
Chapter 12
Low-Density Parity-Check (LDPC)
Codes

E. Paolini

Abstract In this chapter, low-density parity-check (LDPC) codes, a class of
powerful iteratively decodable error correcting codes, are introduced. The chapter
first reviews some basic concepts and results in information theory such as Shan-
non’s channel capacity and channel coding theorem. It then overviews the flash
memory channel model. Next, it addresses binary LDPC codes describing both their
structure and efficient implementation, and their belief propagation and
reduced-complexity decoding algorithms. Non-binary LDPC codes and their belief
propagation decoding algorithm are also addressed. Finally simulation results are
provided.

12.1 Shannon Limit

12.1.1 Entropy and Mutual Information

Let X be a discrete random variable taking its values in a set X , according to some
probability mass function (pmf) p xð Þ=Pr X = xf g. The entropy of X is defined as

H Xð Þ= − ∑
x
p xð Þ log2 p xð Þ.

Intuitively, the entropy H Xð Þ may be thought as the uncertainty associated with
the random variable. For example, a deterministic variable is characterized by a
zero entropy while, for a given positive integer M, the random variable with the
largest entropy among all discrete random variables whose support set X has
cardinality M is the uniform one, i.e., p xð Þ=1 ̸M for all x∈X . In this latter case we
obtain H Xð Þ= log2 M.

E. Paolini (✉)
DEI, University of Bologna, Bologna, Italy
e-mail: e.paolini@unibo.it

© Springer Nature Singapore Pte Ltd. 2018
R. Micheloni et al. (eds.), Inside Solid State Drives (SSDs),
Springer Series in Advanced Microelectronics 37,
https://doi.org/10.1007/978-981-13-0599-3_12

407

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_12&domain=pdf

Consider now a second discrete random variable Y ∈Y characterized by a pmf
p yð Þ. Let p yjxð Þ=PrfY = yjX = xg be the pmf of Y conditioned to the event X = xf g.
The entropy of Y given the event X = xf g is defined as

H Y jX = xð Þ= − ∑
y
pðyjxÞ log2 pðyjxÞ.

Next, the conditional entropy H Y jXð Þ is defined as

H Y jXð Þ= ∑
x
p xð ÞH Y jX = xð Þ

= − ∑
x
∑
y
pðyjxÞp xð Þ log2 pðyjxÞ.

Finally, the mutual information I X; Yð Þ between X and Y is defined as

I X; Yð Þ= ∑
x
∑
y
p yjxð Þp xð Þ log2

p yjxð Þp xð Þ
p xð Þp yð Þ . ð12:1Þ

It can be shown that I X; Yð Þ=H Yð Þ−H Y jXð Þ=H Xð Þ−H XjYð Þ. As such,
I X; Yð Þ intuitively represents the reduction of uncertainty about X due to the fact
that we can observe Y (equivalently, reduction of uncertainty about Y due to the fact
that we can observe X). The mutual information is well-defined also for continuous
random variables. In this case, p xð Þ, p yð Þ, and p yjxð Þ are probability density
functions (pdfs), and we have

I X; Yð Þ=
Z

p yjxð Þp xð Þ log2
p yjxð Þp xð Þ
p xð Þp yð Þ dxdy. ð12:2Þ

Moreover, if X is a discrete random variable and Y is a continuous one, I X; Yð Þ is
defined as

I X; Yð Þ= ∑
x
p xð Þ∫ p yjxð Þ log2

p yjxð Þp xð Þ
p xð Þp yð Þ dy. ð12:3Þ

12.1.2 System Model and Channel Capacity

The fundamental limit of point-to-point digital communication over a noisy channel
was established in 1948 by C. Shannon, who showed that a vanishing error
probability can be attained at a finite information rate, provided this rate is smaller
than the capacity of the noisy channel.

With reference to Fig. 12.1, a source S of information generates messages that
must be delivered to a destination D through a noisy channel. The generic message,

408 E. Paolini

denoted by W, is drawn from a set of M possible messages 1, 2, . . . ,Mf g, where all
messages are a priori equally likely. Prior to transmission over the channel, the
message W is encoded through a channel encoder, that maps deterministically (and
univocally) each message onto a codeword x= x0, x1, . . . , xn− 1½ �, i.e., an n-tuple of
symbols belonging to some alphabet X . The ratio

R=
log2 M

n

is the code rate of the channel code and the code is named an n, 2nRð Þ code. All
n codeword symbols are then transmitted sequentially over the channel, resulting in
a sequence y= y0, y1, . . . , yn− 1½ � whose symbols belong to an alphabet Y. A de-
coding algorithm is then performed by a channel decoder to decide which code-
word, out of the set of M candidate codewords, had been transmitted over the
channel, given the noisy observation y. The codeword x ̂ returned by the decoder is
converted back to the corresponding message Ŵ that is finally delivered to the
destination. As error occurs whenever W ≠ Ŵ , i.e., a wrong message is delivered.

A probability of error can be defined for each of the M transmitted messages as
follows. The probability of error associated with the j-th message,
j∈ 1, 2, . . . ,Mf g, is denoted by Pe, j and is defined as

Pe, j = Pr Ŵ ≠W jW = j
� �

.

Furthermore, the maximum probability of error is defined as

Pe,max = max
j∈ 1, 2, ...,Mf g

Pe, j ð12:4Þ

and the average probability of error as

Pe =
1
M

∑
M

j=1
Pe, j. ð12:5Þ

The channel code along with its decoding algorithm shall be designed in order to
make the maximum probability of error over the given channel as small as possible.

Assume that both the input alphabet X and the output alphabet Y are discrete.
Let X ∈X and Y ∈Y be two discrete random variables, representing the input to the
channel and the corresponding output. Moreover, assume that the channel is fully
defined by the transition probabilities p yjxð Þ=PrfY = yjX = xg. In this case,

Fig. 12.1 Communication model

12 Low-Density Parity-Check (LDPC) Codes 409

the channel is called a discrete memory-less channel (DMC). The capacity of a
DMC is defined as

C= max
p xð Þ

I X; Yð Þ ð12:6Þ

i.e., as the maximum amount of uncertainty we can remove from the input symbol
(which cannot be observed directly) by observing the output symbol, where the
maximum is taken over all possible pmfs for the input symbol. The capacity is an
intrinsic parameter of the channel, only depending on the cardinalities of X and Y
and on the transition probabilities p yjxð Þ. It is expressed in terms of information bits
(or Shannon) per channel use.

Example 12.1 The DMC depicted in Fig. 12.2 is characterized by
X =Y = +1, − 1f g and by Pr Y = +1jX = +1f g= Pr Y = − 1jX = − 1f g=1− p,
Pr Y = +1jX = − 1f g= Pr Y = − 1jX = +1f g= p. This channel is known as binary
symmetric channel (BSC), and p is called the error (or crossover) probability. Every
binary symbol input to the channel is received in error with probability p and is
correctly received with probability 1− p. The capacity of the BSC is achieved for
Pr X = +1f g= Pr X = − 1f g=1 ̸2 and is given by1

C=1− − p log2 p− 1− pð Þ log2 1− pð Þ½ �. ð12:7Þ

As we shall see later, the BSC is a possible channel model for SLC Flash
memories. Assuming p≤ 1 ̸2, its capacity is maximum for p=0, where we have
C=1 (every binary symbol outcoming from the channel is reliable) and is mini-
mum for p=1 ̸2, where we have C=0 (no uncertainty is removed from X by
observing Y).

The concept of capacity, so far introduced for a DMC, can be extended to
time-discrete memory-less channels whose input symbol is either a discrete or a
continuous random variable and whose output symbol is a continuous one. The
capacity is still defined by (12.6), where the mutual information is now given by
(12.2) if X is continuous, and by (12.3) if X is discrete. As opposed to the DMC
case, however, additional constraints to the optimization problem may be intro-
duced (for example, an upper bound on the average transmitted power). The reason
is that the solution to the unconstrained optimization problem may correspond to an
input variable X for which the channel is essentially noiseless.

Additive noise channels represent an important class of such channels. Here, the
output symbol is obtained as Y =X +Z, where Z is a continuous random variable,
namely, an additive noise. If Z is independent of X and is normally distributed with
zero mean and variance σ2,

1The capacity of the BSC only depends on the crossover probability and not on the values assumed
by X and Y.

410 E. Paolini

p zð Þ= 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−
z2

2σ2 ,

then the corresponding channel is called an additive Gaussian channel.

Example 12.2 Consider the additive Gaussian channel depicted in Fig. 12.3, and
assume that X is a Bernoulli (i.e., discrete with a binary alphabet) random variable.
Without any further constraint, it is possible to achieve the capacity C=1 (corre-
sponding to a noiseless channel) regardless of σ2 by letting X ∈ −A, +Af g, where
A>0 is a real, choosing Pr X = −Af g=Pr X = +Af g=1 ̸2, and letting A→∞.
On the other hand, if the maximization problem is constrained to
1 ̸nð Þ∑n− 1

i=0 x2i ≤Es for any transmitted codeword, then the maximum is attained for
X ∈ −

ffiffiffiffiffi
Es

p
, +

ffiffiffiffiffi
Es

p� �
and Pr X = −

ffiffiffiffiffi
Es

p� �
=Pr X = +

ffiffiffiffiffi
Es

p� �
=1 ̸2. In this case

(12.3) yields

C= −
Z

p yð Þ log2 p yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2πeσ2

p� �
dy,

where

p yð Þ= 1ffiffiffiffiffiffiffiffiffiffi
8πσ2

p e−
y−
ffiffiffi
Es

pð Þ2
2σ2 + e−

y+
ffiffiffi
Es

pð Þ2
2σ2

� �
.

and where the capacity, that does not admit a closed-form expression, must be
computed via numerical integration. This channel model is known as the
binary-input additive white Gaussian noise (Bi-AWGN) channel. It is possible to
show that its capacity is a function of parameter Es ̸N0, where N0 = 2σ2. In general,
the larger Es ̸N0 the higher C. Moreover, C→ 1 as Es ̸N0 →∞.

Example 12.3 Consider a channel X→ Y ′ → Y composed of the cascade of a
Bi-AWGN channel and a one-bit quantizer, returning Y = +1 if Y ′ >0 and Y = − 1
otherwise (if Y ′ =0, +1 or −1 is returned with equal probability). It is readily shown
that this channel is equivalent to a BSC whose crossover probability p is

Fig. 12.2 Binary symmetric
channel (BSC) model

12 Low-Density Parity-Check (LDPC) Codes 411

p=
1
2
erfc

ffiffiffiffiffiffi
Es

N0

r� �
ð12:8Þ

where

erfc xð Þ= 2ffiffiffi
π

p
Z ∞

x
e− θ2dθ.

Again, the capacity is a monotonically increasing function of parameter Es ̸N0,
and again C→ 1 as Es ̸N0 →∞. For the same value of Es ̸N0, the capacity of the
output-quantized Bi-AWGN channel is always smaller than the capacity of the
corresponding unquantized channel.

With reference to the last two examples, if Y is allowed to assume q>2 different
quantized values (which corresponds to adopting ⌈log2 q⌉ quantization bits), the
capacity of the obtained channel is upper bounded by that of the unquantized
Bi-AWGN channel and is lower bounded by that of the one-bit quantized channel.
(Note that the q− 1 quantization thresholds shall be properly designed.) In general,
the higher q the larger the capacity.

12.1.3 The Channel Coding Theorem

Adopting the formulation in [1], which makes use of the maximum error probability
defined in (12.4), Shannon’s channel coding theorem can be stated as follows.
“For every rate R<C there exists a sequence of n, 2nRð Þ codes for which
limn→∞ Pe,max nð Þ=0. Conversely, if limn→∞ Pe,max nð Þ=0 for a sequence of
n, 2nRð Þ codes, then R≤C.” Note that limn→∞ Pe,max nð Þ=0 implies
limn→∞ Pe nð Þ=0, where Pe nð Þ is the average error probability defined in (12.5).

Essentially, Shannon’s channel coding theorem states that communication over a
noisy channel is possible with an arbitrarily small maximum error rate if and only if
the code rate of the employed channel code does not exceed the channel capacity.
On the other hand, from the proof of the converse, it is possible to show that, when
R>C, the average probability of error probability is bounded away from zero.
Specifically, we have

Fig. 12.3 Binary-input
additive white Gaussian noise
channel model

412 E. Paolini

Pe nð Þ≥ 1−
C
R
−

1
nR

ð12:9Þ

→ 1−
C
R

ð12:10Þ

in the limit where n→∞. Inequality (12.9) defines a non-achievable region for the
considered communication channel. No channel code of length n exists whose
average probability of error over the considered channel is smaller than the
right-hand side of (12.9). For n→∞, the non-achievable region is identified by
(12.10). For a channel parametrized by some parameter γ (e.g., the crossover
probability p for a BSC, or Es ̸N0 for the Bi-AWGN channel or its output-quantized
version), the non-achievable region can be reported in the Pe nð Þ versus γ plane for a
specific code rate R, as illustrated in the following example.

Example 12.4 In Fig. 12.4 the non-achievable region is depicted for both the
unquantized Bi-AWGN channel and its one-bit output-quantized version, for code
rate R=9 ̸10 and infinite codeword length. Specifically, for fixed R=9 ̸10 the
right-hand side of (12.10) is plotted as a function of Eb ̸N0 (in logarithmic scale),
where Eb =REs. If Es is interpreted as the energy per transmitted binary symbol, Eb

can be regarded as the energy per information bit. The dashed curve identifies a
non-achievable region over the unquantized Bi-AWGN channel (i.e., no
Eb ̸N0,Peð Þ point inside the corresponding area is achievable), while the solid one a
non-achievable region over its one-bit output-quantized version. That the
unquantized non-achievable region is contained in the quantized one is coherent
with the fact that the capacity of the Bi-AWGN channel is larger than the capacity
of its output-quantized version, for the same value of Es ̸N0. In general, if q>2

Fig. 12.4 Plot of the Shannon limit for code rate R=9 ̸10, over the Bi-AWGN channel and over
the BSC obtained via one-bit quantization of the output of the Bi-AWGN channel

12 Low-Density Parity-Check (LDPC) Codes 413

quantization levels are allowed, the corresponding non-achievable region is iden-
tified by a curve falling between the two plotted curves. This serves to illustrate
how soft information at the decoder can be exploited to improve the system per-
formance. The smallest value of Eb ̸N0 for which communication is possible with a
vanishing error probability at the given rate R=9 ̸10 over the Bi-AWGN channel is
about 3.198 dB. The corresponding value over the one-bit quantized Bi-AWGN
channel is about 4.400 dB.

12.2 Maximum a Posteriori and Maximum Likelihood
Decoding of Linear Block Codes

As from Sect. 12.1.2, decoding is essentially a decision problem. Given the
observation y from the communication channel, the decoder has to decide which of
the M codewords has been most likely transmitted, in order to minimize the
maximum probability of error. Optimum decoding is based on maximum a poste-
riori (MAP) decision criterion, and consists of assuming as the transmitted code-
word the one maximizing the a posteriori probability:

x ̂= argmaxxp xjyð Þ.

When the codewords are a priori equally likely, then MAP decoding is equiv-
alent to maximum likelihood (ML) decoding, that returns the codeword

x ̂= argmaxxp yjxð Þ.

It is readily shown that, over a BSC, ML decoding is equivalent to returning the
codeword exhibiting the minimum Hamming distance from the received word
y. (Recall that the Hamming distance between two sequences is the number of
positions at which the corresponding symbols are different.) Moreover, over a
Bi-AWGN channel, ML decoding consists of returning the codeword (whose
symbols belong to the set f− ffiffiffiffiffi

Es
p

, +
ffiffiffiffiffi
Es

p g) exhibiting the minimum Euclidean
distance from y.

Optimum decoding is unfeasible for most codes (including linear codes), due to
the need of computing M metrics, with M prohibitively large. Low-density
parity-check codes, introduced in Sect. 12.4, are capable to perform close to the
Shannon limit at a manageable complexity.

414 E. Paolini

12.3 NAND Flash Memory Channel Model

In NAND flash memories, the generic memory cell is a floating gate transistor.
Writing the cell consists of exploiting Fowler-Nordheim tunneling effect [2] to
inject a certain amount of charges into the floating gate in order to program the
threshold voltage Vth of the transistor. For an MLC memory with b bits per cell,
there are 2b nominal values for threshold voltage Vth, each bijectively associated
with a word of b bits. (There are two nominal values for Vth in the particular case of
an SLC memory.) The whole range of possible values of Vth is then partitioned into
2b intervals, each corresponding to a nominal value of the threshold voltage.

Reading a cell is a decision problem consisting of picking one of the 2b nominal
values of Vth and forwarding the corresponding binary b-tuple. The value of Vth,
however, cannot be observed directly. In order to read the cell, a word-line voltage
must be applied and the corresponding transistor drain current measured. In this
chapter, we refer to the word-line voltage simply as the “read voltage”, denoting it
by VREAD. If for some VREAD a sufficiently high drain current is detected then we
conclude that VREAD >Vth, otherwise we conclude that VREAD <Vth. In this sense,
the application of a specific read voltage value is capable to provide exactly one bit
of information. Therefore, in order to read the full content of a cell in an MLC
memory the drain current must be analyzed for a sufficiently large number of read
voltage values. A single VREAD value is sufficient in the SLC case unless we wish to
extract some soft information to improve the performance of the adopted error
control coding scheme.

In ideal flash memories, after a cell is written the corresponding value of Vth is
exactly equal to one of the 2b nominal values. In real memories, however, the actual
value of Vth may differ, even significantly, from its nominal value due to a number
of possible physical impairments. For a thorough description of these impairments
we refer the reader, for example, to [3, Chap. 4], [4]. As such, the actual value of Vth

may fall into a voltage interval whose nominal voltage threshold is different from
the one we attempted to set during the write operation. When this happens the
forwarded binary b-tuple after a read operation differs from the one that was written
into the cell. A bit error generated by an erroneous decision about the interval of
voltage values Vth belongs to is called a raw bit error, and the probability of
occurrence of raw bit errors is called the raw bit error probability.

The raw bit error probability may be analyzed by modeling the threshold voltage
Vth of the generic cell as a continuous random variable whose pdf is here denoted
by p Vthð Þ. It must be pointed out that p Vthð Þ is not constant during the memory
lifetime, as it is modified by subsequent write and read operations, leading to a
progressive degradation of the channel in terms of increasing raw bit error proba-
bility. The threshold voltages for two different memory cells are typically assumed
to be independent and identically distributed (i.i.d.) random variables. In the fol-
lowing two subsections, the channel model for SLC and MLC flash memories is
addressed.

12 Low-Density Parity-Check (LDPC) Codes 415

12.3.1 SLC Channel Model

The simplest channel model for an SLC flash memory consists of modeling the
threshold voltage Vth of the generic cell as the weighted sum (with the same
weights) of two independent Gaussian random variables with the same variance σ2

neglecting that, in principle, Gaussian random variables assume their values over an
infinite range. The mean values of the two Gaussian distributions are the two
nominal values of the threshold voltage, namely,Vth, 1 and Vth, 2 where we assume
Vth, 1 <Vth, 2. Let X ∈ 0, 1f g be a Bernoulli random variable with equiprobable
values, representing the bit originally written into the memory cell. Moreover, let
Y be the symbol read from the cell. Conditionally to X, the threshold voltage Vth is a
Gaussian random variable with variance σ2 and whose mean is Vth, 1 if X =1 (erase
state) and Vth, 2 if X =0. This is depicted in Fig. 12.5. Overall, we have

p Vthð Þ= 1
2
p VthjX =1ð Þ+ 1

2
p VthjX =0ð Þ

=
1ffiffiffiffiffiffiffiffiffiffi
8πσ2

p e−
Vth −Vth, 1ð Þ2

2σ2 + e−
Vth −Vth, 2ð Þ2

2σ2

� �
.

If we apply only one read voltage Vth, 1 <VREAD, 1 <Vth, 2 we get information
about the actual value of Vth being larger or smaller than the applied read voltage
value. Hence, if only one read voltage value is used, Y is a Bernoulli random

Fig. 12.5 Plot of pðVthjX =1Þ and pðVthjX =0Þ for an SLC flash memory where the threshold
voltage Vth is modeled as the sum of two independent and identically distributed (i.i.d.) Gaussian
random variables

416 E. Paolini

variable as well as X. In particular, we have Y =1 if Vth <VREAD is detected, and
Y =0 otherwise. A raw bit error occurs any time Y ≠X, and the raw bit error
probability is trivially minimized by setting VREAD, 1 = Vth, 1 +Vth, 2ð Þ ̸2, as depicted
in Fig. 12.5. In this situation, the channel is clearly equivalent to the cascade of a
Bi-AWGN channel and a one-bit quantizer described in Example 12.2 (i.e., to a
BSC), and the raw bit error probability is given by (12.8) where
Es ̸N0 = Vth, 2 −VREAD, 1ð Þ2 ̸2σ2. At the beginning of the memory life, σ2 is very
small and the memory is almost ideal. Then, σ2 increases with the memory use,
increasing the raw error probability and degrading the channel. A typical value of
the raw bit error probability towards the end of the memory life is 10− 2.

If an error correcting code is employed to protect the data stored in the flash
memory, hard-decision decoding must be necessarily performed if only one VREAD

value is used as no soft information is available at the decoder. As it will be shown
in Sect. 0, however, the availability of soft information at the decoder input rep-
resents an essential feature to boost the performance of the coding scheme. In order
to provide the decoder with soft information, and consequently to increase its
coding gain, more read voltages must be applied sequentially. For example, with
reference again to Fig. 12.5 we may employ three read voltage values VREAD, 1,
VREAD, 2, and VREAD, 3 and apply two of them for each cell read operation. Specifi-
cally, VREAD, 1 is applied at first. if Vth <VREAD, 1 then VREAD, 2 is applied to
discriminate between Vth <VREAD, 2 and VREAD, 2 <Vth <VREAD, 1. On the contrary,
VREAD, 3 is applied to discriminate between Vth >VREAD, 3 and
VREAD, 1 <Vth <VREAD, 3. In this case the output symbol Y is a discrete random
variable assuming the four possible values in the set fY1,Y2,Y3,Y4g and the channel
may be represented as the DMC depicted in Fig. 12.6.

Each arrow in the depicted DMC is associated with a transition probability
p yjxð Þ, where the transition probabilities depend on the choice of the read voltages
VREAD, 2 and VREAD, 3. A “natural” approach to choose them consists of maximizing
the mutual information between the random variables X and Y under the setting
Pr X =0ð Þ= Pr X =1ð Þ=1 ̸2. This approach, proposed in [5], may be easily

Fig. 12.6 Equivalent channel
model for an SLC flash
memory where the threshold
voltage is modeled as the sum
of two i.i.d. Gaussian random
variables and where three read
voltage values are employed.
Each read operation involves
two read voltages

12 Low-Density Parity-Check (LDPC) Codes 417

extended to any number of read voltages. It may also be easily extended to different
choices of the pdf p Vthð Þ, and therefore to MLC Flash memories.

12.3.2 MLC Channel Model

While the channel model for SLC Flash memories is rather well-established, the
development of an MLC channel model is still a subject of research and mea-
surement campaigns, and several models may be found in the literature. These
models typically assume the random variable Vth to be the weighted sum (with the
same weights) of 2b independent random variables, each corresponding to a
nominal value of the threshold voltage. Among these models, the one described
next has been adopted in several works [6]. Letting X denote the binary b-tuple that
was written in the cell, the pdf pðVthjX1 = 11 . . . 1Þ associated with the lowest
nominal threshold voltage value Vth, 1 (erase state) is modeled as Gaussian with
mean Vth, 1 and variance σ20, while the pdf pðVthjXiÞ associated with any other
nominal value Vth, i ðXi ≠ 11 . . . 1Þ is characterized by a uniform central region of
size ΔV centered in the mean value Vth, i and by two Gaussian tails of variance
σ2 < σ20. Formally, for i∈ 2, 3, . . . , 2b

� �
we have

p VthjXið Þ=
1ffiffiffiffiffiffiffi

2πσ2
p

+ΔV
e−

Vth −Vth, i −ΔV ̸2ð Þ2
2σ2 Vth >Vth, 1 + ΔV

2
1ffiffiffiffiffiffiffi

2πσ2
p

+ΔV
Vth, 1 − ΔV

2 <Vth <Vth, 1 + ΔV
2

1ffiffiffiffiffiffiffi
2πσ2

p
+ΔV

e−
Vth −Vth, i +ΔV ̸2ð Þ2

2σ2 Vth <Vth, 1 − ΔV
2

8>>>><
>>>>:

and

p Vthð Þ= 1
2b

∑
2b

i=1
p VthjXið Þ.

A pictorial representation of the four conditional pdfs p VthjXið Þ, i∈ 1, 2, 3, 4f g,
for an MLC flash memory with b=2 bits per cell and equally spaced threshold
voltages is shown in Fig. 12.7.

In an analogous way as for the SLC case, a read is performed by applying
sequentially a certain number of read voltages VREAD in order to identify the interval
in which the actual value of the threshold voltage belongs. If N ≥ 2b − 1 different
read voltages are employed, the equivalent communication channel is a DMC with
2b equiprobable input symbols X and N +1 output symbols Y. Again, the larger the
number of employed read voltages (i.e., the larger the number of intervals in which
the range of possible Vth values is partitioned) the more accurate the soft infor-
mation at the decoder input, the lower the bit error rate after decoding. Again, the
values of the N read voltages must be properly designed, for instance, maximizing

418 E. Paolini

the mutual information I X; Yð Þ under the assumption Pr X =Xið Þ=2− b for all
i∈ 1, 2, . . . , 2b
� �

.

12.4 Low-Density Parity-Check Codes

Low-density parity-check (LDPC) codes were introduced by Gallager in [7] and
have been almost forgotten for about 30 years. They gained a new interest only
after the discovery of turbo codes [8], when it was shown that iterative decoding
schemes can attain performances very close to the Shannon limit with a manageable
complexity [9, 10].

A binary LDPC code is defined as a binary linear block code whose parity-check
matrix H is characterized by a relatively small number of 1 entries, i.e., whose
parity-check matrix is sparse. LDPC codes are often represented graphically
through a bipartite graph G= V ∪ C, Eð Þ called the Tanner graph [11]. In the Tanner
graph there are two different types of nodes, namely, the variable nodes (whose set
is V) and the check nodes (whose set is C). The n variable nodes and the m check
nodes are associated in a bijective way with the n encoded bits of the generic
codeword and with the m parity-check equations, respectively. Each edge e∈ E in
the Tanner graph connects a variable node V ∈V with a check node C∈ C if and
only if the bit corresponding to V is involved in the parity-check equation corre-
sponding to C. Note that in general not all the m parity-check equations may be
linearly independent, so that the actual code rate R of the LDPC code fulfills

Fig. 12.7 Representation of the four conditional probability density functions p VthjXið Þ of the
threshold voltage in an MLC flash memory with b=2 bits per cell

12 Low-Density Parity-Check (LDPC) Codes 419

R≥
n−m
n

where equality holds when all m equations are independent. In the Tanner graph of
an LDPC code a cycle (or loop) is any closed path starting from a node and ending
on the same node. The length of a cycle is the number of edges involved in the
cycle. Moreover, the girth g of the Tanner graph is the length of its shortest
loop. For reasons that will be clear in the next section, the Tanner graph of an
LDPC code should exhibit a large girth. In the Tanner graph, the degree of a
variable node or check node is the number of edges incident to it. An LDPC code is
said to be regular if all of its variable nodes have the same degree and all of its
check nodes have the same degree, and is said to be irregular otherwise.

The representation of LDPC codes in terms of their Tanner graphs is very
convenient in order to describe their iterative decoding algorithm, known as belief
propagation (BP). In fact, as it will be addressed in Sect. 12.5, BP decoding of
LDPC codes may be interpreted as an iterative exchange of messages between the
variable nodes and the check nodes along the edges of the Tanner graph. In prin-
ciple, the Tanner graph can be drawn for any H matrix of any linear block code. As
an example, in Fig. 12.8 the Tanner graph is depicted for the 7, 4ð Þ Hamming code
represented by H = 1110100, 1101010, 10111001½ �.

In this section we provide a few details about binary LDPC code design, while
LDPC decoding is discussed in the next section. One of the major issues in LDPC
coding is represented by efficient encoding, i.e., the efficient computation of the
encoded codeword of n bits from a message W represented by a binary k-tuple.
Hence, we focus on the design of quasi-cyclic LDPC (QC-LDPC) codes based on
circulant matrices, a class of LDPC codes characterized by low-complexity
encoding and good performances [12]. In general, a linear block code is said to be
quasi-cyclic when there exists some positive integer q such that a cyclic shift by
q positions of any codeword results in another codeword. The encoder of

Fig. 12.8 Tanner graph of a 7, 4ð Þ Hamming code represented by H = 1110100, 1101010,½
10111001�. There are seven variable nodes variable nodes V0, . . . ,V6f g, one for each encoded bit,
and three check nodes, C0, . . . ,C2f g, one for each parity-check equation

420 E. Paolini

QC-LDPC codes may be implemented very efficiently in hardware using shift
register-based circuits [13]. Efficient hardware implementations for the decoder are
also available [14].

12.4.1 LDPC Code Ensembles

As opposed to classical algebraic codes, LDPC codes are typically analyzed in
terms of average ensemble properties, where an LDPC code ensemble is formed by
all LDPC codes having the same codeword length n and nominally the same rate R,
and sharing common properties. This approach was introduced by Gallager to
analyze his regular LDPC codes [7], and has been successfully adopted to design
irregular LDPC codes performing very close to the Shannon limit [15, 16].

An example of LDPC code ensemble is the unstructured irregular one [15]. Let
n and m be the numbers of variable and check nodes, respectively. Moreover, let Λi

and Pi be the fractions of variable nodes and check nodes of degree i, respectively.
Hence, in the Tanner graph there are Λin variable nodes with i sockets and Pim
check nodes with i sockets and the number of edges is E= n∑D

i=2 iΛi =m∑H
i=2 iPi

where D is the maximum variable node degree and H the maximum check node
degree. For given Λi, i=2, . . . ,D and Pi, i=2, . . . ,H,2 the unstructured C n,Λ, Pð Þ
ensemble includes all LDPC codes corresponding to all possible E! edge permu-
tations between the variable node and the check node sockets, according to a
uniform probability distribution.

Another example is the protograph ensemble [17] (see also the work [18] on
LDPC codes from superposition). A protograph is defined as a small Tanner graph
and represents the starting point to derive a larger Tanner graph via a
“copy-and-permute” procedure. Specifically, the protograph is first copied Q times.
Then, the edges of the individual replicas are permuted among the replicas, leading
to a larger graph. The edge permutation is performed in such a way that, if an edge
e connects a variable node V to a check node C in the protograph, then in the final
graph any of the Q replicas of e may connect only a replica of V to a replica of
C. Note that, while parallel edges between nodes are allowed in the protograph,
they are avoided in the permutation phase. An example of this copy-and-permute
procedure is depicted in Fig. 12.9. For a given protograph and a given Q the
ensemble is composed of the LDPC codes corresponding to all possible edge
permutations fulfilling the described constraints (again, the probability distribution
over such permutations is uniform).

2For unstructured ensemble, the minimum variable and check nodes are usually set to. The reason
for this choice is out of the scope of this chapter.

12 Low-Density Parity-Check (LDPC) Codes 421

12.4.2 QC-LDPC Codes Construction

A very popular technique to design finite length LDPC codes consists of two
subsequent steps. An ensemble of LDPC codes with desired properties is first
designed and then a code from the ensemble is picked constructing its Tanner graph
according to some graph-lifting algorithm. In the first design phase (ensemble
optimization) asymptotic ensembles are considered, i.e., ensembles of LDPC codes
whose codeword length tends to infinity (examples are the unstructured C ∞,Λ, Pð Þ
ensemble and the protograph ensemble defined by a specific finite-length pro-
tograph in the limit where Q→∞). The main parameter characterizing an
asymptotic ensemble of LDPC codes under iterative decoding is the asymptotic
decoding threshold [19, 15]. Letting ℓ be the iteration index and assuming that the
communication channel is parameterized by some real parameter θ such that θ1 < θ2
means that the channel corresponding to θ2 is a degraded version of the channel
corresponding to θ1, the asymptotic threshold θ* is defined as

θ* = sup θ s.t.P∞
e,ℓ → 0 as ℓ→∞

� �
where P∞

e,ℓ is the average error probability under iterative decoding over the
asymptotic ensemble (i.e., the expected probability of error for an LDPC code
randomly picked in the asymptotic ensemble). For example, over a BSC the
parameter θ is the crossover probability p, while over a Bi-AWGN channel it is the
noise power σ2 for given Es (therefore over the Bi-AWGN channel the threshold

Fig. 12.9 Conceptual example of copy-and-permute protograph procedure

422 E. Paolini

may be expressed as Eb ̸N0ð Þ* where Eb =REs and R is the nominal ensemble rate).
Note that for the same ensemble, the threshold is different for different message
passing decoders. For unstructured ensembles the threshold may be calculated
exactly via a procedure called density evolution [15] or approximately via a tool
known as EXIT chart [20]. For protograph ensembles it may be calculated with
good approximation via multi-dimensional EXIT analysis [21]. In Sect. 12.6.2
density evolution is reviewed for unstructured regular LDPC ensembles and for a
very simple decoder called the Gallager B decoder.

Once a protograph ensemble with a satisfying threshold over the channel of
interest has been designed, a QC-LDPC code can be constructed from the proto-
graph. This step is usually performed by first representing the protograph as a base
matrix B. The number of rows and columns in the base matrix equal the number of
check and variable nodes in the protograph, respectively. Moreover, the j, ið Þth
entry of B is equal to the number of connection between check node Cj and variable
node Vi in the protograph. For example, the base matrix corresponding to the
protograph depicted in Fig. 12.9 is

B=
1 2 1
1 1 1

	

.

In order to construct the parity-check matrix H of a QC-LDPC code from B,
each entry in the base matrix is replaced with a Q×Q circulant matrix, where a
circulant matrix is any square matrix such that every row is obtained from the
previous row by a cyclic shift to the right by one position. An entry in B equal to t is
replaced by a circulant matrix whose rows and columns all have Hamming weight
t. (Null entries in B are replaced by zero Q×Q square matrices.) If the number of
variable nodes in the protograph is np then the final LDPC code has length Qnp.
Moreover, it is a QC-LDPC code as the cyclic shift of any codeword by np positions
results in another codeword. The specific circulant matrices used to replace the
entries of the base matrix are chosen according to algorithms aimed at increasing
the girth g of the graph, making it suitable to iterative message-passing decoding. It
is pointed out that sometimes the parity-check matrix H is obtained by lifting the
base matrix in several steps. For example, instead of replacing each entry of B by a
Q×Q matrix (for large Q), Q ̃×Q ̃ circulant matrices may be used at first, with
Q being a multiple of Q ̃, and then circulant permutation matrices of size Q ̸Q ̃ may
replace each entry in the “intermediate” matrix.3

3The described protograph-based technique is not the only one to construct good QC-LDPC codes.
Another possible approach is based on Euclidean and projective finite geometries [22, 23].

12 Low-Density Parity-Check (LDPC) Codes 423

12.4.3 Error Floor

Finite length LDPC codes are affected by a phenomenon known as the “error floor”
[24, 25]. Considering again a communication channel parameterized by a real
parameter θ indicating the level of channel noise, the error floor consists of a
sudden reduction in the slope of the LDPC code performance curve when θ
becomes lower than some value. For example, over the BSC the error floor appears
at sufficiently low values of the error probability p, while over the Bi-AWGN
channel it appears at sufficiently high values of Eb ̸N0. An example performance
curve in term of bit error rate (BER) versus Eb ̸N0 exhibiting an error floor is
depicted in Fig. 12.10. In NAND Flash memories applications, very pressing
requirements are usually imposed on the error floor. More specifically, it is often
required that the error floor must not appear above page error rate (i.e., codeword
error rate) 10− 15.

The error floor of LDPC codes under belief propagation decoding is mainly due
to graphical structures in the Tanner graph called trapping sets [25]. Given a subset
W of the variable nodes, the subgraph induced by W is the bipartite graph com-
posed of W, of the subset U of check nodes connected to W and of the corre-
sponding edges. By definition, an a, bð Þ trapping set is any size-a subset W of the
variable nodes, such that there are exactly b check nodes of odd degree (an arbitrary
number of check nodes of even degree) in the corresponding induced subgraph. The
parameter a is called the size of the trapping set. If there are only degree-1 and
degree-2 check nodes in the induced subgraph, then the trapping set is said to be
elementary. Elementary trapping sets of small size are a major cause of error floor

Fig. 12.10 Performance curve (in terms of BER vs. Eb ̸N0) exhibiting an error floor at
BER≈ 10− 7 (Eb ̸N0 > 4.6 dB)

424 E. Paolini

for iteratively decoded LDPC codes. We point out that small weight codewords
may also contribute to the error floor together with trapping sets.

The need to construct LDPC codes characterized by very low error floors
imposes some modifications to the QC-LDPC code design procedure described in
the previous subsection, which becomes more involved. The asymptotic decoding
threshold is not the only metric to be taken into account during the ensemble
optimization phase, as other asymptotic parameters such as the typical relative
minimum distance or smallest trapping set size must be considered [26, 27]. We
also point out that reliable error floor analysis at very low error rates of LDPC codes
for storage applications still represents an open issue. In fact, Monte Carlo software
simulation is not feasible at very low error rates because of prohibitively long
simulation times. Approaches proposed in the literature are hardware simulation,
importance sampling [6, 28], and estimation techniques [29].

12.5 Belief Propagation (BP) Decoding of LDPC Codes

12.5.1 Introduction

As opposed to MAP and ML decoding algorithms (Sect. 12.2), that are block-wise
algorithms, BP is a bit-wise decoding algorithm, working iteratively. More
specifically, at the end of each decoding iteration a separate decision is taken about
each bit in the codeword, and then it is checked whether the currently decoded
hard-decision sequence is a codeword or it is not. Letting y= y0, y1, . . . , yn− 1½ �
denote the sequence outcoming from the communication channel, the decision
about encoded bit ci, i=0, . . . , n− 1, is taken according to its a posteriori likeli-
hood ratio (LR), namely,

L cijyð Þ= Pr(ci =0jyÞ
Pr(ci =1jyÞ

cî =0
≷

cî =1
1.

Unfortunately, the only information available at variable node i at the beginning
of the decoding process is the a priori LR

LðcijyiÞ= Pr(ci =0jyiÞ
Pr(ci =1jyiÞ

i.e., the LR conditioned only to the local observation, not the a posteriori LR LðcijyÞ
as required. Indeed, the task of the BP decoder consists of calculating the a pos-
teriori LR for each variable node, starting from the individual a priori LRs,
exploiting an iterative exchange of information among the nodes of the bipartite
graph. In the following description of the BP decoder, we will not make any

12 Low-Density Parity-Check (LDPC) Codes 425

assumption on the communication channel, but that the channel is memory-less
with binary input and equally likely input values.

12.5.2 Preliminaries

We start with some preliminary material that will be useful to properly describe BP
decoding of LDPC codes.

Let us consider a Bernoulli random variable B taking the values 0 and 1 with
equal probabilities. As depicted in Fig. 12.11, assume that N random experiments
are performed to get information about the value assumed by B and that all these
experiments are independent. The outcome of the n-th experiment (n-th observa-
tion) is denoted by ωn, while the vector of N observables by ω= ω1,ω2, . . . ,ωN½ �.
We define the likelihood ratio (LR) of B conditioned to the observation ωn as

L Bjωnð Þ= Pr(B=0jωnÞ
Pr(B=1jωnÞ ð12:11Þ

and the a posteriori likelihood ratio of B (i.e., conditioned to the whole set of
N independent observations), as

L Bjωð Þ= Pr(B=0jωÞ
Pr(B=1jωÞ . ð12:12Þ

We now seek for an expression of the a posteriori LR, LðBjωÞ, as a function of
the individual LRs, each conditioned to a specific observation. By Bayes rule we
have

Fig. 12.11 N random
experiments are conducted to
obtain some information
about the value of a Bernoulli
random variable B. The
observation associated with
the n-th random experiment is
ωn

426 E. Paolini

L Bjωð Þ= pðωjB=0Þ
p ωjB=1ð Þ

= ∏
N

n=1

pðωnjB=0Þ
p ωnjB=1ð Þ

= ∏
N

n=1
L Bjωnð Þ,

ð12:13Þ

where the second equality follows from independence of the random experiments.
We also observe that, through (12.12) and the relationship Pr B=0jωð Þ+

Pr B=1jωð Þ=1, the probabilities Pr B=0jωð Þ and Pr B=1jωð Þ may be expressed as
functions of the a posteriori LR as follows:

Pr B=0jωð Þ= LðBjωÞ
1+LðBjωÞ , ð12:14Þ

Pr B=1jωð Þ= 1
1+ LðBjωÞ . ð12:15Þ

This is sometimes referred to as soft bit. Analogous relationships may be derived
for PrðB=0jωnÞ and PrðB=1jωnÞ.

Next, consider n statistically independent Bernoulli random variables
B1,B2, . . . ,Bn each taking its value in 0, 1f g. We allow Pr Bk =1ð Þ≠ Pr Bl =1ð Þ if
k≠ l. We ask what is the probability that the n variables sum to 0 (in binary
algebra), i.e., the probability that an even number of such random variables take
value 1. This problem was solved in [7], where it was shown that

PrðB1 +B2 +⋯+Bn =0Þ= 1+ ∏n
k= 1 1− 2 Pr Bk =1ð Þð Þ

2
. ð12:16Þ

Consider now n Bernoulli random variables B1,B2, . . . ,Bn fulfilling a parity
constraint B1 +B2 +⋯+Bn =0. Moreover, assume that some reliability informa-
tion is known about variables B1, . . . ,Bi− 1,Bi+1, . . . ,Bn, in terms of LRs L Bkð Þ,
k∈ 1, . . . , i− 1, i+1, . . . , nf g and that B1, . . . ,Bi− 1,Bi+1, . . . ,Bn are statistically
independent. We seek for an expression of the LR L Bið Þ, conditional on all
available information about the other n− 1 variables. Since PrðBi =0Þ=
PrðB1 +⋯Bi− 1 +Bi+1 +⋯+Bn =0), through (12.16) we obtain

Pr Bi =0jL B1ð Þ, . . . , L Bi− 1ð Þ,L Bi+1ð Þ, . . . ,L Bnð Þð Þ

=
1+ ∏k≠ i 1− 2 Pr Bk =1ð Þð Þ

2

12 Low-Density Parity-Check (LDPC) Codes 427

and, consequently,

Pr Bi =1jL B1ð Þ, . . . , L Bi− 1ð Þ,L Bi+1ð Þ, . . . ,L Bnð Þð Þ

=
1− ∏k≠ i 1− 2 Pr Bk =1ð Þð Þ

2
.

Note that each term Pr Bk =1ð Þ involved in the multiplication may be expressed
in terms of the corresponding L Bkð Þ through (12.15). From the term-by-term ratio
between these two latter equations, we obtain

LðBijL B1ð Þ, . . . ,L Bi− 1ð Þ,L Bi+1ð Þ, . . . ,L Bnð ÞÞ= 1+ ∏k≠ i 1− 2 Pr Bk =1ð Þð Þ
1− ∏k≠ i 1− 2 Pr Bk =1ð Þð Þ .

Through (12.15), after a few calculations this leads to

LðBijL B1ð Þ, . . . ,L Bi− 1ð Þ,L Bi+1ð Þ, . . . ,L Bnð ÞÞ=
∏k≠ i

L Bkð Þ+1
L Bkð Þ− 1 + 1

∏k≠ i
L Bkð Þ+1
L Bkð Þ− 1 − 1

. ð12:17Þ

12.5.3 Algorithm Description

12.5.3.1 Overview

For ease of presentation, in the description of the algorithm we omit the decoding
iteration index. We denote by r ji the message sent by variable node Vi,
i=0, . . . , n− 1, to check node Cj, j=0, . . . ,m− 1 during the current iteration, and
by mi

j the message sent back by check node Cj, to variable node Vi, during the same
iteration. For i=0, . . . , n− 1, we also denote by wi the a priori LR for variable node
Vi, i.e.,

wi =
Pr ci =0jyið Þ
Pr ci =1jyið Þ .

This is illustrated in Fig. 12.12.
Belief-propagation decoding is composed of four steps, namely4:

• initialization;
• horizontal step;

4The words “horizontal” and “vertical” remind us that the check nodes and the variable nodes are
associated with the rows and the columns of the parity-check matrix, respectively.

428 E. Paolini

• vertical step;
• hard decision and stopping criterion step.

Out of them, the initialization step is executed only once, at the beginning of
decoding. The other three steps are executed iteratively, until a termination con-
dition is verified or a maximum number of iterations, denoted by Imax, is reached.
Each decoding iteration is split into two half-iterations. During the first
half-iteration (horizontal step), check nodes process messages incoming from their
neighboring variable nodes. Then, each check node sends one message along every
edge incident on it. Thus, every check node sends one message per iteration to each
of its neighboring variable nodes. During the second half-iteration (vertical step)
variable nodes process messages incoming from their neighboring check nodes.
Similar to the previous half-iteration, at the end of this processing each variable
node sends one message along each edge incident on it. Thus, every variable node
sends one message per iteration to each of its neighboring check nodes. At the end
of the two half-iterations, a hard decision is taken in each variable node, about the
value of the corresponding encoded bit.

The message transmitted by check node Cj, j=0, . . . ,m− 1, to variable node Vi,
i=0, . . . , n− 1, where Vi belongs to the neighborhood of Cj, may be interpreted as
the best estimate Cj has about the value of Vi up to the current iteration. This is the
estimate of the value of Vi given all information about Vi the check node has got
from the variable nodes connected to it other than Vi. This is known as extrinsic
information. Analogously, the message sent back by variable node Vi to check node
Cj may be interpreted as the best estimate Vi has about itself up to the current
iteration. This is the estimate of its value given all information the variable node has
got from the communication channel and from the check nodes connected to it
other than Cj (extrinsic information). All messages exchanged between variable
nodes and check nodes are LRs or, equivalently, soft bits.

At the end of the vertical step, each variable node takes a hard decision about the
value of its associated bit, based on the a priori information incoming from the
channel and on all estimates incoming from the check nodes connected to it. If
the obtained hard-decision binary sequence c ̂ is a codeword of the LDPC code, i.e.,
if every check node is connected to an even number of variable nodes whose

Fig. 12.12 Tanner graph of
an LDPC code. The message
sent by variable node Vi to
check node Cj and the
message sent by check node
Cj to variable node Vi are
denoted by r ji and mi

j,
respectively

12 Low-Density Parity-Check (LDPC) Codes 429

current estimate is 1, then a decoding success is declared, decoding is terminated,
and c ̂ is returned as the decoded codeword. Otherwise, a new iteration is started,
unless the maximum number of iterations has been reached. In this latter case, no
codeword has been found and a decoding failure is declared. LDPC codes decoded
via belief propagation are then characterized by two different error events: detected
errors and undetected errors. A detected error takes place whenever no codeword is
found up to the maximum number of iterations. An undetected error takes place
whenever, at some iteration, the hard-decision sequence c ̂ is a codeword but not the
transmitted one. Undetected errors may be extremely dangerous is some contexts,
including NAND Flash memories.

12.5.3.2 Initialization

At the beginning, each variable node broadcasts to all its neighboring check nodes
the a priori LR received from the communication channel. Hence, we have

r ji =wi

for all j∈N ið Þ, where N ið Þ is the set of indexes of check nodes connected to Vi. The
expression of wi depends on the nature of the channel. For example, it is easy to
check that over a BSC with error probability p and antipodal mapping
xi =1− 2ci ∈ f− 1, + 1g, we have

wi =
1− p
p if yi = +1
p

1− p if yi = − 1.

(
ð12:18Þ

As another example, over a Bi-AWGN channel and again antipodal mapping
xi =1− 2ci, (meaning Es normalized to 1) we have

wi = eð2 ̸σ2Þyi . ð12:19Þ

Importantly, the initialization step requires a knowledge of the channel. For
instance, in the case of a BSC the error probability p must be known, as well as the
noise power σ2 in the Bi-AWGN case.

12.5.3.3 Horizontal Step

For j=0, . . . ,m− 1, check node Cj, of degree hj, sends to each of the hj variable
nodes connected to it its current estimate of the corresponding bit. If variable node
Vi is connected to Cj, the message from Cj to Vi is the LR of bit ci, conditional on
the information available at Cj incoming from all its neighboring variable nodes,
except the information incoming from Vi. A pictorial representation of this process

430 E. Paolini

is provided in Fig. 12.13. Note that two different variable nodes connected to Cj

will receive, in general, different messages.
The message mi

j from Cj to Vi can be calculated exploiting one of the results
introduced in Sect. 12.5.2. In fact, each of the hj incoming messages is the LR of a
specific bit on which the check node imposes a parity constraint. Hence, under
independence hypothesis, denoting by N jð Þ\ if g the set of indexes of variable nodes
connected to Cj except Vi, from (12.17) we immediately obtain

mi
j =

∏k ∈N jð Þ\ if g
r jk +1

r jk − 1
+ 1

∏k ∈N jð Þ\ if g
r jk +1

r jk − 1
− 1

. ð12:20Þ

Note that the independence hypothesis is fulfilled only during the first g ̸2
decoding iterations, where g is the girth of the Tanner graph. On the other hand, it
represents an approximation during all subsequent iterations.

12.5.3.4 Vertical Step

For i=0, . . . , n− 1, variable node Vi, of degree di, sends to each of its di neigh-
boring check nodes its current estimate of the associated bit. With reference to
Fig. 12.14, the message r ji sent to check node Cj is the LR about bit ci, conditional
on the a priori information available from the communication channel and on the
information incoming from all check nodes connected to it, except Cj. Again, two
different check nodes connected to Vi will receive, in general, different messages.

The message r ji that variable node Vi sends to check node Cj connected to it can
be easily computed based on the result in Sect. 12.5.2. In fact, each of the di
messages incoming towards the variable node (including the message wi incoming

Fig. 12.13 Check node
processing of incoming
messages during the
horizontal step

12 Low-Density Parity-Check (LDPC) Codes 431

from the channel), represents the LR of ci conditioned to some observation.
Under the hypothesis of independence for the di observations, denoting by N ið Þ\ jf g
the set of indexes check nodes connected to Vi except check node of index j, we
have

r ji =wi ∏
k∈N ið Þ\ jf g

mi
k. ð12:21Þ

(Again, the independence hypothesis is valid rigorously only during the first g ̸2
decoding iterations.)

12.5.3.5 Hard Decision and Stopping Criterion

At the last step of each iteration, every variable node takes a decision about its
associated encoded bit. This decision is based on all currently available information
about the bit, i.e., on the a priori information from the communication channel and
on all messages incoming from the check nodes. Let mi denote the list of all
messages incoming towards the variable node Vi. Applying again the result
developed in Sect. 12.5.2 under the hypothesis of independence of the incoming
messages, we may write

L cijwi,mi� �
=wi ∏

k∈N ið Þ
mi

k. ð12:22Þ

(Again, the independence hypothesis is fulfilled rigorously only during the first
g ̸2 decoding iterations.) The decision about encoded bit ci at the end of the generic
iteration is then

Fig. 12.14 Variable node
processing of incoming
messages during the vertical
step

432 E. Paolini

L cijwi,mi� � cî =0
≷

cî =1
1.

If the current hard-decision sequence c ̂ is a codeword (c ̂HT =0, where H is any
parity-check matrix of the code) then the algorithm is terminated and c ̂ is returned
as the decoded codeword. Else, if c ̂ is not a codeword and the maximum number of
iterations Imax has been reached, the algorithm is terminated and a failure is
reported. Else, a new iteration is started jumping to the horizontal step. Belief
propagation decoding of LDPC codes may be summarized as follows.

0

12.5.4 Log-Domain BP Decoder

The main issue when implementing BP decoding described in Sect. 12.5.3 is
represented by the need to handle and combine, through multiplications and divi-
sions, likelihood ratios whose values may differ by several orders of magnitude.

12 Low-Density Parity-Check (LDPC) Codes 433

For this reason, a log-domain implementation is usually preferred from an imple-
mentation viewpoint. In the log-domain version of BP decoding, log-likelihood
ratios (LLRs) of the encoded bits are exchanged between variable and check nodes.
Next, we discuss how the above-described BP decoding shall be modified in the
log-domain. All logarithms are assumed to be natural logarithms. Moreover, sgn xð Þ
will denote the sign function, i.e., sgn xð Þ= +1 if x≥ 0 and sgn xð Þ= − 1 otherwise.

The initialization step remains the same, the only difference being that the first
message each variable node sends to all its neighboring check nodes is the a priori
LLR of the corresponding encoded bit. Neglecting again the iteration index and
denoting by Rj

i the message sent from variable node i∈ 0, . . . , n− 1f g to check
node j∈N ið Þ, we have

Rj
i =Wi,

where Wi = logwi. For instance, assuming antipodal mapping xi =1− 2ci, over a
BSC with error probability p we have

Wi =
log 1− p

p ifyi = +1
log p

1− p ifyi = − 1

(
ð12:23Þ

while, over a Bi-AWGN channel,

Wi =
2
σ2

yi. ð12:24Þ

The development of check node message processing (horizontal step) in the log
domain is more involved. Denoting Rj

i = log r ji and Mi
j = logmi

j, from (12.20) we
may write

Mi
j = log

∏k∈N jð Þ\ if g
eR

j
k +1

e
R j
k − 1

+ 1

∏k∈N jð Þ\ if g
eR

j
k +1

e
R j
k − 1

− 1

= log
∏k∈N jð Þ\ if g sgn Rj

k

� �
⋅ ∏k ∈N jð Þ\ if g

e
R j
kj j +1

e
R j
kj j − 1

+ 1

∏k∈N jð Þ\ if g sgn Rj
k

� �
⋅ ∏k ∈N jð Þ\ if g

e
R j
kj j +1

e
R j
kj j − 1

− 1
,

where we have exploited the fact that any odd function fulfills f xð Þ= sgn xð Þf xj jð Þ
and the fact that f xð Þ= ðex +1Þ ̸ ex − 1ð Þ is odd. The obtained expression of Mi

j can
be further developed through the identity log x+1ð Þ ̸ x− 1ð Þð Þ= sgn xð Þ ⋅
log xj j+1ð Þ ̸ xj j− 1ð Þð Þ and through the fact that e Rj j ≥ 1. This yields

434 E. Paolini

Mi
j = ∏

k∈N jð Þ\ if g
sgn Rj

k

� �
⋅ log

∏k∈N jð Þ\ if g
ejR

j
k
j +1

e
R j
kj j − 1

+ 1

∏k∈N jð Þ\ if g
e

R j
kj j +1

e
R j
kj j − 1

− 1

= ∏
k∈N jð Þ\ if g

sgn Rj
k

� �
⋅ log

e
∑k∈N jð Þ\ if g log

e
jR j
k
j
+1

e
R j
kj j − 1 + 1

e
∑k∈N jð Þ\ if g log

e
jR j
k
j
+1

e
R j
kj j − 1 − 1

= ∏
k∈N jð Þ\ if g

sgn Rj
k

� �
⋅φ ∑

k ∈N jð Þ\ if g
φðjRj

kjÞ
 !

ð12:25Þ

where, for x>0, we have introduced the nonlinear function

φ xð Þ= log
ex +1
ex − 1

= − logðtanh x ̸2ð ÞÞ.

A plot of this function is depicted in Fig. 12.15. Note that the function coincides
with its inverse, i.e., φ φ xð Þð Þ= x.

The transposition of the variable node processing (vertical step) to the loga-
rithmic domain is much simpler. In fact, from (12.21) we immediately obtain

Rj
i =Wi + ∑

k∈N ið Þ\ jf g
Mi

k . ð12:26Þ

Fig. 12.15 Plot of function φ xð Þ= − logðtanh x ̸2ð ÞÞ.

12 Low-Density Parity-Check (LDPC) Codes 435

Analogously, (12.22) shall be updated as

logL cijWi,Mi� �
=Wi + ∑

k ∈N ið Þ
Mi

k. ð12:27Þ

The algorithm may be then summarized as follows.

0

Although an enhanced numerical stability is achieved operating on
log-likelihood ratios, as well as a lower complexity (as, for instance, products in
(12.21) and (12.22) are transformed in sums in (12.25) and (12.26), respectively),
check node processing in the log-domain imposes the evaluation of the nonlinear
function φ. For a single check node Cj of degree hj, this function should in principle
be evaluated ðhjÞ2 times per iteration (even if techniques to limit the number of φ
evaluations exist). The calculation of function φ is typically performed by means of
lookup-tables. Note that, however, for small x the graph of φ xð Þ is very steep, thus
requiring a very fine (in general, nonuniform) discretization of the corresponding
region of the function domain, and that the implementation of φ xð Þ through a
lookup table may be quite inconvenient in hardware implementation. For these
reasons, extensive work has been carried out to develop either approximations of
the log-domain BP decoder or other reduced-complexity decoding schemes.

436 E. Paolini

All of these decoders offer a reduced error correction capability than actual
BP. However, they also exhibit a lower decoding complexity and, hence, a higher
decoding speed.

12.6 Reduced-Complexity Decoders

So far we have focused on the BP decoder (both in probability domain and
log-domain) originally developed by Gallager. Next, we present a few
reduced-complexity, implementation-friendly decoders for LDPC codes. It must be
pointed out that a large amount of reduced-complexity decoding schemes for LDPC
codes have been developed in the last decade [30]. Most of these decoding schemes
may be seen as approximations of the BP decoder, in the sense that they are
characterized by approximations of the most complex step of BP decoding, namely,
the horizontal step (consisting of the calculation of extrinsic messages from the
check nodes to the variable nodes). As such, these approximate BP decoding
algorithms can be formalized via the same pseudo-code we have adopted for the
log-domain BP decoder, with a difference in step 2.

We only present the most famous approximation of the BP decoder, called the
Min-Sum (MS) decoder. We then move to describe decoders exhibiting an even
lower complexities. More specifically, we present a binary message-passing algo-
rithm known as “Gallager B” (and originally proposed in [7]) and a class of
non-message-passing decoders named “flipping algorithms” (the idea of bit flipping
appears again in [7]). These very low complexity decoding algorithms (along with
some of their modifications, not addressed in this chapter) are of interest in NAND
Flash memories at the beginning of the memory life, when the raw bit error
probability is extremely low.

12.6.1 Min-Sum Decoder

The MS decoder can be directly developed from the log-domain BP decoder as
follows. From Fig. 12.15 observe that the graph of function φ xð Þ is very steep for
small values of x. Then, when x assumes small values, a small perturbation in terms
of x determines a large deviation in terms of φ xð Þ. For this reason, if at least one of
the magnitudes jRj

kj in the summation appearing in (12.25) is sufficiently small, the
corresponding value of φðjRj

kjÞ dominates the other summands. Hence, we can
write

12 Low-Density Parity-Check (LDPC) Codes 437

Mi
j = ∏

k∈N jð Þ\ if g
sgn Rj

k

� �
⋅φ ∑

k∈N jð Þ\ if g
φðjRj

kjÞ
 !

≈ ∏
k∈N jð Þ\ if g

sgn Rj
k

� �
⋅φ max

k∈N jð Þ\ if g
φðjRj

kjÞ
� �

= ∏
k∈N jð Þ\ if g

sgn Rj
k

� �
⋅ min
k∈N jð Þ\ if g

jRj
kj

ð12:28Þ

where the last equality follows from φ xð Þ being self-invertible (i.e., φ φ xð Þð Þ= x)
and monotonically decreasing. The MS decoding algorithm is summarized next.

0

Several improvements to the MS decoder have been proposed in the literature, to
reduce the gap between its performance and that of BP decoding, at the expense of a
small increase in terms of computational cost. These refinements are out of the
scope of this book. Interested readers may refer, for example, to [31, 32].

438 E. Paolini

12.6.2 Gallager B Decoder

The BP and MS decoders are characterized by real-valued (properly quantized, in
hardware implementation) messages exchanged between the variable nodes and the
check nodes. Moreover, as previously emphasized, both algorithms remain
unchanged over a wide range of communication channels. In contrast, Gallager B
decoder, first proposed in [7], is a message-passing decoding algorithm for LDPC
codes characterized by binary-valued messages and is specifically tailored for the
BSC (i.e., no soft information is available at the decoder input). Although its
performance is poor compared with that of BP and MS algorithms over the BSC, it
has been proved that it represents the optimum LDPC decoder over the BSC when
the extrinsic messages are constrained to be binary.

The algorithm works as follows. Assuming transmission over a BSC with error
probability p and input and output alphabets X =Y = 0, 1f g, for i=0, . . . , n− 1
variable node Vi is fed with the corresponding binary symbol yi ∈ 0, 1f g received
from the channel. (In contrast, to perform BP decoding over the BSC variable node
i is initialized according to (12.18) or to its logarithmic version (12.23).) The
symbol yi is broadcasted by variable node Vi to each of its neighboring check
nodes. The algorithm is then structured in a similar way as BP or MS, where the
horizontal, vertical, and stopping criterion steps are specified as follows.

During the horizontal step, for j=0, . . . ,m− 1 the message propagating from
check node Cj to variable node Vi, i∈N jð Þ, is simply the modulo-2 summation of
all binary messages incoming from variable nodes connected to Cj but the message
incoming from Vi. Hence, we can write

mi
j = ∑

k∈N jð Þ\ if g
r jk ð12:29Þ

where the summation is modulo-2. (Note that r ji = yi for all i=0, . . . , n− 1 at the
first iteration.) During the vertical step, for i=0, . . . , n− 1 the message from
variable node Vi to check node Cj, j∈N ið Þ, is equal to the modulo-2 complement of
yi if the number of incoming extrinsic messages different from yi is above some
threshold, and is equal to yi otherwise. Letting

Xi
j = mi

k ≠ yi s.t. k∈N ið Þ\ jf g� �

and T ið Þ be the number of such extrinsic messages and the threshold at the current
iteration, respectively, and letting C yið Þ be the modulo-2 complement of yi, we have

r ji =
C yið Þ if Xi

j ≥ T ið Þ

yi otherwise.

�
ð12:30Þ

At the end of each decoding iteration, for each variable node Vi the decision
about the current value of the local bit cî is taken according to a majority policy.

12 Low-Density Parity-Check (LDPC) Codes 439

More specifically, if the variable node degree di is even, then cî is set equal to the
value assumed by the majority of the incoming messages mi

j and of yi. On the other
hand, if the variable node degree is odd, then cî is set equal to the value assumed by
the majority of the incoming messages mi

j (yi is not considered).

0

Appropriate values for the threshold T ið Þ range between ⌊ðdi − 1Þ ̸2⌋ and di, as
the number of incoming extrinsic messages enforcing an outgoing message different
from yĩ must be sufficiently high. Note that in principle, for irregular codes the value
of the threshold may be different for two different variable nodes, even during the
same iteration. Also note that, for the same variable node, the value of the threshold
may not remain constant with the iteration index, as it may be adjusted dynamically.
In [7] it was shown that for a regular d, hð Þ LDPC code, the optimum value of the
threshold (the same for all variable nodes at the same iteration) is the smallest
integer T for which the inequality

1− p
p

≤
1+ 1− 2εð Þh− 1

1− 1− 2εð Þh− 1

 !2T − d+1

ð12:31Þ

440 E. Paolini

is fulfilled, where p is the BSC error probability and ε is the extrinsic error prob-
ability. This latter parameter represents the average probability that an edge in the
Tanner graph carries an error message from the variable node set to the check node
set at the considered iteration, and varies over iterations. In the asymptotic setting
where the Tanner graph is assumed to be cycle-free, the update equation for ε for
regular LDPC codes is [7]

εℓ+1 = p− p ∑
d− 1

z= Tℓ

d− 1

z

� �
1+ 1− 2εℓð Þh− 1

2

" #z
1− 1− 2εℓð Þh− 1

2

" #d− 1− z

+ 1− pð Þ ∑
d− 1

z= Tℓ

d− 1

z

� �
1− 1− 2εℓð Þh− 1

2

" #z
1+ 1− 2εℓð Þh− 1

2

" #d− 1− z

ð12:32Þ
where ℓ≥ 0 is the iteration index and where ε0 = p.

Example 12.5 Equation (12.32) represents density evolution recursion for Gallager
B decoding of regular unstructured d, hð Þ LDPC code ensembles. The asymptotic
decoding threshold p* for this ensemble under Gallager B decoding is then the sup
of the set of all p>0 such that limℓ→∞εℓ =0. For given d and h, whether or not
some p is above or below threshold can be easily checked by running the recursion
(with starting point ε0 = p), adapting the value of Tℓ at each iteration according to
(12.31) for the current value of εℓ. For example, for d=4 and h=40 (which
corresponds to a rate R=9 ̸10 ensemble) we obtain a threshold p* = 0.0041.
Through (12.8) and Es =REb, this corresponds to a threshold ðEb ̸NoÞ* = 5.892 dB,
about 1.5 dB away from the Shannon limit relevant to the one-bit quantized
Bi-AWGN channel.

12.6.3 Flipping Algorithms

Flipping algorithms are a class of low-complexity, iterative decoding algorithms for
LDPC codes over the BSC different from message-passing ones. The decoding
strategy consists of flipping, at the end of each decoding iteration, the current value
of a subset of variable nodes for which a certain flipping condition is fulfilled. If the
obtained binary sequence is a codeword, decoding is stopped and the codeword is
returned. Otherwise, a new iteration is started. The process continues until a
codeword is found or a maximum number of iterations is reached. Different flipping
algorithms are characterized by different criteria to identify the variable nodes to be
flipped.

A popular flipping algorithm, hereafter referred to simply as bit-flipping
(BF) algorithm, consists of flipping at each iteration those variable nodes for which

12 Low-Density Parity-Check (LDPC) Codes 441

the number u of unsatisfied check nodes is maximum. A BSC with input and output
alphabets X =Y = 0, 1f g is assumed.

12.7 Non-binary LDPC Codes

The so far introduced LDPC codes are binary, in that the code represents an
Rn-dimensional subspace of the vector space GF 2ð Þn, where R is the code rate, n is
the codeword length, and GF 2ð Þ is the Galois field of order 2. More specifically, the
LDPC code is the (Rn-dimensional) null space of an m× n sparse parity-check
matrix H. All n encoded vectors belong to GF 2ð Þ as well as all of the elements of
H. If row vector a belongs to GF 2ð Þn, then the syndrome of a is s= aHT ∈GF 2ð Þm,
where all operations are performed in GF 2ð Þ. Vector a is a codeword if and only if
its syndrome is null.

Like other classes of linear block codes, also LDPC codes may be constructed on
Galois fields of order q>2 [33]. In this case the code can be represented by a sparse
parity-check matrix H on GF qð Þ i.e., a matrix whose elements hj, i,
j∈ 0, 1, . . . ,m− 1f g and i∈ 0, 1, . . . , n− 1f g, belong to GF qð Þ and with a rela-
tively small number of nonzero elements. The code is an Rn-dimensional subspace
of the vector space GF qð Þn, where R is still the code rate and the codeword length
n is expressed in Galois field symbols. Letting row vector a belong to GF qð Þn, the
syndrome of a is still s= aHT ∈GF qð Þm, where now all operations are performed in

442 E. Paolini

GF qð Þ. Still, a is a codeword if and only if its syndrome is null. Hereafter we focus
on LDPC codes constructed on extension fields GF qð Þ with q=2p for integer p>2.
We denote by α a primitive element of GF qð Þ. We use the terminology non-binary
LDPC (NB-LDPC) code to refer to an LDPC code constructed on the Galois field
GF qð Þ.

12.7.1 NB-LDPC Code Ensembles

As binary LDPC codes, also NB-LDPC ones admit a graphical representation
through a Tanner graph G= V ∪ C, Eð Þ. Again, V = V0,V1, . . . ,Vn− 1f g is the set of
variable nodes, C= C0,C1, . . . ,Cm− 1f g is the set of check nodes, and E is the set of
edges. The number of edges, equal to the number of non-zero entries of H, is still
denoted by E. The n variable nodes and the m check nodes are still bijectively
associated with the n codeword symbols and with the m parity-check equations,
respectively; each encoded symbol now belongs to GF qð Þ and each parity-check
equation is a linear equation in GF qð Þ. In the Tanner graph, variable node Vi ∈V is
connected to check node Cj ∈ C by an edge if and only if hj, i ∈GF qð Þ\ 0f g, i.e., if
and only if the element of H in row j∈ 0, 1, . . . ,m− 1f g and column
i∈ 0, 1, . . . , n− 1f g is non-zero. Equivalently, Vi is connected to Cj if and only if
the non-binary codeword symbol ci, associated with Vi, is involved in the parity-
check equation corresponding to Cj. Edge labeling represents the main difference
between the Tanner graphs of binary and non-binary LDPC codes. As opposed to
the Tanner graph of a binary LDPC code, in fact, in the Tanner graph of a
NB-LDPC code the edge connecting variable node Vi to check node Cj is labeled by
the corresponding non-zero element hj, i of the parity-check matrix.

As an example, the Tanner graph of a linear block code with codeword length
n=5 and dimension k=3 (where both n and k are measured in field symbols) is
shown in Fig. 12.16. The Tanner graph has two check nodes, each imposing a
linear constraint on the variable nodes connected to it, and five variable nodes, each

Fig. 12.16 Tanner graph of a
non-binary linear block code
over GF 4ð Þ with codeword
length 5 (field symbols) and
code rate 3/5. Each edge in
the Tanner graph is labeled
with a non-zero element of
GF 4ð Þ

12 Low-Density Parity-Check (LDPC) Codes 443

representing a codeword symbol. The parity-check matrix of the corresponding
linear block code is

H =
α 1 0 1 0
0 α2 α2 α 1

	

.

Similarly to their binary counterparts, NB-LDPC codes are usually analyzed in
terms of ensemble average. Ensembles of NB-LDPC codes are defined similarly to
ensembles of binary LDPC codes, with the difference that edge labeling is also
considered in the ensemble definition. For example, the unstructured ensemble of
NB-LDPC codes over GF qð Þ of length n and degree distribution Λ, Pð Þ, denoted by
Cq n,Λ, Pð Þ, includes the LDPC codes constructed GF qð Þ corresponding to all
possible E! edge permutations between the variable node and the check node
sockets, according to a uniform probability distribution and, for each such per-
mutation, all possible edges labelings with non-zero elements of GF qð Þ again
according to a uniform probability measure. Ensembles of ultra-sparse NB-LDPC
codes (where all variable nodes have degree 2) have attracted an increasing interest
in the past decade [34, 35]. Ensembles of protograph-based NB-LDPC codes may
also be defined similarly to their binary counterparts, by including edge labeling in
the ensemble definition [36, 37].

12.7.2 Iterative Decoding of NB-LDPC Codes

Similarly to binary LDPC codes, NB-LDPC codes may be decoded iteratively via
BP decoding. The BP decoder for NB-LDPC codes may be regarded as a gener-
alization of the above-described BP decoder for binary LDPC codes. Hereafter, we
provide a description of such a decoder, focusing on its probability-domain
implementation. We assume an extension field of order q=2p for integer p>2. For
the sake of clarity, we divide the algorithm into six steps called initialization,
message permutation, horizontal step, message de-permutation, vertical step and
hard decision and stopping criterion. Out of these six steps, the first one (initial-
ization) is performed only once, at the beginning of the algorithm, while the others
are performed iteratively until a stopping rule is verified.

In the non-binary BP decoder, each message still represents extrinsic informa-
tion. As opposed to the binary case, in which each message exchanged between a
variable node Vi and a check node Cj is (in the log-domain implementation) a scalar
value representing a likelihood ratio or log-likelihood ratio, in the non-binary set-
ting each message is a vector of length q=2p representing a pmf for the non-binary
symbol associated with Vi. For example, for an LDPC code constructed over the
Galois field GF 4ð Þ, the message mi

j from check node Cj to variable node Vi is a

vector with four elements having the form mi
j = mi

j 0ð Þ,mi
j 1ð Þ,mi

j αð Þ,mi
j α

2ð Þ
� �

444 E. Paolini

where mi
j 0ð Þ= Pr Vi =0ð Þ, mi

j 1ð Þ= Pr Vi =1f g, mi
j αð Þ= Pr Vi = αf g, and

mi
j α

2ð Þ= Pr Vi = α2
� �

, each probability being conditioned to the extrinsic infor-
mation received by the check node along all of its edges but the one towards Vi.

12.7.2.1 Initialization

In the initialization step, each variable node receives a priori information from the
channel and simply broadcasts it along all of its edges, towards the check nodes that
are connected to it. Hereafter we denote by ri a priori information for variable node
Vi. As well as messages exchanged between variable nodes and check nodes, ri is a
pmf for the non-binary symbol ci ∈GF 2pð Þ associated with Vi. The way a priori
information ri is computed depends on the channel.

For example, let us consider transmission of a NB-LDPC code constructed
on GF 2pð Þ over the Bi-AWGN channel depicted in Fig. 12.16. Let
c= c0, c1, . . . , cn− 1ð Þ be the NB-LDPC codeword, ci ∈GF 2pð Þ for
i∈ 0, 1, . . . , n− 1f g. In this case the generic non-binary codeword symbol ci is first
converted to its binary representation ci = ci, 0, ci, 1, . . . , ci, p− 1

� �
, ct, j ∈GF 2ð Þ for

j∈ 0, 1, . . . , p− 1f g. Then, the binary representation is mapped onto a word of
p antipodal symbols xi =1− 2ci (meaning Es normalized to 1), yielding a sequence
x= x0, x1, . . . , xn− 1ð Þ of np channel symbols that are transmitted sequentially over
the channel. Letting y= y0, y1, . . . , yn− 1ð Þ be the corresponding Bi-AWGN channel
output, it is easy to verify that, for all i∈ 0, 1, . . . , n− 1f g and for each β∈GF 2pð Þ,
we have

Pr ci = βjyið Þ α 2πσ2
� �− p

2exp −
jjxi βð Þjj2 + jjyijj2

2σ2

 !
exp

< xi βð Þ, yi >
σ2

� �
ð12:33Þ

where xi βð Þ is the antipodal version of the binary representation of β, where σ2 is
the variance of each noise sample, and where ⟨xi βð Þ, yi⟩ is the inner product
between xi βð Þ and yi. In this example, a priori information for Vi (coinciding with
the message Vi sends to all of its neighboring check nodes during the initialization
step) is therefore ri = Pr ci =0f g, Pr ci =1f g, Pr ci = αf g, . . . , Pr ci = αq− 2

� �� �
where each element of the pmf ri is computed according to (12.33). Over an SLC or
MLC channel model, a priori information shall be appropriately computed, usually
based again on the binary representation of each non-binary codeword symbol.

All subsequent steps of the BP decoder for NB-LDPC codes, described next,
remain the same regardless of the specific channel model and therefore irrespective
of how a priori information is computed.

12 Low-Density Parity-Check (LDPC) Codes 445

12.7.2.2 Message Permutation

As previously described, each edge in the Tanner graph of a NB-LDPC code is
labeled by the corresponding non-zero element of the parity-check matrix. Con-
sidering check node Cj and letting ci ∈GF 2pð Þ be the jth codeword symbol, the
check node imposes the constraint

∑
k ∈N jð Þ

hj, kck =0. ð12:34Þ

where hj, k ∈GF 2pð Þ\ 0f g is the element of H in position j, kð Þ. This means that the
value of each variable node Vi, connected to Cj, is first multiplied by the corre-
sponding edge label and then is checked by the check node through (12.34). In
terms of BP decoding, where message r ji is a pmf for symbol ci ∈GF 2pð Þ, multi-
plication of by the non-zero edge label simply entails a permutation of the elements
of r ji . To make a distinction between the message sent by Vi and the message
received by Cj (after the permutation), hereafter we denote the former by r ji and the
latter by Πðr ji Þ. An example is provided next.

Example 12.6 Let the Galois field order be q=4. Let the edge connecting variable
node Vi and check node Cj be labeled by α∈GF 4ð Þ, and the message sent by Vi be
r ji = 0.4, 0.3, 0.2, 0.1ð Þ. Since in GF 4ð Þ we have 0 ⋅ α=0, 1 ⋅ α= α, α ⋅ α= α2, and
α2 ⋅ α=1, the effect of the edge label α on the message is a permutation of its
elements, leading to the message Π r ji

� �
= 0.4, 0.1, 0.3, 0.2ð Þ received by Cj. Each

non-zero edge label induces a specific permutation.

12.7.2.3 Horizontal Step

Check node Cj, j∈ 0, 1, . . . ,m− 1f g, receives one message Πðr ji Þ, i∈N jð Þ, from
each of its neighboring variable nodes and sends back one message mi

j, i∈N jð Þ, to
each of them. To understand how extrinsic information shall be generated at the
check node and forwarded to the relevant variable node, we can look at (12.34) that
we recast in the form ∑k ∈N jð Þ zk =0 by defining zk = hj, kck. For some i∈N jð Þ, the
constraint imposed by the check node is zi = − ∑k∈N jð Þ\ if g zk = ∑k∈N jð Þ\ if g zk
where the “− ” sign can be omitted owing to the fact that q=2p. We may regard
each summand zk as a random variable taking values in GF qð Þ and with pmf equal
to that of the incoming message Πðr jkÞ. Under the assumption that all zk are inde-
pendent, the pmf of their sum (hence the pmf of zi) is the convolution of their pmfs.
That is, we may write

446 E. Paolini

mi
j =⊛k∈N jð Þ\ if gΠ r jk

� � ð12:35Þ

where ⊛ denotes convolution between pmfs.
Since the complexity of convolution scales quadratically with the vector size, a

naïve implementation of the horizontal step based on (12.35) leads to a complexity
scaling as O q2ð Þ, such a complexity dominating the overall decoding complexity
and becoming problematic even for moderate q. A reduced-complexity but
equivalent implementation of the horizontal step is based on applying fast Hada-
mard transform to both sides of (12.35). Hadamard transform turns vector convo-
lution into element-wise multiplication of the transformed vectors; therefore, letting
H denote the Hadamard transform and recalling that Hadamard transform coincides
with its inverse, mi

j in (12.35) may equivalently be calculated as

mi
j =H ⊗k∈N jð Þ\ if gH Π r jk

� �� �� � ð12:36Þ

where ⊗ denotes element-wise product between two vectors. Using fast Hadamard
transform reduces the horizontal step complexity (and more in general the com-
plexity of the whole decoder) to O q log qð Þ.

12.7.2.4 Message De-permutation

In the previously described message permutation step, the elements of message r ji ,
sent by variable node Vi to check node Cj, are permuted according to the permu-
tation established by the edge label hj, i. The message mi

j, sent by Cj towards Vi,
must undergo the inverse permutation (equivalently, the permutation established by
the inverse label h− 1

j, k) before reaching Vi. For the sake of clarity, in order to
distinguish the message sent by Cj from the message received by Vi after

de-permutation, we keep denoting by mi
j the former and by Π− 1 mi

j

� �
the latter.

12.7.2.5 Vertical Step

Variable node Vi, i∈ 0, 1, . . . , n− 1f g, receives the di messages Π− 1 mi
j

� �
,

j∈N ið Þ, and generates di messages r ji , j∈N ið Þ, each of which is sent towards a
specific edge to the corresponding check node. Each message r ji is computed based
on a priori information ri available from the channel and on extrinsic information
Π− 1 mi

k

� �
, k∈N ið Þ\ jf g. Specifically, assuming independence between all of the

incoming messages (including a priori information), r ji is computed as

12 Low-Density Parity-Check (LDPC) Codes 447

r ji = γj ⋅ ri⊗ ⊗k∈N ið Þ\ jf gΠ− 1 mi
k

� �� � ð12:37Þ

where again ⊗ denotes element-wise product between two vectors and where the
scalar γj is a scaling factor whose value makes the sum of the elements of r ji equal
to 1.

12.7.2.6 Hard Decision and Stopping Criterion

At the end of each BP decoding iteration, a hard decision is made about the value
taken by each variable node; this hard decision exploits a posteriori information for
the variable node. In probability-domain BP decoding of NB-LDPC codes, a
posteriori information is represented by the pmf of the Galois field symbol ci
associated with the variable node given all incoming messages and a priori infor-
mation. Under independence assumption this is given by

rAPPi = γ ⋅ ri⊗ ⊗j∈N ið Þ Π− 1 mi
j

� �� �h i
ð12:38Þ

where again γ is a normalization factor. Let Π− 1ðmiÞ be the ordered list of mes-
sages received by variable node Vi. Once the a posteriori pmf rAPPi for symbol ci has
been computed, a symbol-wise MAP decision is made, namely,

cî =argmaxc∈GF qð Þ Pr cjri,Π− 1ðmiÞ� �
. ð12:39Þ

In other words, cî is the element of GF qð Þ that corresponds to the largest element
of the pmf rAPPi . Note that, as the scaling factor γ is the same for all elements of
rAPPi , it does not affect the final decision and therefore it can be set to 1 for all
i∈ 0, 1, . . . , n− 1f g.

Similarly to the binary case, if the current hard-decision sequence
c ̂= c0̂, c1̂, . . . , c ̂n− 1ð Þ fulfills c ̂HT = 0, then the algorithm terminates and c ̂ is
returned as the detected codeword. Else, if c ̂ is not a codeword and the maximum
number of iterations Imax has been reached, the algorithm is terminated and a failure
is reported. Else, a new iteration is started jumping to the message permutation step.

Belief propagation decoding of LDPC codes over GF qð Þ, q=2p, may be sum-
marized as follows.

448 E. Paolini

0

12.8 Numerical Example

In this section, we present some numerical results aimed at comparing the perfor-
mance of binary LDPC and BCH codes, with the purpose to highlight the potential
of LDPC codes in Flash memories applications. We assume an SLC memory as the
reference channel model. We compare the performance of a regular QC-LDPC
code, under several decoding algorithms offering different tradeoffs between per-
formance and complexity, with the performance of a narrowsense binary BCH code
with similar parameters, decoded via bounded distance decoding.

The LDPC code is characterized by a length nLDPC = 8200 and a dimension
kLDPC = 7379 bits, and therefore by a code rate R very close to 9 ̸10. Its minimum
distance, estimated with the impulse method proposed in [38], is equal to
dLDPC = 114. All variable nodes of the LDPC code have degree 4, and all of its
check nodes have degree 40. Its 820 × 8200 parity-check matrix is in block

12 Low-Density Parity-Check (LDPC) Codes 449

circulant form, where the generic block is a 205 × 205 circulant permutation
matrix, and has been constructed according to a block circulant version of the
progressive edge-growth (PEG) algorithm. The performance of this code has been
evaluated via Monte Carlo software simulation, under BP, MS, and BF decoding
algorithms. The performance curves under both BP and MS decoding have been
obtained under two different settings, namely, soft-decision and hard-decision
decoding. These two settings correspond to assuming the Bi-AWGN channel with
unquantized output (Example 12.2) and with one-bit quantized output (Example
12.3), respectively, as the channel model. The first setting is equivalent to assuming
an SLC memory with an infinite number of reads per bit, while the second one to
assuming an SLC memory with one read per bit. The variable nodes are initialized
according to (12.19) in the unquantized case and according to (12.18) in the
quantized one. In the quantized case, the raw bit error rate of the channel can be
obtained from Eb ̸N0 according to (12.8), where Es ̸N0 =REb ̸N0. For instance,
Eb ̸N0 = 5 dB corresponds to a raw bit error rate p=8.5 ⋅ 10− 3. The Shannon limit
for the unquantized case and for the one-bit quantized case are also evaluated, for
benchmarking purposes.

The competitor BCH code has nominal parameters nBCH = 8191, kBCH = 7372,
t=63 (error correction capability), and minimum distance dBCH = 127. Its code rate
is approximately equal to 9 ̸10, similar to the code rate of the QC-LDPC code. The
codeword error rate (CER) and the bit error rate (BER) of the BCH code under hard
decision bounded distance decoding have been evaluated analytically according to
the relationships

Pe = ∑
nBCH

r= t+1

nBCH
r

� �
pr 1− pð ÞnBCH − r ð12:40Þ

and

Pb ≈
dBCH
k

⋅Pe ð12:41Þ

respectively.
With reference to Fig. 12.17, we see that over the hard-decision channel (SLC

with one read) the BCH code exhibits nearly the same performance as the
QC-LDPC code decoded via BP and that its performance is even slightly better at
low error rates. This is not surprising, as BCH codes are well known to offer very
good performances over hard-decision channels, especially at high code rates. As
opposed to BCH codes, however, LDPC codes can handle in a very natural way
soft information incoming from the communication channel, which allows to attain
substantial performance improvements over the error correction capabilities
achievable with hard-decision decoding. In our example, when the LDPC decoder
is fed with unquantized soft information, its coding gain with respect to that
achieved under hard-decision decoding is improved by about 1.6 dB under both BP

450 E. Paolini

and MS decoding algorithms at CER=10− 4. Moreover, again at CER=10− 4, the
LDPC code under unquantized BP decoding performs only 0.8 dB away from the
corresponding Shannon limit, in terms of BER.

For the same decoding algorithm (BP or MS), the performance curves of the
LDPC code labeled as “soft” and “hard” represent the two extreme cases in which
unconstrained soft information is available at the decoder, and no soft information
is available. In general, when a finite number of cell reads is performed with
different read voltage values, the corresponding performance curve will lie between
the two extreme curves: The larger the number of cell reads, the closer the per-
formance curve to the “soft” one. Therefore, LDPC codes can largely outperform
BCH codes in Flash memory applications, provided a sufficient amount of soft
information is available at the decoder. It is also pointed out that the design of
appropriate QC irregular LDPC codes can favor an even larger coding gain with
respect to BCH codes.

We also highlight how very simple decoding algorithms of LDPC codes such as
BF (or Gallager B) decoding, can be of interest at the beginning of the memory life,
i.e., when the raw bit error rate is very small. For example, as from Fig. 12.17, BF
decoding could become of interest for values of Eb ̸N0 larger of 7.0 dB, corre-
sponding to a raw bit error rate smaller than 1.3 ⋅ 10− 3.

Fig. 12.17 Bit and codeword error rates for an (8191, 7372) QC-LDPC code (under different
decoding algorithms) and an (8191, 7372), t = 63 narrowsense binary BCH code under bounded
distance decoding, over an SLC flash memory channel. Curves corresponding to filled and empty
symbols illustrate the codeword error rates and the bit error rates of the LDPC code, respectively.
The dashed and dot-dashed lines illustrate the codeword error rate and the bit error rate of the BCH
code, respectively. The two straight solid lines are the Shannon limits for rate R = 9/10 under
soft-decision and hard-decision decoding, respectively

12 Low-Density Parity-Check (LDPC) Codes 451

Acknowledgements The author wishes to thank R. Micheloni and A. Marelli for their careful
proofcheck of this chapter.

References

1. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, 1991)
2. R.D. Fowler, L. Nordheim, Electron emission in intense electric fields. Proc. R. S. Lond. 119,

173–181 (1928)
3. R. Micheloni, L. Crippa, A. Marelli (eds.), Inside NAND Flash Memories (Springer, 2010)
4. N. Mielke et al., Bit error rate in NAND Flash memories, in Proceedings of the 2008 IEEE

International Symposium on Reliability Physics, Phoenix, AZ, USA, April/May 2008,
pp. 9–19

5. J. Wang, T. Courtade, H. Shankar, R. Wesel, Soft information for LDPC decoding in flash:
mutual-information optimized quantization, in Proceedings of the 2011 IEEE Global
Telecommunication Conference, Houston, TX, USA, Dec 2011

6. S. Li, T. Zhang, Improving multi-level NAND flash memory storage reliability using
concatenated BCH-TCM coding. IEEE Trans. VLSI 18, 1412–1420 (2010)

7. R.G. Gallager, Low-Density Parity-Check Codes (MIT Press, Cambridge, Massachusetts,
1963)

8. C. Berrou, A. Glavieux, P. Thitimajshima, Near Shannon limit error-correcting coding and
decoding: turbo-codes, in Proceedings of the 2003 International Symposium on Communi-
cation, vol. 2, May 1993, pp. 1064–1070

9. T. Richardson, R. Urbanke, The renaissance of Gallager’s low-density parity-check codes.
IEEE Commun. Mag. 41, 126–131 (2003)

10. N. Bonello, S. Chen, L. Hanzo, Low-density parity-check codes and their rateless relatives.
IEEE Commun. Surv. Tutor. 13, 3–26 (2011)

11. M. Tanner, A recursive approach to low complexity codes. IEEE Trans. Inf. Theory 27, 533–
547 (1981)

12. M. Fossorier, Quasi-cyclic low-density parity-check codes from circulant permutation
matrices. IEEE Trans. Inf. Theory 50, 1788–1793 (2004)

13. Z. Li, L. Chen, L. Zeng, S. Lin, W. Fong, Efficient encoding of low-density parity-check
codes. IEEE Trans. Commun. 54, 71–81 (2006)

14. M. Mansour, High-performance decoders for regular and irregular repeat-accumulate codes,
in Proceedings of the IEEE 2004 IEEE Global Telecommunications Conference, Nov/Dec
2004, pp. 2583–2588

15. T. Richardson, M. Shokrollahi, R. Urbanke, Design of capacity-approaching irregular
low-density parity-check codes. IEEE Trans. Inf. Theory 47, 619–637 (2001)

16. S.-Y. Chung, G.D. Forney Jr., T. Richardson, R. Urbanke, On the design of low-density
parity-check codes within 0.0045 dB of the Shannon limit. IEEE Commun. Lett. 5, 58–60
(2001)

17. J. Thorpe, Low-density parity-check (LDPC) codes constructed from protographs, JPL INP,
Technical Report, Aug 2003, pp. 42–154

18. J. Xu, L. Chen, L. Zeng, L. Lan, S. Lin, Construction of low-density parity-check codes by
superposition. IEEE Trans. Commun. 53, 243–251 (2005)

19. T. Richardson, R. Urbanke, The capacity of low-density parity-check codes under
message-passing decoding. IEEE Trans. Inf. Theory 47, 599–618 (2001)

20. S. ten Brink, Convergence behavior of iteratively decoded parallel concatenated codes. IEEE
Trans. Commun. 49, 1727–1737 (2001)

21. G. Liva, M. Chiani, Protograph LDPC codes design based on EXIT analysis, in Proceedings
of the 2007 IEEE Global Telecommunications Conference, Washington, DC, USA, Nov
2007, pp. 3250–3254

452 E. Paolini

22. L. Chen, J. Xu, I. Djurdjevic, S. Lin, Near Shannon limit quasi cyclic low-density
parity-check codes. IEEE Trans. Commun. 52, 1038–1042 (2004)

23. H. Tang, J. Xu, Y. Kou, S. Lin, K. Abdel-Ghaffar, On algebraic construction of Gallager and
circulant low density parity-check codes. IEEE Trans. Inf. Theory 50, 1269–1279 (2004)

24. M. Chiani, A. Ventura, Design and performance evaluation of some high-rate irregular
low-density parity-check codes, in Proceedings of the 2001 Global Telecommunication
Conference, San Antonio, TX, USA, Nov 2001, pp. 990–994

25. T. Richardson, Error floors of LDPC codes, in Proceedings of the 41st Annual Allerton
Conference on Communication, Control and Computing (2003)

26. S. Abu-Surra, D. Divsalar, W.E. Ryan, Enumerators for protograph-based ensembles of
LDPC and generalized LDPC codes. IEEE Trans. Inf. Theory 57, 858–886 (2011)

27. M. Flanagan, E. Paolini, M. Chiani, M. Fossorier, On the growth rate of the weight
distribution of irregular doubly-generalized LDPC codes. IEEE Trans. Inf. Theory 57, 3721–
3737 (2011)

28. D. Cavus, C. Haymes, Low BER performance estimation of LDPC codes via application of
importance sampling to trapping sets. IEEE Trans. Commun. 57, 1886–1888 (2009)

29. L. Dolecek et al., Predicting error floors of structured LDPC codes: Deterministic bounds and
estimates. IEEE J. Sel. Areas Commun. 27, 908–917 (2009)

30. J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, X.-Y. Hu, Reduced-complexity decoding
of LDPC codes. IEEE Trans. Commun. 53, 1288–1299 (2005)

31. J. Zhao, F. Zarkeshvari, A. Banihashemi, On implementation of min-sum algorithm and its
modifications for decoding low-density parity-check (LDPC) codes. IEEE Trans. Commun.
53, 549–554 (2005)

32. J. Chen, M. Tanner, C. Jones, Y. Li, Improved min-sum decoding algorithms for irregular
LDPC codes, in Proceedings of the 2005 IEEE International Symposium on Information
Theory, Sept 2005, pp. 449–453

33. M. Davey, D. MacKay, Low-density parity check codes over GF(q). IEEE Commun. Lett. 2
(6), 165–167 (1998)

34. C. Poulliat, M. Fossorier, D. Declercq, Design of regular (2, dc) -LDPC codes over GF(q)
using their binary images. IEEE Trans. Commun. 56(10), 1626–1635 (2008)

35. G. Liva, E. Paolini, B. Matuz, S. Scalise, M. Chiani, Short turbo codes over high order fields.
IEEE Trans. Commun. 61(6), 2201–2211 (2013)

36. L. Dolecek, D. Divsalar, Y. Sun, B. Amiri, Non-binary protograph-based LDPC codes:
enumerators, analysis, and designs. IEEE Trans. Inf. Theory 60(7), 3913–3941 (2014)

37. E. Paolini, M. Flanagan, Efficient and exact evaluation of the weight spectral shape and
typical minimum distance of protograph LDPC Codes. IEEE Commun. Lett. 20(11), 2141–
2144 (2016)

38. X.-Y. Hu, M. Fossorier, E. Eleftheriou, On the computation of the minimum distance of
low-density parity-check codes, in Proceedings of the 2004 International Conference on
Communication, June 2004, pp. 767–771

12 Low-Density Parity-Check (LDPC) Codes 453

	12 Low-Density Parity-Check (LDPC) Codes
	Abstract
	12.1 Shannon Limit
	12.1.1 Entropy and Mutual Information
	12.1.2 System Model and Channel Capacity
	12.1.3 The Channel Coding Theorem

	12.2 Maximum a Posteriori and Maximum Likelihood Decoding of Linear Block Codes
	12.3 NAND Flash Memory Channel Model
	12.3.1 SLC Channel Model
	12.3.2 MLC Channel Model

	12.4 Low-Density Parity-Check Codes
	12.4.1 LDPC Code Ensembles
	12.4.2 QC-LDPC Codes Construction
	12.4.3 Error Floor

	12.5 Belief Propagation (BP) Decoding of LDPC Codes
	12.5.1 Introduction
	12.5.2 Preliminaries
	12.5.3 Algorithm Description
	12.5.3.1 Overview
	12.5.3.2 Initialization
	12.5.3.3 Horizontal Step
	12.5.3.4 Vertical Step
	12.5.3.5 Hard Decision and Stopping Criterion

	12.5.4 Log-Domain BP Decoder

	12.6 Reduced-Complexity Decoders
	12.6.1 Min-Sum Decoder
	12.6.2 Gallager B Decoder
	12.6.3 Flipping Algorithms

	12.7 Non-binary LDPC Codes
	12.7.1 NB-LDPC Code Ensembles
	12.7.2 Iterative Decoding of NB-LDPC Codes
	12.7.2.1 Initialization
	12.7.2.2 Message Permutation
	12.7.2.3 Horizontal Step
	12.7.2.4 Message De-permutation
	12.7.2.5 Vertical Step
	12.7.2.6 Hard Decision and Stopping Criterion

	12.8 Numerical Example
	Acknowledgements
	References

