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Abstract We consider at first the existence and uniqueness of solution for a general
second-order evolution inclusion in a separable Hilbert space of the form

0 ∈ ü(t) + A(t)u̇(t) + f (t, u(t)), t ∈ [0, T ]
where A(t) is a time dependent with Lipschitz variation maximal monotone
operator and the perturbation f (t, .) is boundedly Lipschitz. Several new results are
presented in the sense that these second-order evolution inclusions deal with time-
dependent maximal monotone operators by contrast with the classical case dealing
with some special fixed operators. In particular, the existence and uniqueness of
solution to

0 = ü(t) + A(t)u̇(t) + ∇ϕ(u(t)), t ∈ [0, T ]
where A(t) is a time dependent with Lipschitz variation single-valued maximal
monotone operator and ∇ϕ is the gradient of a smooth Lipschitz function ϕ are
stated. Some more general inclusion of the form

0 ∈ ü(t) + A(t)u̇(t) + ∂�(u(t)), t ∈ [0, T ]
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where ∂�(u(t)) denotes the subdifferential of a proper lower semicontinuous
convex function � at the point u(t) is provided via a variational approach. Further
results in second-order problems involving both absolutely continuous in variation
maximal monotone operator and bounded in variation maximal monotone operator,
A(t), with perturbation f : [0, T ] × H × H are stated. Second- order evolution
inclusion with perturbation f and Young measure control νt

{
0 ∈ üx,y,ν(t) + A(t)u̇x,y,ν(t) + f (t, ux,y,ν(t)) + bar(νt ), t ∈ [0, T ]
ux,y,ν(0) = x, u̇x,y,ν(0) = y ∈ D(A(0))

where bar(νt ) denotes the barycenter of the Young measure νt is considered, and
applications to optimal control are presented. Some variational limit theorems
related to convex sweeping process are provided.

Keywords Bolza control problem · Lipschitz mapping · Maximal monotone
operators · Pseudo-distance · Subdifferential · Viscosity · Young measures
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1 Introduction

Let H be a separable Hilbert space. In this paper, we are mainly interested in the
study of the perturbed evolution problem

0 ∈ ü(t) + A(t)u̇(t) + ∂�(u(t)), t ∈ [0, T ]

where ∂�(u(t)) denotes the subdifferential of a proper lower semicontinuous
convex function � at the point u(t), A(t) : D(A(t)) → 2H is a maximal monotone
operator in the Hilbert space H for every t ∈ [0, T ], and the dependence t �→ A(t)

has Lipschitz variation, in the sense that there exists α ≥ 0 such that

dis(A(t), A(s)) ≤ α(t − s), ∀s, t ∈ [0, T ] (s ≤ t)

dis(., .) being the pseudo-distance between maximal monotone operators (m.m.o.)
defined by A. A. Vladimirov [53] as

dis(A,B) = sup

{ 〈y − ŷ, x̂ − x〉
1 + ||y|| + ||ŷ|| : x ∈ D(A), y ∈ Ax, x̂ ∈ D(B), ŷ ∈ Bx̂

}
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for m.m.o. A and B with domains D(A) and D(B), respectively; the dependence
t �→ A(t) has absolutely continuous variation, in the sense that there exists β ∈
W 1,1([0, T ]) such that

dis(A(t), A(s)) ≤ |β(t) − β(s)|, ∀t, s ∈ [0, T ],

the dependence t �→ A(t) has bounded variation in the sense that there exists a
function r : [0, T ] → [0,+∞[ which is continuous on [0, T [ and nondecreasing
with r(T ) < +∞ such that

dis(A(t), A(s)) ≤ dr(]s, t]) = r(t) − r(s) for 0 ≤ s ≤ t ≤ T

The paper is organized as follows. Section 2 contains some definitions, notation
and preliminary results. In Sect. 3, we recall and summarize (Theorem 3.2) the
existence and uniqueness of solution for a general second-order evolution inclusion
in a separable Hilbert space of the form

0 ∈ ü(t) + A(t)u̇(t) + f (t, u(t)), t ∈ [0, T ]

where A(t) is a time dependent with Lipschitz variation maximal monotone operator
and the perturbation f (t, .) is dt-boundedly Lipschitz (short for dt-integrably
Lipschitz on bounded sets). At this point, Theorem 3.2 and its corollaries are
new results in the sense that these second-order evolution inclusions deal with
time-dependent maximal monotone operators by contrast with the classical case
dealing with some special fixed operators; cf. Attouch et al. [4], Paoli [43], and
Schatzman [48]. In particular, the existence and uniqueness of solution, based on
Corollary 3.2, to

0 = ü(t) + A(t)u̇(t) + ∇ϕ(u(t)), t ∈ [0, T ]

where A(t) is a time dependent with Lipschitz variation single-valued maximal
monotone operator and ∇ϕ is the gradient of a smooth Lipschitz function ϕ, have
some importance in mechanics [40], which may require a more general evolution
inclusion of the form

0 ∈ ü(t) + A(t)u̇(t) + ∂�(u(t)), t ∈ [0, T ]

where ∂�(u(t)) denotes the subdifferential of a proper lower semicontinuous
convex function � at the point u(t).

We provide (Proposition 3.1) the existence of a generalized W
1,1
BV ([0, T ],H)

solution to the second-order inclusion 0 ∈ ü(t)+A(t)u̇(t)+∂�(u(t)) which enjoys
several regularity properties. The result is similar to that of Attouch et al. [4], Paoli
[43], and Schatzman [48] with different hypotheses and a different method that
is essentially based on Corollary 3.2 and the tools given in [22, 23, 27] involving
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the Young measures and biting convergence [9, 22, 32]. By W
1,1
BV ([0, T ],H), we

denote the space of all absolutely continuous mappings y : [0, T ] → H such that
ẏ are BV. Further results on second-order problems involving both the absolutely
continuous in variation maximal monotone operators and the bounded in variation
maximal monotone operator A(t) with perturbation f : [0, T ] × H × H are stated.

Finally, in Sect. 4, we present several applications in optimal control in a new
setting such as Bolza relaxation problem, dynamic programming principle, viscosity
in evolution inclusion driven by a Lipschitz variation maximal monotone operator
A(t) with Lipschitz perturbation f , and Young measure control νt

{
0 ∈ üx,y,ν(t) + A(t)u̇x,y,ν(t) + f (t, ux,y,ν(t)) + bar(νt ), t ∈ [0, T ]
ux,y,ν(0) = x, u̇x,y,ν(0) = y ∈ D(A(0))

where bar(νt ) denotes the barycenter of the Young measure νt in the same vein as in
Castaing-Marques-Raynaud de Fitte [25] dealing with the sweeping process. At this
point, the above second-order evolution inclusion contains the evolution problem
associated with the sweeping process by a closed convex Lipschitzian mapping C :
[0, T ] → cc(H)

{
0 ∈ ü(t) + NC(t)(u̇(t)) + f (t, u(t)) + bar(νt ), t ∈ [0, T ]
u(0) = u0, u̇(0) = u̇0 ∈ C(0)

(where cc(H) denotes the set of closed convex subsets of H ) by taking A(t) =
∂�C(t) and noting that if C(t) is a closed convex moving set in H , then the
subdifferential of its indicator function is A(t) = ∂�C(t) = NC(t), the outward
normal cone operator. Since for all s, t ∈ [0, T ]

dis
(
A(t), A(s)

) = H
(
C(t), C(s)

)
,

where H denotes the Hausdorff distance; it follows that our study of these time-
dependent maximal monotone operators includes as special cases some related
results for evolution problems governed by sweeping process of the form

0 ∈ ü(t) + NC(t)(u̇(t)) + f (t, u(t)), t ∈ [0, T ].

Since now sweeping process has found applications in several fields in particular to
economics [29, 31, 35], we present also some variational limit theorems related to
convex sweeping process; see [1, 3, 34] and the references therein.

There is a vast literature on evolution inclusions driven by the sweeping process
and the subdifferential operators. See [2, 5, 6, 10, 17, 18, 20, 21, 25, 26, 28, 30, 37,
39–41, 45, 47, 49–52] and the references therein. We refer to [9, 12, 13, 54] for the
study of maximal monotone operators.
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2 Notation and Preliminaries

In the whole paper, I := [0, T ] (T > 0) is an interval of R, and H is a real Hilbert
space whose scalar product will be denoted by 〈·, ·〉 and the associated norm by ‖·‖.
L ([0, T ]) is the Lebesgue σ -algebra on [0, T ], and B(H) is the σ -algebra of Borel
subsets of H . We will denote by BH (x0, r) the closed ball of H of center x0 and
radius r > 0 and by BH its closed unit ball. C(I,H) denotes the Banach space of all
continuous mappings u : I → H equipped with the norm ‖u‖C = max

t∈I
‖u(t)‖. For

q ∈ [1,+∞[, L
q
H ([0, T ], dt) is the space of (classes of) measurable u : [0, T ] →

H , with the norm ‖u(·)‖q = (
∫ T

0 ‖u(t)‖qdt)
1
q , and L∞

H ([0, T ], dt) is the space of
(classes of) measurable essentially bounded u : [0, T ] → H equipped with ‖.‖∞.

If E is a Banach space and E∗ its topological dual, we denote by σ(E,E∗)
the weak topology on E and by σ(E∗, E) the weak star topology on E∗. For any
C ⊂ E, we denote by δ∗(., C) the support function of C, i.e.

δ∗(x∗, C) = sup
x∈C

〈x∗, x〉 ,∀x∗ ∈ E∗.

A set-valued map A : D(A) ⊂ H → 2H is monotone if 〈y1 − y2, x1 − x2〉 ≥ 0
whenever xi ∈ D(A) and yi ∈ A(xi), i = 1, 2. A monotone operator A is maximal
if A is not contained properly in any other monotone operator, that is, for all λ > 0,
R(IH + λA) = H , with R(A) = ⋃{Ax, x ∈ D(A)} the range of A and IH the
identity mapping of H . In the whole paper, I := [0, T ] (T > 0) is an interval of R,
and H is a real Hilbert space whose scalar product will be denoted by 〈·, ·〉 and the
associated norm by ‖ · ‖. Let A : D(A) ⊂ H → 2H be a set-valued map. We say
that A is monotone, if 〈y1 − y2, x1 − x2〉 ≥ 0 whenever xi ∈ D(A) and yi ∈ A(xi),
i = 1, 2. If 〈y1 − y2, x1 − x2〉 = 0 implies that x1 = x2, we say that A is strictly
monotone. A monotone operator A is said to be maximal if A could not be contained
properly in any other monotone operator.

If A is a maximal monotone operator, then, for every x ∈ D(A), A(x) is
nonempty closed and convex. So the set A(x) contains an element of minimum
norm (the projection of the origin on the set A(x)). This unique element is denoted
by A0(x). Therefore A0(x) ∈ A(x) and ‖A0(x)‖ = infy∈A(x) ‖y‖. Moreover the set
D(A) is convex.

For λ > 0, we define the following well-known operators:

JA
λ = (I + λA)−1 (the resolvent of A),

Aλ = 1

λ
(I − JA

λ )(the Yosida approximation of A).

The operators JA
λ and Aλ are defined on all of H . For the terminology of maximal

monotone operators and more details, we refer the reader to [9, 13], and [54].
Let A : D(A) ⊂ H → 2H and B : D(B) ⊂ H → 2H be two maximal

monotone operators, and then we denote by dis(A,B) the pseudo-distance between
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A and B defined by A. A. Vladimirov [53] as

dis(A,B) = sup

{ 〈y − y′, x′ − x〉
1 + ‖y‖ + ‖y′‖ : x ∈ D(A), y ∈ Ax, x′ ∈ D(B), y′ ∈ Bx′

}
.

Our main results are established under the following hypotheses on the opera-
tor A:

(H1) The mapping t �→ A(t) has Lipschitz variation, in the sense that there exists
α ≥ 0 such that

dis(A(t), A(s)) ≤ α(t − s), ∀s, t ∈ [0, T ] (s ≤ t).

(H2) There exists a nonnegative real number c such that

‖A0(t, x)‖ ≤ c(1 + ‖x‖) for t ∈ [0, T ], x ∈ D(A(t)).

We recall some elementary lemmas, and we refer to [38] for the proofs.

Lemma 2.1 Let A and B be maximal monotone operators. Then

(1) dis(A,B) ∈ [0,+∞], dis(A,B) = dis(B,A) and dis(A,B) = 0 iff A = B.
(2) ‖x − Proj (x,D(B)‖ ≤ dis(A,B) for x ∈ D(A).
(3) H (D(A),D(B)) ≤ dis(A,B).

Lemma 2.2 Let A be a maximal monotone operator. If x, y ∈ H are such that

〈A0(z) − y, z − x〉 ≥ 0 ∀z ∈ D(A),

then x ∈ D(A) and y ∈ A(x).

Lemma 2.3 Let An (n ∈ N) and A be maximal monotone operators such that
dis(An,A) → 0. Suppose also that xn ∈ D(An) with xn → x and yn ∈ An(xn)

with yn → y weakly for some x, y ∈ H . Then x ∈ D(A) and y ∈ A(x).

Lemma 2.4 Let A and B be maximal monotone operators. Then

(1) for λ > 0 and x ∈ D(A)

‖x − JB
λ (x)‖ ≤ λ‖A0(x)‖ + dis(A,B) +

√
λ
(
1 + ‖A0(x)‖) dis(A,B).

(2) For λ > 0 and x, x′ ∈ H

‖JA
λ (x) − JB

λ (x′)‖2 ≤ ‖x − x′‖2 + 2λ
(
1 + ‖Aλ(x)‖ + ‖Bλ(x

′)‖) dis(A,B).

(3) For λ > 0 and x, x′ ∈ H

‖Aλ(x) − Bλ(x
′)‖2 ≤ 1

λ2 ‖x − x′‖2 + 2

λ

(
1 + ‖Aλ(x)‖ + ‖Bλ(x

′)‖) dis(A,B).
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3 Second-Order Evolution Problems Involving
Time-Dependent Maximal Monotone Operators

In the sequel, H is a separable Hilbert space. For the sake of completeness, we
summarize and state the following result. We say that a function f = f (t, x) is dt-
boundedly Lipschitz (short for dt-integrably Lipschitz on bounded sets) if, for every
R > 0, there is a nonnegative dt-integrable function λR ∈ L1([0, T ],R; dt) such
that, for all t ∈ [0, T ]

‖f (t, x) − f (t, y)‖ ≤ λR(t)||x − y||, ∀x, y ∈ B(0, R).

Theorem 3.1 Let for every t ∈ [0, T ], A(t) : D(A(t)) ⊂ H → 2H be a maximal
monotone operator satisfying

(H1) there exists a real constant α ≥ 0 such that

dis(A(t), A(s)) ≤ α(t − s) for 0 ≤ s ≤ t ≤ T .

(H2) there exists a nonnegative real number c such that

‖A0(t, x)‖ ≤ c(1 + ‖x‖), t ∈ [0, T ], x ∈ D(A(t))

Let f : [0, T ] × H → H satisfying the linear growth condition
(H3) there exists a nonnegative real number M such that

‖f (t, x)‖ ≤ M(1 + ‖x‖) for t ∈ [0, T ], x ∈ H.

and assume that f (., x) is dt-integrable for every x ∈ H . Assume also that
f is dt-boundedly Lipschitz, as above.

Then for all u0 ∈ D(A(0)), the problem

−du

dt
(t) ∈ A(t)u(t) + f (t, u(t)) dt − a.e. t ∈ [0, T ], u(0) = u0

has a unique Lipschitz solution with the property: ||u(t)−u(τ)|| ≤ K max{1, α}|t−
τ | for all t, τ ∈ [0, T ] for some constant K ∈]0,∞[.
Proof See [7, Theorem 3.1 and Theorem 3.3].

Theorem 3.2 Let for every t ∈ [0, T ], A(t) : D(A(t)) ⊂ H → 2H be a maximal
monotone operator satisfying

(H1) there exists a real constant α ≥ 0 such that

dis(A(t), A(s)) ≤ α(t − s) for 0 ≤ s ≤ t ≤ T .



32 C. Castaing et al.

(H2) there exists a nonnegative real number c such that

‖A0(t, x)‖ ≤ c(1 + ‖x‖), t ∈ [0, T ], x ∈ D(A(t))

Let f : [0, T ] × H → H satisfying the linear growth condition:
(H3) there exists a nonnegative real number M such that

‖f (t, x)‖ ≤ M(1 + ‖x‖) for t ∈ [0, T ], x ∈ H.

and assume that f (., x) is dt-integrable for every x ∈ H . Assume also that
f is dt-boundedly Lipschitz.

Then the second-order evolution inclusion

(S1)

{
0 ∈ ü(t) + A(t)u̇(t) + f (t, u(t)), t ∈ [0, T ]
u(0) = u0, u̇(0) = u̇0 ∈ D(A(0))

admits a unique solution u ∈ W
2,∞
H ([0, T ], dt).

Proof The proof is a careful application of Theorem 3.1. In the new variables X =
(x, ẋ), let us set for all t ∈ I

B(t)X = {0} × A(t)ẋ, g(t, X) = (−ẋ, f (t, x)).

For any u ∈ W 2,∞(I,H ; dt), define X(t) = (u(t), du
dt

(t)) and Ẋ(t) = dX
dt

(t).
Then the evolution inclusion (S1) can be written as a first-order evolution inclusion
associated with the Lipschitz maximal monotone operator B(t) and the locally
Lipschitz perturbation g:

{
0 ∈ Ẋ(t) + B(t)X(t) + g(t,X(t)), t ∈ [0, T ]
X(0) = (u0, u̇0) ∈ H × D(A(0)).

So the existence and uniqueness solution to the second-order evolution inclusion
under consideration follows from Theorem 3.1.

There are some useful corollaries to Theorem 3.2.

Corollary 3.1 Assume that for every t ∈ [0, T ], A(t) : H → H is a single-valued
maximal monotone operator satisfying (H1) and (H2). Let f : [0, T ] × H → H

be as in Theorem 3.2. Then the second-order evolution equation

{
0 = ü(t) + A(t)u̇(t) + f (t, u(t)), t ∈ [0, T ]
u(0) = u0, u̇(0) = u̇0

admits a unique solution u ∈ W
2,∞
H ([0, T ]).
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Corollary 3.2 Assume that for every t ∈ [0, T ], A(t) : H → H is a single-valued
maximal monotone operator satisfying (H1) and (H2). Assume further that A(t)

satisfies

(i) (t, x) �→ A(t)x is a Caratheodory mapping, that is, t �→ A(t)x is Lebesgue
measurable on [0, T ] for each fixed x ∈ H , and x �→ A(t)x is continuous on
H for each fixed t ∈ [0, T ],

(ii) 〈A(t)x, x〉 ≥ γ ||x||2, for all (t, x) ∈ [0, T ] × H , for some γ > 0.

Let ϕ ∈ C1(H,R) be Lipschitz and such that ∇ϕ is locally Lipschitz. Then the
evolution equation

(S2)

{
0 = ü(t) + A(t)u̇(t) + ∇ϕ(u(t)), t ∈ [0, T ]
u(0) = u0, u̇(0) = u̇0

admits a unique solution u ∈ W 2,∞([0, T ],H ; dt); moreover, u satisfies the energy
estimate

ϕ(u(t)) − 1

2
||u̇(t)||2 ≤ ϕ(u(0)) − 1

2
||u̇(t)||2 − γ

∫ t

0
||u̇(s)||2ds, t ∈ [0, T ].

Proof Existence and uniqueness of solution follows from Theorem 3.2 or Corol-
lary 3.1. The energy estimate is quite standard. Multiplying the equation by u̇(t)

and applying the usual chain rule formula gives for all t ∈ [0, T ]
d

dt

(
ϕ(u(t)) + 1

2
||u̇(t)||2

)
= −〈

A(t)u̇(t), u̇(t)
〉
.

By (i) and (ii) and by integrating on [0, t], we get the required inequality

ϕ(u(t)) + 1

2
||u̇(t)||2 = ϕ(u(0)) + 1

2
||u̇(0)||2 −

∫ t

0

〈
A(s)u̇(s), u̇(s)

〉
ds

≤ ϕ(u(0)) + 1

2
||u̇(0)||2 − γ

∫ t

0
||u̇(s)||2ds, t ∈ [0, T ],

which completes the proof.

It is worth mentioning that the uniqueness of the solution to the equation (S1) is
quite important in applications, such as models in mechanics, since it contains the
classical inclusion of the form

0 ∈ ü(t) + ∂�(u̇(t)) + ∇g(u(t))

where ∂� is the subdifferential of the proper lower semicontinuous convex function
� and g is of class C1 and ∇g is Lipschitz continuous on bounded sets. We also
note that the uniqueness of the solution to the equation (S2) and its energy estimate
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allow to recover a classical result in the literature dealing with finite dimensional
space H and A(t) = γ IH , t ∈ [0, T ], where IH is the identity mapping in H . See
Attouch et al. [4]. The energy estimate for the solution of

{
0 = ü(t) + γ u̇(t) + ∇ϕ(u(t)), t ∈ I

u(0) = u0, u̇(0) = u̇0

is then

ϕ(u(t)) + 1

2
||u̇(t)||2 = ϕ(u0) + 1

2
||u̇0||2 − γ

∫ t

0
||u̇(s)||2ds.

Actually the dynamical system (S1) given in Theorem 3.2 has been intensively
studied by many authors in particular cases. See Attouch et al. [4] dealing with the
inclusion

0 ∈ ü(t) + γ u̇(t) + ∂ϕ(u(t))

and Paoli [43] and Schatzman [48] dealing with the second-order dynamical
systems of the form

0 ∈ ü(t) + ∂ϕ(u(t))

and

0 ∈ ü(t) + Au̇(t) + ∂ϕ(u(t))

where A is a positive autoadjoint operator. The existence and uniqueness of
solutions in (S2) are of some importance since they allow to obtain the existence of
at least a W

1,1
BV ([0, T ],H) solution with conservation of energy (see Proposition 3.1

below) for a second-order evolution inclusion of the form

(S3)

{
0 ∈ ü(t) + A(t)u̇(t) + ∂�(u(t), t ∈ I

u(0) = u0 ∈ dom �, u̇(0) = u̇0 ∈ D(A(0))

where ∂� is the subdifferential of a proper convex lower semicontinuous function;
the energy estimate is given by

�(u(t)) + 1

2
||u̇(t)||2 = �(u(0)) + 1

2
||u̇(0)||2 −

∫ t

0

〈
A(s)u̇(s), u̇(s)

〉
ds.

Taking into account these considerations, we will provide the existence of a
generalized solution to the second-order inclusion of the form

0 ∈ ü(t) + A(t)u̇(t) + ∂φ(u(t))
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which enjoy several regular properties. The result is similar to that of Attouch et al.
[4], Paoli [43], and Schatzman [48] with different hypotheses and a different
method that is essentially based on Corollary 3.2 and the tools given in [22, 23, 27]
involving the Young measures [9, 32] and biting convergence.

Let us recall a useful Gronwall-type lemma [21].

Lemma 3.5 (A Gronwall-like inequality.) Let p, q, r : [0, T ] → [0,∞[ be three
nonnegative Lebesgue integrable functions such that for almost all t ∈ [0, T ]

r(t) ≤ p(t) + q(t)

∫ t

0
r(s) ds.

Then

r(t) ≤ p(t) + q(t)

∫ t

0

[
p(s) exp

(∫ t

s

q(τ ) dτ

)]
ds

for all t ∈ [0, T ].
Proposition 3.1 Assume that H = R

d and that, for every t ∈ [0, T ], A(t) : H →
H is single-valued maximal monotone satisfying

(H1) there exists α > 0 such that

dis(A(t), A(s)) ≤ α(t − s) for 0 ≤ s ≤ t ≤ T ,

(H2) there exists a nonnegative real number c such that

‖A(t, x)‖ ≤ c(1 + ‖x‖) for t ∈ [0, T ], x ∈ H.

Assume further that A(t) satisfies

A-1. (t, x) → A(t)x is a Caratheodory mapping, that is, t �→ A(t)x is Lebesgue-
measurable on [0, T ] for each fixed x ∈ H , and x �→ A(t)x is continuous on
H for each fixed t ∈ [0, T ],

A-2. 〈A(t)x, x〉 ≥ γ ||x||2, for all (t, x) ∈ [0, T ] × H , for some γ > 0.

Let n ∈ N and ϕn : H → R
+ be a C1, convex, Lipschitz function and such that ∇ϕn

is locally Lipschitz, and let ϕ∞ be a nonnegative l.s.c proper function defined on H

with ϕn(x) ≤ ϕ∞(x),∀x ∈ H . For each n ∈ N, let un be the unique W
2,∞
H ([0, T ])

solution to the problem

{
0 = ün(t) + A(t)u̇n(t) + ∇ϕn(u

n(t)), t ∈ [0, T ]
un(0) = un

0, u̇n(0) = u̇n
0

Assume that

(i) ϕn epiconverges to ϕ∞,
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(ii) un(0) → u∞
0 ∈ dom ϕ∞ and limn ϕn(u

n(0)) = ϕ∞(u∞
0 ),

(iii) supv∈BL∞
H

([0,T ])
∫ T

0 ϕ∞(v(t))dt < +∞, where BL∞
H ([0,T ]) is the closed unit ball

in L∞
H ([0, T ]).

(a) Then up to extracted subsequences, (un) converges uniformly to a
W

1,1
BV ([0, T ],Rd)-function u∞ with u∞(0) ∈ dom ϕ∞, and (u̇n) pointwisely

converges to a BV function v∞ with v∞ = u̇∞, and (ün) biting converges to
a function ζ∞ ∈ L1

Rd ([0, T ]) so that the limit function u∞, u̇∞ and the biting
limit ζ∞ satisfy the variational inclusion

−A(.)u̇∞ − ζ∞ ∈ ∂Iϕ∞(u∞)

where ∂Iϕ∞ denotes the subdifferential of the convex lower semicontinuous
integral functional Iϕ∞ defined on L∞

Rd ([0, T ])

Iϕ∞(u) :=
∫ T

0
ϕ∞(u(t)) dt, ∀u ∈ L∞

Rd ([0, T ]).

(b) (ün) weakly converges to a vector measure m ∈ M b
H ([0, T ]) so that the

limit functions u∞(.) and the limit measure m satisfy the following variational
inequality:

∫ T

0
ϕ∞(v(t)) dt ≥

∫ T

0
ϕ∞(u∞(t)) dt +

∫ T

0
〈−A(t)u̇∞(t), v(t) − u∞(t)〉 dt

+ 〈−m, v − u∞〉(M b

Rd ([0,T ]),CE([0,T ])).

(c) Furthermore limn

∫ T

0 ϕn(u
n(t))dt = ∫ T

0 ϕ∞(u∞(t))dt . Subsequently the
energy estimate

ϕ∞(u∞(t))+1

2
||u̇∞(t)||2 = ϕ∞(u∞

0 )+1

2
||u̇∞

0 ||2+
∫ t

0
〈−A(s)u̇∞(s), u∞(s)〉ds

holds a.e.
(d) There is a filter U finer than the Fréchet filter l ∈ L∞

Rd ([0, T ])′ such that

U − lim
n

[−A(.)u̇n − ün] = l ∈ L∞
Rd ([0, T ])′weak

where L∞
Rd ([0, T ])′weak is the second dual of L1

Rd ([0, T ]) endowed with the topology
σ(L∞

Rd ([0, T ])′, L∞
Rd ([0, T ])), and n ∈ CRd ([0, T ])′weak such that

lim
n

[−A(.)u̇n − ün] = n ∈ CRd ([0, T ])′weak
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where CRd ([0, T ])′weak denotes the space CRd ([0, T ])′ endowed with the weak
topology σ(CRd ([0, T ])′,CRd ([0, T ])). Let la be the density of the absolutely
continuous part la of l in the decomposition l = la + ls in absolutely continuous
part la and singular part ls . Then

la(f ) =
∫ T

0
〈f (t),−A(t)u̇∞(t) − ζ∞(t)〉dt

for all f ∈ L∞
Rd ([0, T ]) so that

I ∗
ϕ∞(l) = Iϕ∗∞(−A(.)u̇∞ − ζ∞) + δ∗(ls, dom Iϕ∞)

where ϕ∗∞ is the conjugate of ϕ∞, Iϕ∗∞ the integral functional defined on L1
Rd ([0, T ])

associated with ϕ∗∞, I ∗
ϕ∞ the conjugate of the integral functional Iϕ∞ , dom Iϕ∞ :=

{u ∈ L∞
Rd ([0, 1]) : Iϕ∞(u) < ∞}, and

〈n, f 〉 =
∫ T

0
〈−A(t)u̇∞(t) − ζ∞(t), f (t)〉dt + 〈ns , f 〉, ∀f ∈ CRd ([0, T ]).

with 〈ns , f 〉 = ls(f ), ∀f ∈ CRd ([0, T ]). Further n belongs to the subdifferential
∂Jϕ∞(u∞) of the convex lower semicontinuous integral functional Jϕ∞ defined on
CRd ([0, T ])

Jϕ∞(u) :=
∫ T

0
ϕ∞(u(t)) dt, ∀u ∈ CRd ([0, T ]).

Consequently the density −A(.)u̇∞ − ζ∞ of the absolutely continuous part na

na(f ) :=
∫ T

0
〈−A(t)u̇∞(t) − ζ∞(t), f (t)〉dt, ∀f ∈ CRd ([0, T ])

satisfies the inclusion

−A(t)u̇∞(t) − ζ∞(t) ∈ ∂ϕ∞(u∞(t)), a.e.

and for any nonnegative measure θ on [0, T ] with respect to which ns is absolutely
continuous

∫ T

0
rϕ∗∞

(
dns

dθ
(t)

)
dθ(t) =

∫ T

0

〈
u∞(t),

dns

dθ
(t)

〉
dθ(t)

where rϕ∗∞ denotes the recession function of ϕ∗∞.
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Proof The proof is long and based on the existence and uniqueness of W
2,∞
H ([0, T ])

solution to the approximating equation (cf. Corollary 3.2)

{
0 = ün(t) + A(t)u̇n(t) + ∇ϕn(u

n(t)), t ∈ [0, T ]
un(0) = un

0, u̇n(0) = u̇n
0

and the techniques developed in [22, 23, 27]. Nevertheless we will produce the proof
with full details, since the techniques employed can be applied to further related
results.

Step 1. Multiplying scalarly the equation

−A(t)u̇n(t) − ün(t) = ∇ϕn(u
n(t))

by u̇n(t) and applying the chain rule theorem [42, Theorem 2] yields

−〈u̇n(t), A(t)u̇n(t)〉 − 〈u̇n(t), ün(t)〉 = d

dt
[ϕn(un(t))],

that is,

−〈u̇n(t), A(t)u̇n(t)〉 = d

dt

[
ϕn(u

n(t)) + 1

2
||u̇n(t)||2

]
.

By integrating on [0, t] this equality and using the condition (ii), we get

ϕn(u
n(t)) + 1

2
||u̇n(t)||2 = ϕn(u

n(0)) + 1

2
||u̇n(0)||2 −

∫ t

0
〈u̇n(s), A(s)u̇n(s)〉ds

≤ ϕn(u
n(0)) + 1

2
||u̇n(0)||2 + γ

∫ t

0
||u̇n(s||2ds.

Then, from our assumption, ϕn(u
n(0)) ≤ positive constant < +∞ and

1
2 ||u̇n(0)||2 ≤ positive constant < +∞ so that

ϕn(u
n(t)) + 1

2
||u̇n(t)||2 ≤ p + γ

∫ t

0
||u̇n(s||2ds, t ∈ [0, T ]

where p is a generic positive constant. So by the preceding estimate and the
Gronwall inequality [21, Lemma 3.1] , it is immediate that

sup
n≥1

sup
t∈[0,T ]

||u̇n(t)|| < +∞ and sup
n≥1

sup
t∈[0,T ]

ϕn(u
n(t)) < +∞. (1)

Step 2. Estimation of ||ün(.)||. For simplicity, let us set zn(t) = −A(t)u̇n(t) −
ün(t),∀t ∈ [0, T ]. As

zn(t) := −A(t)u̇n(t) − ün(t) = ∇ϕn(u
n(t))



Second-Order Evolution Problems with Time-Dependent Maximal Monotone. . . 39

by the subdifferential inequality for convex lower semicontinuous functions, we
have

ϕn(x) ≥ ϕn(u
n(t)) + 〈x − un(t), zn(t)〉

for all x ∈ R
d . Now let v ∈ BL∞

Rd ([0,T ]), the closed unit ball of L∞
Rd [0, T ]). By

taking x = v(t) in the preceding inequality, we get

ϕn(v(t)) ≥ ϕn(u
n(t)) + 〈v(t) − un(t), zn(t)〉.

Integrating the preceding inequality gives
∫ T

0
〈v(t) − un(t), zn(t)〉dt ≤

∫ T

0
ϕn(v(t))dt −

∫ T

0
ϕn(u

n(t))dt.

Whence follows

∫ T

0
〈v(t), zn(t)〉dt

≤
∫ T

0
ϕn(v(t))dt −

∫ T

0
ϕn(u

n(t))dt +
∫ 1

0
〈un(t), zn(t)〉dt. (2)

We compute the last integral in the preceding inequality. By integration and taking
account of (1), we have

∫ T

0
〈un(t), zn(t)〉dt

=
∫ T

0
〈un(t),−A(t)u̇n(t) − ün(t)〉dt

= − [〈un(t), u̇n(t)]T0 +
∫ T

0
〈u̇n(t), u̇n(t)〉dt −

∫ T

0
〈un(t), A(t)u̇n(t)〉dt

= − 〈un(T ), u̇n(T )〉 + 〈un(0), u̇n(0)〉

+
∫ T

0
||u̇n(t)||2dt −

∫ T

0
〈un(t), A(t)u̇n(t)〉dt. (3)

As ||A(t)u̇n(t)|| ≤ c(1 + ||u̇n(t)||) by (H2), so that by (1) it is immediate that∫ T

0 〈un(t), A(t)u̇n(t)〉dt is uniformly bounded so that by (1), (2), and (3), we get

∫ T

0
〈v(t), zn(t)〉dt ≤

∫ T

0
ϕn(v(t))dt + L

≤ sup
v∈BL∞

Rd
([0,T ])

∫ T

0
ϕ∞(v(t))dt + L < ∞ (4)
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for all v ∈ BL∞
Rd ([0,T ]). Here L is a generic positive constant independent of n ∈ N.

By (4), we conclude that (zn = −A(.)u̇n − ün) is bounded in L1
Rd ([0, T ]), and then

so is (ün). It turns out that the sequence (u̇n) of absolutely continuous functions
is uniformly bounded by (1) and bounded in variation and by Helly’s theorem; we
may assume that (u̇n) pointwisely converges to a BV function v∞ : [0, T ] → R

d

and the sequence (un) converges uniformly to an absolutely continuous function u∞
with u̇∞ = v∞ a.e. At this point, it is clear that A(t)u̇n(t) → A(t)v∞(t) so that
A(t)u̇n(t) → A(t)u̇∞(t) a.e. and A(.)u̇n(.) converges in L1

Rd ([0, T ]) to A(.)u̇∞(.),
using (1) and the dominated convergence theorem.
Step 3. Young measure limit and biting limit of ün. As (ün) is bounded in
L1
Rd ([0, T ]), we may assume that (ün) stably converges to a Young measure

ν ∈ Y ([0, T ]);Rd) with bar(ν) : t �→ bar(νt ) ∈ L1
Rd ([0, T ]) (here bar(νt )

denotes the barycenter of νt ). Further, we may assume that (ün) biting converges to a
function ζ∞ : t �→ bar(νt ), that is, there exists a decreasing sequence of Lebesgue-
measurable sets (Bp) with limp λ(Bp) = 0 such that the restriction of (ün) on
each Bc

p converges weakly in L1
Rd ([0, T ]) to ζ∞. Noting that (A(.)u̇n) converges

in L1
Rd ([0, T ]) to A(.)u̇∞. It follows that the restriction of zn = −A(.)u̇n − ün

to each Bc
p weakly converges in L1

Rd ([0, T ]) to z∞ := −A(.)u̇∞ − ζ∞, because

(−A(.)u̇n) converges in L1
Rd ([0, T ]) to A(.)u̇∞ and (ün) biting converges to ζ∞ ∈

L1
Rd ([0, T ]). It follows that

lim
n

∫
B

〈−A(.)u̇n − ün, w(t) − un(t)〉 =
∫

B

〈−A(.)u̇∞ − bar(νt ), w(t) − u(t)〉dt

(5)
for every B ∈ Bc

p ∩L ([0, T ]) and for every w ∈ L∞
Rd ([0, T ]). Indeed, we note that

(w(t) − un(t)) is a bounded sequence in L∞
Rd ([0, T ]) which pointwisely converges

to w(t) − u∞(t), so it converges uniformly on every uniformly integrable subset
of L1

Rd ([0, T ]) by virtue of a Grothendieck Lemma [33], recalling here that the
restriction of −A(.)u̇n − ün on each Bc

p is uniformly integrable. Now, since ϕn

lower epiconverges to ϕ∞, for every Lebesgue-measurable set A in [0, T ], by virtue
of [23, Corollary 4.7], we have

+ ∞ > lim inf
n

∫
A

ϕn(u
n(t))dt ≥

∫
A

ϕ∞(u∞(t))dt. (6)

Combining (1), (2), (3), (4), (5), and (6) and using the subdifferential inequality

ϕn(w(t)) ≥ ϕn(u
n(t)) + 〈−A(.)u̇n − ün(t), w(t) − un(t)〉,

we get

∫
B

ϕ∞(w(t)) dt ≥
∫

B

ϕ∞(u∞(t)) dt +
∫

B

〈−A(.)u̇∞ − bar(νt ), w(t) − u∞(t)〉 dt.
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This shows that t �→ −A(.)u̇∞ − bar(νt ) is a subgradient at the point u∞ of the
convex integral functional Iϕ∞ restricted to L∞

Rd (B
c
p), consequently,

−A(.)u̇∞ − bar(νt ) ∈ ∂ϕ∞(u∞(t)), a.e. on Bc
p.

As this inclusion is true on each Bc
p and Bc

p ↑ [0, T ], we conclude that

−A(.)u̇∞ − bar(νt ) ∈ ∂ϕ∞(u∞(t)), a.e. on [0, T ].
Step 4. Measure limit in M b

Rd ([0, T ]) of ün. As (ün) is bounded in L1
Rd ([0, T ]), we

may assume that (ün) weakly converges to a vector measure m ∈ M b
Rd ([0, T ])

so that the limit functions u∞(.) and the limit measure m satisfy the following
variational inequality:

∫ T

0
ϕ∞(v(t)) dt ≥

∫ T

0
ϕ∞(u∞(t)) dt +

∫ T

0
〈−A(t)u̇∞(t), v(t) − u∞(t)〉 dt

+ 〈−m, v − u∞〉(M b
E([0,T ]),C

Rd ([0,T ])).

In other words, the vector measure −m−A(t)u̇∞(t)dt belongs to the subdifferential
∂Jϕ∞(u∞) of the convex functional integral Jϕ∞ defined on CRd ([0, T ]) by

Jϕ∞(v) = ∫ T

0 ϕ∞(v(t)) dt , ∀v ∈ CRd ([0, T ]). Indeed, let w ∈ CRd ([0, T ]).
Integrating the subdifferential inequality

ϕn(w(t)) ≥ ϕn(u
n(t)) + 〈−A(t)u̇n(t) − ün(t), w(t) − un(t)〉

and noting that ϕ∞(w(t)) ≥ ϕn(w(t)) gives immediately

∫ T

0
ϕ∞(w(t))dt ≥

∫ T

0
ϕn(w(t))dt

≥
∫ T

0
ϕn(u

n(t))dt + 〈−A(t)u̇n(t) − ün(t), w(t) − un(t)〉dt.

We note that

lim
n

∫ T

0
〈−A(t)u̇n(t), w(t) − un(t)〉dt =

∫ T

0
〈A(t)u̇∞(t), w(t) − u∞(t)〉dt

because (−A(.)u̇n) is uniformly integrable and converges in L1
H ([0, T ]) to A(.)u̇∞

and the sequence in (w − un) converges uniformly to w − u∞. Whence follows

∫ T

0
ϕ∞(w(t))dt ≥

∫ T

0
ϕ∞(u∞(t))dt +

∫ T

0
〈−A(t)u̇∞(t), w(t) − u∞(t)〉dt

+ 〈−m,w − u∞〉(M b

Rd ([0,T ]),C
Rd ([0,T ])),
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which shows that the vector measure −m − A(.)u̇∞dt is a subgradient at the
point u∞ of the of the convex integral functional Jϕ∞ defined on CRd ([0, T ])) by

Jϕ∞(v) := ∫ T

0 ϕ∞(v(t))dt,∀v ∈ CRd ([0, T ]).
Step 5. Claim limn ϕn(u

n(t)) = ϕ∞(u∞(t)) < ∞ a.e. and limn

∫ T

0 ϕn(u
n(t))dt =∫ T

0 ϕ∞(u∞(t))dt < ∞, and subsequently, the energy estimate holds for a.e. t ∈
[0, T ]:

ϕ∞(u∞(t)) + 1

2
||u̇∞(t)||2 = ϕ∞(u∞

0 ) + 1

2
||u̇∞

0 ||2 −
∫ t

0
〈A(s)(u̇∞(s), u̇∞(s)〉ds.

With the above stated results and notations, applying the subdifferential inequality

ϕn(w(t)) ≥ ϕn(u
n(t)) + 〈−A(t)u̇n(t) − ün(t), w(t) − un(t)〉

with w = u∞, integrating on B ∈ Bc
p ∩ L ([0, T ]), and passing to the limit when n

goes to ∞, gives the inequality

∫
B

ϕ∞(u∞(t))dt ≥ lim inf
n

∫
B

ϕn(u
n(t))dt

≥
∫

B

ϕ∞(u∞(t))dt ≥ lim sup
n

∫
B

ϕn(u
n(t))dt

so that

lim
n

∫
B

ϕn(u
n(t))dt =

∫
B

ϕ∞(u∞(t))dt (7)

on B ∈ Bc
p ∩ L ([0, T ]). Now, from the chain rule theorem given in Step 1, recall

that

−〈u̇n(t), A(t)u̇n(t)〉 − 〈u̇n(t), ün(t)〉 = d

dt
[ϕn(un(t))],

that is,

〈u̇n(t), zn(t)〉 = d

dt
[ϕn(un(t))].

By the estimate (1) and the boundedness in L1
Rd ([0, T ]) of (zn), it is immediate that

( d
dt

[ϕn(un(t))]) is bounded in L1
R
([0, T ]) so that (ϕn(un(.)) is bounded in variation.

By Helly’s theorem, we may assume that (ϕn(un(.)) pointwisely converges to a BV
function ψ . By (1), (ϕn(un(.)) converges in L1

R
([0, T ]) to ψ . In particular, for every

k ∈ L∞
R+([0, T ]), we have

lim
n→∞

∫ T

0
k(t)ϕn(un(t))dt =

∫ T

0
k(t)ψ(t)dt. (8)
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Combining with (7) and (8) yields

∫
B

ψ(t) dt = lim
n→∞

∫
B

ϕn(u
n(t)) dt =

∫
B

ϕ∞(u∞(t)) dt

for all ∈ Bc
p ∩ L ([0, T ]). As this inclusion is true on each Bc

p and Bc
p ↑ [0, T ], we

conclude that

ψ(t) = lim
n

ϕn(un(t)) = ϕ∞(u∞(t)) a.e.

Subsequently, using (iii), the passage to the limit when n goes to ∞ in the equation

ϕn(u
n(t)) + 1

2
||u̇n(t)||2 = ϕn(u

n(0)) + 1

2
||u̇n(0)||2 −

∫ t

0
〈A(s)u̇n(s), u̇n(s)〉ds

yields for a.e. t ∈ [0, T ]

ϕ∞(u∞(t)) + 1

2
||u̇∞(t)||2 = ϕ∞(u∞

0 ) + 1

2
||u̇∞

0 )||2 −
∫ t

0
〈A(s)u̇∞(s), u̇∞(s)〉ds.

Step 6. Localization of further limits and final step.
As (zn = −A(.)u̇n − ün) is bounded in L1

Rd ([0, T ]) in view of Step 3, it is

relatively compact in the second dual L∞
Rd ([0, T ])′ of L1

Rd ([0, T ]) endowed with
the weak topology σ(L∞

Rd ([0, T ])′, L∞
Rd ([0, T ])). Furthermore, (zn) can be viewed

as a bounded sequence in CRd ([0, T ])′. Hence there is a filter U finer than the
Fréchet filter l ∈ L∞

Rd ([0, T ])′ and n ∈ CRd ([0, T ])′ such that

U − lim
n

zn = l ∈ L∞
Rd ([0, T ])′weak (9)

and

lim
n

zn = n ∈ CRd ([0, T ])′weak (10)

where L∞
Rd ([0, T ])′weak is the second dual of L1

Rd ([0, T ]) endowed with the
topology σ(L∞

Rd ([0, T ])′, L∞
Rd ([0, T ])) and CRd ([0, T ])′weak denotes the space

CRd ([0, T ])′ endowed with the weak topology σ(CRd ([0, T ])′,CRd ([0, T ])),
because CRd ([0, T ]) is a separable Banach space for the norm sup, so that we may
assume by extracting subsequences that (zn) weakly converges to n ∈ CRd ([0, T ])′.
Let la be the density of the absolutely continuous part la of l in the decomposition
l = la + ls in absolutely continuous part la and singular part ls , in the sense
there is a decreasing sequence (An) of Lebesgue-measurable sets in [0, T ] with
An ↓ ∅ such that ls(f ) = ls(1Anf ) for all h ∈ L∞

Rd ([0, T ]) and for all n ≥ 1. As
(zn = −A(.)u̇n − ün) biting converges to z∞ = −A(.)u̇∞ − ζ∞ in Step 4, it is



44 C. Castaing et al.

already known [22] that

la(f ) =
∫ T

0
〈f (t),−A(t)u̇∞(t) − ζ∞(t)〉dt

for all f ∈ L∞
Rd ([0, T ]), shortly z∞ = −A(t)u̇∞(t)− ζ∞(t) coincides a.e. with the

density of the absolutely continuous part la . By [19, 46], we have

I ∗
ϕ∞(l) = Iϕ∗∞(−A(.)u̇∞ − ζ∞) + δ∗(ls, dom Iϕ∞)

where ϕ∗∞ is the conjugate of ϕ∞, Iϕ∗∞ is the integral functional defined on
L1
Rd ([0, T ]) associated with ϕ∗∞, I ∗

ϕ∞ is the conjugate of the integral functional Iϕ∞ ,
and

dom Iϕ∞ := {u ∈ L∞
Rd ([0, T ]) : Iϕ∞(u) < ∞}.

Using the inclusion

z∞ = −A(.)u̇∞ − ζ∞ ∈ ∂Iϕ∞(u∞),

that is,

Iϕ∗∞(−A(.)u̇∞ − ζ∞) = 〈−A(.)u̇∞ − ζ∞, u∞〉 − Iϕ∞(u∞),

we see that

I ∗
ϕ∞(l) = 〈−A(.)u̇∞ − ζ∞, u∞〉 − Iϕ∞(u∞) + δ∗(ls, dom Iϕ∞).

Coming back to zn(t) = ∇ϕn(u
n(t)), we have

ϕn(x) ≥ ϕn(u
n(t)) + 〈x − un(t), zn(t)〉

for all x ∈ R
d . Substituting x by h(t) in this inequality, where h ∈ CRd ([0, T ]), and

integrating, we get

∫ T

0
ϕn(h(t)) dt ≥

∫ T

0
ϕn(u

n(t)) dt +
∫ T

0
〈h(t) − un(t), zn(t)〉 dt.

Arguing as in Step 4 by passing to the limit in the preceding inequality, involving
the epiliminf property for integral functionals (cf. (6)), it is easy to see that

∫ T

0
ϕ∞(h(t)) dt ≥

∫ T

0
ϕ∞(u∞(t)) dt + 〈h − u∞, n〉.
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Whence n belongs to the subdifferential ∂Jϕ∞(u∞) of the convex lower semicon-
tinuous integral functional Jϕ∞ defined on CRd ([0, T ]) by

Jϕ∞(u) :=
∫ T

0
ϕ∞(u(t)) dt, ∀u ∈ CRd ([0, T ]).

Now let B : CRd ([0, T ]) → L∞
Rd ([0, T ]) be the continuous injection, and let

B∗ : L∞
Rd ([0, T ])′ → CRd ([0, T ])′ be the adjoint of B given by

〈B∗l, f 〉 = 〈l, Bf 〉 = 〈l, f 〉, ∀l ∈ L∞
Rd ([0, T ])′, ∀f ∈ CRd ([0, T ]).

Then we have B∗l = B∗la + B∗ls , l ∈ L∞
Rd ([0, T ])′ being the limit of zn under the

filter U given in Sect. 4 and l = la + ls being the decomposition of l in absolutely
continuous part la and singular part ls . It follows that

〈B∗l, f 〉 = 〈B∗la, f 〉 + 〈B∗ls , f 〉 = 〈la, f 〉 + 〈ls , f 〉

for all f ∈ CRd ([0, T ]). But it is already seen that

〈la, f 〉 = 〈−A(.)u̇∞ − ζ∞, f 〉

=
∫ T

0
〈−A(.)u̇∞(t) − ζ∞(t), f (t)〉dt, ∀f ∈ L∞

Rd ([0, T ])

so that the measure B∗la is absolutely continuous

〈B∗la, h〉 =
∫ T

0
〈−A(.)u̇∞(t) − ζ∞(t), f (t)〉dt, ∀f ∈ CRd ([0, T ])

and its density −A(.)u̇∞ − ζ∞ satisfies the inclusion

−A(t)u̇∞(t) − ζ∞(t) ∈ ∂ϕ∞(u∞(t)), a.e.

and the singular part B∗ls satisfies the equation

〈B∗ls , f 〉 = 〈ls , h〉, ∀f ∈ CRd ([0, T ]).

As B∗l = n, using (9) and (10), it turns out that n is the sum of the absolutely
continuous measure na with

〈na, f 〉 =
∫ T

0
〈−A(t)u̇∞(t) − ζ∞(t), f (t)〉dt, ∀f ∈ CRd ([0, T ])

and the singular part ns given by

〈ns , f 〉 = 〈ls , f 〉, ∀f ∈ CRd ([0, T ]).
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which satisfies the property: for any nonnegative measure θ on [0, T ] with respect
to which ns is absolutely continuous

∫ T

0
rϕ∗∞

(
dns

dθ
(t)

)
dθ(t) =

∫ T

0

〈
u∞(t),

dns

dθ
(t)

〉
dθ(t)

where rϕ∗∞ denotes the recession function of ϕ∗∞. Indeed, as n belongs to ∂Jϕ∞(u∞)

by applying [46, Theorem 5], we have

J ∗
ϕ∞(n) = Iϕ∗∞

(
dna

dt

)
+

∫ T

0
rϕ∗∞

(
dns

dθ
(t)

)
dθ(t), (11)

with

Iϕ∗∞(v) :=
∫ T

0
ϕ∗∞(v(t))dt,∀v ∈ L1

Rd ([0, T ]).

Recall that

dna

dt
= −A(.)u̇∞ − ζ∞ ∈ ∂Iϕ∞(u∞),

that is,

Iϕ∗∞

(
dna

dt

)
= 〈−A(.)u̇∞ − ζ∞, u∞〉〈L1

Rd ([0,T ]),L∞
Rd ([0,T ])〉 − Iϕ∞(u∞). (12)

From (12), we deduce

J ∗
ϕ∞(n) =〈u∞, n〉〈C

Rd ([0,T ]),C
Rd ([0,T ])′〉 − Jϕ∞(u∞)

=〈u∞, n〉〈C
Rd ([0,T ]),C

Rd ([0,T ])′〉 − Iϕ∞(u∞)

=
∫ T

0
〈u∞(t),−A(.)u̇∞ − ζ∞(t)〉dt

+
∫ T

0

〈
u∞(t),

dns

dθ
(t)

〉
dθ(t) − Iϕ∞(u∞)

=Iϕ∗∞

(
dna

dt

)
+

∫ T

0

〈
u∞(t),

dns

dθ
(t)

〉
dθ(t)).

Coming back to (11), we get the equality

∫ T

0
rϕ∗∞

(
dns

dθ
(t)

)
dθ(t) =

∫ T

0

〈
u∞(t),

dns

dθ
(t)

〉
dθ(t)).

The proof is complete.



Second-Order Evolution Problems with Time-Dependent Maximal Monotone. . . 47

Comments Some comments are in order. In Proposition 3.1, using the existence
and uniqueness of W

2,∞
H (]0, T ]) of the approximating second-order equation

{
0 = ün(t) + A(t)u̇n(t) + ∇ϕn(u

n(t)), t ∈ [0, T ]
un(0) = un

0, u̇n(0) = u̇n
0,

we state the existence of a generalized solution u∞ to the second-order evolution
inclusion

{
0 ∈ ü(t) + A(t)u̇(t) + ∂ϕ∞(u(t)), t ∈ [0, T ]
u(0) = u0 ∈ dom ϕ∞, u̇(0) = u̇0

via an epiconvergence approach involving the structure of bounded sequences
in L1

H ([0, T ] space [22] and describe various properties of such a generalized

solution. In particular, we show that such a generalized solution u∞ is W
1,1
BV ([0, T ])

and satisfies the energy conservation and there exists a Young measure νt with
barycenter bar(νt ) ∈ L1

H ([0, T ]) such that −A(t)u̇∞(t) − bar(νt ) ∈ ∂ϕ∞(u∞(t))

a.e. In this vein, compare with Attouch et al. [4, 27], Paoli [43], and Schatzman
[48].

Now we deal at first with W
1,1
BV ([0, T ],H) solution for a second-order evolution

problem.

Theorem 3.3 Let for every t ∈ [0, T ], A(t) : D(A(t)) ⊂ H → 2H be a maximal
monotone operator with D(A(t)) ball compact for every t ∈ [0, T ] satisfying

(H1) there exists a function r : [0, T ] → [0,+∞[ which is continuous on [0, T [
and nondecreasing with r(T ) < +∞ such that

dis(A(t), A(s)) ≤ dr(]s, t]) = r(t) − r(s) for 0 ≤ s ≤ t ≤ T

(H2) there exists a nonnegative real number c such that

‖A0(t, x)‖ ≤ c(1 + ‖x‖) for t ∈ [0, T ], x ∈ D(A(t))

Let f : [0, T ] × H × H → H be such that for every x, y ∈ H × H the
mapping f (., x, y) is Borel-measurable on [0, T ] and for every t ∈ [0, T ], f (t, ., .)

is continuous on H × H and satisfying

(i) ||f (t, x, y)|| ≤ M(1 + ||x||), ∀t, x, y ∈ [0, T ] × H × H.

(ii) ||f (t, x, z) − f (t, y, z)|| ≤ M||x − y||, ∀t, x, y, z ∈ [0, T ] × H × H × H.

Then for u0 ∈ D(A(0))andy0 ∈ H , there are a BVC mapping u : [0, T ] → H and
a W

1,1
BV ([0, T ],H) mapping y : [0, T ] → H satisfying

y(t) = y0 +
∫ t

0
u(s)ds, t ∈ [0, T ],
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−du

dr
(t) ∈ A(t)u(t) + f (t, u(t), y(t)) dr-a.e. t ∈ [0, T ],

u(0) = u0

with the property: |u(t) − u(τ)| ≤ K|r(t) − r(τ )| for all t, τ ∈ [0, T ] for some
constant K ∈]0,∞[.
Proof By [8, Theorem 3.1] and the assumptions on f , for any continuous mapping
h : [0, T ] → H , there is a unique BVC solution vh to the inclusion

⎧⎪⎨
⎪⎩

vh(0) = u0 ∈ D(A(0))

− dvh

dr
(t) ∈ A(t)vh(t) + f (t, vh(t), h(t)) dr-a.e.

with ||vh(t)|| ≤ K, t ∈ [0, T ] and ||vh(t)−vh(τ )|| ≤ K(r(t)−r(τ )), t, τ ∈ [0, T ]
so that

dvh = dvh

dr
dr

with dvh

dr
∈ KBH , consequently dvh

dr
∈ L∞

H ([0, T ], dr). Let consider the closed
convex subset X in the Banach space CH ([0, T ]) defined by

X := {u : [0, T ] → H : u(t) = u0 +
∫ t

0
u̇(s)ds, u̇ ∈ S1

KBH
, t ∈ [0, T ]}

where S1
KBH

denotes the set of all integrable selections of the convex weakly

compact valued constant multifunction KBH . Now for each h ∈ X , let us consider
the mapping

�(h)(t) := u0 +
∫ t

0
vh(s)ds, t ∈ [0, T ].

Then it is clear that �(h) ∈ X . Our aim is to prove the existence theorem by
applying some ideas developed in Castaing et al. [24] via a generalized fixed point
theorem [36, 44]. Nevertheless this needs a careful look using the estimation of the
BVC solution given above. For this purpose, we first claim that � : X → X is
continuous and for any h ∈ X and for any t ∈ [0, T ] the inclusion holds

�(h)(t) ∈ u0 +
∫ t

0
co[D(A(s)) ∩ KBH ]ds.

Since s �→ co[D(A(s))∩KBH ] is a convex compact valued and integrably bounded
multifunction using the ball-compactness assumption, the second member is convex
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compact valued [14] so that �(X ) is equicontinuous and relatively compact in the
Banach space CH ([0, T ]). Now we check that � is continuous. It is sufficient to
show that, if (hn) converges uniformly to h in X , then BVC solution vhn associated
with hn ⎧⎪⎨

⎪⎩
vhn(0) = u0 ∈ D(A(0))

− dvhn

dr
(t) ∈ A(t)vhn(t) + f (t, vhn(t), hn(t)) dr-a.e.

pointwisely converges to the BVC solution vh associated with h⎧⎪⎨
⎪⎩

vh(0) = u0 ∈ D(A(0))

− dvh

dr
(t) ∈ A(t)vh(t) + f (t, vh(t), h(t)) dr-a.e.

As D(A(t)) is ball compact, (vhn) is uniformly bounded, and bounded in variation
since ||vhn(t)−vhn(τ )|| ≤ K(r(t)−r(τ )), t, τ ∈ [0, T ], we may assume that (vhn)

pointwisely converges to a BVC mapping v. As vhn = v0 +∫
]0,t]

dvhn

dr
dr, t ∈ [0, T ]

and dvhn

dr
(s) ∈ KBH , s ∈ [0, T ], we may assume that (

dvhn

dr
) converges weakly in

L1
H ([0, T ], dr) to w ∈ L1

H ([0, T ], dr) with w(t) ∈ KBH , t ∈ [0, T ] so that

weak− lim
n

vhn = u0 +
∫

]0,t]
wdr := z(t), t ∈ [0, T ].

By identifying the limits, we get

v(t) = z(t) = u0 +
∫

]0,t]
wdr

with dv
dr

= w so that limn f (t, vhn(t), hn(t)) = f (t, v(t), h(t)), t ∈ [0, T ].
Consequently we may assume that (

dvhn

dr
+ f (., vhn(.), hn(.))) Komlos converges

to dv
dr

− f (., v(.), h(.)). For simplicity, set gn(t) = f (t, vhn(t), hn(t)) and g(t) =
f (t, v(t), h(t)). There is a dr-negligible set N such that for t ∈ I \ N and

lim
n→∞

1

n

n∑
j=1

(
dvhj

dr
(t) + gj (t)

)
= dv

dr
(t) + g(t).

Let η ∈ D(A(t)). From

〈
dvhn

dr
(t) + gn(t), v(t) − η

〉

=
〈
dvhn

dr
(t) + gn(t), vhn(t) − η

〉
+

〈
dvhn

dr
(t) + gn(t), v(t) − vhn(t)

〉
,
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let us write

1

n

n∑
j=1

〈
dvhj

dr
(t) + gj (t), v(t) − η

〉

= 1

n

n∑
j=1

〈
dvhj

dr
(t) + gj (t), vhj

(t) − η

〉
+1

n

n∑
j=1

〈
dvhj

dr
(t) + gj (t), v(t) − vhj

(t)

〉
,

so that

1

n

n∑
j=1

〈
dvhj

dr
(t) + gj (t), v(t) − η

〉

≤ 1

n

n∑
j=1

〈
A0(t, η), η − vhj

(t)
〉+ (

Constant
)1

n

n∑
j=1

‖v(t) − vhj
(t))‖.

Passing to the limit when n → ∞, this last inequality gives immediately

〈
dv

dr
(t) + g(t), v(t) − η

〉
≤ 〈

A0(t, η), η − v(t)
〉

a.e.

As a consequence, by Lemma 2.2, − dv
dr

(t) ∈ A(t)v(t) + g(t) = A(t)v(t) +
f (t, v(t), h(t)) a.e. with v(0) = u0 ∈ D(A(0)) so that by uniqueness v = vh.
Now let us check that � : X → X is continuous. Let hn → h. We have

�(hn)(t) − �(h)(t) =
∫ t

0
vhn(s)ds −

∫ t

0
vh(s)ds =

∫ t

0
[vhn(s) − vh(s)]ds

As ||vhn(.)−vh(.)|| → 0 pointwisely and is uniformly bounded : ||vhn(.)−vh(.)|| ≤
2K , by we conclude that

sup
t∈[0,T ]

||�(hn)(t) − �(h)(t)|| ≤ sup
t∈[0,T ]

∫ t

0
||vhn(.) − vh(.)||ds → 0

so that �(hn) − �(h) → 0 in CH ([0, T ]). Here one may invoke a general fact
that on bounded subsets of L∞, the topology of convergence in measure coincides
with the topology of uniform convergence on uniformly integrable sets, i.e., on
relatively weakly compact subsets, alias the Mackey topology. This is a lemma due
to Grothendieck [33, Ch.5 §4 no 1 Prop. 1 and exercice] (see also [15] for a more
general result concerning the Mackey topology for bounded sequences in L∞

E∗).
Since � : X → X is continuous and �(X ) is relatively compact in CH ([0, T ]),
by [36, 44] � has a fixed point, say h = �(h) ∈ X , that means
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h(t) = �(h)(t) = u0 +
∫ t

0
vh(s)ds, t ∈ [0, T ],

⎧⎪⎨
⎪⎩

vh(0) = u0 ∈ D(A(0))

− dvh

dr
(t) ∈ A(t)vh(t) + f (t, vh(t), h(t)) dr-a.e.

The proof is complete.

The following results are sharp variants of Theorem 3.3.

Theorem 3.4 Let for every t ∈ [0, T ], A(t) : D(A(t)) ⊂ H → 2H be a maximal
monotone operator with D(A(t) ball compact for every t ∈ [0, T ] satisfying (H2)

and

(H1)′ there exists a function β ∈ W 1,1([0, T ],R; dt) which is nonnegative on
[0, T ] and non-decreasing with β(T ) < ∞ such that

dis(A(t), A(s)) ≤ |β(t) − β(s)|, ∀s, t ∈ [0, T ].
(H1)∗ For any t ∈ [0, T ] and for any x ∈ D(A(t)), A(t)x is cone-valued.

Let f : [0, T ] × H × H → H be such that for every x, y ∈ H × H the mapping
f (., x, y) is Lebesgue-measurable on [0, T ] and for every t ∈ [0, T ], f (t, ., .) is
continuous on H × H and satisfying

(i) ||f (t, x, y)|| ≤ M(1 + ||x||), ∀t, x, y ∈ [0, T ] × H × H.

(ii) ||f (t, x, z) − f (t, y, z)|| ≤ M||x − y||, ∀t, x, y, z ∈ [0, T ] × H × H × H.

Then, for all u0 ∈ D(A(0)), y0 ∈ H , there are an absolutely continuous mapping
u : [0, T ] → H and an absolutely continuous mapping y : [0, T ] → H satisfying

y(t) = y0 +
∫ t

0
u(s)ds, t ∈ [0, T ],

−du

dt
(t) ∈ A(t)u(t) + f (t, u(t), y(t)) dt − a.e. t ∈ [0, T ], u(0) = u0,

with

‖u̇(t)‖ ≤ (
K + M(1 + K)

)
(β̇(t) + 1) + M(1 + K)

for a.e. t ∈ [0, T ], for some positive constant K .

Proof By [7, Theorem 3.4] and the assumptions on f , for any continuous mapping
h : [0, T ] → H , there is a unique AC solution vh to the inclusion

{
vh(0) = u0 ∈ D(A(0))

− v̇h(t) ∈ A(t)vh(t) + f (t, vh(t), h(t)) dt-a.e.



52 C. Castaing et al.

with ||v̇h(t)|| ≤ γ (t) := (K + M(1 + K))(β̇(t) + 1) + M(1 + K) a.e. t ∈ [0, T ] so
that γ ∈ L1

R
([0, T ]) and ||vh(t)|| ≤ L = Constant, t ∈ [0, T ]. Let us consider the

closed convex subset X in the Banach space CH ([0, T ]) defined by

X := {u : [0, T ] → H : u(t) = u0 +
∫ t

0
u̇(s)ds, u̇ ∈ S1

LBH
, t ∈ [0, T ]}

where S1
LBH

denotes the set of all integrable selections of the convex weakly

compact valued constant multifunction LBH . Now for each h ∈ X , let us consider
the mapping

�(h)(t) := u0 +
∫ t

0
vh(s)ds, t ∈ [0, T ].

Then it is clear that �(h) ∈ X . Our aim is to prove the existence theorem by
applying some ideas developed in Castaing et al. [24] via a generalized fixed point
theorem [36, 44]. Nevertheless this needs a careful look using the estimation of the
AC solution given above. For this purpose, we first claim that � : X → X is
continuous for any h ∈ X and for any t ∈ [0, T ], the inclusion holds

�(h)(t) ∈ u0 +
∫ t

0
co[D(A(s)) ∩ LBH ]ds.

Since s �→ co[D(A(s))∩LBH ] is a convex compact valued and integrably bounded
multifunction, the second member is convex compact valued [14] so that �(X ) is
equicontinuous and relatively compact in the Banach space CH ([0, T ]). Now we
check that � is continuous. It is sufficient to show that, if hn converges uniformly
to h in X , then the AC solution vhn associated with hn

{
vhn(0) = u0 ∈ D(A(0))

− v̇hn(t) ∈ A(t)vhn(t) + f (t, vhn(t), hn(t)) dt-a.e.

converges uniformly to the AC solution vh associated with h

{
vh(0) = u0 ∈ D(A(0))

− v̇h(t) ∈ A(t)vh(t) + f (t, vh(t), h(t)) dt-a.e.

We have

−v̇hn(t) ∈ A(t)vhn(t) + f (t, vhn(t), hn(t)), a.e. t ∈ [0, T ],

with the estimation ||v̇hn(t)|| ≤ γ (t) and γ ∈ L1
R
([0, T ]) for all n ∈

N. As D(A(t)) is ball compact and (v̇hn) is relatively weakly compact in
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L1
H ([0, T ]), we may assume that (vhn) converges uniformly to an absolutely

continuous mapping v such that v(t) = u0 + ∫ t

0 v̇(s)ds, t ∈ [0, T ],
||v̇(t)|| ≤ γ (t), t ∈ [0, T ], and (v̇hn) σ (L1

H ,L∞
H ) converges to v̇ so that

limn f (t, vhn(t), hn(t)) = f (t, v(t), h(t)), t ∈ [0, T ]. Consequently we may
assume that (v̇hn +f (., vhn(.), hn(.))) Komlos converges to v̇ −f (., v(.), h(.)). Let
us set gn(t) = f (t, vhn(t), hn(t)) and g(t) = f (t, v(t), h(t)). There is a negligible
set N such that for t ∈ [0, T ] \ N and

lim
n→∞

1

n

n∑
j=1

(
v̇hj

(t) + gj (t)
) = v̇(t) + g(t).

Let η ∈ D(A(t)). From

〈
v̇hn(t) + gn(t), v(t) − η

〉
= 〈

v̇hn(t) + gn(t), vhn(t) − η
〉 + 〈

v̇hn(t) + gn(t), v(t) − vhn(t)
〉

let us write

1

n

n∑
j=1

〈
v̇hj

(t) + gj (t), v(t) − η
〉

= 1

n

n∑
j=1

〈
v̇hj

(t) + gj (t), vhj
(t) − η

〉 + 1

n

n∑
j=1

〈
v̇hj

(t) + gj (t), v(t) − vhj
(t)

〉
,

so that

1

n

n∑
j=1

〈
v̇hj

(t) + gj (t), v(t) − η
〉

≤ 1

n

n∑
j=1

〈
A0(t, η), η − vhj

(t)
〉 + (

γ (t) + Constant
)1

n

n∑
j=1

‖v(t) − vhj
(t))‖.

Passing to the limit when n → ∞, this last inequality gives immediately

〈
v̇(t) + g(t), v(t) − η

〉 ≤ 〈
A0(t, η), η − v(t)

〉
a.e.

As a consequence, −v̇(t) ∈ A(t)v(t) + g(t) = A(t)v(t) + f (t, v(t), h(t)) a.e. with
v(0) = u0 ∈ D(A(0)) so that by uniqueness v = vh. Since � : X → X is
continuous and �(X ) is relatively compact in CH ([0, T ]), by [36, 44] � has a
fixed point, say h = �(h) ∈ X , that means
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h(t) = �(h)(t) = u0 +
∫ t

0
vh(s)ds, t ∈ [0, T ],

{
vh(0) = u0 ∈ D(A(0))

− v̇h(t) ∈ A(t)vh(t) + f (t, vh(t), h(t)) dt-a.e.

The proof is complete.

Comments The use of a generalized fixed point theorem is initiated in [24] dealing
with some second-order sweeping process associated with a closed moving set
C(t, u). Actually it is possible to obtain a variant of Theorem 3.4 by assuming that
A(t) : D(A(t)) ⊂ H → 2H is a maximal monotone operator with D(A(t) ball
compact for every t ∈ [0, T ] satisfying (H2) and
(H1)′ there exists a function β ∈ W 1,2([0, T ],R; dt) which is nonnegative on I and
non-decreasing with β(T ) < ∞ such that

dis(A(t), A(s)) ≤ |β(t) − β(s)|, ∀s, t ∈ [0, T ].
Here using fixed point theorem provides a short proof with new approach involving
the continuous dependance of the trajectory vh associated with the control h ∈ X
and also the compactness of the integral of convex compact integrably bounded
multifunctions [14].

4 Evolution Problems with Lipschitz Variation Maximal
Monotone Operator and Application to Viscosity and
Control

Now, based on the existence and uniqueness of W
2,∞
H ([0, T ]) solution to evolution

inclusion

(S1)

{
0 ∈ ü(t) + A(t)u̇(t) + f (t, u(t)), t ∈ [0, T ]
u(0) = u0, u̇(0) = u̇0 ∈ D(A(0))

we will present some problems in optimal control in a second-order evolution
inclusion driven by a Lipschitz variation maximal monotone operator A(t) in the
same vein as in Castaing-Marques-Raynaud de Fitte [25] dealing with the sweeping
process. Before going further, we note that (S1) contains the evolution problem
associated with the sweeping process by a closed convex Lipschitzian mapping
C : [0, T ] → cc(H)

{
0 ∈ ü(t) + NC(t)(u̇(t)) + f (t, u(t)), t ∈ [0, T ]
u(0) = u0, u̇(0) = u̇0 ∈ C(0)

by taking A(t) = ∂�C(t) in (S1).
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We need some notations and background on Young measures in this special
context. For the sake of completeness, we summarize some useful facts concerning
Young measures. Let (�,F , P ) be a complete probability space. Let X be a Polish
space, and let C b(X) be the space of all bounded continuous functions defined on
X. Let M 1+(X) be the set of all Borel probability measures on X equipped with
the narrow topology. A Young measure λ : � → M 1+(X) is, by definition, a
scalarly measurable mapping from � into M 1+(X), that is, for every f ∈ C b(X),
the mapping ω �→ 〈f, λω〉 := ∫

X
f (x) dλω(x) is F -measurable. A sequence (λn)

in the space of Young measures Y (�,F , P ;M 1+(X)) stably converges to a Young
measure λ ∈ Y (�,F , P ;M 1+(X)) if the following holds:

lim
n→∞

∫
A

[∫
X

f (x) dλn
ω(x)

]
dP (ω) =

∫
A

[∫
X

f (x) dλω(x)

]
dP (ω)

for every A ∈ F and for every f ∈ C b(X). We recall and summarize some results
for Young measures.

Theorem 4.5 ( [22, Theorem 3.3.1]) Assume that S and T are Polish spaces.
Let (μn) be a sequence in Y (�,F , P ;M 1+(S)), and let (νn) be a sequence in
Y (�,F , P ;M 1+(T )). Assume that

(i) (μn) converges in probability to μ∞ ∈ Y (�,F , P ;M 1+(S)),
(ii) (νn) stably converges to ν∞ ∈ Y (�,F , P ;M 1+(T )).

Then (μn ⊗ νn) stably converges to μ∞ ⊗ ν∞ in Y (�,F , P ;M 1+(S × T )).

Theorem 4.6 ( [22, Theorem 6.3.5]) Assume that X and Z are Polish spaces.
Let (un) be sequence of F -measurable mappings from � into X such that (un)

converges in probability to a F -measurable mapping u∞ from � into X, and
let (vn) be a sequence of F -measurable mappings from � into Z such that (vn)

stably converges to ν∞ ∈ Y (�,F , P ;M 1+(Z)). Let h : � × X × Z → R be
a Carathéodory integrand such that the sequence (h(., un(.), vn(.)) is uniformly
integrable. Then the following holds:

lim
n→∞

∫
�

h(ω, un(ω), vn(ω)) dP (ω) =
∫

�

[∫
Z

h(ω, u∞(ω), z) dν∞
ω (z)

]
dP (ω).

In the remainder, Z is a compact metric space, and M 1+(Z) is the space of all
probability Radon measures on Z. We will endow M 1+(Z) with the narrow topology
so that M 1+(Z) is a compact metrizable space. Let us denote by Y ([0, T ];M 1+(Z))

the space of all Young measures (alias relaxed controls) defined on [0, T ] endowed
with the stable topology so that Y ([0, T ];M 1+(Z)) is a compact metrizable space
with respect to this topology. By the Portmanteau Theorem for Young measures
[22, Theorem 2.1.3], a sequence (νn) in Y ([0, T ];M 1+(Z)) stably converges to
ν ∈ Y ([0, T ];M 1+(Z)) if

lim
n→∞

∫ T

0

[∫
Z

ht (z)dνn
t (z)

]
dt =

∫ T

0

[∫
Z

ht (z)dνt (z)

]
dt
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for all h ∈ L1
C (Z)

([0, T ]), where C (Z) denotes the space of all continuous real-
valued functions defined on Z endowed with the norm of uniform convergence.
Finally let us denote by Z the set of all Lebesgue-measurable mappings (alias
original controls) z : [0, T ] → Z and R := Y ([0, T ];M 1+(Z)) the set of all
relaxed controls (alias Young measures) associated with Z. In the remainder, we
assume that H = R

d and Z is a compact subset in H .
For simplicity, let us consider a mapping f : [0, T ] × H → H satisfying

(i) for every x ∈ H × Z, f (., x) is Lebesgue-measurable on [0, T ],
(ii) there is M > 0 such that

||f (t, x)|| ≤ M(1 + ||x||)

for all (t, x) in [0, T ] × H , and

||f (t, x) − f (t, y)|| ≤ M||x − y||

for all (t, x, y) ∈ [0, T ] × H × H .

We consider the W
2,∞
H ([0, T ]) solution set of the two following control problems

(SO )

{
0 ∈ üx,y,ζ (t) + A(t)u̇x,y,ζ (t)) + f (t, ux,y,ζ (t)) + ζ(t), t ∈ [0, T ]
ux,y,ζ (0) = x ∈ H, u̇x,y,ζ (0) = y ∈ D(A(0))

and

(SR)

{
0 ∈ üx,y,λ(t) + A(t)u̇x,y,λ(t)) + f (t, ux,y,λ(t)) + bar(λt ), t ∈ [0, T ]
ux,y,λ(0) = x ∈ H, u̇x,y,λ(0) = y ∈ D(A(0))

where ζ belongs to the set Z of all Lebesgue-measurable mappings (alias original
controls) ζ : [0, T ] → Z original and λ belongs to the set R of all relaxed
controls. Taking (S1) into account, for each (x, y, ζ ) ∈ H × D(A(0)) × Z (resp.
(x, y, λ) ∈ H×D(A(0))×R, there exists a unique W

2,∞
H (]0, T ]) solutions, solution

ux,y,ζ (resp. ux,y,λ), to (SO ) (resp. (SR)). We aim to present some problems in the
framework of optimal control theory for the above inclusions. In particular, we state
a viscosity property of the value function associated with these evolution inclusions.
Similar problems driven by evolution inclusion with perturbation containing Young
measures are initiated by [22, 23]. However, the present study deals with a new
setting in the sense that it concerns a second-order evolution inclusion involving
time-dependent maximal monotone operator.

Now we present a lemma which is useful for our purpose.

Lemma 4.6 Let for all t ∈ [0, T ], A(t) : D(A(t)) ⊂ H → 2H be a maximal
monotone operator satisfying (H1) and (H2). Let f : [0, T ] × H → H be a
mapping satisfying



Second-Order Evolution Problems with Time-Dependent Maximal Monotone. . . 57

(i) for every x ∈ H × Z, f (., x) is Lebesgue-measurable on [0, T ],
(ii) there is M > 0 such that

||f (t, x)|| ≤ M(1 + ||x||)
for all (t, x) in [0, T ] × H , and

||f (t, x) − f (t, y)|| ≤ M||x − y||
for all (t, x, y) ∈ [0, T ] × H × H .

Let hn, h ∈ L∞
H ([0, T ], dt) with ||hn(t)|| ≤ 1 for all t ∈ [0, T ], for all n ∈ N

and ||h(t)|| ≤ 1 for all t ∈ [0, T ]. Let us consider the two following second-order
evolution inclusions:

S (A, f, hn, x, y)

{
0 ∈ üx,y,hn

(t) + A(t)u̇x,y,hn
(t) + f (t, ux,y,hn

(t)) + hn(t), t ∈ [0, T ]
ux,y,hn

(0) = x, u̇x,y,hn
(0) = y ∈ D(A(0))

S (A, f, h, x, y)

{
0 ∈ üx,y,h(t) + A(t)u̇x,y,h(t) + f (t, ux,y,h(t)) + h(t), t ∈ [0, T ]
ux,y,h(0) = x, u̇x,y,h(0) = y ∈ D(A(0))

where ux,y,hn (resp. ux,y,h) is the unique W
2,∞
H ([0, T ]) solution to

(S (A, f, hn, x, y)) (resp. (S (A, f, hn, x, y))). Assume that (hn) σ (L1, L∞)

converges to h. Then (ux,y,hn) converges pointwisely to ux,y,h.

Proof We note that üx,y,hn is uniformly bounded, so there is u ∈ W
2,∞
H ([0, T ])

such that

ux,y,hn → u pointwisely with u(0) = x,
u̇x,y,hn → u̇ pointwisely with u̇(0) = y,
üx,y,hn → ü with respect to σ(L1, L∞).

Using Lemma 2.3, it is not difficult to see that u̇(t) ∈ D(A(t)) for every t ∈
[0, T ]. As f (t, ux,y,hn(t)) → f (t, u(t)) pointwisely so that f (., ux,y,hn(.)) →
f (.., u(.)) with respect to σ(L1, L∞). Since (hn) σ (L1, L∞) converges to h, so
that f (., ux,y,hn(.)) + hn → f (t., u(.)) + h with respect to σ(L1, L∞). And so
üx,y,hn(.) + f (., ux,y,hn(.)) + hn(.) σ (L1, L∞) converges to u̇ + f (.., u(.)) + h.
As a consequence, we may also assume that üx,y,hn(.) + f (., ux,y,hn(.)) + hn(.)

Komlos converges to u̇+f (.., u(.))+h. Coming back to the inclusion −üx,y,hn(t)−
f (t, ux,y,hn(t)) − hn(t) ∈ A(t)u̇x,y,hn(t), we have by the monotonicity of A(t)

〈üx,y,hn(t) + f (t, ux,y,hn(t)) + hn(t), u̇x,y,hn(t) − η〉 ≤ 〈A0(t, η), η − u̇x,y,hn(t)〉
for any η ∈ D(A(t)). For notational convenience, set

vn(t) =üx,y,hn(t) + f (t, ux,y,hn(t)) + hn(t),∀t ∈ [0, T ],
v(t) =ü(t) + f (t, u(t)) + h(t),∀t ∈ [0, T ].
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There is a negligible set N such that

lim
n

1

n

n∑
i=1

vi(t) = v(t)

for t /∈ N . Let us write

〈vn(t), u̇(t) − η〉 = 〈vn(t), u̇x,y,hn(t) − η〉 + 〈vn(t), u̇(t) − u̇x,y,hn(t)〉
so that

1

n

n∑
i=1

〈vi(t), u̇(t)−η〉=1

n

n∑
i=1

〈vi(t), u̇x,y,hi
(t)−η〉+1

n

n∑
i=1

〈vi(t), u̇(t)−u̇x,y,hi
(t)〉

≤1

n

n∑
i=1

〈A0(t, η), η−u̇x,y,hi
(t)〉+L

1

n

n∑
i=1

||u̇(t)−u̇x,y,hi
(t)||,

where L is a positive generic constant. Passing to the limit when n goes to ∞ in this
inequality gives immediately

〈v(t), u̇(t) − η〉 ≤ 〈A0(t, η), η − u̇(t)〉

so that by Lemma 2.2 we get

−ü(t) − f (t, ux,y,h(t)) − h(t) ∈ A(t)u̇(t) a.e.

with u(0) = x and u̇(0) = y. Due to the uniqueness of solution, we get u(t) =
ux,y,h(t) for all t ∈ [0, T ]. The proof is complete.

The following shows the continuous dependence of the solution with respect to the
control.

Theorem 4.7 Let for all t ∈ [0, T ], A(t) : D(A(t)) ⊂ H → 2H be a maximal
monotone operator satisfying (H1) and (H2). Let f : [0, T ] × H → H be a
mapping satisfying

(i) for every x ∈ H × Z, f (., x) is Lebesgue-measurable on [0, T ],
(ii) there is M > 0 such that

||f (t, x)|| ≤ M(1 + ||x||)

for all (t, x) in [0, T ] × H , and

||f (t, x1) − f (t, x2)|| ≤ M||x1 − x2||

for all (t, x1, (t, x2, ) ∈ [0, T ] × H × H .
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Let Z be a compact subset of H . Let us consider the control problem
{

0 ∈ üx,y,ν(t) + A(t)u̇x,y,ν(t) + f (t, ux,y,ν(t)) + bar(νt ), t ∈ [0, T ]
ux,y,ν(0) = x, u̇x,y,ν(0) = y ∈ D(A(0))

where bar(νt ) denotes the barycenter of the measure νt ∈ M 1+(Z) and ux,y,ν is the

unique W
2,∞
H ([0, T ]) solution associated with to bar(νt ). Then, for each t ∈ [0, T ],

the mapping ν �→ ux,y,ν is continuous from R to CH ([0, T ], where R is endowed
with the stable topology and CH ([0, T ] is endowed with the topology of pointwise
convergence.

Proof (a) Let ν ∈ R and let bar(ν) : t �→ bar(νt ), t ∈ [0, T ]. It is easy to check
that ν �→ bar(ν) from R to L∞

H ([0, T ]) is continuous with respect to the stable
topology and the σ(L1

H ,L∞
H ), respectively. Note that R is compact metrizable for

the stable topology. Now let (νn) be a sequence in R which stably converges to
ν ∈ R. Then bar(νn) σ (L1

H ,L∞
H ) converges to bar(ν). By Lemma 4.6, we see that

ux,y,νn pointwisely converges to ux,y,ν . The proof is complete.

We are now able to relate the Bolza type problems associated with the maximal
monotone operator A(t) as follows:

Theorem 4.8 With the hypotheses and notations of Theorem 4.7, assume that J :
[0, T ] × H × Z → R is a Carathéodory integrand, that is, J (t, ., .) is continuous
on H × Z for every t ∈ [0, T ] and J (., x, z) is Lebesgue-measurable on [0, T ] for
every (x, z) ∈ H × Z, which satisfies the condition (C ): for every sequence (ζn) in
Z , the sequence (J (., ux,y,ζ n(.), ζ n(.)) is uniformly integrable in L1

R
([0, T ], dt),

where ux,y,ζ n denotes the unique W
2,∞
H ([0, T ]) solution associated with ζ n to the

evolution inclusion{
0 ∈ üx,y,ζ n(t) + A(t)u̇x,y,ζ n(t) + f (t, ux,y,ζ n(t)) + ζ n(t), t ∈ [0, T ]
ux,y,ζ n(0) = x, u̇x,y,ζ n(0) = y ∈ D(A(0))

Let us consider the control problems

inf(PZ ) := inf
ζ∈Z

∫ T

0
J (t, ux,y,ζ (t), ζ(t)) dt

and

inf(PR) := inf
λ∈R

∫ T

0

[∫
Z

J (t, ux,y,λ(t), z) λt (dz)

]
dt

where ux,y,ζ (resp. ux,y,λ) is the unique W
2,∞
H ([0, T ]) solution associated with ζ (

resp. λ) to

{
0 ∈ üx,y,ζ (t) + A(t)u̇x,y,ζ (t) + f (t, ux,y,ζ (t)) + ζ(t), t ∈ [0, T ]
ux,y,ζ (0) = x, u̇x,y,ζ (0) = y ∈ D(A(0))
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and

{
0 ∈ üx,y,λ(t) + A(t)u̇x,y,ν(t) + f (t, ux,y,ν(t)) + bar(λt ), t ∈ [0, T ]
ux,y,λ(0) = x, u̇x,y,λ(0) = y ∈ D(A(0))

respectively. Then one has

inf(PZ ) = inf(PR).

Proof Take a control λ ∈ R. By virtue of the denseness with respect to the
stable topology of Z in R, there is a sequence (ζ n)n∈N in Z such that the
sequence (δζn)n∈N of Young measures associated with (ζ n)n∈N stably converges to
λ. By Theorem 4.7, the sequence (ux,y,ζ n) of W

2,∞
H ([0, T ]) solutions associated

with ζ n pointwisely converges to the unique W
2,∞
H ([0, T ]) solution ux,y,λ. As

(J (t, ux,y,ζ n(t), ζ n(t))) is uniformly integrable by assumption (C ), using Theo-
rem 4.6 (or [22, Theorem 6.3.5]), we get

lim
n→∞

∫ T

0
J (t, ux,y,ζ n(t), ζ n(t)) dt =

∫ T

0

[∫
Z

J (t, ux,y,λ, z)dλt (z)

]
dt.

As

∫ T

0
J (t, ux,y,ζ n(t), ζ n(t)) dt ≥ inf(PZ )

for all n ∈ N, so is

∫ T

0

[∫
Z

J (t, ux,y,λ, z)dλt (z)

]
dt ≥ inf(PZ );

by taking the infimum on R in this inequality, we get

inf(PR) ≥ inf(PO )

As inf(PO ) ≥ inf(PR), the proof is complete.

In the framework of optimal control, the above considerations lead to the study
of the value function associated with the evolution inclusion

{
0 ∈ üτ,x,y,ν(t) + A(t)u̇τ,x,y,ν(t) + f (t, uτ,x,y,ν(t)) + bar(νt ),

uτ,x,y,ν(τ ) = x, u̇τ,x,y,ν(τ ) = y ∈ D(A(τ)).

The following shows that the value function satisfies the dynamic programming
principle (DPP).
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Theorem 4.9 (of dynamic programming principle). Assume the hypothesis and
notations of Theorem 4.7, and let x ∈ E, τ < T and σ > 0 such that τ + σ < T .
Assume that J : [0, T ] × H × Z → R is bounded and continuous. Let us consider
the value function

VJ (τ, x, y) = supν∈R
∫ T

τ

[∫
Z

J (t, uτ,x,y,ν(t), z)νt (dz)
]

dt,

(τ, x, y) ∈ [0, T ] × H × D(A(τ))

where uτ,x,y,ν is the W
2,∞
H ([0, T ]) solution to the evolution inclusion defined on

[τ, T ] associated with the control ν ∈ R starting from x, y at time τ

{
0 ∈ üτ,x,y,ν(t) + A(t)u̇τ,x,y,ν(t) + f (t, uτ,x,y,ν(t)) + bar(νt ),

uτ,x,y,ν(τ ) = x, u̇τ,x,y,ν(τ ) = y ∈ D(A(τ))

Then the following holds:

VJ (τ, x, y) = sup
ν∈R

{∫ τ+σ

τ

[∫
Z

J (t, uτ,x,y,ν(t), z)νt (dz)

]
dt

+ VJ (τ + σ, uτ,x,y,ν(τ + σ), u̇τ,x,y,ν(τ + σ)

}

with

VJ (τ + σ, uτ,x,ν(τ + σ), u̇τ,x,ν(τ + σ))

= sup
μ∈R

∫ T

τ+σ

[∫
Z

J (t, vτ+σ,uτ,x,y,ν (τ+σ),u̇τ,x,y,ν (τ+σ),μ(t), z)μt (dz)

]
dt

where vτ+σ,uτ,x,y,ν (τ+σ),u̇τ,x,y,ν (τ+σ),μ
1 is the W

2,∞
H (τ + σ, T ) solution defined on

[τ +σ, T ] associated with the control μ ∈ R starting from uτ,x,ν(τ +σ), u̇τ,x,ν(τ +
σ) at time τ + σ

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 ∈ vτ+σ,uτ,x,y,ν (τ+σ),u̇τ,x,y,ν (τ+σ),μ(t) + A(t)vτ+σ,uτ,x,yν (τ+σ),u̇τ,x,y,ν (τ+σ),μ(t),

+ f (t, vτ+σ,uτ,x,y,ν (τ+σ),u̇τ,x,y,ν (τ+σ),μ(t)) + bar(μt ),

vτ+σ,uτ,x,y,ν (τ+σ),u̇τ,x,y,ν (τ+σ),μ(τ + σ) = uτ,x,y,ν(τ + σ),

v̇τ+σ,uτ,x,y,ν (τ+σ),u̇τ,x,y,ν (τ+σ),μ(τ + σ) = u̇τ,x,y,ν(τ + σ) ∈ D(A(τ + σ)).

(13)

1It is necessary to write completely the expression of the trajectory vτ+σ,uτ,x,y,ν (τ+σ),u̇τ,x,y,ν (τ+σ),μ

that depends on (ν, μ) ∈ R × R in order to get the continuous dependence with respect to ν ∈ R
of VJ (τ + σ, uτ,x,y,ν(τ + σ)).
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Proof Let

WJ (τ, x, y) := sup
ν∈R

{∫ τ+σ

τ

[∫
Z

J (t, uτ,x,y,ν(t), z)νt (dz)

]
dt

+VJ (τ + σ, uτ,x,y,ν(τ + σ))

}
.

For any ν ∈ R, we have

∫ T

τ

[∫
Z

J (t, uτ,x,y,ν(t), z)νt (dz)

]
dt=

∫ τ+σ

τ

[∫
Z

J (t, uτ,x,y,ν(t), z)νt (dz)

]
dt

+
∫ T

τ+σ

[∫
Z

J (t, uτ,x,y,ν(t), z)νt (dz)

]
dt.

By the definition of VJ (τ + σ, uτ,x,y,ν(τ + σ), u̇τ,x,y,ν(τ + σ), we have

VJ (τ+σ, uτ,x,y,ν(τ+σ), u̇τ,x,y,ν(τ+σ) ≥
∫ T

τ+σ

[∫
Z

J (t, uτ,x,y,ν(t), z)νt (dz)

]
dt.

It follows that

∫ T

τ

[∫
Z

J (t, uτ,x,y,ν(t), z)νt (dz)

]
dt≤

∫ τ+σ

τ

[∫
Z

J (t, uτ,x,y,ν(t), z)νt (dz)

]
dt

+ VJ (τ + σ, uτ,x,y,ν(τ + σ), u̇τ,x,y,ν(τ + σ)).

By taking the supremum on ν ∈ R in this inequality, we get

VJ (τ, x, y) ≤ sup
ν∈R

{∫ τ+σ

τ

[∫
Z

J (t, uτ,x,y,ν(t), z)νt (dz)

]
dt

+ VJ (τ + σ, uτ,x,y,ν(τ + σ), u̇τ,x,y,ν(τ + σ))

}

=WJ (τ, x, y).

Let us prove the converse inequality.
Main fact: ν �→ VJ (τ + σ, uτ,x,ν(τ + σ), u̇τ,x,ν(τ + σ)) is continuous on R.
Let us focus on the expression of VJ (τ + σ, uτ,x,ν(τ + σ), u̇τ,x,ν(τ + σ)):

VJ (τ + σ, uτ,x,ν(τ + σ), u̇τ,x,ν(τ + σ))

= sup
μ∈R

∫ T

τ+σ

[ ∫
Z

J (t, vτ+σ,uτ,x,ν (τ+σ),u̇τ,x,ν (τ+σ),μ(t), z)μt (dz)

]
dt
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where vτ+σ,uτ,x,ν (τ+σ),u̇τ,x,ν (τ+σ),μ denotes the trajectory solution on [τ + σ, T ]
associated with the control μ ∈ R starting from uτ,x,ν(τ + σ), u̇τ,x,ν(τ + σ),

at time τ + σ in (13). Using the continuous dependence of the solution with
respect to the state and the control, it is readily seen that the mapping (ν, μ) �→
vτ+σ,uτ,x,ν (τ+σ),u̇τ,x,ν (τ+σ),μ(t) is continuous on R × R for each t ∈ [τ, T ],
namely, if νn stably converges to ν ∈ R and μn stably converges to μ ∈ R, then
vτ+σ,uτ,x,νn (τ+σ),u̇τ,x,ν (τ+σ),μn pointwisely converges to vτ+σ,uτ,x,ν (τ+σ),u̇τ,x,ν (τ+σ),μ.
By using the fiber product of Young measure (see Theorem 4.5 or [22, Theorem
3.3.1]), we deduce that

(ν, μ) �→
∫ T

τ+σ

[ ∫
Z

J (t, vτ+σ,uτ,x,ν (τ+σ),u̇τ,x,ν (τ+σ)μ(t), z)μt (dz)

]
dt

is continuous on R×R. Consequently ν �→ VJ (τ +σ, uτ,x,ν(τ +σ), u̇τ,x,ν(τ +σ))

is continuous on R. Hence the mapping ν �→ ∫ τ+σ

τ
[∫

Z
J (t, uτ,x,ν(t), z)νt (dz)]dt+

VJ (τ + σ, uτ,x,ν(τ + σ), u̇τ,x,ν(τ + σ)) is continuous on R. By compactness of R,
there is a maximum point ν1 ∈ R such that

WJ (τ, x, y)=
∫ τ+σ

τ

[ ∫
Z

J (t, uτ,x,y,ν1(t), z)ν
1
t (dz)

]
dt+VJ (τ+σ, uτ,x,y,ν1(τ+σ)).

Similarly there is μ2 ∈ R such that

VJ (τ + σ, uτ,x,ν1(τ + σ), u̇τ,x,ν1(τ + σ))

=
∫ T

τ+σ

[ ∫
Z

J (t, vτ+σ,u
τ,x,ν1 (τ+σ),u̇

τ,x,ν1 (τ+σ),μ2(t), z)μ
2
t (dz)

]
dt

where

vτ+σ,u
τ,x,ν1 (τ+σ),u̇

τ,x,ν1 (τ+σ),μ2(t)

denotes the trajectory solution associated with the control μ2 ∈ R starting from
uτ,x,ν1(τ + σ), u̇τ,x,ν1(τ + σ) at time τ + σ defined on [τ + σ, T ]
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0∈vτ+σ,u
τ,x,y,ν1 (τ+σ),u̇

τ,x,y,ν1 (τ+σ),μ2(t)+A(t)vτ+σ,u
τ,x,yν1 (τ+σ),u̇

τ,x,y,ν1 (τ+σ),μ2(t),

+ f (t, vτ+σ,u
τ,x,y,ν1 (τ+σ),u̇

τ,x,y,ν1 (τ+σ),μ2(t)) + bar(μ2
t ),

vτ+σ,u
τ,x,y,ν1 (τ+σ),u̇

τ,x,y,ν1 (τ+σ),μ2(τ + σ) = uτ,x,y,ν1(τ + σ),

v̇τ+σ,u
τ,x,y,ν2 (τ+σ),u̇

τ,x,y,ν1 (τ+σ),μ2(τ + σ) = u̇τ,x,y,ν1(τ + σ) ∈ D(A(τ + σ)).

(14)
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Let us set

ν := 1[τ,τ+σ ]ν1 + 1[τ+σ,T ]μ2.

Then ν ∈ R. Let wτ,x,y,ν be the trajectory solution on [τ, T ] associated with ν ∈ R,
that is,

{
0 ∈ ẅτ,x,y,ν(t)+A(t)ẇτ,x,y,ν(t)+f (t, wτ,x,y,ν(t))+ bar(νt ) wτ,x,y,ν(τ ) = x

ẇτ,x,y,ν(τ ) = y ∈ D(A(τ))

By uniqueness of the solution, we have

wτ,x,y,ν(t) = uτ,x,y,ν1(t), ∀t ∈ [τ, τ + σ ],
wτ,x,y,ν(t) = vτ+σ,u

τ,x,y,ν1 (τ+σ),u̇
τ,x,y,ν1 (τ+σ),μ2(t), ∀t ∈ [τ + σ, T ].

Coming back to the expression of VJ and WJ , we have

WJ (τ, x, y) =
∫ τ+σ

τ

[ ∫
Z

J (t, uτ,x,y,ν1(t), z)ν
1
t (dz)

]
dt

+
∫ T

τ+σ

[ ∫
Z

J (t, vτ+σ,u
τ,x,ν1 (τ+σ),u̇

τ,x,ν1 (τ+σ),μ2(t), z)μ
2
t (dz)

]
dt

=
∫ T

τ

[ ∫
Z

J (t, wτ,x,y,ν(t), z)νt (dz)

]
dt

≤ sup
ν∈R

{ ∫ T

τ

[ ∫
Z

J (t, uτ,x,y,ν(t), z)νt (dz)

]
dt

}
= VJ (τ, x, y).

The proof is complete.

In the above evolution problem, we deal with second-order inclusion of the form

{
0 ∈ üx,y,λ(t) + A(t)u̇x,y,λ(t) + f (t, ux,y,λ(t)) + bar(λt ), t ∈ [0, T ]
ux,y,λ(0) = x, u̇x,λ(0) = y ∈ D(A(0))

with perturbed term f and bar(λt ). Now we focus to the evolution inclusion of the
form

{
0 ∈ u̇x,λ(t) + A(t)ux,λ(t) + f (t, ux,λ(t)) + bar(λt ), t ∈ [0, T ]
ux,λ(0) = x ∈ D(A(0))

By Theorem 3.1, there is a unique Lipschitz solution ux,λ to this inclusion. Using
the above techniques and Theorem 3.1, we have a result of dynamic principle that
is similar to Theorem 4.9.
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Theorem 4.10 (of dynamic programming principle) Assume the hypothesis and
notations of Theorem 3.1, and let x ∈ E, τ < T and σ > 0 such that τ + σ < T .
Assume that J : [0, T ] × H × Z → R is bounded and continuous. Let us consider
the value function

VJ (τ, x, y)= sup
ν∈R

∫ T

τ

[∫
Z

J (t, uτ,x,ν(t), z)νt (dz)

]
dt, (τ, x) ∈ [0, T ]×D(A(τ))

where uτ,ν is the Lipschitz solution to the evolution inclusion defined on [τ, T ]
associated with the control ν ∈ R starting from x, at time τ

{
0 ∈ u̇τ,x,ν(t) + A(t)uτ,x,ν(t) + f (t, uτ,x,ν(t)) + bar(νt ),

uτ,x,ν(τ ) = x ∈ D(A(τ)).

Then the following holds:

VJ (τ, x) = sup
ν∈R

{ ∫ τ+σ

τ

[∫
Z

J (t, uτ,x,ν(t), z)νt (dz)

]
dt+VJ (τ+σ, uτ,x,ν(τ+σ))

}

with

VJ (τ + σ, uτ,x,ν(τ + σ)) = sup
μ∈R

∫ T

τ+σ

[ ∫
Z

J (t, vτ+σ,uτ,x,ν (τ+σ),μ(t), z)μt (dz)

]
dt

where vτ+σ,uτ,x,ν (τ+σ),μ
2 is the Lipschitz solution defined on [τ + σ, T ] associated

with the control μ ∈ R starting from uτ,x,ν(τ + σ) at time τ + σ

⎧⎪⎪⎨
⎪⎪⎩

0 ∈ v̇τ+σ,uτ,x,ν (τ+σ),μ(t) + A(t)vτ+σ,uτ,x,ν (τ+σ)),μ(t)

+ f (t, vτ+σ,uτ,x,y,ν (τ+σ),μ(t)) + bar(μt ),

vτ+σ,uτ,x,ν (τ+σ),μ(τ + σ) = uτ,x,ν(τ + σ) ∈ D(A(τ + σ)).

Let us mention a useful lemma. See also [16, 22, 23] for related results.

Lemma 4.7 Assume the hypothesis and notations of Theorem 3.1. Let Z be a
compact subset in H , and M 1+(Z) is endowed with the narrow topology and R

the space of relaxed controls associated with Z. Let � : [0, T ]×H ×M 1+(Z) → R

be an upper semicontinuous function such that the restriction of � to [0, T ] × B ×
M 1+(Z) is bounded on any bounded subset B of H . Let (t0, x0) ∈ [0, T ] × E. If

2It is necessary to write completely the expression of the trajectory vτ+σ,uτ,x,ν (τ+σ),μ that depends
on (ν, μ) ∈ R × R in order to get the continuous dependence with respect to ν ∈ R of VJ (τ +
σ, uτ,x,ν(τ + σ)).
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maxμ∈M 1+(Z) �(t0, x0, μ) < −η < 0 for some η > 0, then there exist σ > 0
such that

sup
ν∈R

∫ t0+σ

t0

�(t, ut0,x0,ν(t), νt ) dt < −ση

2

where ut0,x0,ν is the trajectory solution associated with the control ν ∈ R and
starting from x0 at time t0

{
0 ∈ u̇t0,x0,ν(t) + A(t)ut0,x0,ν(t) + f (t, ut0,x0,ν(t) + bar(νt ), t ∈ [t0, T ],
ut0,x0,ν(t0) = x0 ∈ D(A(t0)).

Proof By our assumption maxμ∈M 1+(Z) �(t0, x0, μ) < −η < 0 for some η > 0. As
the function (t, x, μ) �→ �(t, x, μ) is upper semicontinuous, so is the function

(t, x) �→ max
μ∈M 1+(Z)

�(t, x, μ).

Hence there exists ζ > 0 such that

max
μ∈M 1+(Z)

�(t, x, μ) < −η

2

for 0 < t − t0 ≤ ζ and ||x − x0|| ≤ ζ . Thus, for small values of σ , we have

||ut0,x0,ν(t) − ut0,x0,ν(t0)|| ≤ ζ

for all t ∈ [t0, t0 + σ ] and for all ν ∈ R because ||u̇t0,x0,ν(t)|| ≤ K = Constant
for all ν ∈ R and for all t ∈ [0, T ] so that ||ut0,x0,ν(t)|| ≤ L = Constant for
all ν ∈ R and for all t ∈ [0, T ] Hence t �→ �(t, ut0,x0,ν(t), νt ) is bounded and
Lebesgue-measurable on [t0, t0 + σ ]. Then by integrating

∫ t0+σ

t0

�(t, ut0,x0,ν(t), νt ) dt ≤
∫ t0+σ

t0

[
max

μ∈M 1+(Z)

�(t, ut0,x0,ν(t), μ)

]
dt < −ση

2
.

The proof is complete.

Now to finish the paper, we provide a direct application to the viscosity solution
to the evolution inclusion of the form

{
0 ∈ u̇x,λ(t) + A(t)ux,λ(t) + f (t, ux,λ(t)) + bar(λt ), t ∈ [0, T ]
ux,λ(0) = x ∈ D(A(0))

where A(t) is a convex weakly compact valued H → cwk(H) maximal monotone
operator.
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Theorem 4.11 Let for every t ∈ [0, T ], A(t) : H → cwk(H) be a convex weakly
compact valued maximal monotone operator satisfying

(H1) there exists a real constant α ≥ 0 such that

dis(A(t), A(s)) ≤ α(t − s) for 0 ≤ s ≤ t ≤ T .

(H2) there exists a nonnegative real number c such that

‖A0(t, x)‖ ≤ c(1 + ‖x‖), t ∈ [0, T ], x ∈ H

(H3) (t, x) �→ A(t)x is scalarly upper semicontinuous on [0, T ] × H .

Let Z be a compact subset in H , and let R be the space of relaxed controls
associated with Z. Let f : [0, T ] × H → H be a continuous mapping satisfying

(i) there is M > 0 such that ||f (t, x)|| ≤ M(1 + ||x||) for all (t, x) in [0, T ] × H ,
(ii) ||f (t, x) − f (t, y)|| ≤ M||x − y|| for all (t, x, y) ∈ [0, T ] × H × H .

Assume that J : [0, T ] × H × Z → R is bounded and continuous. Let us consider
the value function

VJ (τ, x) = sup
ν∈R

∫ T

τ

[ ∫
Z

J (t, uτ,x,ν(t), z)νt (dz)

]
dt, (τ, x) ∈ [0, T ] × H

where uτ,x,ν is the trajectory solution on [τ, T ] of the evolution inclusion associated
with A(t) and the control ν ∈ R and starting from x ∈ H at time τ

{
0 ∈ u̇τ,x,ν(t) + A(t, uτ,x,ν(t)) + f (t, uτ,x,ν(t)) + bar(νt ), t ∈ [τ, T ]
uτ,x,ν(τ ) = x ∈ H

and the Hamiltonian

H(t, x, ρ)

= sup
μ∈M 1+(Z)

⎧⎩−〈ρ, bar(μ)〉+
∫

Z

J (t, x, z)μ(dz)

⎫⎭+ δ∗(ρ,−f (t, x)−A(t, x))

where (t, x, ρ) ∈ [0, T ] × H × H . Then, VJ is a viscosity subsolution of the HJB
equation

∂U

∂t
(t, x) + H(t, x,∇U(t, x)) = 0, 3

3Where ∇U is the gradient of U with respect to the second variable.
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that is, for any ϕ ∈ C1([0, T ]) × H) for which VJ − ϕ reaches a local maximum
at (t0, x0) ∈ [0, T ] × H , we have

H(t0, x0,∇ϕ(t0, x0)) + ∂ϕ

∂t
(t0, x0) ≥ 0.

Proof Assume by contradiction that there exists a ϕ ∈ C1([0, T ] × H) and a point
(t0, x0) ∈ [0, T ] × H for which

∂ϕ

∂t
(t0, x0) + H(t0, x0,∇ϕ(t0, x0)) ≤ −η < 0 for η > 0.

Applying Lemma 3.5 by taking

�(t, x, μ) = −〈∇ϕ(t, x), bar(μ)〉 +
∫

Z

J (t, x, z)μ(dz)

+ δ∗(∇ϕ(t, x),−f (t, x) − A(t, x)) + ∂ϕ

∂t
(t, x)

yields some σ > 0 such that

sup
ν∈R

⎧⎪⎩
∫ t0+σ

t0

[ ∫
Z

J (t, ut0,x0,ν (t), z)νt (dz)

]
dt −

∫ t0+σ

t0

〈∇ϕ(t, ut0,x0,ν(t), bar(νt )〉 dt

+
∫ t0+σ

t0

δ∗(∇ϕ(t, ut0,x0,ν(t)),−f (t, ut0,x0,ν
n (t)) − A(t, ut0,x0,ν(t))) dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,ν(t)) dt

⎫⎪⎭

≤ − ση

2

(15)

where ut0,x0,ν is the trajectory solution associated with the control ν ∈ R starting
from x0 at time t0{

0 ∈ u̇t0,x0,ν(t) + A(t, ut0,x0,ν(t)) + f (t, ut0,x0,ν(t)) + bar(νt ), t ∈ [t0, T ]
ut0,x0,ν(t0) = x0.

Applying the dynamic programming principle (Theorem 4.10) gives

VJ (t0, x0) = sup
ν∈R

⎧⎩∫ t0+σ

t0

[ ∫
Z

J (t, ut0,x0,ν(t), z)νt (dz)

]
dt + VJ (t0

+σ, ut0,x0,ν(t0 + σ))

⎫⎭.

(16)



Second-Order Evolution Problems with Time-Dependent Maximal Monotone. . . 69

Since VJ − ϕ has a local maximum at (t0, x0), for small enough σ

VJ (t0, x0) − ϕ(t0, x0) ≥ VJ (t0 + σ, ut0,x0,ν(t0 + σ)) − ϕ(t0 + σ, ut0,x0,ν(t0 + σ))

(17)
for all ν ∈ R. By (16), for each n ∈ N, there exists νn ∈ R such that

VJ (t0, x0) ≤
∫ t0+σ

t0

[ ∫
Z

J (t, ut0,x0,ν
n(t)), z)νn

t (dz)

]
dt

+ VJ (t0 + σ, ut0,x0,ν
n(t0 + σ)) + 1

n
. (18)

From (17) and (18), we deduce that

VJ (t0 + σ, ut0,x0,ν
n(t0 + σ)) − ϕ(t0 + σ, ut0,x0,ν

n(t0 + σ))

≤
∫ t0+σ

t0

[ ∫
Z

J (t, ut0,x0,ν
n(t)), z)νn

t (dz)

]
dt + 1

n

− ϕ(t0, x0) + VJ (t0 + σ, ut0,x0,ν
n(t0 + σ)).

Therefore we have

0 ≤
∫ t0+σ

t0

[ ∫
Z

J (t, ut0,x0,ν
n(t)), z)νn

t (dz)

]
dt

+ ϕ(t0 + σ, ut0,x0,ν
n(t0 + σ)) − ϕ(t0, x0) + 1

n
. (19)

As ϕ ∈ C1([0, T ] × H), we have

ϕ(t0 + σ, ut0,x0,ν
n(t0 + σ)) − ϕ(t0, x0)

=
∫ t0+σ

t0

〈∇ϕ(t, ut0,x0,ν
n(t)), u̇t0,x0,ν

n(t)〉 dt +
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,ν

n(t)) dt.

(20)

Since ut0,x0,ν
n is the trajectory solution starting from x0 at time t0

{
0 ∈ u̇t0,x0,ν

n(t) + A(t, ut0,x0,ν
n(t)) + f (t, ut0,x0,ν

n(t)) + bar(νn
t ), t ∈ [t0, T ]

ut0,x0,ν
n(t0) = x0

so that (20) yields the estimate
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ϕ(t0 + σ, ut0,x0,ν
n(t0 + σ)) − ϕ(t0, x0)

=
∫ t0+σ

t0

〈∇ϕ(t, ut0,x0,ν
n(t)), u̇t0,x0,ν

n(t)〉 dt +
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,ν

n(t)) dt

≤ −
∫ t0+σ

t0

〈∇ϕ(t, ut0,x0,ν
n(t)), bar(νn

t ) + f (t, ut0,x0,ν
n(t))〉 dt

+
∫ t0+σ

t0

δ∗(∇ϕ(t, ut0,x0,ν
n(t)),−A(t, ut0,x0,ν

n(t))) dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,ν

n(t)) dt.

(21)

Inserting the estimate (21) into (19), we get

0 ≤
∫ t0+σ

t0

[ ∫
Z

J (t, ut0,x0,ν
n(t)), z)νn

t (dz)

]
dt (22)

−
∫ t0+σ

t0

〈∇ϕ(t, ut0,x0,ν
n(t)), bar(νn

t ) + f (t, ut0,x0,ν
n(t))〉 dt

+
∫ t0+σ

t0

δ∗(∇ϕ(t, ut0,x0,ν
n(t)),−A(t, ut0,x0,ν

n(t)) dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,ν

n(t)) dt + 1

n
.

Then (15) and (22) yield 0 ≤ −ση
2 + 1

n
for all n ∈ N. By passing to the limit when n

goes to ∞ in this inequality, we get a contradiction: 0 ≤ −ση
2 . The proof is therefore

complete.

Existence results for evolution inclusion driven by time-dependent maximal
monotone operators A(t) with single-valued perturbation f or convex weakly
compact valued perturbation F of the form

−u̇(t) ∈ A(t)u(t) + f (t, u(t))

or

−u̇(t) ∈ A(t)u(t) + F(t, u(t))

are developed in [7, 8], while existence results for convex or nonconvex sweeping
process in the form

−u̇(t) ∈ NC(t)(u(t)) + f (t, u(t))
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or

−u̇(t) ∈ NC(t)(u(t)) + F(t, u(t))

where C(t) is a closed convex (or nonconvex) moving set and NC(t)(u(t)) is the
normal cone of C(t) at the point u(t) is much studied so that our tools developed
above allow to treat some further variants on the viscosity solution dealing with
some specific maximal monotone operators A(t) or convex or nonconvex sweeping
process such as{

0 ∈ u̇t0,x0,ν(t) + NC(t)(ut0,x0,ν(t)) + f (t, uτ,x,ν(t)) + bar(νt ), t ∈ [t0, T ]
ut0,x0,ν(t0) = x0

using the subdifferential of the distance function dC(t)x.
We end the paper with some variational limit results which can be applied

to further convergence problems in state-dependent convex sweeping process or
second-order state-dependent convex sweeping process. See [1, 3, 34] and the
references therein.

Theorem 4.12 Let Cn : [0, T ] → H and C : [0, T ] → H be a sequence of convex
weakly compact valued scalarly measurable bounded mappings satisfying

(i) supn supt∈[0,T ] H
(
Cn(t), C(t)

) ≤ M < ∞,
(ii) limn H

(
Cn(t), C(t)

) = 0, for each t ∈ [0, T ].
Let (vn) be a uniformly integrable sequence in L1

H ([0, T ]) such that vn converges
for σ(L1

H ([0, T ]), L∞
H ([0, T ]) to v ∈ L1

H ([0, T ]), and let (un) be a uniformly
bounded sequence L∞

H ([0, T ]) which pointwisely converges to u ∈ L∞
H ([0, T ]).

Assume that −vn(t) ∈ NCn(t)(un(t)) a.e., then

u(t) ∈ C(t) a.e. and − v(t) ∈ NC(t)(u(t)) a.e.

Proof For simplicity, let ρn(t) = H
(
Cn(t), C(t)

)
for each t ∈ [0, T ]. Firstly it

is clear that the mappings ρn, t �→ δ∗(−vn(t), Cn(t)), t �→ δ∗(−vn(t), C(t)), and
t �→ δ∗(−v(t), C(t)) are measurable on [0, T ] and integrable by boundedness. By
the Hormander formula for convex weakly compact set (see [19]), we have

|δ∗(−vn(t), Cn(t)) − δ∗(−vn(t), C(t))| ≤ ||vn(t)||ρn(t)

so that

δ∗(−vn(t), Cn(t)) − δ∗(−vn(t), C(t)) ≥ −||vn(t)||ρn(t).

By −vn(t) ∈ NCn(t)(un(t)), we have δ∗(−vn(t), Cn(t)) + 〈vn(t), un(t)〉 ≤ 0 so we
get the estimation

−||vn(t)||ρn(t) + δ∗(−vn(t), C(t)) + 〈vn(t, un(t)〉 ≤ 0
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or

δ∗(−vn(t), C(t)) + 〈vn(t), un(t)〉 ≤ ||vn(t)||ρn(t).

Note that the mappings t �→ δ∗(−vn(t), C(t)) + 〈vn(t), un(t)〉, and t �→
||vn(t)||ρn(t) are integrable on [0, T ]. Let B a measurable set in [0, T ] and then by
integrating∫

B

δ∗(−vn(t), C(t))dt +
∫

B

〈vn(t), un(t)〉dt ≤
∫

B

||vn(t)||ρn(t)dt.

We note that the convex integrand H(t, e) = δ∗(e, C(t)) defined on [0, T ] × H is
normal because t �→ H(t, e) is continuous on [0, T ] and e �→ H(t, e) is convex
continuous on H , with H(t, e) ≥ 〈e, u(t)〉 for all (t, e) ∈ [0, T ]×H . Consequently
H(t,−vn(t)) = δ∗(−vn(t), C(t)) ≥ 〈−vn(t), u(t)〉. But (〈−vn, u〉) is uniformly
integrable in L1

R
([0, T ], dt), so that by virtue of the lower semicontinuity of the

integral convex functional [22, Theorem 8.1.16], we have

lim inf
n→∞

∫
B

δ∗(−vn(t), C(t))dt ≥
∫

B

δ∗(−v(t), C(t))dt. (23)

Note that the sequence
(
un(.) − u(.)

)
is uniformly bounded and pointwisely

converges to 0, so that it converges to 0 uniformly on any uniformly integrable
subset of L1

H ([0, T ], dt); in other terms, it converges to 0 with respect to the Mackey
topology τ(L∞

H ([0, T ], dt), L1
H ([0, T ], dt)) (see [15]),4 so that

lim
n→∞

∫
B

〈vn(t), un(t) − u(t)〉dt = 0

because (vn) is uniformly integrable. Consequently

lim
n→∞

∫
B

〈vn(t), un(t)〉dt = lim
n→∞

∫
B

〈vn(t), un(t)−u(t)〉dt+ lim
n→∞

∫
B

〈vn(t), u(t)〉dt

= lim
n→∞

∫
B

〈vn(t), u(t)〉dt =
∫

B

〈v̇(t), u(t)〉dt. (24)

By our assumptions, ρn(t) is bounded measurable and pointwisely converges to 0
and ||vn(t)|| is uniformly integrable; then similarly we have

lim
n

∫
B

||vn(t)||ρn(t)dt = 0. (25)

4If H = R
d , one may invoke a classical fact that on bounded subsets of L∞

H the topology
of convergence in measure coincides with the topology of uniform convergence on uniformly
integrable sets, i.e. on relatively weakly compact subsets, alias the Mackey topology. This is a
lemma due to Grothendieck [33, Ch.5 §4 no 1 Prop. 1 and exercice].
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Finally by passing to the limit when n goes to ∞ in∫
B

δ∗(−vn(t), C(t))dt +
∫

B

〈vn(t), un(t)〉dt ≤
∫

B

||vn(t)||ρn(t)dt

and taking into account the above convergence limits (23), (24), and (25), we get∫
B

δ∗(−v(t), C(t))dt +
∫

B

〈v(t), u(t)〉dt ≤ 0.

As the function t �→ δ∗(−v(t), C(t)) + 〈v(t), u(t) is integrable on [0, T ] and this
holds for every B measurable set in [0, T ], we get

δ∗(−v(t), C(t))) + 〈v(t), u(t)〉 ≤ 0 a.e.

Furthermore, it is not difficult to check that u(t) ∈ C(t) a.e. using (ii) and the fact
that un(t) ∈ Cn(t) for all n ∈ N and a.e. t ∈ [0, T ]; therefore, we conclude that
−v(t) ∈ NC(t)(u(t)) a.e. The proof is complete.

Our tools allow to treat the variational limits for further evolution variational
inequalities such as

Proposition 4.2 Let Cn : [0, T ] → H and C : [0, T ] ⇒ H be a sequence of
convex weakly valued scalarly measurable bounded mappings satisfying

(i) supn supt∈[0,T ] H
(
Cn(t), C(t)

) ≤ M < ∞,
(ii) limn H

(
Cn(t), C(t)

) = 0, for each t ∈ [0, T ].
Let B : H → H be a linear continuous operator such that 〈Bx, x〉 > 0
for all x ∈ H \ {0}. Let (vn) be a uniformly bounded sequence in L∞

H ([0, T ])
such that vn σ (L∞

H ([0, T ]), L1
H ([0, T ]) converges to v ∈ L∞

H ([0, T ]), and let
(un) be a uniformly bounded sequence L∞

H ([0, T ]) which pointwisely converges
to u ∈ L∞

H ([0, T ]). Assume that −vn(t) ∈ NCn(t)(un(t)+Bvn(t)) for all n ∈ N and
for a.e. t ∈ [0, T ]. Then

u(t) + Bv(t) ∈ C(t) a.e. and − v(t) ∈ NC(t)(u(t) + Bv(t)) a.e.

Proof Apply the notations of the proof of Theorem 4.12. Let ρn(t) =
H

(
Cn(t), C(t)

)
for each t ∈ [0, T ]. It is clear that the mappings ρn,

t �→ δ∗(−vn(t), Cn(t)), t �→ δ∗(−vn(t), C(t)), and t �→ δ∗(−v(t), C(t)) are
measurable and integrable on [0, T ]. By the Hormander formula for convex weakly
compact sets (see [19]), we have

|δ∗(−vn(t), Cn(t)) − δ∗(−vn(t), C(t))| ≤ ||vn(t)||ρn(t)

so that

δ∗(−vn(t), Cn(t)) − δ∗(−vn(t), C(t)) ≥ −||vn(t)||ρn(t).
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By −vn(t) ∈ NCn(t)(un(t) + Bvn(t)), we have

δ∗(−vn(t), Cn(t)) + 〈vn(t), un(t) + Bvn(t)〉 ≤ 0.

Whence

δ∗(−vn(t), C(t)) + 〈vn(t), un(t) + Bvn(t)〉 ≤ ||vn(t)||ρn(t)

Note that the mappings t �→ δ∗(−vn(t), C(t)) + 〈vn(t), un(t) + Bvn(t)〉, and t �→
||vn(t)||ρn(t) are integrable on [0, T ] so that by integrating on any measurable set
L ⊂ [0, T ]

∫
L

δ∗(−vn(t), C(t))dt +
∫

L

〈vn(t), un(t)〉dt +
∫

L

〈vn(t), Bvn(t)〉dt

≤
∫

L

||vn(t)||ρn(t)dt.

Since (vn) σ (L∞
H ([0, T ]), L1

H ([0, T ]) converges to v ∈ L∞
H ([0, T ]), it is not

difficult to check that (Bvn) converges for σ(L∞
H ([0, T ]), L1

H ([0, T ]) to Bv ∈
L1

H ([0, T ]), arguing as in [11, Theorem 4.1]. As a consequence, the sequence
(un + Bvn) converges for σ(L∞

H ([0, T ]), L1
H ([0, T ]) to u + Bv ∈ L∞

H ([0, T ]).
From un(t) + Bvn(t) ∈ Cn(t), we deduce

∫
L

〈e, un(t) + Bvn(t)〉dt ≤
∫

L

δ∗(e, Cn(t))dt

for every e ∈ H and for every measurable set L ⊂ [0, T ]. By passing to the limit in
this inequality, we get

∫
L

〈e, u(t) + Bv(t)〉dt ≤ lim sup
n

∫
L

δ∗(e, Cn(t))dt ≤
∫

L

δ∗(e, C(t))dt.

It follows that

〈e, u(t) + Bv(t)〉 ≤ δ∗(e, C(t)) a.e.

By [19, Proposition III.35], we deduce that u(t) + Bv(t) ∈ C(t) a.e. As in
Theorem 3.1, we have already stated that for every measurable set L ⊂ [0, T ],

lim
n

∫
L

〈un(t), vn(t)〉dt =
∫

L

〈u(t), v(t)〉dt, (26)

lim
n

∫
L

|vn(t)||ρn(t)dt = 0, (27)

lim inf
n

∫
B

δ∗(−v(t), Cn(t))dt ≥
∫

B

δ∗(−v(t), Cn(t))dt. (28)
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Now set ϕ(x) = 〈x, Bx〉 for all x ∈ H . Then ϕ(x) is a nonnegative lower
semicontinuous and convex function defined on H . So we have

∫
L

〈vn(t), Bvn(t)〉dt =
∫

L

ϕ(vn(t))dt.

By lower semicontinuity of convex integral functional [19, 22, 23], we get

lim inf
n

∫
L

〈vn(t), Bvn(t)〉dt

= lim inf
n

∫
L

ϕ(vn(t))dt ≥
∫

L

ϕ(v(t))dt =
∫

L

〈v(t), Bv(t)〉dt.

Taking into consideration the above stated limits (26), (27), (28) and passing to the
limit when n goes to ∞ in the inequality

∫
L

δ∗(−vn(t), C(t))dt +
∫

L

〈vn(t), un(t)〉dt +
∫

L

〈vn(t), Bvn(t)〉dt

≤
∫

L

||vn(t)||ρn(t)dt,

we get

∫
L

δ∗(−v(t), C(t))dt +
∫

L

〈v(t), u(t) + Bv(t)〉dt ≤ 0

for every measurable set L ⊂ [0, T ]. Since the mapping t �→ δ∗(−v(t), C(t)) +
〈v(t), u(t) + Bv(t)〉 is integrable on [0, T ], we have

δ∗(−v(t), C(t)) + 〈v(t), u(t) + Bv(t)〉 ≤ 0 a.e.

As u(t)+Bv(t) ∈ C(t) a.e., this yields −v(t) ∈ NC(t)(u(t)+Bv(t)) a.e. The proof
is complete.
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