
Chapter 10
Efficient Wear Leveling in NAND Flash
Memory

Yuan-Hao Chang and Li-Pin Chang

Abstract In the recent years, flash storage devices such as solid-state drives
(SSDs) and flash cards have become a popular choice for the replacement of hard
disk drives, especially in the applications of mobile computing devices and con-
sumer electronics. However, the physical constraints of flash memory pose a life-
time limitation on these storage devices. New technologies for ultra-high density
flash memory such as multilevel-cell (MLC) flash further degrade flash endurance
and worsen this lifetime concern. As a result, flash storage devices may experience
a unexpectedly short lifespan, especially when accessing these devices with high
frequencies. In order to enhance the endurance of flash storage device, various wear
leveling algorithms are proposed to evenly erase blocks of the flash memory so as
to prevent wearing out any block excessively. In this chapter, various existing wear
leveling algorithms are investigated to point out their design issues and potential
problems. Based on this investigation, two efficient wear leveling algorithms (i.e.,
the evenness-aware algorithm and dual-pool algorithm) are presented to solve the
problems of the existing algorithms with the considerations of the limited com-
puting power and memory space in flash storage devices. The evenness-aware
algorithm maintains a bit array to keep track of the distribution of block erases to
prevent any cold data from staying in any block for a long period of time. The
dual-pool algorithm maintains one hot pool and one cold pool to maintain the
blocks that store hot data and cold data, respectively, and the excessively erased
blocks in the hot pool are exchanged with the rarely erased blocks in the cold pool
to prevent any block from being erased excessively. In this chapter, a series of
explanations and analyses shows that these two wear leveling algorithms could
evenly distribute block erases to the whole flash memory to enhance the endurance
of flash memory.

Y.-H. Chang (✉)
Academia Sinica, Institute of Information Science, Taipei, Taiwan
e-mail: johnson@iis.sinica.edu.tw

L.-P. Chang
Department of Computer Science, National Chiao-Tung University, Hsinchu, Taiwan
e-mail: lpchang@cs.nctu.edu.tw

© Springer Nature Singapore Pte Ltd. 2018
R. Micheloni et al. (eds.), Inside Solid State Drives (SSDs),
Springer Series in Advanced Microelectronics 37,
https://doi.org/10.1007/978-981-13-0599-3_10

343

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_10&domain=pdf

10.1 Introduction

NAND flash memory has been widely adopted in various mobile embedded
applications, due to its non-volatility, shock-resistance, low-power consumption,
and low cost. It is widely adopted in various storage systems, and its applications
have grown much beyond its original designs. The two popular NAND flash
memory designs are single-level-cell (SLC) flash memory and multi-level-cell
(MLC) flash memory. Each SLC flash-memory cell can accommodate 1-bit
information while each MLC× n flash-memory cell can contain n-bit information.
As n increases, the endurance of each block in MLC flash memory decreases
substantially.1 In recent years, Well-known examples are flash-memory cache of
hard drives (known as TurboMemory) [13, 40, 48], fast booting devices (for
Microsoft Windows Visa), and solid-state disks (SSD) (for the replacement of hard
drives).

As the low-cost MLC flash-memory designs are gaining market momentum [11],
the endurance of flash memory is an even more challenging problem. For example,
the endurance of an MLC×2 flash-memory block is only 10,000 (or 5,000) erase
cycles whereas that of its SLC flash memory counterpart is 100,000 erase cycles
[35, 41]. As the number of bits of information per cell would keep increasing for
MLC in the near future, the endurance of a block might also get worse, such as few
thousand or even hundred erase cycles. This underlines the endurance issue of flash
memory. However, improving endurance is problematic because flash-memory
designs allow little compromise between system performance and cost, especially
for low-cost flash storage devices. Such developments reveal the limitations of flash
memory, especially in terms of endurance.

A NAND flash storage device or storage system, e.g., a solid-state disk
(SSD) and flash cards, may be associated with multiple chips. Each chip is com-
posed of one or more sub-chips or dies. Each sub-chip might have multiple planes.
Each plane is organized in terms of blocks that are the basic unit for erase opera-
tions. A block is further divided into a fixed number of pages and can only endure
limited erase cycles. A page (that is the unit of read and write operations) consists of
a user area and a spare area, where the user area is for data storage, and the spare
area stores house-keeping information such as the corresponding logical block
addresses (LBAs), status flags, and error correction codes (ECCs). When a page is
written with data, it is no longer available unless it is erased. This is called the
“write-once property”. As a result, “out-place updates” are adopted so that data are
usually updated over free pages. Pages that contain the latest copy of data (i.e., valid
data) are considered as live (or valid) pages, and pages with old versions (i.e.,
invalid data) are dead (or invalid) pages. Therefore, address translation is needed to
map logical addresses of data to their physical addresses, and “garbage collection”
is needed to reclaim dead pages. Because each block has a limited number of erase

1In this chapter, we consider NAND flash memory, which is the most widely adopted flash
memory in storage-system designs.

344 Y.-H. Chang and L.-P. Chang

cycles, “wear-leveling” is needed to evenly erase blocks so as to prevent wearing
out some blocks excessively.

Engineers and researchers have recently become concerned with how long flash
storage devices can withstand daily use when they are adopted in applications with
high access frequencies. The host systems, e.g., smart phones and notebooks,
access their secondary storages (such as hard drives and SSDs) with temporal
localities [6, 32, 33, 46]. Frequently updated data and rarely updated data coexist
under such workloads. When reclaiming free space, block erases are always
directed to the blocks with few valid data so as to reduce data-copy overheads.
Thus, blocks having many static (or immutable) data are rarely chosen for erases,
while other blocks are erased many times to circulate frequently updated data. As a
result, some blocks are worn out when other blocks remain fresh. The problem of
wearing out blocks is a crucial concern for new-generation flash memory, and wear
leveling is the policy of evenly erasing all flash-memory blocks to keep all the
blocks alive as long as possible. Strategies friendly to wear leveling can be adopted
in various system layers, including applications, file systems, and firmware. To
closely monitor wear in all blocks, the flash management strategies that are usually
implemented as firmware implements wear leveling. However, wear leveling is not
free, since extra data movement is required. Alleviating wear-leveling overheads is
an important task, as wear leveling activities themselves wear flash memory too.

Many excellent wear leveling algorithms have been proposed by academia and
industry. Updating data out of place is a simple wear-leveling technique [12, 23, 29,
31, 38]. However, this simple policy is vulnerable in the presence of static data
because static data are rarely invalidated and need to be copied out before their
residing blocks are erased. In order to reduce live-data-copying overhead, blocks
storing a lot of static data rarely participate in the activities of reclaiming free space.
Therefore, the key to wear leveling may be to encourage the blocks with static data to
participate in block erases. Kim and Lee [20] and Chiang et al. [9] proposed value
functions for choosing victim blocks. In their approach, a block receives a high score
if it currently has few valid data or its number of accumulated erase cycles is low.
Another technique is to erase blocks in favor of reclaiming free space most of the
time, but periodically, a block is erased in favor of wear leveling [24, 47]. A typical
strategy is to occasionally erase a random block. Wear leveling activities can also be
completely detached from free-space reclaiming. Hot-cold swapping [6, 10, 17, 20,
27] involves swapping data in a frequently erased block with that in an infrequently
erased block whenever the wear of all blocks is unbalanced.

These existing approaches share a common idea: encouraging infrequently
erased blocks to contribute to erases cycles. Under the workload of most real access
patterns, most block erases are contributed by a small fraction of blocks if wear
leveling is not used. According to such observations, static wear leveling algorithms
are proposed to move static data away from infrequently erased blocks [2, 7, 43].
However, some existing static wear leveling algorithms don’t consider the limited
computing power or restricted RAM space, while some don’t consider the access
patterns and data access frequencies [3, 4, 18, 39, 42]. As a result, these existing
static wear leveling algorithms either consume too many hardware resources or

10 Efficient Wear Leveling in NAND Flash Memory 345

introduce too many overheads on extra live page copies and block erases. In order
to achieve static wear leveling effectively with limited computing power, limited
main memory, and limited overheads, two efficient wear leveling algorithms (i.e.,
the evenness-aware algorithm and dual-pool algorithm) are proposed and presented
in this chapter. The evenness-aware algorithm [8] maintains a house-keeping data
structure, i.e., a bit array, with a cyclic-queue-based scanning procedure to keep
track of the distribution of block erases to prevent any static or cold data staying in
any block for a long period of time. The objective is to improve the endurance of
flash memory with limited overhead and without excessively modifying popular
implementations of flash management designs, such as FTL, NFTL, and BL [1, 14,
16, 45]. The dual-pool algorithm [5] maintains one hot pool and one cold pool to
maintain the blocks that store hot data and cold data, respectively, and the exces-
sively erased blocks in the hot pool are exchanged with the rarely erased blocks in
the cold pool to prevent any block being erased excessively. Whenever a block is
excessively erased, it is filled with static data. In this way, such blocks stop par-
ticipating in free-space reclaiming. This strategy helps conserve data movement
because the major contributors of block erases are only a small fraction of all
blocks. Second, blocks recently involved in wear leveling should be temporarily
isolated from wear leveling activities. For example, after static data are written to a
block which has been erased many times, the dual-pool algorithm decides how long
this block should wait before it can contribute more erase cycles.

The rest of this paper is organized as follows: Sect. 10.2 presents the
evenness-aware algorithm with the worst-case analysis. In Sect. 10.3, the dual-pool
algorithm is presented with a real case study. Section 10.4 concludes this chapter.

10.2 Evenness-Aware Algorithm

10.2.1 Algorithm Design

10.2.1.1 Overview

The motivation of the evenness-aware algorithm is to prevent static data from
staying at any block for a long period of time. It minimizes the maximum
erase-count difference between any two blocks, so flash memory lifetime is
extended. This algorithm could be implemented as a module. In this algorithm, it
maintain a Block Erasing Table (BET) that identifies the blocks erased during a
given period of time (Sect. 10.2.1.2). The BET is associated with the process SW
Leveler that is activated by some system parameters for the needs of static wear
leveling (Sect. 10.2.1.3). When the SW Leveler runs, it either resets the BET or
picks up a block that has not been erased so far (based on the BET information),
and triggers the garbage collector to do garbage collection on the block (note that
the selection procedure of a block must be performed efficiently and within a

346 Y.-H. Chang and L.-P. Chang

limited time). Whenever a block is recycled by the garbage collection, any modi-
fication to the address translation is performed as in the original design of a flash
management design. The SW Leveler can be implemented as a thread or as a
procedure triggered by a timer or the garbage collector based on some preset
conditions. Note that, whenever a block is erased, the BET must be updated by a
triggering action to the SW Leveler. The design of the BET is scalable to
accommodate rapidly increasing flash-memory capacity [34] and the limited RAM
space on a controller.

10.2.1.2 Block Erasing Table

The Block Erasing Table (BET) attempts to remember which block has been erased
in a pre-determined time frame, referred to as the resetting interval, so as to locate
blocks of cold data. A BET is a bit array in which each bit corresponds to a set of 2k

contiguous blocks where k is an integer that equals or exceeds 0. Whenever a block
is erased by the Cleaner, the SW Leveler is triggered to set the corresponding bit as
1. Initially, the BET is reset to 0 for every bit. As shown in Fig. 10.1, information
maintenance is performed in one-to-one and one-to-many modes, and one flag is
used to track whether any one of the corresponding 2k blocks is erased. When
k = 0, one flag is used for one block (i.e., in the one-to-one mode). The larger the
value of k, the greater the chance in the overlooking of blocks of cold data.
However, a large value for k could help reduce the RAM space required by a BET
controller.

The worst case for a large k value occurs when hot and cold data co-exist in a
block set. Fortunately, such a case is eventually resolved when hot data are

user data

physical
address (block)

Flash Memory

0
1
2
3
4
5
6
7
8
9
10
11

one flag for one block

0
1
0
1
0
0
0
0
0
0
0
0

Block3 has
been erased.

Block 1 has
been erased.

Block Erasing Table

One-to-One Mode

0
1
2
3
4
5
6
7
8
9

10
11

one-bit
flag number

user data

physical
address (block)

Flash Memory

0
1
2
3
4
5
6
7
8
9
10
11

one flag for 2 blocks

0
1
0
1
0
0
0
0
0
0
0
0 At least one of

Block6 and
Block7 has
been erased.

Block Erasing Table

One-to-Many Mode

0
1
2
3
4
5
6
7
8
9
10
11

one-bit
flag number

At least one of
Block 2 and
Block 3 has
been erased.

(a) (b)

Fig. 10.1 The mapping mechanism between flags and blocks. a One-to-One mode.
b One-to-Many mode

10 Efficient Wear Leveling in NAND Flash Memory 347

invalidated. As a result, cold data could be moved to other blocks by the SW
Leveler (see Sect. 10.2.1.3). The technical problem relies on the tradeoff between
the time to resolve such a case (bias in favor of a small k) and the available RAM
space for the BET (bias in favor of a large k).

Another technical issue is efficiently rebuilding the BET when a flash-memory
storage system is attached. One simple but effective solution is to save the BET in
the flash-memory storage system when the system shuts down, and then to reload it
from the system when needed. Meanwhile, the whole BET is stored in flash
memory and loaded to main memory in an on-demand fashion, so that the required
main memory could be minimized. If the system is not properly shut down, we
propose loading any existing correct version of the BET when the system is
attached. Such a solution is reasonable as long as loss of erase count information is
not excessive. Note that the crash resistance of the BET information in the storage
system could be provided by the popular dual buffer concept. Scanning of the spare
areas of pages when collecting related information should also be avoid because of
the potentially huge capacity of a flash-memory storage system.

10.2.1.3 SW Leveler

The SW Leveler consists of two procedures in executing wear leveling:
SWL-Procedure and SWL-BETUpdate (please see Algorithms 1 and 2).
SWL-BETUpdate is invoked by the garbage collector to update the BET whenever
any block is erased by the garbage collector during garbage collection. The
SWL-Procedure is invoked whenever static wear leveling is needed. Such a need is
tracked by two variables, fcnt and ecnt, which denote the number of 1s in the BET
and the total number of block erases performed since the BET was reset, respec-
tively. When the unevenness level, i.e., the ratio of ecnt and fcnt, equals or exceeds a
given threshold T, SWL-Procedure is invoked to trigger the garbage collector to do
garbage collection over selected blocks such that cold data are moved. Note that a
high unevenness level reflects the fact that a lot of erases are done on a small
portion of the flash memory.

Algorithm 1 shows the algorithm for the SWL-Procedure: the SWL-Procedure
simply returns if the BET is just reset (Step 1). When the unevenness level, i.e.,
ecnt =fcnt, equals or exceeds a given threshold T, the garbage collector is invoked in
each iteration to do garbage collection over a selected set of blocks (Steps 2–15). In
each iteration, it is checked up if all of the flags in the BET are set as 1 (Step 3). If
so, the BET is reset, and the corresponding variables (i.e., ecnt, fcnt, and findex) are
reset (Steps 4–7). The findex is the index in the selection of a block set for static wear
leveling and is reset to a randomly selected block set or to a predefined block set,
e.g. 0. After the BET is reset, SWL-Procedure simply returns to start the next
resetting interval (Step 8). Otherwise, the selection index, i.e., findex, moves to the
next block set with a zero-valued flag (Steps 10–12). Note that the sequential
scanning of blocks in the selection of block sets for static wear leveling is very
effective in the implementation. We surmise that the design approximates that of an

348 Y.-H. Chang and L.-P. Chang

actual random selection policy because cold data can virtually exist in any block in
the physical address space of the flash memory. The SWL-Procedure then invokes
the garbage collector to do garbage collection over a selected block set (Step 13)
and moves to the next block set (Step 14) for the next iteration. We must point out
that fcnt and BET are updated by SWL-BETUpdate because SWL-BETUpdate is
invoked by the garbage collector during garbage collection. The loop in static wear
leveling ends when the unevenness level drops to a satisfactory value.

The SWL-BETUpdate is as shown in Algorithm 2: Given the address bindex of
the block erased by the garbage collector, SWL-BETUpdate first increases the
number of blocks erased in the resetting interval (Step 1). If the corresponding BET
entry is not 1, then the entry is set as 1, and the number of 1s in the BET is
increased by one (Steps 2–5). The remaining technical question is how to maintain

10 Efficient Wear Leveling in NAND Flash Memory 349

the values of ecnt, fcnt, and findex. To optimize static wear leveling, ecnt, fcnt, and findex
should be saved to flash memory as system parameters and retrieved in the
attachment of the flash memory. Notably, these values can tolerate some errors with
minor modifications to SWL-Procedure in either the condition in Step 3 or the
linear traversal of the BET (Steps 10–12). That is, if the system crashes before their
values are saved to flash memory, it simply uses the values previously saved to
flash memory.

10.2.2 Worst-Case Analysis

10.2.2.1 Worst-Case Model for Extra Overheads

Block recycling overhead is indeed increased by the proposed evenness-aware
algorithm. A very minor cause of the increase is the execution of SWL-BETUpdate
whenever the garbage collector erases a block, i.e., the value updates of ecnt and fcnt
as well as the BET flags (compared to the block erase time, which could be about
1.5 ms over a 1 GB MLC×2 flash memory [28]). As astute readers might point out,
the garbage collector might be triggered more often than before because of wear
leveling. That might increase the number of block erases and live-page copyings.
The increased overheads caused by extra block erases and extra live-page copyings
are apparent in the following worst-case scenario: the flash memory contains blocks
of hot data, blocks of static data, and exactly one free block in a resetting interval.

Figure 10.2 shows the worst-case model based on a block-level address trans-
lation mechanism. In the block-level address translation mechanism, each LBA is
divided into a virtual block address (VBA) and a block offset, and a mapping table
is adopted for VBAs and their physical block addresses (PBAs). For each write
operation, a free block is allocated to save the data of the remaining valid pages of
the original mapped block and the new data of the write operation. Assume there
are (H − 1) blocks of hot data and C blocks of static data where the number of
blocks in the system is (H + C). The worst-case situation occurs when the C blocks
are erased, only due to the evenness-aware algorithm. The worst case occurs when
hot data are updated with the same frequency and only to the free block or the
blocks of hot data, where k = 0. Sections 10.2.2.2 and 10.2.2.3 show the analyses
for extra block erases and extra live-page copyings in the worst-case model,
respectively.

C blocks storing static data

H-1 blocks storing hot data

Flash Memory
(H+C blocks in total)

1 free blockFig. 10.2 Flash memory of
only static data and hot data

350 Y.-H. Chang and L.-P. Chang

10.2.2.2 Extra Block Erases

When k = 0, the BET contains (H + C) bits, i.e., (H + C) 1-bit flags. In each
resetting interval, when the updates of hot data result in (T × H) block erases,
SWL-Procedure is activated to recycle one block of cold data for the first time
because only H bits of the BET are set, and the unevenness level reaches T (i.e.,
(T × H)=H). After one block of cold data is recycled by SWL-Procedure, (H + 1)
bits of the BET are set, and the number of block erases reaches (T × H + 1). The
unevenness level (i.e., ðT ×H +1Þ ̸ðH +1Þ) is then smaller than the threshold
T. Thereafter, SWL-Procedure is activated to recycle one block of cold data on all
other (T − 1) block erases resulting from hot data updates. Finally, this procedure is
repeated C times such that all BET flags are set and the resetting interval ends.
Therefore, the resetting interval has T × (H + C) block erases. For every
T × (H + C) block erases in a resetting interval, SWL-Procedure performs
C block erases. Therefore, the increased ratio of block erases (due to static wear
leveling) is derived as follows:

C
T × ðH +CÞ−C

≈
C

T × ðH +CÞ , when T × ðH +CÞ≫C.

The increased ratio is even worse when C is the dominant part of (H + C) (an
earlier study [18] showed that the amount of non-hot data is often several times that
of hot data). Table 10.1 shows different increased ratios in extra block erasing for
different configurations of H, C, and T. As shown in the table, the increased
overhead ratio in extra block erasing is sensitive to the setting of T. Therefore, to
avoid excessive triggering of static wear leveling, T must not be set too small.

10.2.2.3 Extra Live-Page Copyings

The extra overheads in live-page copyings due to the static wear leveling mecha-
nism can be explored by the worst-case model. Let N be the number of pages in a
block. Suppose that L is the average number of pages copied by the garbage
collector when erasing a block of hot data. Thus, in the worst case, totally
(C × N) live-pages are copied when erasing C blocks of static data (due to the
evenness-aware algorithm) in a resetting interval, and ðT × ðH +CÞ−CÞ× L

Table 10.1 The increased
ratio of block erases of a
1 GB MLC×2 flash-memory
storage system

H C H:C T Increased ratio (%)

256 3,840 1:15 10 9.46
2048 2,048 1:1 10 5.03
256 3,840 1:15 100 0.95
2,048 2,048 1:1 100 0.50
256 3,840 1:15 1,000 0.09
2,048 2,048 1:1 1,000 0.05

10 Efficient Wear Leveling in NAND Flash Memory 351

live-page copyings are performed in the course of regular garbage collection
activities in a resetting interval. The increased ratio in live-page copyings, due to
static wear leveling, can be derived as follows:

C ×N
ðT × ðH +CÞ−CÞ× L

≈
C ×N

T × L× ðH +CÞ , when T × ðH +CÞ≫C.

Table 10.2 shows varying increases in the ratios of live-page copyings for dif-
ferent configurations of H, C, T, and L, when N = 128. The increased ratio of
live-page copyingscan be estimated by N

L times the increased ratio of extra block
erases. For example, when T = 100, L = 16, N = 128, and H

C = 1
15, the increased

ratio of block erases is 0.95% (the third row of Table 10.1) and its corresponding
increased ratio of live-page copyings is 7.57%, i.e., 0.95% × 128

16 (the third row of
Table 10.2). As shown in Tables 10.1 and 10.2, the increased ratios of block erases
and live-page copyings would be limited with a proper selection of T and other
parameters. The increased ratios could be limited to very small percentages of flash
management strategies when the evenness-aware algorithm is supported.

10.3 Dual-Pool Algorithm

10.3.1 Algorithm Design

10.3.1.1 Algorithm Concept

This section introduces the basic concepts of the dual-pool algorithm. Let write
requests arriving at the flash storage device be ordered by their arrival times. Let the
temperature of a piece of data be inversely proportional to the number of requests

Table 10.2 The increased ratio in live-page copyings of a 1 GB MLC×2 flash-memory storage
system

H C H:C T L N
T × L Increased ratio (%)

256 3,840 1:15 10 16 0.800 75.72
2,048 2,048 1:1 10 16 0.800 40.02
256 3,840 1:15 10 32 0.400 37.86
2,048 2,048 1:1 10 32 0.400 20.00
256 3,840 1:15 100 16 0.0800 7.57
2,048 2,048 1:1 100 16 0.0800 4.00
256 3,840 1:15 100 32 0.0400 3.79
2,048 2,048 1:1 100 32 0.0400 2.00
256 3,840 1:15 1,000 16 0.0080 0.76
2,048 2,048 1:1 1,000 16 0.0080 0.40
256 3,840 1:15 1,000 32 0.0040 0.38
2,048 2,048 1:1 1,000 32 0.0040 0.20

352 Y.-H. Chang and L.-P. Chang

between the two most recent writes to that data. A piece of data is hot if its
temperature is higher than the average temperature of all data. Otherwise, the data is
cold or non-hot. A block is referred to as a young(/old) block if its erase-cycle count
is smaller(/larger) than the average erase-cycle count of all blocks.

We say that a block contributes or accumulates erase cycles if garbage collection
erases this block to reclaim free space. Garbage collection avoids erasing a block
having many valid data. If a block has more cold data than other blocks, then it will
stop contributing erase cycles. This is because cold data remains valid in the block
for a long time. Conversely, if a block has many hot data, then it can accumulate
erase cycles faster than other blocks. This is because hot data are invalidated faster
than cold data, and the block can become a victim of garbage collection before
other blocks. After the block is erased, it can again be written with many hot data,
because writes to hot data arrive more frequently than writes to cold data. Thus, this
block is again erased and is written with many hot data.

The dual-pool algorithm monitors the erase-cycle count of each block. If an old
block’s erase-cycle count is larger than that of a young block by a predefined
threshold, wear leveling activities are triggered. Cold data are moved to the old
block to prevent it from being erased by garbage collection. This strategy is referred
to as cold-data migration. After this, the old block should stop accumulating erase
cycles. Compared to encouraging young blocks to contribute erase cycles, this
strategy reduces data-movement overhead. This is because only a small fraction of
blocks are worn into old blocks, while the majority are young blocks. Right after
cold data are written to an old block, the old block still has a large erase-cycle
count. If we are not aware that the old block has been involved in cold-data
migration, we may again write some other cold data to the old block. This point-
lessly reduces the block’s lifetime. Similarly, after a young block is involved in
cold-data migration, cold data previously stored in the block are removed. At this
point, the young block has no cold data, even though its erase-cycle count is small.
So, right after a block is involved in cold-data migration, it should be protected
from immediate re-involvement. This strategy is called block protection. The
protection of an old block is no longer required when other blocks become older
than it. The protection of a young block expires when it is worn into an old block.

The access patterns from the host to the flash storage devices can change peri-
odically. For example, a user application in the host may finish using some files and
then begin accessing other files. These application-level behaviors can change the
frequency with which a piece of data is updated, and thus cold data can change into
hot data. Consider an old block written with cold data for cold-data migration. The
old block is then protected against cold-data migration. Now suppose that the cold
data in the old block happens to become hot. The protected old block will again
start participating in garbage collection, and continues to age without interruption
from wear leveling because its protection cannot expire. Now consider a young
block under protection. The block should accumulate erase cycles. If the young
block happens to be written with many cold data, then it stops contributing erase
cycles. The young block attracts no attention from wear leveling because its

10 Efficient Wear Leveling in NAND Flash Memory 353

protection cannot expire. This dilemma highlights the special cases that must be
carefully considered by block protection.

10.3.1.2 The Dual-Pool Algorithm: A Basic Form

The dual-pool algorithm, as implied by its name, uses a hot pool and a cold pool.
A pool is merely a logical aggregation of blocks. Initially, a block arbitrarily joins
one of these two pools. Note that the dual-pool algorithm is not to write cold data to
blocks in the cold pool. Instead, it migrates blocks storing cold data to the cold pool.

The dual-pool algorithm uses priority queues to sort blocks in terms of different
wearing information. The following section defines some symbols for ease of
presentation: Let C and H denote the cold pool and the hot pool, respectively. Each
element in C and H is a block. Let U be a collection of all blocks. C ∩ H =∅ and
C ∪ H = U are invariants. Let Qw

P be a priority queue that prioritizes all blocks in
pool P in terms of wearing information w. The larger the value of w is, the higher
the priority is. Each element Qw

P in w corresponds to a block. For block b, let
function ec(b) present its erase-cycle count. In priority queue Qw

P , M Qw
P

� �
is the

element with the highest priority and m Qw
P

� �
is the element with the lowest priority.

M Qw
P

� �
and m Qw

P

� �
are referred to as the largest queue head and the smallest queue

head, respectively. For example, m Qec
C

� �
denotes the block with the smallest

erase-cycle count of all the blocks in the cold pool.
The dual-pool algorithm adopts a user-configurable parameter TH to direct how

even the wear of blocks is to be pursued. The smaller the value of TH is, the more
aggressive the wear-leveling activities would be. Table 10.3 summarizes the
symbol definitions, and the following section defines cold-data migration (CDM for
short): Cold-Data Migration (CDM): Upon the completion of block erase, check
the following condition:

ecðMðQec
H ÞÞ− ecðmðQec

C ÞÞ>TH.

Table 10.3 A summary of symbols used in the dual-pool algorithm

Symbol Definition

C The cold pool, a collection of blocks
H The hot pool, a collection of blocks
U A collection of all blocks. C ∩ H =∅ and C ∪ H = U

Qw
P A priority queue that sorts blocks in pool P in terms of information w

M Qw
P

� �
The element with the largest priority in Qw

P

m Qw
P

� �
The element with the smallest priority in Qw

P

ec(b) The erase-cycle count of block b

rec(b) The recent erase-cycle count of block b

TH The threshold parameter for wear leveling

354 Y.-H. Chang and L.-P. Chang

If this condition is true, then the largest erase-cycle count of the blocks in the hot
pool is larger than the smallest count of the blocks in the cold pool by TH. Perform
the following procedure:

Step 1. Copy data from m Qec
C

� �
to M Qec

H

� �

Step 2. Erase m Qec
C

� �
; ec(m Qec

C

� �
) ← ec(m Qec

C

� �
) + 1

Step 3. C ← C ∪ {M Qec
H

� �
}; H ← H \{M Qec

H

� �
}

Step 4. H ← H ∪ {m Qec
C

� �
}; C ← C\{m Qec

C

� �
}

Because cold-data migration checks the condition immediately after a block is
erased, block ec(M Qec

H

� �
) must be the most-recently erased block if the condition is

true. Whenever ec(M Qec
H

� �
) − ec(m Qec

C

� �
) is found larger than TH, it is deduced

that, on the one hand, block m Qec
C

� �
has not been erased for a long time because of

the storing of many cold data. On the other hand, garbage collection had erased
block M Qec

H

� �
many times, because this block infrequently stores cold data. Next,

migrate cold data from block m Qec
C

� �
to block M Qec

H

� �
. Step 1 moves data from

block m Qec
C

� �
to block M Qec

H

� �
to complete cold-data migration. After this move,

block M Qec
H

� �
can stop being erased by garbage collection. Step 2 erases block m

Qec
C

� �
and increases the block’s erase-cycle count. This erase does not affect the

pool membership of block m Qec
C

� �
.

Step 3 moves block M Qec
H

� �
to the cold pool, and Step 4 moves block m Qec

C

� �
to

the hot pool. These steps swap the two blocks’ pool memberships, and enable block
protection. When the young block (previously m Qec

C

� �
) joins the hot pool, it may be

younger than many blocks in the hot pool. That is because most of the blocks in the
hot pool are old. The young block is then protected, because cold-data migration is
not interested in a young block in the hot pool. Analogously, when the old block
(previously block M Qec

H

� �
) migrates to the cold pool, it may be older than many

blocks in the cold pool. The old block in the cold pool is then protected, as
cold-data migration is concerned with the youngest block in the cold pool.

The young block in the hot pool (previously m Qec
C

� �
) starts accumulating erase

cycles. When the block is worn into the oldest in the hot pool, it will again
participate in cold-data migration. On the other hand, the old block in the cold pool
(previously M Qec

C

� �
) now stops being erased. When the block becomes the

youngest in the cold pool, it is again ready for cold-data migration.

10.3.1.3 Pool Adjustment

The cold pool collects blocks that store cold data. However, the cold pool may also
contain blocks that have no cold data. This may be because all the blocks’ pool
memberships were arbitrarily decided in the very beginning, as all blocks’
erase-cycle counts are initially zero. Another possible cause is that applications in

10 Efficient Wear Leveling in NAND Flash Memory 355

the host may change their data-access behaviors. These changes can turn a piece of
cold data into hot data.

Garbage collection selects erase victims based on how many invalid data a block
has, regardless the block’s pool membership. If a block has no cold data, it will
continue participating in garbage collection even if it is in the cold pool. In this
case, the block’s erase-cycle count increases without interruption from wear
leveling. This is because cold-data migration always involves the youngest block in
the cold pool. Similarly, if a block in the hot pool has many cold data, garbage
collection avoids erasing this block. The block cannot be erased into the oldest
block in the hot pool, and cannot attract attention from wear leveling.

To deal with this problem, the dual-pool algorithm introduces two operations,
cold-pool adjustment (CPA for short) and hot-pool adjustment (HPA for short).
These two operations identify and correct any improper pool membership in the
blocks. Specifically, blocks’ pool membership is adjusted according to how fre-
quently they have been erased since their last involvement in cold-data migration.
Hot-pool adjustment removes the blocks that do not accumulate erase cycles from
the hot pool. Cold-pool adjustment removes the blocks that actively contribute
erase cycles from the cold pool. To enable these operations to function, new
block-wearing information (i.e., the recent erase-cycle count) is introduced.
A block’s recent erase-cycle count is initially zero. It increases as along with the
erase-cycle count, but reset to zero whenever the block is involved in cold-data
migration. Thus, cold-data migration includes a new step:

(CDM) Step 5. recðMðQec
H ÞÞ←0; recðmðQec

C ÞÞ←0

The hot-pool adjustment and cold-pool adjustment operations also require new
priority queues and queue heads, which are summarized in Table 10.4. Let function
rec() return the recent erase-cycle count of a block. The hot-pool adjustment and
cold-pool adjustment are then as follows:

Cold-Pool Adjustment (CPA): Upon completion of block erase, check the fol-
lowing condition:

recðMðQrec
C ÞÞ− recðmðQrec

H ÞÞ> TH.

Table 10.4 A summary of the five queue heads used by the dual-pool algorithm

Queue heads Belongs to Used in

M Qec
H

� �
The hot pool Cold-data migration and hot-pool adjustment

m Qec
H

� �
The hot pool Hot-pool adjustment

m Qrec
H

� �
The hot pool Cold-pool adjustment

m Qec
C

� �
The cold pool Cold-data migration

M Qrec
C

� �
The cold pool Cold-pool adjustment

356 Y.-H. Chang and L.-P. Chang

If it holds, then the largest recent erase-cycle count of the blocks in the cold pool
is larger than the smallest count of the blocks in the hot pool by TH. Perform the
following steps:

Step 1. H←H ∪ fMðQrec
C Þg ; C←C\fMðQrec

C Þg
If a block has a large recent erase-cycle count, then the block has contributed

many erase cycles since the last time it was involved in cold-data migration.
Cold-pool adjustment evicts such a block from the cold pool. This is because the
last attempt to stop the block from being erased was not successful, or the block did
not have cold data in the very beginning.

Hot-Pool Adjustment (HPA): Upon completion of block erase, check the fol-
lowing condition:

ecðMðQec
H ÞÞ− ecðmðQec

H ÞÞ>2× TH.

If this condition holds, then in the hot pool the smallest erase-cycle count is
smaller than the largest count by 2 × TH. Perform the following steps:

Step 1. C←C ∪ mðQec
H Þ

� �
;H←H\ mðQec

H Þ
� �

Whether or not a block should be written with cold data for wear leveling
depends on the size of its erase-cycle count. If a block in the hot pool accumulates
erase cycles more slowly than other blocks, then the block contains cold data, and
the hot-pool adjustment operations removes this block from the hot pool. Readers
may question that why 2 × TH is in this condition. It is to prevent hot-pool
adjustment from conflicting with cold-data migration: when cold-data migration
moves a young block from the cold pool to the hot pool, the young block’s
erase-cycle count is already smaller than the oldest block in the hot pool by TH (see
the condition for cold-data migration). To prevent hot-pool adjustment from
immediately bouncing the young block back to the cold pool, the condition of
hot-pool adjustment allows additional TH cycles (2 × TH in total).

In the worst case, every time after cold-data migration writes cold data to an old
block and moves this block to the cold pool, the cold data become hot. Cold-pool
adjustment can identify this old block and move it to the hot pool, after the block
contributes TH more cycles of erase operations. Right after this, cold-data migration
makes another attempt to write cold data to the block. So in this worst case, the
dual-pool algorithm guarantees to involve this old block every other TH erase
operations to this block.

10.3.1.4 Algorithm Demonstration

This section presents an example demonstrating how the dual-pool algorithm
accomplishes wear leveling.

In Fig. 10.3, there are six flash-memory blocks, labeled from PBA 0 to PBA 5.
The threshold parameter TH is 16. In the illustration, each block corresponds to two

10 Efficient Wear Leveling in NAND Flash Memory 357

Fig. 10.3 A scenario of the dual-pool algorithm. There are six flash-memory blocks, labeled from
PBA 0 to PBA 5. Each block is associated with an erase-cycle count (ec), a recent erase-cycle
count (rec), and the attribute of its data (hot or cold)

358 Y.-H. Chang and L.-P. Chang

boxes, which indicate the block’s erase-cycle count (ec) and recent erase-cycle
count (rec). If a block currently stores cold data, then “C” appears under the block’s
boxes, and “H” otherwise. The example includes 11 steps. At each step, a block’s
boxes are shaded in gray if the block has been erased by garbage collection since
the last step. A block’s boxes are indicated black if it is currently involved in wear
leveling. The following discussion refers to a block at PBA x as Block x, where
x can be from 0 to 5.

In Step 1, the first three blocks join the hot pool and the rest join the cold pool.
Step 2 shows that Blocks 0, 1, and 4 start accumulating erase cycles because they
store no cold data. At this point, the largest erase-cycle count in the hot pool and the
smallest erase-cycle count in the cold pool are 17 and 0, respectively. As this
difference is greater than TH = 16, cold-data migration is triggered. Step 3 shows
that the cold data in Block 3 are moved to Block 0, and the pool memberships are
switched for both blocks. Notice that a block’s wearing information sticks together
with that block during cold-data migration. In Step 4, garbage collection erases
Blocks 1, 3, and 4 because they had no cold data since Step 3.

Block 0, an old block previously involved in cold-data migration, is written with
cold data and stops accumulating erase cycles since Step 3. Even though Block 0 is
the oldest among all the blocks in the cold pool, it is now protected against
cold-data migration because it is not youngest in the cold pool. In Step 5, cold-data
migration is triggered by Blocks 1 and 5, and cold data are migrated from Blocks 5
to 1. In Step 6, Blocks 3–5 contribute some more erase cycles since Step 5. Note
that after two cold-data migrations, Blocks 0 and 1, which were previously the
contributors of erase cycles in Step 2, now store cold data in the cold pool and are
no longer being erased.

In Step 6, Block 4 in the cold pool stores no cold data. In Step 7, it is evicted
from the cold pool by cold-pool adjustment, because the difference between Block
4 s recent erase-cycle count and the smallest recent erase-cycle count in the hot pool
(i.e., that of Block 2) is greater than TH = 16. In Step 8, Blocks 3–5 keep accu-
mulating erase cycles, and have done so since Step 5. In Step 9, hot-pool adjust-
ment is triggered because the difference between the erase-cycle counts of Blocks 2
and 3 is greater than 2 × TH = 32. Hot-pool adjustment moves Block 2 to the cold
pool. Right after Step 9, cold-data migration for Blocks 2 and 3 occurs in Step 10.
In Step 11, garbage collection erases some more blocks. At this point, the wear of
all blocks is considered even, with respect to TH = 16.

10.3.2 Case Study: An SSD Implementation of the
Dual-Pool Algorithm

10.3.2.1 The Firmware and Disk Emulation

The SSD platform in this study is the FreeScale M68KIT912UF32 development kit
[15, 25]. This platform integrates an MC9S12UF32 SoC (referred to as the SSD

10 Efficient Wear Leveling in NAND Flash Memory 359

controller hereafter), various flash-memory interfaces, and a USB interface. The
controller contains a 16-bit MCU M68HCS12, 3 KB of RAM, 32 KB of
EEPROM, a USB 2.0 interface controller, various flash-memory host controllers,
and a DMA engine with an 1.5 KB buffer. The MCU is normally rated at 33 MHz.
The NAND flash considered in this study is a 128 MB SmartMedia card (abbre-
viated as SM card hereafter). SM cards have the same appearance as bare
NAND-flash chips in terms of physical characteristics. The block size and the page
size of the SM card are 16 KB and 512 bytes, respectively, and it has a block
endurance of 100 K erase cycles. Readers may notice that its geometry is finer than
that of mainstream NAND flash memory [37]. However, the design and imple-
mentation of the proposed algorithm is independent of the block size and the page
size.

An SSD presents itself to the host system as a logical disk,2 so ordinary
disk-based file systems (such as FAT and NTFS) are compatible with SSDs. The
flash-translation layer (FTL), which is a part of SSD firmware, performs disk
emulation [21, 22, 26, 44]. Basically, FTL implements a mapping scheme, an
update policy, and a garbage-collection policy. For ease of presentation, this section
introduces some necessary terms and assumptions: Let a disk be addressed in terms
of disk sectors, each of which is as large as a flash-memory page. A physical block
refers to a flash-memory block. Let the entire disk space be partitioned in terms of
logical blocks, each of which is as large as a physical block. LBAs and PBAs are
abbreviations of logical-block addresses and physical-block addresses, respectively.
Let a physical segment be a group of contiguous physical blocks, and a logical
segment be a group of contiguous logical blocks.

The FTL needs logical-to-physical translation because data in flash memory are
updated out of place. However, a solid-state-disk controller cannot afford the space
overhead of the RAM-resident data structures for this translation. To save RAM-
space requirements, the FTL adopts a two-level mapping scheme. The fist level
maps eight logical segments to eight physical segments. This first-level mapping
has a one-to-one correspondence. The first level uses a RAM-resident segment
translation table (“segment L2P table” for short). This table is indexed by
logical-segment numbers, and each table entry represents a physical-segment
number. As the first level maps a logical segment to a physical segment, the second
level uses a RAM-resident block translation table (“block L2P table” for short) to
map the 1,000 logical blocks in the logical block to the 1,024 physical blocks in the
physical segment. This table is indexed by logical-block addresses and each table
entry represents a physical-block address. Each physical segment has
1, 024− 1, 000= 24 unmapped physical blocks, which are spare blocks for garbage
collection and bad-block retirement. Thus, the SSD has a total volume of 8 *
1,000 = 8,000 logical blocks, while the SM card has 8 * 1,024 = 8, 192 physical
blocks.

2A logical disk is also referred to as a logical unit (i.e., LUN) [30].

360 Y.-H. Chang and L.-P. Chang

The FTL sequentially writes all sectors of a logical block to the physical block
mapped to this logical block, because the smallest granularity for address transla-
tion is one block. To translate an LBA into a PBA, first divide the LBA by 1,000.
The quotient and the remainder are the logical-segment number and the
logical-block offset, respectively. Looking up the segment L2P table and the block
L2P table generates a physical segment number and a physical-block offset,
respectively. The final PBA is calculated by adding the physical-block offset to the
physical-segment number multiplied by 1,024.

For this FTL, there are two types of sector write operations: a write no larger
than 4 KB (i.e., eight 512-byte disk sectors) and a write larger than 4 KB. A write
larger than 4 KB effectively rewrites a logical block with the necessary copy-back
operations: Unchanged sector data are copied from the logical block encompassing
the written sectors, and combined with the newly written sector data. A spare block
is allocated from the physical segment to which the logical block is mapped, and the
combined data are then written to the spare block. The block L2P table is then
revised to re-map the logical block to the spare block. The old physical block of the
invalidated logical block is erased and converted to a spare block. Spare blocks are
allocated in a FIFO fashion for fair use.

Writes no larger than 4 KB are handled in a different way. In this case, a separate
spare block collects the newly written data. This spare block is referred to as a log
block, as it can be seen as a log of small writes. Whenever the log block is full, the
logical blocks modified by the writes recorded in the log block must be rewritten
with copy-back operations to apply the changes. In this way, rewriting logical
blocks is delayed until the log block is full. After rewriting all the involved logical
blocks, the physical blocks previously mapped to the logical blocks and the spare
blocks can be erased and converted to spare blocks. Note that the 4 KB threshold is
an empirical setting, and this study provides no further discussion on it. erase and
data copy activities for free-space reclaiming are referred to as garbage collection.

Figure 10.4 depicts a scenario of the proposed disk-emulation algorithm
involving three logical blocks and five physical blocks. Let each physical block
have four pages, and let each page be as large as a disk sector. A write is considered
large if it is larger than two sectors. The left upper corner shows the initial state. Let
a write be denoted by sector numbers enclosed within a pair of braces. Three small
writes {0}, {0}, and {0, 1} arrive in turn. As they are small, they are appended to
the free space in the log block at PBA 1 in Step 1. At this point, the log block is full.
Step 2 then conducts copy-back operations to gather valid data from blocks at PBAs
0 and 1, and then rewrites the valid data to the block at PBA 3. Step 3 erases the
blocks at PBAs 0 and 1. Step 4 revised the block L2P table. In Step 5, the fourth
write {5, 6, 7} arrives. This write is large, and therefore requires that a logical block
be rewritten. However, the unchanged data of Sector 4 are first copied from the
block at PBA 4 to the log block at PBA 0. Step 6 then appends {5, 6, 7} to the log
block, and Step 7 erases the block of invalid data. Step 8 then revises the block L2P
table. Note that disk emulation is traditionally considered to be an issue indepen-
dent of wear leveling. Refer to [19, 21, 22, 44] for further discussion on
disk-emulation algorithms.

10 Efficient Wear Leveling in NAND Flash Memory 361

The segment L2P table is small enough to be kept in RAM because it has only
eight entries. There are eight block L2P tables, one for each pair of a logical
segment and a physical segment. As mentioned above, since RAM space is very
limited, only two block L2P tables can be cached in RAM. Whenever a block L2P
table is needed but is absent from RAM, the least-recently used table in the cache is
discarded. The needed table is then constructed by scanning all the physical blocks
of the corresponding physical segment. This scanning involves only the spare areas
of every physical block’s first page, which contain the mapping information.3

10.3.2.2 Block-Wearing Information and Priority Queues

The dual-pool algorithm keeps track of every block’s wearing information. This
includes an erase-cycle count, a recent erase-cycle count, and pool member-
ship. Ideally, this information should be kept in RAM for efficient access. However,

Fig. 10.4 A scenario of our disk-emulation algorithm

3The scanning is read-only and does not affect wear leveling. Previous research has developed
excellent methods for reducing the time overhead of this scanning. Refer to [19, 21] for details.

362 Y.-H. Chang and L.-P. Chang

this is not feasible because the SSD controller has only about 1 KB of RAM as
working space.

One option is to write a block’s wearing information in its spare areas [26]. In
this approach, a block’s wearing information must be committed to one of its spare
areas immediately after the block is erased. Later on, when user data are written,
error-correcting codes and mapping information are also written to these spare
areas. However, this approach can overwrite a spare area multiple times. This is
prohibited by many new NAND flash [36, 37]. One alternative is to exclusively
write the wearing information to a spare area, but this spoils the existing data layout
in spare areas for disk emulation.

Our approach is to reserve one physical block for writing the wearing infor-
mation. An on-flash block-wearing information table (“BWI table” for short) keeps
the blocks’ wearing information. A new BWI-table can be written to an arbitrarily
allocated spare block, which means that the BWI table is subject to wear leveling.
Since the entire flash memory is divided into eight physical segments, each segment
has its own BWI table. A BWI table contains 1,024 entries, one for each physical
block. Each table entry has 4 bytes, including a 18-bit erase-cycle count, a 13-bit
recent erase-cycle count, and 1 bit for pool membership. Note that 13 bits are large
enough for a recent erase-cycle count because it is reset upon cold-data migration.
A BWI table is 1,024 * 4 = 4 KB large, so one 16-KB physical block can
accommodate four revisions of a BWI table. If the block is full, another spare block
is allocated for writing the BWI table, and the prior block is discarded for erase.

The on-flash BWI table can be entirely rewritten every time a block’s wearing
information changes. However, this method considerably increases write traffic to
flash memory. Instead, the PBAs of the recently erased blocks are temporarily
logged in a RAM buffer. In the current design, this buffer, named the erase-history
table (“EH table” for short), has eight entries. If the EH table is full, a new version
of the BWI table is written to the block reserved for the BWI table to apply the
changes. After this, the in-RAM EH table is emptied.

Blocks are sorted in terms of different wearing information, and the dual-pool
algorithm must check queue heads every time it is invoked. To scan the on-flash
BWI table to find the queue heads is very slow. To reduce the frequency of
BWI-table scanning, a small number of queue-head elements can be fetched for
later use. For example, for fast access toM Qec

H

� �
, after the BWI table is scanned, the

wearing information of the two blocks with the two largest erase-cycles counts in
the hot pool can be stored in RAM. An in-RAM queue-head table (“QH table” for
short) is created for this purpose. The size of the QH table is fixed, and each of the
five types of queue heads (shown in Table 10.4) is allocated to two table entries.
A QH-table entry consists of a 2-byte PBA and 4-byte block-wearing information.
Cold-data migration, hot-pool adjustment, and cold-pool adjustment check the QH
table for queue heads. Wear leveling consumes QH-table entries and modifies the
wearing information in the entries. A modified table entry is treated as an EH-table
entry. The following section discusses when and how a QH table can be refreshed.

10 Efficient Wear Leveling in NAND Flash Memory 363

10.3.2.3 Segment Check-In/Check-Out

This section shows how the proposed wear-leveling data structures can be inte-
grated into the segmented management scheme for disk emulation.

Disk emulation uses a two-level mapping scheme, as previously mentioned in
Sect. 10.3.2.1. The segment L2P table is indexed by logical-segment numbers, has
only eight entries, and is always stored in RAM. Second-level mapping manages
the physical segments as if they were small pieces of flash memory. Each segment
has an in-RAM L2P table, which maps 1,000 logical blocks to 1,024 physical
blocks. Only two segments can have their block L2P tables cached in RAM.
A segment is cached if its block L2P table is in RAM.

Each of the two cached segment uses an in-RAM EH table and an in-RAM QH
table. Whenever a logical block is accessed, the corresponding physical segment is
located by the segment L2P table. The dual-pool algorithm then checks if the
segment’s block L2P table, the EH table, and the QH table are in RAM. If they are
absent, the following procedure, named segment check-in, is performed to bring
them in: The in-RAM block L2P table is constructed by scanning the spare areas of
each block’s first page containing the mapping information. During scanning, if a
block is found storing the on-flash BWI table, then the most up-to-date BWI table in
the block is scanned to create the in-RAM QH table. By the end of this segment
check-in procedure, the QH table and the block L2P table are ready. The in-RAM
EH table is emptied, and the segment is all set for data access.

As the EH table continues to record the PBAs of erased blocks, sooner or later it
will become be full. In this case, a new version of the on-flash BWI table should be
created to merge the wearing information in the current on-flash BWI table, the
in-RAM EH table, and the in-RAM QH table. The QH table is involved because
QH-table entries could have been switched to EH-table entries. This merging pro-
cedure, called the BWI-table merge, is as follows: First the block storing the current
BWI table is located. The dual-pool algorithm creates a new BWI table in the same
block right after the current BWI table. If there is no free space left, a new spare
block is allocated. The four flash-memory pages storing the current BWI table are
then copied to the new location. During copying a BWI-table page, the DMA engine
first loads one of the four pages from flash memory into the DMA buffer, and then
the dual-pool algorithm performs a three-way synchronization that involves the
wearing information from the DMA buffer, the QH table, and the EH table. By the
end of this merging procedure, the QH table is refreshed to contain new queue-head
physical block addresses and their wearing information, and the EH table is emptied.

A segment’s in-RAM data structures can also be evicted from RAM to
accommodate those of a newly accessed segment. Before a segment vacates RAM
space, its EH table and QH table must be merged with the on-flash BWI table. This
process is called segment check-out. To check out a segment, the BWI-table merge
procedure is first performed, and the in-RAM structures of the segment can then be
discarded.

Figure 10.5 shows how by wear leveling, disk emulation, and segment opera-
tions use the proposed data structures. Step 1 shows that when a segment is checked

364 Y.-H. Chang and L.-P. Chang

in, the spare areas of the blocks in that segment are scanned to build the in-RAM
block L2P table. This scanning process also locates the block storing the on-flash
BWI table. Step 2 refreshes the in-RAM QH table of the segment with information
in the on-flash BWI table. Step 3 shows that QH-table entries are consumed by wear
leveling. If any block is erased by garbage collection, then a record of the erase is
appended to the in-RAM EH table, as shown in Step 4. When the segment is
checked out, Step 5 merges the information in the in-RAM QH table, in-RAM EH
table, and on-flash old BWI table and writes it to a new BWI table on flash.

10.4 Conclusion

This work addresses a key endurance issue in the deployment of flash memory in
various system designs. Unlike the wear leveling algorithms proposed in the pre-
vious work, two efficient wear leveling algorithms (i.e., the evenness-aware algo-
rithm and dual-pool algorithm) are presented to solve the problems of the existing
algorithms with the considerations of the limited computing power and memory
space in flash storage devices. The evenness-aware algorithm proactively moves

CDM HPA CPA

M(Q) m(Q) m(Q)
Queue-head table

(QH table)

M(Q) m(Q)
Erasure-history table

(EH table)

Wear-leveling algorithm Disk-emulation algorithm

A segment of blocksBlock storing
the BWI table

The block storing the BWI table is
located on segment check-in

Queue-head table is refreshed
by using the BWI table

Wear leveling consumes
QH-table entries

Garbage collection adds
new records to the EH table

On segment check-out, the EH
table, the QH table, and the

old BWI table are merged as a
new BWI table

Block storing
the BWI table

Fi
rm

w
ar

e
R

A
M

Fl
as

h

EC EC ECREC REC

C CC HH

1

5

2

4

3

Fig. 10.5 Relationship between the in-RAM/on-flash data structures and how they are used by
wear leveling, disk emulation, and segment operations

10 Efficient Wear Leveling in NAND Flash Memory 365

static or infrequently updated data with an efficient implementation and limited
memory-space requirements so as to spread out the wear-leveling actions over the
entire physical address space. It proposes an adjustable house-keeping data struc-
ture and an efficient wear leveling implementation based on cyclic queue scanning.
Its goal is to improve the endurance of flash memory with only limited increases in
overhead and without extensive modifications of popular implementation designs.
The dual-pool algorithm is to protect a flash-memory block from being worn out if
the block is already excessively erased. This goal is accomplished by moving rarely
updated data to excessively erased blocks. Because the micro-controllers of flash
storage devices are subject to very tight resource budgets, keeping track of wear
levels for a large number of blocks is a very challenging task. The dual-pool
algorithm keeps only the most frequently accessed data in RAM, while the rest is
written to flash memory.

References

1. A. Ban, Flash file system. US Patent 5,404,485, in M-Systems, Apr 1995
2. A. Ban, Wear leveling of static areas in flash memory. US Patent 6732221 (2004)
3. A. Ban, R. Hasbaron, Wear leveling of static areas in flash memory, US Patent 6,732,221, in

M-systems, May 2004
4. A. Ben-Aroya, S. Toledo, Competitive analysis of flash-memory algorithms, in Proceedings

of the 14th Conference on Annual European Symposium (2006)
5. L.-P. Chang, On efficient wear-leveling for large-scale flash-memory storage systems, in 22nd

ACM Symposium on Applied Computing (ACM SAC), Mar 2007
6. L.-P. Chang, T.-W. Kuo, Efficient management for large-scale flash-memory stroage systems

with resource conservation. ACM Trans. Storage 1(4), 381–418 (2005)
7. L.-P. Chang, T.-W. Kuo, S.-W. Lo, Real-time garbage collection for flash-memory storage

systems of real-time embedded systems. ACM Trans. Embed. Comput. Syst. 3(4), 837–863
(2004)

8. Y.-H. Chang, J.-W. Hsieh, T.-W. Kuo, Endurance enhancement of flash-memory storage
systems: an efficient static wear leveling design, in DAC’07: Proceedings of the 44th Annual
Conference on Design Automation New York, NY, USA, (ACM, 2007), pp. 212–217

9. M.L. Chiang, P.C.H. Lee, R. Chuan Chang, Using data clustering to improve cleaning
performance for flash memory. Softw. Pract. Exp. 29(3), 267–290 (1999)

10. R.J. Defouw, T. Nguyen, Method and system for improving usable life of memory devices
using vector processing. US Patent 7139863 (2006)

11. DRAM market-share games shifting from a knockout to a marathon; 4 × nm process and
multi-bit/cell as fundamental criteria to judge NAND Flash production competitiveness.
Technical report, DRAMeXchange, Apr 2008

12. R.A.R.P. Estakhri, M. Assar, B. Iman, Method of and architecture for controlling system data
with automatic wear leveling in a semiconductor non-volatile mass storage memory. US
Patent 5835935 (1998)

13. Flash Cache Memory Puts Robson in the Middle. Intel
14. Flash-memory translation layer for NAND flash (NFTL). M-Systems (1998)
15. Freescale Semiconductor. USB Thumb Drive reference design DRM061 (2004)
16. FTL Logger Exchanging Data with FTL Systems. Technical Report, Intel
17. C.J. Gonzalez, K.M. Conley, Automated wear leveling in non-volatile storage systems. US

Patent 7120729 (2006)

366 Y.-H. Chang and L.-P. Chang

18. Increasing Flash Solid State Disk Reliability. Technical report, SiliconSystems, Apr 2005
19. J.-U. Kang, H. Jo, J.-S. Kim, J. Lee, A superblock-based flash translation layer for NAND

flash memory, in EMSOFT ’06: Proceedings of the 6th ACM and IEEE International
Conference on Embedded Software, New York, NY, USA (ACM, 2006), pp. 161–170

21. H.-J. Kim, S.-G. Lee, An effective flash memory manager for reliable flash memory space
management. IEICE Trans. Inf. Syst. 85(6), 950–964 (2002)

22. J. Kim, J.-M. Kim, S. Noh, S.-L. Min, Y. Cho, A space-efficient flash translation layer for
compact flash systems. IEEE Trans. Consum. Electron. 48(2), 366–375 (2002)

23. S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, H.-J. Song, A log buffer-based flash
translation layer using fully-associative sector translation. Trans. Embed. Comput. Syst. 6(3),
18 (2007)

24. Micron Technology, Wear-Leveling Techniques in NAND Flash Devices (2008)
25. Microsoft, Flash-memory abstraction layer (FAL), in Windows Embedded CE 6.0 Source

Code (2007)
26. Motorola, Inc., MC9S12UF32 System on a Chip Guide V01.04 (2002)
27. M-Systems, Flash-Memory Translation Layer for NAND Flash (NFTL) (1998)
28. M-Systems. TrufFFS Wear-Leveling Mechanism, Technical Note TN-DOC-017 (2002)
29. NAND08Gx3C2A 8Gbit Multi-level NAND Flash Memory. STMicroelectronics (2005)
30. Numonyx, Wear Leveling in NAND Flash Memories (2008)
31. Open NAND Flash Interface (ONFi), Open NAND Flash Interface Specification Revision 2.1

(2009)
20. K. Perdue, Wear Leveling (2008)
32. C. Ruemmler, J. Wilkes, UNIX disk access patterns, in Usenix Conference (Winter 1993),

pp. 405–420
33. D. Roselli, J.R. Lorch, T.E. Anderson, A comparison of file system workloads, in Proceedings

of the USENIX Annual Technical Conference, pp. 41–54
34. M. Rosenblum, J.K. Ousterhout, The design and implementation of a log-structured file

system. ACM Trans. Comput. Syst. 10(1) (1992)
35. Samsung Electronics, K9F2808U0B 16 M * 8 Bit NAND Flash Memory Data Sheet (2001)
36. Samsung Electronics Company, K9GAG08U0 M 2G * 8 Bit MLC NAND Flash Memory

Data Sheet (Preliminary)
37. Samsung Electronics Company, K9NBG08U5 M 4 Gb * 8 Bit NAND Flash Memory Data

Sheet
38. SanDisk Corporation, Sandisk Flash Memory Cards Wear Leveling (2003)
39. D. Shmidt, Technical note: Trueffs wear-leveling mechanism (tn-doc-017). Technical report,

M-System (2002)
40. Software Concerns of Implementing a Resident Flash Disk. Intel
41. Spectek, NAND Flash Memory MLC (2003)
42. M. Spivak, S. Toledo, Storing a persistent transactional object heap on flash memory, in

LCTES ’06: Proceedings of the 2006 ACM SIGPLAN/SIGBED Conference on Language,
Compilers, and Tool Support for Embedded Systems (2006), pp. 22–33

43. STMicroelectronics, Wear Leveling in Single Level Cell NAND Flash Memories (2006)
44. S.P.D.-H.L.S.-W.L. Tae-Sun Chung, D.-J. Park, H.-J. Song, System software for flash

memory: a survey, in EUC ’06: Embedded and Ubiquitous Computing (2006), pp. 394–404
45. Understanding the Flash Translation Layer (FTL) Specification. Technical report, Intel

Corporation (Dec 1998), http://developer.intel.com/
46. W. Vogels, File system usage in windows nt 4.0. SIGOPS Oper. Syst. Rev. 33(5), 93–109

(1999)
47. D. Woodhouse, Jffs: the journalling flash file system, in Proceedings of Ottawa Linux

Symposium (2001)
48. M. Wu, W. Zwaenepoel, eNVy: a non-volatile main memory storage system, in Proceedings

of the Sixth International Conference on Architectural Support for Programming Languages
and Operating Systems (1994), pp. 86–97

10 Efficient Wear Leveling in NAND Flash Memory 367

http://developer.intel.com/

	10 Efficient Wear Leveling in NAND Flash Memory
	Abstract
	10.1 Introduction
	10.2 Evenness-Aware Algorithm
	10.2.1 Algorithm Design
	10.2.1.1 Overview
	10.2.1.2 Block Erasing Table
	10.2.1.3 SW Leveler

	10.2.2 Worst-Case Analysis
	10.2.2.1 Worst-Case Model for Extra Overheads
	10.2.2.2 Extra Block Erases
	10.2.2.3 Extra Live-Page Copyings

	10.3 Dual-Pool Algorithm
	10.3.1 Algorithm Design
	10.3.1.1 Algorithm Concept
	10.3.1.2 The Dual-Pool Algorithm: A Basic Form
	10.3.1.3 Pool Adjustment
	10.3.1.4 Algorithm Demonstration

	10.3.2 Case Study: An SSD Implementation of the Dual-Pool Algorithm
	10.3.2.1 The Firmware and Disk Emulation
	10.3.2.2 Block-Wearing Information and Priority Queues
	10.3.2.3 Segment Check-In/Check-Out

	10.4 Conclusion
	References

