Springer Series in Advanced Microelectronics 37

Rino Micheloni - Alessia Marelli
Kam Eshghi Editors

”tate Drives

Second Ed/t/on -

IdeSO“d

@ Springer

Springer Series in Advanced Microelectronics

Volume 37

Series editors

Kukjin Chun, Seoul, Korea, Republic of (South Korea)
Kiyoo Itoh, Tokyo, Japan

Thomas H. Lee, Stanford, CA, USA

Rino Micheloni, Vimercate (MB), Italy

Takayasu Sakurai, Tokyo, Japan

Willy M. C. Sansen, Leuven, Belgium

Doris Schmitt-Landsiedel, Miinchen, Germany

The Springer Series in Advanced Microelectronics provides systematic information
on all the topics relevant for the design, processing, and manufacturing of
microelectronic devices. The books, each prepared by leading researchers or
engineers in their fields, cover the basic and advanced aspects of topics such as
wafer processing, materials, device design, device technologies, circuit design,
VLSI implementation, and subsystem technology. The series forms a bridge
between physics and engineering and the volumes will appeal to practicing
engineers as well as research scientists.

More information about this series at http://www.springer.com/series/4076

http://www.springer.com/series/4076

Rino Micheloni - Alessia Marelli
Kam Eshghi
Editors

Inside Solid State Drives
(SSDs)

Second Edition

@ Springer

Editors

Rino Micheloni Kam Eshghi
Microsemi Corporation Lightbits Labs
Vimercate, MB San Jose, CA
Italy USA

Alessia Marelli
Microsemi Corporation
Vimercate, MB

Italy

ISSN 1437-0387 ISSN 2197-6643 (electronic)
Springer Series in Advanced Microelectronics

ISBN 978-981-13-0598-6 ISBN 978-981-13-0599-3 (eBook)

https://doi.org/10.1007/978-981-13-0599-3
Library of Congress Control Number: 2018942187

Ist edition: © Springer Science+Business Media Dordrecht 2013

2nd edition: © Springer Nature Singapore Pte Ltd. 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper
This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.

The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

To my wife Sabrina, and my daughters Laura
and Greta
Rino Micheloni

To my husband Michele and my daughter
Elena for their unconditional love
Alessia Marelli

To my wife Nazila, and my daughters Elika
and Vionna, who brighten up my life with

their love
Kam Eshghi

Foreword

Error Correcting Coding for Solid State Disk Data Storage

Wireless communication had existed for half a century when Information Theory
was expounded by Claude Shannon in the Bell System Technical Journal in 1948.
Error correcting coding followed in primitive formulations which brought early
digital communication systems only a short way toward the Shannon capacity limit.
Various generations of algebraic codes: Hamming, BCH and Reed Solomon made
gradual progress. With the advent of digital satellite transmission and soft-decision
decoding of convolutional codes, the gap between uncoded performance and the
Shannon limit was cut in half. Similar technology was used in second and third
generation (2 G and 3 G) mobile phone voice modems. Finally turbo codes and low
density parity check (LDPC) codes, which arrived about two decades ago, gradually
were shown to greatly decrease the distance to the capacity limit. These tech-
nologies have entered predominant use for data transmission in 3 G and 4 G mobile
modems.

High density data storage technology has followed a similar trajectory though
with a more contracted time span. BCH and Reed Solomon codes were the norm
until recently for hard disk drives (HDD). Recently though LDPC has taken root
here too with major improvements in data density and reading and writing con-
troller speeds. With the advent of the “smart phones” and tablets, solid state drives
(SSD) became ever more important for their low latency and low power operation.
For this use LDPC is becoming the norm as well. This book which covers all
aspects of SSD technology also provides coverage of the important topic of ECC.

La Jolla, CA, USA Andrew Viterbi

President
Viterbi Group, LLC

vii

Preface to the Second Edition

We started writing the first edition of Inside Solid State Drives (SSDs) back in 2011,
and the book was first published in 2013. At that time, SSDs were considered as the
“new” technology in the storage space, but not really a “shining star” as they are
seen today.

Over the past few years, we have collected a lot of feedback and questions about
our book. Moreover, both SSD and Flash technologies have significantly changed
along the way. Therefore, we thought it was the right time to refresh the content of
“Inside Solid State Drives.”

As editors, we have pushed all co-authors to refresh each chapter (Thank You
ALL!), in terms of both the content and the bibliography.

But this second edition is much more than that.

As mentioned, SSD technologies have significantly changed in the last five years
and we realized that there was the need to add three completely new chapters:
Chaps. 5, 7, and 9.

In 2013, Flash manufacturers were still fighting against the challenges of
shrinking the size of planar memory cells to keep up with the expectations of the
market in terms of $/bit. Now, Flash technology is 3D (i.e., vertically integrated)
and there is a new dimension to consider: the number of memory layers (100+ in
the near future). 3D NAND Flash appeared in the market at the end of 2015, but
there is still a plethora of alternatives around, based on different architectures and
memory technologies (floating gate and charge trap). Chapter 5 covers 3D Flash
array architectures with a lot of bird’s-eye views, to help the reader understand
better the new challenges that technologists and developers have to face.

In all SSDs, a Flash microcontroller sits between one or multiple hosts (i.e.,
CPUs) and NAND Flash memories, and on each side, there are a lot of challenges
that designers need to overcome. Moreover, a single controller can have multiple
cores, with all the complexity associated with developing a multi-threaded firm-
ware. Chapter 7 is about how to make simulations of such a complex system, by
providing insights into design trade-off and simulation strategies. As usual, simu-
lation speed and precision do not go hand in hand, so it is important to understand

ix

X Preface to the Second Edition

when to simulate what. Of course, being able to simulate SSD’s performances is
necessary to meet time-to-market, as well as price and quality targets.

Nowadays, SSDs are electronic systems much more complex than in the past,
especially because they have to manage a lot of 3D memories, by using several
algorithms (wear leveling, Error Correction Code, soft decoding, randomization,
read retry, etc.) at a very high speed (especially with PCIe/NVMe drives).

Chapter 9 is exactly designed to offer a comprehensive overview of the most
recent Flash management techniques (aka Flash Signal Processing). We are sure
that technologists, engineers, and scientist will appreciate the unbelievable level of
know-how required by the management of electrons and holes inside nonvolatile
memory cells.

We really placed our best effort in updating this book. Enjoy the reading!

Vimercate, Italy Rino Micheloni
Vimercate, Italy Alessia Marelli
San Jose, USA Kam Eshghi

Preface to the First Edition

Solid State Drives (SSDs) are gaining momentum in enterprise and client appli-
cations, replacing Hard Disk Drives (HDDs) by offering higher performance and
lower power. In the enterprise, developers of data center server and storage systems
have seen CPU performance growing exponentially for the past two decades, while
HDD performance has improved linearly for the same period. Additionally,
multi-core CPU designs and virtualization have increased randomness of storage
I/Os. These trends have shifted performance bottlenecks to enterprise storage sys-
tems. Business critical applications such as online transaction processing, financial
data processing and database mining are increasingly limited by storage
performance.

In client applications, small mobile platforms are leaving little room for batteries
while demanding long life out of them. Therefore, reducing both idle and active
power consumption has become critical. Additionally, client storage systems are in
need of significant performance improvement as well as supporting small robust
form factors. Ultimately, client systems are optimizing for best performance/power
ratio as well as performance/cost ratio.

SSDs promise to address both enterprise and client storage requirements by
drastically improving performance while at the same time reducing power.

Inside Solid State Drives walks the reader through all the main topics related to
SSDs.

A Solid State Drive is a very complex system: Chapter 1 contains an overview
of the main blocks, including hardware and software.

Chapters 1 and 2 cover different SSD implementations with host interfaces
ranging from SAS/SATA to PCI Express (PCle). SAS/SATA offer compatibility
with legacy storage infrastructure. However, for many applications, NAND Flash
read and write speeds are exceeding the capabilities of these legacy interconnects.
PCle SSDs overcome this bottleneck and deliver unparalleled performance while, at
the same time, reducing latency, power and cost by eliminating the traditional
storage infrastructure and attaching directly to a platform’s PCle I/O interconnect.

xi

Xii Preface to the First Edition

SSDs and HDDs can also be combined together in various forms, as explained in
Chapter 3 where “hybrid” storage is analyzed.

At the end of the day, a SSD is made up of NAND memories and a controller.
Therefore, to understand SSDs it is important to understand all the basics of NAND
Flash technology (Chapter 4) as well as design (Chapter 6).

When aiming to replace HDDs, particularly in enterprise applications, another
key consideration is reliability. SSDs are complex electronic systems prone to
wear-out and failure mechanisms mainly related to NAND. SSD reliability is
analyzed at different levels in Chapter 8. The basic physical mechanisms affecting
the traditional floating-gate cells and the possibility of anomalous erratic behavior is
discussed, as well as disturbs arising because several cells share the same control
lines. Solutions adopted to improve system reliability are presented, such as the use
of RAID and protection against power loss during write operations. Test methods
for endurance and retention verification are also described.

The physical constraints of Flash memory pose a lifetime limitation on these
storage devices. Multilevel Flash technologies (MLC) further degrade endurance, as
2 bits are stored in the same physical cell. As a result, NAND devices may
experience an unexpectedly short lifespan, especially when accessing these devices
at high frequencies. In order to enhance the endurance, wear leveling algorithms are
used to evenly erase blocks. Chapter 10 describes some existing wear leveling
algorithms, highlighting their pros and cons.

Despite all the possible Flash management algorithms run by the memory
controller, the residual BER needs to be properly managed in order to achieve a
reliable system. That is why Error Correction Codes (ECCs) are so important in
SSD design. Two main issues arise when an ECC is used inside an SSD. First, the
ECC engine should not limit the performance of the drive. This requirement is
addressed with a hardware ECC implementation that supports multiple devices
(channels) in parallel. Second, ECC must avoid erroneous corrections when the
error correction capability of the code is overcome; that is, it must have a high
detection property.

Nowadays, the most popular ECC approach in commercial SSDs is BCH, which
is covered in Chapter 11. As the NAND technology scales down, NAND raw BER
becomes worse and a more powerful ECC is needed. Chapter 12 covers LDPC
codes which are capable to get closer to the Shannon limit; in other words, they can
handle higher BER at the expense of a higher complexity.

SSD security is another key requirement because sensitive data must be pro-
tected against external attacks. Unfortunately, existing methods in the HDD world
cannot be applied to SSDs. These days encryption is the most popular method to
secure SSDs. Chapter 13 covers encryption basics and their application to solid
state drives.

We are in the midst of an exciting storage market transition, where Flash is
expanding its reach to replace HDDs with dramatically faster and more efficient
SSDs. After reading this book, the reader will get a comprehensive look at SSD

Preface to the First Edition xiii

applications and technologies. As you’ll see, a Solid State Drive is a complex mix
of digital and analog circuits working in concert with firmware and I/O software
protocols. We hope you enjoy this tour inside Solid State Drives.

Rino Micheloni
Alessia Marelli
Kam Eshghi

Acknowledgements

After completing a book on a complex system like a solid state drive, we really
wish to thank all the authors of the contributed chapters; their expertise in several
different fields made this book possible.

We are especially grateful to Luca Crippa for his tremendous dedication to this
project.

We also want to thank Springer for giving us the opportunity to refresh and
update this work with a second edition.

Last but not least, we express our gratitude to all the people who reviewed the
chapters.

Vimercate, Italy Rino Micheloni

Vimercate, Italy Alessia Marelli
San Jose, USA Kam Eshghi

XV

Contents

1 SSD Architecture and PCI Express Interface 1
Kam Eshghi and Rino Micheloni

2 SASand SATASSDs 29
S. Yasarapu

3 Hybrid Storage Systems, .. 43
Rino Micheloni, Luca Crippa and M. Picca

4 2D NAND Flash Technology 61
M. F. Beug

S 3D NAND Flash Memories 105
Rino Micheloni, Seiichi Aritome and Luca Crippa

6 NAND Flash Design 135

Luca Crippa and Rino Micheloni

7 Memory Driven Design Methodologies for Optimal SSD
Performance 181
L. Zuolo, C. Zambelli, Rino Micheloni and P. Olivo

8 SSD Reliability Assessment and Improvement 205
C. Zambelli and P. Olivo

9 Reliability Issues in Flash-Memory-Based Solid-State Drives:

Experimental Analysis, Mitigation, Recovery 233
Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo and Onur Mutlu

10 Efficient Wear Leveling in NAND Flash Memory 343
Yuan-Hao Chang and Li-Pin Chang

11 BCH Codes for Solid-State-Drives 369

Alessia Marelli and Rino Micheloni

Xvii

XViii Contents

12 Low-Density Parity-Check (LDPC) Codes 407
E. Paolini
13 Protecting SSD Data Against Attacks 455

Alessia Marelli and Rino Micheloni

Editors and Contributors

About the Editors

Dr. Rino Micheloni (rino.micheloni@ieee.org) is Vice President and Fellow at
Microsemi Corporation, where he currently runs the Flash Signal Processing Labs
in Milan, Italy, with special focus on NAND Flash, Error Correction Codes, and
Machine Learning. Prior to joining Microsemi, he was Fellow at PMC-Sierra,
working on NAND Flash characterization, LDPC, and NAND signal processing as
part of the team developing Flash controllers for PCle SSDs. Before that, he was
with Integrated Device Technology (IDT) as Lead Flash Technologist, driving the
architecture and design of the BCH engine in the world’s first PCle NVMe SSD
controller. Early in his career, he led NAND design teams at STMicroelectronics,
Hynix, and Infineon/Qimonda; during this time, he developed the industry’s first
MLC NOR device with embedded ECC technology and the industry’s first
MLC NAND with embedded BCH.

He is IEEE Senior Member, he has co-authored more than 70 publications, and
he holds 278 patents worldwide (including 131 US patents). He received the
STMicroelectronics Exceptional Patent Award in 2003 and 2004 and the
Infineon/Qimonda IP Award in 2007.

He has published the following books with Springer: Solid-State-Drives (SSDs)
Modeling (2017), 3D Flash Memories (2016), Inside Solid State Drives (2013),
Inside NAND Flash Memories (2010), Error Correction Codes for Non-Volatile
Memories (2008), Memories in Wireless Systems (2008), and VLSI-Design of
Non-Volatile Memories (2005).

Alessia Marelli is Technical Leader at Microsemi Corporation, where she takes
care of the Error Correction Code and Machine Learning algorithms. She joined
Microsemi from PMC-Sierra where she was part of the NAND characterization
team as senior engineer with a special focus on data analysis and Flash management
algorithms. Before that, she was with IDT as senior designer working on ECC
solutions for Flash controllers. Prior IDT, she worked in Qimonda/Infineon as
digital designer and in STMicroelectronics defining the Error Correction Code for

Xix

XX Editors and Contributors

the industry’s first MLC NAND with embedded BCH. She received her degree in
mathematical science from “Universita degli Studi di Milano—Bicocca,” Italy, in
2003 with a thesis about ECC applied to Flash memories.

She holds more than 20 patents regarding Error Correction Codes and is
co-author of Inside Solid State Drives (Springer, 2013), Inside NAND Flash
Memories (Springer, 2010), and Error Correction Codes for Non-Volatile Mem-
ories (Springer, 2008).

Kam Eshghi is Vice President of Strategy and Business Development at Lightbits
Labs, a stealth mode start-up developing innovative storage technologies for cloud
infrastructure. He joined Lightbits Labs from Dell EMC, where he was Vice
President of Strategic Alliances for the DSSD division. He developed and managed
start-up DSSD’s strategic partnership with EMC, ultimately leading to EMC’s
acquisition of DSSD.

Previously, as Sr. Director of Marketing and Business Development at Integrated
Device Technology (IDT) he build IDT’s NVMe controller business from start-up
to industry leader. That business was then sold to PMC and is today a successful
product line at Microsemi. Earlier in his career, he helped build product lines in
storage, compute and networking markets at HP, Intel, Crosslayer Networks, and
Synopsys.

He has a M.S. in electrical engineering and computer science and a Master of
Business Administration, from Massachusetts Institute of Technology and U.C.
Berkeley, respectively.

Contributors

Seiichi Aritome IPCC, Industrial Property Cooperation Center, Tokyo, Japan

M. F. Beug Physikalisch-Technische Bundesanstalt (PTB), Division 2 “Electric-
ity”, Braunschweig, Germany

Yu Cai Carnegie Mellon University, Pittsburgh, PA, USA

Li-Pin Chang Department of Computer Science, National Chiao-Tung University,
Hsinchu, Taiwan

Yuan-Hao Chang Academia Sinica, Institute of Information Science, Taipei,
Taiwan

Luca Crippa Storage Solutions, Microsemi Corporation, Vimercate, MB, Italy
Kam Eshghi Lightbits Labs, San Jose, CA, USA

Saugata Ghose Carnegie Mellon University, Pittsburgh, PA, USA

Erich F. Haratsch Seagate Technology, Fremont, CA, USA

Yixin Luo Carnegie Mellon University, Pittsburgh, PA, USA

Editors and Contributors XXi

Alessia Marelli Storage Solutions, Microsemi Corporation, Vimercate, MB, Italy
Rino Micheloni Storage Solutions, Microsemi Corporation, Vimercate, MB, Italy

Onur Mutlu ETH Ziirich, Zirich, Switzerland; Carnegie Mellon University,
Pittsburgh, PA, USA

P. Olivo Engineering Department, Universita di Ferrara, Ferrara, Italy
E. Paolini DEI, University of Bologna, Bologna, Italy
M. Picca STMicroelectronics, Cornaredo, Italy

S. Yasarapu SSD Product Marketing, Western Digital Corporation, Irvine, CA,
USA

C. Zambelli Engineering Department, Universita di Ferrara, Ferrara, Italy

L. Zuolo Microsemi Corporation, Vimercate, MB, Italy

Chapter 1)
SSD Architecture and PCI Express Skl
Interface

Kam Eshghi and Rino Micheloni

Abstract Flash-memory-based solid-state drives (SSDs) provide faster random
access and data transfer rates than electromechanical drives and today can often
serve as rotating-disk replacements, but the host interface to SSDs remains a per-
formance bottleneck. PCI Express (PCle)-based SSDs together with the standard
called NVMe (Non-Volatile Memory express) solves this interface bottleneck. This
chapter walks the reader through the SSD block diagram, from the NAND memory
to the Flash controller (including wear leveling, bad block management, and gar-
bage collection). PCle basics and different PCle SSD architectures are reviewed.
Finally, an overview on the standardization effort around PCI Express is presented.

1.1 Introduction

Creativity is just connecting things. When you ask creative people how they did something,
they feel a little guilty because they didn’t really do it, they just saw something. It seemed
obvious to them after a while.

—Steve Jobs

Solid-state drives are greatly enhancing enterprise and data center storage per-
formance. While electromechanical disk drives have continuously ramped in
capacity, the rotating-storage technology doesn’t provide the access-time or
transfer-rate performance required in demanding enterprise applications, including
on-line transaction processing, data mining, and cloud computing. Client applica-
tions are also in need of an alternative to electromechanical disk drives that can
deliver faster response times, use less power, and fit in smaller mobile form factors.

K. Eshghi (=)
Lightbits Labs, San Jose, CA, USA
e-mail: kamyar.eshghi @alum.mit.edu

R. Micheloni
Microsemi Corporation, Vimercate, MB, Italy
e-mail: rino.micheloni @ieee.org

© Springer Nature Singapore Pte Ltd. 2018 1
R. Micheloni et al. (eds.), Inside Solid State Drives (SSDs),

Springer Series in Advanced Microelectronics 37,

https://doi.org/10.1007/978-981-13-0599-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_1&domain=pdf

2 K. Eshghi and R. Micheloni

Flash-memory-based Solid-State Drives (SSDs) can offer much faster random
access to data and faster transfer rates. Moreover, SSD capacity is now at the point
that the drives can serve as rotating-disk replacements. But for many applications
the host interface to SSDs remains a bottleneck to performance. PCI Express
(PCIe)-based SSDs together with flash-optimized host control interface standards
address this interface bottleneck. SSDs with legacy storage interfaces are proving
useful, and PCle SSDs will further increase performance and improve respon-
siveness by connecting directly to the host processor.

1.2 SSD Architecture

Flash cards, USB keys and Solid State Drives are definitely the most known
examples of electronic systems based on non-volatile memories, especially of
NAND type (Sect. 1.4).

Several types of memory cards (CF, SD, MMC, ...) are available in the market
[1-3], with different user interfaces and form factors, depending on the needs of the
target application: e.g. mobile phones need very small-sized removable media like
pSD.

SSDs are the emerging application for NAND. A SSD is a complete, small
system where every component is soldered on a PCB and is independently pack-
aged: NANDs are usually available both in TSOP and BGA packages.

A basic block diagram of a Solid State Drive is shown in Fig. 1.1. In addition to
Flash memories and a microcontroller, there are usually other components. For
instance, an external DC-DC converter can be added in order to derive the internal

g Passives Flash|| Flash| | Flash|| Flash| | Flash|| Flash| | Flash|| Flash

J Flash|| Flash| | Flash|| Flash| | Flash|| Flash| | Flash|| Flash

Host <—>

=1 | Flash|| Flash| | Flash|| Flash| | Flash|| Flash| | Flash|| Flash

Host Interface
Microcontroller

O Passives | 1| ejash|| Flash| | Flash|| Flash| | Fiash|| Flash| | Flash|| Flashll

Flash Channel

Fig. 1.1 Block diagram of a SSD

1 SSD Architecture and PCI Express Interface 3

power supply, or a quartz can be used for a better clock precision. Of course,
reasonable filter capacitors are inserted for stabilizing the power supply. It is also
very common to have a temperature sensor for power management reasons. For
data caching, a fast DDR memory is frequently added to the board: during a write
access, the cache is used for storing data before transfer to the Flash. The benefit is
that data updating, e.g. in routing tables, is faster and does not wear out the Flash.

In order to improve performances, NANDs are organized in different Flash
channels, as shown in Fig. 1.1.

1.3 Non-volatile Memories

Semiconductor memories can be divided into two major categories: RAM (Random
Access Memories) and ROM (Read Only Memories): RAMs lose their content when
power supply is switched off, while ROMs virtually hold it forever. A third cate-
gory lies in between, i.e. NVM (Non-Volatile Memories), whose content can be
electrically altered but it is also preserved when the power supply is switched off.
NVMs are more flexible than the original ROM, whose content is defined during
manufacturing and cannot be changed by the user anymore.

NVM’s history began in the 1970s, with the introduction of the first EPROM
memory (Erasable Programmable Read Only Memory). In the early 1990s, Flash
memories came into the game and they started being used in portable products, like
mobile phones, USB keys, camcorders, and digital cameras. Solid State Drive
(SSD) is the latest killer application for Flash memories. It is worth mentioning that,
depending on how the memory cells are organized in the memory array, it is
possible to distinguish between NAND and NOR Flash memories. In this book we
focus on NAND memories as they are one of the basic elements of SSDs. NOR
architecture is described in great details in [4].

NAND Flash cell is based on the Floating Gate (FG) technology, whose cross
section is shown in Fig. 1.2. A MOS transistor is built with two overlapping gates
rather than a single one: the first one is completely surrounded by oxide, while the
second one is contacted to form the gate terminal. The isolated gate constitutes an
excellent “trap” for electrons, which guarantees charge retention for years. The
operations performed to inject and remove electrons from the isolated gate are
called program and erase, respectively. These operations modify the threshold
voltage Vry of the memory cell, which is a special type of MOS transistor.
Applying a fixed voltage to cell’s terminals, it is then possible to discriminate two
storage levels: when the gate voltage is higher than the cell’s Vg, the cell is on
(“17), otherwise it is off (“0”).

It is worth mentioning that, due to floating gate scalability reasons, charge trap
memories are gaining more and more attention and they are described in Chap. 5,
together with their 3D evolution.

4 K. Eshghi and R. Micheloni

y Control Gate (CG)

Floating Gate (FG) (CG)
Source (S) Vi Drain (D) Cor
BulkB), \
, ,_> (FG)
Cs C, Cp
Interpoly Oxide Tunnel Oxide (TOX) : é o é X (g)
(S) B) (D)

Fig. 1.2 Schematic representation of a floating gate memory cell (leff) and the corresponding
capacitive model (right)

1.4 NAND Flash
1.4.1 NAND Array

A Flash device contains an array of floating-gate transistors: each of them acts as
memory cell. In Single Level Cell (SLC) devices, each memory cell stores one bit
of information; Multi-Level Cell (MLC) devices store 2 bits per cell.

The basic element of a NAND Flash memory is the NAND string, as shown in
Fig. 1.3a. Usually, a string is made up by 32 (Mco—Mc3;), 64 or 128 cells con-
nected in series. Two selection transistors are placed at the edges of the string: Mggy,
ensures the connection to the source line. Mpg; connects the string to the bitline
BL. The cell’s control gates are connected through the wordlines (WLs).
Figure 1.3b shows how the matrix array is built starting from the basic string. In the
WL direction, adjacent NAND strings share the same WL, DSL, BSL and SL. In
the BL direction, two consecutive strings share the bitline contact. Figure 1.4 shows
a section of the NAND array along the bitline direction.

All the NAND strings sharing the same group of WL’s form a Block. In
Fig. 1.3b there are three blocks:

e BLOCKO is made up by WL, <31:0>;
e BLOCKI1 is made up by WL; <31:0>;
e BLOCK?2 is made up by WL, <31:0>.

Logical pages are made up of cells belonging to the same WL. The number of
pages per WL is related to the storage capabilities of the memory cell. Depending
on the number of storage levels, Flash memories are referred to in different ways:

SLC memories stores 1 bit per cell;
MLC memories stores 2 bits per cell;
8LC memories stores 3 bits per cell;
16LC memories stores 4 bits per cell.

1 SSD Architecture and PCI Express Interface

(a) (b)
Bitline (BL) BLe BLo
-
J Dl—— 5D D N
BSL 1 BSL,- £ E e
= = S
BS:L] WL(<31:0> 4 A a ->3
WL<31> LN Z % =
M i SSLO_ Z 4 - =)
C31 S S
WL<30> H z
M ‘—| SL, o
C30
|
S S)
WL<0> L ssL, 2 Bl g
Mg A A s
WL ,<31:0>+q o A - S
Z 4
ssL +—F DSLq 2 z -l =
NISSLS D D 7
Source Line (SL) S S
DSL, & el
WL,<31:0> -{ 2 L g
g z S
SSL, - B

Fig. 1.3 NAND String (a) and NAND array (b)

CB contact (BL)
MO line (BL)

source line
(SL)

Fig. 1.4 NAND array section along the bitline direction

o)}

K. Eshghi and R. Micheloni

MAIN SPARE

1 NAND ARRAY= 8192 BLOCKS

1 BLOCK = (4K+128) Bytes x 64 PAGES

1 PAGE = (4K+128) Bytes

Fig. 1.5 32 Gbit memory logic organization

If we consider the SLC case with interleaved architecture (Chap. 6), even cells
belong to the “even” page (BLe), while odd pages belong to the “odd” page (BLO).
For example, a SLC device with 4 kB page has a WL of 32,768 + 32,768 = 65,536
cells. Of course, in the MLC case there are four pages as each cell stores one Least
Significant Bit (LSB) and one\ Most Significant Bit (MSB). Therefore, we have
MSB and LSB pages on even BL, and MSB and LSB pages on odd BL.

In NAND Flash memories, a logical page is the smallest addressable unit for
reading and writing; a logical block is the smallest erasable unit (Fig. 1.5).

Each page is made up by main area (data) and spare area as shown in Fig. 1.5.
Main area can be 4, 8 or 16 kB. Spare area can be used for ECC and is in the order
of hundred of Bytes every 4 kB of main area.

Figure 1.5 shows the logic organization of a SLC device with a string of 32
cells, interleaving architecture, 4 kB page, and 128 Bytes of spare.

NAND basic operations, i.e. read, program, and erase are described in Chaps. 5
and 6 of this book.

1.4.2 NAND Interface

For many years, the asynchronous interface (Fig. 1.6) has been the only available
option for NAND devices.
Asynchronous interface is described below.

e CE#: it is the Chip Enable signal. This input signal is “1” when the device is in
stand-by mode, otherwise it is always “0”.

1 SSD Architecture and PCI Express Interface 7

CE# — —— ALE
R/B# —— NAND —— WE#
RE# — Device L WP#
CLE — —— DQ<7:0>

Fig. 1.6 TSOP package (left) and related pinout (right)

e R/B#: it is the Ready/Busy signal. This output signal is used to indicate the
target status. When low, the target has an operation in progress.

e REF#: it is the Read Enable signal. This input signal is used to enable serial data
output.

e CLE: it is the Command Latch Enable. This input is used by the host to indicate
that the bus cycle is used to input the command.

e ALE: it is the Address Latch Enable. This input is used by the host to indicate
that the bus cycle is used to input the addresses.

e WEH#: it is the Write Enable. This input signal controls the latching of input data.
Data, command and address are latched on the rising edge of WE#.

e WPH#: it is the Write Protect. This input signal is used to disable Flash array
program and erase operations.

e DQ <7:0>: these input/output signals represent the data bus.

As a matter of fact, this interface is a real bottleneck, especially looking at high
performance systems like SSDs.

NAND read throughput is determined by array access time and data transfer
across the DQ bus. The data transfer is limited to 40 MB/s by the asynchronous
interface. As technology shrinks, page size increases and data transfer takes longer;
as a consequence, NAND read throughput decreases, totally unbalancing the ratio
between array access time and data transfer on the DQ bus. A DDR-like interface
(Chap. 6) has been introduced to balance this ratio.

Nowadays two possible solutions are available on the market. ONFI (Open
NAND Flash Interface) organization published the first standard at the end of 2006
[5]; other NAND vendors like Toshiba and Samsung use the Toggle-Mode inter-
face. JEDEC [6] is now trying to combine these two approaches together.

Figure 1.7 shows ONFI pinout. Compared to the Asynchronous Interface, there
are three main differences:

o RE# becomes W/R# which is the Write/Read direction pin;
o WE# becomes CLK which is the clock signal;

8 K. Eshghi and R. Micheloni

Fig. 1.7 Pinout of a NAND
flash supporting ONFI
interface CE# — — ALE
R/B# —— NAND — CLK
W/R# — Device — WP#
CLE — — DQ<7:0>
—— DQS

Fig. 1.8 Pinout of a NAND
Flash supporting
Toggle-Mode interface CE# — — ALE
R/B# — NAND —— WE#
RE# — Device — WP#
CLE — — DQ<7:0>
—— DQS

e DQS is an additional pin acting as the data strobe,i.e. it indicates the data valid
window.

Hence, the clock (CLK) is used to indicate where command and addresses
should be latched, while a data strobe signal (DQS) is used to indicate where data
should be latched. DQS is a bi-directional bus and is driven with the same fre-
quency as the clock. Toggle-Mode DDR interface uses the pinout shown in
Fig. 1.8.

It can be noted that only the DQS pin has been added to the asynchronous
interface. In this case, higher speeds are achieved increasing the toggling frequency
of RE#.

1.5 Memory Controller

A memory controller has two fundamental tasks:

1. to provide the most suitable interface and protocol towards both the host and the
Flash memories;

2. to efficiently handle data, maximizing transfer speed, data integrity and infor-
mation retention.

In order to carry out such tasks, an application specific device is designed,
embedding a standard processor—usually 8-16 bits—together with dedicated
hardware to handle timing-critical tasks.

1 SSD Architecture and PCI Express Interface 9

HOST

| USER APPLICATION |

l OPERATING SYSTEM |

I Low Level Drivers |

SSD I/F (PCle, SAS, SATA, ...)

4

SSD

HOST Interface (PCle, SAS, SATA, ,...)

Wear Leveling (dynamic — static)

Garbage Collection

Bad Block Management

ECC

0 1 Flash channels N

NAND NAND NAND

Fig. 1.9 High level view of a flash controller

Generally speaking, the memory controller can be divided into four parts, which
are implemented either in hardware or in firmware (Fig. 1.9).

Proceeding from the host to the Flash, the first part is the host interface, which
implements the required industry-standard protocol (PCle, SAS, SATA, etc.), thus
ensuring both logical and electrical interoperability between SSDs and hosts. This
block is a mix of hardware—buffers, drivers, etc.—and firmware—command
decoding performed by the embedded processor—which decodes the command

10 K. Eshghi and R. Micheloni

A &Y S L L5 L L &5 A5 Ay Ay &y

A A A A/AAAA AAA
Eé

[] Logical Block @ Physical Buffer Block

“¥ Physical Block A = Available

Fig. 1.10 Logical to physical block management

sequence invoked by the host and handles the data flow to/from the Flash
memories.

The second part is the Flash File System (FES) [7]: that is, the file system which
enables the use of SSDs like magnetic disks. For instance, sequential memory
access on a multitude of sub-sectors which constitute a file is organized by linked
lists (stored on the SSD itself) which are used by the host to build the File Allo-
cation Table (FAT). The FFES is usually implemented in form of firmware inside the
controller, each sub-layer performing a specific function. The main functions are:
Wear leveling Management, Garbage Collection and Bad Block Management. For
all these functions, tables are widely used in order to map sectors and pages from
logical to physical (Flash Translation Layer or FTL) [8, 9], as shown in Fig. 1.10.
The upper block row is the logical view of the memory, while the lower row is the
physical one. From the host perspective, data are transparently written and over-
written inside a given logical sector: due to Flash limitations, overwrite on the same
page is not possible, therefore a new page (sector) must be allocated in the physical
block and the previous one is marked as invalid. It is clear that, at some point in
time, the current physical block becomes full and therefore a second one (Buffer) is
assigned to the same logical block.

The required translation tables are always stored on the SSD itself, thus reducing
the overall storage capacity.

1.5.1 Wear Leveling

Usually, not all the information stored within the same memory location change
with the same frequency: some data are often updated while others remain always
the same for a very long time—in the extreme case, for the whole life of the device.
It’s clear that the blocks containing frequently-updated information are stressed
with a large number of write/erase cycles, while the blocks containing information
updated very rarely are much less stressed.

1 SSD Architecture and PCI Express Interface 11

In order to mitigate disturbs, it is important to keep the aging of each page/block
as minimum and as uniform as possible: that is, the number of both read and
program cycles applied to each page must be monitored. Furthermore, the maxi-
mum number of allowed program/erase cycles for a block (i.e. its endurance)
should be considered: in case SLC NAND memories are used, this number is in the
order of 100 k cycles, which is reduced to 10 k when MLC NAND memories are
used.

Wear Leveling techniques rely on the concept of logical to physical translation:
that is, each time the host application requires updates to the same (logical) sector,
the memory controller dynamically maps the sector onto a different (physical)
sector, keeping track of the mapping either in a specific table or with pointers. The
out-of-date copy of the sector is tagged as both invalid and eligible for erase. In this
way, all the physical blocks are evenly used, thus keeping the aging under a
reasonable value.

Two kinds of approaches are possible: Dynamic Wear Leveling is normally used
to follow up a user’s request of update, writing to the first available erased block
with the lowest erase count; Static Wear Leveling can also be implemented, where
every block, even the least modified, is eligible for re-mapping as soon as its aging
deviates from the average value.

1.5.2 Garbage Collection

Both wear leveling techniques rely on the availability of free sectors that can be
filled up with the updates: as soon as the number of free sectors falls below a given
threshold, sectors are “‘compacted” and multiple, obsolete copies are deleted. This
operation is performed by the Garbage Collection module, which selects the blocks
containing the invalid sectors, copies the latest valid copy into free sectors and
erases such blocks (Fig. 1.11).

Block <n>
® Sect<5> Sect<0> Sect<5>
) Sect<0> Sect<1> Sect<100>
Sect<0> Sect<2> Sect<3>
° Sect<1> Sect<i> Sect<6>
<100> Sect<100> Sect<99>
Sect<2> l—: > Sect<3> Sect<99>
. Sect<6> .
. Sect<99> .
. Sect .
® [Sect<z> | Sits
ect<7> Free

@ Invalid Logic Sector

Fig. 1.11 Garbage collection

12 K. Eshghi and R. Micheloni

In order to minimize the impact on performance, garbage collection can be
performed in background. The equilibrium generated by the wear leveling dis-
tributes wear out stress over the array rather than on single hot spots. Hence, the
bigger the memory density, the lower the wear out per cell is.

1.5.3 Bad Block Management

No matter how smart the Wear Leveling algorithm is, an intrinsic limitation of
NAND Flash memories is represented by the presence of so-called Bad Blocks
(BB), i.e. blocks which contain one or more locations whose reliability is not
guaranteed.

The Bad Block Management (BBM) module creates and maintains a map of bad
blocks, as shown in Fig. 1.12: this map is created during factory initialization of the
memory card, thus containing the list of the bad blocks already present during the
factory testing of the NAND Flash memory modules. Then it is updated during
device lifetime whenever a block becomes bad.

1.5.4 Error Correction Code (ECC)

This task is typically executed by a specific hardware inside the memory controller.
Examples of memories with embedded ECC are also reported [10-12]. Most
popular ECC codes, correcting more than one error, are Reed-Solomon and BCH
[13]. Chapter 10 gives an overview of how BCH is used in the NAND world,
including an analysis of its detection properties, which are essential for concate-
nated architectures. The last section of Chap. 10 covers the usage of BCH in
high-end SSDs, where the ECC has to be shared among multiple Flash channels.

y

Al h
RJ)R

[] Logical Block @ Bad Physical Block

“¥ Good Physical Block R = Reserved for future BB

Fig. 1.12 Bad block management (BBM)

1 SSD Architecture and PCI Express Interface 13

With the technology shrink, NAND raw BER gets worse, approaching the
Shannon limit. As a consequence, correction techniques based on soft information
processing are required: LDPC (Low Density Parity Check) codes are an example
of this soft information approach and they are analyzed in Chap. 11.

1.6 Multi-channel Architecture

A typical memory system is composed by several NAND memories. Typically, an
8-bit bus, usually called channel, is used to connect different memories to the
controller (Fig. 1.1). It is important to underline that multiple Flash memories in a
system are both a means for increasing storage density and read/write performance
[14].

Operations on a channel can be interleaved, which means that a second chip can
be addressed while the first one is still busy. For instance, a sequence of multiple
write operations can be directed to a channel, addressing different NANDs, as
shown in Fig. 1.13: in this way, the channel utilization is maximized by pipelining
the data load phase; in fact, while the program operation takes place within a
memory chip, the corresponding Flash channel is free. The total number of Flash
channel is a function of the target applications, but tens of channels are becoming
quite common. Figure 1.14 shows the impact of interleaving. As the reader can
notice, given the same Flash programming time, SSD’s throughput greatly
improves.

The memory controller is responsible for scheduling the distributed accesses at
the memory channels. The controller uses dedicated engines for the low level
communication protocol with the Flash.

Moreover, it is clear that the data load phase is not negligible compared to the
program operation (the same comment is valid for data output): therefore,
increasing I/O interface speed is another smart way to improve performances:
DDR-like interfaces are discussed in more details in Chap. 6. Impact of DDR
frequency on program throughput is reported in Fig. 1.15. As the speed increases,
more NAND can be operated in parallel before saturating the channel. For instance,

Data Load

Program Flash<0=
==

Data Load

Program Flash<1>
<>

Data Load
Program Flash<2>
2>
Data Load
Program Flash<3>
<3>

Fig. 1.13 Interleaved operations on one flash channel

14 K. Eshghi and R. Micheloni

—e— 1 memor
80.0 Y

—&— 2 memories
70.0 4

—a— 4 memories
60.0

50.0 -
40.0 4

MB/s

30.0 -

20.0 §

|

10.0

0.0 —
O O 9 O O 9 9 9 9
D ® O - A ®» F B O
- - d o & d A A

Page Program Time [ps]

150
160
170
270 |
290 |
300

o
[+¢]
[a\)

Fig. 1.14 Program throughput with an interleaved architecture as a function of the NAND page
program time

Fig. 1.15 Program 70.0 4
throughput with an 4 NANDs
interleaved architecture as a & 60.0 —
function of the channel DDR o
frequency. 4 kB page program £ 500
time is 200 ps §_
-§’ 100 NAND
9 W
£ 300 —
£ 4
S 200+
=
10.0
iz
0.0 :

O P d RPN PR P

DDR Frequency [MHz]

assuming a target of 30 MB/s, 2 NANDs are needed with a minimum DDR fre-
quency of about 50 MHz. Given a page program time of 200 ps, at 50 MHz four
NAND:s can operate in interleaved mode, doubling the write throughput. Of course,
power consumption has then to be considered.

After this high level overview of the SSD architecture, let’s move to the interface
towards the host. PCI Express (PCle) is fast becoming the interface of choice for
high performance SSDs.

1 SSD Architecture and PCI Express Interface 15

1.7 What Is PCle?

PCle (Peripheral Component Interconnect Express) is a bus standard that replaced
PCI and PCI-X. PCI-SIG (PCI Special Interest Group) creates and maintains the
PCle specification [15].

PCle is used in all computer applications including enterprise servers, consumer
personal computers (PC), communication systems, and industrial applications.
Unlike older PCI bus topology, which uses shared parallel bus architecture, PCle is
based on point-to-point topology, with separate serial links connecting every device
to the root complex (host). Additionally, a PCle link supports full-duplex com-
munication between two endpoints. Data can flow upstream (UP) and downstream
(DP) simultaneously. Each pair of these dedicated unidirectional serial
point-to-point connections is called a lane, as depicted in Fig. 1.16. The PCle
standard is constantly under improvement, with PCle 5.0 being already announced
(Table 1.1).

/lLANE=2LVDS pairs |

PCle |] PCle
Device A [i Device B
ﬁ.\}l z,t:",_?--
<:::|\“1, |=
= Z

|
R = \ ;
PCle “’III \ : PCle
Device C {::;\ e— DeviceD
N
==
r:ik

A)
\I LINK = combo of LANES

Fig. 1.16 PCI express lane and link. In Gen2, 1 lane runs at 5 Gbps/direction; a 2-lane link runs at
10 Gbps/direction

Table 1.1 Data rate ‘_)f PCle version Year introduced Data rate (GT/s)
different PCle generations PCle 1.0 (Genl) 2003 25

PClIe 2.0 (Gen2) 2007 5.0

PClIe 3.0 (Gen3) 2010 8.0

PCle 4.0 (Gen4) 2018 (planned) 16.0

PCle 4.0 (Gen5) 2020 (planned) 32.0

16 K. Eshghi and R. Micheloni

Other important features of PCle include power management, hot-swappable
devices, and the ability to handle peer-to-peer data transfers (sending data between
two end points without routing through the host) [16]. Additionally, PCle simplifies
board design by utilizing serial technology, which eliminates wire count of parallel
bus architectures.

The PCle link between two devices can consist of 1-32 lanes. The packet data is
striped across lanes, and the lane count is automatically negotiated during device
initialization.

The PCle standard defines slots and connectors for multiple widths: X 1, x4,
8, x16, x32 (Fig. 1.17). This allows PCle to serve lower throughput,
cost-sensitive applications as well as performance-critical applications.

There are basically three different types of devices in a native PCle system as
shown in Fig. 1.18 [17]: Root Complexes (RCs), PCle switches, and EndPoints
(EPs). A Root Complex should be thought of as a single processor sub-system with
a single PCle port, even though it consists of one or more CPUs, plus their asso-
ciated RAM and memory controller. PCle routes data based on memory address or
ID, depending on the transaction type. Therefore, every device must be uniquely
identified within the PCI Express tree. This requires a process called enumeration.
During system initialization, the Root Complex performs the enumeration process
to determine the various buses that exist and the devices that reside on each bus, as
well as the required address space. The Root Complex allocates bus numbers to all
the PCle buses and configures the bus numbers to be used by the PCle switches.

A PCle switch behaves as if it were multiple PCI-PCI Bridges, as shown in the
inset of Fig. 1.18. Basically, a switch decouples every UP and DP ports so that each
link can work as a point-to-point connection.

Within a PCle tree, all devices share the same memory space. RC is in charge of
setting the Base Address Register (BAR) of each device.

In multi-RC systems, more than one processor sub-system exists within a PCle
tree. For example, a second Root Complex may be added to the system via the DP
of a PCle switch, possibly to act as a warm stand-by to the primary RC. However,

Fig. 1.17 Various PCle slots. From top to bottom: PCle x 4, PCle x 16, PCle x 1

1 SSD Architecture and PCI Express Interface 17

Fig. 1.18 PCle tree topology

PCI-PCI \
Bridge Virtual Root

PCI Bus i
—I—I—I— : Comp|ex

PCI-PCI PCI-PCI| (A
Bridge Bridge

UP

PCle
Switch

Endpoint

DP DP DP DP

Endpoint | |Endpoint | | Endpoint | | Endpoint

an issue arises when the second RC also attempts the enumeration process: it sends
out Configuration Read Messages to discover other PCle devices on the system.
Unfortunately, configuration transactions can only move from UP to DP. A PCle
switch does not forward configuration messages that are received on its DP. Thus,
the second RC is isolated from the rest of the PCle tree and will not detect any PCle
devices in the system. So, simply adding processors to a DP of a PCle switch will
not provide a multi-Root Complex solution.

One method of supporting multiple RCs is to use a Non-Transparent Bridging
(NTB) function to isolate the address domains of each of the Root Complexes [18].
NTB allows two Root Complexes or PCle trees to be interconnected with one or
more shared address windows between them.

In other words, NTB works like an address translator between two address
domains. Of course, multiple NTBs can be used to develop multi-RC applications.
An example of PCle switch with embedded NTB functions is shown in Fig. 1.19:
an additional bus, called NT Interconnect, is used for exchanging Transaction Layer
Packets among RCs.

PCle uses a packet-based layered protocol, consisting of a transaction layer, a
data link layer, and a physical layer, as shown in Fig. 1.20.

The transaction layer handles packetizing and de-packetizing of data and
status-message traffic. The data link layer sequences these Transaction Layer
Packets (TLPs) and ensures they are reliably delivered between two endpoints
(devices A and B in Fig. 1.5). If a transmitter device sends a TLP to a remote

18

Upstream Port

Upstream Port

1

K. Eshghi and R. Micheloni

NT Interconnect

Upstream Port

1

NTB

&
0

s

Downstream Ports

Virtual
PCI Bus

L.

Downstream Ports

Fig. 1.19 PCle switch with multiple NTB functions

Fig. 1.20 PCle layered
architecture

Device A

PCle Core

X, N RX

‘ Transaction Layer‘

! 1

’ Data Link Layer ‘

v 1

‘ Physical Layer l

T

Downstream Ports

Device B

PCle Core

X, N RX

‘ Transaction Layer‘

v 1

’ Data Link Layer ‘

! 1

‘ Physical Layer ‘

]

Link

receiver device and a CRC error is detected, the transmitter device gets a notifi-
cation back. The transmitter device automatically replays the TLP. With error
checking and automatic replay of failed packets, PCle ensures very low Bit Error

Rate (BER).

The Physical Layer is split in two parts: the Logical Physical Layer and the
Electrical Physical Layer. The Logical Physical Layer contains logic gates for
processing packets before transmission on the Link, and processing packets from
the Link to the Data Link Layer. The Electrical Physical Layer is the analog
interface of the Physical Layer: it consists of differential drivers and receivers for

each lane.

1 SSD Architecture and PCI Express Interface 19

TLP Header Data Payload
12/16 byte 0-4K byte

Transaction Layer T

Data Link Layer

Physical Layer

Fig. 1.21 Transaction layer packet (TLP) assembly

TLP assembly is shown in Fig. 1.21. Header and Data Payload are TLP’s core
information: Transaction Layer assembles this section based on the data received
from the application software layer. An optional End-to-End CRC (ECRC) field is
can be appended to the packet. ECRC is used by the ultimate targeted device of this
packet to check for CRC errors inside Header and Data Payload. At this point, the
Data Link Layer appends a sequence ID and local CRC (LCRC) field in order to
protect the ID. The resultant TLP is forwarded to the Physical Layer which con-
catenates a Start and End framing character of 1 Byte each to the packet. Finally,
the packet is encoded and differentially transmitted on the Link using the available
number of Lanes.

Today, PCle is a high volume commodity interconnect used in virtually all
computers, from consumer laptops to enterprise servers, as the primary mother-
board technology that interconnects the host CPU with on-board ICs and add-on
peripheral expansion cards.

1.8 The Need for Storage Speed

The real issue at hand is the need for storage technology that can match the
exponential ramp in processor performance over the past two decades. Processor
vendors have continued to ramp the performance of individual processor cores, to
combine multiple cores on one IC, and to develop technologies that can
closely-couple multiple ICs in multi-processor systems. Ultimately, all of the cores
in such a scenario need access to the same storage subsystem.

Enterprise IT managers are eager to utilize the multiprocessor systems because
they have the potential of boosting the number of I/O operations per second (IOPS)
that a system can process and also the number of IOPS per watt IOPS/W) in power
consumption. The ramping multi-processing computing capability offers better
IOPS relative to cost and power consumption—assuming the processing elements
can get access to the data in a timely fashion. Active processors waiting on data
waste time and money.

There are of course multiple levels of storage technology in a system that ulti-
mately feeds code and data to each processor core. Generally, each core includes

20 K. Eshghi and R. Micheloni

local cache memory that operates at core speed. Multiple cores in a chip share a
second-level and sometimes a third-level cache. And DRAM feeds the caches. The
DRAM and cache access-time and data-transfer performance has scaled to match
the processor performance.

The disconnect has come in the performance gap that exist between DRAM and
rotating storage in terms of access time and data rate. Disk-drive vendors have done
a great job of designing and manufacturing higher-capacity, lower-cost-per-GByte
disk drives. But the drives inherently have physical limitations in terms of how fast
they can access data and then how fast they can transfer that data into DRAM.

Access time depends on how fast a hard drive can move the read head over the
required data track on a disk, and the rotational latency for the sector where the data
is located to move under the head. The maximum transfer rate is dictated by the
rotational speed of the disk and the data encoding scheme that together determine
the number of Bytes per second read from the disk.

Hard drives perform relatively well in reading and transferring sequential data.
But random seek operations add latency. And even sequential read operations can’t
match the data appetite of the latest processors.

Meanwhile, enterprise systems that perform on-line transaction processing such
as financial transactions and that mine data in applications such as customer rela-
tionship management require highly random access to data. Cloud computing also
requires random access to data, whether it’s for unstructured databases or analytic
workloads. This random access requirement is escalating with technologies such as
virtualization, which expand the scope of different applications that a single system
has active at any one time. Every microsecond of latency relates directly to money
lost and less efficient use of the processors and the power dissipated by the system.

Fortunately Flash memory offers the potential to close the performance gap
between DRAM and rotating storage. Flash is slower than DRAM but offers a
lower cost per GByte of storage. That cost is more expensive than hard disk drive
storage, but enterprises will gladly pay the premium because Flash also offers much
better throughput in terms of MB/s and faster access to random data, resulting in
better cost-per-IOPS compared to rotating storage.

Ramping Flash capacity and reasonable cost has led to a growing trend of SSDs
that package Flash in disk-drive-like form factors. Moreover, the SSDs have most
often utilized disk-drive interfaces such as SATA (serial ATA) or SAS (serial
attached SCSI).

1.9 Why PCle for SSD Interface?

The disk-drive form factor and interface allows IT vendors to substitute an SSD for
a magnetic disk drive seamlessly. There is no change required in system hardware
or driver software. An IT manager can simply swap to an SSD and realize sig-
nificantly better access times and somewhat faster data-transfer rates.

1 SSD Architecture and PCI Express Interface 21

Neither the legacy disk-drive form factor nor the interface is ideal for
Flash-based storage. SSD manufacturers can pack enough Flash devices in a 2.5-in.
form factor to easily exceed the power profile developed for disk drives. And Flash
can support higher data transfer rates than even the latest generation of disk
interfaces.

Let’s examine the disk interfaces more closely (Fig. 1.22). Most mainstream
systems have migrated to third-generation SATA and SAS that support 600 MB/s
throughput, and drives based on those interfaces have found usage in enterprise
systems. While those data rates support the fastest electromechanical drives, new
NAND Flash architectures and multi-die Flash packaging deliver aggregate Flash
bandwidth that exceeds the throughput capabilities of SATA and SAS intercon-
nects. In short, the SSD performance bottleneck has shifted from the storage media
to the host interface. Therefore, many applications need a faster host interconnect to
take full advantage of Flash storage.

The PCle host interface can overcome this storage performance bottleneck and
deliver unparalleled performance by attaching the SSD directly to the PCle host
bus. For example, a 4-lane (X 4) PCle Generation 3 (Gen3) link can deliver 4 GB/s
data rates. Simply put, PCle affords the needed storage bandwidth. Moreover, the
direct PCle connection can reduce system power and slash the latency that’s
attributable to the legacy storage infrastructure.

Clearly an interface such as PCle could handle the bandwidth of a multi-channel
Flash storage subsystem and can offer additional performance advantages. SSDs
that use a disk interface also suffer latency added by a storage-controller IC that
handles disk I/0. PCle devices connect directly to the host bus eliminating the
architectural layer associated with the legacy storage infrastructure. The compelling
performance of PCle SSDs has resulted in system manufacturers placing PCle
SSDs in servers as well as in storage arrays to build tiered storage systems
(Fig. 1.23) that accelerate applications while improving cost-per-IOPS (Input/
Output Operations per Second).

Interface Performance (MBps)
4,500

4,000 -
3,500
3,000
2,500

2,000

1,500

1,000 -

m B B
o TN _

UsBe 3.0 SATA 6 Gbps BGFC PClex1Gen3 PClex2Gen3 PClexdGen3

Fig. 1.22 Interface performance. PCle improves overall system performance by reducing latency
and increasing throughput

22 K. Eshghi and R. Micheloni

= =
SEmEE
[7)
o m o
55 |5
5| |2 |8
Flash E 2 k7]
HDD Cache + / SSD & o| |8
HDD
z 2 |5
3 = i T 4

Fig. 1.23 Enterprise memory/storage hierarchy paradigm shift

CPU
l PCIe
Storage
Controller
BN
&
ol
P4 _
NAND MNAND NAND NAND

Fig. 1.24 PCle SSD versus SAS/SATA SSD

1 SSD Architecture and PCI Express Interface 23

Moving storage to a PCle link brings additional challenges to the system
designer. As mentioned earlier, the SATA- and SAS-based SSD products have
maintained software compatibility and some system designers are reluctant to give
up that advantage. Any PCle storage implementation will create the need for some
new driver software.

Despite the software issue, the move to PCle storage in enterprises is well
underway. Performance demands in the enterprise are mandating this transition.
There is no other apparent way to deliver improving IOPS, IOPS/W, and IOPS per
dollar characteristics that IT managers are demanding.

The benefits of using PCle as a storage interconnect are clear. Already at Gen3,
you can achieve over 6 X the data throughput relative to SATA or SAS. You can
eliminate components such as host bus adapters and SERDES ICs on the SATA and
SAS interfaces—saving money and power at the system level. And PCle moves the
storage closer to the host CPU reducing latency, as shown in Fig. 1.24.

Let’s now take a deeper look at PCle-based SSD architectures.

1.10 PCle SSD Implementations

The simplest PCle SSD implementations can utilize legacy Flash memory con-
troller ICs that while capable of controlling memory read and write operations, have
no support for the notion of system I/O. Such Flash controllers would typically
work behind a disk interface IC in existing SATA- or SAS-based SSD products
(Fig. 1.25).

Alternatively, it is possible to run Flash-management software on the host
processor to enable a simple Flash controller to function across a PCle interconnect
(Fig. 1.26).

That approach has several drawbacks. First it consumes host processing and
memory resources that ideally would be available for application software. Second

Flash Flash CoFr:?rﬂllller
Flash Flash CoFr:?rSo'Iller
Flash Flash CoFr:?rs:‘::Iller
Flash Flash CoFr:tarﬂ;ler

Fig. 1.25 RAID-based PCle SSDs not optimized for performance/power

24 K. Eshghi and R. Micheloni

CPU
Flash Flash Flash ‘
Management
Flash Flash Flash
Flash ' =
Flash Flash Flash [olSioie IOH
Server
Flash Flash Flash l
-
[|
EEEEEEEEEEEEER

Fig. 1.26 Running flash management algorithms on the host drains the host CPU/RAM resources

Fig. 1.27 Native PCle flash —
controller improves

performance, while reducing Flash Flash Flash
cost and complexity

Flash Flash Flash

Flash

Flash Flash Flash
as Controller

Flash Flash Flash

it requires proprietary drivers and raises OEM qualification issues. And third it
doesn’t deliver a bootable drive because the system must be booted for the
Flash-management software to execute and enable the storage scheme.

Clearly, these designs have found niche success. These products are used by
early adopters as caches for hard disk drives rather than mainstream replacements of
high-performance disk drives.

More robust and efficient PCle SSD designs rely on a complex SoC that natively
supports PCle, integrates Flash controller functionality, and that completely
implements the storage-device concept (Fig. 1.27). Such a product offloads the host
CPU of handling Flash management, and ultimately enables standard OS drivers
that support plug-and-play operations just as with SATA and SAS.

1.11 NVM Express Driving Broader Adoption
of PCle SSDs

The NVM Express (NVMe) 1.0 specification, developed cooperatively by more
than 80 companies from across the industry, was released in March, 2011, by the
NVMHCI Work Group—more commonly known as the NVMe Work Group.

1 SSD Architecture and PCI Express Interface 25

The specification defines an optimized register interface, command set, and feature
set for PCle SSDs. The goal of the standard is to help enable the broad adoption of
PCle-based SSDs, and to provide a scalable interface that realizes the performance
potential of SSD technology now and into the future. By maximizing parallelism
and eliminating complexity of legacy storage architectures, NVMe supports future
memory developments that will drive latency overhead below one microsecond and
SSD IOPS to over one million. The NVMe specification may be downloaded from
WWW.NVmexpress.org.

The NVMe specification is specifically optimized for multi-core system designs
that run many threads concurrently with each thread capable of instigating 1/O
operations. Indeed it’s optimized for just the scenario that IT managers are hoping
to leverage to boost IOPS. NVMe specification can support up to 64 k I/O queues
with up to 64 k commands per queue. Each processor core can implement its own
queue.

In June, 2011, the NVMe Promoter Group was formed to enable the broad
adoption of the NVMe Standard for PCle SSDs. NVMe supporters include Cloud
service providers, IC manufactures, Flash-memory manufacturers, operating-system
vendors, server manufacturers, storage-subsystem manufacturers, and network-
equipment manufacturers.

The original NVMe specification was focused on direct-attached PCle SSD
usage model. More recently, with the growth of scaleout cloud infrastructure, many
data centers are moving from inefficient direct-attached storage model where
compute and storage are deployed in fixed ratios, to a hyper-scale shared SSD
model where compute and storage are scaled independently to achieve maximum
resource utilization and drive down cost. This trend has triggered disaggregation of
NVMe SSDs from compute servers and driven the need for an extension of NVMe
outside of the box over networking fabrics.

The NVMe over Fabrics standard was born to define a common architecture that
supports a range of storage networking fabrics for NVMe block storage protocol.
This includes enabling a front-end interface into storage systems, scaling out to a
large numbers of NVMe devices and extending the distance within a data center
over which these devices can be accessed. The goal of NVMe over Fabrics is to
provide remote connectivity to NVMe devices with minimal additional latency over
a direct-attached NVMe device inside a compute server. The NVMe over Fabrics
specification was published in June 2016.

The most recent addition to the list of fabric transports for NVMe is TCP
(Fig. 1.28). NVMe over TCP block storage interface enables disaggregation of
NVMe SSDs from compute servers without compromising latency and without
requiring changes to networking infrastructure. The storage network in this case is
standard TCP/IP over Ethernet, a high-performance ubiquitous networking archi-
tecture that is both scalable and reliable. The NVMe Work Group is standardizing
TCP/IP transport binding, adding this to the NVMe Fabrics specification alongside
RDMA and Fibre Channel.

26 K. Eshghi and R. Micheloni
[Application J
Generic FS Block ¥O
operations
NvMe
v commands
Y hoctl
[Filesystem
i 4
[Block J
NVMe NVMe
FC ‘ ‘ TCP I ROMA] by J L NVMe Core |
FC Stack ‘ ‘ TCPIIP Stack ‘ [RDMA Stack ‘
S, PCI Stack
FC Driver ‘ ‘ Eth Driver ‘ [HCA Driver ‘
| FC | Ethernet Infiniband PCl Express ‘

Fig. 1.28 Different types of fabric transports for NVMe

The building blocks are all falling into place for broader usage of

PCle-connected SSDs and deliverance of the performance improvements that the
technology will bring to enterprise applications. And while the focus in the past has
been more on the enterprise, the NVMe standard has already trickled down to client
systems, offering a performance boost in notebook PCs while reducing cost and
system power. The NVMe standard will continue to drive more widespread use of
PClIe SSD technology as new compatible ICs and drivers come to market.

References

AW N =

AN W

. Www.mmca.org

. www.compactflash.org

. www.sdcard.com

. G. Campardo, R. Micheloni, D. Novosel, VLSI-Design of Non-Volatile Memories (Springer,

Berlin, 2005)

. www.onfi.org
. www.jedec.org
. A. Kawaguchi, S. Nishioka, H. Motoda, A flash-memory based file system, in Proceedings of

the USENIX Winter Technical Conference (1995), pp. 155-164

. J. Kim, JM. Kim, S. Noh, S.L. Min, Y. Cho, A space-efficient flash translation layer for

compact flash systems. IEEE Trans. Consum. Electron. 48(2), 366-375 (2002)

. S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S.-W. Park, H.-J. Songe, FAST: A log-buffer

based FTL scheme with fully associative sector translation, in 2005 US-Korea Conference on
Science, Technology, & Entrepreneurship (Seoul, Aug 2005)

1

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

SSD Architecture and PCI Express Interface 27

T. Tanzawa, T. Tanaka, K. Takekuchi, R. Shirota, S. Aritome, H. Watanabe, G. Hemink, K.
Shimizu, S. Sato, Y. Takekuchi, K. Ohuchi, A compact on-chip ECC for low cost flash
memories. IEEE J. Solid-State Circuits 32(May), 662—-669 (1997)

G. Campardo, R. Micheloni et al., 40-mm? 3-V-only 50-MHz 64-Mb 2-b/cell CHE NOR flash
memory. IEEE J. Solid-State Circuits 35(11), 1655-1667 (2000)

R. Micheloni et al., A 4 Gb 2b/cell NAND flash memory with embedded 5b BCH ECC for
36 MB/s system read throughput, in IEEE International Solid-State Circuits Conference Dig.
Tech. Papers (Feb 2006), pp. 142-143

R. Micheloni, A. Marelli, R. Ravasio, Error Correction Codes for Non-Volatile Memories
(Springer, Dordrecht, 2008)

C. Park et al., A high performance controller for NAND flash-based Solid State Disk (NSSD),
in IEEE Non-Volatile Semiconductor Memory Workshop NVSMW (Feb 2006), pp. 17-20
WWW.pcisig.com

R. Budruk, D. Anderson, T. Shanley, Mindshare, PCI Express System Architecture
(Addison-Wesley, Boston, 2003)

K. Kong, Enabling Multi-peer Support with a Standard-Based PCI Express Multi-ported
Switch, White Paper (Jan 2006), www.idt.com

K. Kong, Non-Transparent Bridging with IDT 89HPES32NT24G2 PCI Express NTB Switch,
AN-724 (Sept 2009), www.idt.com

www.ssdformfactor.org

Chapter 2)
SAS and SATA SSDs e

S. Yasarapu

Abstract This chapter focuses on the different types of solid state drives. The
chapter details the differences between consumer and enterprise solid state drives
and also details the differences between SAS and SATA solid state drive and what
lies ahead for SATA and SAS protocols for SSDs.

2.1 Introduction

Data centers today require fast and reliable storage to provide end-users with high
quality of service. Data centers operators are continuously challenged to improve
performance to keep up with the demands of high performance applications. Space,
power and cooling limitations require data centers to find the most cost-, space-, and
energy efficient products. Solid state drives increase the performance and reliability
of the enterprise while reducing the overall space, power, energy footprint of the
data centers. However, not all data center and enterprise environments are created
equal. Depending on the size, number of users, serviceability requirements and
applications running in the data center, the need for performance and storage
capacity varies and so do the solid state devices used within these environments.

In fact, not all SSDs are created the same. Some are designed for the enterprise
and some are designed for consumer applications. Even in the enterprise segment,
some are intended for direct attach to servers and some are designed for shared
storage enclosures. Understanding the differences between the various solid state
drives helps consumers, as well as, enterprises to select the right solution for their
intended applications.

S. Yasarapu (=)
SSD Product Marketing, Western Digital Corporation, Irvine, CA, USA
e-mail: swapna.yasarapu@wdc.com

© Springer Nature Singapore Pte Ltd. 2018 29
R. Micheloni et al. (eds.), Inside Solid State Drives (SSDs),

Springer Series in Advanced Microelectronics 37,

https://doi.org/10.1007/978-981-13-0599-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_2&domain=pdf

30 S. Yasarapu

2.2 Enterprise Versus Consumer SSDs

Let’s first start by understanding the difference between enterprise and consumer
solid state devices [1]. To really understand the differences between consumer and
enterprise solid state drives, let’s start by first observing where these devices are
used. This will highlight the fundamental assumptions made by designers of con-
sumer and enterprise solid state drives.

Consumer solid state devices are used in laptops, desktops, and mobile devices
where conserving power is the most important criteria to ensure long battery life of
the device. Now, let’s think about the typical usage pattern of a laptop user. Laptop
user, either a business or a home user, generally turns on the laptop at the beginning
of the day. Typical applications running on the laptop are email, internet explorer,
Microsoft Word, Excel, PowerPoint. For the majority of time, user reads infor-
mation—reading emails, browsing the web etc. The laptop is perhaps left idle
during meetings; is left idle during lunch time. Laptop is turned off at the end of the
day. Let’s take another example—a desktop user’s typical day. In addition to
everything the laptop user does, desktop users may also play video games, listen to
music and access other digital content. Again, this involves fetching of relatively
large amounts of data from the storage — fast reads. So, what makes the laptop and
desktop users happy? Laptops should turn on as soon as they are powered on to
minimize the wait for system boot up — fast boot times; user would like to use the
laptop on battery for as long as possible — low power footprint and email and
browser applications should load up fast — fast reads. Now let’s contrast this with
typical usage patterns in an enterprise data center.

Enterprise Solid State Drives are used in corporate and cloud data centers where
uninterrupted operations and high reliability are the most important criteria. Data
center of an enterprise is the information technology hub that holds the most
important intellectual property of any business/enterprises—DATA. The data stored
in the data center is made available via different applications such as Oracle
databases, email applications, customer relation management systems and is used
by multiple users—R&D, finance, sales, operations, customer service etc. Data is
accessed from different locations, at different times. Loss of data is not an
acceptable event because of its disastrous consequences to the business. Let’s take
the example of a financial institution where customers make deposits/withdrawals
of money from their accounts. If a withdrawal transaction is lost due to loss of data
in the institution’s data center then the financial institution loses money. Now this
may not seem like a big deal but if it happens systematically, then this could add up
to millions of dollars in losses. Or worse, if a deposit amount is not posted to a
customer’s account, then customer loses money which could be even more disas-
trous because the bank loses its credibility and hence customers — loss of rev-
enues. So what makes the Chief Information Officer (CIO) happy? All systems in
the data center should run uninterrupted — 24 h/day—7 days/week—365 days/
year operations with minimal maintenance; there should never be a case leading to

2 SAS and SATA SSDs

Table 2.1 Application level usage pattern

31

Criteria Consumer SSD Enterprise solid state drive

Hours of Interrupted 24/7/365 Uninterrupted operation

operation Fast boot time for frequent cons.istent and low latency and quality of
power up service

Performance Fast large block reads only Fast small block random reads and writes

Access pattern

Single threaded accesses

Multi user accesses

Power Low power to improve Reduce total data center power and
consumption battery life energy footprint

High Not required High availability

availability

Reliability Ease of replacement High reliability

Loss of data is managed

Loss of data is catastrophic

data loss — high reliability; ability to service multiple users at any time — high
performance.

As summarized in Table 2.1, we can conclude that the usage pattern of a con-
sumer solid state drive is dramatically different from that of an enterprise solid state
drive. This primarily drives completely different design criteria.

Let’s see how the consumer and enterprise solid state drives differ in their
construction. This will highlight the fundamental assumptions made by the testers
and integrators of consumer Flash and enterprise solid state drives. To do this, let’s
first understand the composition of consumer and enterprise solid state drive. The
basic composition of an SSD is a controller and a Flash as shown in Fig. 2.1. But
that is where the similarity ends.

What really separate enterprise solid state drive from consumer SSD is the
design of the controller hardware and more importantly the controller firmware
features and the rigors of testing and qualification process the enterprise solid state
drive is put through before it makes it to the market in a product form.

Controller hardware and firmware running on the Enterprise SSDs are the brains
of the device. Their primary functions are to respond to host commands, to transfer
data between the host and Flash media and to manage the Flash media to achieve
high reliability and endurance throughout the operational lifetime of the drive. How
well a controller handles Flash management and host data transfers simultaneously
is what differentiates it from a consumer SSD. In addition, enterprise SSDs have
additional built-in features to improve the reliability and endurance of the Flash and
hence the enterprise SSD. Enterprise solutions require 24/7/365 uninterrupted
operation. Therefore, controllers in enterprise SSDs are designed to maintain
consistent performance behavior while transferring data irrespective of the amount
of Flash capacity in use and also the traffic generated to the drive. Wear leveling
operations and background media error correction algorithms are designed such that
data transfer performance to the host is unchanged while these operations run in the
background to the Flash.

32 S. Yasarapu

Host

/KSD Controller \\
(Host DMA Interface |

Host

(- A\
Cache Data Path
SSD Controller Management Protection
‘ Host DMA Interface ’ Redundancy Endurance
Module Enhancement
A
. s N\
Flash Basic Error .
Access Wear Detection Flash Basic Error
Module Leveling || Correction ':\\II?:SIS LWeT_f cDeteCtlton
Fiash Interface ule eveling orrection
_Flash Interface Y

-~ & TN
v L%

k Consumer SSD K Enterprise SSD /

Fig. 2.1 Consumer (leff) and enterprise (right) solid state drives

Enterprise solutions are required to support a large number of users, i.e., multiple
initiators running different types of traffic patterns independent of one another
resulting in random traffic. Therefore, the controller hardware and firmware is
designed to support multi-threaded access where up to hundreds of threads of data
per drive can be pushed between host and the device while maintaining the per-
formance as well as integrity of data. Therefore, enterprise SSDs are designed to
perform extremely well even for small transfers of varying sizes and for simulta-
neous reads and writes.

Data integrity and availability is of the highest importance in enterprise solu-
tions. Therefore, enterprise SSDs are designed to provide full data path protection
with ECC and CRC coverage and power fail protection against unscheduled power
loss.

Reliability and endurance are extremely important for enterprise application
because solutions deployed into enterprise have a longer working life. Unlike
consumer deployments, enterprise deployments have a long service life. Therefore,
enterprise SSDs are designed to survive in mission critical storage area networks
under 24/7/365 workloads for over up to 5 years. To this effect, enterprise SSDs

2 SAS and SATA SSDs 33

have built-in redundancy to ensure that even if Flash die fails, the SSD can suc-
cessfully recover data by using the redundancy built into the data stored on the
Flash.

Enterprise SSDs are also built with features to improve the endurance of the
Flash. This is an extremely important capability required to counter the deteriora-
tion in Flash endurance as technology nodes shrink.

Enterprise SSDs have the characteristics of drives designed for use in all envi-
ronments (like the ones on Mars): this allows for drive to operate in environments
that do not require human presence and can handle unknown conditions as they
arise.

The above mentioned design capabilities are driven by the application use cases
where enterprise solid state drives are used. Consumer SSD, unlike enterprise SSD
is not designed with these assumptions and is therefore unsuitable for enterprise
applications.

Consumer SSDs are designed for cost, which may or may not include robust
controller/Flash management technology. Consumer SSD doesn’t have power fail
protection and do not have the same stringent data protection capabilities of en-
terprise SSDs. Consumer SSDs are not designed to endure under enterprise
workloads; they are designed for laptops and desktops not expected to work beyond
a few years.

Since consumer SSD is focused on providing faster boot time, and application
load time, they are optimized to provide fast large block read transfers. Given that
consumer SSD is left idle for long durations, consumer SSD depends on host side to
manage the SSD media. This in turn leads to short lifetime of the consumer SSD. In
addition, consumer SSD is designed for single operation management, for data
loading, installing, saving, etc.

Consumer SSDs have been designed for single user usage and are only designed
for read focused operation, where only a small amount of data is written with many
hours of idle time. Therefore, consumer SSDs though suitable for low end appli-
cations where the devices are not challenged to work at high performance levels, are
not suitable for high performance, high reliability enterprise deployments. How-
ever, it is known that consumer SSDs are sometimes uses for boot use cases in
enterprise and data center deployments. Typically consumer SSD uses SATA
interface to connect to host systems with PCle NVMe interface connected SSDs on
the horizon.

Enterprise SSDs come in different form factors with different interfaces. There
are 3 main interface protocols used to connect SSDs into server and/or storage
infrastructure: Serial Attached SCSI (SAS), Serial ATA (SATA) and PCle NVMe.
SAS SSDs deliver high levels of performance and are used in both high end server
and midrange—high end storage enclosures. SATA based SSDs are used mainly in
client applications and in entry and midrange server and storage enclosures. PCle
based SSDs are newest of the three (3) types of SSDs. There are generally two
classes of SSDs—those delivering the highest performance are mainly used in
server based deployments with storage deployments in the near horizon and those
delivering good enough performance to replace SATA SSDs in data centers. SAS

34 S. Yasarapu

and SATA SSDs combined continue to hold the lion share of the enterprise SSD
market with PCle SSDs showing the highest growth and adoption rate.

In this chapter, let’s focus on the SAS and SATA SSD—protocol differences,
key feature highlights, similarities and differences and where they are used.

2.3 SAS Versus SATA Protocol

Serial Attached SCSI (SAS) is a communication protocol traditionally used to move
data between storage devices (target) and host (initiator). SAS defines how 1 or
more initiators can connect to 1 or more SAS device targets. It uses a standard SCSI
command set to drive device communications. Today, SAS based devices most
commonly run at 12 Gbps. There is ongoing development of a faster 24 Gbps SAS
interface speed which may be brought to market sometime in the future. On the
other side, SAS interface can also be run at slower speeds—1.5, 3 Gbps and/or 6
Gbps to support legacy systems.

S also offers backwards-compatibility with second-generation SATA drives at
the physical layer. The T10 technical committee of the International Committee for
Information Technology Standards (INCITS) develops and maintains the SAS
protocol; the SCSI Trade Association (SCSITA) promotes the technology.

Serial ATA (SATA or Serial Advanced Technology Attachment) is another
interface protocol used for connecting host bus adapters to mass storage devices
such as hard disk drives and solid state drives. Serial ATA was designed to replace
the older parallel ATA/IDE protocol. SATA is also a point to point connection
using a serial physical connection. It uses ATA and ATAPI command set to drive
device communications. Today, SATA based devices most commonly run at 6
Gbps.

Serial ATA industry compatibility specifications originate from The Serial ATA
International Organization [2] (aka. SATA-IO).

2.3.1 Connectivity and High Availability

A typical SAS eco-system consists of SAS SSDs plugged into a SAS backplane or a
host bus adapter via a point to point connection, which in turn is connected to the
host microprocessor either via an expander or directly, as shown in Fig. 2.2.

Each expander can support 255 connections to enable a total of 65,535 (64 K)
SAS connections. Therefore, SAS based deployments enable use of a large number
of SAS SSDs in a shared storage environment.

SAS SSDs are built with two ports. This dual port functionality allows host
systems to have redundant connections to SAS SSDs. In case one of the connec-
tions to the SSD is either broken or malfunctions, host systems still have the second
port that can be used to maintain continuous access to the SAS SSD. In enterprise

2 SAS and SATA SSDs 35

Host

Computer

Host Bus Adapter

-8

Fig. 2.2 SAS connectivity

Fig. 2.3 Dual port SAS connector

applications where high availability is an absolute requirement, this feature, unique
to SAS SSDs, makes it the SSD of choice for enterprise applications. Figure 2.3
below shows the dual port connector used with SAS SSDs.

SAS SSDs also support hot plug. Hot plug feature enables SAS SSDs to be
dynamically removed or inserted while the system is running. This feature allows
for automatic detection of newly inserted SAS SSDs. While a server or storage
system is running, newly inserted SAS SSDs can be dynamically configured and
put to use. Even more importantly, even if SAS SSDs are pulled out of a running
system, all the in-flight data that is committed by the host system is properly stored
inside a SAS SSD and can be accessed once the SSD is powered back on.

As opposed to SAS, a typical SATA eco-system consists of SATA SSDs con-
nected to host bus adapter via a point to point connection, which in turn is con-
nected to the host microprocessor. In addition, SATA SSDs are built with one port

36 S. Yasarapu

unlike SAS SSDs. These two main differences make SATA based SSDs more
suited for entry or mid-range deployments and consumer applications.

SATA SSDs also support hot plug which enables SSDs to be dynamically
removed or inserted while the system is running. While a server or storage system is
running, newly inserted SATA SSDs can be dynamically configured and put to use.
However, not all SATA SSDs are designed to withstand hot plug functionality and
to ensure that if pulled out of a running system, all the inflight data that is com-
mitted by the host system is properly stored inside a SATA SSD. This capability,
also commonly known as surprise removal, is an extremely important feature and is
generally only supported by selected enterprise grade SATA SSD vendors.

SATA drives may be connected to SAS backplanes, but SAS drives may not be
connected to SATA backplanes.

This is an important feature, in that physically SAS infrastructure is designed to
accommodate SATA SSDs. Connector on SATA SSDs is designed such that they
can be plugged into SAS receptacles though the reverse is not true. This enables
SATA SSDs to be plugged into SAS based storage system making the SATA SSD
more ubiquitous for use.

In addition, even though SAS uses SCSI as the primary communication proto-
col, SAS also supports STP (Serial ATA Tunneled Protocol) that allows SAS
infrastructure is built to ensure communication with SATA SSDs hence enabling
interoperability. Again, reverse is not true, in that SAS SSDs cannot be plugged into
SATA based deployments.

Similarities between SAS and SATA technologies are summarized in Fig. 2.4;
differences between the two are in Fig. 2.5.

Fig. 2.4 Similarities between
SAS and SATA technologies ﬂAS and SATA SimilaritieA

= Both types plug into the
SAS backplane.

= The drives are
interchangeable within a
SAS drive bay module.

= Both are long-proven
technologies, with
worldwide acceptance.

= Both employ point-to-
point architecture

= Both are hot pluggable

\ /

2 SAS and SATA SSDs 37

SAS vs. SATA Differences

= SATA devices are less expensive.

= SATA devices use the ATA command set, SAS the SCSI command
set.

= SAS drives have dual porting capability and lower latencies.

= While both types of drives plug into the SAS backplane, a SATA
backplane cannot accommodate SAS drives.

= SAS drives are tested against much more rigid specs than are
SATA drives.

= SAS drives are faster, and offer several features not available on
SATA, including variable sector sizes, LED indicators, dual ports
and data integrity.

= SAS supports link aggregation — wide porting

Fig. 2.5 Main differences between SAS and SATA

2.3.2 Form Factor and Capacity

SAS and SATA SSDs come in a variety of capacities and form factors.

SAS SSDs are designed in primarily to fit into 2.5” form factor. This form factor
is primarily defined and driven by the small form factor working group and the
T-10 organization. Since SAS SSDs are designed for both server and storage
applications, the capacity of SAS SSDs varies from 200 GB up to 30 TB in
capacity for use depending on deployment and application requirement.

SATA SSDs are designed in a variety of form factors—2.5”, 1.8” as well as
smaller M.2 form factors (Fig. 2.6). Typical enterprise applications use either 2.5”
SATA SSDs or M.2 form factor SATA SSDs. For example, M.2 SATA SSDs are
popularly used as boot devices. In addition, the smaller form factors enable SATA
to be used in space constrained embedded applications. SATA SSDs in capacity
vary anywhere between 32 GB and 8 TB and are generally used either in consumer,
boot or entry and mid-range data center applications.

38 S. Yasarapu

2.5" SATA SSDs 1.8” SATA 55Ds

M.2 SATA SSDs

Fig. 2.6 SATA form factors

2.3.3 Performance

SAS uses SCSI command set to transfer data. SCSI is a more efficient command set
with features such as command queuing that enable higher performance of SAS
SSDs. Therefore, SAS SSDs are used where higher performance is required. Unlike
SAS, SATA SSDs using the ATA protocol have lower performance compared to
SAS and therefore are more widely for mid-range and entry level system.

However, a point to note is that both SATA and SAS SSDs are orders of
magnitude faster than hard disk drives (HDDs). To better understand the perfor-
mance characteristics of SSDs first, it is important to know what is inside an SSD
compared to HDD.

Hard disk drives are electro-mechanical devices which inherently is limited by
the mechanical element utilized to build them, i.e., rotating magnetic disk. In order
to retrieve data that is stored on the magnetic disk, one must rotate the disk to place
it under the media head (rotational latency), moving the head to the right track (seek
latency) and then using a combination of electronics and mechanics to transfer the
data to/from the host devices (transfer time). The only way to hide rotational and
seek latencies is by transferring large sequential data from the disk once the right
track on the disk is located. Therefore, hard drives are inherently sequential devices
and limited in random performance. Sequential performance is generally measured
in MBps or GBps, whereas, random performance is measured in IO per seconds
(IOPs). The fastest hard drives on the market provide at best 350 IOPS under
random workloads. However, real world applications are random by nature.

2 SAS and SATA SSDs 39

In contrast to hard drives, solid state drives are electronic devices. There are no
mechanical elements on a solid state drive. Data is stored in NAND Flash devices,
and is retrieved from the NAND Flash by on board controller. All blocks of data on
the NAND Flash are equally accessible by the controller, i.e., there are no rotational
and/or seek latencies to get to the right block of data.

Performance, reliability, and endurance of SSDs are highly dependent on the
design of the SSD controllers as discussed in earlier sections.

How efficiently HW (Hardware) and FW (Firmware) of the SSD controller
handle data streaming while also performing Flash management determines the
performance of the SSD. Controllers in enterprise SAS and SATA SSDs are
designed to maintain consistent performance behavior while transferring data,
regardless of the amount of Flash capacity in use, and irrespective of the volume of
traffic being generated to the drive at any point in time. Wear-leveling operations
and background media error correction algorithms are designed so that data transfer
performance to the host is unchanged while these operations run in the background.
An enterprise-class SSD is designed to handle these heavy workloads 24/7/365 for
5 years or more.

To be of real value, SSD performance needs to be measured after the SSD
reaches steady. Performance measured on a fresh out of the box SSD—SAS or
SATA will not truly represent the performance of the drive in a real deployment.
Therefore, before measuring SSD performance, one must precondition the SSD
under test. This is accomplished by writing random data patterns to completely fill
all NAND blocks and engage the drive’s wear-leveling and Flash management
routines. Properly managing data flow and internal NAND will make the mea-
surement a more useful gauge of SSD performance under real-world conditions.
Figure 2.7 illustrates the higher performance of fresh out of box SSDs that reach
steady state after pre-conditioning the SSD.

Pre-conditioning is essential on SSDs

40000 55D performance 55D performance
Fresh out of box > Steady State -
35000
30000
w 25000
o -
= 20000
15000 \
10000 | \ S
5000
0+
VDWW L W LN L LI N W N L WL L N W W WD WD W W U0 U W N W W W W D WD n
™ S~ O M WUOMNWM = O MWD = O MO OMN WM ™ s O M WO
AR A NN NMMMTIIIITNNNODOORNRNDORDANS S S
Time (min)

Fig. 2.7 Effect of preconditioning on performances

40 S. Yasarapu

Random Workloads

100%

70%

Reads

I'”

0%

0 50000 100000 150000 200000 250000 300000 350000 400000 450000
I0PS

B SATASSD W SAS SSD

Fig. 2.8 SAS versus SATA under random workloads

To understand the real world benefits of SAS and SATA SSDs, performance is
usually measured for large block 128 KB or larger sequential and small block 4 KB
or 8 KB random read, write and mixed workloads.

Figures 2.8 and 2.9 show a real world comparison between SAS and SATA
SSDs. As seen in these charts, SAS SSDs deliver almost 4 X higher performance
compared to SATA SSDs.

As seen from the charts above, both type of enterprise SSDs—SAS or SATA,
have place in the data center. SAS SSDs are used for high end performance critical
enterprise systems and SATA SSDs are used with mid-range or entry level systems.

Sequential Workloads

100%

Reads

|

0%
0 500 1000 1500 2000 2500
MBps
W SATASSD mSAS SSD

Fig. 2.9 SAS versus SATA under sequential workloads

2 SAS and SATA SSDs 41

2.4 What’s Ahead

SATA and SAS based SSDs have been adopted in consumer and enterprise
applications. This adoption is expected to continue and expand in the coming years.
Data center and enterprise applications are using increasingly large amounts of
SSDs and also SSDs of higher capacities to deliver on the need for ever increasing
demands for data storage. As the NAND Flash geometries shrink, the capacity of
SAS SSDs is expected to increase to address this need for higher capacity SSDs.

On the SATA front, the SATA protocol is expected to continue to deliver 6
Gbps interface speeds for the near future. However, for faster SSDs, industry is
expected to adopt PCle SSDs in future generations of server and storage
environments.

On the SAS front, the protocol is expected to continue to deliver 12 Gbps
interface speeds for the foreseeable future. There are development efforts ongoing
to enable a higher speed SAS interface 24 Gbps. However, it is unclear to what
extent the industry will widely adopt a faster SAS 24 Gbps interface or if enterprise
will continue to use 12 Gbps SAS SSDs for vast majority of mainstream
appplications.

As discussed above, enterprise solid state drives increase the performance and
reliability of the enterprise while reducing the overall space, power, and energy
footprint of the data centers. Key features for the enterprise are long service life,
high endurance, consistent and high performance, high reliability which are
delivered by SAS and/or SATA SSDs.

Choosing the right SSD—SATA or SAS, depends on the end user application.
Use of SSDs leads to improved performance, higher reliability and reduced power
space and energy consumption which reduces capital and operating expenses of
next generation data centers. This is what makes SSDs a great product to enable
highest levels of performance and fast access to data in consumer as well as
enterprise applications.

References

1. www.hgst.com
2. http://www.t10.org

http://www.t10.org

Chapter 3 M)
Hybrid Storage Systems Skl

Rino Micheloni, Luca Crippa and M. Picca

Abstract In recent years, both industry and academia have increased their research
effort in the hybrid memory management space, developing a wide variety of
systems. It is worth mentioning that “hybrid” is a generic term and it can have
different meanings depending on the context. For instance, a storage system can be
hybrid because it combines HDD and SSD; an SSD can be hybrid because it
combines SLC, MLC and TLC Flash memories, or it combines NAND with
Storage Class Memories (SCMs), which are non-volatile memories like ReRAM,
PCM or MRAM. In this chapter we look at all these different meanings. The last
section covers over-provisioning and the Write Amplification Factor (WAF): these
parameters have a great impact on SSD performances and reliability, as well as on
the available storage capacity.

3.1 NAND Flash Memory and HDD

If we look at the DRAM history [1], DRAM data access speeds have increased at a
faster pace than Hard Disk Drives (HDDs), leaving a gap in the memory hierarchy
as shown in Fig. 3.1. The gap in read and write performances between DRAM and
HDD has widened over the last decade, thus leaving an opportunity for a new
intermediate memory/storage technology between HDDs and DRAM: NAND Flash
memories and SCMs can fill this performance gap.

While HDDs are common secondary storage devices, their high power con-
sumption and low shock resistance limit them as an ideal mobile storage solution

R. Micheloni (=) - L. Crippa
Storage Solutions, Microsemi Corporation, Vimercate, MB, Italy
e-mail: rino.micheloni @ieee.org

L. Crippa
e-mail: luca.crippa@ieee.org

M. Picca
STMicroelectronics, Cornaredo, Italy
e-mail: massimiliano.picca@st.com

© Springer Nature Singapore Pte Ltd. 2018 43
R. Micheloni et al. (eds.), Inside Solid State Drives (SSDs),

Springer Series in Advanced Microelectronics 37,

https://doi.org/10.1007/978-981-13-0599-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_3&domain=pdf

44 R. Micheloni et al.

A Volarile
[MB/s]

(*) Storage Class Memory

Non-Volatile

Data access speed

" _ HDD/DRAM gap
Increasing year-after-year

Y

. Cd
Price [S/GB]

Fig. 3.1 Memory hierarchy

[2]. On the other hand, Flash memories (especially of NAND type) overcome the
main problems of HDDs, but they are still more expensive and can only support a
limited number of program/erase cycles [3].

Researchers generally agree that disk-storage performance is subject to the
handling of small files and filesystem metadata. Unlike traditional disk storage,
Flash memory has no seek penalty, but is subject to garbage collection and wear
leveling.

To avoid excessive wear-out of Flash memories, and to mitigate their low write
throughput, it is a good approach to migrate frequently-read data to the Flash and
frequently-written data to HDD, as sketched in Fig. 3.2. In other words, there
should be a caching software that dynamically manages the use of the entire drive
capacity for superior overall storage performance, where the most frequently/
recently used “hot” data are cached for ultra-fast access, while the “cold” data
remains on the primary storage partition.

The trade-offs associated with HDDs and Flash memories motivate lots of
storage system designs [4-8]. Many applications use Flash memory as a
non-volatile cache storing data blocks which are likely to be accessed in the near
future, and thus allowing the disk to spin down for longer periods.

However, these schemes treat flash memory as complement of DRAM buffer
cache, and only a subset of data blocks are cached in flash memory; as a result, the
disk is used quite frequently due to cache misses or flushing. As flash memory’s
capacity increases, a real hybrid secondary storage solution is expected to be more
effective [9]. Different from data block level cache, Flash memory stores files and
can be accessed independently in hybrid secondary storage system.

3 Hybrid Storage Systems 45

PC/HOST

A

A 4

Memory MANAGER

A 4

A

HOT DATA COLD DATA

A 4 A 4

FLASH MEMORY

Hard Disk

Fig. 3.2 The hybrid storage system

In recent years, both industry and academia have increased their research effort
in the hybrid memory management space, developing a wide variety of systems
[10-12]. At this point it is worth mentioning that “hybrid” is a generic term and it
can have different meanings depending on the context. Figure 3.3 is a summary of
what a hybrid storage could be.

We will look at various combinations of Flash memory and HDDs in the fol-
lowing sections.

3.2 External NAND + HDD

One of the first examples of NAND used as an external memory was ReadyBoost
[13-15]. It works by using flash memory, a USB flash drive, SD card, Com-
pactFlash or any kind of portable flash mass storage system as a cache, as shown in
Fig. 3.4.

The core idea of ReadyBoost is that a flash drive has a much faster seek time
than HDD, allowing it to satisfy requests faster than reading files from the hard
disk.

When an EXternal Memory (EXM) is plugged into the computing device, the
system populates EXM with disk sectors and/or memory sectors. The system routes
I/O read requests directed to the sector to the EXM cache instead of the actual

46

External NAND NAND on NAND SSD
+ Motherboard + +
HDD + HDD HDD
HDD
—>| HYBRID SSD
| y
NAND SLC NAND
+ +
NAND MLC PCM/FeRAM/MRAM/
ReRAM
Fig. 3.3 Hybrid storage overview
HOST/PC
2
4
» Memory MANAGER [«
A 4
External Memory DRAM e >
MANAGER
* ROM | =
(BIOS) | i’
v CD/DVD v
EXTERNAL
MEMORY DEVICE | =
FLASH CARD/
USB
xGB
Hard Disk

HYBRID STOR

AGE

—>| FLASH + HDD

R. Micheloni et al.

A 4

A 4

Fig. 3.4 Flash memory as external memory device

3 Hybrid Storage Systems 47

sector. The use of EXMs increases performance and productivity on the computing
device systems for a fraction of the cost of adding memory to the computing device.
The system detects when an EXM is used for the first time. Once the type of
EXM is discovered, a driver is installed and it is used to cache disk sectors on the
external memory. Sectors from any disk and/or slower memory device on the
system can be cached to EXM. Without a prior knowledge of which sectors are
valuable in terms of frequent access, the system may use data on the computing
machine to determine which sectors are used to populate the EXM cache. Alter-
natively, the system populates the EXM cache with a particular sector when that
particular sector is accessed during operation. The next time that particular sector is
to be accessed for a read operation, the system directs the read operation to access
the copy from the EXM. The system may track usage patterns and determine which
disk sectors are most frequently accessed. On subsequent uses of the EXM, the
system caches those sectors that are most frequently accessed onto the EXM. If the
EXM is present when the computing device is powered up, the EXM can be
pre-populated with data during start-up of the operating system [13].

3.3 NAND on Motherboard + HDD

Computer motherboards contain the processor chip and some high performance
SRAM and DRAM memories. In the last few years there have been proposals to
add Flash memory to the computer motherboard for a non-volatile memory layer to
the motherboard memory/storage architecture. The motherboard Flash memory
could be inserted into the motherboard with an ONFI module or DIMMs similar to
those currently used for DRAM, allowing memory replacement when faster or
larger memory becomes available.

Intel introduced a motherboard Flash memory technology in 2007, known as
“Robson Technology” or “Turbo Memory” [16, 17]. This early implementation ran
into issues due to lack of support for management of Flash/HDD partition in main
operating systems. In fact, central to the operation of any hybrid storage computer
architecture is management to determine which data is to be kept on the HDD and
which data will be kept on the Flash memory.

Figure 3.5 shows a storage management controller that determines what data
should be stored on each memory device. This storage management function must
balance the needs of data access, power savings opportunities, and data security.

As with any NAND based memory product solution, the NAND flash memory
controller is also key in executing the NAND wear leveling algorithm, managing
the reads, writes, erases, and performing the ECC (Error Correction Code) as
needed [16].

With NAND moving into the demanding computing environment, the wear
leveling algorithm must comprehend not only the usage statistics of the NAND
flash but also track the key reliability statistics. In other words, the controller must

48 R. Micheloni et al.

PC/HOST Motherboard

B — —

l—» Memory MANAGER

A

A

DRAM L

A

FLASH Memory
MANAGER

¢

FLASH MEMORY

UL

Fig. 3.5 Flash on computer motherboard

Hard Disk

track all the failure mechanisms known in the NAND Flash industry (Chap. 9):
program disturb, read disturb, program/erase cycles, data retention, etc.

In the next section, HDD is combined with another drive, a Solid State Drive
(SSD).

3.4 NAND/SSD + HDD

A block diagram of the monolithic HDD + SSD solution, usually referred to as
hybrid drive, is shown in Fig. 3.6 [18-25]. A Solid State Drive is made up of
several NAND chips plus a controller: therefore, all the considerations of this
section also apply to a storage system composed by HDD and a single NAND
device. Unlike standard HDDs, the hybrid drive in its normal state has its platters at
rest, without consuming power or generating heat. When reading data from the
platters, extra data are read and stored in buffer memory in the hope of anticipating
future requirements as in any disk cache. For example, data required for the next
boot-up can be stored in the non-volatile buffer before shutting down the computer.

In 2010 Seagate released the Momentus XT [20, 21], which uses so-called
“adaptive memory” for its SSD portion, which does not rely on driver support from
the operating system. This removes the need for a special operating system, and the
speed benefits can be used by any OS.

3 Hybrid Storage Systems 49

PC/HOST
Memory MANAGER
b
PCIe/SATA

A\ 4

Hybrid Drive

FLASH MEMORY
SSD

Hard Disk

Fig. 3.6 Monolithic hybrid drive

The Flash memory is used to store frequently accessed content using an adaptive
memory algorithm. This algorithm monitors data access transactions and maintains
frequently accessed data on the Flash memory. The drive includes software that
tracks a person’s use trends and then uses the SSD component of the drive to
optimize performance, and it can adjust that performance over time with changes in
user behavior. Up to 50% performance improvement is seen between the first and
second iteration of data access [18].

Manufacturers claim several benefits of the hybrid drive over standard hard
drives, especially for use in notebook computers: among them, speed of data access
and consequent faster computer boot process, decreased power consumption, and
improved reliability.

There are some drawbacks too, especially when accessing non-cached data. In
fact, if the data being accessed is not in the cache and the drive has spun down,
access time will be greatly increased since the platters will need to spin up.

Another concern is the lower performance for small disk writes. NAND is
significantly slower when writing small data; an effect that is amplified when the file
system is using journaling techniques.

Anyhow, hybrid drives have a great potential and the industry is actively
working in this field. As a matter of fact, Windows Vista and Windows 7 natively
support the use of hybrid drives (ReadyDrive) [22].

As mentioned, a NAND device can experience a limited number of program/
erase cycles. With the hybrid drive, a simple solution to mitigate this wear-out effect
would be to place all the data that is accessed by read operations on the Flash

50 R. Micheloni et al.

memory device, and the remaining data on the HDD. This placement would save a
substantial amount of the energy consumption while a longer lifetime for the Flash
memory device is expected [12].

However, in practice, we cannot know in advance whether data should be placed
on the Flash memory device or the hard disk.

We now review an existing method of skewing frequently accessed data, called
Popular Data Concentration (PDC): it was proposed by Pinheiro and Bianchini
[23] to deal with the highly skewed file access frequencies exhibited by the
workloads of network servers. The idea of PDC is to concentrate the most popular
(i.e. most frequently accessed) disk data by migrating it to a subset of the disks, so
that the other disks can be sent to a low-power mode to conserve energy. PDC
redistributes data across the disk array according to its popularity, so that the first
disk stores the most popular data, the second disk stores the next most popular data,
and so on.

However, if the frequency of file access varies significantly with time, PDC may
cause a lot of file migrations, which will increase energy use, in particular by
disturbing idle disks. This also happens when new files are created, because they
will be stored on the disk with the least popular data, which has to be woken up.

PDC concentrates on popular data without considering whether I/O accesses are
reads or writes. If we split I/O transactions into reads and writes and move only the
data corresponding to one sort of access, we can reduce the amount of migrations.
For instance, if the total amount of data associated with reads is less than that
associated with writes, then transferring the data that is being read will be more
profitable. This scheme is called PB-PDC (pattern-based PDC): it improves the
PDC technique by moving frequently-accessed read and write data to separate sets
of disks [9].

Thus, while the disks containing data which are accessed in one way (read or
write) are being accessed frequently, the disks storing data accessed in the other
way can be sent to a low power mode to conserve energy.

We can apply PB-PDC to a hybrid drive. Because a Flash memory device has
low write throughput and limited erasure cycles, PB-PDC moves the popular write
data to the hard disk and the popular read data to the Flash memory device.

Another possible approach when looking at data partitioning within a hybrid
drive is to employ cache device organization where a subset of disks are treated in
the storage system as cache disks to absorb I/O traffic [24].

Summarizing, PDC does not ask for file duplication while, in the caching
approach, files in Flash memory are a copy of that on disk.

The cached file selection algorithm decides files to be cached in Flash. Usually,
both static and dynamic types of selections can be used. The static approach is more
suitable for files frequently accessed by users: for example, the operating system,
compiler and some C libraries.

When the remaining capacity of Flash memory cache device reaches a threshold
value, replacement is needed. The main guideline for replacement algorithm is that
files accessed less frequently and files that will not be accessed in near future should

3 Hybrid Storage Systems 51

PC/HOST
» Memory MANAGER (<
PCIe/SAS/SATA SAS/SATA

\4 v

SSD-Cache

Hard Disk

Fig. 3.7 SSD-Cache

be removed from Flash memory cache. The oldest and yet still widely used algo-
rithm in cache management is LRU [12].

The above mentioned algorithms are just a small part of what is available in the
open literature: it is clear that in order to really exploit all the benefits of hybrid
storage, it is fundamental to decide where it is the right place to store data,
depending on their characteristics. Of course, workloads are application and user
specific: therefore, the storage management algorithm should be able to adapt to
different needs.

At the end of this section it is worth mentioning that another term is becoming
very popular in the hybrid storage world: SSD-Cache [26].

SSD-Cache is a discrete, separate memory component, as sketched in Fig. 3.7:
in other words, HDD and SSD are housed separately. While all the hot/cold topics
mentioned above remain valid, discrete cache SSDs and HDDs are easier to scale,
with a broad selection of drive manufacturers [27-32].

3.5 Hybrid SSD

NAND Flash memories fall into different categories, depending on the number of
bits stored inside the same physical cell [33], as shown in Fig. 3.8. SLC and MLC
store 1 and 2 bits per cell, respectively. Triple-Level Cell (TLC) stores 3 bits within

32 R. Micheloni et al.

Fig. 3.8 NAND Flash
families Price
[$/GB]

Endurance
[max #P/E Cycles]

Retention

[fail/year]
[MB/s]
TLC \
QLC \

a memory cell; 4 bit/cell is called QLC and has been already announced by all Flash
manufacturers.

Downsides of storing more bits per cell are slower speeds, higher error rates and
lower endurance/retention [34, 35]. The advantage is clearly the reduced silicon
area, and therefore cost [30, 36, 37].

eTLC (“e” stands for enterprise) offers a higher number of erase/program cycles.
For instance, if standard TLC runs for 3 k, eTLC can withstand 7-10 k [38].

Table 3.1 compares typical SLC, MLC, TLC and QLC specifications [38]: SLC
is much faster than all the others during both read and write.

Performances of an individual Flash device are still insufficient to meet the
bandwidth requirements of the interface (SAS/SATA/PCle) and, therefore, inter-
leaving is very common in most high-performance SSDs. The interleaving tech-
nique is also useful to extend the endurance because write operations can be
distributed over multiple devices [39].

Because of the cost benefit, there have been many attempts to address perfor-
mance and endurance problems in TLC-based storage systems. One possible
approach is to combine SLC and TLC Flash memories inside a single SSD, which
is then called “hybrid” [40-46]. A basic block diagram is shown in Fig. 3.9. The
goal of this hybrid-SSD design is to achieve the response time of SLC, while
having the cost structure of TLC. In other words, SLC capacity must be small. It is
worthwhile to highlight that most of the modern TLC devices allow users to
configure some or all the blocks in SLC mode. Therefore, in this case, the NAND
itself can be viewed as a hybrid device.

The basic idea is to use SLC for storing small random (hot) data and TLC for
large sequential (cold) data [47-54]. In fact, SLC has better endurance and small
random data tend to be updated more frequently. However, TLC is still the limiting
factor when long sequential data writes frequently occur to the storage.

Figure 3.10 shows a possible data flow during write. Every write request enters
in the “Data Sensor”: cold data directly go to TLC. Hot data move to another block
called “Utilization Limiter”. If the SLC NAND blocks wear out too fast, this limiter
has the task to reduce the write traffic to SLC blcoks. In other words, a second level

3 Hybrid Storage Systems 53

Table 3.1 SLC, MLC, TLC NAND type SLC |MLC TLC |QLC

and QLC specifications Page read (is) 25 | 50-60 80-90 | 300
Page write (ps) 200 800-1,200 | 3,000 15,000
Block erase (ms) 10 10 10 10
Endurance (k) 50 |20 3-7 1

Fig. 3.9 SLC + MLC
hybrid SSD SDRAM
Flash
pController
SDRAM

of data classification is adopted: hot-data go to SLC and quasi-hot-data are switched
to TLC.

As mentioned, SLC capacity has to be small; therefore, when data become cold,
they should be removed from SLC in order to maximize the space for hot data.

At this point it is clear that the foundation of this approach is the ability of
classifying data. A lot of methods to identify hot data have proposed, including
LRU, LRU-k [55], hash-table-based approaches [48, 49, 56]. The reader can refer
to this extensive literature for more details.

Chang [49] showed that, by adding a 256 MB SLC Flash to a 20 GB MLC-Flash
array, the hybrid SSD improves over a conventional SSD by 4.85 times in terms of
average response. The average throughput and energy consumption are improved
by 17% and 14%, respectively. The hybrid SSD is only 2% more expensive than a
purely MLC-Flash-based SSD.

Of course, the hybrid concept can be extended to a Solid State Drive made up by
different types of NAND memories, as shown in Fig. 3.11 [57, 58].

3.6 Over-Provisioning

When looking at the overall capacity of a solid state drive, over-provisioning must
be taken into account. Over-provisioning is the difference between the physical
capacity of the Flash memory and the logical capacity available for the user. Of
course, this is also true for hybrid SSDs [59].

54 R. Micheloni et al.

LC FLASH
Wear level info SLC S
|————— = — === == — = =
I
I hot | garbage
I >
I
I
| | Utilization | quasi-hot
—>
Limiter
! no more hot
hot < v
Data write Data cold v @
Sensor

A A 4

TLC FLASH TLC FLASH

The idea behind over-provisioning is to have a “reserve” of spare blocks that can
be used by the controller.

Let’s assume an application that wants to randomly write data to the SSD drive.
The drive controller writes these data to some erased pages in a particular block.
After a while, the application decides to update the content: given the nature of
Flash memories, this would imply erasing the block. In order to improve perfor-
mances, the drive controller just marks those pages as unavailable and writes the
new content to different physical pages: actually, no electrical erase takes place.
When the entire block has been used and another write comes in, a real erase

operation is needed. At this point, the controller needs to go through the following
process:

Fig. 3.10 Write flow

e copy the entire content of the block to a temporary location (likely cache);
e remove the unused data from the cache;

3 Hybrid Storage Systems 55

FLASH
TYPE 1
DRAM %:E g:E %E
PC/HOST <: DATA BUS (Read/Write) >
FLASH FLASH
TYPE 2 TYPEn

LU UL
I

Fig. 3.11 Hybrid SSD including different types of NAND Flash memories

add the new data to the block in cache;
erase the addressed block on the SSD drive;
copy the entire block from the cache;
empty the cache.

This sequence is very time consuming and kills write throughput performances
[59, 60]. When over-provisioning is used, the flow can be different. Instead of
having to erase the unavailable portion of the block to accommodate new data, the
controller can use some of the spare space instead. This means that the sequence of
reading the entire block, merging the new data, erasing the block, and writing the
entire new block back, can be avoided. The controller just maps spare space to be
part of the drive capacity (so it is seen by the OS) and moves the unused pages to
the spare capacity portion of the drive.

Anyhow, at some point the unavailable pages will have to be erased forcing the
erase/write sequence mentioned above. In real world applications, 100% random
writes are unlikely and the Flash controller does the erase/write sequence in

56 R. Micheloni et al.

WAF [a.u]

| | | | |
20% 40% 60% 80% 100%

Over-provisioned capacity

Fig. 3.12 Write amplification factor (WAF) versus over-provisioned capacity

background or when the drive is not in use. To get to the worst case, the host has to
randomly write across all the drive’s capacity without stopping to read.

Some controllers may not actively defragment the space to save costs, so the
worst case performance becomes typical after the drive has been written few times.

Spare capacity can also be used when “bad” areas develop in the drive. For
example, if a certain set of pages/blocks has much fewer remaining erase/write
cycles than most of the drive, then the controller can remap them to spare pages/
blocks. Moreover, the controller can watch for bad writes and use the spare capacity
as a “backup” (similar to extra blocks on hard drives). The controller can check for
bad writes by doing read-after-write (reads are much faster than writes).

During the garbage collection, wear-leveling, and bad block mapping operations
inside the SSD, the additional space from over-provisioning helps lowering the
Write Amplification Factor (WAF) [60-63]; this factor corresponds to the addi-
tional writes caused by garbage collection (see flow above) and wear leveling
(Chap. 9). Jedec defines WAF as the data written to the Flash divided by data
written by the host to the SSD [64].

Figure 3.12 sketches a typical behavior of WAF vs. over-provisioned capacity.
In commercial products over-provisioned capacity is usually around 30%. On one
side, with a very small over-provisioning percent, the amount of data “moves” that
have to take place can be very high, lowering the achievable write IOPS. On the
other side, still looking at Fig. 3.12, 30% looks a good trade-off between perfor-
mances and area (cost): in fact, beyond 30% WAF reduces at a lower rate [60].

In summary, reducing the amount of over-provisioned capacity can lower the
cost per GigaByte, but then WAF can become a real problem. Please bear in mind
that the over-provisioned space shrinks over time as it is also intended to coun-
termeasure wear out of Flash blocks.

3 Hybrid Storage Systems 57

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

. The DRAM story, with articles by Dennard, Itoh, Koyanagi, Sunami, Foss and Isaac.

IEEE SSCS News. 13(1) (Winter 2008), www.ieee.org/sscs-news

. D. Baral, Life Cycle Power Consumption HDD Vs. SSD, Flash Memory Summit, Session 101

(Storage Labs Samsung Information Systems America, San Jose, 2009)

. V. Kasavajhala, Solid State Drive vs. Hard Disk Drive Price and Performance Study (Dell

Technical White Paper, Dell Power Vault Storage Systems, May 2011), http://www.dell.com/
downloads/global/products/pvaul/en/ssd_vs_hdd_price_and_performance_study.pdf

. B. Marsh, F. Douglis, P. Krishnan, Flash memory file caching for mobile computers, in

Proceedings of the Twenty-Seventh Hawaii International Conference on System Sciences,
Wailea, HI (1994), pp. 451-460

. T. Bisson, S.A. Brandt, D.D.E. Long, NVCache: increasing the effectiveness of disk

spin-down algorithms with caching, in MASCOTS 2006, Monterey (2006), pp. 422-432

. T. Bission, S. Brandt, Reducing energy consumption with a non-volatile storage cache, in

Proceedings of International Workshop on Software Support for Portable Storage, San
Francisco, CA (2005)

. F. Chen, S. Jiang, X. Zhang, SmartSaver: turning flash drive into a disk energy saver for

mobile computers, in Proceedings of the 2006 International Symposium on Low Power
Electronics and Design, Tegernsee, Germany (2006), pp. 412417

. R. Panabaker, Hybrid hard disk and ReadyDrive™ technology, improving performance and

power for windows vista mobile PCs, in Proceedings of MicrosoftWinHEC, Los Angeles, CA
(2006)

. Y.-J. Kim, K.-T. Kwon, J. Kim, Energy-efficient file placement techniques for heterogeneous

mobile storage systems, in Proceedings of the 6th ACM & IEEE International Conference on
Embedded software, Seoul, Korea (2006), pp. 171-177

T. Kgil, T. Mudge, FlashCache: a NAND Flash memory file cache for low power web servers,
in Proceedings of the International Conference on Compilers, Architecture and Synthesis for
Embedded Systems, Seoul, Korea (2006)

T. Kgil, D. Roberts, T. Mudge, Improving NAND Flash based disk caches, in ISCA’08
Proceedings of the 35th Annual International Symposium on Computer Architecture, Beijing,
China

S. Liu, X. Cheng, X. Guan, D. Tong, in Energy Efficient Management Scheme for
Heterogeneous Secondary Storage System in Mobile Computers SAC’10, Sierre, Switzerland,
22-26 March 2010

A. Kirshenbaum et al., Using external memory devices to improve system performance, U.S.
Patent No. 7,805,571 and U.S. Patent application No. 20100217929, Assignee: Microsoft
Corporation

Microsoft Windows, Windows 7 features—ReadyBoost—Microsoft Windows, http:/
windows.microsoft.com/en-US/windows7/products/features/readyboost

W.R. Stanek, Windows 7: The Definitive Guide (O’Reilly Media, 2010), Sebastopol, CA
95472, pp. 105-109

White Paper Intel® Flash Memory Intel® NAND Flash Memory for Intel® Turbo Memory
(2007), http://download.intel.com/design/flash/nand/turbomemory/whitepaper.pdf

Intel® Turbo Memory—Overview and Support, http://www.intel.com/cd/channel/reseller/
apac/eng/products/mobile/mprod/turbo_memory/396715.htm

T. Coughlin, J. Handy, Two May Be Better Than One: Why Hard Disk Drives and Flash
Belong Together (White Paper SNIA, Feb 2011), http://www.snia.org/sites/default/files/
Storage%20Pairing %20WP%20FEB %20201 1.pdf

T. Coughlin, J. Handy, HDDs and Flash Memory: A Marriage of Convenience (SNIA, Feb
2011), http://www.snia.org/sites/default/files2/SDC201 1/presentations/Monday/
TomCoughlin_and_Handy_HDDS_Flash_Memory.pdf

http://www.ieee.org/sscs-news
http://www.dell.com/downloads/global/products/pvaul/en/ssd_vs_hdd_price_and_performance_study.pdf
http://www.dell.com/downloads/global/products/pvaul/en/ssd_vs_hdd_price_and_performance_study.pdf
http://windows.microsoft.com/en-US/windows7/products/features/readyboost
http://windows.microsoft.com/en-US/windows7/products/features/readyboost
http://download.intel.com/design/flash/nand/turbomemory/whitepaper.pdf
http://www.intel.com/cd/channel/reseller/apac/eng/products/mobile/mprod/turbo_memory/396715.htm
http://www.intel.com/cd/channel/reseller/apac/eng/products/mobile/mprod/turbo_memory/396715.htm
http://www.snia.org/sites/default/files/Storage%20Pairing%20WP%20FEB%202011.pdf
http://www.snia.org/sites/default/files/Storage%20Pairing%20WP%20FEB%202011.pdf
http://www.snia.org/sites/default/files2/SDC2011/presentations/Monday/TomCoughlin_and_Handy_HDDS_Flash_Memory.pdf
http://www.snia.org/sites/default/files2/SDC2011/presentations/Monday/TomCoughlin_and_Handy_HDDS_Flash_Memory.pdf

58

20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

30.
31.
32.
33.
34.
35.
36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

R. Micheloni et al.

Seagate MomentusXT Datasheet, http://www.seagate.com/files/staticfiles/docs/pdf/datasheet/
disc/momentus-xt-data-sheet-ds1704-4-1205-us.pdf

Seagate MomentusXT: Overview features and specs, http://www.seagate.com/internal-hard-
drives/laptop-hard-drives/momentus-xt-hybrid/

R. Panabaker, Hybrid hard disk and ReadyDrive™ technology: improving performance and
power for windows vista mobile PCs, in Proceedings of Microsoft WinHEC (2006)

E. Pinheiro, R. Bianchini, Energy conservation techniques for disk array-based servers, in
Proceedings of the 18th International Conference on Supercomputing (ICS’04), June 2004
D. Colarelli, D. Grunwald, Massive arrays of idle disks for storage archives, in Proceedings of
the 2002 ACM/IEEE Conference on Supercomputing, Baltimore, MD (2002), pp. 1-11

G. Symons, Hybrid SSD/HDD Storage: A New Tier? Flash Memory Summit (Xiotech
Corporation, Colorado Springs, 2011)

Intel® RAID SSD Cache 2.0, http://www.intelraid.com/uploads/Inte]_RAID_SSD_Cache2_
PB_080911.pdf

Intel® Solid-State Drive 313 Series, http://www.intel.com/content/www/us/en/solid-state-
drives/solid-state-drives-313-series.html

Adaptec maxCache 2.0 Series, http://www.adaptec.com/en-us/_common/maxcache/

OCZ Synapse Cache SATA III 2.5” SSD, http://www.ocztechnology.com/ocz-synapse-cache-
sata-iii-2-5-ssd.html

Corsair Accelerator Series SSD Cache, http://www.corsair.com/ssd/accelerator-series-ssd-
cache-drives.html

LSI Nytro MegaRAID Application, http://www.Isi.com/products/storagecomponents/Pages/
NytroMegaRaid.aspx

Crucial Adrenaline Solid State Cache (Windows 7 PCs), http://www.crucial.com/store/ssc.
aspx

R. Micheloni, L. Crippa, A. Marelli, Inside NAND Flash Memories (Springer, New York,
2010)

N. Duann, SLC & MLC Hybrid, Flash Memory Summit (Silicon Motion, Inc., 2011)

B. Chang, SSD with Hybrid NAND Novachips, Flash Memory Summit, 2011

Y. Koh, NAND Flash Scaling beyond 20 nm, in IMW 09, IEEE International Memory
Workshop (2009)

White paper, Engineering MLC Flash-Based SSDs to Reduce Total Cost of Ownership in
Enterprise SSD Deployments, STEC’s CellCare™ Technology, http://www.stec-inc.com/
downloads/MLC_flash_based_SSDs_Reduce_TCO.pdf

C.C. Wu, Quality comparison of SLC, MLC and eMLC., in InnoDisk International Memory
Workshop IMW, San Diego, CA (2011)

E. Bek, A. Klein, The Future of SSD Architectures, International Memory Workshop IMW,
SanDisk (2011)

W.H. Radke et al., Hybrid memory management, U.S. Patent No. 8,060,719, Assigned:
Micron Technology, Inc., 28 May 2008

C. Lee et al., Hybrid SSD using a combination of SLC and MLC flash memory arrays, U.S.
Patent No. 8078794, Assignee: Super Talent Electronics, Inc., San Jose, 29 Oct 2007

Y.S. Kim, Semiconductor memory device, and multi-chip package and method of operating
the same, U.S. Patent No. 8085569, Assignee: Hynix Semiconductor Inc., 14 Dec 2010

H. Tan et al., Portable data storage using SLC and MLC flash memory, U.S. Patent
App. No. 20080215801, Assignee: Trek 2000 International Ltd., 28 Sept 2005

M. Moshayedi, Enhanced MLC solid state device, U.S. Patent App. No. 20090327590,
Assignee: STEC, Inc., 24 June 2009

M. Moshayedi, SLC-MLC combination flash storage device, U.S. Patent
App. No. 20090327591, Assignee: STEC, INC., 24 June 2009

L.E. Aszmann et al., Solid state drive data storage system and method, U.S. Patent
App. No. 20110010488 (12 Jul 2009)

T.-W. Kuo et al., Configurability of performance and overheads in Flash Management, in //th
Asia and South Pacific Design Automation Conference (ASP-DAC) (2006)

http://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/momentus-xt-data-sheet-ds1704-4-1205-us.pdf
http://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/momentus-xt-data-sheet-ds1704-4-1205-us.pdf
http://www.seagate.com/internal-hard-drives/laptop-hard-drives/momentus-xt-hybrid/
http://www.seagate.com/internal-hard-drives/laptop-hard-drives/momentus-xt-hybrid/
http://www.intelraid.com/uploads/Intel_RAID_SSD_Cache2_PB_080911.pdf
http://www.intelraid.com/uploads/Intel_RAID_SSD_Cache2_PB_080911.pdf
http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-313-series.html
http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-313-series.html
http://www.adaptec.com/en-us/_common/maxcache/
http://www.ocztechnology.com/ocz-synapse-cache-sata-iii-2-5-ssd.html
http://www.ocztechnology.com/ocz-synapse-cache-sata-iii-2-5-ssd.html
http://www.corsair.com/ssd/accelerator-series-ssd-cache-drives.html
http://www.corsair.com/ssd/accelerator-series-ssd-cache-drives.html
http://www.lsi.com/products/storagecomponents/Pages/NytroMegaRaid.aspx
http://www.lsi.com/products/storagecomponents/Pages/NytroMegaRaid.aspx
http://www.crucial.com/store/ssc.aspx
http://www.crucial.com/store/ssc.aspx
http://www.stec-inc.com/downloads/MLC_flash_based_SSDs_Reduce_TCO.pdf
http://www.stec-inc.com/downloads/MLC_flash_based_SSDs_Reduce_TCO.pdf

3 Hybrid Storage Systems 59

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

L.-P. Chang, Hybrid solid-state disks: combining heterogeneous NAND flash in large SSDs,
in 13th IEEE/ACM Asia and South Pacific Design Automation Conference (ASP-DAC) (2008)
L.-P. Chang, A hybrid approach to NAND-flash-based solid-state disks. IEEE Trans. Comput.
59(10), 1337-1349 (2010)

L.-P. Chang, Y.-C. Su, Plugging versus logging: a new approach to write buffer management
for solid-state disks, in The 48-th Design Automation Conference (DAC), Monterey, CA
(2011)

S. Hong, D. Shin, NAND flash-based disk cache using SLC/MLC combined flash memory, in
2010 International Workshop on Storage Network Architecture and Parallel 1/Os

S. Jung, Y.H. Song, Hierarchical use of heterogeneous flash memories for high performance
and durability. IEEE Trans. Consum. Electron. 55(3), 1383-1391 (2009)

M. Murugan, D.H.C. Du, Hybrot: towards improved performance in hybrid SLC-MLC
devices, in 20th IEEE International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS) (Short Paper) (Aug 2012)

B.-W. Nam, A hybrid flash memory SSD Scheme for Enterprise Database applications, in
12th International Asia-Pacific Web Conference, Busan, Korea, 2010

E.J. O’Neil, P.E. O’Neil, G. Weikum, The LRU-k page replacement algorithm for database
disk buffering. ACM SIGMOD Rec. 22(2), 297-306 (1993)

J.W. Hsieh, T.W. Kuo, L.P. Chang, Efficient identification of hot data for Flash memory
storage systems. ACM Trans. Storage 2(1), 22-40 (2006)

J. Niu, J. Xu, L. Xie, Hybrid storage systems: a survey of architectures and algorithms. IEEE
Access (99) (2018)

C. Matsui, C. Sun, K. Takeuchi, Design of hybrid SSDs with storage class memory and
NAND Flash memory. Proc. IEEE 105(9), 1812-1821 (2017)

D.A. Heger, SSD Write Performance—IOPS Confusion Due to Poor Benchmarking
Techniques (Aug 2011), http://www.cmg.org/measureit/issues/mit82/m_82_4.pdf

X.-Y. Hu, Write amplification analysis in Flash-based solid state drives, in SYSTOR’09 (IBM
Zurich Research Laboratory, Haifa, Israel)

K. Smith, Benchmarking SSDs: The Devil is in the Preconditioning Details, Flash Memory
Summit (2009)

White Paper, Intel High-Performance SATA Solid-State Drive: Over-Provisioning an Intel
SSD, http://www.matrix44.net/cms/wp-content/uploads/2011/07/intel_over_provisioning.pdf

T. Frankie, SSD Trim Commands Considerably Improve Overprovisioning, Flash Memory
Summit (2011)

JEDEC STANDARD, Solid-State Drive (SSD) Requirements and Endurance Test Method,
JESD218 (Sept 2010), http://www jedec.org/sites/default/files/docs/JTESD218A.pdf

http://www.cmg.org/measureit/issues/mit82/m_82_4.pdf
http://www.matrix44.net/cms/wp-content/uploads/2011/07/intel_over_provisioning.pdf
http://www.jedec.org/sites/default/files/docs/JESD218A.pdf

Chapter 4 M)
2D NAND Flash Technology gt

M. F. Beug

Abstract This chapter describes the basic operating principle and presents the
major reliability and scaling limitations of floating gate NAND non-volatile
memory as used in SSD applications. It further discusses charge trapping memory
cells as a potential replacement for floating gate cells in the NAND array and
evaluates the potential of both memory cell types with regard to 3D NAND
applications as will be described in the next chapter.

4.1 Flash for SSD Application

Flash memory for non-volatile data storage was introduced commercially in the
mid-1980s. Since then, common ground NOR and NAND architecture have
become the most common memory array architectures. Traditionally, NOR Flash is
used for code storage due to faster memory cell access. NAND Flash is used for
mass data storage because of its higher memory density, enabling higher storage
capacities.

The memory cell area difference can already be seen from the schematic NOR
and NAND array images in Fig. 4.1. In the NOR array, two memory cells each
share one contact to ground and one contact to the bit line (see Fig. 4.1a). This
results in an effective memory cell area of about 10 F? (where F is the minimum
feature size). The effective memory cell area of NAND cells is only slightly more
than 4F?. Figure 4.1b shows the so-called NAND string with up to 64 memory cells
connected in a row. To operate the NAND string two additional select transistor
devices (GSL: “Ground Select Line” and SSL: “String Select Line”) and contacts to
ground (SL: “Source Line”) and the bit line (BL) need to be added. These additional
structures cause the effective cell area consumption to be slightly higher than

M. F. Beug (=)

Physikalisch-Technische Bundesanstalt (PTB), Division 2 “Electricity”, Bundesallee 100,
38116 Braunschweig, Germany

e-mail: Florian.Beug@ptb.de

© Springer Nature Singapore Pte Ltd. 2018 61
R. Micheloni et al. (eds.), Inside Solid State Drives (SSDs),

Springer Series in Advanced Microelectronics 37,

https://doi.org/10.1007/978-981-13-0599-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_4&domain=pdf

62 M. F. Beug

(a) Bit Line
WL1 wL2 WL3 WL4 WLS WLE
— = = —_— = —
i i 1 1 1 1 [—

"
i
.[|_

(b) Bit Line

GSL WL1 wL2 WL3 WL4

Fig. 4.1 Schematic memory cell organization of the NOR array (a) and the NAND array (b). The
word lines (WL) run perpendicular to the bit lines (BL)

Fig. 4.2 SEM picture of a NAND string with 32 cells per string in a 48 nm floating gate NAND
technology [2]

4F°—the theoretically smallest effective cell size. The cross section of a 48 nm
NAND technology with 32 cells per string is shown in Fig. 4.2.

For SSD application, only NAND Flash is a viable option due to the required
high memory capacity and bit cost structure. Therefore, the following sections will
focus on operation, reliability, and scaling topics of NAND Flash.

4.2 Introduction to Floating Gate NAND Operation

A floating gate memory cell stores information in terms of charge in an isolated gate
electrode (floating gate: FG). The FG is located between the memory transistor
channel and the active gate electrode (control gate: CG). This data storage principle
was proposed by Kang and Sze in 1967 [1] and enables data to be stored without
the connection of a supply voltage over time periods of several years.

4 2D NAND Flash Technology 63

4.2.1 The Floating Gate NAND Memory Structure

The schematic structure of floating gate NAND cells is shown in Fig. 4.3a, b.
Figure 4.3c, d shows the cross sections of a 48 nm floating gate NAND technology
[2]. The FG and the CG are typically made of polysilicon. For all operations of the
floating gate cell, the active control gate electrode capacitive couples to the floating
gate. The dielectric between the FG and the CG is referred to as inter-poly dielectric
(IPD) and is typically made of a silicon oxide/silicon nitride/silicon oxide triple
layer (ONO). The alterable threshold voltage of a floating gate cell, which repre-
sents the bit information, consequently depends on the coupling strength between
the FG and the CG, and the amount of charge on the FG.

The FG NAND structure in word line direction is shown in Fig. 4.3a, c.

The CG is wrapped around the FG to improve the capacitive coupling from the
CG to the FG. This reduces the operating voltages of the floating gate cells and

(b)

GSL/SSL

p-Si (cell well)

g e h p-Si

Fig. 4.3 Schematic structure of a floating gate NAND array in word line (WL) (a) and bit line
(BL) direction (b). Corresponding TEM pictures of a 48 nm floating gate NAND technology [2] in
WL direction (¢) and BL direction (d)

64 M. F. Beug

ensures a reliable operation as will be described in the next section. The active areas
(AA) of two neighboring NAND strings are separated by shallow trench insulation
(STI) and are about 200 nm deep in current generations. The memory cell transistor
gate oxide is denoted as tunnel oxide (TOX) because the charge for bit information
storage is transferred through this SiO, dielectric by quantum mechanical tunneling.

Generally, it is a very crucial point for reliable floating gate cell operation that
charge during program and erase operations is only transferred through the TOX.
Every charge transfer through the IPD (between FG and CG) needs to be urgently
avoided to prevent severe reliability issues.

In BL direction, the cell strings run as shown in Figs. 4.1a and 4.3c, d. The
floating gate cells are patterned by a vertical WL etch step. In the etched spaces
between the floating gate cells, shallow n* junctions are implanted in order to define
the memory cell transistors and reduce the string resistance. To improve the charge
retention of the memory cells, the side wall of the floating gate is passivated by a
thermal oxidation process.

The generated high quality thermal side wall oxide (SWOX) forms an effective
tunnel barrier against charge loss from the FG. Subsequently, the space between the
FG cells is filled with a deposited silicon oxide (inter-word line dielectric: IWD)
which generally has a reduced electrical quality. The select devices (GSL and SSL)
are processed together with the floating gate cells and consequently use the TOX as
the gate dielectric. The select transistor gate length is typically in the range of 150—
200 nm. To obtain a real transistor for the select devices, the word line layer is
connected to the floating gate layer. This contact is made by removing the
ONO IPD in the middle of the select transistors prior to the CG poly-Si deposition
(see Fig. 4.3d).

The complete process of a floating gate NAND technology is typically based on
3040 lithographic mask steps and includes 2 poly-Si and 3 metal levels. To obtain
the highest memory density in each technology generation, typically 3 levels are
structured in the most advanced technology node. The levels of advanced feature
size are active area/STI, word line and bit line. The bit line is either done in the first
or second metal layer. There are some more process steps with stringent litho-
graphic requirements, such as the contacts to the bit line, but also the source
contacts, the CG to FG contacts in the select devices, and others.

4.2.2 The Floating Gate Cell Capacitive Coupling Model

It was described that floating gate NAND cells are arranged in strings with up to 64
memory cells in actual NAND technologies. However for the basic understanding
of the floating gate cell functionality it is necessary to look at a single FG cell first.

Since the floating gate is isolated from the active control gate, all voltages for
operation of the memory cell need to be capacitively coupled to the floating gate. In

4 2D NAND Flash Technology 65

Fig. 4.4 Capacitance model Veg
of a floating gate memory
device
Ceo ———
Vs Qe

principle, the floating gate cell forms a capacitive voltage divider which is typically
described with the aid of the FG cell capacitive coupling model [3] as shown in
Fig. 4.4.

It describes the voltage of the floating gate as a function of the other terminals of
a FG cell. These terminals are typically source (Vg), drain (Vp), the bulk terminal
(Vp), the control gate (Vcg), and a number of other (parasitic) terminals. All these
terminal voltages are capacitive coupled to the floating gate. The floating gate
voltage can be written as

C
VFG=()(G~VCG+()(S'Vs+0(D‘VD-|-ﬂ !/ Qro

CT N C_T + E Qother * Vother~ (41)

The gate coupling ratio o in (4.1) is a key factor and is defined as

Cca
= 4.2
oG Cr (4.2)

Cr is the total capacitance and is given by
CT:CCG+CTOX +Cs +CD + ZCother. (43)

The sum of C,,e; contains all other terminals which couple to a specific floating
gate and represent neighboring bit and word lines or neighboring floating gates. The
capacitive components in the sum are traditionally small compared to the other
terms, but gain significantly in importance when floating gate cells are scaled to
feature sizes below 50 nm [4].

The gate coupling ratio ag describes the portion of the voltage applied between
the CG and the channel that drops across the TOX. For grounded source, drain,
bulk, and other terminals during program operation, the floating gate voltage is
given by

66 M. F. Beug

Vrc =g - Veg. (4.4)

A control gate voltage Vcg = 20 V in combination with a gate coupling ratio of
ag = 0.6 results in a voltage drop of Vgg = 12 V across the tunnel oxide. Con-
sequently, the CG voltage is concentrated on the tunnel oxide, when a high Ccg to
Cr ratio and therefore a high ag can be realized.

Under such coupling conditions, the requested floating gate cell operation can be
obtained, where charge is only transferred between the channel region and the
floating gate.

The FG voltage formulation (4.1) and ag formula in (4.2) were described in [5]
and only take into account the voltage drop across the tunnel dielectric (across Cox)
and consequently include the channel surface potential (). It does not consider the
voltage drop in the Si substrate (across Cg;) [6].

The source and drain coupling ratios have the same form as the ag expression
(4.2) and are given by ag = Cs/Ct and ap = Cp/Cr.

The capacitive coupling model and (4.1) also yield the formula for the floating
gate cell threshold voltage shift AVy, caused by charge stored on the floating gate.
The threshold voltage shift is in principle the voltage increase which is necessary at
the control gate to compensate the floating gate charge induced field effect.
Therefore, it is the additional CG voltage for resuming the floating gate voltage that
would be present without the FG charge and results in a defined TOX field which is
necessary to invert the memory cell channel. For constant potentials at source and
drain during the read operation, (4.1) can be rearranged to

AQFG AQFG
AVth =AVCG|AVFG=0 == oG 'CT = CcG '

(4.5)

This means that for an optimized high gate coupling ratio value and a given
threshold voltage shift, the number of stored electrons is increased (which is ben-
eficial for charge retention). The required high Ccg value can be either obtained by
a large coupling area between the CG and the FG, (the previously described CG
wrapped around the FG), or a reduction in the electrical IPD thickness.

The effect of the latter option on the ability to program and erase floating gate
cells will be discussed in the following section.

4.2.3 Program and Erase of a Single Floating Gate Cell

Floating gate cells in NAND applications are programmed and erased by the
Fowler-Nordheim (FN) tunneling mechanism [7]. This quantum mechanical tun-
neling mechanism is based on a strong electric field across the tunneling barrier of
the TOX. The electric field across the typically 8 nm thick tunnel oxide causes a
band distortion. The induced FN tunneling current has a strong electric tunnel oxide
field (Erox) dependency. The FN current density changes over several orders of

4 2D NAND Flash Technology 67

Fig. 4.5 Fowler-Nordheim TOX Voltage V., (V)
tunneling current density and
. . . 2 12
effective tunneling distance x, —_ 10" 110
for a 8 nm tunnel oxide NE 1 E‘
TOX S 1 3
() 3 10-3 3 8 a
] 5
- 1 Q
> 1077 6 9
.a 1 Z
c 1)
3 10°§ 4 3
a E o
p —— Si0, (TOX) @
S 2) : i X
© 107%4 Current Density 2 -~
5 1 Tunneling Distance x, =]
o 1 for a 8nm TOX 3
107 : . . : . —0 =
2 4 6 8 10 12 14

TOX Electrical Field E_ (MV/cm)

magnitude and is the result of a significant reduction in the effective tunneling
distance x;, as shown in Fig. 4.5 and its inset.
The Fowler-Nordheim tunneling current density is given by

B
JpN=At.E§X. exp(—Et>, (4.6)

0X

with the two tunneling constants A, and B, which are given by

3 8y/2m * B}
a . pg=—1V__ % (4.7)

‘T 8rhm*®g’ 3qh

In (4.7), q is the electron charge, m, and m* the mass of the electron and the
effective electron mass in the SiO,, h is Planck’s quantum and ®g the tunnel barrier
height between Si and SiO,. The Fowler-Nordheim tunneling current density for a
8 nm thick Si0, tunnel dielectric with an exponential dependence on the electric
oxide field E, is shown in Fig. 4.5.

Significant amounts of charge are transferred during a program pulse typically
shorter than 1 ms, where the TOX electric field is in the strong Fowler-Nordheim
tunneling regime above 10 MV/cm. Such strong oxide fields reduce the effective
tunnel distance x, of the triangular barrier to values below 3 nm as shown in
Fig. 4.5.

When a floating gate cell is intended to be programmed to a certain Vy, state, this
is typically accomplished by the so-called “incremental step pulse programming”
(ISPP) scheme [8]. To reach a targeted cell threshold voltage, programming pulses
with durations in the range of t,, = 100 us are applied with increasing pulse
amplitude. Each programming step is followed by a sense operation to evaluate
whether the target Vy, has already been reached. The increment of program pulse
voltage steps depends on the required accuracy of the programmed Vy, value.

68 M. F. Beug

Electron Energy (eV)

-32 4 i O,NO: 4!4{4 nm - _

T T T — 74 r T v T T T

-5 0 5 10 65 70 75 80 85
Position (nm)

Fig. 4.6 Band diagram of a floating gate cell with trox = 8 nm, an ONO IPD of 4/4/4 nm and a
gate coupling ratio o = 0.6 for the program voltages Vocg = 8 V, Vg = 18 V,and Vg = 26 V
after the program charge transfer, if applicable (compare Fig. 4.7). For Vcg = 8 V, the tunnel
oxide field Etox is too low for electron injection through the TOX. For Vg = 18 V, charge is
injected into the FG until Erox is reduced to 12 MV/cm (shown here), the threshold program field.
For Vcg = 26 V in the assumed simplified model, the FG charge increases until the electric fields
in the TOX and the IPD suboxide equal each other. The FG charge remains constant in principle,
but a strong tunneling current continuously passes through the hole FG stack and would in reality
cause significant damage

Therefore, the program step voltage directly affects the cell Vy, distribution width in
a memory array with large numbers of cells [9].

For a relatively low programming voltage of only Vcg = 8 V at the beginning
of the ISPP sequence, this voltage is divided between the tunnel oxide and the IPD
according to the gate coupling ratio og. The band diagram of a floating gate cell for
such a small voltage is shown in Fig. 4.6. However, for the assumed values
ag = 0.6 and IPD layer thicknesses of O/N/O = 4 nm/4 nm/4 nm, no significant
amount of charge is transferred to the floating gate, since the TOX field is only 6
MV/cm (see Fig. 4.7). The assumed ONO layer thicknesses of 4 nm for each layer
are already very small values as similarly used in state-of-the-art floating gate
NAND Flash technologies in the range of 25 nm [10, 11]. Due to the exponential
field dependency of Fowler-Nordheim tunneling, programming starts at a certain
program threshold voltage which is equivalent to a fixed threshold electric TOX
field. For the threshold field conditions, a significant amount of charge can be
injected into the FG within the short program pulse time of typically t,, = 100 ps.
A typical value for the program start or threshold field is in the range of 12—-13 MV/
cm and depends on the process of the tunnel oxide formation which can influence
the oxide barrier height. In addition, factors like the TOX thickness profile and the
STI edge shape can affect this value. Due to this programming threshold field
(which will be assumed to be 12 MV/cm in the following), it can be assumed that
the same field strength will be present at the end of programming. This assumption

4 2D NAND Flash Technology 69

1% ! ' ' Dnsall of ' a
ONO IPD: 4/4/4 nm
— 16 1 o« =0.6 P;-;E:am Program - 8
£ L q Saturation
o 14 4 : : oo 7
> B
= 12 1 -6 <
=
5 101 5 =
© 8 L4 5
— c
G 6 s
B At : L2 S
—— H ey
8 2 SubOx : f‘f‘ . Vth.PBm - 1
w : A ISPP slope=1
w 0 -.Aaasnaaaasaaaaadf ik i : - 0

8 10 12 14 16 18 20 22 24 26
Program Voltage V__ (V)

Fig. 4.7 Electric field condition in the tunnel oxide (Etox) and the IPD suboxide (Egyp0x) during
ISPP programming of a floating gate cell with trox = 8 nm, aG = 0.6, and ONO IPD layer
thicknesses of 4 nm each for the suboxide, the silicon nitride and the top oxide. Programming with
an ideal ISPP slope = 1 takes place until Eg,,0x at the end of programming equals the TOX
electric threshold field of 12 MV/cm

is realistic because at a constant programming voltage, negative charge (electrons)
is transferred to the floating gate as long as the additional charge has reduced the
electric TOX field (4.1) to such an extent, that no more significant charge transfer
can take place.

For the described exemplary FG cell configuration used for Figs. 4.6 and 4.7,
programming with no significant IPD current takes place in the CG voltage range
between Vcg = 16 V and Vg = 22 V. The ISPP slope in this Vg range is
essentially at unity [2]. At around Vg = 22 V and beyond this CG voltage value it
can be observed that the TOX and the IPD suboxide electric fields equal each other.
This results in an electron tunneling to the FG and at the same time an electron
tunneling out of the FG towards the CG. For an IPD purely consisting of SiO,, the
same fields in TOX and IPD would result in the same currents tunneling into and
out of the floating gate, which results in program saturation.

For an ONO IPD with additional SiN layer, charge can be injected into the SiN
layer and will be stored in this layer as in a charge trapping memory cell storage
layer. The charge injected and trapped in the ONO increases the effective barrier
height [12] (compare Fig. 4.16b) and is therefore able to block weak and leaky
spots of the ONO IPD by this means. This is one reason why an ONO IPD is
generally used.

However, the electrons injected and finally stored in the ONO IPD beyond the
program saturation starting point cause a permanent FG memory cell threshold
voltage shift [10]. In addition to the stored charges, a large current is transferred
through the whole FG cell stack from the channel towards the control gate which
will substantially damage the memory cell. These large permanent currents become
clear when looking at the strongly reduced TOX and IPD suboxide x; for Vcg =

26 V in Fig. 4.6.

70 M. F. Beug

By equating the electric fields in the TOX and the IPD suboxide, a simple model
for the onset of program saturation can be derived [13].

Finally, an expression for the maximum reachable programmed threshold volt-
age (program saturation point) can be obtained, which is given by

MV t
Vi, max =12 — - <tTOX + tipp —EOT — TOX> (4.8)
cm oG

It can be seen from (4.8) that in principle a thick tunnel oxide and a large
equivalent oxide thickness of the IPD (tpp.gor) are beneficial for good pro-
grammability of floating gate cells. Also a large gate coupling ratio improves
Vih.max- However, due to the middle term in (4.7) the increase of the control gate to
floating gate area is preferred over a reduction of tjpp_gor to obtain a large og.

Figure 4.8 examines the effect of an increased ag due to cell geometry means
while keeping the TOX and IPD thicknesses unchanged.

It can be observed that for increasing the gate coupling ratio the initial (un-
charged FG) field difference between the TOX and IPD electric fields increases.
Consequently, FG cells with a higher gate coupling ratio can be programmed to
higher Vy, levels before program saturation occurs. The program saturation point
(Vihmax) can be found in the Vg, ISPP curves in Fig. 4.8, where the ISPP slope
changes from unity to a value significantly lower than one. ISPP slopes lower than
unity [14] generally show that the combination of cell geometry and IPD current
blocking ability is not sufficient to avoid an IPD electron tunneling current during
program operation.

The floating gate memory cell erase works principally in the same way, but with
control gate voltages negative with respect to the cell channel region. Consequently,
the electric field direction is reversed and the erase is mainly due to electron
tunneling from the floating gate towards the channel. Again, as described for
program saturation, the TOX erase field is reduced for decreasing erase cell Vi,

Fig. 4.8 Eftfect of FG cell
geometrically increased gate
coupling ratio o on program
saturation. The TOX

£
L
. => <
thickness trox = 8§ nm and = 5
the ONO layer thicknesses o <
(tsubox/isiNTopox = 4/4/ o 5
4 nm) are unchanged t <
E s
T}
i)
w
R e
10 15 20 25

Program Voltage V_, (V)

4 2D NAND Flash Technology 71

values while the IPD field increases. In practice, erase saturation can in principle
also become a problem, e.g. for bi-layer high-k dielectric containing IPD options.
However, for NAND FG Flash only one single erase Vy, distribution needs to be
placed in the negative Vy, range which generally does not require erasing the cells
to large negative threshold voltages. For the positive Vg, range the situation is
different, because for a multi-level cell (MLC cell (TLC), eight different Vg, dis-
tributions need to be placed in the positive Vg range, which requires at least that a
Vi = +4 V can be programmed.

Consequently, program saturation is usually a more severe issue than erase
saturation.

4.2.4 Program, Erase, and Read of FG Cells in the NAND
String

When a large number of a floating gate cells need to be operated in the NAND array
it has to be taken into account that one floating gate cell is located at every crossing
point of bit lines and word lines. Therefore, the memory cells in the NAND array
cannot be operated independently of each other anymore. In the word line direction
(depending on the page size), a couple of thousand FG cells are controlled by the
same word line. In bit line direction, the string size (64—66 cells in latest NAND
generations) defines the number of cells that cannot be operated independently.
Consequently, it is very important to bear in mind what is happening with all
neighboring cells when one cell is treated. This is even more important since the
threshold voltage of each memory cell needs to be carefully adjusted as shown for
SLC and MLC cells in Fig. 4.9.

(a) Single level cell (b) Multi-level cell
(SLC, 1 bit) (MLC, 2 bit)
Read level Read levels

read pass
read pass

No. of cells
No. of cells

“«—V,
«—V,

EVO PV Ve EVOPVI PV2 PV3 V,

Fig. 4.9 Memory cell threshold voltage distributions for one bit per cell (SLC) data storage
(a) and two bit per cell (MLC) data storage in a NAND flash array

72 M. F. Beug

The erased Vy, cell distribution is placed at negative Vg, values. In an ISPP-like
sequence the erase voltage is increased until all cells are erased below the erase
verify (EV) level. The programmed Vy, distributions are placed in the positive Vth
range. For a single level cell (SLC) the ISPP programming is continued until all
cells designated for programming are above the program verify (PV) level. In the
case of multi-level cells (MLC), there are consequently three program verify levels
(PV1, PV2, and PV3). In addition, it has to be guaranteed that the margins between
the different programmed Vy, distributions are large enough to place the read levels
and have sufficient margin for charge/retention loss-caused Vg, reductions (see
Sect. 4.3). To obtain these kinds of narrow cell Vy, distributions it is necessary to
apply a specific distribution shaping algorithm with a small program step increase
in certain stages of ISPP programming [9].

4.2.4.1 NAND Cell Programming and Self-boosted Program Inhibit
(SBPI)

Figure 4.10 shows the voltage condition in the NAND array when the FG cell at
WL3 in BL2 is programmed. For this purpose, a program pulse with the pulse
amplitude of V,, = 20 V is applied to WL3. To conduct a successful program, it is
also required to transfer O V to the channel region of the programmed cell as shown
in Fig. 4.10 (i). Consequently, the O V potential is applied to BL2 and then needs to
be transferred to the whole string including the programmed cell at WL3. This is
done by applying the pass voltage (e.g. Vpass = 10 V) to all other word lines.

In principle, all cells addressed by WL3 could be programmed by this means at
the same time. However, the programming of arbitrary information requires that
specific memory cells at WL3 are excluded from programming. The cell at the
crossing point of BL1 and WL3 represents, in this example, the cells which should
be prevented from programming (program-inhibited cell in Fig. 4.10. In former FG
NAND generations, programming in certain NAND strings was avoided by actively
applying a positive voltage to the corresponding bit lines. As a result, the voltage
difference between the channel and the control gate was not high enough for
programming in these strings. This procedure was complicated and the voltage
pumps used for this purpose required additional power and chip area. Therefore, in
later generations the so-called “Self-Boosted Program Inhibit” (SBPI) scheme was
introduced [8]. The principle of the SBPI scheme is that the channel potential in the
inhibited strings is not actively raised by applying a voltage, but capacitively raised,
as will be seen in the following.

The voltages applied to different word lines, bit lines and select devices in the
SBPI sequence are shown in Fig. 4.10. The corresponding detailed timing of the
signals at different signal lines is shown in Fig. 4.11. For a successful program
inhibit at the programmed word line an inhibit channel potential in the range of
typically 6-8 V is required. The exactly required channel potential further depends
on the maximal used programming voltages.

2D NAND Flash Technology 73
Program ,-*T s,
+ ’ CG 20V *.
disturbed ¢ 8 B s,

cell ; FG ! 14V N
i]
‘-. .-",
A
i’

V,=0V

WL63 WL64 SSL
0V 1oV 3v
Inhibit String
BL1
3v
Programmed String
BL2
ov
Programmed d'PtaSlf g
cell -, disturpe
1 ~ cell
() : (i)

Fig. 4.10 Voltage conditions during program operation in the NAND array. The memory cell at
the crossing point of WL3 and BL2 is programmed; several other cells are disturbed by either

program disturb or pass disturb

Fig. 4.11 Signal timing for Vee
the self-boosted program SSL & — (a)
inhibit (SBPI) scheme inhibit BLs V.
other WLs [Voam (b)
Vour |
prog. WL Vioost Vion, (c)
Vowen ¥
resulting inhibit__———— (d)
channel pot.
t t ts t. ts

In the first step (t;), Ve (e.g2. 3 V) is connected to the SSL and the inhibit strings
at the same time (Fig. 4.11a). This results in a pre-charge of the inhibit string to a
channel potential of Vpre.ch = Ve — Vinsse as shown in Fig. 4.11d. During this

74 M. F. Beug

pre-charge of the string the channel side of the select transistor acts as the source.
Accordingly, a charging current flows until the gate-to-source voltage equals the
threshold voltage of the select transistor. In the second time step t,, all word lines
are raised to the program pass voltage Vg (Fig. 4.11b, ¢) and the channel inhibit
potential is increased by capacitive coupling. This can be done because the select
transistor is closed since the pre-charge was finished. At time t3 the word line
selected for programming (WL3 in Fig. 4.10) is raised to the full program voltage
in the ISPP sequence which further increases the channel potential to its full inhibit
voltage V.

In this last step, only a small channel voltage increase is achieved which results
from the CG to channel capacitance ratio of one cell in relation to the whole cell
string. Therefore, a larger channel voltage increase can be obtained when not the
whole string is boosted, but only a few cells in the vicinity of the programmed word
line. Such an approach is called the “local self-boosted program inhibit” (local
SBPI) scheme [15, 16].

It is clear that a major part of the inhibit channel potential depends on the pass
voltage, since Vi, is partly generated by the capacitive channel boosting.

On the one hand, the ability to prevent programming at the “program disturbed
cell” (WL3 of BL1 in Fig. 4.10(ii)) improves with increasing pass voltage Vs as
shown in Fig. 4.12. On the other hand, the pass cells located in a string with a
memory cell dedicated for programming (BL2) experience a soft programming
when the pass voltage is increased beyond a certain limit (pass disturbed cell in
Fig. 4.10(ii)).

The general effect of a pass voltage variation on a program disturbed and a pass
disturbed cell in a 48 nm FG NAND technology is shown in Fig. 4.12. Since both
effects, program and pass disturb, result in a threshold voltage increase and are more
severe on erased cells, the memory cells in Fig. 4.12 were first erased to a threshold
voltage below Vi, = —4 V before the program and pass disturbs could be mea-
sured. In addition to the pass voltage pulse amplitude value, the number of

Fig. 4.12 Program and pass 3 : : r . . . —
disturb characteristic and the 1 i £ o
resulting “pass voltage 21 :;: s;zir(aj?;tldj::)lurb P,) 7
window” of a 48 nm floating 14 %]
gate cell in the NAND array) A
. 04 i 4
2 Pass window 5
s -1 < >/ E
> -]
-2 4 g 4
34 i]
] A NOP=10
-4 iy VT VD, VY, Wy, W " v "'Gm.____ 7
1 =g —n—g
S

2 4 6 8 10 12 14 16 18

V pass (V)

4 2D NAND Flash Technology 75

disturbing pulses is very important for the disturb strength. The determining factor
here is the number of program operations (NOP) carried out at each word line [17].
In the example given in Fig. 4.12, the operation of a FG memory cell used in MLC
mode was chosen which results, e.g., in NOP = 10. This is because every word line
is logically divided into different pages which need to be separately programmed.
Finally, a NOP = 10 results in approximately 100 program pulses with the highest
program voltage assumed for the slowest cell in programming and about 5000 pass
voltage pulses, because each of the 64 cells in the string needs to be programmed.

It can be observed that the selection of the pass voltage results in a trade-off
between program and pass disturb. Generally it needs to be guaranteed that the Vy,
of all erased cells remains (with a certain margin) below Vg, =0 V.

Therefore, a “pass window” with suitable pass voltages could be determined at
the level Vi, = —1 V. The optimum for the trade-off between program and pass
disturb can be found in Fig. 4.12 slightly below Vp,, = 10 V.

4.24.2 Erase and Read of FG Cells in the NAND String

The advantage of the NAND Flash erase operation is that a whole erase block is
erased at once. The voltage conditions during erase are shown in Fig. 4.13. All
word lines are at ground potential (Vcg = 0 V) and the erase voltage is applied to
the well of the erase block. Very important during erase is that the select transistors
as well as the bit line and the source line are left floating. For this purpose, the
usually grounded source line needs to be disconnected from the ground potential.
By this means, the source line and the bit line, and to a certain extend the select
transistors, can follow the bulk potential, and large currents into the source line and
the bit line are avoided. Due to the improved coupling when the same voltage is
applied to all cells, the voltage difference between the control gate and the channel
required for erase (e.g. Vg = 18 V) is lower than the programming voltage. The
erase operation is successful when all cells in the erase block are erased below the
EV level as described above.

GSL WL1 wLz WL3 WL4 WLE3 WwLe4 SSL
float. ov ov ov ov ov ov float.

BL1
float.

BL2
float.

V,=18V

Fig. 4.13 The erase of floating gate cells in the NAND array is carried out in electrically separated
erase sectors. By applying a positive voltage (e.g. Vg = 18 V) to the well of the erase sector, all
cells are erased at the same time

76 M. F. Beug

GSL wL1 wL2 WL3 wL4 WL63 WL64 SSL
3v 5V 5V ov 5V 5V 5V 3v

BL1

Read
cell

Fig. 4.14 Read operation in the NAND Flash array

The read operation in the NAND array is carried out word line by word line. For
a current sensing read scheme [18] the bit line which is selected for read operation
(BL2 in Fig. 4.14) can be set to the read voltage (e.g. Vg, = 1 V). For a SLC read
operation the word line at the read cell is set to 0 V, while typically 5 V are applied
as read pass voltage for all other word lines.

By this means it can be detected if the cell at WL3 in the string of BL2 is in the
programmed or erased cell. It is clear that for reading one cell, the read current
needs to flow through all cells in the 64 cell string and that only one cell in the
string can be read at a time.

It needs to be mentioned that also the read pass voltage of only Va5 = 5 V can
result in a change of the threshold voltage (read disturb [19]) when only the number
of read operations is high enough. For SLC FG NAND cells it is assumed that 10°
read operations with 15 ps durations need to be guaranteed without read fails. This
results in a total disturb time of about 15 s. Again, erased cells are most susceptible
to read disturb as described before for program and pass disturb.

4.3 Reliability of Floating Gate NAND Memory Cells

The reliability of FG NAND Flash memory is one of the most important criteria,
since typically 10 years of charge retention and 1-100 k program/erase cycles need
to be guaranteed for a NAND Flash product chip.

In Fig. 4.15, a typical charge retention requirement is shown. It needs to be
guaranteed for a successful read-out of the stored information that the programmed
Vi, (above the PV level) is not decreased more than 10% over the product relevant
time period of 10 years.

In principle, there are multiple leakage paths which can lead to a loss of the
programmed floating gate electron charges as shown in Fig. 4.16a. The electrons
can be lost through the IPD towards the control gate (Ijpp._jear) Or leak through the

4 2D NAND Flash Technology 71

PV N

J\ max. 10% I

. read level
=
>£ avtn.prcg.
v V,u (no FG charge)
0 2 4 6 8 10

retention time (years)

Fig. 4.15 Charge retention of an FG cell. A certain amount of charge loss needs to be tolerated
(e.g. 10% Vy, loss over the time period of 10 years)

(a) (b)
FG

N Negative charge
'“uf/barrier distortion

CG IIPD-Ieak ~SWOX
_ IPD i WD

—la

F6 o0 0 © e Substrate
TOX l ""\c N y, Haps]l T = P —
|mx.|eak Traps \'__

Substrate

Fig. 4.16 Possible leakage path for charge loss from the floating gate (a). Tunnel oxide damage
due to program/erase cycling and the resulting stress-induced leakage current (SILC) are usually
the main reasons for retention loss (a, b). Negative trap charge built up over cycling additionally
induces a barrier distortion which results in an increased tunnel barrier (b) [12]

cell side wall oxide (SWOX — Igw.ea) and the inter-word line oxide
(IWD — I1wp.teak) to the cell junction area.

However, the most severe charge loss component of an optimized floating gate
cell process is the leakage through the TOX (Itox_ieax)- This is not only because the
TOX is physically the thinnest dielectric layer which holds the electrons on the
floating gate, but there are additional processes which cause wear of the FG cells.
As shown in Fig. 4.16a, b, the charge transfer during program and erase generates
electric states in the TOX (and the TOX should be the only dielectric where charge
is transferred, as previously discussed) which are called oxide traps. These traps are
broken bonds of the atoms in the oxide matrix due to the electron tunneling pro-
cesses [20]. The density of traps in the tunnel oxide consequently increases with the
number of program/erase cycles which cause so-called oxide stress. The traps in the
TOX barrier can act as stepping stones when floating gate electrons leak via a

78 M. F. Beug

trap-assisted tunneling process towards the cell channel region. The probability of
this trap-to-trap tunneling (called stress-induced leakage current, SILC) [21] is
much higher than a direct tunneling process through the whole TOX thickness. The
reason is that the effective tunnel distance of each tunneling step is significantly
reduced for the SILC.

The TOX trap generation during the product lifetime and the corresponding
SILC is the reason for a general TOX thickness scaling limitation in floating gate
cells [22]. Therefore, the TOX cannot be scaled below 8.0-7.5 nm. To understand
this TOX thickness limitation in more detail we need to determine the oxide electric
field, or alternatively, the oxide voltage during retention conditions, which is given
by

VFG,Ret. =0G - A Vth,prog. . (49)

where a, is again the gate coupling ratio and AV, p,. is the programmed threshold
voltage shift as shown in Fig. 4.15. For assumed values of AV, pr, = 4-5 V and
o, = 0.6, the TOX voltage under retention conditions is about 3 V. The second
criterion of interest is the acceptable leakage current for the 10-year charge
retention.

The number of stored floating gate electrons in a 50 nm FG NAND technology
for a threshold voltage shift of AV, = 4 V is about 600 (the exact number will be
discussed in Sect. 4.4.4). The 10% loss criterion over the time period of ten years
results in a tolerable loss of one electron every two months (or a leakage current of
3E—26 A). Converted to a current density this is equivalent to 1E—15 A/cm?.

Figure 4.17 shows the Fowler-Nordheim leakage current densities for TOX
thicknesses of 6, 8, and 10 nm as a function of the TOX voltage. It can be seen that
for an unstressed TOX and the estimated TOX retention voltage Veg ret = 3 V and
current criterion, a tunnel oxide thickness of 6 nm would be sufficient. However, 2
nm additional TOX thickness is required to fulfill the retention criterion for a
damaged TOX with trap-to-trap SILC leakage as discussed above.

Fig. 4.17 Leakage current 100 : .
density through the tunnel 1 to=6nm
oxide of an FG cell under 0.01 4 — t=8nm
retention conditions for o —— t,,,=10nm
different TOX thicknesses E 1E-61
[22] Lo 1 Retention
i 1E-10] FG voltage e
_}E] = o 3
L " o i
1E-14 5 | ’.-' ﬂe‘
L - IR A \
1] & Two electrons lost
1E-18 : a every two months
1 : Fa in 50nm technology
1E-22 : - - T ~ T -

2 4 6 8 10
TOX Voltage (V)

4 2D NAND Flash Technology 79

Fig. 4.18 Program/erase 4 ey
cycling endurance of a FG —
cell in a 48 nm NAND —
——
technology 244
s —=—V_ programmed state
3 V. window Veage™ 23V, 1,100 e
_5' 0 s th
>-£ —o—V, erased state
- V .=-19YV, t.s 1ms
2.
[« 2 —
-4 ———rrr——rrrr———rrr———rrry
1 10 100 1000 10000

Number of cycles

Figure 4.18 shows the endurance of FG cells in a 48 nm NAND technology. All
program and erase cycles were carried out with unchanged program and erase cycle
voltages of Vg prog = 23 V and Ve = —19 V for the indicated pulse times. For
low cycle numbers, the V, window is slightly increases, whereas for higher cycle
number above 300 cycles the Vg window closes. Furthermore, a general Vy,
upward shift is visible.

This behavior can be explained with positive charge trapping at low cycle counts
which leads to a reduced TOX barrier and negative charge trapping which results in
an increased barrier height (see Fig. 4.16b) at higher cycle numbers.

For a reduced tunneling barrier, more electrons can be transferred through the
TOX for unchanged program and erase voltages, whereas for an increased barrier
this number of transferred electrons is reduced. Additionally, the fixed negative
charges which are generated in the TOX for higher cycle counts generally increase
the cell Vy,. In the case shown in Fig. 4.18, the erased cell Vy, is shifted by one volt
after 10 k program/erase cycles. Besides the increased retention problem for higher
cycle numbers due to trap generation, the window closing and the general Vy,
upward shift will result in increased pulse voltages, especially for erase.

4.4 Scaling of Floating Gate NAND Memory Cells

The NAND Flash memory scaling of the last 15 years was accomplished by
reducing the cell dimensions, whereas the cell construction principle was unchan-
ged. The effective cell size of NAND Flash in 1995 was in the range of 1 um?
which resulted in a product chip memory capacity of 32 Mb [8]. In 2010, the cell
size was reduced to 0.0028 um?> [10] with a chip capacity of 64 Gb. This strong
reduction of the cell geometry leads to scaling issues which are discussed in the
following.

80 M. F. Beug

4.4.1 Scaling of the Floating Gate Cell Geometry

As described in Sect. 4.2.3, it is very important for a programmability of floating
gate cells to have an enhanced control gate to floating gate area by a control gate
which is wrapped around the floating gate. However, this requires a certain space
between adjacent floating gates, since this space needs to fit two times the IPD
thickness plus the poly plug. Depending on the FG NAND ground rule (or half
pitch F), this has some implications for the remaining control gate plug width as
shown in Fig. 4.19a.

Figure 4.19b shows the remaining control gate plug width as a function of the bit
line half pitch F. To obtain more space for the control gate plug, the width of the
floating gate can be reduced with respect to the space between the floating gates as
done in the latest FG NAND generations [23, 24]. The space between adjacent
floating gates consequently becomes wider, as indicated in Fig. 4.19a. Additionally,
the physical IPD thickness can be reduced. These two options are combined in
Fig. 4.19b with the result that for an FG width of 0.6 F and a physical IPD thickness
of only 8 nm a control gate plug width of 10 nm can be realized down to a bit line
half pitch of 20 nm. Due to this bit line pitch scaling limitation it can be observed in
the latest FG NAND technology generations that the bit line pitch is less aggres-
sively scaled than the word line pitch [10, 11, 23].

In case of very narrow control gate plugs, it may be that the poly-Si doping level
in the CG plug cannot be maintained sufficiently high. This would result in poly-Si
depletion and consequently in an electrically inactive CG plug. An alternative could
be a metal control gate material as presented in [2].

(b)
[T —
= | L —e— FG=0.5F, IPD=8nm
£ 404 T --A--FG=0.6F, IPD=9nm |
o A e -8~ FG=0.7F, IPD=10nm
2 30'\,\“._:-\‘ —m—FG=0.8F, IPD=12nm
o 7 ~ A 1
3 ~ L P
= Na o
o o A
V% I A 27 vz, e 204 \. e 3 1
%/ 0.8F <> 1.2F 7| AA %; ©] g "
j/ 0.7F <> 1.3F 4 //%2 2 40 . . |
B BRSNS
/) osF o158 ?% .y o e
Z 0 7
oh-h T © 5 ; : '

Bit line half pitch (nm)

Fig. 4.19 Bit line pitch scaling limitation for the typical control gate to floating gate enhanced
coupling area FG NAND cell. To fit two times the IPD thickness plus the poly plug (a) with an
assumed minimum width of 10 nm, the active area (AA) width can be reduced below the half pitch
F to clear a space for the CG plug (b)

4 2D NAND Flash Technology 81

ONO

Channel

Fig. 4.20 Floating gate NAND cell scaling: The requirement for a continued reduction in the
floating gate cell dimensions in combination with a high gate coupling ratio leads from the typical
ONO IPD cell with a control gate wrapped around the floating gate to a high-k containing IPD, and
finally due to the lack of space for the control gate plug to a planar floating gate cell

Continued scaling of floating gate NAND cells (see Fig. 4.20) in combination
with a sufficiently high gate coupling ratio requires efforts to reduce the electrical
IPD thickness (EOT). One option to do so is the introduction of high-k dielectrics in
the IPD stack. However, at a certain floating gate NAND technology node there
won’t be sufficient space for the control gate plug, which automatically leads to a
planar floating gate cell as shown in Fig. 4.20.

It was discussed in Sect. 4.2.3 that for insufficiently high gate coupling ratios
together with an electrically thin IPD, tunnel currents can in principle flow through
the IPD during the program and erase conditions. An IPD leakage can result in a
degraded program and erase behavior, visible in reduced ISPP and erase slopes
[25]. Consequently, a fully planar floating gate cell with ONO IPD cannot be
programmed and erased in the traditional manner where charge is transferred
through the tunnel oxide only. Even an IPD layer combination of SiO, and high-k
or a pure high-k IPD layer is problematic with respect to program/erase saturation
[13].

One possibility to improve the planar floating gate cell was the usage of a dual
layer floating gate as proposed in [26]. Figure 4.21 illustrates the advantages of a
dual layer floating gate with an n-doped poly-Si bottom part (adjacent to the tunnel
oxide) and a high work function metal layer on top (adjacent to the high-k IPD)
with respect to program and erase saturation.

Figure 4.21a, b shows the conditions during program operation. The n-poly-Si
floating gate in Fig. 4.21a has the problem of the insufficient effective IPD barrier
which does not provide sufficient current blocking margin to program the cells to
high Vg, levels. The situation is improved by the introduction of the high work
function metal gate layer, as shown in Fig. 4.21b, where the barrier height and the
effective electron tunneling barrier (shadowed area) is significantly larger. The
advantage of the dual layer floating gate under erase conditions and why simply a
single layer high work function metal FG cannot replace the poly FG are illustrated
in Fig. 4.21c, d respectively. The single layer metal floating gate has a larger barrier
between the FG and TOX which would hinder the erase when electrons are tun-
neling out of the FG towards the channel region (Fig. 4.21c). Consequently, a
higher erase voltage would be necessary with the even more problematic effect that

82 M. F. Beug

(a) (b)
A A
> ﬂl \
K
. ffective
> effective f e
o h | PROG sat. Si P'Ec;ﬁi:f"
o channe barrier channel
c
)
c high-k
o poly/metal| |pp ——
5 FG
o
L
|-
. . . . ”
Vertical distance Vertical distance
(c) (d)
A A
< . effective
%) effective ERS barrier
< ERS t_:arrler height
> height
g
= Si |sio,| metal Si sio,
. channel | T9X FG channel [TOX
§ |—————— _
=
©
o
L
. .
L L
Vertical distance Vertical distance

Fig. 4.21 Field improvement in planar floating gate cells and how program and erase saturation
can be avoided by the usage of a dual layer FG structure [26]

at the same time electrons tunnel from the control gate to the floating gate (electron
back tunneling) and cause erase saturation. This electron back tunneling will be
seen in Sect. 4.6 to be one of the major issues of charge trapping memory cells, but
is less problematic for the dual layer FG as seen in Fig. 4.21d.

4.4.2 Floating Gate Cell Cross-Coupling

Another general problem for floating gate NAND cells in technology generations
below 50 nm is the cell-to-cell cross-coupling. This effect is the direct coupling
from one floating gate to the nearest neighboring floating gates as shown in
Fig. 4.22. Tt is clear that this direct coupling increases for reduced dimensions since
the cells move closer together and therefore the relative coupling capacitance
increases. Most significant is the FG to FG coupling in the direction along the bit
lines (y-direction in Fig. 4.22). This is because the floating gates are directly face

4 2D NAND Flash Technology 83

Fig. 4.22 Floating gate
cross-coupling in scaled
NAND Flash technologies
[27]

each other with the full FG height and full FG width in this direction. Consequently,
Crag,y is the largest of the FG to FG coupling capacitance terms. In the direction
along the word lines (x-direction), parts of the FG to FG coupling are screened by
the control gate plug and therefore Cgg x is typically smaller than Cggy. To min-
imize the coupling capacitance in x-direction it would be beneficial to have a very
deep position of the CG plug, ideally down to the STI level, which would mean a
complete screening in x-direction. However, the full programming voltage drop
between the control gate plug and the channel limits the minimum CG plug to
channel distance. The diagonal coupling components Cggxy and Cgg yx are typi-
cally the smallest ones.

In cell programming schemes, where even and odd bit lines are programmed
separately (because they belong to different logical pages), the programming of a
cell can change the threshold voltage of a directly neighboring cell which was
already programmed. This effect is called floating gate cross-coupling or floating
gate interference [27].

The cell-to-cell coupling potentially leads to a decreased gate coupling ratio
since all increased capacitance terms from FG cross-coupling are added in the
denominator of the gate coupling ratio (4.3). Therefore, the gate coupling ratio
decreases at least in the case where the floating gate cell dimensions are scaled
proportional to the technology node, while TOX and IPD thicknesses are kept
constant.

This behavior can be seen in the lowermost curve of Fig. 4.23a obtained from
3D simulations with a commercial field solver [28]. It can be seen that for a
constant IPD EOT of 11 nm in combination with a floating gate whose height is
two times the width (width = F, height = 2 F in points A, B, and C), the gate
coupling ratio decreases from 0.63 in the 50 nm technology node to only 0.52 in the

84 M. F. Beug

(a) (b)
0.65 — 800
. BLM BL, BLM
A F:22E1100m A: 2F/11nm
G: 2.6F/8nm -
o
S
=
2 0.60 600 =
v} - - L T
x =
o r
£ O
5 g
=]
3 o
£ 055 1t 400 3
o <
(U] R Cell construction: =
& —=u—FG height=2F, t o eor= 110M
L 6"" —e— FG geometry scaled
—A— FG geometry and IPD-EOT scaled A
0.50 1 — . — — " —- 200
30 40 50 30 40 50
Technology Node or F (nm) Technology Node or F (nm)

Fig. 4.23 Gate coupling ratio (a) and threshold voltage shift (MLC shift) due to the programming
of five directly neighboring cells (b) by a AV, 0 =5 V as a function of cell technology
generation. For each point, the floating gate height and the IPD EOT value (e.g. 2 F/11 nm) are
given. The floating gate width is 1 F for each technology node and the TOX thickness is always
8.5 nm

30 nm technology. A slight gate coupling ratio improvement can be seen for an
increased floating gate height to width ratio with decreasing half pitch in the middle
curve (points A, D, and E) of Fig. 4.23a. A slightly increasing o, for smaller
dimensions is only obtained here for an increased FG height to width ratio in
combination with a decreased IPD effective thickness (points A, F, and G).

However, in Fig. 4.23Db, it is apparent that all efforts to keep the gate coupling
ratio value high do not significantly improve the Vy, shift due to neighboring cell
programming in conventional cell programming schemes. For the simulation of the
depicted AVy, MLC shift it is assumed that five neighboring cells influence the Vy,
of each ready programmed cell in worst case, as indicated in the inset of Fig. 4.23b.
In detail, these five cells consist of two neighboring cells in word line direction, two
diagonal cells, and one directly neighboring cell in bit line direction, resulting from
an assumed conventional word line by word line programming scheme for serial
even and odd bit line addressing. In the NAND chip layout belonging to the serial
WL programming of even and odd bit lines the serial treatment is necessarily
performed, since two neighboring bit lines share one single sense amplifier for
reading the Vy, state during ISPP programming. The cross-coupling capacitance
terms were again taken from the 3D field simulations, and for the depicted MLC
shift it is assumed that all five cells are programmed by a AV, = 5 V. This would
be the threshold voltage shift for erased FG cells which are programmed to
V=4 V.

4 2D NAND Flash Technology 85

The fact that for conventional programming schemes the simulated MLC shift at
30 nm cannot be reduced below 500 mV leads to the conclusion that at a certain
point in shrinking the FG NAND Flash dimensions the program algorithm needs to
take care of the floating gate cross-coupling issue. The strategy is simply to reduce
the number of neighboring cells that are programmed after reaching the final pro-
gramming target Vy, of each cell, in combination with a reduction of the amount
these neighboring cells increase their Vy,.

One component for reducing the unwanted FG cross-coupling is the all bit line
(ABL) architecture, where each bit line has a separate sense amplifier and therefore
all bit lines can be programmed at the same time.

Together with the improved program algorithm with respect to the order in
which the cells are programmed, it was possible to master FG cross-coupling even
for three bits per cell (TLC) and four bit per cell (XLC) technologies [11, 29, 30].

4.4.3 Word Line to Word Line Leakage Current

The reduced cell-to-cell distances with scaled dimensions also cause strongly
increased electric fields between neighboring word lines during program operation.

The WL-to-WL voltages during erase are uncritical because all cells are erased at
the same time and therefore all word lines are at the same potential.

High WL voltage differences during program operation are even more critical
since the programming voltage does not scale or rather increase slightly, as
described above. As a result of the strong electric fields between word lines,
electrons can tunnel from a programmed floating gate to the control gate that is on
the high program voltage V,m [31] or generally introduce WL-to-WL leakage
currents as shown in Fig. 4.24. The electric field strength in an assumed SiO, IWD
is shown for different WL-to-WL distances as a function of the WL difference
voltage in Table 4.1.

Fig. 4.24 The voltage
conditions during the program
operation can cause a leakage
current between neighboring
word lines or from an already
programmed FG to the
actually programmed WL

dlstance Ieakage

10V 10V

/ «—bo |

IWD

i
J)

0]
DRC

=
!

86 M. F. Beug

Table 4.1 WL-to-WL IWD (SiO,) electric field in MV/cm as a function of the voltage and the
distance between different word lines. The light grey shaded WL-WL distance and voltage
combinations represent electric IWD fields above the usual 4 MV/cm operation conditions. The
dark grey shaded electric IWD field range above 8 MV/cm represent very high values in the
Fowler-Nordheim tunnelling regime (see Fig. 4.5)

WL-to-WL Distance

10nm | 15nm | 20nm | 25nm | 30 nm | 35 nm | 40 nm | 45 nm | 50 nm
20V | 20.0 183 10.0 8.0 6.7 5.7 5.0 4.4 4.0
19V|] 19.0 12.7 9.5 7.6 6.3 5.4 4.8 4.2 3.8
18V | 18.0 12.0 9.0 7.2 6.0 5.1 4.5 4.0 3.6
17V | 17.0 11.3 8.5 6.8 5.7 4.9 4.3 3.8 3.4
16V | 16.0 10.7 8.0 6.4 5.3 4.6 4.0 3.6 3.2
15V] 15.0 10.0 7.5 6.0 5.0 4.3 3.8 3.3 3.0
14V | 14.0 9.3 7.0 5.6 4.7 4.0 3.5 3.1 2.8
13V] 13.0 8.7 6.5 5.2 4.3 3.7 3.3 2.9 2.6
12V | 12.0 8.0 6.0 4.8 4.0 3.4 3.0 2.7 2.4
11V] 11.0 7.3 5.5 4.4 3.7 3.1 2.8 2.4 2.2
10V | 10.0 6.7 5.0 4.0 3.3 2.9 2.5 2.2 2.0
9V 9.0 6.0 4.5 3.6 3.0 2.6 2.3 2.0 1.8
8V 8.0 5.3 4.0 3.2 2.7 2.3 2.0 1.8 1.6
7V 7.0 4.7 3.5 2.8 2.3 2.0 1.8 1.6 1.4
6V 6.0 4.0 3.0 2.4 2.0 1.7 1.5 1.3 1.2
5V 5.0 3.3 2.5 2.0 1.7 1.4 1.3 1.1 1.0

IWD Electric Field in MV/cm

WL-to-WL Difference Voltage

Generally speaking, electric fields up to 4 MV/cm can be handled with deposited
oxides as the IWD with sufficient reliability. The field range above 4 MV/cm
becomes critical, but the range of 8 MV/cm and above is already in the
Fowler-Nordheim tunneling regime for a thermally grown oxide which would not
allow a reliable operation anymore.

Options to reduce WL-to-WL leakage by use of a special program algorithm
would include limiting the difference voltage between adjacent word lines. This
could be accomplished with a specific handling of the word lines close to the
program word, similar to the individual word line treatment in local program inhibit
schemes [16]. However, effectively increasing the pass voltage at the cells adjacent
to the programmed cell will adversely affect the pass disturb.

4.4.4 Number of Stored Floating Gate Electrons

When the dimensions of floating gate cells are scaled down, also the number of
floating gate electrons needed for a certain threshold voltage shift AVy, is reduced.
On the one hand, this reduced number of stored floating gate electrons is critical for

4 2D NAND Flash Technology 87

reliability and charge retention because the loss of one electron has increasing
impact on the cell Vy, loss. On the other hand, the charge granularity of single
electrons affects, at a certain stage, the ability to program narrow Vy, distributions.
The effect is most critical in TLC or XLC NAND technologies with very narrow
Vi, distributions in case one electron causes a significant threshold voltage shift.
The approximated number of floating gate electron can be derived from (4.5) and
is given as a function of the feature size F for different NAND technology nodes by

C Acg— A A
N=£'AVrh=% CG FG_.AVth=@—“°D/ TOX-F2-AVth (4.10)
e

€ Upp-EOT € tpp-EOT

where e is the electron charge and App/ATox is the CG-FG area to TOX area ratio.

As shown in Fig. 4.25 and discussed beforehand, this area ratio needs to be
increased in combination with a reduction of the IPD EOT value to have the
programming voltages remain the same. The shown values for the App/ATox ratio
and IPD EOT are similar to the values used by major NAND Flash manufacturers in
recent generation.

The simple planar plate capacitor approximation of (4.10) results in the estimate
of about 200 stored electrons, in case a 25 nm FG NAND cell is programmed to
AVy, =4V above the UV level, as depicted in Fig. 4.25. The tolerable electron
loss per year for this technology node is already less than ten, if a relaxed retention
criterion compared to Sect. 4.3 with 20% tolerable Vy, loss after 5 years is assumed.

However, the general trend of the number of stored electrons as a function of the
FG cell technology node in Fig. 4.25 shows a strong reduction with reduced
dimensions.

A similar consideration based on TCAD simulations was carried out and pre-
sented in [10]. The result of the number of electrons stored in different FG cell
locations (see Fig. 4.26) that cause a threshold voltage shift of AVy, = 100 mV is
shown in Table 4.2 for 50, 35, and 25 nm technology generations. The number of

T
-
S
}

Fig. 4.25 Number of T v T v Y o
electrons as a function of the 1000 4 @_’
technology node F. To have b
the programming voltages

remain similar over different

—a— No. of FG Electrons
for AV, =4V (MLC)

-
(=]
(wu) 0¥

»

c

o

=

. 3

technolog}{ gener.atlf)ns, the o 1004 Ao N, Election | oas) 8
gate coupling ratio is s i per Year (20% after 5y) 6
optimized by means of an IPD 5 >
EOT reduction and an o L4 S_
increase of the CG-FG to g 10 4 e >
TOX area ratio =z] £

——IPD to TOX Area Ratio l- 2

T T T T T T

10 20 30 40 50 60 70 80
Technology Node or F (nm)

88 M. F. Beug
Fig. 4.26 Locations of
trapped charges in an FG CG
NAND memory cell which Q
cause a threshold voltage shift i

QIPD.B

Q= FG

QTOK.T

Qs QTO)(.B ToX QD

Tab!e{ 4'.2 Ele'ctron Technology 50 nm 35 nm 25 nm
sensitivity of different FG I 4) |
NAND Flash technology Qrox.n/e
generations. The table Qrox.1/e 9 7 4
indicates the number of Qrgle 18 12 10
electr.ons ¥equ1red at different Qup.sle 2 17 11
locations in an FG cell for a Q / 149 103 100
100 mV threshold voltage IPD. T/
shift as determined by TCAT ~_Qs/e 33 9 5
simulations in [10] Qp/e 61 16 10

electrons required for a AVy, = 4 V shift in a 25 nm technology taken from these
values is 400 and therefore two times higher than the estimate of (4.10), but the
trend over different technology generations is the same.

Table 4.2 indicates that especially electrons stored in tunnel oxide traps, which
are generated during program and erase operations, cause higher Vy, shifts per
electron than electrons in the FG. Therefore, uncontrolled electron storage in the
TOX can be a significant issue as discussed in the following section.

4.4.5 Random Telegraph Noise

Random telegraph noise (RTN) can be observed in different types of field effect
devices and can be explained by electron capture and emission processes in oxide
traps close to the channel of a MOSFET device [32]. As mentioned previously, the
same process can take place in the TOX of a floating gate NAND cell [33, 34].

4 2D NAND Flash Technology 89

(a) T T T T T T T T T (C) 120 T T T T T T T T
180 - . 100 1
80 - .
160 u m “ »4 M wad 4 - V]]
W 2 60 _
3 E "]
£ 140 J = 40 J
- >]
' . 20 -]
ol (i w0
AL I !
100 - =201)
— —— -40 T — T
0 50 100 150 200 250 0 50 100 150 200 250
time (s) time (s)
(b) 2!0 T L) T T T T T L]
1,5 .
< 1,0 |
=
0,5 A
0,0]

Fig. 4.27 Random telegraph noise of 48 nm FG cells in a NAND string configuration. The variation
in the string current (a) due to charging and discharging of one oxide trap in the channel region can be
converted by the string transfer curve (b) into a Vy, variation (c)

Figure 4.27 shows RTN measurements in a 32 cell string of a 48 nm FG NAND
technology. Operated in the sub-threshold region, the drain current of the investi-
gated cell (or the string current) shows a characteristic two level 1 signature as
shown in Fig. 4.27a. The two level signature and the time constants for capture and
emission in the second range indicate that a single tunnel oxide trap about 1-2 nm
from the channel/TOX interface [35] is charged and discharged by direct tunneling.

90 M. F. Beug

With the aid of the string Iy — Vwy transfer curve in Fig. 4.27b, the current
signal can be converted into a threshold voltage shift AV, as depicted in
Fig. 4.27c. The resulting RTN amplitude is about 70 mV and in this case higher
than expected from the TCAD simulations [10] in Table 4.2.

However, for scaled dimensions the RTN threshold voltage shifts can cause read
fails, which is even more significant for MLC and TLC functionality with small
distances between Vy, distributions.

4.5 Shrinking the Floating Gate NAND Technology
Beyond the Direct Optical Lithography Limitation

The effects of scaled dimension on the functionality of floating gate NAND cells as
described in the last section are one aspect of the shrinking issues. Another aspect is
the generation of the extremely small structures in NAND Flash memory cells
which currently arrived in the sub-20 nm range [23].

This development of the feature size or critical dimension (CD) is even more
impressive, because the size of actual cell structures is one order of magnitude
smaller than that of the 193 nm wavelength of the ArF laser which is used for
illumination.

To understand the challenge to generate such small structures, Fig. 4.28 shows
the CD development of the NAND Flash technology half pitch and the used
lithography wavelength since 1996.

At the end of the 1990s, the NAND Flash CD in the cell array was close to the
lithography wavelength. However, since the 193 nm was the last reduction of the
wavelength used as a light source for lithography, the gap between the NAND Flash
technology node and the lithographic wavelength has been increasing since then.

Fig. 4.28 NAND Flash

o
=
=]

B
technology generations and £ KrF Ark Plasma
lithographic resolutions 3 248nm
=]]0.25um 193nm
= 190 nm® I
- 150nm® 193 nm immersion
= e
120nm®
o = -
° 100 E 90nme d
c] 70nm y
ﬁ 60nmg_y Min co | .
________ immersion
= 50nme min CD
= PR WREAR L A
= 20m @
g * an‘;nrn [] oF Litho
™ 2ynm @ . SR Gap
o 1)‘"':'")' nm, bt » apP
= 1znm _‘_
g 10 13.5nm EUV

1996 2000 2004 2008 2012 2016 2020
Year

4 2D NAND Flash Technology 91

The ability of a lithographic system to generate a minimum CD is described by

A
D=k, — 4.11
C 'NA ()

where k; is a constant, A is the wavelength, and NA is the numerical aperture of the
optical illumination system. For a single exposure, dry 193 nm lithography with
optimized illumination conditions with, e.g., k; = 0.28 in combination with a
numerical aperture in the range of NA = 0.93, the minimum CD is limited to values
slightly below 60 nm [36].

With the introduction of immersion lithography with a liquid on top of the wafer
during illumination, the NA could be improved to 1.35, which is also the reason
why the 193 nm immersion lithography wavelength is shown in Fig. 4.28 “virtu-
ally” reduced by this factor. The smallest achievable half pitch for single exposure
193 nm immersion lithography is therefore about 38 nm [37].

To bridge the gap to extreme UV (EUV) lithography (see litho gap in Fig. 4.28),
which was not available for industrial volume production in time, the semicon-
ductor industry introduced (around 2009) special process sequences to generate
small structures that cannot be obtained by single exposure direct printing.

For logic circuits, such as microprocessors, it is usually sufficient to generate the
required small gate length by a trimming of larger lithographically generated
structures. The required short gate length in logic circuits can therefore be obtained
by tapered trim etch processes.

In memory products such as DRAM or NAND Flash it is not the small memory
cell structure itself that is important, but the high memory cell density. Besides, the
memory cell arrays have the great advantage that the basic structure consists of a
very regular line and space pattern, which can be printed more easily than complex
state-of-the-art SRAM structures.

Consequently, it is necessary to generate additional features that cannot be
directly printed by lithography.

Most common for NAND Flash memory are process sequences which generate
two smaller lines with a corresponding space out of one larger line that can be
printed lithographically. These kinds of process sequences which basically make
two lines out of one are known as self-aligned double patterning (SADP) [38, 39],
or sometimes pitch fragmentation [28]. The typical SADP approach is schemati-
cally shown in Fig. 4.29.

The starting point is a multiple layer stack of CVD-deposited materials like a-Si,
Si3Ny, SiO,, and carbon hard masks which can be selectively etched to each other.
Double patterning starts with a directly printed equal line and space pattern which
has two times the half pitch of the final structures (Fig. 4.29a). For a 20 nm target
half pitch, the initial line and space half pitch consequently would be 40 nm. With
the aid of the tapered trim etch process, this pattern is transferred to the underlying
layer with a line width half of the initial line. Subsequently, a conformal liner is
deposited (Fig. 4.29b) to generate a spacer with the width of the target half pitch as
shown in (Fig. 4.29¢). Proceeding from this processing stage, two different SADP

92 M. F. Beug

(@ = =1

[|
] .
carrier

v

(0] (ii)
line-by- P 7 line-by-fill
ine (LyBsS[;acer (C) : V. 2 '{//mi m(T_B)[é)I
) m m o 5 e) O D
[

—_—
L)
N
ol
JETIER]

Fig. 4.29 Schematic double patterning sequences line-by-spacer (LBS) (i) and line-by-fill (LBF)
(ii) [28]. The line width of an equal line and space pattern (a) is reduced by a trim etch process and
a conformal liner is deposited (b) in order to generate spacer (c) of the same width as the trimmed
lines. In the line-by-spacer sequence the spacers are used after line removal (d) to generate the final
pattern (e), in contrast to the line-by-fill sequence where additional “fill” lines are generated in
between the spacers (f) and the carrier and fill lines are used after spacer removal (g) to generate
the target pattern (h)

final sequences can be principally chosen. Option (i) is the so-called line-by-spacer
(LBS) sequence because it uses the generated spacer (Fig. 4.29d) to transfer the
obtained pattern into the underlying hard mask. Prior to this, the carrier needs to be
removed. The resulting hard mask structure is the equivalent of a single exposure
lithographically generated pattern at larger half pitches, which is, in turn, used for
patterning of the active chip structure as shown in Fig. 4.29e. Processing images of
a LBS SADP sequence is shown in Fig. 4.30.

Figure 4.30a shows the situation after the trim etch step with a line width one
quarter of the initial pitch. Figure 4.30b, c illustrates the process after the spacer
etch and the carrier recess etch, where the trimmed initial line is removed. In
Fig. 4.30d the spacer pattern is transferred into the hard mask and the spacer is
removed in e. When the small SADP-generated structures in the memory array are
generated, the close connection of every two neighboring lines needs to be etched
away. This cut etch process can be carried out together with the patterning of
periphery structures or, e.g., the select transistors as shown in Fig. 4.30f.

The second SADP processing option (ii) in Fig. 4.29 is the line-by-fill (LBF)
sequence. Subsequent to the spacer formation in Fig. 4.29c, a material that can be
as selectively etched to the spacer (e.g. the same material as the carrier) is filled in
between the spacers. Therefore, the material is called “fill” as shown in Fig. 4.29f.
Before the spacer material in between the carrier and fill lines can be removed as
depicted in Fig. 4.29g, a chemical-mechanical planarization (CMP) process step is
needed to have a better exposure of the spacer material to the etch chemistry. In the

4 2D NAND Flash Technology 93

(a): Trim etch

(b): Spacer etch

(c): Carrier recess
etch

(d): Spacer transfer
etch

(e): Spacer removal
etch

(f): Cut and periphery
etch

Fig. 4.30 Exemplary line-by-spacer process sequence [28, 39]

final step, the pattern can be transferred into the hard mask which is shown in
Fig. 4.20h.

With respect to CD variations, it should be mentioned that generally the spacer
width in SADP schemes can be better controlled than the carrier and fill width. The
spacer width variations mostly depend on thickness conformity of the deposited
spacer liner. In contrast, the carrier and fill line widths essentially depend on two
critical processes, which are the carrier trim etch and the spacer formation.

The knowledge of this different CD control can be used to guarantee a reliable
operation of FG NAND cells. It was described that the control gate plug is essential
for the gate coupling ratio and consequently for the FG cell performance.

Based on this, it is beneficial to use the LBF sequence for the one-step patterning
of the active area and floating gate width in a self-aligned STI (SA-STI) cell
approach [40] as shown in Fig. 4.31a.

This choice has the major advantage that the space for the critical control gate
plug has a good controllability [28]. For the patterning of the word line level which
defines the length of the FG cells it could be beneficial to use the LBS sequence.
The consequential spacer-defined good control of the FG cell length can help to
reduce cell-to-cell Vy, variations since the latest NAND cell generations are defi-
nitely in the short channel regime which increases cell length effects.

94 M. F. Beug

larger space smaller space

smaller space larger space

Fig. 4.31 Major variations in LBF (a) and LBS (b) pitch fragmentation sequences [28]

As shown in Fig. 4.28, it is required for FG NAND technologies beyond 20 nm
half pitch to use quadruple patterning (QP) techniques [23, 37] to generate such
small structures. Quadruple patterning is essentially two times the consecutive
usage SADP with its logical consequences for the CD control of lines and spaces.

4.6 Planar NAND Memory Cells as Conventional Floating
Gate Cell Replacement

In most cases charge trapping (CT) cells were discussed as a planar memory cell
replacement of the conventional floating gate cell in 2D memory arrays.

However, the planar FG cell as shown in Fig. 4.20 is also an alternative when it
is possible to overcome the program saturation issue.

The construction of CT memory cells for NAND application is at first glance not
very different from the floating gate NAND cell construction. The major difference
is that charge is stored in a non-conducting dielectric layer with high trap density
instead of the conducting floating gate. This non-conducting charge storage layer
has two major consequences:

(1) The surface of the dielectric charge storage layer is not an equipotential
surface as the floating gate. The stored charge can be inhomogeneously distributed
when the injection is locally enhanced.

(ii) In a planar cell structure, no capacitive voltage divider can be formed to
concentrate the voltage drop and, therefore, the electric field to the tunnel oxide as
in floating gate cells (with optimized gate coupling ratio o).

The typical layout of CT memory cells is shown in Fig. 4.32. The traditional
SONOS (poly-Si/SiO,/Si3N4/Si0,/Si) cell, as shown in Fig. 4.32a, stores the
charge in a Si3Ny (SiN) layer. SiN is widely used as the charge trapping layer (CTL)
due to its high trap density of a few times 10'° cm™ and its good process

4 2D NAND Flash Technology 95

(a) (b)

s poly Si T L

o Sio, A ALO,

N SiN N SiN

0 sio o sio
s/ Nt s/ e

Fig. 4.32 Charge trapping stacks in SONOS (a) and TANOS [48] (b) memory cells

compatibility with Si and SiO,. Sometimes other dielectrics are used for charge
storage, such as Al,O5 [41].

CT memory cells typically have a planar cell layout and therefore resemble
planar FG cells, layout-wise. Due to the lack of an increased gate coupling ratio it
cannot be realized that charge is only transferred through the tunnel oxide during
program and erase operation. Under the Fowler-Nordheim program condition in the
CT cell the injected electron current tunnels through the whole CT stack. Only a
certain part of this tunneling current is trapped in trap states and cause a Vy,
increase. The rest of the injected electron current leaves the charge trapping layer
towards the gate electrode. Consequently, the ISPP slope for CT memory cells is
not at unity, but rather in the range between 0.6 and 0.8 [42]. This tunneling current
passing the whole memory cell stack resembles FG cells in the program saturation
regime as described in Sect. 4.2.3.

However, the program operation is generally not the problem of CT cells, since
usually high Vy, levels (even suitable for MLC) can be reached.

One of the major issues of SONOS memory cells is the erase. It can be observed
that the erasability of SONOS cells significantly deteriorates when the tunnel oxide
thickness is increased above 2 nm [43]. In the TOX thickness range up to 2 nm the
erase mechanism is based on direct tunneling of holes from the channel region to
the SiN CTL. For thicker tunnel dielectric layers, the direct tunneling probability is
significantly reduced and for an efficient erase operation the electric field strength
needs to be increased up to the Fowler-Nordheim tunneling regime. The problem
that occurs in SONOS cells with thick tunnel oxide under FN erase conditions is the
so-called erase saturation which is illustrated in Fig. 4.33a. Under FN tunneling
conditions for holes from the cell channel, the electric field in the top SiO,
(blocking oxide: BLOX) layer is already high enough to inject electrons from the
gate towards the storage SiN (back tunneling). These injected gate electrons
compensate the positive charge of the injected holes and stop the Vy, decrease
(erase saturation). Other erase mechanisms which do not suffer from erase satura-
tion, such as hot hole injection (HHI) [44], are limited to the NOR array structure
where NROM-like cells [45] are commercially available, but cannot be imple-
mented in the NAND array.

Erase saturation in planar CT cells can be improved when a gate material with
high work function and/or a high-k blocking oxide is used, as shown in Fig. 4.33a.

96 M. F. Beug

& it €
- e
........ POIy-SI
.............. High WF High WF
"""""" Blockingilayer metal metal
Trapping
layer
ht - —— OIN/High-k
(a) Hole tunneling dominated erase (b) Electron detrapping dominated erase

Fig. 4.33 TANOS erase due to reduced electron back tunneling [48]

A higher work function can be obtained by a p-doped poly-Si layer instead of the
n-doped poly-Si gate [46], or by the use of a high work function metal gate [47].
The combination of both program saturation improvement approaches was the
reason for the introduction of so-called TANOS (TaN/Al,O3/Si3N,4/Si) CT memory
cells [48]. In the ideal TANOS image, the erase mechanism is solely due to hole
tunneling from the channel, the charge is only stored in the SiN CTL, and the Al,O3
blocking oxide is assumed to be trap free.

However, there are several indications that the ideal TANOS image is not fully
true. Other investigations of the TANOS erase even describe that electron detrap-
ping from SiN traps is the predominant effect [49], as illustrated in Fig. 4.33b.

It was additionally found that the Al,O; BLOX of the TANOS stack is not
trap-free and acts as a charge trapping layer as well [41, 42]. Consequently,
detrapping from Al,O; traps could be another contribution to the improved erase
performance of TANOS memory cells.

The major reason why CT Flash memory cell containing NAND product chips
are to date not commercially available is the observation of a general trade-off
between erasability and retention of CT memory cells.

Assuming that detrapping is an important component for CT cell erase, this
could be principally understood since energetically deep trap levels would be
beneficial for a good retention, but hinder the erase, and vice versa.

Compared to FG NAND cells, the retention of TANOS memory cells is gen-
erally not sufficient for MLC application. This can be seen for TANOS cells in a
48 nm NAND Flash technology in Fig. 4.34. The TANOS cell (without sealing
oxide) shows a good erase level for V., = —23 V with a long t.,; = 300 ms erase
pulse, but the retention loss of nearly 550 mV after a 2 h retention bake at 200 °C is
not suitable for MLC. This high retention loss is most likely due to a combination
of electrons lost from the storage SiN due to hopping conduction over Al,Oj3 traps
and a direct charge loss of electrons stored in Al,O; BLOX traps. Figure 4.34
shows the retention improvements at the expense of erase performance when parts

4 2D NAND Flash Technology 97

Fig. 4.34 Trade-off between T T N
erasability and retention -0.21 3.5 nm Sealing Oxide N
v 3
performance for 48 nm 3¢
TANOS NAND cells with an
additional SiO, layer at the

-0.3 A
2.5 nm Sealing Oxide \&Q

2 h @ 200°C Retention
Loss (V)

-0.4 ° 4
interface between the SiN 1nm Sealing Oxide
charge trapping layer and the 0.5 2 |
Al,0O5 blocking layer [42] 60& -

064 % TANOS without |

. Sealing Oxide
- -2 -3 -4

Erase V, level -23 V /300 ms

of the Al,O; BLOX adjacent to the SiN charge trap layer are replaced by an SiO,
layer (sealing oxide) with identical electrical thickness (EOT). The reduction of the
retention loss to 250 mV for the 3.5 nm sealing oxide results in CT TAONOS
(TaN/Al,05/S10,/S13N,4/Si) cells that can hardly be erased below Vy, = —1 V (both
values are critical for MLC).

A similar trade-off between erase performance and retention was obtained from
large area CT memory cells in the pm range, where the SiN CT composition was
varied with respect to the Si content [50] (see Fig. 4.35a), or with an additional
high-k BLOX layer, introduced on top of the Al,O3 to reduce gate back tunneling
during erase [51] (see Fig. 4.35b). In all cases shown in Fig. 4.35a, b, the standard
TANOS cell behavior is among the best performing CT cells, or only the described
trade-off between retention and erase performance is seen.

(a) (b)

0.5 ———— : : : — 1.0
T 3 Al,0,/ GaAIO-O+

® O-rich SiN «° AL,O,/ LUAIO-O+#)’

-1.0 0 -1.5

SiN(PECVD)

|
ALO,/ Lualo-0® AlkO;

-1.5 4 1 fALO, /LuaIO3 & L 2.0

A
Si-rich SiN-1

S
20{ A VSirichSiN-2 1 | « --25
©

%, X AL,0,/ GaAIO-H
-2.5 % 1 9 30

< %,
Si-rich SiN-3 y AL,0,/ GaAlO-O
-3.0 T T T T T T -3.5

%
-1.0 -1.5 -2.0 -2.5 -3.0 -1 -2 -3 -4
Erase V, level -18V/1s Erase V, level -20 V/ 100 ms

5 Days @ 150°C Retention Loss (V)
K
(A) sso07 uonualay 2,002 ® 399M |

Fig. 4.35 TANOS trade-off between erasability and retention performance on large memory cells
(um range) with variation of the Si content in the SiN CTL (a) [50], and for different high-k layers
on top of the Al,O; blocking oxide (b) [51]

98 M. F. Beug

The endurance behavior of TANOS or similar CT cells is also generally worse
than that of floating gate cells. This might be correlated to the inevitable tunnel
currents through the hole CT stack as mentioned before.

Besides, the charge storage in a non-conducting layer can lead to inhomoge-
neously distributed charges which adversely affect the erase performance of CT
cells [52, 53] and can also be responsible for the worse retention performance of
small ground rule CT cells compared to large CT cells [42, 54].

All described reliability issues (erase performance, retention, and endurance) of
CT memory cells are responsible for the fact that TANOS cells not been able to
replace floating gate cells in planar 2D NAND Flash applications.

The only planar memory cell which has appeared on the market in a planar 2D
memory array so far is the planar FG cell technology [55] as shown in Fig. 4.36.
However, the TEM analysis of the cell structure does not show a dual layer floating
gate. Instead the planar FG cell has a thin poly-Si FG layer with a quite thick inter
gate dielectric (IGD) stack including some high-k dielectric layers and on top a high
work function metal gate.

Since the IGD includes a SiO2 layer of similar thickness as the TOX plus
additional layers, the gate coupling ratio must be significantly below 0.5, which
makes this cell quite difficult to operate as a traditional FG cell.

Nevertheless, the published program and erase characteristics are very ideal with
program and erase slopes ~1 and a large P/E window [55]. Such a characteristic
would not be the case either for a traditional planar FG cell or a TANOS like charge
trapping (CT) cell.

Most likely the working principle of the planar FG Micron cell is a combination
of a FG and a CT cell. Besides the conducting poly-Si FG, the IGD stack is the one
of a traditional CT cell. The advantage of the conducting FG introduction could be
the fact that this layer provides a conduction band where the electrons can tunnel to

Fig. 4.36 Details of the of a
20 nm planar FG NAND cell
technology with multi layer
inter gate dielectric

(IGD) [55]. This IGD
includes a SiN layer directly
on top of the Poly-Si FG layer
which acts as an additional
charge trapping layer together
with the FG

Control Gate

—Poly FG—#
Tunnel Oxide ‘

Si STI

4 2D NAND Flash Technology 99

under program conditions. This avoids the fly-through effect (which is visible in a
reduced ISPP slope [56]), because the electrons don’t need to be captured in dis-
crete trap states and thermalize into the deep energy states of the traps. Under erase
conditions, the FG layer provides a large number of free electrons that can tunnel
towards the cell channel and therefore avoids the erase saturation.

(a) (b)
T T T T T T L} T T T 30
244 s (o] N E ——— Planar MONOS Cell
—— Cylindrical MONOS Cell 25
20 4 I T Si Vertical Channel @ =6nm [
Cylindrical Si Vertical - m
16 4 Channel @ =6 nm dF L 20 E‘
= -
s V=20V 3
2 12 11 15
[1:]
2 8- . a
E‘ L - 10 —
: 3
4 - 20 V | 1 N F <
w i \'--.. L 5 S
o A -1 —
-4 Planar MONOS Cell 1T 0
Cylindrical MONOS Cell TOX/CTL/BLOX (ONO) = Snm/6nm/8nm |
-8 T T T T T T T T T T -5
0 5 10 15 20 0 5 10 15 20
Position (nm) Position (nm)

Fig. 4.37 Comparison of uncharged (no electrons stored in the SiN CTL) planar MONOS cells
and cylindrical MONOS cells with an inner Si channel diameter of 6 nm. The band diagram
(a) and the electric field conditions (b) show strongly increased fields in the tunnel oxide and
significantly reduced fields in the BLOX of the cylindrical SONOS cell. The SONOS CT stack
dimension (ONO) used in the simulations was TOX/CTL/BLOX = 5 nm/6 nm/8 nm (c)

100 M. F. Beug

When the program and erase operations are finished, the stored charges are most
likely redistributed between the FG and the traps in the SION charge trapping layer.
As aresult, it is not entirely correct to call this planar FG cell a floating gate cell. It
is rather most likely a charge trapping cell with an additional conducting layer
charge trapping layer (FG poly-Si). Therefore it could be a “hybrid FG-CT cell”.

However, common to both, the conventional CT and the “hybrid FG-CT cell” as
presented in the working 2D FG cell [55], is the fact that they work better in a
cylindrical cell geometry. The cylindrical shape of the memory cells in 3D cell
approaches have one major advantage over fully planar memory cells, namely the
electric field enhancement in the TOX and the field reduction in the BLOX or IGD
[57]. The band diagram and the electric fields under erase conditions (Vcgers =
—20 V) for a planar MONOS cell vs. a cylindrical MONOS with a 6 nm
inner-channel diameter are shown in Fig. 4.37a, b. The ONO stack dimensions used
in the field calculations were trox = 5 nm, tg;ny = 6 nm, and tg; ox = 8 nm. It is
clearly visible that the cylindrical cell geometry with an inner cell channel position
strongly increases the TOX field in relation to the BLOX field. Therefore, the
cylindrical geometry effectively acts as an increased gate coupling ratio of a floating
gate cell. The TOX electric field enhancement can also be seen in the form of
denser E-field lines in Fig. 4.37c.

It will be seen in the next chapter that the advantage of the cylindrical cell
geometry is used in most of the 3D NAND Flash memory arrays.

Acknowledgement The author would like to acknowledge the whole Flash development team of
the former Qimonda Company. Special thanks are addressed to Torsten Miiller, Nigel Chan, and
Stefano Parascandola for discussions, provision of a 3D FG cell field simulator script, RTN
measurements, program saturation evaluations, and pitch fragmentation process images.

References

1. D. Kahng, S.M. Sze, A floating gate and its application to memory devices. Bell Syst. Techn.
J. 46(6), 1288-1295 (1967)

2. N. Chan, M.F. Beug, R. Knoefler, T. Mueller, T. Melde, M. Ackermann, S. Riedel, M.
Specht, C. Ludwig, A.T. Tilke, Metal control gate for sub-30 nm floating gate NAND
memory, in Proceeding of the 9th NVMTS, Nov 2008, pp. 82-85

3. A. Kolodny, S.T.K. Nieh, B. Eitan, J. Shappir, Analysis and modelling of floating gate
EEPROM cells. IEEE Trans. Electron Devices 33(6), 835-844 (1986)

4. K. Kim, J. Choi, Future outlook of NAND flash technology for 40 nm node and beyond, in
Non-Volatile Semiconductor Memory Workshop, 2006. 21st IEEE NVSMW, 2006, pp. 9-11

5. M. Wong, D.K.-Y. Liu, S.S.-W. Huang, Analysis of the subthreshold slope and the linear
transconductance techniques for the extraction of the capacitance coupling coefficients of
floating gate devices. IEEE Electron Device Lett. 13(11), 566-568 (1992)

6. M.F. Beug, Q. Rafthay, M.J. van Duuren, R. Duane, Investigation of back-bias capacitance
coupling coefficient measurement methodology for floating gate non-volatile memory cells.
IEEE Trans. Electron Devices 57(6), 1253-1260 (2010)

7. R.H. Fowler, L. Nordheim, Electron emission in intense electric films. Proc. R. Soc. Lond.
119, 173-181 (1928)

4 2D NAND Flash Technology 101

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

. K.-D. Suh, B.-H. Suh, Y.-H. Um, J.-K. Kim, Y.-J. Choi, Y.-N. Koh, S.-S. Lee, S.-C. Kwon,

B.-S. Choi, J.-S. Yum, J.-H. Choi, J.-R. Kim, H.-K. Lim, A 3.3 V 32 Mb NAND flash
memory with incremental step pulse programming scheme, in /EEE International Solid-State
Circuits Conference, Feb 1995, pp. 128-129

. C. Friederich, J. Hayek, A. Kux, T. Muller, N. Chan, G. Kobernik, M. Specht, D. Richter, D.

Schmitt-Landsiedel, Novel model for cell—system interaction (MCSI) in NAND flash, in
1IEEE International Electron Devices Meeting (IEDM), Dec 2008

K. Prall, K. Parat, 25 nm 64 Gb MLC NAND technology and scaling challenges, in /IEEE
International Electron Devices Meeting (IEDM), Dec 2010, pp. 102-105

C.-H. Lee, S.-K. Sung, D. Jang, S. Lee, S. Choi, J. Kim, S. Park, M. Song, H.-C. Baek, E.
Ahn, J. Shin, K. Shin, K. Min, S.-S. Cho, C.-J. Kang, J. Choi, K. Kim, J.-H. Choi, K.-D. Suh,
T.-S. Jung, A highly manufacturable integration technology for 27 nm 2 and 3bit/cell NAND
flash memory, in IEEE International Electron Devices Meeting (IEDM), Dec 2010, pp. 98—
101

D.J. DiMaria, E. Cartier, Mechanism for stress-induced leakage current in thin silicon dioxide
films. J. Appl. Phys. 78(6), 3883-3894 (1995)

M.F. Beug, N. Chan, T. Hoehr, L. Mueller-Meskamp, M. Specht, Investigation of program
saturation in scaled interpoly dielectric floating gate memory devices. IEEE Trans. Electron
Devices 56(8), 1698-1704 (2009)

D. Wellekens, J. De Vos, J. Van Houdt, K. van der Zanden, Optimization of A1202 interpoly
dielectric for embedded flash memory applications, in Proceedings of Joint NVSMW/ICMTD,
May 2008, pp. 12-15

T.-S. Jung, Y.-J. Choi, K.-D. Suh, B.-H. Suh, J.-K. Kim, Y.-H. Lim, Y.-N. Koh, J.-W. Park,
K.-J. Lee, J.-H. Park, K.-T. Park, J.-R. Kim, J.-H. Yi, H.-K. Lim, A 117-mm2 3.3-V only
128-Mb multilevel NAND flash memory for mass storage applications. IEEE J. Solid-State
Circuits 31(11), 1575-1583 (1996)

T. Cho, Y.-T. Lee, E.-C. Kim, J.-W. Lee, S. Choi, S. Lee, D.-H. Kim, W.-G. Han, Y.-H. Lim,
J.-D. Lee, J.-D. Choi, K.-D. Suh, A dual-mode NAND flash memory: 1-Gb multilevel and
high-performance 512-Mb single-level modes. IEEE J. Solid-State Circuits 36(11), 1700—
1706 (2001)

R. Micheloni, L. Crippa, A. Marelli, Inside NAND Flash Memories. Springer (2010)

R. Cernea, D.J. Lee, M. Mofidi, E.Y. Chang, Wy-Yi Chien, L. Goh, Y. Fong, J.H. Yuan, G
Samachisa, D.C. Guterman, S. Mehrotra, K. Sato, H. Onishi, K. Ueda, F. Noro, K. Mijamoto,
M. Morita, K. Umeda, K. Kubo, A 34 Mb 3.3 V serial flash EEPROM for solid-state disk
applications, in IEEE International Solid-State Circuits Conference (ISSCC), San Francisco,
Feb 1995, pp. 126-127

A. Chimenton, P. Olivo, Fast identification of critical electrical disturbs in nonvolatile
memories. IEEE Trans. Electron Devices 54(9), 2438-2444 (2007)

J.H. Stathis, Reliability limits for the gate insulator in CMOS technology. IBM J. Res. Dev. 46
(2/3), 265-286 (2002)

P. Olivo, T.N. Nguyen, B. Ricco, High-field-induced degradation in ultrathin SiO2 films.
IEEE Trans. Electron Devices 35(12), 2259-2267 (1988)

S. Lai, Electrical properties of nitrided-oxide systems for use in gate dielectrics and
EEPROM, in Proceeding of the International Non-Volatile Memory Technology Conference,
1998, pp. 6-7

J. Hwang, J. Seo, Y. Lee, S. Park, J. Leem, J. Kim, T. Hong, S. Jeong, K. Lee, H. Heo, H. Lee,
P. Jang, K. Park, M. Lee, S. Baik, J. Kim, H. Kkang, M. Jang, J. Lee, G. Cho, J. Lee, B. Lee,
H. Jang, S. Park, J. Kim, S. Lee, S. Aritome, S. Hong, Sungwook Park, A middle-1X nm
NAND flash memory cell (M1X-NAND) with highly manufacturable integration technolo-
gies, in IEEE International Electron Devices Meeting (IEDM), Dec 2011, pp. 199-202

U. Ganguly, Y. Yokota, T. Jing, S. Shiyu, M. Rogers, J. Miao, K. Thadani, H. Hamana, L.
Garlen, B. Chandrasekaran, S. Thirupapuliyur, C. Olsen, V. Nguyen, S. Srinivasan,
Scalability enhancement of FG NAND by FG shape modification, in IEEE International
Memory Workshop (IMW), May 2010

102 M. F. Beug

25. D. Wellekens, J. De Vos, J. Van Houdt, K. van der Zanden, Optimization of Al1203 interpoly
dielectric for embedded flash memory applications, in Proceedings of the Joint NVSMW/
ICMTD, May 2008, pp. 12-15

26. P. Blomme, M. Rosmeulen, A. Cacciato, M. Kostermans, C. Vrancken, S. Van Aerde, T.
Schram, I. Debusschere, M. Jurczak, J. Houdt, Novel dual layer floating gate structure as
enabler of fully planar flash memory, in Symposium on VLSI Technology (VLSIT), June 2010,
pp. 129-130

27. J.-D. Lee, S.-H. Hur, J.-D. Choi, Effects of floating-gate interference on NAND flash memory
cell operation. IEEE Electron Device Lett. 23(5), 264-266 (2002)

28. MLF. Beug, S. Parascandola, T. Hoehr, T. Muller, R. Reichelt, L. Muller-Meskamp, P. Geiser,
T. Geppert, L. Bach, U. Bewersdorff-Sarlette, O. Kenny, S. Brandl, T. Marschner, S. Meyer,
S. Riedel, M. Specht, D. Manger, R. Knofler, K. Knobloch, P. Kratzert, C. Ludwig, K.-H.
Kusters, Pitch fragmentation induced odd/even effects in a 36 nm floating gate NAND
technology, in Proceedings of the NVMTS, Nov 2008, pp. 77-81

29. N. Shibata, H. Maejima, K. Isobe, K. Iwasa, M. Nakagawa, M. Fujiu, T. Shimizu, M. Honma,
S. Hoshi, T. Kawaai, K. Kanebako, S Yoshikawa, H. Tabata, A. Inoue, T. Takahashi, T.
Shano, Y. Komatsu, K. Nagaba, M. Kosakai, N. Motohashi, K. Kanazawa, K. Imamiya, H.
Nakai, A 70 nm 16 Gb 16-level-cell NAND flash memory, in IEEE Symposium on VLSI
Circuits, 14-16 June 2007, pp. 190-191

30. R. Cernea, L. Pham, F. Moogat, S. Chan, B. Le, Y. Li, S. Tsao, T.-Y. Tseng, K. Nguyen,
J. Li, J. Hu, J. Park, C. Hsu, F. Zhang, T. Kamei, H. Nasu, P. Kliza, K. Htoo, J. Lutze, Y.
Dong, M. Higashitani, J. Yang, H.-S. Lin, V. Sakhamuri, A. Li, F. Pan, S. Yadala, S. Taigor,
K. Pradhan, J. Lan, J. Chan, T. Abe, Y. Fukuda, H. Mukai, K. Kawakamr, C. Liang, T. Ip, S.-
F. Chang, J. Lakshmipathi, S. Huynh, D. Pantelakis, M. Mofidi, K. Quader, A 34 MB/
s-program-throughput 16 Gb MLC NAND with all-bitline architecture in 56 nm, in /EEE
International Solid-State Circuits Conference (ISSCC), Feb 2008, pp. 420-624

31. Y.S. Kim, D.J. Lee, C.K. Lee, H.K. Choi, S.S. Kim, J.H. Song, D.H. Song, J.-H. Choi, K.-D.
Suh, C. Chung, New scaling limitation of the floating gate cell in NAND flash memory, in
IEEE International Reliability Physics Symposium (IRPS), May 2010, pp. 599-603

32. H.H. Mueller, D. Worle, M. Schulz, Evaluation of the coulomb energy for single-electron
interface trapping in sub-pm metal-oxide-semiconductor field effect transistors. J. Appl. Phys.
75(6), 2970-2979 (1994)

33. H. Miki, T. Osabe, N. Tega, A. Kotabe, H. Kurata, K. Tokami, Y. Ikeda, S. Kamohara, R.
Yamada, Quantitative analysis of random telegraph signals as fluctuations of threshold
voltages in scaled flash memory cells, in IEEE International Reliability Physics Symposium
(IRPS), 2007, pp. 29-35

34. K. Seidel, R. Hoffmann, D.A. Lohr, T. Melde, M. Czernohorsky, J. Paul, M.F. Beug, V.
Beyer, Comparison and analysis of trap mechanisms responsible for random telegraph noise
and erratic programming on sub-50 nm floating gate flash memories, in Non-Volatile Memory
Technology Symposium (NVMTS), Oct 2009, pp. 67-71

35. M.F. Beug, R. Ferretti, K.R. Hofmann, Analysis and modeling of the transient local tunneling
in gate oxides. IEEE Trans. Device Mater. Reliab. 4(1), 73-79 (2004)

36. M.C. Chiu, B. Szu-M. Lin, M.F. Tsai, Y.S. Chang, M.H. Yeh, T.H. Ying, C. Ngai, J. Jin, S.
Yuen, S. Huang, Y. Chen, L. Miao, K. Tai, A. Conley, I. Liu, Challenges of 29 nm half-pitch
NAND flash STI patterning with 193 nm dry lithography and self-aligned double patterning,
In Proceedings of the SPIE 7140, 714021, 2008, https://doi.org/10.1117/12.804685

37. P. Xu, Y. Chen, Y. Chen, L. Miao, S. Sun, S.-W. Kim, A. Berger, D. Mao, C. Bencher, R.
Hung, C. Ngai, Sidewall spacer quadruple patterning for 15 nm half-pitch. Proc. SPIE 7973,
79731Q (2011). https://doi.org/10.1117/12.881547

38. C. Bencher, Y. Chen, H. Dai, W. Montgomery, L. Huli, 22 nm half-pitch patterning by CVD
spacer self alignment double patterning (SADP). Proc. SPIE 6924, 69244E (2008). https://doi.
org/10.1117/12.772953

39. C. Ludwig, S. Meyer, Double patterning for memory ICs, in Recent Advances in
Nanofabrication Techniques and Applications, ed. by Bo Cui (InTech, 2011), pp. 417-432.

http://dx.doi.org/10.1117/12.804685
http://dx.doi.org/10.1117/12.881547
http://dx.doi.org/10.1117/12.772953
http://dx.doi.org/10.1117/12.772953

4 2D NAND Flash Technology 103

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

ISBN: 978-953-307-602-7, http://www.intechopen.com/articles/show/title/double-patterning-
for-memory-ics

S. Aritome, S. Satoh, T. Maruyama, H. Watanabe, S. Shuto, G. J. Hemink, R. Shirota, S.
Watanabe, F. Masuoka, A 0.67 pm2 self-aligned shallow trench isolation cell (SA-STI cell)
for 3 V-only 256 Mbit NAND EEPROMs, in IEEE International Electron Devices Meeting
(IEDM), Dec 1994, pp. 61-64

M. Specht, H. Reisinger, F. Hofmann, T. Schulz, E. Landgraf, R.J. Luyken, W. Rosner, M.
Grieb, L. Risch, Charge trapping memory structures with Al203 trapping dielectric for
high-temperature applications. Solid-State Electron. 49(5), 716-720 (2005)

M.F. Beug, T. Melde, M. Czernohorsky, R. Hoffmann, J. Paul, R. Knoefler, A.T. Tilke,
Analysis of TANOS memory cells with sealing oxide containing blocking dielectric. IEEE
Trans. Electron Devices 57(7), 1590-1596 (2010)

R. van Schaijk, M. van Duuren, W.Y. Mei, K. van der Jeugd, A. Rothschild, M. Demand,
Oxide—nitride—oxide layer optimisation for reliable embedded SONOS memories. Micro-
electron. Eng. 72(1-4), 395-398 (2004)

T.Y. Chan, K.K. Young, C. Hu, A true single-transistor oxide-nitride-oxide EEPROM device.
IEEE Electron Device Lett. 8(3), 93-95 (1987)

B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, D. Finzi, NROM: A novel localized
trapping, 2-bit nonvolatile memory cell. IEEE Electron Device Lett. 21(11), 543-545 (2000)
H. Bachhofer, H. Reisinger, E. Bertagnolli, Transient conduction in multidielectric silicon—
oxide—nitride—oxide semiconductor structures. J. Appl. Phys. 89(5), 2791-2800 (2001)

A. Goda, M. Noguchi, Improvement of erase saturation for a highly reliable monos memory
cell, in IEEE Non-Volatile Semiconductor Memory Workshop (NVSMW), Feb 2003, pp. 65—
68

C.H. Lee, K.I. Choi, M.K. Cho, Y.H. Song, K.C. Park, K. Kim, A novel SONOS structure of
Si02-SiN-Al203 with TaN metal gate for multi-giga bit flash memories, in [EEE
International Electron Devices Meeting (IEDM), Dec 2003, pp. 613-616

S.-C. Lai, H.-T. Lue, J.-Y. Hsieh, M.-J. Yang, Y.-K. Chiou, C.-W. Wu, T.-B. Wu, G.-L. Luo,
C.-H. Chien, E.-K. Lai, K.-Y. Hsieh, R. Liu, C.-Y. Lu, Study of the erase mechanism of
MANOS (metal/A1203/SiN/Si02/Si) device. IEEE Electron Device Lett. 28(7), 643-645
(2007)

G. Van den bosch, A. Furnemont, M.B. Zahid, R. Degraeve, R. Breuil, L. Cacciato, A.
Rothschild, C. Olsen, U. Ganguly, J. Van Houdt, Nitride engineering for improved erase
performance and retention of TANOS NAND flash memory, in Non-Volatile Semiconductor
Memory Workshop, 2008 and 2008 International Conference on Memory Technology and
Design. NVSMW/ICMTD 2008. Joint, 18-22 May 2008, pp. 128-129

L. Breuil, C. Adelmann, G. Van Den Bosch, A. Cacciato, M.B. Zahid, M. Toledano-Luque,
A. Suhane, A. Arreghini, R. Degraeve, S. Van Elshocht, I. Debusschere, J. Kittl, M. Jurczak,
J. Van Houdt, Optimization of the crystallization phase of rare-earth aluminates for blocking
dielectric application in TANOS type flash memories, in 2010 Proceedings of the European
Solid-State Device Research Conference (ESSDERC), 14-16 Sept 2010, pp. 440443

M.F. Beug, T. Melde, M. Isler, L. Bach, M. Ackermann, S. Riedel, K. Knobloch, C. Ludwig,
Anomalous erase behavior in charge trapping memory cells, in Proceedings of the Joint
Non-Volatile Semiconductor Memory Workshop/ International Conference on Memory
Technology and Design (NVSMW/ICMTD), May 2008, pp. 121-123

Y.-J. Chen, L.H. Chong, S.-W. Lin, T.-H. Yeh, K.-F. Chen, J.-S. Huang, C.-H. Cheng, S.-H.
Ku, N.-K. Zous, I-J. Huang, T.-T. Han, T.-H. Hsu, H.-T. Lue, M.-S. Chen, W.-P. Lu, K.-C.
Chen, C.-Y. Lu, Source/Drain dopant concentration induced reliability issues in charge
trapping NAND flash cells, in IEEE International Reliability Physics Symposium (IRPS), May
2010, pp. 634-638

M.F. Beug, T. Melde, J. Paul, R. Knoefler, TaN and Al203 side wall gate-etch damage
influence on program, erase, and retention of sub-50 nm TANOS NAND flash memory cells.
IEEE Trans. Electron Devices 58(6), 1728-1734 (2011)

http://www.intechopen.com/articles/show/title/double-patterning-for-memory-ics
http://www.intechopen.com/articles/show/title/double-patterning-for-memory-ics

104 M. F. Beug

55. N. Ramaswamy, T. Graettinger, G. Puzzilli, H. Liu, K. Prall, Engineering a planar NAND cell
scalable to 20 nm and beyond, in International Memory Workshop, 26-29 May 2013, pp. 5-8

56. A. Furnemont, M. Rosmeulen, A. Cacciato, L. Breuil, K. De Meyer, H. Maes, J. Van Houdt,
A consistent model for the SANOS programming operation, in Proceedings 22nd IEEE
Non-Volatile Semiconductor Memory Workshop, Aug 2007, pp. 96-97

57. E. Nowak, A. Hubert, L. Perniola, T. Ernst, G. Ghibaudo, G. Reimbold, B. De Salvo, F.
Boulanger, In-depth analysis of 3D Silicon nanowire SONOS memory characteristics by
TCAD simulations, in /IEEE International Memory Workshop, May 2010

Chapter 5)
3D NAND Flash Memories gk for

Rino Micheloni, Seiichi Aritome and Luca Crippa

Nowadays, Solid State Drives consume an enormous amount of NAND Flash
memories [1] causing a restless pressure on increasing the number of stored bits per
mm?. Planar memory cells have been scaled for decades by improving process
technology, circuit design, programming algorithms [2], and lithography.

Unfortunately, when approaching a minimum feature size of I1x-nm, more
challenges pop up: doping concentration in the channel region becomes difficult to
control [3], RTN [4] and electron injection statistics [5] widen threshold distribu-
tions, thus causing a significant hit to both endurance and retention. Furthermore,
by reducing the distance between memory cells, the intra-wordline electric field
becomes higher, pushing the bit error rate to an even higher level.

3D arrays can definitely be considered as a breakthrough for fueling a further
increase of the bit density. Identifying the right way for going 3D is not so easy
though.

Historically, Flash memory manufacturers have leveraged lithography to shrink
the 2-dimensional (2D) memory cell [6].

This chapter is a partial reprint of R. Micheloni, S. Aritome, L. Crippa, “Array architectures for
3D NAND Flash Memories” in Proceedings of the IEEE, vol. 105, no. 9, pp. 1634-1649, Sept.
2017. © 2017 IEEE.

R. Micheloni (=) - L. Crippa
Storage Solutions, Microsemi Corporation, Vimercate, MB, Italy
e-mail: rino.micheloni @ieee.org

L. Crippa
e-mail: luca.crippa@ieee.org

S. Aritome
IPCC, Industrial Property Cooperation Center, Tokyo, Japan
e-mail: aritomes @ieee.org

© Springer Nature Singapore Pte Ltd. 2018 105
R. Micheloni et al. (eds.), Inside Solid State Drives (SSDs),

Springer Series in Advanced Microelectronics 37,

https://doi.org/10.1007/978-981-13-0599-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_5&domain=pdf

106 R. Micheloni et al.

10000 ,
F === P-FG MLC

== BICS/TCAT 16-stacked

BiCS/TCAT/SMArT/DC-SF
cannot be shrunk efficiently
with feature size (F).

* Planar-FG Scalability
>> VG-NAND
> BiCS/TCAT/SMArT =
DC-SF

+ 40nm Feature size (ArFi
limitation) is a reasonable
choice for 3D, to reduce
integration cost.

—#—=VG-NAND 16-stacked
—=—DC-SF 16-stacked

—«—DC-5F 16-stacked MLC

1000 &

Effective Cell Size (nm2)

ArFi ' Double Patteming, EUV

i L i 1 "Rl

100 V—
60 50 40 32 26 20 16 13 N

Feature Size, F [nm]

Fig. 5.1 3D NAND Flash scaling [7]

However, with 3D architectures, the “simple” reduction of the minimum feature
size is running out of steam, as shown in Fig. 5.1 [7]: a higher number of stacked
cells is the only hope for dramatically reducing the real estate of a stored bit.

3D arrays can leverage either Floating Gate (FG) or Charge Trapping
(CT) technologies [8]. As a matter of fact, the vast majority of 3D architectures
published to date are built with CT cells, mainly because of the simpler fabrication
process. Nevertheless, Floating Gate is still around and there are commercial
products who managed to integrate FG into a 3D array.

5.1 3D Charge Trap NAND Flash Memories

3D arrays can be efficiently built by vertically rotating the planar NAND Flash
string of Fig. 5.2a, as displayed in Fig. 5.2b. The solution of choice is a conduction
channel completely surrounded by the gate (Fig. 5.2¢, d) [9]: indeed, the curvature
effect helps increasing the electric field E; across the tunnel oxide, and reduces the
electric field E,, across the blocking oxide [10, 11], and this has a positive impact on
oxide reliability and overall power consumption.

Vertical channel arrays have been historically driven by architectures known as
BiCS, which stands for Bit Cost Scalable [12, 13] and P-BiCS, acronym for Pipe-
Shaped BiCS [14-16], which are both leveraging CT cells. Let’s get started with
BiCS, which is sketched in Figs. 5.3 and 5.4 [17]. There is a stack of Control Gates
(CGs), the lowest being the one of the Source Line Selector (SLS). The whole
vertical stack is punched through and the resulting holes are filled with poly-silicon;
each filled hole (a.k.a. pillar) forms a series of memory cells vertically connected in

5 3D NAND Flash Memories 107

Bit Line Selector
(BLS)

Channel

(CH)
Channel .
(CH) \ . 2
Bit Line Selector
(BLS) Control Gate
(CGs) Control
— Gates
(CGs)
Charge Trap T,
(m > Channel)
(CH) |
¥
3 Source Line
Selector
(sLs)

Fig. 5.2 The NAND Flash string goes vertical

Bitline (BL)

Bitline
Selectors
(BLS)

Control

Gates
(CGs)

Z

4
Source Line %

Source Line Selector
(sL) (SLS) Channel (CH)

Fig. 5.3 BiCS architecture

108 R. Micheloni et al.

Fig. 5.4 Equivalent circuit of Bitline (BL)
a BiCS array I —-
BissH | 4] 4] 4 |
: L
o Tl 1Tl 1T |
N | N || N || S
I I
Control o o Yl
CHCTEIL
Gates — I 1
(CGS) [_ [_ [_ | |
L. HL 1 _— :
— e |, | !
[I
L T TIL AL
1 I
W
Y 5 I |
f 155
% v = =" 1vertical
string

a NAND fashion. Bit Line Selectors (BLS’s) and Bitlines (BLs) are formed at the
top of the structure [18].

The poly-silicon body of memory cells is not doped or lightly doped [10, 11];
indeed, considering the bad aspect ratio of the vertical polysilicon plug, p-n junc-
tions cannot be easily realized by either diffusion or implantation in a trench
structure. As usual, a select transistor (BLS) is used to connect each NAND string
to a bitline; there is also another select transistor (SLS), which connects the other
side of the string to the common source diffusion.

It is important to highlight that the number of critical and expensive lithography
steps does not depend on the number of control gate plates because the whole 3D
stack is drilled at one [19, 20].

As sketched in Fig. 5.5, vertical transistor have polysilicon body and this fact
turned out to be one of the critical cornerstone of the 3D foundation. From a
manufacturing perspective, the density of the traps at the grain boundary is very
difficult to control, with such a vertical shape: the bad thing is that this poor control
induces significant fluctuations of the characteristics of vertical transistors.

The recipe for fixing the trap density fluctuation problem is to manufacture a
polysilicon body much thinner than the depletion width. In other words, by
shrinking the polysilicon volume, the total number of traps goes down (Fig. 5.6).
This particular structure is usually referred to as Macaroni Body [13]. A filler layer

5 3D NAND Flash Memories 109

Charge Trap Polysilico
Material (N)

Core Filler

Tunnel
Oxide

«—_ Blocking

Fig. 5.5 BiCS memory cells

“Macaroni”
Body

Charge Trap
Layer (CT)

&

Core Filler

Depletion
Layer
Channel

Fig. 5.6 A vertical transistor (right) modified with Macaroni body (left)

110 R. Micheloni et al.

BLS’s connections BLs

/_\“\ CGS, SLSaI"Id Sl.

connections

Source Line (SL)

Source Line
Selector (SLS)
Contact

Fig. 5.7 Fan-out of the BiCS array

(i.e. a dielectric film) is used in the central part of the macaroni structure, essentially
because it makes the manufacturing process easier.

The fabrication sequence of the BiCS array [21] starts from building the layers
for control gates and selectors. Then, BLS stripes are defined. After forming pillars,
bitlines are laid out by using a metal layer.

Control gate edges are extended to form a ladder to connect to the fan-out
region, as sketched in Fig. 5.7 [12, 13, 21, 22]. Actually, there are 2 ladders: one of
the 2 can’t be used because it is masked by the metals biasing the bitline selectors.

Over time BiCS became P-BiCS, mainly to improve the Source Line resistance
[23, 24]. In a nutshell, two vertical NAND strings are shorted together at the bottom
of the 3D structure: in this way, they form a single NAND string and the 2 edges are
connected to the bitline and to the Source Line, respectively (Fig. 5.8). Thanks to its
U-shape, P-BiCS has few advantages over BiCS:

e retention is better because manufacturing creates less damages in the tunnel
oxide;

e being at the top, the Source Line can be connected to a metal mesh, thus
lowering its parasitic resistance;

e Source Line and bitline selectors are at the same height of the stack and,
therefore, they can be equally optimized and controlled, thus obtaining a better
string functionality.

Figure 5.9 shows a P-BiCS array [25].
One of the biggest drawbacks of P-BiCS is the fact that at the same height of the
stack there are two different control gates which, of course, can’t be biased together;

5 3D NAND Flash Memories

G ‘
Y -
' +«— U-Shaped s Y-Z CROSS SECTION
Channel

Fig. 5.8 P-BICS NAND strings

Source
Line

Fig. 5.9 P-BICS NAND Flash array

111

112 R. Micheloni et al.

Fig. 5.10 Fork-shaped fan-out

therefore, the two layers can’t be simply shorted together. As a result, compared to
BiCS, a totally different and more complex fan-out is required [25], as displayed in
Fig. 5.10: basically, a fork-shaped gate is adopted, such that each branch acts on
two NAND pages.

A major advantage is the easier connection of the source line [14] through the
“Top Level Source Line” of Fig. 5.11. This additional metal mesh guarantees a
much better noise immunity for circuits.

Besides BiCS and P-BiCS, many other approaches were tried, including VRAT
(Vertical Recess Array Transistor) [26], Z-VRAT (Zigzag VRAT) [26], and VSAT
(Vertical Stacked Array Transistor) [27], and 3D-VG (Vertical Gate) NAND [28]
which is a unique architecture where the channel runs along the horizontal
direction.

TCAT (Terabit Cell Array Transistor) was disclosed in 2009 [29] and it was the
foundation for V-NAND (Fig. 5.12), which is the first 3D memory device who
reached the market. Except for SL+ regions which are n+ diffusions, the equivalent
circuit of TCAT is the same of BiCS (Fig. 5.4). All SL+ lines are connected
together to form the common Source Line (Fig. 5.13). There are 2 metal layers for
decoding wordlines and NAND strings, respectively.

TCAT is based on gate-replacement [29], whereas BiCS is gate-first.
Gate-replacement begins with the deposition of multiple oxide/nitride layers. After
the stack formation, nitride is removed through an etching process. Afterwards,

5 3D NAND Flash Memories 113

Fig. 5.11 P-BiCS: source line metal mesh

Staircase
Metall
contacts

Fig. 5.12 TCAT NAND Flash array

tungsten metal gates are deposited and, finally, gates are separated by using another
etching step. Metal gates translate into a lower wordline parasitic resistance,
resulting in faster programming and reading operations.

The bulk erase operation is another significant difference compared to BiCS.
Because NAND strings are close to n+ areas, during erasing, holes can come

114

Metall BLS
BlockB —

Metall BLS
BlockA —

10

Ly

R. Micheloni et al.
Metall SLS
i Metall CGs BlockB
s
BlockB Metal2 5LS
/ BlockB

Metal2 CGs
BlockB

Metall Slit

. Metal2 515
1 BlockA

Metal2 CGs
— BlockA

Metallcgs Metal1sLs
BlockA BlockA

Fig. 5.13 Top view of Fig. 5.12

straight from the substrate, thus avoiding the GIDL (Gate Induced Drain leakage)
on the source side, which is a well-known problem for BiCS.

BiCS and TCAT are compared in Fig. 5.14 [30]. Being TCAT based on a
gate-last process, the charge trap layer is biconcave, and thanks to this particular
shape it is much harder for charges to spread out. On the contrary, BiCS is

Fig. 5.14 BiCS versus BiCS

TCAT

lectric
Field

(+X+X4)

TCAT

5 3D NAND Flash Memories 115

characterized by a charge trapping layer going through all gate plates, thus acting as
a charge spreading path: of course, the main consequence of this layout is a
degradation of data retention.

TCAT evolved into another architecture called V-NAND [31]. As depicted in
Fig. 5.15, the first generation, V-NAND Genl, had 24 wordline layers, plus
additional dummy wordline layers (dummy CG) [32, 36, 37].

Why dummy layers? Mainly because of the floating body of the memory cells
with vertical channel. In fact, during the programming operations, hot carriers are
generated by the high lateral electric field located at the edge of the NAND string.
Therefore, these hot carriers keep the voltage on the channel low during the pro-
gramming operation of the first wordline (i.e. Program Disturb). Dummy wordlines
before the first WL are an effective and simple solution to this problem [38, 39].

A 128 Gb TLC (3 bit/cell) device manufactured by using V-NAND Gen2 was
published in 2015 [33, 40]. Gen2 had 32 memory layers instead of the previous 24
and introduced the concept of Single-Sequence Programming. Conventional
(mainly 2D) TLC programming techniques go through the programming sequence
multiple times. To be more specific, each wordline is programmed 3 times, such
that Vpy distributions can be progressively tightened. Because of the smaller
cell-to-cell interference (compared to FG), CT cells exhibit an intrinsic narrower
native Vry distribution. As a result, V-NAND Gen2 could write 3 pages of logic
data in a single programming sequence. There are 2 benefits to this approach:
reduced power consumption and faster programming.

V-NAND Gen3 appeared in 2016 [34], in the form of a 48 layer TLC device.
With such a high number of gate layers, the very high aspect ratio of the pillar
becomes a serious challenge for the etching technology. To mitigate this problem,
the easiest solution is to shrink the thickness of gate layers. The downside of this
approach is that the parasitic RC of the wordline gets higher, thus slowing access
operations to the memory array. Moreover, channel’s size fluctuations become
critical. Indeed, pillars are holes drilled in the gate layer and they represent a barrier
for charges flowing along the wordline: in essence, a distribution of the holes
diameters generates a distribution of the parasitic resistances of gate layers. In
addition, pillars, once manufactured, have the conic shape sketched in Fig. 5.16.
The overall result is that the same voltage applied to different gate layers translates
into a waveform per layer. An adaptive program pulse scheme can fix the problem.
In a nutshell, the program pulse duration has to be tailored to the characteristics of
the wordline layer. As the number of layers increases, the pillar becomes longer
with a negative impact on the aspect ratio of the pillar. To compensate for that,
V-NAND Gen4 [35], which is built on a stack of 64 layers, had to shrink both the
layer thickness and the intra-layer distance (spacing). The downside is an increased
wordline parasitic capacitance which adversely affects cell’s reliability and timings.
Improved circuits and programming algorithms can be used to tackle this problem
[35].

As discussed, both BiCS [41] and V-NAND use CT cells, but Floating Gate still
exists, as explained in the next section.

116 R. Micheloni et al.

2009 TCAT [30]

Staggered
Pillars/Holes

2014 V-NAND GEN1 [33] 2017 V-NAND GEN4 [76]

128.9mm?

256Gb Array 256Gb Array
Plane-0 Plane-1

64Gb Array
Plane-0

Page buffers and Column decoder
O T UpEripHet a [CifCuis m—

128Gb MLC - 24 Layers 512Gb TLC - 64 Layers

Staggered
bitline wntacts
Shrink of Layer
Smgle-Sequenl:e thickness and spacing
Programming

2015 V-NAND GEN2 [38]

2016 V-NAND GEN3 [40]
97.6mm?

Program Pulse
Control Scheme
per CG Layer

128Gb Array 5 128Gb Array
Plane-0 Plane-1

. . 256Gb TLC - 48 Layers
128Gb TLC - 32 Layers

Fig. 5.15 Evolution from TCAT to V-NAND (reproduced with permission from [29, 32-35])

5 3D NAND Flash Memories 117

Actual Pillars

Ideal Pillars

Fig. 5.16 Ideal versus actual shape of pillars

5.2 3D Floating Gate NAND Flash Memories

2D NAND Flash memories use FG cells which have been, improved and optimized
for decades. Of course, there have been many attempts to reuse this know-how in
3D.

The first 3D attempt is known as 3D Conventional FG (C-FG) or S-SGT
(Stacked-Surrounding Gate Transistor) [42—44], and it is sketched in Fig. 5.17.

Tunnel
Oxide (TOX)
Channel % |
(CH) Control . unne Channel
Floating Gate (CG) Oxide (TOX) (CH)
Gate (FG

Inter Poly

Dieletric
(IPD) 5

Fig. 5.17 3D C-FG cell

118 R. Micheloni et al.

Fig. 5.18 C-FG NAND

Flash string Bitline (BL) -

Bitline
Contact CH

| | .—-/
‘I Seles:t;": [eBLSj . .
|
kel

B B cs:
._Flgating Gate - - cG2
. (FG) O
Bl B cso

TOX—s

Source Line . .
Selector (5LS)
z
. Source Line (SL) |

Ao

A C-FG NAND string is shown in Fig. 5.18, including select transistors. Please
note that both string selectors are manufactured as standard transistors, i.e. they
haven’t any floating gate. Figure 5.19 shows a C-FG array and Fig. 5.20 adds the
fan-out region. While all wordlines at the same height of the stack are connected,
BLS lines can’t, because they need to be page selective per each CG layer. On the
contrary, SLS transistors can be shorted together, thus saving both power and
silicon area.

As already discussed in the previous Section, the Source Line is the local ground
of memory cells. A big single Source Line plate laid out at the bottom of the stack,
with a limited number of contacts, simply doesn’t work: when tens of thousands of
cells sink current, managing the voltage on the source side becomes a real chal-
lenge. Having more contacts to the Source plate is not an option. The Source Line
Metal Grid sketched in Fig. 5.21 fixes this problem.

As already discussed, slits between NAND blocks are the most common way for
reducing program/read disturbs and parasitic loads. Of course, there is no need to
cut bitlines and Top Source Lines. This is fundamentally the same approach
adopted in BiCS.

Because we are talking about FG cells, FG coupling between neighboring cells
is the main hurdle for vertical scaling. With enhancement-mode operations, the high
resistance of source/drain (S/D) regions should also be carefully considered. In fact,
these regions need high-doping and this is not very easy to accomplish when the
conduction channel is made of polysilicon. The solution to this problem is to
electrically invert the S/D layer by using higher voltages during read. This simple
solution is hardly manageable by C-FG cells because of the thin FG.

5 3D NAND Flash Memories 119

Fig. 5.19 C-FG NAND Flash array

81s8Ls
By 508 Ls7

Fig. 5.20 C-FG NAND Flash array with fan-out

The Extended Sidewall Control Gate (ESCG) structure, Fig. 5.22 [45], is
another FG option and it was developed to contain the interference effect. More-
over, by applying a positive voltage to the ESCG structure, density of electrons on
the surface of the pillar can be much higher than C-FG (even one order of mag-
nitude): a highly inverted electrical source/drain can significantly lower the S/D
resistance.

In addition, the ESCG shielding structure reduces the FG—FG coupling capac-
itance: the ESCG region is biased as CG, and the CG coupling capacitance (Ccg) is
significantly increased because of the increased overlap area between CG and FG.

120 R. Micheloni et al.

Fig. 5.21 C-FG array with source line metal grid

Fig. 5.22 ESCG NAND
Flash cell

(2)(2)(2)

Zz

b

A higher CG coupling ratio is one of the key ingredients for achieving effective
NAND Flash operations [46].

Another FG cell is DC-SF (Dual Control-Gate with Surrounding Floating Gate,
Fig. 5.23) [47]. This time FG is controlled by two CGs. The impact on the FG/CG
coupling ratio is remarkable, thanks to the enlargement of the FG/CG overlap area.
Another positive aspect is the reduction of the voltages required for programming

5 3D NAND Flash Memories 121

Channel
(CH) Control
Gate Upper
Inter Poly (cGU) Floating Gate Channel
Dieletric (CH)

(1PD)

Inter Poly
Dieletric
(IPD)

L

Fig. 5.23 DC-SF NAND Flash cell

Control

Gate Lower Tunnel
(CGL) Oxide (TOX) W

and erasing. DC-SF eliminates the FG-FG interference because the CG between
two adjacent FGs plays the role of an electrostatic shield [48].

FG is fully isolated by IPD (Inter Poly Dielectric) and capacitive coupled to
upper and lower control gates, CGU and CGL, respectively. The tunnel oxide is
located between the channel CH and FG, while IPD is on the sidewall of the CG. In
this way, free charges cannot tunnel to the control gates.

BiCS and DC-SF NAND strings are sketched in Fig. 5.24. In BiCS the nitride
layer, going across all gates, makes the cell prone to data retention issues. On the
contrary, the surrounding FG is totally isolated: it is much easier for DC-SF to
retain electrons [49, 50]. Of course, the downside of DC-SF is the fact there are two
gate layers instead of one, coupled with much more complex biasing schemes [51,
52].

The Separated Sidewall Control Gate (S-SCG) Flash cell [53] displayed in
Fig. 5.25 is another 3D FG option developed around the sidewall concept.

One of major drawbacks of this cell is the “direct” disturb to the neighboring
passing cells, caused by the high SCG/FG coupling capacitance. We define it as
“direct” because the sidewall CG is shared between adjacent cells: as a matter of
fact, biasing SCG means biasing both FGs.

To minimize the decoding complexity, all SCGs belonging to one block adopt a
common SCG scheme; besides their electrostatic shield functionality, sidewall gates
can help all memory operations [54]. For instance, the common SCG is biased at 1
V during read operations, thus electrically inverting the channel (same as ESCG).
Compared to ESCG, the electrical inversion happens simultaneously on source and
drain, exactly because of the sidewall gates (Fig. 5.26). Same thing happens during

122 R. Micheloni et al.

—q

Ti Blocking IPD T%‘

/ Layer
CH CH
Charge
spreading
@ Charge Trap
(=) Electron
BiCs DC-SF
Fig. 5.24 BiCS versus DC-SF
Fig. 5.25 S-SCG NAND Tunnel Oxide
Flash cell (TOX)

L

programming: the common SCG is biased at a medium voltage to improve the
channel boosting efficiency.

Besides the direct disturb, another problem of Sidewall Gates is the limitation of
vertical scaling to around 30 nm; indeed, the thicknesses of SCG and IPD can’t be
scaled too much, otherwise they would breakdown when voltages are applied.

5 3D NAND Flash Memories 123

Fig. 5.26 Common SCG
approach to enable Source/ CH
Drain inversion

2

.

Let’s now take a look at examples of 3D FG NAND memory arrays of hundreds
of Gb. As shown in Fig. 5.27, the first 3D FG device was published in 2015 [55], in
the form of a 384 Gb TLC NAND based on C-FG. This memory device was built
on stack of 32 (+dummy) memory layers.

2015 FG NAND Genl [16] 2016 FG NAND Gen2 [17]
256Gb MLC / 384Gb TLC
| P e 768Gb TLC |

\

!
Circuits Under the Memory Array

Fig. 5.27 3D FG NAND devices [14, 15]

124 R. Micheloni et al.

A 768 Gb 3D FG NAND became public in the following year [56]. What is
unique in this case is the fact that the area underneath the array was used for
circuitry. More details about this approach are provided in Sect. 3.3.

5.3 Key Challenges for 3D Flash Development

In this Section we cover some of the key challenges that technologists and designers
are facing to push 3D memories even further.

5.3.1 Number of Layers

To reduce the bit size, the number of stacked cells needs to go up, but this causes a
bunch of problems hard to solve, as shown in Fig. 5.28 [6].

Pillar’s Aspect Ratio (AR) is definitely the first challenge to overcome; in a stack
of 32 cells AR can already be as high as 30. In this context, hole etching and gate
patterning are extremely difficult, but of paramount importance.

A possible solution to this problem is to divide the stacking process in more
steps to reduce the corresponding AR. For example, a NAND string made of 128
cells can be divided in 4 groups of 32 cells each, as shown in Fig. 5.28. The

Problems
) . : Total
- que Etching & G.ate Patterning 128WL
> High Aspect Ratio
32WLT

» Small Cell Current
> Traps in poly-Si channel

! | 32WL+

» Reduce Trap in poly-Si, or new material.

» Divide the stacking process in multiple steps to 32WL
reduce AR. (Multi-Stacked Process)

» Stacked NAND String Scheme

Solutions

32WLT

Fig. 5.28 Challenges for increasing the number of 3D layers [6]

5 3D NAND Flash Memories 125

Fig. 5.29 Cell current and 1.2 6
block size versus the number
of 3D layers [57] 1.0 5
3 3
£ 0.8 —1 4 o
-
5 0.6 I : 13 ‘g
= w
= —_— x
O 04 2 o
e o
] m
< 9.2 !H“HH — Ip“w [1
I M om
FG

8L 16-L 24-L 32-L 48-L 64-L
Number of 3D Layers

downside of this solution is the cost of the stacking process (in this example, 4
times higher than the cost of the plain solution).

Second problem is the small cell current [57]. With 2D sensing schemes, a 200
nA/cell saturation current is considered the right value because it gives a reasonable
sensing margin. Unfortunately, as shown in Fig. 5.29, already with a stack of 24
layers, the cell current is just ~20% of FG cell. And it becomes lower and lower as
the number of cells in the vertical stack increases. There are a couple of possible
paths to solve this problem: sensing schemes with higher sensitivity, and the
introduction of new materials enabling a higher cell mobility in the poly-Si channel
(i.e. a higher current) [58—61].

All the above mentioned problems can be fixed if entire NAND strings could be
stacked one on top of each other. In this case, either bitlines or source lines are
fabricated between NAND strings. This special architecture can simultaneously
reduce the aspect ratio and increase the sensing current at same time.

5.3.2 Peripheral Circuits Under Memory Arrays

In the first 3D generations [62, 63], peripheral circuits (charge pumps, logic, etc.)
and core circuits (like Page Buffers and Row decoders) are located outside the
memory matrix, like in a conventional 2D chip floorplan, as sketched in Fig. 5.30a.
However, 3D memory cells are vertically stacked: in other words, memory tran-
sistors are not formed on the Si substrate; on the contrary, they are built around a
deposited poly-Si (vertical pillar). Therefore, 3D architectures allow placing some
circuits directly on the Si substrate under the memory array. Of course, this solution
offers a significant reduction of the chip size.

Figure 5.30b shows a layout of a Flash memory with Core Circuits Under the
Array (CCuA) [64] in addition, Fig. 5.30c displays the case where both Core and

126 R. Micheloni et al.

(a) (b) (CCuA) (©) (PCuA)

FEEE SRR RN Re— EEEEEEEN c EEEEEE ..

E |§ PB . PB

" o - .

. < 3 : Cell Array :

: r] : :

: Cell Array g F Cell Array = L Peripheral | [

E 1 E - E Circuit =

: s Ex | I H =3

: PB 3 PB 2
Page Buffer (PB) | Peripheral Circuit : SadAzea]'
Peripheral Circuit | L PRIATES]

[Pad Area]| T.Tanaka, et al., ISSCC2016

Fig. 5.30 3D NAND Flash memory layout: a conventional, b CCuA, and ¢ PCuA [64]

Peripheral Circuits are manufactured on the Si substrate under the Array (PCuA)
[65].

Efficiency of 2D and conventional 3D are between 60 and 81%. If CCuA is used,
then the cell efficiency can be as high as 85%. In the extreme case, when both
peripheral and core circuits sits under the memory matrix (PCuA), the cell effi-
ciency can reach around 95%, because peripheral circuits usually occupy more than
10% of the whole chip.

This big area saving doesn’t come for free. The most important challenge is
manufacturing low resistance metal layers under the array: this is absolutely critical
for a reliable circuit functionality. Usually, metal layers used in 2D NAND flash
memories are made of Cu. However, when circuits are under the array, the high
temperature processes (i.e. >800 °C) that 3D requires can seriously degrade the
resistance of metal layers. Therefore, circuits under the array require 3D “low”
temperature fabrication processes.

5.3.3 Data Retention

3D CT cells and 2D FG cells are completely different in terms of data retention
properties. Generally speaking, 2D SONOS (Silicon-Oxide-Nitride-Oxide-Silicon,
which is one variant of CT) cells exhibit larger Vg shifts than 2D FG cells: this is
caused by a fast charge detrapping through the tunnel oxide [66]. Figure 5.31
compares data retention of two different cells: (a) 3D SONOS cell and (b) 2D
2y-nm FG cell [57]. Both cells have been cycled 3,000 times. After 3k cycles 3D
SONOS has a Vg distribution width narrower than 2D FG; however, after baking
at High Temperature (HT), the Vy distribution becomes wider, and it has a bigger
Vy shift. For 3D SONOS cells, data retention is definitely one of the hottest topics.

5 3D NAND Flash Memories 127

@ ®) .
10 10
SMArT Cell Post Cycling Retention 2y FG Cell Post Cycling Retention
—e—After 3K — — 3K & HT Bake —u—After 3K —— 3K & HT Bake
10" 10’
2 10’ 2 10
S S
- 4 - bl
5 10 5 10
® #* 3
10 10
.:
10° 10° .I
Cell VT [a.u.] Cell VT [a.u.]

Fig. 5.31 Vth distribution of cycled cells after high temperature retention for a 3D SMArT cell
and b 2D 2y-nm FG cell [57]

Another important retention issue for 3D SONOS is the fact that the relationship
between charge loss and temperature is different from 2D FG, as shown in Fig. 5.32
[57], thus impacting the way accelerated tests should be performed. For 2D FG cells
Vry shift is linearly dependent upon the bake temperature, which says that the
mechanism governing data loss remains constant. However, in 3D SONOS cell
Vg shift exhibits a non-linear relationship with respect to the bake temperature; in
other words, the data loss mechanism changes from low to high temperature. The
data loss mechanisms are dominated by band-to-band tunneling at low temperature
and by thermal emission at high temperature [57]. As a consequence, simple
temperature accelerated tests, which have been used for decades, should be used
very carefully: retention below 90 °C has to be evaluated by extrapolating from
data collected over at least 3 weeks at relatively low temperatures. It is worth
highlighting that there multiple variations of CT cells; for example, BE-SONOS
(Bandgap Engineered) can be used to optimize the bandgap structure of the
SONOS cell [67].

Fig. 5.32 Vqy shift versus

bake temperature for 3D —-9—SMArT Cell /
SONOS cells and 2D 2y-nm S /
FG cells [57] B-2y FGCell

5: } /
)
Bl I
= Trap to E_iand { /
‘= Tunneling I _-n
7]
-
>

- -
.__}A: ol Thermal
1 . .
= I Emission

Bake Temperature [a.u.]

128 R. Micheloni et al.

5.3.4 3D Program Disturb

Figure 5.33a shows one 3D NAND block [68, 69]. In each block, N strings are
connected to the same bitline by means of N select transistors, namely DSL_1 to
DSL_N. In a 2D NAND block, there is a 1:1 correspondence between strings and
bitlines. As a matter of fact, 3D architectures introduce new program disturb modes,
as sketched in Fig. 5.33b.

When DSL_1 is activated, strings (STRs) along DSL_1 are either being pro-
grammed or they suffer “X” disturb, depending on the BL bias. When we look at
“X” disturb, bitlines are biased at Vcc and there is no difference with respect to 2D
NAND. But in 3D, DSL_2 to DSL_N are turned off. We can distinguish two
different situations, which we call “Y” and “XY” program disturbs. In the “Y” case
bitlines are biased at ground and drain select transistors (DSL) are off; for “XY” we
have bitlines at Vcc and DSL off.

(a) BL_.1(0V) BL_2 (Vec)

DsL_2
(OFF)

DSL_1
(ON)

Cells S
-

(b) Conventional modes X-Disturbance Mode
vdsi (vg)

Mode DsL | BL i
@:sTRinPGM [ON | oV | | o Fa] %
| @:STR in X mode | ON | Vcc Boosting (Veh) w_ _

o e 5 -] Veh-Vec
Additional modes in 3D T —
Mode DSL BL VG!-III:VJ
@:STRs in Y mode | OFF | OV N\
Channel Fi:l v
(@): STRs in XY mode | OFF | Vcc Beconig Vit & ¥ Vbl (V)
Veh

Fig. 5.33 a Program disturb in a 3D NAND array. b 3D introduces two new program disturbs, Y
and XY [69]

5 3D NAND Flash Memories 129

“XY” disturb mode is not severer than “X” mode. Being DSL off and BL at Vcc,
the self-boosting voltage cannot cause a leakage current through DSL. On the
contrary, in the “Y”” mode BL is at ground, thus open the door to a possible leakage
through DSL. In addition, DSL of 3D NAND shows a larger leakage current
compared to 2D NAND [57, 69]. Moreover, in 2D the leakage current through DSL
is prevented by the fact that Vy of DSL becomes higher during programming
thanks to a strong body effect. This is not the case with 3D NAND. Several
approaches to suppress the above mentioned leakage current have been proposed
over time [68]. These include: (1) DSL with high Vty, (2) DSL negative bias, and
(3) dummy wordlines between DSL and edge wordlines. Dummy wordlines can
reduce the voltage drop going from the self-boosting voltage to the voltage applied
to the DSL; on top of that, they are helpful for inhibiting the hot carrier generation
that might take place on the edge wordline (in practice, they reduce the lateral
electric field). Indeed, dummy WLs have to be carefully designed (biasing, Vry,
number of wordlines) given all the above mentioned functions. A detailed analysis
of 3D program disturb mechanism can be found in [69].

5.4 Future Trend for 3D NAND Flash

Figure 5.34 shows cell’s size scaling trend, based on published die photographs. 2D
became flat below 20 nm, while 3D cell showed a significant reduction going from
24 to 64 layers. This 3D scaling speed will continue by increasing the height of the
memory stack, and exploiting technological innovations like Multi-stacked and
Stacked NAND string [70].

3D NAND arrays based on CT vertical channel were selected for volume pro-
duction because the fabrication process is simpler than other 3D architectures.
Volume production of 3D NAND Flash started in late 2013 with a 24 layer MLC (2
bit/cell) V-NAND [62, 71]. Year after year, the number of stacked cells grew up, as
shown in [7, 63, 72], thus reducing the cost per bit and fueling an even more
pronounced diffusion of Solid State Drives.

In this chapter we have presented many architectural options for building a 3D
NAND array, including some of the latest and greatest layout options, but the 3D
evolution is just at the beginning. In fact, two fundamentally different technologies,
Floating and Charge Trap, are fighting each other, trying to prove that they can win
in the long run, i.e. when scaling will be pushed to the limit. Flash manufactures are
already shooting for 100 vertical layers with multi-level capabilities, including 4
bit/cell. No doubt that we’ll see a lot of innovations in the near future: engineers and
scientists are called to give their best effort to make this vertical evolution happen.

130 R. Micheloni et al.

10000.0
‘?0 S 16nm
) 64/128Gb
& g 150m 14p
£ MLc 15qm 14nm
= . 64Gb 128Gb]
5 1000.0 24nm we—mc_—RD gcaling
N ¥ " |satyrated
ke 64/1286 32s1/128/256/3841Gb MUC/TLA
o] MLC/TLC e,
o ~, U485 256G TLC
0 *,__6'45; 7686 TLC,)
S 100.0 e
= Sev_ | it
@® 3D with CCuA 94‘_7 > Estimated from Die photo
\g;»)~ > 2D; 24nm~14nm,
% 64Gb/128Gb, MLC/TLC
2D > 3D; 24-64cells stacked,
10.0 [T 1 |1 128Gb~768Gb, MLC/TLC.

72010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020
Year

Fig. 5.34 Effective cell size trend

References

1. F. Masuoka, M. Momodomi, Y. Iwata, R. Shirota, New ultra high density EPROM and flash
EEPROM with NAND structure cell, in International Electron Devices Meeting, vol.
33 (1987), pp. 552-555
2. R. Micheloni, L. Crippa, A. Marelli, Inside NAND Flash Memories (Chap. 6) (Springer, 2010)
3. T. Mizuno et al., Experimental study of threshold voltage fluctuation due to statistical
variation of channel dopant number in MOSFET’s. IEEE Trans. Electron Devices 41(11),
2216-2221 (1994)
4. H. Kurata et al., The impact of random telegraph signals on the scaling of multilevel flash
memories, in Symposium on VLSI Technology (2006)
5. C.M. Compagnoni et al., Ultimate accuracy for the NAND flash program algorithm due to the
electron injection statistics. IEEE Trans. Electron Devices 55(10), 2695-2702 (2008)
6. S. Aritome, NAND Flash Memory Technologies. IEEE Press Series on Microelectronics
System, Wiley-IEEE Press, Published on Dec 2015
7. S. Aritome, 3D flash memories, in International Memory Workshop 2011 (IMW 2011), short
course
8. R. Micheloni, L. Crippa, A. Marelli, Inside NAND Flash Memories (Chap. 5) (Springer, 2010)
9. http://www.samsung.com/us/business/oem-solutions/pdfs/VNAND_technology_WP.pdf.
White Paper, Sept 2014
10. R. Micheloni, L. Crippa, Multi-bit NAND flash memories for ultra high density storage
devices (Chap 3), in Advances in Non-volatile Memory and Storage Technology, ed. by Y.
Nishi (Woodhead Publishing, Sawston, 2014)
11. R. Micheloni et al., High-capacity NAND flash memories: XLC storage and single-die 3D
(Chap 7), in Memory Mass Storage, ed. by G. Campardo et al. (Springer, 2011)
12. H. Tanaka et al., Bit cost scalable technology with punch and plug process for ultra high
density flash memory, in VLSI Symposium Technical Digest (2007), pp. 14-15

http://www.samsung.com/us/business/oem-solutions/pdfs/VNAND_technology_WP.pdf

5 3D NAND Flash Memories 131

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

Y. Fukuzumi et al., Optimal integration and characteristics of vertical array devices for
ultra-high density, bit-cost scalable flash memory, in IEDM Technical Digest (2007), pp. 449—
452

M. Ishiduki et al., Optimal device structure for pipe-shaped BiCS flash memory for ultra high
density storage device with excellent performance and reliability, in IEDM Technical Digest
(2009), pp. 625-628

T. Maeda et al., Multi-stacked 1G cell/layer pipe-shaped BiCS flash memory, in Digest
Symposium on VLSI Circuits, June 2009, pp. 22-23

R. Katsumata et al., Pipe-shaped BiCS flash memory with 16 stacked layers and
multi-level-cell operation for ultra high density storage devices, in 2009 Symposium on VLSI
Technology (2009), pp. 136-137

Y. Fukuzumi et al., Optimal integration and characteristics of vertical array devices for
ultra-high density, bit-cost scalable flash memory, in IEDM Technical Digest (2007), pp. 449—
452

H. Aochi, BiCS flash as a future 3-D non-volatile memory technology for ultra high density
storage devices, in Proceedings of International Memory Workshop (2009), pp. 1-2

Y. Yanagihara et al., Control gate length, spacing and stacked layers number design for
3D-Stackable NAND flash memory 2, in IEEE IMW (2012), pp. 84-87

K. Takeuchi, Scaling challenges of NAND flash memory and hybrid memory system with
storage class memory and NAND flash memory, in IEEE Custom Integrated Circuits
Conference (CICC) (2013), pp. 1-6

A. Nitayama et al., Bit cost scalable (BiCS) flash technology for future ultra high density
storage devices, in 2010 International Symposium on VLSI Technology Systems and
Applications (VLSI TSA), Apr 2010, pp. 130-131

Y. Komori et al., Disturbless flash memory due to high boost efficiency on BiCS structure and
optimal memory film stack for ultra high density storage device, in IEDM Technical Digest
(2008), pp. 851-854

M. Ishiduki et al., Optimal device structure for pipe-shaped BiCS flash memory for ultra high
density storage device with excellent performance and reliability, in IEDM Technical Digest
(2009), pp. 625-628

T. Maeda et al., Multi-stacked 1G cell/layer pipe-shaped BiCS flash memory, in Digest
Symposium on VLSI Circuits, June 2009, pp. 22-23

R. Katsumata et al., Pipe-shaped BiCS flash memory with 16 stacked layers and
multi-level-cell operation for ultra high density storage devices, in 2009 Symposium on VLSI
Technology (2009), pp. 136-137

J. Kim et al., Novel 3-D structure for ultra high density flash memory with VRAT
(vertical-recess-array-transistor) and PIPE (planarized integration on the same plane), in 2008
IEEE Symposium on VLSI Technology (2008)

J. Kim et al., Novel vertical-stacked-array-transistor (VSAT) for ultra-high-density and
cost-effective NAND flash memory devices and SSD (solid state drive), in 2009 IEEE
Symposium on VLSI Technology (2009)

H.T. Lue, T.H. Hsu et al., A highly scalable 8-layer 3D Vertical-Gate (VG) TFT NAND flash
using junction-free buried channel BE-SONOS device, in VLSI Symposia on Technology
(2010)

J. Jang et al., Vertical cell array using TCAT (terabit cell array transistor) technology for ultra
high density NAND flash memory, in 2009 IEEE Symposium on VLSI Technology (2009)
W. Cho et al., Highly reliable vertical NAND technology with biconcave shaped storage layer
and leakage controllable offset structure, in 2010 Symposium on VLSI Technology (VLSIT)
(2010), pp. 173-174

J. Elliott, E.S. Jung, Ushering in the 3D memory era with V-NAND, in Proceedings of Flash
Memory Summit (Santa Clara, CA, 2013), www.flashmemorysummit.com

K.-T. Park, Three-dimensional 128 Gb MLC vertical NAND flash memory with 24-WL
stacked layers and 50 MB/s high-speed programming, in /EEE ISSCC, Digest Technical
Papers, Feb 2014, pp. 334-335

132

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

R. Micheloni et al.

J.-W. Im, 128 Gb 3b/cell V-NAND flash memory with 1 Gb/s 1/O rate, in IEEE International
Solid-State Circuits Conference, Feb 2015, pp. 130-131

D. Kang et al., 256 Gb 3b/Cell V-NAND flash memory with 48 stacked WL layers, in /[EEE
International Solid-State Circuits Conference (ISSCC), Digest Technical Papers, Feb 2016,
pp- 130-131

C. Kim et al., A 512 Gb 3b/cell 64-Stacked WL 3D V-NAND flash memory, in 2017 IEEE
International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), Feb 2017,
pp- 202-203

K.-T. Park, Three-dimensional 128 Gb MLC vertical NAND flash memory with 24-WL
stacked layers and 50 MB/s high-speed programming. IEEE J. Solid-State Circuit 50(1)
(2015)

K.T. Park, A world’s first product of three-dimensional vertical NAND flash memory and
beyond, in NVMTS, 27-29 Oct 2014

E. Choi et al., Device considerations for high density and highly reliable 3D NAND flash cell
in near future, in IEEE International Electron Devices Meeting (2012), pp. 211-214

K. Shim et al., Inherent issues and challenges of program disturbance of 3D NAND flash cell,
in IEEE International Memory Workshop (2012), pp. 95-98

J.-W. Im, 128 Gb 3b/cell V-NAND flash memory with 1 Gb/s I/O rate. J. Solid-State Circuit
51(1) (2016)

R. Yamashita et al., A 512 Gb 3b/cell flash memory on 64-Word-Line-Layer BiCS
technology, in 2017 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), Feb 2017, pp. 196-197

T. Endoh et al., Novel ultra high density flash memory with a stacked-surrounding gate
transistor (S-SGT) structured cell, in IEDM Technical Digest (2001), pp. 33-36

T. Endoh et al., Novel ultra high density flash memory with a stacked-surrounding gate
transistor (S-SGT) structured cell. IEEE Trans. Electron Devices 50(4), 945-951 (2003)

T. Endoh et al., Floating channel type SGT flash memory, in The 1999 Joint International
Meeting, Hawaii, vol. 99-2, Abstract No. 1323, 17-22 Oct 1999

M.S. Seo et al., The 3-dimensional vertical FG nand flash memory cell arrays with the novel
electrical S/D technique using the extended sidewall control gate (ESCG), in Proceedings of
IEEE International Memory Workshop (2010), pp. 1-4

M.S. Seo et al., 3-D vertical FG NAND flash memory with a novel electrical S/D technique
using the extended sidewall control gate. IEEE Trans. Electron Devices 58(9) (2011)

S. Whang et al., Novel 3-dimensional dual control gate with surrounding floating-gate
(DC-SF) NAND flash cell for 1 Tb file storage application, in Proceedings of International
Electron Devices Meeting (IEDM) (2010), pp. 668—671

Y. Noh et al., A new metal control gate last process (MCGL process) for high performance
DC-SF (dual control gate with surrounding floating gate), in 3D NAND flash memory in
Symposium on VLSI Technology (2012), pp. 19-20

R. Micheloni, L. Crippa, Multi-bit NAND flash memories for ultra high density storage
devices (Chap 3), in Advances in Non-volatile Memory and Storage Technology, ed. by Y.
Nishi (Woodhead Publishing, 2014)

R. Micheloni et al., High-capacity NAND flash memories: XLC storage and single-die 3D
(Chap 7), in Memory Mass Storage, ed. by G. Campardo et al. (Springer, 2011)

H. Yoo et al., New read scheme of variable Vpass-read for dual control gate with surrounding
floating gate (DC-SF) NAND flash cell, in Proceedings of 3rd IEEE International Memory
Workshop (2011), pp. 14

S. Aritome et al., Advanced DC-SF cell technology for 3-D NAND flash. IEEE Trans.
Electron Devices 60(4), 1327-1333 (2013)

M.S. Seo et al., A novel 3-D vertical FG nand flash memory cell arrays using the separated
sidewall control gate (S-SCG) for highly reliable MLC operation, in Proceedings of 3rd IEEE
International Memory Workshop (IMW) (2011), pp. 1-4

M.S. Seo et al., Novel concept of the three-dimensional vertical FG nand flash memory using
the separated-sidewall control gate. IEEE Trans. Electron Devices 59(8), 2078-2084 (2012)

5 3D NAND Flash Memories 133

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.
71.

72.

K. Parat, C. Dennison, A floating gate based 3D NAND technology with CMOS under array,
in Conference on International Electron Devices Meeting (IEDM) (San Francisco, USA, Dec
2015)

T. Tanaka et al., A 768 Gb 3 b/cell 3D-floating-gate NAND flash memory, in 2016 IEEE
International Solid-State Circuits Conference (ISSCC), Digest of Technical Papers (San
Francisco, USA, 2016), pp. 142-143

Eun-Seok Choi; Sung-Kye Park, Device considerations for high density and highly reliable
3D NAND flash cell in near future, in 2012 IEEE International Electron Devices Meeting
(IEDM), 10-13 Dec 2012, pp. 9.4.1-9.4.4

Subirats et al., Impact of discrete trapping in high pressure deuterium annealed and doped
poly-Si channel 3D NAND macaroni, in 2017 IEEE International Reliability Physics
Symposium (IRPS)

L. Breuil, Improvement of poly-Si channel vertical charge trapping NAND devices
characteristics by high pressure D2/H2 annealing, in 2016 IEEE 8th International Memory
Workshop (IMW)

E. Capogreco et al., MOVPE Inl-xGaxAs high mobility channel for 3-D NAND Memory, in
2015 IEEE International Electron Devices Meeting (IEDM)

J.G. Lisoni et al., Laser thermal anneal of polysilicon channel to boost 3D memory
performance, in 2014 Symposium on VLSI Technology (VLSI-Technology), Digest of
Technical Papers

Ki-Tae Park et al., Three-dimensional 128 Gb MLC vertical nand flash memory with 24-WL
stacked layers and 50 MB/s high-speed programming. IEEE J Solid-State Circuits S0(1), 204—
213 (2015)

J. Im et al., A 128 Gb 3b/cell V-NAND flash memory with 1 Gb/s I/O rate, in 2015 IEEE
International Solid-State Circuits Conference, Digest of Technical Papers (ISSCC), Feb 2015,
pp- 23-25

T. Tanaka et al., 7.7 A 768 Gb 3b/cell 3D-floating-gate NAND flash memory, in 20/6 IEEE
International Solid-State Circuits Conference (ISSCC) (San Francisco, CA, 2016), pp. 142—
144

S. Aritome, NAND flash memory revolution, in 2016 IEEE 8th International Memory
Workshop (IMW) (Paris, 2016), pp. 1-4

C.-P. Chen et al., Study of fast initial charge loss and its impact on the programmed states Vt
distribution of charge-trapping NAND Flash, in 2010 IEEE International Electron Devices
Meeting (IEDM), 6-8 Dec 2010, pp. 5.6.1, 5.6.4

H.-T. Lue, S.-Y. Wang, E.-K. Lai, K.-Y. Hsieh, R. Liu, C. Y. Lu, A BESONOS (Bandgap
Engineered SONOS) NAND for post-floating gate era flash memory, in Symposium on VLSI
Technology (2007)

K.-S. Shim et al., Inherent issues and challenges of program disturbance of 3D NAND flash
cell, in 2012 4th IEEE International Memory Workshop (IMW), 20-23 May 2012, pp. 1-4

H.S. Yoo et al., Modeling and optimization of the chip level program disturbance of 3D
NAND Flash memory, in 2013 5th IEEE International Memory Workshop (IMW), 26-29
May 2013, pp. 147-150

R. Micheloni (ed.), 3D Flash Memories (Springer, 2016)

K.-T. Park et al., 19.5 three-dimensional 128 Gb MLC vertical NAND Flash-memory with
24-WL stacked layers and 50 MB/s high-speed programming, in 2014 IEEE International
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 334-335,Feb 9-13,
2014

S. Aritome, Scaling challenges beyond 1Xnm DRAM and NAND Flash, in Joint Rump
Session in VLSI Symposium 2012

Chapter 6 M)
NAND Flash Design ki

Luca Crippa and Rino Micheloni

Abstract A Solid-State-Disk is made up by a Flash controller plus a bunch of
NAND Flash devices. This chapter focuses on design aspects of NAND chips. The
information stored in each memory cell is fully analog because it is related to the
number of electrons stored in the floating gate. When we program, erase or read,
electrons must be injected, extracted and counted, respectively. All these operations
require a mix of analog and digital circuits that need to be properly and timely
driven. Starting from a generic floorplan of a NAND memory, we guide the reader
through the main building blocks. First of all, we describe the logic part of the chip,
from the embedded microcontroller, who is in charge of running all the internal
algorithms, to the fast DDR interface. Counting the number of electrons in the
floating gate is definitely one of the most challenging task, considering that has to be
performed with few transistors: sensing techniques are described in Sect. 6.5. Pro-
gramming and erasing floating gate cells require voltages higher than the chip power
supply. Therefore, charge pumps are used to generate all the needed voltages within
the chip. In multilevel storage, cell’s gate biasing voltages need to be very accurate
and voltage regulators become a must. All these circuits are described in the High
Voltage Management section. Last but not least, the row decoder is introduced. This
circuit has the task of properly biasing each single wordline in the NAND array,
transferring the regulated high voltages to the gate of the memory cell.

6.1 NAND Flash Memories

A NAND chip contains a lot of different circuits, both digital and analog. Figure 6.1
sketches a floorplan of a Flash device. The basic architecture of the NAND array
has already been presented in Chap. 2. With reference to Fig. 6.1, the memory array

L. Crippa (=) - R. Micheloni
Storage Solutions, Microsemi Corporation, Vimercate, MB, Italy
e-mail: luca.crippa@ieee.org

R. Micheloni
e-mail: rino.micheloni @ieee.org

© Springer Nature Singapore Pte Ltd. 2018 135
R. Micheloni et al. (eds.), Inside Solid State Drives (SSDs),

Springer Series in Advanced Microelectronics 37,

https://doi.org/10.1007/978-981-13-0599-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_6&domain=pdf

136 L. Crippa and R. Micheloni

PERIPHERAL CIRCUITS
SENSE AMPLIFIER SENSE AMPLIFIER
i
1
i Word Line (WL)
I A oA
i [~
| m
1 D
| NAND FLASH o NAND FLASH
:MEMORY ARRAY (,_;j MEMORY ARRAY
= a
2, N
o! =
£}
=
=!
o
n
SENSE AMPLIFIER SENSE AMPLIFIER
PERIPHERAL CIRCUITS

|E|EIEIEIEIEIE|EI VOPADS OO0O0O0O00O0O0O

Fig. 6.1 A typical NAND Flash floorplan [1]

has been split in two independent planes. On the horizontal direction a wordline
(WL) is highlighted, while a bitline (BL) is shown in the vertical direction. The
Row Decoder is the block in charge of addressing and biasing each single wordline
and it is located between the planes. BLs are connected to a sensing circuit (Sense
Amp). The purpose of sense amplifiers is to read the analog information stored in
the memory cell. In the periphery, we find charge pumps, voltage regulators, ref-
erence circuits, digital circuits, and redundancy structures. This chapter gives an
overview of all the above mentioned circuits.

6.2 Logic Device View

Let’s start our analysis from the peripheral circuits. First of all, we have the
“Logic”, a set of digital gates which enables the communication to the external host
and manages data inside the device. In other words, it is the real brain of the
memory.

We can identify some basic logic blocks, as shown in Fig. 6.2.

1. Control Interface (CI) [2—4]. It is the command interface between the NAND
Flash and the external user;

2. Microcontroller. It stores and executes all the internal algorithms, such as read,
program, erase and testmode operations.

6 NAND Flash Design 137

Code SRAM

High Speed

ROM MICRO DATAPATH

Data SRAM

i T oo | |
T 1]]

Test Mode Configuration
Test Command Register Register
Interface Interface & g
(TD) (@)

Fig. 6.2 Logic view of a NAND device

3. Error Correction Code (ECC) [5] could be embedded in the memory device.
ECC improves the reliability of the read operation.

4. Memory testing is a fundamental functionality. For this reason, there is a Test
Interface (TI) block, i.e. the interface to the user when device is in test mode.

5. Datapath. Basically, it is the fast link between I/Os and read circuits.

6. There are also a lot of registers, mainly for storing the configurations of the
analog circuitry.

7. Redundancy: it can be managed by the microcontroller or it can be implemented
as a finite state machine (FSM). This logic is used to increase the wafer yield.

6.2.1 Command Interface

In order to talk with the external user, Flash memory has to understand commands,
take data and output data.

The logic block implementing this functionality is basically a finite state
machine and is represented by the Command Interface (CI) when the device is in
user mode and by the Test Interface (TI) when the device is in test mode.

CI understands legal or illegal command sequences, defined in the device
specifications and interacts with other logic blocks as datapath and microcontroller.
Control signals have been already described in Chap. 2. CI is composed by a huge
finite state machine clocked by WE# and driven by all I/O signals such as ALE or
CLE. Figure 6.3 represents CI and its interaction blocks.

1. I/Os are all control signals: R/B#, CLE, ALE, WP#, WE#, RE#, CE#, DQ[7:0].
2. Reset Interface exchanges reset information with logic global reset.

138 L. Crippa and R. Micheloni

Firmware
1/0 Test Reset Datapath Control
Interface Interface Interface Interface Interface

A A A A A

A4 Y A 4 A4 A

Command Interface
(CDH

Fig. 6.3 Command interface and its interaction blocks

3. Datapath interface controls input and output datapaths.

. Test interface toggles between user mode and test mode.

5. Firmware Control Interface enables microcontroller to execute internal
algorithms.

N

CI is made up by multiple finite state machines, one for each basic function. The
Command Interface Controller disables a specific FSM if that specific command is
not allowed. During power up, CI Controller disables every commands, so that all
the FSMs are disabled too. There is also a FSM that recognizes if a specific
command is a read, a program or an erase and enables the correct sub-FSM. Every
time the Controller receives an illegal sequence, the device goes into an IDLE state.

When the internal microcontroller executes a specific algorithm, the device is
busy. In this situation, the only commands that the CI can accept are a reset and a
testmode entry command.

6.2.2 Test Interface

Test Interface (TI) is used when we want to test some particular features, usually
not accessible during normal operations (usermode). Test Interface is enabled by a
specific command sequence, called testmode entry. Generally speaking, a NAND
device can have these modes:

e Usermode that represents the standard functionality, where commands described
in the device specification are available;

e Usertestmode that represents the standard functionality plus some particular
commands;

e Testmode that is the test operational mode.

Figure 6.4 represents how it is possible to change the operational modes with
proper command sequences recognized by the CI Controller.

6 NAND Flash Design 139

UserTESTMOCE ’ TESTMODE
(user and test extra commands) (test bits setup)

A4

UserMODE
(only user commands)

Fig. 6.4 Flow diagram used to change operational modes among usermode, usertestmode and
testmode

Once TI is enabled, it substitutes CI: TI recognizes the command set and drives
input and output data/address on the logic bus. Test Interface is allowed to access
the different registers and different memory circuits without the aid of the
microcontroller.

TI is built as a finite state machine in a similar way to the Command Interface.

Let’s now explain what testmode registers are. All the circuits added for test
purposes can’t influence the standard user mode functionality and can’t worsen
performances. The adopted solution is sketched in Fig. 6.5. A TM register is
associated with a UM register: when the signal TESTMODE is high, the output
takes the value contained in the register TM, influencing the behavior of the cir-
cuitry downstream. When the signal TESTMODE goes low, the standard usermode
functionality is enabled.

6.2.3 Datapath

Till few years ago, NAND memories had an asynchronous interface and it was very
difficult to run frequencies higher that 40 MHz for data download/upload [6].
NAND chips have linear dimensions easily higher than 10 mm so that data have to
flow through a long path with an unavoidable impact on the transmission time
through the chip. One of the most adopted solutions to overcame this problem is the
use of a pipeline on the datapath [7].

In the following we will describe datapath structure for a NAND memory with
double side architecture and with control pads on the opposite side with respect to
data pads.

With reference to Fig. 6.6 the data input sequence is here described.

1. During the low-phase of WE#, input buffers on I/O PADS block and latches on
DP_UP and DP_DW blocks are enabled. In this way, input data flow to the
latches placed in DP_UP and DP_DW blocks.

140 L. Crippa and R. Micheloni

TEST MODE USER MODE
REGISTER REGISTER
VY
TESTMODE M MUX

Fig. 6.5 Testmode registers

1
1
1
1
1
1
COLUMN ®
1
| Sevonen 0.0
! - WE#
* A vV VY PAGE v VY [0} 6}
Lo Lelele] pupren [ele]t]
1o
[
[@
X X 2 Latch
| | v_g Flip Flop
: : < MATRIX Write pulse generation
[
[
1_
1

T goreen 11
oNT Lltlc) BurFER LI It]t
'y A

T COLUMN

L I DP_DW

1
[
[
[
[
[
[
Ay DEGODER
Loy
[
[
[
[
[

WE# CONTROL PADS

Fig. 6.6 Input datapath

6 NAND Flash Design 141

2. On the rising edge of WE#, I/O PADS input buffers are disabled. Data are
latched in DP_UP latches till the next falling edge of WE#. The counter
addresses the appropriate page buffers for the following write operation.

3. On the high-phase of WE#, IO CONTROL latches are open and the COLUMN
DECODER is addressing the right page buffers.

4. On the falling edge of WE#, data are latched in the IO CONTROL latches.

5. On the next low-phase of WE#, while I/O PADS input buffers and DP_UP
latches receive new data from the user (as in phase 1), IO CONTROL generates
write pulses for loading the latched data into the page buffer latches.

A similar approach is adopted for data output.
Performance driven applications like Solid-State-Disks (SSDs) are now forcing
the NAND towards the adoption of a DDR interface, as described in Sect. 6.3.

6.2.4 Microcontroller

As already said, the microcontroller inside the memory is the “brain” of the device.
Microcontroller implements the needed algorithms for a Flash memory. In order to
be able to perform the necessary operations, these conditions must hold true:

e cach sequence of operations that must be executed for a specific algorithm (read,
program, erase etc.) has to be non-volatile;
e the microcontroller needs to perform arithmetical, logical and output operations.

Usually, microcode (FW) is stored in a ROM memory (Fig. 6.7). There could
also be a Code RAM memory containing the specific firmware for testing and
debugging.

The microcontroller contains a number of different blocks. First of all there is the
Program Counter. It stores the address of the memory location containing the
instruction that must be executed. It is also able to handle the address increment, the
absolute or relative jumps and the calls to subroutines with different stack levels.
The levels of stack indicate how a subroutine is far away from the main program.

Another important block is composed by the Internal Registers: they are nec-
essary for the execution of an operation or a sequence of operations. A register can
be either loaded with a constant value or with a value read from the ROM, and it
can also be the result of an operation.

The microcontroller computational center is the Arithmetic Logic Unit or ALU.
The ALU executes an operation associated with a specific opcode and implemented
in the microcontroller. The operations can be with one or two operands. The
operands can be internal registers, flags or constants read from the ROM. The result
of the operation is stored in the internal registers, with the exception of test and
compare operation.

142 L. Crippa and R. Micheloni

Instruction

t I

ROM Code SRAM
v
Address
INSTRUCTION f_l_f
DECODER Address R
& Call » Program
CONTROL Jump » COUNTER l——— Reset
UNIT Return
Operation | Operation DATA
K | Operand OpA (NS e——
INPUT] Assemby OpB >) ADD

7'y

Data Internal | Result
REGISTERS |

Port Data o
Port Add _ Output OUTPUT
Port Op _ REGISTERS e

Fig. 6.7 Microcontroller structure with ROM and RAM memories

Finally, the last block of the microcontroller is constituted by the Output
Registers. Each register is made up by a number of latches. The most advantageous
structure for the output registers is based on the dual ports concept.

With this structure, the registers are handled by two independent ports called
port A and port B. For instance, port A operates over all the outputs, while port B
operates only over some output registers.

The dual ports structure allows the use of two different bank registers at the same
time, so that it is possible to move more control signals at each clock cycle.

Apart from the internal structure, the characterizing feature of a microcontroller
is what it is able to do, that is its Instruction Set. Before designing a microcontroller,
we need to understand the must-have operations. In fact, general purpose micro-
controllers are not useful in the NAND memory environment, because they are
generally bigger and slower, in order to guarantee a full flexibility not needed in the
device. In other words, it is useless to implement operations not used, but it is better
to optimize the used ones.

6 NAND Flash Design 143

6.3 NAND DDR Interface

Flash based systems are made up by several NAND memory devices and one
controller. The controller has the primary function to communicate with NANDs
and conveys data from/towards the external interface. Especially, SSDs call for a
higher Read/Write throughputs; in other words, SSDs need to manage more NAND
dies in parallel. Basically, there are a couple of options.

The first one is to increase the number of dies per channel as shown in Fig. 6.8a.
This solution encounters limitations from channel parasitic loading. It has the
advantage of lower pin count and lower hardware cost, especially for the controller,
but it might not satisfy the requirements of Write throughput.

The second option is to increase the number of channels (Fig. 6.8b). This
solution shifts all the problems inside the memory controller which has to manage
the parallel data flow coming from all the memory channels. The drawback is that

(a) | iCEO lCEl lCEZ lCE?a
A NAND ||| ~anp [[l|| NaND ||| NAND
Flash Flash Flash Flash
CONTROLLER - ‘ .
Lt ‘t FLASH § CHANNEL >
(b)
lCEO lCEl JcE2 lcm
NAND NAND NAND NAND
Flash Flash Flash Flash
A
¥ 8BIT FLASH § CHANNEL
FLASH < >
CONTROLLER JcEo JcE1 JCE2 lCES
NAND NAND NAND NAND
Flash Flash Flash Flash
4 i *
< 8BIT FLASH § CHANNEL >

Fig. 6.8 SSD system enhancement: a increased number of dies per channel b increased number

of channels

144 L. Crippa and R. Micheloni

the controller has to manage the ECC for each channel and have the need of
dedicated SRAM. On the positive side, this solution is scalable and flexible and
allows to reach very high Read/Write throughput. Nowadays, multiple channel
architectures are quite common in SSD design.

In every case, power and signal integrity must be addressed with careful inter-
face design considerations. In this section, we mainly deal with the I/O bottleneck
problem which must first be solved by a proper interface roadmap.

6.3.1 DDR Interface

High speed NAND introduced a Double Data Rate (DDR) interface in year 2008.
As a matter of fact, NAND memories are now following the same path that DRAMs
experienced from year 2000.

The challenge in the coming years will be the standardization of the interface
among vendors. Two solutions are available in the market, as draft in Fig. 6.9. On
one side, ONFI organization [8] introduced an interface with a clock and data
strobe, ready for a DRAM-like evolutionary path. Pinout differences between
legacy and ONFI 2.0 interfaces are:

WE# becomes a fast CLK;

RE# handles data direction by becoming W/R# (Write/Read#);

I/O[7:0] renamed to DQ[7:0] (name change only, functionally identical);
DQS, a new bi-directional signal, is enabled.

On the other side, Samsung decided for a different approach named “Toggle” [9]
where only data strobe has been added to the legacy NAND pinout; Toggle mode
adds DQS data strobe signals; RE# is used to trigger the read cycle as done in
asynchronous interface; DQS is used to strobe the data on both edges.

ASYNC ONFI ™
NAND NAND NAND
CE# CE# CE#
ALE ALE ALE
CLE CLE CLE
RE# W/R¥ RE#
WE# CLK WE#
R/B# R/B# R/B#
WPH# WP# WPH#
1/O[7:0] DQ[7:0] /O[7:0]
DQS

Fig. 6.9 Legacy NAND versus ONFI 2 and Toggle-mode synchronous NAND interface

6 NAND Flash Design 145

As usual, JEDEC is now working on combining the above interfaces in a single
standard.

ONFI has already released the third generation of specifications where they
target 400 MB/s throughput, and Toggle is targeting the same speed. The interface
roadmap stays with LVTTL bus driving style as long as possible in order to ease
integration, but some design tricks have to be introduced in order to sustain higher
bandwidths. This will include the proper scaling of interface voltage, the use of a
specific termination type, On-Die Terminations, differential strobes and, going
beyond, synchronization circuit. Finally, it will include DLL/PLL and the change to
a SSTL class of terminated bus.

The DDR protocol diagrams are sketched in Fig. 6.10. A Synchronous clock must
be provided to the memory chips (not needed in Toggle-mode interface). Bidirectional
Data bus DQ is driven at every clock edge. Therefore, data throughput is doubled
compared to a Single data rate system, assuming the same clock frequency.

Data strobe signal DQS behaves like all other DQs and it is used as data capture
signal on the receiver side. Systems scalability benefits from this approach since
DQS load always matches that of DQ lines, ensuring same timings: this is very
important in SSD design because the parasitic load of a Flash channel changes
when more dies are used.

6.3.2 Power

Let’s consider an SSD where multiple Flash channels are used. Due to the channel
parasitic capacitance, each time a single NAND die is written or read, the entire
capacitance of data lines needs to be driven.

I/O power consumption in a DDR system can be written as [10]:

P=9.n-f-C-V? (6.1)

DQS

DQ[7:0]

1
tposck i
= >

Fig. 6.10 DDR timing diagram

146 L. Crippa and R. Micheloni

Fig. 6.11 1/O power as a 700
function of channel 50pF load
throughput 600 -

500 A

400 A
3V IQ

mwW

300

200 A
1.8V IO

100 -

50 100 150 200 250 300
MB/s

where 7 is the bit activity ratio, f is the DDR frequency, C is the capacitance of a
single line and V is the supply voltage of the interface. Figure 6.11 shows the
impact of I/O power supply. Therefore, scaling the I/O interface voltage becomes a
must, especially looking at higher clock frequencies.

6.3.3 Capacity

SSD storage capacity can be increased in two ways:

e Dby increasing the number of Flash channels;
e by increasing the number of NAND dies connected to a single channel.

As already mentioned, the first solution has been widely adopted, even if it
increases the hardware complexity of the SSD controller.

The adoption of the second solution is mainly limited by the resulting I/O
parasitic capacitance of the Flash channel. To partially overcome this limitation, it
is possible to use advanced System in Package technologies such as Through
Silicon Vias (TSV) [11]. TSV creates interesting opportunities for stacking, thanks
to its low parasitic capacitance.

Figure 6.12 depicts a system in which memory chips are stacked and connected
using a Local Interconnect Bus. The Interface Chip provides data translation from
local interconnect bus to the external bus (i.e. Flash channel) by means of a standard
off chip driver (OCD). It is worth mentioning that the local bus can be driven by
standard CMOS buffers instead of OCD ESD-compliant structures. Furthermore, by
using simplified ESD structures, the bus parasitic capacitance can become even
lower.

6 NAND Flash Design 147

NAND CHIP #0 NAND CHIP #7 INTERFACE CHIP
1/0 1/0 1/0
LOGIC LOGIC LOGIC
LY R LY
[] []
Test PAD Test PAD
» -
Local Interconnect PAD Local Interconnect PAD Local Interconnect PAD

Local Interconnect BUS

Fig. 6.12 Local interconnect bus architecture

6.4 1/0 Design

This section starts with an overview of I/O design problems in legacy asynchronous
NAND products available in the market. Design of high-speed /O is then reviewed.

6.4.1 Basic CMOS Output Buffer Design

Usually, NAND output buffers need to drive large capacitive loads, in the range of
50-100 pF. In this situation the output capacitance transition is very long compared
to the buffer switching time. The buffer conductance is usually made very large to
reduce the charge/discharge time and match the specifications.

The memory data bus can be 8/16 bits: the current sunk by the parasitic capacitor
of a single output buffer has to be multiplied by the number of switching data bits.
Moreover, the inductance of the bonding wire (5—-10 nH in TSOP packages) might
generate bounces on internal power supply lines that could affect the functionalities
of analog circuits [12]. This effect is called Simultaneous Switching Noise (SSN)
and will be treated in more details later.

A basic output buffer with push-pull architecture is shown in Fig. 6.13.

In order to reduce the current peak, switching time of push-pull drivers have to
be carefully controlled. As a consequence, if gates of PMOS and NMOS are driven
at a lower speed, crowbar current becomes an issue. Crowbar occurs when both
PMOS and NMOS are ON at the same time. To avoid this situation, the buffer
structure of Fig. 6.14 can be adopted [3, 13]. In this configuration the pull-up is
switched-off before the pull down is turned on (and vice versa).

NAND and NOR gates can be tuned to obtain a fast switching-off and a proper
switching-on time. In the figure it is also shown the output enable signal OE that is
used to turn the output stage in high impedance: in this way, data bus can be driven
by somebody else.

148 L. Crippa and R. Micheloni

Fig. 6.13 Output buffer VDDQ
model
Lpckg
VDD INT
OE E
DATA 10
OE N E __Cvdd-gnd L
- T COUT
. GND INT .
Lpckg
GNDQ v
Fig. 6.14 Pre-driver to avoid VDD INT
crowbar in push-pull stage
OE
DATA
PAD
—0
DATA N E
OE N
GND INT

Another important design constraint is the slew rate of the output driver. In
asynchronous devices, the slew rate is generally controlled by acting on the
pre-driver, so that the pull-up and pull-down transistors are gradually switched on/
off [13, 14].

Generally, this is optimized in the slow corner and the result is a big variation
with Process/Voltage/Temperature (PVT). The pre-driver RC output constant must
be much smaller than the data window, otherwise there is a risk to have a data
dependent jitter. If a wide data bus is used, it could be beneficial to consider
skewing the output enable by a proper small delay and consequently spreading in
time the current requests.

6 NAND Flash Design 149

Lpce Lpcn Lpce Lpcn

Lrcka Lrcke

Lpcg Lecn C Lpcs c
PADOUT Cpapour PADOUT CpapOUT
—1 —

- —_ —
papour L[] papour [papouT [] PADOUT

Fig. 6.15 Model example used to evaluate SSN

6.4.2 Simultaneous Switching Noise (SSN)

One of the main responsible for data window margins degradation is the simulta-
neous switching noise [13, 15-18]. SSN is an inductive noise caused by several
outputs switching at the same time. One single buffer could have a good transient
behavior, but, when all the data buffers are switching at the same time, the data AC
behavior could be corrupted. The problem is serious in output buffer memory
design because of two effects:

jitter and signal bounces are increased and data window margin is reduced;
the generated noise could affect other circuits, especially analog circuits and
memory sense amplifiers, reducing operating margin or creating systematic
non-working windows.

With a large capacitive load, a large current is requested to charge the load and
the power network must supply that current. The current flows in inductances,
typically in the bonding wires or leads of the package, and the resulting noise is
injected into power and ground supplies. This noise is transferred to the output and
the output AC characteristics are affected.

The simultaneous switching noise is determined, in principle, by the following
equation:

ol
Vssy=N-L- — 6.2
v =N-L- % (62)

150 L. Crippa and R. Micheloni

where N is the number of switching outputs, L the equivalent inductance in which
current must flow, and [the current per driver.

Since this mechanism is dependent on the number of output switching N, this
makes the noise dependent also on the data sequence.

To deal correctly with SSN it is necessary to understand the complete signal
current paths in the memory. In Fig. 6.15 a complete path is shown. Local metal
resistances are omitted but they should be evaluated as possible sources of inter-
ference. It is straightforward to understand that the problem is really connected with
the package. When TSOP packages are used, very long bonding wires can be
present leading to high inductance values. Moving to higher data rates requires to
leave such packages for more controllable Ball Grid Arrays.

6.4.3 High Speed NAND I/0O Design

Output buffer in high speed signal transmission is often named Off-Chip Driver
(OCD). In addition to the task of being the interface circuit between inside and
outside, OCD in high speed memories has to accomplish several additional tasks.

Translate data flow between single data rate (SDR) and DDR domains.
Voltage domain change. The core of the memory could operate at a different
voltage level than the I/O interface and the data signals have the need to be
shifted from the core level to the interface voltage.

e Provide the AC/DC requirements such as Vo /Voy, slew rate or impedance
matching.
Provide the On-Die-Termination (ODT).
ESD protection.

Various types of OCD are used in memory design depending on the interface
type and speed. In order to introduce all the basic concepts, we focus here on the
single ended CMOS buffer, which is widely used in DDR designs.

6.4.4 Double Data Rate OCD

A DDR OCD is a synchronous output buffer. In synchronous systems, OCD
includes a register stage used to synchronize the output with the internal data bus.
In DDR design a block named serializer is included in the buffer design as shown in
Fig. 6.16. Serializer block performs the Single Data Rate (SDR) to DDR conver-
sion: it receives 2n data at a given rate R (SDR) and multiplexes these data onto an
internal line at a higher rate 2R (DDR).

We should highlight that the OCD is operating at a frequency higher than the
one used by other blocks in the memory chip. Therefore, since we have to deal with

6 NAND Flash Design 151

Fig. 6.16 OCD schematic Clock
block diagram
2n data n data
A—r—T
o | SERIALIZER |- PAD
B ——
prefetch data rate output rate
(SDR) (DDR)

smaller delays inside the OCD, it is necessary to take more countermeasures in
designing the block to avoid jitter eating almost all margins.

6.4.4.1 OCD Linearity: Push-Pull and Open-Drain Configurations

It is of primary importance to offer a linear behavior of the output characteristics
because of the system signal integrity. In other words, OCD linearity is key for
impedance matching with the external line.

6.4.4.2 Slew Rate Control and Bandwidth

Drivers should be designed in order to avoid driving frequencies greater than the
signaling rate. Simple and sophisticated methods can be used, such as passive
delays after the pre-driver or current control technique for the pre-driver stage.
A time-split method is widely used. The basic principle is to split output pull-up and
pull-down devices into branches and activate them serially with proper sequential
delays. This time-distributed driver can be implemented in a simple analog form
suitable for relative low operating frequency or digital form [13, 19, 20].
Figure 6.17 shows a basic implementation of the analog form where the pull-up/
down branches are driven by a resistive line which contributes to define the RC

Vb Vb Vop Vop Vb

iR ; ;
L s z

Fig. 6.17 Slew rate control by output driver time-distributed activation

—I—18

152 L. Crippa and R. Micheloni

delay element for each branch. Each branch can be “weighted” to obtain the best
slew rate conditions.

6.4.4.3 Voltage Domain Change: Level Shifting

I/O voltage usually differs from the power supply of the NAND core. For example,
the memory could internally operate at 1.5V by means of a DC-DC
down-converter, whereas the data interface needs a 3 V or 1.8 V driving. Volt-
age domain change occurs also when the memory has different power pins for core
supply voltage and I/Os. This situation allows the use of independent supply
generators to separate the noise coming from data bus and from the core region. In a
simpler system design it is still possible to connect the pins to the same supply on
the PCB. The OCD structure implements the level shifting function which consists
in shifting the levels of the digital signals from the core voltage GND/VDD to the
interface voltage GNDQ/VDDQ. Figure 6.18 shows a modified structure where
NMOS transistors M5 and M6 are added in order to speed up the transition of nodes
from low to high.

The level shifting circuit or, more generally, the point where the data change
voltage domain, is critical in jitter generation. The two domains provide two dif-
ferent references for the signal detection; therefore, any disturbs on the power
supply lines lead to the introduction of additional distortion.

6.4.4.4 Jitter Sources and Duty Cycle Distortion

Off-Chip Driver complexity implies that data is travelling along many gates before
reaching the output stage. The design of the chain of inversions is fundamental in
the control of duty cycle distortion. Duty cycle distortion occurs when:

e positive and negative slopes are different;
e number of inversion is odd;
e ground or power shifts.

IN_N—i M5 MI EMz M6 |—IN

OouT

N _{ M3 M4 ’E”— IN.N

GNDQ

Fig. 6.18 Level shifter modified

6 NAND Flash Design 153

To reduce the jitter in a chain of inverters it is necessary to keep the same slope
in the chain, i.e. using the same ratio between the driver strength and the load,
instead of trying to minimize the number of inverters in the chain. Another source
of jitter is hidden in level shifters and voltage domain change. Level shifter sket-
ched in Fig. 6.18 introduces asymmetric positive/negative slopes detected by a
receiver gate with different time delay.

In conclusion, high-speed NANDs require a very sophisticated I/O design
because of its impact on SSD’s power, performances and signal integrity.

6.5 Read Operation: The Sense Amplifier

Let’s now move in the core region. The reading operation is designed to address
specific memory cells within the array and measure their information content. As in
other types of Flash memories, the stored information is associated with the cell’s
threshold voltage Vry: in Fig. 6.19 the threshold voltage distributions of cells
containing one logic bit are shown. If the cell has a Vy belonging to the erased
distribution, it contains a logic “1”, otherwise it contains a logic “0”. Cells con-
taining n bit of information have 2n different levels of Vry.

Flash cells act like usual MOS transistors. Given a fixed gate voltage, the cell
current is a function of its threshold voltage. Therefore, through a current measure,
it is possible to understand which Vg distribution the memory cell belongs to.

The fact that a memory cell belongs to a string made up by other cells has some
drawbacks. First of all, the unselected memory cells must be biased in a way that
their threshold voltages do not affect the current of the addressed cell. In other
words, the unselected cells must behave as pass-transistors. As a result, their gate

Erased cell distribution Programmed cell distribution
Vi <V reap Vi >V reap

\

u] 2

VTH

>

<p-=----
<beoee--

READ PASS

Fig. 6.19 Threshold voltage distributions of erased (“1”) and programmed (“0”) cells

154 L. Crippa and R. Micheloni

IsTrRING

Region — B)

(good working region) ~ Region-C

(string current saturation)
Issat
Region — A
(no string current) ‘))
/,’ (best working region)
—= »VREAD

0]

Fig. 6.20 Cell current characteristics versus gate voltage

must be driven to a voltage (commonly known as Vpags) higher than the maximum
possible Vry. In Fig. 6.19 Vpags has to be higher than Vrgvax.

However, the presence of 2" — 1 transistors in series has a limiting effect (sat-
uration) on the current’s maximum value; this maximum current is, therefore, much
lower than the one available in NOR-type Flash memories.

Figure 6.20 shows the -V (current-voltage) characteristic of a NAND cell
(string): Vgrgap is applied to the selected gate while Vpass bias the unselected
gates. Vpass is a fixed voltage. Three main string working-regions can be
highlighted.

1. Region A: the addressed cell is not in a conductive state.

2. Region B: Vggap makes the addressed cell more and more conductive.

3. Region C: the cell is completely ON, but the series resistance of the pass
transistors (unselected cells) limits the current to Iggat.

The string current in region C can be estimated as:

v,
Igsar = (BL (6.3)

n—1)Ron

where Ropy is the series resistance of a single memory cell, Vg is the voltage
applied to the bitline and »n is the number of the cells in the string. Ry, at a first
approximation, is the resistance of a transistor working in the ohmic region.
For a MOS transistor in ohmic region the following equation holds true:
V2
In=k-|(Vgs = Vi) - Vps — %S (6.4)

6 NAND Flash Design 155

For small Vpg values, as in our case, (6.4) may be simplified as:
IDIk[(VGS—VTH) . VDS] (65)
Therefore, Roy is equivalent to

Vs 1
e 6.6
In k(Vgs—Vin) (6.6)

Ron =

Equation (6.6) shows that Rpy is a function of Vry. In other words, Issat
depends on the Vry values of the n cells in series. When all the cells are pro-
grammed to Vrgmax, Roy takes its maximum value (dashed line in Fig. 6.20). Rpoy
influences the I-V characteristic also in region B but in a more negligible way. In
order to reduce the dependency from Ry, the cell has to be read in region B as near
as possible to point O.

The order of magnitude of the saturation current, in the state-of-the-art NAND
technologies, is a few hundreds of nA, that means a reading current of some tens of
nA. It is very hard to sense such small currents with the standard techniques used in
NOR-type Flash memories, where the reading current is, at least, in the order of
some pA. Moreover, in NAND devices, tens of thousands of strings are read in
parallel. Therefore, tens of thousands of reading circuits are needed. Due to the
multiplicity, a single reading circuit has to guarantee a full functionality with a very
low area impact. As a matter of fact, the first memory NAND prototypes used
traditional sensing methods, since the said currents were in the order of tens of pA
[21].

The reading method of the Flash NAND memories consists in integrating the
cell current on a capacitor in a fixed time (Fig. 6.21). The voltage AV across a
capacitor C, charged by a constant current / for a time period AT, is described by the
following equation:

1
AVe= ZAT (6.7)

Fig. 6.21 Capacitor Ve
discharge through a constant Starting Voltage
current source

Ve N

. Ending Voltage
AV

156 L. Crippa and R. Micheloni

Since the cell current is related to its Vy, the final voltage on the capacitor (AV)
is a function of Vry too.

There are different reading techniques, starting from the one using the bitline
parasitic capacitor, ending with the most recent sensing technique which integrates
the current on a little dedicated capacitor. The above mentioned techniques can be
used both in SLC and MLC NAND memories. In the MLC case, multiple basic
reading operations are performed at different gate voltages.

Historically, the first reading technique used the parasitic capacitor of the bitline
as the element of the cell current integration [22-24].

In Fig. 6.22 the basic scheme is shown. Vprg is a constant voltage. At the
beginning, Cgy is charged up to Vprg and then it is left floating (Ty). At T, the
string is enabled to sink current (Icgry) from the bitline capacitor. The cell gate is
biased at Vrgap. If the cell is erased, the sunk current is higher than (or equal to)
Igramin- A programmed cell sinks a current lower than Iggann (it can also be
equal to zero). Cgy is connected to a sensing element (comparator) with a trigger
Voltage VTHC equal to VSEN- Since IERAMIN: CBL» VPRE and VSEN are kHOWn, it
follows that the shortest time (Tgyvar) to discharge the bitline capacitor is equal to:

Vere = V.
Trvar=Cgr 71375 SEN (6.8)
ERAMIN

If the cell belongs to the written distribution, the bitline capacitor will not
discharge below Vggy during Tgyar. As a result, the output node (OUT) of the
voltage comparator remains at 0. Otherwise, if the cell is erased, Vg drops below
Vsen and the OUT signal is set to 1.

The basic sense amplifier structure is sketched in Fig. 6.23. During the precharge
phase Tprg, Mggr. and Mpcy are biased to Vprg and Vpp + Vryn respectively.
Vrun is the threshold voltage of a NMOS transistor and Vpp is the device’s power
supply voltage.

ouT
BL

T(J T 1 v T EN
- VPRE PRE

<

IERAMI\J

I(',I:LL

v

ouT

\ S

TPRE - TE\"A

>

Fig. 6.22 Basic sensing scheme exploiting bitline capacitance and the related timing diagram

6 NAND Flash Design 157

-
LATCH / FF

HV

L "
-------- /' BLS \
BL(n)

---4

<
g
&
- =
LI i
0’—1
jes]
£

!
g
[~ ‘—/—””’) M,
5 Vpass _| |
a |
= ' !
g :
A I Mg
= " SLS)
N /7
I D I4
SL SL

Fig. 6.23 Basic elements of the sense amplifier

As a consequence, Cg| is charged to the following value:

VL = Vere — Vrun (6.9)

During this phase, the SO node charges up to Vpp. Since Vgs and Vpg can be
higher than 20-22 V, Myy has to be a high voltage (HV) transistor. In fact, during
the erase phase, the bitlines are at about 20 V and Myy acts as a protection element
for the sense amplifier’s low voltage components. Instead, during the reading phase,
Myy is biased at a voltage that makes it behave as pass-transistor. Moreover, during
the precharge phase, the appropriate Vreap and Vpags are applied to the string.
Mg s is biased to a voltage (generally Vpp) that makes it work as pass transistor.
Instead, Mg s is turned off in order to avoid cross-current consumption through the
string.

Typically, Vgp is around 1 V. From (6.9), Vprg values approximately
1.4-19 V, depending on the Vpuyny (NMOS threshold voltage). The bitline

158 L. Crippa and R. Micheloni

precharge phase usually lasts 5-10 ps, and depends on many factors, above all the
value of the distributed bitline parasitic RC.

Sometimes this precharge phase is intentionally slowed down to avoid high
current peaks from Vpp. In order to achieve this, the Mpcy gate could be biased
with a voltage ramp from GND to Vpp + Vryn.

At the end of the precharge phase, PCH and SEL are switched to 0. As a
consequence, the bitline and the SO node parasitic capacitor are left floating to a
voltage of Vprg — Vrun and Vpp respectively. Mgy is then biased in order to
behave as pass transistor. In this way the string is enabled to sink (or not) current
from the bitline capacitor.

At this point, the evaluation phase starts. If the cell has a Vi higher than Vggap,
no current flows and the bitline capacitor maintains its precharged value.

Otherwise, if the cell has a Vzy lower than Vggap, the current flows and the
bitline discharges.

6.5.1 Interleaving Architecture

Given the (6.8), it is clear that the bitline capacitance has a direct influence on the
evaluation time. Cgp must fulfill the following requirements:

it must be a known parameter;
it must be immune to external noise.

Figure 6.24 is a bitline cross-section showing the different contributions to Cgy :

e C,p is the parasitic capacitor between the bitline and the lower plane (usually it
is the wordline plane);

o C,y is the parasitic capacitor between the bitline and the upper plane (usually it
is the source-line plane);

(UPPER PLATE — SOURCE LINE (SL)

BL(i-2) .|BL(+2)

/ LOWER PLATE - WORD LINE’s (WL’s) S

Fig. 6.24 Bitline parasitic capacitors

6 NAND Flash Design 159

e Cc is the parasitic capacitor between two adjacent bitlines;
o C(, is the parasitic capacitor between a bitline and its second nearest bitline.

Therefore, Cg;. can be written as:
Cpr=Cay+Cap+2Cc+2Cc (610)

The above mentioned contributions depend on the bitline geometrical values
(width W, height H and spacing S in Fig. 6.24), on the distance between upper and
lower ground levels and on the oxide thickness. These parameters are not uniform
among different wafers, dice and even within the same die. However, a correct
reading must be ensured.

In all the explained theory, another important assumption is that the bitline
capacitor has one of its terminals fixed to ground. Actually, looking at Fig. 6.24,
CpL ground terminal is physically distributed over four nodes:

. the upper plate, usually the source-line;

. the lower plate, usually the wordline or the source-line;
. the left bitline;

. the right bitline.

R R S R

During the evaluation time the first two nodes are forced at a fixed voltage.
Instead, the adjacent bitlines could be discharged by the strings connected to them.

With the continuous bitline shrinking (W and S in Fig. 6.24), the coupling
capacitances play an important role. In sub-40 nm NAND technologies they con-
tribute 80-90% of the total bitline capacitance. To overcome this issue, the inter-
leaving architecture is introduced. While the even (or odd) bitlines are read, the odd
(or even) bitlines are forced to a fixed voltage (generally ground), acting as elec-
trical shield [22-24]. As shown in Fig. 6.25, Mg, and Mg, (bitline selectors) are
placed between the bitlines and the page buffer PB(i). If the even bitlines BLe are
read, Mggr. acts as a pass-transistor. Transistor Mggp, is turned off. The DISo
signal turns on the Mpys, transistor, forcing the odd bitline By, to the fixed BIAS
voltage. Mpys, is turned off.

In order to minimize the power consumption, BIAS and the source line
(SL) should be biased at the same voltage. In fact, these two nodes are shorted if a
cell with Vg > Vggeap belongs to the unselected bitlines. SL and BIAS are usually
grounded during the reading operation.

With this architecture, the noise injection effect through the Cc coupling
capacitors is eliminated. However, the coupling through Cc, (Fig. 6.24) is still in
place. This contribution is not negligible: in the state-of-the-art technologies, Cc»
contributes 5-10% of the total bitline capacitance. This problem is solved by the
architecture described in the next section.

160 L. Crippa and R. Micheloni

// Voo ‘\
)
! MT’CH :
| PCH - !
]]
! LATCH / FF !
: ouT |
| " '
! SEL !
| SEL N /
\\ __ _
BLINT()
SRR whhhhy *.,_~BLSEL(i
'\ M, b () PB(i)
1 M sELe BIAS '
SELe 1—|§ S SELo
|
)
M e | Mpiso !
: ‘ DISe DIS s :
1 1
DISe I‘ ! DISo
BLe(i) BLo(i)
SELo | SELe | DISo | DISe [BIAS
BLo(i)
\Y% GND | GND \Y% GND
MATRIX READ ” ”
BLe(i)
GND Vbp Vbp GND | GND
READ

Fig. 6.25 Interleaving bitline architecture

6.5.2 All BitLine (ABL) Architecture

The sensing technique is basically the same used in the interleaving architecture. An
intentionally placed capacitor is used instead of the Cg; bitline parasitic capacitor
[25].

Figure 6.26 shows the main elements of the ABL sense amplifier. The latch is
replaced by a voltage comparator with a Vyga trigger voltage. The other elements
are those ones already described in the interleaved architecture, but here used in a
different way. The capacitor Cgg is involved in the integration of the cell current: it
can be done using either MOS gates or poly-poly capacitors.

Figure 6.27 shows the timings used in a single read operation. The precharge
phase is similar to that one described for the interleaving architecture, where Mpcy
and Mg, gates are biased to Vpp + Vryn and Vpgg respectively. Mgy HVNMOS
has the behavior already described and, during the single read operation phase,
works as pass transistor. The signals which drive the string gates (Vrgap, Vpass
and BLS) are activated as usually. Instead SLS signal is immediately activated in
order to stabilize the bitlines during the precharge phase. In fact, if the SLS had
been activated during the evaluation phase, there would have been a voltage drop
on those bitlines with an associated sinking current string.

6 NAND Flash Design 161

Moy
PCH —|

SEL
SEL —|

SENSE AMPLIFIER (SA) ENA_N

BLINT()
M HV -
nv—i v P .
K Mg AN
| BL(n) ;B :
I] I
Cp | ! | !
e R -
______ : M i+l :
H ' Vpass IcpL X
l : |
\Y% ! M; :
[|
’1 ! VREAD | '
I
¢} : 1
Z / M, |
%‘J ' Veass | :
a ' |
m \ I !
3! ' !
= ! Mgrs .
2 . SLS K
_ S .
SL SL
Fig. 6.26 ABL sense amplifier
The precharge final condition
Ver = Vere — Vrun (6.11)

is, therefore, valid only for the bitlines which have an associated string in a non
conductive state.
Equation (6.11) should be replaced by:

Ve =Vpre — Vruy — A (6.12)

where A is the voltage drop on the bitlines resistance (typical values are in the order
of hundreds of kQ up to one MQ).

At the end of the precharge phase (T,), the bitlines are biased to a constant
voltage and Vgg is equal to Vpp. At this point, Mpcy is switched off and the
evaluation phase starts. Actually, Mpcy is biased to a Vgapg voltage value in order

162 L. Crippa and R. Micheloni

Va
T,
VootV i T, T; T4Ts Te
Vsarg
PCH R
VPRE
SEL
[_VPRE _VTHN

BL
S0 Vop | T - Vinsa -
VREAD R
Vpass R

BLS

SLS
[N IO 11 il i
Tep b7 ‘\‘__~ R
ENA N .
ENI -
OUT N .

W TPRE i TEVA TDISCH
VREAD

Fig. 6.27 ABL single read operation (SRO) timing diagram

6 NAND Flash Design 163

to make Mpcy behave as a clamp transistor of the SO voltage. The following
relation must be valid:

Vsare — Vrun 2 Vere — Vian = Vsare > Vere (6.13)

This clamp value must not influence the current integration on the SO capacitor,
i.e. the clamping function can’t take place above the Vryga trigger voltage:

Vsare — Vruy < Vrnrsa (6.14)

Therefore, from (6.13) and (6.14), the following conditions must hold true:

Vere = Vran < Vsare — Vv < Vinsa (6.15)

When Mpcy is switched off, the cell current (through Mpgrg) discharges the Cgo
capacitor. If, during the evaluation time, Vso < Vrysa (trigger voltage of Fig. 6.26
comparator), than OUT_N switches (dotted lines in Fig. 6.27). The “threshold
current” Irgapty 18 defined as:

AV.-C
IreapTH = e 50 (6.16)
EVAL
where
AV =Vpp — Vrgsa (6 17)

Observe that, because the bitline is biased to a fixed voltage, a constant current

IREADTH flows.
It is possible to extrapolate the evaluation time:

AV.C
Tpyar = ——2 (6.18)
IreapTH

Given the same read currents, it follows that the ratio between (6.8) and (6.18) is
determined by the ratio between Cgr and Cgo. Cgy is a parasitic element and has a
value of 2—4 pF. Instead, Cso is a design element and has typical values around 20—
40 fF, i.e. two orders of magnitude lower than Cgp. The reduction of the evaluation
time from 10 ps to hundreds of ns is another advantage of the All Bitline
architecture.

In addition, ABL architecture gives further advantages such as energy saving,
bitline-coupling reduction and Floating-Gate-coupling reduction during program
and read, and program stress reduction [2].

164 L. Crippa and R. Micheloni

6.5.3 Read Voltage with Thermal Tracking

In a 2 bit-per-cell multilevel Flash NAND memory, four different threshold voltage
(V) distributions exist, as shown in Fig. 6.28. All the cells are in the “11” state
after electrical erase. During programming phase, the threshold voltage of the cells
is incremented in small steps until the desired value is reached. At the end of each
program step, a verify operation is performed, in order to evaluate whether Vy has
gone above one of the verify voltages, Vgy;, Viys or Vgys. Of course, verify
voltage depends on which bits have to be stored in a given cell. For instance, in
order to reach “00” logic value, threshold voltage has to go above Vgy,. Once target
distribution is reached, further program pulses are not applied to that cell.

In order to univocally determine the logic value stored in the selected cell, read
operation uses three voltage values, Vreapo, VrReaD1> a1d Vreapz as shown in
Fig. 6.28. Each read voltage is centered between two adjacent distributions so that
read margins are maximized. For instance, the distance between Vggap; and the
rightmost side of “10” distribution should be equal to the distance between Vrgap
and the leftmost side of “00” distribution. With multilevel memories, the typical
value for such distances is 300 mV.

In order to achieve the required precision, voltages to be applied to the cells are
generated by means of voltage regulators which exploit band-gap techniques to
generate a precise reference voltage. In this way, the voltages generated on-chip are
independent from temperature, at least to a first approximation. On the other hand,
the Vpy distributions of the memory cells are highly sensitive to temperature
variations: as temperature increases, Vry decreases and vice versa (see Fig. 6.29).

As a result, read margins are reduced when temperature varies, because the tails
of the distributions get nearer and nearer to read voltages. For instance, as shown in

<«<—> = Read Margin

VF IYO VI;‘Y] VFIYZ

|
|
|
|
|
|
|
|
|
|
|
|
T

|
VREADO VREAD] VREAD2

Fig. 6.28 Cell V1y distributions in a 2 bit/cell NAND memory

6 NAND Flash Design 165

<—> = Read Margin
4‘00’?@270(:

VTU
>

»

“00”@90°C “00”@-40°C

VREADI VREADZ

Fig. 6.29 Vg variations with temperature

Fig. 6.29, “00” distribution gets nearer to Vrgap, at low temperature, while it gets
nearer to Vggap; at high temperature. The same is true for each distribution.
Threshold voltage of the cell typically shifts of —1.5 mV/°C. As a consequence,
overall variation is approximately 200 mV if a temperature range of —40 to 90 °C is
considered.

Therefore, a specific type of read voltage regulator is needed [26—28]: that is, the
thermal coefficient of its output voltage has to be as similar as possible to the
coefficient of the cell’s Vry. In this way, read voltages rigidly shift with distribu-
tions, keeping the margins unaltered (Fig. 6.30). A similar constraint is true for
verify voltages.

6.6 Program

As described in Chap. 5, Vy is modified by means of the Incremental Step Pulse
Programming (ISPP) algorithm (Fig. 6.31): a voltage step (whose amplitude and
duration are predefined) is applied to the gate of the cell. Afterwards, a verify
operation is performed, in order to check whether Vryr has exceeded a predefined
voltage value (Vygy). If the verify operation is successful, the cell has reached the
desired state and it is excluded from the following program pulses. Otherwise

166

<«—> = Read Margin

I “00”@_400(:

D —

'
'
]

L. Crippa and R. Micheloni

'
'
——>!

'
'
1
'
'
'
'
'
'
'
'
'
'
'

VTH
>
>

Vieap) @-40°C

“00”@90°C

|

>

'
'
1
'
'
'
'
'
'
'
'
'
'
'

Vigap, @-40°C

VREADI @900C VREAD2 @QOOC

Fig. 6.30 Vggap tracking of Vpy variations with temperature

Fig. 6.31 Incremental step
pulse programming (ISPP):
constant Vg shift

TITT T T[T I T T TT T TTT T[T

pa ool salaaaalaasalay

0 5 10 15 20
Pulse

another cycle of ISPP is applied to the cell, where the program voltage is incre-

mented by AVpp.

During the program operation, the cells share the high programming voltage on
the selected wordline but the program operation has to be bit selective. Therefore, a
high channel potential is needed to reduce the voltage drop across the tunneling
dielectric and prevents the electrons tunneling from the channel to the floating gate
as indicated by Fig. 6.32a. In the first NAND flash devices the channel was charged

6 NAND Flash Design 167

a Vpp b
() () GND Vce
T BL(program) BL(inhibit)
[]
My |—| Vce My
| | Tnhibit sLs m”.::l -
M M,
S R H D WL = ” Vppass ¢ Il
; 8V ; H
My Vppass Mle
? IILI]
Vpp M, Vpp M
: w—4E n
: ' M PT Vipass g A7
[] Program WLo Ny II:]‘, ‘_Il >
[R) Mg GND Mg
S : : D SLS SLSI bLbI
_____ ' oV L] SL L1 Vce

Fig. 6.32 Self boosted program inhibit scheme, a cell in program/inhibit state, b strings biasing in
program/inhibit state

by applying 8 V to the bitlines of the program inhibited NAND strings. This
method suffers from several disadvantages [29], especially power consumption and
high stress on the oxide between adjacent bitlines.

The self boost program inhibit scheme is less power consuming. By charging the
string select lines and the bitlines connected to inhibited cells to V., the select
transistors are diode connected (Fig. 6.32b). By raising the wordline potential
(selected wordline to Vp,, and unselected wordlines to Vi) the channel potential
is boosted by the coupled series capacitance through the control gate, floating gate,
channel and bulk.

In fact, when the voltage of the channel exceeds V.. — Vrussr, then SSL
transistors are reverse biased and the channel of the NAND string becomes a
floating node.

Two important typologies of disturbs are related to the program operation: the
Pass disturb and the Program disturb as described in Chap. 5.

6.7 Erase

The erase operation resets the information of all the cells belonging to one block
simultaneously.

Tables 6.1 and 6.2 summarize the erase voltages. During the erase pulse, all the
wordlines belonging to the selected block are kept at ground, the matrix ip-well

168 L. Crippa and R. Micheloni

Table 6.1 Electrical erase To T, T, T, T,

pulse voltages for the selected

block BLeven Float Float Float Float Float
BLodd Float Float Float Float Float
DSL Float Float Float Float Float
WLs ov ov ov ov oV
SSL Float Float Float Float Float
SL Float Float Float Float Float
ip-well ov VERASE VERASE ov oV

Table 6.2 Electrical erase To T, T, T, T,

pulse voltages for unselected

blocks BLeven Float Float Float Float Float
BLodd Float Float Float Float Float
DSL Float Float Float Float Float
WLs Float Float Float Float Float
SSL Float Float Float Float Float
SL Float Float Float Float Float
ip-well ov VERASE VERASE ov ov

must rise (through a staircase) to 23 V and all the other nodes are floating. This
phase lasts almost a millisecond and it is the phase when the actual electrical erase
takes place.

Since the matrix ip-well (as well as the surrounding n-well) is common to all the
blocks, it reaches high voltages also for the unselected blocks. In order to prevent
an unintentional erase on those blocks, wordlines are left floating; in this way, their
voltage can rise thanks to the capacitive coupling between the wordline layer and
the underneath matrix layer. Of course, the voltage difference between wordlines
and ip-well should be low enough to avoid Fowler-Nordheim tunneling.

After each erase pulse an erase verify (EV) follows. During this phase all the
wordlines are kept at ground. The purpose is verifying if there are some cells that
have a Vry higher than 0 V, so that another erase pulse can be applied. If EV isn’t
successful for some columns of the block, there are some columns too programmed.
If the maximum number of erase pulses is reached (typically 4), than the erase exits
with a fail. Otherwise, the voltage applied to the matrix ip-well is incremented by
AVg and another erase pulse follows.

6 NAND Flash Design 169

2™ round
1* round
c--T 7T >,
E D1 D2 D3 Vo
I I
Vvryi Vyry2 Vvyrys
Upper page 1 1 o0 6’]
P22 SAngul g - P
‘Lowerpage _ 1________________ 0 ______O0________ L.
AISPP Nl
|
n U AU AU AT R D R/ T

Lower Page PGM x \va Upper Page PGM

VFY2

Fig. 6.33 Two rounds MLC program operation

6.8 MLC and XLC Storage

The obvious advantage of a 2 bit/cell implementation (MLC) with respect to a 1 bit/
cell device (SLC) is that the area occupation of the matrix is half as much; on the
other hand, the area of the periphery circuits, both analog and digital, increases.
This is mainly due to the fact that the multilevel approach requires higher voltages
for program (and therefore bigger charge pumps), higher precision and better
performance in the generation of both the analog signals and the timings, and an
increase in the complexity of the algorithms.

Figure 6.33 shows an example of how 2 bits are associated to the four read
threshold distributions stored in the cell, and how the set of programmed distri-
butions is built starting from the erased state “E”. In this case the multilevel is
achieved in two distinct rounds, one for each bit to be stored [2, 30, 31].

In the first round, the so-called lower-page (associated to the Least Significant
Bit—I.SB) is programmed. If the bit is “1”, the read threshold of the cell Vyy does
not change and, therefore, the cell remains in the erased state, E. If the bit is “0”,
Vg is increased until it reaches the D1 state.

170 L. Crippa and R. Micheloni

In the second round, the upper-page (associated to the Most Significant Bit—
MSB) is programmed. If the bit is “1”, Vg does not change and, therefore, the cell
remains either in the erased state, E, or in the D1 state, depending on the value of
the lower-page.

When MSB is “0”, Vry is programmed as follows:

e if, during the first round, the cell remained in E state, then Vg is incremented to
D3;

e if, during the first round, the cell was programmed to D1, then, in the second
round, Vg reaches D2.

As usual, the program operation makes use of ISPP, and the verify voltages are
Vvey2 and Vygys. Lower-page programming only needs the information related to
LSB, while for the upper-page it is necessary to know both the starting distribution
(LSB) and the MSB.

Because of technological variations, Vy is not perfectly related to the amplitude
of the program pulse (during ISPP): there are “fast” cells which reach the desired
distribution with few ISPP pulses, while other “slow” cells require more pulses.

The amplitude of the first program pulse (Vpgmrsso) of the lower-page should
not allow the threshold Vyg of the “fastest” cell to exceed Vygy;. If it happens, an
undesired widening of distribution D2 occurs or, in the worst case scenario, Vg
might reach D2 distribution at once.

Typical Vpgmrsso is around 16 V. In case of program of “slow” cells from E to
DI, the last programming step needs values as high as 19 V. Assuming AISPP
equal to 250 mV, it takes 12 steps to move from 16 to 19 V.

Similarly, the starting pulse of the upper-page Vpgmmsso should have an
amplitude such that the “fastest” cell does not go beyond Vygys.

Veemmseo = Veeomrsso + (Vveyz — Vvert) (6.19)

The value of Vygys — Vyry; is typically around 1 V and, therefore, the initial
voltage is about 17 V.

As shown in Fig. 6.33, the upper-page ISPP does not start from the last voltage
used for the lower-page programming, but it begins at Vpgmispo — Ap. For
example, instead of starting at 19 V, it could start at 17 V, eight steps below.

Driven by cost, Flash manufacturers are now developing 3 bit/cell (8 Vry dis-
tributions) and 4 bit/cell (16 Vg distributions) [32—34]. Three and four bits per cell
are usually referred to as XLC (8LC and 16LC, respectively). Unfortunately, due to
reliability reasons, the Vg window remains the MLC one; in fact, the highest
verification level must be low enough to prevent bit failures caused by program
disturb and read disturb. The more states a memory cell is made to store, the more
finely divided is its Vg window.

Of course, the main drawback is a slow program time. As the distribution width
needs to be tighter, ISSP program step is smaller and the number of verify oper-
ations increases, as depicted in Fig. 6.34.

6 NAND Flash Design 171

6 D8 DI0O DI2 DI4
Q‘LD ILD13‘L D15

W....

S - a @ T »n

L kL EE &g

AISPP SE S S SESSsSs

>.

V\"FY 15

Fig. 6.34 4 bit/cell programming algorithm

6.9 High Voltage Management

Modifying or reading the number of electrons stored into the floating gate requires a
big set of voltages. The High Voltage (HV) system has to provide all these voltages
with the desired precision, timing and granularity. On top of that, many voltages
have a value greater than the NAND power supply VDD, asking for an on-chip
charge pump. This section deals with the HV basic building blocks.

6.9.1 Charge Pumps

In the NAND environment, one of the most used type of charge pumps is the
Voltage Doubler [3]. The basic stage is shown in Fig. 6.35. It is a feedback system
that can duplicate the input voltage and, essentially, it is made up by two n-channel
transistors (MN1, MN2), two p-channel transistors (MP1, MP2) and two capacitors
(C1, C2) of the same size.

In order to understand the principle of operation of this circuit, it can be assumed
that, at the beginning, nodes A and B, as well as CK (pump clock) and its com-
plement (CK#), are at GND. In this way, both transistors MN1 and MN2 are off.
Voltage on the node IN (Vi) is set to VDD (i.e. the chip power supply).

As soon as CK toggles from GND to VDD, V, becomes VDD, activating
transistor MN2. Since CK# remains at GND, the charge starts flowing from power

172 L. Crippa and R. Micheloni

l CK# l
1T L 1T
MN3 —"cz 7 MP3
w2 L B MP2
1

IN OouT

MN4 |

dk

Fig. 6.35 Basic stage of a voltage doubler

o | (e
i
:

supply to capacitor C2 until Vg reaches a value equal to VDD — Vg mno.
When CK goes to GND, transistor MN2 turns off.

At the same time, CK# gets to VDD and, therefore, Vg becomes (VDD —
Vrgmnz + VDD), turning on transistor MN1. As a result, C1 is charged up to
VDD. Of course, when CK# goes to GND again, Vy is, in principle, equal to VDD
— Vrumne- Since the signal CK is used as a clock, each capacitance is continuously
charged and discharged between VDD and 2VDD. In other words, during each
period of the clock either V5 or Vg is at 2VDD.

At this point, in order to build a real charge pump, voltages on nodes A and B
have to be transferred to the next pump stage. Now MP1 and MP2 come into the
game. When CK is at VDD, V4 is 2VDD and Vg is VDD. Transistor MN1 is,
therefore, turned off while MP1 is active, transferring the voltage of node A to node
OUT. In the meanwhile MP2 is off, MN2 is on and the capacitor C2 is charged
up. When CK goes back to GND and CK# becomes VDD, then the circuit behaves
in the opposite way: MN1 and MP2 are active (the former charges capacitor C1, the
latter transfers the voltage of node B to the output) while MN2 and MP1 are turned
off. It is worth to note that no active direct paths between IN and OUT are allowed:
these paths would result in a loss of charge and, therefore, in a reduced output
voltage.

As usual, when designing a charge pump, one issue to cope with is the biasing of
the transistor body terminals. The easiest solution is to connect the body of the
n-channel transistor to the power supply and the body of the p-channel transistor to
the output node.

The drawback of this solution is that the output voltage is considerably reduced
by the body-effect of the transistors itself. In Fig. 6.35a “dynamic biasing” has been
chosen: bodies are continuously switched between V5 and Vg. As a result, the body
of the NMOS transistors is always kept at the lowest voltage (through MN3 and

6 NAND Flash Design 173

Increased Output Voltage

: %)) VD
CK1 : - -

! VOLTAGE VD VD
. DOUBLER
1
! VD Increased Output Current
1 IN OuUT
1
1 VOLTAGE

DOUBLER

VD

ig

. , CK2 = CK1+T/4
Period=T

Fig. 6.36 Charge pump as a cascade of basic voltage doubler stages

MN4) while the body of the PMOS transistors is always at the highest voltage
(through MP3 and MP4).

The basic stage of Fig. 6.35 can be used to build up more complex structures as
depicted in Fig. 6.36. Usually, two stages are used in parallel in order to decrease
the ripple of the output voltage.

In fact, due to the internal switching activity of the capacitors, the output of the
pump can be more or less noisy. When talking about ripple, we generally refer to
the height of the “peaks” that can be found in the output node waveform.

In order to properly control the output voltage, voltage doubler stages are
inserted in a feedback loop as described in Fig. 6.37. A block called “Hireg” is used

VD VD
— OUT ——----- ,
VD VD : i
VOLTAGE DOUBLERS : i
| |
I nnnn : :
1]
___________________ 1]
l :
i :
CLOCK |ENABLE ' !
DRIVERS I I
| VREr 1
\ 1
[:

1
! I

Fig. 6.37 Charge pump architecture

174 L. Crippa and R. Micheloni

to limit the output voltage. Thanks to a resistive divider (it could also be made by
CMOS diodes), the output voltage is compared with Vggg (usually a band-gap
reference voltage). CK drivers are then enabled/disabled depending on the com-
parison result.

In order to find the best configuration, the output voltage of the charge pump is
measured varying the CK period. A faster clock means higher output voltage, but
faster clocks means bigger area of the CK drivers. The right trade-off has to be
found considering that, in most of the NAND applications, silicon cost is the main
driver. Optimum CK period is usually in the range of 60-80 ns considering an
output resistance of around 10 kQ. The voltage doubler pump can easily achieve
voltages above 25 V starting from the chip VDD of 2.5 V. Power efficiency n P can
be as high as 20-30% if the current load remains in the range of few hundreds
microAmpere.

Vour - lour
= YU 6.20
Mp Vv - Iy ()

6.9.2 Internal Supply Voltage Regulator

In many NAND devices, external supply voltage VDD is not directly applied to all
the circuits [35, 36]. Some of them are powered by an internal supply (V) filtered
by a proper voltage regulator and this solution brings several advantages. For
instance, in case of devices supplied at 3.6 V, a Viyt equal to 2 V allows the use of
transistors whose oxide thickness is reduced, which are smaller and better per-
forming. In the case of page buffers, by using Vit it is possible to mitigate the
dependency of the triggering threshold from VDD (i.e. several tens of milliVolt),
which turns into a reduction of the width of the distributions. Of course, inside the
NAND memory, there could be more than one Vyt regulators, depending on the
design constraints (noise, power consumption, precision required by the circuits).

Vint regulator is a DC-DC converter. Its conceptual scheme is shown in
Fig. 6.38. For the sake of simplicity, VDD supplies only logic ports. When
inverters are switching, voltage drop of Vyr is a function of the filtering capaci-
tance Cgyrer, Of the parasitic capacitance (gates, routing, junctions), and of the
cross-conduction current.

Beyond a given maximum switching frequency of the logic, Vgt dramatically
drops. This frequency is directly related to the cutoff frequency of the regulator.
Since the DC-DC converter is designed using the same technology of the inverters,
its cutoff frequency cannot be higher than the one of the plain inverter.

6 NAND Flash Design 175

Vop
Vi =2V — AL BUFFER v
P CriLTER
I LOGIC
N, N
I/>C_ _ _T_C_R_OUTING ___1ICroutinG
VooV v

Fig. 6.38 Conceptual scheme of a DC-DC converter

6.9.3 Double-Supply Voltage Regulator

Both program and erase operations require voltages higher than VDD. For instance,
the programming staircase voltage starts at 14—-15 V and arrives at 25 V and
beyond. High voltages are generated by a charge pump and filtered by a proper
voltage regulator: in this way it is possible to reduce the ripple and obtain the
desired output voltage value.

In 1 bit/cell Flash memories, voltage regulator is omitted and the output voltage
of the pump is directly used, regulated by means of an on-off type of control.
Typical ripple values are in the order of 1-2 V. In case of multilevel memories, the
target voltage precision cannot be achieved without a voltage regulator.

NAND technology does not usually provide High Voltage (HV) PMOS tran-
sistor; therefore; it is not possible to implement traditional voltage regulators like
the one shown in Fig. 6.39. In fact, the use of a low-voltage transistor for Mpoyr
would mean that the voltage drop across its terminals must be guaranteed not to
exceed 4-5 V. This must be true both in static and in transient conditions. On top of
that, all the required values for the staircase program pulse must be generated out of
the pump output voltage (~30 V), beginning at 15 V: that is, Mpoyr must be a HV
transistor.

In order to solve the issue it is possible to design a voltage regulator [37] whose
first differential stage is supplied by VDD, while the second one is supplied by a
charge pump so that the HV value can be provided at the output (Fig. 6.40).

By supplying the first stage with VDD, PMOS LV transistors can be used to
realize the current mirror (Mp; — Mp;). The second stage is instead designed using
an NMOS HV (Mnour) together with a resistive pull-up (R pull-up).

176 L. Crippa and R. Micheloni

FIRST STAGE (HV) SECOND STAGE (HV)

VPUMP VPUMP

lSUNKll

ml
F

Fig. 6.39 Voltage regulator with high voltage PMOS

6.10 Wordline Decoder

One of the most critical circuits of the High Voltage (HV) system is the one used to
bias the WordLine (WL). Actually, when it comes to NAND memories, a single
wordline is not enough: all the wordlines belonging to the same NAND string must
be properly biased at the same time. As a result, the Row Decoder, also called
Wordline Decoder or Wordline Driver [4], has to provide a set of voltages: these
values are defined by the algorithms described in Sects. 6.5 and 6.6.

When NAND technology provides only NMOS-type HV transistors, a possible
implementation of the wordline driver is shown in Fig. 6.41. The wordline driver
comprises:

e a Pass-Transistor (PT) for each wordline. These transistors are used to transfer
voltages from the Global WordLines (GWLs), i.e. electrical signals, to the
physical wordlines (WLs);

e a circuit to bias the gates of the above mentioned pass-transistors.

The biasing circuit of the gate of PTs consists of only one high voltage NMOS
(M1). At first, all the gates are biased at a high voltage Vprgcy through M1. Then,
M1 is switched off and, thanks to the gate-drain parasitic capacitance, the rising
transient of GWL performs a boost of Vg, switching PTs on, as shown in
Fig. 6.42.

6 NAND Flash Design 177

FIRST STAGE (LV) SECOND STAGE (HV)

<

Fig. 6.40 Double-supply voltage regulator

However, there are several critical aspects to consider. First of all, the designer
has to deal with a precharge phase of the PT gates: this phase must occur before
biasing the global wordlines, otherwise the boost effect would be lost.

The precharge voltage Vprgcy has to match Vyax, which is the maximum
voltage required during each algorithm. Vyax is not an issue during the read
operation, when the voltages are relatively low, but it ends up being close to the
breakdown voltage during the program operation. The duration of the precharge
phase must be calibrated to allow Vprgcy reaching Vyax: this time increases the
overall operation time, especially during programming.

With reference to the circuit of Fig. 6.41, precharge is driven by the ENABLE
signal. To fully exploit the precharge benefit, ENABLE has to be biased with a
voltage greater than Vpgrgcy, in order to recover the threshold voltage Vrpa of
transistor M1.

Particular attention deserves the boost operation. Once the boost has occurred,
VsLc has to guarantee that, even varying temperature and technological parameters,
each GWL and its corresponding WL are biased with the same voltage. Unfortu-
nately, process and temperature variations mean that the Vry of the pass transistors
can vary as much as 100%. Therefore, the risk is to overcome the breakdown
voltage of the oxide in some PVT (Process Voltage Temperature) corners allowed
by the electrical specification of the NAND Flash memory.

178 L. Crippa and R. Micheloni

1 \ 1
I 1 Mg 1 Mps 1
L ! . | !
Ve I “’:l ! !
' T HV! WL ! !
GWL; ! N ; ! HL' ”]
e . Matrix | | !
I Syt WL | I
GWLZ | 1 1 | 1] || :
i T HVI WL : ::I |
GWL, :I—l 1 E 1: H:] ” i
T\ WL, ! !
GWL, — —f | :
b I M SLS::l Mg]
Pass HV-NMOS] | i
g I i
S L !
Fig. 6.41 All-NMOS wordline driver
Virecn J,/
-
BLC
GWL
-~
| | | |] | | | | |] | | |] | | |
4.0 6.0 80 0.0 12.0 14.0 16.0 1.0 20 0w

Fig. 6.42 Simulation of the circuit sketched in Fig. 6.39

Designers have developed a lot of different solutions for the row decoder,
including a hierarchical approach [2, 3, 38]: due to the huge numbers of wordlines
contained in a NAND array, the challenge is always to trade off performances with
silicon area.

At this point the reader should be reasonably convinced that a NAND Flash
memory is not a “pure” digital device: it is a real mix of digital and analog circuits,
working at high and low voltages, and designed on a silicon technology developed
for floating gate transistors...have fun!

6 NAND Flash Design 179

References

1.

—_
O O 0

11.

12.

13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

R. Micheloni et al., A 4 Gb 2b/cell NAND Flash memory with embedded 5b BCH ECC for
36 MB/s system read throughput, in [EEE International Solid-State Circuits Conference
2006, Digest of Technical Papers, ISSCC 2006, Feb 2006, pp. 497-506

. R. Micheloni, L. Crippa, A. Marelli, Inside NAND Flash Memories (Springer, New York,

2010)

. G. Campardo, R. Micheloni, D. Novosel, VLSI-Design of Non-volatile Memories (Springer,

New York, 2005)

. P. Cappelletti, C. Golla, P. Olivo, E. Zanoni (eds.), Flash Memories, Chap. 5 (Kluwer,

Boston, 1999)

. R. Micheloni, A. Marelli, R. Ravasio, Error Correction Codes for Non-volatile Memories

(Springer, Dordrecht, 2008)

. G. Campardo et al., An overview of Flash architectural developments. Proc. IEEE 91(4,

April), 523-536 (2003)

. M. Annaratone, Digital CMOS Circuit Design (Kluwer Academic Publishers, Boston, 1986)
. www.onfi.org

. https://www.denali.com/en/events/webcasts/2008/togglenand/

. A. Chandrakasan, R. Brodersen (eds.), Low Power CMOS Design (Kluwer Academic

Publishers, Boston, 1995)

H. Hikeda, A 3D packaging with 4 Gb chip-stacked DRAM and 3Gbps high-speed logic, in
3D-SIC 2007, International 3D-System Integration Conference 2007, Tokyo, Japan (2007)
T. Wada, M.E. Kenji Mami, Simple noise model and low-noise data-output buffer for
ultrahigh-speed memories. IEEE J. Solid-State Circuits 25(6, December), 1586—1588 (1990)
S. Dabral, T. Maloney, Basic ESD and 1/0 Design (Wiley, New York, 1998)

E. Chioffi, F. Maloberti, High-speed, low-switching noise CMOS memory data output buffer.
IEEE J. Solid-State Circuits 29(11, November), 1359-1365 (1994)

S.H. HallGarrett, W. HallJames, A. McCall, High-Speed Digital System Design—A Handbook
of Interconnect Theory and Design Practices (Wiley, New York, 2000)

P. Heydari, M. Pedram, Ground bounce in digital VLS circuits. IEEE Trans. VLSI Syst. 11(2,
April), 180-193 (2003)

R. Senthinathan, J. Prince, Simultaneous switching ground noise calculation for packaged
CMOS devices. IEEE J. Solid-State Circuits 26(November), 1724-1728 (1991)

R. Senthinathan, J.L. Prince, Simultaneous Switching Noise of CMOS Devices and Systems
(Kluwer Academic Publisher, Boston, 1994)

S.J. Jou et al., Low switching noise and load-adaptive output buffer design techniques.
IEEE JSSC 36, 1239-1249 (2001)

B. Deutschmann, T. Ostermann, CMOS output driver with reduced ground bounce and
electromagnetic emission, in Solid-State Circuits Conference, ESSCIRC’03 (New York,
2003)

Y. Itoh et al., An experimental 4 Mb CMOS EEPROM with a NAND structured cell, in 36th
1EEE International Solid-State Circuits Conference 1989, Digest of Technical Papers, ISSCC
1989, San Francisco, Feb 1989, pp. 134-135

T. Tanaka et al., A quick intelligent page-programming architecture and a shielded bitline
sensing method for 3 V-only NAND Flash memory. IEEE J. Solid-Stare Circuits 29(11,
November), 1366-1373 (1994)

T.-S. Jung et al., A 3.3 V 128 Mb multi-level NAND Flash memory for mass storage
applications, in 43rd IEEE International Solid-State Circuits Conference 1996, Digest of
Technical Papers, ISSCC 1996, San Francisco, Feb 1996, pp. 32-33, 412

K. Imamiya et al., A 130 mm? 256 Mb NAND Flash with shallow trench isolation
technology, in IEEE International Solid-State Circuits Conference 1999, Digest of Technical
Papers, ISSCC 1999, Feb 1999, pp. 112-113, 412

https://www.denali.com/en/events/webcasts/2008/togglenand/

180 L. Crippa and R. Micheloni

25. R.A. Cernea et al., A 34 MB/s MLC write throughput 16 Gb NAND with all bit line
architecture on 56 nm technology. IEEE J. Solid-Stare Circuits 44(1, January), 186-194
(2009)

26. L. Crippa, G. Ragone, M. Sangalli, R. Micheloni, Circuit and method for retrieving data
stored in semiconductor memory cells, U.S. Patent No. 7474577, Assignee:
STMicroelectronics/Hynix Semiconductor

27. T. Tanzawa, T. Tanaka, K. Takeuchi, Nonvolatile semiconductor memory with temperature
compensation for read-verify referencing scheme, U.S. Patent No. 5864504, Assignee:
Kabushiki Kaisha Toshiba (Kawasaki, JP)

28. T.-H. Cho, Y.-T. Lee, Multi-level Flash memory with temperature compensation, U.S. Patent
No. 6870766, Assignee: Samsung Electronics Co., Ltd. (Suwon-si, KR)

29. K.-D. Suh et al., A 3.3V 32 Mb NAND Flash memory with incremental step pulse
programming scheme. IEEE J. Solid-State Circuits 30(11, November), 1149-1156 (1995)

30. S.Leeetal, A3.3 V4 Gb four-level NAND Flash memory with 90 nm CMOS technology,
in IEEE International Solid-State Circuits Conference, ISSCC, Digest of Technical Papers,
San Francisco, vol. 1, Feb 2004, pp. 52-53, 513

31. D.-S. Byeon et al., An 8 Gb multi-level NAND Flash memory with 63 nm STI CMOS
process technology, in Solid-State Circuits Conference, ISSCC, Digest of Technical Papers,
San Francisco, vol. 1, Feb 2005, pp. 46—47

32. Y.Lietal.,, A 16 Gb 3b/cell NAND Flash memory in 56 nm with 8 MB/s write rate, in /EEE
International Solid-State Circuits Conference 2008, Digest of Technical Papers, ISSCC 2008,
San Francisco, Feb 2008, pp. 506-507, 632

33. N. Shibata et al., A 70 nm 16 Gb 16-Level-Cell NAND Flash memory. IEEE J. Solid-Stare
Circuits 43(4, April), 929-937 (2008)

34. C. Trinh et al. A 5.6 MB/s 64 Gb 4b/Cell NAND Flash memory in 43 nm, CMOS, in /[EEE
International Solid-State Circuits Conference 2009, Digest of Technical Papers, ISSCC 2009,
San Francisco, Feb 2009, pp. 246-247

35. K. Takeuchi et al., A 56-nm CMOS 99-mm? 8-Gb multi-level NAND Flash memory with
10-MB/s program throughput. IEEE J. Solid-Stare Circuits 42(1, January), 219-232 (2007)

36. G.A. Rincon-Mora, Analog IC Design with Low-Dropout Regulators. Electronic Engineering
(McGraw-Hill, New York, 2009)

37. L. Crippa, M. Sangalli, G. Ragone, R. Micheloni, Multistage regulator for charge-pump
boosted voltage applications, not requiring integration of dedicated high voltage high side
transistors, U.S. Patent App. 20070164811, Assignee: STMicroelectronics/Hynix
Semiconductor

38. K. Kanda et al., A 120 mm?* 16 Gb 4-MLC NAND with 43 nm CMOS technology, in 2008
IEEE International Solid-State Circuits Conference (ISSCC), Digest of Technical Papers, San
Francisco, Feb 2008, pp. 430431

Chapter 7)
Memory Driven Design Methodologies e
for Optimal SSD Performance

L. Zuolo, C. Zambelli, Rino Micheloni and P. Olivo

7.1 Introduction

Solid State Drives (SSDs) are one of the electronic systems with the higher
development rate in the last decade: they are widely used in hyper scale systems
such as cloud computing and big data servers where performance is a constraint, as
well as in consumer electronics by replacing traditional hard disk drives (HDDs)
[1].

SSDs’ design, in the last 5 years, faced an extraordinary evolution caused by the
continuous development of NAND Flash memories representing their storage
medium [2]. With this respect, as shown in Fig. 7.1, NAND Flash memories have
completely transformed the way information is processed and stored. Starting as
film and tape replacement for cameras and voice recorders, NAND Flash memories
rapidly surpassed traditional magnetic storage supports and now they represent an
obliged choice for high-performance storage solutions. The availability of NAND

This chapter is a partial reprint of L. Zuolo, C. Zambelli, R. Micheloni and P. Olivo, “Solid State
Drives: Memory Driven Design Methodologies for Optimal Performance,” in Proceedings of the
IEEE, vol. 105, no. 9, pp. 1589-1608, Sept. 2017. © 2017 IEEE.

L. Zuolo - R. Micheloni
Microsemi Corporation, Vimercate, MB, Italy
e-mail: lorenzo.zuolo@microsemi.com

R. Micheloni
e-mail: rino.micheloni@microsemi.com

C. Zambelli (=) - P. Olivo
Engineering Department, Universita di Ferrara, Ferrara, Italy
e-mail: cristian.zambelli @unife.it

P. Olivo
e-mail: piero.olivo@unife.it

© Springer Nature Singapore Pte Ltd. 2018 181
R. Micheloni et al. (eds.), Inside Solid State Drives (SSDs),

Springer Series in Advanced Microelectronics 37,

https://doi.org/10.1007/978-981-13-0599-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_7&domain=pdf

182 L. Zuolo et al.

Flash-based SSDs also materialized as an astonishing proliferation of global-scaled
corporations whose commercial strength is tightly coupled to the availability of
SSDs engineered for big data centers and cloud computing. The previous devel-
oping strategy of SSDs, in fact, was based on a full compatibility with HDDs and
therefore the SSDs’ performance optimization was focused on that of the Flash
Translation Layer (FTL), the firmware managing the basic memory operations [3—
5]. FTL is responsible for a plug-and-play connection between the host system
where the application is running and the SSD. To this respect, it must be considered
that in the last 4 decades user applications have been designed to work with
traditional magnetic HDDs, which are conceptually different from SSDs. Therefore,
rather than redesign the whole architecture of the application, it is more convenient
to leverage a command translation layer.

The development of SSDs was made possible by the use of sufficiently reliable
Single Level Cells (SLC) NAND Flash memories [6], storing a single bit per cell in
the traditional 0/1 digital paradigm with a low read error probability, thus requiring
the design of simple engines for Error Correction Codes (ECC) [7]. The SATA
protocol [8] interfacing the memory system and the host was sufficient to guarantee
the requested Quality of Service (QoS), that is the ability of keeping a sustained
performance over time within a defined threshold [9, 10]. As a whole, the SSD
architecture optimization and the development of dedicated CAD tools for the
exploration of the SSD design space were FTL-oriented, in a top-down approach.

In the last few years, the need for SSDs with higher storage capacities and
performance joined to the availability of high density NAND Flash memories able
to store 2, 3 or even 4 bits in a single cell [11], moved the design paradigm from a
Top-Down to a Bottom-Up approach where the performance and the reliability of

[

:":ﬁﬁ

Consumer Enterprise

55D

Ways of NAND flash disruption

4

Time

Fig. 7.1 Evolution of NAND Flash-based systems: from tape, film and floppy disk replacement to
the explosive SSDs applications for cloud computing and big data centers. Reproduced with
permission from L. Zuolo, C. Zambelli, R. Micheloni and P. Olivo, “Solid-State Drives: Memory
Driven Design Methodologies for Optimal Performance,” in Proceedings of the IEEE, vol. 105,
no. 9, pp. 1589-1608, Sept. 2017. © 2017 IEEE

7 Memory Driven Design Methodologies for Optimal SSD Performance 183

the storage medium dictate the design constraints. NAND Flash memories with
scaled technologies, in fact, suffer from several physical mechanisms able to impact
their reliability figures such as: (i) Endurance, that is the maximum number of
Program/Erase (P/E) operations that the memory can withstand before leading to a
failure; (i) Data Retention, denoting the ability of a memory to keep a stored
information over time with no biases applied; (iii) the immunity from Read Dis-
turbs, representing the stress suffered by a memory cell when reading neighbor cells
[12-14].

These reliability issues become more and more significant in Multi-Level Cells
(MLC) [15], Triple-Level Cells (TLC) [16] and Quadruple-Level Cells (QLC) [17]
storing 2, 3, and 4 bits per cell, respectively, where the undesired transfer of few
electrons into/from the storage layer may alter significantly the memory information
content. The basic parameter characterizing the NAND Flash memory reliability is
the Raw Bit Error Rate (RBER), representing the fraction of erroneous bits
retrieved during a read operation [14]. The knowledge of this parameter whose
value increases with: technology scaling, the number of bits that a cell can store, the
number of P/E operations, the time elapsed between two successive read operations,
the number of repeated read operations on the same memory location, is now the
driver for architectural and software design of present SSDs [18].

Multilevel NAND Flash memories require the availability of an ECC scheme
able to correct the errors detected when reading the memory. The choice of the ECC
code and the design of the correction engine represent the key points for present
SSDs design since they must be carefully calibrated with respect to the figures of
merit of the selected nonvolatile memories. A too simple ECC scheme may not be
able to guarantee a suitable reliability, whereas a too complex one may reduce
severely the read bandwidth because of the time required for error correction, with a
consequent impact also on the system power consumption [19]. Based on the
selected ECC code and of the designed ECC engine, an optimal error reduction
algorithm for the memory read operation could be identified.

Once the ECC scheme has been designed, the Bottom-Up design flow rises to
the memory controller, representing the interface towards the ECC engine and the
memory storage system. The controller, to avoid that the design efforts devoted to
optimize the ECC scheme vanish, must guarantee the bandwidth provided by the
ECC block. With this respect, the SSD controller must be designed in order to
manage a sufficient amount of commands to fully exploit the bandwidth of the
underlying storage system. Similarly, also the interface towards the host must be
able to guarantee the expected bandwidth. For this reason, SATA protocol is no
longer able to deal with the performance made available by the other blocks in the
SSD architecture so that SAS [20] and PCI-Express [21] are adopted for enterprise
environments.

On the basis of this bottom-up SSDs design flow, from an accurate knowledge of
the performance and limits of the selected NAND memories to the design of a
suitable ECC engine and, successively to that of the controller and of the host
interface, also CAD tools for SSD design must follow this Bottom-Up vision, while
relaxing the efforts previously devoted to the FTL design [22].

184 L. Zuolo et al.

7.2 The Impact of ECC on SSD Performance

As summarized in the previous section, because of endurance problems, poor data
retention or read disturbs, the actual threshold voltage read in a cell may be different
from the programmed one [14]. Therefore, when a page is read, some cells may
return a wrong value, thus producing read errors. To overcome these problems,
data-encoding guaranteeing a reconstruction of the correct read page data is
mandatory in electronic systems using NAND Flash memories.

The correction capability of the code to be adopted is strictly related to the error
probability. For a given technology node, since physical degrading mechanisms are
the same independently of the different storage paradigms (SLC, ..., QLC), the
error probability increases with the number of bits stored in a single cell.

In the first SLC memories, thanks to the large gap between the program and the
erase voltage distributions, the error probability was very low, so that
Bose-Chaudhuri-Hocquengham (BCH) codes able to correct few tens of bits in a 1
or 2 kB page were sufficient. With limited number of errors to be corrected, the
correction time was not an issue and the read bandwidth and latency were mar-
ginally affected by the use of ECCs [23].

Figure 7.2a shows the typical blocks for ECC engines based on BCH codes: a
high-speed encoder is connected to each one of the N. SSD channels (that is a bus
used to communicate with an array of N; memory dies), whereas a reconfigurable
parallel decoder (i.e. a multi-engine decoder) is shared among the channels [24].
The structure of the decoder is represented in Fig. 7.2b, where the Syndrome block
determines whether an error is present, the Berlekamp-Massey block calculates the
coefficients of the error locator polynomial, and the Chien machine locate the errors
[25].

In multilevel architectures the number of errors to be corrected increases by an
order of magnitude for any further bit stored in a single cell. Although ECC engines
based on BCH codes are still used thanks to their simple hardware implementation,
high numbers of bits to be corrected may affect significantly on the overall read
time. Consequently, the correction time may become the bottleneck of the entire
read procedure. In addition, because of the high number of errors, the probability of
having uncorrectable pages (that are pages read with a number of wrong bits higher
than the ECC correction capabilities) increases [26]. When a page is marked as
uncorrectable, the read operation fails and the page content is irremediably lost. The
adoption of parallel decoding architectures can reduce the bandwidth and latency
degradation (at the expenses, however, of both area occupation and power con-
sumption) but it cannot solve the problems caused by uncorrectable pages.

To deal with the presence of uncorrectable pages, two alternatives exist: (i) keep
BCH codes and their ease of implementation while defining sophisticated read
algorithms in order to reduce the number of errors [27]; (ii) develop ECC solutions
based on different coding concepts, like Low Density Parity Check (LDPC) codes
[28]. In the former case, the basic idea in the presence of uncorrectable pages
consists in re-reading the page with different read reference voltages, in the attempt

7 Memory Driven Design Methodologies for Optimal SSD Performance 185

CHAN #N,

T — DT — T

Fig. 7.2 a Schematic representation of an ECC architecture based on BCH codes. A high-speed
encoder is connected to each SSD channel whereas a a reconfigurable parallel decoder is shared
among the Nc channels. b Schematic representation of the BCH decoder. Reproduced with per-
mission from L. Zuolo, C. Zambelli, R. Micheloni and P. Olivo, “Solid-State Drives: Memory
Driven Design Methodologies for Optimal Performance”, in Proceedings of the IEEE, vol. 105,
no. 9, pp. 1589-1608, Sept 2017. © 2017 IEEE

of tracking the shift of the threshold voltage distributions. Such a solution led to the
development of different read algorithms, generally defined as read retry [26]: the
ECC engine automatically manages them and they call for (at least) a page
re-reading with the unavoidable degradation of the read bandwidth. The latter
solution adopts LDPC codes that, differently from BCH codes, present a much
higher correction capability [28]. Figure 7.3 shows the typical blocks for ECC
engines based on LDPC codes: the decoding engine is composed by two main
blocks: the Hard Decoding (HD) and the Soft Decoding (SD).

From an operative point of view, LDPC decoding works as follows. Cells are
read as ‘1’ or ‘0’ depending on their threshold voltage with respect to a fixed
reference level. If during the ECC decoding phase the page is evaluated as un-
correctable, the LDPC decoding algorithm can be retried with the SD. To
accomplish this second step, more information about the actual position of the
NAND Flash threshold voltage distributions must be collected. The algorithm steps

186 L. Zuolo et al.

LDPC decoder

'NAND #N,
___________ CHAN #1
CHAN #2 saibasicie,

CHAN #N NAND'#Ng

Hard

Fig. 7.3 Schematic representation of an ECC architecture based on LDPC codes. The decoding
path is composed by two main blocks: the hard decoding, whose architecture is similar to that
designed for BCH engines and the soft-level decoding. Reproduced with permission from L.
Zuolo, C. Zambelli, R. Micheloni and P. Olivo, “Solid-State Drives: Memory Driven Design
Methodologies for Optimal Performance”, in Proceedings of the IEEE, vol. 105, no. 9, pp. 1589-
1608, Sept 2017. © 2017 IEEE

sequentially the internal read references to lower and higher voltages thus reading
the page twice. Data are transferred to the LDPC decoder and then they are bit-wise
combined with those previously read with the first reference (i.e., called the HD
reference). This step is possible because during the whole SD process the data read
with the HD reference are stored in a dedicated buffer inside the SSD controller and
used as a reference. The algorithm continues this process until the page is correctly
read or the maximum number of soft-decoding operations is reached and the page is
marked as uncorrectable [19].

LDPC is now the state-of-the-art in SSD products. However, to evaluate the
optimal ECC engine design in terms of HD and SD implementation, the knowledge
of the actual memory RBER is mandatory. With this respect, it is usual to leverage a
worst-case design methodology where the correction strength figure of the HD is
compared with the maximum percentage of uncorrectable pages measured at the
end of the memory’s lifetime. Figure 7.4 shows this process when a LDPC able to
correct up to 100 bits in a 4320 Bytes codeword is considered for a TLC NAND
Flash memory manufactured in a planar 1X technology node. Point A marks the
maximum percentage of uncorrectable pages measured at the end of the memory’s
lifetime. As it can be seen, in this case switching from the HD to a one bit SD is
sufficient to correct all the errors (point B). Other correction strategies like a two
bits SD, become an over-design.

The above considerations are mandatory when it is required to design the
optimum LDPC architecture (both in terms of correction strength and correction

7 Memory Driven Design Methodologies for Optimal SSD Performance 187

e+ D -
=8 SD 1 Bit

100
90
50
70
60
50
40
k1]
20
10

o
10’

Uncorrectable Pages [%]

RBER

Fig. 7.4 Correction strength of both HD and SD when a LDPC able to correct up to 100 Bits in a
4320 Bytes codeword is considered for a 128-Gb TLC NAND Flash memory manufactured in a
planar 1X technology node. Points A and B represent the maximum measured percentage of
uncorrectable pages at the end of the memory lifetime, when HD and SD are used, respectively.
Reproduced with permission from L. Zuolo, C. Zambelli, R. Micheloni and P. Olivo, “Solid-State
Drives: Memory Driven Design Methodologies for Optimal Performance”, in Proceedings of the
IEEE, vol. 105, no. 9, pp. 1589-1608, Sept 2017. © 2017 IEEE

bandwidth) for the target SSD. In fact, since the SD directly affects the drive’s
bandwidth, once the correction strategy is defined (a one bit SD rather than a two
bits SD) and the decoder’s bandwidth is fixed, it is important to find the right
balance between the number of HD and SD decoders. Figure 7.5 shows the read
bandwidth obtained, for different HD implementations, in a 2 TB SSD featuring 16
channels each one connected to eight 128-Gbits TLC NAND Flash dies manu-
factured in a planar 1X technology node, as a function of the number of P/E cycles.
Since each hard decoder in this example has a bandwidth of 1.2 GB/s and the SSD
host interface is a PCI-Express GEN3x4 [21] with a maximum bandwidth of 4 GB/
s, it is clear that a coarse design choice (that neglects the actual RBER evolution)
requires 4 HD decoders. To this extent, any higher number would result in a cost
ineffective overdesign.

However, since RBER increases with the number of P/E cycles, the percentage
of uncorrectable pages detected by the HD increases as well. Consequently, SD is
triggered and the read bandwidth rapidly decreases when the memory rated en-
durance is approached. To guarantee the expected performance and to extend the
SSD working window, it is necessary to increase the number of HD decoders (see
Fig. 7.5) as well as that of SD decoders. Figure 7.6a shows the calculated read
bandwidth degradation with respect to the beginning of life) by implementing 8 HD
decoders and different numbers of SD decoders. As it can be seen, to reduce the
read bandwidth degradation at twice the rated endurance, 2 SD decoders can be
used, while any larger number of decoders would result in an overdesign.
Figure 7.6b shows the results obtained by using 16 HD decoders and different

188 L. Zuolo et al.

Read Bandwidth (KIOPS)

0 600 1200 1800
P/E Cycles

Fig. 7.5 Read bandwidth evolution as a function of the number of P/E cycles sustained by NAND
Flash in a 2 TB SSD featuring a PCI-Express GEN3x4 host interface. The ECC engine is
composed by a variable pool of HD decoders and a single SD decoder. The NAND Flash rated
endurance is 900 P/E cycles. Reproduced with permission from L. Zuolo, C. Zambelli, R.
Micheloni and P. Olivo, “Solid-State Drives: Memory Driven Design Methodologies for Optimal
Performance”, in Proceedings of the IEEE, vol. 105, no. 9, pp. 1589-1608, Sept 2017. © 2017
IEEE

(@00 (b)100 —
_) D=1
= 4 = 80 sbh= -
g % 2 D SD-8
z BN 2
- 7 = B i "
§ 60 2 4 2 60 2 -
= 2 5 A:
= % = A
s 40 Z y I A i
= 7 = A E
= z = ’ =
a 7 = 71
=2 72 = A E
= 20 7 { = 20} 1 E .
5 2 b 7
& 4 = %
& % x Z
3 A B 0 Eﬂ A b
° 1200 1800 1200 1800
P/E Cycles P/E Cycles

Fig. 7.6 Read bandwidth degradation with respect to the beginning of life at different endurance
considering different SD levels. 8 and 16 HD decoders have been considered in (a) and (b),
respectively. Reproduced with permission from L. Zuolo, C. Zambelli, R. Micheloni and P. Olivo,
“Solid-State Drives: Memory Driven Design Methodologies for Optimal Performance”, in Pro-
ceedings of the IEEE, vol. 105, no. 9, pp. 1589-1608, Sept 2017. © 2017 IEEE

numbers of SD decoders, showing a significant performance improvement thanks to
a much higher hardware cost. From a designer point of view, an accurate trade-off
evaluation between performance (i.e. read bandwidth reduction) and hardware cost
must be based on the actual knowledge of the memory RBER evolution.

7 Memory Driven Design Methodologies for Optimal SSD Performance 189

7.3 SSD Controller Design

The main block diagram of an SSD controller is shown in Fig. 7.7. Once the SSD’s
specifications have been fixed, and hence the maximum device bandwidth has been
defined, the SSD controller design follows a simple rule of thumb to calculate N,
and N, needed to meet the requirements. To calculate the actual controller band-
width B, it is sufficient to sum the bandwidth contributions B, of each channel:

N
Bcont = Z Bch,i

i=1

The maximum channel bandwidth B,,,,; is obtained under the assumption that all
the memory dies connected to channel i are addressed at the same time. By defining
B, as the bandwidth of each memory die, the theoretical controller bandwidth is
given by:

cont — ch,i —

th Ne max __ Ne .
B > B Y Ng.iBa
i=1 i=1

Previous equation represents, however, the theoretical condition under the
hypothesis that all single dies can communicate simultaneously with the controller

K CPU SSE)_(_lontro!Ier“"l

System Interconnect

H 1

H 1

i i

H]

I 1

I 1

I 1

I 1

I 1

1 1

! controller]

1]

[= | ' nanp NAND NAND

: (- : * Ch.1 = | Flasha rh;l-z n-;-m

ol i 0

il 2l i i

€11 o | VS 1 NAND NAND

|3 : : Ch.2 = g 1| Flash1 Flash2 Flash N,

A 5t g

| = 1 2 |1 e

il 8P Psin w |

0S| LK SR T NAND NAND

i ! = ! = n.:-: Flash2 Flash i,

I 18 = *—{ 1 d

I 1 1 1

[H ! ! nanp NAND

i ils chn, - { s | || ||
1 I -

ozt [S A

Fig. 7.7 Schematic representation of the SSD controller, considering N, channels and N, memory
dies connected to each channel. Reproduced with permission from L. Zuolo, C. Zambelli, R.
Micheloni and P. Olivo, “Solid-State Drives: Memory Driven Design Methodologies for Optimal
Performance”, in Proceedings of the IEEE, vol. 105, no. 9, pp. 1589-1608, Sept 2017. © 2017
IEEE

190 L. Zuolo et al.

and, therefore, it represents the maximum achievable value. Unfortunately, for
several reasons (e.g., access request to the same die, die’s response time slowed
down by a read retry operation, die busy for a program operation whose latency is
much higher with respect to read latency, etc.), the probability that all dies can
communicate simultaneously with the controller is generally <1. Taking into
account that a number n of dies in a channel cannot serve new requests since they
are processing other commands, the actual controller bandwidth is given by:

N,
Beow= Y. (Ngi—n;)Ba <B"

= Zcont
i=1

The above equation calculates the controller bandwidth in a fresh condition (i.e.,
at the beginning of the drive’s lifetime). However, as previously described in the
former sections of this chapter, the actual performance of the SSD is strongly
affected by the reliability phenomena associated with the storage layer. Therefore,
to take into account these effects, the equation can be modified as follows:

Beoni(PE, T, RD, WAF) =

l

[Ny —ni(PE,T,RD, WAF)|B; < B"

Ne

/ - cont
where PE, T, RD and WAF are the current Program/Erase cycle number of the drive,
the working Temperature, the Read Disturb level of the memories, and the Write
Amplification Factor, respectively. The WAF factor is defined as the ratio between
the data written to the NAND Flash and the data written by the host. Generally, is a
number greater than 1. It has been accurately described in [29] and it depends on
several factors ascribed to the FTL implementation including Wear Leveling,
Garbage Collection, and Bad Block management algorithms. Along with WAF, P/
E, T, and RD introduce hard-to-model effects that complicate the description of the
controller’s bandwidth in a closed form. Therefore, to help SSD designers to cal-
culate the actual performance and latency of a target SSD over time and use, the
adoption of sophisticated simulation tools like SSDExplorer is mandatory [22].
Overall, what ultimately stands out from both previous equations is that, to
approach as much as possible the ideal controller bandwidth, it is necessary to: (i)
reduce the probability that a command addresses a busy die (i.e., a die already
scheduled by another operation); (ii) maximize the number of dies that can process
a new command.

This can be accomplished: (i) by increasing the number N, of dies connected to
each channel, which however impacts on the SSD cost; (ii) with an effective
command management performed by the FTL; (iii) by using a DRAM as a data
buffer.

7 Memory Driven Design Methodologies for Optimal SSD Performance 191

7.3.1 Efficient Command Management

In nowadays SSDs, to efficiently manage the commands issued by the host, it is
possible to leverage the Command Queue (CQ) concept [30]. This resource is
usually implemented as a software routine shared between the host interface, which
pushes host commands inside the CQ, and the SSD controller that manages the
requested operations and pulls out the commands from the CQ.

Figure 7.8 shows the queuing hierarchy usually implemented in traditional SSD
controllers [31]. Besides the external host CQ, it is common to have a dedicated
small command queue for each NAND Flash memory die: the Target Command
Queue (TCQ). Thanks to the TCQ, the host can continue to issue commands even
when it tries to read or program a die that is in the busy state. In fact, when this
condition is verified, the command is simply queued in the TCQ and the SSD
controller can continue to fetch other commands from the host CQ. This technique
allows maximizing B, since TCQs keep always-busy all the NAND Flash dies. It
is thus clear that the main parameters controlling B, are the parallelism (i.e., N,
and N,) and the queue depth (QD), that is the number of commands that the host
interface can store.

The attempt of approaching the ideal performance in terms of bandwidth by
increasing QD presents an unavoidable disadvantage: the increase of the service
time (i.e. the time elapsed between the issue and the execution of a command) and,

Host CQ

!

TCQ #N, <
i

1 P ——

i
TCQ#2 <

TCQ #1 4—1
v

Channe' 3 NAND NAND NAND
controller #i ® flash ™ flash ™™= =% flash
die #N, | die #N, die #N,

PP ——

Fig. 7.8 Queueing hierarchy implemented inside the SSD controller for a generic channel.
Reproduced with permission from L. Zuolo, C. Zambelli, R. Micheloni and P. Olivo, “Solid-State
Drives: Memory Driven Design Methodologies for Optimal Performance”, in Proceedings of the
IEEE, vol. 105, no. 9, pp. 1589-1608, Sept 2017. © 2017 IEEE

192 L. Zuolo et al.

consequently, of the SSD latency. Therefore, QD has a severe impact on QoS, that
defines the maximum acceptable latency of the drive and it is calculated as the
99.99th percentile of the SSD latencies cumulative distribution. To this extent, QoS
is used to quantify how the SSD behaves in the worst-case conditions [9]. By using
this metric, it is possible to understand if the target SSD architecture is suitable for a
specific application, such as real-time and safety-critical systems [32]. Figure 7.9
shows an example of how B,,,,; and QoS scale with the host QD. As expected, both
B, and QoS increase with QD. This behavior, however, is in contrast with the
requirements of high performance SSDs, which ask for achieving the target
bandwidth with the lowest QoS. In fact, state-of-the-art user applications such as
financial transactions or cloud platforms [33] are designed to work with storage
devices, which have to serve an I/O operation within a specific period, which is
usually upper-bounded, by the QoS requirement.

To deal with this requirement it is possible to use the Head-of-Line
(HoL) blocking concept, whose effect is to limit the number of outstanding com-
mands inside the SSD, thus partially solving the latency issue [34]. The HoL
blocking is managed by the controller firmware implementing a FIFO stack whose
dimensions can be dynamically defined. When the number of commands queued in
a TCQ exceeds a predefined threshold, it is possible to trigger a blocking state
inside the SSD controller that stops the submission of a new command from the
host CQ. In such a way, depending on the HoL threshold value, it is possible to
avoid long command queues inside the TCQs and, hence, the device QoS can be
limited within a defined window.

The fine-grained QoS calibration made available by the HoL blocking, however,
does not come free. If, besides B,,,; and QoS, the average SSD latency is taken into

10000 T T T T T T T 10000

B Read Bandwidth
Quality of Service

g

W

1000 1000

sl

"

100

2 ssual

10

Read Bandwidth [KIOPS]
2
Quality of Service [us]

ALLLLLLLLLLL LR LR AL ALY LY

2 sanal

ALALLLLLLLR LRV LR LW

7
7
7
/
’
/
Y
2

d 4! gl
1] 16 3 [
Queue Depth

Fig. 7.9 B.,,; and QoS as a function of the host Queue Depth. The full line and the dashed-dotted
line represent the target B,,,, and the target QoS, respectively. Simulations refer to an SSD
featuring N. = 8 and N; = 8 TLC NAND Flash manufactured in a planar 1X technology node.
Average read time is 86 ps and workload is 100% 4 kB random read. Reproduced with permission
from L. Zuolo, C. Zambelli, R. Micheloni and P. Olivo, “Solid-State Drives: Memory Driven
Design Methodologies for Optimal Performance”, in Proceedings of the IEEE, vol. 105, no. 9,
pp- 1589-1608, Sept 2017. © 2017 IEEE

7 Memory Driven Design Methodologies for Optimal SSD Performance 193

1000 T T T T T T T
o B NoHoL
w HoL
= so0f .
By
Y
[=1
&
® 600 .
-
=
g
& 400 A 1
@ rA
= A
@ A
- . A
3 oy A VA VR
) _|a|II| /
1 | I L 1 |
1 5 16 32 64 128

Queue Depth

Fig. 7.10 Average SSD latency evaluated as a function of the host queue depth, for the same case
of Fig. 7.9, with and without the HoL blocking. Reproduced with permission from L. Zuolo, C.
Zambelli, R. Micheloni and P. Olivo, “Solid-State Drives: Memory Driven Design Methodologies
for Optimal Performance”, in Proceedings of the IEEE, vol. 105, no. 9, pp. 1589-1608, Sept 2017.
© 2017 IEEE

account, it is clear that the HoL blocking effect has to be wisely used (see
Fig. 7.10). When the HoL blocking is triggered it trades the QoS reduction with an
increase of the average latency. Moreover, this behavior becomes more pronounced
when high QDs are used (i.e., when a higher QoS reduction is required).

7.3.2 DRAM Data Caching

To increase the controller bandwidth and to approach as much as possible the
theoretical bandwidth, it is possible to use a DRAM as data cache buffer [35]. As
shown in Fig. 7.7, this block is located between the host interface and the channel
controller. Standard data caching algorithms can be adopted, such as Least Recently
Used (LRU) or Least Frequently Used (LFU) [36], to decrease the number of
accesses to the Flash memories. Since data are addressed in a much faster memory,
the access time can be reduced with respect to a standard NAND Flash read/
program operation. In addition, since part of the data to be read/written are stored in
the DRAM buffer, the number of accesses to the NAND Flash dies are reduced,
thus limiting the number of busy dies.

These effects positively affect the SSD bandwidth and the average latency.
Moreover, the reduction of the number of accesses to the NAND Flash dies increases
their reliability. This point is strictly related to the smaller number of write operations,
thus limiting endurance effects and, possibly, leading to a reduced read disturb issue.

Table 7.1 shows the cache-hit probability, the read bandwidth, the average
latency, and the QoS calculated for the “no cache” case (i.e., a case where the

194 L. Zuolo et al.

Table 7.1 NAND/DRAM size ratio and SSD performance for a configuration where LBA space
is uniformly distributed

NAND/DRAM size ratio No cache 256 50 15
Cache hit (%) 0 0.6 2.7 8.2
Read bandwidth (kIOPS) 301 312 318 337
Average Latency (us) 206 204 200 189
QoS (ms) 1.07 1.19 1.13 1.03

DRAM data cache buffer is not present, assumed as reference) and for different
ratios between the total NAND and the DRAM sizes. The number of cache hits (i.e.
the percentage of memory accesses to the DRAM buffer with respect to the total
number of data accesses) depends on the probability of addressing any single
non-volatile memory page. All data have been collected considering a uniformly
distributed Logical Block Address (LBA) space of the SSD and a LRU eviction
policy is used as caching algorithm.

As it can be seen, the performance metrics of the simulated drive are not sig-
nificantly influenced by the DRAM size. This is because the LBA space is uni-
formly distributed across all the SSD pages, therefore all data locations have the
same probability to be addressed.

A uniformly distributed LBA space, however, represents the worst-case condi-
tion for the assessment of the benefits materialized by a caching algorithm. In
general, real user workloads tend to follow different LBA distributions, which are
more similar to a Gaussian or a Lognormal with a mode around a specific address.
Consequently, if the I/O address profile of the target application is known, it is
possible to optimize the DRAM cache size depending on the statistical parameters
presented by the LBA profile itself.

Suppose to have Gaussian distributed workloads spanning across the whole
LBA space of the drive. By considering a standard deviation around the average of
the total SSD LBA address space, it is possible to design the proper DRAM size
ratio in two different ways: (i) reducing the DRAM capacity while keeping the same
cache hit probability and drive performance; (ii) increasing the DRAM capacity
maximizing the number of cache hits and, therefore, boosting the drive
performance.

Table 7.2 shows, for three different standard deviation values, the NAND/
DRAM size ratio, the cache hit probability, the read bandwidth, the average latency,
and the QoS of the target SSD architecture. As it can be seen, the performance
metrics are almost similar with a significant reduction of the DRAM size for the
tightest workload distribution.

Table 7.3 shows, for the (b) case, the NAND/DRAM size ratio, the cache hit
probability, and the performance metrics of the target SSD architecture. With
respect to the (b) case of Table 7.2, the NAND/DRAM size ratio has been reduced
from 50 to 15. As it can be seen, it is possible to almost triplicate the cache-hit
probability thus increasing the read bandwidth while reducing the average latency.
It is worth to highlight that this performance improvement marginally influences the

7 Memory Driven Design Methodologies for Optimal SSD Performance 195

Table 7.2 IjiASI‘SIg/DRAM Standard deviation 2% 10% 30%

size ratio an . .

performance as a function of NAND/I?RAM size ratio 256 50 15

the LBA space distributions Cache hit (%) 15.3 15.3 15.3

(assumed Gaussian) Read bandwidth (kIOPS) 367 364 365
Average Latency (us) 173 175 175
QoS (ms) 0.98 1.27 1.29

Table 7.3 IEASIEB/DRAM NAND/DRAM size ratio 50 15

size ratio an ;

performance for a Cache hit (%.) 15.3 42.1

configuration where the LBA ~ Read bandwidth (kIOPS) 364 536

space is that of case (b) in Average Latency (us) 175 118

Table 7.2 QoS (ms) 1.27 1.19

QoS, since it is related to the worst case (usually a read operation performed on a
NAND Flash die). Summing up, the use of a DRAM cache offers advantages in
terms of bandwidth, latency, and reliability. The design of an application specific
SSD, in addition, can be optimized if the LBA space distribution is known, in order
to reduce the DRAM size. Therefore, the drive design must be done concurrently
with the application for which it represents the storage element.

7.4 Criteria for Optimal Host Interface Selection

The host interface represents the link between the SSD controller and the host
where the application is running. Differently from the SSD controller that is fully
customized, the physical structure of the communication interface follows con-
solidated standards. Now, the used interfaces are SATA [8] (mainly for consumer
applications), SAS [20], and PCIe [21] (for enterprise environments).

The correct choice of the host interface represents a crucial aspect along the
drive design phase since it allows guaranteeing that the SSD controller is used in
optimal conditions. In a traditional design approach for general purpose SSDs,
where both controller and host interface are chosen separately without any
knowledge of the final application, the constraint of selecting a host interface able to
guarantee a bandwidth Bj; > B,,,; (Where By; is the maximum bandwidth of the
host interface) at the lowest cost represents the standard approach, whereas a host
interface whose Bj; < B.,,; would act as a bottleneck limiting the SSD perfor-
mance. A detailed analysis of the impact of the host interface on the SSD’s per-
formance has been presented in [22].

If the application to be run on the host is known, a different approach can be
adopted. It must be taken into account that the design of a fully customized SSD
controller is much more expensive with respect to that of the host interface, which

196 L. Zuolo et al.

follows well-defined standards. By considering this economic aspect, it is conve-
nient to design an SSD controller with top performance (rather than a family of
controllers with different quality metrics) and to operate at the host interface level to
satisfy the application requirements. As an example, if the controller has been
designed to sustain a certain theoretical bandwidth and the application requires a
lower bandwidth B,,,, an interface satisfying the condition

Bapp < Bhi < Bth

cont

can be selected, confirming that the ideal host interface must be chosen on the basis
of the application and, therefore, on the drive use. In such a way, with a single SSD
controller design, different application requirements can be satisfied by using dif-
ferent host interfaces. Such methodology allows reducing the controller bandwidth
to match that of the application and lowering the design cost of the SSD controller.
In addition, it allows also reducing the drive power consumption since, operating at
a lower throughput, a lower number of NAND Flash dies are activated
simultaneously.

An evolution of this design methodology, envisaging a single controller asso-
ciated to different interfaces as a function of the application, considers a unique
combination of SSD controller and host interface. In this case, each block is able to
provide the maximum theoretical performance. The effective performance, how-
ever, can be tuned dynamically at software level by acting on the SSD’s firmware
and especially on the command queue depths, which can be modified during the
normal execution. An example of this methodology can be found in [37, 38] where
the SSD controller is able to automatically limit the performance of the drive
depending on the allowed power consumption or on the thermal dissipation level.
Such an approach that calls for the design of a single block embedding the SSD
controller and the host interface, however implies a higher design cost for the
development of a controller whose hardware resources can be programmed by the
user.

7.5 Future Applications Opened by Hardware-Software
Co-design for High-performance SSDs

In the last 40 years, all software applications and Operating Systems (OS), which
make use of persistent storage architectures, have been designed to work with
HDDs [1]. However, SSDs are physically and architecturally different from HDDs
so that they need to execute the FTL algorithm to translate host commands [3-5].
The main role of FTL is to mimic the behavior of a traditional HDD and to enable
the usage of SSDs in any electronic system without acting on the software stack.
Besides this translation operation, SSD controllers have to run garbage collection,
command-scheduling algorithms, data placement schemes, wear leveling, and

7 Memory Driven Design Methodologies for Optimal SSD Performance 197

errors correction. All these routines, even if on the one hand allow a “plug and
play” connection of the SSD with traditional hardware and software, on the other
hand they limit actual SSD performance. The main drawback of FTL is the Garbage
Collection (GC) that is performed when valid pages belonging to a block to be
erased are read and written in a different block. Such an operation, that is time and
power consuming, reduces both drive bandwidth and NAND Flash reliability [29].
In the enterprise market and hyper scale data centers, performance and reliability
losses induced by GC are not tolerable.

To deal with the above-mentioned challenges, software developers in data
centers have shown, in the past few years, a growing interest for Software-Defined
Flash (SDF) [39]. In this kind of environments, the driving forces in the design of
computational nodes are reliability and high performance: therefore, even the I/O
management has to be re-architected. SDF leverages a new SSD design approach
called Host-Based FTL (HB-FTL) which allows the host system to: (i) optimize the
host payload, i.e., the amount of data read/written with a single command and hence
relieve the SSD from any host command translation or manipulation; (ii) remove
the GC related to FTL execution; (iii) execute the FTL directly on top of its
computational node (Open-Channel architecture [40]).

7.5.1 HB-FTL

HB-FTL considers the migration of all FTL routines from the SSD to a more
powerful processor located outside the SSD. To this purpose, the processor must be
able to issue commands to be interpreted directly by the NAND Flash dies, such as
read, program and, especially, erase [41]. In this context, a new protocol called
Light NVME (LNVME) [42] allows a native communication between NAND
memories and the external processor. Thanks to this protocol, the FTL can be
implemented and executed by the external processor such as the host where the
application is running.

A first advantage provided by this approach concerns the optimization of the
host payload. With this respect, since ECC coding/decoding operate on an entire
memory page, read/write operations on a NAND Flash page must follow the
constrains imposed by the ECC itself. As an example, consider a NAND Flash
memory whose page size is 4 kB and a host reading/writing data on a 512 B basis.

Write operations are performed on the NAND memories only when the host has
transferred eight 512 B data chunks. However, the host considers as accomplished a
write operation when the SSD has acknowledged the data acquisition. If a power
fail occurs between the data load and the effective storage in the nonvolatile layer,
data are considered as lost. To avoid this occurrence, dedicated solutions such as
supercapacitors [43] or the introduction of emerging non-volatile technologies, such
as MRAM, replacing DRAM buffers can be adopted [44]. On the contrary, a
NAND memory page is read every time the host requires even a single chunk.
Therefore, even if only 512 B are requested by the host, the entire 4 kB page is read

198 L. Zuolo et al.

and decoded by the ECC. It is clear that, in this case, the SSD is operating at 1/8 of
its theoretical read bandwidth.

To improve the SSD performance and to better exploit its internal resources, it is
convenient to co-design the application payload with the ECC engine. The optimal
solution is achieved by data chunks that are an integer multiple of the actual ECC
codeword.

A more powerful approach takes into account that in HB-FTL-based SDF both
the application and the FTL are processed in the same software environment [45].
Therefore, they can be co-designed in order to optimize the access pattern to the
nonvolatile memory. As an example, the application can be designed to perform
only sequential accesses to the storage medium, respecting the physical
in-order-program of NAND Flash memories. By following this approach, the actual
access to the NAND Flash dies is block-based rather than page-based which is
typical of random write accesses. By moving the write granularity from pages to
blocks, GC is no longer necessary. In addition, by serializing the write traffic to the
NAND Flash memories, the write bandwidth is maximized.

7.5.2 The Open-Channel Architecture

The Open-Channel architecture [40] allows implementing the management of
HB-FTL-based SDF.

Figure 7.11 sketches a template architecture that can be modeled by
Open-Channel. Thanks to the PCI-Express interconnection and the LNVME pro-
tocol, a bunch of NAND Flash cards can establish a peer-to-peer communication
with the host processor without requesting any specific management to the SSD
controller [46]. In this architecture, “NAND Flash cards” are not standard SSDs
because, besides a simple I/O processor, a channel controller for NAND addressing
and an ECC engine, they do not embody any complex processor, DRAM or even
FTL. Consequently, data read/write from/to these cards have to be considered as the
raw output/input of NAND memories without any further manipulation.

Figure 7.12 shows the effectiveness of HB-FTL with respect to a standard FTL
in increasing the SSD performance. To this purpose the HGST SN150
Ultrastar SSD [47], has been compared with a simulated drive featuring a HB-FTL
approach and the same SSD configuration.

The comparison has been performed for different mixed workloads, from a 100%
4 kB random read, 0% random write to a 0% random read, 100% 4kB random write.
All results show that in a standard FTL-based SSD performance decreases with the
write percentage, whereas in a HB-FTL-based SSD performance is mostly inde-
pendent from the write percentage. This result is due to the absence of the GC
algorithm that strongly affects standard FTL-based SSDs.

Another architecture that can fully exploit the Open-Channel concept and the
LNVME protocol relies on the usage of a dedicated accelerator in the form of a
Multi-Purpose Processing Array (MPPA) [48, 49], as shown in Fig. 7.13. This

7 Memory Driven Design Methodologies for Optimal SSD Performance 199

0

_..-..--u-uuun-cu-un.,
TessssssssssEEEsEEnEnEnnnnn

FTL module #2

n

Fig. 7.11 Reference architecture modeled by the Open-Channel storage layer when the host
processor is used for HB-FTL execution. More than one NAND Flash card are connected to the
PCI-Express bus. The host processor executes different FTL modules. Reproduced with permis-
sion from L. Zuolo, C. Zambelli, R. Micheloni and P. Olivo, “Solid-State Drives: Memory Driven
Design Methodologies for Optimal Performance”, in Proceedings of the IEEE, vol. 105, no. 9,
pp. 1589-1608, Sept 2017. © 2017 IEEE

solution allows the reduction of the host /O command submission/completion
timings.

These delays are strictly related to the host’s processing capabilities, they rep-
resent the time spent by the host to execute the LNVME driver, and the OS file
system for each submitted/completed I/O. It has been demonstrated that the per-
formance of nowadays SSDs is heavily affected by the I/O submission/completions
timings [50]. Moreover, in most recent architectures like the one based on the 3D
Xpoint technology [51], these delays can even represent the actual bottleneck of the
whole storage layer, whose IOPS are limited by the host system itself. Therefore,

reducing these timings is the key for designing ultra-high performance storage
systems.

200 L. Zuolo et al.

Fig. 7.12 Throughput (a)3s0 T T T T T T
(expressed in kIOPS) of B HGST-SN150(FTL)
HGST SN150 Ultrastar SSD 3001 @ SSDExplorer (HB-FTL) | 7
architecture compared to that Z Y
of a simulated HB-FTL-based z 2501 Y)
drive with the same] ‘ 7 v
configuration: (top) read = 2001 ‘ / v 7 7 4
intensive and (bottom) write g, $; ; ; ; ;
intensive workloads. A queue £ 150 Y 2 j ; f 2 7
depth of 32 commands is 2 Y / v 7 Y /
used. Simulations have been é 100 v ’ v v 5 / 1
performed with SSDExplorer ; Y / v 7 4 /
[22]. Reproduced with sor Y ; ; ’ ; / T
permission from L. Zuolo, C. o ‘ 4 5 /4 ’ /
Zambelli, R. Micheloni and 100-0 90-10 80-20 70-30 60-40 S50-50
P. Olivo, “Solid-State Drives: Read Intensive Workload [Read - Write %]
Memory Driven Design
Methodologies for Optimal (b)3so . : . :] :
Performance”, in Proceedings W HGST-SNISO(FTL)
of the IEEE, vol. 105, no. 9, 300 SSDExplorer (HB-FTL) |
pp. 1589-1608, Sept 2017. © 7
2017 IEEE é 250 g
i 2m— —
=
a
£, 150 .
-]
Z 1000 1
=
S0 .
0 1 1 | 1

1 1
50-50 40-60 30-70 20-80 10-90 0-100
Write Intensive Workload |Read - Write %]

A possible solution to this problem is to switch the LNVME protocol from an
interrupt-driven I/O completion mechanism to a polling-driven approach. In stan-
dard SSDs, when an I/O is completed, the Flash controller sends an interrupt to the
host notifying that the transaction is ready to be transferred/processed. After that,
the host can submit another command to the drive because the submission of an I/O
is driven by a completion event. In theory, this approach requires that the host take
action only when I/Os are submitted/completed, but in practice, it introduces long
processing delays because of the OS interrupt service routines [50]. Polling the I/O
completion events, on the contrary, can minimize the above-mentioned processing
timings. It requires, however, that the host system monitors continuously the 1/Os,
thus wasting part of its processing capabilities. In light of all these considerations,
moving the whole submission/completion process to a dedicated MPPA represents
a good solution, which can offload the host system and, at the same time, exploit the
full performance of the NAND Flash cards.

7 Memory Driven Design Methodologies for Optimal SSD Performance 201

=
o
“
“
@
8
s
a
i
-]
x

Fig. 7.13 Reference architecture modeled by the open-channel storage layer when a MPPA is
used for HB-FTL execution. Besides the NAND Flash cards, the PCI-Express bus is connected to
a MPPA accelerator executing different FTL modules. Reproduced with permission from L. Zuolo,
C. Zambelli, R. Micheloni and P. Olivo, “Solid-State Drives: Memory Driven Design Method-
ologies for Optimal Performance”, in Proceedings of the IEEE, vol. 105, no. 9, pp. 1589-1608,
Sept 2017. © 2017 IEEE

These considerations push towards a new SSD design methodology: a complete
virtualization of the storage backbone. In fact, both HB-FTL and Open-Channel
allow to virtually separating the internal resources of the SSD (like channels and
targets), providing a clear and straight path to OS data partitioning.

References

1. G. Wong, SSD Market Overview, in Inside Solid State Drives (SSDs), ed. by R. Micheloni, A.
Marelli, and K. Eshghi (Springer, 2012), pp. 1-17

2. Semiconductor Industry Association, International technology roadmap for semiconductors
(2015), http://www.semiconductors.org/main/2015_international_technology_roadmap_for_
semiconductors_itrs/

3. D. Liu, Y. Wang, Z. Qin, Z. Shao, Y. Guan, A space reuse strategy for flash translation layers
in SLC NAND flash memory storage systems. IEEE Trans. VLSI Syst. 20(6), 1094-1107
(2012)

4. T. Wang, D. Liu, Y. Wang, Z. Shao, FTL2: a hybrid flash translation layer with logging for
write reduction in flash memory. ACM SIGPLAN Not. 48(5), 91-100 (2013)

5. Y.H. Chang, P.C. Huang, P.H. Hsu, L.J. Lee, T.W. Kuo, D. Du, Reliability enhancement of
flash-memory storage systems: an efficient version-based design. IEEE Trans. Comput. 62
(12), 2503-2515 (2013)

6. JEDEC Org., JESD 22-A 117 document, Oct 2011

http://www.semiconductors.org/main/2015_international_technology_roadmap_for_semiconductors_itrs/
http://www.semiconductors.org/main/2015_international_technology_roadmap_for_semiconductors_itrs/

202

7.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

L. Zuolo et al.

R. Micheloni, A. Marelli, R. Ravasio, Basic coding theory, in Error Correction Codes for
Non-Volatile Memories, ed. by R. Micheloni, A. Marelli, R. Ravasio (Springer, 2008), pp. 1—-
33

. Serial ATA International Organization, SATA Revision 3.0 Specifications, www.sata-io.org
. Intel Inc., Intel Solid-State Drive DC S3500 Series Quality of Service (2013), p. 9, http://

www.intel.com/content/www/us/en/solid-state-drives/ssd-dc-s3500-spec.html

A. Grossi, L. Zuolo, F. Restuccia, C. Zambelli, P. Olivo, Quality-of-service implications of
enhanced program algorithms for charge-trapping NAND in future solid-state drives, IEEE
Trans. Dev. Mat. Reliab. 15(3), 363-369 (2015)

S. Aritome, NAND flash memory technologies. Wiley-IEEE Press (2016)

J.D. Lee, J.H. Choi, D. Park, K. Kim, Degradation of tunnel oxide by FN current stress and its
effects on data retention characteristics of 90 nm NAND flash memory cells, in Proceedings
International Reliability Physics Symposium, Mar 2003, pp. 497-501

N. Mielke, H. Belgal, 1. Kalastirsky, P. Kalavade, A. Kurtz, Q. Meng, N. Righos, J. Wu,
Flash EEPROM threshold instabilities due to charge trapping during program/erase cycling,
IEEE Trans. Dev. Mat. Reliab. 4(3), 335-344 (2004)

N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares, F. Trivedi, E. Goodness,
L.R. Nevill, Bit error rate in NAND flash memories, in Proceedings International Reliability
Physics Symposium, Apr 2008, pp. 9-19

K. Fukuda, Y. Watanabe, E. Makino, K. Kawakami, J. Sato, T. Takagiwa, N. Kanagawa, H.
Shiga, N. Tokiwa, Y. Shindo, T. Ogawa, T. Edahiro, M. Iwai, O. Nagao, J. Musha, T.
Minamoto, Y. Furuta, K. Yanagidaira, Y. Suzuki, D. Nakamura, Y. Hosomura, R. Tanaka, H.
Komai, M. Muramoto, G. Shikata, A. Yuminaka, K. Sakurai, M. Sakai, H. Ding, M.
Watanabe, Y. Kato, T. Miwa, A. Mak, M. Nakamichi, G. Hemink, D. Lee, M. Higashitani, B.
Murphy, B. Lei, Y. Matsunaga, K. Naruke, T. Hara, A 15 1-mm? 64-Gb 2 Bit/Cell NAND
flash memory in 24-nm CMOS technology. IEEE J. Solid State Circuit 47(1), 75-84 (2012)
K.T. Park, O. Kwon, S. Yoon, M.H. Choi, .M. Kim, B.G. Kim, M.S. Kim, Y.H. Choi, S.H.
Shin, Y. Song, J.Y. Park, J.E. Lee, C.G. Eun, H.C. Lee, HJ. Kim, J.H. Lee, J.Y. Kim, T.M.
Kweon, H.J. Yoon, T. Kim, D.K. Shim, J. Sel, J.Y. Shin, P. Kwak, J.M. Han, K.S. Kim, S.
Lee, Y.H. Lim, T.S. Jung, A 7 MB/s 64 Gb 3-Bit/Cell DDR NAND flash memory in
20 nm-node technology, in IEEE International Solid-State Circuits Conference, Feb 2011,
pp- 212-213

C. Trinh, N. Shibata, T. Nakano, M. Ogawa, J. Sato, Y. Takeyama, K. Isobe, B. Le, F.
Moogat, N. Mokhlesi, K. Kozakai, P. Hong, T. Kamei, K. Iwasa, J. Nakai, T. Shimizu, M.
Honma, S. Sakai, T. Kawaai, S. Hoshi, J. Yuh, C. Hsu, T. Tseng, J. Li, J. Hu, M. Liu, S.
Khalid, J. Chen, M. Watanabe, H. Lin, J. Yang, K. McKay, K. Nguyen, T. Pham, Y. Matsuda,
K. Nakamura, K. Kanebako, S. Yoshikawa, W. Igarashi, A. Inoue, T. Takahashi, Y. Komatsu,
C. Suzuki, K. Kanazawa, M. Higashitani, S. Lee, T. Murai, K. Nguyen, J. Lan, S. Huynh, M.
Murin, M. Shlick, M. Lasser, R. Cernea, M. Mofidi, K. Schuegraf, K. Quader, A 5.6 MB/s
64 Gb 4b/Cell NAND flash memory in 43 nm CMOS, in IEEE International Solid-State
Circuits Conference, Feb 2009, pp. 246-247

L. Zuolo, C. Zambelli, R. Micheloni, D. Bertozzi, P. Olivo, Analysis of reliability/
performance trade-off in solid state drives, in Proceedings International Reliability Physics
Symposium, June 2014, pp. 4B.3.1-4B.3.5

K. Zhao, W. Zhao, H. Sun, X. Zhang, N. Zheng, T. Zhang, LDPC-in-SSD: making advanced
error correction codes work effectively in solid state drives, in USENIX Conference on File
and Storage Technologies (2013), pp. 243-256

Seagate Technology LLC, Serial Attached SCSI (SAS) (2009), http://www.seagate.com/
staticfiles/support/disc/manuals/Interface%20manuals/10029307 1 c.pdf

PCI-SIG Ass., PCI Express Base 3.0 Specification (2013), http://www.pcisig.com/
specifications/pciexpress/base3/

L. Zuolo, C. Zambelli, R. Micheloni, M. Indaco, S. Di Carlo, P. Prinetto, D. Bertozzi,
P. Olivo, SSDExplorer: a virtual platform for performance/reliability-oriented fine-grained

http://www.sata-io.org
http://www.intel.com/content/www/us/en/solid-state-drives/ssd-dc-s3500-spec.html
http://www.intel.com/content/www/us/en/solid-state-drives/ssd-dc-s3500-spec.html
http://www.seagate.com/staticfiles/support/disc/manuals/Interface%20manuals/100293071c.pdf
http://www.seagate.com/staticfiles/support/disc/manuals/Interface%20manuals/100293071c.pdf
http://www.pcisig.com/specifications/pciexpress/base3/
http://www.pcisig.com/specifications/pciexpress/base3/

7 Memory Driven Design Methodologies for Optimal SSD Performance 203

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

42.
43.

44,

design space exploration of solid state drives. IEEE Trans. Comput. Aided Design 34(10),
1627-1638 (2015)

R. Micheloni, A. Marelli, R. Ravasio, Cyclic codes for non volatile storage, in Error
Correction Codes for Non-Volatile Memories, ed. by R. Micheloni, A. Marelli, R. Ravasio,
(Springer, 2008), pp. 167-198

Y. Lee, H. Yoo, I. Yoo, L.-C. Park, 6.4 Gb/s multi-threaded BCH encoder and decoder for
multi-channel SSD controllers, in IEEE International Solid-State Circuits Conference, Feb
2012, pp. 426-428

R. Micheloni, A. Marelli, R. Ravasio, BCH hardware implementation in NAND flash
memories, in Error Correction Codes for Non-Volatile Memories, ed. by R. Micheloni, A.
Marelli, R. Ravasio (Springer, 2008), pp. 199-247

S.M. Jeff Yang, High-efficiency SSD for reliable data storage systems, in Flash Memory
Summit (2012)

A. Cometti, L. Huang, A. Melik-Martirosian, Apparatus and method for determining a read
level of a flash memory after an inactive period of time. US Patent 8,644,099, 4 Feb 2014
X. Wang, G. Dong, L. Pan, R. Zhou, Error correction codes and signal processing in flash
memory, in Flash Memories, ed. by 1. Stievano (2011), pp. 57-82

X. Hu, E. Eleftheriou, R. Haas, I. Iliadis, R. Pletka, Write amplification analysis in flash-based
solid state drives, in Proceedings ACM International Systems and Storage Conference, May
2009, pp. 10:1-10:9

D. Rollins, Best practices for SSD performance measurement, in Micron Technology, Inc.,
Technical Marketing Brief (2011), https://www.micron.com/~/media/documents/products/
technical-marketing-brief/briefssdperformancemeasure.pdf

K. Eshghi, R. Micheloni, SSD architecture and PCI express interface, in Inside Solid State
Drives (SSDs), ed. by R. Micheloni, A. Marelli, K. Eshghi (Springer, 2012), pp. 1945
L.M. Grupp, J.D. Davis, S. Swanson, The bleak future of NAND flash memory, in
Proceedings Usenix International Conference on File and Storage Technologies (2012),
pp- 1-8

Avago Tech., Accelerating financial applications using solid state storage, (2011), http://docs.
avagotech.com/docs/12353095

M. Karol, M. Hluchyj, S. Morgan, Input versus output queueing on a space-division packet
switch. IEEE Trans. Commun. 35(12), 1347-1356 (1987)

Intel, Intel X18-M X25-M SATA solid state drive. Enterprise Server/Storage Applications,
http://cache-www.intel.com/cd/00/00/42/52/425265_425265.pdf

E.G. Coffman Jr., P.J. Denning, Operating Systems Theory. Prentice Hall Professional
Technical Reference (1973)

S. Lee, T. Kim, K. Kim, J. Kim, Lifetime management of flash-based SSDs using
recovery-aware dynamic throttling, in Proceedings Usenix International Conference on File
and Storage Technologies (2012)

R.-S. Liu, C.-L. Yang, W. Wu, Optimizing NAND flash-based SSDs via retention relaxation,
in Proceedings Usenix International Conference on File and Storage Technologies (2012)
J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, Y. Wang, SDF: software-defined flash for
web-scale internet storage systems, in Proceedings ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Mar 2014,
pp. 471484

Open-Channel Solid State Drives (2016), http://openchannelssd.readthedocs.org/en/latest/
A. Batwara, Leveraging host based flash translation layer for application acceleration, in
Flash Memory Summit, Aug 2012

Open Channel Solid State Drives NVMe Specification (2016), http://bit.ly/2gfidpQ
Samsung Electronics Co., Power loss protection (PLP)—protect your data against sudden
power loss (2014), http://www.samsung.com/semiconductor/minisite/ssd/downloads/
document/SamsungSSD845DC0O5PowerlossprotectionPLP.pdf

C. Zambelli, G. Navarro, V. Sousa, I.L. Prejbeanu, L. Perniola, Phase change and magnetic
memories for solid-state drive applications. Proc. IEEE 105(9), 1790-1811 (2017)

https://www.micron.com/%7e/media/documents/products/technical-marketing-brief/briefssdperformancemeasure.pdf
https://www.micron.com/%7e/media/documents/products/technical-marketing-brief/briefssdperformancemeasure.pdf
http://docs.avagotech.com/docs/12353095
http://docs.avagotech.com/docs/12353095
http://cache-www.intel.com/cd/00/00/42/52/425265_425265.pdf
http://openchannelssd.readthedocs.org/en/latest/
http://bit.ly/2gfidpQ
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/SamsungSSD845DC05PowerlossprotectionPLP.pdf
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/SamsungSSD845DC05PowerlossprotectionPLP.pdf

204

45.

46.

47.

48.

49.

50.

51.

L. Zuolo et al.

J. Gonzalez, M. Bjrling, S. Lee, C. Dong, Y.R. Huang, Application-driven flash translation
layers on open-channel SSDs, in Non Volatile Memory Workshop, Mar 2016, pp. 1-2

S. Bates, Accelerating data centers using NVMe and CUDA, in Flash Memory Summit, Aug
2014

HGST, Ultrastar SN150 Series NVMe PCle x4 lane half-height half-length cardsolid-state
drive product manual, https://www.hgst.com/sites/default/files/resources/USSN150_
ProdManual.pdf

Kalray, The KalRay multi-purpose-processing-array (MPPA) (2016), http://www.kalrayinc.
com/kalray/products/#processors

P. Couvert, High speed 10 processor for NVMe over fabric (NVMeoF), in Flash Memory
Summit, Aug 2016

J. Yang, D.B. Minturn, F. Hady, When polling is better than interrupt, in USENIX Conference
on File and Storage Technologies, Feb 2012

F. Hady, Wicked fast storage and beyond, in Non Volatile Memory Workshop, Mar 2016

https://www.hgst.com/sites/default/files/resources/USSN150_ProdManual.pdf
https://www.hgst.com/sites/default/files/resources/USSN150_ProdManual.pdf
http://www.kalrayinc.com/kalray/products/#processors
http://www.kalrayinc.com/kalray/products/#processors

Chapter 8)
SSD Reliability Assessment Skl
and Improvement

C. Zambelli and P. Olivo

8.1 Introduction

Solid State Drives (SSDs) are one of the electronic systems with the highest
development rate in the last decade [1]. Their adoption as a hard disk drive (HDD)
replacement in hyper scale environments like cloud computing and big data servers,
as well as in consumer electronics, is relentless. SSDs’ design faced an extraordi-
nary evolution thanks to the continuous development of the storage medium inte-
grated within, namely the NAND Flash memories [2]. SSDs performance and
reliability figures of merit are intertwined with those of NAND Flash, although
many other factors and components in the drive must be carefully analyzed to
expose potential trade-offs. Such a consideration radically changed the design
approach of SSDs, shifting from a design where the drive is seen as a mere
replacement of a Hard Disk Drive (HDD) to a NAND Flash-centric approach [3].
The latter design paradigm allows achieving a high SSD reliability through a set of
error mitigation techniques implemented at several levels (from NAND Flash
physics and integrated circuit architecture to SSD firmware).

This chapter tackles the SSD reliability from different standpoints after the
introduction, in Sect. 8.2, of the common terms used in its assessment. The
Sect. 8.3 provides an overview of the physical mechanisms affecting the reliability
of traditional planar NAND Flash technology as well as the 3-D integrated con-
cepts. Proper reliability management solutions like the read retry and the soft
decoding Error Correction Codes (ECCs) are introduced. Then, in Sect. 8.4, issues
at die level like yield defects or extrinsic failures are exposed. Their mitigation is

C. Zambelli (=) - P. Olivo
Engineering Department, Universita di Ferrara, Ferrara, Italy
e-mail: cristian.zambelli @unife.it

P. Olivo
e-mail: piero.olivo@unife.it

© Springer Nature Singapore Pte Ltd. 2018 205
R. Micheloni et al. (eds.), Inside Solid State Drives (SSDs),

Springer Series in Advanced Microelectronics 37,

https://doi.org/10.1007/978-981-13-0599-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_8&domain=pdf

206 C. Zambelli and P. Olivo

addressed by techniques like the RAID (Redundant Array of Independent Disks) to
improve the overall SSD reliability. Section 8.5 deals with non-NAND Flash
failures like the DRAM, the SSD controller faults, or the sudden power down faults
during drive operation. Finally, Sect. 8.6 will describe the SSD reliability qualifi-
cation methods standardized in JEDEC JESD218 and JESD219 documents, where
accelerated endurance and retention tests exploit the NAND Flash physics of failure
to provide confident lifetime metrics to system designers.

8.2 Common Terms in SSD Reliability: HDD Heritage

Since SSDs have the basic functionality of state-of-the-art HDDs (i.e., read and
write data sectors exchanged with a host system), their reliability terminology is the
heritage of the metrics, requirements, and testing practices typical of the rotating
magnetic drives [4]. When drive reliability is discussed, there are three typical
concerns: (i) unrecoverable drive failures [5]; (ii) uncorrectable sector errors [6];
and (iii) silent errors [7]. A drive is considered failed up to an unrecoverable
condition when either the drive ceases its functionality or its degradation level
forces its replacement. An uncorrectable sector error is the condition experienced by
the drive when the data required from a host system cannot be retrieved anymore
and it is promptly warned through a signal. A silent error occurs if the drive returns
a corrupted data to the host without providing an error signal.

The drive’s reliability is specified in the datasheets with two metrics: the Mean
Time Between Failures (MTBF) and the Uncorrectable Bit Error Rate (UBER). The
former parameter is usually in the range of one or two million hours, practically
meaning that a population of drives will average one failure every million-drive
hours [4]. The MTBEF is used for the calculation of the Annualized Failure Rate
(AFR), that is the number of hours per year (i.e., 8760) divided by the MTBF. SSDs
usually feature an AFR below 1% [8]. However, both MTBF and AFR formal
definitions imply a constant failure rate, which is unrealistic due to the physics of
failures (e.g., components wear-out, silicon aging, etc.). The UBER parameter on
the other hand, specifies the number of uncorrectable bits divided by the number of
read bits from the drive. SSDs’ datasheets usually indicate this value to be in a
range between 1077 and 107'7. The term “uncorrectable” is used since drives
feature internal bit correction engines like ECC. The fraction of corrupted bits prior
ECC is called the Raw Bit Error Rate (RBER), whose value is the foundation of the
NAND-centric SSD design approach. The definition of UBER has many ambigu-
ities that depend on the workload used to stress the drive (i.e., ratio between reads
and writes), on the choice of the drive population, on the sectors count to be
considered for error statistics, etc.

The JEDEC JESD218 [9] document defines a measurement method to separately
evaluate the UBER and the AFR metrics, as we will see in the final section of this
chapter. This distinction is mandatory, especially for RAID designers, since it

8 SSD Reliability Assessment and Improvement 207

allows discerning the magnitude of the data loss, from single files for UBER up to
catastrophic drive failures for AFR.

Concerning silent errors, they are specified in units of errors per bit read [10].
Their occurrence cannot be covered by RAID systems since the data corruption is
visible only by the host system. In enterprise scenario it is important to exploit
design techniques that minimize their insurgence, whereas consumer scenario can
sustain a more relaxed policy.

8.3 NAND Flash Reliability: Intrinsic Failures

The storage core of a SSD is the NAND Flash memory. Its concept is based on a
metal oxide semiconductor device with a Floating Gate (FG) electrically isolated by
means of a tunnel oxide and of an interpoly oxide as sketched in Fig. 8.1 [11]. The
former oxide plays a basic role for the control of the device threshold voltage whose
value represents, from a physical point of view, the stored information. Electrons
transferred into the FG produce a threshold voltage (V) variation, thus varying the
logic data stored within the memory. The charge quantity into FG modulates the
current flowing through the device at fixed Control Gate (CG) bias [3]. The pro-
gramming of a NAND Flash cell is performed by injecting electrons within the FG,
whereas erasing is performed by removing that charge from the FG. In quiescent
conditions, thanks to the two oxides, the charge stored does not leak away (theo-
retically), thus granting the non-volatile paradigm fulfillment.

The physical mechanism used for both injecting and extracting electrons to/from
the FG is the Fowler-Nordheim (FN) tunneling [12]. High electric fields applied to
the tunnel oxide allow for electron transfer across the thin insulator. The choice of
using the tunneling mechanism for writing and erasing the information in NAND
memories is due to the relatively high parallelism of the operation (i.e. thousands of
cells belonging to the same group can be written or erased in parallel), although FN
tunneling significantly impacts the reliability of the memory causing progressive
degradation of the tunnel oxide. The cell programming operation requires an

Interpoly oxide

- —

A s

—CG Erase State

Tunnel oxide

Program State

'
VAQ0) V0 v,

Fig. 8.1 NAND Flash cell structure and I-V characteristics dependent on the FG’s charge in erase
and programmed states

208 C. Zambelli and P. Olivo

r 3
=
Erase .% Program
State i 8 State
B
(]
T
o
Read Window
1 « > 0
VTEmax VR VTmin VTma: VT
r 3
=
TLC °
5
2
B
(=)
T
(8]
111 00
VR‘I VR? VTma: VT

Fig. 8.2 Threshold voltage distributions in a SLC (top) and a TLC (bottom) NAND Flash array.
Vemin and Vi represent the minimum and the maximum target Vr for a programmed cell,
respectively. Vrgmax represents the maximum Vr for an erased cell while Vi denotes the read
voltage

accurate control of the electric field through the applied CG voltage (V) in order
to place the cell’s Vr in a well-defined interval [Vmin, Vmax] (see Fig. 8.2, where
the Vr distributions of a cell array are shown). A Vr < Vi, would reduce the
read margin guaranteeing a read operation immune from errors, whereas Vr >
Vimax could provoke read errors in other cells of the array due to the
over-programming [3]. To this extent, the program operation is performed incre-
mentally stepping the Vg followed by a verify operation [13] that ends the pro-
gram when the target Vr interval has been reached [14]. Read operation is
performed by evaluating the current flowing through the cell when a fixed reference
voltage Vy is applied to CG [16]. In a programmed cell (high V1) the current is
limited and the read circuitry produces a bit equal to 0, whereas in an erased cell
(negative V) the high measured current is interpreted as a 1.

With the introduction of multilevel architectures (MLC, TLC, QLC) able to store
2, 3, and even 4 bits in a single cell, the programming and the reading operations
become much more complex [3], since Vrgax cannot be increased because of
architectural and operating constrains [15]. The amplitude reduction of each interval
calls for a very tight control of the charge injected within the FG.

8 SSD Reliability Assessment and Improvement 209

Fig. 8.3 RBER growth 1.0E-04 -
during a period of repetitive o
writing (green symbols), < L.0E-05
followed by either a long f
power-off period (red g 1.0E-06 - e
symbols) or a period of = e o
repetitive reading (black Z 1.0E-07 - st -G"{%—-r“—*“-w
symbols). Reproduced with z | et
permission from [4]. © 2017 2 1.0E-08 §°
IEEE

1.0E-09 + + + + +

0 5K Cycles 10K Cycles 10K Cycles 10K Cycles
+0.5 Year +1 Year

or SKRds or 10K Rds
Stress Duration

8.3.1 Raw Bit Errors

Raw bit errors are most of the time a consequence of the memory’s finite endurance
and data retention capabilities. Errors occur when cells have incorrect threshold
voltage values compared to their wanted placement. When raw bit errors occur
immediately after reading a written NAND Flash block we are likely in the presence
of write errors. If the errors appear after a time without biasing the cells or due to
the repeated reads of the block we are in presence of data retention errors or read
disturb errors, respectively.

Figure 8.3 shows that RBER is greater than zero since the very beginning of the
NAND Flash blocks lifetime and progressively increases with the number of per-
formed program/erase cycles. The resulting RBER either after retention or after
read stress is a function of the cycling stress, pointing out that the overall RBER is
the sum of the different error contributors [4]. RBER is a useful parameter for SSD
reliability assessment, but must be evaluated with care since it is accurate only for a
particular location at a particular moment in time. Indeed, the variability between
different Flash pages within the same block or from a chip to another populating the
SSD is so high that RBER has to be considered with its distribution rather than its
punctual value. Error correction engines in the SSD are expected to cover all raw bit
errors and must account the peculiarities of their insurgence to efficiently correct
them.

8.3.2 Reliability-Loss Mechanisms Affecting RBER

Several physical mechanisms affect the intrinsic reliability of NAND Flash,
although the degradation of the tunnel oxide electrical characteristics is still one of
the fundamental process to keep in mind whenever the discussion on the memory
lifetime is addressed. As said, because of the continuous charge transport through
the cells insulator, traps can be created at the dielectric interfaces or within the

210 C. Zambelli and P. Olivo

10] o "
W g L 0
£ 0 % 4 W £ 1w
& 1 a -]
> . = <
§ o % 10| 2 10
B 8 £
[a [
0 W't "
10tk v__° -0 - - 1ot d L - 0 & A
50 o =0 100 152 200 80 W00 = o 50 W00 150 x0 50 -] 50 100 50 00 Fo] 00
Theeshold Voltage {au.} Threshold Voitage (au Thesnold Vieltage (a.u.}
(a) L PVE Cycles (b) 5L P/E Cycles (c) 10L P/E Cycles

Fig. 8.4 Vi distribution of MLC (2bits/cell) NAND flash memory before (left) and after (right)
endurance test. Reproduced with permission from [18]. © 2014 IEEE

oxide, which can alter the FN tunneling dynamics. Because of this, it becomes
difficult to control the placement of the cells Vr: some of them can be slightly
over-programmed, and their thresholds could end in an adjacent interval [17].
Because of this distribution broadening induced by the endurance stress (i.e.,
repeated program/erase cycles), read errors are produced and RBER increases in
turn (see Fig. 8.4).

Oxide ageing and traps creation also reduce the data retention feature that is the
ability of keeping unaltered the charge within the FG when the cell is in a quiescent
state. Electrons may escape from the FG because of Trap-Assisted Tunneling
(TAT) or Stress Induced Leakage Current (SILC) effects [19, 20], thus causing a
modification of the threshold voltage distributions for the cells in the array (see
Fig. 8.5). The risk that the threshold of a cell programmed in a given interval shifts
to an adjacent interval increases significantly with the number of bits stored in a
single cell. In MLC or TLC architectures, the number of electrons differentiating
two adjacent intervals is few tens, therefore reducing data retention control [17].
Moreover, this phenomenon is strongly dependent on the temperature and on the
cycling stress sustained by a memory block.

Other effects may worsen the RBER due to the inability of controlling the correct
number of electrons to be transferred in the FG during a single programming pulse.
Among them the most important are: (i) the Random Telegraph Noise (RTN)
related to filling/empting of tunnel oxide traps affecting the Vr distributions sta-
bility [17]; (ii) the positive trapped charge in the tunnel oxide resulting in erratic

Fig. 8.5 V distribution of
TLC (3bits/cell) NAND flash
memory, before/after
data-retention bake.
Reproduced with permission
from [21]. © 2017 IEEE

106 } 3D TLC, W/E=300, 85degC Olnitial A After 63day

Measured # of cells [a.u.]

8 SSD Reliability Assessment and Improvement 211

effects [22]; (iii) the electron injection statistics caused by the small number of
carriers flowing to FG [17]. All of the mechanisms that may potentially affect any
cell in the array, have a random and transient nature: they can occur during any
programming pulse and they may produce threshold shifts larger than expected,
with the risk of programming some cells with a threshold voltage larger than the
desired one.

Besides endurance, retention, and placement-induced errors, there are some
specific issues of the NAND Flash architecture that may lead to a RBER increase.
The most common effects are the so called disturbs, that can be interpreted as the
influence of an operation performed on a cell (Read or Write) on the charge content
of a different cell. The read disturb may occur when reading many times the same
cells without any erase operation of the entire block they belong to [23]. All the
cells belonging to the same string of the cell to be read must be driven in an ON
state, independently of their stored charge (see Fig. 8.6). The relatively high
Vrass > Vrmax applied to the CG of the unselected cells to turn on their conduction
and the sequence of pulses applied during successive read operations may induce a
charge gain due to SILC effects [20] or hot carrier effects [24]. These cells suffer a
threshold voltage shift that may lead to read errors, when addressed. The probability
of suffering from read disturb increases with the P/E number (i.e., towards the end
of the memory useful lifetime) and it is higher in damaged cells. Read disturbs do
not provoke permanent oxide damages: if erased and then reprogrammed, the
correct charge content will be present within the FG.

A similar disturb occurs with the inhibit scheme during program operation to
bias unselected wordlines for writing. In this case cells with enhanced tunneling
characteristics because of TAT or fabrication variations can program unintention-
ally [4]; this effect is called program disturb. Other RBER-increase mechanisms do

[ry e 1T r 1T 7T rr.7]
400 g F Max. Errors = A*(Block Read)”]
v . . 300 a [e rds aabgahasdasdianastasads [ower
= 1 on. . Page
Vousis .|‘ _H Dummry _—
o
f @
= S
1| (| _;5_5_ ., & Center
Vauo—}} H Wi = Page
vi H. f tH - e
K H: f— —H =
s ST T §
i Upper
v 11— Durmeny - Pa!)g:
Voo - - 5L i
——GND 0

0 330 660 990 1320 1650 1980 2310 2640 2970 3300
Block Read [#]

Fig. 8.6 Bias configuration for a read operation applied on a NAND Flash block (left). The cells
in gray are those suffering the read disturb. Maximum read disturb errors number retrieved in all
the wordlines of a specific NAND Flash page type at different P/E cycles (right). Reproduced with
permission from [23]. © 2017 IEEE

212 C. Zambelli and P. Olivo

not depend on traps and are induced by the NAND Flash technology scaling. Such
issues are the cell-to-cell interference [25] and the Gate Induced Drain Leakage
(GIDL) [26]. The FG coupling due to parasitic capacitances between cells mainly
causes the former issue, thus it is greatly affected by cell scaling, and is well known
to widen the Vrp distributions. The latter effect is due to the usage of the
self-boosting technique to inhibit unselected cells during programming [27]. 3-D
NAND Flash technologies are expected to feature similar raw bit errors mecha-
nisms, although different impact from the peculiar sources is expected due to the
different materials used in their integration.

8.3.3 Mitigating the Raw Bit Errors Through ECC

The state-of-the-art in SSD data protection is to integrate an ECC engine in the SSD
controller to handle the raw bit errors occurring throughout the entire lifetime of the
drive. In NAND Flash, each page is split in different codewords, where a codeword
is the sum of user data and some parity bytes to reconstruct the information in case
of bit corruption [28]. The role of the SSD controller is to generate the parity when
a write operation is issued to a specific NAND Flash page and later exploit that
during a read operation. Given an ECC that can correct up to k failed bits in a
codeword, we can calculate the codeword Failure Probability Fcy as:

k X .
Foy=1-Y (’:)-RBER’-(I—RBER)”_’ (8.1)
i=0

where n is the number of bits in the codeword [29]. This equation demonstrates that
the relationship between the RBER and the reliability of the NAND Flash, mea-
sured in terms of a failure probability, is tight. Current NAND Flash technologies
may require correction strengths up to 30 or more bits per codeword [4].

The ECC is sufficient to provide a target UBER within the specifications pro-
vided by the JEDEC standard [9], although care must be taken since the previous
equation applies only for a punctual value of the RBER. As shown in Fig. 8.7, the
RBER has significant variation from codeword-to-codeword due to many factors,
so that the design of an ECC to mitigate raw bit errors must be performed not on an
average basis, but rather on the extreme tails of the RBER distribution (i.e., highest
codeword failure probabilities). The common ECC schemes implemented in SSD
are the BCH and the LDPC [3], whose designs allow correcting a large number of
failed bits providing at the same time a sufficient error detection capability to avoid
silent errors or wrong corrections.

The latter feature is important for the application of the secondary correction
mechanisms whenever the ECC is found to fail data correction from NAND Flash.
SSD controllers can be instructed to retry the correction of a codeword by
dynamically changing the read voltages and timings to reduce RBER up to a point

8 SSD Reliability Assessment and Improvement 213

Fig. 8.7 Worst RBER we—r——T———T——T71 7
characteristics of different 4 - Sinale Sector RBER

kB sectors (i.e., codewords) E [O0—0 Average RBER |

of a mid-1X TLC NAND
Flash as a function of the
endurance. The average value
is reported for comparison.
Reproduced with permission
from [29]. © 2017 IEEE

-4

10°

RBER [a.u.]
T T T s Ill]‘. T

P N SR R
1000 1500 2000 2500 3000

P/E Cycles [#]

10*

=
%

where the ECC can actually correct the data. This strategy is called Read Retry or
Moving Read [4]. The Read Retry algorithms used in NAND Flash have been
designed to trade between reliability and performance features of the SSD. Indeed,
the occurrence of an uncorrectable error event requires the intervention of the
algorithm at the expense of a significant latency introduced by the ECC due to
cascaded read retry operations, thus reducing the SSD bandwidth. This approach
was devised for older NAND Flash technologies where the RBER was sufficiently
low to guarantee a seldom intervention of the secondary error correction. As the
technology continues to scale down, the memory cell storage distortion and noise
sources become increasingly significant, leading to continuous degradation of raw
bit errors features. As a result, the industry has been actively pursuing the transition
of ECC from conventional BCH codes to more powerful soft-decision iterative
coding solutions, in particular LDPC codes [30]. Nevertheless, since NAND flash
memory read latency is proportional to the number of reads and the results must be
transferred to the SSD controller through standard chip-to-chip links, a straight-
forward use of soft-decision ECC can result in significant read latency overhead. To
this extent, Fig. 8.8 illustrates the intuitive progressive soft-decision sensing strat-
egy exploited in common SSD controllers, which aims at using just-enough sensing
precision for ECC decoding through a trial-and-error manner. This method can
reduce the average read latency overhead [30].

Figure 8.9 quantitatively demonstrates the advantages of soft-decision ECC (in
particular LDPC code) over existing BCH code. For the LDPC code, simulations
were performed for both hard-decision sensing precision and different
soft-decoding level precisions. As shown in the figure, although hard-decision
decoding of LDPC code can slightly outperform the BCH code, soft-decision
decoding can significantly improve the performance and advantage over BCH
code [30].

214

Hard-decision memory sensing

v

Flash-to-controller data transfer

v

C. Zambelli and P. Olivo

ECC decoding ¢—|

Yes

Flash-to-controller
data transfer

T

Memory sensing with

higher precision

sensing precision?

Yes

k.
(Readﬁnishes) C Read fails)

Fig. 8.8 Illustration of operational flow of progressive soft-decision sensing. Reproduced with

permission from [30]. © 2013 IEEE

~

=
DD
+*+

4

—+—BCH code

[

—
f=]
T

~4—LDPC code (hard-decision sensing)

b

&

Decoding Failure Probability
S)

-8

—+—LDPC code (seven-level soft sensing)

0 i L 1 1 1
0.02 0018 0016 0014 0.012 0.01

Raw Bit Error Rate

0.008 0.006 0.004

Fig. 8.9 Simulation results of BCH and LDPC codes to be exploited in NAND Flash raw bit
errors mitigation. Reproduced with permission from [30]. © 2013 IEEE

8 SSD Reliability Assessment and Improvement 215

8.3.4 Mitigating the Raw Bit Errors Through Firmware

MLC, TLC, and QLC NAND Flash architectures are the preferred solution in SSD
when high storage density is required, but at the additional cost of increasing the
overhead due to the appropriate RBER management policies adopted for mitigating
the issues presented in the previous sections of this chapter.

Since most of the RBER sources depends on the endurance state of the memory,
it is important to distribute the writing stress over the entire population of cells
rather than on a single hot spot, thus avoiding that some blocks are updated con-
tinuously while the others keep unaltered their charge content. It is clear that blocks
whose information is updated frequently are stressed with a large number of
write-erase cycles. In order to keep the aging effects as uniform as possible, the
number of both read and write cycles of each block must be monitored and stored in
some firmware structures managed by the SSD controller. Those tables are part of
an essential SSD’s firmware component, namely the Flash Translation Layer (FTL).
Wear leveling [31] is a process that reduces premature wear in NAND Flash
devices by equalizing the endurance of a memory on its completely addressable
user space. The most common implementation of wear leveling occurs in the FTL,
which manages access to the memory device and determines how the NAND Flash
blocks are used. Two types of data exist in NAND Flash devices: static and
dynamic. A static data is information that is rarely, if ever, updated. It may be read
frequently, but it seldom changes and it can theoretically reside in the same physical
location for the life of the device. Dynamic data, on the other hand, is constantly
changing and consequently requires frequent reprogramming. Dynamic wear
leveling is a method of pooling the available blocks that are free of data and
selecting the block with the lowest erase count for the next write. This method is
most efficient for dynamic data because only the non-static portion of the NAND
Flash array is wear-leveled. Static wear leveling utilizes all good blocks to evenly
distribute wear, providing effective wear leveling and thereby extending the life of
the device. This method tracks the cycle count of all good blocks and attempts to
evenly distribute block wear throughout the entire device by selecting the available
block with the least wear each time a program operation is executed. Each tech-
nique has its pros and cons, as described in [32].

Read disturb management is important as well for the RBER mitigation in
firmware. This policy instructs the SSD controller to move highly read data to new
blocks before the original blocks can be excessively disturbed [33]. Read disturb
management is important, because a host computer can easily read a portion of
NAND Flash codewords in the SSD many millions of times, which would be
enough without refreshing of the data to result in RBER levels uncorrectable with
any ECC scheme [4].

FTL also implement a policy called scrubbing. This methodology moves data to
new blocks as for read disturb managements, but in this case it is done for resetting
the retention time of memory cells. In this way, the SSD controller can create
unlimited data retention lifetime while an SSD is powered on [4].

216 C. Zambelli and P. Olivo

Finally, the FTL is also responsible for the randomization of the V-t values in the
programming algorithm in order to reduce the RBER dependency on the interfer-
ences caused by specific programmed data patterns [34].

8.4 NAND Flash Reliability: Defects and Extrinsic
Failures

Occasional failures can occur in NAND Flash even if not directly related to the
intrinsic mechanisms of the cells. A NAND Flash is a complex Integrated Circuit
(IC) system that includes, other than the array of cells, many heterogeneous circuits.
A NAND Flash IC is composed by several macro blocks: the memory array, the
data path circuitry that controls the input/output towards the external world, the
decoders to select individual groups of cells in the array, and the high-voltage
(HV) circuitry mandatory for all the read/write operations. The failure causes can be
ascribed to yield defects (e.g., shorted wordlines or bitlines) or even to circuitry
design flaws inside the peripheral sub-systems of the array. Most of these errors
appear in fresh devices, although their behavior can be accelerated by temperature
and electric field. As the Fig. 8.10 shows, the wafer process failures represent the
major share of the failures. These are classified further into sub-classes based on the
defect location or processing phase [35]. Although such process failures can occur
in any IC in an SSD, defect issues in the NAND Flash ICs can be expected to

Sisubstrate defect ~ Other
3% 9%
Retention failure
3% '
Interlevel oxide leakage
6%

BSOS, Drain contact - 2nd poly
. leakage
31%

Defectivity in periphera
circuitry
17%

Poly-to-poly leakage
Metal-to-metal leakage 17%
14%

Fig. 8.10 Sub-classification of the wafer process related defects in Flash technology. Reproduced
with permission from [35]. © 2006 IEEE

8 SSD Reliability Assessment and Improvement 217

dominate because they occupy most of the silicon area of an SSD, they operate at
very high voltages, and they contain many interconnects with the
minimum-possible spacing [4]. Defects like two wordlines shorted together in a
NAND Flash block due to insulation breakdown are an example of those issues. If
any of the pages (MLC or TLC) on those wordlines are accessed, they will likely
experience thousands of bit errors, overcoming the correction capabilities of any
ECC even with secondary correction; if the shorting occurs early in a programming
operation a program-status failure may result, signaling the failure to the SSD
controller [4].

Some extrinsic failure mechanisms may not cause a NAND Flash IC failure, but
can have an important impact on the raw bit errors. Among them, two phenomena
related to voltage and temperature are considered: the power-supply induced errors
and the temperature cross shifts. Design flaws in the high-voltage circuitry of a
NAND Flash cause the former issue. In [36] it is found that the HV sub-system
plays an important role on the reliability since its design affects sensitive analog
circuits that control the behavior of the memory cells during read and write oper-
ations. Hence, raw bit errors are strongly dependent on the power-supply, and a
different behavior of the memory reliability during its entire lifetime can be
observed depending on the chosen power supply. Concerning the temperature cross
shift, it is found that the current/voltage characteristics depicted in Fig. 8.1 heavily
depends on the temperature, resulting in an additional instability of the threshold
voltage distributions in NAND Flash. Although dedicated peripheral circuits in the
memory IC are devoted to solve this issue, there is no complete mitigation of the
errors generated by the phenomenon [37].

8.4.1 Mitigating Defects and Extrinsic Failures Through
RAID

The mitigation of defects and NAND Flash IC extrinsic failures in SSDs is handled
by a RAID technique performed within the drive [29]. Generally, in RAID archi-
tectures data are arranged following a specific pattern that mixes data and parity,
where the latter represents the additional data required for the SSD to recover any of
the pieces of stored information. A stripe is an ensemble of data and parity sectors
representing the minimum unit for data reconstruction. The stripe length expresses
how many user data elements are associated with parity elements. In case of RAID-
5 approach within SSD, as shown in Fig. 8.11, the stripe length refers to a single
parity element in a stripe (i.e., the notation N-to-1 is also used), whereas in RAID-6
approach it refers to double parity elements in a stripe (i.e., N-to-2). The choice of
the stripe length and of the RAID level depends on a reliability/performance
trade-off that an SSD wants to leverage on.

Let us assume the 3-to-1 RAID-5 configuration shown in Fig. 8.11 by consid-
ering the (DO; D1; D2; PO) stripe. If one of the data sectors Di with i = 0 ... 2 in the

218 C. Zambelli and P. Olivo

NAND #0 NAND #1 NAND #2 NAND #3

suipe |[_00__] (o | [T

o o
Flash Flash Flash Flash
Controller Controller Controller Controller

e

SSD Controller
(Intra-disk RAID controller)

Host Interface

Fig. 8.11 Architecture example of a RAID-5 approach for SSD based on four NAND Flash
devices. Reproduced with permission from [29]. © 2017 IEEE

stripe fails either due to unexpected NAND Flash IC failures or due to the
impossibility to correct the data using the ECC, the RAID recovers the faulty sector
via the parity PO by applying a XOR algorithm. The recovered data are then written
on another sector of the SSD and the faulty one is marked as invalid and then retired
by the SSD controller management firmware [29].

The correction strength of the RAID approach is different from SSD to SSD: in
some cases, single codewords are protected, whereas in other cases the protection
level goes up to the reconstruction of the entire failed NAND Flash IC.

8.5 SSD Reliability: Non-NAND Flash Failures

8.5.1 SSD Controller, DRAM Errors, and Firmware
Failures

All SSDs must protect data inside the drive from the connection to the host system,
through the circuits of the SSD, to the NAND Flash memory, and viceversa. While
the NAND Flash memory employs its own ECC protection, there is the need to use
additional state-of-the-art data protection methods, such as parity protection on
internal buffers and checksum generation/checking. This additional level of pro-
tection will cover SSD failures in case of a faulty SSD controller, a noisy con-
nection cable with the host system, a faulty DRAM, or a firmware bug.

8 SSD Reliability Assessment and Improvement 219

DRAM
HFIFO HFIFO
Parity = Host = Parity »

s ge Gen. Interface Sheck Buffer
Interface == il
Transport MPECC HEIED HFIFO

E Parity —— (Queue) [@€— Parity [
Check Gen.
A
P
— !
uP generated Metadata { :
¢ MPECC
FIFO
NAND NAND
FIFO CRC FIFO CRC
Gen. Check
I | CRC Check
and ECC MPECC
NAND » NAND A
Flash FIFO
Controller | (Queue) |g SRECheck MPECC
o - and ECC Check
I_] Encode
NAND NAND
T * FIFO CRC FIFO CRC
Flash Check Sen, —— Write
| | Storage Read

Fig. 8.12 End-to-End data protection in enterprise SSDs. The concept of the figure is based on
the description provided in [38]

In client SSDs, as the datum passes from the host interface to the host FIFO
where commands are queued, parity is generated. As the data exits the host FIFO,
parity is checked. Next, a Cyclic Redundancy Check (CRC) and ECC are generated
and stored with the data. Finally, a CRC is generated just before the data enters the
NAND FIFO where specific NAND Flash commands are queued, and then it is
checked when exiting. When data is read from the NAND, the process occurs in
reverse order [38].

Enterprise drives build on the foundation of proven data path protection for
client drives, but go one-step further, adding protection in the form of memory path
error correction as shown in Fig. 8.12. An additional Memory Protection ECC
(MPECC) is added. MPECC is designed to protect the host data by adding ECC
coverage to the data as it enters the SSD. A multi-byte MPECC is generated on the
host data in the physical layer of the host interface and it is independent of any ECC
provided by the NAND devices themselves. This additional MPECC follows the
host data through the SSD. As the MPECC and user data enter the host FIFO, parity
is generated. As the data exits the host FIFO, that parity is checked. In the DRAM
buffer manager, further MPECC protection is generated on the associated metadata
for FTL structures. By adding MPECC protection to the metadata, both host data
and metadata are protected. As the host data, its metadata, and the MPECC

220 C. Zambelli and P. Olivo

generated for both types of data exit the FIFO adjacent to the buffer manager, both
are checked. Next, CRC and ECC are generated as with client drives. Finally, parity
is generated before the data enters the NAND FIFO, and that parity is checked upon
exit. On read commands, the process is carried out in reverse order [38].

8.5.2 The Power-Loss Issue

When programming a NAND Flash memory, the program operation must complete
to ensure that data are stored reliably within the page. Data are at risk if power is
lost when Flash memory cells are in the process of being programmed [39]. SSD
have three causes of potential data loss or corruption when system power fails: (i) a
loss of data; (ii) a loss of mapping information; (iii) a corruption of a single NAND
Flash page within a wordline (in MLC architectures).

Most enterprise class SSDs rely on a power failure circuitry that monitors the
supply voltage and generates an “early warning” signal to the SSD controller if the
voltage drops below a predefined threshold. A secondary voltage hold-up-circuit is
implemented to ensure the drive has power for a sufficient time to harden data
whenever that warning is received. In addition, writes are not accepted by the drive
until the secondary voltage source has been sufficiently charged to protect against
loss of data upon power failures. The secondary voltage source can be a high
capacity supercapacitor or a bank of discrete capacitors.

A supercapacitor is an electrolytic capacitive charge storage device. It is capable
of storing a large amount of energy in a relatively small three-dimensional space.
A generic supercapacitor-based voltage hold-up circuit is consistent with the block
diagram shown in Fig. 8.13. Designing a supercapacitor-based power failure
protection circuit is easy to do, and many SSDs employ this approach for this

System
Power Supply Check Point

vDD

Controller

Sample
Point

Hold up Capacitors
(Supercapacitors or discrete)

- vDD

e i # Voltage Monitor
Mo L L e e P # & Control Circ.
-

=)

Fig. 8.13 Block diagram of a power failure circuit in a standard SSD. The concept of this figure is
based on the description provided in [39]

8 SSD Reliability Assessment and Improvement 221

reason. Unfortunately, there are a number of concerns related to long term super-
capacitor reliability that makes the use of this component questionable for Enter-
prise-class SSDs. Supercapacitors are typically Aluminum Electrolytic Capacitors,
featuring a high capacitance-to-size ratio and, therefore, they are an attractive
choice for applications requiring large bulk capacitance like an SSD. However, like
all electrolytic capacitors, supercapacitors suffer from a well-known set of defi-
ciencies with regard to long-term reliability. In particular, supercapacitors “wear
out”, resulting in reduced capacitance over time. They use a wet electrolyte and the
packaging is subject to ongoing losses via leakage and diffusion. The performance
of the supercapacitor degrades slowly with electrolyte loss, until the onset of total
failure occurs with little or no warning. In addition, loss rate increases with higher
operating voltage, and in higher operating and non-operating temperature envi-
ronments. For every 10 °C of ambient operating temperature rise, the life expec-
tancy of a supercapacitor can be cut approximately in half.

Nowadays SSDs utilize either Niobium Oxide or Polymer Tantalum capacitors.
These discrete capacitors do not employ a “wet” electrolyte and are not susceptible
to the leakage related issues that plague supercapacitor technology. Niobium and
Polymer Tantalum capacitors are rated to 85 °C, providing a higher temperature
operating range with respect to supercapacitors (70 °C). Because of these factors, a
discrete component based hold up circuit is more able to meet the demands of
enterprise and industrial computing environments. Another advantage of discrete
capacitors over supercapacitors is that they are highly predictable and reliable.
However, lacking the compactness of supercapacitors, the capacitance-to-size ratio
of a discrete solution is less space efficient and its implementation require a more
careful design.

8.6 Assessing SSD Reliability Through Testing

When testing SSDs (and not single NAND Flash ICs) it is important to detect or
estimate functional failures, errors in reading data, without considering the physical
causes that produced such errors or failures. If the amount of errors or functional
failures exceeds the acceptable limits, a successive failure analysis will try to
investigate on the possible physical causes. Therefore, it is important to remind the
basic difference between testing NAND Flash devices and verifying SSDs relia-
bility: the former operation requires adopting all the possible test procedures to
excite physical or architectural weaknesses, the latter consider the SSD as a black
box where data are to be written, read and retained at their endurance and retention
limits.

It must be observed, however, that the use of different technologies for NAND
Flash memories produces different expectations in terms of both endurance and
retention. To deal with different applications, NAND technologies, and producers,
standard committees define the conditions of use and the corresponding endurance
verification requirements. The following sections will refer to the JEDEC standard

222 C. Zambelli and P. Olivo

JESD218A (Solid-State Drive Requirements and Endurance Test Method) [9], that
defines parameters for standardized endurance rating so that the end user may
consider the endurance rating as a factor in determining if an SSD is suitable for his
particular application.

Since there are different levels of requirements for an SSD based on specific
applications different levels of testing should be applied to verify the SSD suit-
ability for the particular application. It is necessary to group different applications
characterized by similar requirements in a limited number of classes: to this pur-
pose, the JESD218A standard considers just two application classes: client and
enterprise. These classes, of course, are not all-inclusive and it is clear that varia-
tions such as the operating systems and application architectures make a significant
impact to the workload of an SSD, that represents the detailed sequence of host
writes and reads (including data content and timing) applied during endurance
testing. The actual workloads are defined in the JEDEC standard JESD219 [40] for
the two considered classes and they are not reported in this text.

8.6.1 SSD Endurance and Retention Rating

A SSD manufacturer shall establish an endurance rating for an SSD that represents
the maximum number of terabytes that may be written (TBW) by a host to the SSD,
such that the following conditions are satisfied:

1. the SSD maintains its capacity;

2. the SSD maintains the required UBER for its application class;

3. the SSD meets the required Functional Failure Requirement (FFR) for its
application class, that is the allowed cumulative number of failed drives that,
over the TBW rating, fail to function properly in a way that is more severe than
having a data error;

4. the SSD retains data with power off for the required time for its application class.

The requirements for standard classes of SSDs are based on a scenario in which
the SSD are actively used for some periods of time during which the SSDs are
written to their endurance ratings, followed by a power-down time period in which
data must be retained. The requirements for the two SSD classes are reported in
Table 8.1.

Table 8.1 SSD class and requirements

Application class Client Enterprise

Active use (power on) 8 h/day @ 40 °C 24 h/day @ 55°C
Retention use (power off) 1 year @ 30 °C 3 months @ 40°C
FFR <3% <3%

UBER requirement <107'® <107'®

8 SSD Reliability Assessment and Improvement 223

SSD case temperatures are reported in Table 8.1 and they are intended to rep-
resent the relevant temperatures over the respective time periods, for the purpose of
endurance and retention estimation, not the maximum and minimum specifications
to be found on the SSD datasheets. For the client class, the retention temperature
(30 °C) is also the temperature for the 16 h/day in which the SSD is powered down.

8.6.2 Endurance and Retention Stress Methods

There are two approaches for endurance verification: a direct method and an
extrapolation method based on a HDD testing methodology. Both consist of en-
durance verification followed by retention verification. If the full TBW rating can
be reached in a 1000-h stress, the direct method is to be followed. If this is not
possible, then an extrapolation method is acceptable. If an SSD product from a
qualification family has been qualified using the JESD218A standard, the subse-
quent products need only data from a 1000-h direct method evaluation, even if this
results in those drives not being fully stressed to their endurance rating limits.

8.6.3 Direct Method

The endurance stress is to be performed both at high and low temperature; then, a
retention test shall be performed. Since the retention time requirements are long (see
Table 8.2), extrapolation or acceleration is required to validate the retention
requirements.

8.6.3.1 Sample Size

For the first product to be qualified in a qualification family, the sample shall consist
of SSDs from at least three nonconsecutive production lots and from all the fab-
rication plants responsible for the manufacture of the NAND memories used in the
SSD. For subsequent products from a qualification family, a single production lot is
sufficient. The number of SSD in the sample shall be sufficient to establish that both
the FFR and UBER requirements are met at 60% confidence.

Table 8.2 Endurance stress

. Application class | Client Enterprise
temperatures by drive class

Low temperature <25°C <25°C
High temperature |40 °C < T < Tpax |60 °C < T < Thax

224 C. Zambelli and P. Olivo

The sample size and acceptance criteria are defined by the following equations,
which mathematically embody the 60% confidence requirement:

UCL(FF) <FFR - SS (8.2)
UCL(DE) < min(TBW, TBR)-8-10'2. UBER - SS (8.3)

where FF and DE are the acceptable numbers of Functional Failures and of Data
Errors, respectively; TBR represents the number of TBytes Read; SS is the sample
size in number of drives; FFR and UBER are expressed as fractions; UCL(X) is an
upper confidence limit function that depends on the maximum number of accepted
eITors X.

For instance, for an accept-on-zero plan (no failures/error are accepted), UCL
(0) = 0.92, while if 1 failure/error is accepted, UCL(1) = 2.03 and for 2 failures/
errors accepted, UCL(2) = 3.11.

As an example, consider an accept-on-zero plan, FFR = 0.03 (corresponding to
3%); UBER = 10_16, TWB = 100, all data read back and verified (therefore
TBR = 100). Two sample sizes SS can be calculated from (8.2) and (8.3),
respectively:

§S> UCL(0)/FFR=0.92/0.03 =30.1 (8.4)

SS>UCL(0)/[min(TBW, TBR) - 8-10'* - UBER]

8.5
=0.92/(100-8-10"%-1071%) = 11.5 ®.5)

The required sample size is the larger of the two results and, therefore, at least 31
SSD must be tested. If the minimum sample size of 31 were chosen, than the
verification test would pass if there were no functional failures in 31 drives.
However, with SS = 31, from (8.3),

UCL(DE)<100-8-10"%-107'%.31=2.48 (8.6)

Since UCL(1) = 2.03 < 2.48 < 3.11 = UCL(2), up to one data error would be
acceptable. Therefore, the verification would pass if there were no functional
failures and no more than one data error.

It is important to notice that UBER is defined in terms of bits read, but for the
purpose of endurance verification (8.3) counts the minimum of bits read and bits
written. The rationale is twofold.

First, many data errors are transient with respect to rewriting of an SSD, but
repeatable with respect to repeated reading. This means that a sector with corrupted
data may pass without error if rewritten, however reading non-failing sectors
multiple times is unlikely to detect additional errors. This means that if reads are
less frequent than writes, then many errors will be missed. All data errors will be

8 SSD Reliability Assessment and Improvement 225

detected only if all written data are read before those sectors are rewritten. If the
TBR is less than the TBW, then the UBER should be increased because of the
likelihood that transient data errors went undetected. Using the TBR in place of the
TWB accomplishes that goal.

Second, the JEDEC JESD218A standard is aligned to a reference read/write ratio
of unity. If the TBR is equal to the TBW, then the UBER may be considered to be
an error rate per bit read or per bit written: both are equivalent. If the TBR in the
endurance stress is greater than the TBW the UBER must be TBW based.

It is important to remind that the previous criterion deals with endurance
functional failures and endurance data errors. Failures that are not related to the act
of writing data to its endurance limit, or by the subsequent retention stress, are to be
excluded from the endurance verification, even it they must be considered in the
drive qualification process. In some cases it is not easy to clearly identify endurance
and non-endurance function failures. Failures that are not in the circuit path of the
written data are clearly identified as non-endurance failures, while some failures
that are in the circuit path of the written data may be considered as non-endurance
failures if the cause of the failures were unrelated to the quantity of data written.

8.6.3.2 Endurance Stress

To verify the endurance capabilities, the drives are stressed to their full endurance
specification (in TBW). The stress time depends on the drives performances and on
those of the test equipment. If performance variations between test systems or the
SSDs themselves cause some SSD to receive more writes than other in a given
stress time, then the endurance specification must be reached by the average amount
of data written. All data errors throughout the stress must be recorded, even if those
errors are transient in nature. Testing the drive only at the end of the stress cannot
be accepted.

Two approaches are acceptable for incorporating both high and low temperatures
into the endurance stressing: the ramped-temperature approach and the split-flow
approach.

In the ramped-temperature approach the temperature during the stress shall be
switched periodically between the low and the high temperatures reported in
Table 8.3, so that half of the test is at low and at high temperature, respectively. The
ramp timing shall be such that no more than 25% of the stress is performed at

Table 8.3 Retention stress temperatures and times

Application class Client Enterprise

Stress duration and temperature 9%h@T > 66 °C %h@T > 66 °C
or500h @ T > 52 °C or500h @ T > 52 °C

226 C. Zambelli and P. Olivo

intermediate temperatures during the transition between the two limit temperatures.
As for the temperature switching frequency, no more than 10% of the endurance
stress can be performed within any single half-cycle.

In the split approach, the sample is divided in two groups. The former undergoes
endurance testing at a fixed low temperature, the latter at a fixed high temperature.
The two temperature ranges are the same as for the ramped approach (see
Table 8.2).

The T,.x values are chosen so that the endurance stress time would be equiv-
alent to one year at the active-use temperature and hours/day shown in Table 8.2
assuming an activation energy of 1.1 eV. In fact, although an SSD would be
expected to reach its TBW rating over a lifetime of several years, for the specific
purpose of calculating T,.x, the full TBW is assumed to occur within a single year.
This is a conservative assumption, since a shorter time allows less relaxation
between writes.

In addition, the endurance stress Ty,,x values may also account for a realistic
amount of delay for relaxation which would occur if the stress temperature were too
high. These delays, consisting of the drive being powered down or being powered
up but not being written to, combined with the effect of the elevated temperature
endurance stressing, must stay within the one-year equivalent time.

The temperature T, as well the additional delay time and temperatures may be
extracted by solving

toe "Rt + t, [FHge i + (1 —FHs)e‘K%} =ty [FHUe‘K%Jr (1 —FHU)e‘K%}

(8.7)

where tp, tg, ty are the delay time, the stress time and the use time, respectively; Tp
is the temperature applied during the delay; Tsy and Tgy are the high and the low
temperatures during the endurance stress in °K, respectively; Ty and Ty, are the
high and the low temperatures during the use conditions in °K, respectively; FHg
and FHy are the fraction of time spent at high temperature during endurance
stressing and use condition, respectively; K is the Boltzmann’s constant equal to
8.6171 - 107> eV/°K while E, is the activation energy equal to 1.1 eV.

For example, consider the client application class from Table 8.1, Tyy = 40
°C = 313.15 °K; Ty = 30 °C = 303.15 °K; FHy = 1/3 (8 h/day); a 1000 h stress
time using the ramped approach (t; = 1000 h, Tgp =25 °C = 298.15 °K and
FHg = 1/2) and no additional delays (t; = 0). From (8.7) it possible to derive the
endurance stress high temperature, considering that one year of normal use corre-
sponds to ty = 8766 h:

8 SSD Reliability Assessment and Improvement 227

1 _ B _ Ea I _ B 2 _ Ea
te|—€¢ K'si 4+ —e XIsL | =tyy|—e KTun 4+ —e KTuL
*12 2 ME 3

Eq ZtU 1 _ E _ _Ea _ _Ea
e Ksh=—|—-¢ KTUH+§e KTy | — e KTsp

ts |3
E, 1
TSH= 7 A A a
Kin [% (%e_KTEm+ %e_KlTET) —e_gSL]
To 1.1 1
T T 861711075 In[Z876 (11.978 1018 4 25.156 - 10~ 19) —2.544 - 10~ 1]

Tsy =330.76 °K =57.61°C
(8.8)

Hence, the maximum temperature T, for a 1000-h stress, for the client
application class, ramped approach, no delays is 58 °C.

If it is chosen to perform the test at 50 °C instead of 58 °C, it is possible to add
an additional delay, whose duration and temperature can also be derived from (8.7)
by imposing Tsy = 50 °C = 323.15 °K.

tpe "5 = ty [FHye "% + (1 —FHU)e‘K%] —t, [FHse‘K% +(1 —FHs)e_K%}
(8.9)

For example, if a 100-h delay is added to the 1000-h endurance stress, a
Tp = 67 °C can be directly calculated as in (8.10):

.- 8766 |1 E, 2 E, 1000 |1 E 1 E,
100

D= W g(3_313.15k + —e 30305k Ee‘323,15k + 26_298.15k:| (810)

Therefore, the endurance test would consist of 1000 h of active endurance stress
with the temperature ramped between 25 and 50 °C, with an additional 100 h spent
in a non-writing mode at a temperature not greater than 67 °C.

8.6.3.3 Retention Stress

After the endurance stress, SSDs are to be powered down and baked at elevated
temperatures in order to establish the data retention capability. For the ramped-
temperature approach, all drives in the sample are to be baked while, for the split
approach, only the drives stressed at high temperatures are to baked. The SSDs are
to be fully written with data prior to the bake and fully read after the test with
internal error correction bypassed. The number of data errors resulting from the
retention stress is to be added to that resulting from the endurance stress.

The temperatures required for the retention verification are reported in Table 8.3.

228 C. Zambelli and P. Olivo

Two equivalent options are given for the bake temperature and durations and
they are chosen to correspond to the required data retention times for the common
temperature-accelerated mechanism responsible for data degradation in non-volatile
memories, assuming an activation energy of 1.1 eV.

Not all mechanisms responsible for data loss, however, are accelerated by
temperature and therefore a second evaluation is required at room temperature. This
requirement holds only for the first product in a qualification family to be qualified;
subsequent products are exempt. In the ramped-temperature approach the low
temperature retention qualification is performed before the high temperature stress:
in the split-flow approach, only the drives stressed at low temperatures undergo the
low temperature retention test. Since time acceleration via higher temperatures is
impossible, the room-temperature retention evaluation requires mathematical
extrapolations based on drive-level or component-level bit-error-rate data.

When basing the extrapolation on drive-level bit-error-rate data, low-temperature
retention tests require at least 500 h at a temperature between 10 and 30 °C. The bit
error rate can be measured at several times (for instance, 48, 168 and 500 h) and
then the trend can be extrapolated. The fraction of error bits with respect to the total
bit number, called the Raw Bit Error Rate (RBER), depends on the program/erase
cycle count and the retention time. For BER « 1,

RBER =RBER + By - " (8.11)

where RBER|, is the Bit Error Rate at the beginning of the retention period, By is an
arbitrary scale factor dependent on materials and processes, 7 is the retention time
and m is a retention power low coefficient (typically 1 or 2).

To verify the useful retention lifetime, the RBER can be measured as a function
of time and the parameters RBER,, By and m fit (8.11). The resulting fitted equation
may then be used to estimate the RBER at the desired retention time of Table 8.1
and such a value must be below the ECC capability of the SSD controller, also
considering a safety margin between the calculated ECC capability and the RBER.

Consider for example an SSD with a calculated ECC capability of 4 x 107> and
a safety margin equal to 2. Also, consider that the RBER data of Table 8.4 have
been obtained:

The extrapolated RBER at t = 8776 h (=1 year) must be below the ECC
capability with safety margin whose value is 2 - 107>. As it can be seen in
Fig. 8.14, the extrapolated RBER reaches the ECC capability with safety margin
after 10,000 h and, therefore, the retention requirement of Table 8.2 is met.

Table 8.4 Calculated RBER

Retention time (h) RBER
(example) 0 0

48 5.63 -1078

168 223 1077

500 741 -1077

1000 1.59 -107°

8 SSD Reliability Assessment and Improvement 229

1,E-04

ECC safety margin

1,E-05 -

1,E-06 -

RBER

1,E-07 +

1,E-08 4 T . -
1,00E+01 1,00E+02 1,00E+03 1,00E+04 1,00E+05

Retention Time [hours]

Fig. 8.14 Example of the verification of the retention requirements via extrapolation of the
drive-level bit error rate. The concept of the figure is based on the description provided in [9]

The mathematical extrapolation can also be performed using raw bit error rate
data from nonvolatile memory components, if available: at the end of the endurance
stress, the room-retention evaluation can be derived by using the retention data
calculated for the nonvolatile memory components inside the SSD for the specific
number of program/erase cycles experienced during the extrapolation test.

8.6.4 Extrapolation Method

If the direct method would require more than 1000 h of endurance stress, an
extrapolation method can be used. Some of the proposed methods require special
access to SSD internal operation or to nonvolatile memory components information
which make these methods possible only for the SSD manufacturer.

Independently of the extrapolation method used for endurance and retention
verification, some general requirements are to be ensured:

e the SSD must meet the requirements of Table 8.1 for FFR and UBER, for the
temperatures and times stated in the Table;

o the FFR and UBER requirements must be met for both low-temperature
and high-temperature endurance stressing, with temperature ranges of at least
25—40 °C for client SSD and 25-60 °C for enterprise SSD;

e data retention is to be verified under the assumption that the endurance stressing
in use takes place over no longer than 1 year at the endurance use temperature
and hours per day of Table 8.1;

e data retention is to be verified both for a temperature-accelerated mechanism
(assuming an activation energy of 1.1 eV) and a non-temperature-accelerated
mechanism;

e all requirements are to be established at a 60% statistical confidence level.

230 C. Zambelli and P. Olivo
8.6.4.1 Extrapolation of FFR and Bad-Block Trends

For the endurance evaluation, an SSD may be stressed to only some fraction of the
TBW rating. During the endurance stress, functional failures may occur, as well as a
certain number of blocks marked as “bad”. The increase in these two quantities may
be plotted as a function of TBW in a lognormal or Weibull plot and extrapolated to
the TBW rating to obtain estimates of the final levels of FFR and bad blocks.

This extrapolation method is not acceptable for verifying that the UBER
requirements are met, because UBER may have a highly steep dependence on TBW
that makes extrapolations from low TBW data quite unreliable.

8.6.4.2 FFR and UBER Estimation from Reduced-Capacity SSDs

The capacity of an SSD may be artificially reduced so that some nonvolatile
memory components or blocks are not written, while the remaining ones are written
more extensively than would be the case of the full-capacity SSD. In this context,
an SSD will be considered to have reached its endurance rating limit if the stressed
fraction of the nonvolatile memory components reaches the target program/erase
cycles.

For this approach to be used, the manufacturer must ensure that the method of
capacity reduction does not significantly distort the normal internal operation of the
SSD. Simply reducing the logical span of written data is generally not sufficient,
since the SSD controller and firmware make use of the full nonvolatile memory
capacity, if not instructed.

A variation of this method is to extend the nonvolatile memory program/erase
cycles beyond the target expected at the TBW rating, in order to generate functional
failures and data errors. The resulting data can then be plotted and FFR and UBER
can be extrapolated for the expected, lower, TBW rating.

References

1. http://www.storagesearch.com/chartingtheriseofssds.html. Accessed 2018

2. R. Micheloni, S. Aritome, L. Crippa, Array architectures for 3-D NAND flash memories.
Proc. IEEE 105(9), 1634-1649 (2017)

3. L. Zuolo, C. Zambelli, R. Micheloni, P. Olivo, Solid-state drives: memory driven design
methodologies for optimal performance. Proc. IEEE 105(9), 1589-1608 (2017)

4. N.R. Mielke, R.E. Frickey, 1. Kalastirsky, M. Quan, D. Ustinov, V.J. Vasudevan, Reliability
of solid-state drives based on NAND flash memory. Proc. IEEE 105(9), 1725-1750 (2017)

5. W. Jiang, C. Hu, Y. Zhou, A. Kanevsky, Are disks the dominant contributor for storage
failures?: a comprehensive study of storage subsystem failure characteristics. ACM Trans.
Storage 4(3), 7 (2008)

6. L. Bairavasundaram, G. Goodson, S. Pasupathy, J. Schindler, An analysis of latent sector
errors in disk drives, in Proceedings of the ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, 2007, pp. 289-300

http://www.storagesearch.com/chartingtheriseofssds.html

8 SSD Reliability Assessment and Improvement 231

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

. L. Bairavasundaram, A. Arpaci-Dusseau, G. Goodson, B. Schroeder, An analysis of data

corruption in the storage stack. ACM Trans. Storage 4(3), 7 (2008)

. B. Schroeder, G. Gibson, Understanding disk failure rates: what does an MTTF of 1,000,000

hours mean to you? ACM Trans. Storage 3(3), 8 (2007)

. JEDEC, JESD218B Solid-State Drive (SSD) Requirements and Endurance Test Method

(2016)

N. Mielke, Accelerated testing of radiation-induced soft errors in solid-state drives. IEEE
Trans. Device Mater. Rel. 15(4), 552-558 (2015)

F. Masuoka, M. Momodomi, Y. Iwata, R. Shirota, New ultra high density EPROM and flash
EPROM cell with NAND structure, in /EEE IEDM Technical Digest pp. 552-555 (1987)
M. Lenzlinger, E.H. Snow, Fowler-Nordheim tunneling into thermally grown SiO,. J. Appl.
Phys. 40, 273-283 (1969)

M. Momodomi, T. Tanaka, Y. Iwata, Y. Tanaka, H. Oodaira, Y. Itoh, R. Shirota, K. Ohuchi,
F. Masuoka, A 4 Mb NAND EEPROM with Tight Programmed Vt Distribution.
IEEE J. Solid State Circ. 26(4), 492-496 (1991)

G.J. Hemink, T. Tanaka, T. Endoh, S. Aritome, R. Shirota, Fast and accurate programming
method for multi-level NAND EEPROMs, in VLSI Symposium on Technology and Circuits,
June 1995, pp. 129-130

A. Chimenton, P. Pellati, P. Olivo, Analysis of erratic bits in flash memories. IEEE Trans.
Devices Mater. Reliab. 1(4), 179-184 (2001)

M. Momodomi, Y. Itoh, R. Shirota, Y. Iwata, R. Nakayama, R. Kirisawa, T. Tanaka, S.
Aritome, T. Endoh, K. Ohuchi, F. Masuoka, An Experimental 4-Mbit CMOS EEPROM with
a NAND-structured cell. IEEE J. Solid State Circ. 24(5), 1238—-1243 (1989)

C. Monzio Compagnoni, A. Goda, A.S. Spinelli, P. Feeley, A.L. Lacaita, A. Visconti,
Reviewing the evolution of the NAND flash technology. Proc. IEEE 105(9), 1609-1633
2017)

T. Parnell, N. Papandreou, T. Mittelholzer, H. Pozidis, Modelling of the threshold voltage
distributions of sub-20 nm NAND flash memory, in [EEE Global Communications
Conference (Austin, TX, 2014), pp. 2351-2356

K. Lee, M. Kang, S. Seo, D. Kang, D.H. Li, Y. Hwang, H. Shin, Separation of corner
component in TAT mechanism in retention characteristics of Sub 20-nm NAND flash
memory. IEEE Elect. Device Lett. 35(1), 51-53 (2014)

G.J. Hemink, K. Shimizu, S. Aritome, R. Shirota, Trapped hole enhanced stress induced
leakage currents in NAND EEPROM tunnel oxides, in Proceedings of International
Reliability Physics Symposium, Apr 1996, pp. 117-121

K. Mizoguchi, T. Takahashi, S. Aritome, K. Takeuchi, Data-retention characteristics
comparison of 2D and 3D TLC NAND flash memories, in 2017 IEEE International Memory
Workshop (IMW) (Monterey, CA, 2017), pp. 1-4

A. Chimenton, C. Zambelli, P. Olivo, A statistical model of erratic behaviors in flash memory
arrays. IEEE Trans. Electr. Devices 58(11), 3707-3711 (2011)

C. Zambelli, P. Olivo, L. Crippa, A. Marelli, R. Micheloni, Uniform and concentrated read
disturb effects in mid-1X TLC NAND flash memories for enterprise solid state drives, in 2017
IEEE International Reliability Physics Symposium (IRPS), (Monterey, CA, 2017),
pp. PM-5.1-PM-5.4

H.H. Wang, P.S. Shieh, C.T. Huang, K. Tokami, R. Kuo, S.H. Chen, H.C. Wei, S. Pittikoun,
S. Aritome, a new read-disturb failure mechanism caused by boosting hot-carrier injection
effect in MLC NAND flash memory, in IEEE International Memory Workshop, May 2009,
pp. 1-2

J. Lee, S. Hur, J. Choi, Effects of floating-gate interference on NAND flash memory cell
operation. IEEE Elect. Device Lett. 23(5), 264-266 (2002)

J. Lee, C. Lee, M. Lee, H. Kim, K. Park, W. Lee, A new programming disturbance
phenomenon in NAND flash memory by source/drain hot-electrons generated by GIDL
current, in Non-volatile Semiconductor Memory Workshop, Feb 2006, pp. 31-33

232 C. Zambelli and P. Olivo

27. S. Satoh, H. Hagiwara, T. Tanzawa, K. Takeuchi, R. Shirota, A novel isolation-scaling
technology for NAND EEPROMs with the minimized program disturbance, in [EDM
Technical Digest, Dec 1997, pp. 291-294

28. N. Mielke et al., Bit error rate in NAND flash memories, in Proceedings of IEEE
International Reliability Physics Symposium Phoenix, Apr 2008, (AZ, USA), pp. 9-19

29. C. Zambelli, A. Marelli, R. Micheloni, P. Olivo, Modeling the endurance reliability of
intradisk RAID solutions for Mid-1X TLC NAND flash solid-state drives, in IEEE
Transactions on Device and Materials Reliability, Dec 2017, vol. 17, no. 4, pp. 713-721

30. G. Dong, N. Xie, T. Zhang, Enabling NAND flash memory use Soft-decision error correction
codes at minimal read latency overhead. IEEE Trans. Circ. Syst. I Regul. Paper 60(9), 2412—
2421 (2013)

31. R. Micheloni, A. Marelli, R. Ravasio, Error Correction Codes for Non-Volatile Memories,
Springer (2008)

32. Micron Corporation, TN-29-42: Wear-Leveling Techniques in NAND Flash Devices,
Application Note, 2008

33. H. Belgal, Apparatus, system, and method for improving read endurance for a nonvolatile
memory. U.S. Patent 8954650B2, 10 Feb 2015

34. J. Cha, S. Kang, Data randomization scheme for endurance enhancement and interference
mitigation of multilevel flash memory devices. ETRI J. 35(1), 166-169 (2013)

35. P. Muroke, Flash memory field failure mechanisms, in 2006 IEEE International Reliability
Physics Symposium Proceedings (San Jose, CA, 2006), pp. 313-316

36. C. Zambelli, P. King, P. Olivo, L. Crippa, R. Micheloni, Power-supply impact on the
reliability of mid-1X TLC NAND flash memories, in 2016 IEEE International Reliability
Physics Symposium (IRPS), (Pasadena, CA, 2016), pp. 2B-3-1-2B-3-6

37. Y. Li, 3 Bit Per Cell NAND Flash Memory on 19 nm Technology, Flash Memory Summit,
Aug 2012

38. Micron Corporation, Comparison of Client and Enterprise SSD Data Path Protection,
Application Note (2011)

39. SMART Storage Systems, Power Failure Protection, Application Note (2012)

40. JEDEC, JESD219 Solid-State Drive (SSD) Endurance Workloads (2012)

Chapter 9 ®)
Reliability Issues e
in Flash-Memory-Based Solid-State

Drives: Experimental Analysis,

Mitigation, Recovery

Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo and Onur Mutlu

Abstract NAND flash memory is ubiquitous in everyday life today because
its capacity has continuously increased and cost has continuously decreased over
decades. This positive growth is a result of two key trends: (1) effective process
technology scaling; and (2) multi-level (e.g., MLC, TLC) cell data coding. Unfor-
tunately, the reliability of raw data stored in flash memory has also continued to
become more difficult to ensure, because these two trends lead to (1) fewer electrons
in the flash memory cell floating gate to represent the data; and (2) larger cell-to-cell
interference and disturbance effects. Without mitigation, worsening reliability can
reduce the lifetime of NAND flash memory. As a result, flash memory controllers
in solid-state drives (SSDs) have become much more sophisticated: they incorporate
many effective techniques to ensure the correct interpretation of noisy data stored
in flash memory cells. In this chapter, we review recent advances in SSD error
characterization, mitigation, and data recovery techniques for reliability and lifetime
improvement. We provide rigorous experimental data from state-of-the-art MLC and
TLC NAND flash devices on various types of flash memory errors, to motivate the
need for such techniques. Based on the understanding developed by the experimental
characterization, we describe several mitigation and recovery techniques, including
(1) cell-to-cell interference mitigation; (2) optimal multi-level cell sensing; (3) error
correction using state-of-the-art algorithms and methods; and (4) data recovery when
error correction fails. We quantify the reliability improvement provided by each of

O. Mutlu (=3)
ETH Ziirich, Ziirich, Switzerland
e-mail: omutlu@gmail.com

Y. Cai - S. Ghose (<) - Y. Luo - O. Mutlu
Carnegie Mellon University, Pittsburgh, PA, USA
email: ghose@cmu.edu

E. F. Haratsch
Seagate Technology, Fremont, CA, USA

© Springer Nature Singapore Pte Ltd. 2018 233
R. Micheloni et al. (eds.), Inside Solid State Drives (SSDs),

Springer Series in Advanced Microelectronics 37,

https://doi.org/10.1007/978-981-13-0599-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_9&domain=pdf

234 Y. Cai et al.

these techniques. Looking forward, we briefly discuss how flash memory and these
techniques could evolve into the future.

Solid-state drives (SSDs) are widely used in computer systems today as a primary
method of data storage. In comparison with magnetic hard drives, the previously
dominant choice for storage, SSDs deliver significantly higher read and write per-
formance, with orders of magnitude of improvement in random-access input/output
(I/0) operations, and are resilient to physical shock, while requiring a smaller form
factor and consuming less static power. SSD capacity (i.e., storage density) and
cost-per-bit have been improving steadily in the past two decades, which has
led to the widespread adoption of SSD-based data storage in most computing
systems, from mobile consumer devices [91, 107] to enterprise data centers
[67, 174, 199, 233, 257].

The first major driver for the improved SSD capacity and cost-per-bit has been
manufacturing process scaling, which has increased the number of flash memory
cells within a fixed area. Internally, commercial SSDs are made up of NAND flash
memory chips, which provide nonvolatile memory storage (i.e., the data stored
in NAND flash is correctly retained even when the power is disconnected) using
floating-gate (FG) transistors [111, 172, 187] or charge trap transistors [65, 268].
In this paper, we mainly focus on floating-gate transistors, since they are the most
common transistor used in today’s flash memories. A floating-gate transistor con-
stitutes a flash memory cell. It can encode one or more bits of digital data, which
is represented by the level of charge stored inside the transistor’s floating gate. The
transistor traps charge within its floating gate, which dictates the threshold voltage
level at which the transistor turns on. The threshold voltage level of the floating gate
is used to determine the value of the digital data stored inside the transistor. When
manufacturing process scales down to a smaller technology node, the size of each
flash memory cell, and thus the size of the transistor, decreases, which in turn reduces
the amount of charge that can be trapped within the floating gate. Thus, process scal-
ing increases storage density by enabling more cells to be placed in a given area, but
it also causes reliability issues, which are the focus of this paper.

The second major driver for improved SSD capacity has been the use of a single
floating-gate transistor to represent more than one bit of digital data. Earlier NAND
flash chips stored a single bit of data in each cell (i.e., a single floating-gate transis-
tor), which was referred to as single-level cell (SLC) NAND flash. Each transistor
can be set to a specific threshold voltage within a fixed range of voltages. SLC NAND
flash divided this fixed range into two voltage windows, where one window repre-
sents the bit value 0 and the other window represents the bit value 1. Multi-level cell
(MLC) NAND flash was commercialized in the last two decades, where the same
voltage range is instead divided into four voltage windows that represent each pos-
sible 2-bit value (00, 01, 10, and 11). Each voltage window in MLC NAND flash
is therefore much smaller than a voltage window in SLC NAND flash. This makes
it more difficult to identify the value stored in a cell. More recently, triple-level cell
(TLC) flash has been commercialized [7, 86], which further divides the range, pro-
viding eight voltage windows to represent a 3-bit value. Quadruple-level cell (QLC)

9 Reliability Issues in Flash-Memory-Based Solid-State ... 235

flash, storing a 4-bit value per cell, is currently being developed [203]. Encoding
more bits per cell increases the capacity of the SSD without increasing the chip size,
yet it also decreases reliability by making it more difficult to correctly store and read
the bits.

The two major drivers for the higher capacity, and thus the ubiquitous commercial
success, of flash memory as a storage device, are also major drivers for its reduced
reliability and are the causes of its scaling problems. As the amount of charge stored
in each NAND flash cell decreases, the voltage for each possible bit value is dis-
tributed over a wider voltage range due to greater process variation, and the mar-
gins (i.e., the width of the gap between neighboring voltage windows) provided to
ensure the raw reliability of NAND flash chips have been diminishing, leading to a
greater probability of flash memory errors with newer generations of SSDs. NAND
flash memory errors can be induced by a variety of sources [19], including flash cell
wearout [19, 20, 162], errors introduced during programming [17, 23, 162, 212],
interference from operations performed on adjacent cells [21, 23, 31, 75, 151, 182,
207, 209], and data retention issues due to charge leakage [19, 22, 29, 30, 182].

To compensate for this, SSDs employ sophisticated error-correcting codes (ECCs)
within their controllers. An SSD controller uses the ECC information stored along-
side a piece of data in the NAND flash chip to detect and correct a number of raw
bit errors (i.e., the number of errors experienced before correction is applied) when
the piece of data is read out. The number of bits that can be corrected for every piece
of data is a fundamental tradeoff in an SSD. A more sophisticated ECC can tolerate
a larger number of raw bit errors, but it also consumes greater area overhead and
latency. Error characterization studies [19, 20, 75, 162, 182, 212] have found that,
due to NAND flash wearout, the probability of raw bit errors increases as more pro-
gram/erase (P/E) cycles (i.e., write accesses, or writes) are performed to the drive.
The raw bit error rate eventually exceeds the maximum number of errors that can be
corrected by ECC, at which point data loss occurs [22, 27, 174, 233]. The lifetime
of a NAND-flash-memory-based SSD is determined by the number of P/E cycles
that can be performed successfully while avoiding data loss for a minimum refen-
tion guarantee (i.e., the required minimum amount of time, after being written, that
the data can still be read out without uncorrectable errors).

The decreasing raw reliability of NAND flash memory chips has drastically
impacted the lifetime of commercial SSDs. For example, older SLC NAND-flash-
based SSDs were able to withstand 150,000 P/E cycles (writes) to each flash cell,
but contemporary 1x-nm (i.e., 15-19 nm) process-based SSDs consisting of MLC
NAND flash can sustain only 3,000 P/E cycles [168, 212, 294]. With the raw reli-
ability of a flash chip dropping so significantly, approaches to mitigating reliabil-
ity issues in NAND-flash-based SSDs have been the focus of an important body of
research. A number of solutions have been proposed to increase the lifetime of con-
temporary SSDs, ranging from changes to the low-level device behavior (e.g., [17,
20, 21, 287]) to making SSD controllers much more intelligent in dealing with indi-
vidual flash memory chips (e.g., [22, 26, 28-31, 86, 161, 162]). In addition, various
mechanisms have been developed to successfully recover data in the event of data
loss that may occur during a read operation to the SSD (e.g., [21, 22, 26]).

236 Y. Cai et al.

In this chapter, we provide a comprehensive overview of the state of flash-
memory-based SSD reliability, with a focus on (1) fundamental causes of flash
memory errors, backed up by (2) quantitative error data collected from real state-of-
the-art flash memory devices, and (3) sophisticated error mitigation and data recov-
ery techniques developed to tolerate, correct, and recover from such errors. To this
end, we first discuss the architecture of a state-of-the-art SSD, and describe mech-
anisms used in a commercial SSD to reduce the probability of data loss (Sect. 9.1).
Next, we discuss the low-level behavior of the underlying NAND flash memory chip
in an SSD, to illustrate fundamental reasons why errors can occur in flash memory
(Sect.9.2). We then discuss the root causes of these errors, quantifying the impact
of each error source using experimental characterization data collected from real
NAND flash memory chips (Sect. 9.3). For each of these error sources, we describe
various state-of-the-art mechanisms that mitigate the induced errors (Sect. 9.4). We
next examine several error recovery flows to successfully extract data from the SSD
in the event of data loss during a read operation (Sect.9.5). Then, we look to the
future to foreshadow how the reliability of SSDs might be affected by emerging
flash memory technologies (Sect. 9.6). Finally, we briefly examine how other mem-
ory technologies (such as DRAM, which is used prominently in a modern SSD,
and emerging nonvolatile memory) suffer from similar reliability issues to SSDs
(Sect.9.7).

9.1 State-of-the-Art SSD Architecture

In order to understand the root causes of reliability issues within SSDs, we first pro-
vide an overview of the system architecture of a state-of-the-art SSD. The SSD con-
sists of a group of NAND flash memories (or chips) and a controller, as shown in
Fig.9.1. A host computer communicates with the SSD through a high-speed host
interface (e.g., AHCI, NVMe; see Sect.9.1.3.1), which connects to the SSD con-
troller. The controller is then connected to each of the NAND flash chips via memory
channels.

9.1.1 Flash Memory Organization

Figure 9.2 shows an example of how NAND flash memory is organized within an
SSD. The flash memory is spread across multiple flash chips, where each chip con-
tains one or more flash dies, which are individual pieces of silicon wafer that are con-
nected together to the pins of the chip. Contemporary SSDs typically have 4—16 chips
per SSD, and can have as many as 16 dies per chip. Each chip is connected to one or
more physical memory channels, and these memory channels are not shared across
chips. A flash die operates independently of other flash dies, and contains between
one and four planes. Each plane contains hundreds to thousands of flash blocks. Each
block is a 2D array that contains hundreds of rows of flash cells (typically 256—
1024 rows) where the rows store contiguous pieces of data. Much like banks in a
multi-bank memory (e.g., DRAM banks [36, 130, 131, 143, 145, 147, 148, 188,
194, 195]), the planes can execute flash operations in parallel, but the planes within a

9 Reliability Issues in Flash-Memory-Based Solid-State ... 237

(b)

Controller

DRAM
a Manager =4 1
and Buffers
Processors Channel =i
(Firmware)

Compression
ECC Engine

Channel h-1| Channel 1 |Channe| 0

Host Interface
(AHCI, NVMe)

Fig. 9.1 a SSD system architecture, showing controller (Ctrl) and chips. b Detailed view of con-
nections between controller components and chips. Adapted from [15]

die share a single set of data and control buses [1]. Hence, an operation can be started
in a different plane in the same die in a pipelined manner, every cycle. Figure 9.2
shows how blocks are organized within chips across multiple channels. In the rest of
this work, without loss of generality, we assume that a chip contains a single die.

Data in a block is written at the unit of a page, which is typically between 8 and
16 kB in size in NAND flash memory. All read and write operations are performed
at the granularity of a page. Each block typically contains hundreds of pages. Blocks
in each plane are numbered with an ID that is unique within the plane, but is shared
across multiple planes. Within the block, each page is numbered in sequence. The
controller firmware groups blocks with the same ID number across multiple chips
and planes together into a superblock. Within each superblock, the pages with the
same page number are considered a superpage. The controller opens one superblock
(i.e., an empty superblock is selected for write operations) at a time, and typically
writes data to the NAND flash memory one superpage at a time to improve sequen-
tial read/write performance and make error correction efficient, since some parity
information is kept at superpage granularity (see Sect. 9.1.3.10). Having the ability
to write to all of the pages in a superpage simultaneously, the SSD can fully exploit
the internal parallelism offered by multiple planes/chips, which in turn maximizes
write throughput.

238 Y. Cai et al.

Chip 0 Chip c-1
(Die d-1)
(Diel) S Plane p-1
g .
Die0 .- I :
i Block m || Superblock m
.l
1 n | I [Pagen ||| Superpage n
St :
o - Q
g g g _'_—|— Bloclg b-1
a||l= a | Page n
HH | CPager]

T 1
Channel 0 Channel h-1

Fig. 9.2 Flash memory organization. Reproduced from [15]

9.1.2 Memory Channel

Each flash memory channel has its own data and control connection to the SSD
controller, much like a main memory channel has to the DRAM controller [74, 87,
88, 100, 129, 130, 132, 135, 189, 191, 194, 195, 250-252]. The connection for
each channel is typically an 8- or 16-bit wide bus between the controller and one of
the flash memory chips [1]. Both data and flash commands can be sent over the bus.

Each channel also contains its own control signal pins to indicate the type of data
or command that is on the bus. The address latch enable (ALE) pin signals that the
controller is sending an address, while the command latch enable (CLE) pin signals
that the controller is sending a flash command. Every rising edge of the write enable
(WE) signal indicates that the flash memory should write the piece of data currently
being sent on the bus by the SSD controller. Similarly, every rising edge of the read
enable (RE) signal indicates that the flash memory should send the next piece of data
from the flash memory to the SSD controller.

Each flash memory die connected to a memory channel has its own chip enable
(CE) signal, which selects the die that the controller currently wants to communicate
with. On a channel, the bus broadcasts address, data, and flash commands to all dies
within the channel, but only the die whose CE signal is active reads the information
from the bus and executes the corresponding operation.

9.1.3 SSD Controller

The SSD controller, shown in Fig. 9.1b, is responsible for (1) handling I/O requests
received from the host, (2) ensuring data integrity and efficient storage, and
(3) managing the underlying NAND flash memory. To perform these tasks, the

9 Reliability Issues in Flash-Memory-Based Solid-State ... 239

controller runs firmware, which is often referred to as the flash translation layer
(FTL). FTL tasks are executed on one or more embedded processors that exist inside
the controller. The controller has access to DRAM, which can be used to store var-
ious controller metadata (e.g., how host memory addresses map to physical SSD
addresses) and to cache relevant (e.g., frequently accessed) SSD pages [174, 229].

When the controller handles I/O requests, it performs a number of operations on
both the requests and the data. For requests, the controller schedules them in a man-
ner that ensures correctness and provides high/reasonable performance. For data, the
controller scrambles the data to improve raw bit error rates, performs ECC encod-
ing/decoding, and in some cases compresses/decompresses and/or encrypts/decrypts
the data and employs superpage-level data parity. To manage the NAND flash mem-
ory, the controller runs firmware that maps host data to physical NAND flash pages,
performs garbage collection on flash pages that have been invalidated, applies wear
leveling to evenly distribute the impact of writes on NAND flash reliability across all
pages, and manages bad NAND flash blocks. We briefly examine the various tasks
of the SSD controller.

9.1.3.1 Scheduling Requests

The controller receives I/O requests over a host controller interface (shown as Host
Interface in Fig. 9.1b), which consists of a system I/O bus and the protocol used to
communicate along the bus. When an application running on the host system needs
to access the SSD, it generates an I/O request, which is sent by the host over the
host controller interface. The SSD controller receives the I/O request, and inserts the
request into a queue. The controller uses a scheduling policy to determine the order in
which the controller processes the requests that are in the queue. The controller then
sends the request selected for scheduling to the FTL (part of the Firmware shown in
Fig.9.1b).

The host controller interface determines how requests are sent to the SSD and
how the requests are queued for scheduling. Two of the most common host con-
troller interfaces used by modern SSDs are the Advanced Host Controller Inter-
face (AHCI) [99] and NVM Express (NVMe) [202]. AHCI builds upon the Serial
Advanced Technology Attachment (SATA) system bus protocol [238], which was
originally designed to connect the host system to magnetic hard disk drives. AHCI
allows the host to use advanced features with SATA, such as native command queu-
ing (NCQ). When an application executing on the host generates an I/O request, the
application sends the request to the operating system (OS). The OS sends the request
over the SATA bus to the SSD controller, and the controller adds the request to a sin-
gle command queue. NCQ allows the controller to schedule the queued I/0 requests
in a different order than the order in which requests were received (i.e., requests are
scheduled out of order). As aresult, the controller can choose requests from the queue
in a manner that maximizes the overall SSD performance (e.g., a younger request
can be scheduler earlier than an older request that requires access to a plane that

240 Y. Cai et al.

is occupied with serving another request). A major drawback of AHCI and SATA
is the limited throughput they enable for SSDs [284], as the protocols were origi-
nally designed to match the much lower throughput of magnetic hard disk drives.
For example, a modern magnetic hard drive has a sustained read throughput of 300
MB/s [237], whereas a modern SSD has a read throughput of 3500 MB/s [232].
However, AHCI and SATA are widely deployed in modern computing systems, and
they currently remain a common choice for the SSD host controller interface.

To alleviate the throughput bottleneck of AHCI and SATA, many manufacturers
have started adopting host controller interfaces that use the PCI Express (PCle) sys-
tem bus [217]. A popular standard interface for the PCle bus is the NVM Express
(NVMe) interface [202]. Unlike AHCI, which requires an application to send I/O
requests through the OS, NVMe directly exposes multiple SSD I/O queues to the
applications executing on the host. By directly exposing the queues to the appli-
cations, NVMe simplifies the software I/O stack, eliminating most OS involve-
ment [284], which in turn reduces communication overheads. An SSD using the
NVMe interface maintains a separate set of queues for each application (as opposed
to the single queue used for all applications with AHCI) within the host interface.
With more queues, the controller (1) has a larger number of requests to select from
during scheduling, increasing its ability to utilize idle resources (i.e., channels, dies,
planes; see Sect.9.1.1); and (2) can more easily manage and control the amount
of interference that an application experiences from other concurrently-executing
applications. Currently, NVMe is used by modern SSDs that are designed mainly
for high-performance systems (e.g., enterprise servers, data centers [283, 284]).

9.1.3.2 Flash Translation Layer

The main duty of the FTL (which is part of the Firmware shown in Fig.9.1) is to
manage the mapping of logical addresses (i.e., the address space utilized by the
host) to physical addresses in the underlying flash memory (i.e., the address space
for actual locations where the data is stored, visible only to the SSD controller) for
each page of data [54, 80]. By providing this indirection between address spaces,
the FTL can remap the logical address to a different physical address (i.e., move the
data to a different physical address) without notifying the host. Whenever a page of
data is written to by the host or moved for underlying SSD maintenance operations
(e.g., garbage collection [40, 288]; see Sect. 9.1.3.3), the old data (i.e., the physi-
cal location where the overwritten data resides) is simply marked as invalid in the
physical block’s metadata, and the new data is written to a page in the flash block
that is currently open for writes (see Sect.9.2.4 for more detail on how writes are
performed).

The FTL is also responsible for wear leveling, to ensure that all of the blocks
within the SSD are evenly worn out [40, 288]. By evenly distributing the wear (i.e.,
the number of P/E cycles that take place) across different blocks, the SSD controller
reduces the heterogeneity of the amount of wearout across these blocks, thereby
extending the lifetime of the device. The wear-leveling algorithm is invoked when

9 Reliability Issues in Flash-Memory-Based Solid-State ... 241

the current block that is being written to is full (i.e., no more pages in the block are
available to write to), and it enables the controller to select a new block from the
free list to direct the future writes to. The wear-leveling algorithm dictates which of
the blocks from the free list is selected. One simple approach is to select the block
in the free list with the lowest number of P/E cycles to minimize the variance of
the wearout amount across blocks, though many algorithms have been developed for
wear leveling [39, 71].

9.1.3.3 Garbage Collection

When the host issues a write request to a logical address stored in the SSD, the SSD
controller performs the write out of place (i.e., the updated version of the page data
is written to a different physical page in the NAND flash memory), because in-place
updates cannot be performed (see Sect.9.2.4). The old physical page is marked as
invalid when the out-of-place write completes. Fragmentation refers to the waste of
space within a block due to the presence of invalid pages. In a fragmented block, a
fraction of the pages are invalid, but these pages are unable to store new data until
the page is erased. Due to circuit-level limitations, the controller can perform erase
operations only at the granularity of an entire block (see Sect. 9.2.4 for details). As a
result, until a fragmented block is erased, the block wastes physical space within the
SSD. Over time, if fragmented blocks are not erased, the SSD will run out of pages
that it can write new data to. The problem becomes especially severe if the blocks
are highly fragmented (i.e., a large fraction of the pages within a block are invalid).

To reduce the negative impact of fragmentation on usable SSD storage space, the
FTL periodically performs a process called garbage collection. Garbage collection
finds highly-fragmented flash blocks in the SSD and recovers the wasted space due
to invalid pages. The basic garbage collection algorithm [40, 288] (1) identifies the
highly-fragmented blocks (which we call the selected blocks), (2) migrates any valid
pages in a selected block (i.e., each valid page is written to a new block, its virtual-to-
physical address mapping is updated, and the page in the selected block is marked as
invalid), (3) erases each selected block (see Sect. 9.2.4), and (4) adds a pointer to each
selected block into the free list within the FTL. The garbage collection algorithm
typically selects blocks with the highest number of invalid pages. When the controller
needs a new block to write pages to, it selects one of the blocks currently in the free
list.

We briefly discuss five optimizations that prior works propose to improve the
performance and/or efficiency of garbage collection [1, 52, 80, 84, 90, 161, 222,
276, 288]. First, the garbage collection algorithm can be optimized to determine
the most efficient frequency to invoke garbage collection [222, 288], as performing
garbage collection too frequently can delay I/O requests from the host, while not
performing garbage collection frequently enough can cause the controller to stall
when there are no blocks available in the free list. Second, the algorithm can be
optimized to select blocks in a way that reduces the number of page copy and erase
operations required each time the garbage collection algorithm is invoked [84, 222].

242 Y. Cai et al.

Third, some works reduce the latency of garbage collection by using multiple chan-
nels to perform garbage collection on multiple blocks in parallel [1, 90]. Fourth,
the FTL can minimize the latency of I/O requests from the host by pausing erase
and copy operations that are being performed for garbage collection, in order to ser-
vice the host requests immediately [52, 276]. Fifth, pages can be grouped together
such that all of the pages within a block become invalid around the same time [80,
90, 161]. For example, the controller can group pages with (1) a similar degree of
write-hotness (i.e., the frequency at which a page is updated; see Sect. 9.4.6) or (2) a
similar death time (i.e., the time at which a page is overwritten). Garbage collection
remains an active area of research.

9.1.3.4 Flash Reliability Management

The SSD controller performs many background optimizations that improve flash reli-
ability. These flash reliability management techniques, as we will discuss in more
detail in Sect. 9.4, can effectively improve flash lifetime at a very low cost, since
the optimizations are usually performed during idle times, when the interference
with the running workload is minimized. These management techniques sometimes
require small metadata storage in memory (e.g., for storing the near-optimal read ref-
erence voltages [21, 22, 162]), or require a timer (e.g., for triggering refreshes in time
[29, 30]).

9.1.3.5 Compression

Compression can reduce the size of the data written to minimize the number of flash
cells worn out by the original data. Some controllers provide compression, as well
as decompression, which reconstructs the original data from the compressed data
stored in the flash memory [154, 300]. The controller may contain a compression
engine, which, for example, performs the LZ77 or LZ78 algorithms. Compression is
optional, as some types of data being stored by the host (e.g., JPEG images, videos,
encrypted files, files that are already compressed) may not be compressible.

9.1.3.6 Data Scrambling and Encryption

The occurrence of errors in flash memory is highly dependent on the data values
stored into the memory cells [19, 23, 31]. To reduce the dependence of the error rate
on data values, an SSD controller first scrambles the data before writing it into the
flash chips [32, 121]. The key idea of scrambling is to probabilistically ensure that the
actual value written to the SSD contains an equal number of randomly distributed
zeroes and ones, thereby minimizing any data-dependent behavior. Scrambling is
performed using a reversible process, and the controller descrambles the data stored
in the SSD during a read request. The controller employs a linear feedback shift

9 Reliability Issues in Flash-Memory-Based Solid-State ... 243

register (LFSR) to perform scrambling and descrambling. An n-bit LFSR generates
2"~ bits worth of pseudo-random numbers without repetition. For each page of data
to be written, the LFSR can be seeded with the logical address of that page, so that
the page can be correctly descrambled even if maintenance operations (e.g., garbage
collection) migrate the page to another physical location, as the logical address is
unchanged. (This also reduces the latency of maintenance operations, as they do not
need to descramble and rescramble the data when a page is migrated.) The LFSR
then generates a pseudo-random number based on the seed, which is then XORed
with the data to produce the scrambled version of the data. As the XOR operation is
reversible, the same process can be used to descramble the data.

In addition to the data scrambling employed to minimize data value dependence,
several SSD controllers include data encryption hardware [55, 89, 271]. An SSD that
contains data encryption hardware within its controller is known as a self-encrypting
drive (SED). In the controller, data encryption hardware typically employs AES
encryption [55, 59, 201, 271], which performs multiple rounds of substitutions and
permutations to the unencrypted data in order to encrypt it. AES employs a separate
key for each round [59, 201]. In an SED, the controller contains hardware that gen-
erates the AES keys for each round, and performs the substitutions and permutations
to encrypt or decrypt the data using dedicated hardware [55, 89, 271].

9.1.3.7 Error-Correcting Codes

ECC is used to detect and correct the raw bit errors that occur within flash mem-
ory. A host writes a page of data, which the SSD controller splits into one or more
chunks. For each chunk, the controller generates a codeword, consisting of the chunk
and a correction code. The strength of protection offered by ECC is determined by
the coding rate, which is the chunk size divided by the codeword size. A higher cod-
ing rate provides weaker protection, but consumes less storage, representing a key
reliability tradeoff in SSDs.

The ECC algorithm employed (typically BCH [10, 92, 153, 243] or LDPC [72,
73, 167, 243, 298]; see Sect.9.5), as well as the length of the codeword and the
coding rate, determine the total error correction capability, i.e., the maximum num-
ber of raw bit errors that can be corrected by ECC. ECC engines in contemporary
SSDs are able to correct data with a relatively high raw bit error rate (e.g., between
1073 and 1072 [103]) and return data to the host at an error rate that meets traditional
data storage reliability requirements (e.g., a post-correction error rate of 10~ in the
JEDEC standard [105]). The error correction failure rate (Pgcpg) of an ECC imple-
mentation, with a codeword length of / where the codeword has an error correction
capability of ¢ bits, can be modeled as:

!
Prcpr = z <Ii>(l - BER)!"YBER* 9.1

k=t+1

244 Y. Cai et al.

where BER is the bit error rate of the NAND flash memory. We assume in this equa-
tion that errors are independent and identically distributed.

In addition to the ECC information, a codeword contains cyclic redundancy
checksum (CRC) parity information [229]. When data is being read from the NAND
flash memory, there may be times when the ECC algorithm incorrectly indicates that
it has successfully corrected all errors in the data, when uncorrected errors remain.
To ensure that incorrect data is not returned to the user, the controller performs a
CRC check in hardware to verify that the data is error free [219, 229].

9.1.3.8 Data Path Protection

In addition to protecting the data from raw bit errors within the NAND flash memory,
newer SSDs incorporate error detection and correction mechanisms throughout the
SSD controller, in order to further improve reliability and data integrity [229]. These
mechanisms are collectively known as data path protection, and protect against
errors that can be introduced by the various SRAM and DRAM structures that exist
within the SSD.! Figure 9.3 illustrates the various structures within the controller
that employ data path protection mechanisms. There are three data paths that require
protection: (1) the path for data written by the host to the flash memory, shown as
a red solid line in Fig. 9.3; (2) the path for data read from the flash memory by the
host, shown as a green dotted line; and (3) the path for metadata transferred between
the firmware (i.e., FTL) processors and the DRAM, shown as a blue dashed line.

In the write data path of the controller (the red solid line shown in Fig. 9.3), data
received from the host interface (@ in the figure) is first sent to a host FIFO buffer

HFIFO Parity
Check

MPECC HFIFO Parity Ly
Generator Generator

Buffer HFIFO Parity
| = .
Generator

- ->| MPECC Generator }-
Processors
(Firmware) I - MPECC Check

: L MPECC &) CRC
: Check Generator

MPECC . HFIFO Parity
Check Check

[
o
(¢
[+
j=
[
=)
=
-
wn
(=]
=

(PCle, SATA, SAS)

Interface Q e DRAM (uses MPECC)

CRC =

Check e

'S

: ECC 2
. MPECC e

""" Generator % Decoder | CRC Check Generator |*° <Zt

Fig. 9.3 Data path protection employed within the controller. Reproduced from [15]

I'See Sect. 9.7 for a discussion on the possible types of errors that can be present in DRAM.

9 Reliability Issues in Flash-Memory-Based Solid-State ... 245

(®). Before the data is written into the host FIFO buffer, the data is appended with
memory protection ECC (MPECC) and host FIFO buffer (HFIFO) parity [229]. The
MPECC parity is designed to protect against errors that are introduced when the
data is stored within DRAM (which takes place later along the data path), while the
HFIFO parity is designed to protect against SRAM errors that are introduced when
the data resides within the host FIFO buffer. When the data reaches the head of the
host FIFO buffer, the controller fetches the data from the buffer, uses the HFIFO
parity to correct any errors, discards the HFIFO parity, and sends the data to the
DRAM manager (®). The DRAM manager buffers the data (which still contains
the MPECC information) within DRAM (@), and keeps track of the location of the
buffered data inside the DRAM. When the controller is ready to write the data to
the NAND flash memory, the DRAM manager reads the data from DRAM. Then,
the controller uses the MPECC information to correct any errors, and discards the
MPECC information. The controller then encodes the data into an ECC codeword
(®), generates CRC parity for the codeword, and then writes both the codeword
and the CRC parity to a NAND flash FIFO buffer (®) [229]. When the codeword
reaches the head of this buffer, the controller uses CRC parity to detect any errors in
the codeword, and then dispatches the data to the flash interface (@), which writes
the data to the NAND flash memory. The read data path of the controller (the green
dotted line shown in Fig. 9.3) performs the same procedure as the write data path,
but in reverse order [229].

Aside from buffering data along the write and read paths, the controller uses the
DRAM to store essential metadata, such as the table that maps each host data address
to a physical block address within the NAND flash memory [174, 229]. In the meta-
data path of the controller (the blue dashed line shown in Fig. 9.3), the metadata is
often read from or written to DRAM by the firmware processors. In order to ensure
correct operation of the SSD, the metadata must not contain any errors. As a result,
the controller uses memory protection ECC (MPECC) for the metadata stored within
DRAM [165, 229], just as it did to buffer data along the write and read data paths.
Due to the lower rate of errors in DRAM compared to NAND flash memory (see
Sect.9.7), the employed memory protection ECC algorithms are not as strong as
BCH or LDPC. We describe common ECC algorithms employed for DRAM error
correction in Sect. 9.7.

9.1.3.9 Bad Block Management

Due to process variation or uneven wearout, a small number of flash blocks may have
a much higher raw bit error rate (RBER) than an average flash block. Mitigating or
tolerating the RBER on these flash blocks often requires a much higher cost than the
benefit of using them. Thus, it is more efficient to identify and record these blocks
as bad blocks, and avoid using them to store useful data. There are two types of
bad blocks: original bad blocks (OBBs), which are defective due to manufacturing
issues (e.g., process variation), and growth bad blocks (GBBs), which fail during
runtime [259].

246 Y. Cai et al.

The flash vendor performs extensive testing, known as bad block scanning, to
identify OBBs when a flash chip is manufactured [181]. Initially, all blocks are
kept in the erased state, and contain the value OxFF in each byte (see Sect.9.2.1).
Inside each OBB, the bad block scanning procedure writes a specific data value (e.g.,
0x 00) to a specific byte location within the block that indicates the block status. A
good block (i.e., a block without defects) is not modified, and thus its block status
byte remains at the value OxXFF. When the SSD is powered up for the first time, the
SSD controller iterates through all blocks and checks the value stored in the block
status byte of each block. Any block that does not contain the value OxFF is marked
as bad, and is recorded in a bad block table stored in the controller. A small num-
ber of blocks in each plane are set aside as reserved blocks (i.e., blocks that are
not used during normal operation), and the bad block table automatically remaps
any operation originally destined to an OBB to one of the reserved blocks. The bad
block table remaps an OBB to a reserved block in the same plane, to ensure that the
SSD maintains the same degree of parallelism when writing to a superpage, thus
avoiding performance loss. Less than 2% of all blocks in the SSD are expected to be
OBBs [204].

The SSD identifies growth bad blocks during runtime by monitoring the status
of each block. Each superblock contains a bit vector indicating which of its blocks
are GBBs. After each program or erase operation to a block, the SSD reads the sta-
tus reporting registers to check the operation status. If the operation has failed, the
controller marks the block as a GBB in the superblock bit vector. At this point, the
controller uses superpage-level parity to recover the data that was stored in the GBB
(see Sect. 9.1.3.10), and all data in the superblock is copied to a different superblock.
The superblock containing the GBB is then erased. When the superblock is subse-
quently opened, blocks marked as GBBs are not used, but the remaining blocks can
store new data.

9.1.3.10 Superpage-Level Parity

In addition to ECC to protect against bit-level errors, many SSDs employ RAID-
like parity [63, 113, 180, 215]. The key idea is to store parity information within
each superpage to protect data from ECC failures that occur within a single chip or
plane. Figure 9.4 shows an example of how the ECC and parity information are orga-
nized within a superpage. For a superpage that spans across multiple chips, dies, and
planes, the pages stored within one die or one plane (depending on the implemen-
tation) are used to store parity information for the remaining pages. Without loss of
generality, we assume for the rest of this section that a superpage that spans ¢ chips
and d dies per chip stores parity information in the pages of a single die (which
we call the parity die), and that it stores user data in the pages of the remaining
(¢ xd) — 1 dies. When all of the user data is written to the superpage, the SSD con-
troller XORs the data together one plane at a time (e.g., in Fig. 9.4, all of the pages in
Plane 0 are XORed with each other), which produces the parity data for that plane.

9 Reliability Issues in Flash-Memory-Based Solid-State ... 247

(Plane 0, Block m, Page n M

[pata [Ecc| - | Data [Ecc| Dpata [ECC

Die0 o —
Plane 1, Block m, Page n Logical Block

(| _pata [Ecc| - | Data |ECC| Data [ECC}—

(Plane 0, Block m, Page n :
[oae Jece] - | pew [ece] oee [ecd]

Die (cxd)-2+4
(cxd) Plane 1, Block m, Page n }_ﬁl‘)

~| Data |ECC| | Data |ECC| Data |ECC

(Plane 0, Block m, Page n
RAID Parity

Die (cxd)-1<
Plane 1, Block m, Page n

RAID Parity

\

Fig. 9.4 Example layout of ECC codewords, logical blocks, and superpage-level parity for super-
page n in superblock m. In this example, we assume that a logical block contains two codewords.
Reproduced from [15]

This parity data is written to the corresponding plane in the parity die, e.g., Plane 0
page in Die (¢ X d) — 1 in the figure.

The SSD controller invokes superpage-level parity when an ECC failure occurs
during a host software (e.g., OS, file system) access to the SSD. The host software
accesses data at the granularity of a logical block (LB), which is indexed by a logical
block address (LBA). Typically, an LB is 4 kB in size, and consists of several ECC
codewords (which are usually 512 BB to 2 kB in size) stored consecutively within
a flash memory page, as shown in Fig. 9.4. During the LB access, a read failure can
occur for one of two reasons. First, it is possible that the LB data is stored within
a hidden GBB (i.e., a GBB that has not yet been detected and excluded by the bad
block manager). The probability of storing data in a hidden GBB is quantified as
Pypp- Note that because bad block management successfully identifies and excludes
most GBBs, Py;pp is much lower than the total fraction of GBBs within an SSD.
Second, it is possible that at least one ECC codeword within the LB has failed (i.e.,
the codeword contains an error that cannot be corrected by ECC). The probability
that a codeword fails is Pgcpg (see Sect. 9.1.3.7). For an LB that contains K ECC
codewords, we can model P, z,;;, the overall probability that an LB access fails (i.e.,
the rate at which superpage-level parity needs to be invoked), as:

PLBFail = PHGBB + [1 - PHGBB] X [1 - (1 - PECFR)K] (92)

In (9.2), P; g, consists of (1) the probability that an LB is inside a hidden GBB (left
side of the addition); and (2) for an LB that is not in a hidden GBB, the probability
of any codeword failing (right side of the addition).

When a read failure occurs for an LB in plane p, the SSD controller reconstructs
the data using the other LBs in the same superpage. To do this, the controller reads
the LBs stored in plane p in the other (¢ X d) — 1 dies of the superpage, including

248 Y. Cai et al.

the LBs in the parity die. The controller then XORs all of these LBs together, which
retrieves the data that was originally stored in the LB whose access failed. In order
to correctly recover the failed data, all of the LBs from the (¢ X d) — 1 dies must be
correctly read. The overall superpage-level parity failure probability P, (i.e., the
probability that more than one LB contains a failure) for an SSD with ¢ chips of flash
memory, with d dies per chip, can be modeled as [215]:

P

arity = Prgrain X [1 = (1 = Ppgp,i) ™" 9.3)

Thus, by designating one of the dies to contain parity information (in a fashion sim-
ilar to RAID 4 [215]), the SSD can tolerate the complete failure of the superpage
data in one die without experiencing data loss during an LB access.

9.1.4 Design Tradeoffs for Reliability

Several design decisions impact the SSD lifetime (i.e., the duration of time that the
SSD can be used within a bounded probability of error without exceeding a given
performance overhead). To capture the tradeoff between these decisions and lifetime,
SSD manufacturers use the following model:

PEC x (1 + OP
Lifetime (Years) = Cx{1+0P) 9.4)
365 X DWPD x WA x R

compress

In (9.4), the numerator is the total number of full drive writes the SSD can endure
(i.e., for a drive with an X-byte capacity, the number of times X bytes of data can be
written). The number of full drive writes is calculated as the product of PEC, the total
P/E cycle endurance of each flash block (i.e., the number of P/E cycles the block can
sustain before its raw error rate exceeds the ECC correction capability), and 1 + OP,
where OP is the overprovisioning factor selected by the manufacturer. Manufacturers
overprovision the flash drive by providing more physical block addresses, or PBAs,
to the SSD controller than the advertised capacity of the drive, i.e., the number of
logical block addresses (LBAs) available to the operating system. Overprovisioning
improves performance and endurance, by providing additional free space in the SSD
so that maintenance operations can take place without stalling host requests. OP is

calculated as:
_ PBA count — LBA count

LBA count

OoP 9.5)

The denominator in (9.4) is the number of full drive writes per year, which is
calculated as the product of days per year (i.e., 365), DWPD, and the ratio between
the total size of the data written to flash media and the size of the data sent by the
host (i.e., WA X R_,press)- DWPD is the number of full disk writes per day (i.e.,
the number of times per day the OS writes the advertised capacity’s worth of data).

9 Reliability Issues in Flash-Memory-Based Solid-State ... 249

DWPD is typically less than 1 for read-intensive applications, and could be greater
than 5 for write-intensive applications [29]. WA (write amplification) is the ratio
between the amount of data written into NAND flash memory by the controller over
the amount of data written by the host machine. Write amplification occurs because
various procedures (e.g., garbage collection [40, 288]; and remapping-based refresh,
Sect. 9.4.3) in the SSD perform additional writes in the background. For example,
when garbage collection selects a block to erase, the pages that are remapped to a
new block require background writes. R..,,,,,» OF the compression ratio, is the ratio
between the size of the compressed data and the size of the uncompressed data, and
is a function of the entropy of the stored data and the efficiency of the compres-
sion algorithms employed in the SSD controller. In (9.4), DWPD and R, ., are
largely determined by the workload and data compressibility, and cannot be changed
to optimize flash lifetime. For controllers that do not implement compression, we set
R compress to 1. However, the SSD controller can trade off other parameters between
one another to optimize flash lifetime. We discuss the most salient tradeoffs next.

Tradeoff Between Write Amplification and Overprovisioning. As mentioned in
Sect.9.1.3.3, due to the granularity mismatch between flash erase and program oper-
ations, garbage collection occasionally remaps remaining valid pages from a selected
block to a new flash block, in order to avoid block-internal fragmentation. This
remapping causes additional flash memory writes, leading to write amplification.
In an SSD with more overprovisioned capacity, the amount of write amplification
decreases, as the blocks selected for garbage collection are older and tend to have
fewer valid pages. For a greedy garbage collection algorithm and a random-access
workload, the correlation between WA and OP can be calculated [62, 93], as shown
in Fig. 9.5. In an ideal SSD, both WA and OP should be minimal, i.e., WA = 1 and OP
= 0%, but in reality there is a tradeoff between these parameters: when one increases,
the other decreases. As Fig. 9.5 shows, WA can be reduced by increasing OP, and
with an infinite amount of OP, WA converges to 1. However, the reduction of WA is
smaller when OP is large, resulting in diminishing returns.

In reality, the relationship between WA and OP is also a function of the storage
space utilization of the SSD. When the storage space is not fully utilized, many more

B

ORNWARUIOONOWOLORN

Write Amplification

0% 10% 20% 30% 40% 50%

Overprovisioning

Fig. 9.5 Relationship between write amplification (WA) and the overprovisioning factor (OP).
Reproduced from [15]

250 Y. Cai et al.

pages are available, reducing the need to invoke garbage collection, and thus WA can
approach 1 without the need for a large amount of OP.

Tradeoff Between P/E Cycle Endurance and Overprovisioning. PEC and OP can
be traded against each other by adjusting the amount of redundancy used for error
correction, such as ECC and superpage-level parity (as discussed in Sect. 9.1.3.10).
As the error correction capability increases, PEC increases because the SSD can tol-
erate the higher raw bit error rate that occurs at a higher P/E cycle count. However,
this comes at a cost of reducing the amount of space available for OP, since a stronger
error correction capability requires higher redundancy (i.e., more space). Table 9.1
shows the corresponding OP for four different error correction configurations for an
example SSD with 2.0 TB of advertised capacity and 2.4 TB (20% extra) of phys-
ical space. In this table, the top two configurations use ECC-1 with a coding rate
of 0.93, and the bottom two configurations use ECC-2 with a coding rate of 0.90,
which has higher redundancy than ECC-1. Thus, the ECC-2 configurations have a
lower OP than the top two. ECC-2, with its higher redundancy, can correct a greater
number of raw bit errors, which in turn increases the P/E cycle endurance of the
SSD. Similarly, the two configurations with superpage-level parity have a lower OP
than configurations without superpage-level parity, as parity uses a portion of the
overprovisioned space to store the parity bits.

When the ECC correction strength is increased, the amount of overprovisioning
in the SSD decreases, which in turn increases the amount of write amplification
that takes place. Manufacturers must find and use the correct tradeoff between ECC
correction strength and the overprovisioning factor, based on which of the two is
expected to provide greater reliability for the target applications of the SSD.

9.2 NAND Flash Memory Basics

A number of underlying properties of the NAND flash memory used within the SSD
affect SSD management, performance, and reliability [9, 12, 182]. In this section,

Table 9.1 Tradeoff betyveen Error correction configuration Overprovisioning
strength of error correction
. - factor (%)
configuration and amount of
SSD space left for ECC-1 (0.93), no superpage-level 11.6
overprovisioning parity
ECC-1 (0.93), with superpage-level 8.1
parity
ECC-2 (0.90), no superpage-level 8.0
parity
ECC-2 (0.90), with superpage-level 4.6
parity

9 Reliability Issues in Flash-Memory-Based Solid-State ... 251

we present a primer on NAND flash memory and its operation, to prepare the reader
for understanding our further discussion on error sources (Sect. 9.3) and mitigation
mechanisms (Sect. 9.4). Recall from Sect. 9.1.1 that within each plane, flash cells are
organized as multiple 2D arrays known as flash blocks, each of which contains mul-
tiple pages of data, where a page is the granularity at which the host reads and writes
data. We first discuss how data is stored in NAND flash memory. We then introduce
the three basic operations supported by NAND flash memory: read, program, and
erase.

9.2.1 Storing Data in a Flash Cell

NAND flash memory stores data as the threshold voltage of each flash cell, which is
made up of a floating-gate transistor. Figure 9.6 shows a cross section of a floating-
gate transistor. On top of a flash cell is the control gate (CG) and below is the floating
gate (FG). The floating gate is insulated on both sides, on top by an inter-poly oxide
layer and at the bottom by a tunnel oxide layer. As a result, the electrons programmed
on the floating gate do not discharge even when flash memory is powered off.

For single-level cell (SLC) NAND flash, each flash cell stores a 1-bit value, and
can be programmed to one of two threshold voltage states, which we call the ER
and P1 states. Multi-level cell (MLC) NAND flash stores a 2-bit value in each cell,
with four possible states (ER, P1, P2, and P3), and triple-level cell (TLC) NAND
flash stores a 3-bit value in each cell with eight possible states (ER, P1-P7). Each
state represents a different value, and is assigned a voltage window within the range
of all possible threshold voltages. Due to variation across program operations, the
threshold voltage of flash cells programmed to the same state is initially distributed
across this voltage window.

Figure 9.7 illustrates the threshold voltage distribution of MLC (top) and TLC
(bottom) NAND flash memories. The x-axis shows the threshold voltage (V,;,), which
spans a certain voltage range. The y-axis shows the probability density of each volt-
age level across all flash memory cells. The threshold voltage distribution of each
threshold voltage state can be represented as a probability density curve that spans
over the state’s voltage window.

Fig. 9.6 Flash cell (i.e., CP
floating-gate transistor) cross Control Gate (CG)
section. Reproduced from Floating
[15] Oxide Gate
8 66 6886 S (FG)
Oxide

Source n+ n+ Drain

Substrate

252 Y. Cai et al.

MLC NAND Flash Memory

pass
ER P1 P2 P3
(11) 01 (00) (10)

Thresho/d Voltage (

pass
ER P1 P2 P3 P5 P6 P7
(111) (011) (001) 1? 100 (000) (010) (110)

MSE CSB LSB Threshold Voltage {Vt,,)

Probability
Density

—
-
(@}
2
>
2
O
E
Q
n
=
3
]
3
=]
=

<

Probability
Density

Fig. 9.7 Threshold voltage distribution of MLC (top) and TLC (bottom) NAND flash memory.
Reproduced from [15]

We label the distribution curve for each state with the name of the state and a cor-
responding bit value. Note that some manufacturers may choose to use a different
mapping of values to different states. The bit values of adjacent states are separated
by a Hamming distance of 1. We break down the bit values for MLC into the most
significant bit (MSB) and least significant bit (LSB), while TLC is broken down into
the MSB, the center significant bit (CSB), and the LSB. The boundaries between
neighboring threshold voltage windows, which are labeled as V,,, V,,, and V, for the
MLC distribution in Fig. 9.7, are referred to as read reference voltages. These volt-
ages are used by the SSD controller to identify the voltage window (i.e., state) of
each cell upon reading the cell.

9.2.2 Flash Block Design

Figure 9.8 shows the high-level internal organization of a NAND flash memory
block. Each block contains multiple rows of cells (typically 128-512 rows). Each
row of cells is connected together by a common wordline (WL, shown horizontally
in Fig. 9.8), typically spanning 32—-64 K cells. All of the cells along the wordline are
logically combined to form a page in an SLC NAND flash memory. For an MLC
NAND flash memory, the MSBs of all cells on the same wordline are combined to
form an MSB page, and the LSBs of all cells on the wordline are combined to form
an LSB page. Similarly, a TLC NAND flash memory logically combines the MSBs
on each wordline to form an MSB page, the CSBs on each wordline to form a CSB
page, and the LSBs on each wordline to form an LSB page. In MLC NAND flash
memory, each flash block contains 256—1024 flash pages, each of which are typically
8-16 kB in size.

Within a block, all cells in the same column are connected in series to form a
bitline (BL, shown vertically in Fig. 9.8) or string. All cells in a bitline share a com-
mon ground (GND) on one end, and a common sense amplifier (SA) on the other for

9 Reliability Issues in Flash-Memory-Based Solid-State ... 253

Fig.9..8 .Internal GSL IIJ IIJ IIJ IIJ IIJ llJ J:‘GND

organization of a flash block. round select
Reproduced from [15] g B
WLO

WL1
WL 2

Wordlines

WL N-1
LWLN
SSL

string select
sense fop SA SA SA
Amp/iﬁers

reading the threshold voltage of one of the cells when decoding data. Bitline oper-
ations are controlled by turning the ground select line (GSL) and string select line
(SSL) transistor of each bitline on or off. The SSL transistor is used to enable oper-
ations on a bitline, and the GSL transistor is used to connect the bitline to ground
during a read operation [184]. The use of a common bitline across multiple rows
reduces the amount of circuit area required for read and write operations to a block,
improving storage density.

9.2.3 Read Operation

Data can be read from NAND flash memory by applying read reference voltages
onto the control gate of each cell, to sense the cell’s threshold voltage. To read the
value stored in a single-level cell, we need to distinguish only the state with a bit
value of 1 from the state with a bit value of 0. This requires us to use only a single
read reference voltage. Likewise, to read the LSB of a multi-level cell, we need to
distinguish only the states where the LSB value is 1 (ER and P1) from the states
where the LSB value is 0 (P2 and P3), which we can do with a single read reference
voltage (V) in the top half of Fig. 9.7). To read the MSB page, we need to distinguish
the states with an MSB value of 1 (ER and P3) from those with an MSB value of 0
(P1 and P2). Therefore, we need to determine whether the threshold voltage of the
cell falls between V, and V_, requiring us to apply each of these two read reference
voltages (which can require up to two consecutive read operations) to determine the
MSB.

Reading data from a triple-level cell is similar to the data read procedure for a
multi-level cell. Reading the LSB for TLC again requires applying only a single

254 Y. Cai et al.

read reference voltage (V, in the bottom half of Fig. 9.7). Reading the CSB requires
two read reference voltages to be applied, and reading the MSB requires four read
reference voltages to be applied.

As Fig. 9.8 shows, cells from multiple wordlines (WL in the figure) are connected
in series on a shared bitline (BL) to the sense amplifier, which drives the value that
is being read from the block onto the memory channel for the plane. In order to
read from a single cell on the bitline, all of the other cells (i.e., unread cells) on the
same bitline must be switched on to allow the value that is being read to propagate
through to the sense amplifier. The NAND flash memory achieves this by applying
the pass-through voltage onto the wordlines of the unread cells, as shown in Fig. 9.9a.
When the pass-through voltage (i.e., the maximum possible threshold voltage V)
is applied to a flash cell, the source and the drain of the cell transistor are connected,
regardless of the voltage of the floating gate. Modern flash memories guarantee that
all unread cells are passed through to minimize errors during the read operation [21].

9.2.4 Program and Erase Operations

The threshold voltage of a floating-gate transistor is controlled through the injection
and ejection of electrons through the tunnel oxide of the transistor, which is enabled
by the Fowler-Nordheim (FN) tunneling effect [9, 69, 216]. The tunneling current
(Jpy) [12, 216] can be modeled as:

Jpy = apyE2 e Pl Eo (9.6)
= GND = GND = GND
GSL GSL
on off
Vpass Vpass
Vpass Vpass : :
body bias: : |body bias: |body bias:
GND : GND : HH erase
vprogram
Vpass
SSL
on
(a) Read (b) Program (c) Erase

Fig. 9.9 Voltages applied to flash cell transistors on a bitline to perform a read, b program, and
¢ erase operations. Reproduced from [15]

9 Reliability Issues in Flash-Memory-Based Solid-State ... 255

In (9.6), ary and f, are constants, and E is the electric field strength in the tunnel
oxide. As (9.6) shows, Jp is exponentially correlated with E .

During a program operation, electrons are injected into the floating gate of the
flash cell from the substrate when applying a high positive voltage to the control
gate (see Fig. 9.6 for a diagram of the flash cell). The pass-through voltage is applied
to all of the other cells on the same bitline as the cell that is being programmed as
shown in Fig. 9.9b. When data is programmed, charge is transferred into the float-
ing gate through FN tunneling by repeatedly pulsing the programming voltage, in
a procedure known as incremental step-pulse programming (ISPP) [9, 182, 253,
267]. During ISPP, a high programming voltage (V),,,..,) is applied for a very short
period, which we refer to as a step-pulse. ISPP then verifies the current voltage of the
cell using the voltage V... ISPP repeats the process of applying a step-pulse and
verifying the voltage until the cell reaches the desired target voltage. In the modern
all-bitline NAND flash memory, all flash cells in a single wordline are programmed
concurrently. During programming, when a cell along the wordline reaches its target
voltage but other cells have yet to reach their target voltage, ISPP inhibits program-
ming pulses to the cell by turning off the SSL transistor of the cell’s bitline.

In SLC NAND flash and older MLC NAND flash, one-shot programming is used,
where all of the ISPP step-pulses required to program a cell are applied back to back
until all cells in the wordline are fully programmed. One-shot programming does
not interleave the program operations to a wordline with the program operations
to another wordline. In newer MLC NAND flash, the lack of interleaving between
program operations can introduce a significant amount of cell-to-cell program inter-
ference on the cells of immediately-adjacent wordlines (see Sect. 9.3.3).

To reduce the impact of program interference, the controller employs two-step
programming for sub-40 nm MLC NAND flash [23, 209]: it first programs the LSBs
into the erased cells of an unprogrammed wordline, and then programs the MSBs of
the cells using a separate program operation [17, 20, 207, 209]. Between the pro-
gramming of the LSBs and the MSBs, the controller programs the LSBs of the cells
in the wordline immediately above [17, 20, 207, 209]. Figure 9.10 illustrates the two-
step programming algorithm. In the first step, a flash cell is partially programmed
based on its LSB value, either staying in the ER state if the LSB value is 1, or moving
to a temporary state (TP) if the LSB value is 0. The TP state has a mean voltage that
falls between states P1 and P2. In the second step, the LSB data is first read back
into an internal buffer register within the flash chip to determine the cell’s current
threshold voltage state, and then further programming pulses are applied based on
the MSB data to increase the cell’s threshold voltage to fall within the voltage win-
dow of its final state. Programming in MLC NAND flash is discussed in detail in
[17, 20].

TLC NAND flash takes a similar approach to the two-step programming of MLC,
with a mechanism known as foggy-fine programming [156], which is illustrated in
Fig.9.11. The flash cell is first partially programmed based on its LSB value, using
a binary programming step in which very large ISPP step-pulses are used to signifi-
cantly increase the voltage level. Then, the flash cell is partially programmed again
based on its CSB and MSB values to a new set of temporary states (these steps are

256 Y. Cai et al.
0. Erase ER
(XX) Vin
1. Program ER
LSB (X1) V&

2. Program ER
MSB (11)

>
L

Threshold Voltage (V,,)

Fig. 9.10 Two-step programming algorithm for MLC flash. Reproduced from [15]

0.Erase
ER
Vin

1.Binary
Program/ gr

2.Foggy
Program/ gr

3.Fine

Program (ER

111)

P1
(011)

P2
(001)

P3
(101)

P4
(100)

P5
(000)

P6 P7
010)\ | /(110)

Threshold Voltage (V:h)

Fig. 9.11 Foggy-fine programming algorithm for TLC flash. Reproduced from [15]

referred to as foggy programming, which uses smaller ISPP step-pulses than binary
programming). Due to the higher potential for errors during TLC programming as a
result of the narrower voltage windows, all of the programmed bit values are buffered
after the binary and foggy programming steps into SLC buffers that are reserved in
each chip/plane. Finally, fine programming takes place, where these bit values are
read from the SLC buffers, and the smallest ISPP step-pulses are applied to set each
cell to its final threshold voltage state. The purpose of this last fine programming
step is to fine tune the threshold voltage such that the threshold voltage distributions
are tightened (bottom of Fig. 9.11).

Though programming sets a flash cell to a specific threshold voltage using pro-
gramming pulses, the voltage of the cell can drift over time after programming. When
no external voltage is applied to any of the electrodes (i.e., CG, source, and drain) of
a flash cell, an electric field still exists between the FG and the substrate, generated
by the charge present in the FG. This is called the intrinsic electric field [12], and
it generates stress-induced leakage current (SILC) [9, 60, 200], a weak tunneling
current that leaks charge away from the FG. As a result, the voltage that a cell is

9 Reliability Issues in Flash-Memory-Based Solid-State ... 257

programmed to may not be the same as the voltage read for that cell at a subsequent
time.

In NAND flash, a cell can be reprogrammed with new data only after the existing
data in the cell is erased. This is because ISPP can only increase the voltage of the
cell. The erase operation resets the threshold voltage state of all cells in the flash
block to the ER state. During an erase operation, electrons are ejected from the FG
of the flash cell into the substrate by inducing a high negative voltage on the cell
transistor. The negative voltage is induced by setting the CG of the transistor to GND,
and biasing the transistor body (i.e., the substrate) to a high voltage (V,,,,.), as shown
in Fig. 9.9¢c. Because all cells in a flash block share a common transistor substrate
(i.e., the bodies of all transistors in the block are connected together), a flash block
must be erased in its entirety [184].

9.3 NAND Flash Error Characterization

Each block in NAND flash memory is used in a cyclic fashion, as is illustrated by
the observed raw bit error rates seen over the lifetime of a flash memory block in
Fig.9.12. At the beginning of a cycle, known as a program/erase (P/E) cycle, an
erased block is opened (i.e., selected for programming). Data is then programmed
into the open block one page at a time. After all of the pages are programmed, the
block is closed, and none of the pages can be reprogrammed until the whole block
is erased. At any point before erasing, read operations can be performed on a valid
programmed page (i.e., a page containing data that has not been modified by the
host). A page is marked as invalid when the data stored at that page’s logical address
by the host is modified. As ISPP can only inject more charge into the floating gate
but cannot remove charge from the gate, it is not possible to modify data to a new
arbitrary value in place within existing NAND flash memories. Once the block is
erased, the P/E cycling behavior repeats until the block is worn out (i.e., the block
can no longer avoid data loss over the course of the minimum data retention period
guaranteed by the manufacturer). Although the 5x-nm (i.e., 50-59 nm) generation
of MLC NAND flash could endure ~10,000 P/E cycles per block before being worn
out, modern 1x-nm (i.e., 15-19 nm) MLC and TLC NAND flash can endure only
~3,000 and ~1,000 P/E cycles per block, respectively [136, 168, 212, 294].

As shown in Fig. 9.12, several different types of errors can be introduced at any
point during the P/E cycling process: P/E cycling errors, program errors, errors
due to cell-to-cell program interference, data retention errors, and errors due to
read disturb. As discussed in Sect.9.2.1, the threshold voltage of flash cells pro-
grammed to the same state is distributed across a voltage window due to variation
across program operations and across different flash cells. Several types of errors
introduced during the P/E cycling process, such as data retention and read disturb,
cause the threshold voltage distribution of each state to shift and widen. Due to the
shift and widening, the tails of the distributions of each state can enter the mar-
gin that originally existed between each of the two neighboring states’ distributions.

258 Y. Cai et al.

%Read disturb errors

RBER_

I Retention errors
increase in errors from N to
... N+1 P/E cycles due to wearout

P/E cycling errors
- Program errors
Cell-to-cell interference errors

N-1 N N+1 time
Program/Erase Cycles

Fig.9.12 Pictorial depiction of errors accumulating within a NAND flash block as P/E cycle count
increases. Reproduced from [15]

Density

P3
(10) .
Threshold Voltage (V:,,)

Probability

Fig. 9.13 Threshold voltage distribution shifts and widening can cause the distributions of two
neighboring states to overlap with each other (compare to Fig. 9.7), leading to read errors. Repro-
duced from [15]

Thus, the threshold voltage distributions of different states can start overlapping, as
shown in Fig. 9.13. When the distributions overlap with each other, the read reference
voltages can no longer correctly identify the state of some flash cells in the overlap-
ping region, leading to raw bit errors during a read operation.

In this section, we discuss the causes of each type of error in detail, and charac-
terize the impact that each error type has on the amount of raw bit errors occurring
within NAND flash memory. We use an FPGA-based testing platform [18] to char-
acterize state-of-the-art TLC NAND flash chips. We use the read-retry operation
present in NAND flash devices to accurately read the cell threshold voltage [20-
23, 29, 31, 70, 162, 208] (for a detailed description of the read-retry operation,
see Sect. 9.4.4). As absolute threshold voltage values are proprietary information to
flash vendors, we present our results using normalized voltages, where the nominal
maximum value of V,, is equal to 512 in our normalized scale, and where O rep-
resents GND. We also describe characterization results and observations for MLC
NAND flash chips. These MLC NAND results are taken from our prior works [14,
17, 19-23, 29-31, 162], which provide more detailed error characterization results
and analyses. To our knowledge, this paper provides the first experimental charac-
terization and analysis of errors in real TLC NAND flash memory chips (Tables 9.2,
9.3 and 9.4).

We later discuss mitigation techniques for these flash memory errors in Sect. 9.4,
and provide procedures to recover in the event of data loss in Sect. 9.5.

9 Reliability Issues in Flash-Memory-Based Solid-State ... 259

9.3.1 P/E Cycling Errors

A P/E cycling error occurs when either (1) an erase operation fails to reset a cell to
the ER state; or (2) when a program operation fails to set the cell to the desired target
state. P/E cycling errors occur because electrons become trapped in the tunnel oxide
after stress from repeated P/E cycles. Errors due to such electron trapping (which we
refer to as P/E cycling noise) continue to accumulate over the lifetime of a NAND
flash block. This behavior is called wearout, and it refers to the phenomenon where,
as more writes are performed to a block, there are a greater number of raw bit errors
that must be corrected, exhausting more of the fixed error correction capability of
the ECC (see Sect.9.1.3.7).

Figure 9.14 shows the threshold voltage distribution of TLC NAND flash memory
after 0 P/E cycles and after 3,000 P/E cycles, without any retention or read disturb
errors present (which we ensure by reading the data immediately after programming).
The mean and standard deviation of each state’s distribution are provided in Table 9.5
in the Appendix (for other P/E cycle counts as well). We make two observations from
the two distributions. First, as the P/E cycle count increases, each state’s threshold
voltage distribution systematically (1) shifts to the right and (2) becomes wider. Sec-
ond, the amount of the shift is greater for lower-voltage states (e.g., the ER and P1
states) than it is for higher-voltage states (e.g., the P7 state).

The threshold voltage distribution shift occurs because as more P/E cycles take
place, the quality of the tunnel oxide degrades, allowing electrons to tunnel through
the oxide more easily [186]. As a result, if the same ISPP conditions (e.g., program-
ming voltage, step-pulse size, program time) are applied throughout the lifetime of
the NAND flash memory, more electrons are injected during programming as a flash
memory block wears out, leading to higher threshold voltages, i.e., the right shift of
the distribution. The distribution of each state widens due to the process variation
present in (1) the wearout process, and (2) the cell’s structural characteristics. As the
distribution of each voltage state widens, more overlap occurs between neighboring
distributions, making it less likely for a read reference voltage to determine the cor-
rect value of the cells in the overlapping regions, which leads to a greater number of
raw bit errors.

— 0 P/E Cycles — 3K P/E Cycles

0 100 200 300 400 500
Normalized V,,

Fig.9.14 Threshold voltage distribution of TLC NAND flash memory after O P/E cycles and 3,000
P/E cycles. Reproduced from [15]

260 Y. Cai et al.

The threshold voltage distribution trends we observe here for TLC NAND flash
memory trends are similar to trends observed previously for MLC NAND flash mem-
ory [19, 20, 162, 212], although the MLC NAND flash characterizations reported
in past studies span up to a larger P/E cycle count than the TLC experiments due to
the greater endurance of MLC NAND flash memory. More findings on the nature of
wearout and the impact of wearout on NAND flash memory errors and lifetime can
be found in our prior work [14, 19, 20, 162].

9.3.2 Program Errors

Program errors occur when data read directly from the NAND flash array contains
errors, and the erroneous values are used to program the new data. Program errors
occur in two major cases: (1) partial programming during two-step or foggy-fine
programming, and (2) copyback (i.e., when data is copied inside the NAND flash
memory during a maintenance operation) [94]. During two-step programming for
MLC NAND flash memory (see Fig. 9.10), in between the LSB and MSB program-
ming steps of a cell, threshold voltage shifts can occur on the partially-programmed
cell. These shifts occur because several other read and program operations to cells
in other pages within the same block may take place, causing interference to the
partially-programmed cell. Figure 9.15 illustrates how the threshold distribution of
the ER state widens and shifts to the right after the LSB value is programmed (step 1
in the figure). The widening and shifting of the distribution causes some cells that
were originally partially programmed to the ER state (with an LSB value of 1) to be
misread as being in the TP state (with an LSB value of 0) during the second program-
ming step (step 2 in the figure). As shown in Fig. 9.15, the misread LSB value leads
to a program error when the final cell threshold voltage is programmed [17, 162,
212]. Some cells that should have been programmed to the P1 state (representing
the value 01) are instead programmed to the P2 state (with the value 00), and some

Fig. 9.15 Impact of

program errors during 0. Erase ER

two-step programming on (XX) Vt,,
cell threshold voltage Interference sh:fts/w:dens
distribution. Reproduced ’e’ ——ERdistribution

from [15] 1. Program ER :/ TP
LsB (x1) A/ (x0) Vi

“~\
~
~
~o
~

~

Pl)
2. Program
MSB m M 7/6;)0\)\

Program errors
LSB should be 1, but is incorrectly programmed to 0

9 Reliability Issues in Flash-Memory-Based Solid-State ... 261

cells that should have been programmed to the ER state (representing the value 11)
are instead programmed to the P3 state (with the value 10).

The incorrect values that are read before the second programming step are not
corrected by ECC, as they are read directly inside the NAND flash array, without
involving the controller (where the ECC engine resides). Similarly, during foggy-fine
programming for TLC NAND flash (see Fig. 9.11), the data may be read incorrectly
from the SLC buffers used to store the contents of partially-programmed wordlines,
leading to errors during the fine programming step. Program errors occur during
copyback [94] when valid data is read out from a block during maintenance oper-
ations (e.g., a block about to be garbage collected) and reprogrammed into a new
block, as copyback operations do not go through the SSD controller.

Program errors that occur during partial programming predominantly shift data
from lower-voltage states to higher-voltage states. For example, in MLC NAND
flash, program errors predominantly shift data that should be in the ER state (11)
into the P3 state (10), or data that should be in the P1 state (01) into the P2 state
(00) [17]. This occurs because MSB programming can only increase (and not reduce)
the threshold voltage of the cell from its partially-programmed voltage (and thus can-
not move a multi-level cell that should be in the P3 state into the ER state, or one that
should be in the P2 state into the P1 state). TLC NAND flash is much less suscepti-
ble to program errors than MLC NAND flash, as the data read from the SLC buffers
in TLC NAND flash has a much lower error rate than data read from a partially-
programmed MLC NAND flash wordline [242].

From a rigorous experimental characterization of modern MLC NAND flash
memory chips [17], we find that program errors occur primarily due to two types
of errors affecting the partially-programmed data. First, cell-to-cell program inter-
ference (Sect. 9.3.3) on a partially-programmed wordline is no longer negligible in
newer NAND flash memory compared to older NAND flash memory, due to manu-
facturing process scaling. As flash cells become smaller and are placed closer to each
other, cells in partially-programmed wordlines become more susceptible to bit flips.
Second, partially-programmed cells are more susceptible to read disturb errors than
fully-programmed cells (Sect. 9.3.5), as the threshold voltages stored in these cells
are no more than approximately half of V. [17], and cells with lower threshold
voltages are more likely to experience read disturb errors.

More findings on the nature of program errors and the impact of program errors
on NAND flash memory lifetime can be found in our prior work [17, 162].

9.3.3 Cell-to-Cell Program Interference Errors

Program interference refers to the phenomenon where the programming of a flash
cell induces errors on adjacent flash cells within a flash block [23, 31, 58, 75, 151].
The interference occurs due to parasitic capacitance coupling between these cells.
As aresult, when the threshold voltage of an adjacent flash cell increases, the thresh-
old voltage of the victim cell increases as well. The unintended threshold voltage

262 Y. Cai et al.

shifts can eventually move a cell into a different state than the one it was originally
programmed to, leading to a bit error.

We have shown, based on our experimental analysis of modern MLC NAND flash
memory chips, that the threshold voltage change of the victim cell can be accurately
modeled as a linear combination of the threshold voltage changes of the adjacent
cells when they are programmed, using linear regression with least-square-error esti-
mation [23, 31]. The cells that are physically located immediately next to the victim
cell (called the immediately-adjacent cells) are the major contributors to the cell-
to-cell interference of a victim cell [23]. Figure 9.16 shows the eight immediately-
adjacent cells for a victim cell in 2D planar NAND flash memory.

The amount of interference that program operations to the immediately-adjacent
cells can induce on the victim cell is expressed as:

AVyieim =), KxAVy 9.7)
X

where AV, .. is the change in voltage of the victim cell due to cell-to-cell program
interference, Ky is the coupling coefficient between cell X and the victim cell, and
AVy is the threshold voltage change of cell X during programming. Table 9.2 lists
the coupling coefficients for both 2y-nm and 1x-nm NAND flash memory. We make
two key observations from Table 9.2. First, we observe that the coupling coefficient is
greatest for wordline neighbors (i.e., immediately-adjacent cells on the same bitline,
but on a neighboring wordline) [23]. The coupling coefficient is directly related to the
effective capacitance C between cell X and the victim cell, which can be calculated
as:

C=eS/d 9.8)

where ¢ is the permittivity, S is the effective cell area of cell X that faces the victim
cell, and d is the distance between the cells. Of the immediately-adjacent cells, the
wordline neighbor cells have the greatest coupling capacitance with the victim cell,
as they likely have a large effective facing area to, and a small distance from, the vic-
tim cell compared to other surrounding cells. Second, we observe that the coupling
coefficient grows as the feature size decreases [23, 31]. As NAND flash memory

Fig.9.16 Immediately- Bitline M-1 Bitline M Bitline M+1
adjacent cells that can induce

program interference on a Wordline N-1 (Diagonal| [Wordline] [Diagonal)
victim cell that is on Neighbor Neighbor Neighbor
wordline N and bitline M. ~ Z - -~ g
Reproduced from [15] Wordline N (Bitline | [victim | [Bitline)
\Neighbor) L Cell) Neighbor}

(Di 1] [wordline) [Di I

. iagona iagona
Wordline N+1 Neighbor \Neighborl \Neighbor

9 Reliability Issues in Flash-Memory-Based Solid-State ... 263

Table 9.2 Coupling coefficients for immediately-adjacent cells

Process technology Wordline neighbor Bitline neighbor Diagonal neighbor
2y-nm 0.060 0.032 0.012
1x-nm 0.110 0.055 0.020

process technology scales down to smaller feature sizes, cells become smaller and
get closer to each other, which increases the effective capacitance between them. As
aresult, at smaller feature sizes, it is easier for an immediately-adjacent cell to induce
program interference on a victim cell. We conclude that (1) the program interference
an immediately-adjacent cell induces on a victim cell is primarily determined by the
distance between the cells and the immediately-adjacent cell’s effective area facing
the victim cell; and (2) the wordline neighbor cell causes the highest such interfer-
ence, based on empirical measurements.

Due to the order of program operations performed in NAND flash memory, many
immediately-adjacent cells do not end up inducing interference after a victim cell
is fully programmed (i.e., once the victim cell is at its target voltage). In mod-
ern all-bitline NAND flash memory, all flash cells on the same wordline are pro-
grammed at the same time, and wordlines are fully programmed sequentially (i.e.,
the cells on wordline i are fully programmed before the cells on wordline i + 1).
As a result, an immediately-adjacent cell on the wordline below the victim cell or
on the same wordline as the victim cell does not induce program interference on a
fully-programmed victim cell. Therefore, the major source of program interference
on a fully-programmed victim cell is the programming of the wordline immediately
above it.

Figure 9.17 shows how the threshold voltage distribution of a victim cell shifts
when different values are programmed onto its immediately-adjacent cells in the
wordline above the victim cell for MLC NAND flash, when one-shot programming

Neighbor Before program After program
State interference interference
Value 4

P1

Density

th
h

Density

P2

>
>

aWoWN ooy
DD D[R,
NN [,

tl

Density

P3

Probability Probability Probability

Fig. 9.17 Impact of cell-to-cell program interference on a victim cell during one-shot program-
ming, depending on the value its neighboring cell is programmed to. Reproduced from [15]

264 Y. Cai et al.

is used. The amount by which the victim cell distribution shifts is directly correlated
with the number of programming step-pulses applied to the immediately-adjacent
cell. That is, when an immediately-adjacent cell is programmed to a higher-voltage
state (which requires more step-pulses for programming), the victim cell distribution
shifts further to the right [23]. When an immediately-adjacent cell is set to the ER
state, no step-pulses are applied, as an unprogrammed cell is already in the ER state.
Thus, no interference takes place. Note that the amount by which a fully-programmed
victim cell distribution shifts is different when two-step programming is used, as a
fully-programmed cell experiences interference from only one of the two program-
ming steps of a neighboring wordline [17].

More findings on the nature of cell-to-cell program interference and the impact
of cell-to-cell program interference on NAND flash memory errors and lifetime can
be found in our prior work [14, 17, 23, 31].

9.3.4 Data Retention Errors

Retention errors are caused by charge leakage over time after a flash cell is pro-
grammed, and are the dominant source of flash memory errors, as demonstrated
previously [19, 22, 29, 30, 182, 256]. As flash memory process technology scales
to smaller feature sizes, the capacitance of a flash cell, and the number of electrons
stored on it, decreases. State-of-the-art (i.e., 1x-nm) MLC flash memory cells can
store only ~100 electrons [294]. Gaining or losing several electrons on a cell can sig-
nificantly change the cell’s voltage level and eventually alter its state. Charge leakage
is caused by the unavoidable trapping of charge in the tunnel oxide [22, 150]. The
amount of trapped charge increases with the electrical stress induced by repeated
program and erase operations, which degrade the insulating property of the oxide.

Two failure mechanisms of the tunnel oxide lead to retention loss. Trap-assisted
tunneling (TAT) occurs because the trapped charge forms an electrical tunnel, which
exacerbates the weak tunneling current, SILC (see Sect.9.2.4). As a result of this
TAT effect, the electrons present in the floating gate (FG) leak away much faster
through the intrinsic electric field. Hence, the threshold voltage of the flash cell
decreases over time. As the flash cell wears out with increasing P/E cycles, the
amount of trapped charge also increases [22, 150], and so does the TAT effect.
At high P/E cycles, the amount of trapped charge is large enough to form perco-
lation paths that significantly hamper the insulating properties of the gate dielec-
tric [22, 60], resulting in retention failure. Charge detrapping, where charge previ-
ously trapped in the tunnel oxide is freed spontaneously, can also occur over time [22,
60, 150, 285]. The charge polarity can be either negative (i.e., electrons) or positive
(i.e., holes). Hence, charge detrapping can either decrease or increase the threshold
voltage of a flash cell, depending on the polarity of the detrapped charge.

9 Reliability Issues in Flash-Memory-Based Solid-State ... 265

10t

Normalized V,,

Fig. 9.18 Threshold voltage distribution for TLC NAND flash memory after one day, one month,
and one year of retention time. Reproduced from [15]

Figure 9.18 illustrates how the voltage distribution shifts for data we program into
TLC NAND flash, as the data sits untouched over a period of one day, one month, and
one year. The mean and standard deviation are provided in Table 9.6 in the Appendix
(which includes data for other retention ages as well). These results are obtained from
real flash memory chips we tested. We distill three major findings from these results,
which are similar to our previously reported findings for retention behavior on MLC
NAND flash memory [22].

First, as the retention age (i.e., the length of time after programming) of the data
increases, the threshold voltage distributions of the higher-voltage states shift to
lower voltages, while the threshold voltage distributions of the lower-voltage states
shift to higher voltages. As the intrinsic electric field strength is higher for the cells in
higher-voltage states, TAT is the dominant failure mechanism for these cells, which
can only decrease the threshold voltage, as the resulting SILC can flow only in the
direction of the intrinsic electric field generated by the electrons in the FG. Cells
at the lowest-voltage states, where the intrinsic electric field strength is low, do not
experience high TAT, and instead contain many holes (i.e., positive charge) that leak
away as the retention age grows, leading to increase in threshold voltage.

Second, the threshold voltage distribution of each state becomes wider with reten-
tion age. Charge detrapping can cause cells to shift in either direction (i.e., toward
lower or higher voltages), contributing to the widening of the distribution. The rate
at which TAT occurs can also vary from cell to cell, as a result of process variation,
which further widens the distribution.

Third, the threshold voltage distributions of higher-voltage states shift by a larger
amount than the distributions of lower-voltage states. This is again a result of TAT.
Cells at higher-voltage states have greater intrinsic electric field intensity, which
leads to larger SILC. A cell where the SILC is larger experiences a greater drop
in its threshold voltage than a cell where the SILC is smaller.

More findings on the nature of data retention and the impact of data retention
behavior on NAND flash memory errors and lifetime can be found in our prior
work [14, 19, 22, 29, 30].

266 Y. Cai et al.

9.3.5 Read Disturb Errors

Read disturb is a phenomenon in NAND flash memory where reading data from a
flash cell can cause the threshold voltages of other (unread) cells in the same block
to shift to a higher value [19, 21, 58, 75, 182, 206, 254]. While a single threshold
voltage shift is small, such shifts can accumulate over time, eventually becoming
large enough to alter the state of some cells and hence generate read disturb errors.

The failure mechanism of a read disturb error is similar to the mechanism of a
normal program operation. A program operation applies a high programming voltage
(e.g., +15 V) to the cell to change the cell’s threshold voltage to the desired range.
Similarly, a read operation applies a high pass-through voltage (e.g., +6 V) to all
other cells that share the same bitline with the cell that is being read. Although the
pass-through voltage is not as high as the programming voltage, it still generates a
weak programming effect on the cells it is applied to [21], which can unintentionally
change these cells’ threshold voltages.

Figure 9.19 shows how read disturb errors impact threshold voltage distributions
in real TLC NAND flash memory chips. We use blocks that have endured 2,000 P/E
cycles, and we experimentally study the impact of read disturb on a single wordline
in each block. We then read from a second wordline in the same block 1, 10 and 100 K
times to induce different levels of read disturb. The mean and standard deviation of
each distribution are provided in Table 9.7 in the Appendix. We derive three major
findings from these results, which are similar to our previous findings for read disturb
behavior in MLC NAND flash memory [21].

First, as the read disturb count increases, the threshold voltages increase (i.e., the
voltage distribution shifts to the right). In particular, we find that the distribution
shifts are greater for lower-voltage states, indicating that read disturb impacts cells
in the ER and P1 states the most. This is because we apply the same pass-through
voltage (V),,,) to all unread cells during a read operation, regardless of the thresh-
old voltages of the cells. A lower threshold voltage on a cell induces a larger voltage
difference (V,,,,, — V) through the tunnel oxide layer of the cell, and in turn gener-
ates a stronger tunneling current, making the cell more vulnerable to read disturb (as
described in detail in our prior work [21]).

Normalized V,,

Fig.9.19 Threshold voltage distribution for TLC NAND flash memory after 1, 10 and 100 K read
disturb operations. Reproduced from [15]

9 Reliability Issues in Flash-Memory-Based Solid-State ... 267

Second, cells whose threshold voltages are closer to the point at which the volt-
age distributions of the ER and P1 states intersect are more vulnerable to read dis-
turb errors. This is because process variation causes different cells to have different
degrees of vulnerability to read disturb. We find that cells that are prone to read dis-
turb end up at the right tail of the threshold voltage distribution of the ER state, as
these cells’ threshold voltages increase more rapidly, and that cells that are relatively
resistant to read disturb end up at the left tail of the threshold voltage distribution
of the P1 state, as their threshold voltages increase more slowly. We can exploit this
divergent behavior of cells that end up at the left and right distribution tails to perform
error recovery in the event of an uncorrectable error, as we discuss in Sect. 9.5.4.

Third, unlike with the other states, the threshold voltages of the cells at the left
tail of the highest-voltage state (P7) in TLC NAND flash memory actually decreases
as the read disturb count increases. This occurs for two reasons: (1) applying V,
causes electrons to move from the floating gate to the control gate for a cell at
high voltage (i.e., a cell containing a large number of electrons), thus reducing its
threshold voltage [21, 289]; and (2) some retention time elapses while we sweep the
voltages during our read disturb experiments, inducing trap-assisted tunneling (see
Sect. 9.3.4) and leading to retention errors that decrease the voltage.

More findings on the nature of read disturb and the impact of read disturb on
NAND flash memory errors and lifetime can be found in our prior work [21].

9.3.6 Large-Scale Studies on SSD Errors

The error characterization studies we have discussed so far examine the suscepti-
bility of real NAND flash memory devices to specific error sources, by conducting
controlled experiments on individual flash devices in controlled environments. To
examine the aggregate effect of these error sources on flash devices that operate
in the field, several recent studies have analyzed the reliability of SSDs deployed
at a large scale (e.g., hundreds of thousands of SSDs) in production data centers
[174, 199, 233]. Unlike the controlled low-level error characterization studies dis-
cussed in Sect.9.3.1 through 9.3.5, these large-scale studies analyze the observed
errors and error rates in an uncontrolled manner, i.e., based on real data center work-
loads operating at field conditions (as opposed to carefully controlling access pat-
terns and operating conditions). As such, these large-scale studies can study flash
memory behavior and reliability using only a black-box approach, where they are
able to access only the registers used by the SSD to record select statistics. Because
of this, their conclusions are usually correlational in nature, as opposed to identify-
ing the underlying causes behind the observations. On the other hand, these studies
incorporate the effects of a real system, including the system software stack and real
workloads [174] and real operational conditions in data centers, on the flash memory
devices, which is not present in the controlled small-scale studies.

These recent large-scale studies have made a number of observations across large
sets of SSDs employed in the data centers of large internet companies:

268 Y. Cai et al.

Facebook [174], Google [233], and Microsoft [199]. We highlight six key obser-
vations from these studies about the SSD failure rate, which is the fraction of SSDs
that have experienced at least one uncorrectable error.

First, the number of uncorrectable errors observed varies significantly for each
SSD. Figure 9.20 shows the distribution of uncorrectable errors per SSD across a
large set of SSDs used by Facebook. The distributions are grouped into six differ-
ent platforms that are deployed in Facebook’s data center.” For every platform, we
observe that the top 10% of SSDs, when sorted by their uncorrectable error count,
account for over 80% of the total uncorrectable errors observed across all SSDs for
that platform. We find that the distribution of uncorrectable errors across all SSDs
belonging to a platform follows a Weibull distribution, which we show using a solid
black line in Fig. 9.20.

Second, the SSD failure rate does not increase monotonically with the P/E cycle
count. Instead, we observe several distinct periods of reliability, as illustrated pic-
torially and abstractly in Fig.9.21, which is based on data obtained from analyz-
ing errors in SSDs used in Facebook’s data centers [174]. The failure rate increases
when the SSDs are relatively new (shown as the early detection period in Fig. 9.21),
as the SSD controller identifies unreliable NAND flash cells during the initial read
and write operations to the devices and removes them from the address space (see
Sect.9.1.3.9). As the SSDs are used more, they enter the early failure period, where
failures are less likely to occur. When the SSDs approach the end of their lifetime
(useful life/wearout in the figure), the failure rate increases again, as more cells
become unreliable due to wearout. Figure 9.22 shows how the measured failure rate
changes as more writes are performed to the SSDs (i.e., how real data collected

| T T T T |
00 02 04 06 08 1.0

Normalized SSD number

Fig. 9.20 Distribution of —— Platform A - Plattorm D —— Weibull
uncorrectable errors across Platform B Platform E
SSDs used in Facebook’s Platform C Platform F
data centers. Reproduced
from [174] °
t_u N]
3 |
g g j
S + —
(] ()]
% -
o]
9 -
o
o
i S
+ —
(0]

2Each platform has a different combination of SSDs, host controller interfaces, and workloads. The
six platforms are described in detail in [174].

9 Reliability Issues in Flash-Memory-Based Solid-State ... 269

- S 1 g 1 Useful life /
2 =0 =21
T S 1T Wearout
T ! S
S e
o 2
-— ©
s | d
e 1 1
= 1 1
;‘_E 1 1
a ! X
% 1 1
1 1
1 1
1 1
1
% 1
3 1 1
1 1

Low Flash memory usage High

Fig. 9.21 Pictorial and abstract depiction of the pattern of SSD failure rates observed in real SSDs
operating in a modern data center. An SSD fails at different rates during distinct periods throughout
the SSD lifetime. Reproduced from [174]

—e— Platform A —=— Platform B —e— Platform C —=— Platform D —e— Platform E—=— Platform F
8 4 8 8 4o
@ - @ - 13 2 3 @ - |12 3
© | © . © _
o o P o
2 3 2 8w ! 2 3
&8 o &8 o -ﬁh{ 8 o
[a) [m) ' ' [a)
%) 1 2 T/ e D .
i N I S
o o : [o
o Vo [SIe v S " '
o T T T T 1T S T T T T S T T T T T T 1
0e+00 4e+13 8e+13 0.0e+00 1.0e+14 0.0e+00 1.5e+14 3.0e+14
Data written (B) Data written (B) Data written (B)

Fig. 9.22 SSD failure rate versus the amount of data written to the SSD. The three periods of
failure rates, shown pictorially and abstractly in Fig.9.21, are annotated on each graph: (1) early
detection, (2) early failure, and (3) useful life/wearout. Reproduced from [174]

from Facebook’s SSDs corresponds to the pictorial depiction in Fig.9.21) for the
same six platforms shown in Fig. 9.20. We observe that the failure rates in each plat-
form exhibit the distinct periods that are illustrated in Fig. 9.21. For example, let us
consider the SSDs in Platforms A and B, which have more data written to their cells
than SSDs in other platforms. We observe from Fig. 9.22 that for SSDs in Platform A,
there is an 81.7% increase from the failure rate during the early detection period to
the failure rate during the wearout period [174].

Third, the raw bit error rate grows with the age of the device even if the P/E
cycle count is held constant, indicating that mechanisms such as silicon aging likely
contribute to the error rate [199].

270 Y. Cai et al.

Fourth, the observed failure rate of SSDs has been noted to be significantly higher
than the failure rates specified by the manufacturers [233].

Fifth, higher operating temperatures can lead to higher failure rates, but mod-
ern SSDs employ throttling techniques that reduce the access rates to the underlying
flash chips, which can greatly reduce the negative reliability impact of higher temper-
atures [174]. For example, Fig. 9.23 shows the SSD failure rate as the SSD operating
temperature varies, for SSDs from the same six platforms shown in Fig. 9.20 [174].
We observe that at an operating temperature range of 30—40 °C, SSDs either
(1) have similar failure rates across the different temperatures, or (2) experience
slight increases in the failure rate as the temperature increases. As the temperature
increases beyond 40 °C, the SSDs fall into three categories: (1) temperature-sensitive
with increasing failure rate (Platforms A and B), (2) less temperature-sensitive (Plat-
forms C and E), and (3) temperature-sensitive with decreasing failure rate (Plat-
forms D and F). There are two factors that affect the temperature sensitivity of each
platform: (1) some, but not all, of the platforms employ techniques to throttle SSD
activity at high operating temperatures to reduce the failure rate (e.g., Platform D);
and (2) the platform configuration (e.g., the number of SSDs in each machine, system
airflow) can shorten or prolong the effects of higher operating temperatures.

Sixth, while SSD failure rates are higher than specified by the manufacturers,
the overall occurrence of uncorrectable errors is lower than expected [174] because
(1) effective bad block management policies (see Sect.9.1.3.9) are implemented in
SSD controllers; and (2) certain types of error sources, such as read disturb [174,
199] and incomplete erase operations [199], have yet to become a major source of
uncorrectable errors at the system level.

9.4 Error Mitigation

Several different types of errors can occur in NAND flash memory, as we described in
Sect.9.3. As NAND flash memory continues to scale to smaller technology nodes,
the magnitude of these errors has been increasing [168, 212, 294]. This, in turn,

—e— Platform A—®— Platform B —e— Platform C —=— Platform D —e— Platform E —#— Platform F
o o o
S A S S
e g @
o N o N & N
g £ 8l £ 8
= 5 = B L e = :
& ° R & °
o - [a) - o - ——
9] %) %) */#
0 o D oo e " g
S oS S
o T T T T T T T o T T T T T T T o T T T T T
30 40 50 60 35 45 55 65 30 40 50 60 70
Average temperature (°C) Average temperature (°C) Average temperature (°C)

Fig. 9.23 SSD failure rate versus operating temperature. Reproduced from [174]

9 Reliability Issues in Flash-Memory-Based Solid-State ... 271

uses up the limited error correction capability of ECC more rapidly than in past
flash memory generations and shortens the lifetime of modern SSDs. To overcome
the decrease in lifetime, a number of error mitigation techniques have been designed.
These techniques exploit intrinsic properties of the different types of errors to reduce
the rate at which they lead to raw bit errors. In this section, we discuss how the flash
controller mitigates each of the error types via various proposed error mitigation
mechanisms. Table 9.3 shows the techniques we overview and which errors (from
Sect. 9.3) they mitigate.

9.4.1 Shadow Program Sequencing

As discussed in Sect. 9.3.3, cell-to-cell program interference is a function of the dis-
tance between the cells of the wordline that is being programmed and the cells of the
victim wordline. The impact of program interference is greatest on a victim word-
line when either of the victim’s immediately-adjacent wordlines is programmed (e.g.,

Table 9.3 List of different types of errors mitigated by various NAND flash error mitigation mech-
anisms

Mitigation mechanism Error type
P/E cycling | Program Cell-to-cell | Data Read
[19, 20, [17, 162, interference | retention disturb [19,
162] (Sect. |212] (Sect. |[19, 23, 31, |[19, 22, 29, | 21, 75,
9.3.1) 9.3.2) 151] (Sect. | 30, 182] 182] (Sect.

9.3.3) (Sect. 9.3.4)|9.3.5)

Shadow program sequenc- X

ing [17, 23] (Sect. 9.4.1)

Neighbor-cell assisted error| X

[31] (Sect. 9.4.2)

Refresh [29, 30, 185, 205] X X

(Sect. 9.4.3)

Read-retry [20, 70, 287] X X X

(Sect. 9.4.4)

Voltage optimization [21, | X X X

22, 106] (Sect. 9.4.5)

Hot data management [81, | X X X X X

82, 161] (Sect. 9.4.6)

Adaptive error mitigation X X X X X

[28, 44, 86, 272, 275]

(Sect. 9.4.7)

272 Y. Cai et al.

if we program WLI in Fig. 9.8, WLO and WL2 experience the greatest amount of
interference). Early MLC flash memories used one-shot programming, where both
the LSB and MSB pages of a wordline are programmed at the same time. As flash
memory scaled to smaller process technologies, one-shot programming resulted in
much larger amounts of cell-to-cell program interference. As a result, manufacturers
introduced two-step programming for MLC NAND flash (see Sect. 9.2.4), where the
SSD controller writes values of the two pages within a wordline in two independent
steps.

The SSD controller minimizes the interference that occurs during two-step pro-
gramming by using shadow program sequencing [17, 23, 207] to determine the order
that data is written to different pages in a block. If we program the LSB and MSB
pages of the same wordline back to back, as shown in Fig. 9.24a, both programming
steps induce interference on a fully-programmed wordline (i.e., a wordline where
both the LSB and MSB pages are already written). For example, if the controller
programs both pages of WL1 back to back, shown as bold page programming oper-
ations in Fig. 9.24a, the program operations induce a high amount of interference on
WLO, which is fully programmed. The key idea of shadow program sequencing is
to ensure that a fully-programmed wordline experiences interference minimally, i.e.,
only during MSB page programming (and not during LSB page programming). In
shadow program sequencing, we assign a unique page number to each page within a
block, as shown in Fig. 9.24b. The LSB page of wordline i is numbered page 2i — 1,
and the MSB page is numbered page 2i + 2. The only exceptions to the numbering
are the LSB page of wordline 0 (page 0) and the MSB page of the last wordline n
(page 2n + 1). Two-step programming writes to pages in increasing order of page
number inside a block [17, 23, 207], such that a fully-programmed wordline expe-
riences interference only from the MSB page programming of the wordline directly
above it, shown as the bold page programming operation in Fig. 9.24b. With this
programming order/sequence, the LSB page of the wordline above, and both pages
of the wordline below, do not cause interference to fully-programmed data [17, 23,
207], as these two pages are programmed before programming the MSB page of the
given wordline. Foggy-fine programming in TLC NAND flash (see Sect. 9.2.4) uses
a similar ordering to reduce cell-to-cell program interference, as shown in Fig. 9.24c.

Shadow program sequencing is an effective solution to minimize cell-to-cell pro-
gram interference on fully-programmed wordlines during two-step programming,
and is employed in commercial SSDs today.

9.4.2 Neighbor-Cell Assisted Error Correction

The threshold voltage shift that occurs due to program interference is highly corre-
lated with the values stored in the cells of the immediately-adjacent wordlines, as
we discussed in Sect. 9.3.3. Due to this correlation, knowing the value programmed

9 Reliability Issues in Flash-Memory-Based Solid-State ... 273

LSB MSB LSB MSB LS SB MSB

071 o/z ?/.2/5
we 1 2553 we 1 Wi 1 1/1 8

Y
=Y

WL 2 4 —5 WL 2 3%6 wL 2 3/7/11
WL 3 6 —7 WL 3 5‘% wL3 6//14
WL 4 8 ‘—/> 9 WL 4 7/10 WL 4 9/1/16
WL 5 10—11 wL5 9 :Lll WL5 12 15/117
(a) Bad MLC (b) MLC shadow (c) TLC shadow
program sequence program sequence program sequence

Fig. 9.24 Order in which the pages of each wordline (WL) are programmed using a a bad pro-
gramming sequence, and using shadow sequencing for b MLC and ¢ TLC NAND flash. The bold
page programming operations for WL1 induce cell-to-cell program interference when WLO is fully
programmed. Reproduced from [15]

in the immediately-adjacent cell (i.e., a neighbor cell) makes it easier to correctly
determine the value stored in the flash cell that is being read [31]. We describe a
recently proposed error correction method that takes advantage of this observation,
called neighbor-cell-assisted error correction (NAC). The key idea of NAC is to use
the data values stored in the cells of the immediately-adjacent wordline to determine
a better set of read reference voltages for the wordline that is being read. Doing so
leads to a more accurate identification of the logical data value that is being read,
as the data in the immediately-adjacent wordline was partially responsible for shift-
ing the threshold voltage of the cells in the wordline that is being read when the
immediately-adjacent wordline was programmed.

Figure 9.25 shows an operational example of NAC that is applied to eight bit-
lines (BL) of an MLC flash wordline. The SSD controller first reads a flash page
from a wordline using the standard read reference voltages (step 1 in Fig.9.25).
The bit values read from the wordline are then buffered in the controller. If there
are no errors uncorrectable by ECC, the read was successful, and nothing else is
done. However, if there are errors that are uncorrectable by ECC, we assume that the
threshold voltage distribution of the page shifted due to cell-to-cell program interfer-
ence, triggering further correction. In this case, NAC reads the LSB and MSB pages
of the wordline immediately above the requested page (i.e., the adjacent wordline
that was programmed after the requested page) to classify the cells of the requested
page (step 2). NAC then identifies the cells adjacent to (i.e., connected to the same
bitline as) the ER cells (i.e., cells in the immediately above wordline that are in the

274 Y. Cai et al.

BLO | BL1 | BL2 | BL3 | BL4 | BL5 | BL6 | BL7
Originally-programmed value 11 | 00 | 01 10 11 | 00 | 01 | 00

1. Read (using Vo) with errors | 01 00 00 00 11 10 00 01

nL2 Read adjacent wordline P2 | ER | P2 | ER | P1 P3 P1 | ER

A | 3. Correct cells adjacent to ER 01 00 00 10 11 10 00 00

4. Correct cells adjacenttoP1 | 01 | 00 | OO | 10 | 11 | 10 | 01 | OO

Fig. 9.25 Overview of neighbor-cell-assisted error correction (NAC). Reproduced from [15]

ER state), such as the cells on BL1, BL3, and BL7 in Fig. 9.25. NAC rereads these
cells using read reference voltages that compensate for the threshold voltage shift
caused by programming the adjacent cell to the ER state (step 3). If ECC can correct
the remaining errors, the controller returns the corrected page to the host. If ECC
fails again, the process is repeated using a different set of read reference voltages for
cells that are adjacent to the P1 cells (step 4). If ECC continues to fail, the process
is repeated for cells that are adjacent to P2 and P3 cells (steps 5 and 6, respectively,
which are not shown in the figure) until either ECC is able to correct the page or all
possible adjacent values are exhausted.

NAC extends the lifetime of an SSD by reducing the number of errors that need to
be corrected using the limited correction capability of ECC. With the use of experi-
mental data collected from real MLC NAND flash memory chips, we show that NAC
extends the NAND flash memory lifetime by 33% [31]. Our previous work [31] pro-
vides a detailed description of NAC, including a theoretical treatment of why it works
and a practical implementation that minimizes the number of reads performed, even
in the case when the neighboring wordline itself has errors.

9.4.3 Refresh Mechanisms

As we see in Fig. 9.12, during the time period after a flash page is programmed, reten-
tion (Sect. 9.3.4) and read disturb (Sect. 9.3.5) can cause an increasing number of raw
bit errors to accumulate over time. This is particularly problematic for a page that is
not updated frequently. Due to the limited error correction capability, the accumula-
tion of these errors can potentially lead to data loss for a page with a high retention
age (i.e., a page that has not been programmed for a long time). To avoid data loss,
refresh mechanisms have been proposed, where the stored data is periodically read,
corrected, and reprogrammed, in order to eliminate the retention and read disturb
errors that have accumulated prior to this periodic read/correction/reprogramming
(i.e., refresh). The concept of refresh in flash memory is thus conceptually similar
to the refresh mechanisms found in DRAM ([35, 104, 157, 158]. By performing

9 Reliability Issues in Flash-Memory-Based Solid-State ... 275

refresh and limiting the number of retention and read disturb errors that can accu-
mulate, the lifetime of the SSD increases significantly. In this section, we describe
three types of refresh mechanisms used in modern SSDs: remapping-based refresh,
in-place refresh, and read reclaim.

Remapping-Based Refresh. Flash cells must first be erased before they can be
reprogrammed, due to the fact the programming a cell via ISPP can only increase the
charge level of the cell but not reduce it (Sect.9.2.4). The key idea of remapping-
based refresh is to periodically read data from each valid flash block, correct any
data errors, and remap the data to a different physical location, in order to prevent
the data from accumulating too many retention errors [14, 29, 30, 185, 205]. During
each refresh interval, a block with valid data that needs to be refreshed is selected.
The valid data in the selected block is read out page by page and moved to the SSD
controller. The ECC engine in the SSD controller corrects the errors in the read data,
including retention errors that have accumulated since the last refresh. A new block is
then selected from the free list (see Sect. 9.1.3.2), the error-free data is programmed
to a page within the new block, and the logical address is remapped to point to the
newly-programmed physical page. By reducing the accumulation of retention and
read disturb errors, remapping-based refresh increases SSD lifetime by an average
of 9x for a variety of disk workloads [29, 30].

Prior work proposes extensions to the basic remapping-based refresh approach.
One work, refresh SSDs, proposes a refresh scheduling algorithm based on an earliest
deadline first policy to guarantee that all data is refreshed in time [185]. The quasi-
nonvolatile SSD proposes to use remapping-based refresh to choose between improv-
ing flash endurance and reducing the flash programming latency (by using larger
ISPP step-pulses) [205]. In the quasi-nonvolatile SSD, refresh requests are depri-
oritized, scheduled at idle times, and can be interrupted after refreshing any page
within a block, to minimize the delays that refresh can cause for the response time
of pending workload requests to the SSD. A refresh operation can also be triggered
proactively based on the data read latency observed for a page, which is indicative of
how many errors the page has experienced [24]. Triggering refresh proactively based
on the observed read latency (as opposed to doing so periodically) improves SSD
latency and throughput [24]. Whenever the read latency for a page within a block
exceeds a fixed threshold, the valid data in the block is refreshed, i.e., remapped to
a new block [24].

In-place Refresh. A major drawback of remapping-based refresh is that it performs
additional writes to the NAND flash memory, accelerating wearout. To reduce the
wearout overhead of refresh, we propose in-place refresh [14, 29, 30]. As data sits
unmodified in the SSD, data retention errors dominate [19, 30, 256], leading to
charge loss and causing the threshold voltage distribution to shift to the left, as we
showed in Sect. 9.3.4. The key idea of in-place refresh is to incrementally replenish
the lost charge of each page at its current location, i.e., in place, without the need
for remapping.

Figure 9.26 shows a high-level overview of in-place refresh for a wordline. The
SSD controller first reads all of the pages in the wordline (@ in Fig.9.26). The

276 Y. Cai et al.

Flash Chip SSD Controller

0 Read MSB & LSB pages
ECC Decoder
a Verify current V,, value

(filters out most cells) e Correct all errors

I Sen
l e Pulse program voltage 9 da tadtf)(}f recteq Controller Processors
ash Chl
P

(few pulses needed)

Fig. 9.26 Overview of in-place refresh mechanism for MLC NAND flash memory. Reproduced
from [15]

controller invokes the ECC decoder to correct the errors within each page (), and
sends the corrected data back to the flash chips (). In-place refresh then invokes
a modified version of the ISPP mechanism (see Sect.9.2.4), which we call Verify-
ISPP (V-ISPP), to compensate for retention errors by restoring the charge that was
lost. In V-ISPP, we first verify the voltage currently programmed in a flash cell (@).
If the current voltage of the cell is lower than the target threshold voltage of the state
that the cell should be in, V-ISPP pulses the programming voltage in steps, gradually
injecting charge into the cell until the cell returns to the target threshold voltage (®).
If the current voltage of the cell is higher than the target threshold voltage, V-ISPP
inhibits the programming pulses to the cell.

When the controller invokes in-place refresh, it is unable to use shadow program
sequencing (Sect. 9.4.1), as all of the pages within the wordline have already been
programmed. However, unlike traditional ISPP, V-ISPP does not introduce a high
amount of cell-to-cell program interference (Sect. 9.3.3) for two reasons. First, V-
ISPP programs only those cells that have retention errors, which typically account
for less than 1% of the total number of cells in a wordline selected for refresh [29].
Second, for the small number of cells that are selected to be refreshed, their threshold
voltage is usually only slightly lower than the target threshold voltage, which means
that only a few programming pulses need to be applied. As cell-to-cell interfer-
ence is linearly correlated with the threshold voltage change to immediately-adjacent
cells [23, 31], the small voltage change on these in-place refreshed cells leads to only
a small interference effect.

One issue with in-place refresh is that it is unable to correct retention errors
for cells in lower-voltage states. Retention errors cause the threshold voltage of a
cell in a lower-voltage state to increase (e.g., see Sect.9.3.4, ER and P1 states in
Fig.9.18), but V-ISPP cannot decrease the threshold voltage of a cell. To achieve
a balance between the wearout overhead due to remapping-based refresh and errors
that increase the threshold voltage due to in-place refresh, we propose hybrid in-
place refresh [14, 29, 30]. The key idea is to use in-place refresh when the number
of program errors (caused due to reprogramming) is within the correction capabil-
ity of ECC, but to use remapping-based refresh if the number of program errors is
too large to tolerate. To accomplish this, the controller tracks the number of right-
shift errors (i.e., errors that move a cell to a higher-voltage state) [29, 30]. If the

9 Reliability Issues in Flash-Memory-Based Solid-State ... 277

number of right-shift errors remains under a certain threshold, the controller per-
forms in-place refresh; otherwise, it performs remapping-based refresh. Such a
hybrid in-place refresh mechanism increases SSD lifetime by an average of 31x for
a variety of disk workloads [29, 30].

Read Reclaim to Reduce Read Disturb Errors. We can also mitigate read disturb
errors using an idea similar to remapping-based refresh, known as read reclaim. The
key idea of read reclaim is to remap the data in a block to a new flash block, if the
block has experienced a high number of reads [81, 82, 127]. To bound the number
of read disturb errors, some flash vendors specify a maximum number of tolerable
reads for a flash block, at which point read reclaim rewrites the data to a new block
(just as is done for remapping- based refresh).

Adaptive Refresh and Read Reclaim Mechanisms. For the refresh and read reclaim
mechanisms discussed above, the SSD controller can (1) invoke the mechanisms at
fixed regular intervals; or (2) adapt the rate at which it invokes the mechanisms,
based on various conditions that impact the rate at which data retention and read dis-
turb errors occur. By adapting the mechanisms based on the current conditions of the
SSD, the controller can reduce the overhead of performing refresh or read reclaim.
The controller can adaptively adjust the rate that the mechanisms are invoked based
on (1) the wearout (i.e., the current P/E cycle count) of the NAND flash memory [29,
30]; or (2) the temperature of the SSD [19, 22].

As we discuss in Sect. 9.3.4, for data with a given retention age, the number of
retention errors grows as the P/E cycle count increases. Exploiting this P/E cycle
dependent behavior of retention time, the SSD controller can perform refresh less fre-
quently (e.g., once every year) when the P/E cycle count is low, and more frequently
(e.g., once every week) when the P/E cycle count is high, as proposed and described
in our prior works [29, 30]. Similarly, for data with a given read disturb count, as the
P/E cycle count increases, the number of read disturb errors increases as well [21]. As
aresult, the SSD controller can perform read reclaim less frequently (i.e., it increases
the maximum number of tolerable reads per block before read reclaim is triggered)
when the P/E cycle count is low, and more frequently when the P/E cycle count is
high.

Prior works demonstrate that for a given retention time, the number of data reten-
tion errors increases as the NAND flash memory’s operating temperature increases
[19, 22]. To compensate for the increased number of retention errors at high tem-
perature, a state-of-the-art SSD controller adapts the rate at which it triggers refresh.
The SSD contains sensors that monitor the current environmental temperature every
few milliseconds [174, 269]. The controller then uses the Arrhenius equation [4,
185, 282] to estimate the rate at which retention errors accumulate at the current
temperature of the SSD. Based on the error rate estimate, the controller decides if
it needs to increase the rate at which it triggers refresh to ensure that the data is not
lost.

By employing adaptive refresh and/or read reclaim mechanisms, the SSD con-
troller can successfully reduce the mechanism overheads while effectively mitigating
the larger number of data retention errors that occur under various conditions.

278 Y. Cai et al.

9.4.4 Read-Retry

In earlier generations of NAND flash memory, the read reference voltage values were
fixed at design time [20, 182]. However, several types of errors cause the thresh-
old voltage distribution to shift, as shown in Fig. 9.13. To compensate for threshold
voltage distribution shifts, a mechanism called read-retry has been implemented in
modern flash memories (typically those below 30 nm for planar flash [20, 70, 241,
287]).

The read-retry mechanism allows the read reference voltages to dynamically
adjust to changes in distributions. During read-retry, the SSD controller first reads
the data out of NAND flash memory with the default read reference voltage. It then
sends the data for error correction. If ECC successfully corrects the errors in the
data, the read operation succeeds. Otherwise, the SSD controller reads the memory
again with a different read reference voltage. The controller repeats these steps until
it either successfully reads the data using a certain set of read reference voltages or
is unable to correctly read the data using all of the read reference voltages that are
available to the mechanism.

While read-retry is widely implemented today, it can significantly increase the
overall read operation latency due to the multiple read attempts it causes [22]. Mech-
anisms have been proposed to reduce the number of read-retry attempts while taking
advantage of the effective capability of read-retry for reducing read errors, and read-
retry has also been used to enable mitigation mechanisms for various other types of
errors, as we describe in Sect. 9.4.5. As a result, read-retry is an essential mechanism
in modern SSDs to mitigate read errors (i.e., errors that manifest themselves during
aread operation).

9.4.5 Voltage Optimization

Many raw bit errors in NAND flash memory are affected by the various voltages
used within the memory to enable reading of values. We give two examples. First,
a suboptimal read reference voltage can lead to a large number of read errors
(Sect. 9.3), especially after the threshold voltage distribution shifts. Second, as we
saw in Sect. 9.3.5, the pass-through voltage can have a significant effect on the num-
ber of read disturb errors that occur. As a result, optimizing these voltages such that
they minimize the total number of errors that are induced can greatly mitigate error
counts. In this section, we discuss mechanisms that can discover and employ the
optimal® read reference and pass-through voltages.

Optimizing Read Reference Voltages Using Disparity-Based Approximation
and Sampling. As we discussed in Sect. 9.4.4, when the threshold voltage distribution

30r, more precisely, near-optimal, if the read-retry steps are too coarse grained to find the optimal
voltage.

9 Reliability Issues in Flash-Memory-Based Solid-State ... 279

shifts, it is important to move the read reference voltage to the point where the num-
ber of read errors is minimized. After the shift occurs and the threshold voltage dis-
tribution of each state widens, the distributions of different states may overlap with
each other, causing many of the cells within the overlapping regions to be misread.
The number of errors due to misread cells can be minimized by setting the read ref-
erence voltage to be exactly at the point where the distributions of two neighboring
states intersect, which we call the optimal read reference voltage (V,,,) [22, 23, 31,
162, 206], illustrated in Fig. 9.27. Once the optimal read reference voltage is applied,
the raw bit error rate is minimized, improving the reliability of the device.

One approach to finding V,,, is to adaptively learn and apply the optimal read
reference voltage for each flash block through sampling [22, 45, 56, 280]. The key
idea is to periodically (1) use disparity information (i.e., the ratio of 1s to Os in the
data) to attempt to find a read reference voltage for which the error rate is lower
than the ECC correction capability; and to (2) use sampling to efficiently tune the
read reference voltage to its optimal value to reduce the read operation latency. Prior
characterization of real NAND flash memory [22, 206] found that the value of V,,,
does not shift greatly over a short period of time (e.g., a day), and that all pages
within a block experience similar amounts of threshold voltage shifts, as they have
the same amount of wearout and are programmed around the same time [22, 206].
Therefore, we can invoke our V,,, learning mechanism periodically (e.g., daily) to
efficiently tune the initial read reference voltage (i.e., the first read reference voltage
used when the controller invokes the read-retry mechanism, described in Sect. 9.4.4)
for each flash block, ensuring that the initial voltage used by read-retry stays close
to V,,, even as the threshold voltage distribution shifts.

The SSD controller searches for V,,,, by counting the number of errors that need
to be corrected by ECC during a read. However, there may be times where the initial
read reference voltage (V) 1S set to a value at which the number of errors during a
read exceeds the ECC correction capability, such as the raw bit error rate for V;,;,;,, in

Fig.9.27 (right). When the ECC correction capability is exceeded, the SSD controller

100 F— :
101
102

1073

Raw Bit Error Rate

104

105 — ' . . .
-40 -20 0 20 40
Read Reference Voltage

Fig. 9.27 Finding the optimal read reference voltage after the threshold voltage distributions over-
lap (left), and raw bit error rate as a function of the selected read reference voltage (right). Repro-
duced from [15]

280 Y. Cai et al.

is unable to count how many errors exist in the raw data. The SSD controller uses
disparity-based read reference voltage approximation [45, 56, 280] for each flash
block to try to bring V,,;,,; to a region where the number of errors does not exceed
the ECC correction capability. Disparity-based read reference voltage approximation
takes advantage of data scrambling. Recall from Sect. 9.1.3.6 that to minimize data
value dependencies for the error rate, the SSD controller scrambles the data written to
the SSD to probabilistically ensure that an equal number of Os to s exist in the flash
memory cells. The key idea of disparity-based read reference voltage approximation
is to find the read reference voltages that result in approximately 50% of the cells
reading out bit value 0, and the other 50% of the cells reading out bit value 1. To
achieve this, the SSD controller employs a binary search algorithm, which tracks
the ratio of Os to 1s for each read reference voltage it tries. The binary search tests
various read reference voltage values, using the ratios of previously tested voltages
to narrow down the range where the read reference voltage can have an equal ratio
of Os to 1s. The binary search algorithm continues narrowing down the range until
it finds a read reference voltage that satisfies the ratio.

The usage of the binary search algorithm depends on the type of NAND flash
memory used within the SSD. For SLC NAND flash, the controller searches for
only a single read reference voltage. For MLC NAND flash, there are three read
reference voltages: the LSB is determined using V,, and the MSB is determined
using both V, and V. (see Sect.9.2.3). Figure 9.28 illustrates the search procedure
for MLC NAND flash. First, the controller uses binary search to find V;,, choosing a
voltage that reads the LSB of 50% of the cells as data value O (step 1 in Fig.9.28).
For the MSB, the controller uses the discovered V), value to help search for V, and
V.. Due to scrambling, cells should be equally distributed across each of the four
voltage states. The controller uses binary search to set V,, such that 25% of the cells
are in the ER state, by ensuring that half of the cells to the left of V), are read with
an MSB of 0 (step 2). Likewise, the controller uses binary search to set V,. such that
25% of the cells are in the P3 state, by ensuring that half of the cells to the right of
V, are read with an MSB of 0 (step 3). This procedure is extended in a similar way
to approximate the voltages for TLC NAND flash.

If disparity-based approximation finds a value for V,,;,;,, where the number of
errors during a read can be counted by the SSD controller, the controller invokes
sampling-based adaptive V,,,, discovery [22] to minimize the error count, and thus
reduce the read latency. Sampling-based adaptive V,,,, discovery learns and records
Vo for the last-programmed page in each block. We sample only the last-
programmed page because it is the page with the lowest data retention age in the
flash block. As retention errors cause the higher-voltage states to shift to the left
(i.e., to lower voltages), the last-programmed page usually provides an upper bound
of V. for the entire block.

opt
Dgring sampling-based adaptive V,,, discovery, the SSD controller first reads the
last-programmed page using V,;,,;» and attempts to correct the errors in the raw
data read from the page. Next, it records the number of raw bit errors as the current
lowest error count Npggg, and sets the applied read reference voltage (V) as V;

initial*
Since V,,, typically decreases over retention age, the controller first attempts to lower

9 Reliability Issues in Flash-Memory-Based Solid-State ... 281

1.Find V, that 22 //:f\\
reads 50% of 8 § ! :I
LSBsas0Os ©° P
a AR >
C .. —>
Y Y th
50% of all cells 50% of all cells
2.Use V, tofind 22 Y
V,thatreads §§| o ol o © O oo ©
s0%ofMsBs 8% (ol T 00 o o°
to the left of — >
Vv,
V,as 0s 50% of cells 50% of cells "
on the left on the left
3.Use Vytofind 22 =
V thatreads §§5| o © o © O ol © o
s0%of MsBs 8| o o o 00 id o
to the right of & — >
V, as 0s 50% of cells 50% of cells

on the right on the right

Fig. 9.28 Disparity-based read reference voltage approximation to find V,;,,, for MLC NAND
flash memory. Each circle represents a cell, where a dashed border indicates that the LSB is unde-
termined, a solid border indicates that the LSB is known, a hollow circle indicates that the MSB is
unknown, and a filled circle indicates that the MSB is known. Reproduced from [15]

the read reference voltage for the last-programmed page, decreasing the voltage to
Vs — AV and reading the page. If the number of corrected errors in the new read
is less than or equal to the 0ld Nggg, the controller updates Nggg and V,,, with the
new values. The controller continues to lower the read reference voltage until the
number of corrected errors in the data is greater than the old Ngg, or the lowest
possible read reference voltage is reached. Since the optimal threshold voltage might
increase in rare cases, the controller also tests increasing the read reference voltage. It
increases the voltage to V,,, + AV and reads the last-programmed page to see if Npgp
decreases. Again, it repeats increasing V,,, until the number of corrected errors in
the data is greater than the old N or the highest possible read reference voltage is
reached. The controller sets the initial read reference voltage of the block as the value
of V,,, at the end of this process so that the next time an uncorrectable error occurs,
read-retry starts at a V,,;,;,, that is hopefully closer to the optimal read reference
voltage (V,,,,).

During the course of the day, as more retention errors (the dominant source of
errors on already-programmed blocks) accumulate, the threshold voltage distribution
shifts to the left (i.e., voltages decrease), and our initial read reference voltage (i.e.,
V.niriar) 18 NOW an upper bound for the read-retry voltages. Therefore, whenever read-
retry is invoked, the controller now needs to only decrease the read reference voltages
(as opposed to traditional read-retry, which tries both lower and higher voltages [22]).
Sampling-based adaptive V,,, discovery improves the endurance (i.e., the number
of P/E cycles before the ECC correction capability is exceeded) of the NAND flash
memory by 64% and reduces error correction latency by 10% [22], and is employed
in some modern SSDs today.

282 Y. Cai et al.

Other Approaches to Optimizing Read Reference Voltages. One drawback of the
sampling-based adaptive technique is that it requires time and storage overhead to
find and record the per-block initial voltages. To avoid this, the SSD controller can
employ an accurate online threshold voltage distribution model [14, 20, 162], which
can efficiently track and predict the shift in the distribution over time. The model
represents the threshold voltage distribution of each state as a probability density
function (PDF), and the controller can use the model to calculate the intersection
of the different PDFs. The controller uses the PDF in place of the threshold voltage
sampling, determining V,,,, by calculating the intersection of the distribution of each
state in the model. The endurance improvement from our state-of-the-art model-
based V,,, estimation technique [162] is within 2% of the improvement from an ideal
V., identification mechanism [162]. An online threshold voltage distribution model
can be used for a number of other purposes, such as estimating the future growth in
the raw bit error rate and improving error correction [162].

Other prior work examines adapting read reference voltages based on P/E cycle
count, retention age, or read disturb. In one such work, the controller periodically
learns read reference voltages by testing three read reference voltages on six pages
per block, which the work demonstrates to be sufficiently accurate [206]. Simi-
larly, error correction using LDPC soft decoding (see Sect.9.5.2.2) requires read-
ing the same page using multiple sets of read reference voltages to provide fine-
grained information on the probability of each cell representing a bit value O or a bit
value 1. Another prior work optimizes the read reference voltages to increase the
ECC correction capability without increasing the coding rate [266].

Optimizing Pass-Through Voltage to Reduce Read Disturb Errors. As we dis-
cussed in Sect. 9.3.5, the vulnerability of a cell to read disturb is directly correlated
with the voltage difference (V,,,, — V,;,) through the cell oxide [21]. Traditionally, a
single V, value is used globally for the entire flash memory, and the value of V.,
must be higher than all potential threshold voltages within the chip to ensure that
unread cells along a bitline are turned on during a read operation (see Sect.9.2.3).
To reduce the impact of read disturb, we can tune V), to reduce the size of the volt-
age difference (V,,,,, — V;;,). However, it is difficult to reduce V,,, globally, as any
cell with a value of V, >V, introduces an error during a read operation (which
we call a pass-through error).

We propose a mechanism that can dynamically lower V,,,,c while ensuring that it
can correct any new pass-through errors introduced. The key idea of the mechanism
is to lower V. only for those blocks where ECC has enough leftover error cor-
rection capability (see Sect.9.1.3.7) to correct the newly introduced pass-through
errors. When the retention age of the data within a block is low, we find that the
raw bit error rate of the block is much lower than the rate for the block when the
retention age is high, as the number of data retention and read disturb errors remains
low at low retention age [21, 82]. As a result, a block with a low retention age has
significant unused ECC correction capability, which we can use to correct the pass-
through errors we introduce when we lower V,, ., as shown in Fig. 9.29. Thus, when

a block has a low retention age, the controller lowers V. aggressively, making it

9 Reliability Issues in Flash-Memory-Based Solid-State ... 283

Pass-through errors Vpgss

Low Retention Age P2 i
(00)
>
Vin
. V ass
Retention errors P

High Retention Age P2 P3 i'—
(00) (01) i -
Vin

Fig.9.29 Dynamic pass-through voltage tuning at different retention ages. Reproduced from [15]

much less likely for read disturbs to induce an uncorrectable error. When a block has
a high retention age, the controller also lowers V., but does not reduce the volt-
age aggressively, since the limited ECC correction capability now needs to correct
retention errors, and might not have enough unused correction capability to correct
many new pass-through errors. By reducing V., aggressively when a block has a
low retention age, we can extend the time before the ECC correction capability is
exhausted, improving the flash lifetime.

Our read disturb mitigation mechanism [21] learns the minimum pass-through
voltage for each block, such that all data within the block can be read correctly
with ECC. Our learning mechanism works online and is triggered periodically (e.g.,
daily). The mechanism is implemented in the controller, and has two components.
It first finds the size of the ECC margin M (i.e., the unused correction capability)
that can be exploited to tolerate additional read errors for each block. Once it knows
the available margin M, our mechanism calibrates V.. on a per-block basis to find
the lowest value of V. that introduces no more than M additional raw errors (i.e.,
there are no more than M cells where V,, > V). Our findings on MLC NAND
flash memory show that the mechanism can improve flash endurance by an average

of 21% for a variety of disk workloads [21].

Programming and Erase Voltages. Prior work also examines tuning the program-
ming and erase voltages to extend flash endurance [106]. By decreasing the two
voltages when the P/E cycle count is low, the accumulated wearout for each program
or erase operation is reduced, which, in turn, increases the overall flash endurance.
Decreasing the programming voltage, however, comes at the cost of increasing the
time required to perform ISPP, which, in turn, increases the overall SSD write
latency [106].

284 Y. Cai et al.

9.4.6 Hot Data Management

The data stored in different locations of an SSD can be accessed by the host at dif-
ferent rates. For example, we find that across a wide range of disk workloads, almost
100% of the write operations target less than 1% of the pages within an SSD [161], as
shown in Fig. 9.30. These pages exhibit high temporal write locality, and are called
write-hot pages. Likewise, pages with a high amount of temporal read locality (i.e.,
pages that are accessed by a large fraction of the read operations) are called read-
hot pages. A number of issues can arise when an SSD does not distinguish between
write-hot pages and write-cold pages (i.e., pages with low temporal write locality),
or between read-hot pages and read-cold pages (i.e., pages with low temporal read
locality). For example, if write-hot pages and write-cold pages are stored within the
same block, refresh mechanisms (which operate at the block level; see Sect. 9.4.3)
cannot avoid refreshes to pages that were overwritten recently. This increases not
only the energy consumption but also the write amplification due to remapping-based
refresh [161]. Likewise, if read-hot and read-cold pages are stored within the same
block, read-cold pages are unnecessarily exposed to a high number of read disturb
errors [81, 82]. Hot data management refers to a set of mechanisms that can identify
and exploit write-hot or read-hot pages in the SSD. The key idea common to such
mechanisms is to apply special SSD management policies by placing hot pages and
cold pages into separate flash blocks.

A state-of-the-art hot data management mechanism is write-hotness aware refresh
management (WARM) [161], which efficiently identifies write-hot pages and uses
this information to carefully place pages within blocks. WARM aims to ensure that
every block in the NAND flash memory contains either only write-hot pages or only
write-cold pages. A small pool of blocks in the SSD are designated to exclusively
store the small amount of write-hot data (as shown in Fig. 9.30). This block-level

iozone financial web-vm prn prxy src ts wdev
1009 L — T —T T — L —— T — T — —T
80% F
W 60%] ﬁ
O 40% 4 4
20%: 1 F 4
374 A P P PR -
postmark homes hm proj rsrch stg usr web

\
x
)

Fig. 9.30 Cumulative distribution function of the fraction of writes performed by a workload to
NAND flash memory pages, for 16 evaluated workloads. For every workload except postmark, over
95% of all writes performed by the workload are destined for less than 1.0% of the workload’s pages.
Total data footprint of each workload is 217.6 GB, i.e., 1.0% on the x-axis represents 2.176 GB of
data. Reproduced from [161]

9 Reliability Issues in Flash-Memory-Based Solid-State ... 285

segregation between write-hot pages and write-cold pages allows WARM to apply
separate specialized management policies based on the write-hotness of the pages in
each block.

Two examples of policies for write-hot blocks in WARM are the write-hotness-
aware refresh policy (see Sect.9.4.3 for baseline refresh policies) and the write-
hotness-aware garbage collection algorithm (see Sect.9.1.3.3). In write-hotness-
aware refresh, since write-hot data is overwritten more frequently than the refresh
interval, the SSD controller skips refresh operations to the write-hot blocks. As
the retention time for write-hot data never exceeds the refresh interval, performing
refresh to this data does not reduce the error rate. By skipping refresh for write-
hot data, WARM reduces the total number of writes performed on the SSD, which
in turn increases the SSD lifetime, without introducing uncorrectable errors. In
write-hotness-aware garbage collection, the SSD controller performs oldest-block-
first garbage collection. WARM sizes the pool of write-hot blocks such that when a
write-hot block becomes the oldest block in the pool of write-hot blocks, all of the
data that was in the block is likely to already have been overwritten. As a result, all of
the pages within the oldest write-hot block is likely to be invalid, and the block can
be erased without the need to migrate any remaining valid pages to a new block. By
always selecting the oldest block in the pool of write-hot blocks for garbage collec-
tion, the write-hotness-aware garbage collection algorithm (1) does not spend time
searching for a block to select (as traditional garbage collection algorithms do), and
(2) rarely needs to migrate pages from the selected block. Both of these lead to a
reduction in the performance overhead of garbage collection.

WARM continues to use the traditional controller policies (i.e., the policies
described in Sect. 9.1.3) and refresh mechanisms for the write-cold blocks. WARM
reduces fragmentation within write-cold blocks (i.e., each write-cold block is likely
to have few, if any, invalid pages), because each page within the block does not
get updated frequently by the application. Due to the write-hotness-aware policies
and reduced fragmentation, WARM reduces write amplification significantly, which
translates to an average lifetime improvement of 21% over an SSD that employs
a state-of-the-art refresh mechanism [29] (see Adaptive Refresh and Read Reclaim
Mechanisms in Sect. 9.4.3), across a wide variety of disk workloads [161].

Another work [265] proposes to reuse the correctly functioning flash pages within
bad blocks (see Sect.9.1.3.9) to store write-cold data. This technique increases the
total number of usable blocks available for overprovisioning, and extends flash life-
time by delaying the point at which each flash chip reaches the upper limit of bad
blocks it can tolerate.

RedFTL identifies and replicates read-hot pages across multiple flash blocks,
allowing the controller to evenly distribute read requests to these pages across the
replicas [81]. Other works reduce the number of read reclaims (see Sect. 9.4.3) that
need to be performed by mapping read-hot data to particular flash blocks and lower-
ing the maximum possible threshold voltage for such blocks [26, 82]. By lowering
the maximum possible threshold voltage for these blocks, the SSD controller can
use a lower V. value (see Sect. 9.4.5) on the blocks without introducing any addi-
tional errors during a read operation. To lower the maximum threshold voltage in

286 Y. Cai et al.

these blocks, the width of the voltage window for each voltage state is decreased,
and each voltage window shifts to the left [26, 82]. Another work applies stronger
ECC encodings to only read-hot blocks based on the total read count of the block,
in order to increase SSD endurance without significantly reducing the amount of
overprovisioning [25] (see Sect. 9.1.4 for a discussion on the tradeoff between ECC
strength and overprovisioning).

9.4.7 Adaptive Error Mitigation Mechanisms

Due to the many different factors that contribute to raw bit errors, error rates in
NAND flash memory can be highly variable. Adaptive error mitigation mechanisms
are capable of adapting error tolerance capability to the error rate. They provide
stronger error tolerance capability when the error rate is higher, improving flash life-
time significantly. When the error rate is low, adaptive error mitigation techniques
reduce error tolerance capability to lower the cost of the error mitigation techniques.
In this section, we examine two types of adaptive techniques: (1) multi-rate ECC and
(2) dynamic cell levels.

Multi-rate ECC. Some works propose to employ multiple ECC algorithms in the
SSD controller [28, 44, 86, 95, 275]. Recall from Sect. 9.1.4 that there is a tradeoff
between ECC strength (i.e., the coding rate; see Sect. 9.1.3.7) and overprovisioning,
as a codeword (which contains a data chunk and its corresponding ECC information)
uses more bits when stronger ECC is employed. The key idea of multi-rate ECC is to
employ a weaker codeword (i.e., one that uses fewer bits for ECC) when the SSD is
relatively new and has a smaller number of raw bit errors, and to use the saved SSD
space to provide additional overprovisioning, as shown in Fig. 9.31.

Let us assume that the controller contains a configurable ECC engine that can
support n different types of ECC codewords, which we call ECC;. Figure 9.31 shows
an example of multi-rate ECC that uses four ECC engines, where ECC, provides the
weakest protection but has the smallest codeword, while ECC, provides the strongest
protection with the largest codeword. We need to ensure that the NAND flash mem-
ory has enough space to fit the largest codewords, e.g., those for ECC, in Fig.9.31.

Fixed ECC User data I OP space ECC
ECC, User data I OP space ECC
Multi-Rate -
ECC .
ECC, User data I OP space ECC
0% 84% 90% 100%

capacity

Fig. 9.31 Comparison of space used for user data, overprovisioning, and ECC between a fixed
ECC and a multi-rate ECC mechanism. Reproduced from [15]

9 Reliability Issues in Flash-Memory-Based Solid-State ... 287

PN

@ 8 &1 Ecey\ | rECe,\ | Ecc,

3w <0P1> <0P2> <0P3>

< wa,/) i \wa,/ | \wa,
T;
T, Ecc,
¥ op,

1 wa,
0

PE, PE, PE, P/E Cycles

Fig. 9.32 [Illustration of how multi-rate ECC switches to different ECC codewords (i.e., ECC;) as
the RBER grows. OP; is the overprovisioning factor used for engine ECC;, and WA, is the resulting
write amplification value. Reproduced from [15]

Initially, when the raw bit error rate (RBER) is low, the controller employs ECC,, as
shown in Fig. 9.32. The smaller codeword size for ECC, provides additional space
for overprovisioning, as shown in Fig.9.31, and thus reduces the effects of write
amplification. Multi-rate ECC works on an interval-by-interval basis. Every interval
(in this case, a predefined number of P/E cycles), the controller measures the RBER.
When the RBER exceeds the threshold set for transitioning from a weaker ECC to a
stronger ECC, the controller switches to the stronger ECC. For example, when the
SSD exceeds the first RBER threshold for switching (7, in Fig. 9.32), the controller
starts switching from ECC, to ECC,. When switching between ECC engines, the
controller uses the ECC; engine to decode data the next time the data is read out,
and stores a new codeword using the ECC, engine. This process is repeated during
the lifetime of flash memory for each stronger engine ECC;, where each engine has a
corresponding threshold that triggers switching [28, 44, 86], as shown in Fig. 9.32.

Multi-rate ECC allows the same maximum P/E cycle count for each block as if
ECC,, was used throughout the lifetime of the SSD, but reduces write amplification
and improves performance during the periods where the lower strength engines are
employed, by providing additional overprovisioning (see Sect.9.1.4) during those
times. As the lower-strength engines use smaller codewords (e.g., ECC, vs. ECC,
in Fig. 9.31), the resulting free space can instead be employed to further increase the
amount of overprovisioning within the NAND flash memory, which in turn increases
the total lifetime of the SSD. We compute the lifetime improvement by modifying
(9.4) (Sect.9.1.4) to account for each engine, as follows:

Lt Z PEC, x (1 + OP,) ©9)
1ime = .
HEIME = 2, 365 x DWPD x WA, x R

i=1 compress
In (9.9), WA, and OP; are the write amplification and overprovisioning factor for
ECC,;, and PEC,; is the number of P/E cycles that ECC, is used for. Manufacturers
can set parameters to maximize SSD lifetime in (9.9), by optimizing the values of
WA, and OP;.

Figure 9.33 shows the lifetime improvements for a four-engine multi-rate ECC,
with the coding rates for the four ECC engines (ECC,-ECC,) set to 0.90, 0.88, 0.86,

288 Y. Cai et al.

£

£ 175

2

S 150

e

]

€ 1.00

S % 10% 20% 30%

Baseline Overprovisioning %

Fig. 9.33 Lifetime improvements of using multi-rate ECC over using a fixed ECC coding rate.
Reproduced from [15]

and 0.84 (recall that a lower coding rate provides stronger protection; see Sect. 9.1.4),
over a fixed ECC engine that employs a coding rate of 0.84. We see that the lifetime
improvements of using multi-rate ECC are: (1) significant, with a 31.2% increase if
the baseline NAND flash memory has 15% overprovisioning; and (2) greater when
the SSD initially has a smaller amount of overprovisioning.

Dynamic Cell Levels. A major reason that errors occur in NAND flash memory is
because the threshold voltage distribution of each state overlaps more with those of
neighboring states as the distributions widen over time. Distribution overlaps are
a greater problem when more states are encoded within the same voltage range.
Hence, TLC flash has a much lower endurance than MLC, and MLC has a much
lower endurance than SLC (assuming the same process technology node). If we can
increase the margins between the states’ threshold voltage distributions, the amount
of overlap can be reduced significantly, which in turn reduces the number of errors.

Prior work proposes to increase margins by dynamically reducing the number of
bits stored within a cell, e.g., by going from three bits that encode eight states (TLC)
to two bits that encode four states (equivalent to MLC), or to one bit that encodes two
states (equivalent to SLC) [26, 272]. Recall that TLC uses the ER state and states P1—
P7, which are spaced out approximately equally. When we downgrade a flash block
(i.e., reduce the number of states its cells can represent) from eight states to four, the
cells in the block now employ only the ER state and states P3, P5, and P7. As we can
see from Fig. 9.34, this provides large margins between states P3, P5, and P7, and
provides an even larger margin between ER and P3. The SSD controller maintains
a list of all of the blocks that have been downgraded. For each read operation, the
SSD controller checks if the target block is in the downgraded block list, and uses
this information to interpret the data that it reads out from the wordline of the block.

A cell can be downgraded to reduce various types of errors (e.g., wearout,
read disturb). To reduce wearout, a cell is downgraded when it has high wearout.
To reduce read disturb, a cell can be downgraded if it stores read-hot data (i.e., the
most frequently read data in the SSD). By using fewer states for a block that holds
read-hot data, we can reduce the impact of read disturb because it becomes harder for
the read disturb mechanism to affect the distributions enough for them to overlap. As
an optimization, the SSD controller can employ various hot-cold data partitioning
mechanisms (e.g., [25, 26, 81, 161]) to keep read-hot data in specially designated

9 Reliability Issues in Flash-Memory-Based Solid-State ... 289

ER P3 P5 P7
(111) (101) (000) (110)

Threshold Voltage (! V:,,)

Probability
Density

Fig.9.34 States used when a TLC cell (with 8 states) is downgraded to an MLC cell (with 4 states).
Reproduced from [15]

blocks [25, 26, 81, 82], allowing the controller to reduce the size of the downgraded
block list and isolate the impact of read disturb from read-cold (i.e., infrequently
read) data.

Another approach to dynamically increasing the distribution margins is to per-
form program and erase operations more slowly when the SSD write request through-
put is low [26, 106]. Slower program/erase operations allow the final voltage of a
cell to be programmed more precisely, and reduce the amount of oxide degradation
that occurs during programming. As a result, the distribution of each state is ini-
tially much narrower, and subsequent widening of the distributions results in much
lower overlap for a given P/E cycle count. This technique improves the SSD life-
time by an average of 61.2% for a variety of disk workloads [106]. Unfortunately,
the slower program/erase operations come at the cost of higher SSD latency, and are
thus not applied during periods of high write traffic. One way to mitigate the impact
of the higher write latency is to perform slower program/erase operations only dur-
ing garbage collection, which ensures that the higher latency occurs only when the
SSD s idle [26]. As a result, read and write requests from the host do not experience
any additional delays.

9.5 Error Correction and Data Recovery Techniques

Now that we have described a variety of error mitigation mechanisms that can target
various types of error sources, we turn our attention to the error correction flow
that is employed in modern SSDs as well as data recovery techniques that can be
employed when the error correction flow fails to produce correct data. In this section,
we briefly overview the major error correction steps an SSD performs when reading
data. We first discuss two ECC encodings that are typically used by modern SSDs:
Bose—Chaudhuri—-Hocquenghem (BCH) codes [10, 92, 153, 243] and low-density
parity-check (LDPC) codes [72, 73, 167, 243] (Sect.9.5.1). Next, we go through
example error correction flows for an SSD that uses either BCH codes or LDPC
codes (Sect. 9.5.2). Then, we compare the error correction strength (i.e., the number
of errors that ECC can correct) when we employ BCH codes or LDPC codes in an
SSD (Sect. 9.5.3). Finally, we discuss techniques that can rescue data from an SSD
when the BCH/LDPC decoding fails to correct all errors (Sect. 9.5.4).

290 Y. Cai et al.

9.5.1 Error-Correcting Codes Used in SSDs

Modern SSDs typically employ one of two types of ECC. Bose—Chaudhuri—
Hocquenghem (BCH) codes allow for the correction of multiple bit errors [10, 92,
153, 243], and are used to correct the errors observed during a single read from
the NAND flash memory [153]. Low-density parity-check (LDPC) codes employ
information accumulated over multiple read operations to determine the likelihood
of each cell containing a bit value 1 or a bit value 0 [72, 73, 167, 243], providing
stronger protection at the cost of greater decoding latency and storage overhead [266,
298]. Next, we describe the basics of BCH and LDPC codes.

9.5.1.1 Bose—Chaudhuri-Hocquenghem (BCH) Codes

BCH codes [10, 92, 153, 243] have been widely used in modern SSDs during the
past decade due to their ability to detect and correct multi-bit errors while keeping
the latency and hardware cost of encoding and decoding low [42, 153, 170, 179].
For SSDs, BCH codes are designed to be systematic, which means that the original
data message is embedded verbatim within the codeword. Within an n-bit codeword
(see Sect.9.1.3.7), error-correcting codes use the first & bits of the codeword, called
data bits, to hold the data message bits, and the remaining (n — k) bits, called check
bits, to hold error correction information that protects the data bits. BCH codes are
designed to guarantee that they correct up to a certain number of raw bit errors (e.g.,
t error bits) within each codeword, which depends on the values chosen for n and k.
A stronger error correction strength (i.e., a larger 7) requires more redundant check
bits (i.e., (n — k)) or a longer codeword length (i.e., n).

A BCH code [10, 92, 153, 243] is a linear block code that consists of check
bits generated by an algorithm. The codeword generation algorithm ensures that the
check bits are selected such that the check bits can be used during a parity check to
detect and correct up to ¢ bit errors in the codeword. A BCH code is defined by (1) a
generator matrix G, which informs the generation algorithm of how to generate each
check bit using the data bits; and (2) a parity check matrix H, which can be applied
to the codeword to detect if any errors exist. In order for a BCH code to guarantee
that it can correct ¢ errors within each codeword, the minimum separation d (i.e., the
Hamming distance) between valid codewords must be at least d = 2¢ + 1 [243].

BCH Encoding. The codeword generation algorithm encodes a k-bit data mes-
sage m into an n-bit BCH codeword ¢, by computing the dot product of m and
the generator matrix G (i.e., c = m - G). G is defined within a finite Galois field
GF(29) = {0,a% a',...,a* "1}, where a is a primitive element of the field and d
is a positive integer [64]. An SSD manufacturer constructs G from a set of poly-
nomials g, (x), g,(x), ... g&,(x), where g;(a’) = 0. Each polynomial generates a parity
bit, which is used during decoding to determine if any errors were introduced. The
i-th row of G encodes the i-th polynomial g;(x). When decoding, the codeword ¢ can
be viewed as a polynomial c(x). Since c(x) is generated by g;(x) which has a root

9 Reliability Issues in Flash-Memory-Based Solid-State ... 291

', a' should also be a root of c(x). The parity check matrix H is constructed such
that cH' calculates c(e;). Thus, the element in the i-th row and j-th column of H is
H; = aU=P*D This allows the decoder to use H to quickly determine if any of the
parity bits do not match, which indicates that there are errors within the codeword.
BCH codes in SSDs are typically designed to be systematic, which guarantees that a
verbatim copy of the data message is embedded within the codeword. To form a sys-
tematic BCH code, the generator matrix and the parity check matrix are transformed
such that they contain the identity matrix.

BCH Decoding. When the SSD controller is servicing a read request, it must extract
the data bits (i.e., the k-bit data message m) from the BCH codeword that is stored in
the NAND flash memory chips. Once the controller retrieves the codeword, which we
call r, from NAND flash memory, it sends r to a BCH decoder. The decoder performs
five steps, as illustrated in Fig. 9.35, which correct the retrieved codeword r to obtain
the originally-written codeword ¢, and then extract the data message m from c. In
Step 1, the decoder uses syndrome calculation to detect if any errors exist within
the retrieved codeword r. If no errors are detected, the decoder uses the retrieved
codeword as the original codeword, ¢, and skips to Step 5. Otherwise, the decoder
continues on to correct the errors and recover c. In Step 2, the decoder uses the
syndromes from Step 1 to construct an error location polynomial, which encodes
the locations of each detected bit error within . In Step 3, the decoder extracts the
specific location of each detected bit error from the error location polynomial. In
Step 4, the decoder corrects each detected bit error in the retrieved codeword r to
recover the original codeword c. In Step 5, the decoder extracts the data message
from the original codeword c. We describe the algorithms most commonly used by
BCH decoders in SSDs [48, 153, 160] for each step in detail below.

Step 1—Syndrome Calculation: To determine whether the retrieved codeword r
contains any errors, the decoder computes the syndrome vector, S, which indicates
how many of the parity check polynomials no longer match with the parity bits orig-
inally computed during encoding. The i-th syndrome, S;, is set to one if parity bit
i does not match its corresponding polynomial, and to zero otherwise. To calculate

STEP 1 STEP 2 error location STEP 3

i lynomial
cort;?;;’/%‘;zd(r) Syndrome E Coantr uct AT (U): Extract Error
Calculation lzglryn%%t;%;n Locations
error bit
vector (e)

STEP 4
Correct
Errors

original
codeword (c)

STEP 5 :
k-bit data
Extract — message (m)

Message

Fig. 9.35 BCH decoding steps

292 Y. Cai et al.

S, the decoder calculates the dot product of » and the parity check matrix H (i.e.,
S =r- H).If every syndrome in S is set to 0, the decoder does not detect any errors
within the codeword, and skips to Step 5. Otherwise, the decoder proceeds to Step 2.

Step 2—Constructing the Error Location Polynomial: A state-of-the-art BCH
decoder uses the Berlekamp—Massey algorithm [8, 42, 171, 230] to construct an
error location polynomial, o(x), whose roots encode the error locations of the
codeword:

c(x)=1+0,-x+0, - x>+ 40, -x (9.10)

In (9.10), b is the number of raw bit errors in the codeword.

The polynomial is constructed using an iterative process. Since b is not known ini-
tially, the algorithm initially assumes that b = 0 (i.e., o(x) = 1). Then, it updates o(x)
by adding a correction term to the equation in each iteration, until o(x) successfully
encodes all of the errors that were detected during syndrome calculation. In each
iteration, a new correction term is calculated using both the syndromes from Step 1
and the o(x) equations from prior iterations of the algorithm, as long as these prior
values of o(x) satisfy certain conditions. This algorithm successfully finds o(x) after
n = (t + b)/2 iterations, where ¢ is the maximum number of bit errors correctable by
the BCH code [64].

Note that (1) the highest order of the polynomial, b, is directly correlated with the
number of errors in the codeword; (2) the number of iterations, n, is also proportional
to the number of errors; (3) each iteration is compute-intensive, as it involves several
multiply and add operations; and (4) this algorithm cannot be parallelized across
iterations, as the computation in each iteration is dependent on the previous ones.

Step 3—Extracting Bit Error Locations from the Error Polynomial: A state-of-
the-art decoder applies the Chien search [46, 243] on the error location polynomial
to find the location of all raw bit errors that have been detected during Step 1 in
the retrieved codeword r. Each bit error location is encoded with a known function
f [230]. The error polynomial from Step 2 is constructed such that if the i-th bit of the
codeword has an error, the error location polynomial o(f(i)) = 0; otherwise, if the
i-th bit does not have an error, o(f(i)) # 0. The Chien search simply uses trial-and-
error (i.e., tests if o(f (7)) is zero), testing each bit in the codeword starting at bit 0. As
the decoder needs to correct only the first k bits of the codeword that contain the data
message m, the Chien search needs to evaluate only k different values of o(f(i)). The
algorithm builds a bit vector e, which is the same length as the retrieved codeword
r, where the i-th bit of e is set to one if bit i of contains a bit error, and is set to zero
if bit i of r does not contain an error, or if i > k (since there is no need to correct the
parity bits).

Note that (1) the calculation of o(f(i)) is compute-intensive, but can be paral-
lelized because the calculation of each bit i is independent of the other bits, and
(2) the complexity of Step 3 is linearly correlated with the number of detected errors
in the codeword.

Step 4—Correcting the Bit Errors: The decoder corrects each detected bit error
location by flipping the bit at that location in the retrieved codeword r. This simply

9 Reliability Issues in Flash-Memory-Based Solid-State ... 293

involves XORing r with the error vector e created in Step 3. After the errors are cor-
rected, the decoder now has the estimated value of the originally-written codeword
c (i.e.,c = r @ e). The decoded version of ¢ is only an estimate of the original code-
word, since if r contains more bit errors than the maximum number of errors (¢) that
the BCH can correct, there may be some uncorrectable errors that were not detected
during syndrome calculation (Step 1). In such cases, the decoder cannot guarantee
that it has determined the actual original codeword. In a modern SSD, the bit error
rate of a codeword after BCH correction is expected to be less than 10715 [105].

Step 5—Extracting the Message from the Codeword: As we discuss above, dur-
ing BCH codeword encoding, the generator matrix G contains the identity matrix, to
ensure that the k-bit message m is embedded verbatim into the codeword c. There-
fore, the decoder recovers m by simply truncating the last (n — k) bits from the n-bit
codeword c.

BCH Decoder Latency Analysis. We can model the latency of the state-of-the-art
BCH decoder (TgeCCH) that we described above as:

k

Tg‘é‘cH = TSyndrome +N- TBerlekamp + ; “Thien 9.11)

In (9.11), Ty40me 1 the latency for calculating the syndrome, which is determined
by the size of the parity check matrix H; Tg,e1qm, 1S the latency of one iteration
of the Berlekamp—Massey algorithm; N is the total number of iterations that the
Berlekamp-Massey algorithm performs; T, is the latency for deciding whether
or not a single bit location contains an error, using the Chien search; k is the length
of the data message m; and p is the number of bits that are processed in parallel
in Step 3. In this equation, Ts,jomes Tgerickamps k» @nd p are constants for a BCH
decoder implementation, while N and T, are proportional to the raw bit error
count of the codeword. Note that Steps 4 and 5 can typically be implemented such
that they take less than one clock cycle in modern hardware, and thus their latencies
are not included in (9.11).

9.5.1.2 Low-Density Parity-Check (LDPC) Codes

LDPC codes [72, 73, 167, 243] are now used widely in modern SSDs, as LDPC
codes provide a stronger error correction capability than BCH codes, albeit at a
greater storage cost [266, 298]. LDPC codes are one type of capacity-approaching
codes, which are error-correcting codes that come close to the Shannon limit, i.e., the
maximum number of data message bits (k,,,,) that can be delivered without errors for
a certain codeword size (n) under a given error rate [239, 240]. Unlike BCH codes,
LDPC codes cannot guarantee that they will correct a minimum number of raw bit
errors. Instead, a good LDPC code guarantees that the failure rate (i.e., the fraction

294 Y. Cai et al.

of all reads where the LDPC code cannot successfully correct the data) is less than a
target rate for a given number of bit errors. Like BCH codes, LDPC codes for SSDs
are designed to be systematic, i.e., to contain the data message verbatim within the
codeword.

An LDPC code [72, 73, 167, 243] is a linear code that, like a BCH code, consists
of check bits generated by an algorithm. For an LDPC code, these check bits are
used to form a bipartite graph, where one side of the graph contains nodes that rep-
resent each bit in the codeword, and the other side of the graph contains nodes that
represent the parity check equations used to generate each parity bit. When a code-
word containing errors is retrieved from memory, an LDPC decoder applies belief
propagation [218] to iteratively identify the bits within the codeword that are most
likely to contain a bit error.

An LDPC code is defined using a binary parity check matrix H, where H is very
sparse (i.e., there are few ones in the matrix). Figure 9.36a shows an example H
matrix for a seven-bit codeword ¢ (see Sect.9.1.3.7). For an n-bit codeword that
encodes a k-bit data message, H is sized to be an (n — k) X n matrix. Within the
matrix, each row represents a parity check equation, while each column represents
one of the seven bits in the codeword. As our example matrix has three rows, this
means that our error correction uses three parity check equations (denoted as f). A
bit value 1 in row i, column j indicates that parity check equation f; contains bit ;.
Each parity check equation XORs all of the codeword bits in the equation to see
whether the output is zero. For example, parity check equation f; from the H matrix
in Fig. 9.36a is:

fi=c @, ®cy®ces =0 (9.12)

This means that ¢ is a valid codeword only if H - ¢” = 0, where ¢T is the transpose
matrix of the codeword c.

(a) (b) bit nodes
codeword bits Co C1 Cz C3 C4 Cs Ce
Cp €; €, C3 €4 C5 C; . Q
101 110 0]f 2
p WS &
H=[0 1 1 0 1 1 0| f,}&%]
101 0117 88 Fo Fy F2
472 0 check nodes

(a) H matrix (b) Tanner graph

Fig. 9.36 Example LDPC code for a seven-bit codeword with a four-bit data message (stored in
bits ¢, ¢, ¢,, and ¢3) and three parity check equations (i.e., n = 7, k = 4), represented as a an H
matrix and b a Tanner graph

9 Reliability Issues in Flash-Memory-Based Solid-State ... 295

In order to perform belief propagation, H can be represented using a Tanner
graph [258]. A Tanner graph is a bipartite graph that contains check nodes, which
represent the parity check equations, and bif nodes, which represent the bits in the
codeword. An edge connects a check node F; to a bit node C; only if parity check
equation f; contains bit ¢;. Figure 9.36b shows the Tanner graph that corresponds to
the H matrix in Fig. 9.36a. For example, since parity check equation f; uses code-
word bits ¢, ¢,, ¢4, and c5, the F| check node in Fig. 9.36b is connected to bit nodes
C,,C,, C4, and Cs.

LDPC Encoding. As was the case with BCH, the LDPC codeword generation algo-
rithm encodes a k-bit data message m into an n-bit LDPC codeword ¢ by computing
the dot product of m and a generator matrix G (i.e., ¢ = m - G). For an LDPC code,
the generator matrix is designed to (1) preserve m verbatim within the codeword, and
(2) generate the parity bits for each parity check equation in H. Thus, G is defined
using the parity check matrix H. With linear algebra based transformations, H can
be expressed in the form H = [A, I(n_k)], where H is composed of A, an (n — k) X k
binary matrix, and Li—gy» an (n — k) X (n — k) identity matrix [110]. The generator
matrix G can then be created using the composition G = [Ik,AT], where A7 is the
transpose matrix of A.

LDPC Decoding. When the SSD controller is servicing a read request, it must
extract the k-bit data message from the LDPC codeword r that is stored in NAND
flash memory. In an SSD, an LDPC decoder performs multiple levels of decod-
ing [64, 263, 298], which correct the retrieved codeword r to obtain the originally-
written codeword ¢ and extract the data message m from c. Initially, the decoder per-
forms a single level of hard decoding, where it uses the information from a single
read operation on the codeword to attempt to correct the codeword bit errors. If the
decoder cannot correct all errors using hard decoding, it then initiates the first level
of soft decoding, where a second read operation is performed on the same codeword
using a different set of read reference voltages. The second read provides additional
information on the probability that each bit in the codeword is a zero or a one. An
LDPC decoder typically uses multiple levels of soft decoding, where each new level
performs an additional read operation to calculate a more accurate probability for
each bit value. We discuss multi-level soft decoding in detail in Sect.9.5.2.2.

For each level, the decoder performs five steps, as illustrated in Fig. 9.37. At each
level, the decoder uses two pieces of information to determine which bits are most
likely to contain errors: (1) the probability that each bit in r is a zero or a one, and
(2) the parity check equations. In Step 1 (Fig.9.37), the decoder computes an ini-
tial log likelihood ratio (LLR) for each bit of the stored codeword. We refer to the
initial codeword LLR values as L, where L; is the LLR value for bit j of the code-
word. L; expresses the likelihood (i.e., confidence) that bit j should be a zero or a
one, based on the current threshold voltage of the NAND flash cell where bit j is
stored. The decoder uses L as the initial LLR message generated using the bit nodes.
An LLR message consists of the LLR values for each bit, which are updated by and
communicated between the check nodes and bit nodes during each step of belief

296 Y. Cai et al.

retrieved
codeword (r)

STEP 1
Compute Log
Likelihood
Ratio (LLR)
initial LLR e .
check node LLR bit node LLR
message (L) STEP 2 message (R) STEP 3 message (Q STEP 4
Process > Process Parity
Check Nodes Bit Nodes Check
bit node LLR predicted original
message (Q) codeword (c)
Max
NO Iterations YES
?
YES original [NO
codeword (c)
decoding level fails SULE k-bit data
Extract message (m)
Message

Fig. 9.37 LDPC decoding steps for a single level of hard or soft decoding

propagation.* In Steps 2 through 4, the belief propagation algorithm [218] itera-
tively updates the LLR message, using the Tanner graph to identify those bits that
are most likely to be incorrect (i.e., the codeword bits whose (1) bit nodes are con-
nected to the largest number of check nodes that currently contain a parity error,
and (2) LLR values indicate low confidence). Several decoding algorithms exist to
perform belief propagation for LDPC codes. The most commonly-used belief prop-
agation algorithm is the min-sum algorithm [43, 68], a simplified version of the
original sum-product algorithm for LDPC [72, 73] with near-equivalent error cor-
rection capability [3]. During each iteration of the min-sum algorithm, the decoder
identifies a set of codeword bits that likely contain errors and thus need to be flipped.
The decoder accomplishes this by (1) having each check node use its parity check
information to determine how much the LLR value of each bit should be updated by,
using the most recent LLR messages from the bit nodes; (2) having each bit node
gather the LLR updates from each bit to generate a new LLR value for the bit, using
the most recent LLR messages from the check nodes; and (3) using the parity check
equations to see if the values predicted by the new LLR message for each node are
correct. The min-sum algorithm terminates under one of two conditions: (1) the pre-
dicted bit values after the most recent iteration are all correct, which means that the
decoder now has an estimate of the original codeword ¢, and can advance to Step 5;
or (2) the algorithm exceeds a predetermined number of iterations, at which point the
decoder moves onto the next decoding level, or returns a decoding failure if the max-

“Note that an LLR message is not the same as the k-bit data message. The data message refers to the
actual data stored within the SSD, which, when read, is modeled in information theory as a message
that is transmitted across a noisy communication channel. In contrast, an LLR message refers to the
updated LLR values for each bit of the codeword that are exchanged between the check nodes and
the bit nodes during belief propagation. Thus, there is no relationship between a data message and
an LLR message.

9 Reliability Issues in Flash-Memory-Based Solid-State ... 297

imum number of decoding levels have been performed. In Step 5, once the errors are
corrected, and the decoder has the original codeword c, the decoder extracts the k-bit
data message m from the codeword. We describe the steps used by a state-of-the-art
decoder in detail below, which uses an optimized version of the min-sum algorithm
that can be implemented efficiently in hardware [78, 79].

Step 1—Computing the Log Likelihood Ratio (LLR): The LDPC decoder uses the
probability (i.e., likelihood) that a bit is a zero or a one to identify errors, instead of
using the bit values directly. The log likelihood ratio (LLR) is the probability that
a certain bit is zero, i.e., P(x = 0]V,;), over the probability that the bit is one, i.e.,
P(x = 1|V,,), given a certain threshold voltage range (V,;,) bounded by two threshold
voltage values (i.e., the maximum and the minimum voltage of the threshold voltage
range) [266, 298]:

P(x=0|V,)

LLR = log ——— (9.13)
EPa =1V,

The sign of the LLR value indicates whether the bit is likely to be a zero (when the
LLR value is positive) or a one (when the LLR value is negative). A larger magnitude
(i.e., absolute value) of the LLR value indicates a greater confidence that a bit should
be zero or one, while an LLR value closer to zero indicates low confidence. The bits
whose LLR values have the smallest magnitudes are the ones that are most likely to
contain errors.

There are several alternatives for how to compute the LLR values. A common
approach for LLR computation is to treat a flash cell as a communication channel,
where the channel takes an input program signal (i.e., the target threshold voltage
for the cell) and outputs an observed signal (i.e., the current threshold voltage of
the cell) [20]. The observed signal differs from the input signal due to the various
types of NAND flash memory errors. The communication channel model allows us
to break down the threshold voltage of a cell into two components: (1) the expected
signal; and (2) the additive signal noise due to errors. By enabling the modeling of
these two components separately, the communication channel model allows us to
estimate the current threshold voltage distribution of each state [20]. The threshold
voltage distributions can be used to predict how likely a cell within a certain voltage
region is to belong to a particular voltage state.

One popular variant of the communication channel model assumes that the thresh-
old voltage distribution of each state can be modeled as a Gaussian distribution [20].
If we use the mean observed threshold voltage of each state (denoted as y) to rep-
resent the signal, we find that the P/E cycling noise (i.e., the shift in the distribution
of threshold voltages due to the accumulation of charge from repeated program-
ming operations; see Sect. 9.3.1) can be modeled as additive white Gaussian noise
(AWGN) [20], which is represented by the standard deviation of the distribution
(denoted as o). The closed-form AWGN-based model can be used to determine the
LLR value for a cell with threshold voltage y, as follows:

298 Y. Cai et al.

2 2
Hi—H (o — 1)
1 0+y 0 1

LLR) = —>—

= (9.14)
where u, and y; are the mean threshold voltages for the distributions of the threshold
voltage states for bit value 0 and bit value 1, respectively, and o is the standard devi-
ation of both distributions (assuming that the standard deviation of each threshold
voltage state distribution is equal). Since the SSD controller uses threshold voltage
ranges to categorize a flash cell, we can substitute y Ry the mean threshold voltage of
the threshold voltage range R;, in place of y in (9. 14).

The AWGN-based LLR model in (9.14) provides only an estimate of the LLR,
because (1) the actual threshold voltage distributions observed in NAND flash mem-
ory are not perfectly Gaussian in nature [20, 162]; (2) the controller uses the mean
voltage of the threshold voltage range to approximate the actual threshold voltage
of a cell; and (3) the standard deviations of each threshold voltage state distribu-
tion are not perfectly equal (see Tables 9.5, 9.6 and 9.7 in the Appendix). A number
of methods have been proposed to improve upon the AWGN-based LLR estimate
by: (1) using nonlinear transformations to convert the AWGN-based LLR into a
more accurate LLR value [278]; (2) scaling and rounding the AWGN-based LLR
to compensate for the estimation error [277]; (3) initially using the AWGN-based
LLR to read the data, and, if the read fails, using the ECC information from the
failed read attempt to optimize the LLR and to perform the read again with the opti-
mized LLR [57]; and (4) using online and offline training to empirically determine
the LLR values under a wide range of conditions (e.g., P/E cycle count, retention
time, read disturb count) [279]. The SSD controller can either compute the LLR
values at runtime, or statically store precomputed LLR values in a table.

Once the decoder calculates the LLR values for each bit of the codeword, which
we call the initial LLR message L, the decoder starts the first iteration of the min-sum
algorithm (Steps 2—4 below).

Step 2—Check Node Processing: In every iteration of the min-sum algorithm,
each check node i (see Fig. 9.36) generates a revised check node LLR message R;; to
send to each bit node j (see Fig. 9.36) that is connected to check node i. The decoder
computes R;; as:

R; = 6;k; (9.15)

where 6 is the sign of the LLR message, and k;; is the magnitude of the LLR mes-
sage. The decoder determines the values of both 6; and «;; using the bit node LLR

9 Reliability Issues in Flash-Memory-Based Solid-State ... 299

message le'i' At a high level, each check node collects LLR values sent from each bit
node (iji), and then determines how much each bit’s LLR value should be adjusted
using the parity information available at the check node. These LLR value updates
are then bundled together into the LLR message R;;. During the first iteration of the
min-sum algorithm, the decoder sets Q’ = L;, the initial LLR value from Step 1. In
subsequent iterations, the decoder uses the value of Q’ that was generated in Step 3
of the previous iteration. The decoder calculates 6;; the sign of the check node LLR
message, as:

ij*

5; = [[sen(@,) (9.16)
J

where J represents all bit nodes connected to check node i except for bit node j. The
sign of a bit node indicates whether the value of a bit is predicted to be a zero (if
the sign is positive) or a one (if the sign is negative). The decoder calculates «;;, the
magnitude of the check node LLR message, as:

TR
K; = min 10% (9.17)

In essence, the smaller the magnitude of Q]’.l. is, the more uncertain we are about
whether the bit should be a zero or a one. At each check node, the decoder updates
the LLR value of each bit node j, adjusting the LLR by the smallest value of Q' for
any of the other bits connected to the check node (i.e., the LLR value of the most
uncertain bit aside from bit j).

Step 3—Bit Node Processing: Once each check node generates the LLR messages
for each bit node, we combine the LLR messages received by each bit node to update
the LLR value of the bit. The decoder first generates the LLR messages to be used
by the check nodes in the next iteration of the min-sum algorithm. The decoder cal-
culates the bit node LLR message Q); to send from bit node j to check node i as
follows:

Q=L+ Ry (9.18)
1

where I represents all check nodes connected to bit node j except for check node i, and
L; is the original LLR value for bit j generated in Step 1. In essence, for each check
node the bit node LLR message combines the LLR messages from the other check
nodes to ensure that all of the LLR value updates are propagated globally across all
of the check nodes.

Step 4—Parity Check: After the bit node processing is complete, the decoder uses
the revised LLR information to predict the value of each bit. For bit node j, the
predicted bit value P; is calculated as:

Pi=Li+ YR, (9.19)

300 Y. Cai et al.

where i represents all check nodes connected to bit node j, including check node i,
and L, is the original LLR value for bit j generated in Step 1. If P; is positive, bit j of
the original codeword c is predicted to be a zero; otherwise, bit j is predicted to be
a one. Once the predicted values have been computed for all bits of ¢, the H matrix
is used to check the parity, by computing H - ¢T. If H - ¢T = 0, then the predicted
bit values are correct, the min-sum algorithm terminates, and the decoder goes to
Step 5. Otherwise, at least one bit is still incorrect, and the decoder goes back to
Step 2 to perform the next iteration of the min-sum algorithm. In the next iteration,
the min-sum algorithm uses the updated LLR values from the current iteration to
identify the next set of bits that are most likely incorrect and need to be flipped.

The current decoding level fails to correct the data when the decoder cannot deter-
mine the correct codeword bit values after a predetermined number of min-sum
algorithm iterations. If the decoder has more soft decoding levels left to perform,
it advances to the next soft decoding level. For the new level, the SSD controller
performs an additional read operation using a different set of read reference volt-
ages than the ones it used for the prior decoding levels. The decoder then goes back
to Step 1 to generate the new LLR information, using the output of all of the read
operations performed for each decoding level so far. We discuss how the number
of decoding levels and the read reference voltages are determined, as well as what
happens if all soft decoding levels fail, in Sect. 9.5.2.2.

Step 5—Extracting the Message from the Codeword: As we discuss above, during
LDPC codeword encoding, the generator matrix G contains the identity matrix, to
ensure that the codeword c includes a verbatim version of m. Therefore, the decoder
recovers the k-bit data message m by simply truncating the last (n — k) bits from the
n-bit codeword c.

9.5.2 Error Correction Flow

For both BCH and LDPC codes, the SSD controller performs several stages of error
correction to retrieve the data, known as the error correction flow. The error correc-
tion flow is invoked when the SSD performs a read operation. The SSD starts the
read operation by using the initial read reference voltages (V;,;,.;; see Sect. 9.4.5) to
read the raw data stored within a page of NAND flash memory into the controller.
Once the raw data is read, the controller starts error correction.

9 Reliability Issues in Flash-Memory-Based Solid-State ... 301

Algorithm 1 Example BCH/LDPC Error Correction Procedure

First Stage: BCH/LDPC Hard Decoding

Controller gets stored V,,;,;,; values to use as V,.,
Flash chips read page using V,.,
ECC decoder decodes BCH/LDPC
if ECC succeeds then
Controller sends data to host; exit algorithm
else if number of stage iterations not exceeded then
Controller invokes V,. . optimization to find new V,_.;
repeats first stage

end

Second Stage (BCH only): NAC

Controller reads immediately-adjacent wordline W
while ECC fails and all possible voltage states for
adjacent wordline not yet tried do
Controller goes to next neighbor voltage state V
Controller sets V,.r based on neighbor voltage state V
Flash chips read page using V.,
Controller corrects cells adjacent to W’'s cells that
were programmed to V
ECC decoder decodes BCH
if ECC succeeds then
Controller sends data to host; exit algorithm
end

end

Second Stage (LDPC only): Level X LDPC Soft Decoding

while ECC fails and X < maximum level N do
Controller selects optimal value of Vif
Flash chips do read-retry using vf;f
Controller recomputes LLRE’ to LLR?X
ECC decoder decodes LDPC
if ECC succeeds then
Controller sends data to host; exit algorithm
else
Controller goes to soft decoding level X+ 1
end

end

Third Stage: Superpage-Level Parity Recovery

Flash chipsread all other pages in the superpage
Controller XORs all other pages in the superpage
if data extraction succeeds then

Controller sends data to host
else

Controller reports uncorrectable error

end

302 Y. Cai et al.

Algorithm 1 lists the three stages of an example error correction flow, which can
be used to decode either BCH codes or LDPC codes. In the first stage, the ECC
engine performs hard decoding on the raw data. In hard decoding, the ECC engine
uses only the hard bit value information (i.e., either a 1 or a 0) read for a cell using
a single set of read reference voltages. If the first stage succeeds (i.e., the controller
detects that the error rate of the data after correction is lower than a predetermined
threshold), the flow finishes. If the first stage fails, then the flow moves on to the
second stage of error correction. The second stage differs significantly for BCH and
for LDPC, which we discuss below. If the second stage succeeds, the flow terminates;
otherwise, the flow moves to the third stage of error correction. In the third stage,
the controller tries to correct the errors using the more expensive superpage-level
parity recovery (see Sect.9.1.3.10). The steps for superpage-level parity recovery
are shown in the third stage of Algorithm 1. If the data can be extracted successfully
from the other pages in the superpage, the data from the target page can be recovered.
Whenever data is successfully decoded or recovered, the data is sent to the host (and
it is also reprogrammed into a new physical page to ensure that the corrected data
values are stored for the logical page). Otherwise, the SSD controller reports an
uncorrectable error to the host.

Figure 9.38 compares the error correction flow with BCH codes to the flow with
LDPC codes. Next, we discuss the flows used with both BCH codes (Sect.9.5.2.1)
and LDPC codes (Sect.9.5.2.2).

(a) (b)
BCH Flow with BCH Flow with LDPC LDPC Codeword
Latency (Section 5.2.1) (Section 5.2.2) Latency Failure Rate
70 ps/ BCH Hard Decoding LDPC Hard "
iteration | with Read-Retry Decoding 80 us 10
140 ps NAC _ =
for tm‘;::) 1 (Section 4.2) 0] Level 1 10
neighboring S H
reads -~ :
+ > i/ Level 2 106
70 ps 3 i
for each S g . i 80 us/ .
adjacent S a : level 107
value used & H
a s H
Q Level N-1 108
10 ms +—s Superpage-Le\(eI Parity Recovery | | 10 ms 1015
(Section 1.3.10)

Fig. 9.38 a Example error correction flow using BCH codes and LDPC codes, with average
latency of each BCH/LDPC stage. b The corresponding codeword failure rate for each LDPC stage.
Adapted from [15]

9 Reliability Issues in Flash-Memory-Based Solid-State ... 303
9.5.2.1 Flow Stages for BCH Codes

An example flow of the stages for BCH decoding is shown on the left-hand side of
Fig.9.38a. In the first stage, the ECC engine performs BCH hard decoding on the
raw data, which reports the total number of bit errors in the data. If the data cannot
be corrected by the implemented BCH codes, many controllers invoke read-retry
(Sect. 9.4.4) or read reference voltage optimization (Sect. 9.4.5) to find a new set of
read reference voltages (me) that lower the raw bit error rate of the data from the
error rate when using V;,;;;- The controller uses the new V,,, values to read the data
again, and then repeats the BCH decoding. We discuss the algorithm used to perform
decoding for BCH codes in Sect. 9.5.1.1.

If the controller exhausts the maximum number of read attempts (specified as a
parameter in the controller), it employs correction techniques such as neighbor-cell-
assisted correction (NAC; see Sect. 9.4.2) to further reduce the error rate, as shown in
the second BCH stage of Algorithm 1. If NAC cannot successfully read the data, the
controller then tries to correct the errors using the more expensive superpage-level
parity recovery (see Sect.9.1.3.10).

9.5.2.2 Flow Stages for LDPC Codes

An example flow of the stages for LDPC decoding is shown on the right-hand side
of Fig. 9.38a. LDPC decoding consists of three major steps. First, the SSD controller
performs LDPC hard decoding, where