then, implemented in the AND array and the OR array, respectively.

2 What Is an FPGA? 35

Q o 0 i
; ° I—-ﬂ Connection block (CB) | | ==s==

H LL] |

fo}e . (1/0 block (1
: Logic block (LB) =

u V4 1

Fig. 2.11 Implementation of a majority vote circuit on FPGA

lq

— AND > OR

ninput J —sx array — array
signals

[Both AND and OR array are programmable]
— v

>
>

k product term outputs

m output signals

Fig. 2.12 Overview of PLA

Figure 2.13 shows the internal structure of the product term. Within the AND
array, the literal of the input signal and the input of each AND gate are connected by
a programmable switch. In the OR array, the output of the AND gate and the input
of the OR gate are also connected by a programmable switch. In general, in an AND
array, k logical product terms of literals with up to n inputs can be programmed.
In addition, the k outputs are inputted to the OR array of the next stage and it is
possible to program up to m logical sum terms of the k inputs. In the example shown
in Fig. 2.13, it is possible to implement up to four logical functions represented by
three-product sum-of-products form.

The majority vote circuit in the previous section is implemented by PLA, as shown
in Fig. 2.14. The rhombus at the intersection on the wiring represents a programmable
switch where the white ones represent when the switch is off, and the black color
indicates that the switch is on. In the AND array of this example, A and B are
inputted to the first AND gate, A and C are inputted to the second AND gate, B
and C are inputted to the third AND gate. Then, all the AND array outputs are

36 M. Iida

YR (R

A

JUU

In this case, it is possible to implement

up to four logical ANDs of three literals
in the AND array, and OR of all the
outputs in the OR array can be taken.

00 01 02 03

€ Programmable Switch

Fig. 2.13 Structure of PLA

Fig. 2.14 Implementation of M = AB + AC + BC

majority vote circuit by PLA
(a) Logic formula example

€ Switch ON
<& Switch OFF

(b) PLA expression \1 o1 02 03

connected to the OR gate on the left end of the OR array, so that the logical function
M = AB + AC + BC can be realized.

2 What Is an FPGA? 37

2.4.3 Logical Expression by Lookup Table

A lookup table (LUT) is usually a memory table of 1 word 1 bit, and the number
of words is determined according to the number of bits of the address. In FPGAs,
SRAM is often employed for memory.

Figure 2.15 shows the schematic of a lookup table. This example shows a 3-
input LUT, and it is possible to implement arbitrary logic functions of three inputs.
In general, the k-input LUT is composed of 2% bit SRAM cells and a 2k-input
multiplexer. The input of the LUT is the address itself of the memory table, and it
outputs 1 bit. The value of the word is determined according to this address. The
k-input LUT can realize a logical function of 2 powered by 2*. There are 16 kinds
of logic functions with k = 2, 256 kinds with k = 3, and 65,536 kinds with k = 4.

Figure 2.16 shows an implementation example for the majority vote circuit that
was explained in Sect. 2.4.1 with an LUT. In the LUT implementation, a truth table
is created according to the number of inputs of the LUT, and the function value
(column of ‘f”) is written to the configuration memory as it is. If the logic function

Example of 3-input LUT / 7 Y X \
X1 SRAM.,Ce”/— i
vy £ M—o
ot D
— L
M=o
Hardware o (M 5
* 23bit memory Cmoen,:(g):;atlon< M —;\r f
e 23 input selector V_l 1 e
Logic capability M
. 22:3—input logic functions K \E_l/ T MUXJ
Fig. 2.15 Overview of LUT
Fig. 2.16 Implementation of
mz;gjority votelc):iicu?t bay EU?F A B C f - i B A
0O 0 O 0 0
00 1|0 0 —iis}
0100 0 s
01 1] 1 D 1k '
1 00|0 0l e f
10 1] 1 gt
1101 1 j
11 1] 1 T

(a) Truth table (b) LUT

38 M. Iida

to be realized has more variables (literals) than the number of inputs to the LUT, it
is implemented using multiple LUTs. For this purpose, it is necessary to decompose
the logic function to logical functions equal to or less than the number of inputs of
the LUT. This method will be described in details later in Chap. 5.

2.4.4 Structure of Lookup Table

In Sect. 2.3.1, we have introduced the static memory outline. Here, we describe the
structure of the lookup table. We mainly focus on the structure of the LUT that is
adopted in Xilinx FPGAs, along with its historical evolution process.

Figure 2.17 shows the configuration of the static memory and LUT used for Xil-
inx’s initial FPGA. This memory cell is described in US Pat. No. 4,750,155 (Septem-
ber 1985, filed in 1988) [12] and US Pat. No. 4,821,233 (1988 application, established
in April 1989) [13], which is an invention of Hsieh from Xilinx Corporation.

The static memory in Fig. 2.17a is a 5-transistor structure which is not currently
used. Since the rewriting frequency of the LUT is low, pass transistors, that are nec-
essary for rewriting, can be reduced to prioritize the area over the speed. Figure 2.17b
is an example of a 2-input LUT based on this memory. The label ‘M’ stands for the
S-transistor static memory cell, illustrated in Fig. 2.17a. Since the static memory for
the LUT always outputs data, the LUT functions as an arbitrary logic circuit only by
selecting values by the inputs F0 and F1.

Next, Xilinx’s Freeman and his colleagues improved the configuration mem-
ory of the LUT so that it can be used as a distributed memory in the FPGA. This
improvement is described in US patent 5,343,406 (filed in July 1989, established in
August 1994) [14]. Figure 2.18 shows this structure wherein the memory configura-

(@) 5-Tr. SRAM cell

(b) 2-input LUT

Fig. 2.17 SRAM Cell and a basic structure of LUT

http://dx.doi.org/10.1007/978-981-13-0824-6_5

2 What Is an FPGA? 39

tion depicted in Fig. 2.18a, and another pass transistor is added to the static memory
of the above-mentioned 5-transistor structure to form independent write ports (W S
and d) to the normal configuration path (Addr and Data). When using it as a mem-
ory, FO and F'1, which are the same as the input signal when considered as an LUT,
are used. WS is a write strobe signal, and the external input signal Din is connected to
the d input, which is selected by the address through the demultiplexer in the upper
part of Fig. 2.18b. Reading is performed from the common output, as a conventional
LUT. Figure 2.18c represents the block diagram of a 3-input LUT and 8-bit RAM.

Furthermore, Fig. 2.19is animproved LUT where a shift register can be configured
in addition to the memory function. Also, an invention of Bauer from Xilinx, US
Patent 5,889,413 (filed in November 1996, approved in March 1999) [15]. In the
memory cell of Fig. 2.19a, two pass transistors for shift control are added. D;,,/ Pre —
m is the shift input from the external or previous memory. Also, the connection
relation is shown at the center of Fig. 2.19b. P H 11 and P H I2 are signals that control
the shifter operation. By applying these control signals with the timing waveform,
shown in Fig. 2.20, the shift operation is performed. Note that PHI1 and PHI2
are none-overlapping signals with opposite phases. When the lower pass transistor
is opened by P H 11, and the upper pass transistor is opened by P H 2, the output of
the preceding memory is connected to the input of the subsequent stage and the data
are shifted. Figure 2.19c¢ is a configuration diagram in the case of a 3-input LUT,
8-bit RAM, and 8-bit shifter.

Din
Addr Q
Data
A
d
(a) 2 port memory cell ws
Din—\
W Vo ,
S0000000 e
ws
- - = T 1 ——]
F2—FO% / Fo
— -
(c) 3-input LUT/8 bit RAM [Do—x

(b) 2-input LUT/4 bit RAM

Fig. 2.18 Configuration for using LUT as memory

40 M. Iida

PHI1 o\ Din

Addr — m —

Data .
PHI2] [> ° T

L IE I ;
Din/Pre-m WS : I | I
“ -
PHI2 |]]]
d J L= T T [
(@) 2 port memory cell with shifter
PHI1 I I]]

T

PHI1 Fo—g—— |
PHI2 I
F2-FOSR\ / .
L x
(c) 3-LUT/8bit RAM/8bit shifter (b) 2-LUT/4bit RAM/4bit shifter

Fig. 2.19 Configuration for using LUT as memory and shift register

i

PHI2

J

PHI1

£

it i
it i

Bt R

Fig. 2.20 Control timing for shift operation

Furthermore, the current LUT is clustered and adaptive,lo and realizes a structure
that uses multiple LUTs of a small number of inputs as one large LUT. Details
about the structure of logical blocks, clustering of LUTs, and adaptive LUT will be
described in details in the next chapter.

10For example, a method of using an 8-input LUT that can be divided in multiple small LUT clusters
like two 7-input LUTs, or a 7-input LUTs and two 6-input LUTs.

2 What Is an FPGA? 41

A0 F1 F1

Al w A1 D ’
SA W FoOSA—T
BO M BO

g g
Jo— @
S3
S1 51
(a) Structure of basic logic cell (b) Implement by using pass-tr. logic

Fig. 2.21 Logic cell using MUX in ACT1

2.4.5 Logical Expression by Other Methods

In this section, we describe the logical representation of the structure of logical blocks
other than the above. As a representative method, other than the product term method
and the lookup table method, there is the multiplexer method. As a representative
example, ACT1 FPGA [16, 171" is used for explanation.

Figure 2.21 illustrates the logic cell structure of ACT1. The logic cell (shown
Fig. 2.21a) consists of three 2-input 1-output multiplexers (2-1 MUX) and one OR
gate and can implement up to 8 logic circuits with 1 input. It is possible to implement
NAND, AND, OR, and NOR gates up to four inputs and also invert the inputs and
make some composite gates (such as AND-OR and OR-AND), latches, flip-flops
with this cell.

Unlike the product term and the lookup table, this logic cell cannot implement all
logic circuits of a given number of inputs. It combines several fixed circuits like ASIC
libraries and assembles the desired circuit. ACT 1 adopts 2-1 MUX as its minimum
unit. Table 2.2 represents the logic functions that can be implemented with a 2-1
MUX. The table shows the name, logical expression, and the standard multiply—add
form of each function. In addition, the input value of the 2-1 MUX when realizing
the function is also included. That is, by connecting it to the input shown in the table,
it is possible to implement the logic function.

The 2-1 MUX can be considered as a 3-input 1-output logic cell. In principle, a
3-input and 1-output logic cell (e.g., 3-LUT, etc.) can express logic functions of 2
powered by 2° = 256 kinds of circuits. However, this 2-1 MUX-based cell can only
represent 10 types circuits as shown in the table. Still, by combining multiple MUXGs,
any logic circuit can be implemented. Figure 2.22 shows the function wheel used
for searching logic functions that can be realized with a 2-1 MUX. Since basic logic
elements such as NOT gates, AND gates, and OR gates are included, it is obvious that

"'The production of the ACT series has already been stopped, and they are currently unavailable.

42 M. Iida

Table 2.2 Logic functions that can be represented by 2-1 MUX

2-1 MUX input
Functions F Canonical form A0 Al SA
1. v F=0 F=0 0 0 o0
2. NORI-1(A,B) F=A+B F=48 B 0 A
3. NOT(A) F=4 F=AB+4B 0 1 A
4. AND1-1(A,B) F=AB F=AB A 0 B
5. NOT(B) F=B F=4B+ 4B 0 1 B
6. BUF(B) F=B F =AB+ AB 0 B 1
7. AND(A,B) F =AB F = A4B 0 B A
8. BUF(A) F=4 F = AB+ AB 0 A 1
9. OR(A,B) F=A+B F=AB+AB + AB B 1 A
10. 1 F=1 F=AB+AB+ AB + AB 1 1 1
Fig. 2.22 Function wheels
used to assign logic to 2-1
MUX
A0
Al
SA

all logic circuits can be made.!? The function wheel in this figure is used to collate
the logic function appearing in it when decomposing the logical function with the
Shannon expansion performed in the EDA tool. The logical functions shown in this
wheel can be realized with one MUX.

Let us take a look at the method to implement the previous majority vote circuit
with aMUX-type logic cell. Figure 2.23 shows how to implement the logical function
M =AB+ AC + BC.

First of all, the Shannon expansion of the logical expression with the variable A
gives the partial functions F'1 and F2. When these two functions are applied to the
function hole, they correspond to AND and OR, so each of them can be realized with
one MUX.

The partial function F1 is a 2-input logical product function. If the variable B is
‘1°,°1’ is outputted. When the variable B is ‘0’, no matter what the variable C is, ‘0’

12 A set of logical functions that can create all logical functions is called a universal logical function
set. In the universal logical function set, there are also sets of only gates such as NAND and NOR
besides the NOT, AND, and OR.

2 What Is an FPGA? 43

IOI

F=AB+AC+BC c
=A-F2(A=1)+A-F1(4=0) B
— A-(B+C)+4-(BC) D c

F2=1-B+1-C+BC=B+C 1
F1=0-B+0-C+BC =BC B

Fig. 2.23 Implementation of majority vote circuit by MUX

is outputted. When this is realized by MUX, it is only necessary to switch between
‘0’and C by using B as a selection signal (of course, B and C may be reversed). This
can be seen at the connection No.7 in Table 2.2. Likewise, the partial function F2
can also be realized with a MUX.

On the other hand, the variable A is inputted to the switching signal terminal
of the last stage MUX from the input of the OR gate. That is, when A is ‘1’, the
output of F2 is selected, and when A is ‘0, the output of F1 is selected. The logical
expression M is then completely implemented.

Summary of Logic Cells of Other Methods Next, let us summarize the advantages
and disadvantages of MUX-type logic cells.

First, the advantage is that one logic cell can be structured with a small number
of elements if realized by using a pass transistor, as depicted in Fig. 2.21b. Fur-
thermore, although many transistors, such as a memory for storing a logic function
and a memory for determining a connection, are required for the LUT, a memory is
unnecessary for the wiring connection because ACT1 employs an antifuse program
switch. Therefore, the logic cell of ACT1 has a remarkably smaller area than the
other logic cells.

On the other hand, as a disadvantage, ACT1 has high versatility where latches
and flip-flops can be structured with logic cells; however, this negatively impacts
the performance, especially in terms of degree of integration. The current high-
performance FPGAs have dedicated flip-flops circuits and do not make use of logic
cells. Otherwise, the degree of integration would be reduced.

There is also a disadvantage that the EDA tool becomes complicated when MUX
is used for the logic cell. LUTs or similar methods can be implemented by only
dividing the logic into a logical function of a predetermined number of inputs. How-
ever, the MUX has to decide whether it can be implemented after dividing it into
a logical function of a fixed number of inputs. For logic functions that cannot be
implemented, re-division and logic recombination have to be performed. This prob-
lem does not matter when the logic scale is small; but, it cannot be ignored for

44 M. lida

large-scale circuits. Furthermore, because antifuses are employed, logic cells cannot
be used for applications requiring reconfiguration. In this fashion, the production of
ACT1 was gradually stopped due to the limited use, and now it disappeared from the
product lineup. Originally, logic cells that utilized the logic structure of logic cells
themselves, such as the MUX type, had better area efficiency than logic cells using
memories. They were also superior in terms of delay performance. However, it was
not necessarily a big success in commercial terms, and currently there are no prod-
ucts that adopt MUX-type logic cells in commercial FPGAs. At the research level,
researchers are also developing logic cells with a performance equal to or better than
that of LUTSs, such as COGRE [18] and SLM [19].

The key feature of COGRE is its architecture, which helps to reduce the logic
area and the number of configuration memory bits. The COGRE cell can only repre-
sent high-appearance ratio logic patterns. Moreover, the logic functions are grouped
on the basis of the NPN-equivalence class. The investigations’ results showed that
only small portions of the NPN-equivalence class could cover large portions of the
logic functions used to implement circuits. Furthermore, it was found that the NPN-
equivalence classes with a high-appearance ratio can be implemented by using a
small number of AND gates, OR gates, and NOT gates. On the basis of this observa-
tion, 5-input and 6-input COGRE architectures were developed, composed of several
NAND gates and programmable inverters.

Moreover, a compact logic cell, named SLM [19], was proposed based on the
characteristics of partial functions from Shannon expansion. SLM logic cells use
much less configuration memory than used for LUTs with the same input width,
without significantly degrading logic coverage.

References

1. S. Brown, J. Rose, FPGA and CPLD architectures: a tutorial. IEEE Des. Test Comput. 13(2),
42-57 (1996). https://doi.org/10.1109/54.500200

2. T. Sueyoshi, H. Amano (eds.), Reconfigurable System (in Japanese) (Ohmsha Ltd., 2005).
ISBN-13:978-4274200717

3. T. Speers, J.J. Wang, B. Cronquist, J. McCollum, H. Tseng, R. Katz, 1. Kleyner, 0.25 mm
FLASH Memory Based FPGA for Space Applications (Actel Corporation, 2002), http://www.
actel.com/documents/FlashSpaceApps.pdf

4. Actel Corporation, ProASIC3 Flash Family FPGAs Datasheet (2010), http://www.actel.com/
documents/PA3_DS.pdf

5. R.J. Lipp, et al., General Purpose, Non-Volatile Reprogrammable Switch, US Pat. 5,764,096
(GateField Corporation, 1998)

6. Design Wave Magazine, FPGA/PLD Design Startup2007/2008, CQ (2007)

7. ML.J.S. Smith, Application-Specific Integrated Circuits (VLSI Systems Series) (Addison-Wesley
Professional, 1997). ISBN-13: 978-0201500226

8. Actel Corporation, ACT1 series FPGAs (1996), http://www.actel.com/documents/ACT1_DS.
pdf

9. QuickLogic Corporation, Overview: ViaLink, http://www.quicklogic.com/vialink-overview/

10. R. Wong, K. Gordon, Reliability mechanism of the unprogrammed amorphous silicon antifuse,

in International Reliability and Physics Symposium (1994)

https://doi.org/10.1109/54.500200
http://www.actel.com/documents/FlashSpaceApps.pdf
http://www.actel.com/documents/FlashSpaceApps.pdf
http://www.actel.com/documents/PA3_DS.pdf
http://www.actel.com/documents/PA3_DS.pdf
http://www.actel.com/documents/ACT1_DS.pdf
http://www.actel.com/documents/ACT1_DS.pdf
http://www.quicklogic.com/vialink-overview/

2 What Is an FPGA? 45

11.

12.

13.

14.

15.

16.

17.
18.

19.

I. Kuon, R. Tessier, J. Rose, FPGA Architecture: Survey and Challenges (Now Publishers,
2008). ISBN-13: 978-1601981264

H. Hsieh, 5-Transistor memory cell which can be reliably read and written, US Pat. 4,750,155
(Xilinx Incorporated, 1988)

H. Hsieh, 5-transistor memory cell with known state on power-up, US Pat. 4,821,233 (Xilinx
Incorporated, 1989)

R.H. Freeman, et al., Distributed memory architecture for a configurable logic array and method
for using distributed memory, US Pat. 5,343,406 (Xilinx Incorporated, 1994)

T.J. Bauer, Lookup tables which double as shift registers, US Pat. 5,889,413 (Xilinx Incorpo-
rated, 1999)

Actel Corporation, in ACT! Series FPGAs Features 5V and 3.3V Families fully compatible
with JEDECs (Actel, 1996)

M. John, S. Smith, Application-Specific Integrated Circuits (Addison-Wesley, 1997)

M. Iida, M. Amagasaki, Y. Okamoto, Q. Zhao, T. Sueyoshi, COGRE: a novel compact logic
cell architecture for area minimization. IEICE Trans. Inf. Syst. E95-D(2), 294-302 (2012)

Q. Zhao, K. Yanagida, M. Amagasaki, M. lida, M. Kuga, T. Sueyoshi, A logic cell architecture
exploiting the Shannon expansion for the reduction of configuration memory, in Proceedings
of 24th International Conference on Field Programmable Logic and Applications (FPL2014),
Session T2a.3 (2014)

Chapter 3 ®)
FPGA Structure St

Motoki Amagasaki and Yuichiro Shibata

Abstract Here, each component in FPGAs is introduced in detail. First, the logic
block structures with LUTs are introduced. Unlike classic logic blocks using a couple
of 4-input LUTs and flip-flops, recent FPGAs use adaptive LUTs with more num-
ber of inputs and dedicated carry logics. Cluster structure is also introduced. Then,
routing structure, switch block, connection block, and I/O block which connect basic
logic blocks are explained. Next, macromodules which have become critical compo-
nents of FPGA are introduced. Computation centric DSP block, hard-core processor,
and embedded memory can compensate the weak point of random logics with logic
blocks. The configuration is inevitable step to use SRAM-style FPGAs. Various meth-
ods to lighten burden are introduced here. Finally, PLL and DLL to deliver clock
signals in the FPGA are introduced. This chapter treats most of FPGA components
with examples of recent real devices by Xilinx and Altera (Intel).

Keywords Adaptive LUT structure - Carry logic - Logic cluster + Routing
structure + Switch block - Connection block - I/O block - DSP block + Hard-core
processors * Embedded memory + Configuration method -+ PLL - DLL

3.1 Logic Block

FPGA consists of three basic components: programmable logic element, pro-
grammable I/O element, and programmable interconnect element. A programmable
logic element expresses a logic function, a programmable I/O element provides an
external interface, and a programmable routing element connects different parts.
There are also digital signal processing (DSP) units and embedded memory to
increase the calculation ability, and phase-locked loop (PPL) or delay-locked loop

M. Amagasaki (B<)
Kumamoto University, Kumamoto, Japan
e-mail: amagasaki@cs.kumamoto-u.ac.jp

Y. Shibata
Nagasaki University, Nagasaki, Japan
e-mail: shibata@cis.nagasaki-u.ac.jp

© Springer Nature Singapore Pte Ltd. 2018 47
H. Amano (ed.), Principles and Structures of FPGAs,
https://doi.org/10.1007/978-981-13-0824-6_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0824-6_3&domain=pdf

48 M. Amagasaki and Y. Shibata

Logic Block(LB) Dedicated Hard Block

Logic\TiIe\ o BN

Soft Soft

Logic Logic Mult.
fal
2

Soft Soft
% Logic Logic Mult
Soft Soft
Logic Logic Mult. %
Soft Soft
% Logic Logic Muit. T

Memory
Block

Routing Channel

I/0 Block (10B) Switch Block (SB) Connection Block (CB)

Fig. 3.1 Island-style FPGA overview

(DLL) to provide a clock network. By downloading the design data to these elements,
an FPGA can implement the desired digital circuit. Figure 3.1 shows the schematic
of an island-style FPGA. An island-style FPGA has logic elements (logic block),
I/0 elements placed on the periphery (I/O block), routing elements (switch block,
connection block, and routing channel), embedded memory, and multiplier blocks. A
set of neighboring logic blocks, a connection block, a switch block is called a logic
tile. In an island-style FPGA, logic tiles are arranged in a two-dimensional array.
The logic block and multiplier block are used as hardware resources to realize logic
functions, while the memory block provides storage. Multiplier and memory blocks,
dedicated for specific usages, are called “Hard Logic,” while functions implemented
with logic blocks are called “Soft Logic” [1]. Logic blocks are named differently
among FPGA vendors such as configurable logic block (CLB) in Xilinx FPGA and
logic array block (LAB) in Altera (now part of Intel). The basic principle is, however,
similar. Since commercial FPGAs use LUT, in this section, we focus on LUT-based
FPGA architectures.

3 FPGA Structure 49

3.1.1 Performance Trade-Off of Lookup Tables

Although there was a logic block consisting of only LUTs in the early stages, recent
FPGAs have basic logic elements (BLEs), as shown in Fig.3.2. A BLE consists of
a LUT, an flip-flop (FF), and a selector. According to the value of the configuration
memory bit MO, the selector controls whether the value of the LUT or the one stored
in the FF is outputted.

There are several trade-offs between area efficiency and delay when determining
the logic block architecture. The area efficiency indicates how efficiently a logic
block is used when a circuit is implemented on an FPGA. The area efficiency is high
when logic blocks are used without waste. Regarding area efficiency, there are the
following trade-offs in logic blocks:

e As functions per logic block increase, the total number of logical blocks required
to implement the desired circuit decreases.

e On the other hand, since the area of the logical block itself and the number of
inputs and outputs increase, the area per logical tile increases.

The number of LUT inputs is one of the most important factors when determining
the structure of a logic block. A k-input LUT can express all k-input truth table. As
the input size of the LUT increases, the total number of logical blocks decreases.
On the other hand, as a k-input LUT needs 2* configuration memory bits, the area
of the logic block increases. Furthermore, as the number of input/output pins of the
logic block increases, the area of the routing part increases. As a result, the area per
logical tile increases as well. Since the area of an FPGA is determined by the total
number of logic blocks x the area per logic tile, there is clearly an area trade-off.
The following influences also appear with regards to speed:

e As functions per logical block increases, the number of logic stages (also called
logic depth) decreases.
e On the other hand, the internal delay of logic blocks increases.

The number of logical stages is the number of logical blocks existing on the
critical path, which is determined at technology mapping. When the number of logic
stages is small, the amount of traffic through the external routing track is reduced,
which is effective for high-speed operations. Meanwhile, as the function of the logical
block increases, the internal delay increases and there is a possibility that the effect of

Fig. 3.2 Basic logic element

(BLE) Mo
>
Inputs % 4-LUT Out
p -: EE o
H

50 M. Amagasaki and Y. Shibata

6 50
é‘_ —@— Area ---®--- delay |_ 45
5.5

. > ."..' L 40
5 \\ T L 35

\ L 30
45 TR 25

Area (MWTA x 10e6)
o
E
5
N
o
Delay(ns)

3.5 L 10

L5

3 : 0
2 3 4 5 6 7

Number of LUT inputs

Fig. 3.3 Trade-off between area/delay and LUT inputs

reducing the number of stages may be reduced. In this way, there is also a clear trade-
off in terms of speed. Summarizing the above, if the input size of a LUT is large, the
number of logic stages is reduced, resulting in a higher operational speed. However,
when implementing a logic function with less than k inputs, the area efficiency is
reduced. On the other hand, if the input size of the LUT is small, the number of
logic stages increases and the operational speed is degraded; but, the area efficiency
improves. In this fashion, the input size of the LUT is closely related to the area and
delay of the FPGA.

The following elements have a great influence on the logic block architecture
exploration: the number of LUT inputs, the area and delay model, and the process
technology. An architecture evaluation of logic blocks has been studied since the
beginning of the 1990s, where it was considered that 4-input was the most efficient
[2]. Even in commercial FPGAs, 4-input LUTs were used until the release of Xilinx
Virtex 4 [3] and Altera Stratix [4]. Meanwhile, another architecture evaluation was
performed using CMOS 0.18 wm 1.8 V process technology [5]. Reference [S] used a
minimum-width transistor (MWTASs: minimum-width transistor areas) area model in
which the delay is calculated by SPICE simulations after the transistor level design,
and each transistor is normalized with a minimum-width transistor. Figure 3.3 shows
the transition of the FPGA area and critical path delay when the number of LUT
inputs is changed.! These results are obtained by placing and routing the benchmark
circuits and averaging the obtained values. When the input number of the LUT is 5 or
6, good results are obtained in terms of area and delay. Therefore, recent commercial
FPGAs tend to employ larger LUTs like 6-input LUT (also called 6-LUT).

I'This figure is plotted based on the data presented in [5].

3 FPGA Structure 51

3.1.2 Dedicated Carry Logic

For the purpose of improving the performance of the arithmetic operation, a dedicated
carry logic circuit is included in the logic block of commercial FPGAs. In fact,
arithmetic operations can be implemented in LUTs; but, using dedicated carry logic
is more effective in both degree of integration and operational speed. Figure 3.4 shows
two types of arithmetic operation modes in Stratix V [6]. Two full adders (FA) are
connected with a dedicated carry logic. The “carry_in” input of FAOQ is connected to
the “carry_out” of the adjacent logic block. This path is called a high-speed carry
chain path enabling high-speed carry signal propagation in arithmetic operations.
In the arithmetic operation mode, shown in Fig. 3.4a, each circuit sums the outputs
of two 4-LUTs. On the other hand, in the shared computation mode of Fig.3.4b,
3-input 2-bit additions can be executed by calculating a sum with LUTs. This is used
to obtain the sum of the partial products of the multiplier with an addition tree.

Figure3.5 shows the dedicated carry logic of a Xilinx FPGA. In this FPGA,
full adders are not provided as dedicated circuits, and the addition is realized by
combining the LUT and the carry generation circuit. The addition (Sum) of the full
adder is generated by two 2-input EXOR and the carry-out (Cout) is generated by
one EXOR and one MUX. The EXOR of the preceding stage is implemented by a
LUT, and the exclusive circuit is prepared for the MUX and EXOR of the latter stage.
Similarly to the Stratix V in Fig.3.4, the expansion to multi-bit adders is possible
since the carry signal is connected to the neighboring logic module via the carry
chain.

shared_arith_in carry_in

carry_in
datae0 >
ataed —>] 4Lut l
> aLuT . > >
e Cin J " ™ cn
datat0 > Cout f,’a‘a“) > FAO - -
> atac > -
datac > avur FAo datab »| ALUT
datab >
ity > dataa >
A b
b i<
ot
datad 0__: 4T y , datad <Rl L >
datae1 > Cin " dataet > e
S
S H
N o] K s
L, EAT
> gt AT | T
datat! ——| > N
carwr out L shared_arith_out carry_out P

(a) Arithmetic Mode (b) Share Mode

Fig. 3.4 Arithmetic mode in Stratix V [6]

52

Truth table of full adder

In0 Inl Cin | Cout | Sum
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Fig. 3.5

3.2 Logic Cluster

Carry logic in Xilinx FPGA

In0 —
In1 —

M. Amagasaki and Y. Shibata

Cout
l

)

o)

s

—Sum

LUT

) >
/ Cin

Dedicated carry logic

To increase the number of functions in a logic block without increasing the number
of LUT inputs, cluster-based logic blocks (logical clusters) grouping multiple BLEs
can be used. Figure 3.6 shows an example of a logic cluster having4 BLEs and 14x 16
full crossbar switches. The full crossbar part is called a local connection block or
local interconnect, and multiple BLEs are locally interconnected within a logical
cluster. Logical clusters have the following features:

1. Since the local wiring in the logic cluster is composed of hard wires, it is faster
than the global wiring located outside of the logic cluster.

2. The parasitic capacitance of the local wiring is small when compared with the
one of the global wiring [7]. Therefore, using local wiring is effective to reduce
the power consumption of an FPGA, especially the dynamic power.

Fig. 3.6 Logic cluster

v
4
2> BLEO >0
Full A
Crossbar
14x16 4
4> BLE1 >0
10 external
10 10 inputs 4
General #—+—> General
Inputs 4 feedback | 4 Outputs
lines >| BLE2
A
16 BLE
inputs 4
2> BLE3]

3 FPGA Structure 53

3. BLEsin alogic cluster can share input signals. Then, the total number of switches
of the local connection block can be reduced.

The biggest advantage in the cluster-based logic block is that the total FPGA area
can be reduced when the number of functions in the logic block is increased. The LUT
area increases exponentially with respect to the input size k. On the other hand, if
the size of the logic cluster is N, the area of the logical block increases quadratically.
The input signals of a logical cluster can often be shared among multiple BLEs, and
in [5], the input 7 of a logical block is formulated as follows:

I = g(N +1) (3.1)

The area of the logical block can be reduced by sharing the input signal (/ = N x k
when treating all inputs of the BLE independently). Similarly to the number of inputs
of a LUT, there is a trade-off regarding the area and delay in logic clusters. When
N increases, the number of functions per logical block increases, and the number of
logical blocks on the critical path decreases, which leads to speedup. On the other
hand, since the delay of the local interconnection part also increases as N increases,
the internal delay of the logical block itself increases. According to [5], it is reported
that N = 3-10 and k = 4-6 are the most efficient in area delay products.

3.3 Adaptive LUT

In order to obtain higher implementation efficiency, commercial FPGAs’ logic blocks
have been evolving in the recent years. Figure 3.7 shows the result of technology
mapping with 6-LUT for the MCNC benchmark circuit. The technology mapping
tool is the area optimization oriented ZMap [8].

Fig. 3.7 Implementation
ratio of logic function after
technology mapping

2 input logic
8%

3input logic |
13%

I 4 input logic
22%

6 input logic
45%

5 input logic -
12%

54 M. Amagasaki and Y. Shibata

According to this figure, 45% of the total logic function was mapped as 6-input
logics. On the other hand, 5-input logics exist by 12%, and in this case, half the
configuration memory bits of the 6-input LUT is not used. This is more noticeable
as the number of inputs is smaller, and about 93% of the configuration memory bits
are actually wasted in the case of a 2-input logic implementation, which is a factor
of lowering the implementation efficiency. This problem has been known since the
beginning, and in the XC4000 series [9, 10], acomplex LB structure containing LUTs
of different input sizes was used for logic blocks. However, since the computer-aided
design (CAD) support was not sufficient, subsequently it returned to a 4-input LUT-
based architecture. Modern FPGAs employ new logic modules called adaptive LUTs
since Altera Stratix II [11] and Xilinx Virtex 5 [12]. Unlike conventional single input
LUTs, adaptive LUTs are architectures for obtaining high area efficiency by dividing
LUTs and implementing multiple logics.

Figure 3.8a shows an example of an adaptive LUT-based logical block [13]. The
number of inputs and outputs of the logic block is 40 and 20 (including the carry
in and carry out signals), respectively, and the number of clusters is 10. The local
connection block is a full crossbar of 60 x 60, and its inputs include the feedback
outputs of each adaptive logic element (ALE). The ALE includes 2-output adaptive
LUTs and flip-flops. It has two 5-LUTs sharing all inputs as shown in Fig.3.8b.

Carry in
MUX0
Carllr.ym Inputs 5-LUT I @I 80ut1
\] ¥ .
6 Adaptive 2 N N2
Full LEO L3
Crossb. A
Z ey sor bbb
40 external | ©_|Adaptive] | 2
40 inputs ™2 LE1 7 i
General 40 A 20 Iy
lutputs 20 feedback ;E General Carry out
lines 6 [asoni , iOutputs (b) Adaptive Logic Element (ALE)
aptive b
60BLE [LE2 .
inputs » A l
M -
- 4-LUT o Cin
6) 2 Inputs in1
N ALdEaSpnve » i 20 Putputs
M A L v |[muxi
Carry out 2/4-LUT }
(a) Adaptive LUT based LB T

(c) ALE arithmetic mode

Fig. 3.8 Adaptive LUT-based LB

3 FPGA Structure 55

Thus, an ALE can operate as one 6-LUT or two 5-LUTs sharing the inputs depend-
ing on the requirements. In this way, the area efficiency is increased by dividing the
6-LUT into small LUTs and implementing multiple small functions with the circuit
resources of the 6-LUT. However, increasing the number of inputs and outputs leads
to an increase in the area of the wiring part. For this reason, the number of logical
block inputs is suppressed by input sharing. The representative patents related to the
adaptive LUT are Altera’s US 6943580 [14], Xilinx’s US 6998872 (2004 applica-
tion, established in 2006) [15], and Kumamoto University’s US 6812737 [16]. Since
2004, when adaptive LUTs have appeared, the logical block has undergone minor
changes; however, its basic structure has not been changed. Hereafter, we explain the
logic block architectures of commercial FPGAs using Altera’s Stratix II and Xilinx’s
Virtex 5.

3.3.1 Altera Stratix 11

The Stratix II adopts a logical element called adaptive logic module (ALM).> ALM
consists of an 8-input adaptive LUT, two adders, and two FFs. Figure 3.9a shows
the ALM architecture of the Stratix II. The ALM can implement one 6-input logic
and two independent 4-input logics, or one 5-input logic and one 3-input logic with
independent inputs. In addition, by sharing a part of the inputs, it is possible to
implement two logics (e.g, two S-input logic sharing two inputs) and a subset of a
7-input logic. On the other hand, as shown in Fig. 3.4, two 2-bit adders or two 3-bit
adders can be implemented with one ALM. In Stratix II, the LAB with eight ALMs
corresponds to a logical block.

3.3.2 Xilinx Virtex 5

Figure 3.9b shows the logic element in Xilinx Virtex 5. Virtex 5 can implement one
6-input logic and two S-input logics that completely share the inputs. In addition,
it has multiple multiplexers. MUXV1 is used to directly output the external input,
and MUXV?2 is used to select the external input or the output of a 6-LUT. MUXV3
constructs the carry look ahead logic with the input of the carry input C;,, from the
adjacent logic module. At this time, the EXOR generates the SUM signal. MUXV4
and MUXVS5 select signals to be outputted to the outside of the LB. In Virtex 5,
a set having four logical elements is called a slice, and a CLB having two slices
corresponds to a logic block.

%In Altera FPGAs, adaptive LUTSs are also called fracturable LUTS.

56 M. Amagasaki and Y. Shibata

Carry_in
. S —\T/—\;\/luxn
> Full > m H
.ﬁ Adder P
Inputs .H Adaptive \]/ >
> LT
— MUXS2 Outputs
: > Full —>
—> Adder m
— PUT
| ¥
Carry_out
(a) Altera Stratix Il
Cout
MUXV1
.
L » MUXV4
H MUXV3
—> MUKV 2¢ D
Inputs : 6-LUT [
L ——>#8 Outputs
H ' MUXVS
. >
e
=
Cin

(b) Xilinx Virtex 5

Fig. 3.9 Commercial FPGA architecture

3.4 Routing Part

As shown in Fig. 3.10, the routing structure of an FPGA can be roughly classified into
the full crossbar type, the one-dimensional array type, the two-dimensional array type
(or island style), and the hierarchical type [17]. These are classified according to how
the logical block and I/O block are connected, so-called connection topology. All
of them are composed of wiring tracks and programmable switches, and the routing
paths are determined according to the values of the configuration memory bits. The
full crossbar type shown in Fig. 3.10a has a structure that always inputs the external
input and the feedback output of the logic block. This routing structure was commonly
seen in programmable array logic (PAL) devices [18] with a programmable AND
plane. However, since current FPGAs have enormous logic blocks, such a structure
is not efficient. The one-dimensional array type has a structure in which logic blocks
are arranged in a column, as depicted in Fig.3.10b, and the routing channels are

3 FPGA Structure 57

Fig. 3.10 Classification of Inputs

. feedthroughs
FPGA routing structure [17]

LB LB LB LB | | LB | LB | LB

LB

LB|LB

LB L8 LB
Outputs | | | |

(a) Full cross bar type

’ .
LB

(b) 1 dimensional type

LB|LB‘

LB|LB

LB|LB

:

(c) 2 dimensional type
(Island style)

= = =
)

LB|LB

(d) Hierarchical type

provided in the row direction. Channels are connected by feed-through wiring, which
corresponds to the Actel’s ACT series FPGA [19]. In general, a one-dimensional array
type wiring part tends to increase the number of switches. Since the ACT series
FPGA uses anti-fuse-type switches, even if the number of switches is somewhat
larger, the area overhead could be mitigated. However, since SRAM-based switches
are mainstream in recent FPGAs, the one-dimensional array type and full crossbar
type are not adopted. For these reasons, this chapter introduces the hierarchical and
island-style routing structures.

3.4.1 Global Routing Architecture

The routing structure of an FPGA is classified into global and local routing archi-
tectures. The global routing architecture is decided from a meta viewpoint that does
not consider switch level details, such as connections between logical blocks and the
number of tracks per wiring channel. On the other hand, local routing architecture
includes detailed connection such as switch arrangement between logic block and
the routing channel. All four routing architectures of Fig.3.10 are global routings.

(1) Hierarchical-type FPGA

Altera Flex 10K [21], Apex [22], and Apex II [23] have a hierarchical routing archi-
tecture. Figure 3.11 shows the routing structure in UCB HSRA (high-speed, hierar-
chical synchronous reconfigurable array). The HSRA has a three-level hierarchical
structure from level 1 to level 3. There is a switch at each level, at the intersection of

58 M. Amagasaki and Y. Shibata

EPEN = [TIT¢?
| S— J_L_l
| S— ey
LB LB Level 3 Wire LB LB
T T
f =N
P
Level 2 Wire —
(—
ey L)
AT T P m
P | AT
LB Level 1 Wire L8 L8 L8
M| - T1 L&,
A \—/
| S— | S
LB LB LB LB
e g
—y 1
N e of
11
- [T11
A
[T LL
AT T P m
ATl P mdll
LB LB LB LB

Fig. 3.11 Hierarchical-type FPGA [20]

wire tracks. At the higher hierarchical level, the number of wire tracks per channel
increases. At level 1, the lowest hierarchy, wirings between multi-logic blocks are
performed. As a merit of the hierarchical FPGA, the number of switches required for
signal propagation within the same hierarchy can be reduced. Therefore, high-speed
operations are possible. On the other hand, if the application does not match the hier-
archical FPGA, the usage rate of the logic block of each hierarchy is extremely low.
Also, since there is a clear boundary between two hierarchy levels, once a routing
path crosses the hierarchy, it has to pay a delay penalty. For example, if logic blocks
physically close to each other are not connected at the same hierarchical level, the
delay increases. In addition, since the parasitic capacitance and the parasitic resis-
tance vary greatly in the advanced process, there is a possibility that the delay vary
even for connections within the same layer. Although this is not a problem when the
worst condition is considered, it can not be ignored when delay optimization is done
aggressively. For the above reasons, a hierarchical routing architecture was effective

3 FPGA Structure 59

- -t LT NP A
1 . A . +
— Logic Block [¥-|-¥ |Logic Block %% |Logic Block {#-{-¥ |Logic Block |§-{-¥ |Logic Block 4% ——
EEE— F) F F 1 W 3 o3 - S—
[N . T I T 1 > I T I
I 1. RN Arp” T AR A\
— |1 = F \EF b TR
t 1t
— 11 |Logic Block {4-{ -+ |Logic Block {4} |Logic Block |- |Logic Block 4% Logic Block o
N
— N - E L3 Cpad x P x n —
s ! L 1 7 A1l
|’I F) L OV o h F) 0 I
— ~| Y ~4- 9| —
t bt
M1 " s . . «
— Logic Block Logic Block (4% |Logic Block Logic Block Logic Block HE—
11
o # 4- * ke * <y # A # 2l
W & B 7 T AL I
— N e 3 ~F, b
a
14 ¥ H s % &
— Logic Block Logic Block Logic Block Logic Block Logic Block
H1
I L N
N— e —F—(rpp—F— —
I = PN N TP)L 1T LE 1
— \E F T y
|
—— | Logic Block Logic Block Logic Block Logic Block Logic Block]

— =gk - A S A ¥ MU —ed
~ E (IR < 1 Y 2 i

Fig. 3.12 Island-style routing architecture [1]

in older processes where the gate delay was more dominant than the routing delay,
but tends not to be used in recent years.

(2) Island-style FPGA

An example of an island-style FPGA is shown in Fig.3.12 [1]. The island style is
adopted by most FPGAs in recent years, and there are routing channels in the vertical
and horizontal directions among logic blocks. Connections between logic blocks and
routing blocks are generally a two-point connection or a four-point connection, as
illustrated in Fig.3.12. Also, with the uniformization of the logic tile [24, 25], the
execution time of routing process can be reduced.

3.4.2 Detailed Routing Architecture

In the detailed routing architecture, the switch arrangement between logic blocks
and wire channels, and the length of the wire segment are determined. Fig.3.13
represents an example of detailed routing architecture. W denotes the number of

60 M. Amagasaki and Y. Shibata

Output Connection Block Programmable Routing
Feoa= Y4 Switch
1 : i
Logic {. [i | Slogc [*
Block / Block
ittt ,“"
Input Connection i I L7
Block - o k21 5
Fun=2/4 ‘
“ % S R 4
b AW 1
7
“‘-
R
Logic logc [T LT ‘™ W'T
Block Block e
EmWre
I Segment
==
k=i]

Switch Block Boeing T

Fig. 3.13 Detailed routing architecture [1]

tracks per channel, and there are several wire segment lengths. There are two types of
connection blocks (CBs), one for the input and the other for the output. The flexibility
of the input CB is defined as F;,, and as F,,; for the output. A switch block (SB)
exists at the intersection of the routing channel in the horizontal direction and the
vertical direction. The switch block flexibility is defined by F;. In this example,
W =4, F;, =2/4=0.5, and F,,, = 1/4 = 0.25. Also, an SB has inputs from
three directions with respect to the one output, F; = 3.

The wiring elements composed of a CB and a SB have a very large influence on the
area and the circuit delay of FPGA [26]. Regarding the area, it means that the layout
area obtained by the CB and SB is large. As for the delay, in the recent process
technology, the wiring delay is dominant over the gate delay. When deciding the
detailed routing architecture, it is necessary to consider (1) the relationship between
logic blocks and wire channels, (2) the wiring segment length and its ratio, and (3) the
transistor level circuit of the routing switch. However, there is a complicated trade-
off between routing flexibility and performance. Increasing the number of switches
can emphasize flexibility, but also increases the area and delay. On the other hand, if
the number of switches is reduced, routing resources become insufficient, rendering
routing impossible. The routing architecture is determined considering the balanced
use of pass transistors and tristate buffers.

3 FPGA Structure 61

Logic block Length 1 wire Length 2 wire Length 4 wire

|

Fig. 3.14 Wire segment length

3.4.3 Wire Segment Length

In the placement and routing using CAD tools, a routing path that satisfies the con-
straints of speed and electric power is determined. However, it is difficult to conduct
an ideal (shortest) wiring for all circuits because of wiring congestion and the num-
ber of switch stages. Therefore, it is necessary to perform shortcut routing using
medium-distance or long-distance segment length. In fact, there are various segment
lengths (e.g. single, quad, and long line) in routing tracks. Three types of wire seg-
ments are shown in Fig. 3.14. The distance of the wire segment length is determined
by the number of logic blocks. In this figure, there are single lines, double lines, and
quad lines. Here, the single lines are distributed at a ratio of 40%, the double lines
by 40%, and the quad lines by 20%. In addition, a long-distance wire that crosses
the device is called a long line and is used in Xilinx FPGA. The type and the ratio of
the wire segment length are often obtained by the architecture exploration using the
benchmark circuit.

3.4.4 Structure of Routing Switch

The structure of the programmable switch is important for deciding the routing
architecture of an FPGA. In many FPGAs, pass transistors and tristate buffers are used
in a mixed form [27-29]. An example of a routing switch is illustrated in Fig. 3.15.
The pass transistor is effective for connecting with a small number of switches
with respect to a short path. However, since in pass transistors, signal degradation
occurs [30], repeaters (buffers) are necessary if the signal passes through many pass
transistors. On the other hand, three-state buffers are used for driving long paths.
Reference [28] reported that when the allocation ratio of the pass transistor and the
three-state buffer is halved, the performance is improved.

Regarding the direction of the wiring track, there are a lot of research on bidi-
rectional wiring and unidirectional wiring [27]. Bidirectional wiring, depicted in
Fig.3.16a, can reduce the number of wiring tracks, but one side of the switch is
never used. In addition, since the wiring capacitance also increases, it also affects
the delay. On the other hand, in the unidirectional wiring, represented in Fig.3.16b,

62 M. Amagasaki and Y. Shibata

Fig. 3.15 Routing switch Pass transistor Tri-state buffer
routing switch routing switch
I I
: I I
Logic I Logic I Logic
Block - Block : Block
T o, —
rf_ ﬂ \I }
ﬁ-— - o -
Logic Logic Logic
Block Block Block

Fig. 3.16 Bidirectional and
unidirectional wirings

the number of wiring tracks is twice that of the bidirectional wiring, but the switch is
always used and the wiring capacity is small. In this way, there is a trade-off in per-
formance between the bidirectional wiring and the unidirectional wiring. In recent
years, the number of transistors’ metal layers has increased, and from the viewpoint
of ease of design, bidirectional wiring is shifting to unidirectional wiring [1, 31].

Table 3.1 shows the wire length and the number of tracks in commercial FPGAs
[26]. However, since details of the routing architecture are not opened for recent
FPGA:s, the table only includes information for devices of a few generations ago.
Xilinx Virtex has single lines (L = 1), hex lines (L = 6) and long lines (L = 00).
One-third of the hex lines is bidirectional, and the rest is unidirectional. On the other
hand, Virtex II hex lines are all unidirectional. Altera’s Stratix does not have any
single line because ALBs are directly connected with dedicated wiring. Also, long-
distance segments are connected with L =4, 16, and 24. In this manner, the type and
ratio of the wire segments are different depending on the device, and bidirectional
and unidirectional wirings are mixed in the wiring direction.

3 FPGA Structure 63

Table 3.1 Wire length and the number of tracks in commercial FPGAs [26]

Architecture | Cluster | Array size | Number of tracks of length Lwire
size N

1 2 4 6 16 |24 |oo
Virtex [4 104 x 156 |24 | — — 48d +24b | — — 12
Virtex II 8 136 x 106 | — |40 | — 12d - |- |24
Spartan II 4 48 x 72 24 | — - 48d +24b | — - 12
Spartan III 8 104 x 80 |— |40 | — 96d - |- |24
Stratix 1S80| 10 101 x 91 | — |— 160hd + 80vd | — 16vd| 24hd| —
Cyclone 10 68 x 32 - - 80d - - —
1C20

FTant)

Key “d” unidirectional wiring, “h” horizontal line, “v” vertical line. Bidirectional wiring is not
specifically described

3.5 Switch Block

3.5.1 Switch Block Topology

The switch block (SB) is located at the intersection of the wiring channels in the
horizontal direction and the vertical direction, and wiring routes are determined by
the programmable switches. Figure3.17 shows three types of typical topologies.
The routing flexibility varies depending on SB topologies. In this figure, disjoint
type [32], universal type [33], and Wilton type [34] are presented. It also shows the
connection relation when the number of tracks is an even number (W = 4) or an odd
number (W = 5). The open circle at the intersection indicates the point at which the
programmable switch is placed. Since each SB chooses one output from three input
paths, the flexibility of the SB is F; = 3.

(1) Disjoint (Xilinx) type

The disjoint-type SB [32] is used in Xilinx’s XC 4000 series, which is also called
Xilinx-type SB. Disjoint-type SB connects wiring tracks of the same number in four
directions with F; = 3. In Fig.3.17, when W = 4, the left track LO is connected to
TO, RO, B0, and so is the same as W = 5. Since the connection is realized by six
switch sets, the total number of switches is 6W. The disjoint-type SB requires a small
number of switches, but since it only can connect tracks of the same index value, the
flexibility is low.

(2) Universal type

The universal-type SB is a topology proposed in [33]. Like the disjoint-type SB, it
consists of 6 W switches. On the other hand, two pairs of wire tracks can be connected
in the SB. When W = 4, wire tracks 0, 3 and 1, 2 are paired, respectively, as shown
Fig.3.17. If there is no pair such as wiring track 4 when W =5, it has the same

64 M. Amagasaki and Y. Shibata

Disjoint type Universal type Witon type
TOT1 T2 T3 TOT1 T2 T3 TOT1 T2 T3

N

LB3—C R3
A

R2 LZ_CX“:;“; “ fc Ei

R3 13 \ / e R3
RZ o kS ‘.,

R1
RO

Rl Ll—0;
4

% \ RO LO P b AL RO
T PR

L4
L3
L2
L1
Lo

W=5

BO B1 B2 B3 B4

Fig. 3.17 Switch block topology

connection configuration as the disjoint-type SB. It is reported in [33] that the total
number of wiring tracks can be reduced with the universal type when compared with
disjoint-type SB. However, the universal-type SB assumes only the single line and
does not correspond to other wire lengths.

(3) Wilton type

In the disjoint and the universal-type SBs, only the wiring tracks of the same number
or two pairs of wiring tracks which are paired are connected. On the other hand, in
the Wilton-type SB [34], it is possible to connect wiring tracks of different values
with 6W switches. In Fig.3.17, when W = 4, the wire track L0 in the left direction
is connected to the wire track TO in the upward direction and the wire track B3 and
RO in the downward direction and the right direction. Here, at least one wire track
is connected to the wiring track (W — 1) which is the longest distance. As a result,
when routing is performed across several SBs, the routing flexibility is higher than
that of other topologies. In addition, it is known that the Wilton type forms a closed
circuit by several switch blocks by passing through a clockwise or counterclockwise
path. By using this feature, it was shown that the efficiency of manufacturing test of
FPGAs can be improved [35, 36].

3 FPGA Structure 65

]

I + — 1 —»

J LI } r

R [e 0 il

—1
—1

. /
. /

h Regular Inpuis': Fast Input | |) |

@ u§

Fig. 3.18 Transistor level structure of SB

3.5.2 Multiplexer Structure

The circuit of the programmable switch greatly influences the circuit delay of the SB.
Especially in unidirectional wiring, multiple-input multiplexers exist everywhere on
routing elements. Since a multi-input multiplexer has a large propagation delay, its
circuit structure is important. Figure 3.18 depicts a circuit of multi-input multiplexer
in the Stratix II [27]. It has nine normal inputs and one high-speed input for signals
on the critical path. Also, since the number of switching stages can be two, this
structure is called a two-level multiplexer [27]. In [27], it has been reported that the
circuit delay can be improved by 3% without increasing the area. In this manner,
the program switch for the routing element has a great importance in reducing the
path delay if a configuration memory increase is allowed. On the other hand, an LUT
is often composed of pass transistors in a tree structure [30]. Research on repeater
placement, transistor sizing, and sizing of multiplexers on wiring is undergoing to
reduce the circuit delay of unidirectional wiring. CMOS inverters are usually used
for the routing driver of FPGAs. In [37], it is reported that the number of drivers has
better delay characteristics in odd-numbered stages than in even numbered stages.

3.6 Connection Block

The connection block (CB) has arole of connecting the input and output of the routing
channel and the logic block, which is also composed of programmable switches. Like
alocal connection block, CB has a trade-off between the number of switches and the
flexibility of routing. Particularly, since the routing channel width is very large, if it
is simply composed of a full crossbar, the area becomes a problem. For this reason,

66 M. Amagasaki and Y. Shibata

[BO B1 B2 B3 B4 B5 B6 B7 B8 B9 B10B11B12B13

In5
In4

In3

LB B
2
In1
In0

cB SB

[T \\ FO F1 F2 F3 F4 F5 F6 F7 F8 F9 F10F11F12F13

Logic Tile

Fig. 3.19 Example of switch arrangement of CB

sparse crossbars are used in CB. Figure 3.19 shows an example of a CB composed
of sparse crossbars. Wire tracks consist of unidirectional wires, 14 forward wires
(FO-F13), and 14 reverse wires (B0-B13). These 28 wire tracks and 6 LB inputs
(In0-In5) are connected by the CB. Since each LB input is connected to 14 wiring
tracks, F.;, = 14/28 = 0.5. Sparse crossbars have various configurations [27]; but,
the architecture of the CB is determined by exploring the optimum point of flexibility
and area.

3.7 1/0 Block

An I/O element consists of an I/O dedicated module which interfaces between the
I/O pad and an LB. This module is called I/O block (input/output block, IOB), and
the IOBs are arranged along the periphery of the chip. The I/O pins of an FPGA
have various roles such as power supply, clock, user I/O. An I/O block is placed
between an LB and the I/O, such as I/O buffer, output driver, polarity designation,
high impedance control and exchanges input/output signals. There are FFs in an [OB
so that I/O signals can be latched. Figure 3.20 shows an IOB in the Xilinx XC4000.

The features of this block are shown below, but these basic configurations are the
same in recent FPGAs:

e There are a pull-down and pull-up resistors at the output part, and the output of
the device can be clamped to 0 or 1.

An output buffer with an enable signal (OE).

Each input/output has an FF, so latency adjustment is possible.

Slew rate of the output buffer can be controlled.

The input buffer has a threshold of TTL or CMOS. For guaranteeing the input hold
time, a delay circuit is provided at the input stage of the MUX 6.

A commercial FPGA has various interfaces providing different output standard,
power supply voltage, etc., so it has the role of electrical matching in I/O elements.
Many FPGAs also support differential signals (low voltage differential signaling

3 FPGA Structure 67

Slew rate
control

OE

. Output buffer Passive R1
Pull-up =100kohm

Output
P v [l
Clock R3
D1 =100kohm
1/0 Pad
MUX4 Input buffer 9
/‘
11 ~
MUXs w2 [H
Passive -
MUX5 Pull-down R2
- < =100kohm

Input
Clock i

[sram 1bit cell

Fig. 3.20 Xilinx XC4000 IOB [38]

(LVDS)) in order to treat high-speed signals and are equipped with a reference
voltage for handling different voltages and a clamp diode for handling a specific
high voltage. Table 3.2 shows the I/O standard lists of the Stratix V [6]. Since current
FPGAs are released according to various application domains, I/O standards are
often prepared accordingly. In recent years, as types of I/O standards supported by
devices have increased, it has become increasingly difficult for each I/O to respond
individually. Then, modern FPGAs also adopt I/O bank method. With this method,
each I/O belongs to a predetermined set, which is called a bank, due to supporting
various voltages [12, 39]. The number of I/O pins belonging to one bank is different
for each device, e.g., 64 pins for Virtex [3] and 40 pins for Virtex 5 [12]. Since each
bank shares the power supply voltage and the reference signal, each I/O standard is
supported by several banks.

Although an overview of the logical blocks and I/O blocks architectures is avail-
able in commercial FPGAs’ data sheet, it is difficult to know the details about the
layout information and the wiring architecture. A list of literature on FPGA archi-
tectures is shown in Table 3.3.

3.8 DSP Block

As described in the previous sections, typical early forms of FPGAs were composed
of LUT-based logic blocks, which were connected to each other by wiring ele-
ments with programmable switches. Major target applications of those days’ FPGAs

68 M. Amagasaki and Y. Shibata

Table 3.2 Examples of I/O standards supported by Stratix V [6]

Standard Output voltage (V) Usage
3.3-VLVTTL 33 General purpose
3.3/2.5/1.8/1.5/1.2-V 3.3/2.5/1.8/1.5/1.2 General purpose
LVCMOS

SSTL-2 Class I/Class 11 2.5 DDR SDRAM
SSTL-18 Class I/Class II 1.8 DDR2 SDRAM
SSTL-15 Class I/Class 11 1.5 DDR3 SDRAM
HSTL-18 Class I/Class II 1.8 QDRII/RLDRAM II
HSTL-15 Class I/Class 11 1.5 QDRII/QDRII+/RLDRAM II
HSTL-12 Class I/Class 11 1.2 General purpose
Differential SSTL-2 Class 2.5 DDR SDRAM
I/Class 11

Differential SSTL-18 Class 1.8 DDR2 SDRAM
I/Class IT

Differential SSTL-15 Class 1.5 DDR3 SDRAM
I/Class II

Differential HSTL-18 Class 1.8 Clock interface
I/Class 11

Differential HSTL-15 Class 1.5 Clock interface
I/Class 11

Differential HSTL-12 Class 1.2 Clock interface
I/Class II

LVDS 25 High-speed transfer
RSDS 2.5 Flat panel display
mini-LVDS 2.5 Flat panel display

were glue logic, such as interface circuits between hardware sub-modules and state
machines for controlling the system. A configurable circuit was also small in size.
After that, as the FPGA chip size grew, the main application domain of FPGAs
moved on to digital signal processing (DSP), such as finite impulse response (FIR)
filters and fast Fourier transform (FFT). In such applications, multiplication plays
an important role. With standard programmable logic design based on LUT-based
logic blocks, however, multipliers need a lot of blocks to be connected to each other,
causing large wiring delays and resulting in inefficient execution performance. Thus,
early FPGA architectures faced a demand for arithmetic performance improvement,
especially for multiplication, to compete with digital signal processors (DSPs).
Under such a background, new FPGA architectures equipped with multiplier
hardware blocks in addition to LUT-based logic blocks have emerged since around
2000. Implemented as dedicated hard-wired logic, these multipliers provide high-
performance arithmetic capabilities, while flexibility is restricted. Between the mul-
tipliers and logic blocks, programmable wiring fabric is provided so that users can
freely connect the multipliers with their application circuits. For example, the Xilinx

3 FPGA Structure 69

Table 3.3 References and patents on FPGA architectures
Commercial

Year Contents

1994 Architecture around XC4000 [40] D

1998 Flex6000 architecture [41] D

2000 Apex20K architecture and configuration memory bits [42] D
2003 Stratix routing and LB architecture [43] D

2004 Stratix II basic architecture [44] D

2005 Stratix II routing and LB architecture [27] D

2005 eFPGA architecture [45] D

2009 StratixIII and StratixIV architecture [46] D

2015 Virtex ultrascale CLB architecture [47] D
Academic

1990 Evaluation of optimal input number of lookup table [2] D
1993 Exploring the architecture of homogeneous LUT [10] D
1998 Distribution of wire segment length [26] D

1998 Wire segment and driver [37] D

1999 Cluster-based logic block [48] D

2000 Automatic generation of routing architecture [48] D
2002 Design of programmable switch [30] D

2004 Exploring the cluster size [5] D

2004 Structure of SB and CB [26] D

2008 Evaluation of bidirectional wiring and unidirectional wiring

[49]1 D

2008 FPGA survey includes adaptive LUT [1] D

2009 Evaluation of the gap between FPGA and ASIC [50] D
2014 Adaptive LUT architecture [13] D

Patent

1987 Patent on internal connectioniCarter patentj [51] D

1989 Patent on basic structure of FPGAiFreeman patent [52] D
1993 Patent on local connection block [53] D

1994 Patent on using LUT as a RAM [54] D

1995 Patent on routing network [55] D

1995 Patent on carry logic [56] D

1996 Patent on cluster-based LB [57] D

1996 Patent on wire segments [58] D

1999 Patent on using LUT as a shift register [S9] D

2000 Patent on IOB [60] D

2002 Patent on multi-grain multi-context [16] D

2003 Patent on fracturable LB [14] D

2004 Patent on adaptive LUT [15] D

70 M. Amagasaki and Y. Shibata

Virtex-II architecture employed 18-bit signed multipliers. The largest chip in the
architecture family offered more than 100 multipliers [61].

Providing such dedicated arithmetic circuits contributes to performance improve-
ment. However, when the provided arithmetic type does not match the application
demands, these dedicated circuits are no use at all, resulting in poor hardware uti-
lization efficiency. That is, there are trade-offs between performance, flexibility, and
hardware utilization efficiency. Reflecting the increasingly diversified application
demands, modern FPGAs provide more sophisticated arithmetic hardware blocks,
aiming at both high-speed operations (like dedicated circuits) and programmability
to some extent. Generally, these arithmetic hardware blocks are called DSP blocks.

3.8.1 Example Structure of a DSP Block

Figue 3.21 shows the structure of the DSP48E1 slice, which is employed in the Xilinx
7-series architecture [62]. The main components of this block are a signed integer
multiplier for 25-bit and 18-bit inputs, and a 48-bit accumulator combined with an
arithmetic logic unit (ALU). In many DSP applications, a multiply and accumulate
(MACC) operation is frequently performed, which is shown as:

Y <~ AXxB+Y.
By combining the multiplier and the 48-bit accumulator and by selecting the feedback

path from the register of the final stage as an operand, the MACC operation can be
implemented using only one DSP48E1 slice.

B))
25 bit x 18 hit
multiplier

M O R e

: D |
D /
Pre-adder Pattern detector

\ J

48-bit accumulator and ALU

Fig. 3.21 Structure of a Xilinx DSP48E1 slice [62]

3 FPGA Structure 71

The 48-bit accumulator can perform addition, subtraction, and other logic oper-
ations. Moreover, the connection of operands is also programmable. Thus, not only
multiplication and MACC operations, but also various operations such as three-
operand additions and a barrel shifter can be implemented. In front of the final stage
register, a programmable 48-bit pattern detector is prepared, which is useful for the
determination of a clear condition of a counter and for detecting an exception of an
operation result. By enabling register elements between the components, pipelining
processing is also performed. As can be seen from the above, the architecture of the
DSP48El1 slice is designed to aim at both high degrees of flexibility and performance.

3.8.2 Arithmetic Granularity

Th granularity (bit width) of dedicated arithmetic hardware blocks largely affects the
implementation efficiency of applications. When the arithmetic granularity required
by an application is coarser than that of the hardware blocks, some hardware blocks
must be connected to each other to realize a single operation. In this case, wiring
delays among the used blocks will restrict the execution performance. On the other
hand, when the arithmetic granularity of the application is finer than that of the
hardware blocks, only parts of the hardware resources in the block are utilized,
resulting in poor area efficiency of the chip. The required arithmetic granularity,
however, naturally varies depending on applications. Thus, the DSP48EI1 slice offers
the following mechanisms to ensure some flexibility on arithmetic granularity:

e Cascade paths:
Between two adjacent DSP48E1 slices, dedicate wires called cascade paths are
provided. By directly combining a pair of DSP48E1 slices with the cascade paths,
arithmetic operations of wider bit width can be implemented without any additional
resources in general-purpose logic blocks.

e SIMD arithmetic:
The 48-bit accumulator also supports operations in a single instruction stream
and multiple data streams (SIMD) form. Four independent 12-bit additions or two
independent 24-bit additions can be performed in parallel.

On the other hand, Altera Stratix 10 and Aria 10 architectures employ more coarse-
grained DSP blocks [63]. As presented in Fig. 3.22, this DSP architecture provides
hard-wired IEEE 754 single-precision floating point multiplier and adder, which are
useful not only for high-precision DSP applications, but also for acceleration of
scientific computation. Between adjacent DSP blocks, dedicated paths for cascade
connections are provided. In addition to the floating point arithmetic mode, 18-bit
and 27-bit fixed point arithmetic modes are also supported, to offer flexibility in
arithmetic granularity to some extent.

72 M. Amagasaki and Y. Shibata

32 L IEEE754 single-precision
floating point adder

— T+
L~ | [
ol

IEEE754 single-precision
floating point multiplier

32

Fig. 3.22 Structure of an Altera floating point arithmetic DSP block [63]

3.8.3 Usage of DSP Blocks

As described above, even for the same arithmetic operation, modern commercial
FPGA architectures offer several different implementation options; for example,
using DSP blocks and using logic blocks. Understandably, the arithmetic perfor-
mance is affected by the implementation option selected by a designer. Basically, the
use of DSP blocks has an advantage in terms of performance. However, for example,
when DSP blocks are fully utilized, but logic blocks are still left over, an intentional
use of logic blocks may allow the implementation with a smaller FPGA chip.

There are several ways for FPGA users to use DSP blocks in their designs. One way
is to use intellectual property (IP) generation tools offered by FPGA vendors. With
these tools, users can select desired IP from pre-designed libraries, such as arithmetic
operators and digital filters. Then, the users can easily generate the module of the IP,
after customizing the parameters like bit width. If DSP blocks are available for the
selected IP, users can designate or prohibit the usage of DSP blocks through the tool.

In hardware description language (HDL) design, by following HDL coding styles
recommended by FPGA vendors, users can make a logic synthesis tool infer usage of
DSP blocks. This implementation option has the merit that the same design descrip-
tion can be ported to other FPGA architectures or even to other vendors’ chips. Also,
users can restrict or prohibit the usage of DSP blocks by setting options of the logic
synthesis tools, for the same HDL code.

When low-level access to DSP blocks is preferred, users can directly instantiate
primitive modules of DSP blocks in their HDL design. This implementation option,
however, lacks design portability for other FPGA architectures.

3 FPGA Structure 73

3.9 Hard Macros

When large-scale FPGAs became available with the improvement of semiconductor
integration degree, system-on-FPGA, in which a whole complex digital system is
implemented on a single FPGA chip, attracted attention as major FPGA applications.
In this case, general-purpose interface circuits, which are commonly used in various
systems, are preferred to be implemented as on-chip dedicated hardware in advance,
rather than being implemented as part of user logic by each designer. Thus, modern
commercial FPGAs are equipped with various on-chip dedicated hardware circuits.
Generally, these dedicated hardware circuits are called hard macros.

3.9.1 |Interface Circuits as Hard Macros

In addition to the hardware multipliers and DSP blocks described in the previous
sections, which are also kinds of hard macros, recent FPGAs also provide PCI Express
interface, high-speed serial interface, DRAM interface, analog-to-digital converters
(ADC), and so on as hard macros. One of the background factors of this trend is
that interface circuits with high-speed clock signals are increasingly needed along
with expanding demands for high-performance peripheral devices. Unlike the logic
blocks and DSP blocks, only a small number of interface circuits are provided as
hard macros for each FPGA. Therefore, layouts of user logic connected to these hard
macros require close attention, since unexpected long wires between the user logic
and the macros may prevent from achieving the desired circuit performance.

3.9.2 Hard-Core Processors

When FPGA users wish to implement a whole complex digital system on a chip,
a microprocessor is often an essential component. Since any logic circuit can be
implemented on FPGA, the users can also implement microprocessors on the pro-
grammable fabric of the FPGA. Such processors configured on FPGAs are called
soft-core processors. Xilinx and Altera offer soft-core processors, which are well
optimized for their FPGA families [64, 65]. There are also various open sourced
soft-core processors, which can be freely customized by users [66].

While soft-core processors have the merit of flexibility, dedicated processors
implemented as on-chip hard macros are advantageous in terms of performance.
Such processors are called hard-core processors. Xilinx once commercialized FPGAs
equipped with IBM PowerPC hard-core processors. Currently, Xilinx and Altera offer
FPGA families which employ ARM cores as hard-core processors.

74 M. Amagasaki and Y. Shibata

Processing System (PS) Programmable
SRAM - Flash memory DRAM controller Logic (PL)
controller
[[I Logic blocks
DSPs
AMBA swiitch | | [AvBAswitch BRAMs
SPI [
12C
NEON NEON
floating point floating point
CAN arithmetic engine | |arithmetic engine
@
x
]2 Cotex-A9 Cotex-A9
= UART processor processor 8
2 32KB I-cahce 32KB I-cahce 8
o and D-cache and D-cache I
= GPIO =
Q
| 512KB level-2 cache =
SDIO - —
l Cache consistency control unit I
l 256KB on-chip memory IL
—_— -
AMBA switch ‘
! ! ! ! ! PCle
AD converter Controller
‘ 1/0 interface ‘ ‘ High speed link transceiver

I

Fig. 3.23 Znyq-7000 EPP architecture [67]

Figure 3.23 shows the Xilinx Zyng-7000 Extensible Processing Platform (EPP)
architecture, which provides hard-core processors [67]. The architecture consists of
a processor part and a programmable logic part. The former is called processing sys-
tem (PS), and the latter is called programmable logic (PL). The PS has a multi-core
structure with two ARM Cortex A9 cores. Also, interface controllers for external
memory and various peripheral devices are provided as hard macros. These hard
macros are connected with the cores through a switching fabric based on the AMBA
protocol, which is a standard for on-chip interconnection. The hard-core processors
can run general-purpose OS such as Linux. The PL has a common structure with
ordinary FPGAs, which consists of LUT-based logic blocks, DSP blocks, and embed-
ded memory blocks. By designing an AMBA switch interface on PL according to
a predefined protocol, users can connect their application circuits to the hard-core
processors. In this way, users can offload parts of the software processing to custom
hardware for acceleration.

3 FPGA Structure 75

3.10 Embedded Memory

In early FPGA architectures, which were based on logic blocks consisting of LUTs
and flip-flops, flip-flops in the logic blocks were the only memory elements available
for user circuits. Thus, it was difficult to store a large amount of data inside the FPGA
chip, and external memory was necessary for such data-intensive applications. In this
configuration, however, the bandwidth between the FPGA and the external memory
often tended to become a performance bottleneck. Therefore, commercial FPGAs,
in their development process, have obtained a mechanism to efficiently implement
memory elements inside the chip. Such memory elements are collectively called
embedded memory. The embedded memory provided by recent commercial FPGAs
is roughly classified into two types, as described hereafter.

3.10.1 Memory Blocks as Hard Macros

The first and straightforward approach for providing efficient memory functionality
in FPGAs is to introduce on-chip memory blocks as hard macros.

In Xilinx FPGA architectures, such memory blocks provided as hard macros
are called Block RAM (BRAM). Figure 3.24 shows the interface of BRAM in the
Xilinx 7-series architecture. In this architecture family, dozens to hundreds of BRAM
modules are provided depending on the chip size, each of which has a capacity of 36K-
bits. One BRAM module can be used as one 36K-bit memory or two independent
18K-bit memories. In addition, two adjacent BRAM modules can be coupled to
configure a 72K-bit memory without any additional logic resources.

As shown in Fig.3.24, a memory access port of BRAM, a group of address bus,
data bus, and control signals are duplicated so as to provide two ports: A port and
B port. Therefore, BRAM can be used not only as single-port memory, but also as
a dual-port memory. This dual-port property allows users to easily configure first-in
first-out (FIFO) memory, which is useful for sending and receiving data between
sub-modules in user applications. In Xilinx architectures, the access to BRAM must
be synchronized with the clock signals. In other words, users cannot obtain the output
data of BRAM at the same clock cycle as the one of giving an address to be accessed
[68].

3.10.2 Memory Using LUTs in Logic Blocks

The other approach to provide on-chip memories on FPGAs is to use LUTs in logic
blocks. As aforementioned, a LUT is a small memory that is used implement the
truth table of a combinational circuit. Generally, all the LUTs in an FPGA chip
are not consumed to implement combination circuits. Therefore, by allowing users

76 M. Amagasaki and Y. Shibata

Fig. 3.24 BRAM module in CASCADEOUTA CASCADEOUTB
Xilinx 7-series architecture
68
[68] 22 5loia
—2/ »{pipA
18/ »| ADDRA
4
—/—>|WEA PortA
—>|ENA
——»|RSTREGA
R —
RSTRAMA boa |32
—>[>CLKA 4
—»|REGCEA) DOPA =7
36K-bit
:I Memory |:
%L» DIB Array 32
DOB FH—
—4/ »{pipB X
18/ 5| ADDRB DOPB =7
—24/ > wes
—>(ENB Port B
RSTREGB
——»|RSTRAMB
—>[>cCLkB
—|REGCEB
CASCADEINA CASCADEINB

to access unused LUTs as memory elements, both on-chip memory capacity and
hardware utilization efficiency can be increased.

In Xilinx FPGA architectures, such LUT-based on-chip memory is called dis-
tributed RAM. However, not all the LUTs in the chip can be utilized; only the LUTs
included in logic blocks called SLICEMs can be utilized as distributed RAM. While
distributed RAM supports asynchronous access which is not possible with BRAMs,
configuring large memory with distributed RAM may leave only small amount of
LUTs for logic implementation. Thus, in general, the use of distributed RAM is
recommended for configuring relatively a small size memory.

3.10.3 Usage of Embedded Memory

Like DSP blocks, there are several ways for FPGA users to utilize embedded memory
for their application circuits. FPGA vendors provide memory IP generation tools,
with which users can easily generate various memory functions such as RAM, ROM,
dual-port RAM, and FIFO. Through these tools, users can also designate the use of
BRAM or distributed RAM. Also, by describing HDL code following the coding
style recommended by FPGA vendors, users can make a logic synthesis tool to

3 FPGA Structure 77

infer the use of embedded memory. A merit of the latter design method is that the
portability of the design can be ensured.

Although the capacity of embedded memories available in FPGAs has been
increased along with the chip size, a large memory space like DRAM in computer
systems cannot be configured inside FPGAs. On the other hand, since multiple banks
of BRAMs and distributed RAMs can be accessed in parallel, FPGAs offer a large
bandwidth for embedded memories. For efficient application mapping, one of the
important keys is how effectively the application can exploit this large bandwidth of
embedded memories.

3.11 Configuration Chain

Circuit information used to configure circuits on an FPGA is called a bit stream or
configuration data. The configuration data contains all the information required to
configure a circuit on an FPGA, including contents of truth tables for each LUT and
on/off information for each switch block.

3.11.1 Memory Technologies for Configuration

FPGAs need to store the configuration data inside the chip in some way, and this stor-
age is generally called configuration memory. The configuration memory is classified
into the following three types depending on the device technologies used:

1. SRAM type
SRAM is a rewritable volatile memory. Therefore, while FPGAs in this type can
be reconfigured many times, the configured circuits will disappear when the power
supply goes off. Generally, external non-volatile memory is used for automatic
power-on configuration.

2. Flash memory type
Flash memory is non-volatile; that is, configuration data will not disappear even
when the power supply is off. Although FPGAs in this type can be effectively
reconfigured any number of times, the write speed to the flash memory is slower
than that of SRAM.

3. Anti-fuse type
An anti-fuse is an insulator at first, but applying a high voltage makes it a conduc-
tor. Using this property, configuration data can be kept like non-volatile memory.
However, once an anti-fuse becomes a conductor, it cannot revert back to the orig-
inal insulator. Therefore, once an anti-fuse type FPGA is configured, it cannot be
reconfigured any more.

Since each type of FPGAs has different characteristics, users should select appropri-
ate devices depending on their application demands.

78 M. Amagasaki and Y. Shibata

3.11.2 JTAG Interface

In general, SRAM FPGAs are configured from external configuration data memory
when the power is turned on. Therefore, most FPGA chips have a mechanism to
actively access external configuration memory to obtain configuration data. Con-
versely, passive configuration, where an external control system sends configuration
data to the FPGA, is also generally supported. FPGA users can select a desired mode
among these several configurations.

In the developing or debugging phase of circuits, it is convenient that the circuits
can be configured many times on an FPGA from a host PC. In most commercial
FPGAs, configuration through the Joint Test Action Group (JTAG) interface is sup-
ported. JTAG is acommon name of the IEEE 1149.1, which is a standard of boundary
scan tests. Originally, a boundary scan test makes a long shift register by connect-
ing input/output registers on the chip in a daisy chain manner. Then, by accessing
this shift register from outside the chip, it becomes possible to give test values to
desired input pins and to observe output values on output pins. To access the shift
register, only 1-bit data input, 1-bit data output, and a clock signal are required. Even
including a few bits for selecting test modes, a simple interface is enough for this
purpose.

In most FPGAs, a configuration mechanism is implemented on top of this bound-
ary scan framework of JTAG. The configuration data is serialized and sent to the
FPGA bit-by-bit through the shift register for the boundary scan. This path of the
shift register is called a configuration chain. Since shift registers of multiple FPGAs
can also be combined and chained into one long shift register, users can select one
of the FPGAs and manage the configuration with only one JTAG interface even on
multi-FPGA systems.

In recent years, FPGA debug environments using JTAG interface are also pro-
vided. For debug purposes, it is convenient that users can observe the behaviors of
internal signals while the configured circuit is in operation. However, signals to be
observed are needed to be wired to output pins and connected to an observation tool
such as a logic analyzer. With the debugging mechanisms offered by JTAG interface,
the behaviors of signals to be observed are captured into unused embedded memory.
Then, the data can be read back through the JTAG interface to the host PC, so as to be
visualized in a waveform. With this environment, users can also set trigger conditions
to start capturing, as if a virtual logic analyzer is installed inside the FPGA.

3.12 PLL and DLL

Since FPGAs can configure various circuits whose operation frequencies are natu-
rally varied depending on the critical paths, it is convenient that a clock signal with
various frequencies can be generated and used inside the FPGA chip. When circuits
configured on the FPGA communicate with external systems, it is desired that the

3 FPGA Structure 79

Referece clock—>| Phase
frequency ey PaSS VCO Output clock
filter
detector

Fig. 3.25 Basic concept of PLL

clock signal which is in phase with an external clock signal is generated. In addi-
tion, when the FPGA is connected with multiple peripheral devices, multiple clock
signals that have different frequencies and phases are needed according to each inter-
face standard. Thus, recent commercial FPGAs provide an on-chip programmable
phase-locked loop (PLL) mechanism, so that various clock signals can be flexibly
generated based on an externally given reference clock.

3.12.1 Basic Structure and Operating Principle of PLL

Figure 3.25 shows the basic structure of PLLs. The main part of PLLs is a voltage-
controlled oscillator (VCO), whose oscillation frequency can be varied by changing
the applied voltage. As shown in Fig.3.25, PLLs have a feedback structure for the
VCO. A reference clock input from the outside and the clock generated by the VCO
are compared by a phase frequency detector. When the comparison results show that
there is no difference between the two clock signals, the same applied voltage to the
VCO can be maintained. If the frequency of VCO is higher or lower than the reference
clock, the voltage to the VCO needs to be decreased or increased. Generally, a charge
pump circuit is used to translate the comparison results into such an analog voltage
signal.

Although it seems that this analog voltage signal can be directly used to regulate
the VCO clock, it will make the system unstable. Thus, a low-pass filter is provided in
front of the VCO to cut off high-frequency components. In this way, the clock signal
that has the same frequency and the same phase with the external reference clock
is generated in a stable manner. This operating principle, illustrated in Fig.3.25, is
basically implemented as an analog circuit.

3.12.2 Typical PLL Block

The aforementioned basic structure of PLLs can only generate the clock signal with
the same frequency as the reference. However, application circuits on FPGAs often
require various clock signals with different frequencies. Therefore, most FPGAs add

80 M. Amagasaki and Y. Shibata

Reference
Reference clock —| clock divider |—| Phase Low
- pass | | Outputclock [
(N) gequemy filter vCco vider 1 (K2) Output clock 1
letector
Feedback
clock divider Output clock
™M) dvider 2 (K) Output clock 2
| .| Outputclock |
divider 3 (K3) Output clock 3

Fig. 3.26 Typical PLL block structure for FPGAs

programmable clock dividers to the basic PLL, shown in Fig. 3.25. A typical structure
is depicted in Fig. 3.26.

Firstly, the reference clock is given to the divider in front of the phase frequency
detector. When this dividing rate is N, the target frequency of the VCO becomes
1/N of the reference frequency. In addition, another clock divider is inserted in the
feedback path from the output of the VCO to the input of the phase frequency detector.
When this dividing rate is M, the feedback system regulates the VCO frequency so
that the target frequency matches with 1/M of the VCO frequency. Therefore, the
VCO frequency F,, is expressed as

F, M F, 3.2
veo — N ref (.)
where F,.; is the frequency of the reference clock. Since programmable clock
dividers are used, users can designate desired values for M and N. Depending on
the set value of the dividing rate for the feedback clock (M), a clock with a higher
frequency than that of the external reference clock is also generated.

As Fig.3.26 represents, in a typical PLL block for FPGAs, additional clock
dividers are also provided behind the VCO, so that the clock generated by the VCO
can be further divided. Furthermore, the VCO output branches off into the multiple
paths, each of which has individual clock dividers, so that multiple clock signals with
different frequencies can be outputted from the common VCO clock. The frequency
of the ith output clock F; is expressed as:

F,=—F,0 (3.3)

where K; is the dividing rate of the corresponding output clock divider. When sub-
stituting Eq. (3.3) with Eq. (3.2), the relationship between the reference frequency
and the output frequency becomes:

3 FPGA Structure 81

M

Fi=— ref -
N-K "

3.4

By setting the appropriate values for M, N, and K; according to this equation, users
can obtain a desired clock frequency from the external reference clock signal.

3.12.3 Flexibility and Restriction of PLL Blocks

Recent commercial FPGA architectures provide further sophisticated clock manage-
ment mechanisms that can generate clock signals more flexibly. For example, phases
and delay amounts of each clock output can be finely varied [69]. For the refer-
ence clock and feedback clock, various internal or external signals can be selected
and used. Some FPGAs support dynamic reconfiguration of PLLs, which enables
changing the clock setting during the circuit is in operation [70].

As Eq. (3.4) shows, a combination of divider rates for M, N, and K; is not
necessarily uniquely determined for a pair of a desired clock frequency F; and a
reference clock frequency F,.r. However, a range of available divider rates has some
restrictions due to the physical characteristics of clock dividers. In addition, the
reference clock frequency Fj.; and the VCO frequency F), have their respective
upper and lower limits. When multiple PLL blocks are connected in cascade, there
are also additional restrictions.

In order to obtain the desired clock frequency by setting appropriate values for M,
N, and K; so that these restrictions are satisfied, users need to carefully go through
the documents provided by FPGA vendors. Fortunately, both Xilinx and Altera offer
GUI tools to help users. Based on the user inputs on the reference frequency, desired
output frequency, and phase shift amount, these tools automatically calculate the
division rates so that no restrictions are violated.

3.12.4 Lock Output

As mentioned above, the basic operation principle of PLLs is a feedback system
where the VCO frequency is the controlled variable and the reference frequency
is the desired value. When the power is turned on, the system reset is activated,
and the reference clock is largely fluctuated, a certain time period is required until
the feedback systems make the VCO oscillation stable. This means until the PLL
output clock gets regulated, the user circuits synchronized with this clock signal may
perform unexpected behavior.

To cope with this problem, most PLL blocks are equipped with a mechanism that
always monitors the reference clock signal and feedbacks the clock signal. A 1-bit
output signal is provided to indicate that the output of the PLL is locked, which means
that the VCO output is stable and is tracking well the reference clock. This output

82 M. Amagasaki and Y. Shibata

signal is called a lock output and is useful for the external circuits to determine the
reliability of the clock. For example, by designing a mechanism which keeps the reset
signal active while the PLL block continues asserting the lock output, unexpected
circuit behavior caused by the unstable clock can be avoided.

3.12.5 DLL

Some FPGA architectures support a clock management mechanism based on a delay-
locked loop (DLL) rather than a PLL. Figure 3.27 illustrates the basic concept of a
DLL. While a DLL has a feedback structure like a PLL, a VCO is not utilized; but,
a delay amount of clock signals is controlled by a variable delay line. Although the
variable delay line can also be realized with a voltage-controlled delay element, a
digital approach is generally taken for FPGAs. As shown in Fig. 3.28, multiple delay
elements are arranged in advance, and the delay amount is varied by changing the
number of delay elements that the input signal goes through.

By using a DLL, the phase of the controlled clock can be matched with that
of the reference clock. This virtually corresponds to the elimination of the wiring
delay from the external reference clock to the controlled clock, that is clock deskew.
By the combination with clock dividers, like PLL blocks, DLL blocks can offer

Reference clock Variable Output clock
delay line Clocking network

Delay control

—| Phase Low pass
—| detector filter (LPF)

Controlled clock

Fig. 3.27 Basic concept of DLL

Delay elements

Input i I I I Al}

Output

REIEIS

Delay amounts

Fig. 3.28 Basic concept of digitally variable delay line

3 FPGA Structure 83

flexibility on the output clock frequency to some extent. Compared to the VCOs
used for PLLs, the digitally variable delay lines used in DLLs are more stable and
are more robust against to accumulation of phase errors [71]. PLLs, however, have
an advantage in terms of flexibility on frequency synthesis. That is why PLL-based
clock management mechanisms are the main stream in current commercial FPGA
architectures.

References

1.

2.

~w

11.

12.
13.

14.

15.

16.

17.

18.
19.

20.

I. Kuon, R. Tessier, J. Rose, FPGA architecture: survey and challenges. Foundat. Trends Elec-
tron. Des. Automat. 2(2), 135-253 (2008)

J.S. Rose, R.J. Francis, D. Lewis, P. Chow, Architecture of field-programmable gate arrays: the
effect of logic block functionality on area efficiency. IEEE J. Solid-State Circ. 25(5), 1217-1225
(1990)

Xilinx Corporation, Virtex 4 family overview DS112 (Ver.1.4), Mar 2004

Altera Corporation, Stratix Device Handbook, vol. 1 (2005)

E. Ahmed, J. Rose, The effect of LUT and cluster size on deep-submicron FPGA performance
and density, IEEE Trans. Very Large Scale Integrat. (VLSI) Syst. 12(3) (2004)

Altera Corporation, Stratix V Device Handbook, Device Interfaces and Integration vol. 1 (2014)
J. Lamoureux, S.J.E. Wilton, On the interaction between power-aware computer-aided design
algorithms for field-programmable gate arrays. J. Low Power Electron. (JOLPE) 1(2), 119-132
(2005)

UCLA VLSI CAD Lab, The RASP Technology Mapping Executable Package, http://cadlab.cs.
ucla.edu/software_release/rasp/htdocs

Xilinx Corporation, XC4000XLA/XV Field Programmable Gate Array Version 1.6 (1999)

J. He, J. Rose, Advantages of heterogeneous logic block architectures for FPGAs, in Proceed-
ings of IEEE Custom Integrated Circuits Conference (CICC 93), May 1993, pp. 7.4.1-7.4.5
Altera Corporation, Stratix II Device Handbook, vol. 1. Device Interfaces and Integration
(2007)

Xilinx Corporation, Virtex 5 User Guide UG190 Version 4.5, Jan 2009

J. Luu, J. Geoeders. M. Wainberg, An Somevile, T. Yu, K. Nasartschuk, M. Nasr, S. Wang, T.
Liu, N. Ahmed, K.B. Kent, J. Anderson, J. Rose, V. Betz: VTR 7.0: next generation architecture
and CAD System for FPGAs. ACM Trans. Reconfig. Technol. Syst. (TRETS), 7(2), Article
No. 6 (2014)

D. Lewis, B. Pedersen, S. Kaptanoglu, A. Lee, Fracturable Lookup Table and Logic Element,
US 6,943,580 B2, Sept 2005

M. Chirania, V M. Kondapalli, Lookup Table Circuit Optinally Configurable as Two or More
Smaller Lookup Tables With Independent Inputs, US 6,998,872 B1, Feb 2006

T. Sueyoshi, M. lida, Programmable Logic Circuit Device Having Lookup Table Enabling To
Reduce Implementation Area, US 6,812,737 B1, Nov 2004

S. Brown, R. Francis, J. Rose, X.G. Vranesic, Field-Programmable Gate Arrays, (Luwer Aca-
demic Publishers, 1992)

J.M. Birkner, H.T. Chua, Programmable Array Logic Circuit, US. 4,124,899, Nov 1978
Actel Corporation: ACT 1 Series FPGAs (1996), http://www.actel.com/documents/ ACT1DS.
pdf

W. Tsu, K. Macy, A. Joshi, R. Huang, N. Waler, T. Tung, O. Rowhani, V. George, J. Wawizynek,
A. Dehon, HSRA: high-speed, hierarchical synchronous reconfigurable array, in Proceedings
of International ACM Symposium on Field-Programmable Gate Arrays (FPGA), pp. 125-134,
Feb 1999

http://cadlab.cs.ucla.edu/software_release/rasp/htdocs
http://cadlab.cs.ucla.edu/software_release/rasp/htdocs
http://www.actel.com/documents/ACT1DS.pdf
http://www.actel.com/documents/ACT1DS.pdf

84

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

M. Amagasaki and Y. Shibata

Altera Corporation, FLEX 10K Embedded Programmable Logic Device Family, DS-F10K-4.2
(2003)

Altera Corporation, APEX 20K Programmable Logic Device Family Data Sheet, DS-
APEX20K-5.1 (2004)

Altera Corporation, APEX II Programmable Logic Device Family Data Sheet, DS-APEXII-3.0
(2002)

I. Kuon, A. Egier, J. Rose, Design, layout and verification of an fpga using automated tools, in
Proceedings of International ACM Symposium on Field-Programmable Gate Arrays (FPGA),
pp. 215-216, Feb 2005

Q. Zhao, K. Inoue, M. Amagasaki, M. lida, M. Kuga, T. Sueyoshi, FPGA design framework
combined with commercial VLSI CAD, IEICE Trans. Informat. Syst. E96-D(8), 1602-1612
(2013)

G. Lemieux, D. Lewis, Design of Interconnection Networks for Programmable Logic, (Springer,
formerly Kluwer Academic Publishers, 2004)

D. Lewis, E. Ahmed, G. Baeckler, V. Betz, M. Bourgeault, D. Galloway, M. Hutton, C. Lane,
A. Lee, P. Leventis, C. Mcclintock, K. Padalia, B. Pedersen, G. Powell, B. Ratchev, S. Reddy, J.
Schleicher, K. Stevens, R. Yuan, R. Cliff, J. Rose, The stratix II logic and routing architecture, in
Proceedings of the ACM/SIGDA 13th International Symposium on Field-Programmable Gate
Arrays (FPGA), pp. 14-20, Feb 2005

V. Betz, J. Rose, FPGA routing architecture: segmentation and buffering to optimize speed and
density, in Proceedings of the ACM/SIGDA International symposium on Field-Programmable
Gate Arrays (FPGA), pp. 140-149, Feb 2002

M. Sheng, J. Rose, Mixing bufferes and pass transistors in FPGA routing architectures, in
Proceedings of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(FPGA), pp. 75-84, Feb 2001

C. Chiasson, V. Betz, Should FPGAs abandon the pass gate?, in Proceedings of IEEE Interna-
tional Conference on Field-Programmable Logic and Applications (FPL) (2013)

E. Lee, G. Lemieux, S. Mirabbasi, Interconnect driver design for long wires in field-
programmable gate arrays. J. Signal Process. Syst. 51(1) (2008)

Y.L. Wu, M. Marek-Sadowska, Orthogonal greedy coupling—a new optimization approach
for 2-D field-programmable gate array, in Proceedings of the ACM/IEEE Design Automation
Conference (DAC), pp. 568-573, June 1995

Y.W. Chang, D.F. Wong, C.K. Wong, Universal switch-module design for symmetric-array-
based FPGAs. ACM Trans. Des. Automat. Electron. Syst. 1(1), 80-101 (1996)

S. Wilton, Architectures and Algorithms for Field-Programmable Gate Arrays with Embed-
ded Memories, Ph.D. thesis, University of Toronto, Department of Electrical and Computer
Engineering (1997)

K. Inoue, M. Koga, M. Amagasaki, M. lida, Y. Ichida, M. Saji, J. lida, T. Sueyoshi, An easily
testable routing architecture and prototype chip. IEICE Trans. Informat. Syst. E95-D(2), 303—
313 (2012)

M. Amagasaki, K. Inoue, Q. Zhao, M. Iida, M. Kuga, T. Sueyoshi, Defect-robust FPGA architec-
tures for intellectual property cores in system LSI, inProceedings of International Conference
on Field Programmable Logic and Applications (FPL), Session M1B-3, Sept 2013

G. Lemieux, D. Lewis, Circuit design of FPGA routing switches, in Proceedings of the
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA) pp. 19—
28, Feb 2002

M. Smith, Application-Specific Integrated Circuits, Addison-Wesley Professional (1997)
Altera Corporation, Stratix IIl Device Handbook, vol. 1. Device Interfaces and Integration
(2006)

S. Trimberger, Field-Programmable Gate Array Technology (Kluwer, Academic Publishers,
1994)

K. Veenstra, B. Pedersen, J. Schleicher, C. Sung, Optimizations for highly cost-efficient pro-
grammable logic architecture, in Proceedings of the ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays (FPGA), pp. 20-24, Feb 1998

3 FPGA Structure 85

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.
52.

53.

54.
55.
56.
57.
58.

59.
60.

61.
62.
63.

64.
65.

66.

67.

F. Heile, A. Leaver, K. Veenstra, Programmable memory blocks supporting content-addressable
memory, in Proceedings of the ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA), pp. 13-21, Feb 2000

D. Lewis, V. Betz, D. Jefferson, A. Lee, C. Lane, P. Leventis, S. Marquardt, C. McClintock, V.
Pedersen, G. Powell, S. reddy, C. Wysocki, R. Cliff, J. Rose, The stratix routing and logic archi-
tecture, in Proceedings of the ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays (FPGA), pp. 15-20, Feb 2003

M. Hutton, J. Schleicher, D. Lewis, B. Pedersen, R. Yuan, S. Kaptanoglu, G. Baeckler, B.
Ratchev, K. Padalia, M. Bougeault, A. Lee, H. Kim, R. Saini, Improving FPGA performance
and area using an adaptive logic module, in Proceedings of International Conference on Field
Programmable Logic and Applications (FPL), pp. 135-144, Sept 2013

V. AkenOva, G. Lemieus, R. Saleh, An improved “soft” eFPGA design and implementation
strategy, in Proceedings of IEEE Custom Integrated Circuits Conference, pp. 18-21, Sept 2005
D. Lewis, E. Ahmed, D. Cashman, T. Vanderhoek, C. Lane, A. Lee, P. Pan, Architectural
enhancements in Stratix-1II and Stratix-1V, in Proceedings of the ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays (FPGA), pp. 33—41, Feb 2009

S. Chandrakar, D. Gaitonde, T. Bauer, Enhancements in ultraScale CLB architecture, in Pro-
ceedings of the ACM/SIGDA International Symposium on Field-Programmable Gate Arrays
(FPGA), pp. 108-116, Feb 2015

V. Betz, J. Rose, A. Marquardt, Architecture and CAD for Deep-Submicron FPGAs, (Kluwer
Academic Publishers, 1999)

G. Lemieux, D. Lewis, Circuit design of FPGA routing switches, in Proceedings of the
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA), pp. 19—
28, Feb 2002

K. Ian, J. Rose, Quantifying and Exploring the Gap Between FPGAs and ASICs (Springer,
2009)

W.S. Carter, Special Interconnect for Configurable Logic Array, US4,642,487, Feb 1987
R.H. Freeman, Configurable Electrical Circuit Having Configurable Logic Elements and Con-
figurable Interconnects, US4,870,302, Sept 1989

B.B. Pedersen, R.G. Cliff, B. Ahanin, C.S. Lyte, F.B. Helle, K.S. Veenstra, Programmable Logic
Element Interconnections for Programmable Logic Array Integrated Circuits, USS5,260,610,
Nov 1993

R.H. Freeman, H.C. Hsieh, Distributed Memory Architecture For A Configurable Logic Array
and Method for Using Distributed Memory, US5,343,406, Aug 1994

T.A. Kean, Hierarchically Connectable Configurable Cellular Array, US5,469,003, Nov 1995
K.S. Veenstra, Universal Logic Module With Arithmetic Capabilities, US5,436,574, Jul 1995
R.G. Cliff, L. ToddCope, C.R. McClintock, W. Leong, J.A. Watson, J. Huang, R. Ahanin,
Programmable Logic Array Integrated Circuits, US5,550,782, Aug 1996

K.M. Pierce, C.R. Erickson, C.T. Huang, D.P. Wieland, Interconnect Architecture for Field
Programmable Gate Array Using Variable Length Conductors, US5,581,199, Dec 1996

T.J. Bauer, Lookup Tables Which Bouble as Shift Registers, US5,889,413, May 1999

K.M. Pierce, C.R. Erickson, C.T. Huang, D.P. Wieland, I/O Buffer Circuit With Pin Multiplex-
ing, US6,020,760, Feb 2000

Xilinx Corporation, Virtex-1I Platform FPGAs: Complete Data Sheet, DS031 (v4.0) Apr 2014
Xilinx Corporation, 7 Series DSP48E1 Slice User Guide, UG479 (v1.8), Nov 2014

U. Sinha, Enabling Impactful DSP Designs on FPGAs with Hardened Floating-Point Imple-
mentation, Altera White Paper, WP-01227-1.0, Aug 2014

Xilinx Corporation, MicroBlaze Processor Reference Guide, UG984 (v2014.1), Apr 2014
Altera Corporation, Nios II Gen2 Processor Reference Guide, NII5V1GEN2 (2015.04.02), Apr
2015

R. Jia et al., A survey of open source processors for FPGAs, in Proceedings of International
Conference on Field Programmable Logic and Applications (FPL), pp. 1-6, Sept 2014

M. Santarini, Zyng-7000 EPP sets stage for new era of innovations. Xcell J. Xilinx 75, 8-13
(2011)

86

68.
69.

70.

71.

M. Amagasaki and Y. Shibata

Xilinx Corporation, 7 Series FPGAs Memory Resources UG473 (v1.11) Nov 2014

Xilinx Corporation, 7 Series FPGAs Clocking Resources User Guide, UG472 (v1.11.2) Jan
2015

J. Tatsukawa, MMCM and PLL Dynamic Reconfiguration, Xilinx Application Note: 7 Series
and UltraScale FPGAs, XAPP888 (v1.4), Jul 2015

Xilinx Corporation, Using the Virtex Delay-Locked Loop, Application Notes: Virtex Series,
XAPP132 (v2.3) Sept 2000

Chapter 4 ®)
Design Flow and Design Tools e

Tomonori Izumi and Yukio Mitsuyama

Abstract This chapter introduces how to design the target module on an FPGA
from designers’ point of view. Now, FPGA vendors support integrated design tools
which include all steps of design. Here, mainly Xilinx is adopted as an example, and
its design flow is introduced from HDL description to programming and debugging
devices. Next, high-level synthesis (HLS) which enables to design hardware with
high-level programming language is introduced. In order to describe hardware, there
are several restrictions and extension in front-end programming languages. The key
issue to achieve enough performance is inserting pragmas for parallel processing and
pipelining. Then, IP-based design for improving the productivity is introduced. The
last subject of this chapter is how to use hard-macro processor in recent SoC-style
FPGAs. Designers have to read a large amount of documents from vendors when
they start the FPGA design, but by reading this chapter, they can get a brief overview
of the total design.

Keywords Design tools - HDL design - HLS design - IP-based design

This chapter introduces the design flow, design tools, and development environments
to implement target systems on FPGAs. We explain how a designer elaborates and
implements the designed object starting from a given specification and constraints
describing source codes and drawing block diagrams reflecting the designer’s plan
of architecture using a set of design tools. Readers might refer to Chaps. 1, 2, and 3
of this book and references [1] and [2] for general FPGA descriptions.

Although the content of this chapter mainly follows FPGAs and design tools of
Xilinx Inc., [3-8, 12—-17], we strive to discuss the concepts and principles indepen-
dent of FPGA vendors, tools, and versions . Similar environments are supplied by

T. Izumi ()
Ritsumeikan University, Kusatsu, Japan
e-mail: t-izumi@se.ritsumei.ac.jp

Y. Mitsuyama
Kochi University of Technology, Kami, Japan
e-mail: mitsuyama.yukio@kochi-tech.ac.jp

© Springer Nature Singapore Pte Ltd. 2018 87
H. Amano (ed.), Principles and Structures of FPGAs,
https://doi.org/10.1007/978-981-13-0824-6_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0824-6_4&domain=pdf

88 T. Izumi and Y. Mitsuyama

Altera Corp. and others. Readers might consider consulting the manuals and tuto-
rials supplied by each vendor or books related to individual design tools and their
advanced usage.

4.1 Design Flow

A designer embodies the target by describing source codes, by drawing circuit dia-
grams, and by setting parameters, based on given specifications and constraints.
Figure 4.1 presents an outline of the design flow in this chapter.

We assume source codes in register transfer level (RTL) described in the hard-
ware description language (HDL), such as Verilog HDL and VHDL, as typical design
entries. Configuration data to implement the target system on the FPGA chip are gen-
erated through RTL description, logic synthesis, technology mapping, and place and
route. This design flow is detailed in Sect. 4.2. Verification by simulation, loading
configuration data into an FPGA chip and debugging on an actual device are described
as well. Recently, high-level synthesis (HLS) that generates hardware modules from

|

Behavioral level : ::sr::?;/;;(t)i?rlw ; Software
simulation | development

environment

Chap 4.5
Software

program
RTL
simulation
l[Logic synthesis
Synthesis \l/
Netlist
Layout
Timing Place and route
verification
Configuration
data
Device

|
Prototyping :

Fig. 4.1 Design flow

4 Design Flow and Design Tools 89

behavioral description in C language and others is being introduced to practical use.
Section 4.3 explains the design flow starting from behavioral description, processed
through simulation in the behavioral level and behavioral synthesis, handed to logic
synthesis. Section 4.4 introduces the design method that incorporates existing intel-
lectual properties (IPs) into the design as parts. A design tool working on block
diagrams is available for the IP-based design. The block diagram for IPs is in a
higher abstraction level than classical circuit diagrams in logic gate level or oper-
ation unit level and handles more complicated functional units mutually connected
by an interface composed of data and control signals as a unit. Finally, in Sect. 4.5,
the design method for a system equipped with a processor is described, including
building the system, software development, implementation, and debugging.

4.2 Design Flow by HDL

This section introduces the design flow and related tools starting from RTL descrip-
tions. Here, we presume that the target object is described in an HDL such as Verilog
HDL or VHDL in the abstraction level of RTL. The design flow for RTL descriptions
is composed of logic synthesis, technology mapping, place and route, generating con-
figuration data, programming the FPGA, and execution on an FPGA. To write a circuit
on an FPGA, a designer must supply physical constraints such as the FPGA part num-
ber, pin assignment on the board, clocks, timing, and other information in addition to
a description of the target object to be designed. In detailed debugging, the designer
must specify observed signals and attach the observation system. The performance
(speed, size, power consumption, and others) of the resulting circuit implemented
on the FPGA varies even for the same function and description, depending on the
optimization options. Thus, provision of the optimization strategy for design tools is
needed for the specification requested. In the followings, we explain the design and
the design tools in each step following the design flow.

4.2.1 Registration of Project

The whole information of the target object to be designed is handled as a unit and
called the design project in today’s integrated development environment. The unit
includes files for tool settings, constraint files, final and intermediate products, and
reports in addition to the source codes of the designed object. Figure 4.2 presents
an example of information in a project. At the beginning of the design, a designer
creates a new project. It has a project name and a working folder (directory). All
the files including the project information, products, and reports generated later are
stored in that folder .

90 T. Izumi and Y. Mitsuyama

Fig. 4.2 .An. exampl.e of
information in a project
Source code (C. HDL),

setting files (device setting, pin arrangement),

constraint files(clock, timing),
testbench (source code for simulation),
simulation setting, wave forms,
intermediate product files,

results of synthesis, synthesis reports,

configuration data

\\ /

(1) Setting constraints

In this step, the designer registers the physical constraints on the project including
the target FPGA device and FPGA board, the pin assignment, and clocks. They are
described as a constraint file or set by a menu for constraints in the tool, and stored in
the working folder together with the source codes. The setting peculiar to the board is
usually supplied by the board vendor as a master constraint file or a board definition
file. The designer might modify or add the parameters. In the device setting, the
designer sets the series (family), the model number, the package, the number of pins,
speed grade, and other settings of the target FPGA device. In the pin arrangement, the
designer sets the pin number, direction of I/O, voltage, signaling system, and other
information, for each I/O signal of the top module. Furthermore, in the clock signal,
the designer sets the source of the clock, period, duty ratio, and other information.

(2) Source code registration

A designer registers the source code of the designed object in the project. If the
target object is composed of files of each module, then the designer registers all
of them. A design tool analyzes the registered files and identifies instances such as
modules, registers, and wires. They are displayed as a tree-structured list designated
as an instance tree according to an inclusive relation. Figure 4.3 presents an example
of an instance tree and a module hierarchy. In the top description sampletop.v,
the modules of SampleTop and FilterModule are described in this example. An
instance named as filter of FilterModule is used in the top module of SampleTop.
In addition, instances named as ififo and ofifo of FifoModule, described in fifo.v,
are used in SampleTop. If any syntax-level errors exist in the source codes, then
the tool warns at the registration and the designer can check and correct following
the error reports. The module at the root of the tree is usually the top module of
the designed object; however, a user might designate another as the top. When a

4 Design Flow and Design Tools 91

] SampleTop [
Design Source Top module
EO SampleTop a N
- ififo - FifoModule ififo | ofifo
- filter- FilterModue)
filter

ofifo — FifoModule

|
L

L1

Lower modules

(b) Module hierarchy

(a) Instance tree

Fig. 4.3 Examples of instance tree and module hierarchy

packaged intellectual property (IP, explained in Sect. 4.4) is used, it is registered
additionally.

(3) Registration of source code for simulation

Source codes for simulation are registered in the project as well. The source codes
for the designed object themselves are registered here naturally as a part of the
simulation source codes. In addition, a test bench, which provides input signals from
the designed object and which observes the output signals from it, is also registered
as the source code designated for simulation. When an IP is supplied as a black box
without the source code, a behavioral model of the IP for simulation is supplied by
the IP vendor and registered as a simulation source code here in the project in the
same way.

4.2.2 Logic Synthesis and Technology Mapping

The process that generates a logic circuit and a sequential circuit from an RTL
description of the designed object is designated as logic synthesis. The product of
the logic synthesis is referred to as a netlist. The netlist is composed of logic elements,
including logic gates and flip-flops, and connections among the elements. The process
that allocates the logic elements in the netlist to actual logic elements in the target
FPGA is designated as technology mapping. Many FPGAs adopt programmable
logic elements named look-up tables (LUTs). The process of logic synthesis from
RTL and technology mapping is outlined in Fig. 4.4. In the current development
environment, the processes of logic synthesis and technology mapping are largely
automated and all the operations are completed with just one click.

The integrated development environment optimizes the operation speed and the
circuit size in the processes of logic synthesis and technology mapping. In the opti-
mization process of synthesis, constant inputs and unused outputs are recursively

92 T. Izumi and Y. Mitsuyama

Logic Technology
always @(posedge clk) begin| Synthesis '™ mapping wT

if (sum > @)
X <= a; a
else

b;

X <=
end b

LuT

clk

(a) RTL description (b) Gate level netlist (c) LUT level netlist

Fig. 4.4 Logic synthesis and technology mapping from RTL description

degenerated and sourceless inputs and conflicted outputs, if any, bring about errors
or warnings. Because even a bug against the given specifications might be resolved
automatically by the default policy, a designer must carefully confirm the messages
from the design tools in the debugging. Furthermore, because logics might be mod-
ified in the optimization process of synthesis, the designer must notice the fact that
the module, registers, and wires described in the source code might disappear in the
resultant netlist.

4.2.3 RTL Simulation

Simulation with RTL descriptions of the designed object and the test bench is desig-
nated as RTL simulation. It is executed to verify that the behavior of the designed cir-
cuit confirms the given specifications. To debug the function and behavior efficiently
and to evaluate the performance correctly, the designer must prepare an adequate
test bench by considering simulation scenarios. Simulation tools usually include a
compiler for simulation, a simulation engine, and a waveform viewer. The compiler
analyzes the source code and generates an intermediate code for the efficient exe-
cution of the simulation. The simulation engine generates and processes time series
events of circuit operation according to the intermediate code. Some tools directly
generate a native code for the computer that runs the simulation from the source
code. For simulation, a designer might set the termination time and break points (or
triggers) and control the break and continue. The messages by the output statements
in the simulation source code are displayed on the console and stored in a log file.
The result of the simulation is saved as time series data of signal transitions. The
waveform viewer displays the waveform of the signal transitions in time series. An
example of a typical screen organization of the waveform viewer is shown in Fig. 4.5.
Users might select observed objects from the instance tree and set the radix (high/low,
binary, decimal, and hexadecimal), number of digits, group, and position for each
signal. A designer might move and scale the time axis, set a marker, and search for
a signal transition.
Several simulation models exist, with different levels of detail.

(1) Direct simulation of the behavior of the RTL descriptions,
(2) Simulation by the synthesized netlist,
(3) Simulation reflecting the result of place and route.

4 Design Flow and Design Tools 93

B Bl o ¢ @ @ Menubar

O SampleTop 3410ns 3480ns 3610ns

—istrm :
—ivid istrm < 00 >< 5A X 00 >

Instance tree , 3
(Design hierarchy) Signals Marker ——— Waveform -

I~ ordy irdy |_!

O ififo

filter a ¢ FF X 5A
[, :
T* b b (o7

- X

LO ofifo X (i 07

~—

~—

t=18000ns a=4C b=32 sum=0 x=4C . X
Simulation finished at 180000ns Simulation log

Fig. 4.5 An example of waveform viewer

Model (1) can confirm the validity of the function and behavior specified by RTL
description. Model (2) can be executed after logic synthesis. It can confirm the timing
of the signal transition and delay of the operations based on the estimated delay of
each logic and storage element. In addition, it might analyze the power consumption
by examining the frequency of the signal transition. Model (3) can be executed after
place and route. It can estimate the delay in wiring using the place and route results
and can provide the most detailed timing and power analysis reflecting the estimation.
Because a detailed simulation requires a long computation time, designers must select
the suitable model in accordance with the intentions.

4.2.4 Place and Route

During the processes of place and route, a designer maps objects in the netlist to
logic and routing resources on an FPGA chip. Usually, the designer processes logic
elements, first, and then connections. The place and route processes are outlined in
Fig. 4.6. Although the design tool does the placement while estimating the conges-
tion of wiring and delay of signal propagation, it might encounter difficulties that
block routing in some connection and that violate the requirement of estimated signal
propagation delay. In such a case, a designer must retry the processes of place and
route changing the parameters to control the processes based on failed connections,
to avoid the congestion and assign higher priority to the connection that is apt to be
lengthy. In today’s development environment, the processes of place and route are

94 T. Izumi and Y. Mitsuyama

— O Oy |0
= OleD
(a) LUT level netlist (b) Place (c) Route

Fig. 4.6 Place and route from LUT level netlist

largely automated and all the processes, including the retries, are completed automat-
ically with just one click. The processes of place and route demand long computation
time. A larger circuit causes fewer margin of resource usage, and eventually much
longer computation time. In worst cases, it leads to failure in routing. If repetitions of
place and route fail to find a feasible solution, then a designer must explore optimiza-
tion options as explained later, rewrite the source codes with a refined architecture
and algorithm, or replace the target FPGA device to larger one.

4.2.5 Programming

The completed circuit is saved as data to program the logic and routing resources on
the FPGA device. It is designated as configuration data or a bitstream or a program
file in the format of bit, sof (SRAM object file), or others. Figure 4.7 presents an
example of the process that generates the configuration data from the place and route
results. In FPGAs, the placement of a logic element corresponds to the contents of
a programmable logic element at a given position, and the routing of a connection
corresponds to a series of on/off values of the switches along the route. The config-
uration data for the target circuit is generated by gathering such data for all the logic
elements and connections. A designer uses a tool designated as a programmer (or
designated as program tool) to write the configuration data onto a device. There are
several methods to write configuration data as follows.

(1) Directly write to the FPGA device by JTAG,
(2) Write via non-volatile memory dedicated to programming,
(3) Write via a standard memory card or USB memory.

Configuration methods described above are depicted in Fig. 4.8. Because the
supported methods differ among FPGA boards, a designer must consult the manuals
for the board the designer uses.

(1) Joint Test Action Group (JTAG) is a standard protocol for programming and
debugging of printed circuit boards (PCBs). A designer connects the board to
the computer (PC) where the programmer or debugger runs using the designated
cable or a USB cable. The configuration data is directly written to the target
FPGA device using the program tool. This is an easy and simple way but the

4 Design Flow and Design Tools 95

E-——
’ LUT N
[Configuration data
H) ...010101 ...0001 10 ...
I-SW IN | ouT Osw
N\ 010 00| O 1 0
Place and route result *\
\ 100 01| O
\\ 10 0 On/off of interconnect switches
K% 1 1 Contents of Look-up table
. On/off of interconnect switches

Fig. 4.7 An example of the generation process of configuration data from place and route result

FPGA Nonvolatile

board memory
A
(2)
" USB jI-JjI'_/-_G 1| e
v L @) e — ,
sD — 3) 1 <-- Memory write !
card D i «— FPGA configuration !

NS Kl I (download) |
[

Fig. 4.8 FPGA configuration methods

(©))

programmed circuit vanishes on power-off or reset. Debugging on the actual
device described later requires this connection.

If the target board has non-volatile memory for FPGA programming (onboard
ROM), then a designer might use it. There are several types of memories for
programming in terms of the interface standard, bit width, capacity, technology,
and other factors. Flash memory with the serial peripheral interface (SPI) is an
example. The configuration data is written onto the target FPGA from the pro-
gramming memory on power-on or reset. There are two modes of programming,
passive and active. In the passive mode, the memory controls writing onto the
FPGA. In the active mode, the FPGA controls reading out from the memory. Pre-
liminary to writing to a memory device, a file for the memory device is generated
from the configuration data. There are several file formats for memory devices
including mcs and pof (programmer object files). The programming memory
is typically written to through JTAG. Although this programming method is
more complicated and takes longer time compared to the direct programming,

96 T. Izumi and Y. Mitsuyama

Fig. 4.9 An example of USB LAN Audio VGA

FPGA board for education or _D_D_[H:’D
training

[22222 Japio
FPGA HHH Hslide switches

og DDLEDS

;: (‘; ;; ;; O OO OPush switches
ENo |l No|eNao | 2N DDDDLEDS

7-seg LEDs

the programmed circuit boots up just as a board alone without any other equip-
ment. A number of devices such as FPGAs and programming memory devices
can be connected to JTAG in cascade. Depending on the type of memory and
interface, configuration data of several FPGAs and additional data can be stored
in one memory device.

(3) Some FPGA boards are equipped with a microprocessor and a memory card
slot or a USB connector controlled by the processor. The designer copies the
configuration data to a memory card or USB memory and inserts it to the board.
Triggered by the power-on or reset, the processor reads the configuration data
from the memory device and writes to the target FPGA device. The designer
must be careful about the requirements for the format of the memory device,
the file name, the location of the file, and others. Although this method needs
manual operation steps of file copying and inserting/removing memory devices,
no special cables are needed and the target circuit boots up just as a board alone.

4.2.6 Verification and Debugging on Actual Device

After the target FPGA is programmed with the configuration data, it is ready to verify
the behavior and performance on the actual device. Typical educational boards have
the best collection of basic I/O devices like light-emitting diodes (LEDs), buttons,
and switches, as illustrated in Fig. 4.9. The designer might use these devices to verify
the expected behavior of the designed circuit. If the probe pins/connectors or general
purpose inputs and outputs (GPIOs) are available on the board, then the designer
might make more detailed verifications by connecting measuring instruments such
as an oscilloscope and logic analyzer.

A designer might conduct more detailed analysis by adding a special function to
the designed circuit in order to probe and record the states and signal values. The

4 Design Flow and Design Tools 97

Fig. 4.10 An example of
signal probing module

11/

Trigger /‘b;c'\
rcontrol NV Memory

r'y

b,c Probing module

1

Trigger setting

PC

function is incorporated as a circuit module of the designed object and works without
using the special measuring instruments. Recent design tools supply such a probing
function as a library. The designer might conduct the analysis of signal transitions
by setting the trigger conditions (the condition to start recording). Basic triggering
conditions include the value or rising/falling edge of a signal and the combinations
of these conditions (AND/OR conditions). As a sophisticated triggering condition,
a designer might set a sequential pattern of signal transitions.

Figure 4.10 illustrates an example of signal proving. In the verification, a designer
specifies the candidates for signal to be observed (signals a, b, and ¢ in the figure).
A designer might specify the observed signal in the source code by some special
notation or does it by finding and selecting the signal instance in the synthesized
netlist. Attention must be devoted to the latter because the target signal might have
degenerated or been renamed during the optimization. Then, the designer adds a
probing module to the designed object. The designer selects the type of trigger
functions (for signal values only or sequences of signal transitions) and sets the
buffer memory size to store the observed signals. More sophisticated trigger functions
and/or larger buffer memory will make the probing circuit larger, adversely affecting
the originally designed circuit. The designer should select the necessary and sufficient
functions and size. Because the observed signal is recorded in synchronization with
a clock signal, the designer must indicate the clock domain.

The verification and debugging on the actual device are done using a PC connected
to the board through JTAG. The designer sets a trigger condition (the rising edge of
signal a in the figure) in the probing tool on the PC, switch the probing module to
stand-by (the state of waiting for the triggers), and runs the board. Then the result of
the probing is transferred to the PC and shown. Similarly with the waveform viewer
in the simulation, the designer can set the display format and signal position, move

98 T. Izumi and Y. Mitsuyama

and scale the time axis, and handle the markers. Consequently, the designer makes
the verification and debugging based on the observed behavior of the actual board.

4.2.7 Optimization

The circuit design for a target function has options in general. There are a number of
different results in each stage of logic synthesis, technology mapping, or place and
route. They might exhibit different characteristics in terms of maximum operating
frequency, circuit size, and power consumption. They mostly share a mutual trade-
off relation. For example, raising the operating frequency invites an increase of the
circuit size.

Although a designer might wish to find the best design among all candidates
that fulfill all constraints in all respects, selecting the superior candidate from all
possible ones is practically impossible. Then, the designer modifies a candidate to
improve toward the target. This process of improvement is designated as design
optimization. The parameters to control the optimization differ depending on the
algorithm used in each design tool, and the details to tune the parameters are mostly
too complicated for ordinary users or are not disclosed to users. In most design
tools, a set of options of abstracted design policies (target, objective, or strategy)
for optimization are supplied to users as easy-to-use means. Typical policies include
assigning priority to accelerating the operating frequency, reducing the circuit size,
and reducing the power consumption. If the resultant design fails to attain the target
specification, then a designer must explore the optimization options, rewrite the
source codes with a refined architecture and algorithm, or perhaps replace the target
FPGA device to a better one.

4.3 HLS Design

Digital circuits have been conventionally designed using schematics with logic gates,
and then by RTL descriptions. These approaches support manual optimization to
achieve high performance. However, they are time consuming and might induce
human errors. Consequently, several studies and developments have aimed at highly
abstracted design schemes. Nowadays, design technology called high-level synthesis
(HLS) or behavioral synthesis is available where a description of the target behavior
is synthesized into circuitry [9—13]. This section introduces the design and tools for
behavioral description and behavioral synthesis.

4 Design Flow and Design Tools 99

func
int func(int x){ i
int a[256]; X
int i; T —
. . . Behavioral
-For‘(lf@; i<256; i++){ synthesis a
a[i]= ===+ ; B
} 8
}
(a) C description (b) Behavioral synthesis result

Fig. 4.11 Hardware instance generation by behavioral synthesis from C description

4.3.1 Behavioral Description

Many currently available HLS environments adopt C language or some a variation
of C as a behavioral description language; however, a C source code just described
as a software program might induce poor performance in the synthesized hardware
module. The worse case is it may not fails to be synthesized into hardware. Therefore,
a designer should carefully describe his/her source codes considering the hardware
generated by HLS. Similarly to software programming, a designer describes the
behavior of the target using variables, operators, substitutions, control statements
such as “if,” “for,” and “while,” and function calls. In general, an HLS environment
realizes a variable as a register, an array as a memory, and a function as a hardware
module. Furthermore, the control including sequential executions, branches, loops,
and function calls is realized as a state machine. Figure 4.11 shows that the behavioral
description by C language (left) is synthesized into a hardware module (right) where
variable i, array a, and the control flow are realized, respectively, as a register, a
memory, and a state machine.

Each HLS environment has specific restrictions for program coding to be synthe-
sized into hardware. Although it depends on each tool and language processor, in
general, most HLS tools have common restrictions such as the following, identified
at the time of this writing.

(1) Recursive calls are not allowed.
(2) Dynamic pointers are unavailable.

A recursive call of a function implies that the corresponding hardware module is
dynamically instantiated at run time, which is beyond the concept of present digital
circuits. Therefore, most HLS environments prohibit recursive calls. A dynamic
pointer arbitrarily changes the value (i.e., the address) at run time. In contrast to
software programs having a large, shared, and identically monolithic main memory,
it is a quite normal strategy for hardware designer to localize each memory within
modules sharing data to improve the performance. A dynamic pointer may cause

100

int z;
z=x%Y ;

(a) Description as sequential
function by arguments and
return value

calc

int calc(int x, int y){ & % por’t.x, Y, Z;
while (1) {

. u=read(x);

return z; veread(y):
void calc(in signal int x, WEU%V;

in signal int vy,
out signal int z){
while (1) {
z=x%Yy;

T. Izumi and Y. Mitsuyama

void calc(void){

write(z, w);

}

} -
(c) Description as concurrent processes

by read/write functions

(b) Description as concurrent process
by arguments

Fig. 4.12 Typical methods of describing I/O

switching memory instances accessed at run time. Since this capability is also beyond
the concept of present digital circuits, it is prohibited in behavioral synthesis systems.

(1) Describing input and output

The manner to describe hardware I/O is disputable. In a software function, an
input is given as an argument when the function is called and an output as a
return value (or an argument by reference) when the function terminates. In a
hardware module, on the other hand, the module stays at any time; I/O goes on
occasionally. The working principle differs completely between software and
hardware. There are several methods of describing I/O, as illustrated in Fig. 4.12.
They are explained below one after another. The methods differ among HLS
environments.

(a)

(b)

Description as sequential function by arguments and a return value

If a designer wishes to sequentially call, run, and terminate as in software,
then the designer can describe the process similarly to a usual function. An
argument of the function corresponds to an input of the hardware module
and the return value to the output. Figure 4.13 shows that the arguments X,
Yy, and return value z in the source code (left) correspond the I/O ports in
the hardware module (middle), as well as the sequential operational timing
of input, operation, and output (right). An argument by reference is used
occasionally instead of the return value.

Description as concurrent process by arguments

Some HLS environments have special variable types for I/Os or a way to
specify I/O types of variables such as “pragma.” A variable for hardware
I/O is read or written anytime from outside of the module. An example
of such a description is depicted in Fig. 4.12b. Although it seems to be a
meaningless code in a normal software program, z changes in accordance
with occasional changes of X, y driven from outside. A designer describes

4 Design Flow and Design Tools 101

time
—_—
int calc(int x, int y){ X _O—
int z; y
A=E8g5 Operatio C
return z;
) — oo [T
"
Source code Hardware module Timing

Fig. 4.13 An example of arguments and return value in a source code, I/O ports in a hardware
module, and operational timing of input, operation, and output

module
channel port port

channel

module channel
port port |:‘—

channel

channel

Fig. 4.14 Architecture model composed of modules and channels

(©)

an event-driven infinite loop (while (1) {}), typically. Here, one parallel
process in software corresponds to a module in hardware. The behavior of
the designed functions is described as a model in which I/O ports of each
module are connected by communication channels, as shown in Fig. 4.14.
The idea of this kind of description is close to statements of “always @
(posedge clock)” or “process (clock)” in HDL code. It is also close
to a concurrent software program using a variable with volatile modifier,
which can be mapped to an I/O port or shared among multiple processes
or threads.

Description as concurrent processes by read/write functions

Some HLS environments have a library of I/O functions using a similar
idea to that discussed above in (b). The library supports variable types for
identifiers of I/Os and functions of read, write, open, and close for the
identifiers, as in programming using files or sockets. A program iterates to
read the inputs, executes the operations, and writes the output. Figure 4.12c
shows such a description.

The types of I/Os are categorized, in general, into the register type and the stream
type. The register type I/O merely holds the last-written value and the value can
be read anytime. The stream I/O do handshaking to wait for data transmission
and receipt. In the example of Fig. 4.15 (top), the register type I/O is showing
0 or 1 at any state. The example of Fig. 4.15 (bottom) shows the data transfer
of the sequence 0, 0, 1, 1, 0, and 1. It is noteworthy that a state (a clock cycle)
without data transfer, i.e. an idle state exists. In that state, either the transmitter

102 T. Izumi and Y. Mitsuyama

Fig. 4.15 Register type I/O Time
and stream type I/O —_— >

@

3

Register type ||
Stream type (0X0X1)»—<1X0X1)

or receiver is busy. The program stalls at a read/write statement to wait for the
corresponding I/O.

Bit width

In the standard C language, 8-bit character type, 32- or 64-bit integer types, and
32- or 64-bit floating point types are supported as predefined variable types. In
FPGA, any bit width and fix-point type can be implemented. By specifying the
necessary and sufficient bit width in each part of the program, a designer can
optimize the circuit size, operation speed, power consumption, and operation
accuracy. For that reason, one can specify the bit width of a variable in details
in most HLS environments. Conversely, finding an efficient bit allocation is up
to the designer.

Describing parallelization

An HLS environment analyzes the flow of operations and dependency between
data and determines the schedule of operations. It automatically schedules
such that mutually independent operations run in parallel to an extent. How-
ever, speeding up by parallelization increases the circuit size. This trade-off
demands consideration. Although the HLS environment automatically analyzes
the dependency between statements and a small simple loop, analysis and opti-
mization of global parallelism are difficult, even for the current compiler tech-
nology. Consequently, many HLS environments supply descriptive methods for
a designer to specify the parallelization. A designer can provide directions for
the pipelining of a loop and the parallelization of a block by a “pragma,” “di-
rective,” or some extended instructions.

Figure 4.16 shows a sample description of loop processing for arrays. When

a designer synthesizes the hardware by simply applying the description as it is,
the designer obtains the hardware like presented in Fig. 4.17a and the sequential
processing depicted in Fig. 4.18a. If the designer gives an instruction of pipelining
for this for-loop, then the designer obtains the synthesized hardware to improve
the speed performance by pipelining, as in Fig. 4.18b. Furthermore, if the designer
designates an instruction of streaming I/O, he/she obtains the hardware without I/O
memory, shown in Fig. 4.17b, to achieve further improvement of speed performance

by

pipelining including I/O, as illustrated in Fig. 4.18c. Conversely, instructions to

suppress parallelization are also supplied and, for example, can be used to maintain
the clock-wise order of operations.

4 Design Flow and Design Tools 103

int calc(int x[N], int y[N]){
for (i=0; i<N; i++) {
u = {Process A for x[i]};
v = {Process B for u};
y[i] = {Process C for v};

}

Fig. 4.16 An example of loop processing for arrays

calc
v([N]

X[N]
Process u Process v
A [] B []~

(a) The hardware obtained by simply applying the description as it is

calc

X Process u Process v y
[] A [] B [~ []

(b) The hardware obtained by designation of pipelining and streaming /O

Fig. 4.17 Synthesized hardware

4.3.2 Behavior Level Simulation

The designed module described in C is firstly compiled as a software program to
verify its behavior and function. This process is designated as the behavior level
simulation. In contrast to the RTL simulation emulating event-driven clock-wise
operations, it is significantly faster because the function is executed in the native
machine code of the computer that runs the simulation. Consequently, the designer
may repeat debugging and improvement of the code in a short iteration period.
However, because this process does not take care of accurate timing, the designer
cannot examine the behavior considering cycle accuracy. Particularly, in cooperative
operation with external devices or with multiple modules, the designer must devote
attention to the possibility to obtain different simulation results than those obtained
by an actual device in terms of communication delay, operational dependency, and
clock-wise order between modules.

The computer performing the simulation rounds up the bit width of data to a
standard one, such as 8-bit “char” or 32- or 64-bit “int,” to speed up the simulation.
For this reason, the behavior in the behavior level simulation and the actual device
may mutually differ when a calculation produces overflow against the bit width a
designer has set. Similarly, the behavior differs when the index of an array exceeds

104 T. Izumi and Y. Mitsuyama

Time
—>
Input x —@@ @
Process A @ @ @
Process B /6\ /I\ @
Process C @ @

@
Outputy {oX1) .. @l_

(a) Sequential operation timing obtained by simply applying the description as it is

Input x _@® @
Process A __ @ Y
Process B _ @7 \F‘{eduction —
Process C — @
Output y @@

(b) Improvement of speed performance by pipelining of for-loop

Input x _@@ @
Process A _| @ ¥
Process B __ @_ N Reduction —
Process C __ @
Outputy _ @

(c) Improvement of speed performance by streaming /O

Time

Time

Fig. 4.18 Operation timing of the synthesized hardware

Fig. 4.19 An example of C uint8 a[16];
description including a uint4 i;
potential bug

for (i=0; i<16; i++)
a[i]=i;

the range. In the example portrayed in Fig. 4.19, the “for” loop becomes an infinite
loop (that may be a bug) because the maximum of the variable “i”” is 15 limited by
the bit width of 4 in the actual device. However, in the behavior level simulation, 4
bits “i” may be rounded up to 8 bits or more and the loop finishes when repeated 16
times. A designer must devote attention to this point, including intermediate results.
Although simulators (or simulator modes) which accurately emulate the bit width
are also provided, they run slower.

4 Design Flow and Design Tools 105

4.3.3 Behavioral Synthesis

The core process of HLS environments is the high-level synthesis (HLS) or the
behavioral synthesis to generate an RTL description from a behavioral description
in C and others, as outlined in Fig. 4.20. In the behavioral synthesis, a variable, an
array, and an operation in behavioral description, respectively, are transformed into a
register, a local memory, and an operation unit in RTL. The flow of operations in the
behavioral description (sequential operations, branch, and loop) is realized as a state
machine. In the behavioral synthesis, a data flow graph (DFG) representing depen-
dency among the data of operations and a control flow graph (CFG) representing
the flow of operations are generated based on the analysis of the given behavioral
description. The process to determinate the order and timing of operations is referred
to as scheduling, and to assign each variable and operation to register and operation
unit as binding. The registers and operation units are connected via multiplexers,
and this part of the circuit is designated as a data path. A state machine is generated
to control the data path by switching the multiplexers following the schedule. The
scheduling and binding have options for the amount of hardware resources and the
time to complete the operations, but they share a mutual trade-off relation. Each HLS
environment provides an optimization strategy to control the trade-offs.

Fig. 4.20 Outline of

behavioral synthesis C source

Binding Scheduling

| =
(0

o
T o

v

Datapath State machine

106 T. Izumi and Y. Mitsuyama

4.3.4 Evaluation and Optimization

A trade-off relation exists between the required hardware resource and operation
time. Generating the best-suited RTL description for the given design specifications,
constraints, and objectives is an extremely difficult problem. In the present techno-
logical level of behavioral synthesis, a designer must provide detailed guidelines.
For that reason, most HLS environments provide measures to help designers analyze
and evaluate the design. HLS environments also provide predefined options of opti-
mization policies or strategies to balance the trade-offs. When a designer performs
behavioral synthesis, the designer obtains performance metrics as listed below.

(Performance metrics for hardware resource)

Number of operation units,

Memory size,

Number of registers,

Amount of logic resources such as LUTs (estimation).

(Performance metrics for speed and timing)

Throughput,

Latency,

Timing of each operation,

Maximum operation frequency (estimation).

A designer uses these results of analysis to establish a balance between the required
resources and speed and to identify and characterize countermeasures against bot-
tlenecks and over-performance. A simple way to lead the behavioral synthesis to the
designer’s preferable result is to set the optimization policy parameters of the syn-
thesizer; for instance, the priority levels for the size and speed, the limit of operation
units used and the target throughput and latency. Giving an instruction by “pragma”
or “directive” for the source code is a more detailed method. A typical instruction
is to dictate pipelining or unrolling for the for-loop in the code. Other instructions
include parallelization or sharing (iterative use of shared resource) of operations,
memory partitioning and interleaving, fattening of branches and inlining. If all of
these methods fail to achieve the requirements for the designed module, then the
designer must rewrite the source code while seeking better algorithms and architec-
tures. Although a microscopic optimization for operations is done automatically by
the synthesizer, macroscopic optimization for algorithms and architectures is up to
the designer. He/she should consider the efficient architecture of the designed module
and write a code that the synthesizer can perceive the architecture including parallel
processing, pipelining, and others.

4 Design Flow and Design Tools 107

4.3.5 Connection with RTL

The behavioral synthesized module is handed to the logic synthesis and later design
flow, together with modules described in RTL and others. In the conventional design
flow, the behavioral synthesized module is instantiated in the upper module described
in RTL. In the recent design flow, it can be integrated with other modules including
a processor using the IP integration tool, not describing RTL code. The types of
the interfaces, the signals of each interface, and the naming rule of the signals are
prescribed in each HLS system. The interfaces are generally categorized into three
types: a register type where the data value is read and directly written, a stream type
where a sequence of data is transferred one by one, and a memory bus type where
data is read and written being located by an address. Figure 4.21 shows how the
interface of each type of data handling is indicated.

Fig. 4.21 Three types of
interface

v

L]

Sender Receiver

(a) Register type

data

Y

valid

\ 4

ready
4—

Sender Receiver

(b) Stream type

data > »| data
addr > < addr
we < re
Sender Receiver

(c) Memory bus type

108 T. Izumi and Y. Mitsuyama

The interface for the register type consists of just a register. The sender writes the
data by asserting a write control signal. The receiver merely reads the data at any
time, as shown in Fig. 4.21a. The receiver cannot perceive, in principle, when and
how many times the sender wrote.

The interface for the stream type consists of a data signal and control signals
of sending and receiving, as depicted in Fig. 4.21b. The sender asserts a control
signal (“valid” in the figure) to enable/disable sending data. The receiver asserts a
control signal (“ready” in the figure) to enable/disable receiving data. If both the
control signals of sending and receiving are enabled at a clock cycle, then the data
transfer is enacted and the receiver receives the data at the clock cycle, otherwise,
the communication stalls until the condition stands. The data values are sequentially
handed over one by one by this control. The stream type interface is used in data-
driven processing and is often connected through a FIFO buffer to cope with the
variation of data flow speed. It is noteworthy that the meaning of the control signals
depends on the standpoint. For the sender, the “valid” signal is a request and the signal
“ready” is an acknowledge or a response. For the receiver, “ready” is a request and
“valid” is an acknowledge. A request signal is typically named as “valid,” “enable,”
“strobe,” “run,” and “do.” An acknowledge signal is typically named as “ready,”
“acknowledge,” “busy,” and “wait.”

The interface for the memory bus type consists of data, address, and the control
signal of read/write, as shown in Fig. 4.21c. The sender and receiver are connected
via a memory in this interface. The sender sets the data signal and address (“data”
and “addr” in the figure) signals and asserts the write enable signal (“we” in the
figure) to write the data. The receiver sets the address signal and asserts the read
enable signal (“re” in the figure) and then reads the data signal after some clock
cycles.

4.4 TP-Based Design

The size and complexity of digital systems are growing day by day, bringing about
difficulties related to long terms and huge costs of development. There are common
modules among many designs, such as interface, peripheral control, communication,
cipher coding, data compression, signal and image processing. A designer may effi-
ciently reduce the cost by reusing previously designed modules. These common and
reusable design resources are designated as intellectual properties (IPs).

4.4.1 IP and Its Generator

A source code of previously designed module is an IP itself. It enhances the reusability
if the source code is scalable and parameterized: for example, bit width, buffer size,
and number of elements. There are tools to automatically generate source codes

4 Design Flow and Design Tools 109

for given parameters and conditions (designated as IP generator, IP wizard, and
others) [14—17]. The tools also generate a template code to utilize the generated IP.
IP generation tools for fast Fourier transformation unit (FFT), for example, accepts
the parameters of the block size, bit width of data, output ordering, target operating
frequency. Recent FPGAs have a variety of hardware resources proper to each vendor
and having specific features: memory, arithmetic operation block, PLL, and high-
speed transceiver. FPGA vendors supply IP generators to generate modules to utilize
such resources.

An IP is not merely reused by the designers, their team, and company, but also
distributed as commercial products. FPGA vendors supply a variety of IPs and IP
generators as options of their integrated development environment. In addition, there
are some third parties supplying their own IPs as commercial products and a designer
might buy and use them. An IP may be supplied as a netlist after synthesis or cir-
cuit data after place and route in view of protecting the IP. In this case, codes for
simulation, designated as a behavior model, is supplied in addition to the protected IP.

4.4.2 Use of IP and Its Integration Tool

The first job for a designer to use IPs is finding appropriate IPs for the target design,
listing up candidates, and scanning their specifications to select a module dove-
tailing with the conditions. Finding IPs is time consuming and IDE vendors might
be expected to develop an efficient tool to support retrieval from IP database. In
traditional practice, the designer finds a candidate, instantiates it as a module, and
connects it wire-by-wire to the designer’s own circuit description.

Recently, such an IP integration tool is available to help a designer arrange IP
modules graphically. In contrast to conventional graphical design tools in the lower
abstraction level of simple logic gates, flip-flops, operators, registers, and multiplex-
ers, the IP integration tool handles a block diagram consisting of IPs having more
complicated functions. Furthermore, the designer needs not to connect IPs by wires
but by interfaces that are composed of a set of wires including data and control sig-
nals. For example, an interface of memory bus type composed of data, address, write
enable, and read enable signals can be regarded and handled as single entity.

Figure 4.22 shows an example design by block diagram using a processor, a
GPIO, an UART, and an FFT. Here, the peripherals of a processor (uProc in the
figure) and other peripherals such as GPIO are connected by a memory bus (Bus
interconnects in the figure) with an address. FFT, which has stream type I/Os, is
connected to the direct memory access (DMA) controller via FIFOs. Consequently,
the design productivity considerably improves when compared to when describing
wire-by-wire connections after giving unique names to each wire. I/O pins of the
FPGA chip may be registered as external access points in the IP integrator and then
the designer might be released from the chores of the top description in RTL.

IP integration tools of a high abstraction level provide the designer with a sys-
tematic structure of interfaces with properties, such as the interface type, bit width,

T. Izumi and Y. Mitsuyama

uProc
BUS D IP module
-

inter- D
(\ connect GPIO <]
..... DMA «=eneeee Stream type connection
H control UART J;] Memory bus type connection

——— Control signals

T [vl oo } >

Register type connection

Fig. 4.22 An example of design by block diagram using IP and its integration tool

associated clock signal with its frequency, associated reset signal with its polarity,
and allocated address space. Based on this information, the IP integrator supports
the detailed design including compatibility check and automatic address allocation.
However, these tools have not been standardized yet; they are vendor-dependent or
tool dependent. Integration technology with a high abstraction level is in the process
of development and has been improving day by day.

4.4.3 Support Tool for Building IP

A designer not only uses IPs as a user, but can also register the designer’s own creation
as an IP. Consequently, the designer enhances the reusability of his/her own module
and might sell it as a commercial product. If the designer equips the module with
an interface in accordance with the specifications in an IP integration tool, then the
designer can use it in the integration tool. In today’s design environment, templates
of the predefined interfaces, and tools to make an owned module parameterized and
packaged as an IP are available. For an array of arguments in a behavioral description,
the interface of the stream type or memory bus type may be synthesized in accordance
with the specification of IP integration tool. The synthesized module may be exported
to the IP integrator and used as an IP as it is.

4.5 Design with Processor

It is difficult in terms of cost to build a large and complicated system using hardware
modules alone. Consequently, designs combining general-purpose processors and
hardware modules on an FPGA chip are popular in practice to achieve the speed
performance and energy efficiency and to improve flexibility and productivity.

4 Design Flow and Design Tools 111

Fig. 4.23 Processors
mounted on an FPGA N .
PR iProcessor!
Programmable Programmable
logic logic

(a) Hard-core processor (b) Soft-score processor

4.5.1 Hard-Core Processor and Soft-Core Processor

Processors mounted on FPGAs are classified generally into hard-core processors and
soft-core processors, as outlined in Fig. 4.23. The hard-core processor is a standard
embedded processor inherently mounted on a chip, as depicted in Fig. 4.23a, and
has dedicated structure to be connected to the programmable hardware resource
in addition to the function and performance of a normal processor. The soft-core
processor is a processor programmed on the programmable hardware resource, as
shown in Fig. 4.23b. Because a module based on a soft-core processor is doubly
programmed (the module is implemented by a software program running on the
processor implemented by a hardware program), the performance is inferior to that
of a hard-core processor. However, a designer can derive several merits from soft-
core processors: It can be used in an FPGA chip with no processor mounted, any
number of processors can be mounted as long as the FPGA chip accepts, and the
detailed architecture can be configured to fit the target design.

4.5.2 Building Processor System

A designer configures a processor using a designated building tool supplied from the
FPGA vendor and builds a processor-based system including memory and peripherals
using an [P integration tool. Figure 4.22 in the previous section represents an example
of a system configured with a processor.

First, the designer selects the processor to be used and sets the parameters. While
the parameters in a hard-core processor are limited to the basic ones as operating
frequency, that in a software core processor has more options related to pipeline,
cache, bus, instruction set, and others in details. The designer determines the config-
urations of the main processor to fit the target design. Then, the designer builds the
bus selected from the standard ones for each processor and connects the processor
with memory and peripherals via the bus. The options of bus configurations include
operation frequency, transmission mode, hierarchization, and others.

112 T. Izumi and Y. Mitsuyama

The designer also configures the memory. The hard-core processor is connected to
the off-chip main memory through its own (hard-core) memory interface. The soft-
core processor is connected to the off-chip main memory through, also, a programmed
memory interface. The designer may configure the main memory with on-chip block
RAMs instead of an off-chip memory. Peripheral circuits are connected to the bus,
similarly to memory. The hard-core processor has some standard interfaces like
non-volatile memory and network, and such external peripherals can be connected
through the interfaces. In both hard-core and soft-core processors, a designer can
place his/her own modules and IP modules in the programmable hardware resources
and connect them to the processor via the bus. Then, the address space of each module
including the memory and peripherals by which the processor accesses the modules
is allocated. The interruption number of the module is allocated if needed. As more
advanced configurations, direct memory access (DMA) by a DMA controller and bus
hierarchization through the bus bridge are allowed. The generated processor system
may be the top instance of the FPGA chip or instantiated as a module in the RTL
description.

4.5.3 Software Development Environment

Software drives the processor system. The development environment for software
containing compiler and debugger is designated as a software development kit (SDK).
Software development requires the information of configuration of the processor,
memory and peripherals, mapping of the address space and libraries to control the
peripherals (device driver). The set of all the information above is designated simply
as the processor configuration. The processor configuration is exported from the tool
to build the processor system and imported to the SDK.

In SDK, a development environment in C language is usually supplied. Figure 4.24
presents a common screen arrangement of an SDK as an example. In SDK, a
designer selects the operating system (OS) first. Considering the design objectives,
the designer might select a powerful one equipped with process management, mem-
ory management, file system, and network. The designer might also select a simple
one having the minimum functionalities, or even a system without an OS. If the OS
used has no functions of memory management, the designer must define the memory
mapping specifying the size of stack and heap. The file that defines the memory map-
ping is designated as a linker script. Using SDK, the designer can describe, edit, and
compile (build) source codes. The compilation result is stored in a format referred
to as executable and linkable format (elf).

4 Design Flow and Design Tools

113

Menu bar
H File I HSetupl H Edit I H Build I“Exec |H Progl
O Sample / sample.c \/ ledsw.h \/Summary\
O Lib #include <gpio.h>
O Include #include <uartlite.h>
O Doc #include <dmac.h>
| makefile #inclue “led.h” Source codes and
[linkerscript o its information
rO Source void main(void) {
sample.c GpioInstance led, sw;
ledsw.c int status;
ledsw.h o
status=GpioInitialize(GPIO0Q,&led);
if (!status) {
Design files :
ledsw.c: In fuction ‘ledout’:

ledsw.c:159:9: warning: unused variable ¢j’

Operation log

Fig. 4.24 A typical screen arrangement of an SDK

Fig. 4.25 Configuration of
hardware and software on an
FPGA

for hardwa

Source code

re

Configuration

file

FPGA

Source code
for software

elf file

NN

4.5.4 Integration and Operation of Software and Hardware

The configuration of the hardware and the software executable are integrated and
executed on the FPGA, as shown in Fig. 4.25. There are several ways for this step
and they are different among vendors and tools. The following are the typical ones.

114

ey
@
3
ey

@)

3

T. Izumi and Y. Mitsuyama

Integration and execution in SDK,

Integration on SDK and execution via non-volatile memory,

Integration and execution in a hardware development environment.

A designer exports the configuration data from the hardware development envi-
ronment and imports it to SDK. After integrating the configuration and the elf
file in SDK, the designer writes it to the FPGA or main memory and launches
it. Here, the designer can use the software debugger in SDK and can control
the execution by break points and observe the variables in the program. This
practice is advantageous when the hardware development has been completed
and the main target is software development and debugging.

A designer integrates the configuration and the elf file in SDK similar to (1).
The integrated files are stored in some kind of non-volatile memory as SD cards,
USB memory sticks, flash memory ICs, in the format specified for each device
and board. Triggered by the system reset on the FPGA board, the integrated files
are loaded from the non-volatile memory and launched following the predefined
boot sequence.

If the software program is stored in on-chip memory, the integration and exe-
cution may be done in the hardware development environment. The elf file is
exported from SDK and imported to the hardware development environment.
The elf file is registered as the preloaded content of the on-chip memory instance
together with the information of the memory mapping. The generated config-
uration data can be handled as in the case without a processor. This practice
is advantageous when the main target is hardware development and debugging
rather than software.

References

An Overview of FPGAs and Their Design Flow

1.

2.

3.

S.D. Brown, R.J. Francis, J. Rose, Z.G. Vranesic, Field Programmable Gate Arrays (Kluwer
Academic Publishers, 1992)

V. Bets, J. Rose, A. Marquards, Architecture and CAD for Deep-Submicron FPGAs (Kluwer
Academic Publishers, 1999)

Vivado design suite tutorial: design flows overview, Xilinx UG888, Nov 2015

HDL Design Flow

® NNk

Nexys4 Vivado Tutorial, Xilinx University Program (2013)

Vivado design suite tutorial: using constraints, Xilinx UG945, Nov 2015

Vivado design suite tutorial: logic simulation, Xilinx UG937, Nov 2015

Vivado design suite user guide: programing and debugging, Xilinx UG908, Feb 2016
Vivado design suite tutorial: programming and debugging, Xilinx UG936, Nov 2015

4 Design Flow and Design Tools 115

HLS Design

9. M. Meeus, K. Van Beeck, T. Goedeme, J. Meel, D. Stroobands, An overview of today’s high-

level synthesis tools. Design Auto. Embed. Syst. 16(3), 31-51 (2012)

10. D. Gajski, Z. Jianwen, R. Doemer, A. Gerstlauer, S. Zhao, SPECC: Specification Language
and Methodology (Springer Science + Business Media, 2000)

11. M. Fujita, SpecC language version 2.0: C-based SoC design from system level down to RTL,
Tutorial of ASPDAC (2003)

12. Vivado design suite tutorial: high-level synthesis, Xilinx UG871, Nov 2015

13. D. Pellerin, S. Thibault, Practical FPGA Programming in C (Prentice Hall Professional Tech-
nical Reference, 2007)

IP Based Design

14. Vivado design suite tutorial: designing with IP, Xilinx UG939, Nov 2015
15. Vivado design suite user guide: creating and packaging custom IP, Xilinx UG1118, Nov 2015
16. Vivado design suite tutorial: creating and packaging custom IP, Xilinx UG1119, Nov 2015

Embedded Processor Design

17. Vivado design suite user guide: embedded processor hardware design, Xilinx UG898, Nov
2015

Chapter 5 ®)
Design Methodology e

Masahiro Iida

Abstract A typical misunderstanding is that design automation techniques used in
FPGA tools are just subsets or extension of those developed for LSI design tools. In
reality, a unique FPGA structure requires original design automation techniques, and
they are critical to extract enough performance with a limited resource on an FPGA
chip. This chapter introduces them from the viewpoint of CAD (Computer Aided
Design) developer. Techniques for technology mapping, clustering, and place and
routing are introduced. Then, low power design which has become a critical issue is
introduced. Although this chapter includes some expert knowledge, even beginners
can understand the specialties and challenges of FPGA tools.

Keywords FPGA EDA tools * Technology mapping - Clustering - Place and
route + Low power FPGA design techniques

5.1 FPGA Design Flow

EDA (Electronic Design Automation) technology is extremely important to bring out
the performance of LSIs. In general, the upper limit of the performance that the FPGA
can achieve is limited by physical restrictions such as process technology. However,
the performance that the actual circuit can achieve depends on the device architecture
and the EDA tool. That is, no matter how high-powered engines (processes) we have,
there is no speed without a car body (architecture) and driving skill (EDA tool) to
match them. In particular, the EDA tool is directly related to the implementation of
the circuit; thus, the influence on the performance is immeasurable.

M. lida ()
Kumamoto University, Kumamoto, Japan
e-mail: iida@cs.kumamoto-u.ac.jp

© Springer Nature Singapore Pte Ltd. 2018 117
H. Amano (ed.), Principles and Structures of FPGAs,
https://doi.org/10.1007/978-981-13-0824-6_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0824-6_5&domain=pdf

118 M. Iida

Figure 5.1 shows the FPGA design flow. It begins with Logic Synthesis of HDL
(Hardware Description Language) source code and ends with Bit stream Generation
after Technology Mapping, Clustering, and Placement Routing. In logic synthesis,
a gate level netlist is generated from the HDL description, and in the technology
mapping, this netlist is converted into a netlist at the LUT level. Clustering is a
process of combining a group of LUTs and flip-flops (FFs) into one logical block
(LB: Logic Block). Then, LB is placed on the device by the place and route tool, and
the connection between the LBs is routed on the wiring structure. Finally, from the
arrangement/wiring information, the connection relation of each switch in the FPGA
is generated as a bit stream.

In this way, the design of the FPGA is cutting out logics which can be implemented
in the LUT having a predetermined number of inputs (the LUT can implement any
logical function of the number of inputs) and then allocating on it. Then, by using the
wiring which can freely determine the route between them, circuit can be realized
on the FPGA.

The difference between FPGAs and ASICs is that ASICs combine elements clas-
sified by function in a library, whereas the FPGAs have a uniform structure. The
EDA tools of these two technologies are different. The following sections describe
the FPGA EDA technology, highlighting the specificities that differs from ASICs,
namely for the technology mapping, clustering, and placement and routing.

Fig. 5.1 Typical FPGA
design flow

Logic synthesis

Gate level netlist
[Technology mapping]

LUT level netlist

Clustering

LB level netlist

[Bit stream gen.]

' Bit stream

HDL:Hardware description language
" LUT:Look Up Table
"_’__,-5"""‘-‘!“ LB Logic Block

5 Design Methodology 119

5.2 Technology Mapping

Technology mapping is a task of converting a technology-independent gate level
netlist to logic cells of a target FPGA. The logic cells referred to here depend on the
FPGA architecture and is the minimum unit for realizing a logic circuit such as an
LUT and MUX (Multiplexer). The technology mapping is located at the end of the
conversion process of logics from HDL. Therefore, the influence of this process on
the quality (area, performance, power consumption, etc.) of the final implemented
circuit is immeasurable.

Here, we look at the mechanism and behavior of FlowMap [1] which is a rep-
resentative technology mapping tool. FlowMap is a technology mapping method
developed by Cong et al. from UCLA (University of California, Los Angeles). Tech-
nology mapping for general k-input LUT (k-LUT) consists of the following two
steps:

Step I. Decomposition process: Since the actual gate level netlist is represented by
a Boolean network,' each node is disassembled until it becomes less than
the input number k of the LUT.

Step II. Covering process: The Boolean network decomposed in Step I is converted
to reduce the number of inputs based on appropriate criteria, so that several
nodes are covered with k-LUT.

FlowMap is a method for obtaining a depth optimal solution of the covering
problem of Step II with polynomial computation time.

Figure 5.2 shows the operations of FlowMap, explaining the operation of tech-
nology mapping based on the example of mapping to 3-LUT. First, the gate level
netlist in (a) is converted to a DAG (Directed Acyclic Graph) in (b). At this time, the
uppermost node is called PI (Primary Input) and the last node is called PO (Primary
Output). Focusing on the PO on the right side of (c), the nodes related to the PO
up to the PI are surrounded by a dotted line. This selection represents the mapping
range of PO. Next, (d) illustrates labelling and cutting. Labels are attached in the
topological order from the PI, and the conditions are attached as follows:

(1) Set the label of PI to 0,

(2) Next, search the range that can be covered by the 3-LUT among the nodes that
take PI inputs, and put a cut on the input.

(3) The label calculation at this time adds its own number of level (that is, level one)
to the node with the largest label immediately above the cut, so P10+ 1 =1,
and the label is 1,

(4) Once the label of a node is calculated, we can calculate the labels of the nodes
that are connected to the node that calculated the label. However, if the label is
not yet determined, it should be done from the finalization of that label first.

! A Boolean network is a way of expressing a gate level netlist, represented by a valid graph (DAG).
Each node is composed of a logic gate or a combination circuit of logic gates, and the directional
branch represents an input/output signal.

120 M. Iida

D

(a) Gate level netlist (b) DAG (Directed Acyclic Graph)

Ol O Cl
[— |

(0 ,

L 3

1 ¥ 5

' \\3-LUTf }
1 =

RS X \3-Lur/ \z-.Lur/ \3-Lur/ \3-Lur/
h y

1 O\

1

!)

1

!)

1

1

1

| I ﬁ\

3-LUT

(e) Mapping (f) LUT level netlist

Fig. 5.2 FlowMap operation

5 Design Methodology 121

(5) After the labels of all involved nodes have been determined, the label calculation
of the second level nodes can be performed. At this time, since the remaining
nodes can be mapped to a 3-LUT, the labels of these nodes are 1 because all PIs
are included in this cut.

(6) When labels are calculated for each node in this manner, the label of ¢ finally
becomes 2.

The label is guaranteed to be the minimum value since the minimum value is
obtained from the upper side of the node. In (e), mapping is done from the PO of
the circuit. Then, when executing the above steps for all POs, a final mapping to the
3-LUT is obtained, as shown in (f).

Although cutting and mapping can be performed as described above, various
technology mapping methods have been proposed to improve the evaluation function.
For example, Cong et al., who developed FlowMap, devised CutMap [2], ZMap [3],
DAOMap [4] and methods targeted for depth optimization and the reduction of the
number of LUTs, etc. Wilton et al. (Univ. of British Columbia, UBC) developed
EMap [5] which considers the power consumption, and Brown et al. (University of
Toronto) are developing IMAP [6] . Also, Cong et al. also proposed Hetero Map [7]
for heterogeneous LUTs with different numbers of inputs instead of a single LUT.

5.3 Clustering

Recent FPGAs are mainly based on cluster-based structures that are grouping mul-
tiple LUTs in a logic block. Therefore, the clustering processing has become an
essential step. Clustering has two important points. The first one is that the delay
greatly differs between the wiring in the cluster (local wiring) and the wiring outside
the cluster (wiring of the routing track). The second point is that if there are unused
resources in the cluster, the implementation efficiency decreases (as a result, many
logical blocks will be used), so we want to pack as much logics as possible in a
cluster. VPack [8], an initial clustering tool developed by the research group of Rose
et al. from Toronto University, has the following two optimization goals:

(1) Minimize the number of clusters
(2) Minimize intercluster connection.

VPack selects the LUT with the largest number of inputs from unclustered LUTs
as the seed of a new cluster. Then, it adds the LUTs with the largest number of inputs
that can be shared with the current cluster (as depicted in Fig. 5.3).

This method worked well for some target optimizations such as the number of
clusters and the number of connections between clusters. However, satisfying per-
formance cannot be achieved with respect to the delay. This tool did not take the
delay difference inside and outside the cluster into account, which is the first impor-
tant point of the clustering. So, it is a clustering tool with large dispersion in delay
performance.

122 M. Iida

| gl o L gl
/

Initial cluster Attraction(L) = | Nets(L) N Nets(C) |
L:LUT C :Initial cluster

Fig. 5.3 Operation of VPack

1 3
1
0 1 2
n— 0 0 —> = Out
0 1

1
The smaller the Slack,
. 2 the delay has no margin
|:|: LUT on critical path
3

I:': other LUT Slack =Requirement time — Arrival time

Fig. 5.4 Calculation of connection criticality

Therefore, two years later, Rose et al. proposed T-VPack [9] which addressed this
issue. T-VPack is a clustering tool that extends VPack to be a timing-driven system.
It selects the LUT with the largest number of inputs on the critical path as the seed
of the cluster. To absorb LUTs into the current cluster, not only the number of inputs
that can be shared but also both (1) Connection Criticality and (2) Total Path Affected
are taken into consideration. Connection Criticality is an index for judging whether
it is a route close to the critical path and is calculated based on Slack. Figure 5.4
shows a calculation example of the Slack value. The squares in the figure indicate
the LUT, and the numbers in the square represent the Slack values. The arrival time
is the number of maximum levels of LUTs from the input, and the request time is
the maximum value when tracing backward from the arrival time of the output in
the same way. Slack indicates the difference between the request time and the arrival
time, and it can be said that the smaller the Slack is, the closer a route is to the critical
path, as shown in the figure.

On the other hand, Total Path Affected is an index showing how much a certain
LUT is involved in critical paths. It is the number of critical paths that can be reduced
in the same Connection Criticality. It is given by adding paths that become critical
paths from inputs. An example is shown in Fig. 5.5. Squares represent LUTs and
dotted lines denote critical paths. In addition, the numerical value in the square

5 Design Methodology 123

1R:1U 32

1 W Cluster

In \ 3' Out
1K v 2
,2 /“
1P

Three path delays on "Connection Criticality" can be reduced
by clustering the LUT of Z.

Fig. 5.5 Calculation of total path affected

indicates how many critical paths are involved in this LUT. A signal (thick dotted
line) connected from LUT “Y” to LUT “Z” is a common wiring of three critical paths.
If this wiring of high Total Path Affected is sped up, 3 critical paths can be improved
at the same time. Therefore, in T-VPack, timing-driven clustering is performed so
that LUT “Y” and LUT “Z” are in the same cluster.

On the other hand, RPack/t-RPack [10] are other approaches from another view-
point. They are clustering tools which improve the index of routability metrics in
VPack. Routability metrics is a target index to show the flexibility of the circuit wiring
at the stage of placement and wiring process of the FPGA circuit design flow. The
goal is to eliminate wiring congestion. Improvement in this routability metrics not
only eliminates congestion among clusters but also has the effect of minimizing the
total number of wires outside the cluster. Furthermore, in iRAC [11], the routability
metrics are extended to optimize wires outside of the cluster even when “vacancy” is
created in the cluster, as shown in Fig. 5.6. That is, the optimization consider both the
inside and outside of the cluster. The authors’ research [12] is also effective similar to
RPack and iRAC by optimizing the routability metrics and routing resources inside
and outside the cluster.

In the aforementioned works, the performance of clustering tools has been greatly
improved. However, the clustering algorithms introduced above only consider LUTs
of the same type. Recent logical blocks employ adaptive LUTs, as described in the
previous section, and constitute more complex logical clusters. Introducing adaptive
LUTSs not only needs to map logics to an appropriate number of input LUTs at the
time of technology mapping, but also greatly influences clustering. When clustering a
netlist composed of adaptive LUTS, besides the number of LUTs that can be packed
into a logical cluster, we also have to consider delay, routability, total number of
primary inputs and the combination of LUTs with different number of inputs allowed
by a logical cluster, etc. Therefore, more optimizations are required. However, it

124 M. Iida

Existing cluster

_,lj (a) Three LUTs are clustered, and
one more LUT can be clustered.

I
E

(b) By clustering LUT X, three
external wiring lines are added.

Other cluster

/

(c) By not taking in the LUT X, it is possible to
suppress the increase of the external wiring to one.

Fig. 5.6 Clustering considering routability metrics

is extremely difficult to find a solution that simultaneously satisfies the minimum
number of logical clusters, minimum delay and minimum number of wires.

To solve the above challenges, AAPack (Architecture-Aware Packer) [13], incor-
porated in VTR (Verilog-to-Routing) 6.0 [14], is developed. In the VIR project,
the device architecture is modeled using XML.? The architecture definition of the
device is divided into (a) a cell structure (Physical Block: corresponding to a logic
cell or the like in a cluster) and (b) a routing structure (Interconnect: correspond-
ing to a connection relation and connection method between Physical Blocks). The
physical block in (a) can describe a nested structure, thereby representing a clustered
logical block. Furthermore, a structure having various modes can also be expressed.

2Their place and route tool uses XML from VPR 5.0, but VTR 6.0 extends it so that it can more
describe complex structures with a simple notation. The VPR place and route tool is described in
the next section.

5 Design Methodology 125

For example, as in Altera’s Fracturable LUT-based logic block described in the pre-
vious section, an LUT with a large number of inputs can be divided into multiple
LUTs with a small number of inputs (multiple modes).

AAPack is a clustering tool corresponding to the above device architecture model.
Clustering is performed in the following procedure:

(1) If there is an unclustered LUT, an LUT serving as a seed is selected and a cluster
to be inserted is determined,
(2) Insert the LUT into the cluster according to the following procedure:

(a) Search candidate LUTS to be inserted in the cluster,
(b) Insert selected LUTs into the cluster,
(c) Ifitis still possible to insert LUTS into the cluster, return to (2a),

(3) Add the cluster to the output file and return to (1).

(1) is the same as VPack and T-VPack. (2)-(a) determines the LUT to be loaded
into the cluster from “the number of inputs that can be shared in the cluster” and
“the relationship between the LUT outside the cluster”. (2)-(b) judges whether the
selected LUT from the cluster structure information can be inserted into the cluster.
As shown in Fig. 5.7, this judgement is made by searching the graph of the cluster
structure. This graph is made so that the granularity of the LUT is “fine” to “coarse”
from right to left. The search is performed in depth-first order from the right side
of the graph (the side with smaller grain size). When there are LUTs with multiple
granularities in the cluster, logic is implemented in the smallest LUT that satisfies
the number of inputs of the circuit to be mapped. For example, when mapping a
4-input and 1-output combinational circuit to the LUT, shown in Fig. 5.7, it can be
implemented with either a 5-LUT or a 6-LUT. When mapped to 5-LUT, another
5-LUT circuit can be combined in the same cluster. However, if it is mapped to a
6-LUT, no more circuits can be implemented in this cluster. Therefore, it is more
efficient to be allocated from the smaller LUT.

Fracturable LUT

Mode A | Fracturable LUT |
6
6-LUT /\\
| Mode A | | Mode§\ |

Mode B /\\
5
.'II 5-LUT [| 6-LUT | | 5-LUy 5—LU1) |
3 J \

2

5-LUT
| ? ‘ Cluster structures and modes graph ‘

Fig. 5.7 Clustering of AAPack

126 M. Iida

When an LUT that can be inserted into a cluster is found, it can be decided whether
wiring can be performed next. Then, when the insertion of the LUT is successful,
an LUT that can be inserted as a child having the same parent is searched from the
netlist and inserted. This process is repeatedly executed.

Whether wiring is possible or not is judged as follows. First, we create a graph
with the input/output pins in the cluster as nodes and the connection relation of each
pin as a directed edge. Next whether it can be wired to the LUT to be inserted by the
same processing as PathFinder (VPR 5.0 routing algorithm) is checked.

As described above, AAPack provides a method to cluster LUTs for complex
structured logical clusters.

5.4 Place and Route

The last step, placement and routing, is the task of establishing the physical positions
of the logical blocks and the signal paths connecting them. Generally, logical blocks
are allocated first, then wiring between them is performed.

Since many FPGAs have a two-dimensional array of logical blocks, the placement
process can be formulated as a slot placement problem or quadratic assignment
problem (QAP). However, these problems are known as NP-hard,? and usually uses
an approximation algorithm such as Simulated Annealing* (SA).

On the other hand, two methods are used for the routing process: the Global
Routing and the Detailed Routing. Global Routing determines the rough wiring route
of each net. That is, which channels are used to establish the connection. Detailed
Routing determines which routing resources and switches each net connects to based
on the information obtained by Global Routing.

This section introduces VPR (Versatile Place and Route) [14—18], which is the
most widely used place and route tool in academia. The VPR 4.3 deployment process
is performed with the following procedure (represented in Fig. 5.8):

(1) Randomly allocate logical blocks and I/O blocks.

(2) Calculate the cost of congestion when wiring is done in this state.

(3) From this state, randomly select two blocks and swap them (pair exchange
method).

(4) Recalculate the cost for the replaced state.

(5) Compare with the cost before replacement and judge whether to accept the
change or not.

3 A NP-hard problem is at least equal to or more difficult than the problem belonging to the Non-
Deterministic Polynomial Time (NP) class in computational complexity theory. Quadratic Assign-
ment Problem (QAP) is said to be one of particularly difficult problems among NP-hard combina-
torial optimization problems.

“4The Simulated Annealing method is a general-purpose stochastic meta-heuristic algorithm. The
feature of SA is to accelerate the convergence by decreasing its acceptance probability due to
temperature change when trying to escape local solution using randomness.

5 Design Methodology 127

mimjujn] mimjuln

::S:

OO © O OOoEO

(a) Optimize placement by random placement and pair exchange method.

| Bounding Box

Cost of routing quantity

e The cost is the sum of the length
in the horizontal direction and the
length in the vertical direction.

® The cost is small as the logical
blocks gather.

(b) Examples of using Bounding Box for routing cost.

Fig. 5.8 Placement procedure of VPR

As shown in Fig. 5.8a, the routing process uses SA, and the exchange is accepted
with a certain probability even if the wiring cost and the timing cost are improved
or worsened from the previous state. The cost of the routing amount is a cost rep-
resenting the amount of routing resources in the case of wiring. Fig. 5.8b depicts
a diagram showing only logical blocks, and the dotted frame shows the Bounding
Box (boundary rectangle). The Bounding Box cost is the sum of the horizontal and
vertical lengths of the range created by a net placed on the FPGA device, and the
closer the blocks are placed, the smaller the Bounding Box cost is. The timing cost
determines the cost from the net source-sink delay and the Slack value of the path.

In this way, in the placement process, logic blocks having deeper relationships
are placed closer to each other to shorten the wiring length, and the entire layout is
arranged to be as compact as possible, too. Furthermore, ideally, the wiring conges-
tion degree of each channel should be equal.

Although the initial VPR placement algorithm (VPlace) was only optimized by
the Bounding Box cost, the above timing cost was added to the placement process
in T-VPlace [19] since VPR 4.3.

As previously mentioned, the routing process is divided into Global Routing and
Detailed Routing, as shown in Fig. 5.9. Global Routing is not limited to only FPGAs,
and itresults in general route search problem for the graph. On the other hand, Timing-
Driven Router [20], which is the Detailed Routing part of VPR 4.3, is an algorithm

128 M. Iida

Global routing is to solve the route Detailed routing is determined
search problem of the graph by the following method

(a) Global routing and detail routing
© o o o o o o » Using directed-search
o o o o o o » The cost of between source and
search location and the estimated

Sink cost between search location and
o sink.

o The predicted cost is the cost of
delay when using the same kind of
wire as the node n and connecting
at the shortest distance.

o

(b) Method of searching route between source and sink of netlist

Fig. 5.9 Routing procedure of VPR

based on Path finder [21]. It uses directed-search for net route search between source
and sinks. For this reason, costs between the source and search positions, as well
as estimated cost between the search position and the sink, are required. Fig. 5.9b
shows the route searches between a source and a sink. Black wires from the source are
already fixed to their route. The black dotted line shows the node n currently being
searched, and the gray broken line shows the shortest path between the searched
position and the sink using the same type of wiring as the node n. The bright gray
frame, surrounding the black and broken lines, represents the cost of congestion and
timing between source and search positions. On the other hand, thick gray frame
surrounding the gray broken line represents the estimated cost of the timing between
the search position and the sink.

In this fashion, the cost is calculated. Wiring is performed for each net using the
following procedure:

(1) Routing to each net with minimum cost.
(2) Because wires that compete for multiple nets tend to be crowded, congestion
costs are added to the evaluation values.

5 Design Methodology 129

(3) If anet cannot be routed because of conflict, searching for the least cost path for
each net is executed again.

(4) Since the wire cost has been updated since last search, the route is possibly
changed.

(5) Conflict decreases from last search due to route change.

(6) If conflicts still exist, similarly add cost and search wiring route again.

(7) Execute this operation until there is no conflict.

The placement and routing process is time-consuming because it involves many
optimization problems. In order to improve the practicality, speeding up these pro-
cesses is essential. In addition, it is necessary to cope with an architecture which
makes it more functional, such as cluster structure of complicated logical blocks,
dedicated circuit, dedicated wiring and so on. In order to cope with such require-
ments, the VPR development team introduced device definitions based on XML in
the VPR 6.0 version [14], and further started the VTR (Verilog-to-Routing) project
[13] in 2012. Lately, VTR 7.0 (Current Version: 7.0—Full Release—Last updated:
April 22, 2014) has been released as an open source FPGA development framework
[22, 23].

5.5 Low Power Design Tools

Up to now, we have looked at the basic operations of the FPGA design tool, but the
recent major trends require low power consumption. There are various problems with
FPGAs, but among them, large power consumption is an obstacle when considering
implementations on SoCs. Therefore, methods for reducing the power consumption
from technology mapping to clustering, and placement and routing have been studied,
for example the technology mapping tool EMap of Wilton et al. of UBC, the clustering
tool P-T-VPack, and the P-VPR place and route tool [5]. In this section, we take these
as examples and introduce the low power consumption methods and their effects.
First, we briefly explain the FPGA dynamic power consumption. Equation (5.1)
is the general equation for calculating dynamic power consumption in LSIs. V is
the power supply voltage, f.; is the clock frequency, Activity(i) is the switching
activity’ of the node i, C; is the load capacitance of the node i. Activity(i) in
Eq. (5.1) indicates the transition probability of node i in f;; and takes a value of
0.0-1.0. This value indicates how much the target node switches on average. Charge
and discharge to this capacity cost energy consumption, and its time/space integration
effects the power consumption. That is, in order to reduce the power consumption,
it is necessary to lower the power supply voltage, the operating frequency, the load
capacity of the circuit, or the activity. Reducing the power supply voltage is the
most effective method, but this has an impact on the manufacturing process and the

5The switching activity has almost the same meaning as the toggle rate (TR). The toggle rate is the
number of transitions from the logic value 0 to the logic value 1 of the target node and the transition
from the logic value 1 to the logic value O per unit time.

130 M. Iida

peripheral circuits. On the other hand, dropping the frequency is often not the most
efficient option because it directly results in performance degradation. Therefore, in
reducing the power consumption using design tools, we focus on reducing the load
capacity and activity.

Powergynamic = 0.5- V2 fu - Y Activity(i) - C; (5.1)

ienodes

In addition, since FPGAs use SRAMs, the static power consumption, such as
leakage current, is also large; however, current low power consumption design tools
(EMap, P-T-VPack, P-VPR) only consider the dynamic power consumption.

5.5.1 Emap: Low Power Consumption Mapping Tool

The research presented by Wilton et al. is consistently aiming to reduce Activity(i)
in Eq. (5.1). In technology mapping, it is possible to optimize the power by taking the
high activity wiring to the inside of the LUT in the post-mapping netlist. Figure 5.10
shows an example of mapping process considering the switching activity in Emap.

The circuits in Fig. 5.10a, b map the same netlist to three 3-input LUTs. The
number next to each wiring is the switching activity value. In Fig. 5.10a, by moving
the wires with high switching activity to the inside of the LUT, the average value of
the activity is minimized. On the other hand, in Fig. 5.10b, the number of stages of
LUT corresponding to the delay time is the same. However, since the wiring with
high switching activity value is outside the LUT, even though the delay performance
product is the same, the power consumption consequently increases.

Another way to reduce power consumption is to minimize the duplication of
nodes. In technology mapping, nodes are duplicated for delay optimization or the like.
However, the number of nodes increases due to the replication, and the power con-
sumption also increases because the number of branches of wirings further increases.
Therefore, in Emap, duplication of critical paths is allowed; but, in other wiring, the
duplication is suppressed. Also, the duplication of a node occurs when nodes with
multiple fanouts are inside the cone, so Emap adopts measures such as making nodes
with multiple fanouts as root nodes. As a result, any increase of nodes is suppressed
when compared to conventional FlowMap.

Figure 5.11 shows an example of node duplication. In Fig. 5.11a, cutting is selected
so that node 3 becomes the vertex (root node) of the cone. However, in Fig. 5.11b it
is in the middle. At the time of the cut selection, both Fig. 5.11a, b are the same for
both the number of cuts and the number of LUT stages. But in Fig. 5.11b, since the
fanout of node 3 is 2, the duplication of the node results in the generation of an LUT.
That is, the LUT increases by one. Emap suppresses the duplication of such nodes.

5 Design Methodology 131

O.ZiO.li 0.2l |0.3

3-LUT

0.1 vy

3-LUT

0.1 04 0.2
4

3-LUT

v

(a) Activity-aware technology mapping

0.2] |0.1 lO.ZiOB

3-LUT

vy 0.6

3-LUT

0.1 04 |0.2
4

3-LUT

v

(b) Technology mapping without considering activity

Fig. 5.10 Mapping procedure of Emap

5.5.2 P-T-VPack: Low Power Consumption Clustering Tool

P-T-VPack, alow power consumption clustering tool, basically uses the same method
as Emap to reduce the activity. Considering the load capacity of the wiring existing
inside and outside the BLE, the wiring outside the BLE has a large wiring length. In
addition, since many transistors such as a connection block and a switching block are
also connected, the capacity is generally large. Therefore, it is more advantageous for
power consumption to include wirings with higher activity as much as possible within
the cluster (within BLE). Figure 5.12 shows an example of P-T-VPack clustering.

In this example, when the combination of clustering in Fig. 5.12a and the clustering
in Fig. 5.12b are compared, the activity of the wiring connecting between clusters is
lower (0.1) in (a) than in (b) (0.4). Therefore, when the load capacities of the wirings
between the clusters are the same, the power consumption of (a) is lower.

132 M. Iida

bbb

‘ 3-LUT| ‘ 3-LUT|

(b) Technology mapping without considering fan-out

Fig. 5.11 Duplicate nodes in the mapping process

5.5.3 P-VPR: Low Power Placement and Routing Tool

The basic idea of P-VPR, a low power consumption placement and routing tool, is
also similar to P-T-VPack and Emap. However, since wiring with high activity cannot
be hidden in placement and routing, connection for such nets should be as short as
possible. When priority is given to the switching activity, there are cases where a
signal line, whose switching activity is low but its timing is critical, may eventually
be detoured and the delay may increase. Such a trade-off is adjusted with the weight
parameter in the cost function to find the balance that minimizes the energy.

5.5.4 ACE: Activity Measurement Tool

As in previous mentioned tools, it is possible to reduce the power at the design tool
level by considering the activity. However, what is important here is how to accurately
obtain the activity of each node. Wilton et al. proposed a tool called ACE (Activity
Estimator) for activity measurement.

There are two ways to roughly calculate the activities: The first one is a dynamic
method based on simulation, and the second is a static method stochastically obtained.

5 Design Methodology 133

O.2l 0.1l 0.2 0.3
3-LUT

3-LUT

o
=
.0

‘e
<

AL CEEE TS
a
L]

3-LUT

0.1 l
)

.
R

.
90
o~
c
=

o
=
<
I
> 0
- ‘0
e, R
LI .*
"y Y

o*

(a) Activity-aware clustering

O.Zl 0.1l 0.2 0.3

3-LUT *,

L 01 4y

.

LTS
.
o*

‘o, 3-LUT

o

.'-..-"‘
o
::—‘___

Q
0
0
v
ot
=
(e
3

0

(b) Clustering without considering activity

Fig. 5.12 Mapping procedure of P-T-VPack

Generally dynamic methods have high precision; but, they are time consuming.
Furthermore, the accuracy is easily affected by the test pattern. On the other hand,
the static method based on probability is low in accuracy, and the execution speed is
fast. Also, since the probabilistic method reacts sensitively to setting the transition
probability of the input signal, the initial value is an important factor determining
the accuracy.

ACE is a tool to statically analyze netlists. The netlist can calculate activities from
any of the netlists at gate level when used for technology mapping, netlist at the LUT
level for clustering, and BLE level netlist for placement and routing. There are two
types of values that this tool calculates: static property (SP: rate of signal “High”)
and switching activity (SA: probability of signal transition).

134 M. Iida

5.6 Summary

In this chapter, we have briefly summarized how the FPGA design tools are made
and how the research was carried out in the background. All of them aimed at opti-
mizing delay, implemented area, and power consumption. Even if the optimization
is performed independently in all processes, it is not necessarily the optimum in the
final circuit. That is, cooperation between processes is necessary. For example, it is
possible to improve the performance by simultaneously optimizing the technology
mapping and clustering, and by also processing the clustering and placing and rout-
ing in multiple processes simultaneously. Future FPGA design tools are expected to
progress with the aim of simultaneous optimization of such multiple processes.

References

1. J. Cong, Y. Ding, FlowMap: an optimal technology mapping algorithm for delay optimization
in lookup-table based FPGA designs. IEEE Trans. CAD 13(1), 1-12 (1994)

2. J. Cong, Y. Hwang, Simultaneous depth and area minimization in LUT-based FPGA mapping,
in Proceedings of FPGA’95 (1995), pp. 68-74

3. J. Cong, J. Peck, Y. Ding, RASP: a general logic synthesis system for SRAM-based FPGAs,
in Proceedings of FPGA’96 (1996), pp. 137-143

4. D. Chen, J. Cong, DAOmap: a depth-optimal area optimization mapping algorithm for FPGA
designs, in Proceedings of ICCAD2004 (2004), pp. 752-759

5. J. Lamoureux, S.J.E. Wilton, On the interaction between power-aware computer-aided design
algorithms for field-programmable gate arrays. J. Low Power Electron. (JOLPE) 1(2), 119-132
(2005)

6. V. Manohararajah, S.D. Brown, Z.G. Vranesic, Heuristics for area minimization in LUT-based
FPGA technology mapping. IEEE Trans. CAD 25(11), 2331-2340 (2006)

7. 1. Cong, S. Xu, Delay-oriented technology mapping for heterogeneous FPGAs with bounded
resources, in Proceedings of ICCAD 98 (1998), pp. 40—45

8. V.Betz, J. Rose, Cluster-based logic blocks for FPGAs: area-efficiency vs. input sharing and
size, in Proceedings of CICC’97 (1997), pp. 551-554

9. A. Marquardt, V. Betz J. Rose, Using cluster-based logic blocks and timing-driven packing to
improve FPGA speed and density, in Proceedings of FPGA’99 (1999), pp. 37-46

10. E. Bozorgzadeh, S.O. Memik, X. Yang, M. Sarrafzadeh, Routability-driven packing: metrics
and algorithms for cluster-based FPGAs. J. Circuits Syst. Comput. 13(1), 77-100 (2004)

11. A.Singh, G. Parthasarathy, M. Marek-Sadowska, Efficient circuit clustering for area and power
reduction in FPGAs. ACM Trans. Des. Autom. Electron. Syst. (TODAES), 7(4), 643-663
(2002)

12. M. Kobata, M. lida, T. Sueyoshi, Clustering technique to reduce chip area and delay for FPGA
(in Japanese). IEICE Trans. Inf. Syst. (Japanese Edition), J89-D(6), 1153-1162 (2006)

13. J. Rose, J. Luu, C.W. Yu, O. Densmore, J. Goeders, A. Somerville, K.B. Kent, P. Jamieson,
J. Anderson, The VTR project: architecture and CAD for FPGAs from verilog to routing, in
Proceedings of the ACM/SIGDA International Symposium on Field Programmable Gate Arrays
(FPGA’12) (2012), pp. 77-86, https://doi.org/10.1145/2145694.2145708

14. J.Luu, J.H. Anderson, J. Rose, Architecture description and packing for logic blocks with hier-
archy, modes and complex interconnect, in Proceedings of the 19th ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA’11) (2011), pp. 227-236, https://doi.
org/10.1145/1950413.1950457

https://doi.org/10.1145/2145694.2145708
https://doi.org/10.1145/1950413.1950457
https://doi.org/10.1145/1950413.1950457

5 Design Methodology 135

15.

16.

17.
18.

19.

20.

21.

22.

23.

V. Betz, J. Rose, VPR: a new packing, placement and routing tool for FPGA research, in
Proceedings of FPL’97 (1997), pp. 213-222

V. Betz, J. Rose, A. Marquardt, Architecture and CAD for deep-submicron FPGAS. The
Springer International (1999)

V. Betz, VPR and T-VPack userfs manual (Version 4.30). University of Toronto (2000)

J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, W.M. Fang, K. Kent, J. Rose, VPR 5.0: FPGA
CAD and architecture exploration tools with single-driver routing, heterogeneity and process
scaling. ACM Trans. Reconfig. Technol. Syst. 4(4), Article 32, 23 (2011), https://doi.org/10.
1145/2068716.2068718

A.Marquardt, V. Betz, J. Rose, Timing-driven placement for FPGAs, in Proceedings of the 2000
ACM/SIGDA Eighth International Symposium on Field Programmable Gate Arrays (FPGA’00)
(2000), pp. 203-213, https://doi.org/10.1145/329166.329208

J.S. Swartz, V. Betz, J. Rose, A fast routability-driven router for FPGAs, in Proceedings of
the 1998 ACM/SIGDA Sixth International Symposium on Field programmable Gate Arrays
(FPGA’98) (1998), pp. 140-149, https://doi.org/10.1145/275107.275134

L. McMurchie, C. Ebeling, PathFinder: a negotiation-based performance-driven router for
FPGAs, in Proceedings of FPGA’95 (1995), pp. 111-117

J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk, M. Nasr, S. Wang,
T. Liu, N. Ahmed, K.B. Kent, J. Anderson, J. Rose, V. Betz, VTR 7.0: next generation archi-
tecture and CAD system for FPGAs. ACM Trans. Reconfig. Technol. Syst. 7(2), Article 6, 30
(2014), https://doi.org/10.1145/2617593

Verilog to Routing—Open Source CAD Flow for FPGA Research, GitHub, https://github.com/
verilog-to-routing/vtr-verilog-to-routing

https://doi.org/10.1145/2068716.2068718
https://doi.org/10.1145/2068716.2068718
https://doi.org/10.1145/329166.329208
https://doi.org/10.1145/275107.275134
https://doi.org/10.1145/2617593
https://github.com/verilog-to-routing/vtr-verilog-to-routing
https://github.com/verilog-to-routing/vtr-verilog-to-routing

Chapter 6 ®)
Hardware Algorithms oo

Kentaro Sano and Hiroki Nakahara

Abstract Just implementing with hardware is almost nothing to contribute to
achieve high performance. The performance of FPGA computing is depends on
how to use efficient hardware algorithms for the target application. This chapter
introduces various types of hardware algorithms useful for FPGA implementation.
First, pipelining is the most popularly used technique. Recently, it is often automat-
ically formed with HLS design tool. Then, general parallel processing techniques
are introduced along Flynn’s classic taxonomy. Systolic algorithms and data-flow
models are also classic methods researched in 1970s’ and 1980s’, but they have been
practically used after large-scale FPGAs are available for computation. Then, stream
processing, simple but powerful framework, is introduced with a practical example.
Next, cellular automaton, hardware sorting and pattern matching which are important
in network processing a killer application of FPGAs are introduced.

Keywords Pipeline processing - SIMD processing - Systolic algorithm
Data-flow machines * Streaming processing - Cellular automaton - Hardware
sorting - Pattern matching

A hardware algorithm is a procedure suitable for hardware implementation and
the target hardware model. This chapter presents an outline of several hardware
algorithms used for processing implementation in hardware, with specific emphasis
on parallelism, control, and data-flow of processing.

K. Sano (X))
RIKEN, Kobe, Japan
e-mail: kentaro.sano @riken.jp

H. Nakahara
Tokyo Institute of Technology, Tokyo, Japan
e-mail: nakahara@ict.e.titech.ac.jp

© Springer Nature Singapore Pte Ltd. 2018 137
H. Amano (ed.), Principles and Structures of FPGAs,
https://doi.org/10.1007/978-981-13-0824-6_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0824-6_6&domain=pdf

138 K. Sano and H. Nakahara

6.1 Pipelining
6.1.1 Principle of Pipelining

Pipelining is a technique for speeding up many processing iterations done contin-
uously. The flow production at a production plant is a typical example. Figure 6.1
presents the pipelining concept. Figure 6.1a depicts the non-pipelining case where
processing iteration 2 is done sequentially after the completion of iteration 1. With
the pipelining shown in Fig.6.1b, we divide a processing iteration into n stages of
uniform proportion. The processing iterations start without waiting for the comple-
tion of all stages of a preceding processing iteration. Figure 6.1b portrays an example
of five-stage pipelining in which each processing iteration has five stages: n = 5. In
the non-pipelining case, each processing iteration is completed within a time length
L. In pipelining, a processing iteration is started in each time length of L/n after the
processing of iteration 1 has finished. Therefore, throughput speedup is achieved by
five times at most, where five is the number of processing iterations per unit time.
In the five-stage example shown in Fig.6.1b, six processing iterations are done in
two time lengths of the non-pipelining case. Parallel processing with different parts
of the entire sequential process is the principle of pipelining, which is understood
as five stages processed in parallel when stage 5 of processing iteration 1 is started
[1, 2].

2 L . Time T

Processing 1 Processing 2 see

Total N processings
(a) Non-pipelined processing

Time Tpipe

Proc.1 | Stage1 | Stage2 | Stage3 | Stage4 | Stage5 L/n

Proc.2

Proc.3

Proc.4

Proc.5

Proc.6

L X X]
(b) Pipelined processing (n=5 stages)

Fig. 6.1 Overview of pipelining

6 Hardware Algorithms 139

6.1.2 Performance Improvement by Pipelining

Actually, n stage pipelining does not necessarily mean five times speedup. Here,
we develop the expression of the speedup factor, a measurement of performance
improvement using pipelining, for a time length of one processing iteration L, N
processing iterations to be done, and n stages in a single processing iteration.

Figure6.1a shows that N processing iterations by a non-pipelining operation
require 7(N) = LN time length for completion. We can derive the time length
Tpipe(N) for completion of N processing iterations for pipelining with n stages,
as described below. First, the completion of processing iteration 1 requires L time
length. However, the next processing iteration finishes L/n later after the comple-
tion of processing iteration 1. Consequently, N — 1 processing iterations, except for
processing iteration 1, complete at intervals of L/n. These N operations end after
Tpipe(N) =L+ (N —1)L/n = (n+ N — 1)L/n time length.

The speedup factor by pipelining described above, S ;. (N), is the ratio of T'(N)
to T)ipe(IN), and can be calculated as:

T(N) _ nN n

SieN: = =
PP() Tpipe(N) n+N_1 1+er;l

If n < N, then Sp;p.(N) = n and the speedup factor over non-pipelining is n: the
number of stages. However, this just means that n times higher throughput can be
achieved while the latency of each processing iteration is not shortened. Although n
times improvement of performance means the reduction of the whole time length for
N processing iterations, it does not bring about the shortening of the time length for
each processing iteration. If this is compared to the flow production in the automotive
industry, then the car production per day (throughput) might increase by dividing a
processing iteration into segments. However, the time between the car order and the
delivery of the parts of that car to factories and the completion of production of that
car (latency) does not change.

If the number of stages, 7, is not much greater than that of processing iterations
N, then the speedup by pipelining remains much smaller than . For pipelining with
n =6and N =5, forexample, S,;,.(5)is 6/(1 + 1) = 3 and the time of processing
iteration is reduced to just one-third. Considering that the maximum speedup by
pipelining with n stages is n, the pipelining efficiency, which is the percentage of the
actually achieved speedup to the maximum, is given as:

Spipe(N 1 N
Epipe(naN)Z Pﬂ:l()=

1+ T Nn—1

For the example presented above, E ;. (6, 5) is SJF‘% = 0.5. This means that the
speeding up is just 50% at maximum. A long time length of insufficient parallelism
has led to this small decrease in efficiency. In Fig. 6.1b, only one process is executed
at the first stage of iteration 1. When the fifth processing stage of iteration 1 starts,

140 K. Sano and H. Nakahara

the number of parallel processing iterations never attains 5, the maximum degree
of parallelism. Consequently, at the beginning of pipeline processing, there exists
a prologue period where perfect parallelism is not achieved. Quite similarly, at the
end of pipeline processing, there exists an epilogue period during which the degree
of parallelism decreases step by step. Perfect elimination of the prologue and epi-
logue periods is impossible. However, if the number of processing iterations, N, is
sufficiently large, then the lengths of the prologue and epilogue periods are dimin-
ished in comparison to the total processing time. Consequently, the speedup factor
approaches the maximum value of n. In contrast, if N is small, then the effects of
prologue and epilogue periods are greater in a relative sense. Therefore, the speedup
factor is smaller.

For other several reasons not mentioned above, hardware pipelining can intrinsi-
cally block the performance improvement. Thus, a lot of attention must be devoted
during the pipelining design. The hardware configuration for pipelining is depicted in
Fig.6.2. Figure 6.2a presents the hardware configuration for a non-pipelining-based
system, where the total processing is implemented by one combinational logic cir-
cuit. When the register of the preceding processing iteration is updated at the rising
edge of the clock signal, a new data is outputted to the combinational logic circuit
after the propagation delay of the register. Inputted data propagates through the com-
binational logic circuit. Then, the processed data arrive at the register of the next
processing iteration after a certain delay in the critical path. Here, the critical path
is that which provides the maximum delay in the circuit. After the period of setup
time, which is necessary to secure correct latching of the arrived data by flip-flop,
the processed data are written in the register by inputting a clock signal. Thereby,
the processing iteration terminates. Consequently, one cycle time, which is equal to
the time interval between two successive clock signal inputs, must be longer than the
sum of the propagation delay, the delay in the critical path of the combinational logic
circuit, and the setup time. This sum represents the upper bound of the maximum
operation frequency.

Pipelining a circuit boosts the throughput by increasing the maximum operation
frequency. Figure 6.2b depicts an example of a circuit with four pipeline stages: n =
4. A circuit can be divided into stages by inserting pipeline registers. With them, the
combinational logic circuits on which the data must propagate are shortened. Even the
critical paths of combinational logic circuit could be perfectly divided into uniform
circuits, the cycle time might not be shortened to 1/n because of the existence of
clock skew, which is the misalignment of clock signals supplied to each register, and
because of the propagation delay and setup time in pipeline registers. Furthermore,
dividing a combinational logic circuit into n uniform stages is sometimes impossible.
Such a case is illustrated by the third pipeline stage in Fig. 6.2b. In this situation, one
stage usually has a longer delay time than others and becomes the critical path, which
happens quite often. Consequently, n = 4 might not increase the operation frequency
by four times because the maximum delay is longer than one-fourth.

These difficulties generally become more deleterious with an increasing number of
stages. Although an operation frequency improvement can be obtained by increasing
the number of stages of shallow pipelining with a few stages, fine divisions such as

6 Hardware Algorithms 141

% g
& 7
R -1;—1 e Combinational logic for processing ®
2 i
Clock
(a) Non-pipelined hardware
Pipeline
registers
Stagel
Clock 8 Stage 2 Stage 3 Stage 4

(Max latency)
(b) Pipelined hardware (4 stages)

Fig. 6.2 Hardware structure for pipelining

dozens or hundreds might halt the operation frequency augmentation and might
even degrade the performance due to clock skew and other factors. However, adding
few pipeline stages instead of finely dividing the already existing ones is different.
Actually, the increase in the entire circuit’s latency by pipelining when compared to
non-pipelining-based systems should be carefully investigated. Such delay can be
caused by overhead related to pipeline registers or non-uniform staging, as shown in
Fig.6.2b.

6.2 Parallel Processing and Flynn’s Taxonomy

6.2.1 Flynn’s Taxonomy

To design high-performance hardware, we should consider processing parallelism.
The taxonomy of architectures which Flynn proposed in 1965 is useful for consider-
ing parallelism for hardware [2, 3]. Hereafter, we refer to this as Flynn’s taxonomy.
Flynn’s taxonomy classifies general-purpose computer architectures in terms of the
concurrency degree in an instruction stream for control and a data stream to be pro-
cessed (Fig.6.3). It includes Single Instruction stream Single Data stream (SISD),
Single Instruction stream Multiple Data stream (SIMD), Multiple Instruction stream

142 K. Sano and H. Nakahara

B B
£ g
LY LY
= =
S § l
g ‘— g PU|’/<|PU| ’——lpul
—r I Data Memory | — Data Memory |
(a) SISD (b) SIMD
[=] {av] [3] {cu
o =]
£ v] £
= _. =
5 5
g ’_.lpu|_.|pu|._.,-|pu| g ’—IPU|’—-I PU|
— I Data Memory I — Data Memorv |
(c) MISD (d) MIMD

(PU: Processing Unit, CU: Control Unit)

Fig. 6.3 Flynn’s taxonomy

Single Data stream (MISD), and the Multiple Instruction stream Multiple Data stream
(MIMD). Although this taxonomy is oriented to architectures of general-purpose
processors that execute a sequence of instructions intrinsically, it is useful for clas-
sifying more general architectures of parallel processing hardware if we recognize
the instruction stream as control in a broader sense.

In Flynn’s taxonomy, computer architecture comprises the four components of
the processing unit (PU), control unit (CU), data memory, and instruction memory.
In SISD shown in Fig. 6.3a, one CU controls one PU based on the instruction stream
read from the instruction memory. PU executes processing for a single data stream
read from the data memory based on the controls directed by CU. Consequently,
SISD does not perform parallel processing and represents the architecture of general
and sequential processor without parallel processing. In the following, the other three
items in the taxonomy are explained.

6.2.2 SIMD Architecture

In SIMD in Fig. 6.3b, a single CU reads out an instruction stream and controls mul-
tiple PUs simultaneously. Each PU executes common processing based on common
controls but for different instruction streams. Consequently, SIMD is an architecture
making use of data parallelism. The data memory can be accessed by all the PUs as

6 Hardware Algorithms 143

local memories of the PUs or a single-shared memory common to all the memory.
Because the SIMD architecture is suitable to process numerous data synchronously
with a single sequence of instructions, it is used as the designated processor for image
processing.

In addition, a microprocessor can incorporate SIMD instructions to provide itself
with the function of parallel data processing. For example, Intel Corp., aiming at
speeding up 3D graphics, designed a microprocessor, the Pentium MMX, with
SIMD-type extended instructions. It was commercially produced in 1997 [4, 5].
The MMX Pentium can perform four 16-bit integer operations simultaneously based
on one SIMD instruction. Furthermore, AMD Corp. introduced a new product of
K6-2 processors equipped with 3DNow! Technology, which provides SIMD-type
extended instructions for floating-point operations in 1998. Later, Intel processors
were augmented with Streaming SIMD Extensions (SSE), an SIMD-type instruction
set for floating-point operation. Then, Pentium Il included SSE extended instructions
and Pentium IV received extended instructions SSE2 and SSE3. Currently available
microprocessors have been augmented with instructions of 128-bit integers and dou-
ble precision floating-point operations in addition to other operations for compression
of video images, as outlined above. They are prevailing as mainstream microproces-
sors. Now it is indispensable to make use of these SIMD-type extended instructions
to take full advantage of the operational performance of microprocessors [5].

6.2.3 MISD Architecture

In the MISDs shown in Fig. 6.3c, multiple CUs read out instruction streams that differ
from each other and which control multiple PUs. Although each PU works based
on different controls, MISD processes a single data stream successively, regarding
it as a whole. It is difficult to find a commercial product of this type in the market. A
coarse-grained pipeline, in which in-line PUs work as stages of the pipeline and one
provides each stage with different controls, might seem to be an MISD architecture.
Because we recognize that CUs provide different functions to PUs in performing
parallel processing with MISD, it earns the designation of architecture for functional
parallelism. Application-specific hardware such as an image processor array that
executes different processes of conversion of pixel values, edge detection, cluster
classification, and others form each stage of pipeline corresponds to MISD-type
architecture if each processing iteration is controlled by an instruction stream [6, 7].

6.2.4 MIMD Architecture

Regarding MIMD in Fig. 6.3d, multiple CUs read out instruction streams that differ
from each other and which control multiple PUs independently. Different from MSID,
each PU performs parallel processing based on different controls and for different

144 K. Sano and H. Nakahara

data streams. Accordingly, MMID has an architecture simultaneously accommodat-
ing data parallelism and functional parallelism. It might perform different processes
for multiple data based on different instruction streams. A tightly coupled multipro-
cessor like a symmetric multiprocessor (SMP), for which multiple processors and
multiple processor-cores are connected on a common memory system, is an example
of MIMD-type architectures. A cluster-type computer in which computation nodes
made of memory and microprocessor are connected by the interconnection network
is another example of MIMD-type architectures.

6.3 Systolic Algorithm

6.3.1 Systolic Algorithm and Systolic Array

Systolic algorithm is a general name for algorithms in which a systolic arrays [8, 9]
are used to realize parallel processing. A systolic array is a regular array of many
processing elements (PEs) for simple operations. It has the following characteristics:

1. PEs are arrayed in a regular fashion: they have the same structure or a few
different structures.

2. The neighboring PEs are connected allowing the data movement to be local-
ized with the connection. If a bus connection is used in addition to the local
connection, then the array is designated as a semi-systolic array [8].

3. PE repeats simple operations and related data exchange.

4. All PEs perform operations in synchronization with a single clock signal.

Each PE performs its own operation in synchronization with the data exchange
between neighboring PEs. Data to be computed flow into an array periodically, and
the pipeline and parallel processing are performed while the data propagate in the
array. Operations in the PE and the data stream caused by the data exchange between
neighboring PEs resemble a bloodstream driven by the rhythmic systolic movement
of the heart, hence the name systolic array. A PE is also designated as a cell.

Because the systolic array can scale the performance according to the array size
by arranging PEs with simple structures and localized data movement, it is suitable
for the implementation in an integrated circuit. Many applications were proposed for
systolic arrays in 1980s and 1990s. Figure 6.4 portrays typical systolic arrays and
systolic algorithms [9]. Systolic arrays have three types: 1D arrays having a linear
array, 2D arrays having a lattice-like array, or a tree structure array with a tree-like
connection. Many systolic algorithms for these arrays have been suggested, including
signal processing, matrix operation, sorting, image processing, stencil calculation,
and calculation in fluid dynamics.

Although the initial systolic array assumed hardwired implementation of fixed
structures and functions, a general-purpose systolic array with a programmable or
reconfigurable structure was proposed later [10]. Classification of systolic arrays in

6 Hardware Algorithms 145

PE

-O-OO00-

(a) 1D systolic array (c) tree-structures systolic array

- signal processing [a,b,c] - DFFT [a,b]

image processing [b] Reed-Solomon Coding [a]
= dictionary structured = matrix calculation [b]
processing [c] = matrix-vector multiplication [a]
= structured data * computational geometry [a,b]
processing [a) = dynamic programing [b]
* pattern matching [a] + polynomial evaluation [a,c]
» searching [a] * recursive evaluation [c]

= sorting [a,c]

= polynomial multiplication and division, GCD [a]

- graph problems [b]

* language recognition [b, c]

(b) 2D systolic array (d) systolic algorithms

Fig. 6.4 Representative systolic arrays and systolic algorithms [9]

terms of general versatility is shown in Table 6.1 [10]. In this table, “Programmable”
denotes the capability to dynamically change the function of the circuit by program-
ming the fixed circuit. The “Reconfigurable” is the capability to statically change the
circuit function by circuit reconfiguration. With the increasing scale of the systolic
array, high-frequency operations with globally maintained synchronization become
difficult sue to the propagation delay of the clock signal and other factors. Kung pro-
posed the wave-front array, introducing data-flow to a systolic array to cope with this
difficulty [11]. In his method, a PE, designed as an asynchronous circuit, operates
with its own speed without the synchronization to a single clock signal. Furthermore,
the data exchange between neighboring PEs is done using the handshake method.

Examples of systolic arrays and algorithms for 1D and 2D systolic arrays are
introduced in the following sections.

6.3.2 Partial Sorting by 1D Systolic Array

An operation of rearranging a given data row according to a given order is referred to
as sorting. Sorting operations are important and are used in many applications. Here,
we introduce a systolic algorithm that rearranges a given data row of n numerical
elements in the descending order and returns the upper N data. Figure 6.5a depicts
a 1D systolic array and its PEs, which partially rearrange the upper N data [12].

K. Sano and H. Nakahara

146

sweans ejep a[dnnu ‘weans uononnsur-maJ-LI0A GWIIA

[euoISUSWIP-U (Krxordwos 03 onp a1eI ST 7 < U) [RUOISUSWIP-U SUOISUSWII(]
SI0MION

PaxIg paxig | omureukq onels paxij | orueuiqg onels paxij | omueuig onels "u02IANU]

paxIg paxIg pPLQAH paxIq JIqen3yuodoy PaxL J[qewweIsold A3o1odog,
ANIIA ANIJA AT 10 QINTS | uoneziuesio
panmpIeH pPLgAH 9[qeInIYuody J[qewwreI3old odAy,
9sodind-[erousn sse[)

asodind-feroadg

[01] Annes1oA 10J SAeLre O1[0ISAS JO UOneOYISSe[D [°9 JqBL

6 Hardware Algorithms 147

(Xin> Xmax)

! JR— _— - — Xin — | = Xout
bociend PE1 PE2 s PEN # LD
Sorted 1st value 2nd value N-th values g
values | M it B Xmax .
T3 31 T3 Zout Zin

(a) 1D systolic array and processing element (PE) PE

-, 15,862, 7 —= e (| P | — 1 e |

PE1 PE2 PE3 | ™ PE1 PE2 PE3 PE1 [| PE2 [| PE3
PR U] I EEERC I TR o Hermemge || derme=2 || e =it o Hermmin | [erme= 15]| M2
t=0 t=3 te5
. 15,86,2 —] - L — 5] £ . — I -
PE1 PE2 PE 3 PE 1 PE2 PE3 PE1 PE2 PE3
o] =7 || K= et || o=t o M0 || M= 7 || Yo =it N PR N PISSELEY N A
1=1 t=4 t=6
2
W% peq [| PE2 || PE3
o emen? | vz | et

=2
(b) behaviorexample of partial sort (N=3)

Fig. 6.5 Systolic algorithm of partial sort

Each of N PEs arrayed in the one-dimensional row has a register keeping the tem-
porary maximum value, Xmax. Furthermore, if the input Xin is greater than Xmax,
then Xmax is replaced with Xin. Consequently, the temporary maximum value is
updated. If the update is made, the former temporary maximum value is sent to the
right PE. If not, then Xin is sent to the right PE. When the last input data are sent to
the Nth PE repeating the procedure described above, the upper maxima N are kept
in the registers beginning with the left-end PE. An example of these operations is
illustrated in Fig. 6.5b. Partial sorting of n data takes (N + n — 1) steps using a systolic
array with N PEs.

Figure 6.5a shows that three control signals of reset, mode, and shiftRead are
inputted to the systolic array. When the reset signal is asserted, the temporary max-
imum numbers in all PEs are reset to the possible maximum negative value. The
mode control signal specifies a request: either the sorting operation or the reading
out of the sorting result. In the former, 1 is inputted, whereas 0 is inputted in the latter.
The shiftRead control signal asks to read out the result of sorting one by one in the
descending order. As presented at t = 6 in Fig. 6.5b, the maximum values are lined
up in a descending order starting with the left-end PE which has input and output
ports. These values are read out by a systolic array used as the shift register through
Zout and Zin connections. The control signal for shift is shiftRead.

148 K. Sano and H. Nakahara

Y = A o X
y1 allal2 al3 al4 X1
V2 a2l a22a23 a4 X2
y3 | T a3la32a33a34 |"| x3

y4 a4l a42 a43 a44 X4 a4

asa as3

aza ass a2

aia a3 " " a2~~~ "~ aa1

ais an " a1 7

-} [e b R R i e R

-

xaxsx2x1 - PE1 (— PE2 | PE3 | PE4 |-

yi y2 V3 va

Fig. 6.6 Systolic algorithm of matrix-vector multiplication

6.3.3 Vector Product of Matrices by 1D Systolic Array

A 1D systolic array can perform the operation of vector product Y = AX. The
operation of an N x N matrix requires N PEs. The systolic algorithm used for
vector product of N = 4 matrices is depicted in Fig.6.6. In PEs arrayed in the 1D
row, the operation proceeds as follows: elements in X enter the left-end PE, whereas
elements in matrix A enter each PE from above, both successively. Each PE has a
register y; to keep a temporary value of the element in the Y vector in addition to input
x element of vector X and an element of matrix A. All PEs execute the calculation
of y; = y; + ax at each step and output x to the right neighbored PE.

At the beginning of the operation, y; of each register is initialized to 0. Then,
y1 = 0+ ayx; is calculated in PE1. In the next step, y; = y1 + ajpx; is executed
in PE1 and y, = 0 4 ay;x; in PE2, both being done in parallel. The inputs to PEI
through PE4 are done in a manner where the input to a PE occurs one step later than
that to the left neighboring PE. This sends the data to the PE in a timely manner. When
these operations are repeated until PE4 keeps the last matrix element, all elements
of vector Y, from y; to ya, are stored in the PE array. The columns of matrix A are
inputted one element after another. Therefore, the total steps of operations become
2N — 1.

6 Hardware Algorithms 149
c A B
cl1cl2cl3cld allal2al3al4 b11b12b13bl4
€21¢22c23c24 a2la22a23a24 b21b22 b23 b24

c31¢32c33c34
c41c42 c43 c44

a3la32a33a34
a41lad2 a43ad4

b31b32b33b34
b41 b42 b43 ba4

bdd
b34 b43
b33 b42
b3z b4l

b31

al4 a13 a12 a1l —fpeqq) e [pErd]

] ocooo
[N
[N v
A LM
n.
v

n
Y
-
Y
w
.

-
=

azd4 a23 a22 a2l

n
]
o

[
(V]
Iy

(¥
w
I

(]
5

a34 a33 a32 a3l

)
] =] =] ocooo
m m m b ek b b
= w N bW

\d
=
v
.
o
.
o
B

n
w
n

w
(8]
"

w
w
n

)
&5

ad4 a43 a42 adl

v

Fig. 6.7 Systolic algorithm of product of matrices

6.3.4 Product of Matrices by 2D Systolic Array

By extending the 1D systolic array discussed in the previous section to a 2D systolic
array (with a lattice of PEs), it is possible to perform product operations of two
matrices: C = AB. An N x N matrix multiplication requires an N x N systolic
array with N2 PEs. Figure 6.7 is an example of such an operation with N = 4. As in
the vector product of matrices done by 1D systolic array, row and column elements
are input from left and above top, shifting rows and columns. The function of a PE is
the same as that in the previous section. All the internal registers are to be initialized
to 0 at the beginning of the operation. When the last matrix elements of P E4y4, 44,
and by, are input, all the resulting elements of Matrix C are in all the PEs. The
number of required steps is 3N — 2.

6.3.5 Programmable Systolic Array for Stencil Computation
and Fluid Simulation

Although the examples introduced in the previous sections were those of simple PE
operations, programmable systolic arrays oriented to many stencil computations, and
applications for computational fluid dynamics (CFD) and others have been proposed
[13-15].

The structure of a systolic computational-memory array and its PE designed for
stencil computation is shown in Fig. 6.8. This array has a 2D scheme of vertically and

150 K. Sano and H. Nakahara

Communication FIFOs

Sequencer

(a) Structure of systolic computational- (b) Processing element
memory array

Seq : sequencer

Fig. 6.8 Systolic computational-memory array and processing element

horizontally connected PEs. As shown in Fig.6.8b, a PE comprises a computation
unit, a local memory, a switch to send data to all directions of (W, E, S, and N) and
a sequencer to control these elements using a microprogram. Because each PE has a
large local memory and because the whole array is a memory not only for operations
but also for data storage, this systolic array is considered as a computational memory.
The computation unit can execute floating-point multiplications and additions. The
computational sub-lattice data are stored in the local memory. A PE can perform
various computations with a microprogram by repeating data read operations from
the local memory or the neighboring PEs.

As shown in Fig. 6.8a, the systolic computational-memory array operation is made
from many control groups (CGs). PEs in the same CG are controlled by a common
sequence. They perform parallel processing of SIMD style. In this example, there
are nine CGs inside the 2D array, with four sides and four corners because, in fluid
dynamic computation and others, the computation in a regular pattern is done inside,
whereas computation of different types is done for the boundary condition.

Figure 6.9 depicts pseudo-codes for stencil computation and an example of a 2D
lattice with a 3 x 3 star-stencil computation of. As shown in Fig.6.9b in stencil
computation, an operation for a lattice point is done using data from neighboring
points and the data on which the lattice point is renewed. The neighboring domain,
where the data is referred, is designated as a stencil. The 3 x 3 star stencil shown in
the figure, a fundamental one, is widely used. In 2D operations, the data at all lattice
points are renewed after the same operations with the same stencil are performed
over the lattice.

Figure 6.9a shows pseudo-codes for the 2D stencil computation. It has a triple
loop structure consisting of loops for vertical and horizontal directions, and one
for iterating them in a time step n. Function F(), the loop body, represents any

6 Hardware Algorithms 151

0 x-1
s |0
for(n=0; n<N ; n++) { // for iterations 4
g
for(j=0; j<y: j++) // for grid traverse
for(i=0; i<x ; i -
or{i=0; i<x P ++) {) a5,
// Update grid value from n to n+l r:;‘. ry
vin+l,i,3) := F(v(n,i,3) in S(i,3)) S
T
} Vi
}
y-l
(a) Pseudo-code for 2D iterative stencil computation (b) 2D grid and

3x3 star stencil

Fig. 6.9 2D stencil computation [13-15]

operation using data stored in a stencil. The product-sum operation using a weighting
coefficient, shown below, is commonly used as F().

v(i, j):=c0+clv(i, j)+c2v@i — 1, j) +c3v@ + 1, j) +cdv(@, j — 1) +cSv(, j+ 1)

Here “:=" stands for the value update after the operation is written at the right-hand
side. The PE in Fig. 6.8b performs the operation shown above for the partial lattice
stored in the local memory, by using a microprogram in a sequencer. Sano et al. have
derived the stencil algorithm by a fractional-step method for fluid dynamical phe-
nomena. There, they repeated stencil calculations with different coefficients shown
above and proved the calculations execution with the systolic computational-memory
array. Further details can be found in [13-15].

6.3.6 Data-flow Machine

A data-flow machine [16, 17] is a computer architecture that directly contrasts the
traditional von Neumann architecture or control flow architecture. It does not have
a program counter (at least conceptually), and the executability and execution of
instructions is solely determined based on the availability of input arguments to the
instructions, so that the order of instruction execution is unpredictable. Figure 6.10
compares the data-flow machine with the von Neumann one. Since the data-flow
machine has no instructions, it can eliminate the bottleneck caused by the instruction
memory fetch of the modern computer execution time.

Although no commercially successful general-purpose computer hardware has
used a data-flow architecture, it has been successfully implemented in specialized
hardware such as in digital signal processing, network routing, graphic processing,
telemetry, and more recently in data warehousing.

A data-flow machine executes the data-flow graph for a given program as shown
in Fig. 6.11. “Fork” copies the given data, “Primitive Operation” outputs the result of

152 K. Sano and H. Nakahara

Fig. 6.10 A Comparison Von Neumann machine (Left) with a data flow machine (Referred by
[16])

Fork Primitive Operation Branch Merge
i 'l:' % %
T T

+
!
5 @fp é&
T T
+
,

Fig. 6.11 Examples of a data flow node

the executed operation, “Branch” executes the conditional jump corresponding to the
signal (True or False), and “Merge” selects the signal corresponding the conditional
signal. Figure 6.12 shows the data-flow graph which executes the operations shown
in Fig.6.10. In Fig.6.12, “(0” denotes the data to be executed, and it is called by the
“Token.” Here we show the value of token in the circle. First, the adder starts the
operation, since two tokens have their values. Then, it generates the execution result.
Next, the latter multiplier and subtractor starts the operation since it has received the
input token. In this manner, it is possible to easily know the inherent data parallelism
in the program to be processed.

Similar to the von Neumann machine, the data-flow machine can realize the con-
ditional jump and loop operations. Figure 6.13 shows an example of the conditional
jump. It can be realized by the Branch and the Merge nodes. When the token arrives
at the Branch node, it executes the branch operation, then, it sends the token to the
selected operational node. Finally, the Merge node selects the output correspond-
ing conditional signal. Figure 6.14 shows an example of the loop operation. While

6 Hardware Algorithms 153

Xy
00 l \

C b

Fig. 6.12 An example of a data flow node

Fig. 6.13 A branch x ¥
operation for a data flow
graph

if(cond == T){

z=xoply;
}else {

z=Xo0p2y; -
}

updating the initial value at the Merge node, it repeats the execution node through the
Branch when the condition is satisfied. There are two types of data-flow machines
that realize programs including loops. One is a static data-driven method, and the
other is a dynamic data driven one. The static one expands all the loops and repre-
sents them as a flatten data-flow, while the dynamic one shares the executing unit
with the processing of the subsequent loops using the data-flow of the loop body.
The static data-driven method is based on a concept of a pure-driven method with a
static data-flow graph. However, in many cases, since the size of the data-flow graph
becomes too large to realize it with a data-flow machine which has a limited hard-
ware resources. On the other hand, in the dynamic data-driven method, execution
nodes in the loop body are shared by computing units, such as adders, subtractors,
and multipliers. Thus, a control circuit must be provided. Otherwise, if multiple
tokens between iterations exist, it is not possible to guarantee the computation result.

154 K. Sano and H. Nakahara

Fig. 6.14 A loop operation
for a data flow graph

" init_x init_y
|
L.
+ || OP
o T
-
i | cond
X =init_x; i
g v L3
y =init_y;
while x < cond{ <
X=xX+1;
y=Xopy,;
L 3 L 3
} o
| F T F
Al L
X ¥y

Figure 6.13 and 6.14 explains such a scenario. If y is updated before updating x in
the loop, the computation result will differ from the expected one.

In the dynamic data-driven method, a tag is attached to the token in order to
distinct present/next tokens in the iteration. It is called a tagged token method, or a
colored (tokenized) one. By using tagged tokens, operations on tokens with the same
tag can be guaranteed.

6.3.7 Static Data-Driven Machine

In the static data-driven method, it is often used to represent the operation and the
operand of a node in a mixed manner. In the data-driven machine proposed by
Dennis [18], the node information of the data-flow graph has the necessary data
for the operation, the storage type of the calculation, and the destination for the
storage. By using this node information as a token packet, the data-driven processing
is realized. Note that, the token does not have tag information. It focuses on the static
data-flow which does not include the loop processing. Figure 6.15 shows a hardware
structure and each operand cell for the static data-driven architecture. In Fig. 6.15a,
the operand cell stores the above information, and it represents the data-flow graph
as an instruction of the data-driven machine in the whole instruction having valid
information.

Hereafter, we explain the processing steps. When the operands are complete, the
operation packet is sent through the arbitration network (ANET). This packet includes
all information of the instruction cell, the operation type, and the storage destination
for the result. The operation’s result is transformed as a data token through the

6 Hardware Algorithms 155

F
L ALU [*
o
@
°
M a0 L
kl ALU I
Control 1
- / Operation I Op.l di I d2 }—'

i

packet

o Operand 1 — t—=

Data
\{g'lfen _j —-I Operand 2 }—'
r“nst ce '}
Ikt d1, d2: Destination cell
@ .
DNET s ANET (b) Instruction cell
—
{Inst. cell;
-/

ANET: Arbitration network
DNET: Distribution network
CNET: Control network

(a) Architecture

Fig. 6.15 A static data flow machine (Referred by [17])

distribution network (DNET). Then, it is written to the operand part in the instruction
according to the storage destination (d1, d2, in Fig. 6.15b). Next, the instruction with
the operands sends the operation packet at any time. By following these steps, a
series of data driving driven processes is done.

6.3.8 Dynamic Data-Driven Machine

In the dynamic data-driven method, it separately represents the execution unit and
the operation of the node. This representation can separate the flow graphs and data.
Therefore, there is an advantage that loop processing can be considered by using a
tagged token.

As shown in Fig. 6.16a, Arvind proposed a data-driven machine [19], which con-
sists of N PEs with an N x N crossbar. Figure 6.16b shows the operand for the
machine; “op” denotes an operation, “nc” denotes the number of constant to be stored,
“nd” denotes the number to destinations, “constant 1”” and “constant 2 denote the
destination address, “‘s” denotes a statement number for the destination operand, “p”’
denotes the input port number for the destination operand, “nt” denotes the number
of tokens for the destination operand, and “af”” denotes an assignment function to be

156 K. Sano and H. Nakahara

[rE—

Wait
(Operand mem.)

NXN
Network Inst. & data
mems. Fetch

!

> PE - 1 | Structure |-—-L ALU |

(a) Architecture

eee | T [|&®

op | nc | nd | OF Instruction _ (c) PE
Constant 1 nc: number of constant variawics
Constant 2 nd: number of destination addresses
(s, p. nt, af) s: Statement number for destination operand
(s, p,nt,af") p: Input port number for destination operand
. p.nar,ar) | nt: Necessary number of operands for destination operand

ad: Assignment function for destination operand
(b) Instruction set

Fig. 6.16 A dynamic data flow machine (Referred by [17])

used for the determination of a PE assignment. The af has four parameters. Operands
only represent a data-flow, while the execution data are represented by data tokens.
That is, the program (data-flow) and the data are separated. The data token consists
of the statement number for the destination operand, the tag (color), the input port
number, and the destination operand data. By changing the tag, the data-flow graph
can execute the loop operation.

Figure 6.16c shows the structure of the PE and the execution steps are conducted
as follows. The input unit receives the data token from the interconnection network
or the output of its own PE. It is executed until receiving the operand data which are
necessary for the execution of the operation. That is, associative search is performed
on the operand memory for the statement number and tags of the data token. Two
operands are necessary considering the case of performing binomial operation. If one
operand has already been received, it is stored in the register. By associative search,
it is possible to check whether the necessary operands for the operation are received.
When the reception of the necessary operands is completed, the next instruction
fetch unit reads the operation information from the instruction memory using the
statement number of the storage destination. The newly arrived operand is read from
the waiting part. At the same time, another received operand is read from the operand
memory. As a result, the necessary information is completed. Then, the calculation
is performed in the ALU. Finally, the operation result as a data token is sent to the
destination storage following the instruction.

6 Hardware Algorithms 157

Note that, the “I structure,” which is similar to an array, provides a queuing
function for a simple data structure. In array access in data-driven method, the data
reading of certain array elements may occur before the data generation of ones. After
data writing, a 1-bit existence (presence) bit is used for each element of the memory
in order to guarantee reading. If its value is 1, it indicates that it has been written;
otherwise, it is unwritten. If the presence bit is zero at the reading, it is suspended
until the writing is completed. Thus, it is possible to guarantee synchronous data
access with hardware.

The above is an overview of two data-driven methods and architectures, i.e., static
and dynamic ones. Both of them are different when it comes to arithmetic opera-
tion control. This chapter outlined the earliest first-generation data-driven machines;
however, regarding the second-generation machines, refer to [20].

6.4 Petrinet

A petrinet (also known as a place/transition (PT) net) is a directed bipartite graph, in
which the nodes represent transitions and places. For example, events may occur, and
they are represented by bars, while conditions are represented by circles. The directed
arc denotes pre- and/or post-conditions for the transitions specified by arrows. The
petrinets were introduced in 1939 by Carl Adam Petri for the purpose of describing
chemical processes. A variation of the petrinet is a signal transition graph (STG),
which is used to describe parallel or asynchronous systems.

By converting the data-flow graph shown in Fig. 6.17 to a petrinet, we have a new
graph as shown in Fig. 6.18. The place corresponding to the input data has a token
which represents the data. A condition to activate the transition, which represents
the operation, is that there are at least more than one token on all the input places
connecting the transition. After the activation, it generates a token to the place corre-
sponding to the output. This means that the petrinet can easily represent both the data
flow and its operation for the data-driven method. Figure 6.19 shows basic operations
for the petrinet, e.g., parallel operation and synchronization. For more details about
the petrinet and its parallel description, please refer to [21].

6.5 Stream Processing

6.5.1 Definition and Model

A processing method by which successive operations are done for successively
inputted rows of data is referred to as stream processing [22—24]. The data element
might be a single scalar data or a vector data including several words. Although the
processing time is proportional to the number of elements (stream length), because

158 K. Sano and H. Nakahara

a b c d
| | | |
+ -

]
l
*
l
(a+b)*(c-d)

Fig. 6.17 An example of a data flow graph

b c d

VPP QPP ¢

) I
(%g? » »

Fig. 6.18 An example of a Petrinet

d a d

R

ole
[3

*
*

only one iteration of the processing is executed at a given time, it can process any
giant dataset in a sufficient time. The device for stream processing is not equipped
with memory for all stream data. Data are supplied usually from an external mem-
ory, a network, or sensors. The device is used to process data that are too large to be
stored in its own memory. A use case can be found in statistical information where
inquiries are coming to a server through the Internet. In addition, when using stream
data stored in external memory, an efficient use of data bandwidth by reading out
data regularly with continuous addresses might be expected.

The processing of one element of stream data is designated as a processing kernel.
Figure 6.20 depicts a model of stream processing by a single kernel. Here, the input
is a data stream, but the output might be a data stream or might not be dependent on
processing. Additionally, stream processing might be done by connecting processing

6 Hardware Algorithms

159

(d)

(a) Parallel
computation]
m »n
mO)]{O P
b
({b) Race : : : :
Effective Non- effective
Non- effective '@'
Persistent
(c) Confusion
Symmetric Asymmetric

Synchronize & G :I U " 1|p,
L} i
P i
] T i Tk
Rendezvous Semaphore
{e) Sharing
A el
P
. - u
Lock .
(Mutually exclusive Bus sharing
access)
(f) Read t1 reads the
state of p1
without
affecting p1
e e Mot
tokens % L

of tokens in p1
cannot exceed 3
tokens

Fig. 6.19 Basic operations for a Petrinet (Referred by [21])

Fig. 6.20 Stream processing
with a single kernel

Input data stream

i
[Processing kernel]

v
Output data stream

kernels according to their dependency, as shown in Fig.6.21. This is an expression
of stream processing by a data-flow graph where the processing kernel is a node in

the graph.

6.5.2 Hardware Implementation

Several methods exist to realize the stream-processing concept. As a means to accom-
plish stream processing of high throughput by implementing software, it is possible to

160 K. Sano and H. Nakahara

Fig. 6.21 Stream processing Input data stream
with multiple kernels \L

[Processing kernel 1]

y

(Processing kernel 2]

(Processing kernel 3]

(Processing kernel 4)

v

Output data stream

incorporate vector instruction or SIMD instruction into a general-purpose micropro-
cessor. These instructions can rapidly process vector data of definite length. How-
ever, a general-purpose microprocessor presents many limitations on parallelism
and inefficient input and output data streaming caused by deep memory hierar-
chy. Consequently, high-performance stream processing generally requires hardware
implementation.

Designing a high-throughput stream-processing hardware usually depends on a
structure that performs many operations included in a unit processes in parallel. This
structure requires a hardware design based on a parallel processing model such as
pipelining, systolic algorithm, and data-driven approaches. As shown in Fig. 6.21, to
realize stream processing for multiple kernels, given sufficient hardware resources,
kernels designed as pipeline modules can be connected to each other and thereby
statically implement a giant pipeline. If sufficient hardware resources are available to
implement all necessary kernels simultaneously, high-speed stream computing can
be achieved where we can input and output stream elements at each cycle.

What should be managed if sufficient hardware resources are not available? In
such a case, not all the necessary processing kernels can be implemented. Hardware
designers might opt for a design where different kernels share the same hardware
resources and the processing of one stream data element is performed over a longer
time. One discussing an example of such a case, shown in Fig. 6.21, the question that
could be asked is: Where can we implement only half of the hardware resources for
processing kernels? In this case, we can implement a module for kernel 1 and kernel 2
and another module for kernel 3 and kernel 4, and then we switch the mode, as shown
in Fig.6.22a. This resembles folding the original data-flow graph to get a smaller
one and making the hardware mapping on it. Therefore, this method is referred
to as folding. When using folding, the hardware works in time-sharing mode, as
shown in Fig. 6.22b. First, the processing of kernel 1 for the input data occurs. Then,
the mode is switched to execute kernel 2. Similar processing is done for kernels 3

6 Hardware Algorithms 161

odd cycle

I Processing kernel 1 |

Processing

even cycle
kernels 1 & 2

I Processing kernel 2 |

odd cycle

Processing | Processing kernel 3 |

kernels3 & 4 \l even cycle
| Processing kernel 4 |

v

(a) folded implementation (b) time-domain multiplexing for odd
and even cycles

Fig. 6.22 Resource-saved implementation by folding kernels

and 4. Although the cycle time is doubled and the throughput decreases by half, with
a small amount of hardware resources, stream processing can be accomplished.

In the example given above, all kernels work all the time and the operation rate
is 100%. In this case, the operation rate of the folded processing kernel node is
greater than 100%. The throughput decreases as a result. However, as in the case of
conditional branching processing, the rate of operation is naturally less than 100%.
Some kernels might have an operation rate less than 100%, even if aggregated with
the operations of other kernels. Under these circumstances, the hardware resource
consumption might be reduced without lowering the rate of operation in expense of
a complicated control. Figure 6.23 demonstrates a simple example of folding with a
rate of operation which is less than 100 Fig. 6.23a including conditional branching,
two operations x + y * z and x % y + z are performed simultaneously. The signal
selector outputs the results of the operation in two kernels with proportions of 90%
and 10%, respectively. Accordingly, the real operation rates of both kernels are less
than 100%. For this case, a module that can process both formulae, while consid-
ering common operations, can be implemented. The computation unit is shared in
this design. Figure 6.23b illustrates an example. A multiplier and an adder are imple-
mented for each formula, and one selector is inserted to switch the operations of the
formulae. Only one operation is necessary for one formula. Therefore, the consump-
tion of hardware resources can be reduced without increasing the number of cycles
for one processing iteration of one element of stream data.

In addition, a stream-processing iteration, where some dependence relations
exist between successive elementary processing iterations, might be implemented
by inserting a delay buffer memory. This buffer sends intermediate data of stream

162 K. Sano and H. Nakahara

J

(Processing kernel 1) (Processing kernel 1)

|x+y"‘z |x*y+z
90% 10%

multiplexer

(a) stream processing with conditional (b) time-domain multiplexing for odd
branch and even cycles

Fig. 6.23 Folded implementation of underutilized stream processing

Fig. 6.24 Folded '
implementation of li+1

underutilized stream = ™ =
processing rocessing kerne!

ei
ei1
L delay buffer
ei2 memories
ei
ej-3—

(Processing kernel 1)
0i-1

processing to the next elementary processing iteration in a delayed fashion. In the
example presented in Fig. 6.24, in addition to the current output result from process-
ing kernel 1, delay buffer memories to send past data of to processing kernel 2 are
inserted. Stream processing of stencil calculation applying delay buffer memory is
introduced in the next section.

6 Hardware Algorithms 163

Fig. 6.25 Stream-processing in
hardware for averaging a]

series of scalars — ?
acci=acc+in

num_total:=num_total+1
avg = acc/num_total

|

avg

processing
kernel

Fig. 6.26 Stream-processing X X
hardware for 3 x 3 '
star-stencil computation

1g+1 i+l -1y -1
! : 3 : | Stencil buffer

(Fig. 6.9) | [il | | g
Vv WV

Computing

FO) module

6.5.3 Examples of Stream Processing

An example of stream processing to find the average of a scalar array is depicted
in Fig.6.25. The processing kernel has two registers: acc and num;otal. They are
initialized to zero at the beginning of the operation. Whenever scalar data are inputted,
it is added to acc and num;otal is incremented by 1. At the end of one cycle, acc is
divided by num;otal to get avg; it is outputted as the average of the input data up to
that moment.

Figure 6.26 displays an example of hardware for stream processing of 2D iter-
ative stencil computation. This example is for the 2D iterative stencil computation
shown in Fig.6.9. It generates data stream of lattice data v; ; by traversing the 2D
computational lattice, as shown in Fig.6.9b in the x direction. In the processing
kernel, the value at lattice point (i, j) is evaluated by function F() using 5 data of
Vi j+1, Vit1,j, Vi—1,j, Vi, j—1 ina3 x 3 star stencil. In this case, a delay buffer memory
is used because the previous and subsequent elements are necessary in addition to
the current input element of input data [25]. This buffer memory is referred to as the
stencil buffer memory.

Let X be the width of a 2D computational lattice. The stencil buffer is a 2X + 1
long shift register with a five readout ports for v; j11, Vi41,j, Vi—1,j, Vi, j—1 as shown
in Fig. 6.26. After X cycles, after inputting the data at the current lattice point (i, j),
the data appear exactly at the center of the stencil buffer. The five data in the star-
stencil become readable simultaneously. The operation module makes use of this
data and outputs calculated values at lattice point (Z, j). A stencil computation for
2D lattice requires buffers that are proportional to the lattice width. Although the 3D
lattice requires buffers that are proportional to the cross-sectional area of the lattice, it
needs more buffer memory than the 2D one does. Therefore, on-chip memory cannot

164 K. Sano and H. Nakahara

(Calc. of tentative vel J
Calc. of tentative vel

uw, v, wh p

.
(Calc. of constants J

\ Stencil buffer
uov,wh, P D Iteration 1 N VIV \

[Iteratively solving] Computing module

Poisson equation
for pressure \l’

i , Iteration n
v s | teratonn |

(Calc. of true velocity)

(uncw' PREW qpaew pnc\\-)

(a) Computational algorithm based on (b) Multi-stage stream-processing
the fractional-step method hardware

Fig. 6.27 Computational algorithm of incompressible fluid dynamics and its stream-processing
hardware

provide sufficient capacity for a large 3D lattice. In this case, the calculation lattice
can be divided into smaller partial lattices which are then computed one by one.

A hardware example of multiple computing stages for stream processing of incom-
pressible fluid dynamics is shown in Fig.6.27. As depicted in Fig.6.27a, the algo-
rithm, based on the fractional-step method used in CFD, comprises four stages of
operations [13, 26]. Itis known that each stage is of stencil computation, which refers
to neighbors of each lattice point in the orthogonal lattice. For this reason, each step
is implemented by stream-processing hardware which is composed of the stencil
buffer memory and the computation module, as shown in Fig. 6.26. It is possible to
construct stream-processing hardware to perform fluid computation for a single time
step by the in-line connection of hardware for each computing stage [26]. Part of the
iterative solution of a Poisson equation is implemented using a fixed construction
with an n element array of hardware for one-iteration stencil calculation. This result
is based on the experience that, although sufficient implementation has been done
with conventional iteration methods to reduce the residual to a sufficiently small
magnitude, the iterations were normally less than a definite number. The description
above is a proposed solution to the case in which there is no definite number of
iterations. However, the method and conditions should be thoroughly examined to
address any practical problem.

6 Hardware Algorithms 165

Fig. 6.28 Von Neumann
neighborhood “{? .
D r D
(x-1,u) (x.y) (x+1,y)
D
(x,y+1)

6.6 Cellular Automaton

A cellular automaton is a discrete model studied in computability theory, mathemat-
ics, physics, complexity science, theoretical biology, and microstructure modeling.
The concept was originally discovered in the 1940s by von Neumann [27]. It consists
of a regular grid of cells, each in one of a finite number of states, such as on and
of f [28]. The grid can be in any finite number of dimensions. For each cell, a set
of cells (referred to as neighborhood) is relatively defined to the specified cell. An
initial state (time t = 0) is elected by assigning a state for each cell. A new generation
is created according to some fixed rules that determine the new state of each cell in
terms of the current state of the cell and the states of the cells in its neighborhood.
Typically, the rule for updating the state of cells is the same for each cell and does not
change over time and is applied to the whole grid simultaneously, though exceptions
are known.

Figure 6.28 shows an example of the neighborhood. Let K be the number of
states for each cell. Then, five cells including the center have K5 states. Thus, there
are K K rules of cellular automaton based on the neighborhood. The well-known
cellular automaton is a life game which can be specified with the following rules for
K=2.

e Born: If there are more than or equal to three living cells around the dead cell, then
it lives in the next step.

e Living: If there are two or three living cells around a living cell, then it survives
in the next step.

e Dead: Otherwise, it dies in the next step.

A finite cell is widely used to simulate the cellular automaton. Generally, although
it is implemented assuming a finite rectangle, an implementation of the boundary
becomes a problem. There is a method of treating all boundaries as a constant; how-
ever, the disadvantage is that the number of rules increases. Another way is to make
it as a torus [29], which simulates an infinite rectangle by connecting upper, lower,
left, and right respectively, and filling an infinite plane with the same rectangle in the
same plane. Figure 6.29 shows a cellular automaton circuit using a torus connection
by placing PEs in a 3 x 3 grid pattern. In the case of the game of life, the PE has the
state of each cell, and it executes the above rules for each step. Then, it updates the
state of the cell in the next step.

166 K. Sano and H. Nakahara

A 0 A
< e | || Pe ||| PE
| l |
S pe |fe PE Pe [|°
! ! !
S ee [e } — ¥e]

\Vj V AV}

Since all the inputs and outputs in a cellular automaton circuit are parallel, it is
highly compatible with FPGA implementation. Also, it has the possibility to surpass
the existing von Neumann architecture. In practice, as the number of rules to be
computed increases, the throughput can be improved using pipeline circuits. In recent
years, an attempt has been applied to build more physical cellular automata from the
viewpoint of materials, rather than circuits or devices [30]. It is expected to replace
the existing von Neumann-type architecture by applying these realizations to FPGAs.

6.7 Hardware Sorting

In computer science, a sorting is an algorithm that puts n elements of a list in a
certain order. The most-used orders are numerical order and lexicographical order.
FPGA-based hardware accelerations for sorting are widely used for database, image
processing, and data compression. Here, we introduce a sorting network and a merge
sort tree that are suitable for hardware implementation.

The simplest sorting algorithm for hardware implementation is the sorting network
[31], based on the bubble sort. This algorithm sorts the neighboring elements in
parallel. Figure 6.30 shows the sorting network of four elements. It consists of the
exchange units (EUs) which sort the neighboring elements. In this circuit, the number
of wires is n. Each element passes at most n — 1 EUs. In this case, since it can be
performed in parallel, we can realize a fully pipelined EU circuit to increase the
throughput. Note that, since it requires n-parallel wires, the amount of hardware
tends to be large. The known sorting network on FPGA is the Batcherfs odd—even
merge sort [32].

The other type of hardware sorting algorithms is the merge sort tree [33], which
is based on the binary tree structure where each vertex is realized by the EU. This
circuit has many FIFOs in the input and output, and performs the sorting in parallel.

6 Hardware Algorithms 167

1 1
4 1
E
U
2 2 2
2 2
E
u
3
1 3
3 4
Fig. 6.30 A sorting network for four elements
4 — 4 ~
E E E

U T, {H TS sl
» — feel =] g 4
e L2 e[el

Fig. 6.31 An example of a marge sort tree for four elements

Figure 6.30 shows an example of the merge sort tree for four elements. In the merge
sort tree, the input is a sequence to be sorted, and in each level of the tree, the
sorted sequence is sent to the next level through the FIFO. Therefore, it is possible
to increase the throughput by inserting a pipeline register for each level. To realize a
high speed and small area on the FPGA, a combination of sorting network and merge
sort tree shown in Fig. 6.31 has been proposed [34].

168 K. Sano and H. Nakahara

6.8 Pattern Matching

One of the killer applications for FPGA is the pattern matching which finds a given
pattern in the data. Pattern matching algorithms are roughly categorized to an exact
matching, a regular expression matching, and an approximate matching. In this
section, we introduce the different algorithms for these matchings.

6.8.1 Exact Matching

An exact matching finds a fixed pattern; however, each element of the pattern takes
three values, i.e., one, zero, and don’t-care which can take both zero and one. Typi-
cally, the exact matching can be realized by a content addressable memory (CAM)
[35]. Here, we introduce the index generation unit (IGU) N6.8-3 which is a CAM
emulator, then we implement it on FPGA.

Let us suppose that the index generation function f is as shown in Figs. 6.32 and
6.34 shows the decomposition chart for f. In Fig.6.34, the label in the right side
denotes X = (x2, x3, x4, x5), the label in the left side denotes X, = (x1, x6), and the
entry denotes the function value. Note that, each column has at most one nonzero
element. Thus, f can be realized by a main memory whose input is only X;. The
main memory maps a 2" sets to k + 1 sets. This is an ideal case; however, in most
cases, we must check X, since f may cause mismatch. To do this, first, we store the
correct X, to an auxiliary (AUX) memory. Then, we use a comparator to generate a
correct f when f is equal to X»,; otherwise, it generates zero. Figure 6.33 shows the
IGU. First, we read the ¢ from the main memory corresponding to p bit X;. Then,
X0, is read from the AUX memory corresponding to q. Next, g is generated if X0,
is equal to X»; otherwise, it generates zero.

Figure 6.35 shows an example of the IGU realizing the index generation function
shown in Fig.6.32. When (x1, x2, x3, x4, x5, x6) = (1, 1, 1, 0, 1, 1), the index “g6”
corresponding to X = (x2, x3, x4, x5) = (1, 1, 0, 1) is read. Then, X0, = (x1, x6) =
(1, 1) corresponding to X0, = (x1,x6) = (1, 1) is read. Next, the correct signal is sent

Fig. 6.32 An example of an X1 x2
index generation function 0 0 0 0

5
1

0 1 0 0 1 0
1
|

0 0 | 0
0 0 | |
0 0 0 0 0 1

~1 > h B o=

6 Hardware Algorithms 169

|—|ugl(k +l)—|

q .
% A Main =
. memory AUX
n-p memory
X, # ;
X] n-p
| Comparator
Fig. 6.33 An index generation unit (IGU)
000000001 111111 1|xs
O0001 11T 1TOO0O0O0OT1 11 1|xg Xy
001 1TO0011TOO0O1L 1001 1|x3
O1T01T 01010101010 1|x
00 1000CO0DO0DO0D0O0T 2300040
0N 1000000000 0C0D0ODO0O0O0O0
0 (5000000000000 700
I 000000000006 0000
Afs X
Xz

Fig. 6.34 An example of a decomposition chart for an index generation function

Main Memory

X 10000000011 1|1
I 4 lxloo001111000q0
1011 —/—|x,[0011001100 1f1
101d1

01246

x0101010
(15000000

.
BO = - -
(=] (-

FEEEE

-
-
e
/u
[}

3+ |00 P
200 2 —
3/0 0 -
AUX 410 0
Memor 2,10 —
YMel1 1 Comparator yes
X, 711 0] N
11 i
2

Fig. 6.35 Operation for an IGU

to the AND gate, then “g6” is generated. Since the IGU realizes a mapping which
generates k + 1 sets from given 2n sets, its memory size is drastically reduced from
0 (2") to O(27). The theoretical analysis of the IGU is introduced in [36], and the
applications for the IGU are presented in [37, 38].

170 K. Sano and H. Nakahara

6.8.2 Regular Expression Matching

A regular expression consists of a character and a metacharacter which represents
a set of a strings. Various network applications use regular expression matchings
to detect malicious data in incoming packets. Regular expression matchings spend
a considerable fraction of the total computation time for these applications. The
throughput using the Perl compatible regular expression (PCRE) library on a general-
purpose MPU is up to hundreds of megabits per second (Mbps), which is too slow
for most applications. Thus, a dedicated circuit for regular expression matchings is
required. For network applications, since the high-mix low-volume production and
the frequent update for new protocols are required, FPGAs are widely used. With
the advent of FPGAs embedding dedicated high-speed transceivers for high-speed
networks, we expect extensive use of FPGAs in the future.

Regular expressions are detected by finite automata (FA). In a deterministic finite
automaton (DFA), for each state and each input, there is a unique transition. While in
a non-deterministic finite automaton (NFA), for each state and each input, multiple
transitions may exist. In an NFA, there exist e-transitions to other states without
consuming input characters.

Most of the proposed regular expression matching circuits are based on finite
automata. An Aho—Corasick DFA (AC-DFA) [39] is a known algorithm. A combina-
tion of the bit-partitioned AC-DFA and the MPU is proposed [40]. Also, Baeza-Yates
proposed the NFA algorithm based on a shift and bitwise AND operations [41], and
its hardware realization on an FPGA is proposed [42]. A resource-efficient FPGA
realization by prefix and postfix sharing of regular expressions [43], and mapping
repeatedly appearance parts of regular expressions into a Xilinx FPGA primitive
(SRL16) [44] have been also published.

Hereafter, we introduce the NFA-based regular expression matching algorithm
which is suitable for FPGA realization. Figure 6.36 shows a conversion from a regular
expression to NFA. In Fig. 6.36, € denotes the e-transition, and the gray circle denotes
the accept state. Figure 6.37 shows the NFA representing the regular expression
“abc(ab) * a”, and shows the state transition for the input string “abca”. For each
element in the vector corresponding to the state in the NFA, and ‘1’ denotes the active
state. Figure 6.38 shows the circuit for the NFA shown in Fig. 6.37. To emulate this
NFA, a memory is used to detect a corresponding character, and the detection signal
is sent to the matching element (ME). The ME emulates the state transition, and
generates the match signal. In the ME, the FFs store the vector shown in Fig.6.37,
where i denotes the transition signal from the previous state; o denotes the transition
signal to next state; ¢ denotes the character detection signal from the memory; ei and
eo denote the in/out signals from the e-transition.

Figure 6.39 compares the NFA [42] with the DFA [40] with respect to the com-
plexity of the parallel execution hardware. Even if we apply the bit-partition which
reduces the amount of hardware, the complexity still holds O (X*"™). When the num-
ber of rules for the regular expression increases, the amount of memory tends to be
exponentially large for the DFA based realization, while the NFA-based one does

6 Hardware Algorithms

string: abc

a

initial

input ‘a’
£ -transition
input *b’
€ -transition
input ‘¢’
£ -transition
input ‘a’
€ -transition

b
O—0O

(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,
(1,

£
0o, 0, 0, 0, 0, 0)
1, 0, 0, O, 0, 0)
1. 0. 0. 0., 0. 0)
0. 1. 0. 0. 0. 0)
0. 1. 0, 0. 0. 0)
o, 0, 1, 0, 0, 0)
0o, 0, 1, 0, 1, 0)
I, 0, O, 1, 0, 1)
I, 0. 1, 1, 1, _1)Accept- abca’

™

a+

Fig. 6.37 An NFA accepting ‘abc(ab) * a’

Memory :
in out i ¢ | 0
= g | a | 100101 | — [)
g——\—' 010010 co ci ME
- ¢ | 001000) H
L .-
| | :
\4
¢c [lelfelf]l c]|)cc|lLS
1 =i ofqi o+ of+ or4l o/ of* =
coei coei coel coci | [coci coei =
=

Fig. 6.38 Circuit for an NFA

171

172

Fig. 6.39 Comparison of
complexities

K. Sano and H. Nakahara

Bit partition DFA

Prasanna-NFA

Area
complexity

#LUTs

(1)

C(ms)

Mem size

o™
L

O(ms)

Time complexity

(1)

o(1)

not increase the amount of memory. Thus, the NFA-based one is suitable for FPGA
implementations.

6.8.3 Approximate Matching

An approximate matching consists of finding an edited pattern in a text. It finds a
corresponding pattern in the text while deleting, replacing, and inserting a character.
Many approximate matchings are based on dynamic programming. Approximate
matching is used in bioinformatics to evaluate similarity between the DNA sequences.

Let “ACG” be a text, and “TGG” be a pattern. Then, we compute the edit distance:

. Delete “A” from the text “ACG,” then we have “CG.”

. Delete “C” from “CG,” then we have “G.”

. Insert “G” to “G,” then we have “GG.”

. Insert “T” to “GG,” then we have the text “TGG,” which corresponds to the given
pattern.

5. Terminate.

B W N =

In this example, we set the editing score for both the insertion and deletion to
1. Since the replacement includes insertion and deletion, its score is 2. The above
example showed that the editing score between “ACG” and “TGG” is 4.

Figure 6.40 shows a system for an approximate matching. The host PC sends a
text and a pattern. The matching system reads the text from the buffer memory, and

Fig. 6.40 System for an Address (Text index)

approximate matching]
Edit
Text | EqitDist. | Distance
: Controller
Calculation
Buffer
mem Addlress Min. Edit
(Text index) Distance
Edit distance
Pattern Text index FIFO
Text I s
. Ctrl sig.

Host PC

6 Hardware Algorithms 173

Fig. 6.41 An example of an Pattem ;
approximate matching graph) T G G J
Qoo = & p 0
A ¢ X 0 1
& C X v 2
v

G © N O ‘o) nm 3

i 0 1 2 3

then the editing calculating circuit computes the editing score for a part of the text
and the pattern. The controller stores the address whose position of the text and its
minimum editing score to the FIFO. The system shifts the text for calculating the
score. When all the text is matched, the host PC reads the position of the matched pat-
tern and its minimum score from the FIFO. Then, the edited pattern is computed. For
approximate matching, since the calculation time for the editing score is dominant,
FPGA accelerators are desired.

The editing score between two strings can be calculated using dynamic program-
ming. The Needleman—Wunsch (NW) algorithm [45] computes the minimum value
of the editing score of the entire text and a pattern, while the Smith—Waterman (SW)
algorithm [46] computes the editing score of a part of text and a pattern. Here, we
introduce the basic algorithm for calculating the minimum value of the editing score
between two strings using dynamic programming.

Let P = (pl, ..., pn) be a pattern, and T = (t1, ..., tm) is a text. Suppose that
the matching graph for an approximate string, which has (n + 1) x (m + 1) vertices
labeled by each column and row. For a coordinate (i, j), a vertex v;, g; is placed. We
assume that the upper-left vertex is set to (0,0), and the coordinates (i, j) increase
toward the lower-right vertex (n, m). For0 <=i <=n —1and0 <= j <=m — 1,
there are edges connecting v; ; to v; 41, ; and others connect v; ; to v; j41. Also, there
are diagonal edges connecting v; ; t0 V41, j+1. Figure 6.41 shows an example of the
approximate matching graph for the text ACG and the pattern TGG.

Let s4.; be an editing score for deletion, sins the score for insertion, and sy,
the score for replacement. Here, we set sz = 1, s;,5 = 1, and sy, = 2. For each
vertex v; ;, we must make sure to edit score of a subpattern P' = (p1, p2, ..., pi)
and subtext 7! = (11, o, ..., ¢ 7). We define that the vertex score denotes the editing
score for each vertex. The minimum vertex score for v; ; is obtained by the following
expression:

174 K. Sano and H. Nakahara

Vi—1,j-1

— mi 0 if pi=t
Vij = min y Vi—1,;j + Sins + { Ssub otherwise (61)

Vi j—1 1 Sdel

By applying the above expression recursively from the vertex vg o to v, ,,, Wwe can
obtain the minimum editing score. The following algorithm shows how to obtain the
minimum editing score:

Algorithm

Input: Text T with length m, and pattern P with length n.
Output: Minimum editing score at vertex vy ,.

Liviog«<i,i=0,1,...,n),v; < j1(j=0,1,...,m)
2:for j < 1until j <m + n — 1 begin

3: fori < 1untili < n begin

4 if0 < j—i+1<m,compute v; j_;;; with Eq.6.1.
5 i<—i+1

6: end

7 j<«—j+1

8: end

9: Let v, ,, be edit distance and stop.

Here, we assume that n < m. For example, for an alignment in bioinformatics,
n =10 and m = 10°. An algorithm, which calculates the minimum editing score
by dynamic algorithm, is called the Naive method. It uses a processing element (PE)
[47] to calculate each column of the approximate matching in parallel. Figure 6.42
shows the architecture of the PE for the Naive method. In this figure, s denotes the
number of bits for each character, n denotes the number of characters in the pattern.
To directly perform recurrent expression, the naive method receives a text (tin) and a
pattern (p in). Then, it selects the replacement score or not through the corresponding
detection circuit. At that time, for each vertex, it calculates the editing score. Then,
it selects the minimum score selector to generate the minimum one.

Each PE calculates the score corresponding vertex, then outputs it in parallel.
Note that, t denotes the time stamp. We consider the data dependency to compute
the vertex v; ; by the PEi. To compute v; ;, three pieces of data for v; j_1, v;i_1,;,
and v;_; j_; are necessary. At time (t — 1), since v; j_; is the output value of the
PE,;, it is obtained by the feedback loop. Also, v; j_; is obtained by the output of
PE;_. Attime (t —2), v;_y,j— is obtained by P E;_; and is retained by a register.
The cascaded PEs shown in Fig. 6.42 computes the approximate matching graph in
parallel. In other words, it performs the naive method shown in steps 3-6 of the
above algorithm. Thus, its computation complexity becomes O (m). More details of
the circuit on FPGA have been demonstrated in [48].

6 Hardware Algorithms 175

p_en
in S rt‘mm‘i
F e _ Reg } bot
t in 3 _,_?é:natﬂ.q L out
LReg |
.
2 _JJMUX 4’] [lug: ln_]
- I +
v_in ¢ ~ e Min =M
— [L“S;:‘ﬂ " I-[“!:: 2”1 — Serflect.or
1 _L'i‘/—!—‘_. Min.
rlog_. 31'1-] 4 Selector
' §

_f‘i Iqlog . 3!:]
<) [log 2n] :
1 —LT/_’!’ﬂ& 2]

Fig. 6.42 A processing element (PE)

References

1.

2.

3.

11.

12.

13.

14.

D.A. Patterson, J.L. Hennessy, Computer Organization and Design, Fourth Edition: The Hard-
ware/Software Interface (Morgan Kaufmann Publishers Inc., 2008)

H.S. Stone, High-Performance Computer Architecture (Addison-Wesley Publishing Company,
1990)

M.J. Flynn, Some computer organizations and their effectiveness. IEEE Trans. Comput. 21(9),
948-960 (1972)

. A. Peleg, U. Weiser, MMX technology extension to the intel architecture. IEEE Micro 16(4),

42-50 (1996)

. M. Hassaballah, S. Omran, Y.B. Mahdy, A review of SIMD multimedia extensions and their

usage in scientific and engineering applications. Comput. J. 51(6) 630-649 (2008)

. A.Downton, D. Crookes, Parallel architectures for image processing. Electron. Commun. Eng.

J.10(3), 139-151 (1998)

. A.P. Reeves, Parallel computer architectures for image processing. Comput. Vis. Gr. Image

Process. 25(1), 68-88 (1984)

. H.T. Kung, Why systolic architecture? IEEE Comput. 15(1), 3746 (1982)
. J. MaCanny, Systolic Array Processors (Prentice Hall, 1989)
. K.T. Johnson, A.R. Hurson, B. Shirazi, General-purpose systolic arrays. IEEE Comput. 26(11),

20-31 (1993)

S.-Y. Kung, K.S. Arun, R.J. Gal-Ezer, D.V. Bhaskar Rao, Wavefront array processor: language,
architecture, and applications. IEEE Trans. Comput. C-31(11), 1054-1066 (1982)

K. Sano, Y. Kono, FPGA-based connect6 solver with hardware-accelerated move refinement.
Comput. Archit. News 40(5), 4-9 (2012)

K. Sano, T. lizuka, S. Yamamoto, Systolic architecture for computational fluid dynamics
on FPGAs, in Proceeding of IEEE Symposium on Field-Programmable Custom Computing
Machines (2007), pp. 107-116

K. Sano, W. Luzhou, Y. Hatsuda, T. lizuka, S. Yamamoto, FPGA-array with bandwidth-
reduction mechanism for scalable and power-efficient numerical simulations based on finite

176 K. Sano and H. Nakahara

difference methods. ACM Trans. Reconfig. Technol. Syst. 3(4), Article No. 21, (2010), https://
doi.org/10.1145/1862648.1862651

15. K. Sano, FPGA-based systolic computational-memory array for scalable stencil computations,
in High-Performance Computing Using FPGAs (Springer, 2013), pp. 279-304

16. A.H. Veen, Dataflow machine architecture. ACM Comput. Surv. 18(4), 365-396 (1986)

17. K. Hwang, F.A. Briggs, Computer Architecture and Parallel Processing (McGraw-Hill, Inc.,
1984)

18. J.B. Dennis, Dataflow supercomputer. IEEE Comput. 13(4), 48-56 (1980)

19. A.V. Kathail, A multiple processor dataflow machine that supports generalized procedures, in
Proceeding of ISCA81, pp. 291-296, May 1981

20. G.L. Gaudiot, Advanced Dataflow Computing (Prentice Hall, 1991)

21. J.L. Perterson, Petrinet Theory and the Modeling of Systems (Prentice Hall, 1981)

22. S. Hauck, A. DeHon, Reconfigurable Computing (Morgan Kaufmann Publishers Inc., 2008)

23. R. Stephens, A survey of stream processing. Acta Inform. 34(7), 491-541 (1997)

24. A.Das, W.J. Dally, P. Mattson, Compiling for stream processing, in Proceeding International
Conference on Parallel Architectures and Compilation Techniques (2006), pp. 33—42

25. K. Sano, Y. Hatsuda, S. Yamamoto, Multi-FPGA accelerator for scalable stencil computation
with constant memory-bandwidth. IEEE Trans. Parallel Distrib. Syst. 25(3), 695-705 (2014)

26. K. Sano, R. Chiba, T. Ueno, H. Suzuki, R. Ito, S. Yamamoto, FPGA-based custom computing
architecture for large-scale fluid simulation with building cube method. Comput. Archit. News
42(4), 45-50 (2014)

27. J. von Neumann, The general and logical theory of automata, in Cerebral Mechanisms in
Behavior? The Hixon Symposium ed. by L.A. Jeffress (Wiley, New York, 1951), pp. 1-31

28. S. Wolfram, Statistical mechanics of cellular automata. Rev. Mod. Phys. 55(3), 601-644 (1983)

29. J. von Neumann, A.W. Burks, Theory of Self Reproducing Automata (University of Illinois
Press, 1966)

30. A. Bandyopadhyay et al., Massively parallel computing on an organic molecular layer. Nat.
Phys. 6, 369-375 (2010)

31. D.E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching (Addison
Wesley Longman Publishting Co., Inc., Redwood City, CA, USA, 1998)

32. K.E. Batcher et al., Sorting Networks and Their Applications (Spring Joint Computer Confer-
ence, AFIPS, 1968), pp. 307-314

33. D. Koch et al., FPGA sort, in Proceedings of FPGA (2011), pp. 45-54

34. J. Casper, K. Olukotun, Hardware acceleration of database operations, in Proceedings of FPGA
(2014), pp. 151-160

35. T. Kohonen, Content-Addressable Memories, vol. 1, Springer Series in Information Sciences
(Springer, Berlin Heidelberg, 1987)

36. H. Nakahara, T. Sasao, M. Matsuura, A regular expression matching circuit: decomposed
non-deterministic realization with prefix sharing and multi-character transition. Microprocess.
Microsyst. 36(8), 644—-664 (2012)

37. H. Nakahara, T. Sasao, M. Matsuura, H. Iwamoto, Y. Terao, A memory-based IPv6 lookup
architecture using parallel index generation units. IEICE Trans. Inf. Syst. E98-D(2), 262-271
(2015)

38. H.Nakahara, T. Sasao, M. Matsuura, A virus scanning engine using an MPU and an IGU based
on row-shift decomposition. IEICE Trans. Inf. Syst. E96-D(8), 1667-1675 (2013)

39. A.V. Aho, M.J. Corasick, Efficient string matching: an aid to bibliographic search. Commun.
ACM 18(6), 333-340 (1975)

40. L. Tan, T. Sherwood, A high throughput string matching architecture for intrusion detection and
prevention, in Proceedings of 32nd Int’l Symposium on Computer Architecture (ISCA 2005)
(2005), pp. 112-122

41. R. Baeza-Yates, G.H. Gonnet, A new approach to text searching. Commun. ACM 35(10),
74-82 (1992)

42. R. Sidhu, V.K. Prasanna, Fast regular expression matching using FPGA, in Proceedings of the
9th Annual IEEE Symposium on Field-programmable Custom Computing Machines (FCCM
2001) (2001), pp. 227-238

https://doi.org/10.1145/1862648.1862651
https://doi.org/10.1145/1862648.1862651

6 Hardware Algorithms 177

43.

44,

45.

46.

47.

48.

C. Lin, C. Huang, C. Jiang, S. Chang, Optimization of regular expression pattern matching
circuits on FPGA, in Proceeding of the Conference on Design, Automation and Test in Europe
(DATE 2006) (2006), pp. 12-17

J. Bispo, L. Sourdis, J.M.P. Cardoso, S. Vassiliadis, Regular expression matching for reconfig-
urable packet inspection, in Proceeding IEEE International Conference on Field Programmable
Technology (FPT 2006) (2006), pp. 119-126

T.F. Smith, M.S. Waterman, Identification of common molecular subsequences. J. Mol. Biol.
147(1), 195-197 (1981)

S.B. Needleman, C.D. Wunsch, A general method applicable to the search for similarities in
the Amino-Acid sequence of two Proteins. J. Mol. Biol. 48, 443-453 (1970)

L.J. Guibas, H.T. Kung, C.D. Thompson, Direct VLSI implementation of combinatorial algo-
rithms, in Proceedings of the Conference VLSI: Architecture, Design, Fabrication (1979), pp.
509-525

Y. Yamaguchi, T. Maruyama, A. Konagaya, High speed homology search with FPGAs, in
Proceedings of Pacific Symposium on Biocomputing (2002), pp. 271-282

Chapter 7
Programmable Logic Devices (PLDs) St
in Practical Applications

Tsutomu Maruyama, Yoshiki Yamaguchi and Yasunori Osana

Abstract Until the 2000s, FPGAs were mostly used for prototyping of ASIC chips
or small-quantity products for limited application areas. Nowadays, FPGAs are used
in various applications: high-performance computing, network processing, big data
processing, genomics, and high-frequency trading. This chapter picks up the most
exciting applications of FPGAs.

Keywords HPC : Network processing + Big data processing + Genomics
High-frequency trading

7.1 Introduction

7.1.1 History Summary of PLD

The concept of a programmable logic device (PLD) appeared in the late 1960s.
The programmability of a chip called “reconfigurability” attracted a lot of engineers
and academics and placed big hopes on PLDs. However, it was still early to start
discussing the shift from application-specific integrated circuits (ASICs) to PLDs
because PLDs did not reach the level that satisfies industrial demands such as size,
computational speed, power consumption, reliability, and chip cost.

The quick growth of semiconductor industries [1, 2] has moved PLDs from inad-
equate to good in terms of size, computational speed, and power consumption. For
example, the transistor count of the latest and largest PLDs reaches over 20 billion,

T. Maruyama - Y. Yamaguchi
University of Tsukuba, Tsukuba, Japan
e-mail: maruyama@darwin.esys.tsukuba.ac.jp

Y. Yamaguchi
e-mail: yoshiki@cs.tsukuba.ac.jp

Y. Osana (X)
University of the Ryukyus, Ryukyus, Japan
e-mail: osana@eee.u-ryukyu.ac.jp

© Springer Nature Singapore Pte Ltd. 2018 179
H. Amano (ed.), Principles and Structures of FPGAs,
https://doi.org/10.1007/978-981-13-0824-6_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0824-6_7&domain=pdf

180 T. Maruyama et al.

and therefore, PLD engineers can freely design their circuits on PLDs [3, 4]. Regard-
ing operating frequency, high-speed PLDs, whose working frequency reaches 1.5
GHz, were introduced to the market [5]. The power consumption of PLDs has been
reduced by bias voltage reduction, new technology node, thin-oxide gates, and so
on.

Besides, some coarse-grained reconfigurable devices [6—11] and dynamic recon-
figuration [12—-14] have been proposed to contribute to the improvement of the energy
performance ratio of PLDs [15, 16]. The increase of reliability enables PLDs to be
used in finance [17], aerospace [18], and automobile systems [19]. The number and
kinds of PLD products have been increasing, and the unit price has been dramatically
decreased. Moreover, some nonvolatile technologies such as Spin-Transfer-Torque-
Switching MOSFET (STS-MOSFET) [20] and atomic switch [21] begin to come
into the practical use of PLDs. Thus, many industries start to reaffirm the increasing
significance of PLDs furthermore.

7.1.2 PLD Market Size and Future Prospects

The estimate of the size of future PLD markets is a good measure to evaluate the
growth potential of PLDs. Engineers and academics expect that PLDs will be widely
accepted in various fields in the future.

The average annual growth rate of PLD markets is about 8.1%, and experts esti-
mate that the market size will reach 10 billion USD in 2020 [22]. Indeed, PLDs
are spreading in the Internet of Things (IoT), artificial intelligence (AI), big data,
autonomous driving, and robot applications. If we consider not only PLDs (chips)
but also PLD products, the market size including those PLD-related products will be
beyond 100 billion USD. It is inevitable that these estimates enhance the significance
of the research and development of PLDs to lead to future IT systems.

The remaining parts of this chapter examine the needs and features of FPGAs
in modern applications. Section7.2 presents high-performance computing (HPC)
systems, including the HA-PACS/TCA. FPGAs have been used as communication
acceleration chips to improve the effective performance dramatically. Section7.3
deals with an FPGA-based network switch and discusses the advantages and lim-
itations. Sections7.4 and 7.5 present FPGA-based systems for search engine and
genome informatics, respectively. Section7.6 is dedicated to the acceleration for
high-frequency trading in electronic trading (e-trading), and Sect. 7.7 shows how an
FPGA-based system finds space debris efficiently.

7 Programmable Logic Devices (PLDs) in Practical Applications 181

7.2 PLDs/FPGAs in High-Performance Computing (HPC)

7.2.1 High-Performance Computing (HPC) Overview

The TOP500 and Green500 lists represent the ranking of the 500 fastest and energy-
efficient supercomputers in the world since 1986 [23] and 2007 [24], respectively.
Green500 requires not only the power-performance efficiency but also the absolute
performance. Therefore, the list requires that the system must be ranked in TOP500.
These rankings have been updated twice a year: in June and November. Figure7.1
shows the TOP500 performance development between 1993 and 2015. In this figure,
FLOP/s means floating-point operations per second.

The TOP500 list is often compared to Formula One car racing, and therefore, it
conjures the image of a computational speed competition between supercomputers.
Although it may remind us of the development of an acceleration chip such as GPU,
a parallel computing system, called supercomputer, requires not only the computa-
tional performance but also how to connect computation units tightly. To be clear,
the TOP500 is a three-legged race for computers; the total performance decreases
rapidly when the performance of one system is slow. A supercomputer requires not
only a high-speed accelerator but also a high-speed communication framework. For
example, the K computer, manufactured by Fujitsu, adopts a highly dimensional
communication topology [25]. The interconnect, called Torus fusion (Tofu), is a
three-dimensional torus three-dimensional mesh interconnect. Using the Tofu inter-
connect, the K computer efficiently uses more than 88,000 processors simultaneously.
The following section describes an HPC system with a tightly coupled architecture
on FPGAs.

1018
10"
1016
lol%

...000000
......’AAAAAAAAA
A
Total peformance of top 1 to 500..‘.....AA A AAA Performance of Top 1
@ A
000 AAAA HA-PACS/TCA: *
® A .;‘3000

104 1]
0000°°°" asanat JURRRR s
10% 000°°® AAA 000’ Performance of Top 500
10:00® AAAAAAL oo0*®
11 AA‘JU‘A“ "pDQ‘
107 A * 00.
224
1010 “‘“.‘,
(34
10° 4 0 ¢
L 24
108

1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

Floating Point Operations per Second (FLOP/s)

Fig. 7.1 TOP500 performance development (1993-2015) [23]

182 T. Maruyama et al.

=

T) 8
PCle Gen2 193
8-lane connec e ¥
16-lane connectt 28
| =

PCle Gen?2 x backview —» . [_1 CI%’IGenZ 3516
card edge s T
PCle Gen2 x8 “ PCle Gen2 x8

Fig. 7.2 PEACH2 board (Altera Stratix IV GX530)

7.2.2 HPC System with CPU, GPU, and FPGA

The HPC system series, of the Parallel Advanced system for Computational Sciences
(PACS/PAX), is a supercomputer family manufactured by the University of Tsukuba.
The PACS/PAX series has pursued a tightly coupled architecture between CPU and
memory for more than 30 years. For example, the performance ratio of CPU, memory,
network achieved 1:4:1 on the sixth generation called CP-PACS, which brought the
fastest performance in the TOP500 in November 1996.

The eighth generation, HA-PACS, adopted GPUs as computational nodes [26],
and it was the first attempt in this family. In the early GPU period, GPUs could not
share the data efficiently. For example, each GPU had to move the shared data twice
between main memory and local memory' for each computation. Moreover, the data
transfer required protocol translation for the communication, and it made the latency
larger. Thus, for efficient parallel GPU computing, HA-PACS tried to implement a
high-speed communication architecture between GPUs.

To solve these problems, tightly coupled architecture (TCA) was proposed, based
on PCI Express Adaptive and Reliable Link (PEARL) [30], and then PCI Express
Adaptive Communication Hub (PEACH) [31] was developed and implemented
on an FPGA. Figures7.2 and 7.3 show the PEACH2 board and HA-PACS/TCA,
respectively.

FPGAs have sufficiently brought performance improvement for HA-PACS. The
actual and ideal performances of the HA-PACS base cluster were 421.6 TFlop/s
and 778.128 TFlop/s, respectively. The actual and ideal performances of the HA-
PACS/TCA were 277.1 TFlop/s and 364.3 TFlop/s, respectively. Thus, PEACH2
could improve the performance efficiency from 0.541 to 0.761. In November 2013,

Current GPUs have proposed many solutions for parallel computing such as GPU direct commu-
nication (GPUDirect) [27], high-speed interconnect (NVLink) [28], and large cache/local memory
such as adopting HBM [29].

7 Programmable Logic Devices (PLDs) in Practical Applications 183

Fig. 7.3 HA-PACS/TCA system

the HA-PACS/TCA took the 134th place at the TOP500 and the third place at
the Green500 since it can achieve 3.52 GFlops/W. Also, in June 2014, the HA-
PACS/TCA took the 164th place at the TOP500 and the third place at the Green500.

In the HA-PACS/TCA, PEACH?2 provides the framework which enables a GPU
to communicate with another GPU directly. To be more specific, PEACH?2 extended
the PCle link to GPU communication.? Technically, PEACH2 is a router that extends
the communication between PCle root complex and endpoints to GPU communi-
cation, as shown in Fig.7.4. Thus, as illustrated in Fig.7.5, the GPU data transfer
was simplified from “GPGPU mem — CPU mem — (InfiniBand/MPI*) — CPU
mem — GPGPU mem” to “GPGPU mem — (PCIle/PEACH2) — GPGPU mem”.
Moreover, PEACH2 could also achieve low-latency communication thanks to using
only PCle protocol.

The question that may arise now is: how efficient was the communication perfor-
mance of PEACH2? PEACH2 has four PCle Gen2 ports which has eight lanes.* The
number of PCle ports is limited by the used FPGA and not from PEACH/PEARL.’
In the ping-pong latency, it was 2.0 us when GPU-to-GPU direct communication
was used in PEACH2. It is sufficiently small because the ping-pong latency of CPU-
to-CPU communication is 1.8 ps. Thus, it has enough competitive power compared
to MVAPICH2 v2.0-GDR whose latency with GDR and without GDR are 4.5 and
19 s, respectively [35]. In the ping-pong bandwidth, the CPU-to-CPU performance

2Some switch products adopt the same concept, and Bonet Switch [32] is a PCIe Gen?2 off-the-shelf
product.

3Message Passing Interface (MPI) is a parallelization application programming interface (API) for
distributed memory-based architectures. Please refer to [33].

4The link speed is equivalent to InfiniBand 4 x QDR (32 [Gbit/s] =4 x 8 [Gbit/s]).
SPEACHS3 project is running [34], and it supports PCI Express Gen3.

184 T. Maruyama et al.

PEACH2|—| PEACH2|—| PEACH2|—| PEACH2|—| PEACH2|—| PEACH2 |—| PEACH2|—| PEACH2

ACH2|—|PEACH2|—|PEACH2|—|PEACH2|—|PEACH2|—| PEACH2|—|PEACH2|—| PEACH2 |

Fig. 7.4 HA-PACS/TCA (the half is not depicted)

Fig. 7.5 Network
simplification
1B
InfiniBand
PCle \\
CPU
pcie JL Pcle |\
|
PEACH2 PEACH2

on PEACH?2 is around 3.5 GBytes/s and the performance efficiency achieves about
0.95 of the ideal performance, 3.66 GBytes. Also, the GPU-to-GPU performance on
PEACH?2 is around 2.8 GBytes/s; however, the performance of MVAPICH2 v2.0-
GDR becomes higher than PEACH?2 if the payload size becomes larger than 512
KBytes. In the operation of HA-PACS/TCA, both PEACH2 and MVAPICH2 v2.0-
GDR are used on a case-by-case basis [36]. To make a breakthrough in the HPC
field, such technological trials are further required.

7 Programmable Logic Devices (PLDs) in Practical Applications 185

7.3 PLD/FPGA in a Network

7.3.1 Role of Switches in a Network

In a computer network, a network switch is a computer networking device that
establishes the communication among computers and network switches. Specifically,
it carries small data blocks called packets that include the source, destination, data.
These network switches can be classified into two broad categories: layer-2 switches
and layer-3 switches from the viewpoint of functionality.

Figure 7.6 shows an example where a packet is transported from PCO to PCz by a
layer-2 switch. In this figure, a packet sent by PCO is transported to PCz according to
process (D to ®. The network bandwidth increases when switches that construct a
network can use MAC address tables efficiently. For example, multiple packets can
be transported by switches simultaneously if all destinations and all sources were
registered on tables.

The question is: how can we further increase the network bandwidth? Embed-
ded CPUs can be replaced by high-end CPUs for the packet control. However, the
processing overhead is more than 1 s [37], and thus not software implementation,
but hardware implementation is required. PLD/FPGA is one good candidate for the
reduction of the network latency. An efficient hardware implementation can expect
further reduction of the switching latency [38].

7.3.2 FPGA Performance Upgrade as a Network Chip

FPGAs have introduced high-speed transceivers for high-speed serial interfaces since
around 2000. Table7.1 shows the FPGA performance upgrade from the standpoint
of a network chip. In Table7.1, the speed per transceiver has increased by about
ten times in the past decade, reaching 32.75 Gbit/s in 2015. However, it is hard

@ Each PC discards 1 - 1
[XXXXY} ch

@ The packet is broadcasted toJ

(® The packet is sent to
only port 9 because the
destination is listed on
the table of Switch C.

all ports when the table has no
information about destination.

1
®

[Source: PCO]

®
MAC Add Port MAC Address . A
s Switch B [Destination: PCz]
PCO @ 6 pco ®
00014 ooo ool 9 Pz ®
Switch C
- Switch A Port MAC Address
@ The MAC address of PCOis 1 pCO ® (® The MAC address of PCO is
added to the table of Switch A. added to the table of Switch B

Fig. 7.6 L2 packet transportation by using MAC address

186 T. Maruyama et al.

Table 7.1 Performance upgrade of high-speed transceivers on Xilinx FPGAs

Year Family Transceiver (maximal I/O
speed, # of transceivers)

2002 Virtex 2 Pro Rocket 10 (3.125 Gbit/s, x24)

2004 Virtex 4 Rocket I0 MGT (6.5 Gbit/s,
x24)

2006 Virtex 5 Rocket I0 GTX (6.5 Gbit/s,
x48)

2009 Virtex 6 GTX (6.6 Gbit/s, x48) + GTH
(11.18 Gbit/s, x24)

2010 Virtex 7 GTH (13.1 Gbit/s, x72) +
GTZ (28.05 Gbit/s, x16)

2013 UltraScale GTH (16.3 Gbit/s, x60) +
GTY (30.5Gbit/s, x60)

2015 UltraScale+ GTY (32.75 Gbit/s, x128)

5 6400 O Kintex UltraScale+ o* H ®m I
& 3200 m Virtex UltraScale+ QF * =
== 0 Zynq UltraScale+ % O
2 © 1600 ’ () a *

= © Kintex UltraScale
£§ 80 Vi L=
5 O irtex UltraScale D(}
2o 400 O Artix-7 & O o

=)
[=Ire) o Kintex-7
5 200 o) oo
Qo ® Virtex-7
© 100 O O
°
= 50 o O

1 2 4 8 16 32 64 128 256 512

the size of on-chip memory per FPGA chip [Mbit]

Fig. 7.7 Relationship between total bandwidth and the size of on-chip memory [39, 40]

to keep the high signal integrity of high-speed transceivers at a higher frequency.
Therefore, it is difficult to increase the transceiver speed at the same pace as before
in the next decade. Toward high-speed and low-latency switching, the number of
transceivers per FPGA chip has to increase, and efficient hardware IP cores should
also be supported.

Figure 7.7 shows the relationship between the total bandwidth and the size of on-
chip memory per FPGA, where the memory size of UltraScale+ is the sum of BRAM
and UltraRAM. The size of on-chip memory affects the performance of not only the
bandwidth but also the packet filtering/classification, and it is positively correlated
with the total bandwidth. Thus, it is not an exaggeration to say that FPGA is a network
chip because it has been equipped with the latest transceivers and sufficient on-chip
memory in every generation. There are many network products with FPGAs such as
Exablaze [38], Arista [41], Cisco [42], Mellanox [43], Simplex [44].

7 Programmable Logic Devices (PLDs) in Practical Applications 187

[] i ket control tabl)
5 » action packet control table

2 rules source IP port # =++ | protocol | action

o

< rule 1 133.13.7.96/24 22 e SCTP Deny

kel rule 2 | 130.158.80.244/24 53 - TCP Accept

3

&
i rule N 0.0.0.0/0 0-65535 e Any Drop

Fig. 7.8 Packet classification control

7.3.3 PLD/FPGA and Software-Defined Networking (SDN)

First, a network flow is composed of network packets that include a packet header
and a payload. A packet header contains the information of communication type
such as destination, used network port, and protocol. If a network packet were a
postal package, the packet header would express the address and the postal type of
the package. Thus, by using network switches, we can control the network flow.

During the packet transfer, network switches autonomously collect routing infor-
mation based on the information of packets already carried. The collected data can be
summarized in Fig. 7.6, and a cache table can be used to reduce the control processes
for the same header that has been already sent. However, it is hard to realize network
virtualization, dynamic rule change, and network simulation for secure communica-
tion based on the current framework. Thus, a new framework called software-defined
networking (SDN)® has been proposed [45].

SDN has been proposed since the 1990s [46] and widely accepted since Open-
Flow [47] protocol were established by Open Networking Foundation [48]. FPGA
vendors and third-party companies are also interested in its hardware implementation
as is the case for SDNet by Xilinx [49] and SDN CodeChip by Arrive [50]. There
are a lot of research of SDN on FPGAs [51-57]. The packet classification problem,
as shown in Fig.7.8, is one of the main issues.

A network switch receives a packet and transfers it to an appropriate port, though
it might be discarded by the rule stored on the switch [58]. Thus, the packet clas-
sification problem is how efficient a switch can complete these controls. To realize
high-speed and highly reliable networks, we need to consider latency, bandwidth,
and rule complexity. FPGAs are expected to overcome these problems by direct
hardware computing and reconfigurability.

6Software-defined networking (SDN) is also known as software-defined infrastructure (SDI) or
software-defined data center (SDDC).

188 T. Maruyama et al.

memory memory
[data packet [data packet |
N Network
5 = Engine
CP Network CPU Network CPU data
[control packet Engine [control packet ~Engipe control packet packet
AVAN XE
A V4 AV ¢ Y
data packet data packet
Gontrol packet

Fig. 7.9 Difference in packet control by system configuration

7.3.4 Packet Classification and Its System Configuration

This section gives an overview of system configuration with FPGA. A network switch
must store received packets on a storage such as on-chip or off-chip memory during
the analysis of a packet. Figure 7.9 shows the difference between off-chip and on-
chip memories. The current off-the-shelf system is commonly composed of memory
chips, a CPU, and a network engine.

Figure 7.9 follows this current situation, but SoOC-FPGA may soon change it.

The left portion of Fig.7.9 shows a CPU-based implementation where the CPU
analyzes and classifies the received packets. All the packets are stored in the memory,
at least once. Here, the computation based on network protocol difference (such
as Transmission Control Protocol (TCP), User Datagram Protocol (UDP), Internet
Control Message Protocol (ICMP), and Address Resolution Protocol (ARP)) is a
bit complicated. Thus, the computation on a CPU can provide the answer and the
feasibility of CPU implementation can be evaluated by how it solves the memory
bottleneck [59]. The center and right sides of Fig. 7.9 show the system configuration
where a network engine (NE) is the main computation unit of packet classification.
In these cases, the main unit is implemented on ASICs or FPGAs. It enhances further
the performance improvement, but the system cost also increases.

Table 7.2 shows a particular flow of computing a packet classification. In the left
side of Fig.7.9, a network packet comes to a network port, and it passes through
the NE (L,,0), CPU (L, 1), and memory (Lp,2). CPU reads the packet from the
memory (L,,3) and identifies the packet header. Then, the packet goes back to the
NE (L,,4) and is forwarded to the network through the appropriate network port
LepS).

If the latency of a packet transfer between two chips is 500 ns, the latency of the
left, center, and right sides in Fig.7.9 are 3, 2, and 1 ws, respectively. The network
packets go through many switches, and the latency should be minimized for efficient
communication. The latency of each switch should be within 1 s in high-speed
networks. Thus, the type of current off-the-shelf network switches is the center and
right architectures in Fig.7.9.

Intel has announced a new FPGA that integrates a Xeon E5-2600v2 (Ivy Bridge)
and a Stratix V FPGA [60]. Furthermore, FPGAs start to support high-speed memo-

7 Programmable Logic Devices (PLDs) in Practical Applications 189

Table 7.2 Comparison of latency in Fig.7.9

Left Center Right
Network — network | L, 0 Cepu/ne0 Repu/ne0
engine
Network Lepul Cepul Repul
engine — CPU
CPU — memory Lepu2 N/A N/A
Memory — CPU Lepu3 N/A N/A
CPU — network Lepu4 N/A N/A
engine
Network N/A Cpel N/A (on-chip)
engine — memory
Memory — network | N/A Cpe2 N/A (on-chip)
engine
Network Lepus Cpe3 Ryl
engine — network

ries [61, 62] such as Hybrid Memory Cube (HMC) [63] and High Bandwidth Memory
(HBM) [29]. This movement accelerates the shift of network switches to the right
side of Fig.7.9.

7.3.5 Content-Addressable Memory (CAM) and FPGA

The packet classification on FPGAs has applied some approaches, such as hash
table implementation [64] and n-branch tree search [65]. This section introduces
another implementation, called content-addressable memory (CAM) [66, 67], which
is highly compatible with FPGAs.”

The behavior of CAM differs from that of standard memories. For example,
CAM returns address(es) but not data onto the memory. Figure 7.10 illustrates such
a difference. In packet classification, a network switch compares a destination IP
with the IP list on the CAM, and then the appropriate port is selected by using the
returned address and some rule sets stored in standard memories.

In general, IP address search is little to use an exact match search; instead, a part
of the target address is used, such as subnet. Thus, CAM can be roughly classified as
binary CAM (B-CAM) and ternary CAM (T-CAM). As shown in Fig.7.3, -CAM
can treat don’t-care (“x”) in the comparison. Here, T-CAM may propose multiple
address candidates due to the presence of the “x”. In general, T-CAM outputs the

"The history of CAM can be traced back to the 1950s when memory appeared. Since it is a funda-
mental concept of memory implementation, it has always been discussed in FPGA companies [68,
69] and academics [70]. Besides, the latest CAM chip [71] is attractive to implement network
applications.

190 T. Maruyama et al.

Standard memory Binary CAM Ternary CAM
Input Input [11110 Input [11110
address | data address | data address | data
00 10011 00 10011 00 100xx

01 11100 01 11100
11 00100 11 00100 11 001xx
Output [11110] [10 | Output 01 | Output

10 (candidates)

[Tant)

Fig. 7.10 Difference between standard memory and CAM (“x” means don’t-care.)

lowest address among these candidates. For instance, in Fig.7.10, T-CAM has two
candidates “00”, and the lower address “01” which is output. Efficient algorithms of
data store and read will be a challenging research topic if the lowest address is not
appropriate for a given application. However, the question that remains is: how fast
is a CAM in search problem?

In a network search engine, R§A20686BG-G by Renesas [72, 73], that includes
T-CAM, the performance achieves two billion searches per second. The theoretical
performance is 300 Gbit/s because it has two Interlaken LA ports. One search request
runs a single CAM access, and the search time is constant regardless of the bit width
of the search word and the number of registered entries. The latest Xilinx FPGA has
nine Interlaken IP cores, and some studies have proposed a proper implementation
for CAM [64, 65]. Although CAMs require a larger number of transistors compared
to a standard memory, as discussed in [74], the advantage of CAM seems to outweigh
the drawbacks soon. The implementation with FPGA and CAM will be one option
to implement network processing.

7.4 Big Data: Web Search

Web search engines have enabled easy search for basic and essential knowledge, by
allowing access to numerous documents distributed in different Web sites in all over
the world. Once a search keyword is entered, huge databases are scanned to find the
Web pages containing this keyword. Then, the Web pages are scored and sorted in
terms of their relevance with the keyword, before the list is displayed on the user
screen.

Originally, search engines were built on PC-based server clusters. But now, they
are facing the “power wall” that limits the scale of data centers. So, to avoid stopping
the continuous evolution of Web search engines, breakthrough in power efficiency

7 Programmable Logic Devices (PLDs) in Practical Applications 191

is an urgent requirement. This section briefly reviews Microsoft’s Catapult FPGA
accelerator in Bing search engine.

7.4.1 Overview of Bing Search

Queries (or search terms) from user is received by the front-end of the Bing engine.
The front-end searches the query cache and then transfers the query to another server
called Top Level Aggregator (TLA) on cache miss. Then the TLA transfers the query
to 20—40 Mid Level Aggregator (MLA) servers again. Each server rack has one MLA
server, then MLA queries 48 Index File Managers (IFM) nodes in the same rack. Each
IFM performs rank calculation of the query on about 10,000-20,000 documents, and
the results are aggregated by MLAs and TLA on their way back to the front-end [75].

The IFM first picks up documents containing all words in the query and then
chooses the final candidates. During this process, a vector stream called “Hit Vector”
represents the locations query terms in the generated document. After Hit Vectors are
generated, the documents’ scores for ranking are calculated based on the Hit Vectors.
This ranking process is computation intensive; thus, an FPGA-based accelerator can
be introduced.

7.4.2 Ranking Engine Acceleration

The first stage of ranking is feature extraction (FE), to calculate some “feature”
scores from the Hit Vector. In the FPGA accelerator, custom scoring FSMs are
implemented for each feature and all FSMs work on a given Hit Vector in parallel (as
stated in [76], 43 feature extraction FSMs extract 4,484 features). Because multiple
pipelines work on a Hit Vector, it is called a “Multiple Instruction, Single Data
(MISD)” architecture [76]. The FE process takes 600 ps in software, but the FPGA
implementation requires only 4 js.

The next stage is to calculate the “hybrid feature” scores, using feature scores from
FE stage. This process is called Free-Form Expression (FFE). As the name implies,
this process consists of various arithmetic operations including floating-point arith-
metic. Because this stage requires high flexibility, custom-designed soft processor
cores are implemented. The soft processor cores form a many-core architecture, with
60 cores, on a Stratix V FPGA.

Hybrid features from the FFE stage are sent to the Machine-Learning Scoring
(MLS) to calculate the final, single floating-point score of the document. The details
of this stage are not open, but the algorithm seems to be frequently updated. Such
frequent updates are a good use of FPGA’s flexibility.

192 T. Maruyama et al.

Macropipeline

FE [FFEO [—®: FFE1l iicompress:[—®: MLSO i MLS1 % MLS2 >]

FPGAL FPGA2 FPGA3 FPGA4 FPGA5 FPGAG FPGA7 FPGA8

Fig. 7.11 Macropipeline structure of Catapult

7.4.3 Organization of Catapult Accelerator

Microsoft developed the Catapult FPGA board as the ranking accelerator described
above. The board has an Altera’s Stratix V FPGA, an 8 GB DDR3 SDRAM SO-
DIMM, and PCI Express interface toward the server host. In addition to PCI Express
interface to the host, Catapult board has 10 Gbps bidirectional serial links to form
6 x 8 torus network. With this network, a “Macropipeline” spanning multiple FPGAs
is formed.

As illustrated in Fig. 7.11, eight FPGA boards construct a ranking Macropipeline.
The FE stage is implemented on the first FPGA, and the FFE and MLS stages are on
the FPGAs located at the downstream. Because these eight FPGAs are connected to
each different IFM nodes, the FPGA-to-FPGA link transports not only datastream
in Macropipeline, but also datastream between IFM—FE or MLS—IFM.

In Fig.7.11, the datastream in Macropipeline flows from left to right. On the other
hand, IFM-FE and MLS-IFM datastreams flow from right to left. So, the traffic
always goes clockwise; thus, the bidirectional link bandwidth is fully utilized in all
segments.

Furthermore, the 6 x 8 torus can contain other accelerator macropipelines for
several different applications, such as computer vision [77]. These macropipelines
are also available in IFM through the FPGA-to-FPGA links.

7.5 Genomics: Assembly and Mapping of Short Reads

Any organism has its own genome, composed by only four DNA molecules denoted
by: A (adenine), T (thymine), C (cytosine), and G (guanine). Different species have
much different in genome size: 1.5 x 10° base pairs for several microorganisms,
3.2 x 10° for human, or 17 x 10° for bread wheat.

Because a genomic DNA sequence consists of only four molecules, various string
processing algorithms can be applied for genome analysis. FPGAs are suitable for
the analysis acceleration by using hardware implementation of custom state machine.
Especially for genomic DNA sequence, the FPGA implementation is advantageous
when compared to the CPU implementation because the component can be coded in a

7 Programmable Logic Devices (PLDs) in Practical Applications 193

smaller number of bits than 8. Thus, various FPGA-based accelerators for genomics
have been implemented since Splash 2 [78] in the early 1990s.

For along time, genomes had been sequenced using DNA sequencers based on the
“Sangar sequencing method”, invented in 70s. With the emergence of next-generation
sequencing (NGS) technology in the early 2000s, the throughput of genome sequenc-
ing has dramatically improved. NGS reads short fragments of DNAs in a massively
parallel way (the result of sequencing of each fragment is usually called just a “read”).

To sequence a genomic DNA, the DNA chain is randomly fragmented by mechan-
ically using supersonic wave, or chemically. Most of the randomly fragmented DNA
chains usually have overlaps to some other fragments in both ends. So, the whole
original DNA chain can be “assembled” by coalescing the fragmented DNA chains
together. However, this process requires a vast string matching workloads to find the
overlaps between two or more reads. Especially with NGS, the assembled workload
is much heavier than with the Sangar sequencer since NGS reads a massive number
of very short reads.

NGS is also useful in personal genome sequencing, a promising technology in
tailor-made medical treatments. In personal genome sequencing, sequenced frag-
ments are “mapped” on already known human genome (or, “reference”) sequence.
Everyone has a slightly different genome sequence, and sometimes the small differ-
ences attract medical interests. Although the read mapping is a lesser computation-
intensive task than the genome assembly, it still is a large workload. Hereafter, FPGA
implementation examples for short read assembly and read mapping to reference
genome are presented.

7.5.1 De Novo Genome Assembly from Short Reads

De novo sequencing or assembly consists of assembling the whole genome without
any previously known sequences, but just using short reads. With the emergence
of NGS technology, several de novo assembler softwares specialized in using short
reads have appeared. Every short read assembler requires a long computation time
to find overlaps between the reads.

FAssem [79] is an FPGA-accelerated implementation of Velvet [80], a well-known
short read assembler. Velvet finds read overlaps first and then generates De Bruijn
graph to obtain the final assembly. FAssem does the first stage on an FPGA and
then executes the second stage using the Velvet’s original software implementation.
With the FPGA acceleration on a Xilinx’s Virtex-6 LX130T, 2.2x to 8.4x speedup is
achieved compared to the software-only version on a 2.6 GHz Core 2 Duo E4700.

194 T. Maruyama et al.

7.5.2 Short Read Mapping on a Reference Genome

We are all Homo sapiens, but everyone (except identical twins) have a slightly differ-
ent genome sequence. These personal variations are attracting medical interests to
evaluate personal risks in specific diseases, or to make tailor-made medicine possi-
ble. For example, many single nucleotide polymorphisms (SNPs) are already known
as “markers” of personal genetic variations.

To obtain a personal genome sequence, the DNA reads are mapped on the reference
human genome sequence. Because this human genome sequence is already available,
it is not necessary to assemble the whole genome sequence again, but just mapping
the reads on the already known reference sequence is enough. The reads will be
different from the reference sequence at several locations: This is the personal genome
variation.

Basically, mapping is much faster than assembling, and faster is always better
because this technology is expected to be used in the medical domain. The map-
ping process is not simple since there will be mismatches in molecules, insertion or
deletion of sequences between the sequencer reads and reference sequence.

Several read mapping tools have been developed and published, such as Bowtie
[81] and BWA [82]. The work in [83] is an FPGA-accelerated implementation of
BWT, using Burrows—Wheeler transform. The FPGA implementation on Altera’s
Stratix V board achieved 21.8x speedup compared to a 4-core microprocessor.
Both FAssem- and FPGA-accelerated BWA have an array of many string match-
ing modules, and parallel string matching on these modules contributes to their high
throughput.

7.6 High-Frequency Trading (HFT)

High-frequency trading is a prominent part of electronic trading (e-Trading) and
requires low-latency computing. Thus, from the standpoint of low-latency comput-
ing, this section introduces stock trading and then explains how FPGAs are used
there.

7.6.1 Stock Trading Overview

The earliest roots of stock markets can be traced back to the sixteenth century.® The
stock has been introduced to reduce the risk of funders and to gather capitals effi-
ciently and widely. Figure 7.12 shows how to efficiently raise capitals and distribute
the benefits based on stocks. In that era, stocks have not been traded so frequently.

8The company’s name is Vereenigde Oost-Indische Compagnie, called the United East India Com-
pany in English, and was founded in 1602.

7 Programmable Logic Devices (PLDs) in Practical Applications

funders (win) funders (lose)

195

stock holders (risk dispersion)

$4M

R

$4M | $4M $3M J($3M

4 dividend

capitals* ’ stock

stock corporation J

/ investmer> investmeb [
reward funds funds ’

V$12M= 3 x $4M) reward
succeed

funds f funds funds
($9M=3 x $3M) $14M) reward $10M
failed .
succee succee! failed

The voyage The voyage The voyage The voyage The voyage
went good. went wrong. went good. went good. went wrong.
O loss)¢ O O loss)
< > ¢ > < >

high risk and high reward

" The averaged profit by multiple voyages is
distributed to holders as the dividend of stocks.

Fig. 7.12 Risk dispersion by stocks and a flow of capitals, funds, and rewards

Table 7.3 Rough classification of stock tradings

Time priority (first-in first-out trading)

Yes No
Price priority Yes Continuous limit order | Limit order
during a trading before/after a trading
session session
No Market order during a | N/A
trading session

The holders needed to have their stocks for several months or more because their
purpose was to obtain the dividend brought by each voyage.

As the number and kinds of stocks have been increasing, the holders began to
choose a better stock carefully. This has increased the stock trading, and some holders
start to focus on the margin of stock transactions. Hence, stock markets and various
trading methods have been generated based on a wide range of requests. Although
trading methods are becoming more complex, they inherit the same core principles,
“price” and “time”.

Table 7.3 shows arough classification of stock tradings from the viewpoint of price
and time. This table does not consider all trading methods using other conditions,
such as the conditional order.

In Table 7.3, a limit order is an order to buy or sell a stock. When buying, each
order can only be executed at the limit price or lower. When selling, each order
can only be executed at the limit price or higher. A market order is an order to
be executed immediately at the current market price. It is enabled while a trading

196 T. Maruyama et al.

Selling order Price| Buying order Selling order Price Buying order

$435 $435
$434 $434
1000 $433 »
» O o) 0 o
A A A /
Tsell 1000 units st $433) |32 m $432

Fig. 7.13 Double auction: both buyers and sellers bid a price that each wants

session is working because the price is decided by the market. During the continuous
trading session, any orders can continuously be executed under price and time priority
conditions.

7.6.2 Continuous Limit Order to High-Frequency Trading
(HFT)

Fig.7.13 illustrates the overview of a stock trading under limit orders. Both buyers
and sellers order prices that each wants, and then the information is published. This
trading is one of the open-outcry double auctions.

Nothing is done when there is no overlap between selling orders and buying
orders. When an overlap happens, the deal starts. In Fig. 7.13, an overlap happens at
the price of $433, and transactions are made based on the first-in-first-out queue of
the $433 buying order.

In stock trading, a person who has a higher priority will obtain a larger margin
in a transaction. Thus, the most important thing is how to get the highest priority.
From the perspective of price, a good stock value is expected in the future. Stock
trading can apply value prediction algorithms, and artificial intelligence approaches
have received a lot of attention recently. From the perspective of time, it is important
to shorten the time for sending an order. This requires to accelerate the recognition
of the current market situation and to send the trading request as quickly as possible.
Advances in information and communications technology (ICT) have enabled to
dramatically reduce the trading time since the 1990s. For example, the order response
time in the London Stock Exchange, Tokyo Stock Exchange, and Singapore Stock
Exchange are around 690 s [84, 85], 500 ws [17], and 90 s [86], respectively.9’ 10
Consequently, high-frequency trading (HFT) has emerged as a new market to obtain
the significant margin within a short duration. Table 7.4 shows an example of the
speed and volume of HFT.

9us (microsecond): one millionth of a second.

101 2017, the New York Stock Exchange has announced the introduction of a delay mechanism,
and the speed bump is 350 ps [87]. The concept has been introduced in [88].

7 Programmable Logic Devices (PLDs) in Practical Applications 197

Table 7.4 Average time per order and the number of price changes (June 26, 2008)

Average time (ms/order) Price changes in one day
Citigroup 2.238 12,499
General electric 4.244 7862
General motors 7.843 9016

This table was made by reference to Table 1 in [89]

7.6.3 HFT Speed Bump and the Value of Latency

The latency in computer systems is a top priority issue in the battle against the
opportunity loss in ICT world. Viraf Reporter [90] reports that at least one percent
of the reward could be lost if a trading order is 5 ms behind the competition. Also,
Google loses 20% of its traffic if a search page load requires additional 500 ms, and
Amazon loses 1% of their sales if an extra 100 ms is required [91].

However, the fact remains that the core process of HFT is straightforward, and
therefore, the speed of a software implementation such as C language may be suffi-
cient. In [92], an HFT approach, called tradeHFT, was implemented in C language,
and the execution time was around 750 ns.!! If the current situation continues, a lot
of hardware-based systems will go back to a CPU-based system [93].

On August 1, 2012, Knight Capital Americas LLC experienced a significant error
and lost over $460 million from unwanted positions [94]. Stock exchanges start
to re-evaluate HFT after this accident, and the New York Stock Exchange decided
to implement a delay mechanism in 2017 [87]. The speed bump directly reduces
ultra-high-frequency trading, but complex and middle-to-high-frequency trading will
increase. Consequently, future HFT will employ new algorithms customized to the
limitations of each market. At that time, for sophisticated computation, external
accelerators such as GPUs and FPGAs can be adopted since the current speed bump,
350 s, in NYSE is sufficiently long.

The semiconductor industry cycle between standardization and customization is
known as the Makimoto’s Wave [95]. Also in HFT, the era of FPGAs will come again
soon after the current CPU era.

7.6.4 HFT System Integration on an FPGA

Figure 7.14 shows the evolution of FPGA systems.

All the computation are processed on a CPU of a standard system, as shown
in Fig.7.14. In this implementation, high-level programming languages such as C
language are used for implementing HFT approaches. If lightweight and simple pro-
cesses with less data transfer are treated, this configuration can be sufficient [92].

ps (nanosecond): one billionth of a second.

198 T. Maruyama et al.

Standard System FPGA (Embedded) FPGA (All in One)
o
| Output Results | | Output Results | =
D| Postprocessing | 5 | Postprocessing |
o o
| HFT algorithm | E| HFT algorithm | § HFT algorithm
= S
< —
Preprocessing Preprocessing Q §
L - | L | [V
[ek ||| [Newors]
@) @)
E| Data Link | %) | Data Link | o
< < 5
o
[oiea || [| [

Fig. 7.14 Evolution of FPGA systems

An acceleration chip will be required when there is high computation for a targeted
approach. Then, FPGA can be a good candidate of low-latency streaming computing,
such as HFT. This is because the latency is smaller compared to other systems, includ-
ing GPUs.!? However, the communication latency cannot be sufficiently reduced
in this implementation. In fact, one-way latencies of a standard system, a system
with embedded FPGAs, and an FPGA-based all-in-one system are around 12.8 s,
4.1 s, and 2.6 s, respectively [96]. Furthermore, newer FPGAs with 10GbE ports
can reduce the latency within 1 s [97, 98]. Eventually, all components will be inte-
grated on an FPGA as done in [99]. The latest FPGAs have powerful processors.
For example, both Xilinx Zynq Ultrascale+ [4] and Intel Stratix 10 FPGAs [3] have
a quad-core ARM processor. Intel has also integrated an FPGA fabric into an Intel
Xeon package [60]. In addition, FPGA vendors and third parties start to support
high-level synthesis such as [100-102]. Finally, the Arrowhead Systems Inc. in the
Tokyo Stock Exchange applies FPGAs, called SimplexBLAST FPGA [44], and also
network vendors like [103] are interested in the acceleration by FPGAs.

7.7 Image Processing: Space Debris Detection

Since the first satellite has been launched in 1955, a large number of rockets sent
satellites and space probes around the earth. As a result, thousands of artificial objects
are on their orbit. Many of them fulfilled their role or are already broken. The velocity

12 A bottleneck of GPU is the communication between a host PC and a GPU board through PCle
bus. See Sect.7.2.

7 Programmable Logic Devices (PLDs) in Practical Applications 199

of objects are as high as 8km/s in low orbit; thus, such objects have large kinetic
energy. Because even a very small fragment has enough kinetic energy, collision
with satellites or spacecraft can cause a critical accident. Moreover, collisions make
more fragments in the orbit.

This kind of fragments are called “space debris,” and they are observed and tracked
by the space exploration agencies of many countries since they pose a large threat
to the operations of satellites, spacecraft, and space stations. For example, North
American Aerospace Defense Command (NORAD) is always tracking over 8000
debris in low orbit. There is no efficient way to collect space debris safely for now.
So, high precision detection, tracking, and collision avoidance are required for the
safe operation in outer space.

This section introduces an FPGA-accelerated approach, developed by Japan
Aerospace eXploration Agency (JAXA), to detect space debris with high-resolution
optical telescopes.

7.7.1 The Method Overview

JAXA developed this system with optical telescopes in Nyugasa-yama Optical Obser-
vatory in Ina city, Nagano. The telescopes have 2K2K CCD and 4K4K CCD cameras.
These cameras serve to take a series of pictures of the sky with a constant interval.
The trajectory of “known” objects such as known stars, satellites, or the International
Space Station (ISS) can be calculated and mapped onto the pictures. After mapping
known objects, “unknown” objects remain on the picture. These objects may be space
debris or newly found asteroids.

However, because unknown objects have unknown trajectories, it is difficult to
detect and track them. To make the problem worse, they are often dark so they are
hard to find. JAXA resolved these problems by an image processing algorithm called
“stacking method” [104].

This method detects dark, unknown objects from noisy telescopic images by
stacking them with a constant offset, then taking the median value of each pixel.
When the images are stacked with no offset, as shown in Fig. 7.15a, the trajectory of
known objects can be traced. However, we have no knowledge on how to trace other
unknown objects.

To detect unknown objects, images are stacked with various offsets in the X and
Y directions, as depicted in the example of Fig.7.15b, c. Because the direction and
speed of debris or asteroids are constant, they appear as a bright dots when the
stacking offset matches with the object’s speed.

However, performing the stacking for all possible directions and speeds is a heavy
task. For example, to find an object that moves within 256 x 256 pixels between two
images, 256 x 256 = 65,536 stacking patterns must be investigated. Fortunately,
the number of stacking patterns remains constant even with more telescopic images,
because the direction and speed of an object are basically constant.

200 T. Maruyama et al.

(a) (b) (©)

» Known object
— Unknown object

Fig. 7.15 Detection of space debris with stacking method a Stacking with no offset b Stacking
with offset, to match with trajectory of A ¢ Stacking with offset, to match with trajectory of B

According to JAXA’s report in 2001, analyzing 16-bit grayscale images, by per-
forming the stacking in 65,536 ways, requires 280 h on a CPU. 280 h of image
processing is not realistic for application use, so an accelerator has been developed
using an FPGA board.

7.7.2 FPGA Acceleration

To easily handle the image data on an FPGA, the 16-bit grayscale image is binarized
to make the dataset compact. In general, binarization makes S/N ratio worse; but, the
result of this method does not degrade. This is because the stacking effectively reduces
the noise. Image binarization also enables the replacement of the gray-level median
calculation with bright dot counting. This makes the FPGA implementation simple
and fast, but controlling the threshold values is crucial for both image binarization
(grayscale to bright/dark) and object detection (counter value of object/background).

The FPGA version of this method is implemented on Nallatech H101-PCMXM
board with Xilinx Virtex-4 LX100 FPGA and Nallatech’s C-based high-level syn-
thesis tool. As results, 1200x speedup is achieved when compared to the original
software, and the method can be used in practice. This speed constitutes a large con-
tribution to high precision and high sensitivity detection of space debris with optical
telescopes.

References

1. G.E. Moore, Cramming more components onto integrated circuits. Proc. IEEE 86(1), 82-85
(1998)

2. Xilinx Staff, Celebrating 20 years of innovation. Xcell J. 48, 14-16 (2004)

. Altera Corp., http://www.altera.com

4. Xilinx Inc., http://www.xilinx.com

W

http://www.altera.com
http://www.xilinx.com

7 Programmable Logic Devices (PLDs) in Practical Applications 201

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Achronix Semiconductor Corp., Speedster 22i HD FPGA Platform, 2.7 edn. (June 2014).
Product Brief, http://www.achronix.com/

K. Compton, S. Hauck, Totem: custom reconfigurable array generation, in /EEE Symposium
on Field-Programmable Custom Computing Machines (March 2001), pp. 111-119

D.C. Cronquist, C. Fisher, M. Figueroa, P. Franklin, C. Ebeling, Architecture design of recon-
figurable pipelined datapaths, in 20th Anniversary Conference on Advanced Research in VLSI
(March 1999), pp. 23-40

. P. Heysters, G. Smit, E. Molenkamp, A flexible and energy-efficient coarse-grained reconfig-

urable architecture for mobile systems. J. Supercomput. 26(3), 283-308 (2003)

C. Mei, P. Cao, Y. Zhang, B. Liu, L. Liu, Hierarchical pipeline optimization of coarse grained
reconfigurable processor for multimedia applications, in IEEE International Parallel Dis-
tributed Processing Symposium Workshops (May 2014), pp. 281-286

T. Miyamori, K. Olukotun, REMARC: reconfigurable multimedia array coprocessor. IEICE
Trans. Inf. Syst. E82-D(2), 389-397 (1999)

H. Schmit, D. Whelihan, A. Tsai, M. Moe, B. Levine, R.R. Taylor, Piperench: a virtual-
ized programmable datapath in 0.18 micron technology, in IEEE Custom Integrated Circuits
Conference (May 2002), pp. 63—66

B. Mei, S. Vernalde, D. Verkest, H.D. Man, R. Lauwereins, ADRES: An Architecture with
Tightly Coupled VLIW Processor and Coarse-Grained Reconfigurable Matrix (Springer,
Berlin, Heidelberg, 2003), pp. 61-70

M. Motomura, STP engine, a C-based programmable HW core featuring massively parallel
and reconfigurable PE array: its architecture, tool, and system implications, in Proceedings
of Cool Chips XII (2009), pp. 395-408

T. Sugawara, K. Ide, T. Sato, Dynamically reconfigurable processor implemented with
IPFlex’s DAPDNA technology. IEICE Trans. Inf. Syst. E87-D(8), 1997-2003 (2004)
S.M.A.H. Jafri, S.J. Piestrak, K. Paul, A. Hemani, J. Plosila, H. Tenhunen, Energy-aware
fault-tolerant CGRAs addressing application with different reliability needs, in Euromicro
Conference on Digital System Design (September 2013), pp. 525-534

K. Kinoshita, Y. Yamaguchi, D. Takano, T. Okamura, T. Yao, Energy efficiency improvement
by dynamic reconfiguration for embedded systems. IEICE Trans. Inf. Syst. E98-D(2), 220-
229 (2015)

Japan Exchange Group, New, Enhanced TSE arrowhead cash equity trading system—for
a safer, more convenient market (September 2015). News Release, http://www.jpx.co.jp/
english/corporate/news-releases/0060/20150924-01.html

NASA Electronic Parts and Packaging, Military and aerospace FPGA and applications
(MAFA) meeting (November 2007), https://nepp.nasa.gov/mafa/

Audi selects Altera SoC FPGA for production vehicles with ‘piloted driving’ capability
(January 2015). Intel News Release, https://newsroom.intel.com/news-releases/audi-selects-
altera-soc-fpga-production-vehicles-piloted-driving-capability/

T. Tanamoto, H. Sugiyama, T. Inokuchi, T. Marukame, M. Ishikawa, K. Ikegami, Y. Saito,
Scalability of spin field programmable gate array: a reconfigurable architecture based on spin
metal-oxide-semiconductor field effect transistor. J. Appl. Phys. 109(7), 1-4 (2011), 07C312
S. Kaeriyama, T. Sakamoto, H. Sunamura, M. Mizuno, H. Kawaura, T. Hasegawa, K. Terabe,
T. Nakayama, M. Aono, A nonvolatile programmable solid-electrolyte nanometer switch.
IEEE J. Solid-State Circuits 40(1), 168-176 (2005)

Markets and Markets, FPGA Market by Architecture (Sram, Fuse, Anti-Fuse), Configuration
(High End, Mid-Range, Low End), Application (Telecommunication, Consumer Electronics,
Automotive, Industrial, Military and Aerospace, Medical, Computing and Data Centers), and
Geography—Trends and Forecasts From 2014-2020 (January 2015)

Top500—performance development (November 2015), http://www.top500.org/statistics/
perfdevel/

Green500, http://www.green500.org

http://www.achronix.com/
http://www.jpx.co.jp/english/corporate/news-releases/0060/20150924-01.html
http://www.jpx.co.jp/english/corporate/news-releases/0060/20150924-01.html
https://nepp.nasa.gov/mafa/
https://newsroom.intel.com/news-releases/audi-selects-altera-soc-fpga-production-vehicles-piloted-driving-capability/
https://newsroom.intel.com/news-releases/audi-selects-altera-soc-fpga-production-vehicles-piloted-driving-capability/
http://www.top500.org/statistics/perfdevel/
http://www.top500.org/statistics/perfdevel/
http://www.green500.org

202

25.

26.

27.
28.

29.

30.

37.

38.
. Xilinx: 7 Series FPGAs Overview (DS890), 2.2 edn. (August 2015), preliminary Product

40.

41.
42.

43.
44.
45.
46.
47.
48.
49.

50.
S1.

T. Maruyama et al.

Y. Ajima, T. Inoue, S. Hiramoto, S. Uno, S. Sumimoto, K. Miura, N. Shida, T. Kawashima,
T. Okamoto, O. Moriyama, Y. Ikeda, T. Tabata, T. Yoshikawa, K. Seki, T. Shimizu, Tofu Inter-
connect 2: System-on-Chip Integration of High-Performance Interconnect (Springer Interna-
tional Publishing, 2014). pp. 498-507

HA-PACS project, https://www.ccs.tsukuba.ac.jp/research/research_promotion/project/ha-
pacs

NVIDIA GPUDirect, https://developer.nvidia.com/gpudirect

NVIDIA Corporation, NVIDIA NVlink high-speed interconnect: application performance.
Technical report, NVIDIA Corporation (November 2014), whitepaper

J. Kim, Y. Kim, HBM: Memory solution for bandwidth-hungry processors, in Hot Chips: A
Symposium on High Performance Chips (August 2014), HC26.11-310

T. Hanawa, T. Boku, S. Miura, M. Sato, K. Arimoto, PEARL: power-aware, dependable, and
high-performance communication link using PCI express, in Proceedings of IEEE/ACM Inter-
national Conference on Green Computing and Communications and IEEE/ACM International
Conference on Cyber, Physical and Social Computing (December 2010), pp. 284-291

. Y. Kodama, T. Hanawa, T. Boku, M. Sato, PEACH2: an FPGA-based PCle network device

for tightly coupled accelerators. ACM SIGARCH Comput. Archit. News 42(4), 3-8 (2014)

. AKIB Networks, INC, Bonet switch, http://www.akibnetworks.com/product2.html
. P.S. Pacheco, Parallel Programming with MPI (Morgan Kaufmann, 1996)
. T.Kuhara, T. Kaneda, T. Hanawa, Y. Kodama, T. Boku, H. Amano, A preliminarily evaluation

of PEACH3: a switching hub for tightly coupled accelerators, in Proceedings of International
Symposium on Computing and Networking (December 2014), pp. 377-381

. MVAPICH: MPI over InfiniBand, 10GigE/iWARP and RDMA over Converged Ethernet
. K. Matsumoto, T. Hanaway, Y. Kodama, H. Fujiiz, T. Boku, Implementation of CG method on

GPU cluster with proprietary interconnect TCA for GPU direct communication, in Proceed-
ings of Accelerators and Hybrid Exascale Systems in Conjunction with IEEE International
Parallel & Distributed Processing Symposium (May 2015), pp. 647-655

F. Cerqueira, B.B. Brandenburg, A comparison of scheduling latency in Linux, PREEMPT-RT,
and LITMUS-RT (July 2013)

EXABLAZE, EXALINKFUSION (September 2015), product brochure

Specification

Xilinx: UltraScale Architecture and Product Overview, 2.6 edn. (December 2015), product
Specification (DS890)

ARISTA: 7124FX Application Switch (April 2014), datasheet

CISCO: Cisco Nexus 7000 Series FPGA/EPLD Upgrade, release 4.1 edn. (April 2009),
Release Notes

MELLANOX: Programmable ConnectX-3 Pro Adapter Card, rev 1.0 edn. (November 2014),
product Brief 15-4369PB

Simplex Inc., Equities Solution SimplexBLAST (January 2014), http://www.simplex.ne.jp/
en/

S. Scott-Hayward, S. Natarajan, S. Sezer, A survey of security in software defined networks.
IEEE Commun. Surv. Tutor. 17(4), 2317-2346 (2015)

N. Mihai, G. Vanecek, New generation of control planes in emerging data networks, in Pro-
ceedings of First International Working Conference, vol. 1653 (1999), pp. 144—154

N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
J. Turner, Openflow: enabling innovation in campus networks. ACM SIGCOMM Comput.
Commun. Rev. 38(2), 69-74 (2008)

Open networking foundation (2011), https://www.opennetworking.org/

SDNet development environment, http://www.xilinx.com/products/design-tools/software-
zone/sdnet.html

Arrive technologies, http://www.arrivetechnologies.com/

A. Bitar, M. Abdelfattah, V. Betz, Bringing programmability to the data plane: packet pro-
cessing with a NoC-enhanced FPGA, in Proceedings of International Conference on Field-
Programmable Technology (2015), pp. 1-8

https://www.ccs.tsukuba.ac.jp/research/research_promotion/project/ha-pacs
https://www.ccs.tsukuba.ac.jp/research/research_promotion/project/ha-pacs
https://developer.nvidia.com/gpudirect
http://www.akibnetworks.com/product2.html
http://www.simplex.ne.jp/en/
http://www.simplex.ne.jp/en/
https://www.opennetworking.org/
http://www.xilinx.com/products/design-tools/software-zone/sdnet.html
http://www.xilinx.com/products/design-tools/software-zone/sdnet.html
http://www.arrivetechnologies.com/

7 Programmable Logic Devices (PLDs) in Practical Applications 203

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.
68.

69.

70.

71.

72.

73.

K. Guerra-Perez, S. Scott-Hayward, OpenFlow multi-table lookup architecture for multi-
gigabit software defined networking (SDN), in Proceedings of ACM SIGCOMM Symposium
on Software Defined Networking Research (2015), pp. 1-2

W. Jiang, V.K. Prasanna, N. Yamagaki, Decision forest: a scalable architecture for flexible
flow matching on FPGA, in Proceedings of International Conference on Field Programmable
Logic and Applications (2010), pp. 394-399

H. Nakahara, T. Sasao, M. Matsuura, A packet classifier using LUT cascades based on
EVMDDS (k), in Proceedings of International Conference on Field Programmable Logic
and Applications (September 2013), pp. 1-6

J. Naous, D. Erickson, G.A. Covington, G. Appenzeller, N. McKeown, Implementing an
Openflow switch on the NetFPGA platform, in Proceedings of ACM/IEEE Symposium on
Architectures for Networking and Communications Systems (2008), pp. 1-9

S. Pontarelli, M. Bonola, G. Bianchi, A. Caponey, C. Cascone, Stateful openflow: hardware
proof of concept, in Proceedings of International Conference on High Performance Switching
and Routing (2015), pp. 1-8

Y.R. Qu, H.H. Zhang, S. Zhou, V.K. Prasanna, Optimizing many-field packet classification
on FPGA, multi-core general purpose processor, and GPU, in Proceedings of ACM/IEEE
Symposium on Architectures for Networking and Communications Systems (2015), pp. 87-98
P. Gupta, N. McKeown, Algorithms for packet classification. IEEE Netw. Mag. Global Inter-
network. 15(2), 24-32 (2001)

Toshiba develops NPEngineTM, the world’s first hardware engine that directly streams video
content from SSD to IP networks (April 2012). Toshiba Press Release, https://www.toshiba.
co.jp/about/press/2012_04/pr0901.htm

P. Gupta, Xeon+FPGA platform for the data center, in Fourth Workshop on the Intersec-
tions of Computer Architecture and Reconfigurable Logic in Conjunction with International
Symposium on Computer Architecture, http://www.ece.cmu.edu/calcm/carl/

Altera: Hybrid Memory Cube Controller IP Core (May 2016), user Guide (UG-01152)
Xilinx: The Rise of Serial Memory and the Future of DDR, 1.1 edn. (March 2015), white
Paper (WP456)

Hybrid Memory Cube Consortium, http://www.hybridmemorycube.org/

B. Yang, R. Karri, An 80Gbps FPGA implementation of a universal hash function based
message authentication code, in The DAC/ISSCC Student Design Contest (2004) pp. 1-7,
Operational Category: 3rd Place Winner

Y. Qu, V.K. Prasanna, High-performance pipelined architecture for tree-based IP lookup
engine on FPGA, in Proceedings of IEEE International Parallel and Distributed Process-
ing Symposium, Workshops and Ph.D. Forum, Reconfigurable Architectures Workshop (May
2013), pp. 114-123

K.E. Grosspietsch, Associative processors and memories: a survey. Micro, IEEE 12(3), 12-19
(1992)

T. Kohonen, Associative Memory (Springer, 1977)

Altera Staff, Designing switches & routers with APEX CAM. White Paper M-WP-
APEXCAM-02, Altera Corporation (October 2000)

Xilinx Staff, Content Addressable Memory (CAM) in ATM Applications. Application Note
XAPP202 (v1.2), Xilinx Inc. (January 2001)

S.A. Guccione, D. Levi, D. Downs, A reconfigurable content addressable memory, in Pro-
ceedings of IPDPS Workshops on Parallel and Distributed Processing (2000), pp. 882—-889
TCAMs and BCAMs: Ternary and Binary Content-Addressable Memory Compil-
ers, https://www.esilicon.com/services-products/products/custom-memory-ip-and-ios/
specialty-memories/tcam-and-bcam-compilers/

80 Mbit Dual-Port Interlaken-LA TCAMs Achieve 2BSPS Deterministic Lookups,
https://www.renesas.com/ja-jp/media/products/memory/network-search-engine/
r10cp0002eu0000_tcam.pdf

Network Search Engine, R§A20686BG-G

https://www.toshiba.co.jp/about/press/2012_04/pr0901.htm
https://www.toshiba.co.jp/about/press/2012_04/pr0901.htm
http://www.ece.cmu.edu/calcm/carl/
http://www.hybridmemorycube.org/
https://www.esilicon.com/services-products/products/custom-memory-ip-and-ios/specialty-memories/tcam-and-bcam-compilers/
https://www.esilicon.com/services-products/products/custom-memory-ip-and-ios/specialty-memories/tcam-and-bcam-compilers/
https://www.renesas.com/ja-jp/media/products/memory/network-search-engine/r10cp0002eu0000_tcam.pdf
https://www.renesas.com/ja-jp/media/products/memory/network-search-engine/r10cp0002eu0000_tcam.pdf

204

74

75

76.

7.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

T. Maruyama et al.

. W. Jiang, K. Viktor, Prasanna, A FPGA-based parallel architecture for scalable high-speed
packet classification, in Proceedings of IEEE International Conference on Application-
specific Systems, Architectures and Processors (July 2009), pp. 24-31

. D. Burger, Transitioning from the era of multicore to the era of specialization, in Keynote

Speech at SICS Multicore Day (2015), https://www.sics.se/sites/default/files/pub/sics.se/

doug_burger_catapult_-_sics.pdf

A. Putnam, A.M. Caulfield, E.S. Chung, D. Chiou, K. Constantinides, J. Demme,

H. Esmaeilzadeh, J. Fowers, G.P. Gopal, J. Gray, M. Haselman, S. Hauck, S. Heil, A. Hormati,

J.Y. Kim, S. Lanka, J. Larus, E. Peterson, S. Pope, A. Smith, J. Thong, P.Y. Xiao, D. Burger,

A Reconfigurable fabric for accelerating large-scale datacenter services, in Procceedings of

the ACM/IEEE International Symposium on Computer Architecture (ISCA) (June 2014), pp.

13-24

A.Putnam, A. Caulfield, E. Chung, et al., Large-scale reconfigurable computing in a Microsoft

datacenter, in Proceedings of Hot Chips 26 (August 2014)

D.A. Buell, J.M. Arnold, W.J. Kleinfelder, Splash 2: FPGAs in a Custom Computing Machine.

(Wiley-IEEE Computer Society Press, 1996)

B.S.C. Varma, K. Paul, M. Balakrishnan, D. Lavenier, FAssem: FPGA based acceleration of

de novo genome assembly, in Proceeding of the Annual International IEEE Symposium on

Field-Programmable Custom Computing Machines (April 2013), pp. 173-176

D.R. Zerbino, E. Birney, Velvet: algorithms for de novo short read assembly using de Bruijn

graphs. Genome Res. 18(5), 821-829 (2008)

B. Langmead, C. Trapnell, M. Pop, S.L. Salzberg, Ultrafast and memory-efficient alignment

of short DNA sequences to the human genome. Genome Biol. 10(3), R25 (2009)

H. Li, R. Durbin, Fast and accurate short read alignment with burrowswheeler transform.

Bioinformatics 25(14), 1754-1760 (2009)

H.M. Waidyasooriya, M. Hariyama, Hardware-acceleration of short-read alignment based on

the burrows-wheeler transform. IEEE Trans. Parallel Distrib. Syst. 1-8 (2015), http:/www.

computer.org/csdl/trans/td/preprint/07122348-abs.html

London Stock Exchange Group, Turquoise derivatives: FTSE 100 Index Futures

(June 2013). Factsheet, https://www.lseg.com/sites/default/files/content/documents/LSEG_

FTSE_100_Futures_Factsheet.pdf

London Stock Exchange Group, Turquoise derivatives: FTSE 100 Index Options

(June 2013). Factsheet, https://www.lseg.com/sites/default/files/content/documents/LSEG_

FTSE_100_Options_Factsheet.pdf

Singapore Exchange, SGX invests $250 million to offer fastest access to Asia (June 2010).

News Release, http://investorrelations.sgx.com/releasedetail.cfm?releaseid=590607

The New York Stock Exchange, NYSE MKT transition to NYSE American (March 2017),

https://www.nyse.com/publicdocs/nyse/markets/nyse-american/Pillar_Update_NYSE_

American_March_2017.pdf

M. Lewis, Flash Boys: A Wall Street Revolt (W. W. Norton & Company Inc., 2014)

R. Cont, Statistical modeling of high-frequency financial data. IEEE Signal Process. Mag.

28(5), 16-25 (2011)

Viraf Reporter, The value of a millisecond: finding the optimal speed of a trading infrastructure.

Technical report, TABB Group (April 2008), https://community.rti.com/sites/default/files/

archive/V06-007_Value_of_a_Millisecond.pdf

G. Linden, Make data useful. CS345, Stanford University (December 2006), first version

jel, Hacking a HFT system. The Financial Hacker (July 2017). The Financial Hacker: a new

view on algorithmic trading, http://www.financial-hacker.com/hacking-hft-systems/

M. O’Hara, FPGA and hardware accelerated trading, part five the view from Intel (August

2012). The Trading Mesh, http://www.thetradingmesh.com/pg/blog/mike/read/60770/fpga-

hardware-accelerated- trading-part- five- the- view-from-intel

E.M. Murphy, Order instituting administrative and cease-and-desist proceedings, pursuant to

sections 15(b) and 21c of the securities exchange act of 1934, making findings, and imposing

remedial sanctions and a cease-and-desist order. The Securities and Exchange Commission,

https://www.sics.se/sites/default/files/pub/sics.se/doug_burger_catapult_-_sics.pdf
https://www.sics.se/sites/default/files/pub/sics.se/doug_burger_catapult_-_sics.pdf
http://www.computer.org/csdl/trans/td/preprint/07122348-abs.html
http://www.computer.org/csdl/trans/td/preprint/07122348-abs.html
https://www.lseg.com/sites/default/files/content/documents/LSEG_FTSE_100_Futures_Factsheet.pdf
https://www.lseg.com/sites/default/files/content/documents/LSEG_FTSE_100_Futures_Factsheet.pdf
https://www.lseg.com/sites/default/files/content/documents/LSEG_FTSE_100_Options_Factsheet.pdf
https://www.lseg.com/sites/default/files/content/documents/LSEG_FTSE_100_Options_Factsheet.pdf
http://investorrelations.sgx.com/releasedetail.cfm?releaseid=590607
https://www.nyse.com/publicdocs/nyse/markets/nyse-american/Pillar_Update_NYSE_American_March_2017.pdf
https://www.nyse.com/publicdocs/nyse/markets/nyse-american/Pillar_Update_NYSE_American_March_2017.pdf
https://community.rti.com/sites/default/files/archive/V06-007_Value_of_a_Millisecond.pdf
https://community.rti.com/sites/default/files/archive/V06-007_Value_of_a_Millisecond.pdf
http://www.financial-hacker.com/hacking-hft-systems/
http://www.thetradingmesh.com/pg/blog/mike/read/60770/fpga-hardware-accelerated-trading-part-five-the-view-from-intel
http://www.thetradingmesh.com/pg/blog/mike/read/60770/fpga-hardware-accelerated-trading-part-five-the-view-from-intel

7 Programmable Logic Devices (PLDs) in Practical Applications 205

95.
96.

97.

98.

99.

100.

101.

102.

103.

104.

https://www.sec.gov/litigation/admin/2013/34-70694.pdf (October 2013), release #70694,
File #3-15570

T. Makimoto, Implications of Makimoto’s wave. Computer 46(12), 32-37 (2013)

C. Leber, B. Geib, H. Litz, High frequency trading acceleration using FPGAs, in International
Conference on Field Programmable Logic and Applications (September 2011), pp. 317-322
M. Dvortdk, J. Kofenek, Low latency book handling in FPGA for high frequency trading, in
International Symposium on Design and Diagnostics of Electronic Circuits Systems (April
2014), pp. 175-178

J.W. Lockwood, A. Gupte, N. Mehta, M. Blott, T. English, K. Vissers, A low-latency library
in FPGA hardware for high-frequency trading (HFT), in I[EEE Annual Symposium on High-
Performance Interconnects (August 2012), pp. 9-16

J.W. Lockwood, A. Gupte, N. Meh, M. Blott, T. English, K. Visser, A low-latency library
in FPGA hardware for high-frequency trading (HFT), in Proceedings of IEEE 20th Annual
Symposium on High-Performance Interconnects (August 2012), pp. 9-16

OpenCL running on FPGAs accelerates Monte Carlo analysis of Black-Scholes financial
market model by 10x, https://forums.xilinx.com/t5/Xcell-Daily-Blog/OpenCL-running-on-
FPGAs-accelerates- Monte-Carlo-analysis-of/ba-p/435490

Altera Staff, Implementing FPGA design with the OpenCL standard. White Paper WP-01173-
3.0, Altera Corporation (November 2013)

D.B. Thomas, Acceleration of financial Monte-Carlo simulations using FPGAs, in IEEE
Workshop on High Performance Computational Finance (November 2010), pp. 1-6

M. O’Hara, Accelerating transactions through FPGA-enabled switching: an interview with
John Peach of Arista networks. HFT Review Ltd. (June 2012)

T. Yanagisawa, H. Kurosaki, A. Nakajima, Activities of JAXA’s innovative technology center
on space debris observation, in Advanced Maui Optical and Space Surveillance Technologies
Conference (2009)

https://www.sec.gov/litigation/admin/2013/34-70694.pdf
https://forums.xilinx.com/t5/Xcell-Daily-Blog/OpenCL-running-on-FPGAs-accelerates-Monte-Carlo-analysis-of/ba-p/435490
https://forums.xilinx.com/t5/Xcell-Daily-Blog/OpenCL-running-on-FPGAs-accelerates-Monte-Carlo-analysis-of/ba-p/435490

Chapter 8 ®)
Advanced Devices and Architectures Geda

Masato Motomura, Masanori Hariyama and Minoru Watanabe

Abstract The last chapter of this book is for advanced devices and brand new
architectures around FPGAs. Since the basic logic blocks of FPGAs are consist-
ing of LUTs, they are called fine-grained reconfigurable architectures. In contrast,
coarse-grained reconfigurable architectures use processing elements to improve the
performance per power for computation-centric applications. Dynamic reconfigura-
tion is also easily done in such an architecture, and the configuration data set is called
a hardware context. By switching hardware context frequently, they can achieve bet-
ter usage of semiconductor area. The next part is asynchronous FPGA which can be
a breakthrough of high-performance operation with low-power consumption. The
handshake mechanism, a key component of such architectures, is explained in detail.
3D implementation is another new trend, while 2.5D is now in commercial use. The
last part of this chapter is for activities of optical techniques around FPGAs for drastic
improvement I/O and reconfiguration performance.

Keywords CGRA - Hardware context - Asynchronous FPGAs
Optical I/O - Optical reconfiguration

8.1 Coarse-Grained Reconfigurable Architecture

As was explained in Chap. 1, FPGAs started as devices for prototyping small-scale
logic circuits. As they become larger in accordance with the shrink in transistor
size, the idea to use FPGAs as acceleration devices is getting more popular, as

M. Motomura
Hokkaido University, Sapporo, Japan
e-mail: motomura@ist.hokudai.ac.jp

M. Hariyama (B<)
Tohoku University, Sendai, Japan
e-mail: hariyama@tohoku.ac.jp

M. Watanabe
Shizuoka University, Shizuoka, Japan
e-mail: tmwatan @ipc.shizuoka.ac.jp

© Springer Nature Singapore Pte Ltd. 2018 207
H. Amano (ed.), Principles and Structures of FPGAs,
https://doi.org/10.1007/978-981-13-0824-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0824-6_8&domain=pdf
http://dx.doi.org/10.1007/978-981-13-0824-6_1

208 M. Motomura et al.

demonstrated in Chap.7. This approach, known as reconfigurable computing or
reconfigurable systems, is becoming more important as CPUs performance improve-
ment are slowing down. It is natural to use an array of LUTs when the main purpose
of an FPGA is prototyping.

As a device for reconfigurable computing, however, it may make more sense to
use other primitive elements. To fit better for the acceleration of computing functions,
such elements might be less versatile, but they should be more efficient in computing
than LUTSs. This is how coarse-grained reconfigurable architectures (CGRAs) have
been proposed and investigated.

8.1.1 CGRA Basics and History

Starting from the 1980s, CGRAs have been mostly presented by universities and
startups. The well-known ones are PipeRench from CMU and XPP from PACT, in
addition to others [1]. Recently proposed good examples of such architectures, both
in Japan, are CMA from Keio University [2] and LAPP from NAIST [3]. As shown
in Fig.8.1, a CGRA can be represented as an array of operation units and memo-
ries, associated with a network structure connecting them. As for the operation units
granularity, there are varieties such as: 4, 8, 16, and 32 bits. The finer the architecture
is the more it becomes like an FPGA. On the other hand, the coarser it is the more
it becomes like a traditional parallel processor. As for the instruction set, traditional
arithmetic logic operations are commonly found, as well as extended instructions
for customized acceleration of target applications. The array configuration may not
necessarily be a two-dimensional one as in FPGAs, but also a one-dimensional array
when a target application is sufficient with linear processing. Either dynamic switch-
ing on-chip routing networks or static switching interconnection fabrics are used for
the network in Fig.8.1.

8.1.2 CGRA Design Space

Since CGRAs are equipped with operation units customized for given applications,
they surpass FPGAs, in general, in processing performance and density. High density
means more parallel operation units can be integrated into the same area. This also
translates into better processing performance. In addition, configuration information
can become much smaller compared to FPGAs. It is known that a major portion of
configuration information is spent on interconnections: FPGA architectures require
specifying bit-level interconnections. While in the CGRA case, interconnections are
bundled to the coarse granularity specified by the architecture. Another important
CGRA merit to note is its familiarity to design tools. This is very important since
software programmers, in the reconfigurable computing field, are the users who map
target applications onto the CGRA architecture.

http://dx.doi.org/10.1007/978-981-13-0824-6_7

8 Advanced Devices and Architectures 209

‘ Registers |
\ Registers |
em

[Registers ‘

‘ Registers ‘

\ Registers ‘
emo

emo

‘ Registers ‘

[Registers ‘
\ Registers ‘

[\t JH\ e S

Memory Memory Memory

F.U.: Functional Unit

Fig. 8.1 Generalized CGRA architecture

There are also drawbacks in the CGRA approach. First, they become less gen-
eral purpose when compared to FPGAs because of their structure. Considering that
FPGAs have occupied a large portion of the market, because it is a general-purpose
device (at least from the HW prototyping point of view), this is a major issue to
be carefully considered. Many CGRA architectures ended up being just research
prototypes because of this reason.

Another issue to carefully consider when defining the CGRA architecture is to
efficiently utilize the hardware-based computation as much as possible. For example,
when choosing a single bit from an 8-bit data, an FPGA needs just to wire the desired
bit. Whereas in the CGRA case, an 8-to-1 selector or shifter is required. This means
that an overhead is incurred both in performance and area.

Based on considerations such as the ones above, CGRA architectures are mainly
considered as a tightly coupled accelerator to a CPU core, but not a replacement to
FPGA. For example, CMA and LAPP allow the CGRA core to directly access CPU
registers so that it can accelerate sub-tasks of a CPU (such as frequently executed
loops).

210 M. Motomura et al.

8.1.3 Dynamically Reconfigurable Architecture

When an FPGA is used as a computation device, a resource limitation issue may
rise; i.e., what should be done when the required computation does not fit within the
hardware resources of a given FPGA? This problem is easy to solve when FPGAs
are considered for prototyping: Just increase the number of FPGA chips and make
the connection between them. If only computation is concerned, just like software
does, a reconfigurable computation solution should robustly account for variously
sized applications. This is the reason why dynamically reconfigurable architectures
were investigated.

One of the earliest works in this area is WASMII from Keio University, Japan [4].
This work proposed quite an advanced concept where hardware is considering as a set
of pages, which can swap in and out (Fig. 8.2). In conventional operating systems, a
virtual memory allows a large memory space that does not fit in a physically available
memory, to be allocated to applications using a page-by-page swapping method.
Similarly to virtual memory, in WASMII, the page-oriented hardware architecture
allows virtual hardware, where a virtually large hardware can be put on a physically
existing small reconfigurable device.

Fig. 8.2 WASMII execution FPGA Chip
model

—» Config.
RAM1
RAM2
RAM3

Config.
—»
—

— Backup RAM

Multiplexer

8 Advanced Devices and Architectures 211

8.1.4 Case Study: DRP

Dynamically Reconfigurable Processor (DRP) is a coarse-grained, dynamically
reconfigurable architecture proposed by NEC Corporation in 2002 [5]. The archi-
tecture was mainly developed for an IP core integrated into an SoC. This section
overviews DRPs as an example of dynamically reconfigurable architectures (they
are also an example of a CGRA described in the previous section).

Figure 8.3 shows its basic architecture. A processing element (PE), that constitutes
a two-dimensional array, is composed of two general-purpose 8-bit ALU, register
file, and instruction memory. The two ALUs have bit-manipulation instructions such
as bit mask/select, so that it can cover bit-level operations that FPGA can handle
well. PEs are interconnected to each other with an 8-bit-width hierarchical bus. Bus
selectors connect those ALUs and a register file with vertical/horizontal buses.

An instruction memory stores a set of hardware configurations, from which one
configuration is selected, i.e., hardware dynamic reconfiguration. Each instruction
includes operation codes for the two ALUs, as well as control bits for the bus selec-
tors. For example, it is possible to bypass the register file in a PE and connects the
ALU outputs to inputs of other PEs in a flow-through manner. Ordinary processors
store outputs produced at one cycle into registers and then read those registers for
following cycles. The PEs in a DRP, on the other hand, spatially connect plural PEs
for constructing a customized datapath.

The PE array is associated with an state transition controller (STC), which is
responsible for managing the dynamic reconfiguration. A basic role of an STC is to
dispatch instruction pointer to the array: Each PE receives the pointer, then selects,
and reads a specified instruction. The STC has a sequencer which keeps track of
the state transitions of a given application. When a new pointer is dispatched, all
the instructions of PEs, as well as all the interconnections in the PE array, change at
once. This operation can be interpreted such that the hardware configuration changes
among the datapath contexts stored in the memory. This makes it similar to the WAS-
MITI’s concept explained in Fig.8.2. Conditional state transitions require branches
which need to examine branch conditions. Information required for this examination
is returned back from the datapath as event signals to the STC.

A DRP core is made up of multiple tiles of PEs. Each tile has its own STC to
control the reconfiguration. Hence, multi-tiled DRPs can run multiple state machines
in parallel. There is also a mechanism to connect multiple tiles and control them by
a single state machine.

The execution model of DRPs is usually learned from high-level synthesis tool
which is a tool to compile a program written in high-level language like C to an
executable hardware. Generally speaking, a program has control flows which are
composed of conditional branches and loops, etc., and data flows which are trees of
data handling operations. High-level synthesis tools compile control flows to finite-
state machines, and data flows to hardware datapaths. DRP architectures feature
clear one-to-one correspondence with this generic high-level synthesis model: STCs
manage finite state machines, and PE arrays handle datapath. Here, a datapath asso-

212 M. Motomura et al.

Processing Element (PE)

DRP Core

= Byte-oriented ALUs

= Byte-width vertical/horizontal buses
and registers

= Several tens of configuration sets

State Transition Controller (STC)

= Controls “dynamic reconfiguration”

Data Memory (Mem)

= Dual port
= Single port

16b Multiplier (MPY)

Control In
Data Control J Data Instruction Set
I TR — ——
= Op. Code Connect Code
Data 5 Data | Agd, Sub Data_in/out
e ¢ Output | And, Or, Exor
$ (8bx1) | shift, Compare| 4 | Control_infout
(8bx2) 3 2-1 Select
£ X Mask & Shift Crossbar

Accm, Match
Switch i

Control Out

Fig. 8.3 DRP architecture

ciated with each state is called “context.” Contexts are generated when (1) they are
associated with states in the control flow, or (2) when there is a resource limitation
and a context should be divided into multiple ones.

DRPs feature GUI-based high-level synthesis-oriented tool flow (Fig. 8.4). Con-
text generation is all handled by this tool, and designers do not have to worry about
how to decompose hardware datapaths. The DRP core, which is now owned by Rene-
sas Electronics and a commercially used dynamically reconfigurable architecture, has
been used in products such as video cameras and digital cameras.

8 Advanced Devices and Architectures 213

l'L[J_'_
Finite
State Datapath
Machine Plane RTL ||

< High-level synthesis
v Cto RTL
v Generates FSM and data path RTL
< Mapper
v RTL to PE-level netlist
PE/Memory <+ Place & Router
Sy .Code v Create datapath configurations
DRP Obiect Code v Locate and connect PEs and memories

Fig. 8.4 DRP design tool

8.1.5 Relation to Parallel Processors

An important consideration in conducting dynamic hardware reconfiguration is the
need to load large amount of configuration information at once. Typically, dynam-
ically reconfigurable architectures feature one to several clock cycle latencies for
this hardware context switch (for DRP, it is less than a single cycle). This is the
reason why such architectures, including DRPs, adopt CGRAs in order to reduce
configuration information.

Dynamically reconfigurable CGRA hardware may look very similar to on-chip
many-core parallel processors (such as Xeon Phi from Intel). The difference becomes
clear when their execution models are examined:

e Dynamically reconfigurable CGRA: A block of instructions are first spatially
mapped on an array of processing elements (it constitutes a hardware context).
Then, the hardware contexts are multiplexed in time (space to time order).

e On-chip many-core parallel processor architecture: It first assigns a block of
instructions to a single processor as a thread. Then, multiple threads are mapped
onto a processor array among which the synchronization will take place from time
to time (time to space order).

214 M. Motomura et al.

8.1.6 Other Architecture Examples

FPGA-based (i.e., fine-grained) dynamically reconfigurable hardware architectures
were proposed in Tabula [1]. Tabula exploits dynamic reconfiguration for speeding
up FPGA operational frequency. That is, it divides the critical path into several
segments and maps them to different hardware contexts. Tabula was proposed for
realizing over-GHz range FPGA for high-end applications (the project was suspended
in 2015).

8.2 Asynchronous FPGA

8.2.1 Problems of Conventional Synchronous FPGAs

In conventional synchronous circuits, some serious problems become obvious as
the miniaturization of semiconductor process continues. Figure 8.5 shows the global
clock network of synchronous FPGAs. The global clock network is connected to
the clock inputs of all registers. A register loads data only at the rising edge of the
clock pulse. As soon as the data is loaded, it appears on the output. The data on the
register output is used as the input of the logic circuits. The result of these circuits is
used as the input of the following register. FPGAs usually have much larger circuits
and have much more registers than application-specific integrated circuits (ASICs).
Therefore, conventional synchronous FPGAs have larger parasitic capacitance of the
global clock network and require much more clock buffers to reduce clock skews.
This causes the following problems:

e The clock network consumes larger power.
e The speed is limited by the clock skews.

As for conventional synchronous FPGAs, lowering the power consumption is not
so easy compared to ASICs due to the following reasons:

Difficulty to use clock gating: Clock gating is a major technique to reduce the power
consumption in ASICs. It prevents the input of a circuit from causing unnecessary
signal transitions when the circuit is unused. When using clock gating for ASICs,
designers should carefully design the customized clock network to avoid clock skews,
and the clock network is fixed at the manufacturing phase. As for FPGAs, the clock
network cannot be customized for a certain circuit since various circuits are imple-
mented on FPGAs. Moreover, it is not recommended to use the clock network that
can be reconfigured for the clock gating, since reconfiguring the clock network causes
faults due to clock skews.

Difficulty to use power gating: Power gating is another major method to reduce the
power consumption in ASICs. It turns the circuits power off when they are not in use
and wake them up just before being used. The power gating requires control circuits

8 Advanced Devices and Architectures 215

(Prom) foe)

Clock
buffer

Fig. 8.5 Global clock network of synchronous FPGAs

and dedicated connections to distribute these control signals. Especially in FPGAs,
these overheads are significantly large due to the flexibility of FPGAs.

8.2.2 Overview of Asynchronous FPGAs

In order to solve the problems of the synchronous FPGAs, FPGAs based on asyn-
chronous circuits are proposed. Figure 8.6 shows the basic behavior of an asyn-
chronous circuit. Data transfers between processing modules are done using a hand-
shake protocol as follows. At first, the sender sends the data and a request signal to
the receiver. The request signal is used to inform the receiver of the data arrival. After
receiving the request signal, the receiver takes the data in and sends the acknowledge
signal to the sender. The acknowledge signal is used to inform the sender that the

Fig. 8.6 Basic behavior of Request
an asynchronous circuit [| signal .
Sender | Receiver |
module | module
Acknowledge

signal

216 M. Motomura et al.

receiver has completed receiving the data. After the acknowledge signal reception,
the sender sends a new data in the same manner.

The advantages of asynchronous circuits over synchronous ones are summarized
as follows:

No dynamic power consumption in the inactive state: An asynchronous circuit
does not consume power consumption when not processing data. This is because it
does not have the global clock network that always transfers the clock pulse.

Low peak power or peak current: In asynchronous circuits, processing modules
start to process data after they receive it. Since the data arrival times vary from
each other, the durations of the power consumption peaks (and current peaks) of the
modules vary from each other as well. As a result, the average power consumption
of the whole circuit becomes low.

Low-Level electromagnetic radiation: Since the peak current is low as described
before, the level of the electromagnetic radiation is also low.

Robust to the fluctuation of the supply voltage: Even when the supply voltage
decreases slightly, it is guaranteed that the output of the circuit is correct thanks to
its clock-less operation.

The major disadvantage of asynchronous circuits is their larger amount of hard-
ware for control, e.g., circuits that detect data arrival, and the additional wires for
acknowledge and request signals.

In asynchronous circuits, there are three major types of handshake protocols [6]:

(1) Bundled data protocol,
(2) Four-phase dual-rail protocol, and
(3) Level-encoded dual-rail (LEDR) protocol.

The bundled data protocol is also called single-rail protocol. It represents one
bit of data by using a single-rail-like synchronous circuits. A word to be transferred
consists of multiple data bits and 1-bit request signal. Hence, the overhead for control
is only 1-bit per word, which can be considered as very small. The disadvantage of
the bundled data protocol is that it requires a timing constraint for the request signal;
the request signal must arrive at the receiver module after the data. In order to ensure
this, a delay buffer is usually inserted into the request signal wire as shown in Fig. 8.7.

Figure 8.8 shows the data transfer and the encoding of the four-phase dual-rail
protocol. In this protocol, a word to be transferred from the sender has 2 bits: 1
bit for data and 1 bit for the request signal, as depicted in Fig.8.8a. The receiver
sends the 1-bit acknowledge signal back to the sender. In general, 1-bit acknowledge
signal is enough for multiple words. Figure 8.8b illustrates the encoding. Data “0”
and “1” is represented by code words (D;, Dy) = (0, 1) and (D;, Dy) = (1,0),
respectively. As a separator between data, the spacer (D;, Dy) = (0, 0) is used.
Note that (D;, Dy) = (1, 1) is invalid. Let us consider an example of data transfer
represented in Fig. 8.8c, where data “1”, “17, “0”, and “0” are transferred. Since the
sender sends a code word and the spacer alternatively, the receiver can detect the
data. In the four-phase dual-rail protocol, the racing problem caused by the arrival
timings of data and the request signal does not occur. In other words, D; and D s do

8 Advanced Devices and Architectures 217
Fig. 8.7 Bundled data Request signal
protocol
Delay buffer
Sender ~Data | Receiver
1 >
module s ! "| module
< N
Acknowledge signal
Fig. 8.8 Four-phase (a)
dual-rail protocol Dt
Sender pf Code word .| Receiver
module Acknowledge signal module
(b) (Dt, Df)
0,1)
Data
(1,0
Spacer (0,0)
* Code word (1,1) is invalid
(c)
Data: “1” 1", “0", “0”
“1” “1” “0” “0”
- \ S/ _— Time

/ /

Spacers

not change at the same time. This is because the code words are designed such that
the Hamming distance between any two code words is one. Hence, the four-phase
dual-rail protocol is more robust for timing variations than the single-rail protocol.

The circuit of the four-phase dual-rail protocol is simpler than that of the LEDR
protocol, described below, since the data corresponds to a single code word. The
disadvantage of the four-phase dual-rail protocol over the LEDR protocol is its lower
throughput due to the insertion of the spacer.

The LEDR protocol is suitable for high-throughput data transfer. Figure 8.9 shows
the data transfer and the encoding of the LEDR protocol. The way of data transfer
is the same as the four-phase dual-rail protocol, as presented in Fig.8.9a. The big
difference between the four-phase dual-rail and LEDR protocols is the encoding,
as demonstrated in Fig.8.9b. Data “0” is encoded by two different code words:
(V, R) = (0,0) in phase 0 and (V, R) = (0, 1) in phase 1. Data “1” is also encoded
by two different code words: (V, R) = (1, 1) in phase 0 and (V, R) = (1,0) in
phase 1. Let us consider an example of a data transfer using the phases, as shown in
Fig.8.9¢c, where data “1”, “1”, “0”, and “0” are transferred. In the LEDR protocol,
the code word in phase 0 and the code word in phase 1 are alternatively transferred.
The receiver can detect the change of data by detecting the change of phases. Since
the LEDR protocol dose not need spacers, it can achieve high throughput. The dis-
advantage of this protocol is that it requires larger circuits since one data value has
two different code words.

218 M. Motomura et al.

Fig. 8.9 LEDR protocol (a)
\
Sender R Receiver
module Acknowledge signal module
®
alue | (V,R) Value| (V,R)
0 (0, 0) 0 0, 1)
Phase 0 Phase 1
1 1,1 1 (1,0
(c)
Data: “1”, “1” “0”, “0”
Phase 0 Phase 1 Phase 0 Phase 1
“1” “1” “0” “0”
Time

Hereafter, we explain asynchronous FPGAs. Asynchronous FPGAs using the
bundled data protocol have been proposed [7, 8]. Although they benefit from the
used small circuits, the main disadvantage is their low performances due to the large
delay buffers inserted in the request signal wire to ensure the correct behavior for
various datapaths.

As for asynchronous FPGAs protocol, the dual-rail protocol is ideal since it can
avoid the racing problem mentioned above without any timing constraints on the data
nor the request signal. Figure 8.10 shows a basic architecture based on the dual-rail

LB: Logic block
CB: Connection block
SB: Switch block

TTTT ! TTTT ¥ TTTT

Fig. 8.10 Asynchronous FPGA based on the dual-rail protocol

8 Advanced Devices and Architectures 219

Pre-charge —<+L<|E—
[>o OUTt
'—Do— OUTf

moo4[Mood[mo14C motdL m1o4L w104l m114L wm114

t At At

A
Bf _[‘r Bt {:
Evaluate —{i

Fig. 8.11 LUT for the four-phase dual-rail protocol (2-input LUT)

Af

protocol [9]. Similar to conventional synchronous FPGAs, logic blocks (LBs) are
connected to each other via connection blocks (CBs) and switch blocks (SBs). An
interconnection unit consists of wires for code words and the acknowledge signal.
Among the dual-rail protocols, the four-phase dual-rail protocol is employed to
implement small circuits [10, 11]. Figure 8.11 shows the structure of an look-up table
(LUT), where, for simplicity, the numbers of inputs and outputs are limited to two and
one, respectively. The four-phase dual-rail protocol is suitable for dynamic circuits
which are used for area-efficient design. This is because the pre-charge signals and
the evaluation signal are easily generated from the spacer. The number of bits of
the configuration memory is 2" for an N-input LUT like conventional synchronous
FPGAs. In the case of Fig.8.11, the 2-input LUT has a 4-bit configuration memory
(M00, MO1, M10, M11). The output (OUT,, OUTy) is determined according to the
configuration memory and the external inputs (A;, A) and (B, By).

8.2.3 Design for Low Power, High Throughput,
and Modularity

For low power, asynchronous circuits can provide some design information, and
intelligent control is realized based on this information. For example, the receiver
module can detect the data arrival by using the request signal; the sender module
can know whether the receiver module is ready to load data. In [12], fine-grained
adaptive control of the supply voltage is proposed to reduce the dynamic power
consumption. According to the state of the receiver module, the sender module
adaptively controls its supply voltage and processing speed. In [13], fine-grained
power gating is proposed to reduce the static power consumption caused by the
leakage current of transistors. Each module detects the arrival of its inputs data by

220 M. Motomura et al.

using the request signal that is sent from the sender module. If the inputs do not arrive
within a predefined time, the module automatically turns the supply voltage of the
core circuit off. When the inputs come, the module wakes its core circuit up [13].

In order to achieve high throughput, fine-grained pipelining is frequently employed
for high throughput datapaths [11, 14-16]. From the point of view of data trans-
fer, the protocol hybrid architecture is proposed, where the LEDR protocol is used
for high-throughput data transfer and the four-phase dual-rail protocol is used for
simple datapaths [9, 17]. Moreover, the hybridization of synchronous circuits and
asynchronous circuits is proposed [18]. When a significant amount of input data
continuously arrives, synchronous circuits are considered to be efficient in terms
of power consumption. On the other hand, asynchronous circuits are efficient for
the case when the data arrival is less uniform. Based on this observation, an LUT
is designed to be used in both asynchronous circuit and synchronous circuit while
sharing the circuit. Depending on the used applications, the blocks of LUTs are con-
figured as asynchronous or synchronous circuits. Note that both of asynchronous and
synchronous circuits can coexist on a single FPGA. High throughput and low power
can be optimally achieved by combining the asynchronous and synchronous circuits
based on their aptitudes for different applications.

One major problem in asynchronous circuits is their difficulty to program. The
reason is that the design for modularity is not easy in asynchronous circuit. To solve
this problem, design methods using handshake components are proposed for general
asynchronous circuits [19, 20]. Handshake components are basic building blocks to
describe the data flow and control flow, including arithmetic/logic operations, condi-
tional branch, and sequence control. Designing circuits is easily done by connecting
such handshake modules. In [21], an asynchronous FPGA is proposed whose logic
blocks are suitable to implement the handshake components.

8.3 3D FPGA

As described before, FPGAs consist of a configuration memory, programmable inter-
connection units, and programmable logic circuits to achieve a high degree of flexi-
bility. Such redundant resources lead to a lower area efficiency compared to ASICs.
Moreover, the complex interconnection causes a large delay and degrades the per-
formance. These problems will be more serious in the near future since the minia-
turization of the semiconductor manufacturing process nears the physical limit.

Based on this background, applying 3D integration technologies such as TSV
(Through Silicon Vias) [22-24] to FPGAs is strongly desired. 3D FPGAs are clas-
sified into two types: heterogeneous and homogeneous.

Figure 8.12 shows the conventional 2D FPGA architecture and the 3D heteroge-
neous architecture. As shown in Fig. 8.12 (bottom), different resources such as logic
blocks, routing blocks, and a configuration memory are distributed into different lay-
ers; the resources in different layers are connected by using interconnections such as
TSV. Therefore, the heterogeneous architecture can increase the resource density per

8 Advanced Devices and Architectures

Configuration memory cell

Conventional 2D FPGA

layer

Configuration memory

Interconnection
resource layer

Fig. 8.12 3D FPGA (heterogeneous architecture)

3D FPGA (Heterogeneous architecture)

Connection
(TSV, etc.)

221

footprint [25-28]. The scalability along the vertical direction of the heterogeneous
architecture is lower than that of the homogeneous architectures, described below,
since the number of layers is limited by the number of resource types.

Figure 8.13 shows the 3D homogeneous architecture. Each layer has the same
functions as a 2D FPGA, that is, logic blocks, routing blocks, a configuration mem-
ory. The routing block is designed such that it connects the logic blocks in the same
layer and also connects the routing blocks in different layers via vertical connec-
tions [29-32]. Hence, the homogeneous architecture is an extension of the 2D FPGA
architecture to the third dimension. When the number of stacked layers increases
in accordance with the progress of the 3D integration technology, the total circuit

222 M. Motomura et al.

Connection
(TSV, etc.)

Fig. 8.13 3D FPGA (homogeneous architecture)

size of a 3D FPGA can also increase linearly. Moreover, the performance could be
improved compared to 2D FPGAs. When mapping circuits with complex topology
onto a conventional 2D FPGA, the connected circuit blocks are not always mapped
onto near logic blocks. As a result, it may result in mapping with long wires. 3D
FPGAs can map such circuits onto near logic blocks by using different layers.
Hereafter, the issues of 3D FPGAs are summarized. The first issue is the challenge
facing the technologies to use for the vertical connections, which should be cheap and
highly reliable. Moreover, when increasing the number of layers in the homogeneous
architecture, the thermal radiation can be critical as well as CAD support [33-39].

8.4 High-Speed Serial I/0

Microsoft recently announced a server using the Stratix V FPGAs to be used in its
data center for Bing search engine [40]. Although the introduction of FPGAs has
increased the power consumption by 10%, it enhanced the throughput by 95% when
compared to the software implementation. Thus, this has emphasized the effective-
ness of FPGAs. In this implementation, the 10-Gbps high-speed communication port
of the FPGA is used for a mutual network that is indispensable in a data center. In
recent years, this case underscores the further emerging importance of networks that
can leverage FPGA applications.

As described in Chap. 3, recent FPGAs provide many general-purpose inputs/
outputs (GPIOs) that can accommodate various devices such as memories. GPIOs
readily realize an interface with various devices connected to an FPGA at a high
bandwidth. Recent FPGAs are equipped with serial I/Os that allow high-speed com-
munications of Gbps order in addition to GPIOs, as highlighted in the data center
case described above. Accordingly, short-distance communications between FPGA

http://dx.doi.org/10.1007/978-981-13-0824-6_3

8 Advanced Devices and Architectures 223

chips, middle-distance communications between systems including FPGA chips,
and long-distance network communications between systems including FPGA chips
have been implemented at higher speeds. Xilinx Inc. and Altera Corp. mutually com-
pete in terms of performance, and they are locked in a development race to mount
more high-speed serial I/Os on their own cutting-edge FPGAs. As a result, FPGAs
communication performance has improved rapidly in recent years. The importance
of serial I/Os in FPGAs is anticipated to further increase in the future. Therefore,
this section describes these high-speed serial I/Os in the Stratix family devices, as
an example.

84.1 LVDS

The Stratix family supports differential interfaces of small amplitude such as Low
Voltage Differential Signaling (LVDS) [41], Mini-LVDS [42], and Reduced Swing
Differential Signaling (RSDS) [43]. Mini-LVDS and RSDS are standards derived
from LVDS for computer displays, formulated, respectively, by Texas Instruments
Inc. and National Semiconductor. This section describes LVDS, which has been
standardized by ANSI/TIA/EIA-644. The Stratix family adopts LVDS that satisfies
this standard [44, 45].

LVDS is a one-way signal transmission standard under which a signal is trans-
mitted from a transmitting side to a receiving side using two lines, as indicated in
Fig.8.14. For example, in cases where a signal “1” is transmitted from the trans-
mitting side, transistors (1) and (2) in Fig.8.14 are turned ON for transmission. In
this event, the current flows from the current source on the transmitting circuit to the
upper line via transistor (1). A terminator is mounted on the receiving circuit. The
great portion of the current flows into the terminator and returns to the transmitting
circuit via the other line to flow into VSS via transistor (2). At this time, the poten-
tial between both terminals of the terminator on the receiving side rises to about
+350 mV. A differential amplifier on the receiving circuit detects this state. Then,
the receiving circuit determines it as a signal of “1”.

On the other hand, when transmitting a signal of “0”, transistors (3) and (4) on the
transmitting circuit are turned ON. Thereby, the current flows from the current source
through the lower line. Similarly to the description above, the current passes through
the terminator, returns to the transmitting terminal via the upper line, and flows into
VSS via transistor (3). At this time, a potential of —350 mV occurs at the terminator.
Consequently, the current flows in an opposite direction according to the transmitted
value of “1” or “0”, and a potential of +350 mV occurs on the receiving circuit. The
receiving circuit judges whether the transmitted value is “0” or “1” by detecting this
potential. This small amplitude allows high-speed and low-power communications.

The Stratix IV GX 40-nm FPGAs are equipped with 28-98 LVDS ports that sup-
port high-speed communications up to 1.6 Gbps [46]. The number of ports described
above is expressed by the number of full-duplex channels through which transmis-
sion and reception are conducted simultaneously; e.g.,“28 ports” denote that there

224 M. Motomura et al.

Current
source

@ - = @ Current Typ + 350mV
+
— <ﬂg
Ca 2
ON i . .
® - [@ Current Termination resistor
VSSs
Transmitting Differential receiving
circuit circuit

Fig. 8.14 Schematic view of LVDS transmitting and receiving circuits

are 28 LVDS ports for transmission and 28 LVDS ports for reception. The number
of available ports might be different depending on the package, even for FPGAs of
the same size. Meanwhile, the Stratix V manufactured by the 28-nm TSMC process
supports LVDS ports up to 1.4 Gbps [44]. The Stratix V GX device is equipped with
66—174 full-duplex LVDS ports [45].

The Stratix family I/Os for high-speed communications have a built-in hard macro
serializer/deserializer (SerDes) circuit up to 10 bit. It is difficult to build a commu-
nication circuit that can directly operate as fast as 1.4—1.6 Gbps inside an FPGA.
However, the hard macro of the serializer can easily convert a signal from a parallel
transmitting circuit using, for example, a 10-bit FIFO operating at a low clock fre-
quency into a high-speed serial signal as fast as 1.4—1.6 Gbps. The block diagram of
a transmitting circuit is presented in Fig. 8.14. The deserializer at a receiving circuit
can convert a 1-bit high-speed serial signal to a 10-bit parallel signal in the same way,
so that a receiving circuit can be constructed with a FIFO operating at a low clock
frequency. Furthermore, a resistance of 100 €2 that terminates the differential signal
at the receiving side of an LVDS is programmable in the Stratix V, so that high-speed
communications between FPGA chips can be easily implemented without extra parts
just with the board design considering the impedance. A guideline for board design is
provided from Altera. One report of the relevant literature is particularly useful [46]
in describing the board design (Fig. 8.15).

8.4.2 28-Gbps High-Speed Serial 1/0

Stratix still supports more high-speed serial I/O in addition to LVDS. For instance,
Stratix V GX FPGA and Stratix V GS FPGA are equipped with up to 66 high-speed
communication ports that operate at 12.5 Gbps. The Stratix V GT FPGA is equipped
with four 28-Gbps high-speed communication ports in addition to 32 14.1-Gbps
communication ports.

8 Advanced Devices and Architectures 225

Serializer
DIN DOUT—iz Be_out
LVDS
Transmitter
A
|

Fig. 8.15 Schematic block diagram of LVDS transmitting circuit of Stratix V

Z > Transmission output

128 bit 28Gbhit/s
ToFPGA Serializer Driver circuit
internal = .

g Serial
circuit
¢ Received signal
. : 28Gbit/s
128 bit Serial
1 clock Receiver circuit
Deserializer

Fig. 8.16 Stratix V 28-Gbps transmitting circuit

The Stratix has an embedded hard macro of a serializer/deserializer between
128 and 1 bit, so that 128-bit parallel data (provided via FIFO) is converted into
a 1-bit high-speed serial signal by the hard macro of the serializer. Finally, the sig-
nal is transmitted via a driver circuit in the same manner as the LVDS, previously
described in Fig. 8.16. Similarly, at the receiving side, the deserializer parallelizes the
received 28-Gbps high-speed serial signal into 128 bits to pass it through low-speed
FIFO. An error-free receiver circuit includes a clock data recovery (CDR) circuit
which can detect a phase shift between the internal clock and received data and can
correct it continually. Xilinx also supplies FPGAs that support such high-speed serial
communications. For example, the Virtex-7 HT FPGA has 28-Gbps communication
ports, which provide excellent communication performance.

8.4.3 FPGA with 120-Gbps Optical I/O

As described above, a transfer rate of the order of Gbps can be implemented even
with metal wiring. However, optical communications are beneficial in terms of power

226 M. Motomura et al.

Fig. 8.17 Appearances of 0.7424-mm pitch LGA sockets mounted on Stratix IV package (left)
with MicroPOD optical modules (Avago Technologies Ltd.) (right)

consumption for a distance of 10 m or more, as indicated in a report by Altera.
Optical modules have been adopted by Xilinx and Altera and have been mounted
on FPGA boards in recent years to support optical communications on the board
level. However, Altera and Avago Technologies developed and announced a more
pioneering optical FPGA with an optical communication interface mounted on an
FPGA chip in March, 2011 [47]. Although it is only a trial chip, and no plans for
marketing have been announced, its advanced architecture is introduced hereafter.

This optical FPGA is prototyped based on Stratix IV GT FPGA with 11.3-Gbps
I/Os for high-speed communications. The salient difference in this optical FPGA
from conventional FPGAs is that two of the four corners on its package are provided
with sockets of a 0.7424-mm pitch land grid array (LGA), as presented in Fig.8.17:
one for transmission and the other for reception. Each socket is plugged with a
dedicated optical module for optical communications supplied by Avago.

This Stratix IV GT FPGA has 32 full-duplex I/O ports for high-speed communi-
cations, 12 of which are allocated to these optical I/Os. Twelve 11.3 Gbps high-speed
serial I/Os on the FPGA are connected to the sockets for transmission, and 12 11.3
Gbps high-speed serial I/Os are connected to the sockets for reception. The optical
communication module is as small and compact as 8.2mm x 7.8 mm, as illustrated
in Fig.8.18.

Twelve vertical cavity surface emitting lasers (VCSELSs) are embedded in opti-
cal communication modules of the transmitting side, whereas 12 GaAs PIN pho-
todiodes are mounted in the optical communication module of the receiving side.
Optical communications are conducted through a 12-core fiber cable. The VCSEL
lasers can be aligned in two dimensions like common transistors on an integrated
circuit. The VCSEL can build a compact laser array [48]. This optical module allows
10.3125-Gbps data transfer per channel consisting of one VCSEL and one GaAsPIN
photodiode. In all, 12 channels in the module realize an overall transmission speed of
120 Gbps. In spite of such high-speed communications, a multimode fiber of OM4
grade accommodates long-distance transmissions as far as 150 m. It is highly likely
that such optoelectronics will become indispensable when ultra-high-speed I/Os over
28 Gbps become necessary in the future.

8 Advanced Devices and Architectures 227

Fig. 8.18 A MicroPOD optical module is mounted on an FPGA package with an LGA socket. Its
packaging area is 8.2mm x 7.8 mm

8.4.4 Optically Reconfigurable Architecture

Optically Reconfigurable Architecture by Caltech: Caltech announced an opti-
cally reconfigurable gate array (ORGA) using a holographic memory in April,
1999 [49]. This ORGA, the world’s first FPGA that can be reconfigured optically,
consists of a holographic memory, a laser array, a photodiode array, and an FPGA
component. Because its gate array component has a fine-grained gate array structure
that is identical to that of conventional FPGAs, its fundamental function appears to
be the same as that of the existing FPGAs to device users. However, unlike conven-
tional FPGAs, its programming method is optical reconfiguration. The holographic
memory of this optically reconfigurable gate array is used as a read only memory
(ROM). Multiple circuit information can be stored in the holographic memory in
advance. Then, this circuit information is addressed by the laser array. It is read out
as a two-dimensional diffraction pattern. This diffraction pattern is then recognized
by the photodiode arrays, transferred serially to the FPGA, and reconfigured. Studies
at Caltech have demonstrated the benefits of this optically reconfigurable gate array:
It can use large-scale properties of the holographic memory, it can carry multiple
circuit information, and its circuit information is programmable within 16-20 s
(Fig.8.19).

8.4.5 Japanese-Made ORGA

Research on ORGAs was also started at Kyushu Institute of Technology in Japan
in January 2000. The research base was later moved to Shizuoka University. The
research is still in progress. Since Caltech has reported no research on optically
reconfigurable devices since, Japan is presumably the only research base for ORGAs
in the world at present. Japanese ORGAs under development are introduced hereafter.

Several types of ORGAs are undergoing research and development in Japan,
including ORGAs that adopt an electrically rewritable spatial light modulation

228 M. Motomura et al.

Fig. 8.19 Optically
reconfigurable gate array
(Shizuoka University)

B Optically Reconfigurable
Gate Array]

element as a holographic memory [50, 51] and ORGAs that employ a laser array and
microelectromechanical systems (MEMSs) together to address a holographic mem-
ory [52]. An ORGA of a simple architecture, similar to that by Caltech, consisting
of a holographic memory, a laser array, and a gate array VLSI is introduced here.

ORGA s under development in Japan adopt a fine-grained gate array like Caltech’s
ORGA, so that the function of the gate array is the same as the existing FPGAs.
However, Japanese devices employ a fully parallel configuration, different from Cal-
tech’s, where the gate array has many photodiodes. Two-dimensional light patterns
generated by the holographic memory are read in a fully parallel mode by these
photodiodes. This optical reconfiguration approach allows dynamic reconfiguration
of the gate array in a cycle of 10 ns using large amounts of circuit information stored
in advance in the holographic memory. To date, ORGAs with circuit information of
256 types have been developed.

An ORGA stores circuit information in a holographic memory. Theoretically, a
holographic memory can store as much as 1 Tbit of information within a volume
of one lump of sugar. So, its high capacity is expected to be promising also for the
next-generation optical memories [53]. The aim of the ORGA is to implement a
virtual large-scale gate array by storing much circuit information in a holographic
memory using its high capacity [54, 55].

A holographic memory has no fine structures as it is the case for those of existing
SRAMs, DRAMs, or ROMs. It can be made simply by consolidating materials such
as photopolymers. Accordingly, its production is extremely simple and inexpensive.
Information is written on a holographic memory with a dedicated writer using the
interference of light. The writer splits a coherent laser beam into two optical paths,
an object light representing the binary pattern of circuit information and a reference
light, and records the interference pattern of these two light waves on the holographic
memory. Greater amounts of information can be recorded by varying the incident
angle of a reference light and the irradiation position on a hologram. The stored
information can be read out using a laser beam with the identical coherent light as

8 Advanced Devices and Architectures 229

the reference light. In the case of an ORGA, circuit information is usually written in
with a writer before the device starts to operate. Its holographic memory is used as a
ROM while the device is in operation. Because a large amount of circuit information
can be stored in a holographic memory, it is possible to select it with a laser array
and to dynamically conduct the reconfiguration.

The holographic memory has a characteristic that it can be used even if it has been
contaminated by impurities or partial defects. Holographic memory is usually irradi-
ated with a coherent laser beam as a reference light when reading information. This
light undergoes phase modulation or amplitude modulation in the holographic mem-
ory and is read out from it. The intensity of light at an arbitrary point is determined
by the phase of the gathered light from the whole holographic memory. A collection
of lights in phase brightens the point, whereas a collection of lights of diverse phases
darkens it. Because information is read out by the superposition of many light waves,
the holographic memory has long been known as a robust memory that is useful even
if it has defects. Research on radiation-hardened ORGAs is in progress using this
characteristic of robustness of the holographic memory. The optoelectronic device
has not been used widely yet. However, it might overcome obstacles that are difficult
to resolve solely by using integrated circuits in the far future.

References

1. R. Tessier, K. Pocek, A. DeHon, Reconfigurable computing architectures, in Proceedings of
the IEEE, vol. 103, no. 3, pp. 332-351 (March 2015)

2. K.Masuyama, Y. Fujita, H. Okuhara, H. Amano, A 297MOPS/0.4 mW ultra low power coarse-
grained reconfigurable accelerator CMA-SOTB-2, in Proceedings of The 10th International
Conference on Reconfigurable Computing and FPGAs (ReConFig) (Dec 2015)

3. J. Yao, Y. Nakashima, N. Devisetti, K. Yoshimura, T. Nakada

4. X.-P. Ling, H. Amano, WASMII: a data driven computer on a virtual hardware, in /EEE
Workshop on FPGAs for Custom Computing Machines, pp. 33—42 (April 1993)

5. T. Toi, T. Awashima, M. Motomura, H. Amano, Time and space-multiplexed compilation chal-
lenge for dynamically reconfigurable processors, in Proceedings of the 54th IEEE International
Midwest Symposium on Circuits and Systems (MWSCAS), pp. 31-39 (Aug 2011)

6. T.E. Williams, M.E. Dean, D.L. Dill, Efficient self-timing with level-encoded 2-phase dual-
rail(ledr), in Proceedings University of California/Santa Cruz Conference Advanced Research,
VLSI (1991)

7. R. Payne, Self-timed FPGA systems, in Proceedings International, Workshop Field Program
Logic, Applications (1995)

8. V. Akella, K. Maheswaran, PGA-STC: programmable gate array for implementing self-timed
circuits. Int. J. Electron. 84(3) (1998)

9. M. Kameyama, Y. Komatsu, M. Hariyama, Anasynchronous high-performance FPGA based
on LEDR/four-phase-dual rail hybrid archicture. Proc. 5th Int. Symp. HEART (2014)

10. R. Manohar, Reconfigurable asynchronous logic, in Proceedings IEEE Custom Integrated,
Circuits Conference (2006)

11. R. Manohar, J. Teifei, An asynchronous dataflow FPGA architecture. IEEE Trans. Comput.
53(11) (2004)

12. M. Hariyama, M. Kameyama, S. Ishihara, Z. Xie, Evaluation of a self-adaptive voltage control
scheme for low-power FPGA. J. Semicond. Tech. Sci. 10(3) (2010)

230

13.

14.
15.

16.

17.

18.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

M. Motomura et al.

M. Kameyama, S. Ishihara, M. Hariyama, A low-power FPGA based on autonomous fine-grain
power gating. IEEE Trans. VLSI Syst. 19(8) (2011)

Achronix SpeedSter22 HP (2011), http://www.achronix.com/products/speedster22ihp.html
B. Devlin, M. Ikeda, K. Asada, A 65 nm gate-level pipelined self-synchronous FPGA for high
performance and variation robus operation. IEEE J. Solid-State Circuits 46(11) (2011)

B. Devlin, M. Ikeda, K. Asada, A gate-level pipelined 2.97 GHz self synchronous FPGA in
65 nm FPGA CMOS. Prof. ASP-DAC (2011)

M. Kameyama, Y. Komatsu, H. Hariyama, An asynchronous high-performance FPGA based
on LADR/four-phase-dual-rail hybrid architecture. Proc. HEART (2014)

Y. Tsuchiya, M. Komatsu, H. Hariyama, M. Kameyama, R. Ishihara, Implementation of a low-
power FPGA based on synchronous/asynchronous hybrid architecture. IEICE Trans. Electron.
E9%4-C(10) (2011)

. A. Bardsley, Implementation balsa handshake circuits. Ph.D. Thesis (Eindhovan Universithy

of Technology, 1996)

M. Roncken, R. Saeijs, F. Schalij, K. Berkel, J. Kessels, The VLSI programming language
trangram and its translation into handshake circuits, in Proceedings European Conference in
Design Automation, EDAC (1991)

M. Kameyama, Y. Komatsu, H. Hariyama, Architecture of an asynchronous FPGA for
handshake-component-based design. IEICE Trans. Fund. E88-A(12) (2005)

A.W. Topol, D.C. La Tulipe, L. Shi, D.J. Frank, K. Bernstein, S.E. Steen, A. Kumar, G.U.
Singco, A.M. Young, K.W. Guarini, M. Ieong, Three-dimensional integrated circuits. IBM J.
Res. Develop. 50(4), 5 (2006)

G. Katti, A. Mercha, J. Van Olmen, C. Huyghebaert, A. Jourdain, M. Stucchi, M. Rakowski,
I. Debusschere, P. Soussan, W. Dehaene, K. De Meyser, Y. Travaly, E. Beyne, S. Biesmans, B.
Swinne, 3D stacked ICs using Cu TSVS and die to wafer hybrid collective bonding. IEEE Int.
Electron Dev. Meeting IEDM (2009)

K. Banerjee, S.J. Souri, P. Kapur, K.C. Saraswat, 3-D ICs: a novel chip design for improving
deep-submicrometer interconnect performance and sisytes-on-chip intergration. Proc. IEEE
89(5) (2001)

M. Lin, A. El Gamal, Y.-C. Lu, S. Wong, Performance benefits of monolithically stacked 3-D
FPGA. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. 26(2) (2007)

R. Le, S. Reda, R. Iris Bahar, High-performance, const-effective heterogeneous 3D FPGA
Architectures, in Proceedings the 19th ACM Great Lake Symposium VLSI (2000)

T. Naito, T. Ishida, T. Onoduka, M. Nishigoori, T. Nakayama, Y. Ueno, Y. Ishimoto, A. Suzuki,
W. Chung, R. Madurawe, S. Wu, S. Ikeda, H. Oyamatsu, World’s first monolithic 3D-FPGA
with ifi SRAM over 90 nm 9 layer Cu CMOS, in Proceedings Symposium VLSI Technology
(2010)

Y.Y. Liauw, Z. Zhang, Z. Zhang, W. Kim, A.E. Gamal, S.S. Wong, Nonvolatile 3D-FPGA with
monolithically stacked RRAM-based configuration memory. ISSCC (2012)

A. Gayasen, V. Narayanan, M. Kandemir, A. Rahman, Designing a 3-D FPGA: switch box
architecture and thermal issues. IEEE Trans. VLSI Syst. 16(7) (2008)

F. Furuta, T. Matsumura, K. Osada, M. Aoki, K. Hozawa, K. Takeda, N. Miyamoto, Scalable
3D-FPGA using wafer-to-wafer TSV interconnect of 15 Tbps/w, 33 Tbps/mm?. IEEE Trans.
VLSI Syst. (2013)

M.J. Alexander, J.P. Cohoon, J.L. Colflesh, J. Karro, G. Robins, Three-dimensional field-
programmable gate arrays, in Proceedings of 8th Annual IEEE International ASIC Conference
and Exhibit (1995)

S.A. Razavi, M.S. Zamani, K. Bazargan, A tileable switch module architecture for homoge-
neous 3D FPGAs, in Proceedings IEEE International 3D System Integration (2009)

A. Rahman, S. Das, A.P. Chandrakasan, R. Reif, Wiring requerement and three-dimensional
integration technology for field programmable gate arrays. IEEE Trans. VLSI Syst. 11(1) (2003)
C. Ababei, H. Mogal, K. Bazargan, Three-diminsional place and route for FPGAs. IEEE Trans.
Comput. Aided Design Integr. Circuits Syst. 25(6) (2006)

http://www.achronix.com/products/speedster22ihp.html

8 Advanced Devices and Architectures 231

35.

36.

37.

38.

39.
40.
41.
4.
43.
44,
45.
46.
47.
48.
49.
50.
51.

52.

53.

54.

55.

M. Amagasaki, Y. Takeuchi, Q. Zhao, M. liea, M. Kuga, T. Sueyoshi, Architecture exploration
of 3D FPGA to minimize internal layer connection, in ACM/IEEE International Conference
on 3D Systems Integration (2015)

M.J. Alexander, J.P. Cohoon, J.L. Colflesh, J. Karro, E.L. Peters, G. Robins, Placement and
routing for three-dimensional FPGAs, in 4th Canadian Workshop Field Programmable Devices
(1996)

M. Lin, A. El Gamal, A routing fabric for monolithically stacked 3D FPGA, in Proceedings
ACM/IEEE International Conference on FPGA (2007)

N. Miyamoto, Y. Matsuomto, H. Koike, T. Matsumura, K. Osada, Y. Nakagawa, T. Ohmi,
Development of a CAD tool for 3D-FPGAs, in IEEE International Conference on 3D Systems
Integration (2010)

Y. Kwon, P. Lajevardi, A.P. Ch, D.E. Troxel, A 3-D FPGA wire resource prediction model
validated using a 3-D placement and routing tool, in Proceedings of SLIP "05 (2005)

A. Putnam, et al., A reconfigurable fabric for accelerating large-scale datacenter services, in
ACM/IEEE 41st International Symposium on Computer Architecture (ISCA), pp. 13-24 (2014)
The Telecommunications Industry Association (TIA), Electrical characteristics of low voltage
differential signaling (LVDS) interface circuits, PN-4584 (May 2000)

National Semiconductor: RSDS Intra-panel Interface Specification (May 2003)

Texas Instruments, mini-LVDS Interface Specification (2003)

Altera Corporation: Stratix IV Device Handbook, vol. 1 (June 2015)

Altera Corporation: Stratix V Device Handbook, vol. 1 (June 2015)

Altera Corporation: High speed board design Ver.4.0, Application Note 75 (Nov 2001)

M. Peng Li, J. Martinez, D. Vaughan, Transferring high-speed data over long distances with
combined FPGA and multichannel optical modules (2012)

H. Li, K. Iga, Vertical-cavity surface-emitting laser devices, in Springer Series in Photonics,
vol. 6 (2003)

J. Mumbra, D. Psaltis, G. Zhou, X. An, F. Mok, Optically programmable gate array (OPGA).
Opt. Comput. (1999)

H. Morita, M. Watanabe, Microelectromechanical configuration of an optically reconfigurable
gate array. IEEE J. Quant. Electron. 46(9), 1288—1298 (Sept 2008)

Y. Yamaguchi, M. Watanabe, Liquid crystal holographic configurations for ORGAs. Opt. Com-
put. 47(28), 4692—4700 (2008)

Y. Yamaji, M. Watanabe, A 4-configuration-context optically reconfigurable gate array with a
MEMS interleaving method, in NASA/ESA Conference on Adaptive Hardware and Systems,
pp. 172-177 (June 2013)

A. Ogiwara, M. Watanabe, Optical reconfiguration by anisotropic diffraction in holographic
polymer-dispersed liquid crystal memory. Appl Opt 51(21), 5168-5188 (July 2012)

H.J. Coufal, D. Psaltis, G.T. Sincerbox, Holographic data storage, in Springer Series in Optical
Sciences, vol. 76 (2000)

S.-L.L. Lu, P. Yiannacouras, R. Kassa, M. Konow, T. Suh, An FPGA-based Pentium in a com-
plete desktop system, in ACM/SIGDA 15th International Symposium on Field Programmable
Gate Arrays, pp. 53-59 (2007)

	Preface
	Contents
	Contributors
	1 Basic Knowledge to Understand FPGAs
	1.1 Logic Circuits
	1.1.1 Logic Algebra
	1.1.2 Logic Equation
	1.1.3 Truth Table
	1.1.4 Combinational Circuits
	1.1.5 Sequential Circuits

	1.2 Synchronous Logic Design
	1.2.1 Flip-Flop
	1.2.2 Setup Time and Hold Time
	1.2.3 Timing Analysis
	1.2.4 Single-Clock Synchronous Circuits

	1.3 Position and History of FPGAs
	1.3.1 The Position of FPGA

	References

	2 What Is an FPGA?
	2.1 Components of an FPGA
	2.2 Programming Technology
	2.2.1 Flash Memory

	2.3 Antifuse Technology
	2.3.1 Static Memory Technology
	2.3.2 Summary of Programming Technology

	2.4 Logic Circuit Representation of FPGA
	2.4.1 Circuit Implementation on FPGA
	2.4.2 Logical Expression by Product Term
	2.4.3 Logical Expression by Lookup Table
	2.4.4 Structure of Lookup Table
	2.4.5 Logical Expression by Other Methods

	References

	3 FPGA Structure
	3.1 Logic Block
	3.1.1 Performance Trade-Off of Lookup Tables
	3.1.2 Dedicated Carry Logic

	3.2 Logic Cluster
	3.3 Adaptive LUT
	3.3.1 Altera Stratix II
	3.3.2 Xilinx Virtex 5

	3.4 Routing Part
	3.4.1 Global Routing Architecture
	3.4.2 Detailed Routing Architecture
	3.4.3 Wire Segment Length
	3.4.4 Structure of Routing Switch

	3.5 Switch Block
	3.5.1 Switch Block Topology
	3.5.2 Multiplexer Structure

	3.6 Connection Block
	3.7 I/O Block
	3.8 DSP Block
	3.8.1 Example Structure of a DSP Block
	3.8.2 Arithmetic Granularity
	3.8.3 Usage of DSP Blocks

	3.9 Hard Macros
	3.9.1 Interface Circuits as Hard Macros
	3.9.2 Hard-Core Processors

	3.10 Embedded Memory
	3.10.1 Memory Blocks as Hard Macros
	3.10.2 Memory Using LUTs in Logic Blocks
	3.10.3 Usage of Embedded Memory

	3.11 Configuration Chain
	3.11.1 Memory Technologies for Configuration
	3.11.2 JTAG Interface

	3.12 PLL and DLL
	3.12.1 Basic Structure and Operating Principle of PLL
	3.12.2 Typical PLL Block
	3.12.3 Flexibility and Restriction of PLL Blocks
	3.12.4 Lock Output
	3.12.5 DLL

	References

	4 Design Flow and Design Tools
	4.1 Design Flow
	4.2 Design Flow by HDL
	4.2.1 Registration of Project
	4.2.2 Logic Synthesis and Technology Mapping
	4.2.3 RTL Simulation
	4.2.4 Place and Route
	4.2.5 Programming
	4.2.6 Verification and Debugging on Actual Device
	4.2.7 Optimization

	4.3 HLS Design
	4.3.1 Behavioral Description
	4.3.2 Behavior Level Simulation
	4.3.3 Behavioral Synthesis
	4.3.4 Evaluation and Optimization
	4.3.5 Connection with RTL

	4.4 IP-Based Design
	4.4.1 IP and Its Generator
	4.4.2 Use of IP and Its Integration Tool
	4.4.3 Support Tool for Building IP

	4.5 Design with Processor
	4.5.1 Hard-Core Processor and Soft-Core Processor
	4.5.2 Building Processor System
	4.5.3 Software Development Environment
	4.5.4 Integration and Operation of Software and Hardware

	References

	5 Design Methodology
	5.1 FPGA Design Flow
	5.2 Technology Mapping
	5.3 Clustering
	5.4 Place and Route
	5.5 Low Power Design Tools
	5.5.1 Emap: Low Power Consumption Mapping Tool
	5.5.2 P-T-VPack: Low Power Consumption Clustering Tool
	5.5.3 P-VPR: Low Power Placement and Routing Tool
	5.5.4 ACE: Activity Measurement Tool

	5.6 Summary
	References

	6 Hardware Algorithms
	6.1 Pipelining
	6.1.1 Principle of Pipelining
	6.1.2 Performance Improvement by Pipelining

	6.2 Parallel Processing and Flynn's Taxonomy
	6.2.1 Flynn's Taxonomy
	6.2.2 SIMD Architecture
	6.2.3 MISD Architecture
	6.2.4 MIMD Architecture

	6.3 Systolic Algorithm
	6.3.1 Systolic Algorithm and Systolic Array
	6.3.2 Partial Sorting by 1D Systolic Array
	6.3.3 Vector Product of Matrices by 1D Systolic Array
	6.3.4 Product of Matrices by 2D Systolic Array
	6.3.5 Programmable Systolic Array for Stencil Computation and Fluid Simulation
	6.3.6 Data-flow Machine
	6.3.7 Static Data-Driven Machine
	6.3.8 Dynamic Data-Driven Machine

	6.4 Petrinet
	6.5 Stream Processing
	6.5.1 Definition and Model
	6.5.2 Hardware Implementation
	6.5.3 Examples of Stream Processing

	6.6 Cellular Automaton
	6.7 Hardware Sorting
	6.8 Pattern Matching
	6.8.1 Exact Matching
	6.8.2 Regular Expression Matching
	6.8.3 Approximate Matching

	References

	7 Programmable Logic Devices (PLDs) in Practical Applications
	7.1 Introduction
	7.1.1 History Summary of PLD
	7.1.2 PLD Market Size and Future Prospects

	7.2 PLDs/FPGAs in High-Performance Computing (HPC)
	7.2.1 High-Performance Computing (HPC) Overview
	7.2.2 HPC System with CPU, GPU, and FPGA

	7.3 PLD/FPGA in a Network
	7.3.1 Role of Switches in a Network
	7.3.2 FPGA Performance Upgrade as a Network Chip
	7.3.3 PLD/FPGA and Software-Defined Networking (SDN)
	7.3.4 Packet Classification and Its System Configuration
	7.3.5 Content-Addressable Memory (CAM) and FPGA

	7.4 Big Data: Web Search
	7.4.1 Overview of Bing Search
	7.4.2 Ranking Engine Acceleration
	7.4.3 Organization of Catapult Accelerator

	7.5 Genomics: Assembly and Mapping of Short Reads
	7.5.1 De Novo Genome Assembly from Short Reads
	7.5.2 Short Read Mapping on a Reference Genome

	7.6 High-Frequency Trading (HFT)
	7.6.1 Stock Trading Overview
	7.6.2 Continuous Limit Order to High-Frequency Trading (HFT)
	7.6.3 HFT Speed Bump and the Value of Latency
	7.6.4 HFT System Integration on an FPGA

	7.7 Image Processing: Space Debris Detection
	7.7.1 The Method Overview
	7.7.2 FPGA Acceleration

	References

	8 Advanced Devices and Architectures
	8.1 Coarse-Grained Reconfigurable Architecture
	8.1.1 CGRA Basics and History
	8.1.2 CGRA Design Space
	8.1.3 Dynamically Reconfigurable Architecture
	8.1.4 Case Study: DRP
	8.1.5 Relation to Parallel Processors
	8.1.6 Other Architecture Examples

	8.2 Asynchronous FPGA
	8.2.1 Problems of Conventional Synchronous FPGAs
	8.2.2 Overview of Asynchronous FPGAs
	8.2.3 Design for Low Power, High Throughput, and Modularity

	8.3 3D FPGA
	8.4 High-Speed Serial I/O
	8.4.1 LVDS
	8.4.2 28-Gbps High-Speed Serial I/O
	8.4.3 FPGA with 120-Gbps Optical I/O
	8.4.4 Optically Reconfigurable Architecture
	8.4.5 Japanese-Made ORGA

	References

