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Numerical Analysis on Quadratic
Hedging Strategies for Normal Inverse
Gaussian Models

Takuji Arai, Yuto Imai, and Ryo Nakashima

Abstract The authors aim to develop numerical schemes of the two representative
quadratic hedging strategies: locally risk-minimizing and mean-variance hedging
strategies, for models whose asset price process is given by the exponential of
a normal inverse Gaussian process, using the results of Arai et al. (Int J Theor
Appl Financ 19:1650008, 2016) and Arai and Imai (A closed-form representation
of mean-variance hedging for additive processes via Malliavin calculus, preprint.
Available at https://arxiv.org/abs/1702.07556). Here normal inverse Gaussian pro-
cess is a framework of Lévy processes that frequently appeared in financial
literature. In addition, some numerical results are also introduced.
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1 Introduction

Locally risk-minimizing (LRM) and mean-variance hedging (MVH) strategies
are well-known quadratic hedging strategies for contingent claims in incomplete
markets. In fact, their theoretical aspects have been studied very well for about three
decades. On the other hand, numerical methods to compute them have yet to be
thoroughly developed. As limited literature, Arai et al. [2] developed a numerical
scheme of LRM strategies for call options for two exponential Lévy models: Merton
jump-diffusion models and variance gamma (VG) models. Here VG models mean
models in which the asset price process is given as the exponential of a VG process.
In [2], they made use of a representation for LRM strategies provided by Arai and
Suzuki [3] and the so-called Carr-Madan method suggested by [8]: a computational
method for option prices using the fast Fourier transforms (FFT). Note that [3]
obtained their representation for LRM strategies by means of Malliavin calculus for
Lévy processes. As for MVH strategies, Arai and Imai [1] obtained a new closed-
form representation for exponential additive models and suggested a numerical
scheme for VG models.

Our aim in this paper is to extend the results of [2] and [1] to normal inverse
Gaussian (NIG) models. Note that an NIG process is a pure jump Lévy process
described as a time-changed Brownian motion as well as a VG process is. Here a
processX = {Xt }t≥0 is called a time-changed Brownian motion, ifX is described as

Xt = μYt + σBYt
for any t ≥ 0, where μ ∈ R, σ > 0, and B = {Bt }t≥0 is a one-dimensional standard
Brownian motion and Y = {Yt }t≥0 is a subordinator, that is, a nondecreasing
Lévy process. A time-changed Brownian motion X is called an NIG process, if
the corresponding subordinator Y is an inverse Gaussian (IG) process. On the other
hand, a VG process is described as a time-changed Brownian motion with Gamma
subordinator. NIG process, which has been introduced by Barndorff-Nielsen [4], is
frequently appeared in financial literature, e.g., [5–7, 11, 12], and so forth.

Next, we introduce quadratic hedging strategies. Consider a financial market
composed of one risk-free asset and one risky asset with finite maturity T > 0.
For simplicity, we assume that market’s interest rate is zero, that is, the price of the
risk-free asset is 1 at all times. Let S = {St }t∈[0,T ] be the risky asset price process.
Here we prepare some terminologies.

Definition 1.1

1. A strategy is defined as a pair ϕ = (ξ, η), where ξ = {ξt }t∈[0,T ] is a predictable
process and η = {ηt }t∈[0,T ] is an adapted process. Note that ξt (resp. ηt )
represents the amount of units of the risky asset (resp. the risk-free asset) an
investor holds at time t . The wealth of the strategy ϕ = (ξ, η) at time t ∈ [0, T ]
is given as Vt (ϕ) := ξtSt + ηt . In particular, V0(ϕ) gives the initial cost of ϕ.
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2. A strategy ϕ is said to be self-financing, if it satisfies Vt (ϕ) = V0(ϕ)+Gt(ξ) for
any t ∈ [0, T ], where G(ξ) = {Gt(ξ)}t∈[0,T ] denotes the gain process induced
by ξ , that is, Gt(ξ) :=

∫ t
0 ξudSu for t ∈ [0, T ]. If a strategy ϕ is self-financing,

then η is automatically determined by ξ and the initial cost V0(ϕ). Thus, a self-
financing strategy ϕ can be described by a pair (ξ, V0(ϕ)).

3. For a strategy ϕ, a process C(ϕ) = {Ct(ϕ)}t∈[0,T ] defined by Ct(ϕ) := Vt (ϕ) −
Gt(ξ) for t ∈ [0, T ] is called the cost process of ϕ. When ϕ is self-financing, its
cost process C(ϕ) is a constant.

4. Let F be a square-integrable random variable, which represents the payoff of a
contingent claim at the maturity T . A strategy ϕ is said to replicate claim F , if it
satisfies VT (ϕ) = F .

Roughly speaking, a strategy ϕF = (ξF , ηF ), which is not necessarily self-
financing, is called the LRM strategy for claim F , if it is the replicating strategy
minimizing a risk caused by C(ϕF ) in the L2-sense among all replicating strategies.
Note that it is sufficient to get a representation of ξF in order to obtain the LRM
strategy ϕF , since ηF is automatically determined by ξF . On the other hand, the
MVH strategy for claim F is defined as the self-financing strategy minimizing the
corresponding L2-hedging error, that is, the solution (ϑF , cF ) to the minimization
problem

min
c,ϑ

E

[
(F − c −GT (ϑ))2

]
.

Remark that cF gives the initial cost, which is regarded as the corresponding price
of F .

In this paper, we propose numerical methods of LRM strategies ξF and MVH
strategies ϑF for call options when the asset price process is given by an exponential
NIG process, by extending results of [2] and [1]. Our main contributions are as
follows:

1. To ensure the existence of LRM and MVH strategies, we need to impose
some integrability conditions (Assumption 1.1 of [2]) with respect to the Lévy
measure of the logarithm of the asset price process. Thus, we shall give a
sufficient condition in terms of the parameters of NIG processes as our standing
assumptions, which enables us to check if a parameter set estimated by financial
market data satisfies Assumption 1.1 of [2].

2. The so-called minimal martingale measure (MMM) is indispensable to discuss
the LRM problem. In particular, the characteristic function of the asset price
process under the MMM is needed in the numerical method developed by [2].
Thus, we provide its explicit representation for NIG models.

3. In general, a Fourier transform is given as an integration on [0,∞). In fact,
we represent LRM strategies by such an improper integration and truncate its
integration interval in order to use FFTs. Thus, we shall estimate a sufficient
length of the integration interval to reduce the associated truncation error within
given allowable extent.
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Actually, we need to overcome some complicated calculations in order to achieve
the three objects above, since the Lévy measure of an NIG process includes a
modified Bessel function of the second kind with parameter 1.

An outline of this paper is as follows: A precise model description is given in
Sect. 2. Main results will be stated in Sect. 3. Our standing assumption described
in terms of the parameters of NIG models is introduced in Sect. 3.1, which is
followed by subsections discussing the characteristic function under the MMM, a
representation of LRM strategies, an estimation of the integration interval, and a
representation of MVH strategies. Note that proofs are postponed until Appendix.
Sect. 4 is devoted to numerical results.

2 Model Description

We consider throughout a financial market composed of one risk-free asset and
one risky asset with finite time horizon T > 0. For simplicity, we assume that
market’s interest rate is zero, that is, the price of the risk-free asset is 1 at all times.
(�,F ,P) denotes the canonical Lévy space, which is given as the product space
of spaces of compound Poisson processes on [0, T ]. Denote by F = {Ft }t∈[0,T ]
the canonical filtration completed for P. For more details on the canonical Lévy
space, see Section 4 of Solé et al. [16] or Section 3 of Delong and Imkeller [10].
Let L = {Lt }t∈[0,T ] be a pure jump Lévy process with Lévy measure ν defined on
(�,F ,P). We define the jump measure of L as

N([0, t], A) :=
∑

0≤u≤t
1A(	Lu)

for any A ∈ B(R0) and any t ∈ [0, T ], where 	Lt := Lt − Lt−, R0 := R \ {0},
and B(R0) denotes the Borel σ -algebra on R0. In addition, its compensated version
Ñ is defined as

Ñ([0, t], A) := N([0, t], A)− tν(A).
In this paper, we study the case where L is given as a normal inverse Gaussian

(NIG) process. Here a pure jump Lévy process L is called an NIG process with
parameters α > 0, −α < β < α, and δ > 0, if its characteristic function is given as

E[eizLt ] = exp

{

−δ
(√
α2 − (β + iz)2 −

√
α2 − β2

)}

for any z ∈ C and any t ∈ [0, T ]. Note that the corresponding Lévy measure ν is
given as

ν(dx) = δα
π

eβxK1(α|x|)
|x| dx
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for x ∈ R0, where K1 is the modified Bessel function of the second kind with
parameter 1. When we need to emphasize the model parameters, ν is denoted by
ν[α, β, δ]. In addition, the process L can also be described as the following time-
changed Brownian motion with IG subordinator:

Lt = βδ2It + δBIt ,

where B = {Bt }t∈[0,T ] is a one-dimensional standard Brownian motion and I =
{It }t∈[0,T ] is an IG process with parameter (1, δ

√
α2 − β2). For more details on

NIG processes, see Section 4.4 of Cont and Tankov [9] and Subsection 5.3.8 of
Schoutens [13]. In this paper, the risky asset price process S = {St }t∈[0,T ] is given
as the exponential of the NIG process L:

St = S0e
Lt ,

where S0 > 0.
Now, we prepare some additional notation. For v ∈ [0,∞) and a ∈ ( 3

2 , 2], we
define

M1(v, a) := v
2 + α2 − (a + β)2

α2
, M2 := 1− β

2

α2
, b(v, a) := 2(a + β)v

α2
,

and

W(v, a) := δα√
2

(

i

√√
M2

1 + b2 −M1 −
√√
M2

1 + b2 +M1 +
√

2M2

)

, (1)

where M1(v, a) and b(v, a) are abbreviated to M1 and b, respectively. Note that
we can define W(0, 1) and W(v, a + 1) for v ∈ [0,∞) and a ∈ ( 3

2 , 2] as
well. Moreover, when it is desirable to emphasize the parameters α, β, and δ, we
denote the above four functions as M1(v, a;α, β), M2(α, β), b(v, a;α, β), and
W(v, a;α, β, δ), respectively.

3 Main Results

3.1 Standing Assumption

We introduce our standing assumption in terms of model parameters.

Assumption 3.1

α >
5

2
, −3

2
< β ≤ −1

2
, and β + 4 < α.
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Now, we show that Assumption 3.1 is a sufficient condition for Assumption 1.1 of
[2], which ensures the existence of LRM and MVH strategies.

Proposition 3.1 Under Assumption 3.1, we have

1.
∫
R0
(ex − 1)4ν(dx) <∞,

2. 0 ≥ ∫
R0
(ex − 1)ν(dx) > − ∫

R0
(ex − 1)2ν(dx).

We postpone the proof of Proposition 3.1 until Appendix. Remark that Condition 2
in Proposition 3.1 is the same as the second condition of Assumption 1.1 of [2]. On
the other hand, Condition 1 is a modification of the first condition of Assumption 1.1
of [2], which is given as follows:

∫

R0

(|x| ∨ x2)ν(dx) <∞ and
∫

R0

(ex − 1)nν(dx) <∞ for n = 2, 4.

Firstly,
∫
R0
x2ν(dx) < ∞ and

∫
R0
(ex − 1)2ν(dx) < ∞ are redundant, since

∫
R0
(x2 ∧ 1)ν(dx) < ∞ holds. Next, NIG processes do not have the finiteness of

∫
R0
|x|ν(dx), different from VG processes. Actually, S is described by a stochastic

integration with respect to N in [2]. Thus, the condition
∫
R0
|x|ν(dx) < ∞ is

needed. On the other hand, describing S as

St = S0e
Lt = S0 exp

{∫ t

0

∫

R0

xÑ(du, dx)+ t
∫

R0

xν(dx)

}

,

we do not need to assume it.

3.2 The Minimal Martingale Measure

In this subsection, we focus on the minimal martingale measure (MMM): an
equivalent martingale measure under which any square-integrable P-martingale
orthogonal to the martingale part of S remains a martingale. Remark that the MMM
plays a vital role in quadratic hedging problems. Denote μS := ∫

R0
(ex − 1)ν(dx),

Cν :=
∫
R0
(ex − 1)2ν(dx), h := μS/Cν , and

θx := μ
S(ex − 1)

Cν

for x ∈ R0. As discussed in [2], the MMM P
∗ exists under Assumption 1.1 of [2],

and its Radon-Nikodym density is given as

dP∗

dP
= exp

{∫

R0

log(1− θx)Ñ([0, T ], dx)+ T
∫

R0

(log(1− θx)+ θx) ν(dx)
}

.



Numerical Analysis on Quadratic Hedging Strategies for Normal Inverse. . . 7

Note that θx < 1 holds for any x ∈ R0 under Assumption 3.1 by Proposition 3.1.
Furthermore, P∗ is not only the MMM but also the variance-optimal martingale
measure (VOMM) in our setting as discussed in [1]. Note that the VOMM is an
equivalent martingale measure whose density minimizes the L2(P)-norm among
all equivalent martingale measures. Since MVH strategies are described using the
VOMM, we use P

∗ to express MVH strategies as well as LRM strategies.
Here we prepare some additional notation. From the view of the Girsanov

theorem,

ÑP
∗
([0, t], dx) := Ñ([0, t], dx)+ θxν(dx)t

is the compensated jump measure of L under P∗. This means that the Lévy measure
under P∗, denoted by νP

∗
, is given as

νP
∗
(dx) = (1− θx)ν(dx). (2)

L is then rewritten as

Lt =
∫

R0

xÑP
∗
([0, t], dx)+ μ∗t, (3)

where μ∗ := ∫
R0
(x − ex + 1)νP

∗
(dx) and the stochastic differential equation for S

under P∗ is given as dSt = St−
∫
R0
(ex − 1)ÑP

∗
(dt, dx).

In order to develop FFT-based numerical schemes, we need an explicit represen-
tation of the characteristic function of L under P∗:

φT−t (z) := EP∗ [eizLT−t ]

for z ∈ C. Before stating it, we calculate νP
∗
(dx) the Lévy measure of L under

P
∗. Recall that ν[α, β, (1 + h)δ](dx) represents the Lévy measure of an NIG

process with parameters α, β, and (1 + h)δ. We provide the proof of the following
proposition in Appendix.

Proposition 3.2 We have

νP
∗
(dx) = ν[α, β, (1+ h)δ](dx)+ ν[α, 1+ β,−hδ](dx).

Now, we provide a representation of φ using the functionW(v, a) defined in (1).
Remark that W(v, a;α, 1 + β, δ) is also well-defined, since M2(α, β + 1) > 0 by
Assumption 3.1. The proof of the following proposition is given in Appendix.
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Proposition 3.3 For any v ∈ [0,∞) and any a ∈ ( 3
2 , 2], we have

φT−t (v − ia) = exp

{

(T − t)i(v − ia)
(

μ∗ − (1+ h)δβ√
α2 − β2

+ hδ(1+ β)
√
α2 − (1+ β)2

)}

× exp

{

(T − t)
(

W(v, a;α, β, (1+ h)δ)+W(v, a;α, 1+ β,−hδ)
)}

where μ∗ = ∫
R0
(x − ex + 1)νP

∗
(dx).

3.3 Local Risk Minimization

In this subsection, we introduce how to compute LRM strategies for call options
(ST − K)+ with strike price K > 0. First of all, we give a precise definition of
the LRM strategy for claim F ∈ L2(P). The following is based on Theorem 1.6 of
Schweizer [15].

Definition 3.1

1. A strategy ϕ = (ξ, η) is said to be an L2-strategy, if ξ satisfies

E

[∫ T
0 S

2
u−ξ2

udu
]
<∞ and V (ϕ) is a right continuous process with E[V 2

t (ϕ)] <
∞ for every t ∈ [0, T ].

2. An L2-strategy ϕ is called the LRM strategy for claim F , if VT (ϕF ) = F and
[C(ϕF ),M] is a uniformly integrable martingale, whereM = {Mt }t∈[0,T ] is the
martingale part of S.

Note that all the conditions of Theorem 1.6 of [15] hold under Assumption 1.1
of [2] as seen in Example 2.8 of [3]. The above definition of LRM strategies is
a simplified version, since the original one, introduced in [14] and [15], is rather
complicated. Now, an F ∈ L2(P) admits a Föllmer-Schweizer decomposition, if it
can be described by

F = F0 +GT (ξFS)+ LFST ,
where F0 ∈ R, ξFS = {ξFSt }t∈[0,T ] is a predictable process satisfying

E

[∫ T
0 S

2
u−(ξFSu )2du

]
< ∞, and LFS = {LFSt }t∈[0,T ] is a square-integrable

martingale orthogonal to M with LFS0 = 0. In addition, Proposition 5.2 of [15]
provides that, under Assumption 1.1 of [2], the LRM strategy ϕF = (ξF , ηF ) for
F ∈ L2(P) exists if and only if F admits a Föllmer-Schweizer decomposition; and
its relationship is given by

ξFt = ξFSt , ηFt = F0 +Gt(ξF )+ LFSt − ξFt St .

As a result, it suffices to obtain a representation of ξF in order to get ϕF . Henceforth,
we identify ξF with ϕF .
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We consider call options (ST −K)+ with strike price K > 0 as claims to hedge.
Now, we denote F(K) = (ST −K)+ for K > 0 and define a function

I (s, t,K) :=
∫

R0

EP∗ [(ST ex −K)+ − (ST −K)+|St− = s](ex − 1)ν(dx)

for s > 0, t ∈ [0, T ], and K > 0. [3] gave an explicit representation of ξF(K)t for
any t ∈ [0, T ] and any K > 0 using Malliavin calculus for Lévy processes.

Proposition 3.4 (Proposition 4.6 of [3]) For any K > 0 and any t ∈ [0, T ],

ξ
F(K)
t = I (St−, t, K)

St−Cν
. (4)

In addition, [2] introduced an integral representation for I (St−, t, K) as

I (St−, t, K)= 1

π

∫ ∞

0
K−iv−a+1

∫

R0

(e(iv+a)x−1)(ex−1)ν(dx)
φT−t (v−ia)Siv+at−
(iv+a)(iv+a−1)

dv,

where a ∈ (1, 2] and the right-hand side is independent of the choice of a. Remark
that we narrow the range of a to ( 3

2 , 2] for technical reasons, but this does not
restrict our development of numerical schemes, since we take 1.75 as the value of
a in our numerical experiments. To compute I (St−, t, K), we need to calculate the
integration

∫
R0
(e(iv+a)x − 1)(ex − 1)ν(dx). Now, Lemma A.1 implies that

∫

R0

e(iv+a)x(ex − 1)ν(dx) =
∫

R0

e(iv+a)x(ex − 1)ν(dx)

=
∫

R0

(e(iv+a+1)x − e(iv+a)x)ν(dx)

=
∫

R0

(e(iv+a+1)x − 1)ν(dx)

−
∫

R0

(e(iv+a)x − 1)ν(dx)

= W(v, a + 1)−W(v, a),

from which we have

I (St−, t, K) = 1

π

∫ ∞

0
K−iv−a+1

(
W(v, a + 1)−W(v, a)−W(0, 1)

)

× φT−t (v − ia)Siv+at−
(iv + a)(iv + a − 1)

dv. (5)

Thus, we can compute I (St−, t, K) using the FFT as mentioned in [2].
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3.4 Integration Interval

To compute the integral (5) with the FFT, we discretize I (St−, t, K) as

I (St−, t, K) ≈ 1

π

N−1∑

j=0

e(−iηj−a+1) logK
(

W(ηj, a + 1)−W(ηj, a)−W(0, 1)
)

× φT−t (ηj − ia)Siηj+at−
(iηj + a)(iηj + a − 1)

η,

where N represents the number of grid points and η > 0 is the distance between
adjacent grid points. This approximation corresponds to the integral (5) over the
interval [0, Nη], so we need to specify N and η to satisfy

∣
∣
∣
∣

1

π

∫ ∞

Nη

K−iv−a+1
(
W(v, a+1)−W(v, a)−W(0, 1)

) φT−t (v − ia)Siv+at−
(iv + a)(iv + a − 1)

dv

∣
∣
∣
∣ < ε

(6)
for a given sufficiently small value ε > 0, which represents the allowable error.
Thus, we shall estimate a sufficient length for the integration interval of (5) for a
given allowable error ε > 0 in the sense of (6). The following proposition is shown
in Appendix.

Proposition 3.5 For ε > 0 and t ∈ [0, T ), if w > 1 satisfies

√
2K−a+1Sat−C(t)
π(T − t)ε

(

2+
√
α2 − (a + β)2 + 2(a + 1+ β)2

)

< e(T−t)δw, (7)

we have

∣
∣
∣
∣

1

π

∫ ∞

w

K−iv−a+1
(
W(v, a+1)−W(v, a)−W(0, 1)

) φT−t (v − ia)Siv+at−
(iv + a)(iv + a − 1)

dv

∣
∣
∣
∣ < ε,

where C(t) is defined as

C(t) := exp

{

(T − t)a
(

μ∗ − (1+ h)δβ√
α2 − β2

+ hδ(1+ β)
√
α2 − (1+ β)2

)}

× exp
{
(T − t)δα

(
(1+ h)√M2(α, β)− h

√
M2(α, 1+ β)

)}
(8)

for any t ∈ [0, T ).
Remark 3.1 In Proposition 3.5, the case of t = T is excluded, but this does not
restrict our numerical method, since we do not need to compute the value of LRM
strategies when the time to maturity T − t is 0.
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3.5 Mean-Variance Hedging

As introduced in Sect. 1, the MVH strategy for claim F ∈ L2(P) is defined as the
solution (ϑF , cF ) to the minimization problem

min
c∈R,ϑ∈�E

[(
F − c −GT (ϑ)

)2
]
,

where � is the set of all admissible strategies, mathematically the set of R-valued

S-integrable predictable processes ϑ satisfying E

[∫ T
0 ϑ

2
uS

2
u−du

]
< ∞. Arai and

Imai [1] gave an explicit closed-form representation of ϑF for exponential additive
models and developed a numerical scheme for call options (ST − K)+ with strike
priceK > 0 for exponential Lévy models. Different from LRM strategies, the value
of ϑFt is depending on not only St− but also the whole trajectory of S from 0 to
t−. However it is impossible to observe the trajectory of S continuously. Thus,
[1] developed a numerical scheme to compute ϑFt approximately using discrete
observational data St0 , St1 , . . . , Stn , where n ≥ 1 and tk := kt

n+1 .
We need some preparations before introducing the representation of ϑFt obtained

by [1]. Firstly, we consider the VOMM, which is an equivalent martingale
measure whose density minimizes the L2(P)-norm among all equivalent martingale
measures. Indeed, the MMM P

∗ coincides with the VOMM in our setting as
mentioned in Sect. 3.2. Next, we define a process E = {Et }t∈[0,T ] as a solution to
the stochastic differential equation Et = 1 − h ∫ t

0 Eu−dSu, and HF = {HFt }t∈[0,T ]
as HFt := EP∗ [F |St−]. Moreover, remark that Assumption 2.1 of [1] is satisfied
under Assumption 3.1.

From the view of [1], the MVH strategy ϑF(K)t for call option F(K) = (ST −
K)+ is represented in closed-form as

ϑ
F(K)
t = ξF(K)t + hEt−

St−

∫ t−

0

dH
F(K)
u − ξF(K)u dSu

Eu
.

Now, the process HF(K)t = EP∗ [F(K)|St−] is represented as

H
F(K)
t = 1

π

∫ ∞

0
K−iv−a+1 φT−t (v − ia)Siv+at−

(iv + a − 1)(iv + a)dv,

which is computable with the FFT. As a result, using discrete observational data
St0 , St1 , . . . , Stn , we can approximate ϑF(K)t as

ϑ
F(K)
t ≈ ξF(K)t + hEtn

Stn

n∑

k=1

	H
F(K)
tk

− ξF(K)tk
	Stk

Etk
, (9)
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where HF(K)tk
= EP∗ [F(K)|Stk ] and tk := kt

n+1 for k = 0, 1, . . . , n; t is
corresponding to tn+1; and, for k = 1, . . . , n, we denote 	Xtk := Xtk − Xtk−1

for a process X and

Etk+1 = Etk

{

1− h	Stk+1

Stk

}

with Et0 = 1.

4 Numerical Results

We consider European call options on the S&P 500 Index (SPX) matured on 19 May
2017 and set the initial date of our hedging to 20 May 2016. We fix T to 1. There
are 250 business days on and after 20 May 2016 until and including 19 May 2017.
For example, 20 May 2016 and 23 May 2016 are corresponding to time 0 and 1

249 ,
respectively, since 20 May 2016 is Friday. Note that we shall use 250 dairy closing
prices of the SPX on and after 20 May 2016 until and including 19 May 2017 as
discrete observational data. Figure 1 illustrates the fluctuation of the SPX.

Next, we set model parameters as

⎧
⎨

⎩

α = 25.61598030765035,
β = −1.2668546614155765,
δ = 0.40532772478162127,

which are calibrated by the data set of European call options on the SPX at 20 April
2016. Note that the above parameter set satisfies Assumption 3.1. Moreover, we
choose

N = 216, η = 0.25, and a = 1.75

as parameters related to the FFT, that is, Nη = 214, which satisfies (7) for any
t ≤ 248

249 when we take ε = 0.01 as our allowable error.
As contingent claims to hedge, we consider call options with strike price

K =2300, 2350, and 2400 and compute the values of LRM strategies ξF(K)t and
MVH strategies ϑF(K)t for t = 1

249 ,
2

249 , . . . , 1 by using (4), (5), and (9). Remark

that, for k = 1, . . . , 249, ξF(K)k
249

and ϑF(K)k
249

are constructed on time k−1
249 using

observational data S0, S 1
249
, . . . , S k−1

249
. Figures 2, 3, and 4 show the values of ξF(K)t

and ϑF(K)t versus times t = 1
249 ,

2
249 , . . . , 1 for the case where K = 2300, 2350,

and 2400, respectively.
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Fig. 1 SPX dairy closing prices
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Fig. 2 Values of LRM strategies ξF(K)t and MVH strategies ϑF(K)t for K = 2300. The dotted
and the solid lines represent the values of ξF(K)t and ϑF(K)t , respectively. The two lines are almost
overlapping when t is small and separate gradually as drawing near to the maturity
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Fig. 3 Values of LRM strategies ξF(K)t and MVH strategies ϑF(K)t for K = 2350
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Fig. 4 Values of LRM strategies ξF(K)t and MVH strategies ϑF(K)t for K = 2400
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Appendix

Proof of Proposition 3.1

In order to see Condition 1, it suffices to show
∫∞

1 (e
x − 1)4ν(dx) < ∞ and

∫ −1
−∞(e

x − 1)4ν(dx) <∞.
Firstly, we see

∫∞
1 (e

x − 1)4ν(dx) < ∞. Noting that the Sommerfeld integral
representation for the function K1 (see, e.g., Appendix A of [9]):

K1(z) = z
4

∫ ∞

0
exp

{

−s − z
2

4s

}

s−2ds (10)

for z ≥ 0, we have

∫ ∞

1
(ex − 1)4ν(dx) = δα

π

∫ ∞

1
(ex − 1)4

eβxK1(αx)

x
dx

=δα
π

∫ ∞

α

(e
z
α−1)4 exp

{
β

α
z

}
1

z

∫ ∞

0

z

4
exp

{

−s− z
2

4s

}

s−2dsdz

≤ δα
4π

∫ ∞

α

exp

{
4+ β
α
z

} ∫ ∞

0

z

α
exp

{

−s − z
2

4s

}

s−2dsdz

= δ

4π

∫ ∞

0
e−ss−2

∫ ∞

α

z√
2π2s

exp

{

− 1

4s

(

z−2s
4+ β
α

)2
}

dz

× exp

{(
4+ β
α

)2

s

}√
2π2sds

≤ δ

4π

∫ ∞

0
e−ss−2 · 2s 4+ β

α
· exp

{(
4+ β
α

)2

s

}√
2π2sdt

= δ√
π

4+ β
α

∫ ∞

0
s−

1
2 exp

{((
4+ β
α

)2

− 1

)

s

}

ds

= δ(4+ β)
(
α2 − (4+ β)2

)− 1
2
<∞.

Remark that the above first inequality is given from (e
z
α − 1)4 ≤ e 4z

α for any z ∈
[α,∞).

Next, we show
∫ −1
−∞(e

x − 1)4ν(dx) < ∞ by a similar argument to the above.

Noting that (e
z
α − 1)4 ≤ 1 for any z ∈ (−∞,−α], we have
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∫ −1

−∞
(ex − 1)4ν(dx) ≤ δα

4π

∫ −α

−∞
(e

z
α−1)4 exp

{
β

α
z

} ∫ ∞

0

z

α
exp

{

−s− z
2

4s

}

s−2dsdz

≤ δ

4π

∫ ∞

0
e−ss−2

∫ ∞

−∞
z√

2π2s
exp

{

− 1

4s

(

z− 2s
β

α

)2
}

dz

× exp

{
β2

α2
s

}√
2π2sds <∞.

Thus, Condition 1 holds true.
To confirm Condition 2, we need some preparations. The following lemma is

proven later.

Lemma A.1 For any v ∈ [0,∞) and any a ∈ ( 3
2 , 2], we have

∫

R0

(
e(iv+a)x − 1

)
ν(dx) = W(v, a). (11)

In addition, (11) still holds for the case where (v, a) = (0, 1) and (v, a + 1).

We have
∫
R0
(ex − 1)ν(dx) = W(0, 1) = δα(√M2 −√M1(0, 1)). Assumption 3.1

implies

M2 −M1(0, 1) = 1

α2

(
(α2 − β2)− (α2 − (1+ β)2)

)
= 1+ 2β

α2 ≤ 0,

from which the inequality 0 ≥ ∫
R0
(ex − 1)ν(dx) holds true. To see the second

inequality, since we have

−
∫

R0

(ex−1)2ν(dx)=−
∫

R0

(
(e2x−1)−2(ex−1)

)
ν(dx)=−W(0, 2)+2W(0, 1),

it suffices to showW(0, 2)−W(0, 1) > 0. Firstly, we have

W(0, 2)−W(0, 1)= δα√
2

((
−√

2M1(0, 2)+
√

2M2

)
−

(
−√

2M1(0, 1)+
√

2M2

))

= δα
(
−√
M1(0, 2)+

√
M1(0, 1)

)
.

On the other hand, it holds that

M1(0, 1)−M1(0, 2) = α
2 − (1+ β)2 − α2 + (2+ β)2

α2 = 3+ 2β

α2 > 0

by Assumption 3.1. As a result, the inequality
∫
R0
(ex − 1)ν(dx) > − ∫

R0
(ex −

1)2ν(dx) holds under Assumption 3.1. �
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Proof of Lemma A.1

We begin with the following lemma:

Lemma A.2 For any γ ≥ 0 and anyM > 0, we have

∫ γ

0

∫ ∞

0
e(iu−M)ss−

1
2 dsdu = √2π

(√√
M2 + γ 2 −M

+ i
(√√

M2 + γ 2 +M −√2M

))

.

Proof Remark that the characteristic function of the Gamma distribution with
parameters θ > 0 and k > 0 is given as

∫ ∞

0
eiux

θk

�(k)
xk−1e−θxdx =

(
θ

θ − iu
)k

for any u ∈ R, where �(·) is the Gamma function. We have then

∫ ∞

0
e(iu−M)ss−

1
2 ds =

√
M

M − iu
�

(
1
2

)

√
M

=
√
π√

M − iu
for anyM > 0 and any u ∈ R. Thus, we obtain

∫ ∞

0
e(iu−M)ss−

1
2 dt =

√
π

2

(√√
M2 + u2 +M√
M2 + u2

+ i
√√

M2 + u2 −M√
M2 + u2

)

.

Putting x = √M2 + u2, we have

∫ γ

0

√√
M2 + u2 +M√
M2 + u2

du =
∫ √M2+γ 2

M

√
x +M√
x2 −M2

dx = 2

√√
M2 + γ 2 −M

and

∫ γ

0

√√
M2 + u2 −M√
M2 + u2

du = 2

√√
M2 + γ 2 +M − 2

√
2M.

This completes the proof of Lemma A.2. �
Now, let us go back to the proof of Lemma A.1. For any v ∈ [0,∞) and any

a ∈ ( 3
2 , 2], the same sort of argument as in the proof of Proposition 3.1 implies that
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∫

R0

(
e(iv+a)x − 1

)
ν(dx) = δα

2
√
π

∫ ∞

0
e−ss−

3
2

∫

R0

e(iv+a) zα − 1√
2π2s

× exp

{

− 1

4s

(

z− 2s
β

α

)2
}

dz exp

{
β2

α2 s

}

ds. (12)

Since we have
∫

R0

e(iv+a)
z
α exp

{

− 1

4s

(

z− 2s
β

α

)2
}

dz√
2π2s

= exp

{

i
2s

α2 (vβ + va)−
s

α2 (v
2 − a2 − 2aβ)

}

,

we obtain

(12) = δα

2
√
π

∫ ∞

0
exp

{(
β2

α2 − 1

)

s

}

s−
3
2

×
(

exp

{

i
2s

α2
(vβ + va)− s

α2
(v2 − a2 − 2aβ)

}

− 1

)

ds

= δα

2
√
π

∫ ∞

0
s−

3
2

(
eibs−M1s − e−M2s

)
ds

= δα

2
√
π

∫ ∞

0
s−

1
2

(

ie−M1s

∫ b

0
eiusdu+

∫ M2

M1

e−usdu
)

ds

= δα

2
√
π
i

∫ b

0

∫ ∞

0
e(iu−M1)ss−

1
2 dsdu+ δα

2
√
π

∫ M2

M1

∫ ∞

0
e−uss−

1
2 dsdu.

(13)

On the other hand, we have
∫ M2

M1

∫ ∞

0
e−uss−

1
2 dsdu =

∫ M2

M1

√
π√
u
du = 2

√
π(

√
M2 −

√
M1)

byM1,M2 > 0. As a result, using Lemma A.2, we obtain

(13) = δα

2
√
π

√
2πi

{√√
M2

1 + b2 −M1 + i
(√√

M2
1 + b2 +M1 −

√
2M1

)}

+ δα

2
√
π

2
√
π

(√
M2 −

√
M1

)

= δα√
2

{

i

√√
M2

1 + b2 −M1 −
√√
M2

1 + b2 +M1 +
√

2M2

}

,

from which (11) follows for any v ∈ [0,∞) and any a ∈ ( 3
2 , 2].
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For v ≥ 0, we see that (11) still holds for a+ 1. To this end, it is enough to make
sure thatM1(v, a + 1) and b(v, a + 1) remain nonnegative. In fact, we have

M1(v, a + 1) = α
2 − (a + 1+ β)2

α2 ≥ 0

and

b(v, a + 1) = 2(a + 1+ β)v
α2

≥ 0

by Assumption 3.1. Similarly, (11) follows for the case of (v, a) = (0, 1), since

M1(0, 1) = α
2 − (1+ β)2

α2
≥ 6

α2
> 0

and b(0, 1) = 0. �

Proof of Proposition 3.2

Noting that 0 ≥ h > −1 by Assumption 3.1 and Proposition 3.1, we have

νP
∗
(dx) = (1− θx)ν(dx) = (1− h(ex − 1))ν(dx) = (1+ h)ν(dx)− hexν(dx)

= ν[α, β, (1+ h)δ](dx)+ ν[α, 1+ β,−hδ](dx)

by (2). This completes the proof of Proposition 3.2. �

Proof of Proposition 3.3

To show Proposition 3.3, we start with the following lemma:

Lemma A.3 We have
∫

R0

xν(dx) = δβ
√
α2 − β2

.

Proof The Sommerfeld integral representation (10) implies that

∫

R0

xν(dx) = δ

4π

∫

R0

z exp

{
β

α
z

} ∫ ∞

0
exp

{

−s − z
2

4s

}

s−2dsdz
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= δ

4π

∫ ∞

0

∫

R0

z√
2π2s

exp

{

− 1

4s

(

z− 2s
β

α

)2
}

dz
√

2π2s

× exp

{
β2

α2 s

}

s−2e−sds

= δβ√
πα

∫ ∞

0
exp

{

−
(

1− β
2

α2

)

s

}

s−
1
2 ds = δβ

√
α2 − β2

.

�
Note that we do not need Assumption 3.1 in the above proof. Now, we show
Proposition 3.3. By Lemma A.3 and Proposition 3.2, we have

∫

R0

(iv + a)xνP∗(dx) = (iv + a)
(
(1+ h)δβ
√
α2 − β2

− hδ(1+ β)
√
α2 − (1+ β)2

)

.

Remark that W(v, a;α, 1 + β,−hδ) is well-defined and satisfies (11), since we
haveM1(v, a;α, β+1) = M1(v, a+1;α, β) ≥ 0 and b(v, a;α, β+1) = b(v, a+
1;α, β) ≥ 0. (3) implies that

φT−t (v − ia) = EP∗
[
e(iv+a)LT−t

]

= EP∗
[

exp

{

(T − t)(iv + a)μ∗

+
∫

R0

(iv + a)xÑP
∗
([0, T − t], dx)

}]

= exp

{

(T − t)
(

(iv + a)μ∗

+
∫

R0

(
e(iv+a)x − 1− (iv + a)x

)
νP

∗
(dx)

)}

= exp

{

(T − t)(iv + a)
(

μ∗ − (1+ h)δβ√
α2 − β2

+ hδ(1+ β)
√
α2 − (1+ β)2

)}

× exp

{

(T − t)
(

W(v, a;α, β, (1+ h)δ)

+W(v, a;α, 1+ β,−hδ)
)}

,

from which Proposition 3.3 follows. �
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Proof of Proposition 3.5

To see Proposition 3.5, we prepare one proposition and one lemma. In order to
emphasize the parameters α, β, and δ, we write M1(v, a), M2, and b(v, a) as
M1(v, a;α, β),M2(α, β), and b(v, a;α, β), respectively.

Proposition A.1 For any v ∈ [0,∞) and any t ∈ [0, T ), we have

|φT−t (v − ia)| ≤ C(t)e−(T−t)δv,

where C(t) is given in (8).

Proof Proposition 3.3 implies that

|φT−t (v − ia)|

=
∣
∣
∣
∣ exp

{

(T − t)(iv + a)
(

μ∗ − (1+ h)δβ√
α2 − β2

+ hδ(1+ β)
√
α2 − (1+ β)2

)}

× exp
{
(T − t)

(
W(v, a;α, β, (1+ h)δ)+W(v, a;α, 1+ β,−hδ)

)} ∣
∣
∣
∣

= C(t) exp

{

−(T − t) (1+ h)δα√
2

√√
M1(v, a;α, β)2 + b(v, a;α, β)2 +M1(v, a;α, β)

}

× exp

{

−(T − t) (−h)δα√
2

√√
M1(v, a;α, 1+ β)2 + b(v, a;α, 1+ β)2 +M1(v, a;α, 1+ β)

}

≤ C(t) exp
{
−(T − t)(1+ h)δα√

M1(v, a;α, β)
}

exp
{
−(T − t)(−h)δα√

M1(v, a;α, 1+ β)
}

= C(t) exp

{

−(T − t)δ
(

(1+ h)
√
v2 + α2 − (a + β)2 + (−h)

√
v2 + α2 − (a + 1+ β)2

)}

≤ C(t) exp{−(T − t)δv}.

Note that the last inequality follows from the fact that α2 − (a + β)2 > 0 and
α2 − (a + 1+ β)2 > 0 hold by Assumption 3.1. �
Lemma A.4 For any v ∈ [0,∞) and any a ∈ ( 3

2 , 2],

|W(v, a + 1)−W(v, a)| ≤ √2δ

(

v +
√
α2 − (a + β)2 + 2(a + 1+ β)2

)

holds.

Proof Denoting M ′
1 := M1(v, a + 1), b′ := b(v, a + 1), M1 := M1(v, a), and

b := b(v, a), for short, we have

|W(v, a + 1)−W(v, a)|
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= δα√
2

∣
∣
∣
∣i

(√√
M ′2

1 + b′2 −M ′
1 −

√√
M2

1 + b2 −M1

)

−
√√
M ′2

1 + b′2 +M ′
1 +

√√
M2

1 + b2 +M1

∣
∣
∣
∣

≤ δα
√√
M ′2

1 + b′2 +
√
M2

1 + b2. (14)

Since a + β > 0, we have

M1 −M ′
1 =

1

α2

(
(a + 1+ β)2 − (a + β)2

)
> 0

and

b′2 − b2 = 4v2

α4

(
(a + 1+ β)2 − (a + β)2

)
> 0,

which imply that

(14) ≤ δα
√

2
√
M2

1 + b′2 =
√

2δ 4
√
(v2 + α2 − (a + β)2)2 + 4v2(a + 1+ β)2

= √2δ 4
√
v4 + 2v2(α2 − (a + β)2 + 2(a + β + 1)2)+ (α2 − (a + β)2)2.

(15)

Setting
{
p := α2 − (a + β)2 + 2(a + β + 1)2,
q := p2 − (α2 − (a + β)2)2,

we have p > 0 and q > 0 for any a ∈ ( 3
2 , 2] by Assumption 3.1 and

(15) = √2δ 4
√
(v2 + p)2 − q ≤ √2δ

√
v2 + p ≤ √2δ(v +√p).

This completes the proof of Lemma A.4. �
Proof of Proposition 3.5. Firstly, Lemma A.4 implies that

∣
∣
∣
∣
∣

1

π

∫ ∞

w

K−iv−a+1
(
W(v, a + 1)−W(v, a)−W(0, 1)

) φT−t (iv − a)Siv+at−
(iv + a)(iv + a − 1)

dv

∣
∣
∣
∣
∣

≤ 1

π

∫ ∞

w

∣
∣
∣K−iv−a+1

∣
∣
∣
(
|W(v, a + 1)−W(v, a)| + |W(0, 1)|

)

×
∣
∣
∣
∣
∣
φT−t (iv − a)Siv+at−
(iv + a)(iv + a − 1)

∣
∣
∣
∣
∣
dv



Numerical Analysis on Quadratic Hedging Strategies for Normal Inverse. . . 23

≤ δK
−a+1

π

∫ ∞

w

(√
2(v +√p)+√2

)
∣
∣
∣
∣
∣
φT−t (iv − a)Siv+at−
(iv + a)(iv + a − 1)

∣
∣
∣
∣
∣
dv, (16)

where p is defined in the proof of Lemma A.4. Remark that the last inequality in (16)
holds since

|W(0, 1)| = δα
(√
M1(0, 1)−

√
M2

)
= δα

(√

M2 − 1+ 2β

α2
−√

M2

)

≤ δα
√

−1+ 2β

α2 ≤ √2δ

by Assumption 3.1. Now, note that

|(iv + a − 1)(iv + a)| =
√
(a2 − a − v2)2 + (2a − 1)2v2

=
√
v4 + (2a2 − 2a + 1)v2 + (a2 − a)2 ≥ v2.

Thus, Proposition A.1 implies that

∣
∣
∣
∣
∣
φT−t (iv − a)Siv+at−
(iv + a)(iv + a − 1)

dv

∣
∣
∣
∣
∣
≤ S

a
t−C(t)
v2 e−(T−t)δv.

As a result, noting that w > 1, we obtain

(16) ≤ δK
−a+1Sat−C(t)
π

∫ ∞

w

(√
2(v +√p)+√2

) 1

v2 e
−(T−t)δvdv

≤ δK
−a+1Sat−C(t)
π

∫ ∞

w

(
2
√

2+√
2p

)
e−(T−t)δvdv

= K
−a+1Sat−C(t)

π

√
2(2+√p)
T − t e−(T−t)δw.

This completes the proof of Proposition 3.5. �
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Second-Order Evolution Problems with
Time-Dependent Maximal Monotone
Operator and Applications

C. Castaing, M. D. P. Monteiro Marques, and P. Raynaud de Fitte

Abstract We consider at first the existence and uniqueness of solution for a general
second-order evolution inclusion in a separable Hilbert space of the form

0 ∈ ü(t)+ A(t)u̇(t)+ f (t, u(t)), t ∈ [0, T ]
where A(t) is a time dependent with Lipschitz variation maximal monotone
operator and the perturbation f (t, .) is boundedly Lipschitz. Several new results are
presented in the sense that these second-order evolution inclusions deal with time-
dependent maximal monotone operators by contrast with the classical case dealing
with some special fixed operators. In particular, the existence and uniqueness of
solution to

0 = ü(t)+ A(t)u̇(t)+∇ϕ(u(t)), t ∈ [0, T ]
where A(t) is a time dependent with Lipschitz variation single-valued maximal
monotone operator and ∇ϕ is the gradient of a smooth Lipschitz function ϕ are
stated. Some more general inclusion of the form

0 ∈ ü(t)+ A(t)u̇(t)+ ∂�(u(t)), t ∈ [0, T ]
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where ∂�(u(t)) denotes the subdifferential of a proper lower semicontinuous
convex function � at the point u(t) is provided via a variational approach. Further
results in second-order problems involving both absolutely continuous in variation
maximal monotone operator and bounded in variation maximal monotone operator,
A(t), with perturbation f : [0, T ] × H × H are stated. Second- order evolution
inclusion with perturbation f and Young measure control νt

{
0 ∈ üx,y,ν(t)+ A(t)u̇x,y,ν(t)+ f (t, ux,y,ν(t))+ bar(νt ), t ∈ [0, T ]
ux,y,ν(0) = x, u̇x,y,ν(0) = y ∈ D(A(0))

where bar(νt ) denotes the barycenter of the Young measure νt is considered, and
applications to optimal control are presented. Some variational limit theorems
related to convex sweeping process are provided.

Keywords Bolza control problem · Lipschitz mapping · Maximal monotone
operators · Pseudo-distance · Subdifferential · Viscosity · Young measures

Article type: Research Article
Received: March 15, 2018
Revised: March 30, 2018

1 Introduction

Let H be a separable Hilbert space. In this paper, we are mainly interested in the
study of the perturbed evolution problem

0 ∈ ü(t)+ A(t)u̇(t)+ ∂�(u(t)), t ∈ [0, T ]

where ∂�(u(t)) denotes the subdifferential of a proper lower semicontinuous
convex function � at the point u(t), A(t) : D(A(t))→ 2H is a maximal monotone
operator in the Hilbert space H for every t ∈ [0, T ], and the dependence t �→ A(t)

has Lipschitz variation, in the sense that there exists α ≥ 0 such that

dis(A(t), A(s)) ≤ α(t − s), ∀s, t ∈ [0, T ] (s ≤ t)

dis(., .) being the pseudo-distance between maximal monotone operators (m.m.o.)
defined by A. A. Vladimirov [53] as

dis(A,B) = sup

{ 〈y − ŷ, x̂ − x〉
1+ ||y|| + ||ŷ|| : x ∈ D(A), y ∈ Ax, x̂ ∈ D(B), ŷ ∈ Bx̂

}
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for m.m.o. A and B with domains D(A) and D(B), respectively; the dependence
t �→ A(t) has absolutely continuous variation, in the sense that there exists β ∈
W 1,1([0, T ]) such that

dis(A(t), A(s)) ≤ |β(t)− β(s)|, ∀t, s ∈ [0, T ],

the dependence t �→ A(t) has bounded variation in the sense that there exists a
function r : [0, T ] → [0,+∞[ which is continuous on [0, T [ and nondecreasing
with r(T ) < +∞ such that

dis(A(t), A(s)) ≤ dr(]s, t]) = r(t)− r(s) for 0 ≤ s ≤ t ≤ T

The paper is organized as follows. Section 2 contains some definitions, notation
and preliminary results. In Sect. 3, we recall and summarize (Theorem 3.2) the
existence and uniqueness of solution for a general second-order evolution inclusion
in a separable Hilbert space of the form

0 ∈ ü(t)+ A(t)u̇(t)+ f (t, u(t)), t ∈ [0, T ]

whereA(t) is a time dependent with Lipschitz variation maximal monotone operator
and the perturbation f (t, .) is dt-boundedly Lipschitz (short for dt-integrably
Lipschitz on bounded sets). At this point, Theorem 3.2 and its corollaries are
new results in the sense that these second-order evolution inclusions deal with
time-dependent maximal monotone operators by contrast with the classical case
dealing with some special fixed operators; cf. Attouch et al. [4], Paoli [43], and
Schatzman [48]. In particular, the existence and uniqueness of solution, based on
Corollary 3.2, to

0 = ü(t)+ A(t)u̇(t)+∇ϕ(u(t)), t ∈ [0, T ]

where A(t) is a time dependent with Lipschitz variation single-valued maximal
monotone operator and ∇ϕ is the gradient of a smooth Lipschitz function ϕ, have
some importance in mechanics [40], which may require a more general evolution
inclusion of the form

0 ∈ ü(t)+ A(t)u̇(t)+ ∂�(u(t)), t ∈ [0, T ]

where ∂�(u(t)) denotes the subdifferential of a proper lower semicontinuous
convex function � at the point u(t).

We provide (Proposition 3.1) the existence of a generalized W 1,1
BV ([0, T ],H)

solution to the second-order inclusion 0 ∈ ü(t)+A(t)u̇(t)+∂�(u(t)) which enjoys
several regularity properties. The result is similar to that of Attouch et al. [4], Paoli
[43], and Schatzman [48] with different hypotheses and a different method that
is essentially based on Corollary 3.2 and the tools given in [22, 23, 27] involving
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the Young measures and biting convergence [9, 22, 32]. By W 1,1
BV ([0, T ],H), we

denote the space of all absolutely continuous mappings y : [0, T ] → H such that
ẏ are BV. Further results on second-order problems involving both the absolutely
continuous in variation maximal monotone operators and the bounded in variation
maximal monotone operator A(t) with perturbation f : [0, T ] ×H ×H are stated.

Finally, in Sect. 4, we present several applications in optimal control in a new
setting such as Bolza relaxation problem, dynamic programming principle, viscosity
in evolution inclusion driven by a Lipschitz variation maximal monotone operator
A(t) with Lipschitz perturbation f , and Young measure control νt

{
0 ∈ üx,y,ν(t)+ A(t)u̇x,y,ν(t)+ f (t, ux,y,ν(t))+ bar(νt ), t ∈ [0, T ]
ux,y,ν(0) = x, u̇x,y,ν(0) = y ∈ D(A(0))

where bar(νt ) denotes the barycenter of the Young measure νt in the same vein as in
Castaing-Marques-Raynaud de Fitte [25] dealing with the sweeping process. At this
point, the above second-order evolution inclusion contains the evolution problem
associated with the sweeping process by a closed convex Lipschitzian mapping C :
[0, T ] → cc(H)

{
0 ∈ ü(t)+NC(t)(u̇(t))+ f (t, u(t))+ bar(νt ), t ∈ [0, T ]
u(0) = u0, u̇(0) = u̇0 ∈ C(0)

(where cc(H) denotes the set of closed convex subsets of H ) by taking A(t) =
∂�C(t) and noting that if C(t) is a closed convex moving set in H , then the
subdifferential of its indicator function is A(t) = ∂�C(t) = NC(t), the outward
normal cone operator. Since for all s, t ∈ [0, T ]

dis
(
A(t), A(s)

) =H
(
C(t), C(s)

)
,

where H denotes the Hausdorff distance; it follows that our study of these time-
dependent maximal monotone operators includes as special cases some related
results for evolution problems governed by sweeping process of the form

0 ∈ ü(t)+NC(t)(u̇(t))+ f (t, u(t)), t ∈ [0, T ].

Since now sweeping process has found applications in several fields in particular to
economics [29, 31, 35], we present also some variational limit theorems related to
convex sweeping process; see [1, 3, 34] and the references therein.

There is a vast literature on evolution inclusions driven by the sweeping process
and the subdifferential operators. See [2, 5, 6, 10, 17, 18, 20, 21, 25, 26, 28, 30, 37,
39–41, 45, 47, 49–52] and the references therein. We refer to [9, 12, 13, 54] for the
study of maximal monotone operators.
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2 Notation and Preliminaries

In the whole paper, I := [0, T ] (T > 0) is an interval of R, and H is a real Hilbert
space whose scalar product will be denoted by 〈·, ·〉 and the associated norm by ‖·‖.
L ([0, T ]) is the Lebesgue σ -algebra on [0, T ], and B(H) is the σ -algebra of Borel
subsets of H . We will denote by BH (x0, r) the closed ball of H of center x0 and
radius r > 0 and by BH its closed unit ball. C(I,H) denotes the Banach space of all
continuous mappings u : I → H equipped with the norm ‖u‖C = max

t∈I ‖u(t)‖. For

q ∈ [1,+∞[, LqH ([0, T ], dt) is the space of (classes of) measurable u : [0, T ] →
H , with the norm ‖u(·)‖q = (

∫ T
0 ‖u(t)‖qdt)

1
q , and L∞H ([0, T ], dt) is the space of

(classes of) measurable essentially bounded u : [0, T ] → H equipped with ‖.‖∞.
If E is a Banach space and E∗ its topological dual, we denote by σ(E,E∗)

the weak topology on E and by σ(E∗, E) the weak star topology on E∗. For any
C ⊂ E, we denote by δ∗(., C) the support function of C, i.e.

δ∗(x∗, C) = sup
x∈C
〈x∗, x〉 ,∀x∗ ∈ E∗.

A set-valued map A : D(A) ⊂ H → 2H is monotone if 〈y1 − y2, x1 − x2〉 ≥ 0
whenever xi ∈ D(A) and yi ∈ A(xi), i = 1, 2. A monotone operator A is maximal
if A is not contained properly in any other monotone operator, that is, for all λ > 0,
R(IH + λA) = H , with R(A) = ⋃{Ax, x ∈ D(A)} the range of A and IH the
identity mapping of H . In the whole paper, I := [0, T ] (T > 0) is an interval of R,
and H is a real Hilbert space whose scalar product will be denoted by 〈·, ·〉 and the
associated norm by ‖ · ‖. Let A : D(A) ⊂ H → 2H be a set-valued map. We say
that A is monotone, if 〈y1 − y2, x1 − x2〉 ≥ 0 whenever xi ∈ D(A) and yi ∈ A(xi),
i = 1, 2. If 〈y1 − y2, x1 − x2〉 = 0 implies that x1 = x2, we say that A is strictly
monotone. A monotone operatorA is said to be maximal ifA could not be contained
properly in any other monotone operator.

If A is a maximal monotone operator, then, for every x ∈ D(A), A(x) is
nonempty closed and convex. So the set A(x) contains an element of minimum
norm (the projection of the origin on the set A(x)). This unique element is denoted
by A0(x). Therefore A0(x) ∈ A(x) and ‖A0(x)‖ = infy∈A(x) ‖y‖. Moreover the set
D(A) is convex.

For λ > 0, we define the following well-known operators:

JAλ = (I + λA)−1 (the resolvent of A),

Aλ = 1

λ
(I − JAλ )(the Yosida approximation of A).

The operators JAλ and Aλ are defined on all of H . For the terminology of maximal
monotone operators and more details, we refer the reader to [9, 13], and [54].

Let A : D(A) ⊂ H → 2H and B : D(B) ⊂ H → 2H be two maximal
monotone operators, and then we denote by dis(A,B) the pseudo-distance between
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A and B defined by A. A. Vladimirov [53] as

dis(A,B) = sup

{ 〈y − y′, x′ − x〉
1+ ‖y‖ + ‖y′‖ : x ∈ D(A), y ∈ Ax, x

′ ∈ D(B), y′ ∈ Bx′
}

.

Our main results are established under the following hypotheses on the opera-
tor A:

(H1) The mapping t �→ A(t) has Lipschitz variation, in the sense that there exists
α ≥ 0 such that

dis(A(t), A(s)) ≤ α(t − s), ∀s, t ∈ [0, T ] (s ≤ t).
(H2) There exists a nonnegative real number c such that

‖A0(t, x)‖ ≤ c(1+ ‖x‖) for t ∈ [0, T ], x ∈ D(A(t)).

We recall some elementary lemmas, and we refer to [38] for the proofs.

Lemma 2.1 Let A and B be maximal monotone operators. Then

(1) dis(A,B) ∈ [0,+∞], dis(A,B) = dis(B,A) and dis(A,B) = 0 iff A = B.
(2) ‖x − Proj (x,D(B)‖ ≤ dis(A,B) for x ∈ D(A).
(3) H (D(A),D(B)) ≤ dis(A,B).

Lemma 2.2 Let A be a maximal monotone operator. If x, y ∈ H are such that

〈A0(z)− y, z− x〉 ≥ 0 ∀z ∈ D(A),

then x ∈ D(A) and y ∈ A(x).
Lemma 2.3 Let An (n ∈ N) and A be maximal monotone operators such that
dis(An,A) → 0. Suppose also that xn ∈ D(An) with xn → x and yn ∈ An(xn)
with yn→ y weakly for some x, y ∈ H . Then x ∈ D(A) and y ∈ A(x).
Lemma 2.4 Let A and B be maximal monotone operators. Then

(1) for λ > 0 and x ∈ D(A)

‖x − JBλ (x)‖ ≤ λ‖A0(x)‖ + dis(A,B)+
√
λ

(
1+ ‖A0(x)‖) dis(A,B).

(2) For λ > 0 and x, x′ ∈ H

‖JAλ (x)− JBλ (x′)‖2 ≤ ‖x − x′‖2 + 2λ
(
1+ ‖Aλ(x)‖ + ‖Bλ(x′)‖

)
dis(A,B).

(3) For λ > 0 and x, x′ ∈ H

‖Aλ(x)− Bλ(x′)‖2 ≤ 1

λ2 ‖x − x′‖2 + 2

λ

(
1+ ‖Aλ(x)‖ + ‖Bλ(x′)‖

)
dis(A,B).
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3 Second-Order Evolution Problems Involving
Time-Dependent Maximal Monotone Operators

In the sequel, H is a separable Hilbert space. For the sake of completeness, we
summarize and state the following result. We say that a function f = f (t, x) is dt-
boundedly Lipschitz (short for dt-integrably Lipschitz on bounded sets) if, for every
R > 0, there is a nonnegative dt-integrable function λR ∈ L1([0, T ],R; dt) such
that, for all t ∈ [0, T ]

‖f (t, x)− f (t, y)‖ ≤ λR(t)||x − y||, ∀x, y ∈ B(0, R).

Theorem 3.1 Let for every t ∈ [0, T ], A(t) : D(A(t)) ⊂ H → 2H be a maximal
monotone operator satisfying

(H1) there exists a real constant α ≥ 0 such that

dis(A(t), A(s)) ≤ α(t − s) for 0 ≤ s ≤ t ≤ T .

(H2) there exists a nonnegative real number c such that

‖A0(t, x)‖ ≤ c(1+ ‖x‖), t ∈ [0, T ], x ∈ D(A(t))

Let f : [0, T ] ×H → H satisfying the linear growth condition
(H3) there exists a nonnegative real numberM such that

‖f (t, x)‖ ≤ M(1+ ‖x‖) for t ∈ [0, T ], x ∈ H.

and assume that f (., x) is dt-integrable for every x ∈ H . Assume also that
f is dt-boundedly Lipschitz, as above.

Then for all u0 ∈ D(A(0)), the problem

−du
dt
(t) ∈ A(t)u(t)+ f (t, u(t)) dt − a.e. t ∈ [0, T ], u(0) = u0

has a unique Lipschitz solution with the property: ||u(t)−u(τ)|| ≤ K max{1, α}|t−
τ | for all t, τ ∈ [0, T ] for some constant K ∈]0,∞[.
Proof See [7, Theorem 3.1 and Theorem 3.3].

Theorem 3.2 Let for every t ∈ [0, T ], A(t) : D(A(t)) ⊂ H → 2H be a maximal
monotone operator satisfying

(H1) there exists a real constant α ≥ 0 such that

dis(A(t), A(s)) ≤ α(t − s) for 0 ≤ s ≤ t ≤ T .
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(H2) there exists a nonnegative real number c such that

‖A0(t, x)‖ ≤ c(1+ ‖x‖), t ∈ [0, T ], x ∈ D(A(t))

Let f : [0, T ] ×H → H satisfying the linear growth condition:
(H3) there exists a nonnegative real numberM such that

‖f (t, x)‖ ≤ M(1+ ‖x‖) for t ∈ [0, T ], x ∈ H.

and assume that f (., x) is dt-integrable for every x ∈ H . Assume also that
f is dt-boundedly Lipschitz.

Then the second-order evolution inclusion

(S1)

{
0 ∈ ü(t)+ A(t)u̇(t)+ f (t, u(t)), t ∈ [0, T ]
u(0) = u0, u̇(0) = u̇0 ∈ D(A(0))

admits a unique solution u ∈ W 2,∞
H ([0, T ], dt).

Proof The proof is a careful application of Theorem 3.1. In the new variables X =
(x, ẋ), let us set for all t ∈ I

B(t)X = {0} × A(t)ẋ, g(t, X) = (−ẋ, f (t, x)).

For any u ∈ W 2,∞(I,H ; dt), define X(t) = (u(t), du
dt
(t)) and Ẋ(t) = dX

dt
(t).

Then the evolution inclusion (S1) can be written as a first-order evolution inclusion
associated with the Lipschitz maximal monotone operator B(t) and the locally
Lipschitz perturbation g:

{
0 ∈ Ẋ(t)+ B(t)X(t)+ g(t,X(t)), t ∈ [0, T ]
X(0) = (u0, u̇0) ∈ H ×D(A(0)).

So the existence and uniqueness solution to the second-order evolution inclusion
under consideration follows from Theorem 3.1.

There are some useful corollaries to Theorem 3.2.

Corollary 3.1 Assume that for every t ∈ [0, T ], A(t) : H → H is a single-valued
maximal monotone operator satisfying (H1) and (H2). Let f : [0, T ] × H → H

be as in Theorem 3.2. Then the second-order evolution equation

{
0 = ü(t)+ A(t)u̇(t)+ f (t, u(t)), t ∈ [0, T ]
u(0) = u0, u̇(0) = u̇0

admits a unique solution u ∈ W 2,∞
H ([0, T ]).
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Corollary 3.2 Assume that for every t ∈ [0, T ], A(t) : H → H is a single-valued
maximal monotone operator satisfying (H1) and (H2). Assume further that A(t)
satisfies

(i) (t, x) �→ A(t)x is a Caratheodory mapping, that is, t �→ A(t)x is Lebesgue
measurable on [0, T ] for each fixed x ∈ H , and x �→ A(t)x is continuous on
H for each fixed t ∈ [0, T ],

(ii) 〈A(t)x, x〉 ≥ γ ||x||2, for all (t, x) ∈ [0, T ] ×H , for some γ > 0.

Let ϕ ∈ C1(H,R) be Lipschitz and such that ∇ϕ is locally Lipschitz. Then the
evolution equation

(S2)

{
0 = ü(t)+ A(t)u̇(t)+∇ϕ(u(t)), t ∈ [0, T ]
u(0) = u0, u̇(0) = u̇0

admits a unique solution u ∈ W 2,∞([0, T ],H ; dt); moreover, u satisfies the energy
estimate

ϕ(u(t))− 1

2
||u̇(t)||2 ≤ ϕ(u(0))− 1

2
||u̇(t)||2 − γ

∫ t

0
||u̇(s)||2ds, t ∈ [0, T ].

Proof Existence and uniqueness of solution follows from Theorem 3.2 or Corol-
lary 3.1. The energy estimate is quite standard. Multiplying the equation by u̇(t)
and applying the usual chain rule formula gives for all t ∈ [0, T ]

d

dt

(

ϕ(u(t))+ 1

2
||u̇(t)||2

)

= −〈
A(t)u̇(t), u̇(t)

〉
.

By (i) and (ii) and by integrating on [0, t], we get the required inequality

ϕ(u(t))+ 1

2
||u̇(t)||2 = ϕ(u(0))+ 1

2
||u̇(0)||2 −

∫ t

0

〈
A(s)u̇(s), u̇(s)

〉
ds

≤ ϕ(u(0))+ 1

2
||u̇(0)||2 − γ

∫ t

0
||u̇(s)||2ds, t ∈ [0, T ],

which completes the proof.

It is worth mentioning that the uniqueness of the solution to the equation (S1) is
quite important in applications, such as models in mechanics, since it contains the
classical inclusion of the form

0 ∈ ü(t)+ ∂�(u̇(t))+ ∇g(u(t))

where ∂� is the subdifferential of the proper lower semicontinuous convex function
� and g is of class C1 and ∇g is Lipschitz continuous on bounded sets. We also
note that the uniqueness of the solution to the equation (S2) and its energy estimate
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allow to recover a classical result in the literature dealing with finite dimensional
space H and A(t) = γ IH , t ∈ [0, T ], where IH is the identity mapping in H . See
Attouch et al. [4]. The energy estimate for the solution of

{
0 = ü(t)+ γ u̇(t)+ ∇ϕ(u(t)), t ∈ I
u(0) = u0, u̇(0) = u̇0

is then

ϕ(u(t))+ 1

2
||u̇(t)||2 = ϕ(u0)+ 1

2
||u̇0||2 − γ

∫ t

0
||u̇(s)||2ds.

Actually the dynamical system (S1) given in Theorem 3.2 has been intensively
studied by many authors in particular cases. See Attouch et al. [4] dealing with the
inclusion

0 ∈ ü(t)+ γ u̇(t)+ ∂ϕ(u(t))

and Paoli [43] and Schatzman [48] dealing with the second-order dynamical
systems of the form

0 ∈ ü(t)+ ∂ϕ(u(t))

and

0 ∈ ü(t)+ Au̇(t)+ ∂ϕ(u(t))

where A is a positive autoadjoint operator. The existence and uniqueness of
solutions in (S2) are of some importance since they allow to obtain the existence of
at least aW 1,1

BV ([0, T ],H) solution with conservation of energy (see Proposition 3.1
below) for a second-order evolution inclusion of the form

(S3)

{
0 ∈ ü(t)+ A(t)u̇(t)+ ∂�(u(t), t ∈ I
u(0) = u0 ∈ dom�, u̇(0) = u̇0 ∈ D(A(0))

where ∂� is the subdifferential of a proper convex lower semicontinuous function;
the energy estimate is given by

�(u(t))+ 1

2
||u̇(t)||2 = �(u(0))+ 1

2
||u̇(0)||2 −

∫ t

0

〈
A(s)u̇(s), u̇(s)

〉
ds.

Taking into account these considerations, we will provide the existence of a
generalized solution to the second-order inclusion of the form

0 ∈ ü(t)+ A(t)u̇(t)+ ∂φ(u(t))
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which enjoy several regular properties. The result is similar to that of Attouch et al.
[4], Paoli [43], and Schatzman [48] with different hypotheses and a different
method that is essentially based on Corollary 3.2 and the tools given in [22, 23, 27]
involving the Young measures [9, 32] and biting convergence.

Let us recall a useful Gronwall-type lemma [21].

Lemma 3.5 (A Gronwall-like inequality.) Let p, q, r : [0, T ] → [0,∞[ be three
nonnegative Lebesgue integrable functions such that for almost all t ∈ [0, T ]

r(t) ≤ p(t)+ q(t)
∫ t

0
r(s) ds.

Then

r(t) ≤ p(t)+ q(t)
∫ t

0

[

p(s) exp

(∫ t

s

q(τ ) dτ

)]

ds

for all t ∈ [0, T ].
Proposition 3.1 Assume that H = R

d and that, for every t ∈ [0, T ], A(t) : H →
H is single-valued maximal monotone satisfying

(H1) there exists α > 0 such that

dis(A(t), A(s)) ≤ α(t − s) for 0 ≤ s ≤ t ≤ T ,

(H2) there exists a nonnegative real number c such that

‖A(t, x)‖ ≤ c(1+ ‖x‖) for t ∈ [0, T ], x ∈ H.

Assume further that A(t) satisfies

A-1. (t, x)→ A(t)x is a Caratheodory mapping, that is, t �→ A(t)x is Lebesgue-
measurable on [0, T ] for each fixed x ∈ H , and x �→ A(t)x is continuous on
H for each fixed t ∈ [0, T ],

A-2. 〈A(t)x, x〉 ≥ γ ||x||2, for all (t, x) ∈ [0, T ] ×H , for some γ > 0.

Let n ∈ N and ϕn : H → R
+ be a C1, convex, Lipschitz function and such that ∇ϕn

is locally Lipschitz, and let ϕ∞ be a nonnegative l.s.c proper function defined on H
with ϕn(x) ≤ ϕ∞(x),∀x ∈ H . For each n ∈ N, let un be the unique W 2,∞

H ([0, T ])
solution to the problem

{
0 = ün(t)+ A(t)u̇n(t)+∇ϕn(un(t)), t ∈ [0, T ]
un(0) = un0, u̇n(0) = u̇n0

Assume that

(i) ϕn epiconverges to ϕ∞,
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(ii) un(0)→ u∞0 ∈ domϕ∞ and limn ϕn(un(0)) = ϕ∞(u∞0 ),
(iii) supv∈BL∞

H
([0,T ])

∫ T
0 ϕ∞(v(t))dt < +∞, where BL∞H ([0,T ]) is the closed unit ball

in L∞H ([0, T ]).
(a) Then up to extracted subsequences, (un) converges uniformly to a
W

1,1
BV ([0, T ],Rd)-function u∞ with u∞(0) ∈ domϕ∞, and (u̇n) pointwisely

converges to a BV function v∞ with v∞ = u̇∞, and (ün) biting converges to
a function ζ∞ ∈ L1

Rd
([0, T ]) so that the limit function u∞, u̇∞ and the biting

limit ζ∞ satisfy the variational inclusion

−A(.)u̇∞ − ζ∞ ∈ ∂Iϕ∞(u∞)

where ∂Iϕ∞ denotes the subdifferential of the convex lower semicontinuous
integral functional Iϕ∞ defined on L∞

Rd
([0, T ])

Iϕ∞(u) :=
∫ T

0
ϕ∞(u(t)) dt, ∀u ∈ L∞Rd ([0, T ]).

(b) (ün) weakly converges to a vector measure m ∈ M b
H ([0, T ]) so that the

limit functions u∞(.) and the limit measure m satisfy the following variational
inequality:

∫ T

0
ϕ∞(v(t)) dt ≥

∫ T

0
ϕ∞(u∞(t)) dt +

∫ T

0
〈−A(t)u̇∞(t), v(t)− u∞(t)〉 dt

+ 〈−m, v − u∞〉(M b

Rd
([0,T ]),CE([0,T ])).

(c) Furthermore limn
∫ T

0 ϕn(u
n(t))dt = ∫ T

0 ϕ∞(u
∞(t))dt . Subsequently the

energy estimate

ϕ∞(u∞(t))+1

2
||u̇∞(t)||2 = ϕ∞(u∞0 )+

1

2
||u̇∞0 ||2+

∫ t

0
〈−A(s)u̇∞(s), u∞(s)〉ds

holds a.e.
(d) There is a filter U finer than the Fréchet filter l ∈ L∞

Rd
([0, T ])′ such that

U − lim
n
[−A(.)u̇n − ün] = l ∈ L∞

Rd
([0, T ])′weak

where L∞
Rd
([0, T ])′weak is the second dual of L1

Rd
([0, T ]) endowed with the topology

σ(L∞
Rd
([0, T ])′, L∞

Rd
([0, T ])), and n ∈ CRd ([0, T ])′weak such that

lim
n
[−A(.)u̇n − ün] = n ∈ CRd ([0, T ])′weak
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where CRd ([0, T ])′weak denotes the space CRd ([0, T ])′ endowed with the weak
topology σ(CRd ([0, T ])′,CRd ([0, T ])). Let la be the density of the absolutely
continuous part la of l in the decomposition l = la + ls in absolutely continuous
part la and singular part ls . Then

la(f ) =
∫ T

0
〈f (t),−A(t)u̇∞(t)− ζ∞(t)〉dt

for all f ∈ L∞
Rd
([0, T ]) so that

I ∗ϕ∞(l) = Iϕ∗∞(−A(.)u̇∞ − ζ∞)+ δ∗(ls, dom Iϕ∞)

where ϕ∗∞ is the conjugate of ϕ∞, Iϕ∗∞ the integral functional defined onL1
Rd
([0, T ])

associated with ϕ∗∞, I ∗ϕ∞ the conjugate of the integral functional Iϕ∞ , dom Iϕ∞ :=
{u ∈ L∞

Rd
([0, 1]) : Iϕ∞(u) <∞}, and

〈n, f 〉 =
∫ T

0
〈−A(t)u̇∞(t)− ζ∞(t), f (t)〉dt + 〈ns , f 〉, ∀f ∈ CRd ([0, T ]).

with 〈ns , f 〉 = ls(f ), ∀f ∈ CRd ([0, T ]). Further n belongs to the subdifferential
∂Jϕ∞(u

∞) of the convex lower semicontinuous integral functional Jϕ∞ defined on
CRd ([0, T ])

Jϕ∞(u) :=
∫ T

0
ϕ∞(u(t)) dt, ∀u ∈ CRd ([0, T ]).

Consequently the density −A(.)u̇∞ − ζ∞ of the absolutely continuous part na

na(f ) :=
∫ T

0
〈−A(t)u̇∞(t)− ζ∞(t), f (t)〉dt, ∀f ∈ CRd ([0, T ])

satisfies the inclusion

−A(t)u̇∞(t)− ζ∞(t) ∈ ∂ϕ∞(u∞(t)), a.e.

and for any nonnegative measure θ on [0, T ] with respect to which ns is absolutely
continuous

∫ T

0
rϕ∗∞

(
dns
dθ
(t)

)

dθ(t) =
∫ T

0

〈

u∞(t), dns
dθ
(t)

〉

dθ(t)

where rϕ∗∞ denotes the recession function of ϕ∗∞.
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Proof The proof is long and based on the existence and uniqueness ofW 2,∞
H ([0, T ])

solution to the approximating equation (cf. Corollary 3.2)

{
0 = ün(t)+ A(t)u̇n(t)+∇ϕn(un(t)), t ∈ [0, T ]
un(0) = un0, u̇n(0) = u̇n0

and the techniques developed in [22, 23, 27]. Nevertheless we will produce the proof
with full details, since the techniques employed can be applied to further related
results.

Step 1. Multiplying scalarly the equation

−A(t)u̇n(t)− ün(t) = ∇ϕn(un(t))

by u̇n(t) and applying the chain rule theorem [42, Theorem 2] yields

−〈u̇n(t), A(t)u̇n(t)〉 − 〈u̇n(t), ün(t)〉 = d

dt
[ϕn(un(t))],

that is,

−〈u̇n(t), A(t)u̇n(t)〉 = d

dt

[

ϕn(u
n(t))+ 1

2
||u̇n(t)||2

]

.

By integrating on [0, t] this equality and using the condition (ii), we get

ϕn(u
n(t))+ 1

2
||u̇n(t)||2 = ϕn(un(0))+ 1

2
||u̇n(0)||2 −

∫ t

0
〈u̇n(s), A(s)u̇n(s)〉ds

≤ ϕn(un(0))+ 1

2
||u̇n(0)||2 + γ

∫ t

0
||u̇n(s||2ds.

Then, from our assumption, ϕn(un(0)) ≤ positive constant < +∞ and
1
2 ||u̇n(0)||2 ≤ positive constant < +∞ so that

ϕn(u
n(t))+ 1

2
||u̇n(t)||2 ≤ p + γ

∫ t

0
||u̇n(s||2ds, t ∈ [0, T ]

where p is a generic positive constant. So by the preceding estimate and the
Gronwall inequality [21, Lemma 3.1] , it is immediate that

sup
n≥1

sup
t∈[0,T ]

||u̇n(t)|| < +∞ and sup
n≥1

sup
t∈[0,T ]

ϕn(u
n(t)) < +∞. (1)

Step 2. Estimation of ||ün(.)||. For simplicity, let us set zn(t) = −A(t)u̇n(t) −
ün(t),∀t ∈ [0, T ]. As

zn(t) := −A(t)u̇n(t)− ün(t) = ∇ϕn(un(t))
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by the subdifferential inequality for convex lower semicontinuous functions, we
have

ϕn(x) ≥ ϕn(un(t))+ 〈x − un(t), zn(t)〉
for all x ∈ R

d . Now let v ∈ BL∞
Rd
([0,T ]), the closed unit ball of L∞

Rd
[0, T ]). By

taking x = v(t) in the preceding inequality, we get

ϕn(v(t)) ≥ ϕn(un(t))+ 〈v(t)− un(t), zn(t)〉.
Integrating the preceding inequality gives

∫ T

0
〈v(t)− un(t), zn(t)〉dt ≤

∫ T

0
ϕn(v(t))dt −

∫ T

0
ϕn(u

n(t))dt.

Whence follows

∫ T

0
〈v(t), zn(t)〉dt

≤
∫ T

0
ϕn(v(t))dt −

∫ T

0
ϕn(u

n(t))dt +
∫ 1

0
〈un(t), zn(t)〉dt. (2)

We compute the last integral in the preceding inequality. By integration and taking
account of (1), we have

∫ T

0
〈un(t), zn(t)〉dt

=
∫ T

0
〈un(t),−A(t)u̇n(t)− ün(t)〉dt

=− [〈un(t), u̇n(t)]T0 +
∫ T

0
〈u̇n(t), u̇n(t)〉dt −

∫ T

0
〈un(t), A(t)u̇n(t)〉dt

=− 〈un(T ), u̇n(T )〉 + 〈un(0), u̇n(0)〉

+
∫ T

0
||u̇n(t)||2dt −

∫ T

0
〈un(t), A(t)u̇n(t)〉dt. (3)

As ||A(t)u̇n(t)|| ≤ c(1 + ||u̇n(t)||) by (H2), so that by (1) it is immediate that∫ T
0 〈un(t), A(t)u̇n(t)〉dt is uniformly bounded so that by (1), (2), and (3), we get

∫ T

0
〈v(t), zn(t)〉dt ≤

∫ T

0
ϕn(v(t))dt + L

≤ sup
v∈BL∞

Rd
([0,T ])

∫ T

0
ϕ∞(v(t))dt + L <∞ (4)
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for all v ∈ BL∞
Rd
([0,T ]). Here L is a generic positive constant independent of n ∈ N.

By (4), we conclude that (zn = −A(.)u̇n− ün) is bounded in L1
Rd
([0, T ]), and then

so is (ün). It turns out that the sequence (u̇n) of absolutely continuous functions
is uniformly bounded by (1) and bounded in variation and by Helly’s theorem; we
may assume that (u̇n) pointwisely converges to a BV function v∞ : [0, T ] → R

d

and the sequence (un) converges uniformly to an absolutely continuous function u∞
with u̇∞ = v∞ a.e. At this point, it is clear that A(t)u̇n(t) → A(t)v∞(t) so that
A(t)u̇n(t)→ A(t)u̇∞(t) a.e. and A(.)u̇n(.) converges in L1

Rd
([0, T ]) to A(.)u̇∞(.),

using (1) and the dominated convergence theorem.
Step 3. Young measure limit and biting limit of ün. As (ün) is bounded in
L1
Rd
([0, T ]), we may assume that (ün) stably converges to a Young measure

ν ∈ Y ([0, T ]);Rd) with bar(ν) : t �→ bar(νt ) ∈ L1
Rd
([0, T ]) (here bar(νt )

denotes the barycenter of νt ). Further, we may assume that (ün) biting converges to a
function ζ∞ : t �→ bar(νt ), that is, there exists a decreasing sequence of Lebesgue-
measurable sets (Bp) with limp λ(Bp) = 0 such that the restriction of (ün) on
each Bcp converges weakly in L1

Rd
([0, T ]) to ζ∞. Noting that (A(.)u̇n) converges

in L1
Rd
([0, T ]) to A(.)u̇∞. It follows that the restriction of zn = −A(.)u̇n − ün

to each Bcp weakly converges in L1
Rd
([0, T ]) to z∞ := −A(.)u̇∞ − ζ∞, because

(−A(.)u̇n) converges in L1
Rd
([0, T ]) to A(.)u̇∞ and (ün) biting converges to ζ∞ ∈

L1
Rd
([0, T ]). It follows that

lim
n

∫

B

〈−A(.)u̇n − ün, w(t)− un(t)〉 =
∫

B

〈−A(.)u̇∞ − bar(νt ), w(t)− u(t)〉dt
(5)

for every B ∈ Bcp ∩L ([0, T ]) and for every w ∈ L∞
Rd
([0, T ]). Indeed, we note that

(w(t)− un(t)) is a bounded sequence in L∞
Rd
([0, T ]) which pointwisely converges

to w(t) − u∞(t), so it converges uniformly on every uniformly integrable subset
of L1

Rd
([0, T ]) by virtue of a Grothendieck Lemma [33], recalling here that the

restriction of −A(.)u̇n − ün on each Bcp is uniformly integrable. Now, since ϕn
lower epiconverges to ϕ∞, for every Lebesgue-measurable set A in [0, T ], by virtue
of [23, Corollary 4.7], we have

+∞ > lim inf
n

∫

A

ϕn(u
n(t))dt ≥

∫

A

ϕ∞(u∞(t))dt. (6)

Combining (1), (2), (3), (4), (5), and (6) and using the subdifferential inequality

ϕn(w(t)) ≥ ϕn(un(t))+ 〈−A(.)u̇n − ün(t), w(t)− un(t)〉,

we get

∫

B

ϕ∞(w(t)) dt ≥
∫

B

ϕ∞(u∞(t)) dt +
∫

B

〈−A(.)u̇∞ − bar(νt ), w(t)− u∞(t)〉 dt.
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This shows that t �→ −A(.)u̇∞ − bar(νt ) is a subgradient at the point u∞ of the
convex integral functional Iϕ∞ restricted to L∞

Rd
(Bcp), consequently,

−A(.)u̇∞ − bar(νt ) ∈ ∂ϕ∞(u∞(t)), a.e. on Bcp.

As this inclusion is true on each Bcp and Bcp ↑ [0, T ], we conclude that

−A(.)u̇∞ − bar(νt ) ∈ ∂ϕ∞(u∞(t)), a.e. on [0, T ].
Step 4. Measure limit in M b

Rd
([0, T ]) of ün. As (ün) is bounded in L1

Rd
([0, T ]), we

may assume that (ün) weakly converges to a vector measure m ∈ M b
Rd
([0, T ])

so that the limit functions u∞(.) and the limit measure m satisfy the following
variational inequality:

∫ T

0
ϕ∞(v(t)) dt ≥

∫ T

0
ϕ∞(u∞(t)) dt +

∫ T

0
〈−A(t)u̇∞(t), v(t)− u∞(t)〉 dt

+ 〈−m, v − u∞〉(M b
E([0,T ]),CRd

([0,T ])).

In other words, the vector measure−m−A(t)u̇∞(t)dt belongs to the subdifferential
∂Jϕ∞(u

∞) of the convex functional integral Jϕ∞ defined on CRd ([0, T ]) by

Jϕ∞(v) =
∫ T

0 ϕ∞(v(t)) dt , ∀v ∈ CRd ([0, T ]). Indeed, let w ∈ CRd ([0, T ]).
Integrating the subdifferential inequality

ϕn(w(t)) ≥ ϕn(un(t))+ 〈−A(t)u̇n(t)− ün(t), w(t)− un(t)〉

and noting that ϕ∞(w(t)) ≥ ϕn(w(t)) gives immediately

∫ T

0
ϕ∞(w(t))dt ≥

∫ T

0
ϕn(w(t))dt

≥
∫ T

0
ϕn(u

n(t))dt + 〈−A(t)u̇n(t)− ün(t), w(t)− un(t)〉dt.

We note that

lim
n

∫ T

0
〈−A(t)u̇n(t), w(t)− un(t)〉dt =

∫ T

0
〈A(t)u̇∞(t), w(t)− u∞(t)〉dt

because (−A(.)u̇n) is uniformly integrable and converges in L1
H ([0, T ]) to A(.)u̇∞

and the sequence in (w − un) converges uniformly to w − u∞. Whence follows

∫ T

0
ϕ∞(w(t))dt ≥

∫ T

0
ϕ∞(u∞(t))dt +

∫ T

0
〈−A(t)u̇∞(t), w(t)− u∞(t)〉dt

+ 〈−m,w − u∞〉(M b

Rd
([0,T ]),C

Rd
([0,T ])),
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which shows that the vector measure −m − A(.)u̇∞dt is a subgradient at the
point u∞ of the of the convex integral functional Jϕ∞ defined on CRd ([0, T ])) by

Jϕ∞(v) :=
∫ T

0 ϕ∞(v(t))dt,∀v ∈ CRd ([0, T ]).
Step 5. Claim limn ϕn(un(t)) = ϕ∞(u∞(t)) < ∞ a.e. and limn

∫ T
0 ϕn(u

n(t))dt =
∫ T

0 ϕ∞(u
∞(t))dt < ∞, and subsequently, the energy estimate holds for a.e. t ∈

[0, T ]:

ϕ∞(u∞(t))+ 1

2
||u̇∞(t)||2 = ϕ∞(u∞0 )+

1

2
||u̇∞0 ||2 −

∫ t

0
〈A(s)(u̇∞(s), u̇∞(s)〉ds.

With the above stated results and notations, applying the subdifferential inequality

ϕn(w(t)) ≥ ϕn(un(t))+ 〈−A(t)u̇n(t)− ün(t), w(t)− un(t)〉
with w = u∞, integrating on B ∈ Bcp ∩L ([0, T ]), and passing to the limit when n
goes to∞, gives the inequality

∫

B

ϕ∞(u∞(t))dt ≥ lim inf
n

∫

B

ϕn(u
n(t))dt

≥
∫

B

ϕ∞(u∞(t))dt ≥ lim sup
n

∫

B

ϕn(u
n(t))dt

so that

lim
n

∫

B

ϕn(u
n(t))dt =

∫

B

ϕ∞(u∞(t))dt (7)

on B ∈ Bcp ∩L ([0, T ]). Now, from the chain rule theorem given in Step 1, recall
that

−〈u̇n(t), A(t)u̇n(t)〉 − 〈u̇n(t), ün(t)〉 = d

dt
[ϕn(un(t))],

that is,

〈u̇n(t), zn(t)〉 = d

dt
[ϕn(un(t))].

By the estimate (1) and the boundedness in L1
Rd
([0, T ]) of (zn), it is immediate that

( d
dt
[ϕn(un(t))]) is bounded in L1

R
([0, T ]) so that (ϕn(un(.)) is bounded in variation.

By Helly’s theorem, we may assume that (ϕn(un(.)) pointwisely converges to a BV
function ψ . By (1), (ϕn(un(.)) converges in L1

R
([0, T ]) to ψ . In particular, for every

k ∈ L∞
R+([0, T ]), we have

lim
n→∞

∫ T

0
k(t)ϕn(un(t))dt =

∫ T

0
k(t)ψ(t)dt. (8)
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Combining with (7) and (8) yields

∫

B

ψ(t) dt = lim
n→∞

∫

B

ϕn(u
n(t)) dt =

∫

B

ϕ∞(u∞(t)) dt

for all ∈ Bcp ∩L ([0, T ]). As this inclusion is true on each Bcp and Bcp ↑ [0, T ], we
conclude that

ψ(t) = lim
n
ϕn(un(t)) = ϕ∞(u∞(t)) a.e.

Subsequently, using (iii), the passage to the limit when n goes to∞ in the equation

ϕn(u
n(t))+ 1

2
||u̇n(t)||2 = ϕn(un(0))+ 1

2
||u̇n(0)||2 −

∫ t

0
〈A(s)u̇n(s), u̇n(s)〉ds

yields for a.e. t ∈ [0, T ]

ϕ∞(u∞(t))+ 1

2
||u̇∞(t)||2 = ϕ∞(u∞0 )+

1

2
||u̇∞0 )||2 −

∫ t

0
〈A(s)u̇∞(s), u̇∞(s)〉ds.

Step 6. Localization of further limits and final step.
As (zn = −A(.)u̇n − ün) is bounded in L1

Rd
([0, T ]) in view of Step 3, it is

relatively compact in the second dual L∞
Rd
([0, T ])′ of L1

Rd
([0, T ]) endowed with

the weak topology σ(L∞
Rd
([0, T ])′, L∞

Rd
([0, T ])). Furthermore, (zn) can be viewed

as a bounded sequence in CRd ([0, T ])′. Hence there is a filter U finer than the
Fréchet filter l ∈ L∞

Rd
([0, T ])′ and n ∈ CRd ([0, T ])′ such that

U − lim
n
zn = l ∈ L∞

Rd
([0, T ])′weak (9)

and

lim
n
zn = n ∈ CRd ([0, T ])′weak (10)

where L∞
Rd
([0, T ])′weak is the second dual of L1

Rd
([0, T ]) endowed with the

topology σ(L∞
Rd
([0, T ])′, L∞

Rd
([0, T ])) and CRd ([0, T ])′weak denotes the space

CRd ([0, T ])′ endowed with the weak topology σ(CRd ([0, T ])′,CRd ([0, T ])),
because CRd ([0, T ]) is a separable Banach space for the norm sup, so that we may
assume by extracting subsequences that (zn) weakly converges to n ∈ CRd ([0, T ])′.
Let la be the density of the absolutely continuous part la of l in the decomposition
l = la + ls in absolutely continuous part la and singular part ls , in the sense
there is a decreasing sequence (An) of Lebesgue-measurable sets in [0, T ] with
An ↓ ∅ such that ls(f ) = ls(1Anf ) for all h ∈ L∞

Rd
([0, T ]) and for all n ≥ 1. As

(zn = −A(.)u̇n − ün) biting converges to z∞ = −A(.)u̇∞ − ζ∞ in Step 4, it is
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already known [22] that

la(f ) =
∫ T

0
〈f (t),−A(t)u̇∞(t)− ζ∞(t)〉dt

for all f ∈ L∞
Rd
([0, T ]), shortly z∞ = −A(t)u̇∞(t)− ζ∞(t) coincides a.e. with the

density of the absolutely continuous part la . By [19, 46], we have

I ∗ϕ∞(l) = Iϕ∗∞(−A(.)u̇∞ − ζ∞)+ δ∗(ls, dom Iϕ∞)

where ϕ∗∞ is the conjugate of ϕ∞, Iϕ∗∞ is the integral functional defined on
L1
Rd
([0, T ]) associated with ϕ∗∞, I ∗ϕ∞ is the conjugate of the integral functional Iϕ∞ ,

and

dom Iϕ∞ := {u ∈ L∞Rd ([0, T ]) : Iϕ∞(u) <∞}.

Using the inclusion

z∞ = −A(.)u̇∞ − ζ∞ ∈ ∂Iϕ∞(u∞),

that is,

Iϕ∗∞(−A(.)u̇∞ − ζ∞) = 〈−A(.)u̇∞ − ζ∞, u∞〉 − Iϕ∞(u∞),

we see that

I ∗ϕ∞(l) = 〈−A(.)u̇∞ − ζ∞, u∞〉 − Iϕ∞(u∞)+ δ∗(ls, dom Iϕ∞).

Coming back to zn(t) = ∇ϕn(un(t)), we have

ϕn(x) ≥ ϕn(un(t))+ 〈x − un(t), zn(t)〉

for all x ∈ R
d . Substituting x by h(t) in this inequality, where h ∈ CRd ([0, T ]), and

integrating, we get

∫ T

0
ϕn(h(t)) dt ≥

∫ T

0
ϕn(u

n(t)) dt +
∫ T

0
〈h(t)− un(t), zn(t)〉 dt.

Arguing as in Step 4 by passing to the limit in the preceding inequality, involving
the epiliminf property for integral functionals (cf. (6)), it is easy to see that

∫ T

0
ϕ∞(h(t)) dt ≥

∫ T

0
ϕ∞(u∞(t)) dt + 〈h− u∞,n〉.
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Whence n belongs to the subdifferential ∂Jϕ∞(u
∞) of the convex lower semicon-

tinuous integral functional Jϕ∞ defined on CRd ([0, T ]) by

Jϕ∞(u) :=
∫ T

0
ϕ∞(u(t)) dt, ∀u ∈ CRd ([0, T ]).

Now let B : CRd ([0, T ]) → L∞
Rd
([0, T ]) be the continuous injection, and let

B∗ : L∞
Rd
([0, T ])′ → CRd ([0, T ])′ be the adjoint of B given by

〈B∗l, f 〉 = 〈l, Bf 〉 = 〈l, f 〉, ∀l ∈ L∞
Rd
([0, T ])′, ∀f ∈ CRd ([0, T ]).

Then we have B∗l = B∗la + B∗ls , l ∈ L∞
Rd
([0, T ])′ being the limit of zn under the

filter U given in Sect. 4 and l = la + ls being the decomposition of l in absolutely
continuous part la and singular part ls . It follows that

〈B∗l, f 〉 = 〈B∗la, f 〉 + 〈B∗ls , f 〉 = 〈la, f 〉 + 〈ls , f 〉

for all f ∈ CRd ([0, T ]). But it is already seen that

〈la, f 〉 = 〈−A(.)u̇∞ − ζ∞, f 〉

=
∫ T

0
〈−A(.)u̇∞(t)− ζ∞(t), f (t)〉dt, ∀f ∈ L∞

Rd
([0, T ])

so that the measure B∗la is absolutely continuous

〈B∗la, h〉 =
∫ T

0
〈−A(.)u̇∞(t)− ζ∞(t), f (t)〉dt, ∀f ∈ CRd ([0, T ])

and its density −A(.)u̇∞ − ζ∞ satisfies the inclusion

−A(t)u̇∞(t)− ζ∞(t) ∈ ∂ϕ∞(u∞(t)), a.e.

and the singular part B∗ls satisfies the equation

〈B∗ls , f 〉 = 〈ls , h〉, ∀f ∈ CRd ([0, T ]).

As B∗l = n, using (9) and (10), it turns out that n is the sum of the absolutely
continuous measure na with

〈na, f 〉 =
∫ T

0
〈−A(t)u̇∞(t)− ζ∞(t), f (t)〉dt, ∀f ∈ CRd ([0, T ])

and the singular part ns given by

〈ns , f 〉 = 〈ls , f 〉, ∀f ∈ CRd ([0, T ]).
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which satisfies the property: for any nonnegative measure θ on [0, T ] with respect
to which ns is absolutely continuous

∫ T

0
rϕ∗∞

(
dns
dθ
(t)

)

dθ(t) =
∫ T

0

〈

u∞(t), dns
dθ
(t)

〉

dθ(t)

where rϕ∗∞ denotes the recession function of ϕ∗∞. Indeed, as n belongs to ∂Jϕ∞(u
∞)

by applying [46, Theorem 5], we have

J ∗ϕ∞(n) = Iϕ∗∞
(
dna
dt

)

+
∫ T

0
rϕ∗∞

(
dns
dθ
(t)

)

dθ(t), (11)

with

Iϕ∗∞(v) :=
∫ T

0
ϕ∗∞(v(t))dt,∀v ∈ L1

Rd
([0, T ]).

Recall that

dna
dt

= −A(.)u̇∞ − ζ∞ ∈ ∂Iϕ∞(u∞),

that is,

Iϕ∗∞

(
dna
dt

)

= 〈−A(.)u̇∞ − ζ∞, u∞〉〈L1
Rd
([0,T ]),L∞

Rd
([0,T ])〉 − Iϕ∞(u∞). (12)

From (12), we deduce

J ∗ϕ∞(n) =〈u∞,n〉〈CRd
([0,T ]),C

Rd
([0,T ])′〉 − Jϕ∞(u∞)

=〈u∞,n〉〈C
Rd
([0,T ]),C

Rd
([0,T ])′〉 − Iϕ∞(u∞)

=
∫ T

0
〈u∞(t),−A(.)u̇∞ − ζ∞(t)〉dt

+
∫ T

0

〈

u∞(t), dns
dθ
(t)

〉

dθ(t)− Iϕ∞(u∞)

=Iϕ∗∞
(
dna
dt

)

+
∫ T

0

〈

u∞(t), dns
dθ
(t)

〉

dθ(t)).

Coming back to (11), we get the equality

∫ T

0
rϕ∗∞

(
dns
dθ
(t)

)

dθ(t) =
∫ T

0

〈

u∞(t), dns
dθ
(t)

〉

dθ(t)).

The proof is complete.
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Comments Some comments are in order. In Proposition 3.1, using the existence
and uniqueness ofW 2,∞

H (]0, T ]) of the approximating second-order equation

{
0 = ün(t)+ A(t)u̇n(t)+∇ϕn(un(t)), t ∈ [0, T ]
un(0) = un0, u̇n(0) = u̇n0,

we state the existence of a generalized solution u∞ to the second-order evolution
inclusion

{
0 ∈ ü(t)+ A(t)u̇(t)+ ∂ϕ∞(u(t)), t ∈ [0, T ]
u(0) = u0 ∈ dom ϕ∞, u̇(0) = u̇0

via an epiconvergence approach involving the structure of bounded sequences
in L1

H ([0, T ] space [22] and describe various properties of such a generalized

solution. In particular, we show that such a generalized solution u∞ isW 1,1
BV ([0, T ])

and satisfies the energy conservation and there exists a Young measure νt with
barycenter bar(νt ) ∈ L1

H ([0, T ]) such that −A(t)u̇∞(t) − bar(νt ) ∈ ∂ϕ∞(u∞(t))
a.e. In this vein, compare with Attouch et al. [4, 27], Paoli [43], and Schatzman
[48].

Now we deal at first with W 1,1
BV ([0, T ],H) solution for a second-order evolution

problem.

Theorem 3.3 Let for every t ∈ [0, T ], A(t) : D(A(t)) ⊂ H → 2H be a maximal
monotone operator with D(A(t)) ball compact for every t ∈ [0, T ] satisfying

(H1) there exists a function r : [0, T ] → [0,+∞[ which is continuous on [0, T [
and nondecreasing with r(T ) < +∞ such that

dis(A(t), A(s)) ≤ dr(]s, t]) = r(t)− r(s) for 0 ≤ s ≤ t ≤ T

(H2) there exists a nonnegative real number c such that

‖A0(t, x)‖ ≤ c(1+ ‖x‖) for t ∈ [0, T ], x ∈ D(A(t))

Let f : [0, T ] × H × H → H be such that for every x, y ∈ H × H the
mapping f (., x, y) is Borel-measurable on [0, T ] and for every t ∈ [0, T ], f (t, ., .)
is continuous on H ×H and satisfying

(i) ||f (t, x, y)|| ≤ M(1+ ||x||), ∀t, x, y ∈ [0, T ] ×H ×H.
(ii) ||f (t, x, z)− f (t, y, z)|| ≤ M||x − y||, ∀t, x, y, z ∈ [0, T ] ×H ×H ×H.
Then for u0 ∈ D(A(0))andy0 ∈ H , there are a BVC mapping u : [0, T ] → H and
aW 1,1

BV ([0, T ],H) mapping y : [0, T ] → H satisfying

y(t) = y0 +
∫ t

0
u(s)ds, t ∈ [0, T ],
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−du
dr
(t) ∈ A(t)u(t)+ f (t, u(t), y(t)) dr-a.e. t ∈ [0, T ],

u(0) = u0

with the property: |u(t) − u(τ)| ≤ K|r(t) − r(τ )| for all t, τ ∈ [0, T ] for some
constant K ∈]0,∞[.
Proof By [8, Theorem 3.1] and the assumptions on f , for any continuous mapping
h : [0, T ] → H , there is a unique BVC solution vh to the inclusion

⎧
⎪⎨

⎪⎩

vh(0) = u0 ∈ D(A(0))

− dvh
dr
(t) ∈ A(t)vh(t)+ f (t, vh(t), h(t)) dr-a.e.

with ||vh(t)|| ≤ K, t ∈ [0, T ] and ||vh(t)−vh(τ )|| ≤ K(r(t)−r(τ )), t, τ ∈ [0, T ]
so that

dvh = dvh
dr
dr

with dvh
dr

∈ KBH , consequently dvh
dr

∈ L∞H ([0, T ], dr). Let consider the closed
convex subset X in the Banach space CH ([0, T ]) defined by

X := {u : [0, T ] → H : u(t) = u0 +
∫ t

0
u̇(s)ds, u̇ ∈ S1

KBH
, t ∈ [0, T ]}

where S1
KBH

denotes the set of all integrable selections of the convex weakly

compact valued constant multifunctionKBH . Now for each h ∈X , let us consider
the mapping

�(h)(t) := u0 +
∫ t

0
vh(s)ds, t ∈ [0, T ].

Then it is clear that �(h) ∈ X . Our aim is to prove the existence theorem by
applying some ideas developed in Castaing et al. [24] via a generalized fixed point
theorem [36, 44]. Nevertheless this needs a careful look using the estimation of the
BVC solution given above. For this purpose, we first claim that � : X → X is
continuous and for any h ∈X and for any t ∈ [0, T ] the inclusion holds

�(h)(t) ∈ u0 +
∫ t

0
co[D(A(s)) ∩KBH ]ds.

Since s �→ co[D(A(s))∩KBH ] is a convex compact valued and integrably bounded
multifunction using the ball-compactness assumption, the second member is convex
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compact valued [14] so that�(X ) is equicontinuous and relatively compact in the
Banach space CH ([0, T ]). Now we check that � is continuous. It is sufficient to
show that, if (hn) converges uniformly to h in X , then BVC solution vhn associated
with hn

⎧
⎪⎨

⎪⎩

vhn(0) = u0 ∈ D(A(0))

− dvhn
dr
(t) ∈ A(t)vhn(t)+ f (t, vhn(t), hn(t)) dr-a.e.

pointwisely converges to the BVC solution vh associated with h
⎧
⎪⎨

⎪⎩

vh(0) = u0 ∈ D(A(0))

− dvh
dr
(t) ∈ A(t)vh(t)+ f (t, vh(t), h(t)) dr-a.e.

As D(A(t)) is ball compact, (vhn) is uniformly bounded, and bounded in variation
since ||vhn(t)−vhn(τ )|| ≤ K(r(t)−r(τ )), t, τ ∈ [0, T ], we may assume that (vhn)

pointwisely converges to a BVC mapping v. As vhn = v0+
∫
]0,t]

dvhn
dr
dr, t ∈ [0, T ]

and dvhn
dr
(s) ∈ KBH, s ∈ [0, T ], we may assume that ( dvhn

dr
) converges weakly in

L1
H ([0, T ], dr) to w ∈ L1

H ([0, T ], dr) with w(t) ∈ KBH, t ∈ [0, T ] so that

weak− lim
n
vhn = u0 +

∫

]0,t]
wdr := z(t), t ∈ [0, T ].

By identifying the limits, we get

v(t) = z(t) = u0 +
∫

]0,t]
wdr

with dv
dr
= w so that limn f (t, vhn(t), hn(t)) = f (t, v(t), h(t)), t ∈ [0, T ].

Consequently we may assume that ( dvhn
dr
+ f (., vhn(.), hn(.))) Komlos converges

to dv
dr
− f (., v(.), h(.)). For simplicity, set gn(t) = f (t, vhn(t), hn(t)) and g(t) =

f (t, v(t), h(t)). There is a dr-negligible set N such that for t ∈ I \N and

lim
n→∞

1

n

n∑

j=1

(
dvhj

dr
(t)+ gj (t)

)

= dv
dr
(t)+ g(t).

Let η ∈ D(A(t)). From

〈
dvhn

dr
(t)+ gn(t), v(t)− η

〉

=
〈
dvhn

dr
(t)+ gn(t), vhn(t)− η

〉

+
〈
dvhn

dr
(t)+ gn(t), v(t)− vhn(t)

〉

,
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let us write

1

n

n∑

j=1

〈
dvhj

dr
(t)+ gj (t), v(t)− η

〉

= 1

n

n∑

j=1

〈
dvhj

dr
(t)+ gj (t), vhj (t)− η

〉

+1

n

n∑

j=1

〈
dvhj

dr
(t)+ gj (t), v(t)− vhj (t)

〉

,

so that

1

n

n∑

j=1

〈
dvhj

dr
(t)+ gj (t), v(t)− η

〉

≤ 1

n

n∑

j=1

〈
A0(t, η), η − vhj (t)

〉+ (
Constant

) 1

n

n∑

j=1

‖v(t)− vhj (t))‖.

Passing to the limit when n→∞, this last inequality gives immediately

〈
dv

dr
(t)+ g(t), v(t)− η

〉

≤ 〈
A0(t, η), η − v(t)〉 a.e.

As a consequence, by Lemma 2.2, − dv
dr
(t) ∈ A(t)v(t) + g(t) = A(t)v(t) +

f (t, v(t), h(t)) a.e. with v(0) = u0 ∈ D(A(0)) so that by uniqueness v = vh.
Now let us check that � :X →X is continuous. Let hn→ h. We have

�(hn)(t)−�(h)(t) =
∫ t

0
vhn(s)ds −

∫ t

0
vh(s)ds =

∫ t

0
[vhn(s)− vh(s)]ds

As ||vhn(.)−vh(.)|| → 0 pointwisely and is uniformly bounded : ||vhn(.)−vh(.)|| ≤
2K , by we conclude that

sup
t∈[0,T ]

||�(hn)(t)−�(h)(t)|| ≤ sup
t∈[0,T ]

∫ t

0
||vhn(.)− vh(.)||ds → 0

so that �(hn) − �(h) → 0 in CH ([0, T ]). Here one may invoke a general fact
that on bounded subsets of L∞, the topology of convergence in measure coincides
with the topology of uniform convergence on uniformly integrable sets, i.e., on
relatively weakly compact subsets, alias the Mackey topology. This is a lemma due
to Grothendieck [33, Ch.5 §4 no 1 Prop. 1 and exercice] (see also [15] for a more
general result concerning the Mackey topology for bounded sequences in L∞E∗).
Since � : X → X is continuous and �(X ) is relatively compact in CH ([0, T ]),
by [36, 44] � has a fixed point, say h = �(h) ∈X , that means
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h(t) = �(h)(t) = u0 +
∫ t

0
vh(s)ds, t ∈ [0, T ],

⎧
⎪⎨

⎪⎩

vh(0) = u0 ∈ D(A(0))

− dvh
dr
(t) ∈ A(t)vh(t)+ f (t, vh(t), h(t)) dr-a.e.

The proof is complete.

The following results are sharp variants of Theorem 3.3.

Theorem 3.4 Let for every t ∈ [0, T ], A(t) : D(A(t)) ⊂ H → 2H be a maximal
monotone operator with D(A(t) ball compact for every t ∈ [0, T ] satisfying (H2)
and

(H1)′ there exists a function β ∈ W 1,1([0, T ],R; dt) which is nonnegative on
[0, T ] and non-decreasing with β(T ) <∞ such that

dis(A(t), A(s)) ≤ |β(t)− β(s)|, ∀s, t ∈ [0, T ].
(H1)∗ For any t ∈ [0, T ] and for any x ∈ D(A(t)), A(t)x is cone-valued.

Let f : [0, T ] × H × H → H be such that for every x, y ∈ H × H the mapping
f (., x, y) is Lebesgue-measurable on [0, T ] and for every t ∈ [0, T ], f (t, ., .) is
continuous on H ×H and satisfying

(i) ||f (t, x, y)|| ≤ M(1+ ||x||), ∀t, x, y ∈ [0, T ] ×H ×H.
(ii) ||f (t, x, z)− f (t, y, z)|| ≤ M||x − y||, ∀t, x, y, z ∈ [0, T ] ×H ×H ×H.
Then, for all u0 ∈ D(A(0)), y0 ∈ H , there are an absolutely continuous mapping
u : [0, T ] → H and an absolutely continuous mapping y : [0, T ] → H satisfying

y(t) = y0 +
∫ t

0
u(s)ds, t ∈ [0, T ],

−du
dt
(t) ∈ A(t)u(t)+ f (t, u(t), y(t)) dt − a.e. t ∈ [0, T ], u(0) = u0,

with

‖u̇(t)‖ ≤ (
K +M(1+K))(β̇(t)+ 1)+M(1+K)

for a.e. t ∈ [0, T ], for some positive constant K .

Proof By [7, Theorem 3.4] and the assumptions on f , for any continuous mapping
h : [0, T ] → H , there is a unique AC solution vh to the inclusion

{
vh(0) = u0 ∈ D(A(0))
− v̇h(t) ∈ A(t)vh(t)+ f (t, vh(t), h(t)) dt-a.e.
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with ||v̇h(t)|| ≤ γ (t) := (K +M(1+K))(β̇(t)+ 1)+M(1+K) a.e. t ∈ [0, T ] so
that γ ∈ L1

R
([0, T ]) and ||vh(t)|| ≤ L = Constant, t ∈ [0, T ]. Let us consider the

closed convex subset X in the Banach space CH ([0, T ]) defined by

X := {u : [0, T ] → H : u(t) = u0 +
∫ t

0
u̇(s)ds, u̇ ∈ S1

LBH
, t ∈ [0, T ]}

where S1
LBH

denotes the set of all integrable selections of the convex weakly

compact valued constant multifunction LBH . Now for each h ∈X , let us consider
the mapping

�(h)(t) := u0 +
∫ t

0
vh(s)ds, t ∈ [0, T ].

Then it is clear that �(h) ∈ X . Our aim is to prove the existence theorem by
applying some ideas developed in Castaing et al. [24] via a generalized fixed point
theorem [36, 44]. Nevertheless this needs a careful look using the estimation of the
AC solution given above. For this purpose, we first claim that � : X → X is
continuous for any h ∈X and for any t ∈ [0, T ], the inclusion holds

�(h)(t) ∈ u0 +
∫ t

0
co[D(A(s)) ∩ LBH ]ds.

Since s �→ co[D(A(s))∩LBH ] is a convex compact valued and integrably bounded
multifunction, the second member is convex compact valued [14] so that �(X ) is
equicontinuous and relatively compact in the Banach space CH ([0, T ]). Now we
check that � is continuous. It is sufficient to show that, if hn converges uniformly
to h in X , then the AC solution vhn associated with hn

{
vhn(0) = u0 ∈ D(A(0))
− v̇hn(t) ∈ A(t)vhn(t)+ f (t, vhn(t), hn(t)) dt-a.e.

converges uniformly to the AC solution vh associated with h

{
vh(0) = u0 ∈ D(A(0))
− v̇h(t) ∈ A(t)vh(t)+ f (t, vh(t), h(t)) dt-a.e.

We have

−v̇hn(t) ∈ A(t)vhn(t)+ f (t, vhn(t), hn(t)), a.e. t ∈ [0, T ],

with the estimation ||v̇hn(t)|| ≤ γ (t) and γ ∈ L1
R
([0, T ]) for all n ∈

N. As D(A(t)) is ball compact and (v̇hn) is relatively weakly compact in
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L1
H ([0, T ]), we may assume that (vhn) converges uniformly to an absolutely

continuous mapping v such that v(t) = u0 +
∫ t

0 v̇(s)ds, t ∈ [0, T ],
||v̇(t)|| ≤ γ (t), t ∈ [0, T ], and (v̇hn) σ (L

1
H ,L

∞
H ) converges to v̇ so that

limn f (t, vhn(t), hn(t)) = f (t, v(t), h(t)), t ∈ [0, T ]. Consequently we may
assume that (v̇hn +f (., vhn(.), hn(.))) Komlos converges to v̇−f (., v(.), h(.)). Let
us set gn(t) = f (t, vhn(t), hn(t)) and g(t) = f (t, v(t), h(t)). There is a negligible
set N such that for t ∈ [0, T ] \N and

lim
n→∞

1

n

n∑

j=1

(
v̇hj (t)+ gj (t)

) = v̇(t)+ g(t).

Let η ∈ D(A(t)). From

〈
v̇hn(t)+ gn(t), v(t)− η

〉

= 〈
v̇hn(t)+ gn(t), vhn(t)− η

〉+ 〈
v̇hn(t)+ gn(t), v(t)− vhn(t)

〉

let us write

1

n

n∑

j=1

〈
v̇hj (t)+ gj (t), v(t)− η

〉

= 1

n

n∑

j=1

〈
v̇hj (t)+ gj (t), vhj (t)− η

〉+ 1

n

n∑

j=1

〈
v̇hj (t)+ gj (t), v(t)− vhj (t)

〉
,

so that

1

n

n∑

j=1

〈
v̇hj (t)+ gj (t), v(t)− η

〉

≤ 1

n

n∑

j=1

〈
A0(t, η), η − vhj (t)

〉+ (
γ (t)+ Constant

) 1

n

n∑

j=1

‖v(t)− vhj (t))‖.

Passing to the limit when n→∞, this last inequality gives immediately

〈
v̇(t)+ g(t), v(t)− η〉 ≤ 〈

A0(t, η), η − v(t)〉 a.e.

As a consequence, −v̇(t) ∈ A(t)v(t)+ g(t) = A(t)v(t)+ f (t, v(t), h(t)) a.e. with
v(0) = u0 ∈ D(A(0)) so that by uniqueness v = vh. Since � : X → X is
continuous and �(X ) is relatively compact in CH ([0, T ]), by [36, 44] � has a
fixed point, say h = �(h) ∈X , that means
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h(t) = �(h)(t) = u0 +
∫ t

0
vh(s)ds, t ∈ [0, T ],

{
vh(0) = u0 ∈ D(A(0))
− v̇h(t) ∈ A(t)vh(t)+ f (t, vh(t), h(t)) dt-a.e.

The proof is complete.

Comments The use of a generalized fixed point theorem is initiated in [24] dealing
with some second-order sweeping process associated with a closed moving set
C(t, u). Actually it is possible to obtain a variant of Theorem 3.4 by assuming that
A(t) : D(A(t)) ⊂ H → 2H is a maximal monotone operator with D(A(t) ball
compact for every t ∈ [0, T ] satisfying (H2) and
(H1)′ there exists a function β ∈ W 1,2([0, T ],R; dt) which is nonnegative on I and
non-decreasing with β(T ) <∞ such that

dis(A(t), A(s)) ≤ |β(t)− β(s)|, ∀s, t ∈ [0, T ].
Here using fixed point theorem provides a short proof with new approach involving
the continuous dependance of the trajectory vh associated with the control h ∈ X
and also the compactness of the integral of convex compact integrably bounded
multifunctions [14].

4 Evolution Problems with Lipschitz Variation Maximal
Monotone Operator and Application to Viscosity and
Control

Now, based on the existence and uniqueness of W 2,∞
H ([0, T ]) solution to evolution

inclusion

(S1)

{
0 ∈ ü(t)+ A(t)u̇(t)+ f (t, u(t)), t ∈ [0, T ]
u(0) = u0, u̇(0) = u̇0 ∈ D(A(0))

we will present some problems in optimal control in a second-order evolution
inclusion driven by a Lipschitz variation maximal monotone operator A(t) in the
same vein as in Castaing-Marques-Raynaud de Fitte [25] dealing with the sweeping
process. Before going further, we note that (S1) contains the evolution problem
associated with the sweeping process by a closed convex Lipschitzian mapping
C : [0, T ] → cc(H)

{
0 ∈ ü(t)+NC(t)(u̇(t))+ f (t, u(t)), t ∈ [0, T ]
u(0) = u0, u̇(0) = u̇0 ∈ C(0)

by taking A(t) = ∂�C(t) in (S1).
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We need some notations and background on Young measures in this special
context. For the sake of completeness, we summarize some useful facts concerning
Young measures. Let (�,F , P ) be a complete probability space. Let X be a Polish
space, and let C b(X) be the space of all bounded continuous functions defined on
X. Let M 1+(X) be the set of all Borel probability measures on X equipped with
the narrow topology. A Young measure λ : � → M 1+(X) is, by definition, a
scalarly measurable mapping from � into M 1+(X), that is, for every f ∈ C b(X),
the mapping ω �→ 〈f, λω〉 :=

∫
X
f (x) dλω(x) is F -measurable. A sequence (λn)

in the space of Young measures Y (�,F , P ;M 1+(X)) stably converges to a Young
measure λ ∈ Y (�,F , P ;M 1+(X)) if the following holds:

lim
n→∞

∫

A

[∫

X

f (x) dλnω(x)

]

dP (ω) =
∫

A

[∫

X

f (x) dλω(x)

]

dP (ω)

for every A ∈ F and for every f ∈ C b(X). We recall and summarize some results
for Young measures.

Theorem 4.5 ( [22, Theorem 3.3.1]) Assume that S and T are Polish spaces.
Let (μn) be a sequence in Y (�,F , P ;M 1+(S)), and let (νn) be a sequence in
Y (�,F , P ;M 1+(T )). Assume that

(i) (μn) converges in probability to μ∞ ∈ Y (�,F , P ;M 1+(S)),
(ii) (νn) stably converges to ν∞ ∈ Y (�,F , P ;M 1+(T )).

Then (μn ⊗ νn) stably converges to μ∞ ⊗ ν∞ in Y (�,F , P ;M 1+(S × T )).
Theorem 4.6 ( [22, Theorem 6.3.5]) Assume that X and Z are Polish spaces.
Let (un) be sequence of F -measurable mappings from � into X such that (un)
converges in probability to a F -measurable mapping u∞ from � into X, and
let (vn) be a sequence of F -measurable mappings from � into Z such that (vn)
stably converges to ν∞ ∈ Y (�,F , P ;M 1+(Z)). Let h : � × X × Z → R be
a Carathéodory integrand such that the sequence (h(., un(.), vn(.)) is uniformly
integrable. Then the following holds:

lim
n→∞

∫

�

h(ω, un(ω), vn(ω)) dP (ω) =
∫

�

[∫

Z

h(ω, u∞(ω), z) dν∞ω (z)
]

dP (ω).

In the remainder, Z is a compact metric space, and M 1+(Z) is the space of all
probability Radon measures on Z. We will endow M 1+(Z)with the narrow topology
so that M 1+(Z) is a compact metrizable space. Let us denote by Y ([0, T ];M 1+(Z))
the space of all Young measures (alias relaxed controls) defined on [0, T ] endowed
with the stable topology so that Y ([0, T ];M 1+(Z)) is a compact metrizable space
with respect to this topology. By the Portmanteau Theorem for Young measures
[22, Theorem 2.1.3], a sequence (νn) in Y ([0, T ];M 1+(Z)) stably converges to
ν ∈ Y ([0, T ];M 1+(Z)) if

lim
n→∞

∫ T

0

[∫

Z

ht (z)dν
n
t (z)

]

dt =
∫ T

0

[∫

Z

ht (z)dνt (z)

]

dt
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for all h ∈ L1
C (Z)([0, T ]), where C (Z) denotes the space of all continuous real-

valued functions defined on Z endowed with the norm of uniform convergence.
Finally let us denote by Z the set of all Lebesgue-measurable mappings (alias
original controls) z : [0, T ] → Z and R := Y ([0, T ];M 1+(Z)) the set of all
relaxed controls (alias Young measures) associated with Z. In the remainder, we
assume that H = R

d and Z is a compact subset in H .
For simplicity, let us consider a mapping f : [0, T ] ×H → H satisfying

(i) for every x ∈ H × Z, f (., x) is Lebesgue-measurable on [0, T ],
(ii) there isM > 0 such that

||f (t, x)|| ≤ M(1+ ||x||)

for all (t, x) in [0, T ] ×H , and

||f (t, x)− f (t, y)|| ≤ M||x − y||

for all (t, x, y) ∈ [0, T ] ×H ×H .

We consider theW 2,∞
H ([0, T ]) solution set of the two following control problems

(SO )

{
0 ∈ üx,y,ζ (t)+ A(t)u̇x,y,ζ (t))+ f (t, ux,y,ζ (t))+ ζ(t), t ∈ [0, T ]
ux,y,ζ (0) = x ∈ H, u̇x,y,ζ (0) = y ∈ D(A(0))

and

(SR)

{
0 ∈ üx,y,λ(t)+ A(t)u̇x,y,λ(t))+ f (t, ux,y,λ(t))+ bar(λt ), t ∈ [0, T ]
ux,y,λ(0) = x ∈ H, u̇x,y,λ(0) = y ∈ D(A(0))

where ζ belongs to the set Z of all Lebesgue-measurable mappings (alias original
controls) ζ : [0, T ] → Z original and λ belongs to the set R of all relaxed
controls. Taking (S1) into account, for each (x, y, ζ ) ∈ H ×D(A(0)) ×Z (resp.
(x, y, λ) ∈ H×D(A(0))×R, there exists a uniqueW 2,∞

H (]0, T ]) solutions, solution
ux,y,ζ (resp. ux,y,λ), to (SO ) (resp. (SR)). We aim to present some problems in the
framework of optimal control theory for the above inclusions. In particular, we state
a viscosity property of the value function associated with these evolution inclusions.
Similar problems driven by evolution inclusion with perturbation containing Young
measures are initiated by [22, 23]. However, the present study deals with a new
setting in the sense that it concerns a second-order evolution inclusion involving
time-dependent maximal monotone operator.

Now we present a lemma which is useful for our purpose.

Lemma 4.6 Let for all t ∈ [0, T ], A(t) : D(A(t)) ⊂ H → 2H be a maximal
monotone operator satisfying (H1) and (H2). Let f : [0, T ] × H → H be a
mapping satisfying
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(i) for every x ∈ H × Z, f (., x) is Lebesgue-measurable on [0, T ],
(ii) there isM > 0 such that

||f (t, x)|| ≤ M(1+ ||x||)
for all (t, x) in [0, T ] ×H , and

||f (t, x)− f (t, y)|| ≤ M||x − y||
for all (t, x, y) ∈ [0, T ] ×H ×H .

Let hn, h ∈ L∞H ([0, T ], dt) with ||hn(t)|| ≤ 1 for all t ∈ [0, T ], for all n ∈ N

and ||h(t)|| ≤ 1 for all t ∈ [0, T ]. Let us consider the two following second-order
evolution inclusions:

S (A, f, hn, x, y)

{
0 ∈ üx,y,hn(t)+ A(t)u̇x,y,hn(t)+ f (t, ux,y,hn(t))+ hn(t), t ∈ [0, T ]
ux,y,hn(0) = x, u̇x,y,hn(0) = y ∈ D(A(0))

S (A, f, h, x, y)

{
0 ∈ üx,y,h(t)+ A(t)u̇x,y,h(t)+ f (t, ux,y,h(t))+ h(t), t ∈ [0, T ]
ux,y,h(0) = x, u̇x,y,h(0) = y ∈ D(A(0))

where ux,y,hn (resp. ux,y,h) is the unique W
2,∞
H ([0, T ]) solution to

(S (A, f, hn, x, y)) (resp. (S (A, f, hn, x, y))). Assume that (hn) σ (L1, L∞)
converges to h. Then (ux,y,hn) converges pointwisely to ux,y,h.

Proof We note that üx,y,hn is uniformly bounded, so there is u ∈ W 2,∞
H ([0, T ])

such that

ux,y,hn → u pointwisely with u(0) = x,
u̇x,y,hn → u̇ pointwisely with u̇(0) = y,
üx,y,hn → ü with respect to σ(L1, L∞).

Using Lemma 2.3, it is not difficult to see that u̇(t) ∈ D(A(t)) for every t ∈
[0, T ]. As f (t, ux,y,hn(t)) → f (t, u(t)) pointwisely so that f (., ux,y,hn(.)) →
f (.., u(.)) with respect to σ(L1, L∞). Since (hn) σ (L1, L∞) converges to h, so
that f (., ux,y,hn(.)) + hn → f (t., u(.)) + h with respect to σ(L1, L∞). And so
üx,y,hn(.) + f (., ux,y,hn(.)) + hn(.) σ (L1, L∞) converges to u̇ + f (.., u(.)) + h.
As a consequence, we may also assume that üx,y,hn(.) + f (., ux,y,hn(.)) + hn(.)
Komlos converges to u̇+f (.., u(.))+h. Coming back to the inclusion−üx,y,hn(t)−
f (t, ux,y,hn(t))− hn(t) ∈ A(t)u̇x,y,hn(t), we have by the monotonicity of A(t)

〈üx,y,hn(t)+ f (t, ux,y,hn(t))+ hn(t), u̇x,y,hn(t)− η〉 ≤ 〈A0(t, η), η − u̇x,y,hn(t)〉
for any η ∈ D(A(t)). For notational convenience, set

vn(t) =üx,y,hn(t)+ f (t, ux,y,hn(t))+ hn(t),∀t ∈ [0, T ],
v(t) =ü(t)+ f (t, u(t))+ h(t),∀t ∈ [0, T ].
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There is a negligible set N such that

lim
n

1

n

n∑

i=1

vi(t) = v(t)

for t /∈ N . Let us write

〈vn(t), u̇(t)− η〉 = 〈vn(t), u̇x,y,hn(t)− η〉 + 〈vn(t), u̇(t)− u̇x,y,hn(t)〉
so that

1

n

n∑

i=1

〈vi(t), u̇(t)−η〉=1

n

n∑

i=1

〈vi(t), u̇x,y,hi (t)−η〉+
1

n

n∑

i=1

〈vi(t), u̇(t)−u̇x,y,hi (t)〉

≤1

n

n∑

i=1

〈A0(t, η), η−u̇x,y,hi (t)〉+L
1

n

n∑

i=1

||u̇(t)−u̇x,y,hi (t)||,

where L is a positive generic constant. Passing to the limit when n goes to∞ in this
inequality gives immediately

〈v(t), u̇(t)− η〉 ≤ 〈A0(t, η), η − u̇(t)〉

so that by Lemma 2.2 we get

−ü(t)− f (t, ux,y,h(t))− h(t) ∈ A(t)u̇(t) a.e.

with u(0) = x and u̇(0) = y. Due to the uniqueness of solution, we get u(t) =
ux,y,h(t) for all t ∈ [0, T ]. The proof is complete.

The following shows the continuous dependence of the solution with respect to the
control.

Theorem 4.7 Let for all t ∈ [0, T ], A(t) : D(A(t)) ⊂ H → 2H be a maximal
monotone operator satisfying (H1) and (H2). Let f : [0, T ] × H → H be a
mapping satisfying

(i) for every x ∈ H × Z, f (., x) is Lebesgue-measurable on [0, T ],
(ii) there isM > 0 such that

||f (t, x)|| ≤ M(1+ ||x||)

for all (t, x) in [0, T ] ×H , and

||f (t, x1)− f (t, x2)|| ≤ M||x1 − x2||

for all (t, x1, (t, x2, ) ∈ [0, T ] ×H ×H .
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Let Z be a compact subset of H . Let us consider the control problem
{

0 ∈ üx,y,ν(t)+ A(t)u̇x,y,ν(t)+ f (t, ux,y,ν(t))+ bar(νt ), t ∈ [0, T ]
ux,y,ν(0) = x, u̇x,y,ν(0) = y ∈ D(A(0))

where bar(νt ) denotes the barycenter of the measure νt ∈ M 1+(Z) and ux,y,ν is the

uniqueW 2,∞
H ([0, T ]) solution associated with to bar(νt ). Then, for each t ∈ [0, T ],

the mapping ν �→ ux,y,ν is continuous from R to CH([0, T ], where R is endowed
with the stable topology and CH([0, T ] is endowed with the topology of pointwise
convergence.

Proof (a) Let ν ∈ R and let bar(ν) : t �→ bar(νt ), t ∈ [0, T ]. It is easy to check
that ν �→ bar(ν) from R to L∞H ([0, T ]) is continuous with respect to the stable
topology and the σ(L1

H ,L
∞
H ), respectively. Note that R is compact metrizable for

the stable topology. Now let (νn) be a sequence in R which stably converges to
ν ∈ R. Then bar(νn) σ (L1

H ,L
∞
H ) converges to bar(ν). By Lemma 4.6, we see that

ux,y,νn pointwisely converges to ux,y,ν . The proof is complete.

We are now able to relate the Bolza type problems associated with the maximal
monotone operator A(t) as follows:

Theorem 4.8 With the hypotheses and notations of Theorem 4.7, assume that J :
[0, T ] × H × Z → R is a Carathéodory integrand, that is, J (t, ., .) is continuous
on H × Z for every t ∈ [0, T ] and J (., x, z) is Lebesgue-measurable on [0, T ] for
every (x, z) ∈ H × Z, which satisfies the condition (C ): for every sequence (ζn) in
Z , the sequence (J (., ux,y,ζ n(.), ζ n(.)) is uniformly integrable in L1

R
([0, T ], dt),

where ux,y,ζ n denotes the unique W 2,∞
H ([0, T ]) solution associated with ζ n to the

evolution inclusion
{

0 ∈ üx,y,ζ n(t)+ A(t)u̇x,y,ζ n(t)+ f (t, ux,y,ζ n(t))+ ζ n(t), t ∈ [0, T ]
ux,y,ζ n(0) = x, u̇x,y,ζ n(0) = y ∈ D(A(0))

Let us consider the control problems

inf(PZ ) := inf
ζ∈Z

∫ T

0
J (t, ux,y,ζ (t), ζ(t)) dt

and

inf(PR) := inf
λ∈R

∫ T

0

[∫

Z

J (t, ux,y,λ(t), z) λt (dz)

]

dt

where ux,y,ζ (resp. ux,y,λ) is the unique W 2,∞
H ([0, T ]) solution associated with ζ (

resp. λ) to

{
0 ∈ üx,y,ζ (t)+ A(t)u̇x,y,ζ (t)+ f (t, ux,y,ζ (t))+ ζ(t), t ∈ [0, T ]
ux,y,ζ (0) = x, u̇x,y,ζ (0) = y ∈ D(A(0))
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and

{
0 ∈ üx,y,λ(t)+ A(t)u̇x,y,ν(t)+ f (t, ux,y,ν(t))+ bar(λt ), t ∈ [0, T ]
ux,y,λ(0) = x, u̇x,y,λ(0) = y ∈ D(A(0))

respectively. Then one has

inf(PZ ) = inf(PR).

Proof Take a control λ ∈ R. By virtue of the denseness with respect to the
stable topology of Z in R, there is a sequence (ζ n)n∈N in Z such that the
sequence (δζn)n∈N of Young measures associated with (ζ n)n∈N stably converges to
λ. By Theorem 4.7, the sequence (ux,y,ζ n) of W 2,∞

H ([0, T ]) solutions associated

with ζ n pointwisely converges to the unique W 2,∞
H ([0, T ]) solution ux,y,λ. As

(J (t, ux,y,ζ n(t), ζ
n(t))) is uniformly integrable by assumption (C ), using Theo-

rem 4.6 (or [22, Theorem 6.3.5]), we get

lim
n→∞

∫ T

0
J (t, ux,y,ζ n(t), ζ

n(t)) dt =
∫ T

0

[∫

Z

J (t, ux,y,λ, z)dλt (z)

]

dt.

As

∫ T

0
J (t, ux,y,ζ n(t), ζ

n(t)) dt ≥ inf(PZ )

for all n ∈ N, so is

∫ T

0

[∫

Z

J (t, ux,y,λ, z)dλt (z)

]

dt ≥ inf(PZ );

by taking the infimum on R in this inequality, we get

inf(PR) ≥ inf(PO )

As inf(PO ) ≥ inf(PR), the proof is complete.

In the framework of optimal control, the above considerations lead to the study
of the value function associated with the evolution inclusion

{
0 ∈ üτ,x,y,ν(t)+ A(t)u̇τ,x,y,ν(t)+ f (t, uτ,x,y,ν(t))+ bar(νt ),
uτ,x,y,ν(τ ) = x, u̇τ,x,y,ν(τ ) = y ∈ D(A(τ)).

The following shows that the value function satisfies the dynamic programming
principle (DPP).
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Theorem 4.9 (of dynamic programming principle). Assume the hypothesis and
notations of Theorem 4.7, and let x ∈ E, τ < T and σ > 0 such that τ + σ < T .
Assume that J : [0, T ] ×H × Z → R is bounded and continuous. Let us consider
the value function

VJ (τ, x, y) = supν∈R
∫ T
τ

[∫
Z
J (t, uτ,x,y,ν(t), z)νt (dz)

]
dt,

(τ, x, y) ∈ [0, T ] ×H ×D(A(τ))
where uτ,x,y,ν is the W 2,∞

H ([0, T ]) solution to the evolution inclusion defined on
[τ, T ] associated with the control ν ∈ R starting from x, y at time τ

{
0 ∈ üτ,x,y,ν(t)+ A(t)u̇τ,x,y,ν(t)+ f (t, uτ,x,y,ν(t))+ bar(νt ),
uτ,x,y,ν(τ ) = x, u̇τ,x,y,ν(τ ) = y ∈ D(A(τ))

Then the following holds:

VJ (τ, x, y) = sup
ν∈R

{ ∫ τ+σ

τ

[∫

Z

J (t, uτ,x,y,ν(t), z)νt (dz)

]

dt

+ VJ (τ + σ, uτ,x,y,ν(τ + σ), u̇τ,x,y,ν(τ + σ)
}

with

VJ (τ + σ, uτ,x,ν(τ + σ), u̇τ,x,ν(τ + σ))

= sup
μ∈R

∫ T

τ+σ

[∫

Z

J (t, vτ+σ,uτ,x,y,ν (τ+σ),u̇τ,x,y,ν (τ+σ),μ(t), z)μt (dz)
]

dt

where vτ+σ,uτ,x,y,ν (τ+σ),u̇τ,x,y,ν (τ+σ),μ1 is the W 2,∞
H (τ + σ, T ) solution defined on

[τ+σ, T ] associated with the control μ ∈ R starting from uτ,x,ν(τ+σ), u̇τ,x,ν(τ+
σ) at time τ + σ
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 ∈ vτ+σ,uτ,x,y,ν (τ+σ),u̇τ,x,y,ν (τ+σ),μ(t)+ A(t)vτ+σ,uτ,x,yν (τ+σ),u̇τ,x,y,ν (τ+σ),μ(t),
+ f (t, vτ+σ,uτ,x,y,ν (τ+σ),u̇τ,x,y,ν (τ+σ),μ(t))+ bar(μt ),

vτ+σ,uτ,x,y,ν (τ+σ),u̇τ,x,y,ν (τ+σ),μ(τ + σ) = uτ,x,y,ν(τ + σ),
v̇τ+σ,uτ,x,y,ν (τ+σ),u̇τ,x,y,ν (τ+σ),μ(τ + σ) = u̇τ,x,y,ν(τ + σ) ∈ D(A(τ + σ)).

(13)

1It is necessary to write completely the expression of the trajectory vτ+σ,uτ,x,y,ν (τ+σ),u̇τ,x,y,ν (τ+σ),μ
that depends on (ν, μ) ∈ R ×R in order to get the continuous dependence with respect to ν ∈ R
of VJ (τ + σ, uτ,x,y,ν(τ + σ)).
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Proof Let

WJ (τ, x, y) := sup
ν∈R

{ ∫ τ+σ

τ

[∫

Z

J (t, uτ,x,y,ν(t), z)νt (dz)

]

dt

+VJ (τ + σ, uτ,x,y,ν(τ + σ))
}

.

For any ν ∈ R, we have

∫ T

τ

[∫

Z

J (t, uτ,x,y,ν(t), z)νt (dz)

]

dt=
∫ τ+σ

τ

[∫

Z

J (t, uτ,x,y,ν(t), z)νt (dz)

]

dt

+
∫ T

τ+σ

[∫

Z

J (t, uτ,x,y,ν(t), z)νt (dz)

]

dt.

By the definition of VJ (τ + σ, uτ,x,y,ν(τ + σ), u̇τ,x,y,ν(τ + σ), we have

VJ (τ+σ, uτ,x,y,ν(τ+σ), u̇τ,x,y,ν(τ+σ) ≥
∫ T

τ+σ

[∫

Z

J (t, uτ,x,y,ν(t), z)νt (dz)

]

dt.

It follows that

∫ T

τ

[∫

Z

J (t, uτ,x,y,ν(t), z)νt (dz)

]

dt≤
∫ τ+σ

τ

[∫

Z

J (t, uτ,x,y,ν(t), z)νt (dz)

]

dt

+ VJ (τ + σ, uτ,x,y,ν(τ + σ), u̇τ,x,y,ν(τ + σ)).

By taking the supremum on ν ∈ R in this inequality, we get

VJ (τ, x, y) ≤ sup
ν∈R

{ ∫ τ+σ

τ

[∫

Z

J (t, uτ,x,y,ν(t), z)νt (dz)

]

dt

+ VJ (τ + σ, uτ,x,y,ν(τ + σ), u̇τ,x,y,ν(τ + σ))
}

=WJ (τ, x, y).

Let us prove the converse inequality.
Main fact: ν �→ VJ (τ + σ, uτ,x,ν(τ + σ), u̇τ,x,ν(τ + σ)) is continuous on R.
Let us focus on the expression of VJ (τ + σ, uτ,x,ν(τ + σ), u̇τ,x,ν(τ + σ)):

VJ (τ + σ, uτ,x,ν(τ + σ), u̇τ,x,ν(τ + σ))

= sup
μ∈R

∫ T

τ+σ

[ ∫

Z

J (t, vτ+σ,uτ,x,ν (τ+σ),u̇τ,x,ν (τ+σ),μ(t), z)μt (dz)
]

dt
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where vτ+σ,uτ,x,ν (τ+σ),u̇τ,x,ν (τ+σ),μ denotes the trajectory solution on [τ + σ, T ]
associated with the control μ ∈ R starting from uτ,x,ν(τ + σ), u̇τ,x,ν(τ + σ),
at time τ + σ in (13). Using the continuous dependence of the solution with
respect to the state and the control, it is readily seen that the mapping (ν, μ) �→
vτ+σ,uτ,x,ν (τ+σ),u̇τ,x,ν (τ+σ),μ(t) is continuous on R × R for each t ∈ [τ, T ],
namely, if νn stably converges to ν ∈ R and μn stably converges to μ ∈ R, then
vτ+σ,uτ,x,νn (τ+σ),u̇τ,x,ν (τ+σ),μn pointwisely converges to vτ+σ,uτ,x,ν (τ+σ),u̇τ,x,ν (τ+σ),μ.
By using the fiber product of Young measure (see Theorem 4.5 or [22, Theorem
3.3.1]), we deduce that

(ν, μ) �→
∫ T

τ+σ

[ ∫

Z

J (t, vτ+σ,uτ,x,ν (τ+σ),u̇τ,x,ν (τ+σ)μ(t), z)μt (dz)
]

dt

is continuous on R×R. Consequently ν �→ VJ (τ+σ, uτ,x,ν(τ+σ), u̇τ,x,ν(τ+σ))
is continuous on R. Hence the mapping ν �→ ∫ τ+σ

τ
[∫
Z
J (t, uτ,x,ν(t), z)νt (dz)]dt+

VJ (τ + σ, uτ,x,ν(τ + σ), u̇τ,x,ν(τ + σ)) is continuous on R. By compactness of R,
there is a maximum point ν1 ∈ R such that

WJ (τ, x, y)=
∫ τ+σ

τ

[ ∫

Z

J (t, uτ,x,y,ν1(t), z)ν
1
t (dz)

]

dt+VJ (τ+σ, uτ,x,y,ν1(τ+σ)).

Similarly there is μ2 ∈ R such that

VJ (τ + σ, uτ,x,ν1(τ + σ), u̇τ,x,ν1(τ + σ))

=
∫ T

τ+σ

[ ∫

Z

J (t, vτ+σ,u
τ,x,ν1 (τ+σ),u̇τ,x,ν1 (τ+σ),μ2(t), z)μ

2
t (dz)

]

dt

where

vτ+σ,u
τ,x,ν1 (τ+σ),u̇τ,x,ν1 (τ+σ),μ2(t)

denotes the trajectory solution associated with the control μ2 ∈ R starting from
uτ,x,ν1(τ + σ), u̇τ,x,ν1(τ + σ) at time τ + σ defined on [τ + σ, T ]
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

0∈vτ+σ,u
τ,x,y,ν1 (τ+σ),u̇τ,x,y,ν1 (τ+σ),μ2(t)+A(t)vτ+σ,u

τ,x,yν1 (τ+σ),u̇τ,x,y,ν1 (τ+σ),μ2(t),

+ f (t, vτ+σ,u
τ,x,y,ν1 (τ+σ),u̇τ,x,y,ν1 (τ+σ),μ2(t))+ bar(μ2

t ),

vτ+σ,u
τ,x,y,ν1 (τ+σ),u̇τ,x,y,ν1 (τ+σ),μ2(τ + σ) = uτ,x,y,ν1(τ + σ),

v̇τ+σ,u
τ,x,y,ν2 (τ+σ),u̇τ,x,y,ν1 (τ+σ),μ2(τ + σ) = u̇τ,x,y,ν1(τ + σ) ∈ D(A(τ + σ)).

(14)
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Let us set

ν := 1[τ,τ+σ ]ν1 + 1[τ+σ,T ]μ2.

Then ν ∈ R. Letwτ,x,y,ν be the trajectory solution on [τ, T ] associated with ν ∈ R,
that is,

{
0 ∈ ẅτ,x,y,ν(t)+A(t)ẇτ,x,y,ν(t)+f (t, wτ,x,y,ν(t))+ bar(νt ) wτ,x,y,ν(τ ) = x
ẇτ,x,y,ν(τ ) = y ∈ D(A(τ))

By uniqueness of the solution, we have

wτ,x,y,ν(t) = uτ,x,y,ν1(t), ∀t ∈ [τ, τ + σ ],
wτ,x,y,ν(t) = vτ+σ,u

τ,x,y,ν1 (τ+σ),u̇τ,x,y,ν1 (τ+σ),μ2(t), ∀t ∈ [τ + σ, T ].

Coming back to the expression of VJ andWJ , we have

WJ (τ, x, y) =
∫ τ+σ

τ

[ ∫

Z

J (t, uτ,x,y,ν1(t), z)ν
1
t (dz)

]

dt

+
∫ T

τ+σ

[ ∫

Z

J (t, vτ+σ,u
τ,x,ν1 (τ+σ),u̇τ,x,ν1 (τ+σ),μ2(t), z)μ

2
t (dz)

]

dt

=
∫ T

τ

[ ∫

Z

J (t, wτ,x,y,ν(t), z)νt (dz)

]

dt

≤ sup
ν∈R

{ ∫ T

τ

[ ∫

Z

J (t, uτ,x,y,ν(t), z)νt (dz)

]

dt

}

= VJ (τ, x, y).

The proof is complete.

In the above evolution problem, we deal with second-order inclusion of the form

{
0 ∈ üx,y,λ(t)+ A(t)u̇x,y,λ(t)+ f (t, ux,y,λ(t))+ bar(λt ), t ∈ [0, T ]
ux,y,λ(0) = x, u̇x,λ(0) = y ∈ D(A(0))

with perturbed term f and bar(λt ). Now we focus to the evolution inclusion of the
form

{
0 ∈ u̇x,λ(t)+ A(t)ux,λ(t)+ f (t, ux,λ(t))+ bar(λt ), t ∈ [0, T ]
ux,λ(0) = x ∈ D(A(0))

By Theorem 3.1, there is a unique Lipschitz solution ux,λ to this inclusion. Using
the above techniques and Theorem 3.1, we have a result of dynamic principle that
is similar to Theorem 4.9.
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Theorem 4.10 (of dynamic programming principle) Assume the hypothesis and
notations of Theorem 3.1, and let x ∈ E, τ < T and σ > 0 such that τ + σ < T .
Assume that J : [0, T ] ×H × Z → R is bounded and continuous. Let us consider
the value function

VJ (τ, x, y)= sup
ν∈R

∫ T

τ

[∫

Z

J (t, uτ,x,ν(t), z)νt (dz)

]

dt, (τ, x) ∈ [0, T ]×D(A(τ))

where uτ,ν is the Lipschitz solution to the evolution inclusion defined on [τ, T ]
associated with the control ν ∈ R starting from x, at time τ

{
0 ∈ u̇τ,x,ν(t)+ A(t)uτ,x,ν(t)+ f (t, uτ,x,ν(t))+ bar(νt ),
uτ,x,ν(τ ) = x ∈ D(A(τ)).

Then the following holds:

VJ (τ, x) = sup
ν∈R

{ ∫ τ+σ

τ

[∫

Z

J (t, uτ,x,ν(t), z)νt (dz)

]

dt+VJ (τ+σ, uτ,x,ν(τ+σ))
}

with

VJ (τ + σ, uτ,x,ν(τ + σ)) = sup
μ∈R

∫ T

τ+σ

[ ∫

Z

J (t, vτ+σ,uτ,x,ν (τ+σ),μ(t), z)μt (dz)
]

dt

where vτ+σ,uτ,x,ν (τ+σ),μ2 is the Lipschitz solution defined on [τ + σ, T ] associated
with the control μ ∈ R starting from uτ,x,ν(τ + σ) at time τ + σ

⎧
⎪⎪⎨

⎪⎪⎩

0 ∈ v̇τ+σ,uτ,x,ν (τ+σ),μ(t)+ A(t)vτ+σ,uτ,x,ν (τ+σ)),μ(t)
+ f (t, vτ+σ,uτ,x,y,ν (τ+σ),μ(t))+ bar(μt ),

vτ+σ,uτ,x,ν (τ+σ),μ(τ + σ) = uτ,x,ν(τ + σ) ∈ D(A(τ + σ)).

Let us mention a useful lemma. See also [16, 22, 23] for related results.

Lemma 4.7 Assume the hypothesis and notations of Theorem 3.1. Let Z be a
compact subset in H , and M 1+(Z) is endowed with the narrow topology and R

the space of relaxed controls associated with Z. Let� : [0, T ]×H ×M 1+(Z)→ R

be an upper semicontinuous function such that the restriction of � to [0, T ] × B ×
M 1+(Z) is bounded on any bounded subset B of H . Let (t0, x0) ∈ [0, T ] × E. If

2It is necessary to write completely the expression of the trajectory vτ+σ,uτ,x,ν (τ+σ),μ that depends
on (ν, μ) ∈ R × R in order to get the continuous dependence with respect to ν ∈ R of VJ (τ +
σ, uτ,x,ν(τ + σ)).
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maxμ∈M 1+(Z) �(t0, x0, μ) < −η < 0 for some η > 0, then there exist σ > 0
such that

sup
ν∈R

∫ t0+σ

t0

�(t, ut0,x0,ν(t), νt ) dt < −
ση

2

where ut0,x0,ν is the trajectory solution associated with the control ν ∈ R and
starting from x0 at time t0

{
0 ∈ u̇t0,x0,ν(t)+ A(t)ut0,x0,ν(t)+ f (t, ut0,x0,ν(t)+ bar(νt ), t ∈ [t0, T ],
ut0,x0,ν(t0) = x0 ∈ D(A(t0)).

Proof By our assumption maxμ∈M 1+(Z) �(t0, x0, μ) < −η < 0 for some η > 0. As
the function (t, x, μ) �→ �(t, x, μ) is upper semicontinuous, so is the function

(t, x) �→ max
μ∈M 1+(Z)

�(t, x, μ).

Hence there exists ζ > 0 such that

max
μ∈M 1+(Z)

�(t, x, μ) < −η
2

for 0 < t − t0 ≤ ζ and ||x − x0|| ≤ ζ . Thus, for small values of σ , we have

||ut0,x0,ν(t)− ut0,x0,ν(t0)|| ≤ ζ

for all t ∈ [t0, t0 + σ ] and for all ν ∈ R because ||u̇t0,x0,ν(t)|| ≤ K = Constant
for all ν ∈ R and for all t ∈ [0, T ] so that ||ut0,x0,ν(t)|| ≤ L = Constant for
all ν ∈ R and for all t ∈ [0, T ] Hence t �→ �(t, ut0,x0,ν(t), νt ) is bounded and
Lebesgue-measurable on [t0, t0 + σ ]. Then by integrating

∫ t0+σ

t0

�(t, ut0,x0,ν(t), νt ) dt ≤
∫ t0+σ

t0

[

max
μ∈M 1+(Z)

�(t, ut0,x0,ν(t), μ)

]

dt < −ση
2
.

The proof is complete.

Now to finish the paper, we provide a direct application to the viscosity solution
to the evolution inclusion of the form

{
0 ∈ u̇x,λ(t)+ A(t)ux,λ(t)+ f (t, ux,λ(t))+ bar(λt ), t ∈ [0, T ]
ux,λ(0) = x ∈ D(A(0))

where A(t) is a convex weakly compact valued H → cwk(H) maximal monotone
operator.
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Theorem 4.11 Let for every t ∈ [0, T ], A(t) : H → cwk(H) be a convex weakly
compact valued maximal monotone operator satisfying

(H1) there exists a real constant α ≥ 0 such that

dis(A(t), A(s)) ≤ α(t − s) for 0 ≤ s ≤ t ≤ T .

(H2) there exists a nonnegative real number c such that

‖A0(t, x)‖ ≤ c(1+ ‖x‖), t ∈ [0, T ], x ∈ H

(H3) (t, x) �→ A(t)x is scalarly upper semicontinuous on [0, T ] ×H .

Let Z be a compact subset in H , and let R be the space of relaxed controls
associated with Z. Let f : [0, T ] ×H → H be a continuous mapping satisfying

(i) there isM > 0 such that ||f (t, x)|| ≤ M(1+ ||x||) for all (t, x) in [0, T ] ×H ,
(ii) ||f (t, x)− f (t, y)|| ≤ M||x − y|| for all (t, x, y) ∈ [0, T ] ×H ×H .

Assume that J : [0, T ] ×H × Z → R is bounded and continuous. Let us consider
the value function

VJ (τ, x) = sup
ν∈R

∫ T

τ

[ ∫

Z

J (t, uτ,x,ν(t), z)νt (dz)

]

dt, (τ, x) ∈ [0, T ] ×H

where uτ,x,ν is the trajectory solution on [τ, T ] of the evolution inclusion associated
with A(t) and the control ν ∈ R and starting from x ∈ H at time τ

{
0 ∈ u̇τ,x,ν(t)+ A(t, uτ,x,ν(t))+ f (t, uτ,x,ν(t))+ bar(νt ), t ∈ [τ, T ]
uτ,x,ν(τ ) = x ∈ H

and the Hamiltonian

H(t, x, ρ)

= sup
μ∈M 1+(Z)

⎧
⎩−〈ρ, bar(μ)〉+

∫

Z

J (t, x, z)μ(dz)

⎫
⎭+ δ∗(ρ,−f (t, x)−A(t, x))

where (t, x, ρ) ∈ [0, T ] × H × H . Then, VJ is a viscosity subsolution of the HJB
equation

∂U

∂t
(t, x)+H(t, x,∇U(t, x)) = 0, 3

3Where ∇U is the gradient of U with respect to the second variable.
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that is, for any ϕ ∈ C1([0, T ])×H) for which VJ − ϕ reaches a local maximum
at (t0, x0) ∈ [0, T ] ×H , we have

H(t0, x0,∇ϕ(t0, x0))+ ∂ϕ
∂t
(t0, x0) ≥ 0.

Proof Assume by contradiction that there exists a ϕ ∈ C1([0, T ] ×H) and a point
(t0, x0) ∈ [0, T ] ×H for which

∂ϕ

∂t
(t0, x0)+H(t0, x0,∇ϕ(t0, x0)) ≤ −η < 0 for η > 0.

Applying Lemma 3.5 by taking

�(t, x, μ) = −〈∇ϕ(t, x), bar(μ)〉 +
∫

Z

J (t, x, z)μ(dz)

+ δ∗(∇ϕ(t, x),−f (t, x)− A(t, x))+ ∂ϕ
∂t
(t, x)

yields some σ > 0 such that

sup
ν∈R

⎧
⎪⎩

∫ t0+σ
t0

[ ∫

Z
J (t, ut0,x0,ν (t), z)νt (dz)

]

dt −
∫ t0+σ
t0

〈∇ϕ(t, ut0,x0,ν(t), bar(νt )〉 dt

+
∫ t0+σ
t0

δ∗(∇ϕ(t, ut0,x0,ν(t)),−f (t, ut0,x0,ν
n (t))− A(t, ut0,x0,ν(t))) dt

+
∫ t0+σ
t0

∂ϕ

∂t
(t, ut0,x0,ν(t)) dt

⎫
⎪⎭

≤− ση
2

(15)

where ut0,x0,ν is the trajectory solution associated with the control ν ∈ R starting
from x0 at time t0

{
0 ∈ u̇t0,x0,ν(t)+ A(t, ut0,x0,ν(t))+ f (t, ut0,x0,ν(t))+ bar(νt ), t ∈ [t0, T ]
ut0,x0,ν(t0) = x0.

Applying the dynamic programming principle (Theorem 4.10) gives

VJ (t0, x0) = sup
ν∈R

⎧
⎩

∫ t0+σ

t0

[ ∫

Z

J (t, ut0,x0,ν(t), z)νt (dz)

]

dt + VJ (t0

+σ, ut0,x0,ν(t0 + σ))
⎫
⎭.

(16)
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Since VJ − ϕ has a local maximum at (t0, x0), for small enough σ

VJ (t0, x0)− ϕ(t0, x0) ≥ VJ (t0 + σ, ut0,x0,ν(t0 + σ))− ϕ(t0 + σ, ut0,x0,ν(t0 + σ))
(17)

for all ν ∈ R. By (16), for each n ∈ N, there exists νn ∈ R such that

VJ (t0, x0) ≤
∫ t0+σ

t0

[ ∫

Z

J (t, ut0,x0,ν
n(t)), z)νnt (dz)

]

dt

+ VJ (t0 + σ, ut0,x0,ν
n(t0 + σ))+ 1

n
. (18)

From (17) and (18), we deduce that

VJ (t0 + σ, ut0,x0,ν
n(t0 + σ))− ϕ(t0 + σ, ut0,x0,ν

n(t0 + σ))

≤
∫ t0+σ

t0

[ ∫

Z

J (t, ut0,x0,ν
n(t)), z)νnt (dz)

]

dt + 1

n

− ϕ(t0, x0)+ VJ (t0 + σ, ut0,x0,ν
n(t0 + σ)).

Therefore we have

0 ≤
∫ t0+σ

t0

[ ∫

Z

J (t, ut0,x0,ν
n(t)), z)νnt (dz)

]

dt

+ ϕ(t0 + σ, ut0,x0,ν
n(t0 + σ))− ϕ(t0, x0)+ 1

n
. (19)

As ϕ ∈ C1([0, T ] ×H), we have

ϕ(t0 + σ, ut0,x0,ν
n(t0 + σ))− ϕ(t0, x0)

=
∫ t0+σ

t0

〈∇ϕ(t, ut0,x0,ν
n(t)), u̇t0,x0,ν

n(t)〉 dt +
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,ν

n(t)) dt.

(20)

Since ut0,x0,ν
n is the trajectory solution starting from x0 at time t0

{
0 ∈ u̇t0,x0,ν

n(t)+ A(t, ut0,x0,ν
n(t))+ f (t, ut0,x0,ν

n(t))+ bar(νnt ), t ∈ [t0, T ]
ut0,x0,ν

n(t0) = x0

so that (20) yields the estimate
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ϕ(t0 + σ, ut0,x0,ν
n(t0 + σ))− ϕ(t0, x0)

=
∫ t0+σ

t0

〈∇ϕ(t, ut0,x0,ν
n(t)), u̇t0,x0,ν

n(t)〉 dt +
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,ν

n(t)) dt

≤ −
∫ t0+σ

t0

〈∇ϕ(t, ut0,x0,ν
n(t)), bar(νnt )+ f (t, ut0,x0,ν

n(t))〉 dt

+
∫ t0+σ

t0

δ∗(∇ϕ(t, ut0,x0,ν
n(t)),−A(t, ut0,x0,ν

n(t))) dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,ν

n(t)) dt.

(21)

Inserting the estimate (21) into (19), we get

0 ≤
∫ t0+σ

t0

[ ∫

Z

J (t, ut0,x0,ν
n(t)), z)νnt (dz)

]

dt (22)

−
∫ t0+σ

t0

〈∇ϕ(t, ut0,x0,ν
n(t)), bar(νnt )+ f (t, ut0,x0,ν

n(t))〉 dt

+
∫ t0+σ

t0

δ∗(∇ϕ(t, ut0,x0,ν
n(t)),−A(t, ut0,x0,ν

n(t)) dt

+
∫ t0+σ

t0

∂ϕ

∂t
(t, ut0,x0,ν

n(t)) dt + 1

n
.

Then (15) and (22) yield 0 ≤ −ση2 + 1
n

for all n ∈ N. By passing to the limit when n
goes to∞ in this inequality, we get a contradiction: 0 ≤ −ση2 . The proof is therefore
complete.

Existence results for evolution inclusion driven by time-dependent maximal
monotone operators A(t) with single-valued perturbation f or convex weakly
compact valued perturbation F of the form

−u̇(t) ∈ A(t)u(t)+ f (t, u(t))

or

−u̇(t) ∈ A(t)u(t)+ F(t, u(t))

are developed in [7, 8], while existence results for convex or nonconvex sweeping
process in the form

−u̇(t) ∈ NC(t)(u(t))+ f (t, u(t))
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or

−u̇(t) ∈ NC(t)(u(t))+ F(t, u(t))
where C(t) is a closed convex (or nonconvex) moving set and NC(t)(u(t)) is the
normal cone of C(t) at the point u(t) is much studied so that our tools developed
above allow to treat some further variants on the viscosity solution dealing with
some specific maximal monotone operators A(t) or convex or nonconvex sweeping
process such as

{
0 ∈ u̇t0,x0,ν(t)+NC(t)(ut0,x0,ν(t))+ f (t, uτ,x,ν(t))+ bar(νt ), t ∈ [t0, T ]
ut0,x0,ν(t0) = x0

using the subdifferential of the distance function dC(t)x.
We end the paper with some variational limit results which can be applied

to further convergence problems in state-dependent convex sweeping process or
second-order state-dependent convex sweeping process. See [1, 3, 34] and the
references therein.

Theorem 4.12 Let Cn : [0, T ] → H and C : [0, T ] → H be a sequence of convex
weakly compact valued scalarly measurable bounded mappings satisfying

(i) supn supt∈[0,T ]H
(
Cn(t), C(t)

) ≤ M <∞,
(ii) limnH

(
Cn(t), C(t)

) = 0, for each t ∈ [0, T ].
Let (vn) be a uniformly integrable sequence in L1

H ([0, T ]) such that vn converges
for σ(L1

H ([0, T ]), L∞H ([0, T ]) to v ∈ L1
H ([0, T ]), and let (un) be a uniformly

bounded sequence L∞H ([0, T ]) which pointwisely converges to u ∈ L∞H ([0, T ]).
Assume that −vn(t) ∈ NCn(t)(un(t)) a.e., then

u(t) ∈ C(t) a.e. and − v(t) ∈ NC(t)(u(t)) a.e.

Proof For simplicity, let ρn(t) = H
(
Cn(t), C(t)

)
for each t ∈ [0, T ]. Firstly it

is clear that the mappings ρn, t �→ δ∗(−vn(t), Cn(t)), t �→ δ∗(−vn(t), C(t)), and
t �→ δ∗(−v(t), C(t)) are measurable on [0, T ] and integrable by boundedness. By
the Hormander formula for convex weakly compact set (see [19]), we have

|δ∗(−vn(t), Cn(t))− δ∗(−vn(t), C(t))| ≤ ||vn(t)||ρn(t)

so that

δ∗(−vn(t), Cn(t))− δ∗(−vn(t), C(t)) ≥ −||vn(t)||ρn(t).

By −vn(t) ∈ NCn(t)(un(t)), we have δ∗(−vn(t), Cn(t))+ 〈vn(t), un(t)〉 ≤ 0 so we
get the estimation

−||vn(t)||ρn(t)+ δ∗(−vn(t), C(t))+ 〈vn(t, un(t)〉 ≤ 0



72 C. Castaing et al.

or

δ∗(−vn(t), C(t))+ 〈vn(t), un(t)〉 ≤ ||vn(t)||ρn(t).
Note that the mappings t �→ δ∗(−vn(t), C(t)) + 〈vn(t), un(t)〉, and t �→
||vn(t)||ρn(t) are integrable on [0, T ]. Let B a measurable set in [0, T ] and then by
integrating

∫

B

δ∗(−vn(t), C(t))dt +
∫

B

〈vn(t), un(t)〉dt ≤
∫

B

||vn(t)||ρn(t)dt.

We note that the convex integrand H(t, e) = δ∗(e, C(t)) defined on [0, T ] × H is
normal because t �→ H(t, e) is continuous on [0, T ] and e �→ H(t, e) is convex
continuous onH , withH(t, e) ≥ 〈e, u(t)〉 for all (t, e) ∈ [0, T ]×H . Consequently
H(t,−vn(t)) = δ∗(−vn(t), C(t)) ≥ 〈−vn(t), u(t)〉. But (〈−vn, u〉) is uniformly
integrable in L1

R
([0, T ], dt), so that by virtue of the lower semicontinuity of the

integral convex functional [22, Theorem 8.1.16], we have

lim inf
n→∞

∫

B

δ∗(−vn(t), C(t))dt ≥
∫

B

δ∗(−v(t), C(t))dt. (23)

Note that the sequence
(
un(.) − u(.)

)
is uniformly bounded and pointwisely

converges to 0, so that it converges to 0 uniformly on any uniformly integrable
subset ofL1

H ([0, T ], dt); in other terms, it converges to 0 with respect to the Mackey
topology τ(L∞H ([0, T ], dt), L1

H ([0, T ], dt)) (see [15]),4 so that

lim
n→∞

∫

B

〈vn(t), un(t)− u(t)〉dt = 0

because (vn) is uniformly integrable. Consequently

lim
n→∞

∫

B

〈vn(t), un(t)〉dt = lim
n→∞

∫

B

〈vn(t), un(t)−u(t)〉dt+ lim
n→∞

∫

B

〈vn(t), u(t)〉dt

= lim
n→∞

∫

B

〈vn(t), u(t)〉dt =
∫

B

〈v̇(t), u(t)〉dt. (24)

By our assumptions, ρn(t) is bounded measurable and pointwisely converges to 0
and ||vn(t)|| is uniformly integrable; then similarly we have

lim
n

∫

B

||vn(t)||ρn(t)dt = 0. (25)

4If H = R
d , one may invoke a classical fact that on bounded subsets of L∞H the topology

of convergence in measure coincides with the topology of uniform convergence on uniformly
integrable sets, i.e. on relatively weakly compact subsets, alias the Mackey topology. This is a
lemma due to Grothendieck [33, Ch.5 §4 no 1 Prop. 1 and exercice].
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Finally by passing to the limit when n goes to∞ in
∫

B

δ∗(−vn(t), C(t))dt +
∫

B

〈vn(t), un(t)〉dt ≤
∫

B

||vn(t)||ρn(t)dt

and taking into account the above convergence limits (23), (24), and (25), we get
∫

B

δ∗(−v(t), C(t))dt +
∫

B

〈v(t), u(t)〉dt ≤ 0.

As the function t �→ δ∗(−v(t), C(t)) + 〈v(t), u(t) is integrable on [0, T ] and this
holds for every B measurable set in [0, T ], we get

δ∗(−v(t), C(t)))+ 〈v(t), u(t)〉 ≤ 0 a.e.

Furthermore, it is not difficult to check that u(t) ∈ C(t) a.e. using (ii) and the fact
that un(t) ∈ Cn(t) for all n ∈ N and a.e. t ∈ [0, T ]; therefore, we conclude that
−v(t) ∈ NC(t)(u(t)) a.e. The proof is complete.

Our tools allow to treat the variational limits for further evolution variational
inequalities such as

Proposition 4.2 Let Cn : [0, T ] → H and C : [0, T ] ⇒ H be a sequence of
convex weakly valued scalarly measurable bounded mappings satisfying

(i) supn supt∈[0,T ]H
(
Cn(t), C(t)

) ≤ M <∞,
(ii) limnH

(
Cn(t), C(t)

) = 0, for each t ∈ [0, T ].
Let B : H → H be a linear continuous operator such that 〈Bx, x〉 > 0
for all x ∈ H \ {0}. Let (vn) be a uniformly bounded sequence in L∞H ([0, T ])
such that vn σ (L∞H ([0, T ]), L1

H ([0, T ]) converges to v ∈ L∞H ([0, T ]), and let
(un) be a uniformly bounded sequence L∞H ([0, T ]) which pointwisely converges
to u ∈ L∞H ([0, T ]). Assume that−vn(t) ∈ NCn(t)(un(t)+Bvn(t)) for all n ∈ N and
for a.e. t ∈ [0, T ]. Then

u(t)+ Bv(t) ∈ C(t) a.e. and − v(t) ∈ NC(t)(u(t)+ Bv(t)) a.e.

Proof Apply the notations of the proof of Theorem 4.12. Let ρn(t) =
H

(
Cn(t), C(t)

)
for each t ∈ [0, T ]. It is clear that the mappings ρn,

t �→ δ∗(−vn(t), Cn(t)), t �→ δ∗(−vn(t), C(t)), and t �→ δ∗(−v(t), C(t)) are
measurable and integrable on [0, T ]. By the Hormander formula for convex weakly
compact sets (see [19]), we have

|δ∗(−vn(t), Cn(t))− δ∗(−vn(t), C(t))| ≤ ||vn(t)||ρn(t)

so that

δ∗(−vn(t), Cn(t))− δ∗(−vn(t), C(t)) ≥ −||vn(t)||ρn(t).
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By −vn(t) ∈ NCn(t)(un(t)+ Bvn(t)), we have

δ∗(−vn(t), Cn(t))+ 〈vn(t), un(t)+ Bvn(t)〉 ≤ 0.

Whence

δ∗(−vn(t), C(t))+ 〈vn(t), un(t)+ Bvn(t)〉 ≤ ||vn(t)||ρn(t)
Note that the mappings t �→ δ∗(−vn(t), C(t))+ 〈vn(t), un(t)+ Bvn(t)〉, and t �→
||vn(t)||ρn(t) are integrable on [0, T ] so that by integrating on any measurable set
L ⊂ [0, T ]

∫

L

δ∗(−vn(t), C(t))dt +
∫

L

〈vn(t), un(t)〉dt +
∫

L

〈vn(t), Bvn(t)〉dt

≤
∫

L

||vn(t)||ρn(t)dt.

Since (vn) σ (L∞H ([0, T ]), L1
H ([0, T ]) converges to v ∈ L∞H ([0, T ]), it is not

difficult to check that (Bvn) converges for σ(L∞H ([0, T ]), L1
H ([0, T ]) to Bv ∈

L1
H ([0, T ]), arguing as in [11, Theorem 4.1]. As a consequence, the sequence
(un + Bvn) converges for σ(L∞H ([0, T ]), L1

H ([0, T ]) to u + Bv ∈ L∞H ([0, T ]).
From un(t)+ Bvn(t) ∈ Cn(t), we deduce

∫

L

〈e, un(t)+ Bvn(t)〉dt ≤
∫

L

δ∗(e, Cn(t))dt

for every e ∈ H and for every measurable set L ⊂ [0, T ]. By passing to the limit in
this inequality, we get

∫

L

〈e, u(t)+ Bv(t)〉dt ≤ lim sup
n

∫

L

δ∗(e, Cn(t))dt ≤
∫

L

δ∗(e, C(t))dt.

It follows that

〈e, u(t)+ Bv(t)〉 ≤ δ∗(e, C(t)) a.e.

By [19, Proposition III.35], we deduce that u(t) + Bv(t) ∈ C(t) a.e. As in
Theorem 3.1, we have already stated that for every measurable set L ⊂ [0, T ],

lim
n

∫

L

〈un(t), vn(t)〉dt =
∫

L

〈u(t), v(t)〉dt, (26)

lim
n

∫

L

|vn(t)||ρn(t)dt = 0, (27)

lim inf
n

∫

B

δ∗(−v(t), Cn(t))dt ≥
∫

B

δ∗(−v(t), Cn(t))dt. (28)
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Now set ϕ(x) = 〈x, Bx〉 for all x ∈ H . Then ϕ(x) is a nonnegative lower
semicontinuous and convex function defined on H . So we have

∫

L

〈vn(t), Bvn(t)〉dt =
∫

L

ϕ(vn(t))dt.

By lower semicontinuity of convex integral functional [19, 22, 23], we get

lim inf
n

∫

L

〈vn(t), Bvn(t)〉dt

= lim inf
n

∫

L

ϕ(vn(t))dt ≥
∫

L

ϕ(v(t))dt =
∫

L

〈v(t), Bv(t)〉dt.

Taking into consideration the above stated limits (26), (27), (28) and passing to the
limit when n goes to∞ in the inequality

∫

L

δ∗(−vn(t), C(t))dt +
∫

L

〈vn(t), un(t)〉dt +
∫

L

〈vn(t), Bvn(t)〉dt

≤
∫

L

||vn(t)||ρn(t)dt,

we get

∫

L

δ∗(−v(t), C(t))dt +
∫

L

〈v(t), u(t)+ Bv(t)〉dt ≤ 0

for every measurable set L ⊂ [0, T ]. Since the mapping t �→ δ∗(−v(t), C(t)) +
〈v(t), u(t)+ Bv(t)〉 is integrable on [0, T ], we have

δ∗(−v(t), C(t))+ 〈v(t), u(t)+ Bv(t)〉 ≤ 0 a.e.

As u(t)+Bv(t) ∈ C(t) a.e., this yields−v(t) ∈ NC(t)(u(t)+Bv(t)) a.e. The proof
is complete.
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Plausible Equilibria and Backward
Payoff-Keeping Behavior

Yuhki Hosoya

Abstract This paper addresses Selten’s chain store paradox. We view this paradox
as the phenomenon whereby the subgame perfect equilibria (SPEs) of some games
are not credible. To solve this problem, we construct a refinement of Nash equilibria
(NEs) called plausible equilibria. If an NE is included in this refinement, then the
chain store paradox phenomenon does not occur and this equilibrium is credible.
This paper analyzes the properties of this refinement and presents two results. First,
every SPE of a zero-sum game with perfect information is plausible. Second, the
notion of plausibility removes a bad equilibrium of the coordination game.
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1 Introduction

This paper describes a solution to Selten’s [8] chain store paradox. Our approach
differs from the standard approach. We view this paradox as the phenomena
whereby the subgame perfect equilibria (SPEs) of some games are not credible,
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and some Nash equilibria (NEs) are credible even though they are not SPE. This
situation can be solved using a refinement of NE that avoids this paradox. In this
paper, we define such a refinement and demonstrate some of its properties.

We stress that the problem of the chain store paradox still remains, though many
people say that it was solved by Kreps and Wilson [2]. Their study connects this
paradox to the problem of reputation,1 and solves this problem using the notion of
sequential equilibria.2 Most articles and books referring to this paradox mention this
paper, and thus this paradox is treated as the problem of reputation.3

However, the interpretation of the paradox by Kreps and Wilson [2] is different
from that by Selten [8]. More precisely, Kreps and Wilson [2] interpret this paradox
as the inconsistency between the actual behavior of firms reported in Scherer [7]
and the SPE of long-term repetitions of the entry deterrence game. This problem
is different from the problem considered by Selten [8]. Selten stated that this
problem is “an inconsistency between game theoretical reasoning and plausible
human behavior,” and “plausible human behavior” is not the same as the “actual
behavior of firms” in Kreps-Wilson, because Selten’s “behavior” is behavior of a
human that is confronted with an abstract game. Selten’s motivation is devoted
to the abstract game itself, and thus he cannot change the analyzed game from the
simple entry deterrence game to some other game. In contrast, in Kreps-Wilson,
the “actual behavior of firms” means behavior of firms in the real world, and thus
they can modify the game to introduce some imperfect information structure for
explaining this phenomenon.4

We now try to explain the original chain store paradox of Selten [8]. Selten first
constructs two games and demonstrates that most people probably opt against the
strategy of unique SPE in these games. The reason why this strategy is denied is
because there is an alternative strategy that seems to gain a larger payoff. Although

1In the same year, Milgrom and Roberts [5] and Kreps et al. [4] also treated the problem of
reputation.
2See Kreps and Wilson [3] for a detailed argument.
3For example, see Fudenberg and Tirole [1] or Osborne and Rubinstein [6].
4In section 2 of Selten [8], he wrote the following arguments. “As we shall see in section 8, only
the induction theory is game theoretically correct. Logically, the induction argument cannot be
restricted to the last periods of the game. There is no way to avoid the conclusion that it applies
to all periods of the game. Nevertheless the deterrence theory is much more convincing. If I had
to play the game in the role of player A, I would follow the deterrence theory. I would be very
surprised if it failed to work. From my discussions with friends and colleagues, I get the impression
that most people share this inclination. In fact, up to now I met nobody who said that he would
behave according to the induction theory. My experience suggests that mathematically trained
persons recognize the logical validity of the induction argument, but they refuse to accept it as
a guide to practical behavior.” The ground for our claim that Selten’s view of this paradox is a
conflict between theory and experiments is the above paragraphs. Therefore, Selten cannot solve
this paradox by modifying the game. However, Kreps and Wilson introduce a (potential) existence
of tough player and solve this problem. The existence of tough player means that they modify the
game from Selten’s chain store game, and thus this approach is not the solution of the original
chain store paradox considered by Selten. In contrast, the notion of DIP (we will define this term
later) can reflect Selten’s original idea to some extent.
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this alternative strategy is not the best response for the strategy profile of unique
SPE, it seems to be more profitable than the strategy of SPE, since if he/she chooses
this strategy, then other players will probably change their strategy in response.

It is useful to consider the first type of chain store game of Selten [8]. This game
has 21 players and consists of 20 stages. In the i-th stage, player i chooses either E
or N. If player i chooses N, then he/she gains payoff 1 and player 0 gains payoff 5.
Otherwise, player 0 chooses either A or C. If he/she chooses A, then both players i
and 0 gain payoff 0. If he/she chooses C, then both players i and 0 gain payoff 2.

The unique SPE of this game is as follows: player 0 always chooses C , and
every other player chooses E. Selten [8] calls this strategy the inductive theory.
Meanwhile, Selten [8] introduces another strategy, called the deterrence theory. In
deterrence theory, player 0 chooses A until stage 17 and chooses C in stages 18, 19,
and 20.

If SPE arises, then player 0 gains 40. Suppose that player 0 chooses to follow the
deterrence theory. If no other player deviates from the SPE strategy, then the payoff
of player 0 is only 6. However, this scenario is not realistic, since late players can
predict that player 0 will choose A, and if so, N is more profitable than E. If more
than seven people change their choice, then the payoff for player 0 is more than 41.
Hence, the deterrence theory seems to be more profitable than the inductive theory.
This is the original chain store paradox.

We simplify this paradox as follows:

1. Suppose that some NE s∗ tends to be realized.
2. Player i intentionally changes his/her action to something different from that

in s∗.
3. Other players observe this action and change their action according to “some

criterion.”
4. Player i gains a payoff more than that in s∗. Thus, player i rejects strategy s∗i .
5. s∗ is not realized.

Thus, we want to define a refinement of NE in which these phenomena do not
occur. To do this, we must clarify the notion of “some criterion” above. In the chain
store paradox, players 1-20 mispredict the choice of player 0 and therefore change
their action to a more sound choice. This “sound choice” seems to be the maximin
behavior. Therefore, we assume that this criterion is the maximin criterion
and thus define a refinement called the plausible equilibrium. Roughly speaking,
plausible equilibria are NEs where no player can gain when he/she changes his/her
action to control other players’ actions.

Together with the above notion, we define the degree of implausibility (DIP) of
NE. In our definition, an NE is plausible if and only if the DIP of this NE is zero.
The reason why we consider DIP is that the plausibility is too strict and there might
be no plausible equilibrium in many games. For example, Selten’s chain store game
has no plausible equilibrium. In contrast, there is an NE whose DIP is 1 in Selten’s
game, which seems to correspond with the deterrence theory. The DIP of the unique
SPE in Selten’s game is 12, which is much higher than in the above NE. We think
that this is an explanation for Selten’s original chain store paradox.
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Using the notion of plausible equilibria, we can interpret likely behavior in an
ordinal coordination game. That is, the good equilibrium is a unique plausible
equilibrium of a long-term repeated game. We can interpret this result as follows:
if the bad equilibrium tends to occur, player 1 denies this action and chooses the
strategy of the good equilibrium. Then, after the next period, player 2 changes his
action to the same strategy. Although player 1 loses his/her payoff in the first period,
he/she eventually gains if the game is sufficiently long. Hence, the bad equilibrium
is not plausible. Meanwhile, player 1 can change his/her action even when the good
equilibrium tends to occur. However, this change cannot improve his/her long-run
payoff. Therefore, the good equilibrium remains plausible.

In Sect. 2, we provide a rigorous definition of plausible equilibria and analyze
some properties of this solution. In Sect. 3, we introduce several applications where
plausible equilibria have interesting features. Section 4 presents our conclusions.

2 Main Result

2.1 The Backward Payoff-Keeping Behavior

Although our purpose is to define plausible equilibria, we need some preparation.
The maximin criteria are usually defined in a strategic form game, and thus we need
to modify them for an extensive form game. Hence, we initially define the criteria
of actions in the extensive form game corresponding to the maximin criteria, named
the backward payoff-keeping behavior.5

Definition 2.1 Consider a finite game.6 The kept value for player i at a history
h, denoted by xi(h), is defined recursively. (The function P(h) denotes the player
function and c denotes the nature.)

If h is terminal, then xi(h) is simply the payoff of player i at h.
Next, suppose that h is not terminal and P(h) �= i. Let V (h) be the set of all

histories h′ = (h, a), where a ∈ A(h), and suppose that for any h′ ∈ V (h), the kept
value xi(h′) has already been defined.

If P(h) = c, then xi(h) is the expectation of xi(h′) over V (h).
If P(h) = j and i �= j �= c, then

xi(h) = min
h′∈V (h)

xi(h
′).

5Although there are many definitions of the extensive game, we basically follow Ch.11 of Osborne
and Rubinstein [6].
6In this paper, the terminology “finite game” means a game that has the following two properties:
(1) the length of the history h ∈ H is bounded by some finite number, and (2) for every history
h ∈ H , the set A(h) of possible choices is finite.
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Finally, suppose that P(h) = i and I is the information set with h ∈ I . Suppose
also that for any h′ ∈ I and any a ∈ A(h), the kept value xi((h′, a)) has already
been defined.7 Then,

xi(h) = max
a∈A(h)

min
h′∈I

xi((h
′, a)),

and let V b(h) be the set of all actions a ∈ A(h) such that the following equality
holds:

min
h′∈I

xi((h
′, a)) = xi(h).

We call an element of V b(h) the backward payoff-keeping behavior at h.

Note that, the above definitions are not well-defined if several assumptions of the
game do not hold. Clearly, in any game with an infinite time horizon, we cannot
define the kept value. Additionally, in the class of imperfect recall games, there are
many games in which the kept value cannot be defined at several nodes. Figure 1
shows such an example.

In Fig. 1, there are two information sets such that each one is an ancestor of
another one. However, there exists a game in which kept value cannot be defined
even if the above phenomenon is prohibited. For example, suppose that N = {1, 2},
and at time 1, player 1 chooses A, B, or C. At times 2 and 3, player 2 chooses N or
S, and the information partition of player 2 is

{{A,BN,BS}, {B,CN,CS}, {C,AN,AS}}.

Fig. 1 A game in which the
kept value cannot be defined

1

2

2

7Note that, because h, h′ ∈ I , we must have A(h) = A(h′).
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Then, the kept value of player 2 cannot be defined in this case. Actually, to
define x2(A), the value x2(AN) is needed. Because AN is included in the same
information set asC, to define x2(AN), the value x2(CN) is needed. Again, because
CN is included in the same information set as B, to define x2(CN), the value
x2(BN) is needed, which is the same as x2(A). Therefore, we have that to define
x2(A), the value x2(A) itself is needed, which is impossible.

To avoid such a case, we should define a notion to ensure the well-definedness
of the kept value. For any two information sets I, J of player i, we write I �i J if
there exists h ∈ J and (h, h′) ∈ I .8 We say that a game has a no-cycle information
structure if �i is acyclic for every i.

Clearly, every perfect information game has a no-cycle information structure.
Actually, the following proposition holds.

Proposition 2.1 Every perfect recall game has a no-cycle information structure.

Proof First, remember the definition of the perfect recall game. Let h =
(a1, . . . , a�) be a history and for k = 0, . . . , �, (a1, . . . , ak) ∈ Ik , where Ik
is an information set. We assume that P(h) = i. Let {k1, . . . , kp} denotes
the set of all k such that Ik is an information set of i. We define Xi(h) =
{Ik1 , ak1+1, . . . , Ikp−1, akp−1, Ikp }. This function Xi is called the record function
for player i, and the game is perfect recall if h, h′ ∈ I and P(h) = i, then
Xi(h) = Xi(h′).

Suppose the game does not have a no-cycle information structure. Then, there
exists a finite sequence of information sets I1, . . . , Ik of player i such that hj ∈
Ij and

I1 �i I2 �i . . . �i Ik �i I1.

By definition, there exist h1
j , h

2
j ∈ Ij and h3

j such that h1
j = (h2

j+1, h
3
j ) for every

j = 1, . . . , k, where h2
k+1 means h2

1. If the game is perfect recall, the value of the
record function Xi(h1

j ) coincides with Xi(h2
j ). Therefore, we have that there exist

h∗3 ∈ I3 and h+2 such that h2
2 = (h∗3, h

+
2 ), and consequently, there exists a finite

sequence h∗1, h∗2, . . . , h∗k, h∗k+1 and h+1 , . . . , h
+
k such that h∗j ∈ Ij , h∗j = (h∗j+1, h

+
j )

for j = 1, . . . , k, and h∗k+1 ∈ I1. This implies that Xi(h∗1) �= Xi(h
∗
k+1), a

contradiction. �
The next proposition ensures that our definition of the kept value is meaningful.

Proposition 2.2 The kept value xi(h) is well-defined at any history h ∈ H if and
only if the game has a no-cycle information structure.

Proof Suppose that the game has a no-cycle information structure. First, choose
any history h with P(h) = i, and let I be the information set of i that includes h.
We will show that the kept value xi(h) can be defined if xi((h′, h′′)) can be defined

8If h = (a1, . . . , ak) and h′ = (ak+1, . . . , a�), then (h, h′) is an abbreviation of (a1, . . . , a�).
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for any history (h′, h′′) such that h′ ∈ I and P((h′, h′′)) = i. It suffices to show
that xi((h′, h′′)) can be defined for every history (h′, h′′) such that h′ ∈ I and the
length of h′′ is greater than 0. We use mathematical induction on k with the length
n − k of h′′ such that (h′, h′′) ∈ H and h′ ∈ I , where n is the maximal length of
such h′′.9 If k = 0, then (h′, h′′) is terminal, and thus xi((h′, h′′)) can be defined.
Suppose that xi((h′, h′′)) can be defined for any (h′, h′′) ∈ H such that h′ ∈ I
and the length of h′′ is greater than n − k. Choose any h′′ such that (h′, h′′) ∈ H ,
h′ ∈ I and the length of h′′ is equal to n−k. If (h′, h′′) is terminal, then xi((h′, h′′))
can be defined. If P((h′, h′′)) = i, then xi((h′, h′′)) can be defined by our initial
assumption. Otherwise, either P((h′, h′′)) = c or i �= P((h′, h′′)) �= c. If the former
holds, then xi((h′, h′′)) is the expectation of xi((h′, h′′, a)) over A((h′, h′′)). If the
latter holds, then xi((h′, h′′)) is the minimum of xi((h′, h′′, a)) with respect to a ∈
A((h′, h′′)). In both cases, because the length of (h′′, a) is n− k+ 1, xi((h′, h′′, a))
is defined by the assumption of the mathematical induction, and thus xi((h′, h′′))
can be defined. Hence, our claim holds.

Now, suppose that xi(h) cannot be defined for some h ∈ H . Let I ∗ be the set of
all information set of player i such that xi(h) is undefined for h ∈ I . Because I ∗ is
finite and �i is acyclic, there exists a maximal element I ∗ ∈ I ∗ with respect to �i .
If h ∈ I ∗ and (h, h′) ∈ I for some information set I of player i, then I �i I ∗ and
thus I /∈ I ∗. Therefore, the kept value xi((h, h′)) can be defined. As we argued
above, we can define xi(h) for h ∈ I ∗, a contradiction. Therefore, if the game has a
no-cycle information structure, then the kept value is well-defined.

Next, suppose that �i has a cycle: that is,

I1 �i I2 �i . . . �i Im �i I1.

Choose any hj ∈ Ij . Then, to define xi(hj ), we need the value xi(hj−1), where
j − 1 = m if j = 1. Thus, to define xi(h1), the value xi(h1) itself is needed, which
is impossible. This completes the proof. �

In the rest of this paper, we assume unless otherwise stated that the game is finite
and has a no-cycle information structure.

2.2 The Plausible Equilibria

We can now define our refinement of NE.
Consider an extensive form game �. Let ui(s) denote the payoff of player i

when the strategy profile s = (s1, . . . , sn) is realized. Suppose that s∗ is an NE
of �. Define T s

∗
i,k as the set of all strategy profiles t = (t1, . . . , tn) that satisfies

the following property. Let J be an information set owned by j �= i. For each

9Note that n > 0 because h is not terminal.
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h = (a1, . . . , aα) ∈ J , let q(h) be the number of β ≤ α such that if J ′ is the
information set including (a1, . . . , aβ−1) owned by j ′ with j �= j ′ �= c, then aβ is
different from the choice of s∗

j ′ . In other words, q(h) is the number of past actions
of other players than j that is inconsistent with the given strategy profile s∗. Define
p(J ) = minh∈J q(h). If p(J ) ≤ k, then tj must choose the same action as that
chosen by s∗j . If p(J ) > k, then tj must choose some backward payoff-keeping
behavior at J . ti is an arbitrary strategy of i.

Definition 2.2 The degree of implausibility(DIP) of an NE s∗ is K if and only if
K is the maximal number of k such that ui(s∗) ≥ ui(t) for any i ∈ N and any
t ∈ T s∗i,k . An NE s∗ is plausible if the DIP of this NE is zero.

We interpret the chain store paradox as the possible existence of doubtful SPEs.
The notion of plausible equilibria solves this problem: if an NE is plausible, then
this NE is credible, and thus we can avoid the chain store paradox.

Note that the unique SPE of Selten’s chain store game is not plausible. Here, we
confirm this result. Let s∗ be the unique SPE of this game. Then player 0 chooses
C at every node, and the other players choose E at every node. Now, let ti be the
following:

(i) t0 is “always A.”
(ii) t1, . . . , t11 is “always E,” and for i > 11, ti is “choose E if A or N is chosen

less than twelve times, and choose N otherwise.”

Then t = (t0, . . . , t20) ∈ T s∗0,11. We can easily compute

u0(t) = 45 > 40 = u0(s
∗),

and thus the DIP of s∗ is greater than 11. In fact, we can easily show that the DIP of
this s∗ is exactly 12.

In contrast, there is an NE s+ of Selten’s game for which the DIP is 1. In this
NE, s+0 is “always A,” and s+i is “always N.” Note that in this NE, player 0 gains

the highest payoff in this game. Therefore, u0(s
+) ≥ u0(t) for all t ∈ T s+0,1. Next,

for player i > 0, either ui(t) = 1 or ui(t) = 0 whenever t ∈ T s+i,1 , and ui(s+) = 1.

Meanwhile, ui(t) = 2 for t ∈ T s+i,0 , where ti is “always E.” Therefore, the DIP of s+
is 1.

Note that s+ is very similar to the “deterrence theory” in Selten’s explanation.
Thus, we consider the notion of DIP to resolve Selten’s chain store paradox. In
Selten’s game, the DIP of the unique SPE is too higher than an NE, and thus it is
implausible.

In Selten’s game, there is no plausible equilibrium. Therefore, plausible equilib-
ria may be absent even if the game has perfect information. If there is no plausible
equilibrium, then an NE with a least DIP may be substituted for the plausible
equilibrium. In Selten’s game, the above s+ satisfies this requirement.

By definition, plausible equilibria tend to be absent when T s
∗
i,0 grows. Since T s

∗
i,0

is larger when the information partition is finer, games with perfect information
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seem to rarely ensure the existence of plausible equilibria. Additionally, plausible
equilibria tend to be absent when the interests of players conflict. In fact, the
following proposition holds.

Proposition 2.3 For an NE s∗, if ui(s∗) ≥ ui(s) for any i and any strategy profile
s, then s∗ is plausible.

Proof By assumption,

ui(s
∗) ≥ ui(t)

for every t ∈ T s∗i,0, and thus our claim is correct. �
Therefore, one might consider that plausible equilibria to usually be absent for

games with perfect information or when the players’ interests conflict deeply.
However, the following theorem completely contradicts the above intuition.

Theorem 2.1 Let � be any two-person finite perfect information zero-sum game,10

and let s∗ be any SPE of �. Then, s∗ is plausible.

Proof First, we introduce a lemma that helps to prove the theorem.

Lemma 2.1 Let sbi be a strategy of player i that consists solely of backward payoff-
keeping behaviors. Then sbi is a maximin strategy of player i. Moreover, the kept
value of player i at any h is the maximin value of player i in the subgame whose
root is h.

Proof We will prove this lemma by mathematical induction with respect to the
maximum length of histories n.

Suppose n = 0. Then, the set H of all histories is {∅}, and every player has the
strategy set {∅}. Thus, sbi = ∅ and it is clearly the maximin strategy. Moreover, the
kept value of the root is simply the payoff of player i, which is clearly the maximin
value.

Next, assume that the lemma is correct when n ≤ m− 1 and that � is any game
where n = m. For history h �= ∅, the induction hypothesis implies that xi(h) is the
maximin value of the subgame whose root is h. Therefore, it suffices to show that
sbi is a maximin strategy of player i and xi(∅) is the maximin value of player i.

Now, let A(∅) = {a1, . . . , aN }, �k be the subgame whose root is ak , ski (resp.

s
b,k
i ) be the restriction of si (resp. sbi ) to �k , and uki be the payoff function of player

i at �k . By the induction hypothesis, sb,ki is the maximin strategy of �k and xi(ak)
is the maximin value of �k . Therefore,

xi(ak) = max
ski

min
skj

ui

(
ski , s

k
j

)
= min

skj

ui

(
s
b,k
i , s

k
j

)
.

10That is, the sum of the payoff at any terminal node is always zero.
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First, suppose that P(∅) = i. Then, sbi chooses an element of the argmax of xi(ak)
at ∅, which is denoted by ak∗ . Then,

min
sj
ui

(
sbi , sj

)
= min

sk
∗
j

ui

(
s
b,k∗
i , sk

∗
j

)

= xi(ak∗)
= max

k
xi(ak)

= max
k

max
ski

min
skj

ui

(
ski , s

k
j

)

= max
si

min
sj
ui(si , sj ),

and thus, sbi is the maximin strategy of �. Moreover,

xi(∅) = max
k
xi(ak) = max

si
min
sj
ui(si , sj ).

Therefore, the lemma is correct in this case.
Second, suppose that P(∅) = j , where i �= j �= c. Then, for any strategy si of

player i,

min
sj
ui

(
sbi , sj

)
= min

k
min
skj

ui

(
s
b,k
i , s

k
j

)

≥ min
k

min
skj

ui

(
ski , s

k
j

)

= min
sj
ui(si, sj ),

and thus sbi is the maximin strategy of �. Moreover,

xi(∅) = min
k
xi(ak) = min

k
min
skj

ui

(
s
b,k
i , s

k
j

)
= min

sj
ui

(
sbi , sj

)
.

Hence, xi(∅) is the maximin value, as claimed.
Finally, suppose that P(∅) = c and pk denotes the probability of choosing ak .

Then, for any strategy si of player i,

min
sj
ui

(
sbi , sj

)
=

∑

k

pk min
skj

ui

(
s
b,k
i , s

k
j

)

≥
∑

k

pk min
skj

ui

(
ski , s

k
j

)

= min
sj
ui(si, sj ),
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and thus, sbi is also the maximin strategy. Moreover,

xi(∅) =
∑

k

pkxi(vk)

=
∑

k

pk min
skj

uki

(
s
b,k
i , s

k
j

)

= min
sj
ui

(
sbi , sj

)

= max
si

min
sj
ui(si , sj ),

which completes the proof of the lemma. �
We now prove the theorem. Choose any SPE s∗ of the game and take any t =

(ti , tj ) ∈ T s∗i,0. For any history h ∈ H , let �h denote the subgame starting from h, thk
(resp. s∗,hk ) be the restriction of tk (resp. s∗k ) to �h, and uhk be the payoff function of
�h, where k = i or k = j .

First, choose any h ∈ H and suppose that the realized play by t is indistinguish-
able from that by s∗ for player j on �h. Then the choice of thj at any realized history

is identical to that of s∗,hj . Hence,

uhi

(
thi , t

h
j

)
= uhi

(
thi , s

∗,h
j

)
≤ uhi

(
s
∗,h
i , s

∗,h
j

)
,

since s∗,hi is a best response of s∗,hj .
Second, suppose that ui(t) > ui(s∗). There exists a history h that is realized by

both s∗ and t with positive probability and such that uhi (t
h) > uhi (s

∗,h).11 Let V be
the set of such histories and h∗ be a member of V with maximal length. Note that
h∗ is not terminal. By definition of h∗, there exists an action a ∈ A(h∗) such that for
w = (h∗, a), uwi (tw) > uwi (s∗,w) and a is realized by t with positive probability.
Then, w /∈ V by definition of h∗, and thus a is not realized by s∗. Because t ∈ T s∗i,0,
this implies that P(h∗) = i. By the previous lemma, the strategy twj of player j in
�w is the maximin strategy, and thus satisfies

min
swi

uwj (s
w
i , t

w
j ) = max

swj

min
swi

uwj (s
w
i , s

w
j ).

Since the game is zero-sum,

−min
swi

uwj (s
w
i , t

w
j ) = max

swi

uwi (s
w
i , t

w
j )

11For example, ∅ satisfies this condition.
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and

−max
swj

min
swi

uwj (s
w
i , s

w
j ) = min

swj

max
swi

ui(s
w
i , s

w
j ).

Therefore, we have

max
swi

uwi (s
w
i , t

w
j ) = min

swj

max
swi

uwi (s
w
i , s

w
j ).

Clearly,

max
swi

uwi (s
w
i , t

w
j ) ≥ uwi (twi , twj ).

Since s∗ is SPE and the game is zero-sum two-person, we also have

min
swj

max
swi

uwi

(
swi , s

w
j

)
= uwi

(
s
∗,w
i , s

∗,w
j

)
.

Hence,

uwi

(
s
∗,w
i , s

∗,w
j

)
≥ uwi

(
twi , t

w
j

)
,

which contradicts the definition of w. This completes the proof. �

3 Applications

3.1 The Coordination Game

Consider the 2-repeated game with the following stage game.

C D

A (3,3) (0,0)

B (0,0) (1,1)

Then, both ((A, always A), (C, always C)) and ((B, always B), (D, always D))
are SPE. Proposition 2.3 says that the former is plausible. Meanwhile, it can easily
be shown that the latter is not plausible.

More generally, consider the following game where a, b > 0.
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C D

A (a,a) (0,0)

B (0,0) (b,b)

Then both (A,C) and (B,D) are NE of this game. Now, we say an NE (X, Y ) is
steady-state plausible if, for anyN , (always take X, always take Y ) is plausible in
an N -repeated game with this stage game. Then it can easily be verified that (A,C)
is steady-state plausible if and only if a ≥ b.

Hence, the notion of steady-state plausibility removes the bad equilibrium. The
interpretation of this feature is the following. Suppose that a bad equilibrium tends
to become the steady state. If player 1 despises this equilibrium, then he/she can
change his/her choice. If he/she changes his/her choice, the payoff of this stage is
0. However, in the following stage, player 2 can adapt his/her choice to player 1.
Thus, the payoff increases. If N is sufficiently large, then their long-run payoffs can
be improved. Therefore, this equilibrium is not plausible.

In contrast, the good equilibrium remains steady-state plausible, since no change
of a player’s choice improves his/her payoffs.

3.2 The Battle of Sexes

Consider the following game:

C D

A (2,1) (0,0)

B (0,0) (1,2)

Then it can easily be verified neither (A,C) nor (B,D) are steady-state plausible.
This feature indicates that in this situation, conflict tends to occur and no equilibrium
seems to be the steady state.

3.3 Cournot Oligopoly

Consider a simple linear Cournot game. Suppose that the inverse demand is p(y) =
1500 − y and the cost of i is ci(yi) = 300yi . The unique NE of this game is
(400, 400). Next, consider 2-repeated game with this stage game. Define

s∗ = ((400, always 400), (400, always 400)),

t = ((401, always 600), (400, always 0 except player 1 takes 400 in stage 1)).

Then we can verify that t ∈ T s∗1,0 and u1(t) > u1(s
∗). Hence s∗ is not plausible.
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This seems to be strange, since t is a very strange strategy profile. In first stage,
player 1 changes his choice very small. Then player 2 follows the maximin behavior
in second stage, which is 0. This does not seem to be persuasive.

This example shows that if the strategy space is very wide, then the notion of
plausible equilibria might be too strict. Even if an SPE is not plausible, the reason
why it is not plausible might be absurd.

We should mention that this argument does not reduce the conviction of plausible
equilibria. This argument only tells us that some non-plausible SPEs might be
credible enough.

4 Conclusion

In this paper, we have proposed a refinement of SPE in which the phenomenon
similar to the chain store paradox does not occur. Further, we have verified that
two-person zero-sum games must have this refinement.

Future tasks include finding a broader class of games than zero-sum games in
which this refinement is not absent and to construct a computation method for this
refinement.
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measures. There had already been fragmentary study on nonadditive measures and
nonlinear integrals, but its importance was reaffirmed by a series of experiments
in 1961, known as the “Ellsberg Paradox” in decision theory in which people’s
choices violate the postulates of subjective expected utility [6]. After that, by using
the Choquet and Sugeno integrals with respect to nonadditive measures, expected
utility theory has been reformulated and applied to various problems in decision-
making [9, 10] and economics of pessimism and optimism [27].

The starting point for a systematic study of nonadditive measures and nonlinear
integrals is a work on fuzzy measures by Sugeno [36] in 1974 in terms of appli-
cations to engineering and a work on submeasures by Dobrakov [5] interestingly
in the same year in terms of purely mathematical interest. After that, a wide range
of studies, both theory and application, has been made by many mathematicians,
engineers, and economists, and now it turns out that various important theorems in
ordinary measure theory can be established under practical and weaker additivity
and continuity of measures. Early in the 1990s, those studies were summarized
in the textbooks by Wang and Klir [41, 42], Denneberg [4], and Pap [28]. In
this way, the study of nonadditive measures and nonlinear integrals is based on
steady demands from researchers in the field of engineering and social sciences and
considered as a new theory in which “additivity” is removed from measure theory
and “linearity” is removed from integration theory.

Nonlinear integrals are important in terms of expected utility theory, subjective
evaluation problem, and the refinement of measure and integration theory, in
which the Lebesgue integral may not be a reasonable integral due to the lack
of the additivity of measures. Moreover, in mathematical theory, addition and
multiplication are basic binary operations, but from the engineering aspect, in
addition to those, lattice operations such as supremum and infimum are often used.
Therefore, depending on each specific problem in application fields, an appropriate
integral is selected from among the Choquet integral defined by addition and
multiplication, the Sugeno integral defined by supremum and infimum, and the
Shilkret integral defined by supremum and multiplication.

In order to put those nonlinear integrals into practical use and aim for application
to various fields, it is indispensable to establish convergence theorems assuring that
the limit of the integrals of a sequence of functions is the integral of the limit
function. In fact, in the engineering field those convergence theorems are considered
to imply the robustness, the stability, and the non-chaotic state of aggregation
processes. However, they have individually been discussed for each of the nonlinear
integrals up to the present, so that the formulations of theorems and their proof
methods deeply depend on the definition and properties peculiar to each integral.

In this article, a unified approach to convergence theorems of nonlinear integrals
is introduced based on a series of papers [12–15, 17–20]. In Sect. 2 notation and
terminologies are prepared, and in Sect. 3 typical nonlinear integrals such as the
Choquet, Šipoš, Sugeno, and Shilkret integrals are introduced. In Sect. 4 nonlinear
integrals are considered as nonlinear integral functionals defined on an appropriate
domain, and several properties common to those integrals are described in terms
of the integral functionals. Among them, the perturbation of integral functionals
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plays an essential role in our unified approach to convergence theorems. In Sect. 5,
by using the properties of integral functionals given in Sect. 4, in particular, the
perturbation of integral functionals, some of the important convergence theorems
of nonlinear integrals, such as the monotone convergence theorem, the bounded
convergence theorem, and the Vitali convergence theorem, are formulated in a
unified way regardless of the types of integrals. Section 6 contains concluding
remarks on the significance of the study of the Šipoš integral and a future task.

2 Preliminaries

Let X be a nonempty set and A a field of subsets of X. Let R = (−∞,∞) and N

denote the set of all real numbers and the set of all natural numbers, respectively.
Let R := [−∞,∞] be the set of all extended real numbers with usual total order
and algebraic structure. It is explicitly assumed that

(±∞) · 0 = 0 · (±∞) = 0,

since this proves to be convenient in measure and integration theory. In order that
every nonempty subset A of R always has the supremum and the infimum in R, let
supA := ∞ if A is not bounded from above in R and infA := −∞ if A is not
bounded from below in R. In addition, let inf ∅ := ∞.

For any a, b ∈ R, let a ∨ b := max{a, b} and a ∧ b := min{a, b}. For any
family {fα}α∈� of functions fα : X → R, the supremum function supα∈� fα and
the infimum function infα∈� fα are defined pointwise by

(sup
α∈�
fα)(x) := sup

α∈�
fα(x) and ( inf

α∈� fα)(x) := inf
α∈� fα(x)

for each x ∈ X. In particular, for any f, g : X → R, their supremum and infimum
functions are denoted by f ∨ g and f ∧ g, that is, for each x ∈ X,

(f ∨ g)(x) := f (x) ∨ g(x) and (f ∧ g)(x) := f (x) ∧ g(x).

A function f : X → R is called A -measurable if {f ≥ t}, {f > t} ∈ A for
every t ∈ R and the set of all such functions is denoted by F (X). Let F0(X) :=
{f ∈ F (X) : f is finite valued}, F+(X) := {f ∈ F (X) : f ≥ 0}, and F+

0 (X) :=
{f ∈ F0(X) : f ≥ 0}. If f, g : X → R are A -measurable and c ∈ R, then the
functions f+ := f ∨ 0, f− := (−f ) ∨ 0, |f | := f ∨ (−f ), cf , f + c, (f − c)+,
f ∨ g, and f ∧ g are all A -measurable, and

f = f ∧ c + (f − c)+
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holds. Every function taking only a finite number of real numbers is called simple
and S (X) denotes the set of all A -measurable, simple functions on X. Let
S +(X) := {f ∈ S (X) : f ≥ 0}.

For a sequence {fn}n∈N ⊂ F (X) and f ∈ F (X), the symbol fn → f denotes
pointwise convergence, that is, fn(x) → f (x) for every x ∈ X. It is written as
fn ↑ f if {fn}n∈N is increasing and as fn ↓ f if {fn}n∈N is decreasing. For a net
{fα}α∈� of functions, fα → f , fα ↑ f , and fα ↓ f are similarly defined. Even in
the case where A is a field, for any f ∈ F+(X), there is an increasing sequence
{hn}n∈N ⊂ S +(X) of simple functions such that hn ↑ f . If f is bounded, then hn
uniformly converges to f .

In this article, the extended real numbers are handled. Therefore, in order to avoid
ambiguity of expression, when a positive number c can take the positive infinity, it is
clearly represented as c ∈ (0,∞]. In other words, c > 0 always means c ∈ (0,∞).
The same notation is also used in other cases.

The definition of a nonadditive measure is mathematically quite simple.

Definition 2.1 A set function μ : A → [0,∞] is called a nonadditive measure on
X if it satisfies

(i) μ(∅) = 0 (boundedness from below),
(ii) μ(A) ≤ μ(B) whenever A,B ∈ A and A ⊂ B (monotonicity).

A nonadditive measure is also referred to as a monotone measure, a fuzzy
measure, and a capacity in the literature.

Instead of the monotonicity of Definition 2.1, if condition

(iii) whenever A,B ∈ A and A ∩ B = ∅,

μ(A ∪ B) = μ(A)+ μ(B) (finite additivity)

is assumed, then μ is called a finitely additive measure and if condition

(iv) whenever An ∈ A (n = 1, 2, . . . ),
⋃∞
n=1An ∈ A , and Ai ∩ Aj = ∅ (i �= j),

μ

( ∞⋃

n=1

An

)

=
∞∑

n=1

μ(An) (σ -additivity)

is assumed, then μ is called a σ -additive measure. Every finitely additive measure
and every σ -additive measure are nonadditive measures since they are monotone.

In what follows, M (X) denotes the set of all nonadditive measures on X.
If μ(X) < ∞, then μ is called finite and Mb(X) denotes the set of all finite
nonadditive measures onX. Forμ ∈Mb(X), its dual μ̄ : A → [0,∞) is defined by

μ̄(A) := μ(X)− μ(X \ A), A ∈ A .

It is obvious that ¯̄μ = μ. If μ is finitely additive, then μ̄ = μ.
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For a sequence {An}n∈N ⊂ A and A ∈ A , the symbol An ↑ A denotes that
{An}n∈N is increasing and A = ⋃∞

n=1An, and the symbol An ↓ A denotes that
{An}n∈N is decreasing and A = ⋂∞

n=1An. Let χA be the characteristic function of
a set A.

The continuity of nonadditive measures can be defined in the same way as
ordinary measures. A nonadditive measure μ : A → [0,∞] is called continuous
from above if μ(An) → μ(A) whenever {An}n∈N ⊂ A , A ∈ A , and An ↓ A and
called conditionally continuous from above if μ(An) → μ(A) whenever An ↓ A
and μ(A1) < ∞. It is called continuous from below if μ(An) → μ(A) whenever
{An}n∈N ⊂ A , A ∈ A and An ↑ A. Furthermore, μ is called continuous if it
is continuous from above and below and called conditionally continuous if it is
conditionally continuous from above and continuous from below. It is obvious that
the continuity from above and the conditional continuity from above coincide if
μ(X) <∞.

The σ -additivity implies not the continuity from above but the conditional
continuity from above. For instance, the Lebesgue measurem on R is not continuous
from above since An := ⋃∞

k=n[k,∞) ↓ ∅, m(An) = ∞ for all n ∈ N, but
m(∅) = 0. Therefore, the concept of continuity from above is believed to be too
strong, so that there is a tendency to avoid its use in ordinary measure theory.
However, in nonadditive measure theory, where the additivity of measures is not a
prerequisite, the unconditionally continuous infinite nonadditive measure μ = θ ◦p
on R is simply obtained by distorting a probability measure p on R by the function
θ : [0, 1] → [0,∞] defined as

θ(t) :=
⎧
⎨

⎩

tan

(
πt

2

)

if t ∈ [0, 1)
∞ if t = 1,

where θ ◦ p(A) := θ(p(A)) for every Borel measurable subset A of R. Therefore,
the concept of continuity as well as that of conditional continuity is often a subject
of study in nonadditive measure theory.

In general, if μ is not additive, then μ(N) = 0 is not always equivalent to μ(X \
N) = μ(X). Therefore, the concept of “almost everywhere” is defined in two ways
depending on whetherμ(N) = 0 orμ(X\N) = μ(X) is adopted as the definition of
null sets. In this article, standard definitions in ordinary measure theory are adopted
when defining the notion of null sets, almost everywhere, almost everywhere
convergence, convergence in measure, and so on; see textbooks [2, 11, 29]. For
terminology and basic properties of nonadditive measures and nonlinear integrals,
see [4, 28, 41, 42].
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3 Nonlinear Integrals

Various types of nonlinear integrals are proposed in connection with a variety of
concrete applications. Among them, the following four types of nonlinear integrals
are important and of wide application. They are determined by the μ-decreasing
distribution function of f defined by

Gμ,f (t) := μ({f ≥ t}), t ∈ R

and special cases of nonlinear integrals called distribution-based integrals.

Definition 3.2 Let (μ, f ) ∈M (X)×F+(X).

(1) The Choquet integral [3, 31] is defined by

Ch(μ, f ) :=
∫ ∞

0
μ({f ≥ t})dt,

where the right-hand side is the Lebesgue integral or the improper Riemann
integral.

(2) The Šipoš integral [33] is defined by

Si(μ, f ) := lim
P∈	+

n∑

i=1

(ai − ai−1)μ({f ≥ ai}),

where 	+ is the directed set of all partitions of [0,∞] of the form P =
{a1, a2, . . . , an} (0 = a0 < a1 < · · · < an <∞).

(3) The Sugeno integral [30, 36] is defined by

Su(μ, f ) := sup
t∈[0,∞]

[
t ∧ μ({f ≥ t})].

(4) The Shilkret integral [32, 44] is defined by

Sh(μ, f ) := sup
t∈[0,∞]

[
t · μ({f ≥ t})].

Remark 3.1 The equality Ch(μ, f ) = Si(μ, f ) holds for any (μ, f ) ∈ M (X) ×
F+(X) and both integrals are equal to the abstract Lebesgue integral if μ is σ -
additive [33, 34]. Therefore, there is no difference between the Choquet and Šipoš
integrals. In fact, the Šipoš integral is nothing but the improper Riemann integral
of the decreasing nonnegative function μ({f ≥ t}) written via a more elementary
definition. Nevertheless, it is meaningful to consider the Šipoš integral in addition
to the Choquet integral. Indeed, by exploring the Šipoš integral, it is simultaneously
possible to construct both theories of the Lebesgue and Choquet integrals since
the Šipoš integral can be defined and studied without knowledge of the Lebesgue
integral.
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Besides the abovementioned four distribution-based integrals, there are other
important nonlinear integrals such as the pan integral by Yang [43] and the concave
integral by Lehrer and Teper [21, 22].

Definition 3.3 Let (μ, f ) ∈M (X)×F+(X).

(1) The pan integral [43] with respect to the usual sum + and multiplication · is
defined by

Pan(μ, f ) := sup

{ n∑

i=1

riμ(Ai) :
n∑

i=1

riχAi ≤ f, n ∈ N, Ai ∈ A ,

ri ≥ 0, Ai ∩ Aj = ∅ (i �= j), ∪ni=1Ai = X
}

(2) The concave integral [22] is defined by

Cav(μ, f ) := sup

{
n∑

i=1

riμ(Ai) :
n∑

i=1

riχAi ≤ f, n ∈ N, ri ≥ 0, Ai ∈ A

}

Remark 3.2

(1) The pan integral is introduced in [43] and in fact defined by using the pair
(⊕,⊗) of pan-addition⊕ and pan-multiplication⊗ on [0,∞]. It coincides with
the Sugeno integral when (⊕,⊗) = (∨,∧) and with the Shilkret integral when
(⊕,⊗) = (∨, ·) [42, 43].

(2) In general, Ch(μ, f ) ≤ Cav(μ, f ) and the equality holds if and only if μ is
supermodular [22], while Pan(μ, f ) ≤ Cav(μ, f ) and the equality holds if μ
is subadditive. Therefore, Ch(μ, f ) = Pan(μ, f ) = Cav(μ, f ) if μ is additive
and they coincide with the abstract Lebesgue integral if μ is σ -additive. In
addition, Pan(μ, f ) ≥ Ch(μ, f ) if μ is subadditive and Pan(μ, f ) ≤ Ch(μ, f )
if μ is superadditive [42].

The pan integral is determined by the collection of all finite measurable
decompositions of X and contains the Sugeno, Shilkret, and Lebesgue integrals.
On the other hand, the concave integral is determined by the collection of all finite
families of measurable subsets of X and has the concavity, which means that the
inequality

Cav(μ, λf + (1− λ)g) ≥ λCav(μ, f )+ (1− λ)Cav(μ, g)

holds for any f, g ∈ F+(X) and λ ∈ [0, 1]. This concavity might be interpreted as
uncertainty aversion in the context of decision under uncertainty.
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The pan and concave integrals are special cases of nonlinear integrals called
decomposition-based integrals [7], but their discussions are saved for another time
due to limitations of space.

4 Nonlinear Integral Functionals

In this chapter, several properties common to the Choquet, Šipoš, Sugeno, and
Shilkret integrals are described together with related concepts. The main content in
this and all subsequent chapters is a summary of the author’s work [12–15, 17–
20], so the citation of the individual papers is not specified from now on. The
abovementioned papers and their references are of help for the readers.

Let I : M (X)×F+(X)→ [0,∞] be an integral functional, that is, it satisfies

(i) I (μ, 0) = 0 for every μ ∈M (X),
(ii) I (μ, f ) ≤ I (μ, g) whenever μ ∈M (X), f, g ∈ F+(X), and f ≤ g.

Definition 4.4 Let I : M (X)×F+(X)→ [0,∞] be an integral functional.

(1) I is called upper marginal continuous if for every (μ, f ) ∈M (X)×F+(X),

I (μ, f ) = sup
r>0
I (μ, f ∧ r).

(2) I is called lower marginal continuous if for every (μ, f ) ∈M (X)×F+(X),

I (μ, f ) = sup
r>0
I (μ, (f − r)+).

(3) I is called measure-truncated if for every (μ, f ) ∈M (X)×F+(X),

I (μ, f ) = sup
s>0
I (s ∧ μ, f ),

where (s ∧ μ)(A) := s ∧ μ(A) for every A ∈ A and s > 0.
(4) I is called horizontally subadditive if for every (μ, f ) ∈M (X)×F+(X) and

every c > 0,

I (μ, f ) ≤ I (μ, f ∧ c)+ I (μ, (f − c)+)

and called horizontally additive if the equality holds.
(5) I is called inner regular if for every (μ, f ) ∈M (X)×F+(X),

I (μ, f ) = sup
{
I (μ, h) : h ∈ S +(X), h ≤ f }

.
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By definition, the restriction of I onto the set M (X)×F+
b (X) is always upper

marginal continuous, while that of I onto the set Mb(X) × F+(X) is always
measure-truncated.

For the Choquet integral

Ch(μ, f ) :=
∫ ∞

0
μ({f ≥ t})dt, (μ, f ) ∈M (X)×F+(X),

each of the above characteristics has the following form:

• Upper marginal continuity:
∫ ∞

0
μ({f ≥ t})dt = sup

r>0

∫ r

0
μ({f ≥ t})dt

• Lower marginal continuity:
∫ ∞

0
μ({f ≥ t})dt = sup

r>0

∫ ∞

r

μ({f ≥ t})dt
• Measure-truncation:∫ ∞

0
μ({f ≥ t})dt = sup

s>0

∫ ∞

0
s ∧ μ({f ≥ t})dt

• Horizontal additivity:
∫ ∞

0
μ({f ≥ t})dt =

∫ c

0
μ({f ≥ t})dt +

∫ ∞

c

μ({f ≥ t})dt
• Inner regularity:

∫ ∞

0
μ({f ≥ t})dt = sup

{∫ ∞

0
μ({h ≥ t})dt : h ∈ S +(X), h ≤ f

}

Proposition 4.1 The integral functionals Ch, Si, Su, and Sh are upper marginal
continuous, lower marginal continuous, measure-truncated, and inner regular. In
addition, Ch and Si are horizontally additive, while Su and Sh are horizontally
subadditive.

The concepts of pseudo-addition and pseudo-difference are useful for represent-
ing the integral values of simple functions in a unified way regardless of various
types of nonlinear integrals [1, 37].

Definition 4.5 A binary operation ⊕: [0,∞]2 → [0,∞] is called a pseudo-
addition if for any a, b, a′, b′, a0, and b0 in [0,∞], the following five conditions
are satisfied:

(A1) a ⊕ b = b ⊕ a (commutative law)
(A2) (a ⊕ b)⊕ c = a ⊕ (b ⊕ c) (associative law)
(A3) a ⊕ b ≤ a′ ⊕ b′ whenever a ≤ a′ and b ≤ b′ (monotonicity)
(A4) a ⊕ 0 = 0⊕ a = a (neutral element)
(A5) It is continuous on [0,∞]2, that is, lim(a,b)→(a0,b0) a ⊕ b = a0 ⊕ b0

(continuity).
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The binary operation  : [0,∞]2 → [0,∞] defined by

a  b := inf{x ∈ [0,∞]: b ⊕ x ≥ a}

for every a, b ∈ [0,∞] is called the pseudo-difference determined by a pseudo-
addition ⊕.

Example 4.1

(1) Let g : [0,∞] → [0,∞] be an increasing bijection. The binary operation
⊕: [0,∞]2 → [0,∞] defined by

a ⊕ b := g−1(g(a)+ g(b))

for every a, b ∈ [0,∞] is a pseudo-addition and its pseudo-difference is
given by

a  b :=
⎧
⎨

⎩

g−1(g(a)− g(b)) if a > b,

0 if a ≤ b.

In particular, a ⊕ b := a + b is a pseudo-addition and a  b = a − b if a > b.
(2) The binary operation ⊕: [0,∞]2 → [0,∞] defined by

a ⊕ b := a ∨ b

for every a, b ∈ [0,∞] is a pseudo-addition and its pseudo-difference is
given by

a  b :=
⎧
⎨

⎩

a if a > b,

0 if a ≤ b.

For any pseudo-addition⊕, every simple function h ∈ S +(X)with h(X)\{0} =
{r1, r2, . . . , rn} has a unique standard ⊕-step representation

h =
n⊕

i=1

(ri  ri−1)χ{h≥ri },

where n ∈ N and 0 = r0 < r1 < · · · < rn <∞. In particular, if ⊕ = +,∨, then h
is expressed by

h =
n∑

i=1

(ri − ri−1)χ{h≥ri } =
n∨

i=1

riχ{h≥ri }.
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The following concepts of nonlinear functionals are necessary to calculate the
integral values of simple functions.

Definition 4.6 Let I : M (X)×F+(X)→ [0,∞] be an integral functional.

(1) I is called generative if there is a function θ : [0,∞]2 → [0,∞] such that

I (μ, rχA) = θ(r, μ(A))

for every μ ∈ M (X), r ∈ [0,∞], and A ∈ A . In this case, θ is called a
generator of I .

(2) I is called elementary if it is generative with generator θ and there is a pseudo-
addition ⊕: [0,∞]2 → [0,∞] such that

I

(

μ,

n⊕

i=1

(ri  ri−1) χAi

)

=
n⊕

i=1

θ
(
ri  ri−1, μ(Ai)

)

for every μ ∈ M (X), n ∈ N, r1, . . . , rn ∈ (0,∞), and A1, . . . , An ∈ A with
0 = r0 < r1 < · · · < rn <∞ and A1 ⊃ · · · ⊃ An.

Proposition 4.2 The integral functionals Ch, Si, Su, and Sh have the following
properties:

(1) Ch and Si are generative and elementary with generator θ(a, b) = a · b, and
their pseudo-addition is a ⊕ b = a + b.

(2) Su is generative and elementary with generator θ(a, b) = a∧b, and its pseudo-
addition is a ⊕ b = a ∨ b.

(3) Sh is generative and elementary with generator θ(a, b) = a · b, and its pseudo-
addition is a ⊕ b = a ∨ b.

The regulators of generative and elementary integral functionals usually have the
following reasonable properties.

Definition 4.7 Let θ : [0,∞]2 → [0,∞] be a function of two variables.

(1) θ is called of finite type if θ(a, b) <∞ whenever a, b ∈ [0,∞).
(2) θ is called of continuous type if it is continuous on the set D := [0,∞]2 \

{(0,∞), (∞, 0)}.
(3) θ is called limit preserving if for any sequence {bn}n∈N ⊂ [0,∞] and b ∈

[0,∞], bn→ b whenever θ(r, bn)→ θ(r, b) for every r ∈ (0,∞).
Proposition 4.3 The functions θ(a, b) := a · b, a ∧ b are of finite and continuous
type and limit preserving.

The following order relation among the pairs (μ, f ) of set functions μ and
functions f is already known as stochastic dominance, that is, stochastic ordering
of random variables.
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Definition 4.8 Let μ, ν : A → [0,∞] be set functions and f, g ∈ F (X). The
pair (μ, f ) is called dominated by the pair (ν, g) and written as (μ, f ) ≺ (ν, g) if

μ({f ≥ t}) ≤ ν({g ≥ t})
for every t ∈ R.

Remark 4.3 The dominance (μ, f ) ≺ (μ, g) is also called the first-order stochastic
dominance and widely used in economics and finance together with the second-
order and the third-order stochastic dominance; see a survey in [24].

In what follows, denote by � the set of all functions ϕ : [0,∞) → [0,∞)
satisfying

ϕ(0) = lim
t→+0

ϕ(t) = 0.

A function belonging to � is called a control function.
The μ-essential boundedness constant ‖f ‖μ of a function f ∈ F (X) is the

infimum of the set of all r ∈ (0,∞) satisfying

μ({f ≥ r}) = 0 and μ({f ≥ −r}) = μ(X).
If ‖f ‖μ < ∞, then f is called μ-essentially bounded. Every bounded f ∈ F (X)
is μ-essentially bounded and

‖f ‖μ ≤ ‖f ‖ := sup
x∈X

|f (x)|.

It is obvious that the μ-essential boundedness constant ‖f ‖μ is equal to the ordinary
μ-essential supremum if f is nonnegative or μ is additive.

The perturbation of integral functionals introduced below plays an essential role
in our unified approach to convergence theorems of nonlinear integrals. In fact, it
successfully controls the change in the functional value I (μ, f ) when the integrand
is slightly shifted from f to f + ε and its μ-decreasing distribution function is also
slightly shifted from μ({f ≥ t}) to μ({f ≥ t})+ δ.
Definition 4.9 Let I : M (X)×F+(X)→ [0,∞] be an integral functional.

(1) I is called strongly monotone (for short, s-monotone) if

I (μ, f ) ≤ I (μ, g)
whenever μ ∈M (X), f, g ∈ F+(X), and (μ, f ) ≺ (μ, g).

(2) I is called perturbative if there are families {ϕp}p>0 ⊂ � and {ψq}q>0 ⊂ � of
control functions satisfying the following perturbation (P): For any μ ∈M (X),
f, g ∈ F+(X), ε ≥ 0, δ ≥ 0, p > 0, and q > 0, the inequality

I (μ, f ) ≤ I (μ, g)+ ϕp(δ)+ ψq(ε)

holds whenever ‖f ‖μ < p, μ(X) < q, and (μ, f ) ≺ (μ+ δ, g + ε).
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Proposition 4.4 The integral functionals Ch, Si, Su, and Sh are s-monotone and
perturbative. Their control functions can be chosen as

ϕp(t) = pt, pt, p ∧ t, pt and ψq(t) = qt, qt, q ∧ t, qt,

respectively.

Let I : M (X) × F+(X) → [0,∞] be an integral functional. For each μ ∈
M (X), the functional Iμ : F+(X)→ [0,∞] defined by

Iμ(f ) := I (μ, f ), f ∈ F+(X),

satisfies

(i) Iμ(0) = 0,
(ii) Iμ(f ) ≤ Iμ(g) whenever f, g ∈ F+(X) and f ≤ g
and called the μ-integral functional determined by I . Given μ ∈ M (X), the
μ-integral functional Iμ is called upper marginal continuous, lower marginal
continuous, measure-truncated, horizontally subadditive, horizontally additive, and
inner regular if the corresponding properties in Definition 4.4 hold for the fixed μ.
For instance, Iμ is called upper marginal continuous if

Iμ(f ) = sup
r>0
I (μ, f ∧ r)

for every f ∈ F+(X) and called measure-truncated if

Iμ(f ) = sup
s>0
I (s ∧ μ, f )

for every f ∈ F+(X). Similarly, givenμ ∈M (X), Iμ is called generative, elemen-
tary, s-monotone, and perturbative if the corresponding properties in Definitions 4.6
and 4.9 hold for the fixedμ. For instance, Iμ is called generative if there is a function
θ : [0,∞]2 → [0,∞], which may depend on μ, such that

Iμ(rχA) = θ(r, μ(A))

for every r ∈ [0,∞] and A ∈ A , and called perturbative if there are families
{ϕp}p>0 ⊂ � and {ψq}q>0 ⊂ �, which may depend on μ, satisfying the following
perturbation (P )μ: For any f, g ∈ F+(X), ε ≥ 0, δ ≥ 0, p > 0, and q > 0, the
inequality

Iμ(f ) ≤ Iμ(g)+ ϕp(δ)+ ψq(ε)

holds whenever ‖f ‖μ < p, μ(X) < q, and (μ, f ) ≺ (μ+ δ, g + ε).
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Proposition 4.5 Let I : M (X)×F+(X)→ [0,∞] be an integral functional and
μ ∈ M (X). Then, if I is upper marginal continuous, lower marginal continuous,
measure-truncated, horizontally subadditive, horizontally additive, inner regular,
and s-monotone, so is Iμ, respectively. Moreover, If I is generative, elementary,
and perturbative, so is Iμ with respect to the same regulator θ , pseudo-addition ⊕,
and families {ϕp}p>0 and {ψq}q>0 of control functions as those of I , respectively.

5 Some Convergence Theorems of Nonlinear Integrals

The convergence theorems of nonlinear integrals, such as the monotone convergence
theorem and the bounded convergence theorem, have individually been discussed
for each of the integrals up to the present. Therefore, formulations of theorems
and their proof methods deeply depend on the definition and properties peculiar
to each integral. In this section, a unified approach to convergence theorems of
nonlinear integrals is introduced from a functional analytic view by formulat-
ing those convergence theorems for integral functionals satisfying some of the
properties in Sect. 4. Before going into details, we summarize below in tabular
form the monotone increasing and decreasing convergence theorems and the Vitali
convergence theorem, which are already known for each of the integrals.

In the rest of the article, let (X,A ) be a measurable space, I : M (X) ×
F+(X)→ [0,∞] an integral functional, and μ ∈ M (X). The symbol Le denotes
the integral functional defined by the abstract Lebesgue integral

Le(μ, f ) :=
∫

X

f dμ

of a function f ∈ F+(X) with respect to a σ -additive measure μ on (X,A ).
(I) The monotone increasing convergence theorem: Let {fn}n∈N ⊂ F+(X), f ∈
F+(X), and fn ↑ f . Then Iμ(fn) → Iμ(f ) if fn and μ satisfy the conditions in
the table below. Here, “continuous ↑” is short for “continuous from below.”

I fn μ References

Le No condition σ -additive Levi [23]

Ch No condition Continuous ↑ Song and Li [35], Wang [40]

Si No condition Continuous ↑ Šipoš [33]

Su No condition Continuous ↑ Ralescu and Adams [30], Wang [39]

Sh No condition Continuous ↑ Zhao [44]

(II) The monotone decreasing convergence theorem: Let {fn}n∈N ⊂ F+(X),
f ∈ F+(X), and fn ↓ f . Then Iμ(fn)→ Iμ(f ) if fn and μ satisfy the conditions
in the table below. Here, “cond. continuous ↓” is short for “conditionally continuous
from above.”
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I fn μ References

Le Le(μ, f1) <∞ σ -additive Levi [23]

Ch Ch(μ, f1) <∞ Cond. continuous ↓ Wang [40]

Si Si(μ, f1) <∞ Cond. continuous ↓ Šipoš [33]

Su μ({f1 > Su(μ, f )}) <∞ Cond. continuous ↓ Wang [39]

Sh μ({f1 > 0}) <∞ and f1 is μ - Cond. continuous ↓ Zhao [45] Kawabe [17]

essentially bounded

Recall that a sequence {fn}n∈N ⊂ F0(X) converges to f ∈ F0(X) in μ-

measure, which is written as fn
μ−→ f , if

lim
n→∞μ ({|fn − f | > ε}) = 0

for every ε > 0.
(III) The Vitali convergence theorem: Let {fn}n∈N ⊂ F+

0 (X), f ∈ F+
0 (X),

and fn
μ−→ f . Then Iμ(fn) → Iμ(f ) if fn and μ satisfy the conditions in

the table below. Here, the autocontinuity of nonadditive measures is defined in
Definition 5.11 below. Moreover, “unif. integrable for Iμ” is short for “uniformly
integrable for Iμ” and defined in Definition 5.12 below.

I fn μ References

Le Unif. integrable for Leμ Finite and σ -additive Vitali [38]

Ch Unif. integrable for Chμ Finite and autocontinuous Kawabe [19]

Si Unif. integrable for Suμ Finite and autocontinuous Kawabe [20]

Su No condition Autocontinuous Wang [39]

Sh Unif. integrable for Shμ Finite and autocontinuous Kawabe [20]

Remark 5.4 The conditions imposed on fn and μ in tables (I) to (III) above cannot
be removed.

As can be predicted by looking at the results in tables above, in order to
study convergence theorems of nonlinear integrals in a unified way, it is better
to separately consider the case where {fn}n∈N converges to f pointwise and the
case where {fn}n∈N converges to f in measure. In addition, unlike the case of the
Lebesgue integral, the monotone decreasing convergence theorem cannot directly
be deduced from the monotone increasing convergence theorem because of the
nonlinearity of integrals.

In the case of pointwise convergence the following functional forms of the
monotone convergence theorem are fundamental and of wide application.
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Theorem 5.1 (The monotone increasing convergence theorem) Let I : M (X)×
F+(X) → [0,∞] be an integral functional and μ ∈ M (X). Consider the
following two conditions:

(i) μ is continuous from below.
(ii) The monotone increasing convergence theorem holds for Iμ, that is, for any

{fn}n∈N ⊂ F+(X) and f ∈ F+(X), if fn ↑ f , then Iμ(fn)→ Iμ(f ).

(1) If Iμ is upper marginal continuous, measure-truncated, elementary, and pertur-
bative with generator of continuous type, then (i) implies (ii).

(2) If Iμ is generative with limit preserving generator, then (ii) implies (i).

An alternative form of the monotone increasing convergence theorem can be
obtained by using the inner regularity of integral functionals.

Theorem 5.2 (An alternative form) Let I : M (X) × F+(X) → [0,∞] be an
integral functional and μ ∈M (X). Consider the following two conditions:

(i) μ is continuous from below and Iμ is inner regular.
(ii) The monotone increasing convergence theorem holds for Iμ, that is, for any

{fn}n∈N ⊂ F+(X) and f ∈ F+(X), if fn ↑ f , then Iμ(fn)→ Iμ(f ).

(1) If Iμ is elementary with generator of continuous type and pseudo-difference  
is continuous on the triangular domain T := {(a, b) ∈ [0,∞]2 : a > b}, then
(i) implies (ii).

(2) If Iμ is generative with limit preserving generator, then (ii) implies (i).

The concept of uniform truncation of a family of functions is necessary to
consider the monotone decreasing convergence theorem regardless of the types of
nonlinear integrals.

Definition 5.10 Let I : M (X)×F+(X)→ [0,∞] be an integral functional and
μ ∈M (X). A nonempty family F ⊂ F+(X) is called uniformly truncated for Iμ
if for every ε > 0, there is a constant c > 0 such that

Iμ(f ) ≤ Iμ(f ∧ c)+ ε

for every f ∈ F . A function f ∈ F+(X) is called truncated for Iμ if the family
F = {f } containing only f is uniformly truncated for Iμ.

Theorem 5.3 (The monotone decreasing convergence theorem) Let I : M (X)×
F+(X) → [0,∞] be an integral functional and μ ∈ M (X). Consider the
following two conditions:

(i) μ is conditionally continuous from above.
(ii) The monotone decreasing convergence theorem holds for Iμ, that is, for any

{fn}n∈N ⊂ F+(X) and f ∈ F+(X), if fn ↓ f , Iμ(f1) < ∞, and {fn}n∈N is
uniformly truncated for Iμ, then Iμ(fn)→ Iμ(f ).
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(1) If μ is finite and Iμ is elementary and perturbative with generator of continuous
type, then (i) implies (ii).

(2) If Iμ is upper marginal continuous and generative with limit preserving
generator of finite type, then (ii) implies (i).

Remark 5.5 The uniform truncation of {fn}n∈N for Iμ in (ii) of Theorem 5.3 cannot
be removed for the validity of monotone decreasing convergence theorems. In fact,
if Iμ is upper marginal continuous, then for any decreasing sequence {fn}n∈N ⊂
F+(X) and f ∈ F+(X), if Iμ(f1) < ∞ and Iμ(fn) → Iμ(f ), then {fn}n∈N is
always uniformly truncated for Iμ.

Remark 5.6 In general, if μ ∈ M (X) is null-additive, that is, μ(A ∪ B) = μ(A)
whenever A,B ∈ A and μ(B) = 0 and Iμ is s-monotone, then almost everywhere
consistency holds for Iμ, that is, Iμ(f ) = Iμ(g) whenever f, g ∈ F+(X) and
f = g μ-a.e. Therefore, if the null-additivity of μ and the s-monotonicity of Iμ are
additionally assumed in Theorems 5.1, 5.2, and 5.3, then pointwise convergence of
fn to f may be replaced with almost everywhere convergence.

By Propositions 4.1, 4.2, 4.3, 4.4, and 4.5, the integral functionals I =
Ch,Si,Su,Sh are upper marginal continuous, measure-truncated, generative, ele-
mentary, and perturbative. In addition, their generators θ(a, b) = a · b, a ∧ b
are limit preserving and of finite and continuous type. Therefore, the following
corollaries follow from Theorems 5.1 and 5.3. In fact, assumptions on fn and μ
in Corollaries 5.1 and 5.2 below are used for assuring conditions (i) and (ii) in
Theorems 5.1 and 5.3 and reducing proofs to the case where μ is finite.

Corollary 5.1 (The monotone increasing convergence theorem) Let I = Ch,
Si, Su, Sh. Let μ ∈ M (X), {fn}n∈N ⊂ F+(X), and f ∈ F+(X). Assume that μ
is continuous from below and fn ↑ f . Then Iμ(fn)→ Iμ(f ).

Corollary 5.2 (The monotone decreasing convergence theorem) Let μ ∈
M (X), {fn}n∈N ⊂ F+(X), and f ∈ F+(X). Assume that μ is conditionally
continuous from above and fn ↓ f .

(1) Let I = Ch,Si. If Iμ(f1) <∞, then Iμ(fn)→ Iμ(f ).
(2) If μ({f1 > Su(μ, f )}) < ∞ (in particular, μ is finite), then Suμ(fn) →

Suμ(f ).
(3) If μ({f1 > 0}) <∞ (in particular, μ is finite ) and f1 is μ-essentially bounded,

then Shμ(fn)→ Shμ(f ).

As is the case of ordinary measure theory, the monotone increasing and decreas-
ing convergence theorems imply the Fatou lemma and the dominated convergence
theorem.

Corollary 5.3 (The Fatou lemma) Let I = Ch,Si,Su,Sh. Let μ ∈ M (X) and
let {fn}n∈N ⊂ F+(X) and f ∈ F+(X). Assume that μ is continuous from below
and fn→ f . Then Iμ(f ) ≤ lim infn→∞ Iμ(fn).



110 J. Kawabe

Corollary 5.4 (The dominated convergence theorem) Let μ ∈ M (X) and let
{fn}n∈N ⊂ F+(X) and f ∈ F+(X). Assume that μ is conditionally continuous
and fn→ f .

(1) Let I = Ch,Si. If there is g ∈ F+(X) such that Iμ(g) <∞ and fn ≤ g for all
n ∈ N, then Iμ(fn)→ Iμ(f ).

(2) Ifμ({supn∈N fn > Su(μ, f )}) <∞ (in particular,μ is finite), then Suμ(fn)→
Suμ(f ).

(3) If μ({supn∈N fn > 0}) < ∞ and supn∈N fn is μ-essentially bounded (in
particular, there is a μ-essentially bounded g ∈ F+(X) such that μ({g >
0}) <∞ and fn ≤ g for all n ∈ N), then Shμ(fn)→ Shμ(f ).

Remark 5.7 Since I = Ch,Si,Su,Sh are s-monotone, if the null-additivity of μ is
additionally assumed, then pointwise convergence of fn to f may be replaced with
almost everywhere convergence and condition fn ≤ g may be replaced with fn ≤ g
μ-a.e. in Corollaries 5.1, 5.2, 5.3, and 5.4; see Remark 5.6.

The autocontinuity of nonadditive measures is required to establish convergence
theorems for a sequence of measurable functions converging in measure.

Definition 5.11 (Wang [39]) Let μ ∈M (X).

(1) μ is called autocontinuous from above if μ(A∪Bn)→ μ(A)wheneverA ∈ A ,
{Bn}n∈N ⊂ A , and μ(Bn)→ 0.

(2) μ is called autocontinuous from below if μ(A\Bn)→ μ(A) whenever A ∈ A ,
{Bn}n∈N ⊂ A , and μ(Bn)→ 0.

(3) μ is called autocontinuous if it is autocontinuous from above and below.

Example 5.2 The following nonadditive measures are autocontinuous.

(1) Every subadditive nonadditive measure and every nonadditive measure satisfy-
ing inf {μ(A) : A ∈ A , A �= ∅} > 0 are autocontinuous, but are not condition-
ally continuous in general.

(2) Let m : A → [0,∞] be a finitely additive measure. Let θ : [0,m(X)] →
[0,∞] be an increasing function with θ(0) = 0. Then the distorted measure

μ(A) := θ(m(A)), A ∈ A ,

determined by m and θ is autocontinuous if θ is continuous on [0,m(X)]
and strictly increasing on a neighborhood of the origin. In addition, μ is
conditionally continuous if m is σ -additive and θ(∞) = ∞. In particular, the
distorted measure μ(A) := m(A)2 + √m(A) is autocontinuous, but neither
subadditive nor superadditive. It is conditionally continuous if m is σ -additive.

Theorem 5.4 (A prototype of the Vitali convergence theorem) Let I : M (X)×
F+(X) → [0,∞] be an integral functional and μ ∈ M (X). Consider the
following two conditions:

(i) μ is autocontinuous.
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(ii) For any {fn}n∈N ⊂ F+
0 (X) and f ∈ F+

0 (X), if fn
μ−→ f and {fn, f }n∈N is

uniformly truncated for Iμ, then Iμ(fn)→ Iμ(f ).

(1) If μ is finite and Iμ is perturbative, then (i) implies (ii).
(2) If Iμ is generative with limit preserving generator, then (ii) implies (i).

As a matter of fact, Theorem 5.4 follows from the Fatou lemma and the reverse
Fatou lemma below.

Theorem 5.5 (The Fatou lemma) Let I : M (X) × F+(X) → [0,∞] be an
integral functional and μ ∈M (X). Consider the following two conditions:

(i) μ is autocontinuous from below.
(ii) The Fatou lemma holds for Iμ, that is, for any {fn}n∈N ⊂ F+

0 (X) and f ∈
F+

0 (X), if fn
μ−→ f and f is truncated for Iμ, then

Iμ(f ) ≤ lim inf
n→∞ Iμ(fn).

(1) If μ is finite and Iμ is perturbative, then (i) implies (ii).
(2) If Iμ is generative with limit preserving generator, then (ii) implies (i).

Theorem 5.6 (The reverse Fatou lemma) Let I : M (X)×F+(X)→ [0,∞] be
an integral functional and μ ∈M (X). Consider the following two conditions:

(i) μ is autocontinuous from above.
(ii) The reverse Fatou lemma holds for Iμ, that is, for any {fn}n∈N ⊂ F+

0 (X) and

f ∈ F+
0 (X), if fn

μ−→ f and {fn}n∈N is uniformly truncated for Iμ, then

lim sup
n→∞

Iμ(fn) ≤ Iμ(f ).

(1) If μ is finite and Iμ is perturbative, then (i) implies (ii).
(2) If Iμ is generative with limit preserving generator, then (ii) implies (i).

The assumption μ being finite and f being truncated in the Fatou lemma
(Theorem 5.5) can be removed by imparting the perturbation of not Iμ but I and
further adding the upper marginal continuity and the measure-truncation of I .

Corollary 5.5 (The Fatou lemma) Let I : M (X) × F+(X) → [0,∞] be an
integral functional and μ ∈ M (X). If μ is autocontinuous from below and I is
upper marginal continuous, measure-truncated, and perturbative, then the Fatou

lemma holds for Iμ, that is, for any {fn}n∈N ⊂ F+
0 (X) and f ∈ F+

0 (X), if fn
μ−→

f , then Iμ(f ) ≤ lim infn→∞ Iμ(fn).

In order to formulate the Vitali convergence theorem and the bounded con-
vergence theorem, the notions of uniform integrability and uniformly essential
boundedness of measurable functions are required.
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Definition 5.12 Let I : M (X)×F+(X)→ [0,∞] be an integral functional and
μ ∈M (X). Let F ⊂ F (X) be nonempty.

(1) F is called uniformly integrable for Iμ if

lim
c→∞ sup

f∈F
Iμ

(
χ{|f |>c}|f |

) = 0.

(2) F is called uniformly μ-essentially bounded if there is a constant c > 0
such that

μ({f ≥ c}) = 0 and μ({f ≥ −c}) = μ(X)

for every f ∈ F .

The Vitali convergence theorem and the bounded convergence theorem can
be obtained as corollaries to the prototype of the Vitali convergence theorem
(Theorem 5.4).

Corollary 5.6 (The Vitali convergence theorem) Let I : M (X) × F+(X) →
[0,∞] be an integral functional and μ ∈ M (X). Consider the following two
conditions:

(i) μ is autocontinuous.
(ii) The Vitali convergence theorem holds for Iμ, that is, for any {fn}n∈N ⊂ F+

0 (X)

and f ∈ F+
0 (X), if {fn}n∈N is uniformly integrable for Iμ and fn

μ−→ f , then
Iμ(f ) <∞ and Iμ(fn)→ Iμ(f ).

(1) If μ is finite and Iμ is upper marginal continuous, horizontally subadditive,
perturbative, and Iμ(r) <∞ for every r > 0, then (i) implies (ii).

(2) If Iμ is generative with limit preserving generator, then (ii) implies (i).

Corollary 5.7 (The bounded convergence theorem) Let I : M (X)×F+(X)→
[0,∞] be an integral functional and μ ∈ M (X). Consider the following two
conditions:

(i) μ is autocontinuous.
(ii) The bounded convergence theorem holds for Iμ, that is, for any {fn}n∈N ⊂

F+
0 (X) and f ∈ F+

0 (X), if {fn}n∈N is uniformly μ-essentially bounded and

fn
μ−→ f , then f is μ-essentially bounded and Iμ(fn)→ Iμ(f ).

(1) If μ is finite and Iμ is perturbative, then (i) implies (ii).
(2) If Iμ is generative with limit preserving generator, then (ii) implies (i).

By Propositions 4.1, 4.2, 4.3, 4.4, and 4.5, the integral functionals I =
Ch,Si,Su,Sh are upper marginal continuous, horizontally subadditive, generative,
and perturbative with limit preserving generator. In addition, Suμ(r) <∞ for every
r > 0, and if μ is finite, then Iμ(r) < ∞ for every r > 0 even in the case of
I = Ch,Si,Sh. Therefore, the following convergence theorems can be obtained.
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Once again, assumptions on fn, f and μ in Corollaries 5.8, 5.9, and 5.10 below are
used for assuring conditions (i) and (ii) in the prototype of the Vitali convergence
theorem (Theorem 5.4) and Corollaries 5.6 and 5.7 and reducing proofs to the case
where μ is finite.

Corollary 5.8 (The Vitali convergence theorem for I = Ch, Si, Sh) Let I =
Ch,Si,Sh. Let μ ∈ M (X), {fn}n∈N ⊂ F+

0 (X), and f ∈ F+
0 (X). Assume that μ

is finite and autocontinuous. If {fn}n∈N is uniformly integrable for Iμ and fn
μ−→ f ,

then Iμ(f ) <∞ and Iμ(fn)→ Iμ(f ).

Corollary 5.9 (The Vitali convergence theorem for I = Su) Let μ ∈ M (X),

{fn}n∈N ⊂ F+
0 (X), and f ∈ F+

0 (X). Assume that μ is autocontinuous. If fn
μ−→

f , then Suμ(fn)→ Suμ(f ).

Remark 5.8 Neither the finiteness of μ nor the uniform integrability of {fn}n∈N
is necessary in Corollary 5.9. This fact is due to a close relationship between the
Sugeno integral and the Ky Fan metric [8] defined by

K(f, g) := inf {ε ∈ [0,∞]: μ({|f − g| > ε}) ≤ ε}, f, g ∈ F0(X).

Since the Ky Fan metric characterizes convergence in μ-measure of measurable
functions when μ is a σ -additive finite measure, the convergence theorems of the
Sugeno integral have good compatibility with convergence in measure. In fact, for
any μ ∈M (X), {fn}n∈N ⊂ F0(X), and f ∈ F0(X), we have

K(fn, f )→ 0 ⇔ fn
μ−→ f ⇔ Suμ(|fn − f |)→ 0.

However, Suμ(fn) → Suμ(f ) cannot be derived from Suμ(|fn − f |) → 0 unless
μ is autocontinuous since the inequality

|Suμ(fn)− Suμ(f )| ≤ Suμ(|fn − f |)

does not always hold because of the nonlinearity of the Sugeno integral.

The following bounded convergence theorem has already been discussed in [26]
for the Choquet integral.

Corollary 5.10 (The bounded convergence theorem) Let I = Ch,Si,Sh. Let
μ ∈ M (X), {fn}n∈N ⊂ F+

0 (X), and f ∈ F+
0 (X). Assume that μ is finite and

autocontinuous. If {fn}n∈N is uniformly μ-essentially bounded and fn
μ−→ f , then

f is μ-essentially bounded and Iμ(fn)→ Iμ(f ).

Remark 5.9 Recall that μ ∈ M (X) is strongly order continuous if μ(An) → 0
whenever {An}n∈N ⊂ A , A ∈ A , An ↓ A, and μ(A) = 0. This con-
dition was discovered in [25] as a necessary and sufficient condition for the
validity of the Lebesgue theorem which states that every μ-almost everywhere
convergent sequence of measurable functions converges in μ-measure. Since
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I = Ch,Si,Su,Sh are s-monotone and every autocontinuous nonadditive measure
is null-additive, if the strong order continuity of μ is additionally assumed in
Corollaries 5.8, 5.9, and 5.10, then by the Lebesgue theorem above and Remark 5.6,
convergence of fn to f in μ-measure may be replaced with μ-almost everywhere
convergence.

Every integral functional I : M (X)×F+(X)→ [0,∞] can be extended in the
following two ways

I s(μ, f ) := I (μ, f+)− I (μ, f−), (μ, f ) ∈M (X)×F (X),

I a(μ, f ) := I (μ, f+)− I (μ̄, f−), (μ, f ) ∈Mb(X)×F (X)

in order to consider the integrals of not necessarily nonnegative functions. The
functional I s is called the symmetric extension of I or the symmetric integral
determined by I , while I a is called the asymmetric extension of I or the asymmetric
integral determined by I . They are not defined if the right-hand side is of the form
∞−∞. The symmetric integral I s is symmetric in the sense that

I s(μ,−f ) = −I s(μ, f )

and the asymmetric integral I a is asymmetric in the sense that

I a(μ,−f ) = −I a(μ̄, f ).

Although details are omitted, all results in this section hold for the symmetric
integral I s and the asymmetric integral I a with appropriate modifications.

6 Concluding Remarks

In this article, some of the distribution-based integrals, such as the Choquet, Šipoš,
Sugeno, and Shilkret integrals, are introduced. Then, by considering a nonlinear
integral as a nonlinear functional defined on an appropriate domain, the properties
common to those integrals are summarized from a functional analytic viewpoint
(Sects. 3 and 4). Among those properties, the perturbation of nonlinear functionals
plays an essential role in our unified approach to convergence theorems of nonlinear
integrals. In fact, it allows us to discuss in a unified way the previous and best results
known as the convergence theorems of nonlinear integrals (Sect. 5). This approach
also has sufficient applicability to the studies of monotone convergence theorems
for a net of semicontinuous functions [18] and weak convergence of nonadditive
measures (for instance, nonadditive portmanteau theorem and the uniformity of
weak convergence) [15].
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Unlike the Choquet integral, the Šipoš integral can be defined independently of
the Lebesgue integral. Moreover, it coincides with the abstract Lebesgue integral
for any σ -additive measure, so that the convergence theorems introduced in Sect. 5
also hold for the abstract Lebesgue integral. These advantages suggest that the
theory of the present Lebesgue integral, at least the theory leading to convergence
theorems, can simultaneously be developed for both the abstract Lebesgue and
Choquet integrals if it will be reconstructed by using the Šipoš integral.

In addition to distribution-based integrals, there are also decomposition-based
integrals such as the pan integral and the concave integral. The investigation of the
convergence of those nonlinear integrals is a future task.

If you are interested in the theory of nonadditive measures and nonlinear
integrals, the author would appreciate it if you could see another expository
article [16].
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1 Introduction

We investigate the local dynamics in the neighborhood of a steady state in an
economy where agents face financial constraints and goods are produced in two
sectors with sector-specific production externalities.

There are earlier works that investigate the local dynamics in an economy with
financial constraints. Among others, Kiyotaki and Moore [16] and Cordoba and
Ripoll [13, 14] demonstrate that equilibrium is unique and dampening cycles can
occur in a collateral-constrained economy. In the model by Cordoba and Ripoll
[14], a unique steady state is a saddle point under plausible parameter conditions.
Woodford [24] and Barinci and Chéron [5] focus on an economy where capitalists
and workers coexist and show that indeterminacy can occur because workers face
financial constraints.1 Benhabib and Wang [9] and Liu and Wang [18] create a
mechanism where financial constraints are the potential source of indeterminacy. In
their models, the presence of a fixed cost directly or indirectly affecting financial
constraints is a crucial factor for indeterminacy to occur. All the abovementioned
studies assume that an economy is endowed with an aggregate production sector in
which only one final good is produced. In the current study, we consider an economy
with two production sectors. We analyze how the interaction between the extent
of financial constraints and the sector-specific production externalities affects the
characterization of equilibria in a two-sector economy.2

Over the past 20 years, many researchers have investigated multiple equilibria
or indeterminacy of equilibria in dynamic general equilibrium models.3 It is well
known that indeterminacy causes self-fulfilling sunspot business fluctuations (Shell
[22]; Azariadis [4]; Cass and Shell [12]; Woodford [23]). In this literature,
production externalities have been an important feature of the model because they
are a source of inefficiency that causes indeterminacy of equilibria. Among others,
Benhabib and Nishimura [8] demonstrate that indeterminacy can easily occur in a
model with two production sectors even though production externalities are small,
provided that capital goods are labor intensive from the private perspective and
capital intensive from the social perspective. In the current paper, a financial market
is explicitly introduced in the two-production-sector model. In particular, agents
face financial constraints and can borrow only up to a certain proportion of their
own funds in our model. In each period, they receive an idiosyncratic productivity
shock. Agents who draw higher productivity become borrowers (capital producers),
and agents who draw lower productivity become lenders. In other words, borrowers
and lenders endogenously appear in equilibrium.

1In contrast to Woodford [24], Barinci and Chéron [5] consider an economy with increasing
return-to-scale production externalities.
2We do not assume any fixed cost that affects financial constraints.
3See, for instance, Benhabib and Farmer [6, 7], Benhabib and Nishimura [8], Borldrin and
Rustichini [11], Benhabib et al. [10], Nishimura and Shimomura [19], Nishimura and Venditti
[20, 21], and Dufourt et al. [15].
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Our main finding is that under the moderate parameter conditions, if financial
constraints are severe, equilibrium is uniquely determined, with the steady state
being a saddle point, whereas if the financial constraints are relaxed, equilibrium
is indeterminate, with the steady state being totally stable.

The remainder of this paper proceeds as follows. In the next section, the model
is presented in which the two production sectors exhibit sector-specific production
externalities and agents face financial constraints. In Sect. 3, we derive equilibrium
and the dynamical system. In Sect. 4, we characterize the dynamic property around
the steady state and obtain the condition for the extent of financial constraints to
produce multiple equilibria. Section 5 concludes the current study.

2 Model

A closed economy continues from time 0 to +∞ in discrete time and consists of
an infinitely lived representative firm and infinitely lived agents, whose population
is equal to 1. In each period, the representative firm produces both consumption
and intermediate goods. The intermediate goods are numeraire throughout the
current analysis. The infinitely lived agents have potential investment opportunities
to produce capital from the intermediate goods but receive uninsured idiosyncratic
productivity shocks in each period that affect the productivity in capital production.

2.1 Agents

2.1.1 Timing of Events

Figure 1 illustrates the timing of the events at time t . At the beginning of time t
when the idiosyncratic productivity shock has not yet been realized, an agent earns
the following incomes: a wage income, returns to her saving, and a lump-sum profit
from the representative firm. The consumption good market at time t is opened at
the beginning of the period and is closed before the idiosyncratic productivity shock
is realized. Therefore, she must make a decision about consumption and saving at
the beginning of time t without knowing her productivity in order to produce capital
used at time t + 1. At the end of time t , the idiosyncratic productivity shock is
realized. There are two saving methods: one is lending her savings in the financial
market and the other is initiating an investment project. She optimally chooses one
of the saving methods with knowing her productivity. Lending one unit of savings
in the financial market at time t yields a claim to rt+1 units of intermediate goods
at time t + 1, where rt+1 is the gross real interest rate. Purchasing one unit of
intermediate goods at time t for capital production creates �t units of capital used
at time t + 1, which are sold at price, qt+1, to the production sectors at time t + 1.
Although she can borrow in the financial market when she starts to produce capital,
she faces a financial constraint and can borrow up to a certain proportion of her own
funds.
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• Earning incomes.

• Repayment for 
borrowing if any.

• Decision about 
consumption and saving 
without knowing 
productivity shocks.

• Productivity 
shock Φ realized.

• Choose one of the 
two saving methods 
with knowing 
productivity shocks: 
Initiating a project 
with borrowing, or 
lending in the 
financial market.

Time 
dnEgninnigeB

Fig. 1 Timing of events and an agent’s behavior

Productivity �t is a random variable on a probability space (�,F , P ), where
� is a sample space (for which one can assume � = [0, 1]), F is a σ -algebra on
�, and P is the probability measure. �t is a function of ωt ∈ �, and its support
is [0, η], where η ∈ (0,∞). The cumulative distribution function of �t is denoted
by G(�) := P({ωt ∈ � | �t(ωt ) ≤ �}), which is time-invariant and continuously
differentiable on the support, where {ωt ∈ � | �t(ωt ) ≤ �} ∈ F . �0, �1,. . . ,
are independent and identically distributed across both agents and time (the i.i.d.
assumption). There is no insurance market for the productivity shocks, and thus,
no one can insure against low productivity. Denote the history of ωt by ωt−1 =
{ω0, ω1, . . . , ωt−1}. Then, we can define a probability space (�t ,F t , P t ) that is
a Cartesian product of t copies of (�,F , P ), where ωt−1 is an element of �t .
Because the measure of the agent population is equal to one and because of the i.i.d.
assumption, ωt−1 can denote an individual who experiences the history, ωt−1 =
{ω0, ω1, . . . , ωt−1}.

2.1.2 Maximization Problem

An agent solves a maximization problem for her lifetime utility given in the
following:

maxE

[ ∞∑

τ=t
βτ−t cτ (ωτ−1)

∣
∣
∣
∣ ω
t−1

]

subject to

pτ cτ (ω
τ−1)+ sτ (ωτ−1) =
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qτ�τ−1(ωτ−1)xτ−1(ω
τ−1)+ rτ bτ−1(ω

τ−1)+ wτ + πτ (1)

bτ (ω
τ ) ≥ −λsτ (ωτ−1) (2)

xτ (ω
τ ) ≥ 0, (3)

for τ ≥ t , where β ∈ (0, 1) is the subjective discount factor, cτ (ωτ−1) is
consumption, and E[.|ωt−1] is an expectation operator given the history, ωt−1. In
what follows, by using (2) and (3), we transform Eq. (1) into one budget constraint
given by Eq. (6) below.

In (1), wτ and πτ are a wage income and a profit that is given from the
representative firm in a lump-sum manner, respectively, and pτ is the price of
consumption goods. sτ (ωτ−1) := xτ (ω

τ ) + bτ (ωτ ) is the agent’s saving at time
τ , where xτ (ωτ ) is intermediate goods used for capital production and bτ (ωτ )
is lending if bτ (ωτ ) > 0 and borrowing if bτ (ωτ ) < 0. A linear technology
with respect to intermediate goods is assumed for capital production such as
�τ−1(ωτ−1)xτ−1(ω

τ−1), which is capital produced at time τ . Equation (1) implies
that when the agent makes a decision at time t about consumption, ct (ωt−1),
and saving, st (ωt−1), she does not know her productivity, �t(ωt ), as previously
discussed. However, as noted from the expression st (ωt−1) = xt (ω

t ) + bt (ωt ),
she knows �t(ωt ) when she makes a portfolio decision about investing in a capital
production project, lending, and/or borrowing at time t . Equation (1) is the flow
budget constraint effective for τ ≥ 1. At time 0, the flow budget constraint is
assumed to be given by p0c0 + s0 = q0K0 + w0 + π0, where K0 is the initial
capital endowment that is common across agents.

Inequality (2) is the financial constraint the agent faces at time τ .4 Even though
an agent is willing to borrow in the financial market, she can do so only up to a
partial proportion of her savings, which is her own fund. In (2), λ ∈ (0,∞) is
the extent of financial constraints: the smaller λ is, the more severe the financial
constraint is. Inequality (2) can be rewritten as bτ (ωτ ) ≥ −μxτ (ωτ ), where μ =
λ/(1 + λ) ∈ (0, 1). Because this constraint is more convenient than inequality (2),
we use it henceforth. Asμ goes to 1, the financial market approaches perfection, and
as μ goes to zero, agents are unable to borrow in the financial market. The purchase
of intermediate goods should be nonnegative, and thus, inequality (3) is imposed.

2.1.3 Optimal Portfolio Decision Within a Period

We define φt := rt+1/qt+1. With knowing the productivity in capital production,
agents who draw�t > φt optimally borrow up to the limit of the financial constraint
and purchase intermediate goods for capital production, whereas agents who draw
�t ≤ φt lend all their savings in the financial market to acquire the gross interest,

4This type of financial constraints is employed by many researchers such as Aghion et al. [2],
Aghion and Banerjee [1], and Aghion et al. [3].



122 T. Kunieda and K. Nishimura

rt+1.5 Hence, φt is the cutoff for the productivity shocks that divide agents into
lenders and borrowers (capital producers) at time t , and an agent’s portfolio program
is given by

xt (ω
t ) =

{
0 if �t(ωt ) ≤ φt

st (ω
t−1)

1−μ if �t(ωt ) > φt ,
(4)

and

bt (ω
t ) =

{
st (ω

t−1) if �t(ωt ) ≤ φt
− μ

1−μst (ω
t−1) if �t(ωt ) > φt .

(5)

2.1.4 Euler Equation

The portfolio program given by (4) and (5) rewrites the flow budget constraint (1) as

sτ (ω
τ−1)+ pτ cτ (ωτ−1) = Rτ (ωτ−1)sτ−1(ω

τ−2)+ wτ + πτ , (6)

where Rτ (ωτ−1) := max{rτ , (qτ�τ−1(ωτ−1) − rτμ)/(1− μ)}. The maximization
of the agent’s lifetime utility subject to (6) yields the Euler equation as follows:

pt+1 = βE
[
Rt+1(ωt )|ωt−1

]
pt . (7)

The necessary and sufficient optimality conditions for the lifetime utility maximiza-
tion problem consist of the Euler equation (7) as well as the transversality condition
limτ→∞ βτE[st+τ (ωt+τ−1)/pt+τ |ωt−1] = 0.

2.2 Production

The representative firm produces both intermediate and consumption goods, being
endowed with Cobb-Douglas technologies:

F̄ 1(l1t , k
1
t , l̄

1
t , k̄

1
t ) = A(l1t )α

1
L(k1

t )
α1
K (l̄1t )

a1
L(k̄1

t )
a1
K

for intermediate goods, and

F̄ 2(l2t , k
2
t , l̄

2
t , k̄

2
t ) = B(l2t )α

2
L(k2

t )
α2
K (l̄2t )

a2
L(k̄2

t )
a2
K

5The derivation of an optimal portfolio allocation of savings follows Kunieda and Shibata [17].
Although agents who draw �t = φt are indifferent between initiating a capital production project
and lending in the financial market, it is assumed that they lend their savings in the financial market.
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for consumption goods, where αiL, α
i
K ∈ (0, 1), αiL + αiK + aiL + aiK = 1 for

i = 1, 2, and	 := α1
Lα

2
K −α2

Lα
1
K �= 0. A and B are the productivity parameters. In

the production functions, lit and kit are labor and capital used for the production of
each good, respectively, and l̄it and k̄it are the components of production externalities
with respect to labor and capital, respectively. In equilibrium, it holds that lit = l̄it
and kit = k̄it , although l̄it and k̄it are exogenous when the firm solves the profit
maximization problem. The firm solves the following maximization problem:

max
l1t ,l

2
t ,k

1
t ,k

2
t

 t := F̄ 1(l1t , k
1
t , l̄

1
t , k̄

1
t )+ pt F̄ 2(l2t , k

2
t , l̄

2
t , k̄

2
t )+ (1− δ)kt − qtkt −wt lt ,

(8)
where δ ∈ (0, 1) is the capital depreciation rate and kt = k1

t + k2
t is the total capital

in the economy. It is assumed that the remaining capital, (1− δ)kt , after production
at time t can be used as intermediate goods, and thus, the total intermediate goods,
F̄ 1(l1t , k

1
t , l̄

1
t , k̄

1
t ) + (1 − δ)kt , are sold to capital producers. The total labor supply

is given by l1t + l2t = lt , which is equal to the population of agents, i.e., lt = 1. The
first-order conditions for the profit maximization problem are given by

Aα1
L

(
k1
t

l1t

)1−θ1
= ptBα2

L

(
k2
t

l2t

)1−θ2
= wt . (9)

and

Aα1
K

(
k1
t

l1t

)−θ1
= ptBα2

K

(
k2
t

l2t

)−θ2
= qt + δ − 1, (10)

where θi := αiL + aiL for i = 1, 2. Note that we have used equilibrium conditions,
lit = l̄it and kit = k̄it , to obtain (9) and (10). Assumption 2.1 below is imposed so that
the law of demand for each input is satisfied.

Assumption 2.1 θi ∈ (0, 1) for i = 1, 2.

Equations (9) and (10) yield

k1
t = α1

Kwt

α1
L(qt+δ−1)

l1t and k2
t = α2

Kwt

α2
L(qt+δ−1)

l2t (11)

Equations (9) and (10) also yield

wt = �p
1−θ1
θ2−θ1
t =: w(pt ) and qt + δ − 1 = �p

−θ1
θ2−θ1
t =: v(pt ), (12)

where

� := [(A(α1
L)
θ1(α1

K)
1−θ1)θ2−1(B(α2

L)
θ2(α2

K)
1−θ2)1−θ1 ]1/(θ2−θ1)
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and

� := [(A(α1
L)
θ1(α1

K)
1−θ1)θ2(B(α2

L)
θ2(α2

K)
1−θ2)−θ1 ]1/(θ2−θ1).

As in Benhabib and Nishimura [8], it is said that if	 = α1
Lα

2
K −α2

Lα
1
K > (<)0,

the intermediate goods are labor (capital) intensive from the private perspective and
if θ1 > (<)θ2, the intermediate goods are labor (capital) intensive from the social
perspective.

3 Equilibrium

A competitive equilibrium is expressed by sequences of prices {wt, qt , pt , rt+1}
for all t ≥ 0 and allocation {kt , k1

t , k
2
t , lt , l

1
t , l

2
t } for all t ≥ 0 and

{ct (ωt−1), st (ω
t−1), xt (ω

t ), bt (ω
t )} for all t ≥ 0, ωt , and ωt−1, so that (i) for each

ωt and ωt−1, the consumer maximizes her lifetime utility from time t onward; (ii)
the representative firm maximizes its profits in each period; and (iii) consumption
and intermediate goods markets, a financial market, a capital market, and a labor
market are clear.6

3.1 Market-Clearing Conditions

Because in each time, the total consumption is equal to the production of consump-
tion goods, the consumption goods market-clearing condition is given by

Ct :=
∫

�t
ct (ω

t−1)dP t (ωt−1) = F 2(k2
t , l

2
t ), (13)

where F 2(k2
t , l

2
t ) := F̄ 2(l2t , k

2
t , l

2
t , k

2
t ). As seen in (4), the intermediate goods

are purchased by agents who draw higher productivity, such that �t(ωt ) > φt .
Therefore, the intermediate goods market-clearing condition is given by

∫

�t×(�\!t )
xt (ω

t )dP t+1(ωt ) = F 1(k1
t , l

1
t )+ (1− δ)kt , (14)

where !t = {ωt ∈ �|�t(ωt ) ≤ φt } and F 1(k1
t , l

1
t ) := F̄ 1(l1t , k

1
t , l

1
t , k

1
t ). Because,

in the financial market, all lending and borrowing are canceled out, it follows that
∫

�t+1
bt (ω

t )dP t+1(ωt ) = 0, (15)

which is the financial market-clearing condition. From (15), we obtain the following
lemma.

6To be accurate, c0 is not subject to any history of the stochastic events and ω−1 is empty.
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Lemma 3.1 The financial market-clearing condition (15) is satisfied if and only if

∫

�t×!t
st (ω

t−1)dP t+1(ωt ) = μ

1− μ
∫

�t×(�\!t )
st (ω

t−1)dP t+1(ωt ).

Proof Inserting (5) into the financial market-clearing condition (15) yields the
desired equation. $%
Capital is supplied by agents who draw higher productivity such that �t(ωt ) >
φt and is demanded by the representative firm. Hence, the capital market-clearing
condition is given by

k1
t+1 + k2

t+1 =
∫

�t×(�\!t )
�t (ωt )xt (ω

t )dP t+1(ωt ). (16)

Finally, the labor market-clearing condition is given by

l1t + l2t = lt = 1. (17)

3.2 Production in Equilibrium

From (11), k1
t + k2

t = kt , and l1t + l2t = 1, the production functions become as
follows:

F 1(l1t , k
1
t ) = −

α2
Lv(pt )kt − α2

Kw(pt )

	
(18)

and

ptF
2(l2t , k

2
t ) =

α1
Lv(pt )kt − α1

Kw(pt )

	
. (19)

From (18) and (19), the gross product, Yt = F 1(l1t , k
1
t )+ ptF 2(l2t , k

2
t ), is obtained

as follows:

Yt = (α
1
L − α2

L)v(pt )kt + (α2
K − α1

K)w(pt )

	
. (20)

3.3 Cutoff

The financial market-clearing condition (15) yields a time-invariant cutoff, φt = φ∗,
in equilibrium that divides agents into lenders and borrowers.
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Proposition 3.1 The cutoff, φ∗, is given by

G(φ∗) = μ. (21)

Proof See the Appendix.

Because the cumulative distribution function is strictly increasing over the support,
φ∗ = G−1(μ) is uniquely determined. As μ increases, φ∗ increases. This means
that as the financial constraints are relaxed, the number of lenders increases and the
number of capital producers decreases. Although the number of capital producers
decreases, allocative inefficiency with respect to the use of intermediate goods is
corrected. This is because the intermediate goods are intensively used by more
highly productive agents.

3.4 Dynamical System

To aggregate the flow budget constraint (6) across all agents, we obtain Lemma 3.2
below, which follows from the financial market-clearing condition (15).

Lemma 3.2
∫

�t
Rt (ωt−1)st−1(ω

t−2)dP t (ωt−1) = qtkt (22)

Proof See the Appendix.

Lemma 3.2 implies that capital producers sell capital to the representative firm at
price qt . From the microeconomic perspective, the savings of agents who draw
lower productivity are lent out to agents who draw higher productivity, and the
lenders are repaid with interest. Therefore, although the returns to individual savings
vary depending upon the individual productivity, the total income from all agents’
savings is eventually equal to the value of total capital in the economy.

The use of Lemma 3.2 aggregates the flow budget constraint (6) across all agents
and obtains the relationship between the total demand for and the total supply
of intermediate goods. The total funds available for capital production consist of
capital producers’ savings and their borrowing from lenders through the financial
market, which is equal to the aggregate saving across all agents. The total funds are
used to purchase the intermediate goods. Lemma 3.3 below describes this situation.

Lemma 3.3
∫

�t
st (ω

t−1)dP t (ωt−1) = F 1(l1t , k
1
t )+ (1− δ)kt (23)

Proof See the Appendix.
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The left-hand side of (23) is the total demand for intermediate goods, and the right-
hand side is the total supply. As seen in (4), the intermediate goods are used by
the more highly productive agents who draw �t(ωt ) > φ∗ to produce capital.
Then, Lemmas 3.3 and (4) with the i.i.d. assumption regarding the idiosyncratic
productivity shocks yield capital kt+1, as in Proposition 3.2.

Proposition 3.2

kt+1 = H(φ
∗)

1− μ
(
F 1(l1t , k

1
t )+ (1− δ)kt

)
, (24)

where H(φ∗) = ∫ η
φ∗ �t(ωt )dG(�).

Proof See the Appendix.

Define M(μ) := H(φ∗)/(1 − μ) in (24). Then, M(μ) can be considered as the
aggregate productivity in the economy. By applying L’Hôpital’s rule, one can prove
that as μ → 1, i.e., as the financial market approaches perfection, it follows that
M(μ) → η. This outcome means that only the agents who draw the highest
productivity become capital producers and the other agents become lenders when
the financial market is perfect. In this case, allocative inefficiency regarding the
intermediate goods is perfectly corrected, and the highest aggregate productivity
is achieved. In contrast, we obtain M(0) = H(0), which is equal to the mean of
�t(ωt ). When μ = 0, there is no financial market, and no agent can be a lender or
a borrower. Instead, all agents become capital producers. The range of variation of
M(μ) depends on the size of the support of the idiosyncratic productivity shocks.
RegardingM(μ), Lemma 3.4 is formally obtained.

Lemma 3.4 As μ increases from 0 to 1, the aggregate productivity, M(μ), also
increases fromM(0) to η, whereM(0) is the mean of the idiosyncratic productivity
shocks.

Proof See the Appendix.

Inserting (18) into (24) yields a dynamic equation with respect to capital as follows:

kt+1 = M(μ)
(

1− δ − α
2
Lv(pt )

	

)

kt + M(μ)α
2
K

	
w(pt ). (25)

G(φ∗) = μ and φ∗ = rt+1/qt+1 are used to compute the expected return in
Proposition 3.3 below.

Proposition 3.3

E[Rt+1(ωt )|ωt−1] = qt+1M(μ). (26)

Proof See the Appendix.
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Equations (12) and (26) rewrite (7) as follows:

pt+1

�p

−θ1
θ2−θ1
t+1 + 1− δ

= βM(μ)pt , (27)

which is a dynamic equation with respect to the price of consumption goods.

3.5 Steady State

Assumption 3.2

0 < η <
1

1− δ
Assumption 3.2 implies that (1 − δ)M(μ) < 1 for all μ ∈ [0, 1). Under

Assumption 3.2, (1 − δ)M(μ) varies from (1 − δ)H(0) to (1 − δ)η as μ
increases from 0 to 1. In the model with a perfect financial market, the aggregate
productivity in capital production is constant. In contrast, the current model allows
for the aggregate productivity,M(μ), to vary from H(0) to η, whose upper limit is
1/(1− δ).
Assumption 3.3 θ2 > θ1 and 	 = α1

Lα
2
K − α2

Lα
1
K > 0.

In Benhabib and Nishimura’s model, when the utility function is linear with
respect to consumption, indeterminacy of equilibrium always occurs if the inter-
mediate goods are capital intensive from the social perspective, i.e., θ2 > θ1, and
labor intensive from the private perspective, i.e., 	 > 0. Therefore, we exclusively
examine the case in which θ2 > θ1 and	 > 0 to investigate whether indeterminacy
occurs when the financial market is imperfect.

Under Assumption 3.2, (27) provides the consumption goods price, p∗, in the
steady state, as follows:

p∗ =
(

β�M(μ)

1− (1− δ)βM(μ)
) θ2−θ1

θ1
. (28)

Furthermore, under Assumption 3.2, (12), (25), and (28) yield the capital stock, k∗,
in the steady state as follows:

k∗ = α2
K��

1−θ1
θ1 (βM(μ))

1
θ1

(
α2
L + β	− (	+ α2

L)β(1− δ)M(μ)
)
(1− (1− δ)βM(μ))

1−θ1
θ1

. (29)
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To confirm that the economy produces both intermediate and consumption goods
in the steady state, we obtain Lemma 3.5 below.

Lemma 3.5 Under Assumptions 3.2 and 3.3, it holds that

α1
Kw(p

∗)
α1
Lv(p

∗)
< k∗ <

α2
Kw(p

∗)
α2
Lv(p

∗)
.

Proof See the Appendix.

From (18) and (19), Lemma 3.5 implies that the economy imperfectly specializes
in production and consistently produces both intermediate and consumption goods
in the steady state. By continuity, both intermediate and consumption goods are
produced in the neighborhood of the steady state. Throughout the analysis, we
exclusively focus on the case in which the economy produces both intermediate
and consumption goods.

4 Local Dynamics

From (25) and (27), the dynamical system with respect to kt and pt is given by

⎧
⎨

⎩

kt+1 = J (kt , pt )
pt+1

�p

−θ1
θ2−θ1
t+1 +1−δ

= βM(μ)pt , (30)

where

J (Yt , pt ) = M(μ)
(

1− δ − α
2
Lv(pt )

	

)

kt + M(μ)α
2
K

	
w(pt ).

Note that the second equation is expressed by the consumption price only, because
we assume that agents’ period-wise utility is linear with respect to consumption. The
linearization of the dynamical system (30) around the steady state is obtained as

(
kt+1 − k∗
pt+1 − p∗

)

=
(
(	+α2

L)(1−δ)βM(μ)−α2
L

β	
Jp(Y

∗, p∗)
0 θ2−θ1

θ2−θ1(1−δ)βM(μ)

) (
kt − k∗
pt − p∗

)

,

(31)
where Jp(k, p) := ∂J (k, p)/∂p. The eigenvalues, κ1 and κ2, of this dynamical
system are given by

κ1 = (	+ α
2
L)(1− δ)βM(μ)− α2

L

β	
(32)
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and

κ2 = θ2 − θ1
θ2 − θ1(1− δ)βM(μ) . (33)

To focus on a typical interesting case, Assumption 4.4 below is imposed in what
follows.

Assumption 4.4 1 < α2
L/(β	) < 1/(1− β).

The value of κ1 is crucial for the determination of the dynamic property around
the steady state, although it is easily shown that κ2 ∈ (0, 1), as proven in Lemma A.1
in the Appendix. Figure 2 illustrates the relationship between M(μ) and κ1 under
Assumption 4.4. In Fig. 2, two critical values of M(μ) are defined: M1 := (α2

L −
β	)/[(	 + α2

L)(1 − δ)β] and M2 := α2
L/[(	 + α2

L)(1 − δ)β]. We also define μ1
and μ2, if any, such that M(μ1) = M1 and M(μ2) = M2. As noted in Fig. 2, M1
gives κ1 = −1 and M2 gives κ1 = 0. Note also that when M(μ) = 1/(1 − δ),
we have κ1 = 1 − (1 − β)α2

L/(β	), which is less than 1 and is greater than 0
from Assumption 4.4. The value of κ1 varies depending on the extent of financial
constraints.

Theorem 4.1 Consider the linearized dynamical system (31). Under Assump-
tions 2.1, 3.2, 3.3, and 4.4, suppose that the mean of the stochastic productivity
shocks, M(0), is smaller than M1 and that the maximum, η, is greater than M2.
Then, if the financial constraint is severe, the steady state is a saddle point, and if
the financial constraint is relaxed, the steady state is totally stable. More concretely,
the following hold.

M1M

̃

̅

Fig. 2 The relationship between M(μ) and κ1. Notes: From Assumption 4.4, it follows that
1− (1− β)αL2 /(β	) ∈ (0, 1) and −αL2 /(β	) ∈ (−∞,−1) on κ1 axis
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• If μ ∈ [0, μ1), the steady state is a saddle point.
• If μ ∈ (μ1, 1), the steady state is totally stable.

Proof See the Appendix.

In the dynamical system given by (30), kt is a state variable that is predetermined
at time t , and pt is a jump variable. In Theorem 4.1 when the steady state is a
saddle point, for any given initial capital, k0, there exists only an initial price of
consumption goods that yields a sequence {kt , pt }∞t=0 in competitive equilibrium.
Accordingly, in this case, equilibrium is uniquely determined. In contrast, when
the steady state is totally stable, there exists a continuum of initial prices of con-
sumption goods, each one of which produces a sequence {kt , pt }∞t=0 in competitive
equilibrium. In this case, equilibrium is indeterminate and multiple equilibria occur.

It is widely known that indeterminacy of equilibrium causes self-fulfilling
sunspot business fluctuations (Shell [22]; Azariadis [4]; Cass and Shell [12];
Woodford [23]). Extrinsic random variables that may have impacts on agents’
expectations without directly affecting economic fundamentals are called sunspots.
If the resource allocation in equilibrium depends on the realization of a sunspot
random variable, the equilibrium is called a sunspot equilibrium. When indeter-
minacy arises, extrinsic uncertainty randomizes multiple equilibria. Then, sunspot
business fluctuations can occur as a rational expectations equilibrium. Note from
Theorem 4.1 that when the financial constraint is severe, no self-fulfilling sunspot
business fluctuations occur, whereas when the financial constraint is relaxed, self-
fulfilling sunspot business fluctuations can occur.

5 Concluding Remarks

A two-sector dynamic general equilibrium model in which agents face financial
constraints and the production sectors exhibit externalities is presented. Whether
production externalities cause indeterminacy of equilibria depends on the extent of
financial constraints and the size of the support of the idiosyncratic productivity
shocks. Under the moderate parameter conditions for a labor income share and
sector-specific production externalities, if financial constraints are severe, equi-
librium is unique. However, as financial constraints are relaxed, equilibrium is
indeterminate, and thus, self-fulfilling sunspot business fluctuations can occur.

Recently, it has often been asserted that financial innovations that relax financial
constraints destabilize economies. The outcomes from our analysis are consistent
with this assertion. In our model, the relaxation of financial constraints magnifies
the destabilization effect of production externalities.
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Appendix

Proof of Proposition 3.1

It follows from Lemma 3.1 that
∫

!t

∫

�t
st (ω

t−1)dP t (ωt−1)dP (ωt )

− μ

1− μ
∫

�\!t

∫

�t
st (ω

t−1)dP t (ωt−1)dP (ωt ) = 0.

(34)

where !t = {ωt ∈ �|�t(ωt ) ≤ φt }. (34) can be rewritten as

∫

�t
st (ω

t−1)dP t (ωt−1)

∫ φt

0
dG(�)

− μ

1− μ
∫

�t
st (ω

t−1)dP t (ωt−1)

∫ η

φt

dG(�) = 0,

which is computed as

∫

�t
st (ω

t−1)dP t (ωt−1)

[

G(φt )− μ

1− μ(1−G(φt ))
]

= 0.

Solving the last part, we obtain G(φt ) = μ. �

Proof of Lemma 3.2

Because Rt(ωt−1) = max{rt , (qt�t−1(ωt−1)− rtμ)/(1− μ)}, it follows that

∫

�t
Rt (ωt−1)st−1(ω

t−2)dP t (ωt−1) =
∫

�t
max

{

rt ,
qt�t−1(ωt−1)− rtμ

1− μ
}

× st−1(ω
t−2)dP t (ωt−1) =: It

Define !t−1 = {ωt−1 ∈ �|�t−1(ωt−1) ≤ φt−1}, as in the proof of Proposition 3.1.
Because φt−1 = rt /qt , It can be computed as follows:

It =
∫

�t−1×!t−1

rt st−1(ω
t−2)dP t (ωt−1)
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+
∫

�t−1×(�\!t−1)

qt�t−1(ωt−1)− rtμ
1− μ st−1(ω

t−2)dP t (ωt−1)

=
∫

�t−1×(�\!t−1)

qt�t−1(ωt−1)

1− μ st−1(ω
t−2)dP t (ωt−1), (35)

where the second equality of (35) is obtained from Lemma 3.1. Agents who draw
�t−1(ωt−1) > φt−1 invest xt−1(ω

t−1) = st−1(ω
t−2)/(1 − μ), and thus, (35)

becomes

It =
∫

�t−1×(�\!t−1)

qt�t−1(ωt−1)

1− μ (1− μ)xt−1(ω
t−1)dP t (ωt−1)

= qt
∫

�t−1×(�\!t−1)

�t−1xt−1(ω
t−1)dP t (ωt−1). (36)

Because kt =
∫
�t−1×(�\!t−1)

�t−1xt−1(ω
t−1)dP t (ωt−1), (36) becomes

It = qtkt . �

Proof of Lemma 3.3

By using Lemma 3.2 and because
∫
�t
πtdP

t (ωt−1) =  t , the aggregation of (6)
across all agents is obtained as follows:

∫

�t
st (ω

t−1)dP t (ωt−1) =
∫

�t
[Rt(ωt−1)st−1(ω

t−2)+ wt + πt

− ptct (ωt−1)]dP t (ωt−1)

= qtkt + wt + t − ptCt . (37)

From (8), we have F 1(l1t , k
1
t )+ ptF 2(l2t , k

2
t )+ (1− δ)kt = qtkt +wt + t . Addi-

tionally, the consumption goods market-clearing condition leads to ptF 2(l2t , k
2
t ) =

ptCt . Therefore, (37) is transformed into

∫

�t
st (ω

t−1)dP t (ωt−1) = F 1(l1t , k
1
t )+ (1− δ)kt . � (38)
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Proof of Proposition 3.2

Because kt+1 is produced by capital producers who draw an individual-specific
productivity, �t(ωt ), that is greater than φt , Lemma 3.3 and the i.i.d. assumption
compute kt+1 as follows:

kt+1 =
∫

�t×(�\!t )
�t (ωt )xt (ω

t )dP t+1(ωt )

=
∫

�\!t

∫

�t
�t (ωt )

st (ω
t−1)

1− μ dP t (ωt−1)dP (ωt )

=
∫ η

φt

�t (ωt )

1− μ dG(�)
∫

�t
st (ω

t−1)dP (ωt−1)

= H(φ
∗)

1− μ (F
1(l1t , k

1
t )+ (1− δ)kt ),

where H(φ∗) = ∫ η
φ∗ �t(ωt )dG(�) because φt = φ∗ in equilibrium. �.

Proof of Lemma 3.4

Obviously,M(μ) is continuous in [0, 1). The inverse function theorem implies

∂M(μ)

∂μ
= ∂

∂μ

(
H(φ∗)
1− μ

)

= −(1− μ)φ
∗G′(φ∗)(∂φ∗/∂μ)+H(φ∗)
(1− μ)2

=
∫ h
φ∗ �t(ωt )dG(�)− φ∗(1−G(φ∗))

(1− μ)2 > 0.

Therefore, M(μ) is an increasing function with respect to μ in [0, 1). It is
straightforward to verify that M(0) = H(0) is the mean of the idiosyncratic
productivity shocks. By applying L’Hôpital’s rule, we obtain limμ→1M(μ) =
limμ→1G

−1(μ)G−1′(μ)G′(φ∗) = η. For the last equality, we have used the inverse
function theorem again. �

Proof of Proposition 3.3

Because φt = rt+1/q(pt+1) and φt = φ∗, it follows that
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E[Rt+1(ωt )|ωt−1] = E
[

max

{

rt+1,
qt+1�t(ωt )− rt+1μ

1− μ
} ∣

∣
∣
∣ω
t−1

]

= qt+1E

[

max

{

φt ,
�t (ωt )− φtμ

1− μ
} ∣

∣
∣
∣ω
t−1

]

= qt+1

[∫ φ∗

0
φ∗dG(�)+

∫ η

φ∗
�t(ωt )− φ∗μ

1− μ dG(�)

]

= qt+1

[

φ∗G(φ∗)− φ∗μ
1− μ(1−G(φ

∗))+ H(φ
∗)

1− μ
]

= qt+1M(μ).

To derive the last equality, Proposition 3.1 is applied. �

Proof of Lemma 3.5

From Assumption 3.2, it follows that (1 − δ)M(μ) < 1. Then, under Assump-
tion 3.3, from (12), (28), and (29), it follows that sign{k∗−α1

Kw(p
∗)/(α1

Lv(p
∗))} =

sign{1− (1− δ)βM(μ)−α1
Kβ(1− (1− δ)M(μ))}. Because 1− (1− δ)βM(μ)−

α1
Kβ(1 − (1 − δ)M(μ)) > (1 − α1

Kβ)(1 − (1 − δ)M(μ)) > 0, it follows that
sign{k∗−α1

Kw(p
∗)/(α1

Lv(p
∗))} > 0. Additionally, it follows that sign{α2

Kw(p
∗)/

(α2
Lv(p

∗))− k∗} = sign{1− (1− δ)M(μ)} > 0. �

Proof of Theorem 4.1

To prove Theorem 4.1, two lemmata are prepared.

Lemma A.1 Under Assumptions 2.1, 3.2, and 3.3, it holds that 0 < κ2 < 1.

Proof It follows from Assumption 3.2 that 0 < (1− δ)βM(μ) < 1, which leads to
(θ2−θ1)/(θ2−θ1(1−δ)βM(μ)) < 1 from Assumptions 2.1, 3.2, and 3.3. Addition-
ally, it follows from Assumption 3.3 that (θ2 − θ1)/(θ2 − θ1(1− δ)βM(μ)) > 0

$%
Lemma A.2 Under Assumptions 2.1, 3.2, 3.3, and 4.4, suppose that the mean of
the stochastic productivity shocks,M(0), is smaller thanM1 and that the maximum,
η, is greater thanM2. Then, as the value of μ increases from 0 to 1, the value of κ1
increases in the ranges, as in the following.

– As μ increases in [0, μ1), κ1 increases in [κ̃,−1).
– As μ increases in [μ1, μ2), κ1 increases in [−1, 0).
– As μ increases in [μ2, 1), κ1 increases in [0, κ̄),
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where κ̃ := [(	+ α2
L)(1− δ)βM(0)− α2

L]/(β	) ∈ (−∞,−1) and κ̄ < 1− (1−
β)α2

L/(β	) ∈ (0, 1), which is given whenM(μ) = η.

Proof M(μ) is an increasing function with respect to μ. Then, Fig. 2 and (32) prove
the claims. $%
Proof of Theorem 4.1 From Lemma A.1, we have |κ2| < 1. From Lemma A.2, if
μ ∈ [0, μ1), |κ1| > 1, and if μ ∈ (μ1, 1), |κ1| < 1. Therefore, the steady state is a
saddle point if μ ∈ [0, μ1), and the steady state is totally stable if μ ∈ (μ1, 1). $%
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Decreasing distribution function, 98, 104
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