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Inhibitors Under Clinical Development
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1.1 Introduction

Protein-protein interactions (PPIs) regulate a number of biological processes both in
normal and disease states [1]. It is estimated that human interactome, the complex
network of PPIs, contains about 130,000–650,000 types of PPI [2, 3]. The pivotal
importance of PPIs makes them a rich source of targets for the development of
novel therapeutic drugs. There are several ways to modulate PPI complexes
including inhibition, stabilization, direct binding, and allosteric binding. A direct
PPI modulator binds to the interaction surface of one protein, thereby sterically
preventing or stabilizing the binding to its protein partner. In contrast, an allosteric
modulator binds at a distant region outside of the protein interaction interface and
remotely acts on the protein binding by triggering conformational change. For the
type of binding effect, PPI inhibitors compete with one of the protein partners and
prevent its binding, which represent a major approach in current PPI-based drug
discovery. Another way to interfere with the PPI-associated biological functions is
the stabilization of PPI complexes. PPI stabilizers bind to the regions at or near the
PPI interface and promote the binding without competing with any of the protein
partners [4]. Also, the therapeutic effects of PPI stabilizers are attracting increasing
research interests [4–6]. Currently, most PPI modulators in clinical development are
small-molecule inhibitors [7] and this chapter will mainly focus on design strategies
and case studies of small-molecule PPI inhibitors.
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1.2 Challenges in the Discovery of Small-Molecule PPI
Inhibitors

Although PPIs represent promising targets for the development of new generation
of clinical therapeutics, the design of selective and potent small-molecule inhibitors
is rather changeling as compared to that for traditional targets (e.g., proteinase,
kinases, G protein-coupled receptors) [8–10]. The nature of the PPI interfaces is
significantly different from that of traditional drug targets, which have well-defined
pockets for binding small molecules [11]. The PPI interface is generally large
(about 1,500–3,000 Å2), flat (often exposed to solvent) [12], and dominated with
hydrophobic and charged characteristics [13, 14]. Such features bring difficulties to
discover small molecules that can effectively interrupt PPIs. First, a potent PPI
inhibitor is required to have large molecular weight (MW) and high hydrophobicity
so that it can cover a large and hydrophobic surface area. However, such a binder
may have poor solubility and face pharmacokinetic problems. Second, the natural
binder of a specific PPI interface is the protein counterpart itself, whose amino acids
involved in PPIs are not contiguous. Thus, the protein or peptide involved in PPI
cannot be used as a good starting point for the design and identification of
small-molecule inhibitors. Third, existing compound libraries are mainly collected
or constructed for traditional drug targets, which cannot effectively cover the
chemical space of PPI inhibitors. Therefore, it is highly challenging to find a
high-quality hit or lead through high-throughput screening (HTS) of PPI inhibitors.
Moreover, validation of a PPI inhibitor from artifactual binding requires more
biological assays than that for traditional targets.

1.3 Structures and Classifications of PPIs

Despite these challenges, remarkable progress has been achieved in the discovery
and development of small-molecule PPI inhibitors [15–17]. The knowledge of the
topological features of PPI interfaces is critically important for the identification of
small-molecule inhibitors. Generally, PPI interface consists of a core region and a
rim region [18]. According to the PPI buried surface area and binding affinity, PPI
interfaces can be generally classified into four categories: “tight and wide,” “tight
and narrow,” “loose and narrow,” and “loose and wide” [19]. The properties and
examples of the four classes of PPIs are depicted in Table 1.1 and Fig. 1.1. Among
them, the “narrow and tight” PPIs are more druggable to design small-molecule
inhibitors, whereas the “loose and wide” is the most difficult to be targeted by small
molecules.

In Arkin’s review, PPIs can be classified into primary peptide epitopes, sec-
ondary structure epitopes, and tertiary structural epitopes according to the com-
plexity of epitopes (Table 1.2) [20]. The difficulties in identifying small-molecule
inhibitors increase as the interface becomes more complex (from primary to tertiary
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epitopes). The primary peptide epitope consists of a primary linear protein as one
side of the interface sequence. This type of PPI interface is particularly amenable to
be targeted by drug-like small molecules. The secondary structure epitopes mainly
include a-helix, b-sheet, and extended peptides. Key residues on the peptide are not
continuous in the primary sequence, which are centered on two to three subpockets.
The secondary structural epitopes have also been proven tractable to
small-molecule inhibition. Tertiary structural epitopes require multiple sequences
with discontinuous binding sites, which are the most challenging targets with
limited successful examples.

More recently, Skidmore et al. divided PPIs into a series of structural classes
including globular protein–globular protein interactions, globular protein–peptide
interactions, and peptide–peptide interactions [21]. These structural classes can be
further differentiated depending on whether the peptides have continuous epitope or

Table 1.1 Features of four classes of PPI interfaces according to the contact area and binding
affinity

PPI type Contact
area (Å2)

Affinity
(Kd, nM)

Examples Description

Tight and
wide

>2500 <200 b-Catenin/Tcf4
Hsp70/NEF
RGS4/Ga
cMyc/Max

Large buried and convoluted
(or discontinuous) contact
areas with tight affinities.
Difficult to be targeted by
small-molecule inhibitors

Tight and
narrow

<2500 <200 IL-2/IL-2Ra
MDM2/p53
Bcl-2/BH3
XIAP/caspase 9

High affinity binding in a
relatively small surface area.
Deep pockets engaged by
less than five hot spot
residues. Excellent
druggability

Loose and
narrow

<2500 >200 Hsp70/Hsp40
Hsp90/TPR
ZipA/FtsZ

Weak binding but relatively
small contact areas.
Transient interactions,
relatively shallow binding
pockets and difficult to
obtain structural data.
Challenging targets for
small-molecules binding

Loose and
wide

>2500 >200 Ras/SOS Large surface areas and
weak affinities. Particularly
challenging for discovering
small-molecule inhibitors

Abbreviations Tcf4, transcription factor 4; Hsp70, heat shock protein 70; NEF, nucleotide
exchange factor; RGS4, G protein signaling 4; MAX, MYC–associated factor X; IL-2,
interleukin-2; IL-2R, interleukin-2 receptor; MDM2, mouse double minute 2; Bcl, B-cell
lymphoma; BH3, BCL–2 homology domain 3; XIAP, X-linked inhibitor of apoptosis protein;
TPR, tetratricopeptide repeat; ZipA, cell division protein ZipA; FtsZ, filamenting
temperature-sensitive mutant Z; Ras, a small GTP-binding protein; SOS, a guanine nucleotide
exchange factor
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undergo substantial conformational changes upon binding (Fig. 1.2). PPIs between
globular proteins are highly challenging for small-molecule drug discovery [22]. In
contrast, globular protein–peptide interactions have been proven to be more drug-
gable. The difficulty in targeting peptide–peptide interactions depends on whether
there is a defined binding site.

Fig. 1.1 Topological features of four classes of PPIs according to the PPI contact area and binding
affinity
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1.4 “Hot Spots” as Structural Basis for the Design
of Small-Molecule PPI Inhibitors

The concept of “hot spots” in PPI interfaces was introduced by Clackson and Wells
in 1995 [23], which means a few key residues are responsible for the majority of the
binding free energy in PPI [18, 23]. Notably, the surface area of “hot spots” is
significantly smaller than the entire PPI interface [24]. Recent studies indicated that
the existence of “hot spots” was prevalent in PPI interfaces [18]. They account for
an average of 9.5% of the interfacial residues and are generally located in the core
regions [25]. Another important feature of “hot spots” is the conformational change
upon binding small molecules [26, 27]. When a small molecule binds to the PPI
interface, the opening of so-called transient pockets that facilitate the ligand binding
can be observed [28, 29]. “Hot spot” residues are highly adaptive with low energy
barriers for conformational changes. The flexibility of “hot spots” for
small-molecules binding has been observed in a number of PPI targets such as IL-2
receptor a (IL-2Ra) [28], Bcl-XL [30], HDM2 [31], and HPV-18-E2 [32]. “Hot
spot” residues are often enriched in tryptophan (21%), arginine (13.3%), and tyr-
osine (12.3%), which allow adaptive conformational change and form various
interactions to accommodate small molecules [25]. The existence and dynamic
features of “hot spots” offer an opportunity to underscore the challenge to identify
small-molecule PPI inhibitors.

The “hot spots” of PPI interfaces can be determined by alanine scanning
mutagenesis [23, 25, 33] in combination with structural biology studies. The former
can measure the contribution of each residue to the binding affinity with the partner
protein by serially mutating each residue to alanine. Moreover, X-ray crystallog-
raphy enables to provide key structural information about the distribution and
orientation of these hot spot residues in PPI interfaces. Also, solving crystal
structures of the target protein in free state and in complex with different ligands is
helpful to understand the dynamic properties of the “hot spots,” which is highly
valuable for inhibitor design. Computational methods, such as molecular dynamics
(MD) simulations, are complementary tools to investigate the dynamic features of
the “hot spots” [34–39].

1.5 Overview of Strategies for the Design
of Small-Molecule PPI Inhibitors

Recently, important progress has been made in the discovery and development of
small-molecule PPI inhibitors [20, 39–51]. Herein, state-of-the-art strategies of
PPI-based drug discovery will be briefly introduced. More details about the
advantages and limitations of the methodologies and successful examples can refer
to our recent review [52]. The first step for the discovery of small-molecule PPI
inhibitors is to determine the structure of the PPI interface (Fig. 1.3) [53]. Due to
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the flexibility of PPI interface, the availability of structures from different statuses
(unbound protein, protein-protein complex, protein–inhibitors complex) can sig-
nificantly improve the efficiency of inhibitor design. Then, druggability assessment

Table 1.2 Properties and examples of primary, secondary, and tertiary epitopes

PPI Type Description Examples

Primary 

peptide 

epitopes

Example: Bromodomain/histone (PDB ID: 2WP1) 

Description: Short, continuous and linear peptides.

LFA1/ICAM1

cIAP/SMAC

Bromodomain/histone 

Integrase/LEDGF 

VHL/HIF1α

Secondary 

structural

epitopes

Example: MDM2/p53 (PDB ID: 1YCR)

Description: α-Helix, β-sheet, and extended peptides

Bcl family/BH3

MDM2/p53

PDK1/PIF-tide

Menin/MLL

p300 CH1 domain/HIF1a

Tertiary 

structural 

epitopes

Example: IL-2/IL-2R (PDB: 1Z92)

Description: discontinuous binding sites, and larger

and shallower interfaces. 

IL-2/IL-2Rα

HPV11 E1/E2
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is necessary to evaluate whether the protein has well-defined binding sites or
pockets to accommodate small molecules because the success in designing PPI
inhibitors largely depends on the target type [54]. The next important step is the

Fig. 1.2 Classification of PPIs and examples. a Bcl-XL–BAD (PDB ID: 2XA0); b XIAP–SMAC
(PDB ID: 1G73); c KEAP1 (Kelch-like ECH-associated protein 1)-NRF2 (nuclear factor erythroid
2-related factor 2) (PDB ID: 2DYH); d bromodomains (PDB ID: 3UVW); e IL-2–IL-2R (PDB ID:
1Z92); f MYC–MAX (PDB ID: 1NKP)

Abbreviations LFA1, leukocyte function-associated molecule 1; ICAM1, intercellular adhesion
molecule 1; IAP, inhibitor of apoptosis proteins; SMAC, second mitochondrial activator of
caspases; LEDGF, lens endothelial growth factor; VHL, Von Hippel–Lindau disease tumor
suppressor; HIF1a, hypoxia-inducible factor 1a; PDK1, 3-phosphoinositide-dependent protein
kinase-1; PIF-tide, PDK1-interacting fragment; menin, a tumor suppressor associated with
multiple endocrine neoplasia type 1; MLL, mixed lineage leukemia; CH1, cysteine–histidine-rich
1; HPV11, human papilloma virus-11; E1, a kind of replication initiation factor; E2, a kind of
transcription factor
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identification of the “hot spots” on the PPI interface [55, 56]. After establishing
assays for biological evaluation, the strategy to discover initial hits depends on the
properties of PPI hot spots. Currently, screening strategies, designing strategies, and
synthetic strategies represent three major methods for small-molecule PPI inhibitor
discovery. Screening strategies mainly include HTS, fragment screening, and vir-
tual screening [39], which aim to discover PPI inhibitors from known compound
libraries. Among them, fragment screening in combination with fragment-based
drug design (FBDD) has the advantages of higher hit rate and better ligand effi-
ciency (LE). Designing strategies focus on building novel small molecules to mimic
the key interactions of the hot spot residues, which are used as the starting points for
substructure search, bioisostere design, and de novo design. Besides hot spot
residues, key secondary structure motif (i.e., a-helix, b-turn, and b-strand) involved
in PPI interface can also be for inhibitor design. A new scaffold decorated with the
side chains of hot spot residues is designed to mimic spatial orientation and
interactions of the original secondary structure. Synthetic strategies aim to explore
new chemical space for PPI inhibitor screening by developing efficient synthetic
methods to construct new libraries with chemical diversity and complexity. When
initial hits are available, validation studies are necessary to exclude false positives.
Secondary assays to determine the kinetic and thermodynamic parameters (e.g.,
association and dissociation rates) as well as solving the structures of protein–hit
complexes are important for selecting suitable hits for further optimization.
Structural optimization of the hits and leads aims to improve the binding affinity,
therapeutic effects, and drug-likeness, and the strategies are similar to those for
traditional targets. Finally, drug candidates can be obtained for preclinical and
clinical trials until they are marked for therapeutic application.

1.6 Small-Molecule PPI Inhibitors Under Clinical
Development

The discovery and development of PPIs inhibitors have been greatly accelerated
with better understanding of the structure and functions of PPIs and numerous
medicinal chemistry efforts in this field [57]. Up to now, a great number of highly
potent small-molecule PPI inhibitors have been identified and several of them are
marketed or under different stages of clinical evaluations. According to a recent
review by Abell and Skidmore [21], small-molecule PPI inhibitors in clinical
development are summarized in Table 1.3. On April 11, 2016, venetoclax
(ABT-199) was approved by FDA for the treatment of chronic lymphocytic leu-
kemia (CLL) with 17p deletion, which represents the first marketed small-molecule
PPI inhibitor [58]. Subsequently, lifitegrast (SAR 1118) [59], a small-molecule
inhibitor of LFA-1/ICAM-1, was approved for the treatment of dry eye syndrome
on July 11, 2016. Here, the drug discovery and medicinal chemistry optimization
process of venetoclax and lifitegrast were briefly introduced.
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1.6.1 Fragment-Based Discovery of Bcl-2 Inhibitor
Venetoclax

The discovery and development of Bcl-2 inhibitor venetoclax represent one of the
most successful examples of PPI-based drug discovery [91]. Bcl (B-cell lymphoma)
family of proteins (e.g., Bcl-XL, Bcl-2, Bcl-w, and Mcl-1) is anti-apoptotic proteins,
whose interactions with pro-apoptotic proteins such as Bak, Bax, and Bad play key
roles in both normal and abnormal apoptotic processes [92]. Initial drug discovery
efforts were focused on the non-selective Bcl-2/Bcl-XL/Bcl-w inhibitor navitoclax
(ABT-263) [93]. NMR structural studies revealed that the Bcl-XL/BAK interface
was a long and hydrophobic groove [94]. The “hot spots” include several
hydrophobic and charged residues (e.g., Ile85, Leu78, and Asp83). ABT-263 was
discovered by a combination of NMR-based fragment screening, parallel synthesis

Fig. 1.3 Current strategies for the design and development of small-molecule PPI inhibitors
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and structure-based design and ADME optimization. Initially, the research group
from Abbot screened a library containing 10,000 fragments using 15N HSQC NMR
spectroscopy [95]. Weak fragment hits 31 (Ki = 300 lM) and 32 (Ki = 4,300 lM)
were found to occupy two different subsites of Bcl-XL (Fig. 1.4) [96]. Guided by
the structural information of Bcl-XL/fragment complexes, the two fragment hits
were linked by the acylsulfonamide group to maintain the key interactions and
followed by optimization of the substitution of acylsulfonamide to yield inhibitor
33 (Ki = 36 lM) with improved affinity with Bcl-XL. Further structure-based
optimization of lead compound 33 led to the discovery of ABT-737 (34) as a highly
potent Bcl-XL inhibitor (Ki � 1 nM), which successfully mimicked the a-helical
BH3 domain of BAK [30, 97, 98]. However, ABT-737 is not orally bioavailable
and subsequent medicinal chemistry optimizations generated clinical candidate
ABT-263 (35) [99]. ABT-263 showed subnanomolar affinities for Bcl-2, Bcl-XL,
and Bcl-W with improved bioavailability [100]. Surprisingly, ABT-263 performed
poorly in clinical trials probably due to its non-selective profile. Thus, further
clinical evaluations were performed on the selective Bcl-2 inhibitor venetoclax
[101, 102]. Venetoclax selectively blocks Bcl-2 protein, leading to programmed cell
death of CLL cells.

1.6.2 Discovery of LFA-1/ICAM-1 Inhibitor Lifitegrast
for the Treatment of Dry Eye Syndrome

The PPI between LFA-1 and ICAM-1 is essential in lymphocyte and immune
system function. Small-molecule LFA-1/ICAM-1 inhibitors can be used to develop
novel drugs for the treatment of dry eye. The ICAM-1 epitope containing dis-
continuous residues Glu34, Lys39, Met64, Tyr66, Asn68, and Gln73 was identified
as “hot spots.” Gadek et al. designed compounds 36 (IC50 = 47 nM) and 37
(IC50 = 1.4 nM) as potent LFA-1 inhibitors. Their structures were embedded with
the carboxylic acid, sulfide, phenol, and carboxamide groups to mimic the ICAM-1
hot spots (Fig. 1.5) [103]. Structure–activity relationship (SAR) analysis revealed
that the inhibitors shared a “left-wing”–“central scaffold”–“right-wing” structural
mode. Based on this assumption, Zhong et al. designed bicyclic tetrahydroiso-
quinoline (THIQ) as the central scaffold and discovered a highly active LFA-1
inhibitor 38 (IC50 = 9 nM) with good in vivo efficacy [104]. Further optimization
studies were focused on improving pharmacokinetic profiles and successfully dis-
covered lifitegrast (9) as a new drug for the treatment of dry eye [59, 105].
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1.7 Conclusions

With the progress of structural biology studies of PPIs, the identification of “hot
spots” for inhibitor design as well as numerous medicinal chemistry efforts, the
development of small-molecule PPI inhibitors has come into reality with two
marketed drugs and a number of clinical candidates. The encouraging success has
attracted increasing interests and activities from both pharmaceutical industry and
academia. Deeper understanding of the structures, functions, and dynamics of PPIs

Fig. 1.4 Fragment-based design of Bcl-2 inhibitor venetoclax (a). The binding modes of the
Bcl-XL inhibitors (b–d) were generated from the crystal structures in PDB database (PDB codes:
1YSG, 1YSI, and 2YXJ)
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is highly desirable to improve the efficiency of PPI-based drug discovery. Also, the
drug design principles and drug-like criteria for PPI inhibitors need to be further
investigated. Taken together, with increasing knowledge and experience gained for
small-molecule PPI inhibitors, more challenging PPI targets will become accessible
to drug discovery. It is expected that more PPI inhibitors will come into clinical
application in the near future.
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