A Survey on Multiprocessor Scheduling M)
Using Evolutionary Technique s

Annu Priya and Sudip Kumar Sahana

Abstract In this paper, various conventional approaches are studied for the task
scheduling, precedence-resource constrained, load balancing, and multiprocessor
scheduling problems. In parallel machines the sequence of dependent execution
setup time for the minimization of makespan in scheduling problems and prepared a
concise review. Multiprocessor scheduling is an NP-hard problem, whereas
scheduling algorithm schedules the tasks which may or may not be dependent on
each other. There are several traditional approaches existing for processor
scheduling such as modified critical path (MCP), dominant sequence clustering
(DSC), and priority-based multichromosome (PMC). While using these approaches,
we achieve partial solutions in less than the minimum computing time. In this
paper, an innovative multiprocessor scheduling technique that is inspired by evo-
lutionary techniques has been embodied.

Keywords DAG - Genetic algorithm - Ant colony optimization

1 Introduction

Scheduling algorithm allows us to manage the sequencing of tasks, confine the
scheduled task, time management, and optimizing effort and assignments in any
production or manufacturing process. Scheduling is used to allocate machinery
resources to tasks. Processor scheduling is required for the high performance of
computing systems. There are different heuristic methods existing for processor
scheduling. Multiprocessor scheduling is considered as NP-hard problems, which
are very difficult to solve with conventional techniques. Processor scheduling is

A. Priya (<)) - S. K. Sahana

Department of Computer Science Engineering, Birla Institute of Technology,
Mesra, India

e-mail: annu.priyal2@yahoo.com

S. K. Sahana
e-mail: sudipsahana@bitmesra.ac.in

© Springer Nature Singapore Pte Ltd. 2019 149
V. Nath and J. K. Mandal (eds.), Nanoelectronics, Circuits and Communication

Systems, Lecture Notes in Electrical Engineering 511,
https://doi.org/10.1007/978-981-13-0776-8_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0776-8_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0776-8_14&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0776-8_14&domain=pdf

150 A. Priya and S. K. Sahana

classified into two categories: local processor scheduling and global processor
scheduling. Conventional techniques mostly use local processor scheduling. Global
processor scheduling is grouped into several families depending on scheduling
processor techniques. These heuristic scheduling methods are biologically inspired
and can be further grouped into several classes of heuristic approaches like an ant
colony, bee colony, genetic algorithm, particle swarm optimization, etc. Local
processor scheduling is scheduled upon the single-processor platform and also uses
list scheduling to construct a schedule, one cycle at a time, whereas in global
scheduling it uses the multiprocessor environment. In real-time task scheduling
problem on multiprocessor, it has goal of meeting the deadline, and infrequent
arrival of task has implicit deadline and such type of scheduling problems is
handled by global static processor scheduling techniques. Static processor
scheduling is deterministic scheduling policy. It is classified into two subclasses:
optimal processor scheduling and suboptimal processor scheduling. Optimal pro-
cessor scheduling is used when the job executed at that scheduler should know
information about the requirement of processor and state of processors. Optimal
scheduling reached NP-complete problem, so researchers focused on suboptimal
processor scheduling that is classified as approximation and heuristic algorithm.
Approximation scheduling uses the computational techniques for searching of
entire solution space for an optimal solution. Heuristic approaches such as ant
colony optimization, genetic algorithm, etc. provide feasible solutions to a
scheduling problem which cannot give the optimal solution. Global dynamic
scheduling had better to physically be inherent in a single processor. In dynamic
processor scheduling techniques, a number of processors vary during execution.
Dynamic processor scheduling leads to degradation of performance because of high
run-time overhead. It has two subclasses: physically non-distributed processor
scheduling and physically distributed processor scheduling. Physically
non-distributed system includes the responsibility for the task scheduling, whereas
in physically distributed system the work involved in decision-making should be
physically spread among the various processors. Physically distributed processor
scheduling is divided into two classes: (i) cooperative processor scheduling and
(i1) non-cooperative processor scheduling. In non-cooperative processor scheduling,
each separate processor acts as autonomous entities and it works as a
decision-making for various resources running independently which affects the
decision of rest system. In cooperative system, the goal of each processor is to carry
its own part of scheduling and its work toward a common system. In the case of
static system, the decision is taken for the taxonomy tree which reaches to the
optimal, and for the consideration of the system the suboptimal heuristic solution is
to be taken. Non-cooperative processor scheduling is classified into two categories:
(i) approximation processor scheduling and (ii) heuristic processor scheduling. In
the case of approximate processor scheduling, it is presented for the independent
tasks and runs on different processors with different speeds in a multiprocessor
environment. Approximation scheduling provides the low polynomial time com-
plexity to the problems. These types of scheduling processes are secure by
obtaining the solutions which are closest to the optimal solution. Heuristic

A Survey on Multiprocessor Scheduling ... 151

processor scheduling approaches are used to find the suboptimal solution in con-
siderable computation time. Heuristic-based method provide nearest optimal solu-
tion, and as a result of its appearance, computation time in GA is very less. The rest
of this paper is organized as follows: Sect. 2 included processor scheduling tech-
niques. Section 3 contains the literature survey of existing methods for processor
scheduling. Section 4 contains problem statement. Section 5 concludes the dis-
cussion of comparison of different algorithms. Section 6 concludes about the future
implementation and outlines the future scope of this work.

2 Processor Scheduling

Processor scheduling is classified into two categories: local processor scheduling
and global processor scheduling. Conventional techniques mostly use local pro-
cessor scheduling. Figure 1 shows the classification of process scheduling.

2.1 Global Processor Scheduling

Global processor scheduling is grouped into several families depending on
scheduling processor techniques. These heuristic scheduling methods are

Fig. 1 Classification of :
. Processor Scheduling
processor scheduling

—
| Local Processor \Global Processor

| Scheduling Scheduling

‘ Static Processor ‘Dynamic Processor

Scheduling Scheduling
*—]—, ¥ |
0plima|Processor| Sub-Optimal Processor Physical Physical Non-
Scheduling | Scheduli Distributed distributed
’—1 Processor Processor
¥ ¥ Scheduling Scheduling
Approximation Heuristic ’J—'L
FProcessor Processor Y
g Scheduli Cooperati Non-Cooperative
Processor Processor
Scheduling Scheduling
¥ i
Optimal Sub-Optimal
Processor Processor
Scheduling Scheduling
L 4 r
Approximate Heuristic

processor Processor
scheduli = chaduli

152 A. Priya and S. K. Sahana

biologically inspired and can be further grouped into several classes of heuristic
approaches like an ant colony, bee colony, genetic algorithm, particle swarm
optimization, etc.

2.2 Local Processor Scheduling

Local processor scheduling is scheduled upon the single-processor platform and
also uses list scheduling to construct a schedule, one cycle at a time, whereas global
scheduling processor is scheduled upon multiprocessor platform. In real-time task
scheduling problem, the goal of multiprocessor is to meet deadlines, whereas the
arrival of tasks is infrequent which has implicit deadlines. To deal with this type of
scheduling problem, a global static processor scheduling technique is used.

2.3 Static Processor Scheduling

Static processor scheduling [1, 2] is deterministic scheduling policy. Optimal
processor scheduling is used when the job executed at that scheduler should know
information about the requirement of the processor and state of processors. The
static processor scheduling is divided into two categories: (i) optimal scheduling
and (ii) suboptimal processor scheduling. Optimal scheduling reached NP-complete
problem, and researchers focused on suboptimal processor scheduling that is
classified as approximation and heuristic algorithm. Approximation scheduling
technique uses the computational methods for searching of entire solution space for
an optimal solution. Heuristic approaches such as ant colony optimization, genetic
algorithm, etc. provide feasible solutions to a scheduling problem which cannot
give the optimal solution. Suboptimal processor scheduling has two sub-branches:
(i) approximate processor scheduling and (ii) heuristic processor scheduling. In
multiprocessor environment, the approximate processor scheduling is used to plan
the independent tasks where the speed of the processors varies. Approximation
scheduling provides the low polynomial complexity to the problems. By using
approximation scheduling, we are assured to achieve the optimal solutions.
Heuristic processor scheduling approaches find the suboptimal solution in signifi-
cant time. In heuristic-based approaches, the results of computational time are very
optimal and the initial population size is considerably nearby to the solution.

2.4 Dynamic Processor Scheduling

In dynamic processor scheduling techniques [3, 4], the allocated number of pro-
cessors varies during execution. Dynamic processor scheduling leads to the

A Survey on Multiprocessor Scheduling ... 153

degradation of performance because of high run-time overhead. Dynamic processor
scheduling is divided into two categories: (i) physical distributed processor
scheduling and (ii) physical non-distributed processor scheduling. For responsible
task scheduling, the physically non-distributed processor scheduling is required,
whereas, while using the global dynamic scheduling which is inherent in a single
processor and also known as a physically non-distributed, the work involved is to
make a decision which should be physically distributed among the processor. The
physical distributed processor scheduling is divided into two subcategories:
(1) non-cooperative processor scheduling (ii) cooperative processor scheduling. In
non-cooperative processor scheduling the individual processor acts as autonomous
entities, arrives at decision-making, and makes a choice to select the resources
which are independent in nature which affects the decision of the rest system, and in
cooperative processor scheduling the goal of each processor is to carry out its own
portion of task, whereas all processors are working toward the common system. The
same discussion has to be presented in the static case and applies for the dynamic
case also. When the taxonomy tree reaches the bottom, we have to consider an
optimal [3], suboptimal, and heuristic [3] solutions for the multiprocessor.

3 Literature Survey

There are various research has been done in this field such as C. Jianer and
L. Chung Yee proposed a model for processor scheduling in which several alter-
natives are used a process job and each alternative several machine process the
assigned job to them. They invented pseudo-polynomial algorithm [3] to solve
optimally two-machine processor problem and also provide a heuristic scheduling
algorithm to solve the three-machine processor problem to minimize the completion
time for all jobs. X. Yuming and L. Kenli address the task scheduling problems and
suggested multiple priorities queuing genetic scheduling [5] for distributed system
as well as parallel heterogeneous computing system. They used HEFT approach to
search an optimal solution for mapping task of the processor. L. Shih-Tang et al.
presented a modified ACO approach DDACS [6] to minimize precedence and
resource constraint in multiprocessor scheduling problem. Here, to represent the
scheduling problem, a matrix graph is adopted. This matrix graph is used to min-
imize makespan schedule. A. Hadi Lotfi et al. proposed new coarse-grain genetic
algorithm [7] to schedule the tasks and reduce the solution search space and to
prevent the speedy convergence between the subpopulation. The initial population
is divided into multiple subpopulations and the experimental results of this paper
show that the proposed technique will reduce the makespan and it also achieves a
better scheduling method in comparison with the other existing methods such as
MCP and genetic algorithm. K. Yan and Z. Zhenchao proposed an activity-based
genetic scheduling algorithm [8] in which the scheduled tasks run on the hetero-
geneous grid system network that is signified by directed acyclic graphs (DAGS).
First, this approach list all the nodes according to the scheduling algorithm to

154 A. Priya and S. K. Sahana

generate the initial population of GA and it also represents the possible operation
sequences so that it reduces the coding space when compared to permutation
representation. This approach assigns tasks as activity on the processor to improve
quality of the random probability solution and the activity is added to crossover and
mutation operator. In Table 1, represent the various techniques proposed by dif-
ferent researchers for solving the problem of processor scheduling.

There are various methods like DSC, MCP, LC, PGA, etc. used for scheduling
algorithm. The linear clustering (LC) algorithm uses the recursive grouping of all
the nodes in the critical path while zeroing all the edges on the path in one step. In
the second step, it schedules the same processor for all partitions that do not execute
concurrently. Dominant sequence clustering (DSC) uses the two major ideas: (i) to
directly reduce the dominant sequence of the graph and (ii) to create an algorithm
with low computational complexity. DSC keeps track of the dominant sequence to
reduce parallel time. The complexity order of the algorithm is also reduced. We
need to specify certain constraints and definitions to describe DSC such as
(1) scheduled: if a processor has been assigned to a node, it should be scheduled;
(ii) free: if the processor is unscheduled and all its predecessors are arranged, then
the node is free; and (iii) partial free: if it is unscheduled and at least one of its
predecessors is unscheduled, then the node is partially free. In this algorithm, the
complexity is reduced by confining the range of edges to be zero. Priority-based
genetic algorithm (PGA) is based on genetic algorithm, whereas the gene location is
used to signify the task node and construct the scheduler among candidate, and the
priority of the task node value is used. The proposed PGA method [9] first generates
the initial random chromosome, whereas each chromosome is called a gene and
each gene is used in the priority node in the DAG structure. According to this
technique, it easily validates any encoding permutation to the corresponding
scheduler, so that the most recent operator is used for the encoding. Modified
critical path algorithm (MCP) explains that the precedence list is prepared on the
basis of the “highest bot-level first” ordering. The reason behind is that if the same
task has same priority, then to overcome with the critical path the algorithm breaks
the task and ties by using the highest priority to the successor tasks and the second
highest priority of its successors, and so on. The major objective of this algorithm is
to minimize the implementation time so that it becomes more cost-effective.
Calculate the cost function of the algorithm in the parallel time environment which
is equal to

PT = max(ST(nj) + Tj) < maxST(n;) + maxTi.

This above equation shows that if we minimize the initial time of the last task
then we can get the result in the decline of the overall parallel time.

155

A Survey on Multiprocessor Scheduling ...

(panunuod)

[91]
suonnjos Jurnpayos iy uonejuawR[dur wypod[e onouas [ofered ur Jossedoxdnnuw jo uoneziundo ZIud(] pue
Jo Kyrenb oy paaoxduy (11) ay) paonpay (1) paseq-uonendod-nnyA 10J pasn WYILIOS[e O1jouUn) prysey

Qwin 19)10ys Ul SUonn[os onouad wopqoxd

Kyrenb poo3 aonpoiy (1) UOTJBINW PUB JIAOSSOID) Surmpayos 9y noqe aZpajmouy]
wA)sAs Jossaooxdnnu pozrwrurw st | ur onsunay wopqoid Jurnpayos QWIS JO uondNpoNuUI Y} [S1] T8 1R
SNOQUATOWIOY UO SYIOAN owm uonnodxa s, werdoid (1) Poseq-wWYILIoT[e dNQUaD) s wyose onousd pasorduy opIeOTy

9[Npayos
JO IuQ[Yy aseardo (111)

waIsAs Y jo ndy3noayy 10Je1odo 19A0SS0I0 QY] J0J ssaooxd
‘swoysAs Jossaooxdnnur Ay} Jo jsowr Ay NYeN (11) [ed1poyow Mau € sasn Iy (7) [¥1]
[e1rered snosuaowoy qu uonedwod w[qoid Surnpayos yse) ay) QUWOSOWOIYD prreys
ur syse} Jurnpayos yser oYy ozrwury (1) QAJOSI 0} WILIOT[E JLIQUAL) oy aredaxd 0) Aem auQ (1) pue ruey
(1l
oun J9pUIAIND
SuIdIsAs Jossadoidnnu uonerdwos ‘owrn uona[durod oness 10§ pasodoxd pue
) 10J 9[qISLaJ 0N qol ay) Surzrwrurjy SI (VD) wyjLoS[e o1ouan) uonnjos [ewndogns ay) 0) Spea| JIARY
Qoeds 3urpod oy 2onpay (I1) [8]
[1om wojrad QOUBYUD [[IM wyyoSe Surnpayos soouanbes pue uonerodo d[qIsedy oBYOUAYZ
JOU SO0P WILIOI[B QATRINI Y], uonnjos ay} jo Ayenb oy, JSe) o1neuagd paseq-ANANOY ay syuesardar yo) @10y (1) pue uex

suone[ndodgns

Q) USIM)q UONBITIW

uonezimn Nd) SUIZIurxep pUB 90UTIOAUO0D AY) JUIAAIJ (T1T)

paxmbar wiyprio3[e onouas jo 1500 poads Juryoreas ayy 20npay (11)
suoneurquod uonendod-pnur UONEOIUNUWIOD SUIZIWIUTIA wyjoge uone[ndod-qns-nnw [L] B30
uonnjos JIayny Iog uedsoyew Jurzwururp O1joUd3 paureI3-asIeo)) ojur uonendod ay) papiaiq (1) 1J0[IpeH
sagejueApesI([sagejueApy pasn onbruyoa], K3oropoyiolN [oIeasay

Surnpayds Jossadoid jo pray oy ur juawrdo[oasp yoreasal jo Arewwng T Qe

A. Priya and S. K. Sahana

156

swo[qoid snotrea

ur J[nsar poo3 29juerens jou
soop oni ay) Suryoyedsiq (7)
swojqoid oreos-[rews

sworqoid uoneziundo

wopqoxd Jurnpayos
quyoewr [d[[ered [eonuapl-uou

J10J J[nsal 19139q R0 (1) [BLIOJRUIqUIOD PIBY QAJOS wyjLIo3[e d1jouan) ydepe 01 yvo e Suik[ddy [61] seaes
sqof jo owm Fune)s
JsarfIea Ay isnfpe oy parjdde
uedsoyew oziwiuly (7) o orwreukp Yy, (2)
SJUIRISUOD 9JINOSAI PIM s10ssa001d ayy uo sqol
s10ssaooxd surajqoid Jurnpayos woysAs (0DV) uonezrundo oy) SuruSisse 10J pasn ST XIeur [o1]
SnoQUaSOWOY J0J SHIOA Jossaooxdnnuw oy 2A10S (1) Kuo[0d JuB PayIpoIN [euorsuawiip-omJ, (1) ‘e 19 yiys
NENS N4
uo Jurnpayos aandwoard-uou anbruyo9) (S149d) SI1dV pue SI14D
Q) 10j synsar dqissod Surmpayos jueIs[oy-jnej sunuogd[e omj jo eouewrioyrod [81] T8 10
rewndo ojerpawr ay) 3unien uedsoyeuw 9y} SZIWIUTIA paseq-(gd) dnyoeq Arewrng y Jo Apnys daneredwo) Jewny|
yoreas
0T uonerauad 0] SONSLINAUEIOW ATRUONN[OA PUB [L1] Te 1
210J0q uonnjos rewndo ue 10 | "pZIWIIUIW ST QW) UOHNIIXH (VD) erewoine Jenp) AU0]09 JuE JO 9N Y} paUIqUIO)) ueLejeyn
<]
s10ssa001d a10wW pue (VOOJIN) wyiLiod[e onoudd SUIYILIOS[® Paseq-onsLNaY pue [uoy] pue
syde13 yse) 10316 10 PoO3 JON uedsoyewr Surzrwrurpy (1) Sumenb senuoud ordnmny ATeuonn[oa? joq Jo saSejueApy Surun x
wojqold paugisse
QUIYOLW-IY) Y} A[OS qofl oy sseoo1d sauryorA (7) [€] oox
paAjos 0] JNSLINAY B PUB QWAYDS sqol [[e jo awn uonsdwod Suny)
9q jouued Jurwrwesdord 1e39juy rerwouAjod Ay euiquo)) wypod[e [erwoukjod-opnasq | oY) azrwrurw 0) sqol 9npayos (1) pue Jouelf
'$1509
UOIBIIUNWIWOD JO doudsald ayy
sagejueApesI([sagejueApy pasn onbruyoa], K3o[opoyiolN [oIeasay

(ponunuod) | dyqey,

A Survey on Multiprocessor Scheduling ... 157

4 Problem Statement

From the available literature, it is observed that performance of the different
techniques on a particular scenario exhibits as shown in Fig. 2. In multiprocessor
scheduling, the critical problem is how to provide the task precedence relation
between tasks and processor so that program’s execution time is minimized. In real
time, the most scheduling problems are NP-hard in nature and it is a very complex
problem. For that, performance from the start of the algorithm is very poor. This
problem is extremely hard to solve. Most scheduling problems are NP-hard [10] in
nature. Scheduling algorithms for processors in hard real time are also complex
problem. For such large-scale scheduling problem, the performance of
state-of-the-art algorithms is very poor. It is observed that evolutionary and
swarm-based algorithms exhibit better performance for large-scale combinatorial
problems. Our objective is to analyze, study, apply, and implement possible
improvements in the said application using evolutionary and swarm-based

Fig. 2 Flowchart of hybrid
system based on ACO and
GA with HEFT for task L a— -

scheduling on heterogeneous ‘ HEFT ‘ ‘ !;‘.;ﬂi',,ﬁf.’,?. ‘

nodes and processors ¥
HEFT Solution |

Initialization of the first particle using HEFT
Solution and other particle randomly
¥
| Ant Generation =1, 2, ..., k...n ‘
¥
Ant instance "1' update Local
Pheromone
|
Find Best Ant route (compare all
n routes)
I
update Global Pheromone for
best Route

Begin Simulation

QI

Criteria met >

Apply Genetic Algorithm

Crossover

Mutation

Criteria Met
Stop

YES

158 A. Priya and S. K. Sahana

algorithms. After an exhaustive study of the different research papers and case
studies, we like to propose a hybrid system based on ACO and GA with HEFT for
task scheduling on heterogeneous nodes and processors. The framework consists of
two parts: in the first part, ACO and HEFT which are combined and used for
finding the local pheromone and global pheromone, whereas in the second part the
result of the ACO and HEFT is taken as input for the GA and applied to the
selection, crossover, and mutation process.

5 Discussion

Evolutionary techniques effectively solve the scheduling problems. These methods
apply the skills of evolutionary and it is observed that performance of the different
techniques on particular scenario exhibits superiority of GA over traditional
heuristic approaches as shown in Fig. 2. Generally, genetic algorithm is more
efficient to solve NP-complete problem of multiprocessor scheduling problems.
Here, in this paper, we have discussed some of the processor scheduling algorithms
inspired by evolutionary techniques. A comparative study was carried out, and
merit and demerit areas are highlighted. Previously, it is observed that increasing
the number of task increases the value of makespan as compared to GA [11] and
LA [12] methods. After that, coarse-grain genetic algorithm [13] shows that it has
the lower makespan value of proposed algorithm than other algorithms. To make
this comparison, various algorithms and different parameters have been taken for
the execution.

Figure 3 shows that the makespan of MCP is higher than the other five algo-
rithms, whereas DSC, DCP, and MD have the similar makespan, but the number of
processors is higher for DSC to achieve the results of MD and DCP algorithm.

Makespan
[0
o
O R, N W M U O N
Number of Processor

MCP DSC ™MD DCP PMC GA

Makespan Processor

Fig. 3 Comparison between different algorithms

A Survey on Multiprocessor Scheduling ... 159

The GA and PMC have used the same number of processor to achieve the same
makespan. The comparison of this technique gave the overall scenario for the
processor scheduling environment.

6 Conclusion

In this paper, a survey is drawn between different traditional scheduling algorithms
used in the parallel multiprocessor system. And it is proven that by using the
evolutionary technique such as GA we get the better results. Here, in this paper, we
proposed a framework for the multiprocessor task scheduling model using ACO
and HEFT. The hybrid structure will generate the best possible result in conven-
tional CPU time. And it also forms the suboptimal solution for allocating the tasks
to the homogeneous parallel multiprocessor system. Performance of the hybrid
ACO and HEFT scheduling algorithm will produce the better result than GA and
other traditional approaches for job scheduling in a multiprocessor environment.

References

1. AI Na’mneh RA, Darabkh KA (2013) A new genetic-based algorithm for scheduling static
tasks in homogeneous parallel systems. In: International conference on robotics, biomimetics,
intelligent computational systems (ROBIONETICS) Yogyakarta, Indonesia, Nov 2013

2. Wu, YuH, Jin S, Lin K-C, Schiavone G (2004) An incremental genetic algorithm approach to
multiprocessors scheduling. IEEE Trans Parallel Distrib Syst 15(9):824-834

3. Jianer C, Chung-Yee L (1999) General multiprocessor task scheduling. Wiley, Hoboken

4. Apostolos G, Tao Y (1992) A comparison of clustering heuristics for scheduling directed
acyclic graphs on multiprocessors. J Parallel Distrib Comput

5. Yuming X, Kenli L, Tung Truong K, Meikang Q (2012) A multiple priority queueing genetic
algorithm for task scheduling on heterogeneous computing systems. In: IEEE 14th
international conference on high-performance computing and communications 2012

6. Shih-Tang L, Ruey-Maw C, Yueh-Min H, Chung-Lun W (2007) Multiprocessor system
scheduling with precedence and resource constraints using an enhanced ant colony system.
Elsevier Ltd

7. Hadi lotfii A, Broumandnia A, Shahriar A (2010) Task graph scheduling in multiprocessor
systems using a coarse grained genetic algorithm. In: IEEE 2nd international conference on
computer technology and development (ICCTD 2010)

8. Yan K, Zhenchao Z, Pengwu C (2011) An activity-based genetic algorithm approach to
multiprocessor scheduling. In: IEEE seventh international conference on natural computation

9. ReaKook H, Mitsuo G, Hiroshi K (2006) A performance evaluation of multiprocessor
scheduling with genetic algorithm. ReaKook Hwang et al./Asia Pac Manag Rev 11(2):67-72

10. Shih T, Ruey MC, Yueh-Min H, Chung-Lun W (2007) Multiprocessor system scheduling
with precedence and resource constraints using an enhanced ant colony system. Elsevier Ltd

11. Ravreet K, Gurvinder S (2012) Genetic algorithm solution for scheduling jobs in
multiprocessor environment. IEEE

160 A. Priya and S. K. Sahana

12. Jahanshahi M, Meybodi MR, Dehghan M (2009) A new approach for task scheduling in
distributed systems using learning automata. In: Proceedings of the IEEE international
conference on automation and logistics Shenyang, China, Aug 2009

13. Hadi L, Ali B, Shahriar L (2010) Task graph scheduling in multiprocessor systems using a
coarse grained genetic algorithm. In: IEEE 2nd international conference on computer
technology and development (ICCTD 2010)

14. Rami A, Khalid A (2013) A new genetic-based algorithm for scheduling static tasks in
homogeneous parallel systems. In: IEEE international conference on robotics, biomimetics,
intelligent computational systems (ROBIONETICS) Yogyakarta, Indonesia, Nov 25-27,
2013

15. Ricardo C, Afonso F, Pascal R (1999) Scheduling multiprocessor tasks with genetic
algorithms. IEEE Trans Parallel Distrib Syst 10(8) (Aug 1999)

16. Rashid M, Deniz D (2016) A multi-population based parallel genetic algorithm for
multiprocessor task scheduling with communication costs. In: IEEE symposium on computers
and communication (ISCC)

17. Ghafarian T, Deldari H, Mohammad R (2009) Multiprocessor scheduling with evolving
cellular automata based on ant colony optimization. In: IEEE proceedings of the 14th
international CSI computer conference (CSICC’09), 2009

18. Kumar A et al (2014) Aco and Ga based fault-tolerant scheduling of real-time tasks on
multiprocessor systems—a comparative study. IEEE

19. Savas_ Balin (2010) Non-identical parallel machine scheduling using genetic algorithm.
Elsevier Ltd

20. Kwok Y, Ahmad I (1999) Static scheduling algorithm for allocating directed task graph to
multiprocessors. ACM Comput Surv 31(4) (Dec 1999)

	14 A Survey on Multiprocessor Scheduling Using Evolutionary Technique
	Abstract
	1 Introduction
	2 Processor Scheduling
	2.1 Global Processor Scheduling
	2.2 Local Processor Scheduling
	2.3 Static Processor Scheduling
	2.4 Dynamic Processor Scheduling

	3 Literature Survey
	4 Problem Statement
	5 Discussion
	6 Conclusion
	References

