
Springer Series in Advanced Microelectronics 37

Rino Micheloni · Alessia Marelli
Kam Eshghi Editors

Inside Solid
State Drives
(SSDs)
Second Edition

Springer Series in Advanced Microelectronics

Volume 37

Series editors

Kukjin Chun, Seoul, Korea, Republic of (South Korea)
Kiyoo Itoh, Tokyo, Japan
Thomas H. Lee, Stanford, CA, USA
Rino Micheloni, Vimercate (MB), Italy
Takayasu Sakurai, Tokyo, Japan
Willy M. C. Sansen, Leuven, Belgium
Doris Schmitt-Landsiedel, München, Germany

The Springer Series in Advanced Microelectronics provides systematic information
on all the topics relevant for the design, processing, and manufacturing of
microelectronic devices. The books, each prepared by leading researchers or
engineers in their fields, cover the basic and advanced aspects of topics such as
wafer processing, materials, device design, device technologies, circuit design,
VLSI implementation, and subsystem technology. The series forms a bridge
between physics and engineering and the volumes will appeal to practicing
engineers as well as research scientists.

More information about this series at http://www.springer.com/series/4076

http://www.springer.com/series/4076

Rino Micheloni ⋅ Alessia Marelli
Kam Eshghi
Editors

Inside Solid State Drives
(SSDs)
Second Edition

123

Editors
Rino Micheloni
Microsemi Corporation
Vimercate, MB
Italy

Alessia Marelli
Microsemi Corporation
Vimercate, MB
Italy

Kam Eshghi
Lightbits Labs
San Jose, CA
USA

ISSN 1437-0387 ISSN 2197-6643 (electronic)
Springer Series in Advanced Microelectronics
ISBN 978-981-13-0598-6 ISBN 978-981-13-0599-3 (eBook)
https://doi.org/10.1007/978-981-13-0599-3

Library of Congress Control Number: 2018942187

1st edition: © Springer Science+Business Media Dordrecht 2013
2nd edition: © Springer Nature Singapore Pte Ltd. 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721,
Singapore

To my wife Sabrina, and my daughters Laura
and Greta

Rino Micheloni

To my husband Michele and my daughter
Elena for their unconditional love

Alessia Marelli

To my wife Nazila, and my daughters Elika
and Vionna, who brighten up my life with
their love

Kam Eshghi

Foreword

Error Correcting Coding for Solid State Disk Data Storage

Wireless communication had existed for half a century when Information Theory
was expounded by Claude Shannon in the Bell System Technical Journal in 1948.
Error correcting coding followed in primitive formulations which brought early
digital communication systems only a short way toward the Shannon capacity limit.
Various generations of algebraic codes: Hamming, BCH and Reed Solomon made
gradual progress. With the advent of digital satellite transmission and soft-decision
decoding of convolutional codes, the gap between uncoded performance and the
Shannon limit was cut in half. Similar technology was used in second and third
generation (2 G and 3 G) mobile phone voice modems. Finally turbo codes and low
density parity check (LDPC) codes, which arrived about two decades ago, gradually
were shown to greatly decrease the distance to the capacity limit. These tech-
nologies have entered predominant use for data transmission in 3 G and 4 G mobile
modems.

High density data storage technology has followed a similar trajectory though
with a more contracted time span. BCH and Reed Solomon codes were the norm
until recently for hard disk drives (HDD). Recently though LDPC has taken root
here too with major improvements in data density and reading and writing con-
troller speeds. With the advent of the “smart phones” and tablets, solid state drives
(SSD) became ever more important for their low latency and low power operation.
For this use LDPC is becoming the norm as well. This book which covers all
aspects of SSD technology also provides coverage of the important topic of ECC.

La Jolla, CA, USA Andrew Viterbi
President

Viterbi Group, LLC

vii

Preface to the Second Edition

We started writing the first edition of Inside Solid State Drives (SSDs) back in 2011,
and the book was first published in 2013. At that time, SSDs were considered as the
“new” technology in the storage space, but not really a “shining star” as they are
seen today.

Over the past few years, we have collected a lot of feedback and questions about
our book. Moreover, both SSD and Flash technologies have significantly changed
along the way. Therefore, we thought it was the right time to refresh the content of
“Inside Solid State Drives.”

As editors, we have pushed all co-authors to refresh each chapter (Thank You
ALL!), in terms of both the content and the bibliography.

But this second edition is much more than that.
As mentioned, SSD technologies have significantly changed in the last five years

and we realized that there was the need to add three completely new chapters:
Chaps. 5, 7, and 9.

In 2013, Flash manufacturers were still fighting against the challenges of
shrinking the size of planar memory cells to keep up with the expectations of the
market in terms of $/bit. Now, Flash technology is 3D (i.e., vertically integrated)
and there is a new dimension to consider: the number of memory layers (100+ in
the near future). 3D NAND Flash appeared in the market at the end of 2015, but
there is still a plethora of alternatives around, based on different architectures and
memory technologies (floating gate and charge trap). Chapter 5 covers 3D Flash
array architectures with a lot of bird’s-eye views, to help the reader understand
better the new challenges that technologists and developers have to face.

In all SSDs, a Flash microcontroller sits between one or multiple hosts (i.e.,
CPUs) and NAND Flash memories, and on each side, there are a lot of challenges
that designers need to overcome. Moreover, a single controller can have multiple
cores, with all the complexity associated with developing a multi-threaded firm-
ware. Chapter 7 is about how to make simulations of such a complex system, by
providing insights into design trade-off and simulation strategies. As usual, simu-
lation speed and precision do not go hand in hand, so it is important to understand

ix

when to simulate what. Of course, being able to simulate SSD’s performances is
necessary to meet time-to-market, as well as price and quality targets.

Nowadays, SSDs are electronic systems much more complex than in the past,
especially because they have to manage a lot of 3D memories, by using several
algorithms (wear leveling, Error Correction Code, soft decoding, randomization,
read retry, etc.) at a very high speed (especially with PCIe/NVMe drives).

Chapter 9 is exactly designed to offer a comprehensive overview of the most
recent Flash management techniques (aka Flash Signal Processing). We are sure
that technologists, engineers, and scientist will appreciate the unbelievable level of
know-how required by the management of electrons and holes inside nonvolatile
memory cells.

We really placed our best effort in updating this book. Enjoy the reading!

Vimercate, Italy Rino Micheloni
Vimercate, Italy Alessia Marelli
San Jose, USA Kam Eshghi

x Preface to the Second Edition

Preface to the First Edition

Solid State Drives (SSDs) are gaining momentum in enterprise and client appli-
cations, replacing Hard Disk Drives (HDDs) by offering higher performance and
lower power. In the enterprise, developers of data center server and storage systems
have seen CPU performance growing exponentially for the past two decades, while
HDD performance has improved linearly for the same period. Additionally,
multi-core CPU designs and virtualization have increased randomness of storage
I/Os. These trends have shifted performance bottlenecks to enterprise storage sys-
tems. Business critical applications such as online transaction processing, financial
data processing and database mining are increasingly limited by storage
performance.

In client applications, small mobile platforms are leaving little room for batteries
while demanding long life out of them. Therefore, reducing both idle and active
power consumption has become critical. Additionally, client storage systems are in
need of significant performance improvement as well as supporting small robust
form factors. Ultimately, client systems are optimizing for best performance/power
ratio as well as performance/cost ratio.

SSDs promise to address both enterprise and client storage requirements by
drastically improving performance while at the same time reducing power.

Inside Solid State Drives walks the reader through all the main topics related to
SSDs.

A Solid State Drive is a very complex system: Chapter 1 contains an overview
of the main blocks, including hardware and software.

Chapters 1 and 2 cover different SSD implementations with host interfaces
ranging from SAS/SATA to PCI Express (PCIe). SAS/SATA offer compatibility
with legacy storage infrastructure. However, for many applications, NAND Flash
read and write speeds are exceeding the capabilities of these legacy interconnects.
PCIe SSDs overcome this bottleneck and deliver unparalleled performance while, at
the same time, reducing latency, power and cost by eliminating the traditional
storage infrastructure and attaching directly to a platform’s PCIe I/O interconnect.

xi

SSDs and HDDs can also be combined together in various forms, as explained in
Chapter 3 where “hybrid” storage is analyzed.

At the end of the day, a SSD is made up of NAND memories and a controller.
Therefore, to understand SSDs it is important to understand all the basics of NAND
Flash technology (Chapter 4) as well as design (Chapter 6).

When aiming to replace HDDs, particularly in enterprise applications, another
key consideration is reliability. SSDs are complex electronic systems prone to
wear-out and failure mechanisms mainly related to NAND. SSD reliability is
analyzed at different levels in Chapter 8. The basic physical mechanisms affecting
the traditional floating-gate cells and the possibility of anomalous erratic behavior is
discussed, as well as disturbs arising because several cells share the same control
lines. Solutions adopted to improve system reliability are presented, such as the use
of RAID and protection against power loss during write operations. Test methods
for endurance and retention verification are also described.

The physical constraints of Flash memory pose a lifetime limitation on these
storage devices. Multilevel Flash technologies (MLC) further degrade endurance, as
2 bits are stored in the same physical cell. As a result, NAND devices may
experience an unexpectedly short lifespan, especially when accessing these devices
at high frequencies. In order to enhance the endurance, wear leveling algorithms are
used to evenly erase blocks. Chapter 10 describes some existing wear leveling
algorithms, highlighting their pros and cons.

Despite all the possible Flash management algorithms run by the memory
controller, the residual BER needs to be properly managed in order to achieve a
reliable system. That is why Error Correction Codes (ECCs) are so important in
SSD design. Two main issues arise when an ECC is used inside an SSD. First, the
ECC engine should not limit the performance of the drive. This requirement is
addressed with a hardware ECC implementation that supports multiple devices
(channels) in parallel. Second, ECC must avoid erroneous corrections when the
error correction capability of the code is overcome; that is, it must have a high
detection property.

Nowadays, the most popular ECC approach in commercial SSDs is BCH, which
is covered in Chapter 11. As the NAND technology scales down, NAND raw BER
becomes worse and a more powerful ECC is needed. Chapter 12 covers LDPC
codes which are capable to get closer to the Shannon limit; in other words, they can
handle higher BER at the expense of a higher complexity.

SSD security is another key requirement because sensitive data must be pro-
tected against external attacks. Unfortunately, existing methods in the HDD world
cannot be applied to SSDs. These days encryption is the most popular method to
secure SSDs. Chapter 13 covers encryption basics and their application to solid
state drives.

We are in the midst of an exciting storage market transition, where Flash is
expanding its reach to replace HDDs with dramatically faster and more efficient
SSDs. After reading this book, the reader will get a comprehensive look at SSD

xii Preface to the First Edition

applications and technologies. As you’ll see, a Solid State Drive is a complex mix
of digital and analog circuits working in concert with firmware and I/O software
protocols. We hope you enjoy this tour inside Solid State Drives.

Rino Micheloni
Alessia Marelli

Kam Eshghi

Preface to the First Edition xiii

Acknowledgements

After completing a book on a complex system like a solid state drive, we really
wish to thank all the authors of the contributed chapters; their expertise in several
different fields made this book possible.

We are especially grateful to Luca Crippa for his tremendous dedication to this
project.

We also want to thank Springer for giving us the opportunity to refresh and
update this work with a second edition.

Last but not least, we express our gratitude to all the people who reviewed the
chapters.

Vimercate, Italy Rino Micheloni
Vimercate, Italy Alessia Marelli
San Jose, USA Kam Eshghi

xv

Contents

1 SSD Architecture and PCI Express Interface 1
Kam Eshghi and Rino Micheloni

2 SAS and SATA SSDs . 29
S. Yasarapu

3 Hybrid Storage Systems . 43
Rino Micheloni, Luca Crippa and M. Picca

4 2D NAND Flash Technology . 61
M. F. Beug

5 3D NAND Flash Memories . 105
Rino Micheloni, Seiichi Aritome and Luca Crippa

6 NAND Flash Design . 135
Luca Crippa and Rino Micheloni

7 Memory Driven Design Methodologies for Optimal SSD
Performance . 181
L. Zuolo, C. Zambelli, Rino Micheloni and P. Olivo

8 SSD Reliability Assessment and Improvement 205
C. Zambelli and P. Olivo

9 Reliability Issues in Flash-Memory-Based Solid-State Drives:
Experimental Analysis, Mitigation, Recovery 233
Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo and Onur Mutlu

10 Efficient Wear Leveling in NAND Flash Memory 343
Yuan-Hao Chang and Li-Pin Chang

11 BCH Codes for Solid-State-Drives . 369
Alessia Marelli and Rino Micheloni

xvii

12 Low-Density Parity-Check (LDPC) Codes 407
E. Paolini

13 Protecting SSD Data Against Attacks . 455
Alessia Marelli and Rino Micheloni

Index . 479

xviii Contents

Editors and Contributors

About the Editors

Dr. Rino Micheloni (rino.micheloni@ieee.org) is Vice President and Fellow at
Microsemi Corporation, where he currently runs the Flash Signal Processing Labs
in Milan, Italy, with special focus on NAND Flash, Error Correction Codes, and
Machine Learning. Prior to joining Microsemi, he was Fellow at PMC-Sierra,
working on NAND Flash characterization, LDPC, and NAND signal processing as
part of the team developing Flash controllers for PCIe SSDs. Before that, he was
with Integrated Device Technology (IDT) as Lead Flash Technologist, driving the
architecture and design of the BCH engine in the world’s first PCIe NVMe SSD
controller. Early in his career, he led NAND design teams at STMicroelectronics,
Hynix, and Infineon/Qimonda; during this time, he developed the industry’s first
MLC NOR device with embedded ECC technology and the industry’s first
MLC NAND with embedded BCH.

He is IEEE Senior Member, he has co-authored more than 70 publications, and
he holds 278 patents worldwide (including 131 US patents). He received the
STMicroelectronics Exceptional Patent Award in 2003 and 2004 and the
Infineon/Qimonda IP Award in 2007.

He has published the following books with Springer: Solid-State-Drives (SSDs)
Modeling (2017), 3D Flash Memories (2016), Inside Solid State Drives (2013),
Inside NAND Flash Memories (2010), Error Correction Codes for Non-Volatile
Memories (2008), Memories in Wireless Systems (2008), and VLSI-Design of
Non-Volatile Memories (2005).

Alessia Marelli is Technical Leader at Microsemi Corporation, where she takes
care of the Error Correction Code and Machine Learning algorithms. She joined
Microsemi from PMC-Sierra where she was part of the NAND characterization
team as senior engineer with a special focus on data analysis and Flash management
algorithms. Before that, she was with IDT as senior designer working on ECC
solutions for Flash controllers. Prior IDT, she worked in Qimonda/Infineon as
digital designer and in STMicroelectronics defining the Error Correction Code for

xix

the industry’s first MLC NAND with embedded BCH. She received her degree in
mathematical science from “Università degli Studi di Milano—Bicocca,” Italy, in
2003 with a thesis about ECC applied to Flash memories.

She holds more than 20 patents regarding Error Correction Codes and is
co-author of Inside Solid State Drives (Springer, 2013), Inside NAND Flash
Memories (Springer, 2010), and Error Correction Codes for Non-Volatile Mem-
ories (Springer, 2008).

Kam Eshghi is Vice President of Strategy and Business Development at Lightbits
Labs, a stealth mode start-up developing innovative storage technologies for cloud
infrastructure. He joined Lightbits Labs from Dell EMC, where he was Vice
President of Strategic Alliances for the DSSD division. He developed and managed
start-up DSSD’s strategic partnership with EMC, ultimately leading to EMC’s
acquisition of DSSD.

Previously, as Sr. Director of Marketing and Business Development at Integrated
Device Technology (IDT) he build IDT’s NVMe controller business from start-up
to industry leader. That business was then sold to PMC and is today a successful
product line at Microsemi. Earlier in his career, he helped build product lines in
storage, compute and networking markets at HP, Intel, Crosslayer Networks, and
Synopsys.

He has a M.S. in electrical engineering and computer science and a Master of
Business Administration, from Massachusetts Institute of Technology and U.C.
Berkeley, respectively.

Contributors

Seiichi Aritome IPCC, Industrial Property Cooperation Center, Tokyo, Japan

M. F. Beug Physikalisch-Technische Bundesanstalt (PTB), Division 2 “Electric-
ity”, Braunschweig, Germany

Yu Cai Carnegie Mellon University, Pittsburgh, PA, USA

Li-Pin Chang Department of Computer Science, National Chiao-Tung University,
Hsinchu, Taiwan

Yuan-Hao Chang Academia Sinica, Institute of Information Science, Taipei,
Taiwan

Luca Crippa Storage Solutions, Microsemi Corporation, Vimercate, MB, Italy

Kam Eshghi Lightbits Labs, San Jose, CA, USA

Saugata Ghose Carnegie Mellon University, Pittsburgh, PA, USA

Erich F. Haratsch Seagate Technology, Fremont, CA, USA

Yixin Luo Carnegie Mellon University, Pittsburgh, PA, USA

xx Editors and Contributors

Alessia Marelli Storage Solutions, Microsemi Corporation, Vimercate, MB, Italy

Rino Micheloni Storage Solutions, Microsemi Corporation, Vimercate, MB, Italy

Onur Mutlu ETH Zürich, Zürich, Switzerland; Carnegie Mellon University,
Pittsburgh, PA, USA

P. Olivo Engineering Department, Università di Ferrara, Ferrara, Italy

E. Paolini DEI, University of Bologna, Bologna, Italy

M. Picca STMicroelectronics, Cornaredo, Italy

S. Yasarapu SSD Product Marketing, Western Digital Corporation, Irvine, CA,
USA

C. Zambelli Engineering Department, Università di Ferrara, Ferrara, Italy

L. Zuolo Microsemi Corporation, Vimercate, MB, Italy

Editors and Contributors xxi

Chapter 1
SSD Architecture and PCI Express
Interface

Kam Eshghi and Rino Micheloni

Abstract Flash-memory-based solid-state drives (SSDs) provide faster random
access and data transfer rates than electromechanical drives and today can often
serve as rotating-disk replacements, but the host interface to SSDs remains a per-
formance bottleneck. PCI Express (PCIe)-based SSDs together with the standard
called NVMe (Non-Volatile Memory express) solves this interface bottleneck. This
chapter walks the reader through the SSD block diagram, from the NAND memory
to the Flash controller (including wear leveling, bad block management, and gar-
bage collection). PCIe basics and different PCIe SSD architectures are reviewed.
Finally, an overview on the standardization effort around PCI Express is presented.

1.1 Introduction

Creativity is just connecting things. When you ask creative people how they did something,
they feel a little guilty because they didn’t really do it, they just saw something. It seemed
obvious to them after a while.

—Steve Jobs

Solid-state drives are greatly enhancing enterprise and data center storage per-
formance. While electromechanical disk drives have continuously ramped in
capacity, the rotating-storage technology doesn’t provide the access-time or
transfer-rate performance required in demanding enterprise applications, including
on-line transaction processing, data mining, and cloud computing. Client applica-
tions are also in need of an alternative to electromechanical disk drives that can
deliver faster response times, use less power, and fit in smaller mobile form factors.

K. Eshghi (✉)
Lightbits Labs, San Jose, CA, USA
e-mail: kamyar.eshghi@alum.mit.edu

R. Micheloni
Microsemi Corporation, Vimercate, MB, Italy
e-mail: rino.micheloni@ieee.org

© Springer Nature Singapore Pte Ltd. 2018
R. Micheloni et al. (eds.), Inside Solid State Drives (SSDs),
Springer Series in Advanced Microelectronics 37,
https://doi.org/10.1007/978-981-13-0599-3_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_1&domain=pdf

Flash-memory-based Solid-State Drives (SSDs) can offer much faster random
access to data and faster transfer rates. Moreover, SSD capacity is now at the point
that the drives can serve as rotating-disk replacements. But for many applications
the host interface to SSDs remains a bottleneck to performance. PCI Express
(PCIe)-based SSDs together with flash-optimized host control interface standards
address this interface bottleneck. SSDs with legacy storage interfaces are proving
useful, and PCIe SSDs will further increase performance and improve respon-
siveness by connecting directly to the host processor.

1.2 SSD Architecture

Flash cards, USB keys and Solid State Drives are definitely the most known
examples of electronic systems based on non-volatile memories, especially of
NAND type (Sect. 1.4).

Several types of memory cards (CF, SD, MMC, …) are available in the market
[1–3], with different user interfaces and form factors, depending on the needs of the
target application: e.g. mobile phones need very small-sized removable media like
μSD.

SSDs are the emerging application for NAND. A SSD is a complete, small
system where every component is soldered on a PCB and is independently pack-
aged: NANDs are usually available both in TSOP and BGA packages.

A basic block diagram of a Solid State Drive is shown in Fig. 1.1. In addition to
Flash memories and a microcontroller, there are usually other components. For
instance, an external DC-DC converter can be added in order to derive the internal

Fig. 1.1 Block diagram of a SSD

2 K. Eshghi and R. Micheloni

power supply, or a quartz can be used for a better clock precision. Of course,
reasonable filter capacitors are inserted for stabilizing the power supply. It is also
very common to have a temperature sensor for power management reasons. For
data caching, a fast DDR memory is frequently added to the board: during a write
access, the cache is used for storing data before transfer to the Flash. The benefit is
that data updating, e.g. in routing tables, is faster and does not wear out the Flash.

In order to improve performances, NANDs are organized in different Flash
channels, as shown in Fig. 1.1.

1.3 Non-volatile Memories

Semiconductor memories can be divided into two major categories: RAM (Random
Access Memories) and ROM (Read Only Memories): RAMs lose their content when
power supply is switched off, while ROMs virtually hold it forever. A third cate-
gory lies in between, i.e. NVM (Non-Volatile Memories), whose content can be
electrically altered but it is also preserved when the power supply is switched off.
NVMs are more flexible than the original ROM, whose content is defined during
manufacturing and cannot be changed by the user anymore.

NVM’s history began in the 1970s, with the introduction of the first EPROM
memory (Erasable Programmable Read Only Memory). In the early 1990s, Flash
memories came into the game and they started being used in portable products, like
mobile phones, USB keys, camcorders, and digital cameras. Solid State Drive
(SSD) is the latest killer application for Flash memories. It is worth mentioning that,
depending on how the memory cells are organized in the memory array, it is
possible to distinguish between NAND and NOR Flash memories. In this book we
focus on NAND memories as they are one of the basic elements of SSDs. NOR
architecture is described in great details in [4].

NAND Flash cell is based on the Floating Gate (FG) technology, whose cross
section is shown in Fig. 1.2. A MOS transistor is built with two overlapping gates
rather than a single one: the first one is completely surrounded by oxide, while the
second one is contacted to form the gate terminal. The isolated gate constitutes an
excellent “trap” for electrons, which guarantees charge retention for years. The
operations performed to inject and remove electrons from the isolated gate are
called program and erase, respectively. These operations modify the threshold
voltage VTH of the memory cell, which is a special type of MOS transistor.
Applying a fixed voltage to cell’s terminals, it is then possible to discriminate two
storage levels: when the gate voltage is higher than the cell’s VTH, the cell is on
(“1”), otherwise it is off (“0”).

It is worth mentioning that, due to floating gate scalability reasons, charge trap
memories are gaining more and more attention and they are described in Chap. 5,
together with their 3D evolution.

1 SSD Architecture and PCI Express Interface 3

1.4 NAND Flash

1.4.1 NAND Array

A Flash device contains an array of floating-gate transistors: each of them acts as
memory cell. In Single Level Cell (SLC) devices, each memory cell stores one bit
of information; Multi-Level Cell (MLC) devices store 2 bits per cell.

The basic element of a NAND Flash memory is the NAND string, as shown in
Fig. 1.3a. Usually, a string is made up by 32 (MC0–MC31), 64 or 128 cells con-
nected in series. Two selection transistors are placed at the edges of the string: MSSL

ensures the connection to the source line. MDSL connects the string to the bitline
BL. The cell’s control gates are connected through the wordlines (WLs).
Figure 1.3b shows how the matrix array is built starting from the basic string. In the
WL direction, adjacent NAND strings share the same WL, DSL, BSL and SL. In
the BL direction, two consecutive strings share the bitline contact. Figure 1.4 shows
a section of the NAND array along the bitline direction.

All the NAND strings sharing the same group of WL’s form a Block. In
Fig. 1.3b there are three blocks:

• BLOCK0 is made up by WL0 <31:0>;
• BLOCK1 is made up by WL1 <31:0>;
• BLOCK2 is made up by WL2 <31:0>.

Logical pages are made up of cells belonging to the same WL. The number of
pages per WL is related to the storage capabilities of the memory cell. Depending
on the number of storage levels, Flash memories are referred to in different ways:

• SLC memories stores 1 bit per cell;
• MLC memories stores 2 bits per cell;
• 8LC memories stores 3 bits per cell;
• 16LC memories stores 4 bits per cell.

Control Gate (CG)

Drain (D)Source (S)

Floating Gate (FG)

Tunnel Oxide (TOX) Interpoly Oxide

(D) (B) (S)

(FG)

(CG)

Bulk (B)

CPP

CS CB C D

Fig. 1.2 Schematic representation of a floating gate memory cell (left) and the corresponding
capacitive model (right)

4 K. Eshghi and R. Micheloni

MBSL

MSSL

WL<0>

BSL

SSL

WL<31>

WL<30>

Bitline (BL)

MC0

MC30

MC31

D

S

Source Line (SL)

D

S

BSL0

WL0<31:0>

SSL0

SL

 BLe

N
A

N
D

 S
tr

in
g

D

S

 BLo

N
A

N
D

 S
tr

in
g

SSL1

DSL 1

S

D
N

A
N

D
 S

tr
in

g

S

D

N
A

N
D

 S
tr

in
g

WL1<31:0>

B
L

O
C

K
 0

B

L
O

C
K

 1

DSL 2

SSL2

S

N
A

N
D

 S
tr

in
g

S

N
A

N
D

 S
tr

in
g

WL2<31:0>

B
L

O
C

K
 2

(b)(a)

Fig. 1.3 NAND String (a) and NAND array (b)

Fig. 1.4 NAND array section along the bitline direction

1 SSD Architecture and PCI Express Interface 5

If we consider the SLC case with interleaved architecture (Chap. 6), even cells
belong to the “even” page (BLe), while odd pages belong to the “odd” page (BL0).
For example, a SLC device with 4 kB page has a WL of 32,768 + 32,768 = 65,536
cells. Of course, in the MLC case there are four pages as each cell stores one Least
Significant Bit (LSB) and one\ Most Significant Bit (MSB). Therefore, we have
MSB and LSB pages on even BL, and MSB and LSB pages on odd BL.

In NAND Flash memories, a logical page is the smallest addressable unit for
reading and writing; a logical block is the smallest erasable unit (Fig. 1.5).

Each page is made up by main area (data) and spare area as shown in Fig. 1.5.
Main area can be 4, 8 or 16 kB. Spare area can be used for ECC and is in the order
of hundred of Bytes every 4 kB of main area.

Figure 1.5 shows the logic organization of a SLC device with a string of 32
cells, interleaving architecture, 4 kB page, and 128 Bytes of spare.

NAND basic operations, i.e. read, program, and erase are described in Chaps. 5
and 6 of this book.

1.4.2 NAND Interface

For many years, the asynchronous interface (Fig. 1.6) has been the only available
option for NAND devices.

Asynchronous interface is described below.

• CE#: it is the Chip Enable signal. This input signal is “1” when the device is in
stand-by mode, otherwise it is always “0”.

MAIN

1 NAND ARRAY= 8192 BLOCKS

1 BLOCK = (4K+128) Bytes x 64 PAGES

1 PAGE = (4K+128) Bytes

SPARE

Fig. 1.5 32 Gbit memory logic organization

6 K. Eshghi and R. Micheloni

• R/B#: it is the Ready/Busy signal. This output signal is used to indicate the
target status. When low, the target has an operation in progress.

• RE#: it is the Read Enable signal. This input signal is used to enable serial data
output.

• CLE: it is the Command Latch Enable. This input is used by the host to indicate
that the bus cycle is used to input the command.

• ALE: it is the Address Latch Enable. This input is used by the host to indicate
that the bus cycle is used to input the addresses.

• WE#: it is the Write Enable. This input signal controls the latching of input data.
Data, command and address are latched on the rising edge of WE#.

• WP#: it is the Write Protect. This input signal is used to disable Flash array
program and erase operations.

• DQ <7:0>: these input/output signals represent the data bus.

As a matter of fact, this interface is a real bottleneck, especially looking at high
performance systems like SSDs.

NAND read throughput is determined by array access time and data transfer
across the DQ bus. The data transfer is limited to 40 MB/s by the asynchronous
interface. As technology shrinks, page size increases and data transfer takes longer;
as a consequence, NAND read throughput decreases, totally unbalancing the ratio
between array access time and data transfer on the DQ bus. A DDR-like interface
(Chap. 6) has been introduced to balance this ratio.

Nowadays two possible solutions are available on the market. ONFI (Open
NAND Flash Interface) organization published the first standard at the end of 2006
[5]; other NAND vendors like Toshiba and Samsung use the Toggle-Mode inter-
face. JEDEC [6] is now trying to combine these two approaches together.

Figure 1.7 shows ONFI pinout. Compared to the Asynchronous Interface, there
are three main differences:

• RE# becomes W/R# which is the Write/Read direction pin;
• WE# becomes CLK which is the clock signal;

NAND
Device

CE#

R/B#

RE#

CLE

ALE

WE#

WP#

DQ<7:0>

Fig. 1.6 TSOP package (left) and related pinout (right)

1 SSD Architecture and PCI Express Interface 7

• DQS is an additional pin acting as the data strobe,i.e. it indicates the data valid
window.

Hence, the clock (CLK) is used to indicate where command and addresses
should be latched, while a data strobe signal (DQS) is used to indicate where data
should be latched. DQS is a bi-directional bus and is driven with the same fre-
quency as the clock. Toggle-Mode DDR interface uses the pinout shown in
Fig. 1.8.

It can be noted that only the DQS pin has been added to the asynchronous
interface. In this case, higher speeds are achieved increasing the toggling frequency
of RE#.

1.5 Memory Controller

A memory controller has two fundamental tasks:

1. to provide the most suitable interface and protocol towards both the host and the
Flash memories;

2. to efficiently handle data, maximizing transfer speed, data integrity and infor-
mation retention.

In order to carry out such tasks, an application specific device is designed,
embedding a standard processor—usually 8–16 bits—together with dedicated
hardware to handle timing-critical tasks.

NAND
Device

CE#

R/B#

W/R#

CLE

ALE

CLK

WP#

DQ<7:0>

DQS

Fig. 1.7 Pinout of a NAND
flash supporting ONFI
interface

NAND
Device

CE#

R/B#

RE#

CLE

ALE

WE#

WP#

DQ<7:0>

DQS

Fig. 1.8 Pinout of a NAND
Flash supporting
Toggle-Mode interface

8 K. Eshghi and R. Micheloni

Generally speaking, the memory controller can be divided into four parts, which
are implemented either in hardware or in firmware (Fig. 1.9).

Proceeding from the host to the Flash, the first part is the host interface, which
implements the required industry-standard protocol (PCIe, SAS, SATA, etc.), thus
ensuring both logical and electrical interoperability between SSDs and hosts. This
block is a mix of hardware—buffers, drivers, etc.—and firmware—command
decoding performed by the embedded processor—which decodes the command

Fig. 1.9 High level view of a flash controller

1 SSD Architecture and PCI Express Interface 9

sequence invoked by the host and handles the data flow to/from the Flash
memories.

The second part is the Flash File System (FFS) [7]: that is, the file system which
enables the use of SSDs like magnetic disks. For instance, sequential memory
access on a multitude of sub-sectors which constitute a file is organized by linked
lists (stored on the SSD itself) which are used by the host to build the File Allo-
cation Table (FAT). The FFS is usually implemented in form of firmware inside the
controller, each sub-layer performing a specific function. The main functions are:
Wear leveling Management, Garbage Collection and Bad Block Management. For
all these functions, tables are widely used in order to map sectors and pages from
logical to physical (Flash Translation Layer or FTL) [8, 9], as shown in Fig. 1.10.
The upper block row is the logical view of the memory, while the lower row is the
physical one. From the host perspective, data are transparently written and over-
written inside a given logical sector: due to Flash limitations, overwrite on the same
page is not possible, therefore a new page (sector) must be allocated in the physical
block and the previous one is marked as invalid. It is clear that, at some point in
time, the current physical block becomes full and therefore a second one (Buffer) is
assigned to the same logical block.

The required translation tables are always stored on the SSD itself, thus reducing
the overall storage capacity.

1.5.1 Wear Leveling

Usually, not all the information stored within the same memory location change
with the same frequency: some data are often updated while others remain always
the same for a very long time—in the extreme case, for the whole life of the device.
It’s clear that the blocks containing frequently-updated information are stressed
with a large number of write/erase cycles, while the blocks containing information
updated very rarely are much less stressed.

Logical Block

A A A A A A A A A A A A A A A A A A A

A A A A A A A A A A A A A A A A A

A

Physical Block

Physical Buffer Block

A = Available

Fig. 1.10 Logical to physical block management

10 K. Eshghi and R. Micheloni

In order to mitigate disturbs, it is important to keep the aging of each page/block
as minimum and as uniform as possible: that is, the number of both read and
program cycles applied to each page must be monitored. Furthermore, the maxi-
mum number of allowed program/erase cycles for a block (i.e. its endurance)
should be considered: in case SLC NAND memories are used, this number is in the
order of 100 k cycles, which is reduced to 10 k when MLC NAND memories are
used.

Wear Leveling techniques rely on the concept of logical to physical translation:
that is, each time the host application requires updates to the same (logical) sector,
the memory controller dynamically maps the sector onto a different (physical)
sector, keeping track of the mapping either in a specific table or with pointers. The
out-of-date copy of the sector is tagged as both invalid and eligible for erase. In this
way, all the physical blocks are evenly used, thus keeping the aging under a
reasonable value.

Two kinds of approaches are possible: Dynamic Wear Leveling is normally used
to follow up a user’s request of update, writing to the first available erased block
with the lowest erase count; Static Wear Leveling can also be implemented, where
every block, even the least modified, is eligible for re-mapping as soon as its aging
deviates from the average value.

1.5.2 Garbage Collection

Both wear leveling techniques rely on the availability of free sectors that can be
filled up with the updates: as soon as the number of free sectors falls below a given
threshold, sectors are “compacted” and multiple, obsolete copies are deleted. This
operation is performed by the Garbage Collection module, which selects the blocks
containing the invalid sectors, copies the latest valid copy into free sectors and
erases such blocks (Fig. 1.11).

Fig. 1.11 Garbage collection

1 SSD Architecture and PCI Express Interface 11

In order to minimize the impact on performance, garbage collection can be
performed in background. The equilibrium generated by the wear leveling dis-
tributes wear out stress over the array rather than on single hot spots. Hence, the
bigger the memory density, the lower the wear out per cell is.

1.5.3 Bad Block Management

No matter how smart the Wear Leveling algorithm is, an intrinsic limitation of
NAND Flash memories is represented by the presence of so-called Bad Blocks
(BB), i.e. blocks which contain one or more locations whose reliability is not
guaranteed.

The Bad Block Management (BBM) module creates and maintains a map of bad
blocks, as shown in Fig. 1.12: this map is created during factory initialization of the
memory card, thus containing the list of the bad blocks already present during the
factory testing of the NAND Flash memory modules. Then it is updated during
device lifetime whenever a block becomes bad.

1.5.4 Error Correction Code (ECC)

This task is typically executed by a specific hardware inside the memory controller.
Examples of memories with embedded ECC are also reported [10–12]. Most
popular ECC codes, correcting more than one error, are Reed-Solomon and BCH
[13]. Chapter 10 gives an overview of how BCH is used in the NAND world,
including an analysis of its detection properties, which are essential for concate-
nated architectures. The last section of Chap. 10 covers the usage of BCH in
high-end SSDs, where the ECC has to be shared among multiple Flash channels.

Logical Block

Good Physical Block

Bad Physical Block

R = Reserved for future BB

R R

Fig. 1.12 Bad block management (BBM)

12 K. Eshghi and R. Micheloni

With the technology shrink, NAND raw BER gets worse, approaching the
Shannon limit. As a consequence, correction techniques based on soft information
processing are required: LDPC (Low Density Parity Check) codes are an example
of this soft information approach and they are analyzed in Chap. 11.

1.6 Multi-channel Architecture

A typical memory system is composed by several NAND memories. Typically, an
8-bit bus, usually called channel, is used to connect different memories to the
controller (Fig. 1.1). It is important to underline that multiple Flash memories in a
system are both a means for increasing storage density and read/write performance
[14].

Operations on a channel can be interleaved, which means that a second chip can
be addressed while the first one is still busy. For instance, a sequence of multiple
write operations can be directed to a channel, addressing different NANDs, as
shown in Fig. 1.13: in this way, the channel utilization is maximized by pipelining
the data load phase; in fact, while the program operation takes place within a
memory chip, the corresponding Flash channel is free. The total number of Flash
channel is a function of the target applications, but tens of channels are becoming
quite common. Figure 1.14 shows the impact of interleaving. As the reader can
notice, given the same Flash programming time, SSD’s throughput greatly
improves.

The memory controller is responsible for scheduling the distributed accesses at
the memory channels. The controller uses dedicated engines for the low level
communication protocol with the Flash.

Moreover, it is clear that the data load phase is not negligible compared to the
program operation (the same comment is valid for data output): therefore,
increasing I/O interface speed is another smart way to improve performances:
DDR-like interfaces are discussed in more details in Chap. 6. Impact of DDR
frequency on program throughput is reported in Fig. 1.15. As the speed increases,
more NAND can be operated in parallel before saturating the channel. For instance,

Fig. 1.13 Interleaved operations on one flash channel

1 SSD Architecture and PCI Express Interface 13

assuming a target of 30 MB/s, 2 NANDs are needed with a minimum DDR fre-
quency of about 50 MHz. Given a page program time of 200 μs, at 50 MHz four
NANDs can operate in interleaved mode, doubling the write throughput. Of course,
power consumption has then to be considered.

After this high level overview of the SSD architecture, let’s move to the interface
towards the host. PCI Express (PCIe) is fast becoming the interface of choice for
high performance SSDs.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

80.0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

26
0

27
0

28
0

29
0

30
0

Page Program Time [µs]

M
B

/s

1 memory

2 memories

4 memories

Fig. 1.14 Program throughput with an interleaved architecture as a function of the NAND page
program time

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

5 21 37 53 69 85 10
1

11
7

13
3

14
9

16
5

18
1

DDR Frequency [MHz]

P
ro

g
ra

m
 T

h
ro

u
g

h
p

u
t

[M
B

/s
]

1 NAND

2 NANDs

4 NANDs

Fig. 1.15 Program
throughput with an
interleaved architecture as a
function of the channel DDR
frequency. 4 kB page program
time is 200 μs

14 K. Eshghi and R. Micheloni

1.7 What Is PCIe?

PCIe (Peripheral Component Interconnect Express) is a bus standard that replaced
PCI and PCI-X. PCI-SIG (PCI Special Interest Group) creates and maintains the
PCIe specification [15].

PCIe is used in all computer applications including enterprise servers, consumer
personal computers (PC), communication systems, and industrial applications.
Unlike older PCI bus topology, which uses shared parallel bus architecture, PCIe is
based on point-to-point topology, with separate serial links connecting every device
to the root complex (host). Additionally, a PCIe link supports full-duplex com-
munication between two endpoints. Data can flow upstream (UP) and downstream
(DP) simultaneously. Each pair of these dedicated unidirectional serial
point-to-point connections is called a lane, as depicted in Fig. 1.16. The PCIe
standard is constantly under improvement, with PCIe 5.0 being already announced
(Table 1.1).

Fig. 1.16 PCI express lane and link. In Gen2, 1 lane runs at 5 Gbps/direction; a 2-lane link runs at
10 Gbps/direction

Table 1.1 Data rate of
different PCIe generations

PCIe version Year introduced Data rate (GT/s)

PCIe 1.0 (Gen1) 2003 2.5
PCIe 2.0 (Gen2) 2007 5.0
PCIe 3.0 (Gen3) 2010 8.0
PCIe 4.0 (Gen4) 2018 (planned) 16.0
PCIe 4.0 (Gen5) 2020 (planned) 32.0

1 SSD Architecture and PCI Express Interface 15

Other important features of PCIe include power management, hot-swappable
devices, and the ability to handle peer-to-peer data transfers (sending data between
two end points without routing through the host) [16]. Additionally, PCIe simplifies
board design by utilizing serial technology, which eliminates wire count of parallel
bus architectures.

The PCIe link between two devices can consist of 1–32 lanes. The packet data is
striped across lanes, and the lane count is automatically negotiated during device
initialization.

The PCIe standard defines slots and connectors for multiple widths: × 1, × 4,
8, × 16, × 32 (Fig. 1.17). This allows PCIe to serve lower throughput,
cost-sensitive applications as well as performance-critical applications.

There are basically three different types of devices in a native PCIe system as
shown in Fig. 1.18 [17]: Root Complexes (RCs), PCIe switches, and EndPoints
(EPs). A Root Complex should be thought of as a single processor sub-system with
a single PCIe port, even though it consists of one or more CPUs, plus their asso-
ciated RAM and memory controller. PCIe routes data based on memory address or
ID, depending on the transaction type. Therefore, every device must be uniquely
identified within the PCI Express tree. This requires a process called enumeration.
During system initialization, the Root Complex performs the enumeration process
to determine the various buses that exist and the devices that reside on each bus, as
well as the required address space. The Root Complex allocates bus numbers to all
the PCIe buses and configures the bus numbers to be used by the PCIe switches.

A PCIe switch behaves as if it were multiple PCI-PCI Bridges, as shown in the
inset of Fig. 1.18. Basically, a switch decouples every UP and DP ports so that each
link can work as a point-to-point connection.

Within a PCIe tree, all devices share the same memory space. RC is in charge of
setting the Base Address Register (BAR) of each device.

In multi-RC systems, more than one processor sub-system exists within a PCIe
tree. For example, a second Root Complex may be added to the system via the DP
of a PCIe switch, possibly to act as a warm stand-by to the primary RC. However,

Fig. 1.17 Various PCIe slots. From top to bottom: PCIe × 4, PCIe × 16, PCIe × 1

16 K. Eshghi and R. Micheloni

an issue arises when the second RC also attempts the enumeration process: it sends
out Configuration Read Messages to discover other PCIe devices on the system.
Unfortunately, configuration transactions can only move from UP to DP. A PCIe
switch does not forward configuration messages that are received on its DP. Thus,
the second RC is isolated from the rest of the PCIe tree and will not detect any PCIe
devices in the system. So, simply adding processors to a DP of a PCIe switch will
not provide a multi-Root Complex solution.

One method of supporting multiple RCs is to use a Non-Transparent Bridging
(NTB) function to isolate the address domains of each of the Root Complexes [18].
NTB allows two Root Complexes or PCIe trees to be interconnected with one or
more shared address windows between them.

In other words, NTB works like an address translator between two address
domains. Of course, multiple NTBs can be used to develop multi-RC applications.
An example of PCIe switch with embedded NTB functions is shown in Fig. 1.19:
an additional bus, called NT Interconnect, is used for exchanging Transaction Layer
Packets among RCs.

PCIe uses a packet-based layered protocol, consisting of a transaction layer, a
data link layer, and a physical layer, as shown in Fig. 1.20.

The transaction layer handles packetizing and de-packetizing of data and
status-message traffic. The data link layer sequences these Transaction Layer
Packets (TLPs) and ensures they are reliably delivered between two endpoints
(devices A and B in Fig. 1.5). If a transmitter device sends a TLP to a remote

Root
Complex

PCIe
Switch

UP

DP DP

Endpoint
PCIe

Switch

UP

DP DP DP DP

Endpoint Endpoint Endpoint Endpoint

PCI-PCI
Bridge

PCI-PCI
Bridge

PCI-PCI
Bridge

Virtual
PCI Bus

Fig. 1.18 PCIe tree topology

1 SSD Architecture and PCI Express Interface 17

receiver device and a CRC error is detected, the transmitter device gets a notifi-
cation back. The transmitter device automatically replays the TLP. With error
checking and automatic replay of failed packets, PCIe ensures very low Bit Error
Rate (BER).

The Physical Layer is split in two parts: the Logical Physical Layer and the
Electrical Physical Layer. The Logical Physical Layer contains logic gates for
processing packets before transmission on the Link, and processing packets from
the Link to the Data Link Layer. The Electrical Physical Layer is the analog
interface of the Physical Layer: it consists of differential drivers and receivers for
each lane.

P2P

P2PP2PP2P

NTBP2P

P2P P2P

P2P

P2PP2PP2P

Upstream Port Upstream Port Upstream Port

Downstream Ports Downstream Ports Downstream Ports

NTB NTB

Virtual
PCI Bus

NT Interconnect

Fig. 1.19 PCIe switch with multiple NTB functions

Transaction Layer

Data Link Layer

Physical Layer

TX RX

PCIe Core

Device A

Transaction Layer

Data Link Layer

Physical Layer

TX RX

PCIe Core

Device B

Link

Fig. 1.20 PCIe layered
architecture

18 K. Eshghi and R. Micheloni

TLP assembly is shown in Fig. 1.21. Header and Data Payload are TLP’s core
information: Transaction Layer assembles this section based on the data received
from the application software layer. An optional End-to-End CRC (ECRC) field is
can be appended to the packet. ECRC is used by the ultimate targeted device of this
packet to check for CRC errors inside Header and Data Payload. At this point, the
Data Link Layer appends a sequence ID and local CRC (LCRC) field in order to
protect the ID. The resultant TLP is forwarded to the Physical Layer which con-
catenates a Start and End framing character of 1 Byte each to the packet. Finally,
the packet is encoded and differentially transmitted on the Link using the available
number of Lanes.

Today, PCIe is a high volume commodity interconnect used in virtually all
computers, from consumer laptops to enterprise servers, as the primary mother-
board technology that interconnects the host CPU with on-board ICs and add-on
peripheral expansion cards.

1.8 The Need for Storage Speed

The real issue at hand is the need for storage technology that can match the
exponential ramp in processor performance over the past two decades. Processor
vendors have continued to ramp the performance of individual processor cores, to
combine multiple cores on one IC, and to develop technologies that can
closely-couple multiple ICs in multi-processor systems. Ultimately, all of the cores
in such a scenario need access to the same storage subsystem.

Enterprise IT managers are eager to utilize the multiprocessor systems because
they have the potential of boosting the number of I/O operations per second (IOPS)
that a system can process and also the number of IOPS per watt (IOPS/W) in power
consumption. The ramping multi-processing computing capability offers better
IOPS relative to cost and power consumption—assuming the processing elements
can get access to the data in a timely fashion. Active processors waiting on data
waste time and money.

There are of course multiple levels of storage technology in a system that ulti-
mately feeds code and data to each processor core. Generally, each core includes

Physical Layer

Data Link Layer

Transaction Layer

Frame
K-code
1 byte

Frame
K-code
1 byte

Seq#
2 byte

(12bits)

LCRC
4 byte

ECRC
4 byte

Data Payload
0-4K byte

TLP Header
12/16 byte

Fig. 1.21 Transaction layer packet (TLP) assembly

1 SSD Architecture and PCI Express Interface 19

local cache memory that operates at core speed. Multiple cores in a chip share a
second-level and sometimes a third-level cache. And DRAM feeds the caches. The
DRAM and cache access-time and data-transfer performance has scaled to match
the processor performance.

The disconnect has come in the performance gap that exist between DRAM and
rotating storage in terms of access time and data rate. Disk-drive vendors have done
a great job of designing and manufacturing higher-capacity, lower-cost-per-GByte
disk drives. But the drives inherently have physical limitations in terms of how fast
they can access data and then how fast they can transfer that data into DRAM.

Access time depends on how fast a hard drive can move the read head over the
required data track on a disk, and the rotational latency for the sector where the data
is located to move under the head. The maximum transfer rate is dictated by the
rotational speed of the disk and the data encoding scheme that together determine
the number of Bytes per second read from the disk.

Hard drives perform relatively well in reading and transferring sequential data.
But random seek operations add latency. And even sequential read operations can’t
match the data appetite of the latest processors.

Meanwhile, enterprise systems that perform on-line transaction processing such
as financial transactions and that mine data in applications such as customer rela-
tionship management require highly random access to data. Cloud computing also
requires random access to data, whether it’s for unstructured databases or analytic
workloads. This random access requirement is escalating with technologies such as
virtualization, which expand the scope of different applications that a single system
has active at any one time. Every microsecond of latency relates directly to money
lost and less efficient use of the processors and the power dissipated by the system.

Fortunately Flash memory offers the potential to close the performance gap
between DRAM and rotating storage. Flash is slower than DRAM but offers a
lower cost per GByte of storage. That cost is more expensive than hard disk drive
storage, but enterprises will gladly pay the premium because Flash also offers much
better throughput in terms of MB/s and faster access to random data, resulting in
better cost-per-IOPS compared to rotating storage.

Ramping Flash capacity and reasonable cost has led to a growing trend of SSDs
that package Flash in disk-drive-like form factors. Moreover, the SSDs have most
often utilized disk-drive interfaces such as SATA (serial ATA) or SAS (serial
attached SCSI).

1.9 Why PCIe for SSD Interface?

The disk-drive form factor and interface allows IT vendors to substitute an SSD for
a magnetic disk drive seamlessly. There is no change required in system hardware
or driver software. An IT manager can simply swap to an SSD and realize sig-
nificantly better access times and somewhat faster data-transfer rates.

20 K. Eshghi and R. Micheloni

Neither the legacy disk-drive form factor nor the interface is ideal for
Flash-based storage. SSD manufacturers can pack enough Flash devices in a 2.5-in.
form factor to easily exceed the power profile developed for disk drives. And Flash
can support higher data transfer rates than even the latest generation of disk
interfaces.

Let’s examine the disk interfaces more closely (Fig. 1.22). Most mainstream
systems have migrated to third-generation SATA and SAS that support 600 MB/s
throughput, and drives based on those interfaces have found usage in enterprise
systems. While those data rates support the fastest electromechanical drives, new
NAND Flash architectures and multi-die Flash packaging deliver aggregate Flash
bandwidth that exceeds the throughput capabilities of SATA and SAS intercon-
nects. In short, the SSD performance bottleneck has shifted from the storage media
to the host interface. Therefore, many applications need a faster host interconnect to
take full advantage of Flash storage.

The PCIe host interface can overcome this storage performance bottleneck and
deliver unparalleled performance by attaching the SSD directly to the PCIe host
bus. For example, a 4-lane (× 4) PCIe Generation 3 (Gen3) link can deliver 4 GB/s
data rates. Simply put, PCIe affords the needed storage bandwidth. Moreover, the
direct PCIe connection can reduce system power and slash the latency that’s
attributable to the legacy storage infrastructure.

Clearly an interface such as PCIe could handle the bandwidth of a multi-channel
Flash storage subsystem and can offer additional performance advantages. SSDs
that use a disk interface also suffer latency added by a storage-controller IC that
handles disk I/O. PCIe devices connect directly to the host bus eliminating the
architectural layer associated with the legacy storage infrastructure. The compelling
performance of PCIe SSDs has resulted in system manufacturers placing PCIe
SSDs in servers as well as in storage arrays to build tiered storage systems
(Fig. 1.23) that accelerate applications while improving cost-per-IOPS (Input/
Output Operations per Second).

Fig. 1.22 Interface performance. PCIe improves overall system performance by reducing latency
and increasing throughput

1 SSD Architecture and PCI Express Interface 21

HDD

DRAM

CPU
Cache

Lo
w

P
er

fo
rm

an
ce

H
ig

h

Lo
w

C
o

st
 p

er
 G

B

H

ig
h

H
ig

h
C

o
st

 p
er

 IO
P

S

Lo

w

SSD
 Flash
Cache
HDD

DRAM

CPU
Cache

Flash
Cache + SSD

Fig. 1.23 Enterprise memory/storage hierarchy paradigm shift

Fig. 1.24 PCIe SSD versus SAS/SATA SSD

22 K. Eshghi and R. Micheloni

Moving storage to a PCIe link brings additional challenges to the system
designer. As mentioned earlier, the SATA- and SAS-based SSD products have
maintained software compatibility and some system designers are reluctant to give
up that advantage. Any PCIe storage implementation will create the need for some
new driver software.

Despite the software issue, the move to PCIe storage in enterprises is well
underway. Performance demands in the enterprise are mandating this transition.
There is no other apparent way to deliver improving IOPS, IOPS/W, and IOPS per
dollar characteristics that IT managers are demanding.

The benefits of using PCIe as a storage interconnect are clear. Already at Gen3,
you can achieve over 6 × the data throughput relative to SATA or SAS. You can
eliminate components such as host bus adapters and SERDES ICs on the SATA and
SAS interfaces—saving money and power at the system level. And PCIe moves the
storage closer to the host CPU reducing latency, as shown in Fig. 1.24.

Let’s now take a deeper look at PCIe-based SSD architectures.

1.10 PCIe SSD Implementations

The simplest PCIe SSD implementations can utilize legacy Flash memory con-
troller ICs that while capable of controlling memory read and write operations, have
no support for the notion of system I/O. Such Flash controllers would typically
work behind a disk interface IC in existing SATA- or SAS-based SSD products
(Fig. 1.25).

Alternatively, it is possible to run Flash-management software on the host
processor to enable a simple Flash controller to function across a PCIe interconnect
(Fig. 1.26).

That approach has several drawbacks. First it consumes host processing and
memory resources that ideally would be available for application software. Second

Fig. 1.25 RAID-based PCIe SSDs not optimized for performance/power

1 SSD Architecture and PCI Express Interface 23

it requires proprietary drivers and raises OEM qualification issues. And third it
doesn’t deliver a bootable drive because the system must be booted for the
Flash-management software to execute and enable the storage scheme.

Clearly, these designs have found niche success. These products are used by
early adopters as caches for hard disk drives rather than mainstream replacements of
high-performance disk drives.

More robust and efficient PCIe SSD designs rely on a complex SoC that natively
supports PCIe, integrates Flash controller functionality, and that completely
implements the storage-device concept (Fig. 1.27). Such a product offloads the host
CPU of handling Flash management, and ultimately enables standard OS drivers
that support plug-and-play operations just as with SATA and SAS.

1.11 NVM Express Driving Broader Adoption
of PCIe SSDs

The NVM Express (NVMe) 1.0 specification, developed cooperatively by more
than 80 companies from across the industry, was released in March, 2011, by the
NVMHCI Work Group—more commonly known as the NVMe Work Group.

Fig. 1.26 Running flash management algorithms on the host drains the host CPU/RAM resources

Flash
Controller

PCIe

Flash Flash Flash

Flash Flash Flash

Flash Flash Flash

Flash Flash Flash

Fig. 1.27 Native PCIe flash
controller improves
performance, while reducing
cost and complexity

24 K. Eshghi and R. Micheloni

The specification defines an optimized register interface, command set, and feature
set for PCIe SSDs. The goal of the standard is to help enable the broad adoption of
PCIe-based SSDs, and to provide a scalable interface that realizes the performance
potential of SSD technology now and into the future. By maximizing parallelism
and eliminating complexity of legacy storage architectures, NVMe supports future
memory developments that will drive latency overhead below one microsecond and
SSD IOPS to over one million. The NVMe specification may be downloaded from
www.nvmexpress.org.

The NVMe specification is specifically optimized for multi-core system designs
that run many threads concurrently with each thread capable of instigating I/O
operations. Indeed it’s optimized for just the scenario that IT managers are hoping
to leverage to boost IOPS. NVMe specification can support up to 64 k I/O queues
with up to 64 k commands per queue. Each processor core can implement its own
queue.

In June, 2011, the NVMe Promoter Group was formed to enable the broad
adoption of the NVMe Standard for PCIe SSDs. NVMe supporters include Cloud
service providers, IC manufactures, Flash-memory manufacturers, operating-system
vendors, server manufacturers, storage-subsystem manufacturers, and network-
equipment manufacturers.

The original NVMe specification was focused on direct-attached PCIe SSD
usage model. More recently, with the growth of scaleout cloud infrastructure, many
data centers are moving from inefficient direct-attached storage model where
compute and storage are deployed in fixed ratios, to a hyper-scale shared SSD
model where compute and storage are scaled independently to achieve maximum
resource utilization and drive down cost. This trend has triggered disaggregation of
NVMe SSDs from compute servers and driven the need for an extension of NVMe
outside of the box over networking fabrics.

The NVMe over Fabrics standard was born to define a common architecture that
supports a range of storage networking fabrics for NVMe block storage protocol.
This includes enabling a front-end interface into storage systems, scaling out to a
large numbers of NVMe devices and extending the distance within a data center
over which these devices can be accessed. The goal of NVMe over Fabrics is to
provide remote connectivity to NVMe devices with minimal additional latency over
a direct-attached NVMe device inside a compute server. The NVMe over Fabrics
specification was published in June 2016.

The most recent addition to the list of fabric transports for NVMe is TCP
(Fig. 1.28). NVMe over TCP block storage interface enables disaggregation of
NVMe SSDs from compute servers without compromising latency and without
requiring changes to networking infrastructure. The storage network in this case is
standard TCP/IP over Ethernet, a high-performance ubiquitous networking archi-
tecture that is both scalable and reliable. The NVMe Work Group is standardizing
TCP/IP transport binding, adding this to the NVMe Fabrics specification alongside
RDMA and Fibre Channel.

1 SSD Architecture and PCI Express Interface 25

The building blocks are all falling into place for broader usage of
PCIe-connected SSDs and deliverance of the performance improvements that the
technology will bring to enterprise applications. And while the focus in the past has
been more on the enterprise, the NVMe standard has already trickled down to client
systems, offering a performance boost in notebook PCs while reducing cost and
system power. The NVMe standard will continue to drive more widespread use of
PCIe SSD technology as new compatible ICs and drivers come to market.

References

1. www.mmca.org
2. www.compactflash.org
3. www.sdcard.com
4. G. Campardo, R. Micheloni, D. Novosel, VLSI-Design of Non-Volatile Memories (Springer,

Berlin, 2005)
5. www.onfi.org
6. www.jedec.org
7. A. Kawaguchi, S. Nishioka, H. Motoda, A flash-memory based file system, in Proceedings of

the USENIX Winter Technical Conference (1995), pp. 155–164
8. J. Kim, J.M. Kim, S. Noh, S.L. Min, Y. Cho, A space-efficient flash translation layer for

compact flash systems. IEEE Trans. Consum. Electron. 48(2), 366–375 (2002)
9. S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S.-W. Park, H.-J. Songe, FAST: A log-buffer

based FTL scheme with fully associative sector translation, in 2005 US-Korea Conference on
Science, Technology, & Entrepreneurship (Seoul, Aug 2005)

Fig. 1.28 Different types of fabric transports for NVMe

26 K. Eshghi and R. Micheloni

10. T. Tanzawa, T. Tanaka, K. Takekuchi, R. Shirota, S. Aritome, H. Watanabe, G. Hemink, K.
Shimizu, S. Sato, Y. Takekuchi, K. Ohuchi, A compact on-chip ECC for low cost flash
memories. IEEE J. Solid-State Circuits 32(May), 662–669 (1997)

11. G. Campardo, R. Micheloni et al., 40-mm2 3-V-only 50-MHz 64-Mb 2-b/cell CHE NOR flash
memory. IEEE J. Solid-State Circuits 35(11), 1655–1667 (2000)

12. R. Micheloni et al., A 4 Gb 2b/cell NAND flash memory with embedded 5b BCH ECC for
36 MB/s system read throughput, in IEEE International Solid-State Circuits Conference Dig.
Tech. Papers (Feb 2006), pp. 142–143

13. R. Micheloni, A. Marelli, R. Ravasio, Error Correction Codes for Non-Volatile Memories
(Springer, Dordrecht, 2008)

14. C. Park et al., A high performance controller for NAND flash-based Solid State Disk (NSSD),
in IEEE Non-Volatile Semiconductor Memory Workshop NVSMW (Feb 2006), pp. 17–20

15. www.pcisig.com
16. R. Budruk, D. Anderson, T. Shanley, Mindshare, PCI Express System Architecture

(Addison-Wesley, Boston, 2003)
17. K. Kong, Enabling Multi-peer Support with a Standard-Based PCI Express Multi-ported

Switch, White Paper (Jan 2006), www.idt.com
18. K. Kong, Non-Transparent Bridging with IDT 89HPES32NT24G2 PCI Express NTB Switch,

AN-724 (Sept 2009), www.idt.com
19. www.ssdformfactor.org

1 SSD Architecture and PCI Express Interface 27

Chapter 2
SAS and SATA SSDs

S. Yasarapu

Abstract This chapter focuses on the different types of solid state drives. The
chapter details the differences between consumer and enterprise solid state drives
and also details the differences between SAS and SATA solid state drive and what
lies ahead for SATA and SAS protocols for SSDs.

2.1 Introduction

Data centers today require fast and reliable storage to provide end-users with high
quality of service. Data centers operators are continuously challenged to improve
performance to keep up with the demands of high performance applications. Space,
power and cooling limitations require data centers to find the most cost-, space-, and
energy efficient products. Solid state drives increase the performance and reliability
of the enterprise while reducing the overall space, power, energy footprint of the
data centers. However, not all data center and enterprise environments are created
equal. Depending on the size, number of users, serviceability requirements and
applications running in the data center, the need for performance and storage
capacity varies and so do the solid state devices used within these environments.

In fact, not all SSDs are created the same. Some are designed for the enterprise
and some are designed for consumer applications. Even in the enterprise segment,
some are intended for direct attach to servers and some are designed for shared
storage enclosures. Understanding the differences between the various solid state
drives helps consumers, as well as, enterprises to select the right solution for their
intended applications.

S. Yasarapu (✉)
SSD Product Marketing, Western Digital Corporation, Irvine, CA, USA
e-mail: swapna.yasarapu@wdc.com

© Springer Nature Singapore Pte Ltd. 2018
R. Micheloni et al. (eds.), Inside Solid State Drives (SSDs),
Springer Series in Advanced Microelectronics 37,
https://doi.org/10.1007/978-981-13-0599-3_2

29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_2&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_2&domain=pdf

2.2 Enterprise Versus Consumer SSDs

Let’s first start by understanding the difference between enterprise and consumer
solid state devices [1]. To really understand the differences between consumer and
enterprise solid state drives, let’s start by first observing where these devices are
used. This will highlight the fundamental assumptions made by designers of con-
sumer and enterprise solid state drives.

Consumer solid state devices are used in laptops, desktops, and mobile devices
where conserving power is the most important criteria to ensure long battery life of
the device. Now, let’s think about the typical usage pattern of a laptop user. Laptop
user, either a business or a home user, generally turns on the laptop at the beginning
of the day. Typical applications running on the laptop are email, internet explorer,
Microsoft Word, Excel, PowerPoint. For the majority of time, user reads infor-
mation—reading emails, browsing the web etc. The laptop is perhaps left idle
during meetings; is left idle during lunch time. Laptop is turned off at the end of the
day. Let’s take another example—a desktop user’s typical day. In addition to
everything the laptop user does, desktop users may also play video games, listen to
music and access other digital content. Again, this involves fetching of relatively
large amounts of data from the storage → fast reads. So, what makes the laptop and
desktop users happy? Laptops should turn on as soon as they are powered on to
minimize the wait for system boot up → fast boot times; user would like to use the
laptop on battery for as long as possible → low power footprint and email and
browser applications should load up fast → fast reads. Now let’s contrast this with
typical usage patterns in an enterprise data center.

Enterprise Solid State Drives are used in corporate and cloud data centers where
uninterrupted operations and high reliability are the most important criteria. Data
center of an enterprise is the information technology hub that holds the most
important intellectual property of any business/enterprise—DATA. The data stored
in the data center is made available via different applications such as Oracle
databases, email applications, customer relation management systems and is used
by multiple users—R&D, finance, sales, operations, customer service etc. Data is
accessed from different locations, at different times. Loss of data is not an
acceptable event because of its disastrous consequences to the business. Let’s take
the example of a financial institution where customers make deposits/withdrawals
of money from their accounts. If a withdrawal transaction is lost due to loss of data
in the institution’s data center then the financial institution loses money. Now this
may not seem like a big deal but if it happens systematically, then this could add up
to millions of dollars in losses. Or worse, if a deposit amount is not posted to a
customer’s account, then customer loses money which could be even more disas-
trous because the bank loses its credibility and hence customers → loss of rev-
enues. So what makes the Chief Information Officer (CIO) happy? All systems in
the data center should run uninterrupted → 24 h/day—7 days/week—365 days/
year operations with minimal maintenance; there should never be a case leading to

30 S. Yasarapu

data loss → high reliability; ability to service multiple users at any time → high
performance.

As summarized in Table 2.1, we can conclude that the usage pattern of a con-
sumer solid state drive is dramatically different from that of an enterprise solid state
drive. This primarily drives completely different design criteria.

Let’s see how the consumer and enterprise solid state drives differ in their
construction. This will highlight the fundamental assumptions made by the testers
and integrators of consumer Flash and enterprise solid state drives. To do this, let’s
first understand the composition of consumer and enterprise solid state drive. The
basic composition of an SSD is a controller and a Flash as shown in Fig. 2.1. But
that is where the similarity ends.

What really separate enterprise solid state drive from consumer SSD is the
design of the controller hardware and more importantly the controller firmware
features and the rigors of testing and qualification process the enterprise solid state
drive is put through before it makes it to the market in a product form.

Controller hardware and firmware running on the Enterprise SSDs are the brains
of the device. Their primary functions are to respond to host commands, to transfer
data between the host and Flash media and to manage the Flash media to achieve
high reliability and endurance throughout the operational lifetime of the drive. How
well a controller handles Flash management and host data transfers simultaneously
is what differentiates it from a consumer SSD. In addition, enterprise SSDs have
additional built-in features to improve the reliability and endurance of the Flash and
hence the enterprise SSD. Enterprise solutions require 24/7/365 uninterrupted
operation. Therefore, controllers in enterprise SSDs are designed to maintain
consistent performance behavior while transferring data irrespective of the amount
of Flash capacity in use and also the traffic generated to the drive. Wear leveling
operations and background media error correction algorithms are designed such that
data transfer performance to the host is unchanged while these operations run in the
background to the Flash.

Table 2.1 Application level usage pattern

Criteria Consumer SSD Enterprise solid state drive

Hours of
operation

Interrupted 24/7/365 Uninterrupted operation
consistent and low latency and quality of
service

Fast boot time for frequent
power up

Performance Fast large block reads only Fast small block random reads and writes
Access pattern Single threaded accesses Multi user accesses
Power
consumption

Low power to improve
battery life

Reduce total data center power and
energy footprint

High
availability

Not required High availability

Reliability Ease of replacement High reliability
Loss of data is managed Loss of data is catastrophic

2 SAS and SATA SSDs 31

Enterprise solutions are required to support a large number of users, i.e., multiple
initiators running different types of traffic patterns independent of one another
resulting in random traffic. Therefore, the controller hardware and firmware is
designed to support multi-threaded access where up to hundreds of threads of data
per drive can be pushed between host and the device while maintaining the per-
formance as well as integrity of data. Therefore, enterprise SSDs are designed to
perform extremely well even for small transfers of varying sizes and for simulta-
neous reads and writes.

Data integrity and availability is of the highest importance in enterprise solu-
tions. Therefore, enterprise SSDs are designed to provide full data path protection
with ECC and CRC coverage and power fail protection against unscheduled power
loss.

Reliability and endurance are extremely important for enterprise application
because solutions deployed into enterprise have a longer working life. Unlike
consumer deployments, enterprise deployments have a long service life. Therefore,
enterprise SSDs are designed to survive in mission critical storage area networks
under 24/7/365 workloads for over up to 5 years. To this effect, enterprise SSDs

Host

Basic
Wear

Leveling

Flash
Access
Module

SSD Controller

Host DMA Interface

Error
Detection
Correction

Flash Interface

Host

Basic
Wear

Leveling

Flash
Access
Module

SSD Controller

Error
Detection
Correction

Flash Interface

Cache
Management

Data Path
Protection

Redundancy
Module

Endurance
Enhancement

Host DMA Interface

Consumer SSD Enterprise SSD

Fig. 2.1 Consumer (left) and enterprise (right) solid state drives

32 S. Yasarapu

have built-in redundancy to ensure that even if Flash die fails, the SSD can suc-
cessfully recover data by using the redundancy built into the data stored on the
Flash.

Enterprise SSDs are also built with features to improve the endurance of the
Flash. This is an extremely important capability required to counter the deteriora-
tion in Flash endurance as technology nodes shrink.

Enterprise SSDs have the characteristics of drives designed for use in all envi-
ronments (like the ones on Mars): this allows for drive to operate in environments
that do not require human presence and can handle unknown conditions as they
arise.

The above mentioned design capabilities are driven by the application use cases
where enterprise solid state drives are used. Consumer SSD, unlike enterprise SSD
is not designed with these assumptions and is therefore unsuitable for enterprise
applications.

Consumer SSDs are designed for cost, which may or may not include robust
controller/Flash management technology. Consumer SSD doesn’t have power fail
protection and do not have the same stringent data protection capabilities of en-
terprise SSDs. Consumer SSDs are not designed to endure under enterprise
workloads; they are designed for laptops and desktops not expected to work beyond
a few years.

Since consumer SSD is focused on providing faster boot time, and application
load time, they are optimized to provide fast large block read transfers. Given that
consumer SSD is left idle for long durations, consumer SSD depends on host side to
manage the SSD media. This in turn leads to short lifetime of the consumer SSD. In
addition, consumer SSD is designed for single operation management, for data
loading, installing, saving, etc.

Consumer SSDs have been designed for single user usage and are only designed
for read focused operation, where only a small amount of data is written with many
hours of idle time. Therefore, consumer SSDs though suitable for low end appli-
cations where the devices are not challenged to work at high performance levels, are
not suitable for high performance, high reliability enterprise deployments. How-
ever, it is known that consumer SSDs are sometimes uses for boot use cases in
enterprise and data center deployments. Typically consumer SSD uses SATA
interface to connect to host systems with PCIe NVMe interface connected SSDs on
the horizon.

Enterprise SSDs come in different form factors with different interfaces. There
are 3 main interface protocols used to connect SSDs into server and/or storage
infrastructure: Serial Attached SCSI (SAS), Serial ATA (SATA) and PCIe NVMe.
SAS SSDs deliver high levels of performance and are used in both high end server
and midrange—high end storage enclosures. SATA based SSDs are used mainly in
client applications and in entry and midrange server and storage enclosures. PCIe
based SSDs are newest of the three (3) types of SSDs. There are generally two
classes of SSDs—those delivering the highest performance are mainly used in
server based deployments with storage deployments in the near horizon and those
delivering good enough performance to replace SATA SSDs in data centers. SAS

2 SAS and SATA SSDs 33

and SATA SSDs combined continue to hold the lion share of the enterprise SSD
market with PCIe SSDs showing the highest growth and adoption rate.

In this chapter, let’s focus on the SAS and SATA SSD—protocol differences,
key feature highlights, similarities and differences and where they are used.

2.3 SAS Versus SATA Protocol

Serial Attached SCSI (SAS) is a communication protocol traditionally used to move
data between storage devices (target) and host (initiator). SAS defines how 1 or
more initiators can connect to 1 or more SAS device targets. It uses a standard SCSI
command set to drive device communications. Today, SAS based devices most
commonly run at 12 Gbps. There is ongoing development of a faster 24 Gbps SAS
interface speed which may be brought to market sometime in the future. On the
other side, SAS interface can also be run at slower speeds—1.5, 3 Gbps and/or 6
Gbps to support legacy systems.

S also offers backwards-compatibility with second-generation SATA drives at
the physical layer. The T10 technical committee of the International Committee for
Information Technology Standards (INCITS) develops and maintains the SAS
protocol; the SCSI Trade Association (SCSITA) promotes the technology.

Serial ATA (SATA or Serial Advanced Technology Attachment) is another
interface protocol used for connecting host bus adapters to mass storage devices
such as hard disk drives and solid state drives. Serial ATA was designed to replace
the older parallel ATA/IDE protocol. SATA is also a point to point connection
using a serial physical connection. It uses ATA and ATAPI command set to drive
device communications. Today, SATA based devices most commonly run at 6
Gbps.

Serial ATA industry compatibility specifications originate from The Serial ATA
International Organization [2] (aka. SATA-IO).

2.3.1 Connectivity and High Availability

A typical SAS eco-system consists of SAS SSDs plugged into a SAS backplane or a
host bus adapter via a point to point connection, which in turn is connected to the
host microprocessor either via an expander or directly, as shown in Fig. 2.2.

Each expander can support 255 connections to enable a total of 65,535 (64 K)
SAS connections. Therefore, SAS based deployments enable use of a large number
of SAS SSDs in a shared storage environment.

SAS SSDs are built with two ports. This dual port functionality allows host
systems to have redundant connections to SAS SSDs. In case one of the connec-
tions to the SSD is either broken or malfunctions, host systems still have the second
port that can be used to maintain continuous access to the SAS SSD. In enterprise

34 S. Yasarapu

applications where high availability is an absolute requirement, this feature, unique
to SAS SSDs, makes it the SSD of choice for enterprise applications. Figure 2.3
below shows the dual port connector used with SAS SSDs.

SAS SSDs also support hot plug. Hot plug feature enables SAS SSDs to be
dynamically removed or inserted while the system is running. This feature allows
for automatic detection of newly inserted SAS SSDs. While a server or storage
system is running, newly inserted SAS SSDs can be dynamically configured and
put to use. Even more importantly, even if SAS SSDs are pulled out of a running
system, all the in-flight data that is committed by the host system is properly stored
inside a SAS SSD and can be accessed once the SSD is powered back on.

As opposed to SAS, a typical SATA eco-system consists of SATA SSDs con-
nected to host bus adapter via a point to point connection, which in turn is con-
nected to the host microprocessor. In addition, SATA SSDs are built with one port

Fig. 2.2 SAS connectivity

Fig. 2.3 Dual port SAS connector

2 SAS and SATA SSDs 35

unlike SAS SSDs. These two main differences make SATA based SSDs more
suited for entry or mid-range deployments and consumer applications.

SATA SSDs also support hot plug which enables SSDs to be dynamically
removed or inserted while the system is running. While a server or storage system is
running, newly inserted SATA SSDs can be dynamically configured and put to use.
However, not all SATA SSDs are designed to withstand hot plug functionality and
to ensure that if pulled out of a running system, all the inflight data that is com-
mitted by the host system is properly stored inside a SATA SSD. This capability,
also commonly known as surprise removal, is an extremely important feature and is
generally only supported by selected enterprise grade SATA SSD vendors.

SATA drives may be connected to SAS backplanes, but SAS drives may not be
connected to SATA backplanes.

This is an important feature, in that physically SAS infrastructure is designed to
accommodate SATA SSDs. Connector on SATA SSDs is designed such that they
can be plugged into SAS receptacles though the reverse is not true. This enables
SATA SSDs to be plugged into SAS based storage system making the SATA SSD
more ubiquitous for use.

In addition, even though SAS uses SCSI as the primary communication proto-
col, SAS also supports STP (Serial ATA Tunneled Protocol) that allows SAS
infrastructure is built to ensure communication with SATA SSDs hence enabling
interoperability. Again, reverse is not true, in that SAS SSDs cannot be plugged into
SATA based deployments.

Similarities between SAS and SATA technologies are summarized in Fig. 2.4;
differences between the two are in Fig. 2.5.

SAS and SATA Similarities

Both types plug into the
SAS backplane.

The drives are
interchangeable within a
SAS drive bay module.

Both are long-proven
technologies, with
worldwide acceptance.

Both employ point-to-
point architecture

Both are hot pluggable

Fig. 2.4 Similarities between
SAS and SATA technologies

36 S. Yasarapu

2.3.2 Form Factor and Capacity

SAS and SATA SSDs come in a variety of capacities and form factors.
SAS SSDs are designed in primarily to fit into 2.5″ form factor. This form factor

is primarily defined and driven by the small form factor working group and the
T-10 organization. Since SAS SSDs are designed for both server and storage
applications, the capacity of SAS SSDs varies from 200 GB up to 30 TB in
capacity for use depending on deployment and application requirement.

SATA SSDs are designed in a variety of form factors—2.5″, 1.8″ as well as
smaller M.2 form factors (Fig. 2.6). Typical enterprise applications use either 2.5″
SATA SSDs or M.2 form factor SATA SSDs. For example, M.2 SATA SSDs are
popularly used as boot devices. In addition, the smaller form factors enable SATA
to be used in space constrained embedded applications. SATA SSDs in capacity
vary anywhere between 32 GB and 8 TB and are generally used either in consumer,
boot or entry and mid-range data center applications.

SAS vs. SATA Differences

SATA devices are less expensive.

SATA devices use the ATA command set, SAS the SCSI command
set.

SAS drives have dual porting capability and lower latencies.

While both types of drives plug into the SAS backplane, a SATA
backplane cannot accommodate SAS drives.

SAS drives are tested against much more rigid specs than are
SATA drives.

SAS drives are faster, and offer several features not available on
SATA, including variable sector sizes, LED indicators, dual ports
and data integrity.

SAS supports link aggregation – wide porting

Fig. 2.5 Main differences between SAS and SATA

2 SAS and SATA SSDs 37

2.3.3 Performance

SAS uses SCSI command set to transfer data. SCSI is a more efficient command set
with features such as command queuing that enable higher performance of SAS
SSDs. Therefore, SAS SSDs are used where higher performance is required. Unlike
SAS, SATA SSDs using the ATA protocol have lower performance compared to
SAS and therefore are more widely for mid-range and entry level system.

However, a point to note is that both SATA and SAS SSDs are orders of
magnitude faster than hard disk drives (HDDs). To better understand the perfor-
mance characteristics of SSDs first, it is important to know what is inside an SSD
compared to HDD.

Hard disk drives are electro-mechanical devices which inherently is limited by
the mechanical element utilized to build them, i.e., rotating magnetic disk. In order
to retrieve data that is stored on the magnetic disk, one must rotate the disk to place
it under the media head (rotational latency), moving the head to the right track (seek
latency) and then using a combination of electronics and mechanics to transfer the
data to/from the host devices (transfer time). The only way to hide rotational and
seek latencies is by transferring large sequential data from the disk once the right
track on the disk is located. Therefore, hard drives are inherently sequential devices
and limited in random performance. Sequential performance is generally measured
in MBps or GBps, whereas, random performance is measured in IO per seconds
(IOPs). The fastest hard drives on the market provide at best 350 IOPS under
random workloads. However, real world applications are random by nature.

Fig. 2.6 SATA form factors

38 S. Yasarapu

In contrast to hard drives, solid state drives are electronic devices. There are no
mechanical elements on a solid state drive. Data is stored in NAND Flash devices,
and is retrieved from the NAND Flash by on board controller. All blocks of data on
the NAND Flash are equally accessible by the controller, i.e., there are no rotational
and/or seek latencies to get to the right block of data.

Performance, reliability, and endurance of SSDs are highly dependent on the
design of the SSD controllers as discussed in earlier sections.

How efficiently HW (Hardware) and FW (Firmware) of the SSD controller
handle data streaming while also performing Flash management determines the
performance of the SSD. Controllers in enterprise SAS and SATA SSDs are
designed to maintain consistent performance behavior while transferring data,
regardless of the amount of Flash capacity in use, and irrespective of the volume of
traffic being generated to the drive at any point in time. Wear-leveling operations
and background media error correction algorithms are designed so that data transfer
performance to the host is unchanged while these operations run in the background.
An enterprise-class SSD is designed to handle these heavy workloads 24/7/365 for
5 years or more.

To be of real value, SSD performance needs to be measured after the SSD
reaches steady. Performance measured on a fresh out of the box SSD—SAS or
SATA will not truly represent the performance of the drive in a real deployment.
Therefore, before measuring SSD performance, one must precondition the SSD
under test. This is accomplished by writing random data patterns to completely fill
all NAND blocks and engage the drive’s wear-leveling and Flash management
routines. Properly managing data flow and internal NAND will make the mea-
surement a more useful gauge of SSD performance under real-world conditions.
Figure 2.7 illustrates the higher performance of fresh out of box SSDs that reach
steady state after pre-conditioning the SSD.

Fig. 2.7 Effect of preconditioning on performances

2 SAS and SATA SSDs 39

To understand the real world benefits of SAS and SATA SSDs, performance is
usually measured for large block 128 KB or larger sequential and small block 4 KB
or 8 KB random read, write and mixed workloads.

Figures 2.8 and 2.9 show a real world comparison between SAS and SATA
SSDs. As seen in these charts, SAS SSDs deliver almost 4 × higher performance
compared to SATA SSDs.

As seen from the charts above, both type of enterprise SSDs—SAS or SATA,
have place in the data center. SAS SSDs are used for high end performance critical
enterprise systems and SATA SSDs are used with mid-range or entry level systems.

0 50000 100000 150000 200000 250000 300000 350000 400000 450000

0%

70%

100%

IOPS

Re
ad

s

Random Workloads

SATA SSD SAS SSD

Fig. 2.8 SAS versus SATA under random workloads

0 500 1000 1500 2000 2500

0%

100%

MBps

Re
ad

s

Sequential Workloads

SATA SSD SAS SSD

Fig. 2.9 SAS versus SATA under sequential workloads

40 S. Yasarapu

2.4 What’s Ahead

SATA and SAS based SSDs have been adopted in consumer and enterprise
applications. This adoption is expected to continue and expand in the coming years.
Data center and enterprise applications are using increasingly large amounts of
SSDs and also SSDs of higher capacities to deliver on the need for ever increasing
demands for data storage. As the NAND Flash geometries shrink, the capacity of
SAS SSDs is expected to increase to address this need for higher capacity SSDs.

On the SATA front, the SATA protocol is expected to continue to deliver 6
Gbps interface speeds for the near future. However, for faster SSDs, industry is
expected to adopt PCIe SSDs in future generations of server and storage
environments.

On the SAS front, the protocol is expected to continue to deliver 12 Gbps
interface speeds for the foreseeable future. There are development efforts ongoing
to enable a higher speed SAS interface 24 Gbps. However, it is unclear to what
extent the industry will widely adopt a faster SAS 24 Gbps interface or if enterprise
will continue to use 12 Gbps SAS SSDs for vast majority of mainstream
appplications.

As discussed above, enterprise solid state drives increase the performance and
reliability of the enterprise while reducing the overall space, power, and energy
footprint of the data centers. Key features for the enterprise are long service life,
high endurance, consistent and high performance, high reliability which are
delivered by SAS and/or SATA SSDs.

Choosing the right SSD—SATA or SAS, depends on the end user application.
Use of SSDs leads to improved performance, higher reliability and reduced power
space and energy consumption which reduces capital and operating expenses of
next generation data centers. This is what makes SSDs a great product to enable
highest levels of performance and fast access to data in consumer as well as
enterprise applications.

References

1. www.hgst.com
2. http://www.t10.org

2 SAS and SATA SSDs 41

http://www.t10.org

Chapter 3
Hybrid Storage Systems

Rino Micheloni, Luca Crippa and M. Picca

Abstract In recent years, both industry and academia have increased their research
effort in the hybrid memory management space, developing a wide variety of
systems. It is worth mentioning that “hybrid” is a generic term and it can have
different meanings depending on the context. For instance, a storage system can be
hybrid because it combines HDD and SSD; an SSD can be hybrid because it
combines SLC, MLC and TLC Flash memories, or it combines NAND with
Storage Class Memories (SCMs), which are non-volatile memories like ReRAM,
PCM or MRAM. In this chapter we look at all these different meanings. The last
section covers over-provisioning and the Write Amplification Factor (WAF): these
parameters have a great impact on SSD performances and reliability, as well as on
the available storage capacity.

3.1 NAND Flash Memory and HDD

If we look at the DRAM history [1], DRAM data access speeds have increased at a
faster pace than Hard Disk Drives (HDDs), leaving a gap in the memory hierarchy
as shown in Fig. 3.1. The gap in read and write performances between DRAM and
HDD has widened over the last decade, thus leaving an opportunity for a new
intermediate memory/storage technology between HDDs and DRAM: NAND Flash
memories and SCMs can fill this performance gap.

While HDDs are common secondary storage devices, their high power con-
sumption and low shock resistance limit them as an ideal mobile storage solution

R. Micheloni (✉) ⋅ L. Crippa
Storage Solutions, Microsemi Corporation, Vimercate, MB, Italy
e-mail: rino.micheloni@ieee.org

L. Crippa
e-mail: luca.crippa@ieee.org

M. Picca
STMicroelectronics, Cornaredo, Italy
e-mail: massimiliano.picca@st.com

© Springer Nature Singapore Pte Ltd. 2018
R. Micheloni et al. (eds.), Inside Solid State Drives (SSDs),
Springer Series in Advanced Microelectronics 37,
https://doi.org/10.1007/978-981-13-0599-3_3

43

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_3&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_3&domain=pdf

[2]. On the other hand, Flash memories (especially of NAND type) overcome the
main problems of HDDs, but they are still more expensive and can only support a
limited number of program/erase cycles [3].

Researchers generally agree that disk-storage performance is subject to the
handling of small files and filesystem metadata. Unlike traditional disk storage,
Flash memory has no seek penalty, but is subject to garbage collection and wear
leveling.

To avoid excessive wear-out of Flash memories, and to mitigate their low write
throughput, it is a good approach to migrate frequently-read data to the Flash and
frequently-written data to HDD, as sketched in Fig. 3.2. In other words, there
should be a caching software that dynamically manages the use of the entire drive
capacity for superior overall storage performance, where the most frequently/
recently used “hot” data are cached for ultra-fast access, while the “cold” data
remains on the primary storage partition.

The trade-offs associated with HDDs and Flash memories motivate lots of
storage system designs [4–8]. Many applications use Flash memory as a
non-volatile cache storing data blocks which are likely to be accessed in the near
future, and thus allowing the disk to spin down for longer periods.

However, these schemes treat flash memory as complement of DRAM buffer
cache, and only a subset of data blocks are cached in flash memory; as a result, the
disk is used quite frequently due to cache misses or flushing. As flash memory’s
capacity increases, a real hybrid secondary storage solution is expected to be more
effective [9]. Different from data block level cache, Flash memory stores files and
can be accessed independently in hybrid secondary storage system.

Fig. 3.1 Memory hierarchy

44 R. Micheloni et al.

In recent years, both industry and academia have increased their research effort
in the hybrid memory management space, developing a wide variety of systems
[10–12]. At this point it is worth mentioning that “hybrid” is a generic term and it
can have different meanings depending on the context. Figure 3.3 is a summary of
what a hybrid storage could be.

We will look at various combinations of Flash memory and HDDs in the fol-
lowing sections.

3.2 External NAND + HDD

One of the first examples of NAND used as an external memory was ReadyBoost
[13–15]. It works by using flash memory, a USB flash drive, SD card, Com-
pactFlash or any kind of portable flash mass storage system as a cache, as shown in
Fig. 3.4.

The core idea of ReadyBoost is that a flash drive has a much faster seek time
than HDD, allowing it to satisfy requests faster than reading files from the hard
disk.

When an EXternal Memory (EXM) is plugged into the computing device, the
system populates EXM with disk sectors and/or memory sectors. The system routes
I/O read requests directed to the sector to the EXM cache instead of the actual

Hard Disk

Memory MANAGER

PC/HOST

FLASH MEMORY

HOT DATA COLD DATA

Fig. 3.2 The hybrid storage system

3 Hybrid Storage Systems 45

HYBRID STORAGE

FLASH + HDD

HYBRID SSD

NAND SLC
+

NAND MLC

NAND
+

PCM/FeRAM/MRAM/
 ReRAM

External NAND
+

HDD

NAND on
Motherboard

+
HDD

NAND
+

HDD

SSD
+

HDD

Fig. 3.3 Hybrid storage overview

EXTERNAL
MEMORY DEVICE

FLASH CARD/
USB

Hard Disk

DRAM

Memory MANAGER

xGB

ROM
(BIOS)

External Memory
MANAGER

HOST/PC

CD/DVD
HDD

.....

Fig. 3.4 Flash memory as external memory device

46 R. Micheloni et al.

sector. The use of EXMs increases performance and productivity on the computing
device systems for a fraction of the cost of adding memory to the computing device.

The system detects when an EXM is used for the first time. Once the type of
EXM is discovered, a driver is installed and it is used to cache disk sectors on the
external memory. Sectors from any disk and/or slower memory device on the
system can be cached to EXM. Without a prior knowledge of which sectors are
valuable in terms of frequent access, the system may use data on the computing
machine to determine which sectors are used to populate the EXM cache. Alter-
natively, the system populates the EXM cache with a particular sector when that
particular sector is accessed during operation. The next time that particular sector is
to be accessed for a read operation, the system directs the read operation to access
the copy from the EXM. The system may track usage patterns and determine which
disk sectors are most frequently accessed. On subsequent uses of the EXM, the
system caches those sectors that are most frequently accessed onto the EXM. If the
EXM is present when the computing device is powered up, the EXM can be
pre-populated with data during start-up of the operating system [13].

3.3 NAND on Motherboard + HDD

Computer motherboards contain the processor chip and some high performance
SRAM and DRAM memories. In the last few years there have been proposals to
add Flash memory to the computer motherboard for a non-volatile memory layer to
the motherboard memory/storage architecture. The motherboard Flash memory
could be inserted into the motherboard with an ONFI module or DIMMs similar to
those currently used for DRAM, allowing memory replacement when faster or
larger memory becomes available.

Intel introduced a motherboard Flash memory technology in 2007, known as
“Robson Technology” or “Turbo Memory” [16, 17]. This early implementation ran
into issues due to lack of support for management of Flash/HDD partition in main
operating systems. In fact, central to the operation of any hybrid storage computer
architecture is management to determine which data is to be kept on the HDD and
which data will be kept on the Flash memory.

Figure 3.5 shows a storage management controller that determines what data
should be stored on each memory device. This storage management function must
balance the needs of data access, power savings opportunities, and data security.

As with any NAND based memory product solution, the NAND flash memory
controller is also key in executing the NAND wear leveling algorithm, managing
the reads, writes, erases, and performing the ECC (Error Correction Code) as
needed [16].

With NAND moving into the demanding computing environment, the wear
leveling algorithm must comprehend not only the usage statistics of the NAND
flash but also track the key reliability statistics. In other words, the controller must

3 Hybrid Storage Systems 47

track all the failure mechanisms known in the NAND Flash industry (Chap. 9):
program disturb, read disturb, program/erase cycles, data retention, etc.

In the next section, HDD is combined with another drive, a Solid State Drive
(SSD).

3.4 NAND/SSD + HDD

A block diagram of the monolithic HDD + SSD solution, usually referred to as
hybrid drive, is shown in Fig. 3.6 [18–25]. A Solid State Drive is made up of
several NAND chips plus a controller: therefore, all the considerations of this
section also apply to a storage system composed by HDD and a single NAND
device. Unlike standard HDDs, the hybrid drive in its normal state has its platters at
rest, without consuming power or generating heat. When reading data from the
platters, extra data are read and stored in buffer memory in the hope of anticipating
future requirements as in any disk cache. For example, data required for the next
boot-up can be stored in the non-volatile buffer before shutting down the computer.

In 2010 Seagate released the Momentus XT [20, 21], which uses so-called
“adaptive memory” for its SSD portion, which does not rely on driver support from
the operating system. This removes the need for a special operating system, and the
speed benefits can be used by any OS.

Hard Disk

Memory MANAGER

PC/HOST

FLASH MEMORY

DRAM

Motherboard

FLASH Memory
MANAGER

Fig. 3.5 Flash on computer motherboard

48 R. Micheloni et al.

The Flash memory is used to store frequently accessed content using an adaptive
memory algorithm. This algorithm monitors data access transactions and maintains
frequently accessed data on the Flash memory. The drive includes software that
tracks a person’s use trends and then uses the SSD component of the drive to
optimize performance, and it can adjust that performance over time with changes in
user behavior. Up to 50% performance improvement is seen between the first and
second iteration of data access [18].

Manufacturers claim several benefits of the hybrid drive over standard hard
drives, especially for use in notebook computers: among them, speed of data access
and consequent faster computer boot process, decreased power consumption, and
improved reliability.

There are some drawbacks too, especially when accessing non-cached data. In
fact, if the data being accessed is not in the cache and the drive has spun down,
access time will be greatly increased since the platters will need to spin up.

Another concern is the lower performance for small disk writes. NAND is
significantly slower when writing small data; an effect that is amplified when the file
system is using journaling techniques.

Anyhow, hybrid drives have a great potential and the industry is actively
working in this field. As a matter of fact, Windows Vista and Windows 7 natively
support the use of hybrid drives (ReadyDrive) [22].

As mentioned, a NAND device can experience a limited number of program/
erase cycles. With the hybrid drive, a simple solution to mitigate this wear-out effect
would be to place all the data that is accessed by read operations on the Flash

Hard Disk

Memory MANAGER

FLASH MEMORY

SSD

PC/HOST

Hybrid Drive

PCIe/SATA

Fig. 3.6 Monolithic hybrid drive

3 Hybrid Storage Systems 49

memory device, and the remaining data on the HDD. This placement would save a
substantial amount of the energy consumption while a longer lifetime for the Flash
memory device is expected [12].

However, in practice, we cannot know in advance whether data should be placed
on the Flash memory device or the hard disk.

We now review an existing method of skewing frequently accessed data, called
Popular Data Concentration (PDC): it was proposed by Pinheiro and Bianchini
[23] to deal with the highly skewed file access frequencies exhibited by the
workloads of network servers. The idea of PDC is to concentrate the most popular
(i.e. most frequently accessed) disk data by migrating it to a subset of the disks, so
that the other disks can be sent to a low-power mode to conserve energy. PDC
redistributes data across the disk array according to its popularity, so that the first
disk stores the most popular data, the second disk stores the next most popular data,
and so on.

However, if the frequency of file access varies significantly with time, PDC may
cause a lot of file migrations, which will increase energy use, in particular by
disturbing idle disks. This also happens when new files are created, because they
will be stored on the disk with the least popular data, which has to be woken up.

PDC concentrates on popular data without considering whether I/O accesses are
reads or writes. If we split I/O transactions into reads and writes and move only the
data corresponding to one sort of access, we can reduce the amount of migrations.
For instance, if the total amount of data associated with reads is less than that
associated with writes, then transferring the data that is being read will be more
profitable. This scheme is called PB-PDC (pattern-based PDC): it improves the
PDC technique by moving frequently-accessed read and write data to separate sets
of disks [9].

Thus, while the disks containing data which are accessed in one way (read or
write) are being accessed frequently, the disks storing data accessed in the other
way can be sent to a low power mode to conserve energy.

We can apply PB-PDC to a hybrid drive. Because a Flash memory device has
low write throughput and limited erasure cycles, PB-PDC moves the popular write
data to the hard disk and the popular read data to the Flash memory device.

Another possible approach when looking at data partitioning within a hybrid
drive is to employ cache device organization where a subset of disks are treated in
the storage system as cache disks to absorb I/O traffic [24].

Summarizing, PDC does not ask for file duplication while, in the caching
approach, files in Flash memory are a copy of that on disk.

The cached file selection algorithm decides files to be cached in Flash. Usually,
both static and dynamic types of selections can be used. The static approach is more
suitable for files frequently accessed by users: for example, the operating system,
compiler and some C libraries.

When the remaining capacity of Flash memory cache device reaches a threshold
value, replacement is needed. The main guideline for replacement algorithm is that
files accessed less frequently and files that will not be accessed in near future should

50 R. Micheloni et al.

be removed from Flash memory cache. The oldest and yet still widely used algo-
rithm in cache management is LRU [12].

The above mentioned algorithms are just a small part of what is available in the
open literature: it is clear that in order to really exploit all the benefits of hybrid
storage, it is fundamental to decide where it is the right place to store data,
depending on their characteristics. Of course, workloads are application and user
specific: therefore, the storage management algorithm should be able to adapt to
different needs.

At the end of this section it is worth mentioning that another term is becoming
very popular in the hybrid storage world: SSD-Cache [26].

SSD-Cache is a discrete, separate memory component, as sketched in Fig. 3.7:
in other words, HDD and SSD are housed separately. While all the hot/cold topics
mentioned above remain valid, discrete cache SSDs and HDDs are easier to scale,
with a broad selection of drive manufacturers [27–32].

3.5 Hybrid SSD

NAND Flash memories fall into different categories, depending on the number of
bits stored inside the same physical cell [33], as shown in Fig. 3.8. SLC and MLC
store 1 and 2 bits per cell, respectively. Triple-Level Cell (TLC) stores 3 bits within

Hard Disk

Memory MANAGER

SSD-Cache

PC/HOST

SAS/SATAPCIe/SAS/SATA

Fig. 3.7 SSD-Cache

3 Hybrid Storage Systems 51

a memory cell; 4 bit/cell is called QLC and has been already announced by all Flash
manufacturers.

Downsides of storing more bits per cell are slower speeds, higher error rates and
lower endurance/retention [34, 35]. The advantage is clearly the reduced silicon
area, and therefore cost [30, 36, 37].

eTLC (“e” stands for enterprise) offers a higher number of erase/program cycles.
For instance, if standard TLC runs for 3 k, eTLC can withstand 7–10 k [38].

Table 3.1 compares typical SLC, MLC, TLC and QLC specifications [38]: SLC
is much faster than all the others during both read and write.

Performances of an individual Flash device are still insufficient to meet the
bandwidth requirements of the interface (SAS/SATA/PCIe) and, therefore, inter-
leaving is very common in most high-performance SSDs. The interleaving tech-
nique is also useful to extend the endurance because write operations can be
distributed over multiple devices [39].

Because of the cost benefit, there have been many attempts to address perfor-
mance and endurance problems in TLC-based storage systems. One possible
approach is to combine SLC and TLC Flash memories inside a single SSD, which
is then called “hybrid” [40–46]. A basic block diagram is shown in Fig. 3.9. The
goal of this hybrid-SSD design is to achieve the response time of SLC, while
having the cost structure of TLC. In other words, SLC capacity must be small. It is
worthwhile to highlight that most of the modern TLC devices allow users to
configure some or all the blocks in SLC mode. Therefore, in this case, the NAND
itself can be viewed as a hybrid device.

The basic idea is to use SLC for storing small random (hot) data and TLC for
large sequential (cold) data [47–54]. In fact, SLC has better endurance and small
random data tend to be updated more frequently. However, TLC is still the limiting
factor when long sequential data writes frequently occur to the storage.

Figure 3.10 shows a possible data flow during write. Every write request enters
in the “Data Sensor”: cold data directly go to TLC. Hot data move to another block
called “Utilization Limiter”. If the SLC NAND blocks wear out too fast, this limiter
has the task to reduce the write traffic to SLC blcoks. In other words, a second level

Fig. 3.8 NAND Flash
families

52 R. Micheloni et al.

of data classification is adopted: hot-data go to SLC and quasi-hot-data are switched
to TLC.

As mentioned, SLC capacity has to be small; therefore, when data become cold,
they should be removed from SLC in order to maximize the space for hot data.

At this point it is clear that the foundation of this approach is the ability of
classifying data. A lot of methods to identify hot data have proposed, including
LRU, LRU-k [55], hash-table-based approaches [48, 49, 56]. The reader can refer
to this extensive literature for more details.

Chang [49] showed that, by adding a 256 MB SLC Flash to a 20 GB MLC-Flash
array, the hybrid SSD improves over a conventional SSD by 4.85 times in terms of
average response. The average throughput and energy consumption are improved
by 17% and 14%, respectively. The hybrid SSD is only 2% more expensive than a
purely MLC-Flash-based SSD.

Of course, the hybrid concept can be extended to a Solid State Drive made up by
different types of NAND memories, as shown in Fig. 3.11 [57, 58].

3.6 Over-Provisioning

When looking at the overall capacity of a solid state drive, over-provisioning must
be taken into account. Over-provisioning is the difference between the physical
capacity of the Flash memory and the logical capacity available for the user. Of
course, this is also true for hybrid SSDs [59].

Table 3.1 SLC, MLC, TLC
and QLC specifications

NAND type SLC MLC TLC QLC

Page read (μs) 25 50–60 80–90 300
Page write (μs) 200 800–1,200 3,000 15,000
Block erase (ms) 10 10 10 10
Endurance (k) 50 20 3–7 1

Fig. 3.9 SLC + MLC
hybrid SSD

3 Hybrid Storage Systems 53

The idea behind over-provisioning is to have a “reserve” of spare blocks that can
be used by the controller.

Let’s assume an application that wants to randomly write data to the SSD drive.
The drive controller writes these data to some erased pages in a particular block.
After a while, the application decides to update the content: given the nature of
Flash memories, this would imply erasing the block. In order to improve perfor-
mances, the drive controller just marks those pages as unavailable and writes the
new content to different physical pages: actually, no electrical erase takes place.
When the entire block has been used and another write comes in, a real erase
operation is needed. At this point, the controller needs to go through the following
process:

• copy the entire content of the block to a temporary location (likely cache);
• remove the unused data from the cache;

Data
Sensor

SLC FLASH

TLC FLASH TLC FLASH

cold

Utilization
Limiter

hot

hot

quasi-hot

Data write

Wear level info

no more hot

garbage

Fig. 3.10 Write flow

54 R. Micheloni et al.

• add the new data to the block in cache;
• erase the addressed block on the SSD drive;
• copy the entire block from the cache;
• empty the cache.

This sequence is very time consuming and kills write throughput performances
[59, 60]. When over-provisioning is used, the flow can be different. Instead of
having to erase the unavailable portion of the block to accommodate new data, the
controller can use some of the spare space instead. This means that the sequence of
reading the entire block, merging the new data, erasing the block, and writing the
entire new block back, can be avoided. The controller just maps spare space to be
part of the drive capacity (so it is seen by the OS) and moves the unused pages to
the spare capacity portion of the drive.

Anyhow, at some point the unavailable pages will have to be erased forcing the
erase/write sequence mentioned above. In real world applications, 100% random
writes are unlikely and the Flash controller does the erase/write sequence in

DATA BUS (Read/Write)

DRAM

PC/HOST

FLASH
TYPE 1

FLASH
TYPE 2

FLASH
TYPE n

Fig. 3.11 Hybrid SSD including different types of NAND Flash memories

3 Hybrid Storage Systems 55

background or when the drive is not in use. To get to the worst case, the host has to
randomly write across all the drive’s capacity without stopping to read.

Some controllers may not actively defragment the space to save costs, so the
worst case performance becomes typical after the drive has been written few times.

Spare capacity can also be used when “bad” areas develop in the drive. For
example, if a certain set of pages/blocks has much fewer remaining erase/write
cycles than most of the drive, then the controller can remap them to spare pages/
blocks. Moreover, the controller can watch for bad writes and use the spare capacity
as a “backup” (similar to extra blocks on hard drives). The controller can check for
bad writes by doing read-after-write (reads are much faster than writes).

During the garbage collection, wear-leveling, and bad block mapping operations
inside the SSD, the additional space from over-provisioning helps lowering the
Write Amplification Factor (WAF) [60–63]; this factor corresponds to the addi-
tional writes caused by garbage collection (see flow above) and wear leveling
(Chap. 9). Jedec defines WAF as the data written to the Flash divided by data
written by the host to the SSD [64].

Figure 3.12 sketches a typical behavior of WAF vs. over-provisioned capacity.
In commercial products over-provisioned capacity is usually around 30%. On one
side, with a very small over-provisioning percent, the amount of data “moves” that
have to take place can be very high, lowering the achievable write IOPS. On the
other side, still looking at Fig. 3.12, 30% looks a good trade-off between perfor-
mances and area (cost): in fact, beyond 30% WAF reduces at a lower rate [60].

In summary, reducing the amount of over-provisioned capacity can lower the
cost per GigaByte, but then WAF can become a real problem. Please bear in mind
that the over-provisioned space shrinks over time as it is also intended to coun-
termeasure wear out of Flash blocks.

W
A

F
[a

.u
]

Over-provisioned capacity

20% 40% 60% 80% 100%

Fig. 3.12 Write amplification factor (WAF) versus over-provisioned capacity

56 R. Micheloni et al.

References

1. The DRAM story, with articles by Dennard, Itoh, Koyanagi, Sunami, Foss and Isaac.
IEEE SSCS News. 13(1) (Winter 2008), www.ieee.org/sscs-news

2. D. Baral, Life Cycle Power Consumption HDD Vs. SSD, Flash Memory Summit, Session 101
(Storage Labs Samsung Information Systems America, San Jose, 2009)

3. V. Kasavajhala, Solid State Drive vs. Hard Disk Drive Price and Performance Study (Dell
Technical White Paper, Dell Power Vault Storage Systems, May 2011), http://www.dell.com/
downloads/global/products/pvaul/en/ssd_vs_hdd_price_and_performance_study.pdf

4. B. Marsh, F. Douglis, P. Krishnan, Flash memory file caching for mobile computers, in
Proceedings of the Twenty-Seventh Hawaii International Conference on System Sciences,
Wailea, HI (1994), pp. 451–460

5. T. Bisson, S.A. Brandt, D.D.E. Long, NVCache: increasing the effectiveness of disk
spin-down algorithms with caching, in MASCOTS 2006, Monterey (2006), pp. 422–432

6. T. Bission, S. Brandt, Reducing energy consumption with a non-volatile storage cache, in
Proceedings of International Workshop on Software Support for Portable Storage, San
Francisco, CA (2005)

7. F. Chen, S. Jiang, X. Zhang, SmartSaver: turning flash drive into a disk energy saver for
mobile computers, in Proceedings of the 2006 International Symposium on Low Power
Electronics and Design, Tegernsee, Germany (2006), pp. 412–417

8. R. Panabaker, Hybrid hard disk and ReadyDrive™ technology, improving performance and
power for windows vista mobile PCs, in Proceedings of MicrosoftWinHEC, Los Angeles, CA
(2006)

9. Y.-J. Kim, K.-T. Kwon, J. Kim, Energy-efficient file placement techniques for heterogeneous
mobile storage systems, in Proceedings of the 6th ACM & IEEE International Conference on
Embedded software, Seoul, Korea (2006), pp. 171–177

10. T. Kgil, T. Mudge, FlashCache: a NAND Flash memory file cache for low power web servers,
in Proceedings of the International Conference on Compilers, Architecture and Synthesis for
Embedded Systems, Seoul, Korea (2006)

11. T. Kgil, D. Roberts, T. Mudge, Improving NAND Flash based disk caches, in ISCA’08
Proceedings of the 35th Annual International Symposium on Computer Architecture, Beijing,
China

12. S. Liu, X. Cheng, X. Guan, D. Tong, in Energy Efficient Management Scheme for
Heterogeneous Secondary Storage System in Mobile Computers SAC’10, Sierre, Switzerland,
22–26 March 2010

13. A. Kirshenbaum et al., Using external memory devices to improve system performance, U.S.
Patent No. 7,805,571 and U.S. Patent application No. 20100217929, Assignee: Microsoft
Corporation

14. Microsoft Windows, Windows 7 features—ReadyBoost—Microsoft Windows, http://
windows.microsoft.com/en-US/windows7/products/features/readyboost

15. W.R. Stanek, Windows 7: The Definitive Guide (O’Reilly Media, 2010), Sebastopol, CA
95472, pp. 105–109

16. White Paper Intel® Flash Memory Intel® NAND Flash Memory for Intel® Turbo Memory
(2007), http://download.intel.com/design/flash/nand/turbomemory/whitepaper.pdf

17. Intel® Turbo Memory—Overview and Support, http://www.intel.com/cd/channel/reseller/
apac/eng/products/mobile/mprod/turbo_memory/396715.htm

18. T. Coughlin, J. Handy, Two May Be Better Than One: Why Hard Disk Drives and Flash
Belong Together (White Paper SNIA, Feb 2011), http://www.snia.org/sites/default/files/
Storage%20Pairing%20WP%20FEB%202011.pdf

19. T. Coughlin, J. Handy, HDDs and Flash Memory: A Marriage of Convenience (SNIA, Feb
2011), http://www.snia.org/sites/default/files2/SDC2011/presentations/Monday/
TomCoughlin_and_Handy_HDDS_Flash_Memory.pdf

3 Hybrid Storage Systems 57

http://www.ieee.org/sscs-news
http://www.dell.com/downloads/global/products/pvaul/en/ssd_vs_hdd_price_and_performance_study.pdf
http://www.dell.com/downloads/global/products/pvaul/en/ssd_vs_hdd_price_and_performance_study.pdf
http://windows.microsoft.com/en-US/windows7/products/features/readyboost
http://windows.microsoft.com/en-US/windows7/products/features/readyboost
http://download.intel.com/design/flash/nand/turbomemory/whitepaper.pdf
http://www.intel.com/cd/channel/reseller/apac/eng/products/mobile/mprod/turbo_memory/396715.htm
http://www.intel.com/cd/channel/reseller/apac/eng/products/mobile/mprod/turbo_memory/396715.htm
http://www.snia.org/sites/default/files/Storage%20Pairing%20WP%20FEB%202011.pdf
http://www.snia.org/sites/default/files/Storage%20Pairing%20WP%20FEB%202011.pdf
http://www.snia.org/sites/default/files2/SDC2011/presentations/Monday/TomCoughlin_and_Handy_HDDS_Flash_Memory.pdf
http://www.snia.org/sites/default/files2/SDC2011/presentations/Monday/TomCoughlin_and_Handy_HDDS_Flash_Memory.pdf

20. Seagate MomentusXT Datasheet, http://www.seagate.com/files/staticfiles/docs/pdf/datasheet/
disc/momentus-xt-data-sheet-ds1704-4-1205-us.pdf

21. Seagate MomentusXT: Overview features and specs, http://www.seagate.com/internal-hard-
drives/laptop-hard-drives/momentus-xt-hybrid/

22. R. Panabaker, Hybrid hard disk and ReadyDrive™ technology: improving performance and
power for windows vista mobile PCs, in Proceedings of Microsoft WinHEC (2006)

23. E. Pinheiro, R. Bianchini, Energy conservation techniques for disk array-based servers, in
Proceedings of the 18th International Conference on Supercomputing (ICS’04), June 2004

24. D. Colarelli, D. Grunwald, Massive arrays of idle disks for storage archives, in Proceedings of
the 2002 ACM/IEEE Conference on Supercomputing, Baltimore, MD (2002), pp. 1–11

25. G. Symons, Hybrid SSD/HDD Storage: A New Tier? Flash Memory Summit (Xiotech
Corporation, Colorado Springs, 2011)

26. Intel® RAID SSD Cache 2.0, http://www.intelraid.com/uploads/Intel_RAID_SSD_Cache2_
PB_080911.pdf

27. Intel® Solid-State Drive 313 Series, http://www.intel.com/content/www/us/en/solid-state-
drives/solid-state-drives-313-series.html

28. Adaptec maxCache 2.0 Series, http://www.adaptec.com/en-us/_common/maxcache/
29. OCZ Synapse Cache SATA III 2.5″ SSD, http://www.ocztechnology.com/ocz-synapse-cache-

sata-iii-2-5-ssd.html
30. Corsair Accelerator Series SSD Cache, http://www.corsair.com/ssd/accelerator-series-ssd-

cache-drives.html
31. LSI Nytro MegaRAID Application, http://www.lsi.com/products/storagecomponents/Pages/

NytroMegaRaid.aspx
32. Crucial Adrenaline Solid State Cache (Windows 7 PCs), http://www.crucial.com/store/ssc.

aspx
33. R. Micheloni, L. Crippa, A. Marelli, Inside NAND Flash Memories (Springer, New York,

2010)
34. N. Duann, SLC & MLC Hybrid, Flash Memory Summit (Silicon Motion, Inc., 2011)
35. B. Chang, SSD with Hybrid NAND Novachips, Flash Memory Summit, 2011
36. Y. Koh, NAND Flash Scaling beyond 20 nm, in IMW ’09, IEEE International Memory

Workshop (2009)
37. White paper, Engineering MLC Flash-Based SSDs to Reduce Total Cost of Ownership in

Enterprise SSD Deployments, STEC’s CellCare™ Technology, http://www.stec-inc.com/
downloads/MLC_flash_based_SSDs_Reduce_TCO.pdf

38. C.C. Wu, Quality comparison of SLC, MLC and eMLC., in InnoDisk International Memory
Workshop IMW, San Diego, CA (2011)

39. E. Bek, A. Klein, The Future of SSD Architectures, International Memory Workshop IMW,
SanDisk (2011)

40. W.H. Radke et al., Hybrid memory management, U.S. Patent No. 8,060,719, Assigned:
Micron Technology, Inc., 28 May 2008

41. C. Lee et al., Hybrid SSD using a combination of SLC and MLC flash memory arrays, U.S.
Patent No. 8078794, Assignee: Super Talent Electronics, Inc., San Jose, 29 Oct 2007

42. Y.S. Kim, Semiconductor memory device, and multi-chip package and method of operating
the same, U.S. Patent No. 8085569, Assignee: Hynix Semiconductor Inc., 14 Dec 2010

43. H. Tan et al., Portable data storage using SLC and MLC flash memory, U.S. Patent
App. No. 20080215801, Assignee: Trek 2000 International Ltd., 28 Sept 2005

44. M. Moshayedi, Enhanced MLC solid state device, U.S. Patent App. No. 20090327590,
Assignee: STEC, Inc., 24 June 2009

45. M. Moshayedi, SLC-MLC combination flash storage device, U.S. Patent
App. No. 20090327591, Assignee: STEC, INC., 24 June 2009

46. L.E. Aszmann et al., Solid state drive data storage system and method, U.S. Patent
App. No. 20110010488 (12 Jul 2009)

47. T.-W. Kuo et al., Configurability of performance and overheads in Flash Management, in 11th
Asia and South Pacific Design Automation Conference (ASP-DAC) (2006)

58 R. Micheloni et al.

http://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/momentus-xt-data-sheet-ds1704-4-1205-us.pdf
http://www.seagate.com/files/staticfiles/docs/pdf/datasheet/disc/momentus-xt-data-sheet-ds1704-4-1205-us.pdf
http://www.seagate.com/internal-hard-drives/laptop-hard-drives/momentus-xt-hybrid/
http://www.seagate.com/internal-hard-drives/laptop-hard-drives/momentus-xt-hybrid/
http://www.intelraid.com/uploads/Intel_RAID_SSD_Cache2_PB_080911.pdf
http://www.intelraid.com/uploads/Intel_RAID_SSD_Cache2_PB_080911.pdf
http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-313-series.html
http://www.intel.com/content/www/us/en/solid-state-drives/solid-state-drives-313-series.html
http://www.adaptec.com/en-us/_common/maxcache/
http://www.ocztechnology.com/ocz-synapse-cache-sata-iii-2-5-ssd.html
http://www.ocztechnology.com/ocz-synapse-cache-sata-iii-2-5-ssd.html
http://www.corsair.com/ssd/accelerator-series-ssd-cache-drives.html
http://www.corsair.com/ssd/accelerator-series-ssd-cache-drives.html
http://www.lsi.com/products/storagecomponents/Pages/NytroMegaRaid.aspx
http://www.lsi.com/products/storagecomponents/Pages/NytroMegaRaid.aspx
http://www.crucial.com/store/ssc.aspx
http://www.crucial.com/store/ssc.aspx
http://www.stec-inc.com/downloads/MLC_flash_based_SSDs_Reduce_TCO.pdf
http://www.stec-inc.com/downloads/MLC_flash_based_SSDs_Reduce_TCO.pdf

48. L.-P. Chang, Hybrid solid-state disks: combining heterogeneous NAND flash in large SSDs,
in 13th IEEE/ACM Asia and South Pacific Design Automation Conference (ASP-DAC) (2008)

49. L.-P. Chang, A hybrid approach to NAND-flash-based solid-state disks. IEEE Trans. Comput.
59(10), 1337–1349 (2010)

50. L.-P. Chang, Y.-C. Su, Plugging versus logging: a new approach to write buffer management
for solid-state disks, in The 48-th Design Automation Conference (DAC), Monterey, CA
(2011)

51. S. Hong, D. Shin, NAND flash-based disk cache using SLC/MLC combined flash memory, in
2010 International Workshop on Storage Network Architecture and Parallel I/Os

52. S. Jung, Y.H. Song, Hierarchical use of heterogeneous flash memories for high performance
and durability. IEEE Trans. Consum. Electron. 55(3), 1383–1391 (2009)

53. M. Murugan, D.H.C. Du, Hybrot: towards improved performance in hybrid SLC-MLC
devices, in 20th IEEE International Symposium on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS) (Short Paper) (Aug 2012)

54. B.-W. Nam, A hybrid flash memory SSD Scheme for Enterprise Database applications, in
12th International Asia-Pacific Web Conference, Busan, Korea, 2010

55. E.J. O’Neil, P.E. O’Neil, G. Weikum, The LRU-k page replacement algorithm for database
disk buffering. ACM SIGMOD Rec. 22(2), 297–306 (1993)

56. J.W. Hsieh, T.W. Kuo, L.P. Chang, Efficient identification of hot data for Flash memory
storage systems. ACM Trans. Storage 2(1), 22–40 (2006)

57. J. Niu, J. Xu, L. Xie, Hybrid storage systems: a survey of architectures and algorithms. IEEE
Access (99) (2018)

58. C. Matsui, C. Sun, K. Takeuchi, Design of hybrid SSDs with storage class memory and
NAND Flash memory. Proc. IEEE 105(9), 1812–1821 (2017)

59. D.A. Heger, SSD Write Performance—IOPS Confusion Due to Poor Benchmarking
Techniques (Aug 2011), http://www.cmg.org/measureit/issues/mit82/m_82_4.pdf

60. X.-Y. Hu, Write amplification analysis in Flash-based solid state drives, in SYSTOR’09 (IBM
Zurich Research Laboratory, Haifa, Israel)

61. K. Smith, Benchmarking SSDs: The Devil is in the Preconditioning Details, Flash Memory
Summit (2009)

62. White Paper, Intel High-Performance SATA Solid-State Drive: Over-Provisioning an Intel
SSD, http://www.matrix44.net/cms/wp-content/uploads/2011/07/intel_over_provisioning.pdf

63. T. Frankie, SSD Trim Commands Considerably Improve Overprovisioning, Flash Memory
Summit (2011)

64. JEDEC STANDARD, Solid-State Drive (SSD) Requirements and Endurance Test Method,
JESD218 (Sept 2010), http://www.jedec.org/sites/default/files/docs/JESD218A.pdf

3 Hybrid Storage Systems 59

http://www.cmg.org/measureit/issues/mit82/m_82_4.pdf
http://www.matrix44.net/cms/wp-content/uploads/2011/07/intel_over_provisioning.pdf
http://www.jedec.org/sites/default/files/docs/JESD218A.pdf

Chapter 4
2D NAND Flash Technology

M. F. Beug

Abstract This chapter describes the basic operating principle and presents the
major reliability and scaling limitations of floating gate NAND non-volatile
memory as used in SSD applications. It further discusses charge trapping memory
cells as a potential replacement for floating gate cells in the NAND array and
evaluates the potential of both memory cell types with regard to 3D NAND
applications as will be described in the next chapter.

4.1 Flash for SSD Application

Flash memory for non-volatile data storage was introduced commercially in the
mid-1980s. Since then, common ground NOR and NAND architecture have
become the most common memory array architectures. Traditionally, NOR Flash is
used for code storage due to faster memory cell access. NAND Flash is used for
mass data storage because of its higher memory density, enabling higher storage
capacities.

The memory cell area difference can already be seen from the schematic NOR
and NAND array images in Fig. 4.1. In the NOR array, two memory cells each
share one contact to ground and one contact to the bit line (see Fig. 4.1a). This
results in an effective memory cell area of about 10 F2 (where F is the minimum
feature size). The effective memory cell area of NAND cells is only slightly more
than 4F2. Figure 4.1b shows the so-called NAND string with up to 64 memory cells
connected in a row. To operate the NAND string two additional select transistor
devices (GSL: “Ground Select Line” and SSL: “String Select Line”) and contacts to
ground (SL: “Source Line”) and the bit line (BL) need to be added. These additional
structures cause the effective cell area consumption to be slightly higher than

M. F. Beug (✉)
Physikalisch-Technische Bundesanstalt (PTB), Division 2 “Electricity”, Bundesallee 100,
38116 Braunschweig, Germany
e-mail: Florian.Beug@ptb.de

© Springer Nature Singapore Pte Ltd. 2018
R. Micheloni et al. (eds.), Inside Solid State Drives (SSDs),
Springer Series in Advanced Microelectronics 37,
https://doi.org/10.1007/978-981-13-0599-3_4

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_4&domain=pdf

4F2—the theoretically smallest effective cell size. The cross section of a 48 nm
NAND technology with 32 cells per string is shown in Fig. 4.2.

For SSD application, only NAND Flash is a viable option due to the required
high memory capacity and bit cost structure. Therefore, the following sections will
focus on operation, reliability, and scaling topics of NAND Flash.

4.2 Introduction to Floating Gate NAND Operation

A floating gate memory cell stores information in terms of charge in an isolated gate
electrode (floating gate: FG). The FG is located between the memory transistor
channel and the active gate electrode (control gate: CG). This data storage principle
was proposed by Kang and Sze in 1967 [1] and enables data to be stored without
the connection of a supply voltage over time periods of several years.

Fig. 4.1 Schematic memory cell organization of the NOR array (a) and the NAND array (b). The
word lines (WL) run perpendicular to the bit lines (BL)

GSL SSL

BL

SL
32 cells

Fig. 4.2 SEM picture of a NAND string with 32 cells per string in a 48 nm floating gate NAND
technology [2]

62 M. F. Beug

4.2.1 The Floating Gate NAND Memory Structure

The schematic structure of floating gate NAND cells is shown in Fig. 4.3a, b.
Figure 4.3c, d shows the cross sections of a 48 nm floating gate NAND technology
[2]. The FG and the CG are typically made of polysilicon. For all operations of the
floating gate cell, the active control gate electrode capacitive couples to the floating
gate. The dielectric between the FG and the CG is referred to as inter-poly dielectric
(IPD) and is typically made of a silicon oxide/silicon nitride/silicon oxide triple
layer (ONO). The alterable threshold voltage of a floating gate cell, which repre-
sents the bit information, consequently depends on the coupling strength between
the FG and the CG, and the amount of charge on the FG.

The FG NAND structure in word line direction is shown in Fig. 4.3a, c.
The CG is wrapped around the FG to improve the capacitive coupling from the

CG to the FG. This reduces the operating voltages of the floating gate cells and

Fig. 4.3 Schematic structure of a floating gate NAND array in word line (WL) (a) and bit line
(BL) direction (b). Corresponding TEM pictures of a 48 nm floating gate NAND technology [2] in
WL direction (c) and BL direction (d)

4 2D NAND Flash Technology 63

ensures a reliable operation as will be described in the next section. The active areas
(AA) of two neighboring NAND strings are separated by shallow trench insulation
(STI) and are about 200 nm deep in current generations. The memory cell transistor
gate oxide is denoted as tunnel oxide (TOX) because the charge for bit information
storage is transferred through this SiO2 dielectric by quantum mechanical tunneling.

Generally, it is a very crucial point for reliable floating gate cell operation that
charge during program and erase operations is only transferred through the TOX.
Every charge transfer through the IPD (between FG and CG) needs to be urgently
avoided to prevent severe reliability issues.

In BL direction, the cell strings run as shown in Figs. 4.1a and 4.3c, d. The
floating gate cells are patterned by a vertical WL etch step. In the etched spaces
between the floating gate cells, shallow n+ junctions are implanted in order to define
the memory cell transistors and reduce the string resistance. To improve the charge
retention of the memory cells, the side wall of the floating gate is passivated by a
thermal oxidation process.

The generated high quality thermal side wall oxide (SWOX) forms an effective
tunnel barrier against charge loss from the FG. Subsequently, the space between the
FG cells is filled with a deposited silicon oxide (inter-word line dielectric: IWD)
which generally has a reduced electrical quality. The select devices (GSL and SSL)
are processed together with the floating gate cells and consequently use the TOX as
the gate dielectric. The select transistor gate length is typically in the range of 150–
200 nm. To obtain a real transistor for the select devices, the word line layer is
connected to the floating gate layer. This contact is made by removing the
ONO IPD in the middle of the select transistors prior to the CG poly-Si deposition
(see Fig. 4.3d).

The complete process of a floating gate NAND technology is typically based on
30–40 lithographic mask steps and includes 2 poly-Si and 3 metal levels. To obtain
the highest memory density in each technology generation, typically 3 levels are
structured in the most advanced technology node. The levels of advanced feature
size are active area/STI, word line and bit line. The bit line is either done in the first
or second metal layer. There are some more process steps with stringent litho-
graphic requirements, such as the contacts to the bit line, but also the source
contacts, the CG to FG contacts in the select devices, and others.

4.2.2 The Floating Gate Cell Capacitive Coupling Model

It was described that floating gate NAND cells are arranged in strings with up to 64
memory cells in actual NAND technologies. However for the basic understanding
of the floating gate cell functionality it is necessary to look at a single FG cell first.

Since the floating gate is isolated from the active control gate, all voltages for
operation of the memory cell need to be capacitively coupled to the floating gate. In

64 M. F. Beug

principle, the floating gate cell forms a capacitive voltage divider which is typically
described with the aid of the FG cell capacitive coupling model [3] as shown in
Fig. 4.4.

It describes the voltage of the floating gate as a function of the other terminals of
a FG cell. These terminals are typically source (VS), drain (VD), the bulk terminal
(VB), the control gate (VCG), and a number of other (parasitic) terminals. All these
terminal voltages are capacitive coupled to the floating gate. The floating gate
voltage can be written as

VFG = αG ⋅VCG + αS ⋅VS + αD ⋅VD +
CTOX

CT
⋅ψS

QFG

CT
+ ∑ αother ⋅Vother. ð4:1Þ

The gate coupling ratio αG in (4.1) is a key factor and is defined as

αG =
CCG

CT
. ð4:2Þ

CT is the total capacitance and is given by

CT =CCG +CTOX +CS +CD + ∑Cother. ð4:3Þ

The sum of Cother contains all other terminals which couple to a specific floating
gate and represent neighboring bit and word lines or neighboring floating gates. The
capacitive components in the sum are traditionally small compared to the other
terms, but gain significantly in importance when floating gate cells are scaled to
feature sizes below 50 nm [4].

The gate coupling ratio αG describes the portion of the voltage applied between
the CG and the channel that drops across the TOX. For grounded source, drain,
bulk, and other terminals during program operation, the floating gate voltage is
given by

VCG

VS VD
VB

ψs

VFG , QFG

CCG

CS

CTOX
CD

CSi

Fig. 4.4 Capacitance model
of a floating gate memory
device

4 2D NAND Flash Technology 65

VFG = αG ⋅VCG. ð4:4Þ

A control gate voltage VCG = 20 V in combination with a gate coupling ratio of
αG = 0.6 results in a voltage drop of VFG = 12 V across the tunnel oxide. Con-
sequently, the CG voltage is concentrated on the tunnel oxide, when a high CCG to
CT ratio and therefore a high αG can be realized.

Under such coupling conditions, the requested floating gate cell operation can be
obtained, where charge is only transferred between the channel region and the
floating gate.

The FG voltage formulation (4.1) and αG formula in (4.2) were described in [5]
and only take into account the voltage drop across the tunnel dielectric (across COX)
and consequently include the channel surface potential (ψs). It does not consider the
voltage drop in the Si substrate (across CSi) [6].

The source and drain coupling ratios have the same form as the αG expression
(4.2) and are given by αS = CS/CT and αD = CD/CT.

The capacitive coupling model and (4.1) also yield the formula for the floating
gate cell threshold voltage shift ΔVth caused by charge stored on the floating gate.
The threshold voltage shift is in principle the voltage increase which is necessary at
the control gate to compensate the floating gate charge induced field effect.
Therefore, it is the additional CG voltage for resuming the floating gate voltage that
would be present without the FG charge and results in a defined TOX field which is
necessary to invert the memory cell channel. For constant potentials at source and
drain during the read operation, (4.1) can be rearranged to

ΔVth =ΔVCGjΔVFG = 0 = −
ΔQFG

αG ⋅CT
= −

ΔQFG

CCG
. ð4:5Þ

This means that for an optimized high gate coupling ratio value and a given
threshold voltage shift, the number of stored electrons is increased (which is ben-
eficial for charge retention). The required high CCG value can be either obtained by
a large coupling area between the CG and the FG, (the previously described CG
wrapped around the FG), or a reduction in the electrical IPD thickness.

The effect of the latter option on the ability to program and erase floating gate
cells will be discussed in the following section.

4.2.3 Program and Erase of a Single Floating Gate Cell

Floating gate cells in NAND applications are programmed and erased by the
Fowler-Nordheim (FN) tunneling mechanism [7]. This quantum mechanical tun-
neling mechanism is based on a strong electric field across the tunneling barrier of
the TOX. The electric field across the typically 8 nm thick tunnel oxide causes a
band distortion. The induced FN tunneling current has a strong electric tunnel oxide
field (ETOX) dependency. The FN current density changes over several orders of

66 M. F. Beug

magnitude and is the result of a significant reduction in the effective tunneling
distance xt, as shown in Fig. 4.5 and its inset.

The Fowler-Nordheim tunneling current density is given by

JFN =At ⋅E2
ox ⋅ exp −

Bt

Eox

� �
, ð4:6Þ

with the two tunneling constants At and Bt which are given by

At =
q3me

8π hm*ΦB
; Bt =

8π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2m*Φ3

B

q
3 q h

. ð4:7Þ

In (4.7), q is the electron charge, me and m* the mass of the electron and the
effective electron mass in the SiO2, h is Planck’s quantum and ΦB the tunnel barrier
height between Si and SiO2. The Fowler-Nordheim tunneling current density for a
8 nm thick Si02 tunnel dielectric with an exponential dependence on the electric
oxide field Eox is shown in Fig. 4.5.

Significant amounts of charge are transferred during a program pulse typically
shorter than 1 ms, where the TOX electric field is in the strong Fowler-Nordheim
tunneling regime above 10 MV/cm. Such strong oxide fields reduce the effective
tunnel distance xt of the triangular barrier to values below 3 nm as shown in
Fig. 4.5.

When a floating gate cell is intended to be programmed to a certain Vth state, this
is typically accomplished by the so-called “incremental step pulse programming”
(ISPP) scheme [8]. To reach a targeted cell threshold voltage, programming pulses
with durations in the range of tpp = 100 µs are applied with increasing pulse
amplitude. Each programming step is followed by a sense operation to evaluate
whether the target Vth has already been reached. The increment of program pulse
voltage steps depends on the required accuracy of the programmed Vth value.

2 4 6 8 10 12 14
10-15

10-12

10-9

10-6

10-3

100

0

2

4

6

8

10
2 4 6 8 10 12

 SiO2 (TOX)
 Current Density

C
ur

re
nt

 D
en

si
ty

 J
FN

 (A
/c

m
2
)

TOX Electrical Field ETOX (MV/cm)

 Tunneling Distance x t

for a 8nm TOX

 Tunneling D
istance x

t (nm
)

 TOX Voltage VTOX (V)

xt= 8nm
ΦB=3.1eV

EFEV

ECVTOX=3.1V

xt= 4nm

ΦB=3.1eV

EFEV

EC

VTOX=6.2V

Fig. 4.5 Fowler-Nordheim
tunneling current density and
effective tunneling distance xt
for a 8 nm tunnel oxide
(TOX)

4 2D NAND Flash Technology 67

Therefore, the program step voltage directly affects the cell Vth distribution width in
a memory array with large numbers of cells [9].

For a relatively low programming voltage of only VCG = 8 V at the beginning
of the ISPP sequence, this voltage is divided between the tunnel oxide and the IPD
according to the gate coupling ratio αG. The band diagram of a floating gate cell for
such a small voltage is shown in Fig. 4.6. However, for the assumed values
αG = 0.6 and IPD layer thicknesses of O/N/O = 4 nm/4 nm/4 nm, no significant
amount of charge is transferred to the floating gate, since the TOX field is only 6
MV/cm (see Fig. 4.7). The assumed ONO layer thicknesses of 4 nm for each layer
are already very small values as similarly used in state-of-the-art floating gate
NAND Flash technologies in the range of 25 nm [10, 11]. Due to the exponential
field dependency of Fowler-Nordheim tunneling, programming starts at a certain
program threshold voltage which is equivalent to a fixed threshold electric TOX
field. For the threshold field conditions, a significant amount of charge can be
injected into the FG within the short program pulse time of typically tpp = 100 µs.
A typical value for the program start or threshold field is in the range of 12–13 MV/
cm and depends on the process of the tunnel oxide formation which can influence
the oxide barrier height. In addition, factors like the TOX thickness profile and the
STI edge shape can affect this value. Due to this programming threshold field
(which will be assumed to be 12 MV/cm in the following), it can be assumed that
the same field strength will be present at the end of programming. This assumption

Fig. 4.6 Band diagram of a floating gate cell with tTOX = 8 nm, an ONO IPD of 4/4/4 nm and a
gate coupling ratio αG = 0.6 for the program voltages VCG = 8 V, VCG = 18 V, and VCG = 26 V
after the program charge transfer, if applicable (compare Fig. 4.7). For VCG = 8 V, the tunnel
oxide field ETOX is too low for electron injection through the TOX. For VCG = 18 V, charge is
injected into the FG until ETOX is reduced to 12 MV/cm (shown here), the threshold program field.
For VCG = 26 V in the assumed simplified model, the FG charge increases until the electric fields
in the TOX and the IPD suboxide equal each other. The FG charge remains constant in principle,
but a strong tunneling current continuously passes through the hole FG stack and would in reality
cause significant damage

68 M. F. Beug

is realistic because at a constant programming voltage, negative charge (electrons)
is transferred to the floating gate as long as the additional charge has reduced the
electric TOX field (4.1) to such an extent, that no more significant charge transfer
can take place.

For the described exemplary FG cell configuration used for Figs. 4.6 and 4.7,
programming with no significant IPD current takes place in the CG voltage range
between VCG = 16 V and VCG = 22 V. The ISPP slope in this VCG range is
essentially at unity [2]. At around VCG = 22 V and beyond this CG voltage value it
can be observed that the TOX and the IPD suboxide electric fields equal each other.
This results in an electron tunneling to the FG and at the same time an electron
tunneling out of the FG towards the CG. For an IPD purely consisting of SiO2, the
same fields in TOX and IPD would result in the same currents tunneling into and
out of the floating gate, which results in program saturation.

For an ONO IPD with additional SiN layer, charge can be injected into the SiN
layer and will be stored in this layer as in a charge trapping memory cell storage
layer. The charge injected and trapped in the ONO increases the effective barrier
height [12] (compare Fig. 4.16b) and is therefore able to block weak and leaky
spots of the ONO IPD by this means. This is one reason why an ONO IPD is
generally used.

However, the electrons injected and finally stored in the ONO IPD beyond the
program saturation starting point cause a permanent FG memory cell threshold
voltage shift [10]. In addition to the stored charges, a large current is transferred
through the whole FG cell stack from the channel towards the control gate which
will substantially damage the memory cell. These large permanent currents become
clear when looking at the strongly reduced TOX and IPD suboxide xt for VCG =
26 V in Fig. 4.6.

Fig. 4.7 Electric field condition in the tunnel oxide (ETOX) and the IPD suboxide (ESubOx) during
ISPP programming of a floating gate cell with tTOX = 8 nm, αG = 0.6, and ONO IPD layer
thicknesses of 4 nm each for the suboxide, the silicon nitride and the top oxide. Programming with
an ideal ISPP slope = 1 takes place until ESubOx at the end of programming equals the TOX
electric threshold field of 12 MV/cm

4 2D NAND Flash Technology 69

By equating the electric fields in the TOX and the IPD suboxide, a simple model
for the onset of program saturation can be derived [13].

Finally, an expression for the maximum reachable programmed threshold volt-
age (program saturation point) can be obtained, which is given by

Vth,max =12
MV
cm

⋅ tTOX + tIPD−EOT −
tTOX
αG

� �
ð4:8Þ

It can be seen from (4.8) that in principle a thick tunnel oxide and a large
equivalent oxide thickness of the IPD (tIPD-EOT) are beneficial for good pro-
grammability of floating gate cells. Also a large gate coupling ratio improves
Vth,max. However, due to the middle term in (4.7) the increase of the control gate to
floating gate area is preferred over a reduction of tIPD-EOT to obtain a large αG.

Figure 4.8 examines the effect of an increased αG due to cell geometry means
while keeping the TOX and IPD thicknesses unchanged.

It can be observed that for increasing the gate coupling ratio the initial (un-
charged FG) field difference between the TOX and IPD electric fields increases.
Consequently, FG cells with a higher gate coupling ratio can be programmed to
higher Vth levels before program saturation occurs. The program saturation point
(Vth,max) can be found in the Vth ISPP curves in Fig. 4.8, where the ISPP slope
changes from unity to a value significantly lower than one. ISPP slopes lower than
unity [14] generally show that the combination of cell geometry and IPD current
blocking ability is not sufficient to avoid an IPD electron tunneling current during
program operation.

The floating gate memory cell erase works principally in the same way, but with
control gate voltages negative with respect to the cell channel region. Consequently,
the electric field direction is reversed and the erase is mainly due to electron
tunneling from the floating gate towards the channel. Again, as described for
program saturation, the TOX erase field is reduced for decreasing erase cell Vth

Fig. 4.8 Effect of FG cell
geometrically increased gate
coupling ratio αG on program
saturation. The TOX
thickness tTOX = 8 nm and
the ONO layer thicknesses
(tSubOx/tSiN/tTopOx = 4/4/
4 nm) are unchanged

70 M. F. Beug

values while the IPD field increases. In practice, erase saturation can in principle
also become a problem, e.g. for bi-layer high-k dielectric containing IPD options.
However, for NAND FG Flash only one single erase Vth distribution needs to be
placed in the negative Vth range which generally does not require erasing the cells
to large negative threshold voltages. For the positive Vth range the situation is
different, because for a multi-level cell (MLC cell (TLC), eight different Vth dis-
tributions need to be placed in the positive VTH range, which requires at least that a
Vth = +4 V can be programmed.

Consequently, program saturation is usually a more severe issue than erase
saturation.

4.2.4 Program, Erase, and Read of FG Cells in the NAND
String

When a large number of a floating gate cells need to be operated in the NAND array
it has to be taken into account that one floating gate cell is located at every crossing
point of bit lines and word lines. Therefore, the memory cells in the NAND array
cannot be operated independently of each other anymore. In the word line direction
(depending on the page size), a couple of thousand FG cells are controlled by the
same word line. In bit line direction, the string size (64–66 cells in latest NAND
generations) defines the number of cells that cannot be operated independently.
Consequently, it is very important to bear in mind what is happening with all
neighboring cells when one cell is treated. This is even more important since the
threshold voltage of each memory cell needs to be carefully adjusted as shown for
SLC and MLC cells in Fig. 4.9.

V r
ea

d
pa

ss

Single level cell
(SLC, 1 bit)

N
o.

 o
f c

el
ls

11 10 0001

Vth

1 0N
o.

 o
f c

el
ls

V r
ea

d
pa

ss

Vth0 0EV PV

Multi-level cell
(MLC, 2 bit)

EV PV1 PV2 PV3

(a) (b)

Read levelsRead level

V r
ea

d
pa

ss

Single level cell
(SLC, 1 bit)

N
o.

 o
f c

el
ls

11 10 0001

Vth

1 0N
o.

 o
f c

el
ls

V r
ea

d
pa

ss

Vth0 0EV PV

Multi-level cell
(MLC, 2 bit)

EV PV1 PV2 PV3

Read levelsRead level

Fig. 4.9 Memory cell threshold voltage distributions for one bit per cell (SLC) data storage
(a) and two bit per cell (MLC) data storage in a NAND flash array

4 2D NAND Flash Technology 71

The erased Vth cell distribution is placed at negative Vth values. In an ISPP-like
sequence the erase voltage is increased until all cells are erased below the erase
verify (EV) level. The programmed Vth distributions are placed in the positive Vth
range. For a single level cell (SLC) the ISPP programming is continued until all
cells designated for programming are above the program verify (PV) level. In the
case of multi-level cells (MLC), there are consequently three program verify levels
(PV1, PV2, and PV3). In addition, it has to be guaranteed that the margins between
the different programmed Vth distributions are large enough to place the read levels
and have sufficient margin for charge/retention loss-caused Vth reductions (see
Sect. 4.3). To obtain these kinds of narrow cell Vth distributions it is necessary to
apply a specific distribution shaping algorithm with a small program step increase
in certain stages of ISPP programming [9].

4.2.4.1 NAND Cell Programming and Self-boosted Program Inhibit
(SBPI)

Figure 4.10 shows the voltage condition in the NAND array when the FG cell at
WL3 in BL2 is programmed. For this purpose, a program pulse with the pulse
amplitude of Vpp = 20 V is applied to WL3. To conduct a successful program, it is
also required to transfer 0 V to the channel region of the programmed cell as shown
in Fig. 4.10 (i). Consequently, the 0 V potential is applied to BL2 and then needs to
be transferred to the whole string including the programmed cell at WL3. This is
done by applying the pass voltage (e.g. Vpass = 10 V) to all other word lines.

In principle, all cells addressed by WL3 could be programmed by this means at
the same time. However, the programming of arbitrary information requires that
specific memory cells at WL3 are excluded from programming. The cell at the
crossing point of BL1 and WL3 represents, in this example, the cells which should
be prevented from programming (program-inhibited cell in Fig. 4.10. In former FG
NAND generations, programming in certain NAND strings was avoided by actively
applying a positive voltage to the corresponding bit lines. As a result, the voltage
difference between the channel and the control gate was not high enough for
programming in these strings. This procedure was complicated and the voltage
pumps used for this purpose required additional power and chip area. Therefore, in
later generations the so-called “Self-Boosted Program Inhibit” (SBPI) scheme was
introduced [8]. The principle of the SBPI scheme is that the channel potential in the
inhibited strings is not actively raised by applying a voltage, but capacitively raised,
as will be seen in the following.

The voltages applied to different word lines, bit lines and select devices in the
SBPI sequence are shown in Fig. 4.10. The corresponding detailed timing of the
signals at different signal lines is shown in Fig. 4.11. For a successful program
inhibit at the programmed word line an inhibit channel potential in the range of
typically 6–8 V is required. The exactly required channel potential further depends
on the maximal used programming voltages.

72 M. F. Beug

In the first step (t1), VCC (e.g. 3 V) is connected to the SSL and the inhibit strings
at the same time (Fig. 4.11a). This results in a pre-charge of the inhibit string to a
channel potential of Vpre-ch = VCC − Vth,SSL as shown in Fig. 4.11d. During this

Fig. 4.11 Signal timing for
the self-boosted program
inhibit (SBPI) scheme

Fig. 4.10 Voltage conditions during program operation in the NAND array. The memory cell at
the crossing point of WL3 and BL2 is programmed; several other cells are disturbed by either
program disturb or pass disturb

4 2D NAND Flash Technology 73

pre-charge of the string the channel side of the select transistor acts as the source.
Accordingly, a charging current flows until the gate-to-source voltage equals the
threshold voltage of the select transistor. In the second time step t2, all word lines
are raised to the program pass voltage Vpass (Fig. 4.11b, c) and the channel inhibit
potential is increased by capacitive coupling. This can be done because the select
transistor is closed since the pre-charge was finished. At time t3 the word line
selected for programming (WL3 in Fig. 4.10) is raised to the full program voltage
in the ISPP sequence which further increases the channel potential to its full inhibit
voltage Vinh.

In this last step, only a small channel voltage increase is achieved which results
from the CG to channel capacitance ratio of one cell in relation to the whole cell
string. Therefore, a larger channel voltage increase can be obtained when not the
whole string is boosted, but only a few cells in the vicinity of the programmed word
line. Such an approach is called the “local self-boosted program inhibit” (local
SBPI) scheme [15, 16].

It is clear that a major part of the inhibit channel potential depends on the pass
voltage, since Vinh is partly generated by the capacitive channel boosting.

On the one hand, the ability to prevent programming at the “program disturbed
cell” (WL3 of BL1 in Fig. 4.10(ii)) improves with increasing pass voltage Vpass as
shown in Fig. 4.12. On the other hand, the pass cells located in a string with a
memory cell dedicated for programming (BL2) experience a soft programming
when the pass voltage is increased beyond a certain limit (pass disturbed cell in
Fig. 4.10(iii)).

The general effect of a pass voltage variation on a program disturbed and a pass
disturbed cell in a 48 nm FG NAND technology is shown in Fig. 4.12. Since both
effects, program and pass disturb, result in a threshold voltage increase and are more
severe on erased cells, the memory cells in Fig. 4.12 were first erased to a threshold
voltage below Vth = −4 V before the program and pass disturbs could be mea-
sured. In addition to the pass voltage pulse amplitude value, the number of

Fig. 4.12 Program and pass
disturb characteristic and the
resulting “pass voltage
window” of a 48 nm floating
gate cell in the NAND array

74 M. F. Beug

disturbing pulses is very important for the disturb strength. The determining factor
here is the number of program operations (NOP) carried out at each word line [17].
In the example given in Fig. 4.12, the operation of a FG memory cell used in MLC
mode was chosen which results, e.g., in NOP = 10. This is because every word line
is logically divided into different pages which need to be separately programmed.
Finally, a NOP = 10 results in approximately 100 program pulses with the highest
program voltage assumed for the slowest cell in programming and about 5000 pass
voltage pulses, because each of the 64 cells in the string needs to be programmed.

It can be observed that the selection of the pass voltage results in a trade-off
between program and pass disturb. Generally it needs to be guaranteed that the Vth

of all erased cells remains (with a certain margin) below Vth = 0 V.
Therefore, a “pass window” with suitable pass voltages could be determined at

the level Vth = −1 V. The optimum for the trade-off between program and pass
disturb can be found in Fig. 4.12 slightly below Vpass = 10 V.

4.2.4.2 Erase and Read of FG Cells in the NAND String

The advantage of the NAND Flash erase operation is that a whole erase block is
erased at once. The voltage conditions during erase are shown in Fig. 4.13. All
word lines are at ground potential (VCG = 0 V) and the erase voltage is applied to
the well of the erase block. Very important during erase is that the select transistors
as well as the bit line and the source line are left floating. For this purpose, the
usually grounded source line needs to be disconnected from the ground potential.
By this means, the source line and the bit line, and to a certain extend the select
transistors, can follow the bulk potential, and large currents into the source line and
the bit line are avoided. Due to the improved coupling when the same voltage is
applied to all cells, the voltage difference between the control gate and the channel
required for erase (e.g. VB = 18 V) is lower than the programming voltage. The
erase operation is successful when all cells in the erase block are erased below the
EV level as described above.

Fig. 4.13 The erase of floating gate cells in the NAND array is carried out in electrically separated
erase sectors. By applying a positive voltage (e.g. VB = 18 V) to the well of the erase sector, all
cells are erased at the same time

4 2D NAND Flash Technology 75

The read operation in the NAND array is carried out word line by word line. For
a current sensing read scheme [18] the bit line which is selected for read operation
(BL2 in Fig. 4.14) can be set to the read voltage (e.g. VBL2 = 1 V). For a SLC read
operation the word line at the read cell is set to 0 V, while typically 5 V are applied
as read pass voltage for all other word lines.

By this means it can be detected if the cell at WL3 in the string of BL2 is in the
programmed or erased cell. It is clear that for reading one cell, the read current
needs to flow through all cells in the 64 cell string and that only one cell in the
string can be read at a time.

It needs to be mentioned that also the read pass voltage of only Vrpass = 5 V can
result in a change of the threshold voltage (read disturb [19]) when only the number
of read operations is high enough. For SLC FG NAND cells it is assumed that 106

read operations with 15 µs durations need to be guaranteed without read fails. This
results in a total disturb time of about 15 s. Again, erased cells are most susceptible
to read disturb as described before for program and pass disturb.

4.3 Reliability of Floating Gate NAND Memory Cells

The reliability of FG NAND Flash memory is one of the most important criteria,
since typically 10 years of charge retention and 1–100 k program/erase cycles need
to be guaranteed for a NAND Flash product chip.

In Fig. 4.15, a typical charge retention requirement is shown. It needs to be
guaranteed for a successful read-out of the stored information that the programmed
Vth (above the PV level) is not decreased more than 10% over the product relevant
time period of 10 years.

In principle, there are multiple leakage paths which can lead to a loss of the
programmed floating gate electron charges as shown in Fig. 4.16a. The electrons
can be lost through the IPD towards the control gate (IIPD-leak) or leak through the

Fig. 4.14 Read operation in the NAND Flash array

76 M. F. Beug

cell side wall oxide (SWOX → ISW-leak) and the inter-word line oxide
(IWD → IIWD-leak) to the cell junction area.

However, the most severe charge loss component of an optimized floating gate
cell process is the leakage through the TOX (ITOX-leak). This is not only because the
TOX is physically the thinnest dielectric layer which holds the electrons on the
floating gate, but there are additional processes which cause wear of the FG cells.
As shown in Fig. 4.16a, b, the charge transfer during program and erase generates
electric states in the TOX (and the TOX should be the only dielectric where charge
is transferred, as previously discussed) which are called oxide traps. These traps are
broken bonds of the atoms in the oxide matrix due to the electron tunneling pro-
cesses [20]. The density of traps in the tunnel oxide consequently increases with the
number of program/erase cycles which cause so-called oxide stress. The traps in the
TOX barrier can act as stepping stones when floating gate electrons leak via a

Fig. 4.15 Charge retention of an FG cell. A certain amount of charge loss needs to be tolerated
(e.g. 10% Vth loss over the time period of 10 years)

Fig. 4.16 Possible leakage path for charge loss from the floating gate (a). Tunnel oxide damage
due to program/erase cycling and the resulting stress-induced leakage current (SILC) are usually
the main reasons for retention loss (a, b). Negative trap charge built up over cycling additionally
induces a barrier distortion which results in an increased tunnel barrier (b) [12]

4 2D NAND Flash Technology 77

trap-assisted tunneling process towards the cell channel region. The probability of
this trap-to-trap tunneling (called stress-induced leakage current, SILC) [21] is
much higher than a direct tunneling process through the whole TOX thickness. The
reason is that the effective tunnel distance of each tunneling step is significantly
reduced for the SILC.

The TOX trap generation during the product lifetime and the corresponding
SILC is the reason for a general TOX thickness scaling limitation in floating gate
cells [22]. Therefore, the TOX cannot be scaled below 8.0–7.5 nm. To understand
this TOX thickness limitation in more detail we need to determine the oxide electric
field, or alternatively, the oxide voltage during retention conditions, which is given
by

VFG,Ret. = αG ⋅ΔVth, prog.. ð4:9Þ

where αg is again the gate coupling ratio and ΔVth,prog. is the programmed threshold
voltage shift as shown in Fig. 4.15. For assumed values of ΔVth,prog. = 4–5 V and
αg = 0.6, the TOX voltage under retention conditions is about 3 V. The second
criterion of interest is the acceptable leakage current for the 10-year charge
retention.

The number of stored floating gate electrons in a 50 nm FG NAND technology
for a threshold voltage shift of ΔVth = 4 V is about 600 (the exact number will be
discussed in Sect. 4.4.4). The 10% loss criterion over the time period of ten years
results in a tolerable loss of one electron every two months (or a leakage current of
3E−26 A). Converted to a current density this is equivalent to 1E−15 A/cm2.

Figure 4.17 shows the Fowler-Nordheim leakage current densities for TOX
thicknesses of 6, 8, and 10 nm as a function of the TOX voltage. It can be seen that
for an unstressed TOX and the estimated TOX retention voltage VFG,Ret = 3 V and
current criterion, a tunnel oxide thickness of 6 nm would be sufficient. However, 2
nm additional TOX thickness is required to fulfill the retention criterion for a
damaged TOX with trap-to-trap SILC leakage as discussed above.

Fig. 4.17 Leakage current
density through the tunnel
oxide of an FG cell under
retention conditions for
different TOX thicknesses
[22]

78 M. F. Beug

Figure 4.18 shows the endurance of FG cells in a 48 nm NAND technology. All
program and erase cycles were carried out with unchanged program and erase cycle
voltages of VCG,prog = 23 V and Verase = −19 V for the indicated pulse times. For
low cycle numbers, the Vth window is slightly increases, whereas for higher cycle
number above 300 cycles the Vth window closes. Furthermore, a general Vth

upward shift is visible.
This behavior can be explained with positive charge trapping at low cycle counts

which leads to a reduced TOX barrier and negative charge trapping which results in
an increased barrier height (see Fig. 4.16b) at higher cycle numbers.

For a reduced tunneling barrier, more electrons can be transferred through the
TOX for unchanged program and erase voltages, whereas for an increased barrier
this number of transferred electrons is reduced. Additionally, the fixed negative
charges which are generated in the TOX for higher cycle counts generally increase
the cell Vth. In the case shown in Fig. 4.18, the erased cell Vth is shifted by one volt
after 10 k program/erase cycles. Besides the increased retention problem for higher
cycle numbers due to trap generation, the window closing and the general Vth

upward shift will result in increased pulse voltages, especially for erase.

4.4 Scaling of Floating Gate NAND Memory Cells

The NAND Flash memory scaling of the last 15 years was accomplished by
reducing the cell dimensions, whereas the cell construction principle was unchan-
ged. The effective cell size of NAND Flash in 1995 was in the range of 1 µm2

which resulted in a product chip memory capacity of 32 Mb [8]. In 2010, the cell
size was reduced to 0.0028 µm2 [10] with a chip capacity of 64 Gb. This strong
reduction of the cell geometry leads to scaling issues which are discussed in the
following.

Fig. 4.18 Program/erase
cycling endurance of a FG
cell in a 48 nm NAND
technology

4 2D NAND Flash Technology 79

4.4.1 Scaling of the Floating Gate Cell Geometry

As described in Sect. 4.2.3, it is very important for a programmability of floating
gate cells to have an enhanced control gate to floating gate area by a control gate
which is wrapped around the floating gate. However, this requires a certain space
between adjacent floating gates, since this space needs to fit two times the IPD
thickness plus the poly plug. Depending on the FG NAND ground rule (or half
pitch F), this has some implications for the remaining control gate plug width as
shown in Fig. 4.19a.

Figure 4.19b shows the remaining control gate plug width as a function of the bit
line half pitch F. To obtain more space for the control gate plug, the width of the
floating gate can be reduced with respect to the space between the floating gates as
done in the latest FG NAND generations [23, 24]. The space between adjacent
floating gates consequently becomes wider, as indicated in Fig. 4.19a. Additionally,
the physical IPD thickness can be reduced. These two options are combined in
Fig. 4.19b with the result that for an FG width of 0.6 F and a physical IPD thickness
of only 8 nm a control gate plug width of 10 nm can be realized down to a bit line
half pitch of 20 nm. Due to this bit line pitch scaling limitation it can be observed in
the latest FG NAND technology generations that the bit line pitch is less aggres-
sively scaled than the word line pitch [10, 11, 23].

In case of very narrow control gate plugs, it may be that the poly-Si doping level
in the CG plug cannot be maintained sufficiently high. This would result in poly-Si
depletion and consequently in an electrically inactive CG plug. An alternative could
be a metal control gate material as presented in [2].

Fig. 4.19 Bit line pitch scaling limitation for the typical control gate to floating gate enhanced
coupling area FG NAND cell. To fit two times the IPD thickness plus the poly plug (a) with an
assumed minimum width of 10 nm, the active area (AA) width can be reduced below the half pitch
F to clear a space for the CG plug (b)

80 M. F. Beug

Continued scaling of floating gate NAND cells (see Fig. 4.20) in combination
with a sufficiently high gate coupling ratio requires efforts to reduce the electrical
IPD thickness (EOT). One option to do so is the introduction of high-k dielectrics in
the IPD stack. However, at a certain floating gate NAND technology node there
won’t be sufficient space for the control gate plug, which automatically leads to a
planar floating gate cell as shown in Fig. 4.20.

It was discussed in Sect. 4.2.3 that for insufficiently high gate coupling ratios
together with an electrically thin IPD, tunnel currents can in principle flow through
the IPD during the program and erase conditions. An IPD leakage can result in a
degraded program and erase behavior, visible in reduced ISPP and erase slopes
[25]. Consequently, a fully planar floating gate cell with ONO IPD cannot be
programmed and erased in the traditional manner where charge is transferred
through the tunnel oxide only. Even an IPD layer combination of SiO2 and high-k
or a pure high-k IPD layer is problematic with respect to program/erase saturation
[13].

One possibility to improve the planar floating gate cell was the usage of a dual
layer floating gate as proposed in [26]. Figure 4.21 illustrates the advantages of a
dual layer floating gate with an n-doped poly-Si bottom part (adjacent to the tunnel
oxide) and a high work function metal layer on top (adjacent to the high-k IPD)
with respect to program and erase saturation.

Figure 4.21a, b shows the conditions during program operation. The n-poly-Si
floating gate in Fig. 4.21a has the problem of the insufficient effective IPD barrier
which does not provide sufficient current blocking margin to program the cells to
high Vth levels. The situation is improved by the introduction of the high work
function metal gate layer, as shown in Fig. 4.21b, where the barrier height and the
effective electron tunneling barrier (shadowed area) is significantly larger. The
advantage of the dual layer floating gate under erase conditions and why simply a
single layer high work function metal FG cannot replace the poly FG are illustrated
in Fig. 4.21c, d respectively. The single layer metal floating gate has a larger barrier
between the FG and TOX which would hinder the erase when electrons are tun-
neling out of the FG towards the channel region (Fig. 4.21c). Consequently, a
higher erase voltage would be necessary with the even more problematic effect that

Fig. 4.20 Floating gate NAND cell scaling: The requirement for a continued reduction in the
floating gate cell dimensions in combination with a high gate coupling ratio leads from the typical
ONO IPD cell with a control gate wrapped around the floating gate to a high-k containing IPD, and
finally due to the lack of space for the control gate plug to a planar floating gate cell

4 2D NAND Flash Technology 81

at the same time electrons tunnel from the control gate to the floating gate (electron
back tunneling) and cause erase saturation. This electron back tunneling will be
seen in Sect. 4.6 to be one of the major issues of charge trapping memory cells, but
is less problematic for the dual layer FG as seen in Fig. 4.21d.

4.4.2 Floating Gate Cell Cross-Coupling

Another general problem for floating gate NAND cells in technology generations
below 50 nm is the cell-to-cell cross-coupling. This effect is the direct coupling
from one floating gate to the nearest neighboring floating gates as shown in
Fig. 4.22. It is clear that this direct coupling increases for reduced dimensions since
the cells move closer together and therefore the relative coupling capacitance
increases. Most significant is the FG to FG coupling in the direction along the bit
lines (y-direction in Fig. 4.22). This is because the floating gates are directly face

(a) (b)

(c) (d)
Vertical distance Vertical distance

Vertical distance Vertical distance

El
ec

tro
n

en
er

gy
 (e

V)
El

ec
tro

n
en

er
gy

 (e
V)

Si
channel

poly-Si
FG

SiO2
TOX

high-k
IPD

Si
channel

poly/metal
FG

SiO2
TOX

high-k
IPD

Si
channel

metal
FG

SiO2
TOX

high-k
IPD Si

channel
poly/metal

FG
SiO2
TOX

high-k
IPD

effective
ERS barrier

height

effective
ERS barrier

height

effective
PROG sat.

barrier
effective

PROG sat.
barrier

Fig. 4.21 Field improvement in planar floating gate cells and how program and erase saturation
can be avoided by the usage of a dual layer FG structure [26]

82 M. F. Beug

each other with the full FG height and full FG width in this direction. Consequently,
CFG,y is the largest of the FG to FG coupling capacitance terms. In the direction
along the word lines (x-direction), parts of the FG to FG coupling are screened by
the control gate plug and therefore CFG,x is typically smaller than CFG,y. To min-
imize the coupling capacitance in x-direction it would be beneficial to have a very
deep position of the CG plug, ideally down to the STI level, which would mean a
complete screening in x-direction. However, the full programming voltage drop
between the control gate plug and the channel limits the minimum CG plug to
channel distance. The diagonal coupling components CFG,xy and CFG,yx are typi-
cally the smallest ones.

In cell programming schemes, where even and odd bit lines are programmed
separately (because they belong to different logical pages), the programming of a
cell can change the threshold voltage of a directly neighboring cell which was
already programmed. This effect is called floating gate cross-coupling or floating
gate interference [27].

The cell-to-cell coupling potentially leads to a decreased gate coupling ratio
since all increased capacitance terms from FG cross-coupling are added in the
denominator of the gate coupling ratio (4.3). Therefore, the gate coupling ratio
decreases at least in the case where the floating gate cell dimensions are scaled
proportional to the technology node, while TOX and IPD thicknesses are kept
constant.

This behavior can be seen in the lowermost curve of Fig. 4.23a obtained from
3D simulations with a commercial field solver [28]. It can be seen that for a
constant IPD EOT of 11 nm in combination with a floating gate whose height is
two times the width (width = F, height = 2 F in points A, B, and C), the gate
coupling ratio decreases from 0.63 in the 50 nm technology node to only 0.52 in the

Fig. 4.22 Floating gate
cross-coupling in scaled
NAND Flash technologies
[27]

4 2D NAND Flash Technology 83

30 nm technology. A slight gate coupling ratio improvement can be seen for an
increased floating gate height to width ratio with decreasing half pitch in the middle
curve (points A, D, and E) of Fig. 4.23a. A slightly increasing αg for smaller
dimensions is only obtained here for an increased FG height to width ratio in
combination with a decreased IPD effective thickness (points A, F, and G).

However, in Fig. 4.23b, it is apparent that all efforts to keep the gate coupling
ratio value high do not significantly improve the Vth shift due to neighboring cell
programming in conventional cell programming schemes. For the simulation of the
depicted ΔVth MLC shift it is assumed that five neighboring cells influence the Vth

of each ready programmed cell in worst case, as indicated in the inset of Fig. 4.23b.
In detail, these five cells consist of two neighboring cells in word line direction, two
diagonal cells, and one directly neighboring cell in bit line direction, resulting from
an assumed conventional word line by word line programming scheme for serial
even and odd bit line addressing. In the NAND chip layout belonging to the serial
WL programming of even and odd bit lines the serial treatment is necessarily
performed, since two neighboring bit lines share one single sense amplifier for
reading the Vth state during ISPP programming. The cross-coupling capacitance
terms were again taken from the 3D field simulations, and for the depicted MLC
shift it is assumed that all five cells are programmed by a ΔVth = 5 V. This would
be the threshold voltage shift for erased FG cells which are programmed to
Vth = 4 V.

Fig. 4.23 Gate coupling ratio (a) and threshold voltage shift (MLC shift) due to the programming
of five directly neighboring cells (b) by a ΔVth,prog = 5 V as a function of cell technology
generation. For each point, the floating gate height and the IPD EOT value (e.g. 2 F/11 nm) are
given. The floating gate width is 1 F for each technology node and the TOX thickness is always
8.5 nm

84 M. F. Beug

The fact that for conventional programming schemes the simulated MLC shift at
30 nm cannot be reduced below 500 mV leads to the conclusion that at a certain
point in shrinking the FG NAND Flash dimensions the program algorithm needs to
take care of the floating gate cross-coupling issue. The strategy is simply to reduce
the number of neighboring cells that are programmed after reaching the final pro-
gramming target Vth of each cell, in combination with a reduction of the amount
these neighboring cells increase their Vth.

One component for reducing the unwanted FG cross-coupling is the all bit line
(ABL) architecture, where each bit line has a separate sense amplifier and therefore
all bit lines can be programmed at the same time.

Together with the improved program algorithm with respect to the order in
which the cells are programmed, it was possible to master FG cross-coupling even
for three bits per cell (TLC) and four bit per cell (XLC) technologies [11, 29, 30].

4.4.3 Word Line to Word Line Leakage Current

The reduced cell–to-cell distances with scaled dimensions also cause strongly
increased electric fields between neighboring word lines during program operation.

The WL-to-WL voltages during erase are uncritical because all cells are erased at
the same time and therefore all word lines are at the same potential.

High WL voltage differences during program operation are even more critical
since the programming voltage does not scale or rather increase slightly, as
described above. As a result of the strong electric fields between word lines,
electrons can tunnel from a programmed floating gate to the control gate that is on
the high program voltage Vpgm [31] or generally introduce WL-to-WL leakage
currents as shown in Fig. 4.24. The electric field strength in an assumed SiO2 IWD
is shown for different WL-to-WL distances as a function of the WL difference
voltage in Table 4.1.

Fig. 4.24 The voltage
conditions during the program
operation can cause a leakage
current between neighboring
word lines or from an already
programmed FG to the
actually programmed WL

4 2D NAND Flash Technology 85

Generally speaking, electric fields up to 4 MV/cm can be handled with deposited
oxides as the IWD with sufficient reliability. The field range above 4 MV/cm
becomes critical, but the range of 8 MV/cm and above is already in the
Fowler-Nordheim tunneling regime for a thermally grown oxide which would not
allow a reliable operation anymore.

Options to reduce WL-to-WL leakage by use of a special program algorithm
would include limiting the difference voltage between adjacent word lines. This
could be accomplished with a specific handling of the word lines close to the
program word, similar to the individual word line treatment in local program inhibit
schemes [16]. However, effectively increasing the pass voltage at the cells adjacent
to the programmed cell will adversely affect the pass disturb.

4.4.4 Number of Stored Floating Gate Electrons

When the dimensions of floating gate cells are scaled down, also the number of
floating gate electrons needed for a certain threshold voltage shift ΔVth is reduced.
On the one hand, this reduced number of stored floating gate electrons is critical for

Table 4.1 WL-to-WL IWD (SiO2) electric field in MV/cm as a function of the voltage and the
distance between different word lines. The light grey shaded WL-WL distance and voltage
combinations represent electric IWD fields above the usual 4 MV/cm operation conditions. The
dark grey shaded electric IWD field range above 8 MV/cm represent very high values in the
Fowler-Nordheim tunnelling regime (see Fig. 4.5)

10 nm 15 nm 20 nm 25 nm 30 nm 35 nm 40 nm 45 nm 50 nm
20 V 20.0 13.3 10.0 8.0 6.7 5.7 5.0 4.4 4.0
19 V 19.0 12.7 9.5 7.6 6.3 5.4 4.8 4.2 3.8
18 V 18.0 12.0 9.0 7.2 6.0 5.1 4.5 4.0 3.6
17 V 17.0 11.3 8.5 6.8 5.7 4.9 4.3 3.8 3.4
16 V 16.0 10.7 8.0 6.4 5.3 4.6 4.0 3.6 3.2
15 V 15.0 10.0 7.5 6.0 5.0 4.3 3.8 3.3 3.0
14 V 14.0 9.3 7.0 5.6 4.7 4.0 3.5 3.1 2.8
13 V 13.0 8.7 6.5 5.2 4.3 3.7 3.3 2.9 2.6
12 V 12.0 8.0 6.0 4.8 4.0 3.4 3.0 2.7 2.4
11 V 11.0 7.3 5.5 4.4 3.7 3.1 2.8 2.4 2.2
10 V 10.0 6.7 5.0 4.0 3.3 2.9 2.5 2.2 2.0
9 V 9.0 6.0 4.5 3.6 3.0 2.6 2.3 2.0 1.8
8 V 8.0 5.3 4.0 3.2 2.7 2.3 2.0 1.8 1.6
7 V 7.0 4.7 3.5 2.8 2.3 2.0 1.8 1.6 1.4
6 V 6.0 4.0 3.0 2.4 2.0 1.7 1.5 1.3 1.2
5 V 5.0 3.3 2.5 2.0 1.7 1.4 1.3 1.1 1.0

WL-to-WL Distance

W
L-

to
-W

L
D

iff
er

en
ce

Vo
lta

ge

IWD Electric Field in MV/cm

86 M. F. Beug

reliability and charge retention because the loss of one electron has increasing
impact on the cell Vth loss. On the other hand, the charge granularity of single
electrons affects, at a certain stage, the ability to program narrow Vth distributions.
The effect is most critical in TLC or XLC NAND technologies with very narrow
Vth distributions in case one electron causes a significant threshold voltage shift.

The approximated number of floating gate electron can be derived from (4.5) and
is given as a function of the feature size F for different NAND technology nodes by

N=
CCG

e
⋅ΔVth =

ε0εr
e

ACG− FG

tIPD−EOT
⋅ΔVth =

ε0εr
e

AIPD ̸ATOX

tIPD−EOT
⋅ F2 ⋅ΔVth ð4:10Þ

where e is the electron charge and AIPD/ATOX is the CG-FG area to TOX area ratio.
As shown in Fig. 4.25 and discussed beforehand, this area ratio needs to be

increased in combination with a reduction of the IPD EOT value to have the
programming voltages remain the same. The shown values for the AIPD/ATOX ratio
and IPD EOT are similar to the values used by major NAND Flash manufacturers in
recent generation.

The simple planar plate capacitor approximation of (4.10) results in the estimate
of about 200 stored electrons, in case a 25 nm FG NAND cell is programmed to
ΔVth = 4 V above the UV level, as depicted in Fig. 4.25. The tolerable electron
loss per year for this technology node is already less than ten, if a relaxed retention
criterion compared to Sect. 4.3 with 20% tolerable Vth loss after 5 years is assumed.

However, the general trend of the number of stored electrons as a function of the
FG cell technology node in Fig. 4.25 shows a strong reduction with reduced
dimensions.

A similar consideration based on TCAD simulations was carried out and pre-
sented in [10]. The result of the number of electrons stored in different FG cell
locations (see Fig. 4.26) that cause a threshold voltage shift of ΔVth = 100 mV is
shown in Table 4.2 for 50, 35, and 25 nm technology generations. The number of

Fig. 4.25 Number of
electrons as a function of the
technology node F. To have
the programming voltages
remain similar over different
technology generations, the
gate coupling ratio is
optimized by means of an IPD
EOT reduction and an
increase of the CG-FG to
TOX area ratio

4 2D NAND Flash Technology 87

electrons required for a ΔVth = 4 V shift in a 25 nm technology taken from these
values is 400 and therefore two times higher than the estimate of (4.10), but the
trend over different technology generations is the same.

Table 4.2 indicates that especially electrons stored in tunnel oxide traps, which
are generated during program and erase operations, cause higher Vth shifts per
electron than electrons in the FG. Therefore, uncontrolled electron storage in the
TOX can be a significant issue as discussed in the following section.

4.4.5 Random Telegraph Noise

Random telegraph noise (RTN) can be observed in different types of field effect
devices and can be explained by electron capture and emission processes in oxide
traps close to the channel of a MOSFET device [32]. As mentioned previously, the
same process can take place in the TOX of a floating gate NAND cell [33, 34].

Fig. 4.26 Locations of
trapped charges in an FG
NAND memory cell which
cause a threshold voltage shift

Table 4.2 Electron
sensitivity of different FG
NAND Flash technology
generations. The table
indicates the number of
electrons required at different
locations in an FG cell for a
100 mV threshold voltage
shift as determined by TCAT
simulations in [10]

Technology 50 nm 35 nm 25 nm

QTOX,B/e 4 2 1
QTOX,T/e 9 7 4
QFG/e 18 12 10
QIPD,B/e 22 17 11
QIPD,T/e 149 103 100
QS/e 33 9 5

QD/e 61 16 10

88 M. F. Beug

Figure 4.27 shows RTN measurements in a 32 cell string of a 48 nm FG NAND
technology. Operated in the sub-threshold region, the drain current of the investi-
gated cell (or the string current) shows a characteristic two level Id signature as
shown in Fig. 4.27a. The two level signature and the time constants for capture and
emission in the second range indicate that a single tunnel oxide trap about 1–2 nm
from the channel/TOX interface [35] is charged and discharged by direct tunneling.

Fig. 4.27 Random telegraph noise of 48 nmFG cells in a NAND string configuration. The variation
in the string current (a) due to charging and discharging of one oxide trap in the channel region can be
converted by the string transfer curve (b) into a Vth variation (c)

4 2D NAND Flash Technology 89

With the aid of the string Id − VWL transfer curve in Fig. 4.27b, the current
signal can be converted into a threshold voltage shift ΔVth as depicted in
Fig. 4.27c. The resulting RTN amplitude is about 70 mV and in this case higher
than expected from the TCAD simulations [10] in Table 4.2.

However, for scaled dimensions the RTN threshold voltage shifts can cause read
fails, which is even more significant for MLC and TLC functionality with small
distances between Vth distributions.

4.5 Shrinking the Floating Gate NAND Technology
Beyond the Direct Optical Lithography Limitation

The effects of scaled dimension on the functionality of floating gate NAND cells as
described in the last section are one aspect of the shrinking issues. Another aspect is
the generation of the extremely small structures in NAND Flash memory cells
which currently arrived in the sub-20 nm range [23].

This development of the feature size or critical dimension (CD) is even more
impressive, because the size of actual cell structures is one order of magnitude
smaller than that of the 193 nm wavelength of the ArF laser which is used for
illumination.

To understand the challenge to generate such small structures, Fig. 4.28 shows
the CD development of the NAND Flash technology half pitch and the used
lithography wavelength since 1996.

At the end of the 1990s, the NAND Flash CD in the cell array was close to the
lithography wavelength. However, since the 193 nm was the last reduction of the
wavelength used as a light source for lithography, the gap between the NAND Flash
technology node and the lithographic wavelength has been increasing since then.

Fig. 4.28 NAND Flash
technology generations and
lithographic resolutions

90 M. F. Beug

The ability of a lithographic system to generate a minimum CD is described by

CD=k1
λ
NA

ð4:11Þ

where k1 is a constant, λ is the wavelength, and NA is the numerical aperture of the
optical illumination system. For a single exposure, dry 193 nm lithography with
optimized illumination conditions with, e.g., k1 = 0.28 in combination with a
numerical aperture in the range of NA = 0.93, the minimum CD is limited to values
slightly below 60 nm [36].

With the introduction of immersion lithography with a liquid on top of the wafer
during illumination, the NA could be improved to 1.35, which is also the reason
why the 193 nm immersion lithography wavelength is shown in Fig. 4.28 “virtu-
ally” reduced by this factor. The smallest achievable half pitch for single exposure
193 nm immersion lithography is therefore about 38 nm [37].

To bridge the gap to extreme UV (EUV) lithography (see litho gap in Fig. 4.28) ,
which was not available for industrial volume production in time, the semicon-
ductor industry introduced (around 2009) special process sequences to generate
small structures that cannot be obtained by single exposure direct printing.

For logic circuits, such as microprocessors, it is usually sufficient to generate the
required small gate length by a trimming of larger lithographically generated
structures. The required short gate length in logic circuits can therefore be obtained
by tapered trim etch processes.

In memory products such as DRAM or NAND Flash it is not the small memory
cell structure itself that is important, but the high memory cell density. Besides, the
memory cell arrays have the great advantage that the basic structure consists of a
very regular line and space pattern, which can be printed more easily than complex
state-of-the-art SRAM structures.

Consequently, it is necessary to generate additional features that cannot be
directly printed by lithography.

Most common for NAND Flash memory are process sequences which generate
two smaller lines with a corresponding space out of one larger line that can be
printed lithographically. These kinds of process sequences which basically make
two lines out of one are known as self-aligned double patterning (SADP) [38, 39],
or sometimes pitch fragmentation [28]. The typical SADP approach is schemati-
cally shown in Fig. 4.29.

The starting point is a multiple layer stack of CVD-deposited materials like a-Si,
Si3N4, SiO2, and carbon hard masks which can be selectively etched to each other.
Double patterning starts with a directly printed equal line and space pattern which
has two times the half pitch of the final structures (Fig. 4.29a). For a 20 nm target
half pitch, the initial line and space half pitch consequently would be 40 nm. With
the aid of the tapered trim etch process, this pattern is transferred to the underlying
layer with a line width half of the initial line. Subsequently, a conformal liner is
deposited (Fig. 4.29b) to generate a spacer with the width of the target half pitch as
shown in (Fig. 4.29c). Proceeding from this processing stage, two different SADP

4 2D NAND Flash Technology 91

final sequences can be principally chosen. Option (i) is the so-called line-by-spacer
(LBS) sequence because it uses the generated spacer (Fig. 4.29d) to transfer the
obtained pattern into the underlying hard mask. Prior to this, the carrier needs to be
removed. The resulting hard mask structure is the equivalent of a single exposure
lithographically generated pattern at larger half pitches, which is, in turn, used for
patterning of the active chip structure as shown in Fig. 4.29e. Processing images of
a LBS SADP sequence is shown in Fig. 4.30.

Figure 4.30a shows the situation after the trim etch step with a line width one
quarter of the initial pitch. Figure 4.30b, c illustrates the process after the spacer
etch and the carrier recess etch, where the trimmed initial line is removed. In
Fig. 4.30d the spacer pattern is transferred into the hard mask and the spacer is
removed in e. When the small SADP-generated structures in the memory array are
generated, the close connection of every two neighboring lines needs to be etched
away. This cut etch process can be carried out together with the patterning of
periphery structures or, e.g., the select transistors as shown in Fig. 4.30f.

The second SADP processing option (ii) in Fig. 4.29 is the line-by-fill (LBF)
sequence. Subsequent to the spacer formation in Fig. 4.29c, a material that can be
as selectively etched to the spacer (e.g. the same material as the carrier) is filled in
between the spacers. Therefore, the material is called “fill” as shown in Fig. 4.29f.
Before the spacer material in between the carrier and fill lines can be removed as
depicted in Fig. 4.29g, a chemical-mechanical planarization (CMP) process step is
needed to have a better exposure of the spacer material to the etch chemistry. In the

“fill”

“fill”

carrier

carrier

line-by-spacer
(LBS)

“fill”

carrier

spacer defines lines

carrier

line-by-fill
(LBF)

carrier and fill define lines

fill

fill

fill

carrier

carrier

carrier

(i) (ii)

spacer

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Fig. 4.29 Schematic double patterning sequences line-by-spacer (LBS) (i) and line-by-fill (LBF)
(ii) [28]. The line width of an equal line and space pattern (a) is reduced by a trim etch process and
a conformal liner is deposited (b) in order to generate spacer (c) of the same width as the trimmed
lines. In the line-by-spacer sequence the spacers are used after line removal (d) to generate the final
pattern (e), in contrast to the line-by-fill sequence where additional “fill” lines are generated in
between the spacers (f) and the carrier and fill lines are used after spacer removal (g) to generate
the target pattern (h)

92 M. F. Beug

final step, the pattern can be transferred into the hard mask which is shown in
Fig. 4.29h.

With respect to CD variations, it should be mentioned that generally the spacer
width in SADP schemes can be better controlled than the carrier and fill width. The
spacer width variations mostly depend on thickness conformity of the deposited
spacer liner. In contrast, the carrier and fill line widths essentially depend on two
critical processes, which are the carrier trim etch and the spacer formation.

The knowledge of this different CD control can be used to guarantee a reliable
operation of FG NAND cells. It was described that the control gate plug is essential
for the gate coupling ratio and consequently for the FG cell performance.

Based on this, it is beneficial to use the LBF sequence for the one-step patterning
of the active area and floating gate width in a self-aligned STI (SA-STI) cell
approach [40] as shown in Fig. 4.31a.

This choice has the major advantage that the space for the critical control gate
plug has a good controllability [28]. For the patterning of the word line level which
defines the length of the FG cells it could be beneficial to use the LBS sequence.
The consequential spacer-defined good control of the FG cell length can help to
reduce cell-to-cell Vth variations since the latest NAND cell generations are defi-
nitely in the short channel regime which increases cell length effects.

Fig. 4.30 Exemplary line-by-spacer process sequence [28, 39]

4 2D NAND Flash Technology 93

As shown in Fig. 4.28, it is required for FG NAND technologies beyond 20 nm
half pitch to use quadruple patterning (QP) techniques [23, 37] to generate such
small structures. Quadruple patterning is essentially two times the consecutive
usage SADP with its logical consequences for the CD control of lines and spaces.

4.6 Planar NAND Memory Cells as Conventional Floating
Gate Cell Replacement

In most cases charge trapping (CT) cells were discussed as a planar memory cell
replacement of the conventional floating gate cell in 2D memory arrays.

However, the planar FG cell as shown in Fig. 4.20 is also an alternative when it
is possible to overcome the program saturation issue.

The construction of CT memory cells for NAND application is at first glance not
very different from the floating gate NAND cell construction. The major difference
is that charge is stored in a non-conducting dielectric layer with high trap density
instead of the conducting floating gate. This non-conducting charge storage layer
has two major consequences:

(i) The surface of the dielectric charge storage layer is not an equipotential
surface as the floating gate. The stored charge can be inhomogeneously distributed
when the injection is locally enhanced.

(ii) In a planar cell structure, no capacitive voltage divider can be formed to
concentrate the voltage drop and, therefore, the electric field to the tunnel oxide as
in floating gate cells (with optimized gate coupling ratio αg).

The typical layout of CT memory cells is shown in Fig. 4.32. The traditional
SONOS (poly-Si/SiO2/Si3N4/SiO2/Si) cell, as shown in Fig. 4.32a, stores the
charge in a Si3N4 (SiN) layer. SiN is widely used as the charge trapping layer (CTL)
due to its high trap density of a few times 1019 cm−3 and its good process

Fig. 4.31 Major variations in LBF (a) and LBS (b) pitch fragmentation sequences [28]

94 M. F. Beug

compatibility with Si and SiO2. Sometimes other dielectrics are used for charge
storage, such as Al2O3 [41].

CT memory cells typically have a planar cell layout and therefore resemble
planar FG cells, layout-wise. Due to the lack of an increased gate coupling ratio it
cannot be realized that charge is only transferred through the tunnel oxide during
program and erase operation. Under the Fowler-Nordheim program condition in the
CT cell the injected electron current tunnels through the whole CT stack. Only a
certain part of this tunneling current is trapped in trap states and cause a Vth

increase. The rest of the injected electron current leaves the charge trapping layer
towards the gate electrode. Consequently, the ISPP slope for CT memory cells is
not at unity, but rather in the range between 0.6 and 0.8 [42]. This tunneling current
passing the whole memory cell stack resembles FG cells in the program saturation
regime as described in Sect. 4.2.3.

However, the program operation is generally not the problem of CT cells, since
usually high Vth levels (even suitable for MLC) can be reached.

One of the major issues of SONOS memory cells is the erase. It can be observed
that the erasability of SONOS cells significantly deteriorates when the tunnel oxide
thickness is increased above 2 nm [43]. In the TOX thickness range up to 2 nm the
erase mechanism is based on direct tunneling of holes from the channel region to
the SiN CTL. For thicker tunnel dielectric layers, the direct tunneling probability is
significantly reduced and for an efficient erase operation the electric field strength
needs to be increased up to the Fowler-Nordheim tunneling regime. The problem
that occurs in SONOS cells with thick tunnel oxide under FN erase conditions is the
so-called erase saturation which is illustrated in Fig. 4.33a. Under FN tunneling
conditions for holes from the cell channel, the electric field in the top SiO2

(blocking oxide: BLOX) layer is already high enough to inject electrons from the
gate towards the storage SiN (back tunneling). These injected gate electrons
compensate the positive charge of the injected holes and stop the Vth decrease
(erase saturation). Other erase mechanisms which do not suffer from erase satura-
tion, such as hot hole injection (HHI) [44], are limited to the NOR array structure
where NROM-like cells [45] are commercially available, but cannot be imple-
mented in the NAND array.

Erase saturation in planar CT cells can be improved when a gate material with
high work function and/or a high-k blocking oxide is used, as shown in Fig. 4.33a.

SiN

n+ n+

Al2O3

SiO2

TaNT
A
N
O
S

SiN

n+ n+

SiO2

SiO2

poly SiS
O
N
O
S

(a) (b)

Fig. 4.32 Charge trapping stacks in SONOS (a) and TANOS [48] (b) memory cells

4 2D NAND Flash Technology 95

A higher work function can be obtained by a p-doped poly-Si layer instead of the
n-doped poly-Si gate [46], or by the use of a high work function metal gate [47].
The combination of both program saturation improvement approaches was the
reason for the introduction of so-called TANOS (TaN/Al2O3/Si3N4/Si) CT memory
cells [48]. In the ideal TANOS image, the erase mechanism is solely due to hole
tunneling from the channel, the charge is only stored in the SiN CTL, and the Al2O3

blocking oxide is assumed to be trap free.
However, there are several indications that the ideal TANOS image is not fully

true. Other investigations of the TANOS erase even describe that electron detrap-
ping from SiN traps is the predominant effect [49], as illustrated in Fig. 4.33b.

It was additionally found that the Al2O3 BLOX of the TANOS stack is not
trap-free and acts as a charge trapping layer as well [41, 42]. Consequently,
detrapping from Al2O3 traps could be another contribution to the improved erase
performance of TANOS memory cells.

The major reason why CT Flash memory cell containing NAND product chips
are to date not commercially available is the observation of a general trade-off
between erasability and retention of CT memory cells.

Assuming that detrapping is an important component for CT cell erase, this
could be principally understood since energetically deep trap levels would be
beneficial for a good retention, but hinder the erase, and vice versa.

Compared to FG NAND cells, the retention of TANOS memory cells is gen-
erally not sufficient for MLC application. This can be seen for TANOS cells in a
48 nm NAND Flash technology in Fig. 4.34. The TANOS cell (without sealing
oxide) shows a good erase level for Vers = −23 V with a long ters = 300 ms erase
pulse, but the retention loss of nearly 550 mV after a 2 h retention bake at 200 °C is
not suitable for MLC. This high retention loss is most likely due to a combination
of electrons lost from the storage SiN due to hopping conduction over Al2O3 traps
and a direct charge loss of electrons stored in Al2O3 BLOX traps. Figure 4.34
shows the retention improvements at the expense of erase performance when parts

h+

e-

Tunnel
oxide

Trapping
layer

Blocking layer

O/N/O
O/N/High-k

Poly-Si

High WF
metal

h+

e-

High-k BLOX

High WF
metal

SiN

TOX

x x x x x x x x

x x x x x x x x

x
x
x
x
x

BLOX Traps

SiN Traps

(a) Hole tunneling dominated erase (b) Electron detrapping dominated erase

Electron detrapping

Fig. 4.33 TANOS erase due to reduced electron back tunneling [48]

96 M. F. Beug

of the Al2O3 BLOX adjacent to the SiN charge trap layer are replaced by an SiO2

layer (sealing oxide) with identical electrical thickness (EOT). The reduction of the
retention loss to 250 mV for the 3.5 nm sealing oxide results in CT TAONOS
(TaN/Al2O3/SiO2/Si3N4/Si) cells that can hardly be erased below Vth = −1 V (both
values are critical for MLC).

A similar trade-off between erase performance and retention was obtained from
large area CT memory cells in the µm range, where the SiN CT composition was
varied with respect to the Si content [50] (see Fig. 4.35a), or with an additional
high-k BLOX layer, introduced on top of the Al2O3 to reduce gate back tunneling
during erase [51] (see Fig. 4.35b). In all cases shown in Fig. 4.35a, b, the standard
TANOS cell behavior is among the best performing CT cells, or only the described
trade-off between retention and erase performance is seen.

-1 -2 -3 -4

-0.6

-0.5

-0.4

-0.3

-0.2

Trade-off TANOS without
 Sealing Oxide

1nm Sealing Oxide

2.5 nm Sealing Oxide

3.5 nm Sealing Oxide

2
h

@
 2

00
ºC

 R
et

en
tio

n
Lo

ss
 (V

)

Erase Vth level -23 V / 300 ms

Im
prove

men
t

Fig. 4.34 Trade-off between
erasability and retention
performance for 48 nm
TANOS NAND cells with an
additional SiO2 layer at the
interface between the SiN
charge trapping layer and the
Al2O3 blocking layer [42]

-3.0

-2.5

-2.0

-1.5

-1.0

-0.5

-1.0 -1.5 -2.0 -2.5 -3.0 -1 -2 -3 -4
-3.5

-3.0

-2.5

-2.0

-1.5

-1.0

Trade-off

Si-rich SiN-3

Si-rich SiN-2

Si-rich SiN-1

SiN (PECVD)

(b)

O-rich SiN

5
D

ay
s

@
 1

50
ºC

 R
et

en
tio

n
Lo

ss
 (V

)

Erase Vth level -18 V / 1 s

(a)

Im
prove

men
t

Trade-off

Im
prove

men
t

Al2O3 / GaAlO-H

Al2O3 / GaAlO-O

Al2O3 / GaAlO-O+

Al2O3 / LuAlO-3

Al2O3 / LuAlO-O+

Al2O3 / LuAlO-O Al2O3

1 W
eek @

 200ºC
 R

etention Loss (V)

Erase Vth level -20 V / 100 ms

Fig. 4.35 TANOS trade-off between erasability and retention performance on large memory cells
(µm range) with variation of the Si content in the SiN CTL (a) [50], and for different high-k layers
on top of the Al2O3 blocking oxide (b) [51]

4 2D NAND Flash Technology 97

The endurance behavior of TANOS or similar CT cells is also generally worse
than that of floating gate cells. This might be correlated to the inevitable tunnel
currents through the hole CT stack as mentioned before.

Besides, the charge storage in a non-conducting layer can lead to inhomoge-
neously distributed charges which adversely affect the erase performance of CT
cells [52, 53] and can also be responsible for the worse retention performance of
small ground rule CT cells compared to large CT cells [42, 54].

All described reliability issues (erase performance, retention, and endurance) of
CT memory cells are responsible for the fact that TANOS cells not been able to
replace floating gate cells in planar 2D NAND Flash applications.

The only planar memory cell which has appeared on the market in a planar 2D
memory array so far is the planar FG cell technology [55] as shown in Fig. 4.36.
However, the TEM analysis of the cell structure does not show a dual layer floating
gate. Instead the planar FG cell has a thin poly-Si FG layer with a quite thick inter
gate dielectric (IGD) stack including some high-k dielectric layers and on top a high
work function metal gate.

Since the IGD includes a SiO2 layer of similar thickness as the TOX plus
additional layers, the gate coupling ratio must be significantly below 0.5, which
makes this cell quite difficult to operate as a traditional FG cell.

Nevertheless, the published program and erase characteristics are very ideal with
program and erase slopes ∼1 and a large P/E window [55]. Such a characteristic
would not be the case either for a traditional planar FG cell or a TANOS like charge
trapping (CT) cell.

Most likely the working principle of the planar FG Micron cell is a combination
of a FG and a CT cell. Besides the conducting poly-Si FG, the IGD stack is the one
of a traditional CT cell. The advantage of the conducting FG introduction could be
the fact that this layer provides a conduction band where the electrons can tunnel to

STISi

Tunnel Oxide
Poly FG

IGD

Control Gate

SiN
HfO

HfO
SiO2

TaN
Metal

Fig. 4.36 Details of the of a
20 nm planar FG NAND cell
technology with multi layer
inter gate dielectric
(IGD) [55]. This IGD
includes a SiN layer directly
on top of the Poly-Si FG layer
which acts as an additional
charge trapping layer together
with the FG

98 M. F. Beug

under program conditions. This avoids the fly-through effect (which is visible in a
reduced ISPP slope [56]), because the electrons don’t need to be captured in dis-
crete trap states and thermalize into the deep energy states of the traps. Under erase
conditions, the FG layer provides a large number of free electrons that can tunnel
towards the cell channel and therefore avoids the erase saturation.

M O N O S

Metal
Gate

SiO2

SiO2

SiN

E-Field
Lines

8nm

6nm
5nm

(a) (b)

(c)

Fig. 4.37 Comparison of uncharged (no electrons stored in the SiN CTL) planar MONOS cells
and cylindrical MONOS cells with an inner Si channel diameter of 6 nm. The band diagram
(a) and the electric field conditions (b) show strongly increased fields in the tunnel oxide and
significantly reduced fields in the BLOX of the cylindrical SONOS cell. The SONOS CT stack
dimension (ONO) used in the simulations was TOX/CTL/BLOX = 5 nm/6 nm/8 nm (c)

4 2D NAND Flash Technology 99

When the program and erase operations are finished, the stored charges are most
likely redistributed between the FG and the traps in the SiON charge trapping layer.
As a result, it is not entirely correct to call this planar FG cell a floating gate cell. It
is rather most likely a charge trapping cell with an additional conducting layer
charge trapping layer (FG poly-Si). Therefore it could be a “hybrid FG-CT cell”.

However, common to both, the conventional CT and the “hybrid FG-CT cell” as
presented in the working 2D FG cell [55], is the fact that they work better in a
cylindrical cell geometry. The cylindrical shape of the memory cells in 3D cell
approaches have one major advantage over fully planar memory cells, namely the
electric field enhancement in the TOX and the field reduction in the BLOX or IGD
[57]. The band diagram and the electric fields under erase conditions (VCG,ers =
−20 V) for a planar MONOS cell vs. a cylindrical MONOS with a 6 nm
inner-channel diameter are shown in Fig. 4.37a, b. The ONO stack dimensions used
in the field calculations were tTOX = 5 nm, tSiN = 6 nm, and tBLOX = 8 nm. It is
clearly visible that the cylindrical cell geometry with an inner cell channel position
strongly increases the TOX field in relation to the BLOX field. Therefore, the
cylindrical geometry effectively acts as an increased gate coupling ratio of a floating
gate cell. The TOX electric field enhancement can also be seen in the form of
denser E-field lines in Fig. 4.37c.

It will be seen in the next chapter that the advantage of the cylindrical cell
geometry is used in most of the 3D NAND Flash memory arrays.

Acknowledgement The author would like to acknowledge the whole Flash development team of
the former Qimonda Company. Special thanks are addressed to Torsten Müller, Nigel Chan, and
Stefano Parascandola for discussions, provision of a 3D FG cell field simulator script, RTN
measurements, program saturation evaluations, and pitch fragmentation process images.

References

1. D. Kahng, S.M. Sze, A floating gate and its application to memory devices. Bell Syst. Techn.
J. 46(6), 1288–1295 (1967)

2. N. Chan, M.F. Beug, R. Knoefler, T. Mueller, T. Melde, M. Ackermann, S. Riedel, M.
Specht, C. Ludwig, A.T. Tilke, Metal control gate for sub-30 nm floating gate NAND
memory, in Proceeding of the 9th NVMTS, Nov 2008, pp. 82–85

3. A. Kolodny, S.T.K. Nieh, B. Eitan, J. Shappir, Analysis and modelling of floating gate
EEPROM cells. IEEE Trans. Electron Devices 33(6), 835–844 (1986)

4. K. Kim, J. Choi, Future outlook of NAND flash technology for 40 nm node and beyond, in
Non-Volatile Semiconductor Memory Workshop, 2006. 21st IEEE NVSMW, 2006, pp. 9–11

5. M. Wong, D.K.-Y. Liu, S.S.-W. Huang, Analysis of the subthreshold slope and the linear
transconductance techniques for the extraction of the capacitance coupling coefficients of
floating gate devices. IEEE Electron Device Lett. 13(11), 566–568 (1992)

6. M.F. Beug, Q. Rafhay, M.J. van Duuren, R. Duane, Investigation of back-bias capacitance
coupling coefficient measurement methodology for floating gate non-volatile memory cells.
IEEE Trans. Electron Devices 57(6), 1253–1260 (2010)

7. R.H. Fowler, L. Nordheim, Electron emission in intense electric films. Proc. R. Soc. Lond.
119, 173–181 (1928)

100 M. F. Beug

8. K.-D. Suh, B.-H. Suh, Y.-H. Um, J.-K. Kim, Y.-J. Choi, Y.-N. Koh, S.-S. Lee, S.-C. Kwon,
B.-S. Choi, J.-S. Yum, J.-H. Choi, J.-R. Kim, H.-K. Lim, A 3.3 V 32 Mb NAND flash
memory with incremental step pulse programming scheme, in IEEE International Solid-State
Circuits Conference, Feb 1995, pp. 128–129

9. C. Friederich, J. Hayek, A. Kux, T. Muller, N. Chan, G. Kobernik, M. Specht, D. Richter, D.
Schmitt-Landsiedel, Novel model for cell—system interaction (MCSI) in NAND flash, in
IEEE International Electron Devices Meeting (IEDM), Dec 2008

10. K. Prall, K. Parat, 25 nm 64 Gb MLC NAND technology and scaling challenges, in IEEE
International Electron Devices Meeting (IEDM), Dec 2010, pp. 102–105

11. C.-H. Lee, S.-K. Sung, D. Jang, S. Lee, S. Choi, J. Kim, S. Park, M. Song, H.-C. Baek, E.
Ahn, J. Shin, K. Shin, K. Min, S.-S. Cho, C.-J. Kang, J. Choi, K. Kim, J.-H. Choi, K.-D. Suh,
T.-S. Jung, A highly manufacturable integration technology for 27 nm 2 and 3bit/cell NAND
flash memory, in IEEE International Electron Devices Meeting (IEDM), Dec 2010, pp. 98–
101

12. D.J. DiMaria, E. Cartier, Mechanism for stress-induced leakage current in thin silicon dioxide
films. J. Appl. Phys. 78(6), 3883–3894 (1995)

13. M.F. Beug, N. Chan, T. Hoehr, L. Mueller-Meskamp, M. Specht, Investigation of program
saturation in scaled interpoly dielectric floating gate memory devices. IEEE Trans. Electron
Devices 56(8), 1698–1704 (2009)

14. D. Wellekens, J. De Vos, J. Van Houdt, K. van der Zanden, Optimization of Al2O2 interpoly
dielectric for embedded flash memory applications, in Proceedings of Joint NVSMW/ICMTD,
May 2008, pp. 12–15

15. T.-S. Jung, Y.-J. Choi, K.-D. Suh, B.-H. Suh, J.-K. Kim, Y.-H. Lim, Y.-N. Koh, J.-W. Park,
K.-J. Lee, J.-H. Park, K.-T. Park, J.-R. Kim, J.-H. Yi, H.-K. Lim, A 117-mm2 3.3-V only
128-Mb multilevel NAND flash memory for mass storage applications. IEEE J. Solid-State
Circuits 31(11), 1575–1583 (1996)

16. T. Cho, Y.-T. Lee, E.-C. Kim, J.-W. Lee, S. Choi, S. Lee, D.-H. Kim, W.-G. Han, Y.-H. Lim,
J.-D. Lee, J.-D. Choi, K.-D. Suh, A dual-mode NAND flash memory: 1-Gb multilevel and
high-performance 512-Mb single-level modes. IEEE J. Solid-State Circuits 36(11), 1700–
1706 (2001)

17. R. Micheloni, L. Crippa, A. Marelli, Inside NAND Flash Memories. Springer (2010)
18. R. Cernea, D.J. Lee, M. Mofidi, E.Y. Chang, Wy-Yi Chien, L. Goh, Y. Fong, J.H. Yuan, G

Samachisa, D.C. Guterman, S. Mehrotra, K. Sato, H. Onishi, K. Ueda, F. Noro, K. Mijamoto,
M. Morita, K. Umeda, K. Kubo, A 34 Mb 3.3 V serial flash EEPROM for solid-state disk
applications, in IEEE International Solid-State Circuits Conference (ISSCC), San Francisco,
Feb 1995, pp. 126–127

19. A. Chimenton, P. Olivo, Fast identification of critical electrical disturbs in nonvolatile
memories. IEEE Trans. Electron Devices 54(9), 2438–2444 (2007)

20. J.H. Stathis, Reliability limits for the gate insulator in CMOS technology. IBM J. Res. Dev. 46
(2/3), 265–286 (2002)

21. P. Olivo, T.N. Nguyen, B. Ricco, High-field-induced degradation in ultrathin SiO2 films.
IEEE Trans. Electron Devices 35(12), 2259–2267 (1988)

22. S. Lai, Electrical properties of nitrided-oxide systems for use in gate dielectrics and
EEPROM, in Proceeding of the International Non-Volatile Memory Technology Conference,
1998, pp. 6–7

23. J. Hwang, J. Seo, Y. Lee, S. Park, J. Leem, J. Kim, T. Hong, S. Jeong, K. Lee, H. Heo, H. Lee,
P. Jang, K. Park, M. Lee, S. Baik, J. Kim, H. Kkang, M. Jang, J. Lee, G. Cho, J. Lee, B. Lee,
H. Jang, S. Park, J. Kim, S. Lee, S. Aritome, S. Hong, Sungwook Park, A middle-1X nm
NAND flash memory cell (M1X-NAND) with highly manufacturable integration technolo-
gies, in IEEE International Electron Devices Meeting (IEDM), Dec 2011, pp. 199–202

24. U. Ganguly, Y. Yokota, T. Jing, S. Shiyu, M. Rogers, J. Miao, K. Thadani, H. Hamana, L.
Garlen, B. Chandrasekaran, S. Thirupapuliyur, C. Olsen, V. Nguyen, S. Srinivasan,
Scalability enhancement of FG NAND by FG shape modification, in IEEE International
Memory Workshop (IMW), May 2010

4 2D NAND Flash Technology 101

25. D. Wellekens, J. De Vos, J. Van Houdt, K. van der Zanden, Optimization of Al2O3 interpoly
dielectric for embedded flash memory applications, in Proceedings of the Joint NVSMW/
ICMTD, May 2008, pp. 12–15

26. P. Blomme, M. Rosmeulen, A. Cacciato, M. Kostermans, C. Vrancken, S. Van Aerde, T.
Schram, I. Debusschere, M. Jurczak, J. Houdt, Novel dual layer floating gate structure as
enabler of fully planar flash memory, in Symposium on VLSI Technology (VLSIT), June 2010,
pp. 129–130

27. J.-D. Lee, S.-H. Hur, J.-D. Choi, Effects of floating-gate interference on NAND flash memory
cell operation. IEEE Electron Device Lett. 23(5), 264–266 (2002)

28. M.F. Beug, S. Parascandola, T. Hoehr, T. Muller, R. Reichelt, L. Muller-Meskamp, P. Geiser,
T. Geppert, L. Bach, U. Bewersdorff-Sarlette, O. Kenny, S. Brandl, T. Marschner, S. Meyer,
S. Riedel, M. Specht, D. Manger, R. Knofler, K. Knobloch, P. Kratzert, C. Ludwig, K.-H.
Kusters, Pitch fragmentation induced odd/even effects in a 36 nm floating gate NAND
technology, in Proceedings of the NVMTS, Nov 2008, pp. 77–81

29. N. Shibata, H. Maejima, K. Isobe, K. Iwasa, M. Nakagawa, M. Fujiu, T. Shimizu, M. Honma,
S. Hoshi, T. Kawaai, K. Kanebako, S Yoshikawa, H. Tabata, A. Inoue, T. Takahashi, T.
Shano, Y. Komatsu, K. Nagaba, M. Kosakai, N. Motohashi, K. Kanazawa, K. Imamiya, H.
Nakai, A 70 nm 16 Gb 16-level-cell NAND flash memory, in IEEE Symposium on VLSI
Circuits, 14–16 June 2007, pp. 190–191

30. R. Cernea, L. Pham, F. Moogat, S. Chan, B. Le, Y. Li, S. Tsao, T.-Y. Tseng, K. Nguyen,
J. Li, J. Hu, J. Park, C. Hsu, F. Zhang, T. Kamei, H. Nasu, P. Kliza, K. Htoo, J. Lutze, Y.
Dong, M. Higashitani, J. Yang, H.-S. Lin, V. Sakhamuri, A. Li, F. Pan, S. Yadala, S. Taigor,
K. Pradhan, J. Lan, J. Chan, T. Abe, Y. Fukuda, H. Mukai, K. Kawakamr, C. Liang, T. Ip, S.-
F. Chang, J. Lakshmipathi, S. Huynh, D. Pantelakis, M. Mofidi, K. Quader, A 34 MB/
s-program-throughput 16 Gb MLC NAND with all-bitline architecture in 56 nm, in IEEE
International Solid-State Circuits Conference (ISSCC), Feb 2008, pp. 420–624

31. Y.S. Kim, D.J. Lee, C.K. Lee, H.K. Choi, S.S. Kim, J.H. Song, D.H. Song, J.-H. Choi, K.-D.
Suh, C. Chung, New scaling limitation of the floating gate cell in NAND flash memory, in
IEEE International Reliability Physics Symposium (IRPS), May 2010, pp. 599–603

32. H.H. Mueller, D. Wörle, M. Schulz, Evaluation of the coulomb energy for single-electron
interface trapping in sub-μm metal-oxide-semiconductor field effect transistors. J. Appl. Phys.
75(6), 2970–2979 (1994)

33. H. Miki, T. Osabe, N. Tega, A. Kotabe, H. Kurata, K. Tokami, Y. Ikeda, S. Kamohara, R.
Yamada, Quantitative analysis of random telegraph signals as fluctuations of threshold
voltages in scaled flash memory cells, in IEEE International Reliability Physics Symposium
(IRPS), 2007, pp. 29–35

34. K. Seidel, R. Hoffmann, D.A. Löhr, T. Melde, M. Czernohorsky, J. Paul, M.F. Beug, V.
Beyer, Comparison and analysis of trap mechanisms responsible for random telegraph noise
and erratic programming on sub-50 nm floating gate flash memories, in Non-Volatile Memory
Technology Symposium (NVMTS), Oct 2009, pp. 67–71

35. M.F. Beug, R. Ferretti, K.R. Hofmann, Analysis and modeling of the transient local tunneling
in gate oxides. IEEE Trans. Device Mater. Reliab. 4(1), 73–79 (2004)

36. M.C. Chiu, B. Szu-M. Lin, M.F. Tsai, Y.S. Chang, M.H. Yeh, T.H. Ying, C. Ngai, J. Jin, S.
Yuen, S. Huang, Y. Chen, L. Miao, K. Tai, A. Conley, I. Liu, Challenges of 29 nm half-pitch
NAND flash STI patterning with 193 nm dry lithography and self-aligned double patterning,
In Proceedings of the SPIE 7140, 714021, 2008, https://doi.org/10.1117/12.804685

37. P. Xu, Y. Chen, Y. Chen, L. Miao, S. Sun, S.-W. Kim, A. Berger, D. Mao, C. Bencher, R.
Hung, C. Ngai, Sidewall spacer quadruple patterning for 15 nm half-pitch. Proc. SPIE 7973,
79731Q (2011). https://doi.org/10.1117/12.881547

38. C. Bencher, Y. Chen, H. Dai, W. Montgomery, L. Huli, 22 nm half-pitch patterning by CVD
spacer self alignment double patterning (SADP). Proc. SPIE 6924, 69244E (2008). https://doi.
org/10.1117/12.772953

39. C. Ludwig, S. Meyer, Double patterning for memory ICs, in Recent Advances in
Nanofabrication Techniques and Applications, ed. by Bo Cui (InTech, 2011), pp. 417–432.

102 M. F. Beug

http://dx.doi.org/10.1117/12.804685
http://dx.doi.org/10.1117/12.881547
http://dx.doi.org/10.1117/12.772953
http://dx.doi.org/10.1117/12.772953

ISBN: 978–953-307-602-7, http://www.intechopen.com/articles/show/title/double-patterning-
for-memory-ics

40. S. Aritome, S. Satoh, T. Maruyama, H. Watanabe, S. Shuto, G. J. Hemink, R. Shirota, S.
Watanabe, F. Masuoka, A 0.67 μm2 self-aligned shallow trench isolation cell (SA-STI cell)
for 3 V-only 256 Mbit NAND EEPROMs, in IEEE International Electron Devices Meeting
(IEDM), Dec 1994, pp. 61–64

41. M. Specht, H. Reisinger, F. Hofmann, T. Schulz, E. Landgraf, R.J. Luyken, W. Rösner, M.
Grieb, L. Risch, Charge trapping memory structures with Al2O3 trapping dielectric for
high-temperature applications. Solid-State Electron. 49(5), 716–720 (2005)

42. M.F. Beug, T. Melde, M. Czernohorsky, R. Hoffmann, J. Paul, R. Knoefler, A.T. Tilke,
Analysis of TANOS memory cells with sealing oxide containing blocking dielectric. IEEE
Trans. Electron Devices 57(7), 1590–1596 (2010)

43. R. van Schaijk, M. van Duuren, W.Y. Mei, K. van der Jeugd, A. Rothschild, M. Demand,
Oxide–nitride–oxide layer optimisation for reliable embedded SONOS memories. Micro-
electron. Eng. 72(1–4), 395–398 (2004)

44. T.Y. Chan, K.K. Young, C. Hu, A true single-transistor oxide-nitride-oxide EEPROM device.
IEEE Electron Device Lett. 8(3), 93–95 (1987)

45. B. Eitan, P. Pavan, I. Bloom, E. Aloni, A. Frommer, D. Finzi, NROM: A novel localized
trapping, 2-bit nonvolatile memory cell. IEEE Electron Device Lett. 21(11), 543–545 (2000)

46. H. Bachhofer, H. Reisinger, E. Bertagnolli, Transient conduction in multidielectric silicon–
oxide–nitride–oxide semiconductor structures. J. Appl. Phys. 89(5), 2791–2800 (2001)

47. A. Goda, M. Noguchi, Improvement of erase saturation for a highly reliable monos memory
cell, in IEEE Non-Volatile Semiconductor Memory Workshop (NVSMW), Feb 2003, pp. 65–
68

48. C.H. Lee, K.I. Choi, M.K. Cho, Y.H. Song, K.C. Park, K. Kim, A novel SONOS structure of
SiO2-SiN-Al2O3 with TaN metal gate for multi-giga bit flash memories, in IEEE
International Electron Devices Meeting (IEDM), Dec 2003, pp. 613–616

49. S.-C. Lai, H.-T. Lue, J.-Y. Hsieh, M.-J. Yang, Y.-K. Chiou, C.-W. Wu, T.-B. Wu, G.-L. Luo,
C.-H. Chien, E.-K. Lai, K.-Y. Hsieh, R. Liu, C.-Y. Lu, Study of the erase mechanism of
MANOS (metal/Al2O3/SiN/SiO2/Si) device. IEEE Electron Device Lett. 28(7), 643–645
(2007)

50. G. Van den bosch, A. Furnemont, M.B. Zahid, R. Degraeve, R. Breuil, L. Cacciato, A.
Rothschild, C. Olsen, U. Ganguly, J. Van Houdt, Nitride engineering for improved erase
performance and retention of TANOS NAND flash memory, in Non-Volatile Semiconductor
Memory Workshop, 2008 and 2008 International Conference on Memory Technology and
Design. NVSMW/ICMTD 2008. Joint, 18–22 May 2008, pp. 128–129

51. L. Breuil, C. Adelmann, G. Van Den Bosch, A. Cacciato, M.B. Zahid, M. Toledano-Luque,
A. Suhane, A. Arreghini, R. Degraeve, S. Van Elshocht, I. Debusschere, J. Kittl, M. Jurczak,
J. Van Houdt, Optimization of the crystallization phase of rare-earth aluminates for blocking
dielectric application in TANOS type flash memories, in 2010 Proceedings of the European
Solid-State Device Research Conference (ESSDERC), 14–16 Sept 2010, pp. 440–443

52. M.F. Beug, T. Melde, M. Isler, L. Bach, M. Ackermann, S. Riedel, K. Knobloch, C. Ludwig,
Anomalous erase behavior in charge trapping memory cells, in Proceedings of the Joint
Non-Volatile Semiconductor Memory Workshop/ International Conference on Memory
Technology and Design (NVSMW/ICMTD), May 2008, pp. 121–123

53. Y.-J. Chen, L.H. Chong, S.-W. Lin, T.-H. Yeh, K.-F. Chen, J.-S. Huang, C.-H. Cheng, S.-H.
Ku, N.-K. Zous, I-J. Huang, T.-T. Han, T.-H. Hsu, H.-T. Lue, M.-S. Chen, W.-P. Lu, K.-C.
Chen, C.-Y. Lu, Source/Drain dopant concentration induced reliability issues in charge
trapping NAND flash cells, in IEEE International Reliability Physics Symposium (IRPS), May
2010, pp. 634–638

54. M.F. Beug, T. Melde, J. Paul, R. Knoefler, TaN and Al2O3 side wall gate-etch damage
influence on program, erase, and retention of sub-50 nm TANOS NAND flash memory cells.
IEEE Trans. Electron Devices 58(6), 1728–1734 (2011)

4 2D NAND Flash Technology 103

http://www.intechopen.com/articles/show/title/double-patterning-for-memory-ics
http://www.intechopen.com/articles/show/title/double-patterning-for-memory-ics

55. N. Ramaswamy, T. Graettinger, G. Puzzilli, H. Liu, K. Prall, Engineering a planar NAND cell
scalable to 20 nm and beyond, in International Memory Workshop, 26–29 May 2013, pp. 5–8

56. A. Furnemont, M. Rosmeulen, A. Cacciato, L. Breuil, K. De Meyer, H. Maes, J. Van Houdt,
A consistent model for the SANOS programming operation, in Proceedings 22nd IEEE
Non-Volatile Semiconductor Memory Workshop, Aug 2007, pp. 96–97

57. E. Nowak, A. Hubert, L. Perniola, T. Ernst, G. Ghibaudo, G. Reimbold, B. De Salvo, F.
Boulanger, In-depth analysis of 3D Silicon nanowire SONOS memory characteristics by
TCAD simulations, in IEEE International Memory Workshop, May 2010

104 M. F. Beug

Chapter 5
3D NAND Flash Memories

Rino Micheloni, Seiichi Aritome and Luca Crippa

Nowadays, Solid State Drives consume an enormous amount of NAND Flash
memories [1] causing a restless pressure on increasing the number of stored bits per
mm2. Planar memory cells have been scaled for decades by improving process
technology, circuit design, programming algorithms [2], and lithography.

Unfortunately, when approaching a minimum feature size of 1x-nm, more
challenges pop up: doping concentration in the channel region becomes difficult to
control [3], RTN [4] and electron injection statistics [5] widen threshold distribu-
tions, thus causing a significant hit to both endurance and retention. Furthermore,
by reducing the distance between memory cells, the intra-wordline electric field
becomes higher, pushing the bit error rate to an even higher level.

3D arrays can definitely be considered as a breakthrough for fueling a further
increase of the bit density. Identifying the right way for going 3D is not so easy
though.

Historically, Flash memory manufacturers have leveraged lithography to shrink
the 2-dimensional (2D) memory cell [6].

This chapter is a partial reprint of R. Micheloni, S. Aritome, L. Crippa, “Array architectures for
3D NAND Flash Memories” in Proceedings of the IEEE, vol. 105, no. 9, pp. 1634–1649, Sept.
2017. © 2017 IEEE.

R. Micheloni (✉) ⋅ L. Crippa
Storage Solutions, Microsemi Corporation, Vimercate, MB, Italy
e-mail: rino.micheloni@ieee.org

L. Crippa
e-mail: luca.crippa@ieee.org

S. Aritome
IPCC, Industrial Property Cooperation Center, Tokyo, Japan
e-mail: aritomes@ieee.org

© Springer Nature Singapore Pte Ltd. 2018
R. Micheloni et al. (eds.), Inside Solid State Drives (SSDs),
Springer Series in Advanced Microelectronics 37,
https://doi.org/10.1007/978-981-13-0599-3_5

105

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_5&domain=pdf

However, with 3D architectures, the “simple” reduction of the minimum feature
size is running out of steam, as shown in Fig. 5.1 [7]: a higher number of stacked
cells is the only hope for dramatically reducing the real estate of a stored bit.

3D arrays can leverage either Floating Gate (FG) or Charge Trapping
(CT) technologies [8]. As a matter of fact, the vast majority of 3D architectures
published to date are built with CT cells, mainly because of the simpler fabrication
process. Nevertheless, Floating Gate is still around and there are commercial
products who managed to integrate FG into a 3D array.

5.1 3D Charge Trap NAND Flash Memories

3D arrays can be efficiently built by vertically rotating the planar NAND Flash
string of Fig. 5.2a, as displayed in Fig. 5.2b. The solution of choice is a conduction
channel completely surrounded by the gate (Fig. 5.2c, d) [9]: indeed, the curvature
effect helps increasing the electric field Et across the tunnel oxide, and reduces the
electric field Eb across the blocking oxide [10, 11], and this has a positive impact on
oxide reliability and overall power consumption.

Vertical channel arrays have been historically driven by architectures known as
BiCS, which stands for Bit Cost Scalable [12, 13] and P-BiCS, acronym for Pipe-
Shaped BiCS [14–16], which are both leveraging CT cells. Let’s get started with
BiCS, which is sketched in Figs. 5.3 and 5.4 [17]. There is a stack of Control Gates
(CGs), the lowest being the one of the Source Line Selector (SLS). The whole
vertical stack is punched through and the resulting holes are filled with poly-silicon;
each filled hole (a.k.a. pillar) forms a series of memory cells vertically connected in

Fig. 5.1 3D NAND Flash scaling [7]

106 R. Micheloni et al.

Fig. 5.2 The NAND Flash string goes vertical

Fig. 5.3 BiCS architecture

5 3D NAND Flash Memories 107

a NAND fashion. Bit Line Selectors (BLS’s) and Bitlines (BLs) are formed at the
top of the structure [18].

The poly-silicon body of memory cells is not doped or lightly doped [10, 11];
indeed, considering the bad aspect ratio of the vertical polysilicon plug, p-n junc-
tions cannot be easily realized by either diffusion or implantation in a trench
structure. As usual, a select transistor (BLS) is used to connect each NAND string
to a bitline; there is also another select transistor (SLS), which connects the other
side of the string to the common source diffusion.

It is important to highlight that the number of critical and expensive lithography
steps does not depend on the number of control gate plates because the whole 3D
stack is drilled at one [19, 20].

As sketched in Fig. 5.5, vertical transistor have polysilicon body and this fact
turned out to be one of the critical cornerstone of the 3D foundation. From a
manufacturing perspective, the density of the traps at the grain boundary is very
difficult to control, with such a vertical shape: the bad thing is that this poor control
induces significant fluctuations of the characteristics of vertical transistors.

The recipe for fixing the trap density fluctuation problem is to manufacture a
polysilicon body much thinner than the depletion width. In other words, by
shrinking the polysilicon volume, the total number of traps goes down (Fig. 5.6).
This particular structure is usually referred to as Macaroni Body [13]. A filler layer

Fig. 5.4 Equivalent circuit of
a BiCS array

108 R. Micheloni et al.

Fig. 5.5 BiCS memory cells

Fig. 5.6 A vertical transistor (right) modified with Macaroni body (left)

5 3D NAND Flash Memories 109

(i.e. a dielectric film) is used in the central part of the macaroni structure, essentially
because it makes the manufacturing process easier.

The fabrication sequence of the BiCS array [21] starts from building the layers
for control gates and selectors. Then, BLS stripes are defined. After forming pillars,
bitlines are laid out by using a metal layer.

Control gate edges are extended to form a ladder to connect to the fan-out
region, as sketched in Fig. 5.7 [12, 13, 21, 22]. Actually, there are 2 ladders: one of
the 2 can’t be used because it is masked by the metals biasing the bitline selectors.

Over time BiCS became P-BiCS, mainly to improve the Source Line resistance
[23, 24]. In a nutshell, two vertical NAND strings are shorted together at the bottom
of the 3D structure: in this way, they form a single NAND string and the 2 edges are
connected to the bitline and to the Source Line, respectively (Fig. 5.8). Thanks to its
U-shape, P-BiCS has few advantages over BiCS:

• retention is better because manufacturing creates less damages in the tunnel
oxide;

• being at the top, the Source Line can be connected to a metal mesh, thus
lowering its parasitic resistance;

• Source Line and bitline selectors are at the same height of the stack and,
therefore, they can be equally optimized and controlled, thus obtaining a better
string functionality.

Figure 5.9 shows a P-BiCS array [25].
One of the biggest drawbacks of P-BiCS is the fact that at the same height of the

stack there are two different control gates which, of course, can’t be biased together;

Fig. 5.7 Fan-out of the BiCS array

110 R. Micheloni et al.

Fig. 5.8 P-BICS NAND strings

Fig. 5.9 P-BICS NAND Flash array

5 3D NAND Flash Memories 111

therefore, the two layers can’t be simply shorted together. As a result, compared to
BiCS, a totally different and more complex fan-out is required [25], as displayed in
Fig. 5.10: basically, a fork-shaped gate is adopted, such that each branch acts on
two NAND pages.

A major advantage is the easier connection of the source line [14] through the
“Top Level Source Line” of Fig. 5.11. This additional metal mesh guarantees a
much better noise immunity for circuits.

Besides BiCS and P-BiCS, many other approaches were tried, including VRAT
(Vertical Recess Array Transistor) [26], Z-VRAT (Zigzag VRAT) [26], and VSAT
(Vertical Stacked Array Transistor) [27], and 3D-VG (Vertical Gate) NAND [28]
which is a unique architecture where the channel runs along the horizontal
direction.

TCAT (Terabit Cell Array Transistor) was disclosed in 2009 [29] and it was the
foundation for V-NAND (Fig. 5.12), which is the first 3D memory device who
reached the market. Except for SL+ regions which are n+ diffusions, the equivalent
circuit of TCAT is the same of BiCS (Fig. 5.4). All SL+ lines are connected
together to form the common Source Line (Fig. 5.13). There are 2 metal layers for
decoding wordlines and NAND strings, respectively.

TCAT is based on gate-replacement [29], whereas BiCS is gate-first.
Gate-replacement begins with the deposition of multiple oxide/nitride layers. After
the stack formation, nitride is removed through an etching process. Afterwards,

Fig. 5.10 Fork-shaped fan-out

112 R. Micheloni et al.

tungsten metal gates are deposited and, finally, gates are separated by using another
etching step. Metal gates translate into a lower wordline parasitic resistance,
resulting in faster programming and reading operations.

The bulk erase operation is another significant difference compared to BiCS.
Because NAND strings are close to n+ areas, during erasing, holes can come

Fig. 5.12 TCAT NAND Flash array

Fig. 5.11 P-BiCS: source line metal mesh

5 3D NAND Flash Memories 113

straight from the substrate, thus avoiding the GIDL (Gate Induced Drain leakage)
on the source side, which is a well-known problem for BiCS.

BiCS and TCAT are compared in Fig. 5.14 [30]. Being TCAT based on a
gate-last process, the charge trap layer is biconcave, and thanks to this particular
shape it is much harder for charges to spread out. On the contrary, BiCS is

Fig. 5.13 Top view of Fig. 5.12

Fig. 5.14 BiCS versus
TCAT

114 R. Micheloni et al.

characterized by a charge trapping layer going through all gate plates, thus acting as
a charge spreading path: of course, the main consequence of this layout is a
degradation of data retention.

TCAT evolved into another architecture called V-NAND [31]. As depicted in
Fig. 5.15, the first generation, V-NAND Gen1, had 24 wordline layers, plus
additional dummy wordline layers (dummy CG) [32, 36, 37].

Why dummy layers? Mainly because of the floating body of the memory cells
with vertical channel. In fact, during the programming operations, hot carriers are
generated by the high lateral electric field located at the edge of the NAND string.
Therefore, these hot carriers keep the voltage on the channel low during the pro-
gramming operation of the first wordline (i.e. Program Disturb). Dummy wordlines
before the first WL are an effective and simple solution to this problem [38, 39].

A 128 Gb TLC (3 bit/cell) device manufactured by using V-NAND Gen2 was
published in 2015 [33, 40]. Gen2 had 32 memory layers instead of the previous 24
and introduced the concept of Single-Sequence Programming. Conventional
(mainly 2D) TLC programming techniques go through the programming sequence
multiple times. To be more specific, each wordline is programmed 3 times, such
that VTH distributions can be progressively tightened. Because of the smaller
cell-to-cell interference (compared to FG), CT cells exhibit an intrinsic narrower
native VTH distribution. As a result, V-NAND Gen2 could write 3 pages of logic
data in a single programming sequence. There are 2 benefits to this approach:
reduced power consumption and faster programming.

V-NAND Gen3 appeared in 2016 [34], in the form of a 48 layer TLC device.
With such a high number of gate layers, the very high aspect ratio of the pillar
becomes a serious challenge for the etching technology. To mitigate this problem,
the easiest solution is to shrink the thickness of gate layers. The downside of this
approach is that the parasitic RC of the wordline gets higher, thus slowing access
operations to the memory array. Moreover, channel’s size fluctuations become
critical. Indeed, pillars are holes drilled in the gate layer and they represent a barrier
for charges flowing along the wordline: in essence, a distribution of the holes
diameters generates a distribution of the parasitic resistances of gate layers. In
addition, pillars, once manufactured, have the conic shape sketched in Fig. 5.16.
The overall result is that the same voltage applied to different gate layers translates
into a waveform per layer. An adaptive program pulse scheme can fix the problem.
In a nutshell, the program pulse duration has to be tailored to the characteristics of
the wordline layer. As the number of layers increases, the pillar becomes longer
with a negative impact on the aspect ratio of the pillar. To compensate for that,
V-NAND Gen4 [35], which is built on a stack of 64 layers, had to shrink both the
layer thickness and the intra-layer distance (spacing). The downside is an increased
wordline parasitic capacitance which adversely affects cell’s reliability and timings.
Improved circuits and programming algorithms can be used to tackle this problem
[35].

As discussed, both BiCS [41] and V-NAND use CT cells, but Floating Gate still
exists, as explained in the next section.

5 3D NAND Flash Memories 115

Fig. 5.15 Evolution from TCAT to V-NAND (reproduced with permission from [29, 32–35])

116 R. Micheloni et al.

5.2 3D Floating Gate NAND Flash Memories

2D NAND Flash memories use FG cells which have been, improved and optimized
for decades. Of course, there have been many attempts to reuse this know-how in
3D.

The first 3D attempt is known as 3D Conventional FG (C-FG) or S-SGT
(Stacked-Surrounding Gate Transistor) [42–44], and it is sketched in Fig. 5.17.

Fig. 5.16 Ideal versus actual shape of pillars

Fig. 5.17 3D C-FG cell

5 3D NAND Flash Memories 117

A C-FG NAND string is shown in Fig. 5.18, including select transistors. Please
note that both string selectors are manufactured as standard transistors, i.e. they
haven’t any floating gate. Figure 5.19 shows a C-FG array and Fig. 5.20 adds the
fan-out region. While all wordlines at the same height of the stack are connected,
BLS lines can’t, because they need to be page selective per each CG layer. On the
contrary, SLS transistors can be shorted together, thus saving both power and
silicon area.

As already discussed in the previous Section, the Source Line is the local ground
of memory cells. A big single Source Line plate laid out at the bottom of the stack,
with a limited number of contacts, simply doesn’t work: when tens of thousands of
cells sink current, managing the voltage on the source side becomes a real chal-
lenge. Having more contacts to the Source plate is not an option. The Source Line
Metal Grid sketched in Fig. 5.21 fixes this problem.

As already discussed, slits between NAND blocks are the most common way for
reducing program/read disturbs and parasitic loads. Of course, there is no need to
cut bitlines and Top Source Lines. This is fundamentally the same approach
adopted in BiCS.

Because we are talking about FG cells, FG coupling between neighboring cells
is the main hurdle for vertical scaling. With enhancement-mode operations, the high
resistance of source/drain (S/D) regions should also be carefully considered. In fact,
these regions need high-doping and this is not very easy to accomplish when the
conduction channel is made of polysilicon. The solution to this problem is to
electrically invert the S/D layer by using higher voltages during read. This simple
solution is hardly manageable by C-FG cells because of the thin FG.

Fig. 5.18 C-FG NAND
Flash string

118 R. Micheloni et al.

The Extended Sidewall Control Gate (ESCG) structure, Fig. 5.22 [45], is
another FG option and it was developed to contain the interference effect. More-
over, by applying a positive voltage to the ESCG structure, density of electrons on
the surface of the pillar can be much higher than C-FG (even one order of mag-
nitude): a highly inverted electrical source/drain can significantly lower the S/D
resistance.

In addition, the ESCG shielding structure reduces the FG–FG coupling capac-
itance: the ESCG region is biased as CG, and the CG coupling capacitance (CCG) is
significantly increased because of the increased overlap area between CG and FG.

Fig. 5.19 C-FG NAND Flash array

Fig. 5.20 C-FG NAND Flash array with fan-out

5 3D NAND Flash Memories 119

A higher CG coupling ratio is one of the key ingredients for achieving effective
NAND Flash operations [46].

Another FG cell is DC-SF (Dual Control-Gate with Surrounding Floating Gate,
Fig. 5.23) [47]. This time FG is controlled by two CGs. The impact on the FG/CG
coupling ratio is remarkable, thanks to the enlargement of the FG/CG overlap area.
Another positive aspect is the reduction of the voltages required for programming

Fig. 5.21 C-FG array with source line metal grid

Fig. 5.22 ESCG NAND
Flash cell

120 R. Micheloni et al.

and erasing. DC-SF eliminates the FG-FG interference because the CG between
two adjacent FGs plays the role of an electrostatic shield [48].

FG is fully isolated by IPD (Inter Poly Dielectric) and capacitive coupled to
upper and lower control gates, CGU and CGL, respectively. The tunnel oxide is
located between the channel CH and FG, while IPD is on the sidewall of the CG. In
this way, free charges cannot tunnel to the control gates.

BiCS and DC-SF NAND strings are sketched in Fig. 5.24. In BiCS the nitride
layer, going across all gates, makes the cell prone to data retention issues. On the
contrary, the surrounding FG is totally isolated: it is much easier for DC-SF to
retain electrons [49, 50]. Of course, the downside of DC-SF is the fact there are two
gate layers instead of one, coupled with much more complex biasing schemes [51,
52].

The Separated Sidewall Control Gate (S-SCG) Flash cell [53] displayed in
Fig. 5.25 is another 3D FG option developed around the sidewall concept.

One of major drawbacks of this cell is the “direct” disturb to the neighboring
passing cells, caused by the high SCG/FG coupling capacitance. We define it as
“direct” because the sidewall CG is shared between adjacent cells: as a matter of
fact, biasing SCG means biasing both FGs.

To minimize the decoding complexity, all SCGs belonging to one block adopt a
common SCG scheme; besides their electrostatic shield functionality, sidewall gates
can help all memory operations [54]. For instance, the common SCG is biased at 1
V during read operations, thus electrically inverting the channel (same as ESCG).
Compared to ESCG, the electrical inversion happens simultaneously on source and
drain, exactly because of the sidewall gates (Fig. 5.26). Same thing happens during

Fig. 5.23 DC-SF NAND Flash cell

5 3D NAND Flash Memories 121

programming: the common SCG is biased at a medium voltage to improve the
channel boosting efficiency.

Besides the direct disturb, another problem of Sidewall Gates is the limitation of
vertical scaling to around 30 nm; indeed, the thicknesses of SCG and IPD can’t be
scaled too much, otherwise they would breakdown when voltages are applied.

Fig. 5.24 BiCS versus DC-SF

Fig. 5.25 S-SCG NAND
Flash cell

122 R. Micheloni et al.

Let’s now take a look at examples of 3D FG NAND memory arrays of hundreds
of Gb. As shown in Fig. 5.27, the first 3D FG device was published in 2015 [55], in
the form of a 384 Gb TLC NAND based on C-FG. This memory device was built
on stack of 32 (+dummy) memory layers.

Fig. 5.26 Common SCG
approach to enable Source/
Drain inversion

Fig. 5.27 3D FG NAND devices [14, 15]

5 3D NAND Flash Memories 123

A 768 Gb 3D FG NAND became public in the following year [56]. What is
unique in this case is the fact that the area underneath the array was used for
circuitry. More details about this approach are provided in Sect. 3.3.

5.3 Key Challenges for 3D Flash Development

In this Section we cover some of the key challenges that technologists and designers
are facing to push 3D memories even further.

5.3.1 Number of Layers

To reduce the bit size, the number of stacked cells needs to go up, but this causes a
bunch of problems hard to solve, as shown in Fig. 5.28 [6].

Pillar’s Aspect Ratio (AR) is definitely the first challenge to overcome; in a stack
of 32 cells AR can already be as high as 30. In this context, hole etching and gate
patterning are extremely difficult, but of paramount importance.

A possible solution to this problem is to divide the stacking process in more
steps to reduce the corresponding AR. For example, a NAND string made of 128
cells can be divided in 4 groups of 32 cells each, as shown in Fig. 5.28. The

Fig. 5.28 Challenges for increasing the number of 3D layers [6]

124 R. Micheloni et al.

downside of this solution is the cost of the stacking process (in this example, 4
times higher than the cost of the plain solution).

Second problem is the small cell current [57]. With 2D sensing schemes, a 200
nA/cell saturation current is considered the right value because it gives a reasonable
sensing margin. Unfortunately, as shown in Fig. 5.29, already with a stack of 24
layers, the cell current is just ∼20% of FG cell. And it becomes lower and lower as
the number of cells in the vertical stack increases. There are a couple of possible
paths to solve this problem: sensing schemes with higher sensitivity, and the
introduction of new materials enabling a higher cell mobility in the poly-Si channel
(i.e. a higher current) [58–61].

All the above mentioned problems can be fixed if entire NAND strings could be
stacked one on top of each other. In this case, either bitlines or source lines are
fabricated between NAND strings. This special architecture can simultaneously
reduce the aspect ratio and increase the sensing current at same time.

5.3.2 Peripheral Circuits Under Memory Arrays

In the first 3D generations [62, 63], peripheral circuits (charge pumps, logic, etc.)
and core circuits (like Page Buffers and Row decoders) are located outside the
memory matrix, like in a conventional 2D chip floorplan, as sketched in Fig. 5.30a.
However, 3D memory cells are vertically stacked: in other words, memory tran-
sistors are not formed on the Si substrate; on the contrary, they are built around a
deposited poly-Si (vertical pillar). Therefore, 3D architectures allow placing some
circuits directly on the Si substrate under the memory array. Of course, this solution
offers a significant reduction of the chip size.

Figure 5.30b shows a layout of a Flash memory with Core Circuits Under the
Array (CCuA) [64] in addition, Fig. 5.30c displays the case where both Core and

Fig. 5.29 Cell current and
block size versus the number
of 3D layers [57]

5 3D NAND Flash Memories 125

Peripheral Circuits are manufactured on the Si substrate under the Array (PCuA)
[65].

Efficiency of 2D and conventional 3D are between 60 and 81%. If CCuA is used,
then the cell efficiency can be as high as 85%. In the extreme case, when both
peripheral and core circuits sits under the memory matrix (PCuA), the cell effi-
ciency can reach around 95%, because peripheral circuits usually occupy more than
10% of the whole chip.

This big area saving doesn’t come for free. The most important challenge is
manufacturing low resistance metal layers under the array: this is absolutely critical
for a reliable circuit functionality. Usually, metal layers used in 2D NAND flash
memories are made of Cu. However, when circuits are under the array, the high
temperature processes (i.e. >800 °C) that 3D requires can seriously degrade the
resistance of metal layers. Therefore, circuits under the array require 3D “low”
temperature fabrication processes.

5.3.3 Data Retention

3D CT cells and 2D FG cells are completely different in terms of data retention
properties. Generally speaking, 2D SONOS (Silicon-Oxide-Nitride-Oxide-Silicon,
which is one variant of CT) cells exhibit larger VTH shifts than 2D FG cells: this is
caused by a fast charge detrapping through the tunnel oxide [66]. Figure 5.31
compares data retention of two different cells: (a) 3D SONOS cell and (b) 2D
2y-nm FG cell [57]. Both cells have been cycled 3,000 times. After 3k cycles 3D
SONOS has a VTH distribution width narrower than 2D FG; however, after baking
at High Temperature (HT), the VTH distribution becomes wider, and it has a bigger
VTH shift. For 3D SONOS cells, data retention is definitely one of the hottest topics.

Fig. 5.30 3D NAND Flash memory layout: a conventional, b CCuA, and c PCuA [64]

126 R. Micheloni et al.

Another important retention issue for 3D SONOS is the fact that the relationship
between charge loss and temperature is different from 2D FG, as shown in Fig. 5.32
[57], thus impacting the way accelerated tests should be performed. For 2D FG cells
VTH shift is linearly dependent upon the bake temperature, which says that the
mechanism governing data loss remains constant. However, in 3D SONOS cell
VTH shift exhibits a non-linear relationship with respect to the bake temperature; in
other words, the data loss mechanism changes from low to high temperature. The
data loss mechanisms are dominated by band-to-band tunneling at low temperature
and by thermal emission at high temperature [57]. As a consequence, simple
temperature accelerated tests, which have been used for decades, should be used
very carefully: retention below 90 °C has to be evaluated by extrapolating from
data collected over at least 3 weeks at relatively low temperatures. It is worth
highlighting that there multiple variations of CT cells; for example, BE-SONOS
(Bandgap Engineered) can be used to optimize the bandgap structure of the
SONOS cell [67].

Fig. 5.31 Vth distribution of cycled cells after high temperature retention for a 3D SMArT cell
and b 2D 2y-nm FG cell [57]

Fig. 5.32 VTH shift versus
bake temperature for 3D
SONOS cells and 2D 2y-nm
FG cells [57]

5 3D NAND Flash Memories 127

5.3.4 3D Program Disturb

Figure 5.33a shows one 3D NAND block [68, 69]. In each block, N strings are
connected to the same bitline by means of N select transistors, namely DSL_1 to
DSL_N. In a 2D NAND block, there is a 1:1 correspondence between strings and
bitlines. As a matter of fact, 3D architectures introduce new program disturb modes,
as sketched in Fig. 5.33b.

When DSL_1 is activated, strings (STRs) along DSL_1 are either being pro-
grammed or they suffer “X” disturb, depending on the BL bias. When we look at
“X” disturb, bitlines are biased at Vcc and there is no difference with respect to 2D
NAND. But in 3D, DSL_2 to DSL_N are turned off. We can distinguish two
different situations, which we call “Y” and “XY” program disturbs. In the “Y” case
bitlines are biased at ground and drain select transistors (DSL) are off; for “XY” we
have bitlines at Vcc and DSL off.

Fig. 5.33 a Program disturb in a 3D NAND array. b 3D introduces two new program disturbs, Y
and XY [69]

128 R. Micheloni et al.

“XY” disturb mode is not severer than “X” mode. Being DSL off and BL at Vcc,
the self-boosting voltage cannot cause a leakage current through DSL. On the
contrary, in the “Y” mode BL is at ground, thus open the door to a possible leakage
through DSL. In addition, DSL of 3D NAND shows a larger leakage current
compared to 2D NAND [57, 69]. Moreover, in 2D the leakage current through DSL
is prevented by the fact that VTH of DSL becomes higher during programming
thanks to a strong body effect. This is not the case with 3D NAND. Several
approaches to suppress the above mentioned leakage current have been proposed
over time [68]. These include: (1) DSL with high VTH, (2) DSL negative bias, and
(3) dummy wordlines between DSL and edge wordlines. Dummy wordlines can
reduce the voltage drop going from the self-boosting voltage to the voltage applied
to the DSL; on top of that, they are helpful for inhibiting the hot carrier generation
that might take place on the edge wordline (in practice, they reduce the lateral
electric field). Indeed, dummy WLs have to be carefully designed (biasing, VTH,
number of wordlines) given all the above mentioned functions. A detailed analysis
of 3D program disturb mechanism can be found in [69].

5.4 Future Trend for 3D NAND Flash

Figure 5.34 shows cell’s size scaling trend, based on published die photographs. 2D
became flat below 20 nm, while 3D cell showed a significant reduction going from
24 to 64 layers. This 3D scaling speed will continue by increasing the height of the
memory stack, and exploiting technological innovations like Multi-stacked and
Stacked NAND string [70].

3D NAND arrays based on CT vertical channel were selected for volume pro-
duction because the fabrication process is simpler than other 3D architectures.
Volume production of 3D NAND Flash started in late 2013 with a 24 layer MLC (2
bit/cell) V-NAND [62, 71]. Year after year, the number of stacked cells grew up, as
shown in [7, 63, 72], thus reducing the cost per bit and fueling an even more
pronounced diffusion of Solid State Drives.

In this chapter we have presented many architectural options for building a 3D
NAND array, including some of the latest and greatest layout options, but the 3D
evolution is just at the beginning. In fact, two fundamentally different technologies,
Floating and Charge Trap, are fighting each other, trying to prove that they can win
in the long run, i.e. when scaling will be pushed to the limit. Flash manufactures are
already shooting for 100 vertical layers with multi-level capabilities, including 4
bit/cell. No doubt that we’ll see a lot of innovations in the near future: engineers and
scientists are called to give their best effort to make this vertical evolution happen.

5 3D NAND Flash Memories 129

References

1. F. Masuoka, M. Momodomi, Y. Iwata, R. Shirota, New ultra high density EPROM and flash
EEPROM with NAND structure cell, in International Electron Devices Meeting, vol.
33 (1987), pp. 552–555

2. R. Micheloni, L. Crippa, A. Marelli, Inside NAND Flash Memories (Chap. 6) (Springer, 2010)
3. T. Mizuno et al., Experimental study of threshold voltage fluctuation due to statistical

variation of channel dopant number in MOSFET’s. IEEE Trans. Electron Devices 41(11),
2216–2221 (1994)

4. H. Kurata et al., The impact of random telegraph signals on the scaling of multilevel flash
memories, in Symposium on VLSI Technology (2006)

5. C.M. Compagnoni et al., Ultimate accuracy for the NAND flash program algorithm due to the
electron injection statistics. IEEE Trans. Electron Devices 55(10), 2695–2702 (2008)

6. S. Aritome, NAND Flash Memory Technologies. IEEE Press Series on Microelectronics
System, Wiley-IEEE Press, Published on Dec 2015

7. S. Aritome, 3D flash memories, in International Memory Workshop 2011 (IMW 2011), short
course

8. R. Micheloni, L. Crippa, A. Marelli, Inside NAND Flash Memories (Chap. 5) (Springer, 2010)
9. http://www.samsung.com/us/business/oem-solutions/pdfs/VNAND_technology_WP.pdf.

White Paper, Sept 2014
10. R. Micheloni, L. Crippa, Multi-bit NAND flash memories for ultra high density storage

devices (Chap 3), in Advances in Non-volatile Memory and Storage Technology, ed. by Y.
Nishi (Woodhead Publishing, Sawston, 2014)

11. R. Micheloni et al., High-capacity NAND flash memories: XLC storage and single-die 3D
(Chap 7), in Memory Mass Storage, ed. by G. Campardo et al. (Springer, 2011)

12. H. Tanaka et al., Bit cost scalable technology with punch and plug process for ultra high
density flash memory, in VLSI Symposium Technical Digest (2007), pp. 14–15

Fig. 5.34 Effective cell size trend

130 R. Micheloni et al.

http://www.samsung.com/us/business/oem-solutions/pdfs/VNAND_technology_WP.pdf

13. Y. Fukuzumi et al., Optimal integration and characteristics of vertical array devices for
ultra-high density, bit-cost scalable flash memory, in IEDM Technical Digest (2007), pp. 449–
452

14. M. Ishiduki et al., Optimal device structure for pipe-shaped BiCS flash memory for ultra high
density storage device with excellent performance and reliability, in IEDM Technical Digest
(2009), pp. 625–628

15. T. Maeda et al., Multi-stacked 1G cell/layer pipe-shaped BiCS flash memory, in Digest
Symposium on VLSI Circuits, June 2009, pp. 22–23

16. R. Katsumata et al., Pipe-shaped BiCS flash memory with 16 stacked layers and
multi-level-cell operation for ultra high density storage devices, in 2009 Symposium on VLSI
Technology (2009), pp. 136–137

17. Y. Fukuzumi et al., Optimal integration and characteristics of vertical array devices for
ultra-high density, bit-cost scalable flash memory, in IEDM Technical Digest (2007), pp. 449–
452

18. H. Aochi, BiCS flash as a future 3-D non-volatile memory technology for ultra high density
storage devices, in Proceedings of International Memory Workshop (2009), pp. 1–2

19. Y. Yanagihara et al., Control gate length, spacing and stacked layers number design for
3D-Stackable NAND flash memory 2, in IEEE IMW (2012), pp. 84–87

20. K. Takeuchi, Scaling challenges of NAND flash memory and hybrid memory system with
storage class memory and NAND flash memory, in IEEE Custom Integrated Circuits
Conference (CICC) (2013), pp. 1–6

21. A. Nitayama et al., Bit cost scalable (BiCS) flash technology for future ultra high density
storage devices, in 2010 International Symposium on VLSI Technology Systems and
Applications (VLSI TSA), Apr 2010, pp. 130–131

22. Y. Komori et al., Disturbless flash memory due to high boost efficiency on BiCS structure and
optimal memory film stack for ultra high density storage device, in IEDM Technical Digest
(2008), pp. 851–854

23. M. Ishiduki et al., Optimal device structure for pipe-shaped BiCS flash memory for ultra high
density storage device with excellent performance and reliability, in IEDM Technical Digest
(2009), pp. 625–628

24. T. Maeda et al., Multi-stacked 1G cell/layer pipe-shaped BiCS flash memory, in Digest
Symposium on VLSI Circuits, June 2009, pp. 22–23

25. R. Katsumata et al., Pipe-shaped BiCS flash memory with 16 stacked layers and
multi-level-cell operation for ultra high density storage devices, in 2009 Symposium on VLSI
Technology (2009), pp. 136–137

26. J. Kim et al., Novel 3-D structure for ultra high density flash memory with VRAT
(vertical-recess-array-transistor) and PIPE (planarized integration on the same plane), in 2008
IEEE Symposium on VLSI Technology (2008)

27. J. Kim et al., Novel vertical-stacked-array-transistor (VSAT) for ultra-high-density and
cost-effective NAND flash memory devices and SSD (solid state drive), in 2009 IEEE
Symposium on VLSI Technology (2009)

28. H.T. Lue, T.H. Hsu et al., A highly scalable 8-layer 3D Vertical-Gate (VG) TFT NAND flash
using junction-free buried channel BE-SONOS device, in VLSI Symposia on Technology
(2010)

29. J. Jang et al., Vertical cell array using TCAT (terabit cell array transistor) technology for ultra
high density NAND flash memory, in 2009 IEEE Symposium on VLSI Technology (2009)

30. W. Cho et al., Highly reliable vertical NAND technology with biconcave shaped storage layer
and leakage controllable offset structure, in 2010 Symposium on VLSI Technology (VLSIT)
(2010), pp. 173–174

31. J. Elliott, E.S. Jung, Ushering in the 3D memory era with V-NAND, in Proceedings of Flash
Memory Summit (Santa Clara, CA, 2013), www.flashmemorysummit.com

32. K.-T. Park, Three-dimensional 128 Gb MLC vertical NAND flash memory with 24-WL
stacked layers and 50 MB/s high-speed programming, in IEEE ISSCC, Digest Technical
Papers, Feb 2014, pp. 334–335

5 3D NAND Flash Memories 131

33. J.-W. Im, 128 Gb 3b/cell V-NAND flash memory with 1 Gb/s I/O rate, in IEEE International
Solid-State Circuits Conference, Feb 2015, pp. 130–131

34. D. Kang et al., 256 Gb 3b/Cell V-NAND flash memory with 48 stacked WL layers, in IEEE
International Solid-State Circuits Conference (ISSCC), Digest Technical Papers, Feb 2016,
pp. 130–131

35. C. Kim et al., A 512 Gb 3b/cell 64-Stacked WL 3D V-NAND flash memory, in 2017 IEEE
International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), Feb 2017,
pp. 202–203

36. K.-T. Park, Three-dimensional 128 Gb MLC vertical NAND flash memory with 24-WL
stacked layers and 50 MB/s high-speed programming. IEEE J. Solid-State Circuit 50(1)
(2015)

37. K.T. Park, A world’s first product of three-dimensional vertical NAND flash memory and
beyond, in NVMTS, 27–29 Oct 2014

38. E. Choi et al., Device considerations for high density and highly reliable 3D NAND flash cell
in near future, in IEEE International Electron Devices Meeting (2012), pp. 211–214

39. K. Shim et al., Inherent issues and challenges of program disturbance of 3D NAND flash cell,
in IEEE International Memory Workshop (2012), pp. 95–98

40. J.-W. Im, 128 Gb 3b/cell V-NAND flash memory with 1 Gb/s I/O rate. J. Solid-State Circuit
51(1) (2016)

41. R. Yamashita et al., A 512 Gb 3b/cell flash memory on 64-Word-Line-Layer BiCS
technology, in 2017 IEEE International Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), Feb 2017, pp. 196–197

42. T. Endoh et al., Novel ultra high density flash memory with a stacked-surrounding gate
transistor (S-SGT) structured cell, in IEDM Technical Digest (2001), pp. 33–36

43. T. Endoh et al., Novel ultra high density flash memory with a stacked-surrounding gate
transistor (S-SGT) structured cell. IEEE Trans. Electron Devices 50(4), 945–951 (2003)

44. T. Endoh et al., Floating channel type SGT flash memory, in The 1999 Joint International
Meeting, Hawaii, vol. 99-2, Abstract No. 1323, 17–22 Oct 1999

45. M.S. Seo et al., The 3-dimensional vertical FG nand flash memory cell arrays with the novel
electrical S/D technique using the extended sidewall control gate (ESCG), in Proceedings of
IEEE International Memory Workshop (2010), pp. 1–4

46. M.S. Seo et al., 3-D vertical FG NAND flash memory with a novel electrical S/D technique
using the extended sidewall control gate. IEEE Trans. Electron Devices 58(9) (2011)

47. S. Whang et al., Novel 3-dimensional dual control gate with surrounding floating-gate
(DC-SF) NAND flash cell for 1 Tb file storage application, in Proceedings of International
Electron Devices Meeting (IEDM) (2010), pp. 668–671

48. Y. Noh et al., A new metal control gate last process (MCGL process) for high performance
DC-SF (dual control gate with surrounding floating gate), in 3D NAND flash memory in
Symposium on VLSI Technology (2012), pp. 19–20

49. R. Micheloni, L. Crippa, Multi-bit NAND flash memories for ultra high density storage
devices (Chap 3), in Advances in Non-volatile Memory and Storage Technology, ed. by Y.
Nishi (Woodhead Publishing, 2014)

50. R. Micheloni et al., High-capacity NAND flash memories: XLC storage and single-die 3D
(Chap 7), in Memory Mass Storage, ed. by G. Campardo et al. (Springer, 2011)

51. H. Yoo et al., New read scheme of variable Vpass-read for dual control gate with surrounding
floating gate (DC-SF) NAND flash cell, in Proceedings of 3rd IEEE International Memory
Workshop (2011), pp. 1–4

52. S. Aritome et al., Advanced DC-SF cell technology for 3-D NAND flash. IEEE Trans.
Electron Devices 60(4), 1327–1333 (2013)

53. M.S. Seo et al., A novel 3-D vertical FG nand flash memory cell arrays using the separated
sidewall control gate (S-SCG) for highly reliable MLC operation, in Proceedings of 3rd IEEE
International Memory Workshop (IMW) (2011), pp. 1–4

54. M.S. Seo et al., Novel concept of the three-dimensional vertical FG nand flash memory using
the separated-sidewall control gate. IEEE Trans. Electron Devices 59(8), 2078–2084 (2012)

132 R. Micheloni et al.

55. K. Parat, C. Dennison, A floating gate based 3D NAND technology with CMOS under array,
in Conference on International Electron Devices Meeting (IEDM) (San Francisco, USA, Dec
2015)

56. T. Tanaka et al., A 768 Gb 3 b/cell 3D-floating-gate NAND flash memory, in 2016 IEEE
International Solid-State Circuits Conference (ISSCC), Digest of Technical Papers (San
Francisco, USA, 2016), pp. 142–143

57. Eun-Seok Choi; Sung-Kye Park, Device considerations for high density and highly reliable
3D NAND flash cell in near future, in 2012 IEEE International Electron Devices Meeting
(IEDM), 10–13 Dec 2012, pp. 9.4.1–9.4.4

58. Subirats et al., Impact of discrete trapping in high pressure deuterium annealed and doped
poly-Si channel 3D NAND macaroni, in 2017 IEEE International Reliability Physics
Symposium (IRPS)

59. L. Breuil, Improvement of poly-Si channel vertical charge trapping NAND devices
characteristics by high pressure D2/H2 annealing, in 2016 IEEE 8th International Memory
Workshop (IMW)

60. E. Capogreco et al., MOVPE In1-xGaxAs high mobility channel for 3-D NAND Memory, in
2015 IEEE International Electron Devices Meeting (IEDM)

61. J.G. Lisoni et al., Laser thermal anneal of polysilicon channel to boost 3D memory
performance, in 2014 Symposium on VLSI Technology (VLSI-Technology), Digest of
Technical Papers

62. Ki-Tae Park et al., Three-dimensional 128 Gb MLC vertical nand flash memory with 24-WL
stacked layers and 50 MB/s high-speed programming. IEEE J Solid-State Circuits 50(1), 204–
213 (2015)

63. J. Im et al., A 128 Gb 3b/cell V-NAND flash memory with 1 Gb/s I/O rate, in 2015 IEEE
International Solid-State Circuits Conference, Digest of Technical Papers (ISSCC), Feb 2015,
pp. 23–25

64. T. Tanaka et al., 7.7 A 768 Gb 3b/cell 3D-floating-gate NAND flash memory, in 2016 IEEE
International Solid-State Circuits Conference (ISSCC) (San Francisco, CA, 2016), pp. 142–
144

65. S. Aritome, NAND flash memory revolution, in 2016 IEEE 8th International Memory
Workshop (IMW) (Paris, 2016), pp. 1–4

66. C.-P. Chen et al., Study of fast initial charge loss and its impact on the programmed states Vt
distribution of charge-trapping NAND Flash, in 2010 IEEE International Electron Devices
Meeting (IEDM), 6–8 Dec 2010, pp. 5.6.1, 5.6.4

67. H.-T. Lue, S.-Y. Wang, E.-K. Lai, K.-Y. Hsieh, R. Liu, C. Y. Lu, A BESONOS (Bandgap
Engineered SONOS) NAND for post-floating gate era flash memory, in Symposium on VLSI
Technology (2007)

68. K.-S. Shim et al., Inherent issues and challenges of program disturbance of 3D NAND flash
cell, in 2012 4th IEEE International Memory Workshop (IMW), 20–23 May 2012, pp. 1–4

69. H.S. Yoo et al., Modeling and optimization of the chip level program disturbance of 3D
NAND Flash memory, in 2013 5th IEEE International Memory Workshop (IMW), 26–29
May 2013, pp. 147–150

70. R. Micheloni (ed.), 3D Flash Memories (Springer, 2016)
71. K.-T. Park et al., 19.5 three-dimensional 128 Gb MLC vertical NAND Flash-memory with

24-WL stacked layers and 50 MB/s high-speed programming, in 2014 IEEE International
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp. 334–335,Feb 9-13,
2014

72. S. Aritome, Scaling challenges beyond 1Xnm DRAM and NAND Flash, in Joint Rump
Session in VLSI Symposium 2012

5 3D NAND Flash Memories 133

Chapter 6
NAND Flash Design

Luca Crippa and Rino Micheloni

Abstract A Solid-State-Disk is made up by a Flash controller plus a bunch of
NAND Flash devices. This chapter focuses on design aspects of NAND chips. The
information stored in each memory cell is fully analog because it is related to the
number of electrons stored in the floating gate. When we program, erase or read,
electrons must be injected, extracted and counted, respectively. All these operations
require a mix of analog and digital circuits that need to be properly and timely
driven. Starting from a generic floorplan of a NAND memory, we guide the reader
through the main building blocks. First of all, we describe the logic part of the chip,
from the embedded microcontroller, who is in charge of running all the internal
algorithms, to the fast DDR interface. Counting the number of electrons in the
floating gate is definitely one of the most challenging task, considering that has to be
performed with few transistors: sensing techniques are described in Sect. 6.5. Pro-
gramming and erasing floating gate cells require voltages higher than the chip power
supply. Therefore, charge pumps are used to generate all the needed voltages within
the chip. In multilevel storage, cell’s gate biasing voltages need to be very accurate
and voltage regulators become a must. All these circuits are described in the High
Voltage Management section. Last but not least, the row decoder is introduced. This
circuit has the task of properly biasing each single wordline in the NAND array,
transferring the regulated high voltages to the gate of the memory cell.

6.1 NAND Flash Memories

A NAND chip contains a lot of different circuits, both digital and analog. Figure 6.1
sketches a floorplan of a Flash device. The basic architecture of the NAND array
has already been presented in Chap. 2. With reference to Fig. 6.1, the memory array

L. Crippa (✉) ⋅ R. Micheloni
Storage Solutions, Microsemi Corporation, Vimercate, MB, Italy
e-mail: luca.crippa@ieee.org

R. Micheloni
e-mail: rino.micheloni@ieee.org

© Springer Nature Singapore Pte Ltd. 2018
R. Micheloni et al. (eds.), Inside Solid State Drives (SSDs),
Springer Series in Advanced Microelectronics 37,
https://doi.org/10.1007/978-981-13-0599-3_6

135

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_6&domain=pdf

has been split in two independent planes. On the horizontal direction a wordline
(WL) is highlighted, while a bitline (BL) is shown in the vertical direction. The
Row Decoder is the block in charge of addressing and biasing each single wordline
and it is located between the planes. BLs are connected to a sensing circuit (Sense
Amp). The purpose of sense amplifiers is to read the analog information stored in
the memory cell. In the periphery, we find charge pumps, voltage regulators, ref-
erence circuits, digital circuits, and redundancy structures. This chapter gives an
overview of all the above mentioned circuits.

6.2 Logic Device View

Let’s start our analysis from the peripheral circuits. First of all, we have the
“Logic”, a set of digital gates which enables the communication to the external host
and manages data inside the device. In other words, it is the real brain of the
memory.

We can identify some basic logic blocks, as shown in Fig. 6.2.

1. Control Interface (CI) [2–4]. It is the command interface between the NAND
Flash and the external user;

2. Microcontroller. It stores and executes all the internal algorithms, such as read,
program, erase and testmode operations.

PERIPHERAL CIRCUITS

SENSE AMPLIFIER SENSE AMPLIFIER

NAND FLASH
MEMORY ARRAY

NAND FLASH
MEMORY ARRAY

W
L

D
EC

O
D

ER

PERIPHERAL CIRCUITS

SENSE AMPLIFIER SENSE AMPLIFIER

I/O PADS

Word Line (WL)

B
it

Li
ne

 (B
L)

Fig. 6.1 A typical NAND Flash floorplan [1]

136 L. Crippa and R. Micheloni

3. Error Correction Code (ECC) [5] could be embedded in the memory device.
ECC improves the reliability of the read operation.

4. Memory testing is a fundamental functionality. For this reason, there is a Test
Interface (TI) block, i.e. the interface to the user when device is in test mode.

5. Datapath. Basically, it is the fast link between I/Os and read circuits.
6. There are also a lot of registers, mainly for storing the configurations of the

analog circuitry.
7. Redundancy: it can be managed by the microcontroller or it can be implemented

as a finite state machine (FSM). This logic is used to increase the wafer yield.

6.2.1 Command Interface

In order to talk with the external user, Flash memory has to understand commands,
take data and output data.

The logic block implementing this functionality is basically a finite state
machine and is represented by the Command Interface (CI) when the device is in
user mode and by the Test Interface (TI) when the device is in test mode.

CI understands legal or illegal command sequences, defined in the device
specifications and interacts with other logic blocks as datapath and microcontroller.
Control signals have been already described in Chap. 2. CI is composed by a huge
finite state machine clocked by WE# and driven by all I/O signals such as ALE or
CLE. Figure 6.3 represents CI and its interaction blocks.

1. I/Os are all control signals: R/B#, CLE, ALE, WP#, WE#, RE#, CE#, DQ[7:0].
2. Reset Interface exchanges reset information with logic global reset.

MICRO
Data SRAM

ROM High Speed
DATAPATH

Code SRAM

Test
Interface

 (TI)

Command
Interface

(CI)

Test Mode
Register

Configuration
Register

Control Bus

Fig. 6.2 Logic view of a NAND device

6 NAND Flash Design 137

3. Datapath interface controls input and output datapaths.
4. Test interface toggles between user mode and test mode.
5. Firmware Control Interface enables microcontroller to execute internal

algorithms.

CI is made up by multiple finite state machines, one for each basic function. The
Command Interface Controller disables a specific FSM if that specific command is
not allowed. During power up, CI Controller disables every commands, so that all
the FSMs are disabled too. There is also a FSM that recognizes if a specific
command is a read, a program or an erase and enables the correct sub-FSM. Every
time the Controller receives an illegal sequence, the device goes into an IDLE state.

When the internal microcontroller executes a specific algorithm, the device is
busy. In this situation, the only commands that the CI can accept are a reset and a
testmode entry command.

6.2.2 Test Interface

Test Interface (TI) is used when we want to test some particular features, usually
not accessible during normal operations (usermode). Test Interface is enabled by a
specific command sequence, called testmode entry. Generally speaking, a NAND
device can have these modes:

• Usermode that represents the standard functionality, where commands described
in the device specification are available;

• Usertestmode that represents the standard functionality plus some particular
commands;

• Testmode that is the test operational mode.

Figure 6.4 represents how it is possible to change the operational modes with
proper command sequences recognized by the CI Controller.

Firmware
Control
Interface

Command Interface
(CI)

Datapath
Interface

Reset
Interface

Test
Interface

I/O
Interface

Fig. 6.3 Command interface and its interaction blocks

138 L. Crippa and R. Micheloni

Once TI is enabled, it substitutes CI: TI recognizes the command set and drives
input and output data/address on the logic bus. Test Interface is allowed to access
the different registers and different memory circuits without the aid of the
microcontroller.

TI is built as a finite state machine in a similar way to the Command Interface.
Let’s now explain what testmode registers are. All the circuits added for test

purposes can’t influence the standard user mode functionality and can’t worsen
performances. The adopted solution is sketched in Fig. 6.5. A TM register is
associated with a UM register: when the signal TESTMODE is high, the output
takes the value contained in the register TM, influencing the behavior of the cir-
cuitry downstream. When the signal TESTMODE goes low, the standard usermode
functionality is enabled.

6.2.3 Datapath

Till few years ago, NAND memories had an asynchronous interface and it was very
difficult to run frequencies higher that 40 MHz for data download/upload [6].
NAND chips have linear dimensions easily higher than 10 mm so that data have to
flow through a long path with an unavoidable impact on the transmission time
through the chip. One of the most adopted solutions to overcame this problem is the
use of a pipeline on the datapath [7].

In the following we will describe datapath structure for a NAND memory with
double side architecture and with control pads on the opposite side with respect to
data pads.

With reference to Fig. 6.6 the data input sequence is here described.

1. During the low-phase of WE#, input buffers on I/O PADS block and latches on
DP_UP and DP_DW blocks are enabled. In this way, input data flow to the
latches placed in DP_UP and DP_DW blocks.

UserMODE
(only user commands)

UserTESTMOCE
(user and test extra commands)

TESTMODE
(test bits setup)

Fig. 6.4 Flow diagram used to change operational modes among usermode, usertestmode and
testmode

6 NAND Flash Design 139

TEST MODE
REGISTER

USER MODE
REGISTER

MUX

OUT

TESTMODE

Fig. 6.5 Testmode registers

IO CONTROL

MATRIX

I/O PADS

PAGE
BUFFERL L L L L LL L L L L L

FF
PCD_UP

FF
PCD_UP

L L LL L L
PLS PLS PLS PLS PLS PLS

COLUMN
DECODER

LL

L Latch
Flip Flop
Write pulse generation

FF

PLSA
dd

re
ss

CONTROL PADS

FF
PCD_DW

FF
PCD_DW

L L LL L L
PLS PLS PLS PLS PLS PLS

WE#

CNT

DP_UP

PAGE
BUFFERL L L L L L
PAGE

BUFFERL L L L L L

COLUMN
DECODER

IO CONTROLLL DP_DW

1

3

5

2 4

WE#

Fig. 6.6 Input datapath

140 L. Crippa and R. Micheloni

2. On the rising edge of WE#, I/O PADS input buffers are disabled. Data are
latched in DP_UP latches till the next falling edge of WE#. The counter
addresses the appropriate page buffers for the following write operation.

3. On the high-phase of WE#, IO CONTROL latches are open and the COLUMN
DECODER is addressing the right page buffers.

4. On the falling edge of WE#, data are latched in the IO CONTROL latches.
5. On the next low-phase of WE#, while I/O PADS input buffers and DP_UP

latches receive new data from the user (as in phase 1), IO CONTROL generates
write pulses for loading the latched data into the page buffer latches.

A similar approach is adopted for data output.
Performance driven applications like Solid-State-Disks (SSDs) are now forcing

the NAND towards the adoption of a DDR interface, as described in Sect. 6.3.

6.2.4 Microcontroller

As already said, the microcontroller inside the memory is the “brain” of the device.
Microcontroller implements the needed algorithms for a Flash memory. In order to
be able to perform the necessary operations, these conditions must hold true:

• each sequence of operations that must be executed for a specific algorithm (read,
program, erase etc.) has to be non-volatile;

• the microcontroller needs to perform arithmetical, logical and output operations.

Usually, microcode (FW) is stored in a ROM memory (Fig. 6.7). There could
also be a Code RAM memory containing the specific firmware for testing and
debugging.

The microcontroller contains a number of different blocks. First of all there is the
Program Counter. It stores the address of the memory location containing the
instruction that must be executed. It is also able to handle the address increment, the
absolute or relative jumps and the calls to subroutines with different stack levels.
The levels of stack indicate how a subroutine is far away from the main program.

Another important block is composed by the Internal Registers: they are nec-
essary for the execution of an operation or a sequence of operations. A register can
be either loaded with a constant value or with a value read from the ROM, and it
can also be the result of an operation.

The microcontroller computational center is the Arithmetic Logic Unit or ALU.
The ALU executes an operation associated with a specific opcode and implemented
in the microcontroller. The operations can be with one or two operands. The
operands can be internal registers, flags or constants read from the ROM. The result
of the operation is stored in the internal registers, with the exception of test and
compare operation.

6 NAND Flash Design 141

Finally, the last block of the microcontroller is constituted by the Output
Registers. Each register is made up by a number of latches. The most advantageous
structure for the output registers is based on the dual ports concept.

With this structure, the registers are handled by two independent ports called
port A and port B. For instance, port A operates over all the outputs, while port B
operates only over some output registers.

The dual ports structure allows the use of two different bank registers at the same
time, so that it is possible to move more control signals at each clock cycle.

Apart from the internal structure, the characterizing feature of a microcontroller
is what it is able to do, that is its Instruction Set. Before designing a microcontroller,
we need to understand the must-have operations. In fact, general purpose micro-
controllers are not useful in the NAND memory environment, because they are
generally bigger and slower, in order to guarantee a full flexibility not needed in the
device. In other words, it is useless to implement operations not used, but it is better
to optimize the used ones.

Program
COUNTER

ROM

Address
Call
Jump
Return

Code SRAM

Address
INSTRUCTION

DECODER
&

CONTROL
UNIT

Operand
Assemby

ALU OpA
OpB

Operation
K

INPUT

Operation

Internal
REGISTERS

Data Result

ADD

DATA

Port Add
Port Op

Port Data

Reset

Output
REGISTERS

OUTPUT

Instruction

Fig. 6.7 Microcontroller structure with ROM and RAM memories

142 L. Crippa and R. Micheloni

6.3 NAND DDR Interface

Flash based systems are made up by several NAND memory devices and one
controller. The controller has the primary function to communicate with NANDs
and conveys data from/towards the external interface. Especially, SSDs call for a
higher Read/Write throughputs; in other words, SSDs need to manage more NAND
dies in parallel. Basically, there are a couple of options.

The first one is to increase the number of dies per channel as shown in Fig. 6.8a.
This solution encounters limitations from channel parasitic loading. It has the
advantage of lower pin count and lower hardware cost, especially for the controller,
but it might not satisfy the requirements of Write throughput.

The second option is to increase the number of channels (Fig. 6.8b). This
solution shifts all the problems inside the memory controller which has to manage
the parallel data flow coming from all the memory channels. The drawback is that

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

CE0

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

CHANNELFLASH8 BIT

CHANNELFLASH8 BIT

CHANNELFLASH8 BIT

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

CE0

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

NAND
Flash

FLASH

CONTROLLER

FLASH

CONTROLLER

CE1 CE2 CE3

CE0 CE1 CE2 CE3

CE1 CE2 CE3

(a)

(b)

Fig. 6.8 SSD system enhancement: a increased number of dies per channel b increased number
of channels

6 NAND Flash Design 143

the controller has to manage the ECC for each channel and have the need of
dedicated SRAM. On the positive side, this solution is scalable and flexible and
allows to reach very high Read/Write throughput. Nowadays, multiple channel
architectures are quite common in SSD design.

In every case, power and signal integrity must be addressed with careful inter-
face design considerations. In this section, we mainly deal with the I/O bottleneck
problem which must first be solved by a proper interface roadmap.

6.3.1 DDR Interface

High speed NAND introduced a Double Data Rate (DDR) interface in year 2008.
As a matter of fact, NAND memories are now following the same path that DRAMs
experienced from year 2000.

The challenge in the coming years will be the standardization of the interface
among vendors. Two solutions are available in the market, as draft in Fig. 6.9. On
one side, ONFI organization [8] introduced an interface with a clock and data
strobe, ready for a DRAM-like evolutionary path. Pinout differences between
legacy and ONFI 2.0 interfaces are:

• WE# becomes a fast CLK;
• RE# handles data direction by becoming W/R# (Write/Read#);
• I/O[7:0] renamed to DQ[7:0] (name change only, functionally identical);
• DQS, a new bi-directional signal, is enabled.

On the other side, Samsung decided for a different approach named “Toggle” [9]
where only data strobe has been added to the legacy NAND pinout; Toggle mode
adds DQS data strobe signals; RE# is used to trigger the read cycle as done in
asynchronous interface; DQS is used to strobe the data on both edges.

ASYNC

NAND
CE#
ALE
CLE
RE#

WE#
R/B#
WP#

I/O[7:0]

ONFI

NAND
CE#
ALE
CLE

W/R#
CLK
R/B#
WP#

DQ[7:0]
DQS

TM

NAND
CE#
ALE
CLE
RE#

WE#
R/B#
WP#

I/O[7:0]

Fig. 6.9 Legacy NAND versus ONFI 2 and Toggle-mode synchronous NAND interface

144 L. Crippa and R. Micheloni

As usual, JEDEC is now working on combining the above interfaces in a single
standard.

ONFI has already released the third generation of specifications where they
target 400 MB/s throughput, and Toggle is targeting the same speed. The interface
roadmap stays with LVTTL bus driving style as long as possible in order to ease
integration, but some design tricks have to be introduced in order to sustain higher
bandwidths. This will include the proper scaling of interface voltage, the use of a
specific termination type, On-Die Terminations, differential strobes and, going
beyond, synchronization circuit. Finally, it will include DLL/PLL and the change to
a SSTL class of terminated bus.

The DDR protocol diagrams are sketched in Fig. 6.10. A Synchronous clock must
be provided to thememory chips (not needed in Toggle-mode interface). Bidirectional
Data bus DQ is driven at every clock edge. Therefore, data throughput is doubled
compared to a Single data rate system, assuming the same clock frequency.

Data strobe signal DQS behaves like all other DQs and it is used as data capture
signal on the receiver side. Systems scalability benefits from this approach since
DQS load always matches that of DQ lines, ensuring same timings: this is very
important in SSD design because the parasitic load of a Flash channel changes
when more dies are used.

6.3.2 Power

Let’s consider an SSD where multiple Flash channels are used. Due to the channel
parasitic capacitance, each time a single NAND die is written or read, the entire
capacitance of data lines needs to be driven.

I/O power consumption in a DDR system can be written as [10]:

P=9 ⋅ η ⋅ f ⋅C ⋅V2 ð6:1Þ

CK

DQS

DQ[7:0]

tDQSCK tDVW

tDQSQ

Fig. 6.10 DDR timing diagram

6 NAND Flash Design 145

where η is the bit activity ratio, f is the DDR frequency, C is the capacitance of a
single line and V is the supply voltage of the interface. Figure 6.11 shows the
impact of I/O power supply. Therefore, scaling the I/O interface voltage becomes a
must, especially looking at higher clock frequencies.

6.3.3 Capacity

SSD storage capacity can be increased in two ways:

• by increasing the number of Flash channels;
• by increasing the number of NAND dies connected to a single channel.

As already mentioned, the first solution has been widely adopted, even if it
increases the hardware complexity of the SSD controller.

The adoption of the second solution is mainly limited by the resulting I/O
parasitic capacitance of the Flash channel. To partially overcome this limitation, it
is possible to use advanced System in Package technologies such as Through
Silicon Vias (TSV) [11]. TSV creates interesting opportunities for stacking, thanks
to its low parasitic capacitance.

Figure 6.12 depicts a system in which memory chips are stacked and connected
using a Local Interconnect Bus. The Interface Chip provides data translation from
local interconnect bus to the external bus (i.e. Flash channel) by means of a standard
off chip driver (OCD). It is worth mentioning that the local bus can be driven by
standard CMOS buffers instead of OCD ESD-compliant structures. Furthermore, by
using simplified ESD structures, the bus parasitic capacitance can become even
lower.

0

100

200

300

400

500

600

700

50 100 150 200 250 300

MB/s

m
W 3 V IO

1.8 V IO

50pF load

Fig. 6.11 I/O power as a
function of channel
throughput

146 L. Crippa and R. Micheloni

6.4 I/O Design

This section starts with an overview of I/O design problems in legacy asynchronous
NAND products available in the market. Design of high-speed I/O is then reviewed.

6.4.1 Basic CMOS Output Buffer Design

Usually, NAND output buffers need to drive large capacitive loads, in the range of
50–100 pF. In this situation the output capacitance transition is very long compared
to the buffer switching time. The buffer conductance is usually made very large to
reduce the charge/discharge time and match the specifications.

The memory data bus can be 8/16 bits: the current sunk by the parasitic capacitor
of a single output buffer has to be multiplied by the number of switching data bits.
Moreover, the inductance of the bonding wire (5–10 nH in TSOP packages) might
generate bounces on internal power supply lines that could affect the functionalities
of analog circuits [12]. This effect is called Simultaneous Switching Noise (SSN)
and will be treated in more details later.

A basic output buffer with push-pull architecture is shown in Fig. 6.13.
In order to reduce the current peak, switching time of push-pull drivers have to

be carefully controlled. As a consequence, if gates of PMOS and NMOS are driven
at a lower speed, crowbar current becomes an issue. Crowbar occurs when both
PMOS and NMOS are ON at the same time. To avoid this situation, the buffer
structure of Fig. 6.14 can be adopted [3, 13]. In this configuration the pull-up is
switched-off before the pull down is turned on (and vice versa).

NAND and NOR gates can be tuned to obtain a fast switching-off and a proper
switching-on time. In the figure it is also shown the output enable signal OE that is
used to turn the output stage in high impedance: in this way, data bus can be driven
by somebody else.

NAND CHIP #0

CMOS
BUF

I/O
LOGIC

ESD
BUF

Test PAD

Local Interconnect PAD

NAND CHIP #7

CMOS
BUF

I/O
LOGIC

ESD
BUF

Test PAD

Local Interconnect PAD

INTERFACE CHIP

I/O
LOGIC

OCD/ESD
BUF

Local Interconnect PAD

I/O PAD

Local Interconnect BUS

Fig. 6.12 Local interconnect bus architecture

6 NAND Flash Design 147

Another important design constraint is the slew rate of the output driver. In
asynchronous devices, the slew rate is generally controlled by acting on the
pre-driver, so that the pull-up and pull-down transistors are gradually switched on/
off [13, 14].

Generally, this is optimized in the slow corner and the result is a big variation
with Process/Voltage/Temperature (PVT). The pre-driver RC output constant must
be much smaller than the data window, otherwise there is a risk to have a data
dependent jitter. If a wide data bus is used, it could be beneficial to consider
skewing the output enable by a proper small delay and consequently spreading in
time the current requests.

VDD INT

GND INT

OE

OE_N

DATA

COUT
Cvdd-gnd

Lpckg

IO

GNDQ

VDDQ

Lpckg

Fig. 6.13 Output buffer
model

VDD INT

GND INT

OE
DATA

PAD

OE_N
DATA_N

Fig. 6.14 Pre-driver to avoid
crowbar in push-pull stage

148 L. Crippa and R. Micheloni

6.4.2 Simultaneous Switching Noise (SSN)

One of the main responsible for data window margins degradation is the simulta-
neous switching noise [13, 15–18]. SSN is an inductive noise caused by several
outputs switching at the same time. One single buffer could have a good transient
behavior, but, when all the data buffers are switching at the same time, the data AC
behavior could be corrupted. The problem is serious in output buffer memory
design because of two effects:

• jitter and signal bounces are increased and data window margin is reduced;
• the generated noise could affect other circuits, especially analog circuits and

memory sense amplifiers, reducing operating margin or creating systematic
non-working windows.

With a large capacitive load, a large current is requested to charge the load and
the power network must supply that current. The current flows in inductances,
typically in the bonding wires or leads of the package, and the resulting noise is
injected into power and ground supplies. This noise is transferred to the output and
the output AC characteristics are affected.

The simultaneous switching noise is determined, in principle, by the following
equation:

VSSN =N ⋅ L ⋅
∂I
∂t

ð6:2Þ

OUT
BUF

OUT
BUF

LPCKG LPCKG

LPCKG

LPCKG

LPCB LPCB

LPCB LPCB CPADOUTCPADOUT

PAD OUT

CEXT

CHIP#0

PAD OUT

CALIM

OUT
BUF

OUT
BUF

LPCKG
LPCKG

LPCKG

LPCKG

LPCB LPCB

LPCB

LPCB CPADOUTCPADOUT

CHIP#N

PAD OUT PAD OUT

CALIM

_ +

Fig. 6.15 Model example used to evaluate SSN

6 NAND Flash Design 149

where N is the number of switching outputs, L the equivalent inductance in which
current must flow, and I the current per driver.

Since this mechanism is dependent on the number of output switching N, this
makes the noise dependent also on the data sequence.

To deal correctly with SSN it is necessary to understand the complete signal
current paths in the memory. In Fig. 6.15 a complete path is shown. Local metal
resistances are omitted but they should be evaluated as possible sources of inter-
ference. It is straightforward to understand that the problem is really connected with
the package. When TSOP packages are used, very long bonding wires can be
present leading to high inductance values. Moving to higher data rates requires to
leave such packages for more controllable Ball Grid Arrays.

6.4.3 High Speed NAND I/O Design

Output buffer in high speed signal transmission is often named Off-Chip Driver
(OCD). In addition to the task of being the interface circuit between inside and
outside, OCD in high speed memories has to accomplish several additional tasks.

• Translate data flow between single data rate (SDR) and DDR domains.
• Voltage domain change. The core of the memory could operate at a different

voltage level than the I/O interface and the data signals have the need to be
shifted from the core level to the interface voltage.

• Provide the AC/DC requirements such as VOL/VOH, slew rate or impedance
matching.

• Provide the On-Die-Termination (ODT).
• ESD protection.

Various types of OCD are used in memory design depending on the interface
type and speed. In order to introduce all the basic concepts, we focus here on the
single ended CMOS buffer, which is widely used in DDR designs.

6.4.4 Double Data Rate OCD

A DDR OCD is a synchronous output buffer. In synchronous systems, OCD
includes a register stage used to synchronize the output with the internal data bus.
In DDR design a block named serializer is included in the buffer design as shown in
Fig. 6.16. Serializer block performs the Single Data Rate (SDR) to DDR conver-
sion: it receives 2n data at a given rate R (SDR) and multiplexes these data onto an
internal line at a higher rate 2R (DDR).

We should highlight that the OCD is operating at a frequency higher than the
one used by other blocks in the memory chip. Therefore, since we have to deal with

150 L. Crippa and R. Micheloni

smaller delays inside the OCD, it is necessary to take more countermeasures in
designing the block to avoid jitter eating almost all margins.

6.4.4.1 OCD Linearity: Push-Pull and Open-Drain Configurations

It is of primary importance to offer a linear behavior of the output characteristics
because of the system signal integrity. In other words, OCD linearity is key for
impedance matching with the external line.

6.4.4.2 Slew Rate Control and Bandwidth

Drivers should be designed in order to avoid driving frequencies greater than the
signaling rate. Simple and sophisticated methods can be used, such as passive
delays after the pre-driver or current control technique for the pre-driver stage.
A time-split method is widely used. The basic principle is to split output pull-up and
pull-down devices into branches and activate them serially with proper sequential
delays. This time-distributed driver can be implemented in a simple analog form
suitable for relative low operating frequency or digital form [13, 19, 20].
Figure 6.17 shows a basic implementation of the analog form where the pull-up/
down branches are driven by a resistive line which contributes to define the RC

SERIALIZER OCD PAD

2n data n data

prefetch data rate
(SDR)

output rate
(DDR)

A

B

n

n
n

ClockFig. 6.16 OCD schematic
block diagram

VDD VDD VDD VDD VDD

IN DQ

Fig. 6.17 Slew rate control by output driver time-distributed activation

6 NAND Flash Design 151

delay element for each branch. Each branch can be “weighted” to obtain the best
slew rate conditions.

6.4.4.3 Voltage Domain Change: Level Shifting

I/O voltage usually differs from the power supply of the NAND core. For example,
the memory could internally operate at 1.5 V by means of a DC-DC
down-converter, whereas the data interface needs a 3 V or 1.8 V driving. Volt-
age domain change occurs also when the memory has different power pins for core
supply voltage and I/Os. This situation allows the use of independent supply
generators to separate the noise coming from data bus and from the core region. In a
simpler system design it is still possible to connect the pins to the same supply on
the PCB. The OCD structure implements the level shifting function which consists
in shifting the levels of the digital signals from the core voltage GND/VDD to the
interface voltage GNDQ/VDDQ. Figure 6.18 shows a modified structure where
NMOS transistors M5 and M6 are added in order to speed up the transition of nodes
from low to high.

The level shifting circuit or, more generally, the point where the data change
voltage domain, is critical in jitter generation. The two domains provide two dif-
ferent references for the signal detection; therefore, any disturbs on the power
supply lines lead to the introduction of additional distortion.

6.4.4.4 Jitter Sources and Duty Cycle Distortion

Off-Chip Driver complexity implies that data is travelling along many gates before
reaching the output stage. The design of the chain of inversions is fundamental in
the control of duty cycle distortion. Duty cycle distortion occurs when:

• positive and negative slopes are different;
• number of inversion is odd;
• ground or power shifts.

IN IN_N

M1 M2

M3 M4

M5 M6

VDDQ

GNDQ

IN_N IN

OUT

Fig. 6.18 Level shifter modified

152 L. Crippa and R. Micheloni

To reduce the jitter in a chain of inverters it is necessary to keep the same slope
in the chain, i.e. using the same ratio between the driver strength and the load,
instead of trying to minimize the number of inverters in the chain. Another source
of jitter is hidden in level shifters and voltage domain change. Level shifter sket-
ched in Fig. 6.18 introduces asymmetric positive/negative slopes detected by a
receiver gate with different time delay.

In conclusion, high-speed NANDs require a very sophisticated I/O design
because of its impact on SSD’s power, performances and signal integrity.

6.5 Read Operation: The Sense Amplifier

Let’s now move in the core region. The reading operation is designed to address
specific memory cells within the array and measure their information content. As in
other types of Flash memories, the stored information is associated with the cell’s
threshold voltage VTH: in Fig. 6.19 the threshold voltage distributions of cells
containing one logic bit are shown. If the cell has a VTH belonging to the erased
distribution, it contains a logic “1”, otherwise it contains a logic “0”. Cells con-
taining n bit of information have 2n different levels of VTH.

Flash cells act like usual MOS transistors. Given a fixed gate voltage, the cell
current is a function of its threshold voltage. Therefore, through a current measure,
it is possible to understand which VTH distribution the memory cell belongs to.

The fact that a memory cell belongs to a string made up by other cells has some
drawbacks. First of all, the unselected memory cells must be biased in a way that
their threshold voltages do not affect the current of the addressed cell. In other
words, the unselected cells must behave as pass-transistors. As a result, their gate

VTH

Programmed cell distribution
VTH > V READ

“0”

VREAD

VTHMAX

VPASS

“1”

Erased cell distribution

VTH < V READ

Fig. 6.19 Threshold voltage distributions of erased (“1”) and programmed (“0”) cells

6 NAND Flash Design 153

must be driven to a voltage (commonly known as VPASS) higher than the maximum
possible VTH. In Fig. 6.19 VPASS has to be higher than VTHMAX.

However, the presence of 2n − 1 transistors in series has a limiting effect (sat-
uration) on the current’s maximum value; this maximum current is, therefore, much
lower than the one available in NOR-type Flash memories.

Figure 6.20 shows the I–V (current-voltage) characteristic of a NAND cell
(string): VREAD is applied to the selected gate while VPASS bias the unselected
gates. VPASS is a fixed voltage. Three main string working-regions can be
highlighted.

1. Region A: the addressed cell is not in a conductive state.
2. Region B: VREAD makes the addressed cell more and more conductive.
3. Region C: the cell is completely ON, but the series resistance of the pass

transistors (unselected cells) limits the current to ISSAT.

The string current in region C can be estimated as:

ISSAT =
VBL

ðn− 1ÞRON
ð6:3Þ

where RON is the series resistance of a single memory cell, VBL is the voltage
applied to the bitline and n is the number of the cells in the string. RON, at a first
approximation, is the resistance of a transistor working in the ohmic region.

For a MOS transistor in ohmic region the following equation holds true:

ID = k ⋅ VGS −VTHð Þ ⋅VDS −
V2
DS

2

� �
ð6:4Þ

VREAD

ISTRING

Region – A
(no string current)

Region – B
(good working region) Region – C

(string current saturation)

ISSAT

O

(best working region)

Fig. 6.20 Cell current characteristics versus gate voltage

154 L. Crippa and R. Micheloni

For small VDS values, as in our case, (6.4) may be simplified as:

ID = k VGS −VTHð Þ ⋅VDS½ � ð6:5Þ

Therefore, RON is equivalent to

RON =
VDS

ID
=

1
k VGS −VTHð Þ ð6:6Þ

Equation (6.6) shows that RON is a function of VTH. In other words, ISSAT
depends on the VTH values of the n cells in series. When all the cells are pro-
grammed to VTHMAX, RON takes its maximum value (dashed line in Fig. 6.20). RON

influences the I–V characteristic also in region B but in a more negligible way. In
order to reduce the dependency from RON, the cell has to be read in region B as near
as possible to point O.

The order of magnitude of the saturation current, in the state-of-the-art NAND
technologies, is a few hundreds of nA, that means a reading current of some tens of
nA. It is very hard to sense such small currents with the standard techniques used in
NOR-type Flash memories, where the reading current is, at least, in the order of
some μA. Moreover, in NAND devices, tens of thousands of strings are read in
parallel. Therefore, tens of thousands of reading circuits are needed. Due to the
multiplicity, a single reading circuit has to guarantee a full functionality with a very
low area impact. As a matter of fact, the first memory NAND prototypes used
traditional sensing methods, since the said currents were in the order of tens of μA
[21].

The reading method of the Flash NAND memories consists in integrating the
cell current on a capacitor in a fixed time (Fig. 6.21). The voltage ΔVC across a
capacitor C, charged by a constant current I for a time period ΔT, is described by the
following equation:

ΔVC =
I
C
ΔT ð6:7Þ

t

VC

ΔVC

ΔT

I

C
VC

Starting Voltage

Ending Voltage

Fig. 6.21 Capacitor
discharge through a constant
current source

6 NAND Flash Design 155

Since the cell current is related to its VTH, the final voltage on the capacitor (ΔV)
is a function of VTH too.

There are different reading techniques, starting from the one using the bitline
parasitic capacitor, ending with the most recent sensing technique which integrates
the current on a little dedicated capacitor. The above mentioned techniques can be
used both in SLC and MLC NAND memories. In the MLC case, multiple basic
reading operations are performed at different gate voltages.

Historically, the first reading technique used the parasitic capacitor of the bitline
as the element of the cell current integration [22–24].

In Fig. 6.22 the basic scheme is shown. VPRE is a constant voltage. At the
beginning, CBL is charged up to VPRE and then it is left floating (T0). At T1 the
string is enabled to sink current (ICELL) from the bitline capacitor. The cell gate is
biased at VREAD. If the cell is erased, the sunk current is higher than (or equal to)
IERAMIN. A programmed cell sinks a current lower than IERAMIN (it can also be
equal to zero). CBL is connected to a sensing element (comparator) with a trigger
voltage VTHC equal to VSEN. Since IERAMIN, CBL, VPRE and VSEN are known, it
follows that the shortest time (TEVAL) to discharge the bitline capacitor is equal to:

TEVAL =CBL
VPRE −VSEN

IERAMIN
ð6:8Þ

If the cell belongs to the written distribution, the bitline capacitor will not
discharge below VSEN during TEVAL. As a result, the output node (OUT) of the
voltage comparator remains at 0. Otherwise, if the cell is erased, VBL drops below
VSEN and the OUT signal is set to 1.

The basic sense amplifier structure is sketched in Fig. 6.23. During the precharge
phase TPRE, MSEL and MPCH are biased to VPRE and VDD + VTHN respectively.
VTHN is the threshold voltage of a NMOS transistor and VDD is the device’s power
supply voltage.

CBL
VBL

ICELL

BL

T0

t

V VPRE

VSEN

IERAMIN

T0

TPRE

T1 TSEN

TEVA

VBL

ICELL

OUT

VPRE

VSEN
OUT

Fig. 6.22 Basic sensing scheme exploiting bitline capacitance and the related timing diagram

156 L. Crippa and R. Micheloni

As a consequence, CBL is charged to the following value:

VBL =VPRE −VTHN ð6:9Þ

During this phase, the SO node charges up to VDD. Since VGS and VDS can be
higher than 20–22 V, MHV has to be a high voltage (HV) transistor. In fact, during
the erase phase, the bitlines are at about 20 V and MHV acts as a protection element
for the sense amplifier’s low voltage components. Instead, during the reading phase,
MHV is biased at a voltage that makes it behave as pass-transistor. Moreover, during
the precharge phase, the appropriate VREAD and VPASS are applied to the string.
MBLS is biased to a voltage (generally VDD) that makes it work as pass transistor.
Instead, MSLS is turned off in order to avoid cross-current consumption through the
string.

Typically, VBL is around 1 V. From (6.9), VPRE values approximately
1.4–1.9 V, depending on the VTHN (NMOS threshold voltage). The bitline

 M PCH
PCH

VDD

 M SEL
SEL

 M HV
HV H

V

CBL

ICELL

BL(n)

CSO

 M SLS
SLS

VREAD

 M i-1
VPASS

 M i

VPASS

 M i+1

 M BLS
BLS

SL

SE
LE

C
TE

D
 S

TR
IN

G

LAT
SO

OUT
LATCH / FF

SL

Fig. 6.23 Basic elements of the sense amplifier

6 NAND Flash Design 157

precharge phase usually lasts 5–10 μs, and depends on many factors, above all the
value of the distributed bitline parasitic RC.

Sometimes this precharge phase is intentionally slowed down to avoid high
current peaks from VDD. In order to achieve this, the MPCH gate could be biased
with a voltage ramp from GND to VDD + VTHN.

At the end of the precharge phase, PCH and SEL are switched to 0. As a
consequence, the bitline and the SO node parasitic capacitor are left floating to a
voltage of VPRE − VTHN and VDD respectively. MSL is then biased in order to
behave as pass transistor. In this way the string is enabled to sink (or not) current
from the bitline capacitor.

At this point, the evaluation phase starts. If the cell has a VTH higher than VREAD,
no current flows and the bitline capacitor maintains its precharged value.

Otherwise, if the cell has a VTH lower than VREAD, the current flows and the
bitline discharges.

6.5.1 Interleaving Architecture

Given the (6.8), it is clear that the bitline capacitance has a direct influence on the
evaluation time. CBL must fulfill the following requirements:

• it must be a known parameter;
• it must be immune to external noise.

Figure 6.24 is a bitline cross-section showing the different contributions to CBL:

• CAD is the parasitic capacitor between the bitline and the lower plane (usually it
is the wordline plane);

• CAU is the parasitic capacitor between the bitline and the upper plane (usually it
is the source-line plane);

 C C

 C AD

 C AU

 C C

 C AD

 C AU

 C C

 C AD

 C AU

 C C

 C AD

 C AU

 C C C C

 C AU

UPPER PLATE – SOURCE LINE (SL)

LOWER PLATE - WORD LINE’s (WL’s)

BL(i-2) BL(i-1) BL(i) BL(i+1) BL(i+2)

 C C2 C C2

 S

 W

 H

Fig. 6.24 Bitline parasitic capacitors

158 L. Crippa and R. Micheloni

• CC is the parasitic capacitor between two adjacent bitlines;
• CC2 is the parasitic capacitor between a bitline and its second nearest bitline.

Therefore, CBL can be written as:

CBL =CAU +CAD +2CC +2CC2 ð6:10Þ

The above mentioned contributions depend on the bitline geometrical values
(width W, height H and spacing S in Fig. 6.24), on the distance between upper and
lower ground levels and on the oxide thickness. These parameters are not uniform
among different wafers, dice and even within the same die. However, a correct
reading must be ensured.

In all the explained theory, another important assumption is that the bitline
capacitor has one of its terminals fixed to ground. Actually, looking at Fig. 6.24,
CBL ground terminal is physically distributed over four nodes:

1. the upper plate, usually the source-line;
2. the lower plate, usually the wordline or the source-line;
3. the left bitline;
4. the right bitline.

During the evaluation time the first two nodes are forced at a fixed voltage.
Instead, the adjacent bitlines could be discharged by the strings connected to them.

With the continuous bitline shrinking (W and S in Fig. 6.24), the coupling
capacitances play an important role. In sub-40 nm NAND technologies they con-
tribute 80–90% of the total bitline capacitance. To overcome this issue, the inter-
leaving architecture is introduced. While the even (or odd) bitlines are read, the odd
(or even) bitlines are forced to a fixed voltage (generally ground), acting as elec-
trical shield [22–24]. As shown in Fig. 6.25, MSLe and MSLo (bitline selectors) are
placed between the bitlines and the page buffer PB(i). If the even bitlines BLe are
read, MSELe acts as a pass-transistor. Transistor MSELo is turned off. The DISo
signal turns on the MDISo transistor, forcing the odd bitline BLo to the fixed BIAS
voltage. MDISe is turned off.

In order to minimize the power consumption, BIAS and the source line
(SL) should be biased at the same voltage. In fact, these two nodes are shorted if a
cell with VTH > VREAD belongs to the unselected bitlines. SL and BIAS are usually
grounded during the reading operation.

With this architecture, the noise injection effect through the CC coupling
capacitors is eliminated. However, the coupling through CC2 (Fig. 6.24) is still in
place. This contribution is not negligible: in the state-of-the-art technologies, CC2

contributes 5–10% of the total bitline capacitance. This problem is solved by the
architecture described in the next section.

6 NAND Flash Design 159

6.5.2 All BitLine (ABL) Architecture

The sensing technique is basically the same used in the interleaving architecture. An
intentionally placed capacitor is used instead of the CBL bitline parasitic capacitor
[25].

Figure 6.26 shows the main elements of the ABL sense amplifier. The latch is
replaced by a voltage comparator with a VTHSA trigger voltage. The other elements
are those ones already described in the interleaved architecture, but here used in a
different way. The capacitor CSO is involved in the integration of the cell current: it
can be done using either MOS gates or poly-poly capacitors.

Figure 6.27 shows the timings used in a single read operation. The precharge
phase is similar to that one described for the interleaving architecture, where MPCH

and MSEL gates are biased to VDD + VTHN and VPRE respectively. MHV HVNMOS
has the behavior already described and, during the single read operation phase,
works as pass transistor. The signals which drive the string gates (VREAD, VPASS

and BLS) are activated as usually. Instead SLS signal is immediately activated in
order to stabilize the bitlines during the precharge phase. In fact, if the SLS had
been activated during the evaluation phase, there would have been a voltage drop
on those bitlines with an associated sinking current string.

 M PCH
PCH

VDD

 M SEL
SEL

 M SELe

H
V

SO
OUT

H
VSELe SELo BIAS

BLINT(i)

BLe(i) BLo(i)

DISe DISo

 M SELo

 M DISe M DISo

 PB(i)
 BLSEL(i)

 MATRIX

LAT LATCH / FF

SELo SELe DISo DISe BIAS

BLo(i)

READ
VDD GND GND VDD GND

BLe(i)

READ
GND VDD VDD GND GND

Fig. 6.25 Interleaving bitline architecture

160 L. Crippa and R. Micheloni

The precharge final condition

VBL =VPRE −VTHN ð6:11Þ

is, therefore, valid only for the bitlines which have an associated string in a non
conductive state.

Equation (6.11) should be replaced by:

VBL =VPRE −VTHN −Δ ð6:12Þ

where Δ is the voltage drop on the bitlines resistance (typical values are in the order
of hundreds of kΩ up to one MΩ).

At the end of the precharge phase (T1), the bitlines are biased to a constant
voltage and VSO is equal to VDD. At this point, MPCH is switched off and the
evaluation phase starts. Actually, MPCH is biased to a VSAFE voltage value in order

 M PCH
PCH

VDD

 M SEL
SEL

 M HV
HV H

V

ICELL

BL(n)

CSO

 M SLS
SLS

VREAD

 M i-1
VPASS

 M i

VPASS

 M i+1

 M BLS
BLS

SL

SE
LE

C
TE

D
 S

TR
IN

G

ENA_N

SO
VTHSA

OUT_N

EN1

SENSE AMPLIFIER (SA)

OUT

BLINT(i)

CBL

LATCH

SL

Fig. 6.26 ABL sense amplifier

6 NAND Flash Design 161

V

VPRE –VTHN

IREADTH

PCH

SEL

T1

TPRE

T2
T3

TEVA

BL

VREAD

VPASS

BLS

SLS

ICELL

EN1

SO

VDD+VTH

VPRE

TDISCH

VDD VTHSA

VREAD

T4 T5 T6

VSAFE

ENA_N

OUT_N

Fig. 6.27 ABL single read operation (SRO) timing diagram

162 L. Crippa and R. Micheloni

to make MPCH behave as a clamp transistor of the SO voltage. The following
relation must be valid:

VSAFE −VTHN ≥VPRE −VTHN ⇒VSAFE >VPRE ð6:13Þ

This clamp value must not influence the current integration on the SO capacitor,
i.e. the clamping function can’t take place above the VTHSA trigger voltage:

VSAFE −VTHN ≤VTHSA ð6:14Þ

Therefore, from (6.13) and (6.14), the following conditions must hold true:

VPRE −VTHN ≤VSAFE −VTHN ≤VTHSA ð6:15Þ

When MPCH is switched off, the cell current (through MPRE) discharges the CSO

capacitor. If, during the evaluation time, VSO < VTHSA (trigger voltage of Fig. 6.26
comparator), than OUT_N switches (dotted lines in Fig. 6.27). The “threshold
current” IREADTH is defined as:

IREADTH =
ΔV ⋅CSO

TEVAL
ð6:16Þ

where

ΔV =VDD −VTHSA ð6:17Þ

Observe that, because the bitline is biased to a fixed voltage, a constant current
IREADTH flows.

It is possible to extrapolate the evaluation time:

TEVAL =
ΔV ⋅CSO

IREADTH
ð6:18Þ

Given the same read currents, it follows that the ratio between (6.8) and (6.18) is
determined by the ratio between CBL and CSO. CBL is a parasitic element and has a
value of 2–4 pF. Instead, CSO is a design element and has typical values around 20–
40 fF, i.e. two orders of magnitude lower than CBL. The reduction of the evaluation
time from 10 μs to hundreds of ns is another advantage of the All Bitline
architecture.

In addition, ABL architecture gives further advantages such as energy saving,
bitline-coupling reduction and Floating-Gate-coupling reduction during program
and read, and program stress reduction [2].

6 NAND Flash Design 163

6.5.3 Read Voltage with Thermal Tracking

In a 2 bit-per-cell multilevel Flash NAND memory, four different threshold voltage
(VTH) distributions exist, as shown in Fig. 6.28. All the cells are in the “11” state
after electrical erase. During programming phase, the threshold voltage of the cells
is incremented in small steps until the desired value is reached. At the end of each
program step, a verify operation is performed, in order to evaluate whether VTH has
gone above one of the verify voltages, VFY1, VFY2 or VFY3. Of course, verify
voltage depends on which bits have to be stored in a given cell. For instance, in
order to reach “00” logic value, threshold voltage has to go above VFY2. Once target
distribution is reached, further program pulses are not applied to that cell.

In order to univocally determine the logic value stored in the selected cell, read
operation uses three voltage values, VREAD0, VREAD1, and VREAD2 as shown in
Fig. 6.28. Each read voltage is centered between two adjacent distributions so that
read margins are maximized. For instance, the distance between VREAD1 and the
rightmost side of “10” distribution should be equal to the distance between VREAD1

and the leftmost side of “00” distribution. With multilevel memories, the typical
value for such distances is 300 mV.

In order to achieve the required precision, voltages to be applied to the cells are
generated by means of voltage regulators which exploit band-gap techniques to
generate a precise reference voltage. In this way, the voltages generated on-chip are
independent from temperature, at least to a first approximation. On the other hand,
the VTH distributions of the memory cells are highly sensitive to temperature
variations: as temperature increases, VTH decreases and vice versa (see Fig. 6.29).

As a result, read margins are reduced when temperature varies, because the tails
of the distributions get nearer and nearer to read voltages. For instance, as shown in

VTH

“10”

VREAD0

“11” “00” “01”

VFY0

VREAD1

VFY1

VREAD2

VFY2

 = Read Margin

Fig. 6.28 Cell VTH distributions in a 2 bit/cell NAND memory

164 L. Crippa and R. Micheloni

Fig. 6.29, “00” distribution gets nearer to VREAD2 at low temperature, while it gets
nearer to VREAD1 at high temperature. The same is true for each distribution.
Threshold voltage of the cell typically shifts of −1.5 mV/°C. As a consequence,
overall variation is approximately 200 mV if a temperature range of −40 to 90 °C is
considered.

Therefore, a specific type of read voltage regulator is needed [26–28]: that is, the
thermal coefficient of its output voltage has to be as similar as possible to the
coefficient of the cell’s VTH. In this way, read voltages rigidly shift with distribu-
tions, keeping the margins unaltered (Fig. 6.30). A similar constraint is true for
verify voltages.

6.6 Program

As described in Chap. 5, VTH is modified by means of the Incremental Step Pulse
Programming (ISPP) algorithm (Fig. 6.31): a voltage step (whose amplitude and
duration are predefined) is applied to the gate of the cell. Afterwards, a verify
operation is performed, in order to check whether VTHR has exceeded a predefined
voltage value (VVFY). If the verify operation is successful, the cell has reached the
desired state and it is excluded from the following program pulses. Otherwise

VTH

VREAD1 VREAD2

“00”

 = Read Margin

VTH

VREAD1 VREAD2

“00”@90°C “00”@-40°C

“00”@27°C

Fig. 6.29 VTH variations with temperature

6 NAND Flash Design 165

another cycle of ISPP is applied to the cell, where the program voltage is incre-
mented by ΔVpp.

During the program operation, the cells share the high programming voltage on
the selected wordline but the program operation has to be bit selective. Therefore, a
high channel potential is needed to reduce the voltage drop across the tunneling
dielectric and prevents the electrons tunneling from the channel to the floating gate
as indicated by Fig. 6.32a. In the first NAND flash devices the channel was charged

VTH

VREAD2 @-40°C

 = Read Margin

VTH

“00”@90°C

“00”@-40°C

VREAD1 @90°C VREAD2 @90°C

VREAD1 @-40°C

Fig. 6.30 VREAD tracking of VTH variations with temperature

Fig. 6.31 Incremental step
pulse programming (ISPP):
constant VTH shift

166 L. Crippa and R. Micheloni

by applying 8 V to the bitlines of the program inhibited NAND strings. This
method suffers from several disadvantages [29], especially power consumption and
high stress on the oxide between adjacent bitlines.

The self boost program inhibit scheme is less power consuming. By charging the
string select lines and the bitlines connected to inhibited cells to Vcc, the select
transistors are diode connected (Fig. 6.32b). By raising the wordline potential
(selected wordline to Vpp and unselected wordlines to Vppass) the channel potential
is boosted by the coupled series capacitance through the control gate, floating gate,
channel and bulk.

In fact, when the voltage of the channel exceeds Vcc − VTH,SSL, then SSL
transistors are reverse biased and the channel of the NAND string becomes a
floating node.

Two important typologies of disturbs are related to the program operation: the
Pass disturb and the Program disturb as described in Chap. 5.

6.7 Erase

The erase operation resets the information of all the cells belonging to one block
simultaneously.

Tables 6.1 and 6.2 summarize the erase voltages. During the erase pulse, all the
wordlines belonging to the selected block are kept at ground, the matrix ip-well

Vpp

 D S
0V

Inhibit

Program

SL

 M BLS M BLS

 M 63 M 63

 M 2 M 2

 M SLS M SLS

 M 0 M 0

 M 1 M 1

SLS

WL 63

WL 2

WL 1

WL 0

SLS

BL(program) BL(inhibit)

Vpp

Vppass

GND

Vcc

Vppass

Vppass

Vcc GND

Vcc

 D S

Vpp

8V

(a) (b)

Fig. 6.32 Self boosted program inhibit scheme, a cell in program/inhibit state, b strings biasing in
program/inhibit state

6 NAND Flash Design 167

must rise (through a staircase) to 23 V and all the other nodes are floating. This
phase lasts almost a millisecond and it is the phase when the actual electrical erase
takes place.

Since the matrix ip-well (as well as the surrounding n-well) is common to all the
blocks, it reaches high voltages also for the unselected blocks. In order to prevent
an unintentional erase on those blocks, wordlines are left floating; in this way, their
voltage can rise thanks to the capacitive coupling between the wordline layer and
the underneath matrix layer. Of course, the voltage difference between wordlines
and ip-well should be low enough to avoid Fowler-Nordheim tunneling.

After each erase pulse an erase verify (EV) follows. During this phase all the
wordlines are kept at ground. The purpose is verifying if there are some cells that
have a VTH higher than 0 V, so that another erase pulse can be applied. If EV isn’t
successful for some columns of the block, there are some columns too programmed.
If the maximum number of erase pulses is reached (typically 4), than the erase exits
with a fail. Otherwise, the voltage applied to the matrix ip-well is incremented by
ΔVE and another erase pulse follows.

Table 6.1 Electrical erase
pulse voltages for the selected
block

T0 T1 T2 T3 T4

BLeven Float Float Float Float Float
BLodd Float Float Float Float Float
DSL Float Float Float Float Float
WLs 0 V 0 V 0 V 0 V 0 V
SSL Float Float Float Float Float
SL Float Float Float Float Float
ip-well 0 V VERASE VERASE 0 V 0 V

Table 6.2 Electrical erase
pulse voltages for unselected
blocks

T0 T1 T2 T3 T4

BLeven Float Float Float Float Float
BLodd Float Float Float Float Float
DSL Float Float Float Float Float
WLs Float Float Float Float Float
SSL Float Float Float Float Float
SL Float Float Float Float Float
ip-well 0 V VERASE VERASE 0 V 0 V

168 L. Crippa and R. Micheloni

6.8 MLC and XLC Storage

The obvious advantage of a 2 bit/cell implementation (MLC) with respect to a 1 bit/
cell device (SLC) is that the area occupation of the matrix is half as much; on the
other hand, the area of the periphery circuits, both analog and digital, increases.
This is mainly due to the fact that the multilevel approach requires higher voltages
for program (and therefore bigger charge pumps), higher precision and better
performance in the generation of both the analog signals and the timings, and an
increase in the complexity of the algorithms.

Figure 6.33 shows an example of how 2 bits are associated to the four read
threshold distributions stored in the cell, and how the set of programmed distri-
butions is built starting from the erased state “E”. In this case the multilevel is
achieved in two distinct rounds, one for each bit to be stored [2, 30, 31].

In the first round, the so-called lower-page (associated to the Least Significant
Bit—LSB) is programmed. If the bit is “1”, the read threshold of the cell VTH does
not change and, therefore, the cell remains in the erased state, E. If the bit is “0”,
VTH is increased until it reaches the D1 state.

E D1

VVFY1

1st round

D2 D3

1
1

1
0

2nd round

VVFY2 VVFY3

0
0

0
1

Upper page
Lower page

ΔISPP
ΔISPP ΔP

Lower Page PGM Upper Page PGM

VVFY1

VVFY2
VVFY3

VTHR

Fig. 6.33 Two rounds MLC program operation

6 NAND Flash Design 169

In the second round, the upper-page (associated to the Most Significant Bit—
MSB) is programmed. If the bit is “1”, VTH does not change and, therefore, the cell
remains either in the erased state, E, or in the D1 state, depending on the value of
the lower-page.

When MSB is “0”, VTH is programmed as follows:

• if, during the first round, the cell remained in E state, then VTH is incremented to
D3;

• if, during the first round, the cell was programmed to D1, then, in the second
round, VTH reaches D2.

As usual, the program operation makes use of ISPP, and the verify voltages are
VVFY2 and VVFY3. Lower-page programming only needs the information related to
LSB, while for the upper-page it is necessary to know both the starting distribution
(LSB) and the MSB.

Because of technological variations, VTH is not perfectly related to the amplitude
of the program pulse (during ISPP): there are “fast” cells which reach the desired
distribution with few ISPP pulses, while other “slow” cells require more pulses.

The amplitude of the first program pulse (VPGMLSB0) of the lower-page should
not allow the threshold VTHR of the “fastest” cell to exceed VVFY1. If it happens, an
undesired widening of distribution D2 occurs or, in the worst case scenario, VTHR

might reach D2 distribution at once.
Typical VPGMLSB0 is around 16 V. In case of program of “slow” cells from E to

D1, the last programming step needs values as high as 19 V. Assuming ΔISPP
equal to 250 mV, it takes 12 steps to move from 16 to 19 V.

Similarly, the starting pulse of the upper-page VPGMMSB0 should have an
amplitude such that the “fastest” cell does not go beyond VVFY2.

VPGMMSB0 =VPGMLSB0 + ðVVFY2 −VVFY1Þ ð6:19Þ

The value of VVFY2 − VVFY1 is typically around 1 V and, therefore, the initial
voltage is about 17 V.

As shown in Fig. 6.33, the upper-page ISPP does not start from the last voltage
used for the lower-page programming, but it begins at VPGMLSB0 − ΔP. For
example, instead of starting at 19 V, it could start at 17 V, eight steps below.

Driven by cost, Flash manufacturers are now developing 3 bit/cell (8 VTH dis-
tributions) and 4 bit/cell (16 VTH distributions) [32–34]. Three and four bits per cell
are usually referred to as XLC (8LC and 16LC, respectively). Unfortunately, due to
reliability reasons, the VTH window remains the MLC one; in fact, the highest
verification level must be low enough to prevent bit failures caused by program
disturb and read disturb. The more states a memory cell is made to store, the more
finely divided is its VTH window.

Of course, the main drawback is a slow program time. As the distribution width
needs to be tighter, ISSP program step is smaller and the number of verify oper-
ations increases, as depicted in Fig. 6.34.

170 L. Crippa and R. Micheloni

6.9 High Voltage Management

Modifying or reading the number of electrons stored into the floating gate requires a
big set of voltages. The High Voltage (HV) system has to provide all these voltages
with the desired precision, timing and granularity. On top of that, many voltages
have a value greater than the NAND power supply VDD, asking for an on-chip
charge pump. This section deals with the HV basic building blocks.

6.9.1 Charge Pumps

In the NAND environment, one of the most used type of charge pumps is the
Voltage Doubler [3]. The basic stage is shown in Fig. 6.35. It is a feedback system
that can duplicate the input voltage and, essentially, it is made up by two n-channel
transistors (MN1, MN2), two p-channel transistors (MP1, MP2) and two capacitors
(C1, C2) of the same size.

In order to understand the principle of operation of this circuit, it can be assumed
that, at the beginning, nodes A and B, as well as CK (pump clock) and its com-
plement (CK#), are at GND. In this way, both transistors MN1 and MN2 are off.
Voltage on the node IN (VIN) is set to VDD (i.e. the chip power supply).

As soon as CK toggles from GND to VDD, VA becomes VDD, activating
transistor MN2. Since CK# remains at GND, the charge starts flowing from power

VTHR
E

D1
D2

D3
D4

D5
D6

D7
D8

D9
D10

D11
D12

D13
D14

D15

V
V

FY
1

V
V

FY
2

V
V

FY
3

V
V

FY
4

V
V

FY
5

V
V

FY
6

V
V

FY
7

V
V

FY
8

V
V

FY
9

V
V

FY
10

V
V

FY
11

V
V

FY
12

V
V

FY
13

V
V

FY
14

V
V

FY
15

ΔISPP

VVFY1

VVFY15

Fig. 6.34 4 bit/cell programming algorithm

6 NAND Flash Design 171

supply to capacitor C2 until VB reaches a value equal to VDD – VTH,MN2.
When CK goes to GND, transistor MN2 turns off.

At the same time, CK# gets to VDD and, therefore, VB becomes (VDD –

VTH,MN2 + VDD), turning on transistor MN1. As a result, C1 is charged up to
VDD. Of course, when CK# goes to GND again, VB is, in principle, equal to VDD
– VTH,MN2. Since the signal CK is used as a clock, each capacitance is continuously
charged and discharged between VDD and 2VDD. In other words, during each
period of the clock either VA or VB is at 2VDD.

At this point, in order to build a real charge pump, voltages on nodes A and B
have to be transferred to the next pump stage. Now MP1 and MP2 come into the
game. When CK is at VDD, VA is 2VDD and VB is VDD. Transistor MN1 is,
therefore, turned off while MP1 is active, transferring the voltage of node A to node
OUT. In the meanwhile MP2 is off, MN2 is on and the capacitor C2 is charged
up. When CK goes back to GND and CK# becomes VDD, then the circuit behaves
in the opposite way: MN1 and MP2 are active (the former charges capacitor C1, the
latter transfers the voltage of node B to the output) while MN2 and MP1 are turned
off. It is worth to note that no active direct paths between IN and OUT are allowed:
these paths would result in a loss of charge and, therefore, in a reduced output
voltage.

As usual, when designing a charge pump, one issue to cope with is the biasing of
the transistor body terminals. The easiest solution is to connect the body of the
n-channel transistor to the power supply and the body of the p-channel transistor to
the output node.

The drawback of this solution is that the output voltage is considerably reduced
by the body-effect of the transistors itself. In Fig. 6.35a “dynamic biasing” has been
chosen: bodies are continuously switched between VA and VB. As a result, the body
of the NMOS transistors is always kept at the lowest voltage (through MN3 and

OUT

MP2

MP1

C2

C1

CK

CK#

MN1

IN

BMN2

A

MP3

MP4

MN3

MN4

Fig. 6.35 Basic stage of a voltage doubler

172 L. Crippa and R. Micheloni

MN4) while the body of the PMOS transistors is always at the highest voltage
(through MP3 and MP4).

The basic stage of Fig. 6.35 can be used to build up more complex structures as
depicted in Fig. 6.36. Usually, two stages are used in parallel in order to decrease
the ripple of the output voltage.

In fact, due to the internal switching activity of the capacitors, the output of the
pump can be more or less noisy. When talking about ripple, we generally refer to
the height of the “peaks” that can be found in the output node waveform.

In order to properly control the output voltage, voltage doubler stages are
inserted in a feedback loop as described in Fig. 6.37. A block called “Hireg” is used

Increased Output Voltage

CK2 = CK1+T/4

OUTIN
Increased Output Current

Period=T

VOLTAGE
DOUBLER

VD

VOLTAGE
DOUBLER

VD

VD

VD

VD

VD

VD

VD

VD

VD

CK1

CK2

Fig. 6.36 Charge pump as a cascade of basic voltage doubler stages

OUT
VD

VD

VD

VD

_

+ VREF

CLOCK
DRIVERS

ENABLE

VOLTAGE DOUBLERS

HI REG

Fig. 6.37 Charge pump architecture

6 NAND Flash Design 173

to limit the output voltage. Thanks to a resistive divider (it could also be made by
CMOS diodes), the output voltage is compared with VREF (usually a band-gap
reference voltage). CK drivers are then enabled/disabled depending on the com-
parison result.

In order to find the best configuration, the output voltage of the charge pump is
measured varying the CK period. A faster clock means higher output voltage, but
faster clocks means bigger area of the CK drivers. The right trade-off has to be
found considering that, in most of the NAND applications, silicon cost is the main
driver. Optimum CK period is usually in the range of 60–80 ns considering an
output resistance of around 10 kΩ. The voltage doubler pump can easily achieve
voltages above 25 V starting from the chip VDD of 2.5 V. Power efficiency η P can
be as high as 20–30% if the current load remains in the range of few hundreds
microAmpere.

ηP =
VOUT ⋅ IOUT
VIN ⋅ IIN

ð6:20Þ

6.9.2 Internal Supply Voltage Regulator

In many NAND devices, external supply voltage VDD is not directly applied to all
the circuits [35, 36]. Some of them are powered by an internal supply (VINT) filtered
by a proper voltage regulator and this solution brings several advantages. For
instance, in case of devices supplied at 3.6 V, a VINT equal to 2 V allows the use of
transistors whose oxide thickness is reduced, which are smaller and better per-
forming. In the case of page buffers, by using VINT it is possible to mitigate the
dependency of the triggering threshold from VDD (i.e. several tens of milliVolt),
which turns into a reduction of the width of the distributions. Of course, inside the
NAND memory, there could be more than one VINT regulators, depending on the
design constraints (noise, power consumption, precision required by the circuits).

VINT regulator is a DC-DC converter. Its conceptual scheme is shown in
Fig. 6.38. For the sake of simplicity, VDD supplies only logic ports. When
inverters are switching, voltage drop of VINT is a function of the filtering capaci-
tance CFILTER, of the parasitic capacitance (gates, routing, junctions), and of the
cross-conduction current.

Beyond a given maximum switching frequency of the logic, VINT dramatically
drops. This frequency is directly related to the cutoff frequency of the regulator.
Since the DC-DC converter is designed using the same technology of the inverters,
its cutoff frequency cannot be higher than the one of the plain inverter.

174 L. Crippa and R. Micheloni

6.9.3 Double-Supply Voltage Regulator

Both program and erase operations require voltages higher than VDD. For instance,
the programming staircase voltage starts at 14–15 V and arrives at 25 V and
beyond. High voltages are generated by a charge pump and filtered by a proper
voltage regulator: in this way it is possible to reduce the ripple and obtain the
desired output voltage value.

In 1 bit/cell Flash memories, voltage regulator is omitted and the output voltage
of the pump is directly used, regulated by means of an on-off type of control.
Typical ripple values are in the order of 1–2 V. In case of multilevel memories, the
target voltage precision cannot be achieved without a voltage regulator.

NAND technology does not usually provide High Voltage (HV) PMOS tran-
sistor; therefore; it is not possible to implement traditional voltage regulators like
the one shown in Fig. 6.39. In fact, the use of a low-voltage transistor for MPOUT

would mean that the voltage drop across its terminals must be guaranteed not to
exceed 4–5 V. This must be true both in static and in transient conditions. On top of
that, all the required values for the staircase program pulse must be generated out of
the pump output voltage (∼30 V), beginning at 15 V: that is, MPOUT must be a HV
transistor.

In order to solve the issue it is possible to design a voltage regulator [37] whose
first differential stage is supplied by VDD, while the second one is supplied by a
charge pump so that the HV value can be provided at the output (Fig. 6.40).

By supplying the first stage with VDD, PMOS LV transistors can be used to
realize the current mirror (MP1 − MP2). The second stage is instead designed using
an NMOS HV (MNOUT) together with a resistive pull-up (R pull-up).

_+ VREF =2V

CFILTER

 LOGIC

CROUTING CROUTING

VDD

VINT
BUFFER

Fig. 6.38 Conceptual scheme of a DC-DC converter

6 NAND Flash Design 175

6.10 Wordline Decoder

One of the most critical circuits of the High Voltage (HV) system is the one used to
bias the WordLine (WL). Actually, when it comes to NAND memories, a single
wordline is not enough: all the wordlines belonging to the same NAND string must
be properly biased at the same time. As a result, the Row Decoder, also called
Wordline Decoder or Wordline Driver [4], has to provide a set of voltages: these
values are defined by the algorithms described in Sects. 6.5 and 6.6.

When NAND technology provides only NMOS-type HV transistors, a possible
implementation of the wordline driver is shown in Fig. 6.41. The wordline driver
comprises:

• a Pass-Transistor (PT) for each wordline. These transistors are used to transfer
voltages from the Global WordLines (GWLs), i.e. electrical signals, to the
physical wordlines (WLs);

• a circuit to bias the gates of the above mentioned pass-transistors.

The biasing circuit of the gate of PTs consists of only one high voltage NMOS
(M1). At first, all the gates are biased at a high voltage VPRECH through M1. Then,
M1 is switched off and, thanks to the gate-drain parasitic capacitance, the rising
transient of GWL performs a boost of VBLC, switching PTs on, as shown in
Fig. 6.42.

 C M

VPUMP

 M P2

VPUMP

 M P1

 M N1 M N2

 M NT1

 M POUT

VPUMP

 VREF

 R 2

 R 1

 VBIAS

FEED

FIRST STAGE (HV) SECOND STAGE (HV)

OUT

 C LOAD

OUTFSTG

 I SUNK12
 I SUNK11

Fig. 6.39 Voltage regulator with high voltage PMOS

176 L. Crippa and R. Micheloni

However, there are several critical aspects to consider. First of all, the designer
has to deal with a precharge phase of the PT gates: this phase must occur before
biasing the global wordlines, otherwise the boost effect would be lost.

The precharge voltage VPRECH has to match VMAX, which is the maximum
voltage required during each algorithm. VMAX is not an issue during the read
operation, when the voltages are relatively low, but it ends up being close to the
breakdown voltage during the program operation. The duration of the precharge
phase must be calibrated to allow VPRECH reaching VMAX: this time increases the
overall operation time, especially during programming.

With reference to the circuit of Fig. 6.41, precharge is driven by the ENABLE
signal. To fully exploit the precharge benefit, ENABLE has to be biased with a
voltage greater than VPRECH, in order to recover the threshold voltage VTH,M1 of
transistor M1.

Particular attention deserves the boost operation. Once the boost has occurred,
VBLC has to guarantee that, even varying temperature and technological parameters,
each GWL and its corresponding WL are biased with the same voltage. Unfortu-
nately, process and temperature variations mean that the VTH of the pass transistors
can vary as much as 100%. Therefore, the risk is to overcome the breakdown
voltage of the oxide in some PVT (Process Voltage Temperature) corners allowed
by the electrical specification of the NAND Flash memory.

 V DD

 M P2

VDD

 M P1

 M N1 M N2

 M NT1

 M NOUT

VPUMP

 VREF

 R 2

 R 1

 VBIAS

VOUT

 VFEED

FIRST STAGE (LV) SECOND STAGE (HV)

 R pull-up
OUTFSTG

 C LOAD

CM

 I SUNK22

Fig. 6.40 Double-supply voltage regulator

6 NAND Flash Design 177

Designers have developed a lot of different solutions for the row decoder,
including a hierarchical approach [2, 3, 38]: due to the huge numbers of wordlines
contained in a NAND array, the challenge is always to trade off performances with
silicon area.

At this point the reader should be reasonably convinced that a NAND Flash
memory is not a “pure” digital device: it is a real mix of digital and analog circuits,
working at high and low voltages, and designed on a silicon technology developed
for floating gate transistors…have fun!

 M BLS

WL63

WL2

WL1

WL0

 M SLS

 M BLS

 M SLS

 HV

 HV

 HV

 HV

 HV M1

GWL63

 GWL2

GWL1

GWL0

VPRECH

ENABLE

VBLC

Matrix

Pass HV-NMOS

Precharge HV-NMOS

Fig. 6.41 All-NMOS wordline driver

Fig. 6.42 Simulation of the circuit sketched in Fig. 6.39

178 L. Crippa and R. Micheloni

References

1. R. Micheloni et al., A 4 Gb 2b/cell NAND Flash memory with embedded 5b BCH ECC for
36 MB/s system read throughput, in IEEE International Solid-State Circuits Conference
2006, Digest of Technical Papers, ISSCC 2006, Feb 2006, pp. 497–506

2. R. Micheloni, L. Crippa, A. Marelli, Inside NAND Flash Memories (Springer, New York,
2010)

3. G. Campardo, R. Micheloni, D. Novosel, VLSI-Design of Non-volatile Memories (Springer,
New York, 2005)

4. P. Cappelletti, C. Golla, P. Olivo, E. Zanoni (eds.), Flash Memories, Chap. 5 (Kluwer,
Boston, 1999)

5. R. Micheloni, A. Marelli, R. Ravasio, Error Correction Codes for Non-volatile Memories
(Springer, Dordrecht, 2008)

6. G. Campardo et al., An overview of Flash architectural developments. Proc. IEEE 91(4,
April), 523–536 (2003)

7. M. Annaratone, Digital CMOS Circuit Design (Kluwer Academic Publishers, Boston, 1986)
8. www.onfi.org
9. https://www.denali.com/en/events/webcasts/2008/togglenand/

10. A. Chandrakasan, R. Brodersen (eds.), Low Power CMOS Design (Kluwer Academic
Publishers, Boston, 1995)

11. H. Hikeda, A 3D packaging with 4 Gb chip-stacked DRAM and 3Gbps high-speed logic, in
3D-SIC 2007, International 3D-System Integration Conference 2007, Tokyo, Japan (2007)

12. T. Wada, M.E. Kenji Mami, Simple noise model and low-noise data-output buffer for
ultrahigh-speed memories. IEEE J. Solid-State Circuits 25(6, December), 1586–1588 (1990)

13. S. Dabral, T. Maloney, Basic ESD and I/O Design (Wiley, New York, 1998)
14. E. Chioffi, F. Maloberti, High-speed, low-switching noise CMOS memory data output buffer.

IEEE J. Solid-State Circuits 29(11, November), 1359–1365 (1994)
15. S.H. HallGarrett, W. HallJames, A. McCall, High-Speed Digital System Design—A Handbook

of Interconnect Theory and Design Practices (Wiley, New York, 2000)
16. P. Heydari, M. Pedram, Ground bounce in digital VLS circuits. IEEE Trans. VLSI Syst. 11(2,

April), 180–193 (2003)
17. R. Senthinathan, J. Prince, Simultaneous switching ground noise calculation for packaged

CMOS devices. IEEE J. Solid-State Circuits 26(November), 1724–1728 (1991)
18. R. Senthinathan, J.L. Prince, Simultaneous Switching Noise of CMOS Devices and Systems

(Kluwer Academic Publisher, Boston, 1994)
19. S.J. Jou et al., Low switching noise and load-adaptive output buffer design techniques.

IEEE JSSC 36, 1239–1249 (2001)
20. B. Deutschmann, T. Ostermann, CMOS output driver with reduced ground bounce and

electromagnetic emission, in Solid-State Circuits Conference, ESSCIRC’03 (New York,
2003)

21. Y. Itoh et al., An experimental 4 Mb CMOS EEPROM with a NAND structured cell, in 36th
IEEE International Solid-State Circuits Conference 1989, Digest of Technical Papers, ISSCC
1989, San Francisco, Feb 1989, pp. 134–135

22. T. Tanaka et al., A quick intelligent page-programming architecture and a shielded bitline
sensing method for 3 V-only NAND Flash memory. IEEE J. Solid-Stare Circuits 29(11,
November), 1366–1373 (1994)

23. T.-S. Jung et al., A 3.3 V 128 Mb multi-level NAND Flash memory for mass storage
applications, in 43rd IEEE International Solid-State Circuits Conference 1996, Digest of
Technical Papers, ISSCC 1996, San Francisco, Feb 1996, pp. 32–33, 412

24. K. Imamiya et al., A 130 mm2 256 Mb NAND Flash with shallow trench isolation
technology, in IEEE International Solid-State Circuits Conference 1999, Digest of Technical
Papers, ISSCC 1999, Feb 1999, pp. 112–113, 412

6 NAND Flash Design 179

https://www.denali.com/en/events/webcasts/2008/togglenand/

25. R.A. Cernea et al., A 34 MB/s MLC write throughput 16 Gb NAND with all bit line
architecture on 56 nm technology. IEEE J. Solid-Stare Circuits 44(1, January), 186–194
(2009)

26. L. Crippa, G. Ragone, M. Sangalli, R. Micheloni, Circuit and method for retrieving data
stored in semiconductor memory cells, U.S. Patent No. 7474577, Assignee:
STMicroelectronics/Hynix Semiconductor

27. T. Tanzawa, T. Tanaka, K. Takeuchi, Nonvolatile semiconductor memory with temperature
compensation for read-verify referencing scheme, U.S. Patent No. 5864504, Assignee:
Kabushiki Kaisha Toshiba (Kawasaki, JP)

28. T.-H. Cho, Y.-T. Lee, Multi-level Flash memory with temperature compensation, U.S. Patent
No. 6870766, Assignee: Samsung Electronics Co., Ltd. (Suwon-si, KR)

29. K.-D. Suh et al., A 3.3 V 32 Mb NAND Flash memory with incremental step pulse
programming scheme. IEEE J. Solid-State Circuits 30(11, November), 1149–1156 (1995)

30. S. Lee et al., A 3.3 V 4 Gb four-level NAND Flash memory with 90 nm CMOS technology,
in IEEE International Solid-State Circuits Conference, ISSCC, Digest of Technical Papers,
San Francisco, vol. 1, Feb 2004, pp. 52–53, 513

31. D.-S. Byeon et al., An 8 Gb multi-level NAND Flash memory with 63 nm STI CMOS
process technology, in Solid-State Circuits Conference, ISSCC, Digest of Technical Papers,
San Francisco, vol. 1, Feb 2005, pp. 46–47

32. Y. Li et al., A 16 Gb 3b/cell NAND Flash memory in 56 nm with 8 MB/s write rate, in IEEE
International Solid-State Circuits Conference 2008, Digest of Technical Papers, ISSCC 2008,
San Francisco, Feb 2008, pp. 506–507, 632

33. N. Shibata et al., A 70 nm 16 Gb 16-Level-Cell NAND Flash memory. IEEE J. Solid-Stare
Circuits 43(4, April), 929–937 (2008)

34. C. Trinh et al. A 5.6 MB/s 64 Gb 4b/Cell NAND Flash memory in 43 nm, CMOS, in IEEE
International Solid-State Circuits Conference 2009, Digest of Technical Papers, ISSCC 2009,
San Francisco, Feb 2009, pp. 246–247

35. K. Takeuchi et al., A 56-nm CMOS 99-mm2 8-Gb multi-level NAND Flash memory with
10-MB/s program throughput. IEEE J. Solid-Stare Circuits 42(1, January), 219–232 (2007)

36. G.A. Rincon-Mora, Analog IC Design with Low-Dropout Regulators. Electronic Engineering
(McGraw-Hill, New York, 2009)

37. L. Crippa, M. Sangalli, G. Ragone, R. Micheloni, Multistage regulator for charge-pump
boosted voltage applications, not requiring integration of dedicated high voltage high side
transistors, U.S. Patent App. 20070164811, Assignee: STMicroelectronics/Hynix
Semiconductor

38. K. Kanda et al., A 120 mm2 16 Gb 4-MLC NAND with 43 nm CMOS technology, in 2008
IEEE International Solid-State Circuits Conference (ISSCC), Digest of Technical Papers, San
Francisco, Feb 2008, pp. 430–431

180 L. Crippa and R. Micheloni

Chapter 7
Memory Driven Design Methodologies
for Optimal SSD Performance

L. Zuolo, C. Zambelli, Rino Micheloni and P. Olivo

7.1 Introduction

Solid State Drives (SSDs) are one of the electronic systems with the higher
development rate in the last decade: they are widely used in hyper scale systems
such as cloud computing and big data servers where performance is a constraint, as
well as in consumer electronics by replacing traditional hard disk drives (HDDs)
[1].

SSDs’ design, in the last 5 years, faced an extraordinary evolution caused by the
continuous development of NAND Flash memories representing their storage
medium [2]. With this respect, as shown in Fig. 7.1, NAND Flash memories have
completely transformed the way information is processed and stored. Starting as
film and tape replacement for cameras and voice recorders, NAND Flash memories
rapidly surpassed traditional magnetic storage supports and now they represent an
obliged choice for high-performance storage solutions. The availability of NAND

This chapter is a partial reprint of L. Zuolo, C. Zambelli, R. Micheloni and P. Olivo, “Solid State
Drives: Memory Driven Design Methodologies for Optimal Performance,” in Proceedings of the
IEEE, vol. 105, no. 9, pp. 1589–1608, Sept. 2017. © 2017 IEEE.

L. Zuolo ⋅ R. Micheloni
Microsemi Corporation, Vimercate, MB, Italy
e-mail: lorenzo.zuolo@microsemi.com

R. Micheloni
e-mail: rino.micheloni@microsemi.com

C. Zambelli (✉) ⋅ P. Olivo
Engineering Department, Università di Ferrara, Ferrara, Italy
e-mail: cristian.zambelli@unife.it

P. Olivo
e-mail: piero.olivo@unife.it

© Springer Nature Singapore Pte Ltd. 2018
R. Micheloni et al. (eds.), Inside Solid State Drives (SSDs),
Springer Series in Advanced Microelectronics 37,
https://doi.org/10.1007/978-981-13-0599-3_7

181

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_7&domain=pdf

Flash-based SSDs also materialized as an astonishing proliferation of global-scaled
corporations whose commercial strength is tightly coupled to the availability of
SSDs engineered for big data centers and cloud computing. The previous devel-
oping strategy of SSDs, in fact, was based on a full compatibility with HDDs and
therefore the SSDs’ performance optimization was focused on that of the Flash
Translation Layer (FTL), the firmware managing the basic memory operations [3–
5]. FTL is responsible for a plug-and-play connection between the host system
where the application is running and the SSD. To this respect, it must be considered
that in the last 4 decades user applications have been designed to work with
traditional magnetic HDDs, which are conceptually different from SSDs. Therefore,
rather than redesign the whole architecture of the application, it is more convenient
to leverage a command translation layer.

The development of SSDs was made possible by the use of sufficiently reliable
Single Level Cells (SLC) NAND Flash memories [6], storing a single bit per cell in
the traditional 0/1 digital paradigm with a low read error probability, thus requiring
the design of simple engines for Error Correction Codes (ECC) [7]. The SATA
protocol [8] interfacing the memory system and the host was sufficient to guarantee
the requested Quality of Service (QoS), that is the ability of keeping a sustained
performance over time within a defined threshold [9, 10]. As a whole, the SSD
architecture optimization and the development of dedicated CAD tools for the
exploration of the SSD design space were FTL-oriented, in a top-down approach.

In the last few years, the need for SSDs with higher storage capacities and
performance joined to the availability of high density NAND Flash memories able
to store 2, 3 or even 4 bits in a single cell [11], moved the design paradigm from a
Top-Down to a Bottom-Up approach where the performance and the reliability of

Fig. 7.1 Evolution of NAND Flash-based systems: from tape, film and floppy disk replacement to
the explosive SSDs applications for cloud computing and big data centers. Reproduced with
permission from L. Zuolo, C. Zambelli, R. Micheloni and P. Olivo, “Solid-State Drives: Memory
Driven Design Methodologies for Optimal Performance,” in Proceedings of the IEEE, vol. 105,
no. 9, pp. 1589–1608, Sept. 2017. © 2017 IEEE

182 L. Zuolo et al.

the storage medium dictate the design constraints. NAND Flash memories with
scaled technologies, in fact, suffer from several physical mechanisms able to impact
their reliability figures such as: (i) Endurance, that is the maximum number of
Program/Erase (P/E) operations that the memory can withstand before leading to a
failure; (ii) Data Retention, denoting the ability of a memory to keep a stored
information over time with no biases applied; (iii) the immunity from Read Dis-
turbs, representing the stress suffered by a memory cell when reading neighbor cells
[12–14].

These reliability issues become more and more significant in Multi-Level Cells
(MLC) [15], Triple-Level Cells (TLC) [16] and Quadruple-Level Cells (QLC) [17]
storing 2, 3, and 4 bits per cell, respectively, where the undesired transfer of few
electrons into/from the storage layer may alter significantly the memory information
content. The basic parameter characterizing the NAND Flash memory reliability is
the Raw Bit Error Rate (RBER), representing the fraction of erroneous bits
retrieved during a read operation [14]. The knowledge of this parameter whose
value increases with: technology scaling, the number of bits that a cell can store, the
number of P/E operations, the time elapsed between two successive read operations,
the number of repeated read operations on the same memory location, is now the
driver for architectural and software design of present SSDs [18].

Multilevel NAND Flash memories require the availability of an ECC scheme
able to correct the errors detected when reading the memory. The choice of the ECC
code and the design of the correction engine represent the key points for present
SSDs design since they must be carefully calibrated with respect to the figures of
merit of the selected nonvolatile memories. A too simple ECC scheme may not be
able to guarantee a suitable reliability, whereas a too complex one may reduce
severely the read bandwidth because of the time required for error correction, with a
consequent impact also on the system power consumption [19]. Based on the
selected ECC code and of the designed ECC engine, an optimal error reduction
algorithm for the memory read operation could be identified.

Once the ECC scheme has been designed, the Bottom-Up design flow rises to
the memory controller, representing the interface towards the ECC engine and the
memory storage system. The controller, to avoid that the design efforts devoted to
optimize the ECC scheme vanish, must guarantee the bandwidth provided by the
ECC block. With this respect, the SSD controller must be designed in order to
manage a sufficient amount of commands to fully exploit the bandwidth of the
underlying storage system. Similarly, also the interface towards the host must be
able to guarantee the expected bandwidth. For this reason, SATA protocol is no
longer able to deal with the performance made available by the other blocks in the
SSD architecture so that SAS [20] and PCI-Express [21] are adopted for enterprise
environments.

On the basis of this bottom-up SSDs design flow, from an accurate knowledge of
the performance and limits of the selected NAND memories to the design of a
suitable ECC engine and, successively to that of the controller and of the host
interface, also CAD tools for SSD design must follow this Bottom-Up vision, while
relaxing the efforts previously devoted to the FTL design [22].

7 Memory Driven Design Methodologies for Optimal SSD Performance 183

7.2 The Impact of ECC on SSD Performance

As summarized in the previous section, because of endurance problems, poor data
retention or read disturbs, the actual threshold voltage read in a cell may be different
from the programmed one [14]. Therefore, when a page is read, some cells may
return a wrong value, thus producing read errors. To overcome these problems,
data-encoding guaranteeing a reconstruction of the correct read page data is
mandatory in electronic systems using NAND Flash memories.

The correction capability of the code to be adopted is strictly related to the error
probability. For a given technology node, since physical degrading mechanisms are
the same independently of the different storage paradigms (SLC, …, QLC), the
error probability increases with the number of bits stored in a single cell.

In the first SLC memories, thanks to the large gap between the program and the
erase voltage distributions, the error probability was very low, so that
Bose-Chaudhuri-Hocquengham (BCH) codes able to correct few tens of bits in a 1
or 2 kB page were sufficient. With limited number of errors to be corrected, the
correction time was not an issue and the read bandwidth and latency were mar-
ginally affected by the use of ECCs [23].

Figure 7.2a shows the typical blocks for ECC engines based on BCH codes: a
high-speed encoder is connected to each one of the Nc SSD channels (that is a bus
used to communicate with an array of Nd memory dies), whereas a reconfigurable
parallel decoder (i.e. a multi-engine decoder) is shared among the channels [24].
The structure of the decoder is represented in Fig. 7.2b, where the Syndrome block
determines whether an error is present, the Berlekamp-Massey block calculates the
coefficients of the error locator polynomial, and the Chien machine locate the errors
[25].

In multilevel architectures the number of errors to be corrected increases by an
order of magnitude for any further bit stored in a single cell. Although ECC engines
based on BCH codes are still used thanks to their simple hardware implementation,
high numbers of bits to be corrected may affect significantly on the overall read
time. Consequently, the correction time may become the bottleneck of the entire
read procedure. In addition, because of the high number of errors, the probability of
having uncorrectable pages (that are pages read with a number of wrong bits higher
than the ECC correction capabilities) increases [26]. When a page is marked as
uncorrectable, the read operation fails and the page content is irremediably lost. The
adoption of parallel decoding architectures can reduce the bandwidth and latency
degradation (at the expenses, however, of both area occupation and power con-
sumption) but it cannot solve the problems caused by uncorrectable pages.

To deal with the presence of uncorrectable pages, two alternatives exist: (i) keep
BCH codes and their ease of implementation while defining sophisticated read
algorithms in order to reduce the number of errors [27]; (ii) develop ECC solutions
based on different coding concepts, like Low Density Parity Check (LDPC) codes
[28]. In the former case, the basic idea in the presence of uncorrectable pages
consists in re-reading the page with different read reference voltages, in the attempt

184 L. Zuolo et al.

of tracking the shift of the threshold voltage distributions. Such a solution led to the
development of different read algorithms, generally defined as read retry [26]: the
ECC engine automatically manages them and they call for (at least) a page
re-reading with the unavoidable degradation of the read bandwidth. The latter
solution adopts LDPC codes that, differently from BCH codes, present a much
higher correction capability [28]. Figure 7.3 shows the typical blocks for ECC
engines based on LDPC codes: the decoding engine is composed by two main
blocks: the Hard Decoding (HD) and the Soft Decoding (SD).

From an operative point of view, LDPC decoding works as follows. Cells are
read as ‘1’ or ‘0’ depending on their threshold voltage with respect to a fixed
reference level. If during the ECC decoding phase the page is evaluated as un-
correctable, the LDPC decoding algorithm can be retried with the SD. To
accomplish this second step, more information about the actual position of the
NAND Flash threshold voltage distributions must be collected. The algorithm steps

Fig. 7.2 a Schematic representation of an ECC architecture based on BCH codes. A high-speed
encoder is connected to each SSD channel whereas a a reconfigurable parallel decoder is shared
among the Nc channels. b Schematic representation of the BCH decoder. Reproduced with per-
mission from L. Zuolo, C. Zambelli, R. Micheloni and P. Olivo, “Solid-State Drives: Memory
Driven Design Methodologies for Optimal Performance”, in Proceedings of the IEEE, vol. 105,
no. 9, pp. 1589–1608, Sept 2017. © 2017 IEEE

7 Memory Driven Design Methodologies for Optimal SSD Performance 185

sequentially the internal read references to lower and higher voltages thus reading
the page twice. Data are transferred to the LDPC decoder and then they are bit-wise
combined with those previously read with the first reference (i.e., called the HD
reference). This step is possible because during the whole SD process the data read
with the HD reference are stored in a dedicated buffer inside the SSD controller and
used as a reference. The algorithm continues this process until the page is correctly
read or the maximum number of soft-decoding operations is reached and the page is
marked as uncorrectable [19].

LDPC is now the state-of-the-art in SSD products. However, to evaluate the
optimal ECC engine design in terms of HD and SD implementation, the knowledge
of the actual memory RBER is mandatory. With this respect, it is usual to leverage a
worst-case design methodology where the correction strength figure of the HD is
compared with the maximum percentage of uncorrectable pages measured at the
end of the memory’s lifetime. Figure 7.4 shows this process when a LDPC able to
correct up to 100 bits in a 4320 Bytes codeword is considered for a TLC NAND
Flash memory manufactured in a planar 1X technology node. Point A marks the
maximum percentage of uncorrectable pages measured at the end of the memory’s
lifetime. As it can be seen, in this case switching from the HD to a one bit SD is
sufficient to correct all the errors (point B). Other correction strategies like a two
bits SD, become an over-design.

The above considerations are mandatory when it is required to design the
optimum LDPC architecture (both in terms of correction strength and correction

Fig. 7.3 Schematic representation of an ECC architecture based on LDPC codes. The decoding
path is composed by two main blocks: the hard decoding, whose architecture is similar to that
designed for BCH engines and the soft-level decoding. Reproduced with permission from L.
Zuolo, C. Zambelli, R. Micheloni and P. Olivo, “Solid-State Drives: Memory Driven Design
Methodologies for Optimal Performance”, in Proceedings of the IEEE, vol. 105, no. 9, pp. 1589–
1608, Sept 2017. © 2017 IEEE

186 L. Zuolo et al.

bandwidth) for the target SSD. In fact, since the SD directly affects the drive’s
bandwidth, once the correction strategy is defined (a one bit SD rather than a two
bits SD) and the decoder’s bandwidth is fixed, it is important to find the right
balance between the number of HD and SD decoders. Figure 7.5 shows the read
bandwidth obtained, for different HD implementations, in a 2 TB SSD featuring 16
channels each one connected to eight 128-Gbits TLC NAND Flash dies manu-
factured in a planar 1X technology node, as a function of the number of P/E cycles.
Since each hard decoder in this example has a bandwidth of 1.2 GB/s and the SSD
host interface is a PCI-Express GEN3x4 [21] with a maximum bandwidth of 4 GB/
s, it is clear that a coarse design choice (that neglects the actual RBER evolution)
requires 4 HD decoders. To this extent, any higher number would result in a cost
ineffective overdesign.

However, since RBER increases with the number of P/E cycles, the percentage
of uncorrectable pages detected by the HD increases as well. Consequently, SD is
triggered and the read bandwidth rapidly decreases when the memory rated en-
durance is approached. To guarantee the expected performance and to extend the
SSD working window, it is necessary to increase the number of HD decoders (see
Fig. 7.5) as well as that of SD decoders. Figure 7.6a shows the calculated read
bandwidth degradation with respect to the beginning of life) by implementing 8 HD
decoders and different numbers of SD decoders. As it can be seen, to reduce the
read bandwidth degradation at twice the rated endurance, 2 SD decoders can be
used, while any larger number of decoders would result in an overdesign.
Figure 7.6b shows the results obtained by using 16 HD decoders and different

Fig. 7.4 Correction strength of both HD and SD when a LDPC able to correct up to 100 Bits in a
4320 Bytes codeword is considered for a 128-Gb TLC NAND Flash memory manufactured in a
planar 1X technology node. Points A and B represent the maximum measured percentage of
uncorrectable pages at the end of the memory lifetime, when HD and SD are used, respectively.
Reproduced with permission from L. Zuolo, C. Zambelli, R. Micheloni and P. Olivo, “Solid-State
Drives: Memory Driven Design Methodologies for Optimal Performance”, in Proceedings of the
IEEE, vol. 105, no. 9, pp. 1589–1608, Sept 2017. © 2017 IEEE

7 Memory Driven Design Methodologies for Optimal SSD Performance 187

numbers of SD decoders, showing a significant performance improvement thanks to
a much higher hardware cost. From a designer point of view, an accurate trade-off
evaluation between performance (i.e. read bandwidth reduction) and hardware cost
must be based on the actual knowledge of the memory RBER evolution.

Fig. 7.5 Read bandwidth evolution as a function of the number of P/E cycles sustained by NAND
Flash in a 2 TB SSD featuring a PCI-Express GEN3x4 host interface. The ECC engine is
composed by a variable pool of HD decoders and a single SD decoder. The NAND Flash rated
endurance is 900 P/E cycles. Reproduced with permission from L. Zuolo, C. Zambelli, R.
Micheloni and P. Olivo, “Solid-State Drives: Memory Driven Design Methodologies for Optimal
Performance”, in Proceedings of the IEEE, vol. 105, no. 9, pp. 1589–1608, Sept 2017. © 2017
IEEE

Fig. 7.6 Read bandwidth degradation with respect to the beginning of life at different endurance
considering different SD levels. 8 and 16 HD decoders have been considered in (a) and (b),
respectively. Reproduced with permission from L. Zuolo, C. Zambelli, R. Micheloni and P. Olivo,
“Solid-State Drives: Memory Driven Design Methodologies for Optimal Performance”, in Pro-
ceedings of the IEEE, vol. 105, no. 9, pp. 1589–1608, Sept 2017. © 2017 IEEE

188 L. Zuolo et al.

7.3 SSD Controller Design

The main block diagram of an SSD controller is shown in Fig. 7.7. Once the SSD’s
specifications have been fixed, and hence the maximum device bandwidth has been
defined, the SSD controller design follows a simple rule of thumb to calculate Nc

and Nd needed to meet the requirements. To calculate the actual controller band-
width Bcont, it is sufficient to sum the bandwidth contributions Bch of each channel:

Bcont = ∑
Nc

i=1
Bch, i

The maximum channel bandwidth Bch,i is obtained under the assumption that all
the memory dies connected to channel i are addressed at the same time. By defining
Bd as the bandwidth of each memory die, the theoretical controller bandwidth is
given by:

Bth
cont = ∑

Nc

i=1
Bmax
ch, i = ∑

Nc

i=1
Nd, iBd

Previous equation represents, however, the theoretical condition under the
hypothesis that all single dies can communicate simultaneously with the controller

Fig. 7.7 Schematic representation of the SSD controller, considering Nc channels and Nd memory
dies connected to each channel. Reproduced with permission from L. Zuolo, C. Zambelli, R.
Micheloni and P. Olivo, “Solid-State Drives: Memory Driven Design Methodologies for Optimal
Performance”, in Proceedings of the IEEE, vol. 105, no. 9, pp. 1589–1608, Sept 2017. © 2017
IEEE

7 Memory Driven Design Methodologies for Optimal SSD Performance 189

and, therefore, it represents the maximum achievable value. Unfortunately, for
several reasons (e.g., access request to the same die, die’s response time slowed
down by a read retry operation, die busy for a program operation whose latency is
much higher with respect to read latency, etc.), the probability that all dies can
communicate simultaneously with the controller is generally <1. Taking into
account that a number n of dies in a channel cannot serve new requests since they
are processing other commands, the actual controller bandwidth is given by:

Bcont = ∑
Nc

i=1
Nd, i − nið ÞBd ≤Bth

cont

The above equation calculates the controller bandwidth in a fresh condition (i.e.,
at the beginning of the drive’s lifetime). However, as previously described in the
former sections of this chapter, the actual performance of the SSD is strongly
affected by the reliability phenomena associated with the storage layer. Therefore,
to take into account these effects, the equation can be modified as follows:

Bcont PE,T ,RD,WAFð Þ= ∑
Nc

i=1
Nd, i − ni PE,T ,RD,WAFð Þ½ �Bd ≤Bth

cont

where PE, T, RD andWAF are the current Program/Erase cycle number of the drive,
the working Temperature, the Read Disturb level of the memories, and the Write
Amplification Factor, respectively. The WAF factor is defined as the ratio between
the data written to the NAND Flash and the data written by the host. Generally, is a
number greater than 1. It has been accurately described in [29] and it depends on
several factors ascribed to the FTL implementation including Wear Leveling,
Garbage Collection, and Bad Block management algorithms. Along with WAF, P/
E, T, and RD introduce hard-to-model effects that complicate the description of the
controller’s bandwidth in a closed form. Therefore, to help SSD designers to cal-
culate the actual performance and latency of a target SSD over time and use, the
adoption of sophisticated simulation tools like SSDExplorer is mandatory [22].
Overall, what ultimately stands out from both previous equations is that, to
approach as much as possible the ideal controller bandwidth, it is necessary to: (i)
reduce the probability that a command addresses a busy die (i.e., a die already
scheduled by another operation); (ii) maximize the number of dies that can process
a new command.

This can be accomplished: (i) by increasing the number Nd of dies connected to
each channel, which however impacts on the SSD cost; (ii) with an effective
command management performed by the FTL; (iii) by using a DRAM as a data
buffer.

190 L. Zuolo et al.

7.3.1 Efficient Command Management

In nowadays SSDs, to efficiently manage the commands issued by the host, it is
possible to leverage the Command Queue (CQ) concept [30]. This resource is
usually implemented as a software routine shared between the host interface, which
pushes host commands inside the CQ, and the SSD controller that manages the
requested operations and pulls out the commands from the CQ.

Figure 7.8 shows the queuing hierarchy usually implemented in traditional SSD
controllers [31]. Besides the external host CQ, it is common to have a dedicated
small command queue for each NAND Flash memory die: the Target Command
Queue (TCQ). Thanks to the TCQ, the host can continue to issue commands even
when it tries to read or program a die that is in the busy state. In fact, when this
condition is verified, the command is simply queued in the TCQ and the SSD
controller can continue to fetch other commands from the host CQ. This technique
allows maximizing Bcont since TCQs keep always-busy all the NAND Flash dies. It
is thus clear that the main parameters controlling Bcont are the parallelism (i.e., Nc

and Nd) and the queue depth (QD), that is the number of commands that the host
interface can store.

The attempt of approaching the ideal performance in terms of bandwidth by
increasing QD presents an unavoidable disadvantage: the increase of the service
time (i.e. the time elapsed between the issue and the execution of a command) and,

Fig. 7.8 Queueing hierarchy implemented inside the SSD controller for a generic channel.
Reproduced with permission from L. Zuolo, C. Zambelli, R. Micheloni and P. Olivo, “Solid-State
Drives: Memory Driven Design Methodologies for Optimal Performance”, in Proceedings of the
IEEE, vol. 105, no. 9, pp. 1589–1608, Sept 2017. © 2017 IEEE

7 Memory Driven Design Methodologies for Optimal SSD Performance 191

consequently, of the SSD latency. Therefore, QD has a severe impact on QoS, that
defines the maximum acceptable latency of the drive and it is calculated as the
99.99th percentile of the SSD latencies cumulative distribution. To this extent, QoS
is used to quantify how the SSD behaves in the worst-case conditions [9]. By using
this metric, it is possible to understand if the target SSD architecture is suitable for a
specific application, such as real-time and safety-critical systems [32]. Figure 7.9
shows an example of how Bcont and QoS scale with the host QD. As expected, both
Bcont and QoS increase with QD. This behavior, however, is in contrast with the
requirements of high performance SSDs, which ask for achieving the target
bandwidth with the lowest QoS. In fact, state-of-the-art user applications such as
financial transactions or cloud platforms [33] are designed to work with storage
devices, which have to serve an I/O operation within a specific period, which is
usually upper-bounded, by the QoS requirement.

To deal with this requirement it is possible to use the Head-of-Line
(HoL) blocking concept, whose effect is to limit the number of outstanding com-
mands inside the SSD, thus partially solving the latency issue [34]. The HoL
blocking is managed by the controller firmware implementing a FIFO stack whose
dimensions can be dynamically defined. When the number of commands queued in
a TCQ exceeds a predefined threshold, it is possible to trigger a blocking state
inside the SSD controller that stops the submission of a new command from the
host CQ. In such a way, depending on the HoL threshold value, it is possible to
avoid long command queues inside the TCQs and, hence, the device QoS can be
limited within a defined window.

The fine-grained QoS calibration made available by the HoL blocking, however,
does not come free. If, besides Bcont and QoS, the average SSD latency is taken into

Fig. 7.9 Bcont and QoS as a function of the host Queue Depth. The full line and the dashed-dotted
line represent the target Bcont and the target QoS, respectively. Simulations refer to an SSD
featuring Nc = 8 and Nd = 8 TLC NAND Flash manufactured in a planar 1X technology node.
Average read time is 86 µs and workload is 100% 4 kB random read. Reproduced with permission
from L. Zuolo, C. Zambelli, R. Micheloni and P. Olivo, “Solid-State Drives: Memory Driven
Design Methodologies for Optimal Performance”, in Proceedings of the IEEE, vol. 105, no. 9,
pp. 1589–1608, Sept 2017. © 2017 IEEE

192 L. Zuolo et al.

account, it is clear that the HoL blocking effect has to be wisely used (see
Fig. 7.10). When the HoL blocking is triggered it trades the QoS reduction with an
increase of the average latency. Moreover, this behavior becomes more pronounced
when high QDs are used (i.e., when a higher QoS reduction is required).

7.3.2 DRAM Data Caching

To increase the controller bandwidth and to approach as much as possible the
theoretical bandwidth, it is possible to use a DRAM as data cache buffer [35]. As
shown in Fig. 7.7, this block is located between the host interface and the channel
controller. Standard data caching algorithms can be adopted, such as Least Recently
Used (LRU) or Least Frequently Used (LFU) [36], to decrease the number of
accesses to the Flash memories. Since data are addressed in a much faster memory,
the access time can be reduced with respect to a standard NAND Flash read/
program operation. In addition, since part of the data to be read/written are stored in
the DRAM buffer, the number of accesses to the NAND Flash dies are reduced,
thus limiting the number of busy dies.

These effects positively affect the SSD bandwidth and the average latency.
Moreover, the reduction of the number of accesses to the NAND Flash dies increases
their reliability. This point is strictly related to the smaller number of write operations,
thus limiting endurance effects and, possibly, leading to a reduced read disturb issue.

Table 7.1 shows the cache-hit probability, the read bandwidth, the average
latency, and the QoS calculated for the “no cache” case (i.e., a case where the

Fig. 7.10 Average SSD latency evaluated as a function of the host queue depth, for the same case
of Fig. 7.9, with and without the HoL blocking. Reproduced with permission from L. Zuolo, C.
Zambelli, R. Micheloni and P. Olivo, “Solid-State Drives: Memory Driven Design Methodologies
for Optimal Performance”, in Proceedings of the IEEE, vol. 105, no. 9, pp. 1589–1608, Sept 2017.
© 2017 IEEE

7 Memory Driven Design Methodologies for Optimal SSD Performance 193

DRAM data cache buffer is not present, assumed as reference) and for different
ratios between the total NAND and the DRAM sizes. The number of cache hits (i.e.
the percentage of memory accesses to the DRAM buffer with respect to the total
number of data accesses) depends on the probability of addressing any single
non-volatile memory page. All data have been collected considering a uniformly
distributed Logical Block Address (LBA) space of the SSD and a LRU eviction
policy is used as caching algorithm.

As it can be seen, the performance metrics of the simulated drive are not sig-
nificantly influenced by the DRAM size. This is because the LBA space is uni-
formly distributed across all the SSD pages, therefore all data locations have the
same probability to be addressed.

A uniformly distributed LBA space, however, represents the worst-case condi-
tion for the assessment of the benefits materialized by a caching algorithm. In
general, real user workloads tend to follow different LBA distributions, which are
more similar to a Gaussian or a Lognormal with a mode around a specific address.
Consequently, if the I/O address profile of the target application is known, it is
possible to optimize the DRAM cache size depending on the statistical parameters
presented by the LBA profile itself.

Suppose to have Gaussian distributed workloads spanning across the whole
LBA space of the drive. By considering a standard deviation around the average of
the total SSD LBA address space, it is possible to design the proper DRAM size
ratio in two different ways: (i) reducing the DRAM capacity while keeping the same
cache hit probability and drive performance; (ii) increasing the DRAM capacity
maximizing the number of cache hits and, therefore, boosting the drive
performance.

Table 7.2 shows, for three different standard deviation values, the NAND/
DRAM size ratio, the cache hit probability, the read bandwidth, the average latency,
and the QoS of the target SSD architecture. As it can be seen, the performance
metrics are almost similar with a significant reduction of the DRAM size for the
tightest workload distribution.

Table 7.3 shows, for the (b) case, the NAND/DRAM size ratio, the cache hit
probability, and the performance metrics of the target SSD architecture. With
respect to the (b) case of Table 7.2, the NAND/DRAM size ratio has been reduced
from 50 to 15. As it can be seen, it is possible to almost triplicate the cache-hit
probability thus increasing the read bandwidth while reducing the average latency.
It is worth to highlight that this performance improvement marginally influences the

Table 7.1 NAND/DRAM size ratio and SSD performance for a configuration where LBA space
is uniformly distributed

NAND/DRAM size ratio No cache 256 50 15

Cache hit (%) 0 0.6 2.7 8.2
Read bandwidth (kIOPS) 301 312 318 337
Average Latency (µs) 206 204 200 189
QoS (ms) 1.07 1.19 1.13 1.03

194 L. Zuolo et al.

QoS, since it is related to the worst case (usually a read operation performed on a
NAND Flash die). Summing up, the use of a DRAM cache offers advantages in
terms of bandwidth, latency, and reliability. The design of an application specific
SSD, in addition, can be optimized if the LBA space distribution is known, in order
to reduce the DRAM size. Therefore, the drive design must be done concurrently
with the application for which it represents the storage element.

7.4 Criteria for Optimal Host Interface Selection

The host interface represents the link between the SSD controller and the host
where the application is running. Differently from the SSD controller that is fully
customized, the physical structure of the communication interface follows con-
solidated standards. Now, the used interfaces are SATA [8] (mainly for consumer
applications), SAS [20], and PCIe [21] (for enterprise environments).

The correct choice of the host interface represents a crucial aspect along the
drive design phase since it allows guaranteeing that the SSD controller is used in
optimal conditions. In a traditional design approach for general purpose SSDs,
where both controller and host interface are chosen separately without any
knowledge of the final application, the constraint of selecting a host interface able to
guarantee a bandwidth Bhi ≥ Bcont (where Bhi is the maximum bandwidth of the
host interface) at the lowest cost represents the standard approach, whereas a host
interface whose Bhi < Bcont would act as a bottleneck limiting the SSD perfor-
mance. A detailed analysis of the impact of the host interface on the SSD’s per-
formance has been presented in [22].

If the application to be run on the host is known, a different approach can be
adopted. It must be taken into account that the design of a fully customized SSD
controller is much more expensive with respect to that of the host interface, which

Table 7.2 NAND/DRAM
size ratio and SSD
performance as a function of
the LBA space distributions
(assumed Gaussian)

Standard deviation 2% 10% 30%

NAND/DRAM size ratio 256 50 15
Cache hit (%) 15.3 15.3 15.3
Read bandwidth (kIOPS) 367 364 365
Average Latency (µs) 173 175 175
QoS (ms) 0.98 1.27 1.29

Table 7.3 NAND/DRAM
size ratio and SSD
performance for a
configuration where the LBA
space is that of case (b) in
Table 7.2

NAND/DRAM size ratio 50 15

Cache hit (%) 15.3 42.1
Read bandwidth (kIOPS) 364 536
Average Latency (µs) 175 118
QoS (ms) 1.27 1.19

7 Memory Driven Design Methodologies for Optimal SSD Performance 195

follows well-defined standards. By considering this economic aspect, it is conve-
nient to design an SSD controller with top performance (rather than a family of
controllers with different quality metrics) and to operate at the host interface level to
satisfy the application requirements. As an example, if the controller has been
designed to sustain a certain theoretical bandwidth and the application requires a
lower bandwidth Bapp, an interface satisfying the condition

Bapp ≤Bhi ≤Bth
cont

can be selected, confirming that the ideal host interface must be chosen on the basis
of the application and, therefore, on the drive use. In such a way, with a single SSD
controller design, different application requirements can be satisfied by using dif-
ferent host interfaces. Such methodology allows reducing the controller bandwidth
to match that of the application and lowering the design cost of the SSD controller.
In addition, it allows also reducing the drive power consumption since, operating at
a lower throughput, a lower number of NAND Flash dies are activated
simultaneously.

An evolution of this design methodology, envisaging a single controller asso-
ciated to different interfaces as a function of the application, considers a unique
combination of SSD controller and host interface. In this case, each block is able to
provide the maximum theoretical performance. The effective performance, how-
ever, can be tuned dynamically at software level by acting on the SSD’s firmware
and especially on the command queue depths, which can be modified during the
normal execution. An example of this methodology can be found in [37, 38] where
the SSD controller is able to automatically limit the performance of the drive
depending on the allowed power consumption or on the thermal dissipation level.
Such an approach that calls for the design of a single block embedding the SSD
controller and the host interface, however implies a higher design cost for the
development of a controller whose hardware resources can be programmed by the
user.

7.5 Future Applications Opened by Hardware-Software
Co-design for High-performance SSDs

In the last 40 years, all software applications and Operating Systems (OS), which
make use of persistent storage architectures, have been designed to work with
HDDs [1]. However, SSDs are physically and architecturally different from HDDs
so that they need to execute the FTL algorithm to translate host commands [3–5].
The main role of FTL is to mimic the behavior of a traditional HDD and to enable
the usage of SSDs in any electronic system without acting on the software stack.
Besides this translation operation, SSD controllers have to run garbage collection,
command-scheduling algorithms, data placement schemes, wear leveling, and

196 L. Zuolo et al.

errors correction. All these routines, even if on the one hand allow a “plug and
play” connection of the SSD with traditional hardware and software, on the other
hand they limit actual SSD performance. The main drawback of FTL is the Garbage
Collection (GC) that is performed when valid pages belonging to a block to be
erased are read and written in a different block. Such an operation, that is time and
power consuming, reduces both drive bandwidth and NAND Flash reliability [29].
In the enterprise market and hyper scale data centers, performance and reliability
losses induced by GC are not tolerable.

To deal with the above-mentioned challenges, software developers in data
centers have shown, in the past few years, a growing interest for Software-Defined
Flash (SDF) [39]. In this kind of environments, the driving forces in the design of
computational nodes are reliability and high performance: therefore, even the I/O
management has to be re-architected. SDF leverages a new SSD design approach
called Host-Based FTL (HB-FTL) which allows the host system to: (i) optimize the
host payload, i.e., the amount of data read/written with a single command and hence
relieve the SSD from any host command translation or manipulation; (ii) remove
the GC related to FTL execution; (iii) execute the FTL directly on top of its
computational node (Open-Channel architecture [40]).

7.5.1 HB-FTL

HB-FTL considers the migration of all FTL routines from the SSD to a more
powerful processor located outside the SSD. To this purpose, the processor must be
able to issue commands to be interpreted directly by the NAND Flash dies, such as
read, program and, especially, erase [41]. In this context, a new protocol called
Light NVME (LNVME) [42] allows a native communication between NAND
memories and the external processor. Thanks to this protocol, the FTL can be
implemented and executed by the external processor such as the host where the
application is running.

A first advantage provided by this approach concerns the optimization of the
host payload. With this respect, since ECC coding/decoding operate on an entire
memory page, read/write operations on a NAND Flash page must follow the
constrains imposed by the ECC itself. As an example, consider a NAND Flash
memory whose page size is 4 kB and a host reading/writing data on a 512 B basis.

Write operations are performed on the NAND memories only when the host has
transferred eight 512 B data chunks. However, the host considers as accomplished a
write operation when the SSD has acknowledged the data acquisition. If a power
fail occurs between the data load and the effective storage in the nonvolatile layer,
data are considered as lost. To avoid this occurrence, dedicated solutions such as
supercapacitors [43] or the introduction of emerging non-volatile technologies, such
as MRAM, replacing DRAM buffers can be adopted [44]. On the contrary, a
NAND memory page is read every time the host requires even a single chunk.
Therefore, even if only 512 B are requested by the host, the entire 4 kB page is read

7 Memory Driven Design Methodologies for Optimal SSD Performance 197

and decoded by the ECC. It is clear that, in this case, the SSD is operating at 1/8 of
its theoretical read bandwidth.

To improve the SSD performance and to better exploit its internal resources, it is
convenient to co-design the application payload with the ECC engine. The optimal
solution is achieved by data chunks that are an integer multiple of the actual ECC
codeword.

A more powerful approach takes into account that in HB-FTL-based SDF both
the application and the FTL are processed in the same software environment [45].
Therefore, they can be co-designed in order to optimize the access pattern to the
nonvolatile memory. As an example, the application can be designed to perform
only sequential accesses to the storage medium, respecting the physical
in-order-program of NAND Flash memories. By following this approach, the actual
access to the NAND Flash dies is block-based rather than page-based which is
typical of random write accesses. By moving the write granularity from pages to
blocks, GC is no longer necessary. In addition, by serializing the write traffic to the
NAND Flash memories, the write bandwidth is maximized.

7.5.2 The Open-Channel Architecture

The Open-Channel architecture [40] allows implementing the management of
HB-FTL-based SDF.

Figure 7.11 sketches a template architecture that can be modeled by
Open-Channel. Thanks to the PCI-Express interconnection and the LNVME pro-
tocol, a bunch of NAND Flash cards can establish a peer-to-peer communication
with the host processor without requesting any specific management to the SSD
controller [46]. In this architecture, “NAND Flash cards” are not standard SSDs
because, besides a simple I/O processor, a channel controller for NAND addressing
and an ECC engine, they do not embody any complex processor, DRAM or even
FTL. Consequently, data read/write from/to these cards have to be considered as the
raw output/input of NAND memories without any further manipulation.

Figure 7.12 shows the effectiveness of HB-FTL with respect to a standard FTL
in increasing the SSD performance. To this purpose the HGST SN150
Ultrastar SSD [47], has been compared with a simulated drive featuring a HB-FTL
approach and the same SSD configuration.

The comparison has been performed for different mixed workloads, from a 100%
4 kB random read, 0% random write to a 0% random read, 100% 4kB random write.
All results show that in a standard FTL-based SSD performance decreases with the
write percentage, whereas in a HB-FTL-based SSD performance is mostly inde-
pendent from the write percentage. This result is due to the absence of the GC
algorithm that strongly affects standard FTL-based SSDs.

Another architecture that can fully exploit the Open-Channel concept and the
LNVME protocol relies on the usage of a dedicated accelerator in the form of a
Multi-Purpose Processing Array (MPPA) [48, 49], as shown in Fig. 7.13. This

198 L. Zuolo et al.

solution allows the reduction of the host I/O command submission/completion
timings.

These delays are strictly related to the host’s processing capabilities, they rep-
resent the time spent by the host to execute the LNVME driver, and the OS file
system for each submitted/completed I/O. It has been demonstrated that the per-
formance of nowadays SSDs is heavily affected by the I/O submission/completions
timings [50]. Moreover, in most recent architectures like the one based on the 3D
Xpoint technology [51], these delays can even represent the actual bottleneck of the
whole storage layer, whose IOPS are limited by the host system itself. Therefore,
reducing these timings is the key for designing ultra-high performance storage
systems.

Fig. 7.11 Reference architecture modeled by the Open-Channel storage layer when the host
processor is used for HB-FTL execution. More than one NAND Flash card are connected to the
PCI-Express bus. The host processor executes different FTL modules. Reproduced with permis-
sion from L. Zuolo, C. Zambelli, R. Micheloni and P. Olivo, “Solid-State Drives: Memory Driven
Design Methodologies for Optimal Performance”, in Proceedings of the IEEE, vol. 105, no. 9,
pp. 1589–1608, Sept 2017. © 2017 IEEE

7 Memory Driven Design Methodologies for Optimal SSD Performance 199

A possible solution to this problem is to switch the LNVME protocol from an
interrupt-driven I/O completion mechanism to a polling-driven approach. In stan-
dard SSDs, when an I/O is completed, the Flash controller sends an interrupt to the
host notifying that the transaction is ready to be transferred/processed. After that,
the host can submit another command to the drive because the submission of an I/O
is driven by a completion event. In theory, this approach requires that the host take
action only when I/Os are submitted/completed, but in practice, it introduces long
processing delays because of the OS interrupt service routines [50]. Polling the I/O
completion events, on the contrary, can minimize the above-mentioned processing
timings. It requires, however, that the host system monitors continuously the I/Os,
thus wasting part of its processing capabilities. In light of all these considerations,
moving the whole submission/completion process to a dedicated MPPA represents
a good solution, which can offload the host system and, at the same time, exploit the
full performance of the NAND Flash cards.

Fig. 7.12 Throughput
(expressed in kIOPS) of
HGST SN150 Ultrastar SSD
architecture compared to that
of a simulated HB-FTL-based
drive with the same
configuration: (top) read
intensive and (bottom) write
intensive workloads. A queue
depth of 32 commands is
used. Simulations have been
performed with SSDExplorer
[22]. Reproduced with
permission from L. Zuolo, C.
Zambelli, R. Micheloni and
P. Olivo, “Solid-State Drives:
Memory Driven Design
Methodologies for Optimal
Performance”, in Proceedings
of the IEEE, vol. 105, no. 9,
pp. 1589–1608, Sept 2017. ©
2017 IEEE

200 L. Zuolo et al.

These considerations push towards a new SSD design methodology: a complete
virtualization of the storage backbone. In fact, both HB-FTL and Open-Channel
allow to virtually separating the internal resources of the SSD (like channels and
targets), providing a clear and straight path to OS data partitioning.

References

1. G. Wong, SSD Market Overview, in Inside Solid State Drives (SSDs), ed. by R. Micheloni, A.
Marelli, and K. Eshghi (Springer, 2012), pp. 1–17

2. Semiconductor Industry Association, International technology roadmap for semiconductors
(2015), http://www.semiconductors.org/main/2015_international_technology_roadmap_for_
semiconductors_itrs/

3. D. Liu, Y. Wang, Z. Qin, Z. Shao, Y. Guan, A space reuse strategy for flash translation layers
in SLC NAND flash memory storage systems. IEEE Trans. VLSI Syst. 20(6), 1094–1107
(2012)

4. T. Wang, D. Liu, Y. Wang, Z. Shao, FTL2: a hybrid flash translation layer with logging for
write reduction in flash memory. ACM SIGPLAN Not. 48(5), 91–100 (2013)

5. Y.H. Chang, P.C. Huang, P.H. Hsu, L.J. Lee, T.W. Kuo, D. Du, Reliability enhancement of
flash-memory storage systems: an efficient version-based design. IEEE Trans. Comput. 62
(12), 2503–2515 (2013)

6. JEDEC Org., JESD 22-A 117 document, Oct 2011

Fig. 7.13 Reference architecture modeled by the open-channel storage layer when a MPPA is
used for HB-FTL execution. Besides the NAND Flash cards, the PCI-Express bus is connected to
a MPPA accelerator executing different FTL modules. Reproduced with permission from L. Zuolo,
C. Zambelli, R. Micheloni and P. Olivo, “Solid-State Drives: Memory Driven Design Method-
ologies for Optimal Performance”, in Proceedings of the IEEE, vol. 105, no. 9, pp. 1589–1608,
Sept 2017. © 2017 IEEE

7 Memory Driven Design Methodologies for Optimal SSD Performance 201

http://www.semiconductors.org/main/2015_international_technology_roadmap_for_semiconductors_itrs/
http://www.semiconductors.org/main/2015_international_technology_roadmap_for_semiconductors_itrs/

7. R. Micheloni, A. Marelli, R. Ravasio, Basic coding theory, in Error Correction Codes for
Non-Volatile Memories, ed. by R. Micheloni, A. Marelli, R. Ravasio (Springer, 2008), pp. 1–
33

8. Serial ATA International Organization, SATA Revision 3.0 Specifications, www.sata-io.org
9. Intel Inc., Intel Solid-State Drive DC S3500 Series Quality of Service (2013), p. 9, http://

www.intel.com/content/www/us/en/solid-state-drives/ssd-dc-s3500-spec.html
10. A. Grossi, L. Zuolo, F. Restuccia, C. Zambelli, P. Olivo, Quality-of-service implications of

enhanced program algorithms for charge-trapping NAND in future solid-state drives, IEEE
Trans. Dev. Mat. Reliab. 15(3), 363–369 (2015)

11. S. Aritome, NAND flash memory technologies. Wiley-IEEE Press (2016)
12. J.D. Lee, J.H. Choi, D. Park, K. Kim, Degradation of tunnel oxide by FN current stress and its

effects on data retention characteristics of 90 nm NAND flash memory cells, in Proceedings
International Reliability Physics Symposium, Mar 2003, pp. 497–501

13. N. Mielke, H. Belgal, I. Kalastirsky, P. Kalavade, A. Kurtz, Q. Meng, N. Righos, J. Wu,
Flash EEPROM threshold instabilities due to charge trapping during program/erase cycling,
IEEE Trans. Dev. Mat. Reliab. 4(3), 335–344 (2004)

14. N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares, F. Trivedi, E. Goodness,
L.R. Nevill, Bit error rate in NAND flash memories, in Proceedings International Reliability
Physics Symposium, Apr 2008, pp. 9–19

15. K. Fukuda, Y. Watanabe, E. Makino, K. Kawakami, J. Sato, T. Takagiwa, N. Kanagawa, H.
Shiga, N. Tokiwa, Y. Shindo, T. Ogawa, T. Edahiro, M. Iwai, O. Nagao, J. Musha, T.
Minamoto, Y. Furuta, K. Yanagidaira, Y. Suzuki, D. Nakamura, Y. Hosomura, R. Tanaka, H.
Komai, M. Muramoto, G. Shikata, A. Yuminaka, K. Sakurai, M. Sakai, H. Ding, M.
Watanabe, Y. Kato, T. Miwa, A. Mak, M. Nakamichi, G. Hemink, D. Lee, M. Higashitani, B.
Murphy, B. Lei, Y. Matsunaga, K. Naruke, T. Hara, A 151-mm2 64-Gb 2 Bit/Cell NAND
flash memory in 24-nm CMOS technology. IEEE J. Solid State Circuit 47(1), 75–84 (2012)

16. K.T. Park, O. Kwon, S. Yoon, M.H. Choi, I.M. Kim, B.G. Kim, M.S. Kim, Y.H. Choi, S.H.
Shin, Y. Song, J.Y. Park, J.E. Lee, C.G. Eun, H.C. Lee, H.J. Kim, J.H. Lee, J.Y. Kim, T.M.
Kweon, H.J. Yoon, T. Kim, D.K. Shim, J. Sel, J.Y. Shin, P. Kwak, J.M. Han, K.S. Kim, S.
Lee, Y.H. Lim, T.S. Jung, A 7 MB/s 64 Gb 3-Bit/Cell DDR NAND flash memory in
20 nm-node technology, in IEEE International Solid-State Circuits Conference, Feb 2011,
pp. 212–213

17. C. Trinh, N. Shibata, T. Nakano, M. Ogawa, J. Sato, Y. Takeyama, K. Isobe, B. Le, F.
Moogat, N. Mokhlesi, K. Kozakai, P. Hong, T. Kamei, K. Iwasa, J. Nakai, T. Shimizu, M.
Honma, S. Sakai, T. Kawaai, S. Hoshi, J. Yuh, C. Hsu, T. Tseng, J. Li, J. Hu, M. Liu, S.
Khalid, J. Chen, M. Watanabe, H. Lin, J. Yang, K. McKay, K. Nguyen, T. Pham, Y. Matsuda,
K. Nakamura, K. Kanebako, S. Yoshikawa, W. Igarashi, A. Inoue, T. Takahashi, Y. Komatsu,
C. Suzuki, K. Kanazawa, M. Higashitani, S. Lee, T. Murai, K. Nguyen, J. Lan, S. Huynh, M.
Murin, M. Shlick, M. Lasser, R. Cernea, M. Mofidi, K. Schuegraf, K. Quader, A 5.6 MB/s
64 Gb 4b/Cell NAND flash memory in 43 nm CMOS, in IEEE International Solid-State
Circuits Conference, Feb 2009, pp. 246–247

18. L. Zuolo, C. Zambelli, R. Micheloni, D. Bertozzi, P. Olivo, Analysis of reliability/
performance trade-off in solid state drives, in Proceedings International Reliability Physics
Symposium, June 2014, pp. 4B.3.1–4B.3.5

19. K. Zhao, W. Zhao, H. Sun, X. Zhang, N. Zheng, T. Zhang, LDPC-in-SSD: making advanced
error correction codes work effectively in solid state drives, in USENIX Conference on File
and Storage Technologies (2013), pp. 243–256

20. Seagate Technology LLC, Serial Attached SCSI (SAS) (2009), http://www.seagate.com/
staticfiles/support/disc/manuals/Interface%20manuals/100293071c.pdf

21. PCI-SIG Ass., PCI Express Base 3.0 Specification (2013), http://www.pcisig.com/
specifications/pciexpress/base3/

22. L. Zuolo, C. Zambelli, R. Micheloni, M. Indaco, S. Di Carlo, P. Prinetto, D. Bertozzi,
P. Olivo, SSDExplorer: a virtual platform for performance/reliability-oriented fine-grained

202 L. Zuolo et al.

http://www.sata-io.org
http://www.intel.com/content/www/us/en/solid-state-drives/ssd-dc-s3500-spec.html
http://www.intel.com/content/www/us/en/solid-state-drives/ssd-dc-s3500-spec.html
http://www.seagate.com/staticfiles/support/disc/manuals/Interface%20manuals/100293071c.pdf
http://www.seagate.com/staticfiles/support/disc/manuals/Interface%20manuals/100293071c.pdf
http://www.pcisig.com/specifications/pciexpress/base3/
http://www.pcisig.com/specifications/pciexpress/base3/

design space exploration of solid state drives. IEEE Trans. Comput. Aided Design 34(10),
1627–1638 (2015)

23. R. Micheloni, A. Marelli, R. Ravasio, Cyclic codes for non volatile storage, in Error
Correction Codes for Non-Volatile Memories, ed. by R. Micheloni, A. Marelli, R. Ravasio,
(Springer, 2008), pp. 167–198

24. Y. Lee, H. Yoo, I. Yoo, I.-C. Park, 6.4 Gb/s multi-threaded BCH encoder and decoder for
multi-channel SSD controllers, in IEEE International Solid-State Circuits Conference, Feb
2012, pp. 426–428

25. R. Micheloni, A. Marelli, R. Ravasio, BCH hardware implementation in NAND flash
memories, in Error Correction Codes for Non-Volatile Memories, ed. by R. Micheloni, A.
Marelli, R. Ravasio (Springer, 2008), pp. 199–247

26. S.M. Jeff Yang, High-efficiency SSD for reliable data storage systems, in Flash Memory
Summit (2012)

27. A. Cometti, L. Huang, A. Melik-Martirosian, Apparatus and method for determining a read
level of a flash memory after an inactive period of time. US Patent 8,644,099, 4 Feb 2014

28. X. Wang, G. Dong, L. Pan, R. Zhou, Error correction codes and signal processing in flash
memory, in Flash Memories, ed. by I. Stievano (2011), pp. 57–82

29. X. Hu, E. Eleftheriou, R. Haas, I. Iliadis, R. Pletka, Write amplification analysis in flash-based
solid state drives, in Proceedings ACM International Systems and Storage Conference, May
2009, pp. 10:1–10:9

30. D. Rollins, Best practices for SSD performance measurement, in Micron Technology, Inc.,
Technical Marketing Brief (2011), https://www.micron.com/∼/media/documents/products/
technical-marketing-brief/briefssdperformancemeasure.pdf

31. K. Eshghi, R. Micheloni, SSD architecture and PCI express interface, in Inside Solid State
Drives (SSDs), ed. by R. Micheloni, A. Marelli, K. Eshghi (Springer, 2012), pp. 19–45

32. L.M. Grupp, J.D. Davis, S. Swanson, The bleak future of NAND flash memory, in
Proceedings Usenix International Conference on File and Storage Technologies (2012),
pp. 1–8

33. Avago Tech., Accelerating financial applications using solid state storage, (2011), http://docs.
avagotech.com/docs/12353095

34. M. Karol, M. Hluchyj, S. Morgan, Input versus output queueing on a space-division packet
switch. IEEE Trans. Commun. 35(12), 1347–1356 (1987)

35. Intel, Intel X18-M X25-M SATA solid state drive. Enterprise Server/Storage Applications,
http://cache-www.intel.com/cd/00/00/42/52/425265_425265.pdf

36. E.G. Coffman Jr., P.J. Denning, Operating Systems Theory. Prentice Hall Professional
Technical Reference (1973)

37. S. Lee, T. Kim, K. Kim, J. Kim, Lifetime management of flash-based SSDs using
recovery-aware dynamic throttling, in Proceedings Usenix International Conference on File
and Storage Technologies (2012)

38. R.-S. Liu, C.-L. Yang, W. Wu, Optimizing NAND flash-based SSDs via retention relaxation,
in Proceedings Usenix International Conference on File and Storage Technologies (2012)

39. J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, Y. Wang, SDF: software-defined flash for
web-scale internet storage systems, in Proceedings ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Mar 2014,
pp. 471–484

40. Open-Channel Solid State Drives (2016), http://openchannelssd.readthedocs.org/en/latest/
41. A. Batwara, Leveraging host based flash translation layer for application acceleration, in

Flash Memory Summit, Aug 2012
42. Open Channel Solid State Drives NVMe Specification (2016), http://bit.ly/2gfidpQ
43. Samsung Electronics Co., Power loss protection (PLP)—protect your data against sudden

power loss (2014), http://www.samsung.com/semiconductor/minisite/ssd/downloads/
document/SamsungSSD845DC05PowerlossprotectionPLP.pdf

44. C. Zambelli, G. Navarro, V. Sousa, I.L. Prejbeanu, L. Perniola, Phase change and magnetic
memories for solid-state drive applications. Proc. IEEE 105(9), 1790–1811 (2017)

7 Memory Driven Design Methodologies for Optimal SSD Performance 203

https://www.micron.com/%7e/media/documents/products/technical-marketing-brief/briefssdperformancemeasure.pdf
https://www.micron.com/%7e/media/documents/products/technical-marketing-brief/briefssdperformancemeasure.pdf
http://docs.avagotech.com/docs/12353095
http://docs.avagotech.com/docs/12353095
http://cache-www.intel.com/cd/00/00/42/52/425265_425265.pdf
http://openchannelssd.readthedocs.org/en/latest/
http://bit.ly/2gfidpQ
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/SamsungSSD845DC05PowerlossprotectionPLP.pdf
http://www.samsung.com/semiconductor/minisite/ssd/downloads/document/SamsungSSD845DC05PowerlossprotectionPLP.pdf

45. J. Gonzalez, M. Bjrling, S. Lee, C. Dong, Y.R. Huang, Application-driven flash translation
layers on open-channel SSDs, in Non Volatile Memory Workshop, Mar 2016, pp. 1–2

46. S. Bates, Accelerating data centers using NVMe and CUDA, in Flash Memory Summit, Aug
2014

47. HGST, Ultrastar SN150 Series NVMe PCIe x4 lane half-height half-length cardsolid-state
drive product manual, https://www.hgst.com/sites/default/files/resources/USSN150_
ProdManual.pdf

48. Kalray, The KalRay multi-purpose-processing-array (MPPA) (2016), http://www.kalrayinc.
com/kalray/products/#processors

49. P. Couvert, High speed IO processor for NVMe over fabric (NVMeoF), in Flash Memory
Summit, Aug 2016

50. J. Yang, D.B. Minturn, F. Hady, When polling is better than interrupt, in USENIX Conference
on File and Storage Technologies, Feb 2012

51. F. Hady, Wicked fast storage and beyond, in Non Volatile Memory Workshop, Mar 2016

204 L. Zuolo et al.

https://www.hgst.com/sites/default/files/resources/USSN150_ProdManual.pdf
https://www.hgst.com/sites/default/files/resources/USSN150_ProdManual.pdf
http://www.kalrayinc.com/kalray/products/#processors
http://www.kalrayinc.com/kalray/products/#processors

Chapter 8
SSD Reliability Assessment
and Improvement

C. Zambelli and P. Olivo

8.1 Introduction

Solid State Drives (SSDs) are one of the electronic systems with the highest
development rate in the last decade [1]. Their adoption as a hard disk drive (HDD)
replacement in hyper scale environments like cloud computing and big data servers,
as well as in consumer electronics, is relentless. SSDs’ design faced an extraordi-
nary evolution thanks to the continuous development of the storage medium inte-
grated within, namely the NAND Flash memories [2]. SSDs performance and
reliability figures of merit are intertwined with those of NAND Flash, although
many other factors and components in the drive must be carefully analyzed to
expose potential trade-offs. Such a consideration radically changed the design
approach of SSDs, shifting from a design where the drive is seen as a mere
replacement of a Hard Disk Drive (HDD) to a NAND Flash-centric approach [3].
The latter design paradigm allows achieving a high SSD reliability through a set of
error mitigation techniques implemented at several levels (from NAND Flash
physics and integrated circuit architecture to SSD firmware).

This chapter tackles the SSD reliability from different standpoints after the
introduction, in Sect. 8.2, of the common terms used in its assessment. The
Sect. 8.3 provides an overview of the physical mechanisms affecting the reliability
of traditional planar NAND Flash technology as well as the 3-D integrated con-
cepts. Proper reliability management solutions like the read retry and the soft
decoding Error Correction Codes (ECCs) are introduced. Then, in Sect. 8.4, issues
at die level like yield defects or extrinsic failures are exposed. Their mitigation is

C. Zambelli (✉) ⋅ P. Olivo
Engineering Department, Università di Ferrara, Ferrara, Italy
e-mail: cristian.zambelli@unife.it

P. Olivo
e-mail: piero.olivo@unife.it

© Springer Nature Singapore Pte Ltd. 2018
R. Micheloni et al. (eds.), Inside Solid State Drives (SSDs),
Springer Series in Advanced Microelectronics 37,
https://doi.org/10.1007/978-981-13-0599-3_8

205

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_8&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_8&domain=pdf

addressed by techniques like the RAID (Redundant Array of Independent Disks) to
improve the overall SSD reliability. Section 8.5 deals with non-NAND Flash
failures like the DRAM, the SSD controller faults, or the sudden power down faults
during drive operation. Finally, Sect. 8.6 will describe the SSD reliability qualifi-
cation methods standardized in JEDEC JESD218 and JESD219 documents, where
accelerated endurance and retention tests exploit the NAND Flash physics of failure
to provide confident lifetime metrics to system designers.

8.2 Common Terms in SSD Reliability: HDD Heritage

Since SSDs have the basic functionality of state-of-the-art HDDs (i.e., read and
write data sectors exchanged with a host system), their reliability terminology is the
heritage of the metrics, requirements, and testing practices typical of the rotating
magnetic drives [4]. When drive reliability is discussed, there are three typical
concerns: (i) unrecoverable drive failures [5]; (ii) uncorrectable sector errors [6];
and (iii) silent errors [7]. A drive is considered failed up to an unrecoverable
condition when either the drive ceases its functionality or its degradation level
forces its replacement. An uncorrectable sector error is the condition experienced by
the drive when the data required from a host system cannot be retrieved anymore
and it is promptly warned through a signal. A silent error occurs if the drive returns
a corrupted data to the host without providing an error signal.

The drive’s reliability is specified in the datasheets with two metrics: the Mean
Time Between Failures (MTBF) and the Uncorrectable Bit Error Rate (UBER). The
former parameter is usually in the range of one or two million hours, practically
meaning that a population of drives will average one failure every million-drive
hours [4]. The MTBF is used for the calculation of the Annualized Failure Rate
(AFR), that is the number of hours per year (i.e., 8760) divided by the MTBF. SSDs
usually feature an AFR below 1% [8]. However, both MTBF and AFR formal
definitions imply a constant failure rate, which is unrealistic due to the physics of
failures (e.g., components wear-out, silicon aging, etc.). The UBER parameter on
the other hand, specifies the number of uncorrectable bits divided by the number of
read bits from the drive. SSDs’ datasheets usually indicate this value to be in a
range between 10−15 and 10−17. The term “uncorrectable” is used since drives
feature internal bit correction engines like ECC. The fraction of corrupted bits prior
ECC is called the Raw Bit Error Rate (RBER), whose value is the foundation of the
NAND-centric SSD design approach. The definition of UBER has many ambigu-
ities that depend on the workload used to stress the drive (i.e., ratio between reads
and writes), on the choice of the drive population, on the sectors count to be
considered for error statistics, etc.

The JEDEC JESD218 [9] document defines a measurement method to separately
evaluate the UBER and the AFR metrics, as we will see in the final section of this
chapter. This distinction is mandatory, especially for RAID designers, since it

206 C. Zambelli and P. Olivo

allows discerning the magnitude of the data loss, from single files for UBER up to
catastrophic drive failures for AFR.

Concerning silent errors, they are specified in units of errors per bit read [10].
Their occurrence cannot be covered by RAID systems since the data corruption is
visible only by the host system. In enterprise scenario it is important to exploit
design techniques that minimize their insurgence, whereas consumer scenario can
sustain a more relaxed policy.

8.3 NAND Flash Reliability: Intrinsic Failures

The storage core of a SSD is the NAND Flash memory. Its concept is based on a
metal oxide semiconductor device with a Floating Gate (FG) electrically isolated by
means of a tunnel oxide and of an interpoly oxide as sketched in Fig. 8.1 [11]. The
former oxide plays a basic role for the control of the device threshold voltage whose
value represents, from a physical point of view, the stored information. Electrons
transferred into the FG produce a threshold voltage (VT) variation, thus varying the
logic data stored within the memory. The charge quantity into FG modulates the
current flowing through the device at fixed Control Gate (CG) bias [3]. The pro-
gramming of a NAND Flash cell is performed by injecting electrons within the FG,
whereas erasing is performed by removing that charge from the FG. In quiescent
conditions, thanks to the two oxides, the charge stored does not leak away (theo-
retically), thus granting the non-volatile paradigm fulfillment.

The physical mechanism used for both injecting and extracting electrons to/from
the FG is the Fowler-Nordheim (FN) tunneling [12]. High electric fields applied to
the tunnel oxide allow for electron transfer across the thin insulator. The choice of
using the tunneling mechanism for writing and erasing the information in NAND
memories is due to the relatively high parallelism of the operation (i.e. thousands of
cells belonging to the same group can be written or erased in parallel), although FN
tunneling significantly impacts the reliability of the memory causing progressive
degradation of the tunnel oxide. The cell programming operation requires an

Fig. 8.1 NAND Flash cell structure and I-V characteristics dependent on the FG’s charge in erase
and programmed states

8 SSD Reliability Assessment and Improvement 207

accurate control of the electric field through the applied CG voltage (VCG) in order
to place the cell’s VT in a well-defined interval [VTmin, VTmax] (see Fig. 8.2, where
the VT distributions of a cell array are shown). A VT < VTmin would reduce the
read margin guaranteeing a read operation immune from errors, whereas VT >
VTmax could provoke read errors in other cells of the array due to the
over-programming [3]. To this extent, the program operation is performed incre-
mentally stepping the VCG followed by a verify operation [13] that ends the pro-
gram when the target VT interval has been reached [14]. Read operation is
performed by evaluating the current flowing through the cell when a fixed reference
voltage VR is applied to CG [16]. In a programmed cell (high VT) the current is
limited and the read circuitry produces a bit equal to 0, whereas in an erased cell
(negative VT) the high measured current is interpreted as a 1.

With the introduction of multilevel architectures (MLC, TLC, QLC) able to store
2, 3, and even 4 bits in a single cell, the programming and the reading operations
become much more complex [3], since VTmax cannot be increased because of
architectural and operating constrains [15]. The amplitude reduction of each interval
calls for a very tight control of the charge injected within the FG.

Fig. 8.2 Threshold voltage distributions in a SLC (top) and a TLC (bottom) NAND Flash array.
VTmin and VTmax represent the minimum and the maximum target VT for a programmed cell,
respectively. VTEmax represents the maximum VT for an erased cell while VR denotes the read
voltage

208 C. Zambelli and P. Olivo

8.3.1 Raw Bit Errors

Raw bit errors are most of the time a consequence of the memory’s finite endurance
and data retention capabilities. Errors occur when cells have incorrect threshold
voltage values compared to their wanted placement. When raw bit errors occur
immediately after reading a written NAND Flash block we are likely in the presence
of write errors. If the errors appear after a time without biasing the cells or due to
the repeated reads of the block we are in presence of data retention errors or read
disturb errors, respectively.

Figure 8.3 shows that RBER is greater than zero since the very beginning of the
NAND Flash blocks lifetime and progressively increases with the number of per-
formed program/erase cycles. The resulting RBER either after retention or after
read stress is a function of the cycling stress, pointing out that the overall RBER is
the sum of the different error contributors [4]. RBER is a useful parameter for SSD
reliability assessment, but must be evaluated with care since it is accurate only for a
particular location at a particular moment in time. Indeed, the variability between
different Flash pages within the same block or from a chip to another populating the
SSD is so high that RBER has to be considered with its distribution rather than its
punctual value. Error correction engines in the SSD are expected to cover all raw bit
errors and must account the peculiarities of their insurgence to efficiently correct
them.

8.3.2 Reliability-Loss Mechanisms Affecting RBER

Several physical mechanisms affect the intrinsic reliability of NAND Flash,
although the degradation of the tunnel oxide electrical characteristics is still one of
the fundamental process to keep in mind whenever the discussion on the memory
lifetime is addressed. As said, because of the continuous charge transport through
the cells insulator, traps can be created at the dielectric interfaces or within the

Fig. 8.3 RBER growth
during a period of repetitive
writing (green symbols),
followed by either a long
power-off period (red
symbols) or a period of
repetitive reading (black
symbols). Reproduced with
permission from [4]. © 2017
IEEE

8 SSD Reliability Assessment and Improvement 209

oxide, which can alter the FN tunneling dynamics. Because of this, it becomes
difficult to control the placement of the cells VT: some of them can be slightly
over-programmed, and their thresholds could end in an adjacent interval [17].
Because of this distribution broadening induced by the endurance stress (i.e.,
repeated program/erase cycles), read errors are produced and RBER increases in
turn (see Fig. 8.4).

Oxide ageing and traps creation also reduce the data retention feature that is the
ability of keeping unaltered the charge within the FG when the cell is in a quiescent
state. Electrons may escape from the FG because of Trap-Assisted Tunneling
(TAT) or Stress Induced Leakage Current (SILC) effects [19, 20], thus causing a
modification of the threshold voltage distributions for the cells in the array (see
Fig. 8.5). The risk that the threshold of a cell programmed in a given interval shifts
to an adjacent interval increases significantly with the number of bits stored in a
single cell. In MLC or TLC architectures, the number of electrons differentiating
two adjacent intervals is few tens, therefore reducing data retention control [17].
Moreover, this phenomenon is strongly dependent on the temperature and on the
cycling stress sustained by a memory block.

Other effects may worsen the RBER due to the inability of controlling the correct
number of electrons to be transferred in the FG during a single programming pulse.
Among them the most important are: (i) the Random Telegraph Noise (RTN)
related to filling/empting of tunnel oxide traps affecting the VT distributions sta-
bility [17]; (ii) the positive trapped charge in the tunnel oxide resulting in erratic

Fig. 8.4 VT distribution of MLC (2bits/cell) NAND flash memory before (left) and after (right)
endurance test. Reproduced with permission from [18]. © 2014 IEEE

Fig. 8.5 VT distribution of
TLC (3bits/cell) NAND flash
memory, before/after
data-retention bake.
Reproduced with permission
from [21]. © 2017 IEEE

210 C. Zambelli and P. Olivo

effects [22]; (iii) the electron injection statistics caused by the small number of
carriers flowing to FG [17]. All of the mechanisms that may potentially affect any
cell in the array, have a random and transient nature: they can occur during any
programming pulse and they may produce threshold shifts larger than expected,
with the risk of programming some cells with a threshold voltage larger than the
desired one.

Besides endurance, retention, and placement-induced errors, there are some
specific issues of the NAND Flash architecture that may lead to a RBER increase.
The most common effects are the so called disturbs, that can be interpreted as the
influence of an operation performed on a cell (Read or Write) on the charge content
of a different cell. The read disturb may occur when reading many times the same
cells without any erase operation of the entire block they belong to [23]. All the
cells belonging to the same string of the cell to be read must be driven in an ON
state, independently of their stored charge (see Fig. 8.6). The relatively high
VPASS > VTmax applied to the CG of the unselected cells to turn on their conduction
and the sequence of pulses applied during successive read operations may induce a
charge gain due to SILC effects [20] or hot carrier effects [24]. These cells suffer a
threshold voltage shift that may lead to read errors, when addressed. The probability
of suffering from read disturb increases with the P/E number (i.e., towards the end
of the memory useful lifetime) and it is higher in damaged cells. Read disturbs do
not provoke permanent oxide damages: if erased and then reprogrammed, the
correct charge content will be present within the FG.

A similar disturb occurs with the inhibit scheme during program operation to
bias unselected wordlines for writing. In this case cells with enhanced tunneling
characteristics because of TAT or fabrication variations can program unintention-
ally [4]; this effect is called program disturb. Other RBER-increase mechanisms do

Fig. 8.6 Bias configuration for a read operation applied on a NAND Flash block (left). The cells
in gray are those suffering the read disturb. Maximum read disturb errors number retrieved in all
the wordlines of a specific NAND Flash page type at different P/E cycles (right). Reproduced with
permission from [23]. © 2017 IEEE

8 SSD Reliability Assessment and Improvement 211

not depend on traps and are induced by the NAND Flash technology scaling. Such
issues are the cell-to-cell interference [25] and the Gate Induced Drain Leakage
(GIDL) [26]. The FG coupling due to parasitic capacitances between cells mainly
causes the former issue, thus it is greatly affected by cell scaling, and is well known
to widen the VT distributions. The latter effect is due to the usage of the
self-boosting technique to inhibit unselected cells during programming [27]. 3-D
NAND Flash technologies are expected to feature similar raw bit errors mecha-
nisms, although different impact from the peculiar sources is expected due to the
different materials used in their integration.

8.3.3 Mitigating the Raw Bit Errors Through ECC

The state-of-the-art in SSD data protection is to integrate an ECC engine in the SSD
controller to handle the raw bit errors occurring throughout the entire lifetime of the
drive. In NAND Flash, each page is split in different codewords, where a codeword
is the sum of user data and some parity bytes to reconstruct the information in case
of bit corruption [28]. The role of the SSD controller is to generate the parity when
a write operation is issued to a specific NAND Flash page and later exploit that
during a read operation. Given an ECC that can correct up to k failed bits in a
codeword, we can calculate the codeword Failure Probability FCW as:

FCW =1− ∑
k

i=0

n
i

� �
⋅RBERi ⋅ ð1−RBERÞn− i ð8:1Þ

where n is the number of bits in the codeword [29]. This equation demonstrates that
the relationship between the RBER and the reliability of the NAND Flash, mea-
sured in terms of a failure probability, is tight. Current NAND Flash technologies
may require correction strengths up to 30 or more bits per codeword [4].

The ECC is sufficient to provide a target UBER within the specifications pro-
vided by the JEDEC standard [9], although care must be taken since the previous
equation applies only for a punctual value of the RBER. As shown in Fig. 8.7, the
RBER has significant variation from codeword-to-codeword due to many factors,
so that the design of an ECC to mitigate raw bit errors must be performed not on an
average basis, but rather on the extreme tails of the RBER distribution (i.e., highest
codeword failure probabilities). The common ECC schemes implemented in SSD
are the BCH and the LDPC [3], whose designs allow correcting a large number of
failed bits providing at the same time a sufficient error detection capability to avoid
silent errors or wrong corrections.

The latter feature is important for the application of the secondary correction
mechanisms whenever the ECC is found to fail data correction from NAND Flash.
SSD controllers can be instructed to retry the correction of a codeword by
dynamically changing the read voltages and timings to reduce RBER up to a point

212 C. Zambelli and P. Olivo

where the ECC can actually correct the data. This strategy is called Read Retry or
Moving Read [4]. The Read Retry algorithms used in NAND Flash have been
designed to trade between reliability and performance features of the SSD. Indeed,
the occurrence of an uncorrectable error event requires the intervention of the
algorithm at the expense of a significant latency introduced by the ECC due to
cascaded read retry operations, thus reducing the SSD bandwidth. This approach
was devised for older NAND Flash technologies where the RBER was sufficiently
low to guarantee a seldom intervention of the secondary error correction. As the
technology continues to scale down, the memory cell storage distortion and noise
sources become increasingly significant, leading to continuous degradation of raw
bit errors features. As a result, the industry has been actively pursuing the transition
of ECC from conventional BCH codes to more powerful soft-decision iterative
coding solutions, in particular LDPC codes [30]. Nevertheless, since NAND flash
memory read latency is proportional to the number of reads and the results must be
transferred to the SSD controller through standard chip-to-chip links, a straight-
forward use of soft-decision ECC can result in significant read latency overhead. To
this extent, Fig. 8.8 illustrates the intuitive progressive soft-decision sensing strat-
egy exploited in common SSD controllers, which aims at using just-enough sensing
precision for ECC decoding through a trial-and-error manner. This method can
reduce the average read latency overhead [30].

Figure 8.9 quantitatively demonstrates the advantages of soft-decision ECC (in
particular LDPC code) over existing BCH code. For the LDPC code, simulations
were performed for both hard-decision sensing precision and different
soft-decoding level precisions. As shown in the figure, although hard-decision
decoding of LDPC code can slightly outperform the BCH code, soft-decision
decoding can significantly improve the performance and advantage over BCH
code [30].

Fig. 8.7 Worst RBER
characteristics of different 4
kB sectors (i.e., codewords)
of a mid-1X TLC NAND
Flash as a function of the
endurance. The average value
is reported for comparison.
Reproduced with permission
from [29]. © 2017 IEEE

8 SSD Reliability Assessment and Improvement 213

Fig. 8.8 Illustration of operational flow of progressive soft-decision sensing. Reproduced with
permission from [30]. © 2013 IEEE

Fig. 8.9 Simulation results of BCH and LDPC codes to be exploited in NAND Flash raw bit
errors mitigation. Reproduced with permission from [30]. © 2013 IEEE

214 C. Zambelli and P. Olivo

8.3.4 Mitigating the Raw Bit Errors Through Firmware

MLC, TLC, and QLC NAND Flash architectures are the preferred solution in SSD
when high storage density is required, but at the additional cost of increasing the
overhead due to the appropriate RBER management policies adopted for mitigating
the issues presented in the previous sections of this chapter.

Since most of the RBER sources depends on the endurance state of the memory,
it is important to distribute the writing stress over the entire population of cells
rather than on a single hot spot, thus avoiding that some blocks are updated con-
tinuously while the others keep unaltered their charge content. It is clear that blocks
whose information is updated frequently are stressed with a large number of
write-erase cycles. In order to keep the aging effects as uniform as possible, the
number of both read and write cycles of each block must be monitored and stored in
some firmware structures managed by the SSD controller. Those tables are part of
an essential SSD’s firmware component, namely the Flash Translation Layer (FTL).
Wear leveling [31] is a process that reduces premature wear in NAND Flash
devices by equalizing the endurance of a memory on its completely addressable
user space. The most common implementation of wear leveling occurs in the FTL,
which manages access to the memory device and determines how the NAND Flash
blocks are used. Two types of data exist in NAND Flash devices: static and
dynamic. A static data is information that is rarely, if ever, updated. It may be read
frequently, but it seldom changes and it can theoretically reside in the same physical
location for the life of the device. Dynamic data, on the other hand, is constantly
changing and consequently requires frequent reprogramming. Dynamic wear
leveling is a method of pooling the available blocks that are free of data and
selecting the block with the lowest erase count for the next write. This method is
most efficient for dynamic data because only the non-static portion of the NAND
Flash array is wear-leveled. Static wear leveling utilizes all good blocks to evenly
distribute wear, providing effective wear leveling and thereby extending the life of
the device. This method tracks the cycle count of all good blocks and attempts to
evenly distribute block wear throughout the entire device by selecting the available
block with the least wear each time a program operation is executed. Each tech-
nique has its pros and cons, as described in [32].

Read disturb management is important as well for the RBER mitigation in
firmware. This policy instructs the SSD controller to move highly read data to new
blocks before the original blocks can be excessively disturbed [33]. Read disturb
management is important, because a host computer can easily read a portion of
NAND Flash codewords in the SSD many millions of times, which would be
enough without refreshing of the data to result in RBER levels uncorrectable with
any ECC scheme [4].

FTL also implement a policy called scrubbing. This methodology moves data to
new blocks as for read disturb managements, but in this case it is done for resetting
the retention time of memory cells. In this way, the SSD controller can create
unlimited data retention lifetime while an SSD is powered on [4].

8 SSD Reliability Assessment and Improvement 215

Finally, the FTL is also responsible for the randomization of the VT values in the
programming algorithm in order to reduce the RBER dependency on the interfer-
ences caused by specific programmed data patterns [34].

8.4 NAND Flash Reliability: Defects and Extrinsic
Failures

Occasional failures can occur in NAND Flash even if not directly related to the
intrinsic mechanisms of the cells. A NAND Flash is a complex Integrated Circuit
(IC) system that includes, other than the array of cells, many heterogeneous circuits.
A NAND Flash IC is composed by several macro blocks: the memory array, the
data path circuitry that controls the input/output towards the external world, the
decoders to select individual groups of cells in the array, and the high-voltage
(HV) circuitry mandatory for all the read/write operations. The failure causes can be
ascribed to yield defects (e.g., shorted wordlines or bitlines) or even to circuitry
design flaws inside the peripheral sub-systems of the array. Most of these errors
appear in fresh devices, although their behavior can be accelerated by temperature
and electric field. As the Fig. 8.10 shows, the wafer process failures represent the
major share of the failures. These are classified further into sub-classes based on the
defect location or processing phase [35]. Although such process failures can occur
in any IC in an SSD, defect issues in the NAND Flash ICs can be expected to

Fig. 8.10 Sub-classification of the wafer process related defects in Flash technology. Reproduced
with permission from [35]. © 2006 IEEE

216 C. Zambelli and P. Olivo

dominate because they occupy most of the silicon area of an SSD, they operate at
very high voltages, and they contain many interconnects with the
minimum-possible spacing [4]. Defects like two wordlines shorted together in a
NAND Flash block due to insulation breakdown are an example of those issues. If
any of the pages (MLC or TLC) on those wordlines are accessed, they will likely
experience thousands of bit errors, overcoming the correction capabilities of any
ECC even with secondary correction; if the shorting occurs early in a programming
operation a program-status failure may result, signaling the failure to the SSD
controller [4].

Some extrinsic failure mechanisms may not cause a NAND Flash IC failure, but
can have an important impact on the raw bit errors. Among them, two phenomena
related to voltage and temperature are considered: the power-supply induced errors
and the temperature cross shifts. Design flaws in the high-voltage circuitry of a
NAND Flash cause the former issue. In [36] it is found that the HV sub-system
plays an important role on the reliability since its design affects sensitive analog
circuits that control the behavior of the memory cells during read and write oper-
ations. Hence, raw bit errors are strongly dependent on the power-supply, and a
different behavior of the memory reliability during its entire lifetime can be
observed depending on the chosen power supply. Concerning the temperature cross
shift, it is found that the current/voltage characteristics depicted in Fig. 8.1 heavily
depends on the temperature, resulting in an additional instability of the threshold
voltage distributions in NAND Flash. Although dedicated peripheral circuits in the
memory IC are devoted to solve this issue, there is no complete mitigation of the
errors generated by the phenomenon [37].

8.4.1 Mitigating Defects and Extrinsic Failures Through
RAID

The mitigation of defects and NAND Flash IC extrinsic failures in SSDs is handled
by a RAID technique performed within the drive [29]. Generally, in RAID archi-
tectures data are arranged following a specific pattern that mixes data and parity,
where the latter represents the additional data required for the SSD to recover any of
the pieces of stored information. A stripe is an ensemble of data and parity sectors
representing the minimum unit for data reconstruction. The stripe length expresses
how many user data elements are associated with parity elements. In case of RAID-
5 approach within SSD, as shown in Fig. 8.11, the stripe length refers to a single
parity element in a stripe (i.e., the notation N-to-1 is also used), whereas in RAID-6
approach it refers to double parity elements in a stripe (i.e., N-to-2). The choice of
the stripe length and of the RAID level depends on a reliability/performance
trade-off that an SSD wants to leverage on.

Let us assume the 3-to-1 RAID-5 configuration shown in Fig. 8.11 by consid-
ering the (D0; D1; D2; P0) stripe. If one of the data sectors Di with i = 0… 2 in the

8 SSD Reliability Assessment and Improvement 217

stripe fails either due to unexpected NAND Flash IC failures or due to the
impossibility to correct the data using the ECC, the RAID recovers the faulty sector
via the parity P0 by applying a XOR algorithm. The recovered data are then written
on another sector of the SSD and the faulty one is marked as invalid and then retired
by the SSD controller management firmware [29].

The correction strength of the RAID approach is different from SSD to SSD: in
some cases, single codewords are protected, whereas in other cases the protection
level goes up to the reconstruction of the entire failed NAND Flash IC.

8.5 SSD Reliability: Non-NAND Flash Failures

8.5.1 SSD Controller, DRAM Errors, and Firmware
Failures

All SSDs must protect data inside the drive from the connection to the host system,
through the circuits of the SSD, to the NAND Flash memory, and viceversa. While
the NAND Flash memory employs its own ECC protection, there is the need to use
additional state-of-the-art data protection methods, such as parity protection on
internal buffers and checksum generation/checking. This additional level of pro-
tection will cover SSD failures in case of a faulty SSD controller, a noisy con-
nection cable with the host system, a faulty DRAM, or a firmware bug.

Fig. 8.11 Architecture example of a RAID-5 approach for SSD based on four NAND Flash
devices. Reproduced with permission from [29]. © 2017 IEEE

218 C. Zambelli and P. Olivo

In client SSDs, as the datum passes from the host interface to the host FIFO
where commands are queued, parity is generated. As the data exits the host FIFO,
parity is checked. Next, a Cyclic Redundancy Check (CRC) and ECC are generated
and stored with the data. Finally, a CRC is generated just before the data enters the
NAND FIFO where specific NAND Flash commands are queued, and then it is
checked when exiting. When data is read from the NAND, the process occurs in
reverse order [38].

Enterprise drives build on the foundation of proven data path protection for
client drives, but go one-step further, adding protection in the form of memory path
error correction as shown in Fig. 8.12. An additional Memory Protection ECC
(MPECC) is added. MPECC is designed to protect the host data by adding ECC
coverage to the data as it enters the SSD. A multi-byte MPECC is generated on the
host data in the physical layer of the host interface and it is independent of any ECC
provided by the NAND devices themselves. This additional MPECC follows the
host data through the SSD. As the MPECC and user data enter the host FIFO, parity
is generated. As the data exits the host FIFO, that parity is checked. In the DRAM
buffer manager, further MPECC protection is generated on the associated metadata
for FTL structures. By adding MPECC protection to the metadata, both host data
and metadata are protected. As the host data, its metadata, and the MPECC

Fig. 8.12 End-to-End data protection in enterprise SSDs. The concept of the figure is based on
the description provided in [38]

8 SSD Reliability Assessment and Improvement 219

generated for both types of data exit the FIFO adjacent to the buffer manager, both
are checked. Next, CRC and ECC are generated as with client drives. Finally, parity
is generated before the data enters the NAND FIFO, and that parity is checked upon
exit. On read commands, the process is carried out in reverse order [38].

8.5.2 The Power-Loss Issue

When programming a NAND Flash memory, the program operation must complete
to ensure that data are stored reliably within the page. Data are at risk if power is
lost when Flash memory cells are in the process of being programmed [39]. SSD
have three causes of potential data loss or corruption when system power fails: (i) a
loss of data; (ii) a loss of mapping information; (iii) a corruption of a single NAND
Flash page within a wordline (in MLC architectures).

Most enterprise class SSDs rely on a power failure circuitry that monitors the
supply voltage and generates an “early warning” signal to the SSD controller if the
voltage drops below a predefined threshold. A secondary voltage hold‐up‐circuit is
implemented to ensure the drive has power for a sufficient time to harden data
whenever that warning is received. In addition, writes are not accepted by the drive
until the secondary voltage source has been sufficiently charged to protect against
loss of data upon power failures. The secondary voltage source can be a high
capacity supercapacitor or a bank of discrete capacitors.

A supercapacitor is an electrolytic capacitive charge storage device. It is capable
of storing a large amount of energy in a relatively small three‐dimensional space.
A generic supercapacitor‐based voltage hold‐up circuit is consistent with the block
diagram shown in Fig. 8.13. Designing a supercapacitor‐based power failure
protection circuit is easy to do, and many SSDs employ this approach for this

Fig. 8.13 Block diagram of a power failure circuit in a standard SSD. The concept of this figure is
based on the description provided in [39]

220 C. Zambelli and P. Olivo

reason. Unfortunately, there are a number of concerns related to long term super-
capacitor reliability that makes the use of this component questionable for Enter-
prise‐class SSDs. Supercapacitors are typically Aluminum Electrolytic Capacitors,
featuring a high capacitance‐to‐size ratio and, therefore, they are an attractive
choice for applications requiring large bulk capacitance like an SSD. However, like
all electrolytic capacitors, supercapacitors suffer from a well-known set of defi-
ciencies with regard to long-term reliability. In particular, supercapacitors “wear
out”, resulting in reduced capacitance over time. They use a wet electrolyte and the
packaging is subject to ongoing losses via leakage and diffusion. The performance
of the supercapacitor degrades slowly with electrolyte loss, until the onset of total
failure occurs with little or no warning. In addition, loss rate increases with higher
operating voltage, and in higher operating and non‐operating temperature envi-
ronments. For every 10 °C of ambient operating temperature rise, the life expec-
tancy of a supercapacitor can be cut approximately in half.

Nowadays SSDs utilize either Niobium Oxide or Polymer Tantalum capacitors.
These discrete capacitors do not employ a “wet” electrolyte and are not susceptible
to the leakage related issues that plague supercapacitor technology. Niobium and
Polymer Tantalum capacitors are rated to 85 °C, providing a higher temperature
operating range with respect to supercapacitors (70 °C). Because of these factors, a
discrete component based hold up circuit is more able to meet the demands of
enterprise and industrial computing environments. Another advantage of discrete
capacitors over supercapacitors is that they are highly predictable and reliable.
However, lacking the compactness of supercapacitors, the capacitance-to-size ratio
of a discrete solution is less space efficient and its implementation require a more
careful design.

8.6 Assessing SSD Reliability Through Testing

When testing SSDs (and not single NAND Flash ICs) it is important to detect or
estimate functional failures, errors in reading data, without considering the physical
causes that produced such errors or failures. If the amount of errors or functional
failures exceeds the acceptable limits, a successive failure analysis will try to
investigate on the possible physical causes. Therefore, it is important to remind the
basic difference between testing NAND Flash devices and verifying SSDs relia-
bility: the former operation requires adopting all the possible test procedures to
excite physical or architectural weaknesses, the latter consider the SSD as a black
box where data are to be written, read and retained at their endurance and retention
limits.

It must be observed, however, that the use of different technologies for NAND
Flash memories produces different expectations in terms of both endurance and
retention. To deal with different applications, NAND technologies, and producers,
standard committees define the conditions of use and the corresponding endurance
verification requirements. The following sections will refer to the JEDEC standard

8 SSD Reliability Assessment and Improvement 221

JESD218A (Solid-State Drive Requirements and Endurance Test Method) [9], that
defines parameters for standardized endurance rating so that the end user may
consider the endurance rating as a factor in determining if an SSD is suitable for his
particular application.

Since there are different levels of requirements for an SSD based on specific
applications different levels of testing should be applied to verify the SSD suit-
ability for the particular application. It is necessary to group different applications
characterized by similar requirements in a limited number of classes: to this pur-
pose, the JESD218A standard considers just two application classes: client and
enterprise. These classes, of course, are not all-inclusive and it is clear that varia-
tions such as the operating systems and application architectures make a significant
impact to the workload of an SSD, that represents the detailed sequence of host
writes and reads (including data content and timing) applied during endurance
testing. The actual workloads are defined in the JEDEC standard JESD219 [40] for
the two considered classes and they are not reported in this text.

8.6.1 SSD Endurance and Retention Rating

A SSD manufacturer shall establish an endurance rating for an SSD that represents
the maximum number of terabytes that may be written (TBW) by a host to the SSD,
such that the following conditions are satisfied:

1. the SSD maintains its capacity;
2. the SSD maintains the required UBER for its application class;
3. the SSD meets the required Functional Failure Requirement (FFR) for its

application class, that is the allowed cumulative number of failed drives that,
over the TBW rating, fail to function properly in a way that is more severe than
having a data error;

4. the SSD retains data with power off for the required time for its application class.

The requirements for standard classes of SSDs are based on a scenario in which
the SSD are actively used for some periods of time during which the SSDs are
written to their endurance ratings, followed by a power-down time period in which
data must be retained. The requirements for the two SSD classes are reported in
Table 8.1.

Table 8.1 SSD class and requirements

Application class Client Enterprise

Active use (power on) 8 h/day @ 40 °C 24 h/day @ 55°C
Retention use (power off) 1 year @ 30 °C 3 months @ 40°C
FFR ≤ 3% ≤ 3%
UBER requirement ≤ 10−15 ≤ 10−16

222 C. Zambelli and P. Olivo

SSD case temperatures are reported in Table 8.1 and they are intended to rep-
resent the relevant temperatures over the respective time periods, for the purpose of
endurance and retention estimation, not the maximum and minimum specifications
to be found on the SSD datasheets. For the client class, the retention temperature
(30 °C) is also the temperature for the 16 h/day in which the SSD is powered down.

8.6.2 Endurance and Retention Stress Methods

There are two approaches for endurance verification: a direct method and an
extrapolation method based on a HDD testing methodology. Both consist of en-
durance verification followed by retention verification. If the full TBW rating can
be reached in a 1000-h stress, the direct method is to be followed. If this is not
possible, then an extrapolation method is acceptable. If an SSD product from a
qualification family has been qualified using the JESD218A standard, the subse-
quent products need only data from a 1000-h direct method evaluation, even if this
results in those drives not being fully stressed to their endurance rating limits.

8.6.3 Direct Method

The endurance stress is to be performed both at high and low temperature; then, a
retention test shall be performed. Since the retention time requirements are long (see
Table 8.2), extrapolation or acceleration is required to validate the retention
requirements.

8.6.3.1 Sample Size

For the first product to be qualified in a qualification family, the sample shall consist
of SSDs from at least three nonconsecutive production lots and from all the fab-
rication plants responsible for the manufacture of the NAND memories used in the
SSD. For subsequent products from a qualification family, a single production lot is
sufficient. The number of SSD in the sample shall be sufficient to establish that both
the FFR and UBER requirements are met at 60% confidence.

Table 8.2 Endurance stress
temperatures by drive class

Application class Client Enterprise

Low temperature ≤ 25 °C ≤ 25 °C

High temperature 40 °C ≤ T ≤ Tmax 60 °C ≤ T ≤ Tmax

8 SSD Reliability Assessment and Improvement 223

The sample size and acceptance criteria are defined by the following equations,
which mathematically embody the 60% confidence requirement:

UCLðFFÞ≤ FFR ⋅ SS ð8:2Þ

UCLðDEÞ≤minðTBW, TBRÞ ⋅ 8 ⋅ 1012 ⋅UBER ⋅ SS ð8:3Þ

where FF and DE are the acceptable numbers of Functional Failures and of Data
Errors, respectively; TBR represents the number of TBytes Read; SS is the sample
size in number of drives; FFR and UBER are expressed as fractions; UCL(x) is an
upper confidence limit function that depends on the maximum number of accepted
errors x.

For instance, for an accept-on-zero plan (no failures/error are accepted), UCL
(0) = 0.92, while if 1 failure/error is accepted, UCL(1) = 2.03 and for 2 failures/
errors accepted, UCL(2) = 3.11.

As an example, consider an accept-on-zero plan, FFR = 0.03 (corresponding to
3%); UBER = 10−16, TWB = 100, all data read back and verified (therefore
TBR = 100). Two sample sizes SS can be calculated from (8.2) and (8.3),
respectively:

SS≥UCLð0Þ ̸FFR=0.92 ̸0.03= 30.1 ð8:4Þ

SS≥UCLð0Þ ̸ minðTBW, TBRÞ ⋅ 8 ⋅ 1012 ⋅UBER� �
=0.92 ̸ð100 ⋅ 8 ⋅ 1012 ⋅ 10− 16Þ = 11.5

ð8:5Þ

The required sample size is the larger of the two results and, therefore, at least 31
SSD must be tested. If the minimum sample size of 31 were chosen, than the
verification test would pass if there were no functional failures in 31 drives.
However, with SS = 31, from (8.3),

UCLðDEÞ≤ 100 ⋅ 8 ⋅ 1012 ⋅ 10− 16 ⋅ 31= 2.48 ð8:6Þ

Since UCL(1) = 2.03 < 2.48 < 3.11 = UCL(2), up to one data error would be
acceptable. Therefore, the verification would pass if there were no functional
failures and no more than one data error.

It is important to notice that UBER is defined in terms of bits read, but for the
purpose of endurance verification (8.3) counts the minimum of bits read and bits
written. The rationale is twofold.

First, many data errors are transient with respect to rewriting of an SSD, but
repeatable with respect to repeated reading. This means that a sector with corrupted
data may pass without error if rewritten, however reading non-failing sectors
multiple times is unlikely to detect additional errors. This means that if reads are
less frequent than writes, then many errors will be missed. All data errors will be

224 C. Zambelli and P. Olivo

detected only if all written data are read before those sectors are rewritten. If the
TBR is less than the TBW, then the UBER should be increased because of the
likelihood that transient data errors went undetected. Using the TBR in place of the
TWB accomplishes that goal.

Second, the JEDEC JESD218A standard is aligned to a reference read/write ratio
of unity. If the TBR is equal to the TBW, then the UBER may be considered to be
an error rate per bit read or per bit written: both are equivalent. If the TBR in the
endurance stress is greater than the TBW the UBER must be TBW based.

It is important to remind that the previous criterion deals with endurance
functional failures and endurance data errors. Failures that are not related to the act
of writing data to its endurance limit, or by the subsequent retention stress, are to be
excluded from the endurance verification, even it they must be considered in the
drive qualification process. In some cases it is not easy to clearly identify endurance
and non-endurance function failures. Failures that are not in the circuit path of the
written data are clearly identified as non-endurance failures, while some failures
that are in the circuit path of the written data may be considered as non-endurance
failures if the cause of the failures were unrelated to the quantity of data written.

8.6.3.2 Endurance Stress

To verify the endurance capabilities, the drives are stressed to their full endurance
specification (in TBW). The stress time depends on the drives performances and on
those of the test equipment. If performance variations between test systems or the
SSDs themselves cause some SSD to receive more writes than other in a given
stress time, then the endurance specification must be reached by the average amount
of data written. All data errors throughout the stress must be recorded, even if those
errors are transient in nature. Testing the drive only at the end of the stress cannot
be accepted.

Two approaches are acceptable for incorporating both high and low temperatures
into the endurance stressing: the ramped-temperature approach and the split-flow
approach.

In the ramped-temperature approach the temperature during the stress shall be
switched periodically between the low and the high temperatures reported in
Table 8.3, so that half of the test is at low and at high temperature, respectively. The
ramp timing shall be such that no more than 25% of the stress is performed at

Table 8.3 Retention stress temperatures and times

Application class Client Enterprise

Stress duration and temperature 96 h @ T ≥ 66 °C
or 500 h @ T ≥ 52 °C

96 h @ T ≥ 66 °C
or 500 h @ T ≥ 52 °C

8 SSD Reliability Assessment and Improvement 225

intermediate temperatures during the transition between the two limit temperatures.
As for the temperature switching frequency, no more than 10% of the endurance
stress can be performed within any single half-cycle.

In the split approach, the sample is divided in two groups. The former undergoes
endurance testing at a fixed low temperature, the latter at a fixed high temperature.
The two temperature ranges are the same as for the ramped approach (see
Table 8.2).

The Tmax values are chosen so that the endurance stress time would be equiv-
alent to one year at the active-use temperature and hours/day shown in Table 8.2
assuming an activation energy of 1.1 eV. In fact, although an SSD would be
expected to reach its TBW rating over a lifetime of several years, for the specific
purpose of calculating Tmax, the full TBW is assumed to occur within a single year.
This is a conservative assumption, since a shorter time allows less relaxation
between writes.

In addition, the endurance stress Tmax values may also account for a realistic
amount of delay for relaxation which would occur if the stress temperature were too
high. These delays, consisting of the drive being powered down or being powered
up but not being written to, combined with the effect of the elevated temperature
endurance stressing, must stay within the one-year equivalent time.

The temperature Tmax as well the additional delay time and temperatures may be
extracted by solving

tDe
− Ea

KTD + ts FHSe
− Ea

KTSH + 1− FHSð Þe− Ea
KTSL

h i
= tU FHUe

− Ea
KTUH + 1−FHUð Þe− Ea

KTUL

h i

ð8:7Þ

where tD, tS, tU are the delay time, the stress time and the use time, respectively; TD

is the temperature applied during the delay; TSH and TSL are the high and the low
temperatures during the endurance stress in °K, respectively; TUH and TUL are the
high and the low temperatures during the use conditions in °K, respectively; FHS

and FHU are the fraction of time spent at high temperature during endurance
stressing and use condition, respectively; K is the Boltzmann’s constant equal to
8.6171 ⋅ 10−5 eV/°K while Ea is the activation energy equal to 1.1 eV.

For example, consider the client application class from Table 8.1, TUH = 40
°C = 313.15 °K; TUL = 30 °C = 303.15 °K; FHU = 1/3 (8 h/day); a 1000 h stress
time using the ramped approach (ts = 1000 h, TSL = 25 °C = 298.15 °K and
FHS = 1/2) and no additional delays (td = 0). From (8.7) it possible to derive the
endurance stress high temperature, considering that one year of normal use corre-
sponds to tU = 8766 h:

226 C. Zambelli and P. Olivo

ts
1
2
e−

Ea
KTSH +

1
2
e−

Ea
KTSL

� �
= tU

1
3
e−

Ea
KTUH +

2
3
e−

Ea
KTUL

� �

e−
Ea

KTSH =
2tU
tS

1
3
e−

Ea
KTUH +

2
3
e−

Ea
KTUL

� �
− e−

Ea
KTSL

TSH = −
Ea

K
1

ln 2tU
tS

1
3 e

− Ea
KTUH + 2

3 e
− Ea

KTUL

� 	
− e−

Ea
KTSL

h i

TSH = −
1.1

8.6171 ⋅ 10− 5

1
ln 2 ⋅ 8766

1000
1
3 1.978 ⋅ 10− 18 + 2

3 5.156 ⋅ 10− 19

 �

− 2.544 ⋅ 10− 19
� �

TSH = 330.76 oK=57.61 oC

ð8:8Þ

Hence, the maximum temperature Tmax for a 1000-h stress, for the client
application class, ramped approach, no delays is 58 °C.

If it is chosen to perform the test at 50 °C instead of 58 °C, it is possible to add
an additional delay, whose duration and temperature can also be derived from (8.7)
by imposing TSH = 50 °C = 323.15 °K.

tDe
− Ea

KTD = tU FHUe
− Ea

KTUH + 1−FHUð Þe− Ea
KTUL

h i
− ts FHSe

− Ea
KTSH + 1−FHSð Þe− Ea

KTSL

h i

ð8:9Þ

For example, if a 100-h delay is added to the 1000-h endurance stress, a
TD = 67 °C can be directly calculated as in (8.10):

e−
Ea

KTD =
8766
100

1
3
e−

Ea
313.15k +

2
3
e−

Ea
303.15k

� �
−

1000
100

1
2
e−

Ea
323.15k +

1
2
e−

Ea
298.15k

� �
ð8:10Þ

Therefore, the endurance test would consist of 1000 h of active endurance stress
with the temperature ramped between 25 and 50 °C, with an additional 100 h spent
in a non-writing mode at a temperature not greater than 67 °C.

8.6.3.3 Retention Stress

After the endurance stress, SSDs are to be powered down and baked at elevated
temperatures in order to establish the data retention capability. For the ramped-
temperature approach, all drives in the sample are to be baked while, for the split
approach, only the drives stressed at high temperatures are to baked. The SSDs are
to be fully written with data prior to the bake and fully read after the test with
internal error correction bypassed. The number of data errors resulting from the
retention stress is to be added to that resulting from the endurance stress.

The temperatures required for the retention verification are reported in Table 8.3.

8 SSD Reliability Assessment and Improvement 227

Two equivalent options are given for the bake temperature and durations and
they are chosen to correspond to the required data retention times for the common
temperature-accelerated mechanism responsible for data degradation in non-volatile
memories, assuming an activation energy of 1.1 eV.

Not all mechanisms responsible for data loss, however, are accelerated by
temperature and therefore a second evaluation is required at room temperature. This
requirement holds only for the first product in a qualification family to be qualified;
subsequent products are exempt. In the ramped-temperature approach the low
temperature retention qualification is performed before the high temperature stress:
in the split-flow approach, only the drives stressed at low temperatures undergo the
low temperature retention test. Since time acceleration via higher temperatures is
impossible, the room-temperature retention evaluation requires mathematical
extrapolations based on drive-level or component-level bit-error-rate data.

When basing the extrapolation on drive-level bit-error-rate data, low-temperature
retention tests require at least 500 h at a temperature between 10 and 30 °C. The bit
error rate can be measured at several times (for instance, 48, 168 and 500 h) and
then the trend can be extrapolated. The fraction of error bits with respect to the total
bit number, called the Raw Bit Error Rate (RBER), depends on the program/erase
cycle count and the retention time. For BER ≪ 1,

RBER=RBER0 +B0 ⋅ tm ð8:11Þ

where RBER0 is the Bit Error Rate at the beginning of the retention period, B0 is an
arbitrary scale factor dependent on materials and processes, t is the retention time
and m is a retention power low coefficient (typically 1 or 2).

To verify the useful retention lifetime, the RBER can be measured as a function
of time and the parameters RBER0, B0 and m fit (8.11). The resulting fitted equation
may then be used to estimate the RBER at the desired retention time of Table 8.1
and such a value must be below the ECC capability of the SSD controller, also
considering a safety margin between the calculated ECC capability and the RBER.

Consider for example an SSD with a calculated ECC capability of 4 × 10−5 and
a safety margin equal to 2. Also, consider that the RBER data of Table 8.4 have
been obtained:

The extrapolated RBER at t = 8776 h (=1 year) must be below the ECC
capability with safety margin whose value is 2 ⋅ 10−5. As it can be seen in
Fig. 8.14, the extrapolated RBER reaches the ECC capability with safety margin
after 10,000 h and, therefore, the retention requirement of Table 8.2 is met.

Table 8.4 Calculated RBER
(example)

Retention time (h) RBER

0 0
48 5.63 ⋅ 10−8

168 2.23 ⋅ 10−7

500 7.41 ⋅ 10−7

1000 1.59 ⋅ 10−6

228 C. Zambelli and P. Olivo

The mathematical extrapolation can also be performed using raw bit error rate
data from nonvolatile memory components, if available: at the end of the endurance
stress, the room-retention evaluation can be derived by using the retention data
calculated for the nonvolatile memory components inside the SSD for the specific
number of program/erase cycles experienced during the extrapolation test.

8.6.4 Extrapolation Method

If the direct method would require more than 1000 h of endurance stress, an
extrapolation method can be used. Some of the proposed methods require special
access to SSD internal operation or to nonvolatile memory components information
which make these methods possible only for the SSD manufacturer.

Independently of the extrapolation method used for endurance and retention
verification, some general requirements are to be ensured:

• the SSD must meet the requirements of Table 8.1 for FFR and UBER, for the
temperatures and times stated in the Table;

• the FFR and UBER requirements must be met for both low-temperature
and high-temperature endurance stressing, with temperature ranges of at least
25–40 °C for client SSD and 25–60 °C for enterprise SSD;

• data retention is to be verified under the assumption that the endurance stressing
in use takes place over no longer than 1 year at the endurance use temperature
and hours per day of Table 8.1;

• data retention is to be verified both for a temperature-accelerated mechanism
(assuming an activation energy of 1.1 eV) and a non-temperature-accelerated
mechanism;

• all requirements are to be established at a 60% statistical confidence level.

Fig. 8.14 Example of the verification of the retention requirements via extrapolation of the
drive-level bit error rate. The concept of the figure is based on the description provided in [9]

8 SSD Reliability Assessment and Improvement 229

8.6.4.1 Extrapolation of FFR and Bad-Block Trends

For the endurance evaluation, an SSD may be stressed to only some fraction of the
TBW rating. During the endurance stress, functional failures may occur, as well as a
certain number of blocks marked as “bad”. The increase in these two quantities may
be plotted as a function of TBW in a lognormal or Weibull plot and extrapolated to
the TBW rating to obtain estimates of the final levels of FFR and bad blocks.

This extrapolation method is not acceptable for verifying that the UBER
requirements are met, because UBER may have a highly steep dependence on TBW
that makes extrapolations from low TBW data quite unreliable.

8.6.4.2 FFR and UBER Estimation from Reduced-Capacity SSDs

The capacity of an SSD may be artificially reduced so that some nonvolatile
memory components or blocks are not written, while the remaining ones are written
more extensively than would be the case of the full-capacity SSD. In this context,
an SSD will be considered to have reached its endurance rating limit if the stressed
fraction of the nonvolatile memory components reaches the target program/erase
cycles.

For this approach to be used, the manufacturer must ensure that the method of
capacity reduction does not significantly distort the normal internal operation of the
SSD. Simply reducing the logical span of written data is generally not sufficient,
since the SSD controller and firmware make use of the full nonvolatile memory
capacity, if not instructed.

A variation of this method is to extend the nonvolatile memory program/erase
cycles beyond the target expected at the TBW rating, in order to generate functional
failures and data errors. The resulting data can then be plotted and FFR and UBER
can be extrapolated for the expected, lower, TBW rating.

References

1. http://www.storagesearch.com/chartingtheriseofssds.html. Accessed 2018
2. R. Micheloni, S. Aritome, L. Crippa, Array architectures for 3-D NAND flash memories.

Proc. IEEE 105(9), 1634–1649 (2017)
3. L. Zuolo, C. Zambelli, R. Micheloni, P. Olivo, Solid-state drives: memory driven design

methodologies for optimal performance. Proc. IEEE 105(9), 1589–1608 (2017)
4. N.R. Mielke, R.E. Frickey, I. Kalastirsky, M. Quan, D. Ustinov, V.J. Vasudevan, Reliability

of solid-state drives based on NAND flash memory. Proc. IEEE 105(9), 1725–1750 (2017)
5. W. Jiang, C. Hu, Y. Zhou, A. Kanevsky, Are disks the dominant contributor for storage

failures?: a comprehensive study of storage subsystem failure characteristics. ACM Trans.
Storage 4(3), 7 (2008)

6. L. Bairavasundaram, G. Goodson, S. Pasupathy, J. Schindler, An analysis of latent sector
errors in disk drives, in Proceedings of the ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, 2007, pp. 289–300

230 C. Zambelli and P. Olivo

http://www.storagesearch.com/chartingtheriseofssds.html

7. L. Bairavasundaram, A. Arpaci-Dusseau, G. Goodson, B. Schroeder, An analysis of data
corruption in the storage stack. ACM Trans. Storage 4(3), 7 (2008)

8. B. Schroeder, G. Gibson, Understanding disk failure rates: what does an MTTF of 1,000,000
hours mean to you? ACM Trans. Storage 3(3), 8 (2007)

9. JEDEC, JESD218B Solid-State Drive (SSD) Requirements and Endurance Test Method
(2016)

10. N. Mielke, Accelerated testing of radiation-induced soft errors in solid-state drives. IEEE
Trans. Device Mater. Rel. 15(4), 552–558 (2015)

11. F. Masuoka, M. Momodomi, Y. Iwata, R. Shirota, New ultra high density EPROM and flash
EPROM cell with NAND structure, in IEEE IEDM Technical Digest pp. 552–555 (1987)

12. M. Lenzlinger, E.H. Snow, Fowler-Nordheim tunneling into thermally grown SiO2. J. Appl.
Phys. 40, 273–283 (1969)

13. M. Momodomi, T. Tanaka, Y. Iwata, Y. Tanaka, H. Oodaira, Y. Itoh, R. Shirota, K. Ohuchi,
F. Masuoka, A 4 Mb NAND EEPROM with Tight Programmed Vt Distribution.
IEEE J. Solid State Circ. 26(4), 492–496 (1991)

14. G.J. Hemink, T. Tanaka, T. Endoh, S. Aritome, R. Shirota, Fast and accurate programming
method for multi-level NAND EEPROMs, in VLSI Symposium on Technology and Circuits,
June 1995, pp. 129–130

15. A. Chimenton, P. Pellati, P. Olivo, Analysis of erratic bits in flash memories. IEEE Trans.
Devices Mater. Reliab. 1(4), 179–184 (2001)

16. M. Momodomi, Y. Itoh, R. Shirota, Y. Iwata, R. Nakayama, R. Kirisawa, T. Tanaka, S.
Aritome, T. Endoh, K. Ohuchi, F. Masuoka, An Experimental 4-Mbit CMOS EEPROM with
a NAND-structured cell. IEEE J. Solid State Circ. 24(5), 1238–1243 (1989)

17. C. Monzio Compagnoni, A. Goda, A.S. Spinelli, P. Feeley, A.L. Lacaita, A. Visconti,
Reviewing the evolution of the NAND flash technology. Proc. IEEE 105(9), 1609–1633
(2017)

18. T. Parnell, N. Papandreou, T. Mittelholzer, H. Pozidis, Modelling of the threshold voltage
distributions of sub-20 nm NAND flash memory, in IEEE Global Communications
Conference (Austin, TX, 2014), pp. 2351–2356

19. K. Lee, M. Kang, S. Seo, D. Kang, D.H. Li, Y. Hwang, H. Shin, Separation of corner
component in TAT mechanism in retention characteristics of Sub 20-nm NAND flash
memory. IEEE Elect. Device Lett. 35(1), 51–53 (2014)

20. G.J. Hemink, K. Shimizu, S. Aritome, R. Shirota, Trapped hole enhanced stress induced
leakage currents in NAND EEPROM tunnel oxides, in Proceedings of International
Reliability Physics Symposium, Apr 1996, pp. 117–121

21. K. Mizoguchi, T. Takahashi, S. Aritome, K. Takeuchi, Data-retention characteristics
comparison of 2D and 3D TLC NAND flash memories, in 2017 IEEE International Memory
Workshop (IMW) (Monterey, CA, 2017), pp. 1–4

22. A. Chimenton, C. Zambelli, P. Olivo, A statistical model of erratic behaviors in flash memory
arrays. IEEE Trans. Electr. Devices 58(11), 3707–3711 (2011)

23. C. Zambelli, P. Olivo, L. Crippa, A. Marelli, R. Micheloni, Uniform and concentrated read
disturb effects in mid-1X TLC NAND flash memories for enterprise solid state drives, in 2017
IEEE International Reliability Physics Symposium (IRPS), (Monterey, CA, 2017),
pp. PM-5.1–PM-5.4

24. H.H. Wang, P.S. Shieh, C.T. Huang, K. Tokami, R. Kuo, S.H. Chen, H.C. Wei, S. Pittikoun,
S. Aritome, a new read-disturb failure mechanism caused by boosting hot-carrier injection
effect in MLC NAND flash memory, in IEEE International Memory Workshop, May 2009,
pp. 1–2

25. J. Lee, S. Hur, J. Choi, Effects of floating-gate interference on NAND flash memory cell
operation. IEEE Elect. Device Lett. 23(5), 264–266 (2002)

26. J. Lee, C. Lee, M. Lee, H. Kim, K. Park, W. Lee, A new programming disturbance
phenomenon in NAND flash memory by source/drain hot-electrons generated by GIDL
current, in Non-volatile Semiconductor Memory Workshop, Feb 2006, pp. 31–33

8 SSD Reliability Assessment and Improvement 231

27. S. Satoh, H. Hagiwara, T. Tanzawa, K. Takeuchi, R. Shirota, A novel isolation-scaling
technology for NAND EEPROMs with the minimized program disturbance, in IEDM
Technical Digest, Dec 1997, pp. 291–294

28. N. Mielke et al., Bit error rate in NAND flash memories, in Proceedings of IEEE
International Reliability Physics Symposium Phoenix, Apr 2008, (AZ, USA), pp. 9–19

29. C. Zambelli, A. Marelli, R. Micheloni, P. Olivo, Modeling the endurance reliability of
intradisk RAID solutions for Mid-1X TLC NAND flash solid-state drives, in IEEE
Transactions on Device and Materials Reliability, Dec 2017, vol. 17, no. 4, pp. 713–721

30. G. Dong, N. Xie, T. Zhang, Enabling NAND flash memory use Soft-decision error correction
codes at minimal read latency overhead. IEEE Trans. Circ. Syst. I Regul. Paper 60(9), 2412–
2421 (2013)

31. R. Micheloni, A. Marelli, R. Ravasio, Error Correction Codes for Non-Volatile Memories,
Springer (2008)

32. Micron Corporation, TN-29–42: Wear-Leveling Techniques in NAND Flash Devices,
Application Note, 2008

33. H. Belgal, Apparatus, system, and method for improving read endurance for a nonvolatile
memory. U.S. Patent 8954650B2, 10 Feb 2015

34. J. Cha, S. Kang, Data randomization scheme for endurance enhancement and interference
mitigation of multilevel flash memory devices. ETRI J. 35(1), 166–169 (2013)

35. P. Muroke, Flash memory field failure mechanisms, in 2006 IEEE International Reliability
Physics Symposium Proceedings (San Jose, CA, 2006), pp. 313–316

36. C. Zambelli, P. King, P. Olivo, L. Crippa, R. Micheloni, Power-supply impact on the
reliability of mid-1X TLC NAND flash memories, in 2016 IEEE International Reliability
Physics Symposium (IRPS), (Pasadena, CA, 2016), pp. 2B-3-1–2B-3-6

37. Y. Li, 3 Bit Per Cell NAND Flash Memory on 19 nm Technology, Flash Memory Summit,
Aug 2012

38. Micron Corporation, Comparison of Client and Enterprise SSD Data Path Protection,
Application Note (2011)

39. SMART Storage Systems, Power Failure Protection, Application Note (2012)
40. JEDEC, JESD219 Solid-State Drive (SSD) Endurance Workloads (2012)

232 C. Zambelli and P. Olivo

Chapter 9
Reliability Issues
in Flash-Memory-Based Solid-State
Drives: Experimental Analysis,
Mitigation, Recovery

Yu Cai, Saugata Ghose, Erich F. Haratsch, Yixin Luo and Onur Mutlu

Abstract NAND flash memory is ubiquitous in everyday life today because

its capacity has continuously increased and cost has continuously decreased over

decades. This positive growth is a result of two key trends: (1) effective process

technology scaling; and (2) multi-level (e.g., MLC, TLC) cell data coding. Unfor-

tunately, the reliability of raw data stored in flash memory has also continued to

become more difficult to ensure, because these two trends lead to (1) fewer electrons

in the flash memory cell floating gate to represent the data; and (2) larger cell-to-cell

interference and disturbance effects. Without mitigation, worsening reliability can

reduce the lifetime of NAND flash memory. As a result, flash memory controllers

in solid-state drives (SSDs) have become much more sophisticated: they incorporate

many effective techniques to ensure the correct interpretation of noisy data stored

in flash memory cells. In this chapter, we review recent advances in SSD error

characterization, mitigation, and data recovery techniques for reliability and lifetime

improvement. We provide rigorous experimental data from state-of-the-art MLC and

TLC NAND flash devices on various types of flash memory errors, to motivate the

need for such techniques. Based on the understanding developed by the experimental

characterization, we describe several mitigation and recovery techniques, including

(1) cell-to-cell interference mitigation; (2) optimal multi-level cell sensing; (3) error

correction using state-of-the-art algorithms and methods; and (4) data recovery when

error correction fails. We quantify the reliability improvement provided by each of

O. Mutlu (✉)

ETH Zürich, Zürich, Switzerland

e-mail: omutlu@gmail.com

Y. Cai ⋅ S. Ghose (✉) ⋅ Y. Luo ⋅ O. Mutlu

Carnegie Mellon University, Pittsburgh, PA, USA

email: ghose@cmu.edu

E. F. Haratsch

Seagate Technology, Fremont, CA, USA

© Springer Nature Singapore Pte Ltd. 2018

R. Micheloni et al. (eds.), Inside Solid State Drives (SSDs),
Springer Series in Advanced Microelectronics 37,

https://doi.org/10.1007/978-981-13-0599-3_9

233

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_9&domain=pdf

234 Y. Cai et al.

these techniques. Looking forward, we briefly discuss how flash memory and these

techniques could evolve into the future.

Solid-state drives (SSDs) are widely used in computer systems today as a primary

method of data storage. In comparison with magnetic hard drives, the previously

dominant choice for storage, SSDs deliver significantly higher read and write per-

formance, with orders of magnitude of improvement in random-access input/output

(I/O) operations, and are resilient to physical shock, while requiring a smaller form

factor and consuming less static power. SSD capacity (i.e., storage density) and

cost-per-bit have been improving steadily in the past two decades, which has

led to the widespread adoption of SSD-based data storage in most computing

systems, from mobile consumer devices [91, 107] to enterprise data centers

[67, 174, 199, 233, 257].

The first major driver for the improved SSD capacity and cost-per-bit has been

manufacturing process scaling, which has increased the number of flash memory

cells within a fixed area. Internally, commercial SSDs are made up of NAND flash

memory chips, which provide nonvolatile memory storage (i.e., the data stored

in NAND flash is correctly retained even when the power is disconnected) using

floating-gate (FG) transistors [111, 172, 187] or charge trap transistors [65, 268].

In this paper, we mainly focus on floating-gate transistors, since they are the most

common transistor used in today’s flash memories. A floating-gate transistor con-

stitutes a flash memory cell. It can encode one or more bits of digital data, which

is represented by the level of charge stored inside the transistor’s floating gate. The

transistor traps charge within its floating gate, which dictates the threshold voltage
level at which the transistor turns on. The threshold voltage level of the floating gate

is used to determine the value of the digital data stored inside the transistor. When

manufacturing process scales down to a smaller technology node, the size of each

flash memory cell, and thus the size of the transistor, decreases, which in turn reduces

the amount of charge that can be trapped within the floating gate. Thus, process scal-

ing increases storage density by enabling more cells to be placed in a given area, but

it also causes reliability issues, which are the focus of this paper.

The second major driver for improved SSD capacity has been the use of a single

floating-gate transistor to represent more than one bit of digital data. Earlier NAND

flash chips stored a single bit of data in each cell (i.e., a single floating-gate transis-

tor), which was referred to as single-level cell (SLC) NAND flash. Each transistor

can be set to a specific threshold voltage within a fixed range of voltages. SLC NAND

flash divided this fixed range into two voltage windows, where one window repre-

sents the bit value 0 and the other window represents the bit value 1. Multi-level cell

(MLC) NAND flash was commercialized in the last two decades, where the same

voltage range is instead divided into four voltage windows that represent each pos-

sible 2-bit value (00, 01, 10, and 11). Each voltage window in MLC NAND flash

is therefore much smaller than a voltage window in SLC NAND flash. This makes

it more difficult to identify the value stored in a cell. More recently, triple-level cell

(TLC) flash has been commercialized [7, 86], which further divides the range, pro-

viding eight voltage windows to represent a 3-bit value. Quadruple-level cell (QLC)

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 235

flash, storing a 4-bit value per cell, is currently being developed [203]. Encoding

more bits per cell increases the capacity of the SSD without increasing the chip size,

yet it also decreases reliability by making it more difficult to correctly store and read

the bits.

The two major drivers for the higher capacity, and thus the ubiquitous commercial

success, of flash memory as a storage device, are also major drivers for its reduced

reliability and are the causes of its scaling problems. As the amount of charge stored

in each NAND flash cell decreases, the voltage for each possible bit value is dis-

tributed over a wider voltage range due to greater process variation, and the mar-
gins (i.e., the width of the gap between neighboring voltage windows) provided to

ensure the raw reliability of NAND flash chips have been diminishing, leading to a

greater probability of flash memory errors with newer generations of SSDs. NAND

flash memory errors can be induced by a variety of sources [19], including flash cell

wearout [19, 20, 162], errors introduced during programming [17, 23, 162, 212],

interference from operations performed on adjacent cells [21, 23, 31, 75, 151, 182,

207, 209], and data retention issues due to charge leakage [19, 22, 29, 30, 182].

To compensate for this, SSDs employ sophisticated error-correcting codes (ECCs)

within their controllers. An SSD controller uses the ECC information stored along-

side a piece of data in the NAND flash chip to detect and correct a number of raw
bit errors (i.e., the number of errors experienced before correction is applied) when

the piece of data is read out. The number of bits that can be corrected for every piece

of data is a fundamental tradeoff in an SSD. A more sophisticated ECC can tolerate

a larger number of raw bit errors, but it also consumes greater area overhead and

latency. Error characterization studies [19, 20, 75, 162, 182, 212] have found that,

due to NAND flash wearout, the probability of raw bit errors increases as more pro-
gram/erase (P/E) cycles (i.e., write accesses, or writes) are performed to the drive.

The raw bit error rate eventually exceeds the maximum number of errors that can be

corrected by ECC, at which point data loss occurs [22, 27, 174, 233]. The lifetime
of a NAND-flash-memory-based SSD is determined by the number of P/E cycles

that can be performed successfully while avoiding data loss for a minimum reten-
tion guarantee (i.e., the required minimum amount of time, after being written, that

the data can still be read out without uncorrectable errors).

The decreasing raw reliability of NAND flash memory chips has drastically

impacted the lifetime of commercial SSDs. For example, older SLC NAND-flash-

based SSDs were able to withstand 150,000 P/E cycles (writes) to each flash cell,

but contemporary 1x-nm (i.e., 15–19 nm) process-based SSDs consisting of MLC

NAND flash can sustain only 3,000 P/E cycles [168, 212, 294]. With the raw reli-

ability of a flash chip dropping so significantly, approaches to mitigating reliabil-

ity issues in NAND-flash-based SSDs have been the focus of an important body of

research. A number of solutions have been proposed to increase the lifetime of con-

temporary SSDs, ranging from changes to the low-level device behavior (e.g., [17,

20, 21, 287]) to making SSD controllers much more intelligent in dealing with indi-

vidual flash memory chips (e.g., [22, 26, 28–31, 86, 161, 162]). In addition, various

mechanisms have been developed to successfully recover data in the event of data

loss that may occur during a read operation to the SSD (e.g., [21, 22, 26]).

236 Y. Cai et al.

In this chapter, we provide a comprehensive overview of the state of flash-

memory-based SSD reliability, with a focus on (1) fundamental causes of flash

memory errors, backed up by (2) quantitative error data collected from real state-of-

the-art flash memory devices, and (3) sophisticated error mitigation and data recov-

ery techniques developed to tolerate, correct, and recover from such errors. To this

end, we first discuss the architecture of a state-of-the-art SSD, and describe mech-

anisms used in a commercial SSD to reduce the probability of data loss (Sect. 9.1).

Next, we discuss the low-level behavior of the underlying NAND flash memory chip

in an SSD, to illustrate fundamental reasons why errors can occur in flash memory

(Sect. 9.2). We then discuss the root causes of these errors, quantifying the impact

of each error source using experimental characterization data collected from real

NAND flash memory chips (Sect. 9.3). For each of these error sources, we describe

various state-of-the-art mechanisms that mitigate the induced errors (Sect. 9.4). We

next examine several error recovery flows to successfully extract data from the SSD

in the event of data loss during a read operation (Sect. 9.5). Then, we look to the

future to foreshadow how the reliability of SSDs might be affected by emerging

flash memory technologies (Sect. 9.6). Finally, we briefly examine how other mem-

ory technologies (such as DRAM, which is used prominently in a modern SSD,

and emerging nonvolatile memory) suffer from similar reliability issues to SSDs

(Sect. 9.7).

9.1 State-of-the-Art SSD Architecture

In order to understand the root causes of reliability issues within SSDs, we first pro-

vide an overview of the system architecture of a state-of-the-art SSD. The SSD con-

sists of a group of NAND flash memories (or chips) and a controller, as shown in

Fig. 9.1. A host computer communicates with the SSD through a high-speed host

interface (e.g., AHCI, NVMe; see Sect. 9.1.3.1), which connects to the SSD con-

troller. The controller is then connected to each of the NAND flash chips via memory

channels.

9.1.1 Flash Memory Organization

Figure 9.2 shows an example of how NAND flash memory is organized within an

SSD. The flash memory is spread across multiple flash chips, where each chip con-

tains one or more flash dies, which are individual pieces of silicon wafer that are con-

nected together to the pins of the chip. Contemporary SSDs typically have 4–16 chips

per SSD, and can have as many as 16 dies per chip. Each chip is connected to one or

more physical memory channels, and these memory channels are not shared across

chips. A flash die operates independently of other flash dies, and contains between

one and four planes. Each plane contains hundreds to thousands of flash blocks. Each

block is a 2D array that contains hundreds of rows of flash cells (typically 256–

1024 rows) where the rows store contiguous pieces of data. Much like banks in a

multi-bank memory (e.g., DRAM banks [36, 130, 131, 143, 145, 147, 148, 188,

194, 195]), the planes can execute flash operations in parallel, but the planes within a

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 237

Ct
rl

Chip

Chip

Chip

Chip

Ch
ip

Ch
ip

Ch
ip

Ch
ip

(a) (b)

H
O

ST

Controller

H
os

t I
nt

er
fa

ce
(A

H
CI

, N
VM

e)

Co
m

pr
es

si
on

DRAM
Manager

and Buffers

Sc
ra

m
bl

er

EC
C

En
gi

ne

DRAM

Ch
ip

Ch
ip

Ch
ip

Ch
an

ne
l h

–1
Ch

an
ne

l 1
Ch

an
ne

l 0

…Processors
(Firmware) Channel

Processors

Processors
(Firmware)

Processors
(Firmware)

Fig. 9.1 a SSD system architecture, showing controller (Ctrl) and chips. b Detailed view of con-

nections between controller components and chips. Adapted from [15]

die share a single set of data and control buses [1]. Hence, an operation can be started

in a different plane in the same die in a pipelined manner, every cycle. Figure 9.2

shows how blocks are organized within chips across multiple channels. In the rest of

this work, without loss of generality, we assume that a chip contains a single die.

Data in a block is written at the unit of a page, which is typically between 8 and

16 kB in size in NAND flash memory. All read and write operations are performed

at the granularity of a page. Each block typically contains hundreds of pages. Blocks

in each plane are numbered with an ID that is unique within the plane, but is shared

across multiple planes. Within the block, each page is numbered in sequence. The

controller firmware groups blocks with the same ID number across multiple chips

and planes together into a superblock. Within each superblock, the pages with the

same page number are considered a superpage. The controller opens one superblock

(i.e., an empty superblock is selected for write operations) at a time, and typically

writes data to the NAND flash memory one superpage at a time to improve sequen-

tial read/write performance and make error correction efficient, since some parity

information is kept at superpage granularity (see Sect. 9.1.3.10). Having the ability

to write to all of the pages in a superpage simultaneously, the SSD can fully exploit

the internal parallelism offered by multiple planes/chips, which in turn maximizes

write throughput.

238 Y. Cai et al.

Chip c–1
Die d–1

Die 1

Channel 0

Plane p–1

Chip 0

. . .

Channel h–1

Block b–1

Page n

…
…

...
...Die 0

Pl
an

e
0

Pl
an

e
1

Pl
an

e
p–

1

. . .

Superblock m

. . .

mmm
Block m…

…

nnn Page n Superpage n

Fig. 9.2 Flash memory organization. Reproduced from [15]

9.1.2 Memory Channel

Each flash memory channel has its own data and control connection to the SSD

controller, much like a main memory channel has to the DRAM controller [74, 87,

88, 100, 129, 130, 132, 135, 189, 191, 194, 195, 250–252]. The connection for

each channel is typically an 8- or 16-bit wide bus between the controller and one of

the flash memory chips [1]. Both data and flash commands can be sent over the bus.

Each channel also contains its own control signal pins to indicate the type of data

or command that is on the bus. The address latch enable (ALE) pin signals that the

controller is sending an address, while the command latch enable (CLE) pin signals

that the controller is sending a flash command. Every rising edge of the write enable
(WE) signal indicates that the flash memory should write the piece of data currently

being sent on the bus by the SSD controller. Similarly, every rising edge of the read
enable (RE) signal indicates that the flash memory should send the next piece of data

from the flash memory to the SSD controller.

Each flash memory die connected to a memory channel has its own chip enable
(CE) signal, which selects the die that the controller currently wants to communicate

with. On a channel, the bus broadcasts address, data, and flash commands to all dies

within the channel, but only the die whose CE signal is active reads the information

from the bus and executes the corresponding operation.

9.1.3 SSD Controller

The SSD controller, shown in Fig. 9.1b, is responsible for (1) handling I/O requests

received from the host, (2) ensuring data integrity and efficient storage, and

(3) managing the underlying NAND flash memory. To perform these tasks, the

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 239

controller runs firmware, which is often referred to as the flash translation layer
(FTL). FTL tasks are executed on one or more embedded processors that exist inside

the controller. The controller has access to DRAM, which can be used to store var-

ious controller metadata (e.g., how host memory addresses map to physical SSD

addresses) and to cache relevant (e.g., frequently accessed) SSD pages [174, 229].

When the controller handles I/O requests, it performs a number of operations on

both the requests and the data. For requests, the controller schedules them in a man-

ner that ensures correctness and provides high/reasonable performance. For data, the

controller scrambles the data to improve raw bit error rates, performs ECC encod-
ing/decoding, and in some cases compresses/decompresses and/or encrypts/decrypts
the data and employs superpage-level data parity. To manage the NAND flash mem-

ory, the controller runs firmware that maps host data to physical NAND flash pages,

performs garbage collection on flash pages that have been invalidated, applies wear
leveling to evenly distribute the impact of writes on NAND flash reliability across all

pages, and manages bad NAND flash blocks. We briefly examine the various tasks

of the SSD controller.

9.1.3.1 Scheduling Requests

The controller receives I/O requests over a host controller interface (shown as Host
Interface in Fig. 9.1b), which consists of a system I/O bus and the protocol used to

communicate along the bus. When an application running on the host system needs

to access the SSD, it generates an I/O request, which is sent by the host over the

host controller interface. The SSD controller receives the I/O request, and inserts the

request into a queue. The controller uses a scheduling policy to determine the order in

which the controller processes the requests that are in the queue. The controller then

sends the request selected for scheduling to the FTL (part of the Firmware shown in

Fig. 9.1b).

The host controller interface determines how requests are sent to the SSD and

how the requests are queued for scheduling. Two of the most common host con-

troller interfaces used by modern SSDs are the Advanced Host Controller Inter-

face (AHCI) [99] and NVM Express (NVMe) [202]. AHCI builds upon the Serial

Advanced Technology Attachment (SATA) system bus protocol [238], which was

originally designed to connect the host system to magnetic hard disk drives. AHCI

allows the host to use advanced features with SATA, such as native command queu-
ing (NCQ). When an application executing on the host generates an I/O request, the

application sends the request to the operating system (OS). The OS sends the request

over the SATA bus to the SSD controller, and the controller adds the request to a sin-

gle command queue. NCQ allows the controller to schedule the queued I/O requests

in a different order than the order in which requests were received (i.e., requests are

scheduled out of order). As a result, the controller can choose requests from the queue

in a manner that maximizes the overall SSD performance (e.g., a younger request

can be scheduler earlier than an older request that requires access to a plane that

240 Y. Cai et al.

is occupied with serving another request). A major drawback of AHCI and SATA

is the limited throughput they enable for SSDs [284], as the protocols were origi-

nally designed to match the much lower throughput of magnetic hard disk drives.

For example, a modern magnetic hard drive has a sustained read throughput of 300

MB/s [237], whereas a modern SSD has a read throughput of 3500 MB/s [232].

However, AHCI and SATA are widely deployed in modern computing systems, and

they currently remain a common choice for the SSD host controller interface.

To alleviate the throughput bottleneck of AHCI and SATA, many manufacturers

have started adopting host controller interfaces that use the PCI Express (PCIe) sys-

tem bus [217]. A popular standard interface for the PCIe bus is the NVM Express

(NVMe) interface [202]. Unlike AHCI, which requires an application to send I/O

requests through the OS, NVMe directly exposes multiple SSD I/O queues to the

applications executing on the host. By directly exposing the queues to the appli-

cations, NVMe simplifies the software I/O stack, eliminating most OS involve-

ment [284], which in turn reduces communication overheads. An SSD using the

NVMe interface maintains a separate set of queues for each application (as opposed

to the single queue used for all applications with AHCI) within the host interface.

With more queues, the controller (1) has a larger number of requests to select from

during scheduling, increasing its ability to utilize idle resources (i.e., channels, dies,

planes; see Sect. 9.1.1); and (2) can more easily manage and control the amount

of interference that an application experiences from other concurrently-executing

applications. Currently, NVMe is used by modern SSDs that are designed mainly

for high-performance systems (e.g., enterprise servers, data centers [283, 284]).

9.1.3.2 Flash Translation Layer

The main duty of the FTL (which is part of the Firmware shown in Fig. 9.1) is to

manage the mapping of logical addresses (i.e., the address space utilized by the

host) to physical addresses in the underlying flash memory (i.e., the address space

for actual locations where the data is stored, visible only to the SSD controller) for

each page of data [54, 80]. By providing this indirection between address spaces,

the FTL can remap the logical address to a different physical address (i.e., move the

data to a different physical address) without notifying the host. Whenever a page of

data is written to by the host or moved for underlying SSD maintenance operations

(e.g., garbage collection [40, 288]; see Sect. 9.1.3.3), the old data (i.e., the physi-

cal location where the overwritten data resides) is simply marked as invalid in the

physical block’s metadata, and the new data is written to a page in the flash block

that is currently open for writes (see Sect. 9.2.4 for more detail on how writes are

performed).

The FTL is also responsible for wear leveling, to ensure that all of the blocks

within the SSD are evenly worn out [40, 288]. By evenly distributing the wear (i.e.,

the number of P/E cycles that take place) across different blocks, the SSD controller

reduces the heterogeneity of the amount of wearout across these blocks, thereby

extending the lifetime of the device. The wear-leveling algorithm is invoked when

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 241

the current block that is being written to is full (i.e., no more pages in the block are

available to write to), and it enables the controller to select a new block from the

free list to direct the future writes to. The wear-leveling algorithm dictates which of

the blocks from the free list is selected. One simple approach is to select the block

in the free list with the lowest number of P/E cycles to minimize the variance of

the wearout amount across blocks, though many algorithms have been developed for

wear leveling [39, 71].

9.1.3.3 Garbage Collection

When the host issues a write request to a logical address stored in the SSD, the SSD

controller performs the write out of place (i.e., the updated version of the page data

is written to a different physical page in the NAND flash memory), because in-place

updates cannot be performed (see Sect. 9.2.4). The old physical page is marked as

invalid when the out-of-place write completes. Fragmentation refers to the waste of

space within a block due to the presence of invalid pages. In a fragmented block, a

fraction of the pages are invalid, but these pages are unable to store new data until

the page is erased. Due to circuit-level limitations, the controller can perform erase

operations only at the granularity of an entire block (see Sect. 9.2.4 for details). As a

result, until a fragmented block is erased, the block wastes physical space within the

SSD. Over time, if fragmented blocks are not erased, the SSD will run out of pages

that it can write new data to. The problem becomes especially severe if the blocks

are highly fragmented (i.e., a large fraction of the pages within a block are invalid).

To reduce the negative impact of fragmentation on usable SSD storage space, the

FTL periodically performs a process called garbage collection. Garbage collection

finds highly-fragmented flash blocks in the SSD and recovers the wasted space due

to invalid pages. The basic garbage collection algorithm [40, 288] (1) identifies the

highly-fragmented blocks (which we call the selected blocks), (2) migrates any valid

pages in a selected block (i.e., each valid page is written to a new block, its virtual-to-

physical address mapping is updated, and the page in the selected block is marked as

invalid), (3) erases each selected block (see Sect. 9.2.4), and (4) adds a pointer to each

selected block into the free list within the FTL. The garbage collection algorithm

typically selects blocks with the highest number of invalid pages. When the controller

needs a new block to write pages to, it selects one of the blocks currently in the free

list.

We briefly discuss five optimizations that prior works propose to improve the

performance and/or efficiency of garbage collection [1, 52, 80, 84, 90, 161, 222,

276, 288]. First, the garbage collection algorithm can be optimized to determine

the most efficient frequency to invoke garbage collection [222, 288], as performing

garbage collection too frequently can delay I/O requests from the host, while not

performing garbage collection frequently enough can cause the controller to stall

when there are no blocks available in the free list. Second, the algorithm can be

optimized to select blocks in a way that reduces the number of page copy and erase

operations required each time the garbage collection algorithm is invoked [84, 222].

242 Y. Cai et al.

Third, some works reduce the latency of garbage collection by using multiple chan-

nels to perform garbage collection on multiple blocks in parallel [1, 90]. Fourth,

the FTL can minimize the latency of I/O requests from the host by pausing erase

and copy operations that are being performed for garbage collection, in order to ser-

vice the host requests immediately [52, 276]. Fifth, pages can be grouped together

such that all of the pages within a block become invalid around the same time [80,

90, 161]. For example, the controller can group pages with (1) a similar degree of

write-hotness (i.e., the frequency at which a page is updated; see Sect. 9.4.6) or (2) a

similar death time (i.e., the time at which a page is overwritten). Garbage collection

remains an active area of research.

9.1.3.4 Flash Reliability Management

The SSD controller performs many background optimizations that improve flash reli-

ability. These flash reliability management techniques, as we will discuss in more

detail in Sect. 9.4, can effectively improve flash lifetime at a very low cost, since

the optimizations are usually performed during idle times, when the interference

with the running workload is minimized. These management techniques sometimes

require small metadata storage in memory (e.g., for storing the near-optimal read ref-

erence voltages [21, 22, 162]), or require a timer (e.g., for triggering refreshes in time

[29, 30]).

9.1.3.5 Compression

Compression can reduce the size of the data written to minimize the number of flash

cells worn out by the original data. Some controllers provide compression, as well

as decompression, which reconstructs the original data from the compressed data

stored in the flash memory [154, 300]. The controller may contain a compression
engine, which, for example, performs the LZ77 or LZ78 algorithms. Compression is

optional, as some types of data being stored by the host (e.g., JPEG images, videos,

encrypted files, files that are already compressed) may not be compressible.

9.1.3.6 Data Scrambling and Encryption

The occurrence of errors in flash memory is highly dependent on the data values

stored into the memory cells [19, 23, 31]. To reduce the dependence of the error rate

on data values, an SSD controller first scrambles the data before writing it into the

flash chips [32, 121]. The key idea of scrambling is to probabilistically ensure that the

actual value written to the SSD contains an equal number of randomly distributed

zeroes and ones, thereby minimizing any data-dependent behavior. Scrambling is

performed using a reversible process, and the controller descrambles the data stored

in the SSD during a read request. The controller employs a linear feedback shift

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 243

register (LFSR) to perform scrambling and descrambling. An n-bit LFSR generates

2n−1
bits worth of pseudo-random numbers without repetition. For each page of data

to be written, the LFSR can be seeded with the logical address of that page, so that

the page can be correctly descrambled even if maintenance operations (e.g., garbage

collection) migrate the page to another physical location, as the logical address is

unchanged. (This also reduces the latency of maintenance operations, as they do not

need to descramble and rescramble the data when a page is migrated.) The LFSR

then generates a pseudo-random number based on the seed, which is then XORed

with the data to produce the scrambled version of the data. As the XOR operation is

reversible, the same process can be used to descramble the data.

In addition to the data scrambling employed to minimize data value dependence,

several SSD controllers include data encryption hardware [55, 89, 271]. An SSD that

contains data encryption hardware within its controller is known as a self-encrypting
drive (SED). In the controller, data encryption hardware typically employs AES

encryption [55, 59, 201, 271], which performs multiple rounds of substitutions and

permutations to the unencrypted data in order to encrypt it. AES employs a separate

key for each round [59, 201]. In an SED, the controller contains hardware that gen-

erates the AES keys for each round, and performs the substitutions and permutations

to encrypt or decrypt the data using dedicated hardware [55, 89, 271].

9.1.3.7 Error-Correcting Codes

ECC is used to detect and correct the raw bit errors that occur within flash mem-

ory. A host writes a page of data, which the SSD controller splits into one or more

chunks. For each chunk, the controller generates a codeword, consisting of the chunk

and a correction code. The strength of protection offered by ECC is determined by

the coding rate, which is the chunk size divided by the codeword size. A higher cod-

ing rate provides weaker protection, but consumes less storage, representing a key

reliability tradeoff in SSDs.

The ECC algorithm employed (typically BCH [10, 92, 153, 243] or LDPC [72,

73, 167, 243, 298]; see Sect. 9.5), as well as the length of the codeword and the

coding rate, determine the total error correction capability, i.e., the maximum num-

ber of raw bit errors that can be corrected by ECC. ECC engines in contemporary

SSDs are able to correct data with a relatively high raw bit error rate (e.g., between

10−3 and 10−2 [103]) and return data to the host at an error rate that meets traditional

data storage reliability requirements (e.g., a post-correction error rate of 10−15 in the

JEDEC standard [105]). The error correction failure rate (PECFR) of an ECC imple-

mentation, with a codeword length of l where the codeword has an error correction

capability of t bits, can be modeled as:

PECFR =
l∑

k=t+1

(
l
k

)
(1 − BER)(l−k)

BER
k

(9.1)

244 Y. Cai et al.

where BER is the bit error rate of the NAND flash memory. We assume in this equa-

tion that errors are independent and identically distributed.

In addition to the ECC information, a codeword contains cyclic redundancy

checksum (CRC) parity information [229]. When data is being read from the NAND

flash memory, there may be times when the ECC algorithm incorrectly indicates that

it has successfully corrected all errors in the data, when uncorrected errors remain.

To ensure that incorrect data is not returned to the user, the controller performs a

CRC check in hardware to verify that the data is error free [219, 229].

9.1.3.8 Data Path Protection

In addition to protecting the data from raw bit errors within the NAND flash memory,

newer SSDs incorporate error detection and correction mechanisms throughout the

SSD controller, in order to further improve reliability and data integrity [229]. These

mechanisms are collectively known as data path protection, and protect against

errors that can be introduced by the various SRAM and DRAM structures that exist

within the SSD.
1

Figure 9.3 illustrates the various structures within the controller

that employ data path protection mechanisms. There are three data paths that require

protection: (1) the path for data written by the host to the flash memory, shown as

a red solid line in Fig. 9.3; (2) the path for data read from the flash memory by the

host, shown as a green dotted line; and (3) the path for metadata transferred between

the firmware (i.e., FTL) processors and the DRAM, shown as a blue dashed line.

In the write data path of the controller (the red solid line shown in Fig. 9.3), data

received from the host interface (❶ in the figure) is first sent to a host FIFO buffer

H
os

t I
nt

er
fa

ce
(P

CI
e,

 S
AT

A,
 S

AS
)

Host
FIFO

Buffer

D
RA

M
 (u

se
s

M
PE

CC
)

Processors
(Firmware)

Processors
(Firmware)

Processors
(Firmware)

DRAM
Manager

N
AN

D
 F

la
sh

In

te
rf

ac
e

HFIFO Parity
Generator

MPECC
Generator

HFIFO Parity
Check

MPECC
Check

HFIFO Parity
Check

HFIFO Parity
Generator

MPECC Generator

MPECC Check

NAND
FIFO

Buffer

ECC
Encoder

MPECC
Check

ECC
Decoder

MPECC
Generator

CRC
Check

CRC
Generator

CRC
Generator

CRC Check

1

2
3

4

5 6 7

Fig. 9.3 Data path protection employed within the controller. Reproduced from [15]

1
See Sect. 9.7 for a discussion on the possible types of errors that can be present in DRAM.

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 245

(❷). Before the data is written into the host FIFO buffer, the data is appended with

memory protection ECC (MPECC) and host FIFO buffer (HFIFO) parity [229]. The

MPECC parity is designed to protect against errors that are introduced when the

data is stored within DRAM (which takes place later along the data path), while the

HFIFO parity is designed to protect against SRAM errors that are introduced when

the data resides within the host FIFO buffer. When the data reaches the head of the

host FIFO buffer, the controller fetches the data from the buffer, uses the HFIFO

parity to correct any errors, discards the HFIFO parity, and sends the data to the

DRAM manager (❸). The DRAM manager buffers the data (which still contains

the MPECC information) within DRAM (❹), and keeps track of the location of the

buffered data inside the DRAM. When the controller is ready to write the data to

the NAND flash memory, the DRAM manager reads the data from DRAM. Then,

the controller uses the MPECC information to correct any errors, and discards the

MPECC information. The controller then encodes the data into an ECC codeword

(❺), generates CRC parity for the codeword, and then writes both the codeword

and the CRC parity to a NAND flash FIFO buffer (❻) [229]. When the codeword

reaches the head of this buffer, the controller uses CRC parity to detect any errors in

the codeword, and then dispatches the data to the flash interface (❼), which writes

the data to the NAND flash memory. The read data path of the controller (the green

dotted line shown in Fig. 9.3) performs the same procedure as the write data path,

but in reverse order [229].

Aside from buffering data along the write and read paths, the controller uses the

DRAM to store essential metadata, such as the table that maps each host data address

to a physical block address within the NAND flash memory [174, 229]. In the meta-

data path of the controller (the blue dashed line shown in Fig. 9.3), the metadata is

often read from or written to DRAM by the firmware processors. In order to ensure

correct operation of the SSD, the metadata must not contain any errors. As a result,

the controller uses memory protection ECC (MPECC) for the metadata stored within

DRAM [165, 229], just as it did to buffer data along the write and read data paths.

Due to the lower rate of errors in DRAM compared to NAND flash memory (see

Sect. 9.7), the employed memory protection ECC algorithms are not as strong as

BCH or LDPC. We describe common ECC algorithms employed for DRAM error

correction in Sect. 9.7.

9.1.3.9 Bad Block Management

Due to process variation or uneven wearout, a small number of flash blocks may have

a much higher raw bit error rate (RBER) than an average flash block. Mitigating or

tolerating the RBER on these flash blocks often requires a much higher cost than the

benefit of using them. Thus, it is more efficient to identify and record these blocks

as bad blocks, and avoid using them to store useful data. There are two types of

bad blocks: original bad blocks (OBBs), which are defective due to manufacturing

issues (e.g., process variation), and growth bad blocks (GBBs), which fail during

runtime [259].

246 Y. Cai et al.

The flash vendor performs extensive testing, known as bad block scanning, to

identify OBBs when a flash chip is manufactured [181]. Initially, all blocks are

kept in the erased state, and contain the value 0xFF in each byte (see Sect. 9.2.1).

Inside each OBB, the bad block scanning procedure writes a specific data value (e.g.,

0× 00) to a specific byte location within the block that indicates the block status. A

good block (i.e., a block without defects) is not modified, and thus its block status

byte remains at the value 0xFF. When the SSD is powered up for the first time, the

SSD controller iterates through all blocks and checks the value stored in the block

status byte of each block. Any block that does not contain the value 0xFF is marked

as bad, and is recorded in a bad block table stored in the controller. A small num-

ber of blocks in each plane are set aside as reserved blocks (i.e., blocks that are

not used during normal operation), and the bad block table automatically remaps

any operation originally destined to an OBB to one of the reserved blocks. The bad

block table remaps an OBB to a reserved block in the same plane, to ensure that the

SSD maintains the same degree of parallelism when writing to a superpage, thus

avoiding performance loss. Less than 2% of all blocks in the SSD are expected to be

OBBs [204].

The SSD identifies growth bad blocks during runtime by monitoring the status

of each block. Each superblock contains a bit vector indicating which of its blocks

are GBBs. After each program or erase operation to a block, the SSD reads the sta-
tus reporting registers to check the operation status. If the operation has failed, the

controller marks the block as a GBB in the superblock bit vector. At this point, the

controller uses superpage-level parity to recover the data that was stored in the GBB

(see Sect. 9.1.3.10), and all data in the superblock is copied to a different superblock.

The superblock containing the GBB is then erased. When the superblock is subse-

quently opened, blocks marked as GBBs are not used, but the remaining blocks can

store new data.

9.1.3.10 Superpage-Level Parity

In addition to ECC to protect against bit-level errors, many SSDs employ RAID-

like parity [63, 113, 180, 215]. The key idea is to store parity information within

each superpage to protect data from ECC failures that occur within a single chip or

plane. Figure 9.4 shows an example of how the ECC and parity information are orga-

nized within a superpage. For a superpage that spans across multiple chips, dies, and

planes, the pages stored within one die or one plane (depending on the implemen-

tation) are used to store parity information for the remaining pages. Without loss of

generality, we assume for the rest of this section that a superpage that spans c chips

and d dies per chip stores parity information in the pages of a single die (which

we call the parity die), and that it stores user data in the pages of the remaining

(c × d) − 1 dies. When all of the user data is written to the superpage, the SSD con-

troller XORs the data together one plane at a time (e.g., in Fig. 9.4, all of the pages in

Plane 0 are XORed with each other), which produces the parity data for that plane.

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 247

Logical Block

. . .

Data ECC
Plane 0, Block m, Page n

… Data ECC Data ECC

RAID Parity
Plane 0, Block m, Page n

RAID Parity
Plane 1, Block m, Page n

ECC Codeword

Data ECC
Plane 1, Block m, Page n

… Data ECC Data ECC

Data ECC
Plane 0, Block m, Page n

… Data ECC Data ECC

Data ECC
Plane 1, Block m, Page n

… Data ECC Data ECC
+

+

Die 0

Die (c d)–2

Die (c d)–1

. . .

Fig. 9.4 Example layout of ECC codewords, logical blocks, and superpage-level parity for super-

page n in superblock m. In this example, we assume that a logical block contains two codewords.

Reproduced from [15]

This parity data is written to the corresponding plane in the parity die, e.g., Plane 0

page in Die (c × d) − 1 in the figure.

The SSD controller invokes superpage-level parity when an ECC failure occurs

during a host software (e.g., OS, file system) access to the SSD. The host software

accesses data at the granularity of a logical block (LB), which is indexed by a logical
block address (LBA). Typically, an LB is 4 kB in size, and consists of several ECC

codewords (which are usually 512 BB to 2 kB in size) stored consecutively within

a flash memory page, as shown in Fig. 9.4. During the LB access, a read failure can

occur for one of two reasons. First, it is possible that the LB data is stored within

a hidden GBB (i.e., a GBB that has not yet been detected and excluded by the bad

block manager). The probability of storing data in a hidden GBB is quantified as

PHGBB. Note that because bad block management successfully identifies and excludes

most GBBs, PHGBB is much lower than the total fraction of GBBs within an SSD.

Second, it is possible that at least one ECC codeword within the LB has failed (i.e.,

the codeword contains an error that cannot be corrected by ECC). The probability

that a codeword fails is PECFR (see Sect. 9.1.3.7). For an LB that contains K ECC

codewords, we can model PLBFail, the overall probability that an LB access fails (i.e.,

the rate at which superpage-level parity needs to be invoked), as:

PLBFail = PHGBB + [1 − PHGBB] × [1 − (1 − PECFR)K] (9.2)

In (9.2), PLBFail consists of (1) the probability that an LB is inside a hidden GBB (left

side of the addition); and (2) for an LB that is not in a hidden GBB, the probability

of any codeword failing (right side of the addition).

When a read failure occurs for an LB in plane p, the SSD controller reconstructs

the data using the other LBs in the same superpage. To do this, the controller reads

the LBs stored in plane p in the other (c × d) − 1 dies of the superpage, including

248 Y. Cai et al.

the LBs in the parity die. The controller then XORs all of these LBs together, which

retrieves the data that was originally stored in the LB whose access failed. In order

to correctly recover the failed data, all of the LBs from the (c × d) − 1 dies must be

correctly read. The overall superpage-level parity failure probability Pparity (i.e., the

probability that more than one LB contains a failure) for an SSD with c chips of flash

memory, with d dies per chip, can be modeled as [215]:

Pparity = PLBFail × [1 − (1 − PLBFail)(c×d)−1] (9.3)

Thus, by designating one of the dies to contain parity information (in a fashion sim-

ilar to RAID 4 [215]), the SSD can tolerate the complete failure of the superpage

data in one die without experiencing data loss during an LB access.

9.1.4 Design Tradeoffs for Reliability

Several design decisions impact the SSD lifetime (i.e., the duration of time that the

SSD can be used within a bounded probability of error without exceeding a given

performance overhead). To capture the tradeoff between these decisions and lifetime,

SSD manufacturers use the following model:

Lifetime (Years) = PEC × (1 + OP)
365 × DWPD × WA × Rcompress

(9.4)

In (9.4), the numerator is the total number of full drive writes the SSD can endure

(i.e., for a drive with an X-byte capacity, the number of times X bytes of data can be

written). The number of full drive writes is calculated as the product of PEC, the total

P/E cycle endurance of each flash block (i.e., the number of P/E cycles the block can

sustain before its raw error rate exceeds the ECC correction capability), and 1 + OP,

where OP is the overprovisioning factor selected by the manufacturer. Manufacturers

overprovision the flash drive by providing more physical block addresses, or PBAs,

to the SSD controller than the advertised capacity of the drive, i.e., the number of

logical block addresses (LBAs) available to the operating system. Overprovisioning

improves performance and endurance, by providing additional free space in the SSD

so that maintenance operations can take place without stalling host requests. OP is

calculated as:

OP = PBA count − LBA count

LBA count
(9.5)

The denominator in (9.4) is the number of full drive writes per year, which is

calculated as the product of days per year (i.e., 365), DWPD, and the ratio between

the total size of the data written to flash media and the size of the data sent by the

host (i.e., WA × Rcompress). DWPD is the number of full disk writes per day (i.e.,

the number of times per day the OS writes the advertised capacity’s worth of data).

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 249

DWPD is typically less than 1 for read-intensive applications, and could be greater

than 5 for write-intensive applications [29]. WA (write amplification) is the ratio

between the amount of data written into NAND flash memory by the controller over

the amount of data written by the host machine. Write amplification occurs because

various procedures (e.g., garbage collection [40, 288]; and remapping-based refresh,

Sect. 9.4.3) in the SSD perform additional writes in the background. For example,

when garbage collection selects a block to erase, the pages that are remapped to a

new block require background writes. Rcompress, or the compression ratio, is the ratio

between the size of the compressed data and the size of the uncompressed data, and

is a function of the entropy of the stored data and the efficiency of the compres-

sion algorithms employed in the SSD controller. In (9.4), DWPD and Rcompress are

largely determined by the workload and data compressibility, and cannot be changed

to optimize flash lifetime. For controllers that do not implement compression, we set

R compress to 1. However, the SSD controller can trade off other parameters between

one another to optimize flash lifetime. We discuss the most salient tradeoffs next.

Tradeoff Between Write Amplification and Overprovisioning. As mentioned in

Sect. 9.1.3.3, due to the granularity mismatch between flash erase and program oper-

ations, garbage collection occasionally remaps remaining valid pages from a selected

block to a new flash block, in order to avoid block-internal fragmentation. This

remapping causes additional flash memory writes, leading to write amplification.

In an SSD with more overprovisioned capacity, the amount of write amplification

decreases, as the blocks selected for garbage collection are older and tend to have

fewer valid pages. For a greedy garbage collection algorithm and a random-access

workload, the correlation between WA and OP can be calculated [62, 93], as shown

in Fig. 9.5. In an ideal SSD, both WA and OP should be minimal, i.e., WA = 1 and OP

= 0%, but in reality there is a tradeoff between these parameters: when one increases,

the other decreases. As Fig. 9.5 shows, WA can be reduced by increasing OP, and

with an infinite amount of OP, WA converges to 1. However, the reduction of WA is

smaller when OP is large, resulting in diminishing returns.

In reality, the relationship between WA and OP is also a function of the storage

space utilization of the SSD. When the storage space is not fully utilized, many more

0
1
2
3
4
5
6
7
8
9

10
11
12

0% 10% 20% 30% 40% 50%

W
rit

e
Am

pl
ifi

ca
on

Overprovisioning

Fig. 9.5 Relationship between write amplification (WA) and the overprovisioning factor (OP).

Reproduced from [15]

250 Y. Cai et al.

pages are available, reducing the need to invoke garbage collection, and thus WA can

approach 1 without the need for a large amount of OP.

Tradeoff Between P/E Cycle Endurance and Overprovisioning. PEC and OP can

be traded against each other by adjusting the amount of redundancy used for error

correction, such as ECC and superpage-level parity (as discussed in Sect. 9.1.3.10).

As the error correction capability increases, PEC increases because the SSD can tol-

erate the higher raw bit error rate that occurs at a higher P/E cycle count. However,

this comes at a cost of reducing the amount of space available for OP, since a stronger

error correction capability requires higher redundancy (i.e., more space). Table 9.1

shows the corresponding OP for four different error correction configurations for an

example SSD with 2.0 TB of advertised capacity and 2.4 TB (20% extra) of phys-

ical space. In this table, the top two configurations use ECC-1 with a coding rate

of 0.93, and the bottom two configurations use ECC-2 with a coding rate of 0.90,

which has higher redundancy than ECC-1. Thus, the ECC-2 configurations have a

lower OP than the top two. ECC-2, with its higher redundancy, can correct a greater

number of raw bit errors, which in turn increases the P/E cycle endurance of the

SSD. Similarly, the two configurations with superpage-level parity have a lower OP

than configurations without superpage-level parity, as parity uses a portion of the

overprovisioned space to store the parity bits.

When the ECC correction strength is increased, the amount of overprovisioning

in the SSD decreases, which in turn increases the amount of write amplification

that takes place. Manufacturers must find and use the correct tradeoff between ECC

correction strength and the overprovisioning factor, based on which of the two is

expected to provide greater reliability for the target applications of the SSD.

9.2 NAND Flash Memory Basics

A number of underlying properties of the NAND flash memory used within the SSD

affect SSD management, performance, and reliability [9, 12, 182]. In this section,

Table 9.1 Tradeoff between

strength of error correction

configuration and amount of

SSD space left for

overprovisioning

Error correction configuration Overprovisioning

factor (%)

ECC-1 (0.93), no superpage-level

parity

11.6

ECC-1 (0.93), with superpage-level

parity

8.1

ECC-2 (0.90), no superpage-level

parity

8.0

ECC-2 (0.90), with superpage-level

parity

4.6

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 251

we present a primer on NAND flash memory and its operation, to prepare the reader

for understanding our further discussion on error sources (Sect. 9.3) and mitigation

mechanisms (Sect. 9.4). Recall from Sect. 9.1.1 that within each plane, flash cells are

organized as multiple 2D arrays known as flash blocks, each of which contains mul-

tiple pages of data, where a page is the granularity at which the host reads and writes

data. We first discuss how data is stored in NAND flash memory. We then introduce

the three basic operations supported by NAND flash memory: read, program, and

erase.

9.2.1 Storing Data in a Flash Cell

NAND flash memory stores data as the threshold voltage of each flash cell, which is

made up of a floating-gate transistor. Figure 9.6 shows a cross section of a floating-

gate transistor. On top of a flash cell is the control gate (CG) and below is the floating

gate (FG). The floating gate is insulated on both sides, on top by an inter-poly oxide

layer and at the bottom by a tunnel oxide layer. As a result, the electrons programmed

on the floating gate do not discharge even when flash memory is powered off.

For single-level cell (SLC) NAND flash, each flash cell stores a 1-bit value, and

can be programmed to one of two threshold voltage states, which we call the ER

and P1 states. Multi-level cell (MLC) NAND flash stores a 2-bit value in each cell,

with four possible states (ER, P1, P2, and P3), and triple-level cell (TLC) NAND

flash stores a 3-bit value in each cell with eight possible states (ER, P1–P7). Each

state represents a different value, and is assigned a voltage window within the range

of all possible threshold voltages. Due to variation across program operations, the

threshold voltage of flash cells programmed to the same state is initially distributed

across this voltage window.

Figure 9.7 illustrates the threshold voltage distribution of MLC (top) and TLC

(bottom) NAND flash memories. The x-axis shows the threshold voltage (Vth), which

spans a certain voltage range. The y-axis shows the probability density of each volt-

age level across all flash memory cells. The threshold voltage distribution of each

threshold voltage state can be represented as a probability density curve that spans

over the state’s voltage window.

Fig. 9.6 Flash cell (i.e.,

floating-gate transistor) cross

section. Reproduced from

[15]

Control Gate (CG)

n+ n+Source Drain

Substrate

Floa ng
Gate
(FG)

Oxide

Oxide

252 Y. Cai et al.

ER
(11)

P1
(01)

P2
(00)

P3
(10)

ER
(111)

P1
(011)

P2
(001)

P3
(101)

P4
(100)

P5
(000)

P6
(010)

P7
(110)

Threshold Voltage (Vth)

Va Vb Vc Vpass
Pr

ob
ab

ili
ty

De

ns
ity

Threshold Voltage (Vth)

Pr
ob

ab
ili

ty

De
ns

ity Va Vb Vc Vd Ve Vf Vg Vpass

MSB LSB

MSB LSBCSB

MLC NAND Flash Memory

TLC NAND Flash Memory

Fig. 9.7 Threshold voltage distribution of MLC (top) and TLC (bottom) NAND flash memory.

Reproduced from [15]

We label the distribution curve for each state with the name of the state and a cor-

responding bit value. Note that some manufacturers may choose to use a different

mapping of values to different states. The bit values of adjacent states are separated

by a Hamming distance of 1. We break down the bit values for MLC into the most

significant bit (MSB) and least significant bit (LSB), while TLC is broken down into

the MSB, the center significant bit (CSB), and the LSB. The boundaries between

neighboring threshold voltage windows, which are labeled as Va, Vb, and Vc for the

MLC distribution in Fig. 9.7, are referred to as read reference voltages. These volt-

ages are used by the SSD controller to identify the voltage window (i.e., state) of

each cell upon reading the cell.

9.2.2 Flash Block Design

Figure 9.8 shows the high-level internal organization of a NAND flash memory

block. Each block contains multiple rows of cells (typically 128–512 rows). Each

row of cells is connected together by a common wordline (WL, shown horizontally

in Fig. 9.8), typically spanning 32–64 K cells. All of the cells along the wordline are

logically combined to form a page in an SLC NAND flash memory. For an MLC

NAND flash memory, the MSBs of all cells on the same wordline are combined to

form an MSB page, and the LSBs of all cells on the wordline are combined to form

an LSB page. Similarly, a TLC NAND flash memory logically combines the MSBs

on each wordline to form an MSB page, the CSBs on each wordline to form a CSB
page, and the LSBs on each wordline to form an LSB page. In MLC NAND flash

memory, each flash block contains 256–1024 flash pages, each of which are typically

8–16 kB in size.

Within a block, all cells in the same column are connected in series to form a

bitline (BL, shown vertically in Fig. 9.8) or string. All cells in a bitline share a com-

mon ground (GND) on one end, and a common sense amplifier (SA) on the other for

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 253

Fig. 9.8 Internal

organization of a flash block.

Reproduced from [15]

BL
 0

BL
 1

BL
 2

BL
 3

BL
 M

-1

BL
 M

WL 0

SA

GND

SA SA SA SA SA

WL 1

WL N-1

WL N

Sense
Amplifiers

GSL
ground select

SSL
string select

WL 2

W
or

dl
in

es

Bitlines

reading the threshold voltage of one of the cells when decoding data. Bitline oper-

ations are controlled by turning the ground select line (GSL) and string select line
(SSL) transistor of each bitline on or off. The SSL transistor is used to enable oper-

ations on a bitline, and the GSL transistor is used to connect the bitline to ground

during a read operation [184]. The use of a common bitline across multiple rows

reduces the amount of circuit area required for read and write operations to a block,

improving storage density.

9.2.3 Read Operation

Data can be read from NAND flash memory by applying read reference voltages

onto the control gate of each cell, to sense the cell’s threshold voltage. To read the

value stored in a single-level cell, we need to distinguish only the state with a bit

value of 1 from the state with a bit value of 0. This requires us to use only a single

read reference voltage. Likewise, to read the LSB of a multi-level cell, we need to

distinguish only the states where the LSB value is 1 (ER and P1) from the states

where the LSB value is 0 (P2 and P3), which we can do with a single read reference

voltage (Vb in the top half of Fig. 9.7). To read the MSB page, we need to distinguish

the states with an MSB value of 1 (ER and P3) from those with an MSB value of 0

(P1 and P2). Therefore, we need to determine whether the threshold voltage of the

cell falls between Va and Vc, requiring us to apply each of these two read reference

voltages (which can require up to two consecutive read operations) to determine the

MSB.

Reading data from a triple-level cell is similar to the data read procedure for a

multi-level cell. Reading the LSB for TLC again requires applying only a single

254 Y. Cai et al.

read reference voltage (Vd in the bottom half of Fig. 9.7). Reading the CSB requires

two read reference voltages to be applied, and reading the MSB requires four read

reference voltages to be applied.

As Fig. 9.8 shows, cells from multiple wordlines (WL in the figure) are connected

in series on a shared bitline (BL) to the sense amplifier, which drives the value that

is being read from the block onto the memory channel for the plane. In order to

read from a single cell on the bitline, all of the other cells (i.e., unread cells) on the

same bitline must be switched on to allow the value that is being read to propagate

through to the sense amplifier. The NAND flash memory achieves this by applying

the pass-through voltage onto the wordlines of the unread cells, as shown in Fig. 9.9a.

When the pass-through voltage (i.e., the maximum possible threshold voltage Vpass)

is applied to a flash cell, the source and the drain of the cell transistor are connected,

regardless of the voltage of the floating gate. Modern flash memories guarantee that

all unread cells are passed through to minimize errors during the read operation [21].

9.2.4 Program and Erase Operations

The threshold voltage of a floating-gate transistor is controlled through the injection

and ejection of electrons through the tunnel oxide of the transistor, which is enabled

by the Fowler-Nordheim (FN) tunneling effect [9, 69, 216]. The tunneling current

(JFN) [12, 216] can be modeled as:

JFN = 𝛼FNE2
oxe−𝛽FN∕Eox (9.6)

(a) Read

Vpass

Vpass

Vpass

Vread

(b) Program

Vpass

Vpass

Vpass

Vprogram

(c) Erase

GND

GND

GND

GND

GND
GSL

on

SSL
on

GSL
off

SSL
on

GSL
floa ng

SSL
floa ng

GNDGND

SA SA SA

body bias:
GND

body bias:
Verase

body bias:
GND

Fig. 9.9 Voltages applied to flash cell transistors on a bitline to perform a read, b program, and

c erase operations. Reproduced from [15]

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 255

In (9.6), 𝛼FN and 𝛽FN are constants, and Eox is the electric field strength in the tunnel

oxide. As (9.6) shows, JFN is exponentially correlated with Eox.

During a program operation, electrons are injected into the floating gate of the

flash cell from the substrate when applying a high positive voltage to the control

gate (see Fig. 9.6 for a diagram of the flash cell). The pass-through voltage is applied

to all of the other cells on the same bitline as the cell that is being programmed as

shown in Fig. 9.9b. When data is programmed, charge is transferred into the float-

ing gate through FN tunneling by repeatedly pulsing the programming voltage, in

a procedure known as incremental step-pulse programming (ISPP) [9, 182, 253,

267]. During ISPP, a high programming voltage (Vprogram) is applied for a very short

period, which we refer to as a step-pulse. ISPP then verifies the current voltage of the

cell using the voltage Vverify. ISPP repeats the process of applying a step-pulse and

verifying the voltage until the cell reaches the desired target voltage. In the modern

all-bitline NAND flash memory, all flash cells in a single wordline are programmed

concurrently. During programming, when a cell along the wordline reaches its target

voltage but other cells have yet to reach their target voltage, ISPP inhibits program-

ming pulses to the cell by turning off the SSL transistor of the cell’s bitline.

In SLC NAND flash and older MLC NAND flash, one-shot programming is used,

where all of the ISPP step-pulses required to program a cell are applied back to back

until all cells in the wordline are fully programmed. One-shot programming does

not interleave the program operations to a wordline with the program operations

to another wordline. In newer MLC NAND flash, the lack of interleaving between

program operations can introduce a significant amount of cell-to-cell program inter-

ference on the cells of immediately-adjacent wordlines (see Sect. 9.3.3).

To reduce the impact of program interference, the controller employs two-step
programming for sub-40 nm MLC NAND flash [23, 209]: it first programs the LSBs

into the erased cells of an unprogrammed wordline, and then programs the MSBs of

the cells using a separate program operation [17, 20, 207, 209]. Between the pro-

gramming of the LSBs and the MSBs, the controller programs the LSBs of the cells

in the wordline immediately above [17, 20, 207, 209]. Figure 9.10 illustrates the two-

step programming algorithm. In the first step, a flash cell is partially programmed
based on its LSB value, either staying in the ER state if the LSB value is 1, or moving

to a temporary state (TP) if the LSB value is 0. The TP state has a mean voltage that

falls between states P1 and P2. In the second step, the LSB data is first read back

into an internal buffer register within the flash chip to determine the cell’s current

threshold voltage state, and then further programming pulses are applied based on

the MSB data to increase the cell’s threshold voltage to fall within the voltage win-

dow of its final state. Programming in MLC NAND flash is discussed in detail in

[17, 20].

TLC NAND flash takes a similar approach to the two-step programming of MLC,

with a mechanism known as foggy-fine programming [156], which is illustrated in

Fig. 9.11. The flash cell is first partially programmed based on its LSB value, using

a binary programming step in which very large ISPP step-pulses are used to signifi-

cantly increase the voltage level. Then, the flash cell is partially programmed again

based on its CSB and MSB values to a new set of temporary states (these steps are

256 Y. Cai et al.

0. Erase

1. Program
LSB

2. Program
MSB

ER
(X1)

TP
(X0)

ER
(XX)

Vth

Vth

ER
(11)

P1
(01)

P2
(00)

P3
(10)

Threshold Voltage (Vth)

Fig. 9.10 Two-step programming algorithm for MLC flash. Reproduced from [15]

ER A B C

ER D

ER

ER
(111)

D E F G

P1
(011)

P2
(001)

P3
(101)

P4
(100)

P5
(000)

P6
(010)

P7
(110)

Vth

Vth

0. Erase

1. Binary
Program

2. Foggy
Program

Threshold Voltage (Vth)

3. Fine
Program

Vth

Fig. 9.11 Foggy-fine programming algorithm for TLC flash. Reproduced from [15]

referred to as foggy programming, which uses smaller ISPP step-pulses than binary

programming). Due to the higher potential for errors during TLC programming as a

result of the narrower voltage windows, all of the programmed bit values are buffered

after the binary and foggy programming steps into SLC buffers that are reserved in

each chip/plane. Finally, fine programming takes place, where these bit values are

read from the SLC buffers, and the smallest ISPP step-pulses are applied to set each

cell to its final threshold voltage state. The purpose of this last fine programming

step is to fine tune the threshold voltage such that the threshold voltage distributions

are tightened (bottom of Fig. 9.11).

Though programming sets a flash cell to a specific threshold voltage using pro-

gramming pulses, the voltage of the cell can drift over time after programming. When

no external voltage is applied to any of the electrodes (i.e., CG, source, and drain) of

a flash cell, an electric field still exists between the FG and the substrate, generated

by the charge present in the FG. This is called the intrinsic electric field [12], and

it generates stress-induced leakage current (SILC) [9, 60, 200], a weak tunneling

current that leaks charge away from the FG. As a result, the voltage that a cell is

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 257

programmed to may not be the same as the voltage read for that cell at a subsequent

time.

In NAND flash, a cell can be reprogrammed with new data only after the existing

data in the cell is erased. This is because ISPP can only increase the voltage of the

cell. The erase operation resets the threshold voltage state of all cells in the flash
block to the ER state. During an erase operation, electrons are ejected from the FG

of the flash cell into the substrate by inducing a high negative voltage on the cell

transistor. The negative voltage is induced by setting the CG of the transistor to GND,

and biasing the transistor body (i.e., the substrate) to a high voltage (Verase), as shown

in Fig. 9.9c. Because all cells in a flash block share a common transistor substrate

(i.e., the bodies of all transistors in the block are connected together), a flash block

must be erased in its entirety [184].

9.3 NAND Flash Error Characterization

Each block in NAND flash memory is used in a cyclic fashion, as is illustrated by

the observed raw bit error rates seen over the lifetime of a flash memory block in

Fig. 9.12. At the beginning of a cycle, known as a program/erase (P/E) cycle, an

erased block is opened (i.e., selected for programming). Data is then programmed

into the open block one page at a time. After all of the pages are programmed, the

block is closed, and none of the pages can be reprogrammed until the whole block

is erased. At any point before erasing, read operations can be performed on a valid
programmed page (i.e., a page containing data that has not been modified by the

host). A page is marked as invalid when the data stored at that page’s logical address

by the host is modified. As ISPP can only inject more charge into the floating gate

but cannot remove charge from the gate, it is not possible to modify data to a new

arbitrary value in place within existing NAND flash memories. Once the block is

erased, the P/E cycling behavior repeats until the block is worn out (i.e., the block

can no longer avoid data loss over the course of the minimum data retention period

guaranteed by the manufacturer). Although the 5x-nm (i.e., 50–59 nm) generation

of MLC NAND flash could endure ~10,000 P/E cycles per block before being worn

out, modern 1x-nm (i.e., 15–19 nm) MLC and TLC NAND flash can endure only

~3,000 and ~1,000 P/E cycles per block, respectively [136, 168, 212, 294].

As shown in Fig. 9.12, several different types of errors can be introduced at any

point during the P/E cycling process: P/E cycling errors, program errors, errors

due to cell-to-cell program interference, data retention errors, and errors due to

read disturb. As discussed in Sect. 9.2.1, the threshold voltage of flash cells pro-

grammed to the same state is distributed across a voltage window due to variation

across program operations and across different flash cells. Several types of errors

introduced during the P/E cycling process, such as data retention and read disturb,

cause the threshold voltage distribution of each state to shift and widen. Due to the

shift and widening, the tails of the distributions of each state can enter the mar-

gin that originally existed between each of the two neighboring states’ distributions.

258 Y. Cai et al.

me

RB
ER Read disturb errors

Reten on errors

P/E cycling errors
Program errors
Cell-to-cell interference errors

......

N-1
Program/Erase Cycles

N N+1

increase in errors from N to
N+1 P/E cycles due to wearout

Fig. 9.12 Pictorial depiction of errors accumulating within a NAND flash block as P/E cycle count

increases. Reproduced from [15]

ER
(11)

P1
(01)

P2
(00)

P3
(10)

Threshold Voltage (Vth)

Va Vb Vc

Pr
ob

ab
ili

ty

De
ns

ity

overlap

Fig. 9.13 Threshold voltage distribution shifts and widening can cause the distributions of two

neighboring states to overlap with each other (compare to Fig. 9.7), leading to read errors. Repro-

duced from [15]

Thus, the threshold voltage distributions of different states can start overlapping, as

shown in Fig. 9.13. When the distributions overlap with each other, the read reference

voltages can no longer correctly identify the state of some flash cells in the overlap-

ping region, leading to raw bit errors during a read operation.

In this section, we discuss the causes of each type of error in detail, and charac-

terize the impact that each error type has on the amount of raw bit errors occurring

within NAND flash memory. We use an FPGA-based testing platform [18] to char-

acterize state-of-the-art TLC NAND flash chips. We use the read-retry operation

present in NAND flash devices to accurately read the cell threshold voltage [20–

23, 29, 31, 70, 162, 208] (for a detailed description of the read-retry operation,

see Sect. 9.4.4). As absolute threshold voltage values are proprietary information to

flash vendors, we present our results using normalized voltages, where the nominal

maximum value of Vth is equal to 512 in our normalized scale, and where 0 rep-

resents GND. We also describe characterization results and observations for MLC

NAND flash chips. These MLC NAND results are taken from our prior works [14,

17, 19–23, 29–31, 162], which provide more detailed error characterization results

and analyses. To our knowledge, this paper provides the first experimental charac-

terization and analysis of errors in real TLC NAND flash memory chips (Tables 9.2,

9.3 and 9.4).

We later discuss mitigation techniques for these flash memory errors in Sect. 9.4,

and provide procedures to recover in the event of data loss in Sect. 9.5.

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 259

9.3.1 P/E Cycling Errors

A P/E cycling error occurs when either (1) an erase operation fails to reset a cell to

the ER state; or (2) when a program operation fails to set the cell to the desired target

state. P/E cycling errors occur because electrons become trapped in the tunnel oxide

after stress from repeated P/E cycles. Errors due to such electron trapping (which we

refer to as P/E cycling noise) continue to accumulate over the lifetime of a NAND

flash block. This behavior is called wearout, and it refers to the phenomenon where,

as more writes are performed to a block, there are a greater number of raw bit errors

that must be corrected, exhausting more of the fixed error correction capability of

the ECC (see Sect. 9.1.3.7).

Figure 9.14 shows the threshold voltage distribution of TLC NAND flash memory

after 0 P/E cycles and after 3,000 P/E cycles, without any retention or read disturb

errors present (which we ensure by reading the data immediately after programming).

The mean and standard deviation of each state’s distribution are provided in Table 9.5

in the Appendix (for other P/E cycle counts as well). We make two observations from

the two distributions. First, as the P/E cycle count increases, each state’s threshold

voltage distribution systematically (1) shifts to the right and (2) becomes wider. Sec-

ond, the amount of the shift is greater for lower-voltage states (e.g., the ER and P1

states) than it is for higher-voltage states (e.g., the P7 state).

The threshold voltage distribution shift occurs because as more P/E cycles take

place, the quality of the tunnel oxide degrades, allowing electrons to tunnel through

the oxide more easily [186]. As a result, if the same ISPP conditions (e.g., program-

ming voltage, step-pulse size, program time) are applied throughout the lifetime of

the NAND flash memory, more electrons are injected during programming as a flash

memory block wears out, leading to higher threshold voltages, i.e., the right shift of

the distribution. The distribution of each state widens due to the process variation

present in (1) the wearout process, and (2) the cell’s structural characteristics. As the

distribution of each voltage state widens, more overlap occurs between neighboring

distributions, making it less likely for a read reference voltage to determine the cor-

rect value of the cells in the overlapping regions, which leads to a greater number of

raw bit errors.

ER
P1 P2 P3 P4 P5 P6 P7

10-1

10-2

10-3

10-4

10-5

PD
F

0 100 200 300 400 500

Normalized Vth

0 P/E Cycles 3K P/E Cycles

Fig. 9.14 Threshold voltage distribution of TLC NAND flash memory after 0 P/E cycles and 3,000

P/E cycles. Reproduced from [15]

260 Y. Cai et al.

The threshold voltage distribution trends we observe here for TLC NAND flash

memory trends are similar to trends observed previously for MLC NAND flash mem-

ory [19, 20, 162, 212], although the MLC NAND flash characterizations reported

in past studies span up to a larger P/E cycle count than the TLC experiments due to

the greater endurance of MLC NAND flash memory. More findings on the nature of

wearout and the impact of wearout on NAND flash memory errors and lifetime can

be found in our prior work [14, 19, 20, 162].

9.3.2 Program Errors

Program errors occur when data read directly from the NAND flash array contains

errors, and the erroneous values are used to program the new data. Program errors

occur in two major cases: (1) partial programming during two-step or foggy-fine

programming, and (2) copyback (i.e., when data is copied inside the NAND flash

memory during a maintenance operation) [94]. During two-step programming for

MLC NAND flash memory (see Fig. 9.10), in between the LSB and MSB program-

ming steps of a cell, threshold voltage shifts can occur on the partially-programmed

cell. These shifts occur because several other read and program operations to cells

in other pages within the same block may take place, causing interference to the

partially-programmed cell. Figure 9.15 illustrates how the threshold distribution of

the ER state widens and shifts to the right after the LSB value is programmed (step 1

in the figure). The widening and shifting of the distribution causes some cells that

were originally partially programmed to the ER state (with an LSB value of 1) to be

misread as being in the TP state (with an LSB value of 0) during the second program-

ming step (step 2 in the figure). As shown in Fig. 9.15, the misread LSB value leads

to a program error when the final cell threshold voltage is programmed [17, 162,

212]. Some cells that should have been programmed to the P1 state (representing

the value 01) are instead programmed to the P2 state (with the value 00), and some

Fig. 9.15 Impact of

program errors during

two-step programming on

cell threshold voltage

distribution. Reproduced

from [15]

0. Erase

1. Program
LSB

2. Program
MSB

ER
(X1)

TP
(X0)

ER
(XX)

Vth

Vth

ER
(11)

P1
(01)

P2
(00)

P3
(10)

Vth

ERP1
Program errors

LSB should be 1, but is incorrectly programmed to 0

Interference shi s/widens
ER distribu onVref

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 261

cells that should have been programmed to the ER state (representing the value 11)

are instead programmed to the P3 state (with the value 10).

The incorrect values that are read before the second programming step are not
corrected by ECC, as they are read directly inside the NAND flash array, without

involving the controller (where the ECC engine resides). Similarly, during foggy-fine

programming for TLC NAND flash (see Fig. 9.11), the data may be read incorrectly

from the SLC buffers used to store the contents of partially-programmed wordlines,

leading to errors during the fine programming step. Program errors occur during

copyback [94] when valid data is read out from a block during maintenance oper-

ations (e.g., a block about to be garbage collected) and reprogrammed into a new

block, as copyback operations do not go through the SSD controller.

Program errors that occur during partial programming predominantly shift data

from lower-voltage states to higher-voltage states. For example, in MLC NAND

flash, program errors predominantly shift data that should be in the ER state (11)

into the P3 state (10), or data that should be in the P1 state (01) into the P2 state

(00) [17]. This occurs because MSB programming can only increase (and not reduce)

the threshold voltage of the cell from its partially-programmed voltage (and thus can-

not move a multi-level cell that should be in the P3 state into the ER state, or one that

should be in the P2 state into the P1 state). TLC NAND flash is much less suscepti-

ble to program errors than MLC NAND flash, as the data read from the SLC buffers

in TLC NAND flash has a much lower error rate than data read from a partially-

programmed MLC NAND flash wordline [242].

From a rigorous experimental characterization of modern MLC NAND flash

memory chips [17], we find that program errors occur primarily due to two types

of errors affecting the partially-programmed data. First, cell-to-cell program inter-

ference (Sect. 9.3.3) on a partially-programmed wordline is no longer negligible in

newer NAND flash memory compared to older NAND flash memory, due to manu-

facturing process scaling. As flash cells become smaller and are placed closer to each

other, cells in partially-programmed wordlines become more susceptible to bit flips.

Second, partially-programmed cells are more susceptible to read disturb errors than

fully-programmed cells (Sect. 9.3.5), as the threshold voltages stored in these cells

are no more than approximately half of Vpass [17], and cells with lower threshold

voltages are more likely to experience read disturb errors.

More findings on the nature of program errors and the impact of program errors

on NAND flash memory lifetime can be found in our prior work [17, 162].

9.3.3 Cell-to-Cell Program Interference Errors

Program interference refers to the phenomenon where the programming of a flash

cell induces errors on adjacent flash cells within a flash block [23, 31, 58, 75, 151].

The interference occurs due to parasitic capacitance coupling between these cells.

As a result, when the threshold voltage of an adjacent flash cell increases, the thresh-

old voltage of the victim cell increases as well. The unintended threshold voltage

262 Y. Cai et al.

shifts can eventually move a cell into a different state than the one it was originally

programmed to, leading to a bit error.

We have shown, based on our experimental analysis of modern MLC NAND flash

memory chips, that the threshold voltage change of the victim cell can be accurately

modeled as a linear combination of the threshold voltage changes of the adjacent

cells when they are programmed, using linear regression with least-square-error esti-

mation [23, 31]. The cells that are physically located immediately next to the victim

cell (called the immediately-adjacent cells) are the major contributors to the cell-

to-cell interference of a victim cell [23]. Figure 9.16 shows the eight immediately-

adjacent cells for a victim cell in 2D planar NAND flash memory.

The amount of interference that program operations to the immediately-adjacent

cells can induce on the victim cell is expressed as:

ΔVvictim =
∑

X
KXΔVX (9.7)

where ΔVvictim is the change in voltage of the victim cell due to cell-to-cell program

interference, KX is the coupling coefficient between cell X and the victim cell, and

ΔVX is the threshold voltage change of cell X during programming. Table 9.2 lists

the coupling coefficients for both 2y-nm and 1x-nm NAND flash memory. We make

two key observations from Table 9.2. First, we observe that the coupling coefficient is

greatest for wordline neighbors (i.e., immediately-adjacent cells on the same bitline,

but on a neighboring wordline) [23]. The coupling coefficient is directly related to the

effective capacitance C between cell X and the victim cell, which can be calculated

as:

C = 𝜀S∕d (9.8)

where 𝜀 is the permittivity, S is the effective cell area of cell X that faces the victim

cell, and d is the distance between the cells. Of the immediately-adjacent cells, the

wordline neighbor cells have the greatest coupling capacitance with the victim cell,

as they likely have a large effective facing area to, and a small distance from, the vic-

tim cell compared to other surrounding cells. Second, we observe that the coupling

coefficient grows as the feature size decreases [23, 31]. As NAND flash memory

Fig. 9.16 Immediately-

adjacent cells that can induce

program interference on a

victim cell that is on

wordline N and bitline M.

Reproduced from [15]

Wordline N+1

Wordline N

Wordline N-1

Bitline M Bitline M+1Bitline M-1

Vic m
Cell

Bitline
Neighbor

Bitline
Neighbor

Wordline
Neighbor

Wordline
Neighbor

Diagonal
Neighbor

Diagonal
Neighbor

Diagonal
Neighbor

Diagonal
Neighbor

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 263

Table 9.2 Coupling coefficients for immediately-adjacent cells

Process technology Wordline neighbor Bitline neighbor Diagonal neighbor

2y-nm 0.060 0.032 0.012

1x-nm 0.110 0.055 0.020

process technology scales down to smaller feature sizes, cells become smaller and

get closer to each other, which increases the effective capacitance between them. As

a result, at smaller feature sizes, it is easier for an immediately-adjacent cell to induce

program interference on a victim cell. We conclude that (1) the program interference

an immediately-adjacent cell induces on a victim cell is primarily determined by the

distance between the cells and the immediately-adjacent cell’s effective area facing

the victim cell; and (2) the wordline neighbor cell causes the highest such interfer-

ence, based on empirical measurements.

Due to the order of program operations performed in NAND flash memory, many

immediately-adjacent cells do not end up inducing interference after a victim cell

is fully programmed (i.e., once the victim cell is at its target voltage). In mod-

ern all-bitline NAND flash memory, all flash cells on the same wordline are pro-

grammed at the same time, and wordlines are fully programmed sequentially (i.e.,

the cells on wordline i are fully programmed before the cells on wordline i + 1).

As a result, an immediately-adjacent cell on the wordline below the victim cell or

on the same wordline as the victim cell does not induce program interference on a

fully-programmed victim cell. Therefore, the major source of program interference

on a fully-programmed victim cell is the programming of the wordline immediately

above it.

Figure 9.17 shows how the threshold voltage distribution of a victim cell shifts

when different values are programmed onto its immediately-adjacent cells in the

wordline above the victim cell for MLC NAND flash, when one-shot programming

Vth

Vth

Vth

Before program
interference

Pr
ob

ab
ili

ty

De
ns

ity
Pr

ob
ab

ili
ty

De

ns
ity

Pr
ob

ab
ili

ty

De
ns

ity

Neighbor
State
Value

P1

P2

P3 P1 P2 P3ER

P1 P2 P3ER

P1 P2 P3ER

A er program
interference

Fig. 9.17 Impact of cell-to-cell program interference on a victim cell during one-shot program-

ming, depending on the value its neighboring cell is programmed to. Reproduced from [15]

264 Y. Cai et al.

is used. The amount by which the victim cell distribution shifts is directly correlated

with the number of programming step-pulses applied to the immediately-adjacent

cell. That is, when an immediately-adjacent cell is programmed to a higher-voltage

state (which requires more step-pulses for programming), the victim cell distribution

shifts further to the right [23]. When an immediately-adjacent cell is set to the ER

state, no step-pulses are applied, as an unprogrammed cell is already in the ER state.

Thus, no interference takes place. Note that the amount by which a fully-programmed

victim cell distribution shifts is different when two-step programming is used, as a

fully-programmed cell experiences interference from only one of the two program-

ming steps of a neighboring wordline [17].

More findings on the nature of cell-to-cell program interference and the impact

of cell-to-cell program interference on NAND flash memory errors and lifetime can

be found in our prior work [14, 17, 23, 31].

9.3.4 Data Retention Errors

Retention errors are caused by charge leakage over time after a flash cell is pro-

grammed, and are the dominant source of flash memory errors, as demonstrated

previously [19, 22, 29, 30, 182, 256]. As flash memory process technology scales

to smaller feature sizes, the capacitance of a flash cell, and the number of electrons

stored on it, decreases. State-of-the-art (i.e., 1x-nm) MLC flash memory cells can

store only ~100 electrons [294]. Gaining or losing several electrons on a cell can sig-

nificantly change the cell’s voltage level and eventually alter its state. Charge leakage

is caused by the unavoidable trapping of charge in the tunnel oxide [22, 150]. The

amount of trapped charge increases with the electrical stress induced by repeated

program and erase operations, which degrade the insulating property of the oxide.

Two failure mechanisms of the tunnel oxide lead to retention loss. Trap-assisted
tunneling (TAT) occurs because the trapped charge forms an electrical tunnel, which

exacerbates the weak tunneling current, SILC (see Sect. 9.2.4). As a result of this

TAT effect, the electrons present in the floating gate (FG) leak away much faster

through the intrinsic electric field. Hence, the threshold voltage of the flash cell

decreases over time. As the flash cell wears out with increasing P/E cycles, the

amount of trapped charge also increases [22, 150], and so does the TAT effect.

At high P/E cycles, the amount of trapped charge is large enough to form perco-

lation paths that significantly hamper the insulating properties of the gate dielec-

tric [22, 60], resulting in retention failure. Charge detrapping, where charge previ-

ously trapped in the tunnel oxide is freed spontaneously, can also occur over time [22,

60, 150, 285]. The charge polarity can be either negative (i.e., electrons) or positive

(i.e., holes). Hence, charge detrapping can either decrease or increase the threshold

voltage of a flash cell, depending on the polarity of the detrapped charge.

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 265

ER
P1 P2 P3 P4 P5 P6 P7

10-1

10-2

10-3

10-4

10-5

PD
F

0 100 200 300 400 500
Normalized Vth

1 day reten on 1 month reten on 1 year reten on

Fig. 9.18 Threshold voltage distribution for TLC NAND flash memory after one day, one month,

and one year of retention time. Reproduced from [15]

Figure 9.18 illustrates how the voltage distribution shifts for data we program into

TLC NAND flash, as the data sits untouched over a period of one day, one month, and

one year. The mean and standard deviation are provided in Table 9.6 in the Appendix

(which includes data for other retention ages as well). These results are obtained from

real flash memory chips we tested. We distill three major findings from these results,

which are similar to our previously reported findings for retention behavior on MLC

NAND flash memory [22].

First, as the retention age (i.e., the length of time after programming) of the data

increases, the threshold voltage distributions of the higher-voltage states shift to

lower voltages, while the threshold voltage distributions of the lower-voltage states

shift to higher voltages. As the intrinsic electric field strength is higher for the cells in

higher-voltage states, TAT is the dominant failure mechanism for these cells, which

can only decrease the threshold voltage, as the resulting SILC can flow only in the

direction of the intrinsic electric field generated by the electrons in the FG. Cells

at the lowest-voltage states, where the intrinsic electric field strength is low, do not

experience high TAT, and instead contain many holes (i.e., positive charge) that leak

away as the retention age grows, leading to increase in threshold voltage.

Second, the threshold voltage distribution of each state becomes wider with reten-

tion age. Charge detrapping can cause cells to shift in either direction (i.e., toward

lower or higher voltages), contributing to the widening of the distribution. The rate

at which TAT occurs can also vary from cell to cell, as a result of process variation,

which further widens the distribution.

Third, the threshold voltage distributions of higher-voltage states shift by a larger

amount than the distributions of lower-voltage states. This is again a result of TAT.

Cells at higher-voltage states have greater intrinsic electric field intensity, which

leads to larger SILC. A cell where the SILC is larger experiences a greater drop

in its threshold voltage than a cell where the SILC is smaller.

More findings on the nature of data retention and the impact of data retention

behavior on NAND flash memory errors and lifetime can be found in our prior

work [14, 19, 22, 29, 30].

266 Y. Cai et al.

9.3.5 Read Disturb Errors

Read disturb is a phenomenon in NAND flash memory where reading data from a

flash cell can cause the threshold voltages of other (unread) cells in the same block

to shift to a higher value [19, 21, 58, 75, 182, 206, 254]. While a single threshold

voltage shift is small, such shifts can accumulate over time, eventually becoming

large enough to alter the state of some cells and hence generate read disturb errors.

The failure mechanism of a read disturb error is similar to the mechanism of a

normal program operation. A program operation applies a high programming voltage

(e.g., +15 V) to the cell to change the cell’s threshold voltage to the desired range.

Similarly, a read operation applies a high pass-through voltage (e.g., +6 V) to all
other cells that share the same bitline with the cell that is being read. Although the

pass-through voltage is not as high as the programming voltage, it still generates a

weak programming effect on the cells it is applied to [21], which can unintentionally

change these cells’ threshold voltages.

Figure 9.19 shows how read disturb errors impact threshold voltage distributions

in real TLC NAND flash memory chips. We use blocks that have endured 2,000 P/E

cycles, and we experimentally study the impact of read disturb on a single wordline

in each block. We then read from a second wordline in the same block 1, 10 and 100 K

times to induce different levels of read disturb. The mean and standard deviation of

each distribution are provided in Table 9.7 in the Appendix. We derive three major

findings from these results, which are similar to our previous findings for read disturb

behavior in MLC NAND flash memory [21].

First, as the read disturb count increases, the threshold voltages increase (i.e., the

voltage distribution shifts to the right). In particular, we find that the distribution

shifts are greater for lower-voltage states, indicating that read disturb impacts cells

in the ER and P1 states the most. This is because we apply the same pass-through

voltage (Vpass) to all unread cells during a read operation, regardless of the thresh-

old voltages of the cells. A lower threshold voltage on a cell induces a larger voltage

difference (Vpass − Vth) through the tunnel oxide layer of the cell, and in turn gener-

ates a stronger tunneling current, making the cell more vulnerable to read disturb (as

described in detail in our prior work [21]).

ER
P1 P2 P3 P4 P5 P6 P7

10-1

10-2

10-3

10-4

10-5

PD
F

0 100 200 300 400 500
Normalized Vth

1 read disturb 10K read disturbs 100K read disturbs

Fig. 9.19 Threshold voltage distribution for TLC NAND flash memory after 1, 10 and 100 K read

disturb operations. Reproduced from [15]

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 267

Second, cells whose threshold voltages are closer to the point at which the volt-

age distributions of the ER and P1 states intersect are more vulnerable to read dis-

turb errors. This is because process variation causes different cells to have different

degrees of vulnerability to read disturb. We find that cells that are prone to read dis-

turb end up at the right tail of the threshold voltage distribution of the ER state, as

these cells’ threshold voltages increase more rapidly, and that cells that are relatively

resistant to read disturb end up at the left tail of the threshold voltage distribution

of the P1 state, as their threshold voltages increase more slowly. We can exploit this

divergent behavior of cells that end up at the left and right distribution tails to perform

error recovery in the event of an uncorrectable error, as we discuss in Sect. 9.5.4.

Third, unlike with the other states, the threshold voltages of the cells at the left

tail of the highest-voltage state (P7) in TLC NAND flash memory actually decreases
as the read disturb count increases. This occurs for two reasons: (1) applying Vpass
causes electrons to move from the floating gate to the control gate for a cell at

high voltage (i.e., a cell containing a large number of electrons), thus reducing its

threshold voltage [21, 289]; and (2) some retention time elapses while we sweep the

voltages during our read disturb experiments, inducing trap-assisted tunneling (see

Sect. 9.3.4) and leading to retention errors that decrease the voltage.

More findings on the nature of read disturb and the impact of read disturb on

NAND flash memory errors and lifetime can be found in our prior work [21].

9.3.6 Large-Scale Studies on SSD Errors

The error characterization studies we have discussed so far examine the suscepti-

bility of real NAND flash memory devices to specific error sources, by conducting

controlled experiments on individual flash devices in controlled environments. To

examine the aggregate effect of these error sources on flash devices that operate

in the field, several recent studies have analyzed the reliability of SSDs deployed

at a large scale (e.g., hundreds of thousands of SSDs) in production data centers

[174, 199, 233]. Unlike the controlled low-level error characterization studies dis-

cussed in Sect. 9.3.1 through 9.3.5, these large-scale studies analyze the observed

errors and error rates in an uncontrolled manner, i.e., based on real data center work-

loads operating at field conditions (as opposed to carefully controlling access pat-

terns and operating conditions). As such, these large-scale studies can study flash

memory behavior and reliability using only a black-box approach, where they are

able to access only the registers used by the SSD to record select statistics. Because

of this, their conclusions are usually correlational in nature, as opposed to identify-

ing the underlying causes behind the observations. On the other hand, these studies

incorporate the effects of a real system, including the system software stack and real

workloads [174] and real operational conditions in data centers, on the flash memory

devices, which is not present in the controlled small-scale studies.

These recent large-scale studies have made a number of observations across large

sets of SSDs employed in the data centers of large internet companies:

268 Y. Cai et al.

Facebook [174], Google [233], and Microsoft [199]. We highlight six key obser-

vations from these studies about the SSD failure rate, which is the fraction of SSDs

that have experienced at least one uncorrectable error.

First, the number of uncorrectable errors observed varies significantly for each

SSD. Figure 9.20 shows the distribution of uncorrectable errors per SSD across a

large set of SSDs used by Facebook. The distributions are grouped into six differ-

ent platforms that are deployed in Facebook’s data center.
2

For every platform, we

observe that the top 10% of SSDs, when sorted by their uncorrectable error count,

account for over 80% of the total uncorrectable errors observed across all SSDs for

that platform. We find that the distribution of uncorrectable errors across all SSDs

belonging to a platform follows a Weibull distribution, which we show using a solid

black line in Fig. 9.20.

Second, the SSD failure rate does not increase monotonically with the P/E cycle

count. Instead, we observe several distinct periods of reliability, as illustrated pic-

torially and abstractly in Fig. 9.21, which is based on data obtained from analyz-

ing errors in SSDs used in Facebook’s data centers [174]. The failure rate increases

when the SSDs are relatively new (shown as the early detection period in Fig. 9.21),

as the SSD controller identifies unreliable NAND flash cells during the initial read

and write operations to the devices and removes them from the address space (see

Sect. 9.1.3.9). As the SSDs are used more, they enter the early failure period, where

failures are less likely to occur. When the SSDs approach the end of their lifetime

(useful life/wearout in the figure), the failure rate increases again, as more cells

become unreliable due to wearout. Figure 9.22 shows how the measured failure rate

changes as more writes are performed to the SSDs (i.e., how real data collected

Fig. 9.20 Distribution of

uncorrectable errors across

SSDs used in Facebook’s

data centers. Reproduced

from [174]

2
Each platform has a different combination of SSDs, host controller interfaces, and workloads. The

six platforms are described in detail in [174].

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 269

Fig. 9.21 Pictorial and abstract depiction of the pattern of SSD failure rates observed in real SSDs

operating in a modern data center. An SSD fails at different rates during distinct periods throughout

the SSD lifetime. Reproduced from [174]

0e+00 4e+13 8e+13

Data written (B)

0.
00

0.
50

1.
00

SS
D

 fa
ilu

re
 ra

te

Platform A Platform B

1 2 3

0.0e+00 1.0e+14

Data written (B)

0.
00

0.
50

1.
00

SS
D

 fa
ilu

re
 ra

te

Platform C Platform D

1 2 3

0.0e+00 1.5e+14 3.0e+14

Data written (B)

0.
00

0.
50

1.
00

SS
D

 fa
ilu

re
 ra

te
Platform E Platform F

1 2 3

Fig. 9.22 SSD failure rate versus the amount of data written to the SSD. The three periods of

failure rates, shown pictorially and abstractly in Fig. 9.21, are annotated on each graph: (1) early

detection, (2) early failure, and (3) useful life/wearout. Reproduced from [174]

from Facebook’s SSDs corresponds to the pictorial depiction in Fig. 9.21) for the

same six platforms shown in Fig. 9.20. We observe that the failure rates in each plat-

form exhibit the distinct periods that are illustrated in Fig. 9.21. For example, let us

consider the SSDs in Platforms A and B, which have more data written to their cells

than SSDs in other platforms. We observe from Fig. 9.22 that for SSDs in Platform A,

there is an 81.7% increase from the failure rate during the early detection period to

the failure rate during the wearout period [174].

Third, the raw bit error rate grows with the age of the device even if the P/E

cycle count is held constant, indicating that mechanisms such as silicon aging likely

contribute to the error rate [199].

270 Y. Cai et al.

Fourth, the observed failure rate of SSDs has been noted to be significantly higher

than the failure rates specified by the manufacturers [233].

Fifth, higher operating temperatures can lead to higher failure rates, but mod-

ern SSDs employ throttling techniques that reduce the access rates to the underlying

flash chips, which can greatly reduce the negative reliability impact of higher temper-

atures [174]. For example, Fig. 9.23 shows the SSD failure rate as the SSD operating

temperature varies, for SSDs from the same six platforms shown in Fig. 9.20 [174].

We observe that at an operating temperature range of 30–40
◦
C, SSDs either

(1) have similar failure rates across the different temperatures, or (2) experience

slight increases in the failure rate as the temperature increases. As the temperature

increases beyond 40
◦
C, the SSDs fall into three categories: (1) temperature-sensitive

with increasing failure rate (Platforms A and B), (2) less temperature-sensitive (Plat-

forms C and E), and (3) temperature-sensitive with decreasing failure rate (Plat-

forms D and F). There are two factors that affect the temperature sensitivity of each

platform: (1) some, but not all, of the platforms employ techniques to throttle SSD

activity at high operating temperatures to reduce the failure rate (e.g., Platform D);

and (2) the platform configuration (e.g., the number of SSDs in each machine, system

airflow) can shorten or prolong the effects of higher operating temperatures.

Sixth, while SSD failure rates are higher than specified by the manufacturers,

the overall occurrence of uncorrectable errors is lower than expected [174] because

(1) effective bad block management policies (see Sect. 9.1.3.9) are implemented in

SSD controllers; and (2) certain types of error sources, such as read disturb [174,

199] and incomplete erase operations [199], have yet to become a major source of

uncorrectable errors at the system level.

9.4 Error Mitigation

Several different types of errors can occur in NAND flash memory, as we described in

Sect. 9.3. As NAND flash memory continues to scale to smaller technology nodes,

the magnitude of these errors has been increasing [168, 212, 294]. This, in turn,

30 40 50 60

Average temperature (°C)

0.
00

0.
50

1.
00

SS
D

 fa
ilu

re
 ra

te

Platform A Platform B

35 45 55 65

Average temperature (°C)

0.
00

0.
50

1.
00

SS
D

 fa
ilu

re
 ra

te

Platform C Platform D

30 40 50 60 70

Average temperature (°C)

0.
00

0.
50

1.
00

SS
D

 fa
ilu

re
 ra

te

Platform E Platform F

Fig. 9.23 SSD failure rate versus operating temperature. Reproduced from [174]

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 271

uses up the limited error correction capability of ECC more rapidly than in past

flash memory generations and shortens the lifetime of modern SSDs. To overcome

the decrease in lifetime, a number of error mitigation techniques have been designed.

These techniques exploit intrinsic properties of the different types of errors to reduce

the rate at which they lead to raw bit errors. In this section, we discuss how the flash

controller mitigates each of the error types via various proposed error mitigation

mechanisms. Table 9.3 shows the techniques we overview and which errors (from

Sect. 9.3) they mitigate.

9.4.1 Shadow Program Sequencing

As discussed in Sect. 9.3.3, cell-to-cell program interference is a function of the dis-

tance between the cells of the wordline that is being programmed and the cells of the

victim wordline. The impact of program interference is greatest on a victim word-

line when either of the victim’s immediately-adjacent wordlines is programmed (e.g.,

Table 9.3 List of different types of errors mitigated by various NAND flash error mitigation mech-

anisms

Mitigation mechanism Error type

P/E cycling

[19, 20,

162] (Sect.

9.3.1)

Program

[17, 162,

212] (Sect.

9.3.2)

Cell-to-cell

interference

[19, 23, 31,

151] (Sect.

9.3.3)

Data

retention

[19, 22, 29,

30, 182]

(Sect. 9.3.4)

Read

disturb [19,

21, 75,

182] (Sect.

9.3.5)

Shadow program sequenc-

ing [17, 23] (Sect. 9.4.1)

X

Neighbor-cell assisted error

[31] (Sect. 9.4.2)

X

Refresh [29, 30, 185, 205]

(Sect. 9.4.3)

X X

Read-retry [20, 70, 287]

(Sect. 9.4.4)

X X X

Voltage optimization [21,

22, 106] (Sect. 9.4.5)

X X X

Hot data management [81,

82, 161] (Sect. 9.4.6)

X X X X X

Adaptive error mitigation

[28, 44, 86, 272, 275]

(Sect. 9.4.7)

X X X X X

272 Y. Cai et al.

if we program WL1 in Fig. 9.8, WL0 and WL2 experience the greatest amount of

interference). Early MLC flash memories used one-shot programming, where both

the LSB and MSB pages of a wordline are programmed at the same time. As flash

memory scaled to smaller process technologies, one-shot programming resulted in

much larger amounts of cell-to-cell program interference. As a result, manufacturers

introduced two-step programming for MLC NAND flash (see Sect. 9.2.4), where the

SSD controller writes values of the two pages within a wordline in two independent

steps.

The SSD controller minimizes the interference that occurs during two-step pro-

gramming by using shadow program sequencing [17, 23, 207] to determine the order

that data is written to different pages in a block. If we program the LSB and MSB

pages of the same wordline back to back, as shown in Fig. 9.24a, both programming

steps induce interference on a fully-programmed wordline (i.e., a wordline where

both the LSB and MSB pages are already written). For example, if the controller

programs both pages of WL1 back to back, shown as bold page programming oper-

ations in Fig. 9.24a, the program operations induce a high amount of interference on

WL0, which is fully programmed. The key idea of shadow program sequencing is

to ensure that a fully-programmed wordline experiences interference minimally, i.e.,

only during MSB page programming (and not during LSB page programming). In

shadow program sequencing, we assign a unique page number to each page within a

block, as shown in Fig. 9.24b. The LSB page of wordline i is numbered page 2i − 1,

and the MSB page is numbered page 2i + 2. The only exceptions to the numbering

are the LSB page of wordline 0 (page 0) and the MSB page of the last wordline n
(page 2n + 1). Two-step programming writes to pages in increasing order of page

number inside a block [17, 23, 207], such that a fully-programmed wordline expe-

riences interference only from the MSB page programming of the wordline directly

above it, shown as the bold page programming operation in Fig. 9.24b. With this

programming order/sequence, the LSB page of the wordline above, and both pages

of the wordline below, do not cause interference to fully-programmed data [17, 23,

207], as these two pages are programmed before programming the MSB page of the

given wordline. Foggy-fine programming in TLC NAND flash (see Sect. 9.2.4) uses

a similar ordering to reduce cell-to-cell program interference, as shown in Fig. 9.24c.

Shadow program sequencing is an effective solution to minimize cell-to-cell pro-

gram interference on fully-programmed wordlines during two-step programming,

and is employed in commercial SSDs today.

9.4.2 Neighbor-Cell Assisted Error Correction

The threshold voltage shift that occurs due to program interference is highly corre-

lated with the values stored in the cells of the immediately-adjacent wordlines, as

we discussed in Sect. 9.3.3. Due to this correlation, knowing the value programmed

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 273

WL 5

WL 4

WL 3

WL 2

WL 1

WL 0

LSB MSB

0 2

1 4

3 6

5 8

7 10

9 11

(b) MLC shadow
program sequence

(c) TLC shadow
program sequence

LSB CSB MSB

0

1

3

6

9

12

2

4

7

10

13

15

5

8

11

14

16

17WL 5

WL 4

WL 3

WL 2

WL 1

WL 0

WL 5

WL 4

WL 3

WL 2

WL 1

WL 0

LSB MSB

0 1

2 3

4 5

6 7

8 9

10 11

(a) Bad MLC
program sequence

Fig. 9.24 Order in which the pages of each wordline (WL) are programmed using a a bad pro-

gramming sequence, and using shadow sequencing for b MLC and c TLC NAND flash. The bold

page programming operations for WL1 induce cell-to-cell program interference when WL0 is fully

programmed. Reproduced from [15]

in the immediately-adjacent cell (i.e., a neighbor cell) makes it easier to correctly

determine the value stored in the flash cell that is being read [31]. We describe a

recently proposed error correction method that takes advantage of this observation,

called neighbor-cell-assisted error correction (NAC). The key idea of NAC is to use

the data values stored in the cells of the immediately-adjacent wordline to determine

a better set of read reference voltages for the wordline that is being read. Doing so

leads to a more accurate identification of the logical data value that is being read,

as the data in the immediately-adjacent wordline was partially responsible for shift-

ing the threshold voltage of the cells in the wordline that is being read when the

immediately-adjacent wordline was programmed.

Figure 9.25 shows an operational example of NAC that is applied to eight bit-

lines (BL) of an MLC flash wordline. The SSD controller first reads a flash page

from a wordline using the standard read reference voltages (step 1 in Fig. 9.25).

The bit values read from the wordline are then buffered in the controller. If there

are no errors uncorrectable by ECC, the read was successful, and nothing else is

done. However, if there are errors that are uncorrectable by ECC, we assume that the

threshold voltage distribution of the page shifted due to cell-to-cell program interfer-

ence, triggering further correction. In this case, NAC reads the LSB and MSB pages

of the wordline immediately above the requested page (i.e., the adjacent wordline

that was programmed after the requested page) to classify the cells of the requested

page (step 2). NAC then identifies the cells adjacent to (i.e., connected to the same

bitline as) the ER cells (i.e., cells in the immediately above wordline that are in the

274 Y. Cai et al.

BL0 BL1 BL2 BL3 BL4 BL5 BL6 BL7

Originally-programmed value 11 00 01 10 11 00 01 00

1. Read (using Vopt) with errors 01 00 00 00 11 10 00 01

N
A
C

2. Read adjacent wordline P2 ER P2 ER P1 P3 P1 ER

3. Correct cells adjacent to ER 01 00 00 10 11 10 00 00

4. Correct cells adjacent to P1 01 00 00 10 11 10 01 00

Fig. 9.25 Overview of neighbor-cell-assisted error correction (NAC). Reproduced from [15]

ER state), such as the cells on BL1, BL3, and BL7 in Fig. 9.25. NAC rereads these

cells using read reference voltages that compensate for the threshold voltage shift

caused by programming the adjacent cell to the ER state (step 3). If ECC can correct

the remaining errors, the controller returns the corrected page to the host. If ECC

fails again, the process is repeated using a different set of read reference voltages for

cells that are adjacent to the P1 cells (step 4). If ECC continues to fail, the process

is repeated for cells that are adjacent to P2 and P3 cells (steps 5 and 6, respectively,

which are not shown in the figure) until either ECC is able to correct the page or all

possible adjacent values are exhausted.

NAC extends the lifetime of an SSD by reducing the number of errors that need to

be corrected using the limited correction capability of ECC. With the use of experi-

mental data collected from real MLC NAND flash memory chips, we show that NAC

extends the NAND flash memory lifetime by 33% [31]. Our previous work [31] pro-

vides a detailed description of NAC, including a theoretical treatment of why it works

and a practical implementation that minimizes the number of reads performed, even

in the case when the neighboring wordline itself has errors.

9.4.3 Refresh Mechanisms

As we see in Fig. 9.12, during the time period after a flash page is programmed, reten-

tion (Sect. 9.3.4) and read disturb (Sect. 9.3.5) can cause an increasing number of raw

bit errors to accumulate over time. This is particularly problematic for a page that is

not updated frequently. Due to the limited error correction capability, the accumula-

tion of these errors can potentially lead to data loss for a page with a high retention
age (i.e., a page that has not been programmed for a long time). To avoid data loss,

refresh mechanisms have been proposed, where the stored data is periodically read,

corrected, and reprogrammed, in order to eliminate the retention and read disturb

errors that have accumulated prior to this periodic read/correction/reprogramming

(i.e., refresh). The concept of refresh in flash memory is thus conceptually similar

to the refresh mechanisms found in DRAM [35, 104, 157, 158]. By performing

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 275

refresh and limiting the number of retention and read disturb errors that can accu-

mulate, the lifetime of the SSD increases significantly. In this section, we describe

three types of refresh mechanisms used in modern SSDs: remapping-based refresh,

in-place refresh, and read reclaim.

Remapping-Based Refresh. Flash cells must first be erased before they can be

reprogrammed, due to the fact the programming a cell via ISPP can only increase the

charge level of the cell but not reduce it (Sect. 9.2.4). The key idea of remapping-
based refresh is to periodically read data from each valid flash block, correct any

data errors, and remap the data to a different physical location, in order to prevent

the data from accumulating too many retention errors [14, 29, 30, 185, 205]. During

each refresh interval, a block with valid data that needs to be refreshed is selected.

The valid data in the selected block is read out page by page and moved to the SSD

controller. The ECC engine in the SSD controller corrects the errors in the read data,

including retention errors that have accumulated since the last refresh. A new block is

then selected from the free list (see Sect. 9.1.3.2), the error-free data is programmed

to a page within the new block, and the logical address is remapped to point to the

newly-programmed physical page. By reducing the accumulation of retention and

read disturb errors, remapping-based refresh increases SSD lifetime by an average

of 9x for a variety of disk workloads [29, 30].

Prior work proposes extensions to the basic remapping-based refresh approach.

One work, refresh SSDs, proposes a refresh scheduling algorithm based on an earliest

deadline first policy to guarantee that all data is refreshed in time [185]. The quasi-
nonvolatile SSD proposes to use remapping-based refresh to choose between improv-

ing flash endurance and reducing the flash programming latency (by using larger

ISPP step-pulses) [205]. In the quasi-nonvolatile SSD, refresh requests are depri-

oritized, scheduled at idle times, and can be interrupted after refreshing any page

within a block, to minimize the delays that refresh can cause for the response time

of pending workload requests to the SSD. A refresh operation can also be triggered

proactively based on the data read latency observed for a page, which is indicative of

how many errors the page has experienced [24]. Triggering refresh proactively based

on the observed read latency (as opposed to doing so periodically) improves SSD

latency and throughput [24]. Whenever the read latency for a page within a block

exceeds a fixed threshold, the valid data in the block is refreshed, i.e., remapped to

a new block [24].

In-place Refresh. A major drawback of remapping-based refresh is that it performs

additional writes to the NAND flash memory, accelerating wearout. To reduce the

wearout overhead of refresh, we propose in-place refresh [14, 29, 30]. As data sits

unmodified in the SSD, data retention errors dominate [19, 30, 256], leading to

charge loss and causing the threshold voltage distribution to shift to the left, as we

showed in Sect. 9.3.4. The key idea of in-place refresh is to incrementally replenish

the lost charge of each page at its current location, i.e., in place, without the need

for remapping.

Figure 9.26 shows a high-level overview of in-place refresh for a wordline. The

SSD controller first reads all of the pages in the wordline (❶ in Fig. 9.26). The

276 Y. Cai et al.

Flash Chip SSD Controller
Read MSB & LSB pages

ECC Decoder

Controller Processors

❷
Verify current Vth value
(filters out most cells) Correct all errors

❶

❹

❺ Pulse program voltage
(few pulses needed)

Fig. 9.26 Overview of in-place refresh mechanism for MLC NAND flash memory. Reproduced

from [15]

controller invokes the ECC decoder to correct the errors within each page (❷), and

sends the corrected data back to the flash chips (❸). In-place refresh then invokes

a modified version of the ISPP mechanism (see Sect. 9.2.4), which we call Verify-
ISPP (V-ISPP), to compensate for retention errors by restoring the charge that was

lost. In V-ISPP, we first verify the voltage currently programmed in a flash cell (❹).

If the current voltage of the cell is lower than the target threshold voltage of the state

that the cell should be in, V-ISPP pulses the programming voltage in steps, gradually

injecting charge into the cell until the cell returns to the target threshold voltage (❺).

If the current voltage of the cell is higher than the target threshold voltage, V-ISPP

inhibits the programming pulses to the cell.

When the controller invokes in-place refresh, it is unable to use shadow program

sequencing (Sect. 9.4.1), as all of the pages within the wordline have already been

programmed. However, unlike traditional ISPP, V-ISPP does not introduce a high

amount of cell-to-cell program interference (Sect. 9.3.3) for two reasons. First, V-

ISPP programs only those cells that have retention errors, which typically account

for less than 1% of the total number of cells in a wordline selected for refresh [29].

Second, for the small number of cells that are selected to be refreshed, their threshold

voltage is usually only slightly lower than the target threshold voltage, which means

that only a few programming pulses need to be applied. As cell-to-cell interfer-

ence is linearly correlated with the threshold voltage change to immediately-adjacent

cells [23, 31], the small voltage change on these in-place refreshed cells leads to only

a small interference effect.

One issue with in-place refresh is that it is unable to correct retention errors

for cells in lower-voltage states. Retention errors cause the threshold voltage of a

cell in a lower-voltage state to increase (e.g., see Sect. 9.3.4, ER and P1 states in

Fig. 9.18), but V-ISPP cannot decrease the threshold voltage of a cell. To achieve

a balance between the wearout overhead due to remapping-based refresh and errors

that increase the threshold voltage due to in-place refresh, we propose hybrid in-
place refresh [14, 29, 30]. The key idea is to use in-place refresh when the number

of program errors (caused due to reprogramming) is within the correction capabil-

ity of ECC, but to use remapping-based refresh if the number of program errors is

too large to tolerate. To accomplish this, the controller tracks the number of right-
shift errors (i.e., errors that move a cell to a higher-voltage state) [29, 30]. If the

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 277

number of right-shift errors remains under a certain threshold, the controller per-

forms in-place refresh; otherwise, it performs remapping-based refresh. Such a

hybrid in-place refresh mechanism increases SSD lifetime by an average of 31x for

a variety of disk workloads [29, 30].

Read Reclaim to Reduce Read Disturb Errors. We can also mitigate read disturb

errors using an idea similar to remapping-based refresh, known as read reclaim. The

key idea of read reclaim is to remap the data in a block to a new flash block, if the

block has experienced a high number of reads [81, 82, 127]. To bound the number

of read disturb errors, some flash vendors specify a maximum number of tolerable

reads for a flash block, at which point read reclaim rewrites the data to a new block

(just as is done for remapping- based refresh).

Adaptive Refresh and Read Reclaim Mechanisms. For the refresh and read reclaim

mechanisms discussed above, the SSD controller can (1) invoke the mechanisms at

fixed regular intervals; or (2) adapt the rate at which it invokes the mechanisms,

based on various conditions that impact the rate at which data retention and read dis-

turb errors occur. By adapting the mechanisms based on the current conditions of the

SSD, the controller can reduce the overhead of performing refresh or read reclaim.

The controller can adaptively adjust the rate that the mechanisms are invoked based

on (1) the wearout (i.e., the current P/E cycle count) of the NAND flash memory [29,

30]; or (2) the temperature of the SSD [19, 22].

As we discuss in Sect. 9.3.4, for data with a given retention age, the number of

retention errors grows as the P/E cycle count increases. Exploiting this P/E cycle

dependent behavior of retention time, the SSD controller can perform refresh less fre-

quently (e.g., once every year) when the P/E cycle count is low, and more frequently

(e.g., once every week) when the P/E cycle count is high, as proposed and described

in our prior works [29, 30]. Similarly, for data with a given read disturb count, as the

P/E cycle count increases, the number of read disturb errors increases as well [21]. As

a result, the SSD controller can perform read reclaim less frequently (i.e., it increases

the maximum number of tolerable reads per block before read reclaim is triggered)

when the P/E cycle count is low, and more frequently when the P/E cycle count is

high.

Prior works demonstrate that for a given retention time, the number of data reten-

tion errors increases as the NAND flash memory’s operating temperature increases

[19, 22]. To compensate for the increased number of retention errors at high tem-

perature, a state-of-the-art SSD controller adapts the rate at which it triggers refresh.

The SSD contains sensors that monitor the current environmental temperature every

few milliseconds [174, 269]. The controller then uses the Arrhenius equation [4,

185, 282] to estimate the rate at which retention errors accumulate at the current

temperature of the SSD. Based on the error rate estimate, the controller decides if

it needs to increase the rate at which it triggers refresh to ensure that the data is not

lost.

By employing adaptive refresh and/or read reclaim mechanisms, the SSD con-

troller can successfully reduce the mechanism overheads while effectively mitigating

the larger number of data retention errors that occur under various conditions.

278 Y. Cai et al.

9.4.4 Read-Retry

In earlier generations of NAND flash memory, the read reference voltage values were

fixed at design time [20, 182]. However, several types of errors cause the thresh-

old voltage distribution to shift, as shown in Fig. 9.13. To compensate for threshold

voltage distribution shifts, a mechanism called read-retry has been implemented in

modern flash memories (typically those below 30 nm for planar flash [20, 70, 241,

287]).

The read-retry mechanism allows the read reference voltages to dynamically

adjust to changes in distributions. During read-retry, the SSD controller first reads

the data out of NAND flash memory with the default read reference voltage. It then

sends the data for error correction. If ECC successfully corrects the errors in the

data, the read operation succeeds. Otherwise, the SSD controller reads the memory

again with a different read reference voltage. The controller repeats these steps until

it either successfully reads the data using a certain set of read reference voltages or

is unable to correctly read the data using all of the read reference voltages that are

available to the mechanism.

While read-retry is widely implemented today, it can significantly increase the

overall read operation latency due to the multiple read attempts it causes [22]. Mech-

anisms have been proposed to reduce the number of read-retry attempts while taking

advantage of the effective capability of read-retry for reducing read errors, and read-

retry has also been used to enable mitigation mechanisms for various other types of

errors, as we describe in Sect. 9.4.5. As a result, read-retry is an essential mechanism

in modern SSDs to mitigate read errors (i.e., errors that manifest themselves during

a read operation).

9.4.5 Voltage Optimization

Many raw bit errors in NAND flash memory are affected by the various voltages

used within the memory to enable reading of values. We give two examples. First,

a suboptimal read reference voltage can lead to a large number of read errors

(Sect. 9.3), especially after the threshold voltage distribution shifts. Second, as we

saw in Sect. 9.3.5, the pass-through voltage can have a significant effect on the num-

ber of read disturb errors that occur. As a result, optimizing these voltages such that

they minimize the total number of errors that are induced can greatly mitigate error

counts. In this section, we discuss mechanisms that can discover and employ the

optimal
3

read reference and pass-through voltages.

Optimizing Read Reference Voltages Using Disparity-Based Approximation
and Sampling. As we discussed in Sect. 9.4.4, when the threshold voltage distribution

3
Or, more precisely, near-optimal, if the read-retry steps are too coarse grained to find the optimal

voltage.

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 279

shifts, it is important to move the read reference voltage to the point where the num-

ber of read errors is minimized. After the shift occurs and the threshold voltage dis-

tribution of each state widens, the distributions of different states may overlap with

each other, causing many of the cells within the overlapping regions to be misread.

The number of errors due to misread cells can be minimized by setting the read ref-

erence voltage to be exactly at the point where the distributions of two neighboring

states intersect, which we call the optimal read reference voltage (Vopt) [22, 23, 31,

162, 206], illustrated in Fig. 9.27. Once the optimal read reference voltage is applied,

the raw bit error rate is minimized, improving the reliability of the device.

One approach to finding Vopt is to adaptively learn and apply the optimal read

reference voltage for each flash block through sampling [22, 45, 56, 280]. The key

idea is to periodically (1) use disparity information (i.e., the ratio of 1s to 0s in the

data) to attempt to find a read reference voltage for which the error rate is lower

than the ECC correction capability; and to (2) use sampling to efficiently tune the

read reference voltage to its optimal value to reduce the read operation latency. Prior

characterization of real NAND flash memory [22, 206] found that the value of Vopt
does not shift greatly over a short period of time (e.g., a day), and that all pages

within a block experience similar amounts of threshold voltage shifts, as they have

the same amount of wearout and are programmed around the same time [22, 206].

Therefore, we can invoke our Vopt learning mechanism periodically (e.g., daily) to

efficiently tune the initial read reference voltage (i.e., the first read reference voltage

used when the controller invokes the read-retry mechanism, described in Sect. 9.4.4)

for each flash block, ensuring that the initial voltage used by read-retry stays close

to Vopt even as the threshold voltage distribution shifts.

The SSD controller searches for Vopt by counting the number of errors that need

to be corrected by ECC during a read. However, there may be times where the initial

read reference voltage (Vinitial) is set to a value at which the number of errors during a

read exceeds the ECC correction capability, such as the raw bit error rate for Vinitial in

Fig. 9.27 (right). When the ECC correction capability is exceeded, the SSD controller

Px
State

P(x+1)
State

Vth

Vopt

V2 V1

Vini al

-40 -20 0 20 40
Read Reference Voltage

Ra
w

 B
it

Er
ro

r R
at

e

100

10-1

10-2

10-3

10-4

10-5

ECC Correc on
Capability

Vopt

V2

Vini al

V1

Fig. 9.27 Finding the optimal read reference voltage after the threshold voltage distributions over-

lap (left), and raw bit error rate as a function of the selected read reference voltage (right). Repro-

duced from [15]

280 Y. Cai et al.

is unable to count how many errors exist in the raw data. The SSD controller uses

disparity-based read reference voltage approximation [45, 56, 280] for each flash

block to try to bring Vinitial to a region where the number of errors does not exceed

the ECC correction capability. Disparity-based read reference voltage approximation

takes advantage of data scrambling. Recall from Sect. 9.1.3.6 that to minimize data

value dependencies for the error rate, the SSD controller scrambles the data written to

the SSD to probabilistically ensure that an equal number of 0s to 1s exist in the flash

memory cells. The key idea of disparity-based read reference voltage approximation

is to find the read reference voltages that result in approximately 50% of the cells

reading out bit value 0, and the other 50% of the cells reading out bit value 1. To

achieve this, the SSD controller employs a binary search algorithm, which tracks

the ratio of 0s to 1s for each read reference voltage it tries. The binary search tests

various read reference voltage values, using the ratios of previously tested voltages

to narrow down the range where the read reference voltage can have an equal ratio

of 0s to 1s. The binary search algorithm continues narrowing down the range until

it finds a read reference voltage that satisfies the ratio.

The usage of the binary search algorithm depends on the type of NAND flash

memory used within the SSD. For SLC NAND flash, the controller searches for

only a single read reference voltage. For MLC NAND flash, there are three read

reference voltages: the LSB is determined using Vb, and the MSB is determined

using both Va and Vc (see Sect. 9.2.3). Figure 9.28 illustrates the search procedure

for MLC NAND flash. First, the controller uses binary search to find Vb, choosing a

voltage that reads the LSB of 50% of the cells as data value 0 (step 1 in Fig. 9.28).

For the MSB, the controller uses the discovered Vb value to help search for Va and

Vc. Due to scrambling, cells should be equally distributed across each of the four

voltage states. The controller uses binary search to set Va such that 25% of the cells

are in the ER state, by ensuring that half of the cells to the left of Vb are read with

an MSB of 0 (step 2). Likewise, the controller uses binary search to set Vc such that

25% of the cells are in the P3 state, by ensuring that half of the cells to the right of
Vb are read with an MSB of 0 (step 3). This procedure is extended in a similar way

to approximate the voltages for TLC NAND flash.

If disparity-based approximation finds a value for Vinitial where the number of

errors during a read can be counted by the SSD controller, the controller invokes

sampling-based adaptive Vopt discovery [22] to minimize the error count, and thus

reduce the read latency. Sampling-based adaptive Vopt discovery learns and records

Vopt for the last-programmed page in each block. We sample only the last-

programmed page because it is the page with the lowest data retention age in the

flash block. As retention errors cause the higher-voltage states to shift to the left

(i.e., to lower voltages), the last-programmed page usually provides an upper bound
of Vopt for the entire block.

During sampling-based adaptive Vopt discovery, the SSD controller first reads the

last-programmed page using Vinitial, and attempts to correct the errors in the raw

data read from the page. Next, it records the number of raw bit errors as the current

lowest error count NERR, and sets the applied read reference voltage (Vref) as Vinitial.

Since Vopt typically decreases over retention age, the controller first attempts to lower

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 281

Vth

Pr
ob

ab
ili

ty

De
ns

ity1. Find Vb that
reads 50% of
LSBs as 0s

2. Use Vb to find
Va that reads
50% of MSBs
to the le of
Vb as 0s

50% of all cells 50% of all cells

Vth
Pr

ob
ab

ili
ty

De

ns
ity

50% of cells
on the le

50% of cells
on the le

Vb

3. Use Vb to find
Vc that reads
50% of MSBs
to the right of
Vb as 0s

Vth
50% of cells
on the right

50% of cells
on the right

VbVa

Pr
ob

ab
ili

ty

De
ns

ity

Fig. 9.28 Disparity-based read reference voltage approximation to find Vinitial for MLC NAND

flash memory. Each circle represents a cell, where a dashed border indicates that the LSB is unde-

termined, a solid border indicates that the LSB is known, a hollow circle indicates that the MSB is

unknown, and a filled circle indicates that the MSB is known. Reproduced from [15]

the read reference voltage for the last-programmed page, decreasing the voltage to

Vref − ΔV and reading the page. If the number of corrected errors in the new read

is less than or equal to the old NERR, the controller updates NERR and Vref with the

new values. The controller continues to lower the read reference voltage until the

number of corrected errors in the data is greater than the old NERR or the lowest

possible read reference voltage is reached. Since the optimal threshold voltage might

increase in rare cases, the controller also tests increasing the read reference voltage. It

increases the voltage to Vref + ΔV and reads the last-programmed page to see if NERR
decreases. Again, it repeats increasing Vref until the number of corrected errors in

the data is greater than the old NERR or the highest possible read reference voltage is

reached. The controller sets the initial read reference voltage of the block as the value

of Vref at the end of this process so that the next time an uncorrectable error occurs,

read-retry starts at a Vinitial that is hopefully closer to the optimal read reference

voltage (Vopt).

During the course of the day, as more retention errors (the dominant source of

errors on already-programmed blocks) accumulate, the threshold voltage distribution

shifts to the left (i.e., voltages decrease), and our initial read reference voltage (i.e.,

Vinitial) is now an upper bound for the read-retry voltages. Therefore, whenever read-

retry is invoked, the controller now needs to only decrease the read reference voltages

(as opposed to traditional read-retry, which tries both lower and higher voltages [22]).

Sampling-based adaptive Vopt discovery improves the endurance (i.e., the number

of P/E cycles before the ECC correction capability is exceeded) of the NAND flash

memory by 64% and reduces error correction latency by 10% [22], and is employed

in some modern SSDs today.

282 Y. Cai et al.

Other Approaches to Optimizing Read Reference Voltages. One drawback of the

sampling-based adaptive technique is that it requires time and storage overhead to

find and record the per-block initial voltages. To avoid this, the SSD controller can

employ an accurate online threshold voltage distribution model [14, 20, 162], which

can efficiently track and predict the shift in the distribution over time. The model

represents the threshold voltage distribution of each state as a probability density

function (PDF), and the controller can use the model to calculate the intersection

of the different PDFs. The controller uses the PDF in place of the threshold voltage

sampling, determining Vopt by calculating the intersection of the distribution of each

state in the model. The endurance improvement from our state-of-the-art model-

based Vopt estimation technique [162] is within 2% of the improvement from an ideal

Vopt identification mechanism [162]. An online threshold voltage distribution model

can be used for a number of other purposes, such as estimating the future growth in

the raw bit error rate and improving error correction [162].

Other prior work examines adapting read reference voltages based on P/E cycle

count, retention age, or read disturb. In one such work, the controller periodically

learns read reference voltages by testing three read reference voltages on six pages

per block, which the work demonstrates to be sufficiently accurate [206]. Simi-

larly, error correction using LDPC soft decoding (see Sect. 9.5.2.2) requires read-

ing the same page using multiple sets of read reference voltages to provide fine-

grained information on the probability of each cell representing a bit value 0 or a bit

value 1. Another prior work optimizes the read reference voltages to increase the

ECC correction capability without increasing the coding rate [266].

Optimizing Pass-Through Voltage to Reduce Read Disturb Errors. As we dis-

cussed in Sect. 9.3.5, the vulnerability of a cell to read disturb is directly correlated

with the voltage difference (Vpass − Vth) through the cell oxide [21]. Traditionally, a

single Vpass value is used globally for the entire flash memory, and the value of Vpass
must be higher than all potential threshold voltages within the chip to ensure that

unread cells along a bitline are turned on during a read operation (see Sect. 9.2.3).

To reduce the impact of read disturb, we can tune Vpass to reduce the size of the volt-

age difference (Vpass − Vth). However, it is difficult to reduce Vpass globally, as any

cell with a value of Vth > Vpass introduces an error during a read operation (which

we call a pass-through error).

We propose a mechanism that can dynamically lower Vpass while ensuring that it

can correct any new pass-through errors introduced. The key idea of the mechanism

is to lower Vpass only for those blocks where ECC has enough leftover error cor-

rection capability (see Sect. 9.1.3.7) to correct the newly introduced pass-through

errors. When the retention age of the data within a block is low, we find that the

raw bit error rate of the block is much lower than the rate for the block when the

retention age is high, as the number of data retention and read disturb errors remains

low at low retention age [21, 82]. As a result, a block with a low retention age has

significant unused ECC correction capability, which we can use to correct the pass-

through errors we introduce when we lower Vpass, as shown in Fig. 9.29. Thus, when

a block has a low retention age, the controller lowers Vpass aggressively, making it

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 283

P2
(00)

P3
(01)

Low Reten on Age

High Reten on Age

Vth

Vpass

…
Reten on errors

Vth

P2
(00)

P3
(01)

Vpass

…

Pass-through errors

Fig. 9.29 Dynamic pass-through voltage tuning at different retention ages. Reproduced from [15]

much less likely for read disturbs to induce an uncorrectable error. When a block has

a high retention age, the controller also lowers Vpass, but does not reduce the volt-

age aggressively, since the limited ECC correction capability now needs to correct

retention errors, and might not have enough unused correction capability to correct

many new pass-through errors. By reducing Vpass aggressively when a block has a

low retention age, we can extend the time before the ECC correction capability is

exhausted, improving the flash lifetime.

Our read disturb mitigation mechanism [21] learns the minimum pass-through

voltage for each block, such that all data within the block can be read correctly

with ECC. Our learning mechanism works online and is triggered periodically (e.g.,

daily). The mechanism is implemented in the controller, and has two components.

It first finds the size of the ECC margin M (i.e., the unused correction capability)

that can be exploited to tolerate additional read errors for each block. Once it knows

the available margin M, our mechanism calibrates Vpass on a per-block basis to find

the lowest value of Vpass that introduces no more than M additional raw errors (i.e.,

there are no more than M cells where Vth > Vpass). Our findings on MLC NAND

flash memory show that the mechanism can improve flash endurance by an average

of 21% for a variety of disk workloads [21].

Programming and Erase Voltages. Prior work also examines tuning the program-

ming and erase voltages to extend flash endurance [106]. By decreasing the two

voltages when the P/E cycle count is low, the accumulated wearout for each program

or erase operation is reduced, which, in turn, increases the overall flash endurance.

Decreasing the programming voltage, however, comes at the cost of increasing the

time required to perform ISPP, which, in turn, increases the overall SSD write

latency [106].

284 Y. Cai et al.

9.4.6 Hot Data Management

The data stored in different locations of an SSD can be accessed by the host at dif-

ferent rates. For example, we find that across a wide range of disk workloads, almost

100% of the write operations target less than 1% of the pages within an SSD [161], as

shown in Fig. 9.30. These pages exhibit high temporal write locality, and are called

write-hot pages. Likewise, pages with a high amount of temporal read locality (i.e.,

pages that are accessed by a large fraction of the read operations) are called read-
hot pages. A number of issues can arise when an SSD does not distinguish between

write-hot pages and write-cold pages (i.e., pages with low temporal write locality),

or between read-hot pages and read-cold pages (i.e., pages with low temporal read

locality). For example, if write-hot pages and write-cold pages are stored within the

same block, refresh mechanisms (which operate at the block level; see Sect. 9.4.3)

cannot avoid refreshes to pages that were overwritten recently. This increases not

only the energy consumption but also the write amplification due to remapping-based

refresh [161]. Likewise, if read-hot and read-cold pages are stored within the same

block, read-cold pages are unnecessarily exposed to a high number of read disturb

errors [81, 82]. Hot data management refers to a set of mechanisms that can identify

and exploit write-hot or read-hot pages in the SSD. The key idea common to such

mechanisms is to apply special SSD management policies by placing hot pages and

cold pages into separate flash blocks.

A state-of-the-art hot data management mechanism is write-hotness aware refresh
management (WARM) [161], which efficiently identifies write-hot pages and uses

this information to carefully place pages within blocks. WARM aims to ensure that

every block in the NAND flash memory contains either only write-hot pages or only
write-cold pages. A small pool of blocks in the SSD are designated to exclusively

store the small amount of write-hot data (as shown in Fig. 9.30). This block-level

Fig. 9.30 Cumulative distribution function of the fraction of writes performed by a workload to

NAND flash memory pages, for 16 evaluated workloads. For every workload except postmark, over

95% of all writes performed by the workload are destined for less than 1.0% of the workload’s pages.

Total data footprint of each workload is 217.6 GB, i.e., 1.0% on the x-axis represents 2.176 GB of

data. Reproduced from [161]

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 285

segregation between write-hot pages and write-cold pages allows WARM to apply

separate specialized management policies based on the write-hotness of the pages in

each block.

Two examples of policies for write-hot blocks in WARM are the write-hotness-

aware refresh policy (see Sect. 9.4.3 for baseline refresh policies) and the write-

hotness-aware garbage collection algorithm (see Sect. 9.1.3.3). In write-hotness-

aware refresh, since write-hot data is overwritten more frequently than the refresh

interval, the SSD controller skips refresh operations to the write-hot blocks. As

the retention time for write-hot data never exceeds the refresh interval, performing

refresh to this data does not reduce the error rate. By skipping refresh for write-

hot data, WARM reduces the total number of writes performed on the SSD, which

in turn increases the SSD lifetime, without introducing uncorrectable errors. In

write-hotness-aware garbage collection, the SSD controller performs oldest-block-
first garbage collection. WARM sizes the pool of write-hot blocks such that when a

write-hot block becomes the oldest block in the pool of write-hot blocks, all of the

data that was in the block is likely to already have been overwritten. As a result, all of

the pages within the oldest write-hot block is likely to be invalid, and the block can

be erased without the need to migrate any remaining valid pages to a new block. By

always selecting the oldest block in the pool of write-hot blocks for garbage collec-

tion, the write-hotness-aware garbage collection algorithm (1) does not spend time

searching for a block to select (as traditional garbage collection algorithms do), and

(2) rarely needs to migrate pages from the selected block. Both of these lead to a

reduction in the performance overhead of garbage collection.

WARM continues to use the traditional controller policies (i.e., the policies

described in Sect. 9.1.3) and refresh mechanisms for the write-cold blocks. WARM

reduces fragmentation within write-cold blocks (i.e., each write-cold block is likely

to have few, if any, invalid pages), because each page within the block does not
get updated frequently by the application. Due to the write-hotness-aware policies

and reduced fragmentation, WARM reduces write amplification significantly, which

translates to an average lifetime improvement of 21% over an SSD that employs

a state-of-the-art refresh mechanism [29] (see Adaptive Refresh and Read Reclaim
Mechanisms in Sect. 9.4.3), across a wide variety of disk workloads [161].

Another work [265] proposes to reuse the correctly functioning flash pages within

bad blocks (see Sect. 9.1.3.9) to store write-cold data. This technique increases the

total number of usable blocks available for overprovisioning, and extends flash life-

time by delaying the point at which each flash chip reaches the upper limit of bad

blocks it can tolerate.

RedFTL identifies and replicates read-hot pages across multiple flash blocks,

allowing the controller to evenly distribute read requests to these pages across the

replicas [81]. Other works reduce the number of read reclaims (see Sect. 9.4.3) that

need to be performed by mapping read-hot data to particular flash blocks and lower-

ing the maximum possible threshold voltage for such blocks [26, 82]. By lowering

the maximum possible threshold voltage for these blocks, the SSD controller can

use a lower Vpass value (see Sect. 9.4.5) on the blocks without introducing any addi-

tional errors during a read operation. To lower the maximum threshold voltage in

286 Y. Cai et al.

these blocks, the width of the voltage window for each voltage state is decreased,

and each voltage window shifts to the left [26, 82]. Another work applies stronger

ECC encodings to only read-hot blocks based on the total read count of the block,

in order to increase SSD endurance without significantly reducing the amount of

overprovisioning [25] (see Sect. 9.1.4 for a discussion on the tradeoff between ECC

strength and overprovisioning).

9.4.7 Adaptive Error Mitigation Mechanisms

Due to the many different factors that contribute to raw bit errors, error rates in

NAND flash memory can be highly variable. Adaptive error mitigation mechanisms

are capable of adapting error tolerance capability to the error rate. They provide

stronger error tolerance capability when the error rate is higher, improving flash life-

time significantly. When the error rate is low, adaptive error mitigation techniques

reduce error tolerance capability to lower the cost of the error mitigation techniques.

In this section, we examine two types of adaptive techniques: (1) multi-rate ECC and

(2) dynamic cell levels.

Multi-rate ECC. Some works propose to employ multiple ECC algorithms in the

SSD controller [28, 44, 86, 95, 275]. Recall from Sect. 9.1.4 that there is a tradeoff

between ECC strength (i.e., the coding rate; see Sect. 9.1.3.7) and overprovisioning,

as a codeword (which contains a data chunk and its corresponding ECC information)

uses more bits when stronger ECC is employed. The key idea of multi-rate ECC is to

employ a weaker codeword (i.e., one that uses fewer bits for ECC) when the SSD is

relatively new and has a smaller number of raw bit errors, and to use the saved SSD

space to provide additional overprovisioning, as shown in Fig. 9.31.

Let us assume that the controller contains a configurable ECC engine that can

support n different types of ECC codewords, which we call ECCi. Figure 9.31 shows

an example of multi-rate ECC that uses four ECC engines, where ECC1 provides the

weakest protection but has the smallest codeword, while ECC4 provides the strongest

protection with the largest codeword. We need to ensure that the NAND flash mem-

ory has enough space to fit the largest codewords, e.g., those for ECC4 in Fig. 9.31.

ECC1

ECC4

. . .

ECC

ECC

. . .

User data ECCFixed ECC

Mul -Rate
ECC

100%
capacity

%09%48%0

User data OP space

OP space

User data OP space

Fig. 9.31 Comparison of space used for user data, overprovisioning, and ECC between a fixed

ECC and a multi-rate ECC mechanism. Reproduced from [15]

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 287

PE1 PE2
P/E Cycles

Ra
w

 B
it

Er
ro

r
Ra

te
PE3

T1

T2

T3

0

Fig. 9.32 Illustration of how multi-rate ECC switches to different ECC codewords (i.e., ECCi) as

the RBER grows. OPi is the overprovisioning factor used for engine ECCi, and WAi is the resulting

write amplification value. Reproduced from [15]

Initially, when the raw bit error rate (RBER) is low, the controller employs ECC1, as

shown in Fig. 9.32. The smaller codeword size for ECC1 provides additional space

for overprovisioning, as shown in Fig. 9.31, and thus reduces the effects of write

amplification. Multi-rate ECC works on an interval-by-interval basis. Every interval

(in this case, a predefined number of P/E cycles), the controller measures the RBER.

When the RBER exceeds the threshold set for transitioning from a weaker ECC to a

stronger ECC, the controller switches to the stronger ECC. For example, when the

SSD exceeds the first RBER threshold for switching (T1 in Fig. 9.32), the controller

starts switching from ECC1 to ECC2. When switching between ECC engines, the

controller uses the ECC1 engine to decode data the next time the data is read out,

and stores a new codeword using the ECC2 engine. This process is repeated during

the lifetime of flash memory for each stronger engine ECCi, where each engine has a

corresponding threshold that triggers switching [28, 44, 86], as shown in Fig. 9.32.

Multi-rate ECC allows the same maximum P/E cycle count for each block as if

ECCn was used throughout the lifetime of the SSD, but reduces write amplification

and improves performance during the periods where the lower strength engines are

employed, by providing additional overprovisioning (see Sect. 9.1.4) during those

times. As the lower-strength engines use smaller codewords (e.g., ECC1 vs. ECC4
in Fig. 9.31), the resulting free space can instead be employed to further increase the

amount of overprovisioning within the NAND flash memory, which in turn increases

the total lifetime of the SSD. We compute the lifetime improvement by modifying

(9.4) (Sect. 9.1.4) to account for each engine, as follows:

Lifetime =
n∑

i=1

PECi × (1 + OPi)
365 × DWPD × WAi × Rcompress

(9.9)

In (9.9), WAi and OPi are the write amplification and overprovisioning factor for

ECCi, and PECi is the number of P/E cycles that ECCi is used for. Manufacturers

can set parameters to maximize SSD lifetime in (9.9), by optimizing the values of

WAi and OPi.

Figure 9.33 shows the lifetime improvements for a four-engine multi-rate ECC,

with the coding rates for the four ECC engines (ECC1–ECC4) set to 0.90, 0.88, 0.86,

288 Y. Cai et al.

1.00

1.25

1.50

1.75

0% 10% 20% 30%
N

or
m

al
iz

ed
 L

ife
m

e

Baseline Overprovisioning %

Fig. 9.33 Lifetime improvements of using multi-rate ECC over using a fixed ECC coding rate.

Reproduced from [15]

and 0.84 (recall that a lower coding rate provides stronger protection; see Sect. 9.1.4),

over a fixed ECC engine that employs a coding rate of 0.84. We see that the lifetime

improvements of using multi-rate ECC are: (1) significant, with a 31.2% increase if

the baseline NAND flash memory has 15% overprovisioning; and (2) greater when

the SSD initially has a smaller amount of overprovisioning.

Dynamic Cell Levels. A major reason that errors occur in NAND flash memory is

because the threshold voltage distribution of each state overlaps more with those of

neighboring states as the distributions widen over time. Distribution overlaps are

a greater problem when more states are encoded within the same voltage range.

Hence, TLC flash has a much lower endurance than MLC, and MLC has a much

lower endurance than SLC (assuming the same process technology node). If we can

increase the margins between the states’ threshold voltage distributions, the amount

of overlap can be reduced significantly, which in turn reduces the number of errors.

Prior work proposes to increase margins by dynamically reducing the number of

bits stored within a cell, e.g., by going from three bits that encode eight states (TLC)

to two bits that encode four states (equivalent to MLC), or to one bit that encodes two

states (equivalent to SLC) [26, 272]. Recall that TLC uses the ER state and states P1–

P7, which are spaced out approximately equally. When we downgrade a flash block

(i.e., reduce the number of states its cells can represent) from eight states to four, the

cells in the block now employ only the ER state and states P3, P5, and P7. As we can

see from Fig. 9.34, this provides large margins between states P3, P5, and P7, and

provides an even larger margin between ER and P3. The SSD controller maintains

a list of all of the blocks that have been downgraded. For each read operation, the

SSD controller checks if the target block is in the downgraded block list, and uses

this information to interpret the data that it reads out from the wordline of the block.

A cell can be downgraded to reduce various types of errors (e.g., wearout,

read disturb). To reduce wearout, a cell is downgraded when it has high wearout.

To reduce read disturb, a cell can be downgraded if it stores read-hot data (i.e., the

most frequently read data in the SSD). By using fewer states for a block that holds

read-hot data, we can reduce the impact of read disturb because it becomes harder for

the read disturb mechanism to affect the distributions enough for them to overlap. As

an optimization, the SSD controller can employ various hot-cold data partitioning

mechanisms (e.g., [25, 26, 81, 161]) to keep read-hot data in specially designated

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 289

ER
(111)

Threshold Voltage (Vth)

P1
(011)

P2
(001)

P3
(101)

P4
(100)

P5
(000)

P6
(010)

P7
(110)

Pr
ob

ab
ili

ty

De
ns

ity

Fig. 9.34 States used when a TLC cell (with 8 states) is downgraded to an MLC cell (with 4 states).

Reproduced from [15]

blocks [25, 26, 81, 82], allowing the controller to reduce the size of the downgraded

block list and isolate the impact of read disturb from read-cold (i.e., infrequently

read) data.

Another approach to dynamically increasing the distribution margins is to per-

form program and erase operations more slowly when the SSD write request through-

put is low [26, 106]. Slower program/erase operations allow the final voltage of a

cell to be programmed more precisely, and reduce the amount of oxide degradation

that occurs during programming. As a result, the distribution of each state is ini-

tially much narrower, and subsequent widening of the distributions results in much

lower overlap for a given P/E cycle count. This technique improves the SSD life-

time by an average of 61.2% for a variety of disk workloads [106]. Unfortunately,

the slower program/erase operations come at the cost of higher SSD latency, and are

thus not applied during periods of high write traffic. One way to mitigate the impact

of the higher write latency is to perform slower program/erase operations only dur-

ing garbage collection, which ensures that the higher latency occurs only when the

SSD is idle [26]. As a result, read and write requests from the host do not experience

any additional delays.

9.5 Error Correction and Data Recovery Techniques

Now that we have described a variety of error mitigation mechanisms that can target

various types of error sources, we turn our attention to the error correction flow

that is employed in modern SSDs as well as data recovery techniques that can be

employed when the error correction flow fails to produce correct data. In this section,

we briefly overview the major error correction steps an SSD performs when reading

data. We first discuss two ECC encodings that are typically used by modern SSDs:

Bose–Chaudhuri–Hocquenghem (BCH) codes [10, 92, 153, 243] and low-density

parity-check (LDPC) codes [72, 73, 167, 243] (Sect. 9.5.1). Next, we go through

example error correction flows for an SSD that uses either BCH codes or LDPC

codes (Sect. 9.5.2). Then, we compare the error correction strength (i.e., the number

of errors that ECC can correct) when we employ BCH codes or LDPC codes in an

SSD (Sect. 9.5.3). Finally, we discuss techniques that can rescue data from an SSD

when the BCH/LDPC decoding fails to correct all errors (Sect. 9.5.4).

290 Y. Cai et al.

9.5.1 Error-Correcting Codes Used in SSDs

Modern SSDs typically employ one of two types of ECC. Bose–Chaudhuri–

Hocquenghem (BCH) codes allow for the correction of multiple bit errors [10, 92,

153, 243], and are used to correct the errors observed during a single read from

the NAND flash memory [153]. Low-density parity-check (LDPC) codes employ

information accumulated over multiple read operations to determine the likelihood

of each cell containing a bit value 1 or a bit value 0 [72, 73, 167, 243], providing

stronger protection at the cost of greater decoding latency and storage overhead [266,

298]. Next, we describe the basics of BCH and LDPC codes.

9.5.1.1 Bose–Chaudhuri–Hocquenghem (BCH) Codes

BCH codes [10, 92, 153, 243] have been widely used in modern SSDs during the

past decade due to their ability to detect and correct multi-bit errors while keeping

the latency and hardware cost of encoding and decoding low [42, 153, 170, 179].

For SSDs, BCH codes are designed to be systematic, which means that the original

data message is embedded verbatim within the codeword. Within an n-bit codeword

(see Sect. 9.1.3.7), error-correcting codes use the first k bits of the codeword, called

data bits, to hold the data message bits, and the remaining (n − k) bits, called check
bits, to hold error correction information that protects the data bits. BCH codes are

designed to guarantee that they correct up to a certain number of raw bit errors (e.g.,

t error bits) within each codeword, which depends on the values chosen for n and k.

A stronger error correction strength (i.e., a larger t) requires more redundant check

bits (i.e., (n − k)) or a longer codeword length (i.e., n).

A BCH code [10, 92, 153, 243] is a linear block code that consists of check

bits generated by an algorithm. The codeword generation algorithm ensures that the

check bits are selected such that the check bits can be used during a parity check to

detect and correct up to t bit errors in the codeword. A BCH code is defined by (1) a

generator matrix G, which informs the generation algorithm of how to generate each

check bit using the data bits; and (2) a parity check matrix H, which can be applied

to the codeword to detect if any errors exist. In order for a BCH code to guarantee

that it can correct t errors within each codeword, the minimum separation d (i.e., the

Hamming distance) between valid codewords must be at least d = 2t + 1 [243].

BCH Encoding. The codeword generation algorithm encodes a k-bit data mes-

sage m into an n-bit BCH codeword c, by computing the dot product of m and

the generator matrix G (i.e., c = m ⋅ G). G is defined within a finite Galois field

GF(2d) = {0, 𝛼0
, 𝛼

1
,… , 𝛼

2d−1}, where 𝛼 is a primitive element of the field and d
is a positive integer [64]. An SSD manufacturer constructs G from a set of poly-

nomials g1(x), g2(x),… g2t(x), where gi(𝛼i) = 0. Each polynomial generates a parity
bit, which is used during decoding to determine if any errors were introduced. The

i-th row of G encodes the i-th polynomial gi(x). When decoding, the codeword c can

be viewed as a polynomial c(x). Since c(x) is generated by gi(x) which has a root

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 291

𝛼
i
, 𝛼

i
should also be a root of c(x). The parity check matrix H is constructed such

that cHt
calculates c(𝛼i). Thus, the element in the i-th row and j-th column of H is

Hij = 𝛼
(j−1)(i+1)

. This allows the decoder to use H to quickly determine if any of the

parity bits do not match, which indicates that there are errors within the codeword.

BCH codes in SSDs are typically designed to be systematic, which guarantees that a

verbatim copy of the data message is embedded within the codeword. To form a sys-

tematic BCH code, the generator matrix and the parity check matrix are transformed

such that they contain the identity matrix.

BCH Decoding. When the SSD controller is servicing a read request, it must extract

the data bits (i.e., the k-bit data message m) from the BCH codeword that is stored in

the NAND flash memory chips. Once the controller retrieves the codeword, which we

call r, from NAND flash memory, it sends r to a BCH decoder. The decoder performs

five steps, as illustrated in Fig. 9.35, which correct the retrieved codeword r to obtain

the originally-written codeword c, and then extract the data message m from c. In

Step 1, the decoder uses syndrome calculation to detect if any errors exist within

the retrieved codeword r. If no errors are detected, the decoder uses the retrieved

codeword as the original codeword, c, and skips to Step 5. Otherwise, the decoder

continues on to correct the errors and recover c. In Step 2, the decoder uses the

syndromes from Step 1 to construct an error location polynomial, which encodes

the locations of each detected bit error within r. In Step 3, the decoder extracts the

specific location of each detected bit error from the error location polynomial. In

Step 4, the decoder corrects each detected bit error in the retrieved codeword r to

recover the original codeword c. In Step 5, the decoder extracts the data message

from the original codeword c. We describe the algorithms most commonly used by

BCH decoders in SSDs [48, 153, 160] for each step in detail below.

Step 1—Syndrome Calculation: To determine whether the retrieved codeword r
contains any errors, the decoder computes the syndrome vector, S, which indicates

how many of the parity check polynomials no longer match with the parity bits orig-

inally computed during encoding. The i-th syndrome, Si, is set to one if parity bit

i does not match its corresponding polynomial, and to zero otherwise. To calculate

STEP 2
Construct

Error Loca on
Polynomial

STEP 1
Syndrome

Calcula on
retrieved

codeword (r)
Errors
in r?

YES
STEP 3

Extract Error
Loca ons

error loca on
polynomial (σ)

STEP 4
Correct
Errors

+
error bit

vector (e)

STEP 5
Extract

Message

NO

original
codeword (c)

k-bit data
message (m)

Fig. 9.35 BCH decoding steps

292 Y. Cai et al.

S, the decoder calculates the dot product of r and the parity check matrix H (i.e.,

S = r ⋅ H). If every syndrome in S is set to 0, the decoder does not detect any errors

within the codeword, and skips to Step 5. Otherwise, the decoder proceeds to Step 2.

Step 2—Constructing the Error Location Polynomial: A state-of-the-art BCH

decoder uses the Berlekamp–Massey algorithm [8, 42, 171, 230] to construct an

error location polynomial, 𝜎(x), whose roots encode the error locations of the

codeword:

𝜎(x) = 1 + 𝜎1 ⋅ x + 𝜎2 ⋅ x2 +⋯ + 𝜎b ⋅ xb
(9.10)

In (9.10), b is the number of raw bit errors in the codeword.

The polynomial is constructed using an iterative process. Since b is not known ini-

tially, the algorithm initially assumes that b = 0 (i.e., 𝜎(x) = 1). Then, it updates 𝜎(x)
by adding a correction term to the equation in each iteration, until 𝜎(x) successfully

encodes all of the errors that were detected during syndrome calculation. In each

iteration, a new correction term is calculated using both the syndromes from Step 1

and the 𝜎(x) equations from prior iterations of the algorithm, as long as these prior

values of 𝜎(x) satisfy certain conditions. This algorithm successfully finds 𝜎(x) after

n = (t + b)∕2 iterations, where t is the maximum number of bit errors correctable by

the BCH code [64].

Note that (1) the highest order of the polynomial, b, is directly correlated with the

number of errors in the codeword; (2) the number of iterations, n, is also proportional

to the number of errors; (3) each iteration is compute-intensive, as it involves several

multiply and add operations; and (4) this algorithm cannot be parallelized across

iterations, as the computation in each iteration is dependent on the previous ones.

Step 3—Extracting Bit Error Locations from the Error Polynomial: A state-of-

the-art decoder applies the Chien search [46, 243] on the error location polynomial

to find the location of all raw bit errors that have been detected during Step 1 in

the retrieved codeword r. Each bit error location is encoded with a known function

f [230]. The error polynomial from Step 2 is constructed such that if the i-th bit of the

codeword has an error, the error location polynomial 𝜎(f (i)) = 0; otherwise, if the

i-th bit does not have an error, 𝜎(f (i)) ≠ 0. The Chien search simply uses trial-and-

error (i.e., tests if 𝜎(f (i)) is zero), testing each bit in the codeword starting at bit 0. As

the decoder needs to correct only the first k bits of the codeword that contain the data

message m, the Chien search needs to evaluate only k different values of 𝜎(f (i)). The

algorithm builds a bit vector e, which is the same length as the retrieved codeword

r, where the i-th bit of e is set to one if bit i of r contains a bit error, and is set to zero

if bit i of r does not contain an error, or if i ≥ k (since there is no need to correct the

parity bits).

Note that (1) the calculation of 𝜎(f (i)) is compute-intensive, but can be paral-

lelized because the calculation of each bit i is independent of the other bits, and

(2) the complexity of Step 3 is linearly correlated with the number of detected errors

in the codeword.

Step 4—Correcting the Bit Errors: The decoder corrects each detected bit error

location by flipping the bit at that location in the retrieved codeword r. This simply

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 293

involves XORing r with the error vector e created in Step 3. After the errors are cor-

rected, the decoder now has the estimated value of the originally-written codeword

c (i.e., c = r ⊕ e). The decoded version of c is only an estimate of the original code-

word, since if r contains more bit errors than the maximum number of errors (t) that

the BCH can correct, there may be some uncorrectable errors that were not detected

during syndrome calculation (Step 1). In such cases, the decoder cannot guarantee
that it has determined the actual original codeword. In a modern SSD, the bit error

rate of a codeword after BCH correction is expected to be less than 10−15 [105].

Step 5—Extracting the Message from the Codeword: As we discuss above, dur-

ing BCH codeword encoding, the generator matrix G contains the identity matrix, to

ensure that the k-bit message m is embedded verbatim into the codeword c. There-

fore, the decoder recovers m by simply truncating the last (n − k) bits from the n-bit

codeword c.

BCH Decoder Latency Analysis. We can model the latency of the state-of-the-art

BCH decoder (Tdec
BCH) that we described above as:

Tdec
BCH = TSyndrome + N ⋅ TBerlekamp +

k
p
⋅ TChien (9.11)

In (9.11), TSyndrome is the latency for calculating the syndrome, which is determined

by the size of the parity check matrix H; TBerlekamp is the latency of one iteration

of the Berlekamp–Massey algorithm; N is the total number of iterations that the

Berlekamp–Massey algorithm performs; TChien is the latency for deciding whether

or not a single bit location contains an error, using the Chien search; k is the length

of the data message m; and p is the number of bits that are processed in parallel

in Step 3. In this equation, TSyndrome, TBerlekamp, k, and p are constants for a BCH

decoder implementation, while N and TChien are proportional to the raw bit error

count of the codeword. Note that Steps 4 and 5 can typically be implemented such

that they take less than one clock cycle in modern hardware, and thus their latencies

are not included in (9.11).

9.5.1.2 Low-Density Parity-Check (LDPC) Codes

LDPC codes [72, 73, 167, 243] are now used widely in modern SSDs, as LDPC

codes provide a stronger error correction capability than BCH codes, albeit at a

greater storage cost [266, 298]. LDPC codes are one type of capacity-approaching
codes, which are error-correcting codes that come close to the Shannon limit, i.e., the

maximum number of data message bits (kmax) that can be delivered without errors for

a certain codeword size (n) under a given error rate [239, 240]. Unlike BCH codes,

LDPC codes cannot guarantee that they will correct a minimum number of raw bit

errors. Instead, a good LDPC code guarantees that the failure rate (i.e., the fraction

294 Y. Cai et al.

of all reads where the LDPC code cannot successfully correct the data) is less than a

target rate for a given number of bit errors. Like BCH codes, LDPC codes for SSDs

are designed to be systematic, i.e., to contain the data message verbatim within the

codeword.

An LDPC code [72, 73, 167, 243] is a linear code that, like a BCH code, consists

of check bits generated by an algorithm. For an LDPC code, these check bits are

used to form a bipartite graph, where one side of the graph contains nodes that rep-

resent each bit in the codeword, and the other side of the graph contains nodes that

represent the parity check equations used to generate each parity bit. When a code-

word containing errors is retrieved from memory, an LDPC decoder applies belief
propagation [218] to iteratively identify the bits within the codeword that are most
likely to contain a bit error.

An LDPC code is defined using a binary parity check matrix H, where H is very

sparse (i.e., there are few ones in the matrix). Figure 9.36a shows an example H
matrix for a seven-bit codeword c (see Sect. 9.1.3.7). For an n-bit codeword that

encodes a k-bit data message, H is sized to be an (n − k) × n matrix. Within the

matrix, each row represents a parity check equation, while each column represents

one of the seven bits in the codeword. As our example matrix has three rows, this

means that our error correction uses three parity check equations (denoted as f). A

bit value 1 in row i, column j indicates that parity check equation fi contains bit cj.

Each parity check equation XORs all of the codeword bits in the equation to see

whether the output is zero. For example, parity check equation f1 from the H matrix

in Fig. 9.36a is:

f1 = c1 ⊕ c2 ⊕ c4 ⊕ c5 = 0 (9.12)

This means that c is a valid codeword only if H ⋅ cT = 0, where cT
is the transpose

matrix of the codeword c.

(a) (b)

Fig. 9.36 Example LDPC code for a seven-bit codeword with a four-bit data message (stored in

bits c0, c1, c2, and c3) and three parity check equations (i.e., n = 7, k = 4), represented as a an H
matrix and b a Tanner graph

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 295

In order to perform belief propagation, H can be represented using a Tanner
graph [258]. A Tanner graph is a bipartite graph that contains check nodes, which

represent the parity check equations, and bit nodes, which represent the bits in the

codeword. An edge connects a check node Fi to a bit node Cj only if parity check

equation fi contains bit cj. Figure 9.36b shows the Tanner graph that corresponds to

the H matrix in Fig. 9.36a. For example, since parity check equation f1 uses code-

word bits c1, c2, c4, and c5, the F1 check node in Fig. 9.36b is connected to bit nodes

C1, C2, C4, and C5.

LDPC Encoding. As was the case with BCH, the LDPC codeword generation algo-

rithm encodes a k-bit data message m into an n-bit LDPC codeword c by computing

the dot product of m and a generator matrix G (i.e., c = m ⋅ G). For an LDPC code,

the generator matrix is designed to (1) preserve m verbatim within the codeword, and

(2) generate the parity bits for each parity check equation in H. Thus, G is defined

using the parity check matrix H. With linear algebra based transformations, H can

be expressed in the form H = [A, I(n−k)], where H is composed of A, an (n − k) × k
binary matrix, and I(n−k), an (n − k) × (n − k) identity matrix [110]. The generator

matrix G can then be created using the composition G = [Ik,AT], where AT
is the

transpose matrix of A.

LDPC Decoding. When the SSD controller is servicing a read request, it must

extract the k-bit data message from the LDPC codeword r that is stored in NAND

flash memory. In an SSD, an LDPC decoder performs multiple levels of decod-

ing [64, 263, 298], which correct the retrieved codeword r to obtain the originally-

written codeword c and extract the data message m from c. Initially, the decoder per-

forms a single level of hard decoding, where it uses the information from a single

read operation on the codeword to attempt to correct the codeword bit errors. If the

decoder cannot correct all errors using hard decoding, it then initiates the first level

of soft decoding, where a second read operation is performed on the same codeword

using a different set of read reference voltages. The second read provides additional
information on the probability that each bit in the codeword is a zero or a one. An

LDPC decoder typically uses multiple levels of soft decoding, where each new level

performs an additional read operation to calculate a more accurate probability for

each bit value. We discuss multi-level soft decoding in detail in Sect. 9.5.2.2.

For each level, the decoder performs five steps, as illustrated in Fig. 9.37. At each

level, the decoder uses two pieces of information to determine which bits are most
likely to contain errors: (1) the probability that each bit in r is a zero or a one, and

(2) the parity check equations. In Step 1 (Fig. 9.37), the decoder computes an ini-

tial log likelihood ratio (LLR) for each bit of the stored codeword. We refer to the

initial codeword LLR values as L, where Lj is the LLR value for bit j of the code-

word. Lj expresses the likelihood (i.e., confidence) that bit j should be a zero or a

one, based on the current threshold voltage of the NAND flash cell where bit j is

stored. The decoder uses L as the initial LLR message generated using the bit nodes.

An LLR message consists of the LLR values for each bit, which are updated by and

communicated between the check nodes and bit nodes during each step of belief

296 Y. Cai et al.

STEP 1
Compute Log

Likelihood
Ra o (LLR)

retrieved
codeword (r)

Any
Errors?

YES

STEP 5
Extract

Message

original
codeword (c)

k-bit data
message (m)

STEP 2
Process

Check Nodes

ini al LLR
message (L) STEP 3

Process
Bit Nodes

check node LLR
message (R) STEP 4

Parity
Check

bit node LLR
message (Q)

predicted original
codeword (c)

Min-Sum Algorithm Itera on

NO

bit node LLR
message (Q)

Max
Itera ons

?
NO

YES

decoding level fails

Fig. 9.37 LDPC decoding steps for a single level of hard or soft decoding

propagation.
4

In Steps 2 through 4, the belief propagation algorithm [218] itera-

tively updates the LLR message, using the Tanner graph to identify those bits that

are most likely to be incorrect (i.e., the codeword bits whose (1) bit nodes are con-

nected to the largest number of check nodes that currently contain a parity error,

and (2) LLR values indicate low confidence). Several decoding algorithms exist to

perform belief propagation for LDPC codes. The most commonly-used belief prop-

agation algorithm is the min-sum algorithm [43, 68], a simplified version of the

original sum-product algorithm for LDPC [72, 73] with near-equivalent error cor-

rection capability [3]. During each iteration of the min-sum algorithm, the decoder

identifies a set of codeword bits that likely contain errors and thus need to be flipped.

The decoder accomplishes this by (1) having each check node use its parity check

information to determine how much the LLR value of each bit should be updated by,

using the most recent LLR messages from the bit nodes; (2) having each bit node

gather the LLR updates from each bit to generate a new LLR value for the bit, using

the most recent LLR messages from the check nodes; and (3) using the parity check

equations to see if the values predicted by the new LLR message for each node are

correct. The min-sum algorithm terminates under one of two conditions: (1) the pre-

dicted bit values after the most recent iteration are all correct, which means that the

decoder now has an estimate of the original codeword c, and can advance to Step 5;

or (2) the algorithm exceeds a predetermined number of iterations, at which point the

decoder moves onto the next decoding level, or returns a decoding failure if the max-

4
Note that an LLR message is not the same as the k-bit data message. The data message refers to the

actual data stored within the SSD, which, when read, is modeled in information theory as a message

that is transmitted across a noisy communication channel. In contrast, an LLR message refers to the

updated LLR values for each bit of the codeword that are exchanged between the check nodes and

the bit nodes during belief propagation. Thus, there is no relationship between a data message and

an LLR message.

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 297

imum number of decoding levels have been performed. In Step 5, once the errors are

corrected, and the decoder has the original codeword c, the decoder extracts the k-bit

data message m from the codeword. We describe the steps used by a state-of-the-art

decoder in detail below, which uses an optimized version of the min-sum algorithm

that can be implemented efficiently in hardware [78, 79].

Step 1—Computing the Log Likelihood Ratio (LLR): The LDPC decoder uses the

probability (i.e., likelihood) that a bit is a zero or a one to identify errors, instead of

using the bit values directly. The log likelihood ratio (LLR) is the probability that

a certain bit is zero, i.e., P(x = 0|Vth), over the probability that the bit is one, i.e.,

P(x = 1|Vth), given a certain threshold voltage range (Vth) bounded by two threshold

voltage values (i.e., the maximum and the minimum voltage of the threshold voltage

range) [266, 298]:

LLR = log
P(x = 0|Vth)
P(x = 1|Vth)

(9.13)

The sign of the LLR value indicates whether the bit is likely to be a zero (when the

LLR value is positive) or a one (when the LLR value is negative). A larger magnitude

(i.e., absolute value) of the LLR value indicates a greater confidence that a bit should

be zero or one, while an LLR value closer to zero indicates low confidence. The bits

whose LLR values have the smallest magnitudes are the ones that are most likely to

contain errors.

There are several alternatives for how to compute the LLR values. A common

approach for LLR computation is to treat a flash cell as a communication channel,

where the channel takes an input program signal (i.e., the target threshold voltage

for the cell) and outputs an observed signal (i.e., the current threshold voltage of

the cell) [20]. The observed signal differs from the input signal due to the various

types of NAND flash memory errors. The communication channel model allows us

to break down the threshold voltage of a cell into two components: (1) the expected

signal; and (2) the additive signal noise due to errors. By enabling the modeling of

these two components separately, the communication channel model allows us to

estimate the current threshold voltage distribution of each state [20]. The threshold

voltage distributions can be used to predict how likely a cell within a certain voltage

region is to belong to a particular voltage state.

One popular variant of the communication channel model assumes that the thresh-

old voltage distribution of each state can be modeled as a Gaussian distribution [20].

If we use the mean observed threshold voltage of each state (denoted as 𝜇) to rep-

resent the signal, we find that the P/E cycling noise (i.e., the shift in the distribution

of threshold voltages due to the accumulation of charge from repeated program-

ming operations; see Sect. 9.3.1) can be modeled as additive white Gaussian noise
(AWGN) [20], which is represented by the standard deviation of the distribution

(denoted as 𝜎). The closed-form AWGN-based model can be used to determine the

LLR value for a cell with threshold voltage y, as follows:

298 Y. Cai et al.

LLR(y) =
𝜇
2
1 − 𝜇

2
0

2𝜎2 +
y(𝜇0 − 𝜇1)

𝜎
2 (9.14)

where 𝜇0 and 𝜇1 are the mean threshold voltages for the distributions of the threshold

voltage states for bit value 0 and bit value 1, respectively, and 𝜎 is the standard devi-

ation of both distributions (assuming that the standard deviation of each threshold

voltage state distribution is equal). Since the SSD controller uses threshold voltage

ranges to categorize a flash cell, we can substitute 𝜇Rj
, the mean threshold voltage of

the threshold voltage range Rj, in place of y in (9.14).

The AWGN-based LLR model in (9.14) provides only an estimate of the LLR,

because (1) the actual threshold voltage distributions observed in NAND flash mem-

ory are not perfectly Gaussian in nature [20, 162]; (2) the controller uses the mean

voltage of the threshold voltage range to approximate the actual threshold voltage

of a cell; and (3) the standard deviations of each threshold voltage state distribu-

tion are not perfectly equal (see Tables 9.5, 9.6 and 9.7 in the Appendix). A number

of methods have been proposed to improve upon the AWGN-based LLR estimate

by: (1) using nonlinear transformations to convert the AWGN-based LLR into a

more accurate LLR value [278]; (2) scaling and rounding the AWGN-based LLR

to compensate for the estimation error [277]; (3) initially using the AWGN-based

LLR to read the data, and, if the read fails, using the ECC information from the

failed read attempt to optimize the LLR and to perform the read again with the opti-

mized LLR [57]; and (4) using online and offline training to empirically determine

the LLR values under a wide range of conditions (e.g., P/E cycle count, retention

time, read disturb count) [279]. The SSD controller can either compute the LLR

values at runtime, or statically store precomputed LLR values in a table.

Once the decoder calculates the LLR values for each bit of the codeword, which

we call the initial LLR message L, the decoder starts the first iteration of the min-sum

algorithm (Steps 2–4 below).

Step 2—Check Node Processing: In every iteration of the min-sum algorithm,

each check node i (see Fig. 9.36) generates a revised check node LLR message Rij to

send to each bit node j (see Fig. 9.36) that is connected to check node i. The decoder

computes Rij as:

Rij = 𝛿ij𝜅ij (9.15)

where 𝛿ij is the sign of the LLR message, and 𝜅ij is the magnitude of the LLR mes-

sage. The decoder determines the values of both 𝛿ij and 𝜅ij using the bit node LLR

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 299

message Q′
ji. At a high level, each check node collects LLR values sent from each bit

node (Q′
ji), and then determines how much each bit’s LLR value should be adjusted

using the parity information available at the check node. These LLR value updates

are then bundled together into the LLR message Rij. During the first iteration of the

min-sum algorithm, the decoder sets Q′
ji = Lj, the initial LLR value from Step 1. In

subsequent iterations, the decoder uses the value of Q′
ji that was generated in Step 3

of the previous iteration. The decoder calculates 𝛿ij, the sign of the check node LLR

message, as:

𝛿ij =
∏

J
sgn(Q′

Ji) (9.16)

where J represents all bit nodes connected to check node i except for bit node j. The

sign of a bit node indicates whether the value of a bit is predicted to be a zero (if

the sign is positive) or a one (if the sign is negative). The decoder calculates 𝜅ij, the

magnitude of the check node LLR message, as:

𝜅ij = min
J

|Q′
Ji| (9.17)

In essence, the smaller the magnitude of Q′
ji is, the more uncertain we are about

whether the bit should be a zero or a one. At each check node, the decoder updates

the LLR value of each bit node j, adjusting the LLR by the smallest value of Q′
for

any of the other bits connected to the check node (i.e., the LLR value of the most

uncertain bit aside from bit j).

Step 3—Bit Node Processing: Once each check node generates the LLR messages

for each bit node, we combine the LLR messages received by each bit node to update

the LLR value of the bit. The decoder first generates the LLR messages to be used

by the check nodes in the next iteration of the min-sum algorithm. The decoder cal-

culates the bit node LLR message Qji to send from bit node j to check node i as

follows:

Qji = Lj +
∑

I
RIj (9.18)

where I represents all check nodes connected to bit node j except for check node i, and

Lj is the original LLR value for bit j generated in Step 1. In essence, for each check

node, the bit node LLR message combines the LLR messages from the other check
nodes to ensure that all of the LLR value updates are propagated globally across all

of the check nodes.

Step 4—Parity Check: After the bit node processing is complete, the decoder uses

the revised LLR information to predict the value of each bit. For bit node j, the

predicted bit value Pj is calculated as:

Pj = Lj +
∑

i
Rij (9.19)

300 Y. Cai et al.

where i represents all check nodes connected to bit node j, including check node i,
and Lj is the original LLR value for bit j generated in Step 1. If Pj is positive, bit j of

the original codeword c is predicted to be a zero; otherwise, bit j is predicted to be

a one. Once the predicted values have been computed for all bits of c, the H matrix

is used to check the parity, by computing H ⋅ cT
. If H ⋅ cT = 0, then the predicted

bit values are correct, the min-sum algorithm terminates, and the decoder goes to

Step 5. Otherwise, at least one bit is still incorrect, and the decoder goes back to

Step 2 to perform the next iteration of the min-sum algorithm. In the next iteration,

the min-sum algorithm uses the updated LLR values from the current iteration to

identify the next set of bits that are most likely incorrect and need to be flipped.

The current decoding level fails to correct the data when the decoder cannot deter-

mine the correct codeword bit values after a predetermined number of min-sum

algorithm iterations. If the decoder has more soft decoding levels left to perform,

it advances to the next soft decoding level. For the new level, the SSD controller

performs an additional read operation using a different set of read reference volt-

ages than the ones it used for the prior decoding levels. The decoder then goes back

to Step 1 to generate the new LLR information, using the output of all of the read

operations performed for each decoding level so far. We discuss how the number

of decoding levels and the read reference voltages are determined, as well as what

happens if all soft decoding levels fail, in Sect. 9.5.2.2.

Step 5—Extracting the Message from the Codeword: As we discuss above, during

LDPC codeword encoding, the generator matrix G contains the identity matrix, to

ensure that the codeword c includes a verbatim version of m. Therefore, the decoder

recovers the k-bit data message m by simply truncating the last (n − k) bits from the

n-bit codeword c.

9.5.2 Error Correction Flow

For both BCH and LDPC codes, the SSD controller performs several stages of error

correction to retrieve the data, known as the error correction flow. The error correc-

tion flow is invoked when the SSD performs a read operation. The SSD starts the

read operation by using the initial read reference voltages (Vinitial; see Sect. 9.4.5) to

read the raw data stored within a page of NAND flash memory into the controller.

Once the raw data is read, the controller starts error correction.

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 301

First Stage: BCH/LDPC Hard Decoding

Controller gets stored Vinitial values to use as Vref
Flash chips read page using Vref
ECC decoder decodes BCH/LDPC

if ECC succeeds then

Controller sends data to host; exit algorithm

else if number of stage iterations not exceeded then

Controller invokes Vref optimization to new Vref;

repeats stage

end

Second Stage (BCH only): NAC

Controller reads immediately-adjacent wordline W

while ECC fails and all possible voltage states for

adjacent wordline not yet tried do

Controller goes to next neighbor voltage state V

Controller sets Vref based on neighbor voltage state V

Flash chips read page using Vref
Controller corrects cells adjacent to W’s cells that

were programmed to V

ECC decoder decodes BCH

if ECC succeeds then

Controller sends data to host; exit algorithm

end

end

Second Stage (LDPC only): Level X LDPC Soft Decoding

while ECC fails and X < maximum level N do

Controller selects optimal value of Vref
X

Flash chips do read-retry using Vref
X

Controller recomputes LLRX
R0 to LLRX

RX

ECC decoder decodes LDPC

if ECC succeeds then

Controller sends data to host; exit algorithm

else

Controller goes to soft decoding level X + 1

end

end

Third Stage: Superpage-Level Parity Recovery

Flash chips read all other pages in the superpage

Controller XORs all other pages in the superpage

if data extraction succeeds then

Controller sends data to host

else

Controller reports uncorrectable error

end

302 Y. Cai et al.

Algorithm 1 lists the three stages of an example error correction flow, which can

be used to decode either BCH codes or LDPC codes. In the first stage, the ECC

engine performs hard decoding on the raw data. In hard decoding, the ECC engine

uses only the hard bit value information (i.e., either a 1 or a 0) read for a cell using

a single set of read reference voltages. If the first stage succeeds (i.e., the controller

detects that the error rate of the data after correction is lower than a predetermined

threshold), the flow finishes. If the first stage fails, then the flow moves on to the

second stage of error correction. The second stage differs significantly for BCH and

for LDPC, which we discuss below. If the second stage succeeds, the flow terminates;

otherwise, the flow moves to the third stage of error correction. In the third stage,

the controller tries to correct the errors using the more expensive superpage-level

parity recovery (see Sect. 9.1.3.10). The steps for superpage-level parity recovery

are shown in the third stage of Algorithm 1. If the data can be extracted successfully

from the other pages in the superpage, the data from the target page can be recovered.

Whenever data is successfully decoded or recovered, the data is sent to the host (and

it is also reprogrammed into a new physical page to ensure that the corrected data

values are stored for the logical page). Otherwise, the SSD controller reports an

uncorrectable error to the host.

Figure 9.38 compares the error correction flow with BCH codes to the flow with

LDPC codes. Next, we discuss the flows used with both BCH codes (Sect. 9.5.2.1)

and LDPC codes (Sect. 9.5.2.2).

(n
o

so
 d

ec
od

in
g)

LDPC Hard
Decoding

Superpage-Level Parity Recovery
(Sec on 1.3.10)

Flow with BCH
(Sec on 5.2.1)

Flow with LDPC
(Sec on 5.2.2)

Level 1

Level N

...

Codeword
Failure Rate

10-4

10-5

10-9

10-8

10-7

10-6

10-15

(a) (b)
LDPC

Latency

80 μs

10 ms

80 μs/
level

NAC
(Sec on 4.2)

BCH Hard Decoding
with Read-Retry

Level 2

Level N–1

BCH
Latency

70 μs/
itera on

10 ms

140 μs
for two

neighboring
reads

+
70 μs

for each
adjacent

value used

Fig. 9.38 a Example error correction flow using BCH codes and LDPC codes, with average

latency of each BCH/LDPC stage. b The corresponding codeword failure rate for each LDPC stage.

Adapted from [15]

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 303

9.5.2.1 Flow Stages for BCH Codes

An example flow of the stages for BCH decoding is shown on the left-hand side of

Fig. 9.38a. In the first stage, the ECC engine performs BCH hard decoding on the

raw data, which reports the total number of bit errors in the data. If the data cannot

be corrected by the implemented BCH codes, many controllers invoke read-retry

(Sect. 9.4.4) or read reference voltage optimization (Sect. 9.4.5) to find a new set of

read reference voltages (Vref) that lower the raw bit error rate of the data from the

error rate when using Vinitial. The controller uses the new Vref values to read the data

again, and then repeats the BCH decoding. We discuss the algorithm used to perform

decoding for BCH codes in Sect. 9.5.1.1.

If the controller exhausts the maximum number of read attempts (specified as a

parameter in the controller), it employs correction techniques such as neighbor-cell-

assisted correction (NAC; see Sect. 9.4.2) to further reduce the error rate, as shown in

the second BCH stage of Algorithm 1. If NAC cannot successfully read the data, the

controller then tries to correct the errors using the more expensive superpage-level

parity recovery (see Sect. 9.1.3.10).

9.5.2.2 Flow Stages for LDPC Codes

An example flow of the stages for LDPC decoding is shown on the right-hand side

of Fig. 9.38a. LDPC decoding consists of three major steps. First, the SSD controller

performs LDPC hard decoding, where the controller reads the data using the opti-

mal read reference voltages. The process for LDPC hard decoding is similar to that

of BCH hard decoding (as shown in the first stage of Algorithm 1), but does not typ-

ically invoke read-retry if the first read attempt fails. Second, if LDPC hard decoding

cannot correct all of the errors, the controller uses LDPC soft decoding to decode the

data (which we describe in detail below). Third, if LDPC soft decoding also cannot

correct all of the errors, the controller invokes superpage-level parity. We discuss the

algorithm used to perform hard and soft decoding for LDPC codes in Sect. 9.5.1.2.

Soft Decoding. Unlike BCH codes, which require the invocation of expensive

superpage-level parity recovery immediately if the hard decoding attempts (i.e.,

BCH hard decoding with read-retry or NAC) fail to return correct data, LDPC

decoding fails more gracefully: it can perform multiple levels of soft decoding
(shown in the second stage of Algorithm 1) after hard decoding fails before invoking

superpage-level parity recovery [266, 298]. The key idea of soft decoding is to use

soft information for each cell (i.e., the probability that the cell contains a 1 or a 0)

obtained from multiple reads of the cell via the use of different sets of read reference

voltages [64, 72, 73, 167, 243, 298]. Soft information is typically represented by

the log likelihood ratio (LLR; see Sect. 9.5.1.2).

Every additional level of soft decoding (i.e., the use of a new set of read reference

voltages, which we call VX
ref for level X) increases the strength of the error correction,

as the level adds new information about the cell (as opposed to hard decoding, where

304 Y. Cai et al.

a new decoding step simply replaces prior information about the cell). The new read

reference voltages, unlike the ones used for hard decoding, are optimized such that

the amount of useful information (or mutual information) provided to the LDPC

decoder is maximized [266]. Thus, the use of soft decoding reduces the frequency

at which superpage-level parity needs to be invoked.

Figure 9.39 illustrates the read reference voltages used during LDPC hard decod-

ing and during the first two levels of LDPC soft decoding. At each level, a new read

reference voltage is applied, which divides an existing threshold voltage range into

two ranges. Based on the bit values read using the various read reference voltages,

the SSD controller bins each cell into a certain Vth range, and sends the bin catego-

rization of all the cells to the LDPC decoder. For each cell, the decoder applies an

LLR value, precomputed by the SSD manufacturer, which corresponds to the cell’s

bin and decodes the data. For example, as shown in the bottom of Fig. 9.39, the three

read reference voltages in Level 2 soft decoding form four threshold voltage ranges

(i.e., R0–R3). Each of these ranges corresponds to a different LLR value (i.e., LLR
R0
2

to LLR
R3
2 , where LLR

Rj
i is the LLR value for range Rj in soft decoding level i). Com-

pared with hard decoding (shown at the top of Fig. 9.39), which has only two LLR

values, Level 2 soft decoding provides more accurate information to the decoder,

and thus has stronger error correction capability.

Determining the Number of Soft Decoding Levels. If the final level of soft decod-

ing, i.e., level N in Fig. 9.38a, fails, the controller attempts to read the data using

superpage-level parity (see Sect. 9.1.3.10). The number of levels used for soft decod-

ing depends on the improved reliability that each additional level provides, taking

into account the latency of performing additional decoding. Figure 9.38b shows a

LDPC
So Decoding

Level 2
R0

Vth

Pr
ob

ab
ili

ty

De
ns

ity

R3R1 R2

LDPC
So Decoding

Level 1
R0

Vth

Pr
ob

ab
ili

ty

De
ns

ity

R2R1

LDPC
Hard Decoding

R0
Vth

Pr
ob

ab
ili

ty

De
ns

ity

R1

Fig. 9.39 LDPC hard decoding and the first two levels of LDPC soft decoding, showing the Vref
value added at each level, and the resulting threshold voltage ranges (R0–R3) used for flash cell

categorization. Adapted from [15]

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 305

rough estimation of the average latency and the codeword failure rate for each stage.

There is a tradeoff between the number of levels employed for soft decoding and

the expected read latency. For a smaller number of levels, the additional reliability

can be worth the latency penalty. For example, while a five-level soft decoding step

requires up to 480µs, it effectively reduces the codeword failure rate by five orders of

magnitude. This not only improves overall reliability, but also reduces the frequency

of triggering expensive superpage-level parity recovery, which can take around 10

ms [86]. However, manufacturers limit the number of levels, as the benefit of employ-

ing an additional soft decoding level (which requires more read operations) becomes

smaller due to diminishing returns in the number of additional errors corrected.

9.5.3 BCH and LDPC Error Correction Strength

BCH and LDPC codes provide different strengths of error correction. While LDPC

codes can offer a stronger error correction capability, soft LDPC decoding can lead

to a greater latency for error correction. Figure 9.40 compares the error correction

strength of BCH codes, hard LDPC codes, and soft LDPC codes [85]. The x-axis

shows the raw bit error rate (RBER) of the data being corrected, and the y-axis shows

the uncorrectable bit error rate (UBER), or the error rate after correction, once the

error correction code has been applied. The UBER is defined as the ECC codeword

(see Sect. 9.1.3.7) failure rate divided by the codeword length [103]. To ensure a fair

comparison, we choose a similar codeword length for both BCH and LDPC codes,

and use a similar coding rate (0.935 for BCH, and 0.936 for LDPC) [85]. We make

two observations from Fig. 9.40.

U
nc

or
re

ct
ab

le
 B

it
Er

ro
r R

at
e

Raw Bit Error Rate (x10-3)

BCH
Hard LDPC
So LDPC

10-4

10-6

10-8

10-10

10-12

10-14

10-16

1 2 3 4 5 6 7 8 9 10

So LDPC
Trigger Point

Improvement
in RBER Reliability Margin

Fig. 9.40 Raw bit error rate versus uncorrectable bit error rate for BCH codes, hard LDPC codes,

and soft LDPC codes. Reproduced from [15]

306 Y. Cai et al.

First, we observe that the error correction strength of the hard LDPC code is

similar to that of the BCH codes. Thus, on its own, hard LDPC does not provide a

significant advantage over BCH codes, as it provides an equivalent degree of error

correction with similar latency (i.e., one read operation). Second, we observe that

soft LDPC decoding provides a significant advantage in error correction capability.

Contemporary SSD manufacturers target a UBER of 10−16 [103]. The example BCH

code with a coding rate of 0.935 can successfully correct data with an RBER of

1.0 × 10−3 while remaining within the target UBER. The example LDPC code with

a coding rate of 0.936 is more successful with soft decoding, and can correct data

with an RBER as high as 5.0 × 10−3 while remaining within the target UBER, based

on the error rate extrapolation shown in Fig. 9.40. While soft LDPC can tolerate up to

five times the raw bit errors as BCH, this comes at a cost of latency (not shown on

the graph), as soft LDPC can require several additional read operations after hard

LDPC decoding fails, while BCH requires only the original read.

To understand the benefit of LDPC codes over BCH codes, we need to consider

the combined effect of hard LDPC decoding and soft LDPC decoding. As discussed

in Sect. 9.5.2.2, soft LDPC decoding is invoked only when hard LDPC decoding
fails. To balance error correction strength with read performance, SSD manufactur-

ers can require that the hard LDPC failure rate cannot exceed a certain threshold,

and that the overall read latency (which includes the error correction time) cannot

exceed a certain target [85, 86]. For example, to limit the impact of error correc-

tion on read performance, a manufacturer can require 99.99% of the error correction

operations to be completed after a single read. To meet our example requirement, the

hard LDPC failure rate should not be greater than 10−4 (i.e., 99.99%), which corre-

sponds to an RBER of 2.0 × 10−3 and a UBER of 10−8 (shown as Soft LDPC Trigger
Point in Fig. 9.40). For only the data that contains one or more failed codewords, soft

LDPC is invoked (i.e., soft LDPC is invoked only 0.01% of the time). For our exam-

ple LDPC code with a coding rate of 0.936, soft LDPC decoding is able to correct

these codewords: for an RBER of 2.0 × 10−3, using soft LDPC results in a UBER

well below 10−16, as shown in Fig. 9.40.

To gauge the combined effectiveness of hard and soft LDPC codes, we calculate

the overhead of using the combined LDPC decoding over using BCH decoding. If

0.01% of the codeword corrections fail, we can assume that in the worst case, each

failed codeword resides in a different flash page. As the failure of a single codeword

in a flash page causes soft LDPC to be invoked for the entire flash page, our assump-

tion maximizes the number of flash pages that require soft LDPC decoding. For an

SSD with four codewords per flash page, our assumption results in up to 0.04% of

the data reads requiring soft LDPC decoding. Assuming that the example soft LDPC

decoding requires seven additional reads, this corresponds to 0.28% more reads when

using combined hard and soft LDPC over BCH codes. Thus, with a 0.28% overhead

in the number of reads performed, the combined hard and soft LDPC decoding pro-

vides twice the error correction strength of BCH codes (shown as Improvement in
RBER in Fig. 9.40).

In our example, the lifetime of an SSD is limited by both the UBER and whether

more than 0.01% of the codeword corrections invoke soft LDPC, to ensure that the

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 307

overhead of error correction does not significantly increase the read latency [85].

In this case, when the lifetime of the SSD ends, we can still read out the data cor-

rectly from the SSD, albeit at an increased read latency. This is because even though

we capped the SSD lifetime to an RBER of 2.0 × 10−3 in our example shown in

Fig. 9.40, soft LDPC is able to correct data with an RBER as high as 5.0 × 10−3
while still maintaining an acceptable UBER (10−16) based on the error rate extrapo-

lation shown. Thus, LDPC codes have a margin, which we call the reliability margin
and show in Fig. 9.40. This reliability margin enables us to trade off lifetime with

read latency.

We conclude that with a combination of hard and soft LDPC decoding, an SSD

can offer a significant improvement in error correction strength over using BCH

codes.

9.5.4 SSD Data Recovery

When the number of errors in data exceeds the ECC correction capability and the

error correction techniques in Sects. 9.5.2.1 and 9.5.2.2 are unable to correct the read

data, then data loss can occur. At this point, the SSD is considered to have reached

the end of its lifetime. In order to avoid such data loss and recover (or, rescue) the

data from the SSD, we can harness our understanding of data retention and read dis-

turb behavior. The SSD controller can employ two conceptually similar mechanisms,

Retention Failure Recovery (RFR) [22] and Read Disturb Recovery (RDR) [21], to

undo errors that were introduced into the data as a result of data retention and read

disturb, respectively. The key idea of both of these mechanisms is to exploit the wide

variation of different flash cells in their susceptibility to data retention loss and read

disturbance effects, respectively, in order to correct some of the errors without the

assistance of ECC so that the remaining error count falls within the ECC error cor-

rection capability.

When a flash page read fails (i.e., uncorrectable errors exist), RFR and RDR

record the current threshold voltages of each cell in the page using the read-retry

mechanism (see Sect. 9.4.4), and identify the cells that are susceptible to generating

errors due to retention and read disturb (i.e., cells that lie at the tails of the threshold

voltage distributions of each state, where the distributions overlap with each other),

respectively. We observe that some flash cells are more likely to be affected by reten-

tion leakage and read disturb than others, as a result of process variation [21, 22].

We call these cells retention/read disturb prone, while cells that are less likely to

be affected are called retention/read disturb resistant. RFR and RDR classify the

susceptible cells as retention/read disturb prone or resistant by inducing even more
retention and read disturb on the failed flash page, and then recording the new thresh-

old voltages of the susceptible cells. We classify the susceptible cells by observing

the magnitude of the threshold voltage shift due to the additional retention/read dis-

turb induction.

308 Y. Cai et al.

Suscep ble

P

P

Vth

Pr
ob

ab
ili

ty
 D

en
sit

y

P R

Read as X Read as Y

R

P

Programmed to X

Programmed to Y

Original distribu on

Distribu on a er
reten on me

Charge leakage
due to reten on

R
R

Fig. 9.41 Some retention-prone (P) and retention-resistant (R) cells are incorrectly read after

charge leakage due to retention time. RFR identifies and corrects the incorrectly read cells based

on their leakage behavior. Reproduced from [15]

Figure 9.41 shows how the threshold voltage of a retention-prone cell (i.e., a fast-
leaking cell, labeled P in the figure) decreases over time (i.e., the cell shifts to the left)

due to retention leakage, while the threshold voltage of a retention- resistant cell (i.e.,

a slow-leaking cell, labeled R in the figure) does not change significantly over time.

Retention Failure Recovery (RFR) uses this classification of retention-prone versus

retention-resistant cells to correct the data from the failed page without the assistance

of ECC. Without loss of generality, let us assume that we are studying susceptible

cells near the intersection of two threshold voltage distributions X and Y, where Y

contains higher voltages than X. Figure 9.41 highlights the region of cells considered

susceptible by RFR using a box, labeled Susceptible. A susceptible cell within the

box that is retention prone likely belongs to distribution Y, as a retention-prone cell

shifts rapidly to a lower voltage (see the circled cell labeled P within the susceptible
region in the figure). A retention-resistant cell in the same susceptible region likely

belongs to distribution X (see the boxed cell labeled R within the susceptible region

in the figure).

Similarly, Read Disturb Recovery (RDR) uses the classification of read disturb

prone versus read disturb resistant cells to correct data. For RDR, disturb-prone cells

shift more rapidly to higher voltages, and are thus likely to belong to distribution X,

while disturb-resistant cells shift little and are thus likely to belong to distribution

Y. Both RFR and RDR correct the bit errors for the susceptible cells based on such

expected behavior, reducing the number of errors that ECC needs to correct.

RFR and RDR are highly effective at reducing the error rate of failed pages,

reducing the raw bit error rate by 50% and 36%, respectively, as shown in our prior

works [21, 22], where more detailed information and analyses can be found.

9.6 Emerging Reliability Issues for 3D NAND Flash
Memory

While the demand for NAND flash memory capacity continues to grow, manufac-

turers have found it increasingly difficult to rely on manufacturing process technol-

ogy scaling to achieve increased capacity [210]. Due to a combination of limitations

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 309

in manufacturing process technology and the increasing reliability issues as manu-

facturers move to smaller process technology nodes, planar (i.e., 2D) NAND flash

scaling has become difficult for manufacturers to sustain. This has led manufacturers

to seek alternative approaches to increase NAND flash memory capacity.

Recently, manufacturers have begun to produce SSDs that contain three-
dimensional (3D) NAND flash memory [98, 112, 177, 178, 210, 292]. In 3D NAND

flash memory, multiple layers of flash cells are stacked vertically to increase the

density and to improve the scalability of the memory [292]. In order to achieve this

stacking, manufacturers have changed a number of underlying properties of the flash

memory design. In this section, we examine these changes, and discuss how they

affect the reliability of the flash memory devices. In Sect. 9.6.1, we discuss the flash

memory cell design commonly used in contemporary 3D NAND flash memory, and

how these cells are organized across the multiple layers. In Sect. 9.6.2, we discuss

how the reliability of 3D NAND flash memory compares to the reliability of the pla-

nar NAND flash memory that we have studied so far in this work. Table 9.4 summa-

rizes the differences observed in 3D NAND flash memory reliability. In Sect. 9.6.3,

we briefly discuss error mitigation mechanisms that cater to emerging reliability

issues in 3D NAND flash memory.

9.6.1 3D NAND Flash Design and Operation

As we discuss in Sect. 9.2.1, NAND flash memory stores data as the threshold volt-

age of each flash cell. In planar NAND flash memory, we achieve this using a

floating-gate transistor as a flash cell, as shown in Fig. 9.6. The floating-gate tran-

sistor stores charge in the floating gate of the cell, which consists of a conductive

material. The floating gate is surrounded on both sides by an oxide layer. When high

Table 9.4 Changes in behavior of different types of errors in 3D NAND flash memory, compared

to planar (i.e., two-dimensional) NAND flash memory. See Sect. 9.6.2 for a detailed discussion

Error type Change in 3D versus Planar

P/E Cycling (Sect. 9.3.1) 3D is less susceptible, due to current use of

charge trap transistors for flash cells

Program (Sect. 9.3.2) 3D is less susceptible for now, due to use of

one-shot programming (see Sect. 9.2.4)

Cell-to-cell interference (Sect. 9.3.3) 3D is less susceptible for now, due to larger

manufacturing process technology

Data retention (Sect. 9.3.4) 3D is more susceptible, due to early retention

loss

Read disturb (Sect. 9.3.5) 3D is less susceptible for now, due to larger

manufacturing process technology

310 Y. Cai et al.

voltage is applied to the control gate of the transistor, charge can migrate through

the oxide layers into the floating gate due to Fowler-Nordheim (FN) tunneling [69]

(see Sect. 9.2.4).

Most manufacturers use a charge trap transistor [65, 268] as the flash cell in

3D NAND flash memories, instead of using a floating-gate transistor. Figure 9.42

shows the cross section of a charge trap transistor. Unlike a floating-gate transistor,

which stores data in the form of charge within a conductive material, a charge trap

transistor stores data as charge within an insulating material, known as the charge
trap. In a 3D circuit, the charge trap wraps around a cylindrical transistor substrate,

which contains the source (labeled S in Fig. 9.42) and drain (labeled D in the figure),

and a control gate wraps around the charge trap. This arrangement allows the channel

between the source and drain to form vertically within the transistor. As is the case

with a floating-gate transistor, a tunnel oxide layer exists between the charge trap and

the substrate, and a gate oxide layer exists between the charge trap and the control

gate.

Despite the change in cell structure, the mechanism for transferring charge into

and out of the charge trap is similar to the mechanism for transferring charge into and

out of the floating gate. In 3D NAND flash memory, the charge trap transistor typi-

cally employs FN tunneling to change the threshold voltage of the charge trap [115,

210].
5

When high voltage is applied to the control gate, electrons are injected into

the charge trap from the substrate. As this behavior is similar to how electrons are

injected into a floating gate, read, program, and erase operations remain the same for

both planar and 3D NAND flash memory.

Figure 9.43 shows how multiple charge trap transistors are physically organized

within 3D NAND flash memory to form flash blocks, wordlines, and bitlines (see

Sect. 9.2.2). As mentioned above, the channel within a charge trap transistor forms

vertically, as opposed to the horizontal channel that forms within a floating-gate tran-

sistor. The vertical orientation of the channel allows us to stack multiple transistors

on top of each other (i.e., along the z-axis) within the chip, using 3D-stacked circuit

integration. The vertically-connected channels form one bitline of a flash block in

Fig. 9.42 Cross section of a

charge trap transistor, used as

a flash cell in 3D charge trap

NAND flash memory

Su
bs

tr
at

e

Source

Drain

Charge Trap
(Insulator)

Control Gate

Gate Oxide

Tunnel Oxide

5
Note that not all charge trap transistors rely on FN tunneling. Charge trap transistors used for NOR

flash memory change their threshold voltage using channel hot electron injection, also known as

hot carrier injection [166].

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 311

Block K+2
Block K+1

y

z

x Bitline 0

Wordline M–1

Wordline 1

Wordline 0

Substrate
Charge Trap
Control Gate

Bitline N–1Bitline 1

Block K

...

Layer M–1

Layer 1

Layer 0

...

...
Layer M–1

Layer 1

Layer 0

...

...

Layer M–1

Layer 1

Layer 0

... . . .

Metal Wire

Fig. 9.43 Organization of flash cells in an M-layer 3D charge trap NAND flash memory chip,

where each block consists of M wordlines and N bitlines

3D NAND flash memory. Unlike in planar NAND flash memory, where only the

substrates of flash cells on the same bitline are connected together, flash cells along

the same bitline in 3D NAND flash memory share a common substrate and a com-

mon insulator (i.e., charge trap). The FN tunneling induced by the control gate of the

transistor forms a tunnel only in a local region of the insulator, and, thus, electrons

are injected only into that local region. Due to the strong insulating properties of

the material used for the insulator, different regions of a single insulator can have

different voltages. This means that each region of the insulator can store a different

data value, and thus, the data of multiple 3D NAND flash memory cells can be stored

reliably in a single insulator. This is because the FN tunneling induced by the control

gate of the transistor forms a tunnel only in a local region of the insulator, and, thus,

electrons are injected only into that local region.

Each cell along a bitline belongs to a different layer of the flash memory chip.

Thus, a bitline crosses all of the layers within the chip. Contemporary 3D NAND

flash memory contains 24–96 layers [66, 112, 122, 210, 260, 292]. Along the

y-axis, the control gates of cells within a single layer are connected together to form

one wordline of a flash block. As we show in Fig. 9.43, a block in 3D NAND flash

memory consists of all of the flash cells within the same y-z plane (i.e., all cells

that have the same coordinate along the x-axis). Note that, while not depicted in

Fig. 9.43, each bitline within a 3D NAND flash block includes a sense amplifier and

two selection transistors used to select the bitline (i.e., the SSL and GSL transistors;

see Sect. 9.2.2). The sense amplifier and selection transistors are connected in series

with the charge trap transistors that belong to the same bitline, in a similar manner

312 Y. Cai et al.

to the connections shown for a planar NAND flash block in Fig. 9.8. More detail on

the circuit-level design of 3D NAND flash memory can be found in [102, 115, 137,

255].

Due to the use of multiple layers of flash cells within a single NAND flash mem-

ory chip, which greatly increases capacity per unit area, manufacturers can achieve

high cell density without the need to use small manufacturing process technologies.

For example, state-of-the-art planar NAND flash memory uses the 15–19 nm fea-

ture size [162, 212]. In contrast, contemporary 3D NAND flash memory uses larger

feature sizes (e.g., 30–50 nm) [231, 292]. The larger feature sizes reduce manufac-

turing costs, as their corresponding manufacturing process technologies are much

more mature and have a higher yield than the process technologies used for small

feature sizes. As we discuss in Sect. 9.6.2, the larger feature size also has an effect

on the reliability of 3D NAND flash memory.

9.6.2 Errors in 3D NAND Flash Memory

While the high-level behavior of 3D NAND flash memory is similar to the behav-

ior of 2D planar NAND flash memory, there are a number of differences between

the reliability of 3D NAND flash and planar NAND flash, which we summarize in

Table 9.4. There are two reasons for the differences in reliability: (1) the use of charge

trap transistors instead of floating-gate transistors, and (2) moving to a larger manu-

facturing process technology. We categorize the changes based on the reason for the

change below.

Effects of Charge Trap Transistors. Compared to the reliability issues discussed in

Sect. 9.3 for planar NAND flash memory, the use of charge trap transistors introduces

two key differences: (1) early retention loss [47, 183, 292, 301], and (2) a reduction
in P/E cycling errors [210, 292, 301].

First, early retention loss refers to the rapid leaking of electrons from a flash cell

soon after the cell is programmed [47, 292]. Early retention loss occurs in 3D NAND

flash memory because charge can now migrate out of the charge trap in three dimen-

sions. In planar NAND flash memory, charge leakage due to retention occurs across

the tunnel oxide, which occupies two dimensions (see Sect. 9.3.4). In 3D NAND

flash memory, charge can leak across both the tunnel oxide and the insulator that is

used for the charge trap, i.e., across three dimensions. The additional charge leak-

age takes place for only a few seconds after cell programming. After a few seconds

have passed, the impact of leakage through the charge trap decreases, and the long-

term cell retention behavior is similar to that of flash cells in planar NAND flash

memory [47, 183, 292].

Second, P/E cycling errors (see Sect. 9.3.1) reduce with 3D NAND flash memory

because the tunneling oxide in charge trap transistors is less susceptible to breakdown

than the oxide in floating-gate transistors during high-voltage operation [183, 292].

As a result, the oxide is less likely to contain trapped electrons once a cell is erased,

which in turn makes it less likely that the cell is subsequently programmed to an

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 313

incorrect threshold voltage. One benefit of the reduction in P/E cycling errors is that

the endurance (i.e., the maximum P/E cycle count) for a 3D flash memory cell has

increased by more than an order of magnitude [211, 213].

Effects of Larger Manufacturing Process Technologies. Due to the use of larger

manufacturing process technologies for 3D NAND flash memory, many of the errors

that we observe in 2D planar NAND flash (see Sect. 9.3) are not as prevalent in

3D NAND flash memory. For example, while read disturb is a prominent source of

errors at small feature sizes (e.g., 20–24 nm), its effects are small at larger feature

sizes [21, 301]. Likewise, there are much fewer errors due to cell-to-cell program

interference (see Sect. 9.3.3) in 3D NAND flash memory, as the physical distance

between neighboring cells is much larger due to the increased feature size. As a

result, both cell-to-cell program interference and read disturb are currently not major

issues in 3D NAND flash memory reliability [210, 213, 292, 301].

One advantage of the lower cell-to-cell program interference is that 3D NAND

flash memory uses the older one-shot programming algorithm [211, 213, 293] (see

Sect. 9.2.4). In planar NAND flash memory, one-shot programming was replaced by

two-step programming (for MLC) and foggy-fine programming (for TLC) in order

to reduce the impact of cell-to-cell program interference on fully-programmed cells

(as we describe in Sect. 9.2.4). The lower interference in 3D NAND flash memory

makes two-step and foggy-fine programming unnecessary. As a result, none of the

cells in 3D NAND flash memory are partially-programmed, significantly reducing

the number of program errors (see Sect. 9.3.2) that occur [213, 301].

Unlike the effects on reliability due to the use of a charge trap transistor, which

are likely longer-term, the effects on reliability due to the use of larger manufactur-

ing process technologies are expected to be shorter-term. As manufacturers seek to

further increase the density of 3D NAND flash memory, they will reach an upper

limit for the number of layers that can be integrated within a 3D-stacked flash mem-

ory chip, which is currently projected to be in the range of 300–512 layers [139,

152]. At that point, manufacturers will once again need to scale down the chip to

smaller manufacturing process technologies [292], which, in turn, will reintroduce

high amounts of read disturb and cell-to-cell program interference (just as it hap-

pened for planar NAND flash memory [21, 23, 31, 133, 209]).

9.6.3 Changes in Error Mitigation for 3D NAND Flash
Memory

Due to the reduction in a number of sources of errors, fewer error mitigation mech-

anisms are currently needed for 3D NAND flash memory. For example, because the

number of errors introduced by cell-to-cell program interference is currently low,

manufacturers have reverted to using one-shot programming (see Sect. 9.2.4) for 3D

NAND flash [211, 213, 293]. As a result of the currently small effect of read dis-

turb errors, mitigation and recovery mechanisms for read disturb (e.g., pass-through

314 Y. Cai et al.

voltage optimization in Sect. 9.4.5, Read Disturb Recovery in Sect. 9.5.4) may not be

needed, for the time being. We expect that once 3D NAND flash memory begins to

scale down to smaller manufacturing process technologies, approaching the current

feature sizes used for planar NAND flash memory, there will be a significant need for

3D NAND flash memory to use many, if not all, of the error mitigation mechanisms

we discuss in Sect. 9.4.

To our knowledge, no mechanisms have been designed yet to reduce the impact of

early retention loss,
6

which is a new error mechanism in 3D NAND flash memory.

This is in part due to the reduced overall impact of retention errors in 3D NAND

flash memory compared to planar NAND flash memory [47, 301], since a larger

cell contains a greater number of electrons than a smaller cell at the same threshold

voltage. As a result, existing refresh mechanisms (see Sect. 9.4.3) can be used to

tolerate errors introduced by early retention loss with little modification. However,

as 3D NAND flash memory scales into future smaller technology nodes, the early

retention loss problem may require new mitigation techniques.

At the time of writing, only a few rigorous studies examine error characteristics

of and error mitigation techniques for 3D NAND flash memories. An example of

such a study is by Luo et al. [164], which (1) examines the self-recovery effect in 3D

NAND flash memory, where the damage caused by wearout due to P/E cycling (see

Sect. 9.3.1) can be repaired by detrapping electrons that are inadvertently trapped in

flash cells; (2) examines how the operating temperature of 3D NAND flash memory

affects the raw bit error rate; (3) comprehensively models the impact of wearout,

data retention, self-recovery, and temperature on 3D NAND flash reliability; and

(4) proposes a new technique to mitigate errors in 3D NAND flash memory using

this comprehensive model. Other such studies (1) may expose additional sources of

errors that have not yet been observed, and that may be unique to 3D NAND flash

memory; and (2) can enable a solid understanding of current error mechanisms in 3D

NAND flash memory so that appropriate specialized mitigation mechanisms can be

developed. We expect that future works will experimentally examine such sources of

errors, and will potentially introduce novel mitigation mechanisms for these errors.

Thus, the field (both academia and industry) is currently in much need of rigorous

experimental characterization and analysis of 3D NAND flash memory devices (see

footnote 6).

9.7 Similar Errors in Other Memory Technologies

As we discussed in Sect. 9.3, there are five major sources of errors in flash-memory-

based SSDs. Many of these error sources can also be found in other types of memory

and storage technologies. In this section, we take a brief look at the major reliability

issues that exist within DRAM and in emerging nonvolatile memories. In particular,

6
One such work will be presented at the June 2018 Sigmetrics conference [301] as this chapter is

being sent to print.

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 315

we focus on DRAM in our discussion, as modern SSD controllers have access to

dedicated DRAM of considerable capacity (e.g., 1 GB for every 1 TB of SSD capac-

ity), which exists within the SSD package (see Sect. 9.1). Major sources of errors in

DRAM include data retention, cell-to-cell interference, and read disturb. There is a

wide body of work on mitigation mechanisms for the DRAM and emerging memory

technology errors we describe in this section, but we explicitly discuss only a select

number of them here, since a full treatment of such mechanisms is out of the scope

of this current chapter.

9.7.1 Cell-to-Cell Interference Errors in DRAM

One similarity between the capacitive DRAM cell and the floating-gate cell in

NAND flash memory is that they are both vulnerable to cell-to-cell interference.

In DRAM, one important way in which cell-to-cell interference exhibits itself is

the data-dependent retention behavior, where the retention time of a DRAM cell is

dependent on the values written to nearby DRAM cells [116–119, 157, 214]. This

phenomenon is called data pattern dependence (DPD) [157]. Data pattern depen-

dence in DRAM is similar to the data-dependent nature of program interference that

exists in NAND flash memory (see Sect. 9.3.3). Within DRAM, data dependence

occurs as a result of parasitic capacitance coupling (between DRAM cells). Due to

this coupling, the amount of charge stored in one cell’s capacitor can inadvertently

affect the amount of charge stored in an adjacent cell’s capacitor [116–119, 157,

214]. As DRAM cells become smaller with technology scaling, cell-to-cell interfer-

ence worsens because parasitic capacitance coupling between cells increases [116,

157]. More findings on cell-to-cell interference and the data-dependent nature of

cell retention times in DRAM, along with experimental data obtained from modern

DRAM chips, can be found in our prior works [34, 116–119, 157, 214, 223].

9.7.2 Data Retention Errors in DRAM

DRAM uses the charge within a capacitor to represent one bit of data. Much like the

floating gate within NAND flash memory, charge leaks from the DRAM capacitor

over time, leading to data retention issues. Charge leakage in DRAM, if left unmiti-

gated, can lead to much more rapid data loss than the leakage observed in a NAND

flash cell. While leakage from a NAND flash cell typically leads to data loss after

several days to years of retention time (see Sect. 9.3.4), leakage from a DRAM cell

leads to data loss after a retention time on the order of milliseconds to seconds [157].

The retention time of a DRAM cell depends upon several factors, including

(1) manufacturing process variation and (2) temperature [157]. Manufacturing pro-

cess variation affects the amount of current that leaks from each DRAM cell’s capac-

itor and access transistor [157]. As a result, the retention time of the cells within a

316 Y. Cai et al.

Fig. 9.44 DRAM retention time versus operating temperature, normalized to the retention time of

each DRAM cell at 50
◦
C. Reproduced from [157]

single DRAM chip vary significantly, resulting in strong cells that have high reten-

tion times and weak cells that have low retention times within each chip. The oper-

ating temperature affects the rate at which charge leaks from the capacitor. As the

operating temperature increases, the retention time of a DRAM cell decreases expo-

nentially [83, 157]. Figure 9.44 shows the change in retention time as we vary the

operating temperature, as measured from real DRAM chips [157]. In Fig. 9.44, we

normalize the retention time of each cell to its retention time at an operating temper-

ature of 50
◦
C. As the number of cells is large, we group the normalized retention

times into bins, and plot the density of each bin. We draw two exponential-fit curves:

(1) the peak curve, which is drawn through the most populous bin at each temperature

measured; and (2) the tail curve, which is drawn through the lowest non-zero bin for

each temperature measured. Figure 9.44 provides us with three major conclusions

about the relationship between DRAM cell retention time and temperature. First,

both of the exponential-fit curves fit well, which confirms the exponential decrease

in retention time as the operating temperature increases in modern DRAM devices.

Second, the retention times of different DRAM cells are affected very differently by

changes in temperature. Third, the variation in retention time across cells increases

greatly as temperature increases. More analysis of factors that affect DRAM reten-

tion times can be found in our recent works [116–119, 157, 214, 223].

Due to the rapid charge leakage from DRAM cells, a DRAM controller period-

ically refreshes all DRAM cells in place [35, 104, 116, 157, 158, 214, 223] (sim-

ilar to the techniques discussed in Sect. 9.4.3, but at a much smaller time scale).

DRAM standards require a DRAM cell to be refreshed once every 64 ms [104].

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 317

As the density of DRAM continues to increase over successive product generations

(e.g., by 128x between 1999 and 2017 [34, 37]), enabled by the scaling of DRAM to

smaller manufacturing process technology nodes [169], the performance and energy

overheads required to refresh an entire DRAM module have grown significantly

[35, 158]. It is expected that the refresh problem will get worse and limit DRAM

density scaling, as described in a recent work by Samsung and Intel [114] and by

our group [158]. Refresh operations in DRAM cause both (1) performance loss and

(2) energy waste, both of which together lead to a difficult technology scaling chal-

lenge. Refresh operations degrade performance due to three major reasons. First,

refresh operations increase the memory latency, as a request to a DRAM bank that

is refreshing must wait for the refresh latency before it can be serviced. Second, they

reduce the amount of bank-level parallelism available to requests, as a DRAM bank

cannot service requests during refresh. Third, they decrease the row buffer hit rate, as

a refresh operation causes all open rows in a bank to be closed. When a DRAM chip

scales to a greater capacity, there are more DRAM rows that need to be refreshed. As

Fig. 9.45a shows, the amount of time spent on each refresh operation scales linearly

with the capacity of the DRAM chip. The additional time spent on refresh causes the

DRAM data throughput loss due to refresh to become more severe in denser DRAM

chips, as shown in Fig. 9.45b. For a chip with a density of 64 Gbit, nearly 50% of the

data throughput is lost due to the high amount of time spent on refreshing all of the

rows in the chip. The increased refresh time also increases the effect of refresh on

power consumption. As we observe from Fig. 9.45c, the fraction of DRAM power

spent on refresh is expected to be the dominant component of the total DRAM power

consumption, as DRAM chip capacity scales to become larger. For a chip with a den-

sity of 64 Gbit, nearly 50% of the DRAM chip power is spent on refresh operations.

Thus, refresh poses a clear challenge to DRAM scalability.

To combat the growing performance and energy overheads of refresh, two classes

of techniques have been developed. The first class of techniques reduce the frequency
of refresh operations without sacrificing the reliability of data stored in DRAM (e.g.,

[6, 101, 116, 118, 119, 158, 214, 223, 264]). Various experimental studies of real

0 16Gb 32Gb 48Gb 64Gb

Devicecapacity

0

500

1000

1500

2000

2500

A
ut

o-
re

fr
es

h
co

m
m

an
d

 l
at

en
cy

 (
ns

) Past Future

2Gb 4Gb 8Gb 16Gb 32Gb 64Gb

Devicecapacity

0

20

40

60

80

100

T
hr

ou
gh

pu
t l

os
s

(%
 ti

m
e)

DDR3 Future

2Gb 4Gb 8Gb 16Gb 32Gb 64Gb

Devicecapacity

0

50

100

150

200

250

300

350

Po
w

er
 c

on
su

m
pt

io
n

pe
r

 d
ev

ic
e

(m
W

)

DDR3

Future
Refresh power

Non-refresh power

Fig. 9.45 Negative performance and power consumption effects of refresh in contemporary and

future DRAM devices. We expect that as the capacity of each DRAM chip increases, a the refresh

latency, b the DRAM throughput lost during refresh operations, and c the power consumed by

refresh will all increase. Reproduced from [158]

318 Y. Cai et al.

Fig. 9.46 Cumulative distribution of the number of cells in a DRAM module with a retention

time less than the value on the x-axis, plotted for seven different DRAM modules. Reproduced

from [157]

DRAM chips (e.g., [87, 116, 117, 126, 149, 157, 158, 214, 223]) have studied the

data retention time of DRAM cells in modern chips. Figure 9.46 shows the retention

time measured from seven different real DRAM modules (by manufacturers A, B, C,

D, and E) at an operating temperature of 45
◦
C, as a cumulative distribution (CDF)

of the fraction of cells that have a retention time less than the x-axis value [157]. We

observe from the figure that even for the DRAM module whose cells have the worst

retention time (i.e., the CDF is the highest), fewer than only 0.001% of the total cells

have a retention time smaller than 3 s at 45
◦
C. As shown in Fig. 9.44, the retention

time decreases exponentially as the temperature increases. We can extrapolate our

observations from Fig. 9.46 to the worst-case operating conditions by using the tail

curve from Fig. 9.44. DRAM standards specify that the operating temperature of

DRAM should not exceed 85
◦
C [104]. Using the tail curve, we find that a retention

time of 3 s at 45
◦
C is equivalent to a retention time of 246 ms at the worst-case

temperature of 85
◦
C. Thus, the vast majority of DRAM cells can retain data without

loss for much longer than the 64 ms retention time specified by DRAM standards.

The other experimental studies of DRAM chips have validated this observation as

well [87, 116, 117, 126, 149, 158, 214, 223].

A number of works take advantage of this variability in data retention time behav-

ior across DRAM cells, by introducing heterogeneous refresh rates, i.e., different

refresh rates for different DRAM rows. Thus, these works can reduce the frequency

at which the vast majority of DRAM rows within a module are refreshed (e.g., [6,

101, 116, 118, 157, 158, 214, 223, 264]). For example, the key idea of RAIDR [158]

is to refresh the strong DRAM rows (i.e., those rows that can retain data for much

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 319

longer than the minimum 64 ms retention time in the DDR4 standard [104]) less

frequently, and refresh the weak DRAM rows (i.e., those rows that can retain data

only for the minimum retention time) more frequently. The major challenge in such

works is how to accurately identify the retention time of each DRAM row. To solve

this challenge, many recent works examine (online) DRAM retention time profiling

techniques [116, 117, 119, 157, 214, 223].

The second class of techniques reduce the interference caused by refresh requests

on demand requests (e.g., [35, 190, 249]). These works either change the scheduling

order of refresh requests [35, 190, 249] or slightly modify the DRAM architecture

to enable the servicing of refresh and demand requests in parallel [35].

One critical challenge in developing techniques to reduce refresh overheads is that

it is getting significantly more difficult to determine the minimum retention time of a

DRAM cell, as we have shown experimentally on modern DRAM chips [116, 117,

157, 214, 223]. Thus, determining the correct rate at which to refresh DRAM cells

has become more difficult, as also indicated by industry [114]. This is due to two

major phenomena, both of which get worse (i.e., become more prominent) with man-

ufacturing process technology scaling. The first phenomenon is variable retention
time (VRT), where the retention time of some DRAM cells can change drastically

over time, due to a memoryless random process that results in very fast charge loss

via a phenomenon called trap-assisted gate-induced drain leakage [157, 223, 228,

286]. VRT, as far as we know, is very difficult to test for, because there seems to be no

way of determining that a cell exhibits VRT until that cell is observed to exhibit VRT,

and the time scale of a cell exhibiting VRT does not seem to be bounded, based on the

current experimental data on modern DRAM devices [157, 214]. The second phe-

nomenon is data pattern dependence (DPD), which we discuss in Sect. 9.7.1. Both

of these phenomena greatly complicate the accurate determination of minimum data

retention time of DRAM cells. Therefore, data retention in DRAM continues to be

a vulnerability that can greatly affect DRAM technology scaling (and thus perfor-

mance and energy consumption) as well as the reliability and security of current and

future DRAM generations.

More findings on the nature of DRAM data retention and associated errors, as

well as relevant experimental data from modern DRAM chips, can be found in our

prior works [34, 35, 87, 116–119, 149, 157, 158, 193, 214, 223].

9.7.3 Read Disturb Errors in DRAM

Commodity DRAM chips that are sold and used in the field today exhibit read disturb

errors [134], also called RowHammer-induced errors [193], which are conceptually
similar to the read disturb errors found in NAND flash memory (see Sect. 9.3.5).

Repeatedly accessing the same row in DRAM can cause bit flips in data stored in

adjacent DRAM rows. In order to access data within DRAM, the row of cells corre-

sponding to the requested address must be activated (i.e., opened for read and write

operations). This row must be precharged (i.e., closed) when another row in the same

320 Y. Cai et al.

DRAM bank needs to be activated. Through experimental studies on a large number

of real DRAM chips, we show that when a DRAM row is activated and precharged

repeatedly (i.e., hammered) enough times within a DRAM refresh interval, one or

more bits in physically-adjacent DRAM rows can be flipped to the wrong value [134].

We tested 129 DRAM modules manufactured by three major manufacturers (A,

B, and C) between 2008 and 2014, using an FPGA-based experimental DRAM test-

ing infrastructure [87] (more detail on our experimental setup, along with a list

of all modules and their characteristics, can be found in our original RowHammer

paper [134]). Figure 9.47 shows the rate of RowHammer errors that we found, with

the 129 modules that we tested categorized based on their manufacturing date. We

find that 110 of our tested modules exhibit RowHammer errors, with the earliest such

module dating back to 2010. In particular, we find that all of the modules manufac-

tured in 2012–2013 that we tested are vulnerable to RowHammer. Like with many

NAND flash memory error mechanisms, especially read disturb, RowHammer is a

recent phenomenon that especially affects DRAM chips manufactured with more

advanced manufacturing process technology generations.

Figure 9.48 shows the distribution of the number of rows (plotted in log scale on

the y-axis) within a DRAM module that flip the number of bits along the x-axis,

as measured for example DRAM modules from three different DRAM manufactur-

ers [134]. We make two observations from the figure. First, the number of bits flipped

when we hammer a row (known as the aggressor row) can vary significantly within

a module. Second, each module has a different distribution of the number of rows.

Despite these differences, we find that this DRAM failure mode affects more than

80% of the DRAM chips we tested [134]. As indicated above, this read disturb error

mechanism in DRAM is popularly called RowHammer [193].

Various recent works show that RowHammer can be maliciously exploited by

user-level software programs to (1) induce errors in existing DRAM modules [134,

193] and (2) launch attacks to compromise the security of various systems [11, 13,

76, 77, 193, 227, 235, 236, 262, 281]. For example, by exploiting the RowHam-

mer read disturb mechanism, a user-level program can gain kernel-level privileges

Fig. 9.47 RowHammer

error rate versus

manufacturing dates of

129 DRAM modules we

tested. Reproduced from

[134]

2008 2009 2010 2011 2012 2013 2014
0

100

101

102

103

104

105

106

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 321

0 10 20 30 40 50 60 70 80 90 100 110 120
0

100
101
102
103
104
105

Fig. 9.48 Number of victim cells (i.e., number of bit errors) when an aggressor row is repeatedly

activated, for three representative DRAM modules from three major manufacturers. We label the

modules in the format Xyyww
n , where X is the manufacturer (A, B, or C), yyww is the manufacture

year (yy) and week of the year (ww), and n is the number of the selected module. Reproduced from

[134]

on real laptop systems [235, 236], take over a server vulnerable to RowHammer [77],

take over a victim virtual machine running on the same system [11], and take over

a mobile device [262]. Thus, the RowHammer read disturb mechanism is a prime

(and perhaps the first) example of how a circuit-level failure mechanism in DRAM

can cause a practical and widespread system security vulnerability. We believe sim-

ilar (yet likely more difficult to exploit) vulnerabilities exist in MLC NAND flash

memory as well, as described in our recent work [17].

Note that various solutions to RowHammer exist [128, 134, 193], but we do

not discuss them in detail here. Our recent work [193] provides a comprehensive

overview. A very promising proposal is to modify either the memory controller or

the DRAM chip such that it probabilistically refreshes the physically-adjacent rows

of a recently-activated row, with very low probability. This solution is called Proba-
bilistic Adjacent Row Activation (PARA) [134]. Our prior work shows that this low-

cost, low-complexity solution, which does not require any storage overhead, greatly

closes the RowHammer vulnerability [134].

The RowHammer effect in DRAM worsens as the manufacturing process scales

down to smaller node sizes [134, 193]. More findings on RowHammer, along with

extensive experimental data from real DRAM devices, can be found in our prior

works [128, 134, 193].

9.7.4 Large-Scale DRAM Error Studies

Like flash memory, DRAM is employed in a wide range of computing systems, at

scale. Thus, there is a similar need to study the aggregate behavior of errors observed

in a large number of DRAM chips deployed in the field. Akin to the large-scale flash

memory SSD reliability studies discussed in Sect. 9.3.6, a number of experimental

322 Y. Cai et al.

Fig. 9.49 Distribution of memory errors among servers with errors (a), which resembles a power

law distribution. Memory errors follow a Pareto distribution among servers with errors (b). Repro-

duced from [175]

studies characterize the reliability of DRAM at large scale in the field (e.g., [96, 175,

234, 246, 247]). We highlight three notable results from these studies.

First, as we saw for large-scale studies of SSDs (see Sect. 9.3.6), the number

of errors observed varies significantly for each DRAM module [175]. Figure 9.49a

shows the distribution of correctable errors across the entire fleet of servers at Face-

book over a fourteen-month period, omitting the servers that did not exhibit any

correctable DRAM errors. The x-axis shows the normalized device number, with

devices sorted based on the number of errors they experienced in a month. As we

saw in the case of SSDs, a small number of servers accounts for the majority of

errors. As we see from Fig. 9.49a, the top 1% of servers account for 97.8% of all

observed correctable DRAM errors. The distribution of the number of errors among

servers follows a power law model. We show the probability density distribution of

correctable errors in Fig. 9.49b, which indicates that the distribution of errors across

servers follows a Pareto distribution, with a decreasing hazard rate [175]. This means

that a server that has experienced more errors in the past is likely to experience more

errors in the future.

Second, unlike SSDs, DRAM does not seem to show any clearly discernible trend

where higher utilization and age lead to a greater raw bit error rate [175].

Third, the increase in the density of DRAM chips with technology scaling leads

to higher error rates [175]. The latter is illustrated in Fig. 9.50, which shows how

different DRAM chip densities are related to device failure rate. We can see that

there is a clear trend of increasing failure rate with increasing chip density. We find

that the failure rate increases because despite small improvements in the reliability

of an individual cell, the quadratic increase in the number of cells per chip greatly

increases the probability of observing a single error in the whole chip [175].

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 323

Fig. 9.50 Relative failure

rate for servers with different

chip densities. Higher

densities (related to newer

technology nodes) show a

trend of higher failure rates.

Reproduced from [175]. See

Sect. II-E of [175] for the

complete definition of the

metric plotted on the y-axis,

i.e., relative server failure
rate

●

●

●

Chip density (Gb)
1 2 4

0.
00

0.
50

1.
00

R
el

at
iv

e
se

rv
er

 fa
ilu

re
 ra

te

9.7.5 Latency-Related Errors in DRAM

Various experimental studies examine the tradeoff between DRAM reliability and

latency [33, 34, 37, 38, 87, 125, 144, 146, 149]. These works perform extensive

experimental studies on real DRAM chips to identify the effect of (1) temperature,

(2) supply voltage, and (3) manufacturing process variation that exists in DRAM

on the latency and reliability characteristics of different DRAM cells and chips.

The temperature, supply voltage, and manufacturing process variation all dictate the

amount of time that each cell needs to safely complete its operations. Several of our

works [37, 38, 146, 149] examine how one can reliably exploit different effects of

variation to improve DRAM performance or energy consumption.

Adaptive-Latency DRAM (AL-DRAM) [149] shows that significant variation

exists in the access latency of (1) different DRAM modules, as a result of manu-

facturing process variation; and (2) the same DRAM module over time, as a result

of varying operating temperature, since at low temperatures DRAM can be accessed

faster. The key idea of AL-DRAM is to adapt the DRAM latency to the operating

temperature and the DRAM module that is being accessed. Experimental results

show that AL-DRAM can reduce DRAM read latency by 32.7% and write latency

by 55.1%, averaged across 115 DRAM modules operating at 55
◦
C [149].

Voltron [38] identifies the relationship between the DRAM supply voltage and

access latency variation. Voltron uses this relationship to identify the combination

of voltage and access latency that minimizes system-level energy consumption with-

out exceeding a user-specified threshold for the maximum acceptable performance

loss. For example, at an average performance loss of only 1.8%, Voltron reduces the

DRAM energy consumption by 10.5%, which translates to a reduction in the overall

system energy consumption of 7.3%, averaged over seven memory-intensive quad-

core workloads [38].

Flexible-Latency DRAM (FLY-DRAM) [37] captures access latency variation

across DRAM cells within a single DRAM chip due to manufacturing process varia-

tion. For example, Fig. 9.51 shows how the bit error rate (BER) changes if we reduce

324 Y. Cai et al.

Fig. 9.51 Bit error rates of tested DRAM modules as we reduce the DRAM access latency (i.e.,

the tRCD timing parameter). Reproduced from [37]

one of the timing parameters used to control the DRAM access latency below the

minimum value specified by the manufacturer [37]. We use an FPGA-based exper-

imental DRAM testing infrastructure [87] to measure the BER of 30 real DRAM

modules, over a total of 7500 rounds of tests, as we lower the tRCD timing parameter

(i.e., how long it takes to open a DRAM row) below its standard value of 13.125

ns.
7

In this figure, we use a box plot to summarize the bit error rate measured dur-

ing each round. For each box, the bottom, middle, and top lines indicate the 25th,

50th, and 75th percentile of the population. The ends of the whiskers indicate the

minimum and maximum BER of all modules for a given tRCD value. Each round of

BER measurement is represented as a single point overlaid upon the box. From the

figure, we make three observations. First, the BER decreases exponentially as we

reduce tRCD. Second, there are no errors when tRCD is at 12.5 ns or at 10.0 ns, indi-

cating that manufacturers provide a significant latency guardband to provide addi-

tional protection against process variation. Third, the BER variation across different

models becomes smaller as tRCD decreases. The reliability of a module operating at

tRCD = 7.5 ns varies significantly based on the DRAM manufacturer and model. This

variation occurs because the number of DRAM cells that experience an error within

a DRAM chip varies significantly from module to module. Yet, the BER variation

across different modules operating at tRCD = 2.5 ns is much smaller, as most modules

fail when the latency is reduced so significantly.

From other experiments that we describe in our FLY-DRAM paper [37], we find

that there is spatial locality in the slower cells, resulting in fast regions (i.e., regions

where all DRAM cells can operate at significantly-reduced access latency without

experiencing errors) and slow regions (i.e., regions where some of the DRAM cells

cannot operate at significantly-reduced access latency without experiencing errors)

within each chip. To take advantage of this heterogeneity in the reliable access

latency of DRAM cells within a chip, FLY-DRAM (1) categorizes the cells into

fast and slow regions; and (2) lowers the overall DRAM latency by accessing fast

7
More detail on our experimental setup, along with a list of all modules and their characteristics,

can be found in our original FLY-DRAM paper [37].

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 325

regions with a lower latency. FLY-DRAM lowers the timing parameters used for the

fast region by as much as 42.8% [37]. FLY-DRAM improves system performance

for a wide variety of real workloads, with the average improvement for an eight-core

system ranging between 13.3 and 19.5%, depending on the amount of variation that

exists in each module [37].

Design-Induced Variation-Aware DRAM (DIVA-DRAM) [146] identifies the

latency variation within a single DRAM chip that occurs due to the architectural

design of the chip. For example, a cell that is further away from the row decoder

requires a longer access time than a cell that is close to the row decoder. Similarly,

a cell that is farther away from the wordline driver requires a larger access time

than a cell that is close to the wordline driver. DIVA-DRAM uses design-induced

variation to reduce the access latency to different parts of the chip. One can further

reduce latency by sacrificing some amount of reliability and performing error correc-

tion to fix the resulting errors [146]. Experimental results show that DIVA-DRAM

can reduce DRAM read latency by 40.0% and write latency by 60.5% [146]. In an

eight-core system running a wide variety of real workloads, DIVA-DRAM improves

system performance by an average of 13.8% [146].

More information about the errors caused by reduced latency and reduced volt-

age operation in DRAM chips and the tradeoff between reliability and latency and

voltage can be found in our prior works [34, 37, 38, 87, 144, 146, 149, 165].

9.7.6 Error Correction in DRAM

In order to protect the data stored within DRAM from various types of errors, some

(but not all) DRAM modules employ ECC [165]. The ECC employed within DRAM

is much weaker than the ECC employed in SSDs (see Sect. 9.5) for various reasons.

First, DRAM has a much lower access latency, and error correction mechanisms

should be designed to ensure that DRAM access latency does not increase signifi-

cantly. Second, the error rate of a DRAM chip tends to be lower than that of a flash

memory chip. Third, the granularity of access is much smaller in a DRAM chip

than in a flash memory chip, and hence sophisticated error correction can come at a

high cost. The most common ECC algorithm used in commodity DRAM modules is

SECDED (single error correction, double error detection) [165]. Another ECC algo-

rithm available for some commodity DRAM modules is Chipkill, which can tolerate

the failure of an entire DRAM chip within a module [61] at the expense of higher

storage overhead and higher latency. For both SECDED and Chipkill, the ECC infor-

mation is stored on one or more extra chips within the DRAM module, and, on a read

request, this information is sent alongside the data to the memory controller, which

performs the error detection and correction.

As DRAM scales to smaller technology nodes, its error rate continues to increase

[114, 134, 169, 175, 192, 193, 196]. Effects like read disturb [134], cell-to-cell

interference [116–119, 157, 214], and variable retention time [116, 157, 214, 223]

become more severe [114, 134, 192, 193, 196]. As a result, there is an increasing

326 Y. Cai et al.

need for (1) employing ECC algorithms in all DRAM chips/modules; (2) develop-

ing more sophisticated and efficient ECC algorithms for DRAM chips/modules; and

(3) developing error-specific mechanisms for error correction. To this end, recent

work follows various directions. First, in-DRAM ECC, where correction is per-

formed within the DRAM module itself (as opposed to in the controller), is pro-

posed [114]. One work shows how exposing this in-DRAM ECC information to the

memory controller can provide Chipkill-like error protection at much lower overhead

than the traditional Chipkill mechanism [198]. Second, various works explore and

develop stronger ECC algorithms for DRAM (e.g., [123, 124, 270]), and explore

how to make ECC more efficient based on the current DRAM error rate (e.g., [2,

49, 61, 146, 261]). Third, recent work shows how the cost of ECC protection can be

reduced by (1) exploiting heterogeneous reliability memory [165], where different

portions of DRAM use different strengths of error protection based on the error tol-

erance of different applications and different types of data [159, 165], and (2) using

the additional DRAM capacity that is otherwise used for ECC to improve system

performance when reliability is not as important for the given application and/or

data [163].

Many of these works that propose error mitigation mechanisms for DRAM do not
distinguish between the characteristics of different types of errors. We believe that, in

addition to providing sophisticated and efficient ECC mechanisms in DRAM, there

is also significant value in and opportunity for exploring specialized error mitigation

mechanisms that are customized for different error types, just as it is done for flash

memory (as we discussed in Sect. 9.4). One such example of a specialized error mit-

igation mechanism is targeted to fix the RowHammer read disturb mechanism, and

is called Probabilistic Adjacent Row Activation (PARA) [134, 193], as we discussed

earlier. Recall that the key idea of PARA is to refresh the rows that are physically

adjacent to an activated row, with a very low probability. PARA is shown to be very

effective in fixing the RowHammer problem at no storage cost and at very low perfor-

mance overhead [134]. PARA is a specialized yet very effective solution for fixing a

specific error mechanism that is important and prevalent in modern DRAM devices.

9.7.7 Errors in Emerging Nonvolatile Memory Technologies

DRAM operations are several orders of magnitude faster than SSD operations, but

DRAM has two major disadvantages. First, DRAM offers orders of magnitude less

storage density than NAND-flash-memory-based SSDs. Second, DRAM is volatile

(i.e., the stored data is lost on a power outage). Emerging nonvolatile memories,

such as phase-change memory (PCM) [140–142, 224, 274, 290, 299], spin-transfer
torque magnetic RAM (STT-RAM or STT-MRAM) [138, 197], metal-oxide resis-
tive RAM (RRAM) [273], and memristors [53, 248], are expected to bridge the gap

between DRAM and SSDs, providing DRAM-like access latency and energy, and

at the same time SSD-like large capacity and nonvolatility (and hence SSD-like

data persistence). These technologies are also expected to be used as part of hybrid

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 327

memory systems (also called heterogeneous memory systems), where one part of the

memory consists of DRAM modules and another part consists of modules of emerg-

ing technologies [41, 50, 51, 109, 155, 173, 176, 220, 224–226, 290, 291, 295,

296]. PCM-based devices are expected to have a limited lifetime, as PCM can only

endure a certain number of writes [140, 224, 274], similar to the P/E cycling errors

in NAND-flash-memory-based SSDs (though PCM’s write endurance is higher than

that of SSDs). PCM suffers from (1) resistance drift [97, 221, 274], where the resis-

tance used to represent the value becomes higher over time (and eventually can intro-

duce a bit error), similar to how charge leakage in NAND flash memory and DRAM

lead to retention errors over time; and (2) write disturb [108], where the heat gener-

ated during the programming of one PCM cell dissipates into neighboring cells and

can change the value that is stored within the neighboring cells. STT-RAM suffers

from (1) retention failures, where the value stored for a single bit (as the magnetic

orientation of the layer that stores the bit) can flip over time; and (2) read disturb
(a conceptually different phenomenon from the read disturb in DRAM and flash

memory), where reading a bit in STT-RAM can inadvertently induce a write to that

same bit [197]. Due to the nascent nature of emerging nonvolatile memory technolo-

gies and the lack of availability of large-capacity devices built with them, extensive

and dependable experimental studies have yet to be conducted on the reliability of

real PCM, STT-RAM, RRAM, and memristor chips. However, we believe that error

mechanisms conceptually or abstractly similar to those we discussed in this paper

for flash memory and DRAM are likely to be prevalent in emerging technologies as

well (as supported by some recent studies [5, 108, 120, 197, 244, 245, 297]), albeit

with different underlying mechanisms and error rates.

9.8 Conclusion

We provide a survey of the fundamentals of and recent research in NAND-flash-

memory-based SSD reliability. As the underlying NAND flash memory within SSDs

scales to increase storage density, we find that the rate at which raw bit errors occur

in the memory increases significantly, which in turn reduces the lifetime of the SSD.

We describe the prevalent error mechanisms that affect NAND flash memory, and

examine how they behave in modern NAND flash memory chips. To compensate for

the increased raw bit error rate with technology scaling, a wide range of error mitiga-

tion and data recovery mechanisms have been proposed. These techniques effectively

undo some of the SSD lifetime reductions that occur due to flash memory scaling.

We describe the state-of-the-art techniques for error mitigation and data recovery,

and discuss their benefits. Even though our focus is on MLC and TLC NAND flash

memories, for which we provide data from real flash chips, we believe that these

techniques will be applicable to emerging 3D NAND flash memory technology as

well, especially when the process technology scales to smaller nodes. Thus, we hope

the tutorial presented in this work on fundamentals and recent research not only

enables practitioners to get acquainted with flash memory errors and how they are

328 Y. Cai et al.

mitigated, but also helps inform future directions in NAND flash memory and SSD

development as well as system design using flash memory. We believe future is bright

for system-level approaches that codesign system and memory [192, 193, 196] to

enhance overall scaling of platforms, and we hope that the many examples of this

approach presented in this tutorial inspire researchers and developers to enhance

future computing platforms via such system-memory codesign.

Acknowledgements The authors would like to thank Rino Micheloni for his helpful feedback on

earlier drafts of the chapter. They would also like to thank Seagate for their continued dedicated

support. Special thanks also goes to our research group SAFARI’s industrial sponsors over the past

six years, especially Facebook, Google, Huawei, Intel, Samsung, Seagate, VMware. This work was

also partially supported by ETH Zürich, the Intel Science and Technology Center for Cloud Com-

puting, the Data Storage Systems Center at Carnegie Mellon University, and NSF grants 1212962

and 1320531. An earlier, shorter version of this book chapter appears on arxiv.org [15] and in the

Proceedings of the IEEE [16].

Appendix: TLC Threshold Voltage Distribution Data

See Tables 9.5, 9.6 and 9.7.

Table 9.5 Normalized mean (top) and standard deviation (bottom) values for threshold voltage

distribution of each voltage state at various P/E cycle counts (Sect. 9.3.1)

P/E

cycles

ER P1 P2 P3 P4 P5 P6 P7

0 −110.0 65.9 127.4 191.6 254.9 318.4 384.8 448.3

200 −110.4 66.6 128.3 192.8 255.5 319.3 385.0 448.6

400 −105.0 66.0 127.3 191.7 254.5 318.2 383.9 447.7

1,000 −99.9 66.5 127.1 191.7 254.8 318.1 384.4 447.8

2,000 −92.7 66.6 128.1 191.9 254.9 318.3 384.3 448.1

3,000 −84.1 68.3 128.2 193.1 255.7 319.2 385.4 449.1

P/E

cycles

ER P1 P2 P3 P4 P5 P6 P7

0 45.9 9.0 9.4 8.9 8.8 8.9 9.3 8.5

200 46.2 9.2 9.8 9.0 8.8 9.0 9.1 8.5

400 46.4 9.2 9.5 9.1 8.8 8.8 9.0 8.6

1,000 47.3 9.5 9.4 9.1 9.3 8.9 9.4 8.8

2,000 48.2 9.7 9.7 9.4 9.3 9.1 9.5 9.1

3,000 49.4 10.2 10.2 9.6 9.7 9.5 9.8 9.4

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 329

Table 9.6 Normalized mean (top) and standard deviation (bottom) values for threshold voltage

distribution of each voltage state at various data retention times (Sect. 9.3.4)

Time ER P1 P2 P3 P4 P5 P6 P7

1 day −92.7 66.6 128.1 191.9 254.9 318.3 384.3 448.1

1 week −86.7 67.5 128.1 191.4 253.8 316.5 381.8 444.9

1 month −84.4 68.6 128.7 191.6 253.5 315.8 380.9 443.6

3 months −75.6 72.8 131.6 193.3 254.3 315.7 380.2 442.2

1 year −69.4 76.6 134.2 195.2 255.3 316.0 379.6 440.8

Time ER P1 P2 P3 P4 P5 P6 P7

1 day 48.2 9.7 9.7 9.4 9.3 9.1 9.5 9.1

1 week 46.4 10.7 10.8 10.5 10.6 10.3 10.6 10.6

1 month 46.8 11.3 11.2 11.0 10.9 10.8 11.2 11.1

3 months 45.9 12.0 11.8 11.5 11.4 11.4 11.7 11.7

1 year 45.9 12.8 12.4 12.0 12.0 11.9 12.3 12.4

Table 9.7 Normalized mean (top) and standard deviation (bottom) values for threshold voltage

distribution of each voltage state at various read disturb counts (Sect. 9.3.5)

Read

disturbs

ER P1 P2 P3 P4 P5 P6 P7

1 −84.2 66.2 126.3 191.5 253.7 316.8 384.3 448.0

1,000 −76.1 66.7 126.6 191.5 253.6 316.4 383.8 447.5

10,000 −57.0 67.9 127.0 191.5 253.3 315.7 382.9 445.7

50,000 −33.4 69.9 128.0 191.9 253.3 315.4 382.0 444.1

100,000 −20.4 71.6 128.8 192.1 253.3 315.0 381.1 443.0

Read

disturbs

ER P1 P2 P3 P4 P5 P6 P7

1 48.2 9.7 9.7 9.4 9.3 9.1 9.5 9.1

1,000 47.4 10.7 10.8 10.5 10.6 10.3 10.6 10.6

10,000 46.3 12.0 11.7 11.4 11.4 11.4 11.7 11.7

50,000 46.1 12.3 12.1 11.7 11.6 11.7 12.0 12.4

100,000 45.9 12.8 12.4 12.0 12.0 11.9 12.3 12.4

References

1. N. Agrawal, V. Prabhakaran, T. Wobber, J.D. Davis, M. Manasse, R. Panigrahy, Design trade-

offs for SSD performance, in USENIX ATC (2008)

2. A.R. Alameldeen, I. Wagner, Z. Chisthi, W. Wu, C. Wilkerson, S.-L. Lu, Energy-efficient

cache design using variable-strength error-correcting codes, in ISCA (2011)

3. A. Anastasopoulos, A comparison between the sum-product and the min-sum iterative detec-

tion algorithms based on density evolution, in GLOBECOM (2001)

4. S.A. Arrhenius, Über die dissociationswärme und den einfluß der temperatur auf den disso-
ciationsgrad der elektrolytae. Z. Phys. Chem. (1889)

330 Y. Cai et al.

5. A. Athmanathan, M. Stanisavljevic, N. Papandreou, H. Pozidis, E. Eleftheriou, Multilevel-cell
phase-change memory: a viable technology. J. Emerg. Sel. Top. Circuits Syst. (2016)

6. S. Baek, S. Cho, R. Melhem, Refresh now and then. IEEE Trans. Comput. (2014)

7. F.M. Benelli, How to extend 2D-TLC endurance to 3,000 P/E cycles. in Flash Memory Summit
(2015)

8. E.R. Berlekamp, Nonbinary BCH decoding, in ISIT (1967)

9. R. Bez, E. Camerlenghi, A. Modelli, A. Visconti, Introduction to flash memory. Proc. IEEE,

April 2003

10. R.C. Bose, D.K. Ray-Chaudhuri, On a class of error correcting binary group codes. Inf.

Control (1960)

11. E. Bosman, K. Razavi, H. Bos, C. Guiffrida, Dedup est machina: memory deduplication as

an advanced exploitation vector, in SP (2016)

12. J.E. Brewer, M. Gill, Nonvolatile Memory Technologies with Emphasis on Flash: A Com-
prehensive Guide to Understanding and Using NVM Devices (Wiley, Hoboken, NJ, USA,

2008)

13. W. Burleson, O. Mutlu, and M. Tiwari, Who is the major threat to tomorrow’s security? you,

the hardware designer, in DAC (2016)

14. Y. Cai, NAND flash memory: characterization, analysis, modelling, and mechanisms. Ph.D.

Dissertation, Carnegie Mellon University, 2012

15. Y. Cai, S. Ghose, E. F. Haratsch, Y. Luo, O. Mutlu, Error characterization, mitigation, and

recovery in flash memory based solid-state drives (2017), arXiv:1706.08642

16. Y. Cai, S. Ghose, E.F. Haratsch, Y. Luo, O. Mutlu, Error characterization, mitigation, and

recovery in flash-memory-based solid-state drives. Proc. IEEE, Sept 2017

17. Y. Cai, S. Ghose, Y. Luo, K. Mai, O. Mutlu, E.F. Haratsch, Vulnerabilities in MLC NAND

flash memory programming: experimental analysis, exploits, and mitigation techniques, in

HPCA (2017)

18. Y. Cai, E.F. Haratsch, M. McCartney, K. Mai, FPGA-based solid-state drive prototyping plat-

form, in FCCM (2011)

19. Y. Cai, E.F. Haratsch, O. Mutlu, K. Mai, Error patterns in MLC NAND flash memory: mea-

surement, characterization, and analysis, in DATE (2012)

20. Y. Cai, E.F. Haratsch, O. Mutlu, K. Mai, Threshold voltage distribution in MLC NAND flash

memory: characterization, analysis, and modeling, in DATE (2013)

21. Y. Cai, Y. Luo, S. Ghose, E.F. Haratsch, K. Mai, O. Mutlu, Read disturb errors in MLC NAND

flash memory: characterization, mitigation, and recovery, in DSN (2015)

22. Y. Cai, Y. Luo, E.F. Haratsch, K. Mai, O. Mutlu, Data retention in MLC NAND flash memory:

characterization, optimization, and recovery, in HPCA (2015)

23. Y. Cai, O. Mutlu, E.F. Haratsch, K. Mai, Program interference in MLC NAND flash memory:

characterization, modeling, and mitigation, in ICCD (2013)

24. Y. Cai, Y. Wu, N. Chen, E.F. Haratsch, Z. Chen, Systems and methods for latency based data

recycling in a solid state memory system, U.S. Patent 9,424,179 (2016)

25. Y. Cai, Y. Wu, E.F. Haratsch, Hot-read data aggregation and code selection, U.S. Patent Appli-

cation 14/192,110 (2015)

26. Y. Cai, Y. Wu, E.F. Haratsch, System to control a width of a programming threshold voltage

distribution width when writing hot-read data, U.S. Patent 9,218,885 (2015)

27. Y. Cai, Y. Wu, E.F. Haratsch, Data recovery once ECC fails to correct the data, U.S. Patent

9,323,607 (2016)

28. Y. Cai, Y. Wu, E.F. Haratsch, Error correction code (ECC) selection using probability density

functions of error correction capability in storage controllers with multiple error correction

codes, U.S. Patent 9,419,655 (2016)

29. Y. Cai, G. Yalcin, O. Mutlu, E.F. Haratsch, A. Cristal, O. Unsal, K. Mai, Flash correct and

refresh: retention aware management for increased lifetime, in ICCD (2012)

30. Y. Cai, G. Yalcin, O. Mutlu, E.F. Haratsch, A. Cristal, O. Unsal, K. Mai, Error analysis and

retention-aware error management for NAND flash memory. Intel. Technol. J. (2013)

http://arxiv.org/abs/1706.08642

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 331

31. Y. Cai, G. Yalcin, O. Mutlu, E.F. Haratsch, O. Unsal, A. Cristal, K. Mai, Neighbor cell assisted

error correction in MLC NAND flash memories, in SIGMETRICS (2014)

32. J. Cha, S. Kang, Data randomization scheme for endurance enhancement and interference

mitigation of multilevel flash memory devices. ETRI J. (2013)

33. K. Chandrasekar, S. Goossens, C. Weis, M. Koedam, B. Akesson, N. Wehn, K. Goossens,

Exploiting expendable process-margins in DRAMs for run-time performance optimization,

in DATE (2014)

34. K.K. Chang, Understanding and improving the latency of DRAM-based memory systems.

Ph.D. Dissertation, Carnegie Mellon University, 2017

35. K.K. Chang, D. Lee, Z. Chishti, A.R. Alameldeen, C. Wilkerson, Y. Kim, O. Mutlu, Improv-

ing DRAM performance by parallelizing refreshes with accesses, in HPCA (2014)

36. K.K. Chang, P.J. Nair, S. Ghose, D. Lee, M.K. Qureshi, O. Mutlu, Low-cost inter-linked

subarrays (LISA): enabling fast inter-subarray data movement in DRAM, in HPCA (2016)

37. K.K. Chang, A. Kashyap, H. Hassan, S. Ghose, K. Hsieh, D. Lee, T. Li, G. Pekhimenko,

S. Khan, O. Mutlu, Understanding latency variation in modern DRAM chips: experimental

characterization, analysis, and optimization, in SIGMETRICS (2016)

38. K.K. Chang, A.G. Yaglikci, A. Agrawal, N. Chatterjee, S. Ghose, A. Kashyap, H. Hassan,

D. Lee, M. O’Connor, O. Mutlu, Understanding reduced-voltage operation in modern DRAM

devices: experimental characterization, analysis, and mechanisms, in SIGMETRICS (2017)

39. L.-P. Chang, On efficient wear leveling for large-scale flash-memory storage systems, in SAC
(2007)

40. L.-P. Chang, T.-W. Kuo, S.-W. Lo, Real-time garbage collection for flash-memory storage
systems of real-time embedded systems (ACM Trans. Embed. Comput, Syst, 2004)

41. N. Chatterjee, M. Shevgoor, R. Balasubramonian, A. Davis, Z. Fang, R. Illikkal, R. Iyer,

Leveraging heterogeneity in DRAM main memories to accelerate critical word access, in

MICRO (2012)

42. C.-L. Chen, High-speed decoding of BCH codes (Corresp.) IEEE Trans. Inf. Theory (1981)

43. J. Chen, M.P.C. Fossorier, Near optimum universal belief propagation based decoding of
low-density parity check codes (IEEE Trans, Commun, 2002)

44. T.-H. Chen, Y.-Y. Hsiao, Y.-T. Hsing, C.-W. Wu, An adaptive-rate error correction scheme

for nand flash memory, in VTS (2009)

45. Z. Chen, E.F. Haratsch, S. Sankaranarayanan, Y. Wu, Estimating read reference voltage based

on disparity and derivative metrics, U.S. Patent 9,417,797 (2016)

46. R.T. Chien, Cyclic decoding procedures for the Bose-Chaudhuri-Hocquenghem codes IEEE

Trans. Inf. Theory (1964)

47. B. Choi et al., Comprehensive evaluation of early retention (fast charge loss within a few

seconds) characteristics in tube-type 3-D nand flash memory, in VLSIT (2016)

48. H. Choi, W. Liu, W. Sung, VLSI implementation of BCH error correction for multilevel cell
NAND flash memory (IEEE Trans. Very Large Scale Integr, Syst, 2009)

49. C. Chou, P. Nair, M.K. Qureshi, Reducing refresh power in mobile devices with morphable

ECC, in DSN (2015)

50. C.-C. Chou, A. Jaleel, M.K. Qureshi, CAMEO: a two-level memory organization with capac-

ity of main memory and flexibility of hardware-managed cache, in MICRO (2014)

51. C.-C. Chou, A. Jaleel, M.K. Qureshi, BEAR: techniques for mitigating bandwidth bloat in

gigascale DRAM caches, in ISCA (2015)

52. S. Choudhuri, T. Givargis, Deterministic service guarantees for NAND flash using partial

block cleaning, in CODES + ISSS (2008)

53. L. Chua, Memristor–the missing circuit element (IEEE Trans, Circuit Theory, 1971)

54. T.-S. Chung, D.-J. Park, S. Park, D.-H.L.S.-W. Lee, H.-J. Song, A survey of flash translation

layer. J. Syst. Archit. (2009)

55. R. Codandaramane, Securing the SSDs—NVMe controller encryption, in Flash Memory
Summit (2016)

56. E.T. Cohen, Zero-one balance management in a solid-state disk controller, U.S. Patent

8,839,073 (2014)

332 Y. Cai et al.

57. E.T. Cohen, Y. Cai, E.F. Haratsch, Y. Wu, Method to dynamically update LLRs in an SSD

drive and/or controller, U.S. Patent 9,329,935 (2015)

58. J. Cooke, The inconvenient truths of NAND flash memory, in Flash Memory Summit (2007)

59. J. Daemen, V. Rijmen, The Design of Rijndael (Germany, New York, NY, USA, Springer,

Berlin, Heidelberg, 2002)

60. R. Degraeve et al., Analytical percolation model for predicting anomalous charge loss in flash
memories (IEEE Trans. Electron, Devices, 2004)

61. T.J. Dell, A white paper on the benefits of chipkill-correct ECC for PC server main memory
IBM Microelectron. Division Tech. Rep. (1997)

62. P. Desnoyers, Analytic modeling of SSD write performance, in SYSTOR (2012)

63. C. Dirik, B. Jacob, The performance of PC solid-state disks (SSDs) as a function of band-

width, concurrency, device architecture, and system organization, in ISCA (2009)

64. L. Dolecek, Making error correcting codes work for flash memory, in Flash Memory Summit
(2014)

65. B. Eitan, Non-volatile semiconductor memory cell utilizing asymmetrical charge trapping,

U.S. Patent 5,768,192 (1998)

66. J. Elliott, J. Jeong, Advancements in SSDs and 3D NAND reshaping storage market Keynote

Present. in Flash Memory Summit (2017)

67. Facebook, Inc., Flashcache. https://github.com/facebookarchive/flashcache

68. M.P.C. Fossorier, M. Mihaljević, H. Imai, Reduced complexity iterative decoding of low-
density parity check codes based on belief propagation (IEEE Trans, Commun, 1999)

69. R.H. Fowler, L. Nordheim, Electron emission in intense electric fields Proc. R. Soc. A (1928)

70. A. Fukami, S. Ghose, Y. Luo, Y. Cai, O. Mutlu, Improving the reliability of chip-off forensic
analysis of NAND flash memory devices (Digit, Investig, 2017)

71. E. Gal, S. Toledo, Algorithms and data structures for flash memories (ACM Comput, Surv,

2005)

72. R.G. Gallager, Low-density parity-check codes (IRE Trans. Inf, Theory, 1962)

73. R.G. Gallager, Low-Density Parity-Check Codes (MIT Press, Cambridge, MA, USA, 1963)

74. S. Ghose, H. Lee, J.F. Martínez, Improving memory scheduling via processor-side load crit-

icality information, in ISCA (2013)

75. L.M. Grupp, A.M. Caulfield, J. Coburn, S. Swanson, E. Yaakobi, P.H. Siegel, J.K. Wolf,

Characterizing flash memory: anomalies, observations, and applications, in MICRO (2009)

76. D. Gruss, M. Lipp, M. Schwarz, D. Genkin, J. Juffinger, S. O’Connell, W. Schoechl, Y. Yarom,

Another flip in the wall of Rowhammer defenses (2017), arXiv:1710.00551

77. D. Gruss, C. Maurice, S. Mangard, Rowhammer.js: a remote software-induced fault attack in

javascript, in DIMVA (2016)

78. K. Gunnam, LDPC decoding: VLSI architectures and implementations, in Flash Memory
Summit (2014)

79. K.K. Gunnam, G.S. Choi, M.B. Yeary, M. Atiquzzaman, VLSI architectures for layered

decoding for irregular LDPC codes of WiMax, in ICC (2007)

80. A. Gupta, Y. Kim, B. Urgaonkar, DFTL: a flash translation layer employing demand-based

selective caching of page-level address mappings, in ASPLOS (2009)

81. K. Ha, J. Jeong, J. Kim, A read-disturb management technique for high-density NAND flash

memory, in APSys (2013)

82. K. Ha, J. Jeong, J. Kim, An integrated approach for managing read disturbs in high-density
NAND flash memory (IEEE Trans. Comput.-Aided Des. Integr, Circuits Syst, 2016)

83. T. Hamamoto, S. Sugiura, S. Sawada, On the retention time distribution of dynamic random
access memory (DRAM) (IEEE Trans. Electron, Devices, 1998)

84. L. Han, Y. Ryu, K. Yim, CATA: a garbage collection scheme for flash memory file systems,

in UIC (2006)

85. E.F. Haratsch, Controller concepts for 1y/1z nm and 3D NAND flash, in Flash Memory Sum-
mit (2015)

86. E.F. Haratsch, Media management for high density NAND flash memories, in Flash Memory
Summit (2016)

https://github.com/facebookarchive/flashcache
http://arxiv.org/abs/1710.00551

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 333

87. H. Hassan, N. Vijaykumar, S. Khan, S. Ghose, K. Chang, G. Pekhimenko, D. Lee, O. Ergin, O.

Mutlu, SoftMC: a flexible and practical open-source infrastructure for enabling experimental

DRAM studies, in HPCA (2017)

88. H. Hassan, G. Pekhimenko, N. Vijaykumar, V. Seshadri, D. Lee, O. Ergin, O. Mutlu, Charge-

Cache: reducing DRAM latency by exploiting row access locality, in HPCA (2016)

89. J. Haswell, SSD architectures to ensure security and performance, in Flash Memory Summit
(2016)

90. J. He, S. Kannan, A.C. Arpaci-Dusseau, R.H. Arpaci-Dusseau, The unwritten contract of

solid state drives, in EuroSys (2017)

91. J. Ho, B. Chester, The iPhone 7 and iPhone 7 Plus review: iterating on a flagship, in AnandTech
(2016)

92. A. Hocquenghem, Codes Correcteurs d’Erreurs. Chiffres (1959)

93. X.-Y. Hu, E. Eleftheriou, R. Haas, I. Iliadis, R. Pletka, Write amplification analysis in flash-

based solid state drives, in SYSTOR (2009)

94. Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, S. Zhang, Performance impact and interplay of

SSD parallelism through advanced commands, allocation strategy and data granularity, in

ICS (2011)

95. P. Huang, P. Subedi, X. He, S. He, K. Zhou, FlexECC: partially relaxing ECC of MLC SSD

for better cache performance, in USENIX ATC (2014)

96. A. Hwang, I. Stefanovici, B. Schroeder, Cosmic rays don’t strike twice: understanding the

nature of DRAM errors and the implications for system design, in ASPLOS (2012)

97. D. Ielmini, A.L. Lacaita, D. Mantegazza, Recovery and drift dynamics of resistance and
threshold voltages in phase-change memories (IEEE Trans. Electron, Devices, 2007)

98. J. Im et al., A 128Gb 3b/Cell V-NAND flash memory with 1Gb/s I/O rate, in ISSCC (2015)

99. Intel Corp., Serial ATA Advanced Host Controller Interface (AHCI) 1.3.1 (2012)

100. E. Ipek, O. Mutlu, J. F. Martínez, R. Caruana, Self-optimizing memory controllers: a rein-

forcement learning approach, in ISCA (2008)

101. C. Isen, L. John, ESKIMO—Energy savings using semantic knowledge of inconsequential

memory occupancy for DRAM subsystem, in MICRO (2009)

102. J. Jang et al., Vertical cell array using TCAT (terabit cell array transistor) technology for ultra

high density NAND flash memory, in VLSIT (2009)

103. JEDEC Solid State Technology Assn., Solid-State Drive (SSD) Requirements and Endurance
Test Method (Publication JEP218, 2010)

104. JEDEC Solid State Technology Assn., DDR4 SDRAM Standard (Publication JESD79-4A,

2013)

105. JEDEC Solid State Technology Assn., Failure Mechanisms and Models for Semiconductor
Devices (Publication JEP122H, 2016)

106. J. Jeong, S.S. Hahn, S. Lee, J. Kim, Lifetime improvement of NAND flash-based storage

systems using dynamic program and erase scaling, in FAST (2014)

107. S. Jeong, K. Lee, S. Lee, S. Son, Y. Won, I/O stack optimization for smartphones, in USENIX
ATC (2013)

108. L. Jiang, Y. Zhang, J. Yang, Mitigating write disturbance in super-dense phase change mem-

ories, in DSN (2014)

109. X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni, D. Newell, D. Solihin, R. Bal-

asubramonian, CHOP: adaptive filter-based DRAM caching for CMP server platforms, in

HPCA (2010)

110. S.J. Johnson, Introducing low-density parity-check codes, http://sigpromu.org/sarah/

SJohnsonLDPCintro.pdf

111. D. Kahng, S.M. Sze, A floating gate and its application to memory devices. Bell Syst. Tech.

J. (1967)

112. D. Kang et al., 7.1 256Gb 3b/cell V-NAND flash memory with 48 stacked WL layers, in

ISSCC (2016)

113. J.-U. Kang, H. Jo, J.-S. Kim, J. Lee, A superblock-based flash translation layer for NAND

flash memory, in EMSOFT (2006)

http://sigpromu.org/sarah/SJohnsonLDPCintro.pdf
http://sigpromu.org/sarah/SJohnsonLDPCintro.pdf

334 Y. Cai et al.

114. U. Kang, H.-S. Yu, C. Park, H. Zheng, J. Halbert, K. Bains, S. Jang, J. Choi, Co-architecting

controllers and DRAM to enhance DRAM process scaling, in Memory Forum (2014)

115. R. Katsumata et al., Pipe-Shaped BiCS flash memory with 16 stacked layers and multi-level-

cell operation for ultra high density storage devices, in VLSIT (2009)

116. S. Khan, D. Lee, Y. Kim, A. Alameldeen, C. Wilkerson, O. Mutlu, The efficacy of error mit-

igation techniques for DRAM retention failures: a comparative experimental study, in SIG-
METRICS (2014)

117. S. Khan, D. Lee, O. Mutlu, PARBOR: an efficient system-level technique to detect data-

dependent failures in DRAM, in DSN (2016)

118. S. Khan, C. Wilkerson, D. Lee, A.R. Alameldeen, O. Mutlu, A case for memory content-based
detection and mitigation of data-dependent failures in DRAM (IEEE Comput. Archit, Lett,

2016)

119. S. Khan, C. Wilkerson, Z. Wang, A.R. Alameldeen, D. Lee, O. Mutlu, Detecting and mitigat-

ing data-dependent DRAM failures by exploiting current memory content, in MICRO (2017)

120. W.-S. Khwa et al., A resistance-drift compensation scheme to reduce MLC PCM raw BER

by over 100 × for storage-class memory applications, in ISSCC (2016)

121. C. Kim et al., A 21 nm high performance 64 Gb MLC NAND flash memory with 400 MB/s
asynchronous toggle DDR interface (IEEE J, Solid-State Circuits, 2012)

122. C. Kim et al., A 512 Gb 3b/Cell 64-Stacked WL 3D V-NAND flash memory, in ISSCC (2017)

123. J. Kim, M. Sullivan, M. Erez, Bamboo ECC: strong, safe, and flexible codes for reliable

computer memory, in HPCA (2015)

124. J. Kim, M. Sullivan, S.-L. Gong, M. Erez, Frugal ECC: efficient and versatile memory error

protection through fine-grained compression, in SC (2015)

125. J.S. Kim, M. Patel, H. Hassan, O. Mutlu, The DRAM latency PUF: quickly evaluating phys-

ical unclonable functions by exploiting the latency–reliability tradeoff in modern DRAM

devices, in HPCA (2018)

126. K. Kim, J. Lee, A new investigation of data retention time in truly nanoscaled DRAMs (IEEE

Electron, Device Lett, 2009)

127. N. Kim, J.-H. Jang, Nonvolatile memory device, method of operating nonvolatile memory

device and memory system including nonvolatile memory device. U.S. Patent 8,203,881

(2012)

128. Y. Kim, Architectural techniques to enhance DRAM scaling. Ph.D. Dissertation, Carnegie

Mellon Univ., 2015

129. Y. Kim, D. Han, O. Mutlu, M. Harchol-Balter, ATLAS: a scalable and high-performance

scheduling algorithm for multiple memory controllers, in HPCA (2010)

130. Y. Kim, O. Mutlu, "Memory Systems," in Computing Handbook, 3rd edn. (CRC Press, Boca

Raton, FL, USA, 2014)

131. Y. Kim, V. Seshadri, D. Lee, J. Liu, O. Mutlu, A case for exploiting subarray-level parallelism

(SALP) in DRAM, in ISCA (2012)

132. Y. Kim, W. Yang, O. Mutlu, Ramulator: a fast and extensible DRAM simulator (IEEE Com-

put. Archit, Lett, 2016)

133. Y.S. Kim, D.J. Lee, C.K. Lee, H.K. Choi, S.S. Kim, J.H. Song, D.H. Song, J.-H. Choi, K.-D.

Suh, C. Chung, New scaling limitation of the floating gate cell in NAND flash memory, in

IRPS (2010)

134. Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee, C. Wilkerson, K. Lai, O. Mutlu, “Flipping

bits in memory without accessing them: an experimental study of DRAM disturbance errors,

in ISCA (2014)

135. Y. Kim, M. Papamichael, O. Mutlu, M. Harchol-Balter, Thread cluster memory scheduling:

exploiting differences in memory access behavior, in MICRO (2010)

136. Y. Koh, NAND flash scaling beyond 20 nm, in IMW (2009)

137. Y. Komori, M. Kido, M. Kito, R. Katsumata, Y. Fukuzumi, H. Tanaka, Y. Nagata, M. Ishiduki,

H. Aochi, A. Nitayama, Disturbless flash memory due to high boost efficiency on BiCS struc-

ture and optimal memory film stack for ultra high density storage device, in IEDM (2008)

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 335

138. E. Kültürsay, M. Kandemir, A. Sivasubramaniam, O. Mutlu, Evaluating STT-RAM as an

energy-efficient main memory alternative, in ISPASS (2013)

139. M. LaPedus, How to make 3D NAND (Semicond, Eng, 2016)

140. B.C. Lee, E. Ipek, O. Mutlu, D. Burger, Architecting phase change memory as a scalable

DRAM alternative, in ISCA (2009)

141. B.C. Lee, E. Ipek, O. Mutlu, D. Burger, Phase change memory architecture and the quest for

scalability. ACM Commun. (2010)

142. B.C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Zhao, E. Ipek, O. Mutlu, D. Burger, Phase-change

technology and the future of main memory. IEEE Micro (2010)

143. C.J. Lee, V. Narasiman, O. Mutlu, Y.N. Patt, Improving memory bank-level parallelism in the

presence of prefetching, in MICRO (2009)

144. D. Lee, Reducing DRAM energy at low cost by exploiting heterogeneity. Ph.D. Dissertation,

Carnegie Mellon University, 2016

145. D. Lee, S. Ghose, G. Pekhimenko, S. Khan, O. Mutlu, Simultaneous multi-layer access:

improving 3D-stacked memory bandwidth at low cost. ACM TACO (2016)

146. D. Lee, S. Khan, L. Subramanian, S. Ghose, R. Ausavarungnirun, G. Pekhimenko,

V. Seshadri, O. Mutlu, Design-induced latency variation in modern DRAM chips: charac-

terization, analysis, and latency reduction mechanisms, in SIGMETRICS (2017)

147. D. Lee, Y. Kim, V. Seshadri, J. Liu, L. Subramanian, O. Mutlu, Tiered-Latency DRAM: a

low latency and low cost DRAM architecture, in HPCA (2013)

148. D. Lee, L. Subramanian, R. Ausavarungnirun, J. Choi, and O. Mutlu, Decoupled direct mem-

ory access: isolating CPU and IO traffic by leveraging a dual-data-port DRAM, in PACT
(2015)

149. D. Lee, Y. Kim, G. Pekhimenko, S. Khan, V. Seshadri, K. Chang, O. Mutlu, Adaptive-latency

DRAM: optimizing DRAM timing for the common-case, in HPCA (2015)

150. J.-D. Lee, J.-H. Choi, D. Park, K. Kim, Degradation of tunnel oxide by FN current stress

and its effects on data retention characteristics of 90 nm NAND flash memory cells, in IRPS
(2003)

151. J.-D. Lee, S.-H. Hur, J.-D. Choi, Effects of floating-gate interference on NAND flash memory
cell operation (IEEE Electron, Device Lett, 2002)

152. S.-Y. Lee, Limitations of 3D NAND scaling. EE Times (2017)

153. Y. Lee, H. Yoo, I. Yoo, I.-C. Park, 6.4 Gb/s Multi-threaded BCH encoder and decoder for

multi-channel SSD controllers, in ISSCC (2012)

154. J. Li, K. Zhao, X. Zhang, J. Ma, M. Zhao, T. Zhang, How much can data compressibility help

to improve NAND flash memory lifetime? in FAST (2015)

155. Y. Li, S. Ghose, J. Choi, J. Sun, H. Wang, O. Mutlu, Utility-based hybrid memory manage-

ment, in CLUSTER (2017)

156. Y. Li, C. Hsu, K. Oowada, Non-volatile memory and method with improved first pass pro-

gramming, U.S. Patent 8,811,091 (2014)

157. J. Liu, B. Jaiyen, Y. Kim, C. Wilkerson, O. Mutlu, An experimental study of data retention

behavior in modern DRAM devices: implications for retention time profiling mechanisms, in

ISCA (2013)

158. J. Liu, B. Jaiyen, R. Veras, O. Mutlu, RAIDR: retention-aware intelligent DRAM refresh, in

ISCA (2012)

159. S. Liu, K. Pattabiraman, T. Moscibroda, B. Zorn, Flikker: saving DRAM refresh-power

through critical data partitioning, in ASPLOS (2011)

160. W. Liu, J. Rho, W. Sung, Low-power high-throughput BCH error correction VLSI design for

multi-level cell NAND flash memories, in SIPS (2006)

161. Y. Luo, Y. Cai, S. Ghose, J. Choi, O. Mutlu, WARM: improving NAND flash memory lifetime

with write-hotness aware retention management, in MSST (2015)

162. Y. Luo, S. Ghose, Y. Cai, E.F. Haratsch, O. Mutlu, Enabling accurate and practical online
flash channel modeling for modern MLC NAND flash memory (IEEE J. Sel, Areas Commun,

2016)

336 Y. Cai et al.

163. Y. Luo, S. Ghose, T. Li, S. Govindan, B. Sharma, B. Kelly, B. Kelly, A. Boroumand, O. Mutlu,

Using ECC DRAM to adaptively increase memory capacity (2017), arXiv:1706.08870

164. Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch, O. Mutlu, HeatWatch: improving 3D NAND flash

memory device reliability by exploiting self-recovery and temperature awareness, in HPCA
(2018)

165. Y. Luo, S. Govindan, B. Sharma, M. Santaniello, J. Meza, A. Kansal, J. Liu, B. Khessib,

K. Vaid, O. Mutlu, Characterizing application memory error vulnerability to optimize data-

center cost via heterogeneous-reliability memory, in DSN (2014)

166. S. Luryi, A. Kastalsky, A.C. Gossard, R.H. Hendel, Charge injection transistor based on
real-space hot-electron transfer (IEEE Trans. Electron, Devices, 1984)

167. D.J.C. MacKay, R.M. Neal, Near Shannon limit performance of low density parity check
codes (IET Electron, Lett, 1997)

168. A. Maislos, A new era in embedded flash memory, in Flash Memory Summit (2011)

169. J.A. Mandelman, R.H. Dennard, G.B. Bronner, J.K. DeBrosse, R. Divakaruni, Y. Li, C.J.

Radens, Challenges and future directions for the scaling of dynamic random-access memory
(DRAM) (IBM J. Res, Develop, 2002)

170. A. Marelli, R. Micheloni, BCH and LDPC error correction codes for NAND flash memories,
in 3D Flash Memories (Springer, Dordrecht, Netherlands, 2016)

171. J.L. Massey, Shift-register synthesis and BCH decoding (IEEE Trans. Inf, Theory, 1969)

172. F. Masuoka, M. Momodomi, Y. Iwata, R. Shirota, New ultra high density EPROM and flash

EEPROM with NAND structure cell, in IEDM (1987)

173. J. Meza, Y. Luo, S. Khan, J. Zhao, Y. Xie, O. Mutlu, A case for efficient hardware-software

cooperative management of storage and memory, in WEED (2013)

174. J. Meza, Q. Wu, S. Kumar, O. Mutlu, A large-scale study of flash memory errors in the field,

in SIGMETRICS (2015)

175. J. Meza, Q. Wu, S. Kumar, O. Mutlu, Revisiting memory errors in large-scale production data

centers: analysis and modeling of new trends from the field, in DSN (2015)

176. J. Meza, J. Chang, H. Yoon, O. Mutlu, P. Ranganathan, Enabling efficient and scalable
hybrid memories using fine-granularity DRAM cache management (IEEE Comput. Archit,

Lett, 2012)

177. R. Micheloni (ed.), 3D Flash Memories (Netherlands, Springer, Netherlands, Dordrecht,

2016)

178. R. Micheloni, S. Aritome, L. Crippa, Array architectures for 3-D NAND flash memories.

Proc. IEEE (2017)

179. R. Micheloni et al., A 4Gb 2b/Cell NAND flash memory with embedded 5b BCH ECC for

36 MB/s system read throughput, in ISSCC (2006)

180. Micron Technology, Inc., Memory Management in NAND Flash Arrays, Tech Note TN-29-

28, 2005

181. Micron Technology, Inc., Bad Block Management in NAND Flash Memory, Tech Note TN-

29-59, 2011

182. N. Mielke, T. Marquart, N. Wu, J. Kessenich, H. Belgal, E. Schares, F. Trivedi, E. Goodness,

L.R. Nevill, Bit error rate in NAND flash memories, in IRPS (2008)

183. K. Mizoguchi, T. Takahashi, S. Aritome, K. Takeuchi, Data-retention characteristics compar-

ison of 2D and 3D TLC NAND flash memories, in IMW (2017)

184. V. Mohan, Modeling the physical characteristics of NAND flash memory. Ph.D. Dissertation,

University of Virginia, 2010

185. V. Mohan, S. Sankar, S. Gurumurthi, W. Redmond, ReFresh SSDs: enabling high endurance,

low cost flash in datacenters. Technical Report No. CS-2012-05 (University of Virginia, 2012)

186. V. Mohan, T. Siddiqua, S. Gurumurthi, M.R. Stan, How I learned to stop worrying and love

flash endurance, in HotStorage (2010)

187. M. Momodomi, F. Masuoka, R. Shirota, Y. Itoh, K. Ohuchi, R. Kirisawa, Electrically erasable

programmable read-only memory with NAND cell structure, U.S. Patent 4,959,812 (1988)

188. T. Moscibroda, O. Mutlu, Memory performance attacks: denial of memory service in multi-

core systems, in USENIX Security (2007)

http://arxiv.org/abs/1706.08870

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 337

189. T. Moscibroda, O. Mutlu, Distributed order scheduling and its application to multi-core

DRAM controllers, in PODC (2008)

190. J. Mukundan, H. Hunter, K.-H. Kim, J. Stuecheli, J.F. Martínez, Understanding and mitigating

refresh overheads in high-density DDR4 DRAM systems, in ISCA (2013)

191. S.P. Muralidhara, L. Subramanian, O. Mutlu, M. Kandemir, T. Moscibroda, Reducing mem-

ory interference in multicore systems via application-aware memory channel partitioning, in

MICRO (2011)

192. O. Mutlu, Memory scaling: a systems architecture perspective, in IMW (2013)

193. O. Mutlu, The Rowhammer problem and other issues we may face as memory becomes

denser, in DATE (2017)

194. O. Mutlu, T. Moscibroda, Stall-time fair memory access scheduling for chip multiprocessors,

in MICRO (2007)

195. O. Mutlu, T. Moscibroda, Parallelism-aware batch scheduling: enhancing both performance

and fairness of shared DRAM systems, in ISCA (2008)

196. O. Mutlu, L. Subramanian, Research problems and opportunities in memory systems,

SUPERFRI (2014)

197. H. Naeimi, C. Augustine, A. Raychowdhury, S.-L. Lu, J. Tschanz, STT-RAM scaling and

retention failure. Intel Technol. J. (2013)

198. P.J. Nair, V. Sridharan, M.K. Qureshi, XED: exposing on-die error detection information for

strong memory reliability, in ISCA (2016)

199. I. Narayanan, D. Wang, M. Jeon, B. Sharma, L. Caulfield, A. Sivasubramaniam, B. Cutler,

J. Liu, B. Khessib, K. Vaid, SSD failures in datacenters: What? When? and Why? in SYSTOR
(2016)

200. K. Naruke, S. Taguchi, M. Wada, Stress induced leakage current limiting to scale down EEP-

ROM tunnel oxide thickness, in IEDM (1988)

201. National Inst. of Standards and Technology, Specification for the Advanced Encryption Stan-
dard (AES), FIPS Publication 197, 2001

202. NVM Express, Inc., NVM Express Specification, Revision 1.3, 2017

203. S. Ohshima Y. Tanaka, New 3D flash technologies offer both low cost and low power solu-

tions, in Flash Memory Summit (2016)

204. Openmoko, NAND Bad Blocks, http://wiki.openmoko.org/wiki/NAND_bad_blocks (2012)

205. Y. Pan, G. Dong, Q. Wu, T. Zhang, Quasi-nonvolatile SSD: trading flash memory nonvolatil-

ity to improve storage system performance for enterprise applications, in HPCA (2012)

206. N. Papandreou, T. Parnell, H. Pozidis, T. Mittelholzer, E. Eleftheriou, C. Camp, T. Griffin,

G. Tressler, A. Walls, Using adaptive read voltage thresholds to enhance the reliability of

MLC NAND flash memory systems, in GLSVLSI (2014)

207. J. Park, J. Jeong, S. Lee, Y. Song, J. Kim, Improving performance and lifetime of NAND

storage systems using relaxed program sequence, in DAC (2016)

208. K.-T. Park et al., A 7MB/s 64Gb 3-Bit/Cell DDR NAND Flash Memory in 20nm-node tech-

nology, in ISSCC (2011)

209. K.-T. Park, M. Kang, D. Kim, S.-W. Hwang, B.Y. Choi, Y.-T. Lee, C. Kim, K. Kim, A zero-
ing cell-to-cell interference page architecture with temporary LSB storing and parallel MSB
program scheme for MLC NAND flash memories (IEEE J, Solid-State Circuits, 2008)

210. K. Park et al., Three-dimensional 128 Gb MLC vertical NAND flash memory with 24-WL

stacked layers and 50 MB/s high-speed programming. J. Solid-State Circuits (2015)

211. T. Parnell, NAND flash basics and error characteristics: why do we need smart controllers?

in Flash Memory Summit (2016)

212. T. Parnell, N. Papandreou, T. Mittelholzer, H. Pozidis, Modelling of the threshold voltage

distributions of sub-20nm NAND flash memory, in GLOBECOM (2014)

213. T. Parnell, R. Pletka, NAND flash basics and error characteristics, in Flash Memory Summit
(2017)

214. M. Patel, J.S. Kim, O. Mutlu, The reach profiler (REAPER): enabling the mitigation of

DRAM retention failures via profiling at aggressive conditions, in ISCA (2017)

http://wiki.openmoko.org/wiki/NAND_bad_blocks

338 Y. Cai et al.

215. D.A. Patterson, G. Gibson, R.H. Katz, A case for redundant arrays of inexpensive disks

(RAID), in SIGMOD (1988)

216. P. Pavan, R. Bez, P. Olivo, E. Zanoni, Flash memory cells–an overview. Proc. IEEE (1997)

217. PCI-SIG, PCI Express Base Specification Revision 3.1a, 2015

218. J. Pearl, Reverend bayes on inference engines: a distributed hierarchical approach, in AAAI
(1982)

219. W.W. Peterson, D.T. Brown, Cyclic codes for error detection (Proc, IRE, 1961)

220. S. Phadke, S. Narayanasamy, MLP aware heterogeneous memory system, in DATE (2011)

221. A. Pirovano, A.L. Lacaita, F. Pellizzer, S.A. Kostylev, A. Benvenuti, R. Bez, Low-field amor-
phous state resistance and threshold voltage drift in chalcogenide materials (IEEE Trans,

Electron Devices, 2004)

222. Z. Qin, Y. Wang, D. Liu, Z. Shao, Y. Guan, MNFTL: an efficient flash translation layer for

MLC NAND flash memory storage systems, in DAC (2011)

223. M. Qureshi, D.H. Kim, S. Khan, P. Nair, O. Mutlu, AVATAR: a variable-retention-time (VRT)

aware refresh for DRAM systems, in DSN (2015)

224. M.K. Qureshi, V. Srinivasan, J.A. Rivers, Scalable high performance main memory system

using phase-change memory technology, in ISCA (2009)

225. M.K. Qureshi, G.H. Loh, Fundamental latency trade-off in architecting DRAM caches: out-

performing impractical SRAM-tags with a simple and practical design, in MICRO (2012)

226. L.E. Ramos, E. Gorbatov, R. Bianchini, Page placement in hybrid memory systems, in ICS
(2011)

227. K. Razavi, B. Gras, E. Bosman, B. Preneel, C. Guiffrida, H. Bos, Flip Feng Shui: hammering

a needle in the software stack, in USENIX Security (2016)

228. P.J. Restle, J.W. Park, B.F. Lloyd, DRAM variable retention time, in IEDM (1992)

229. D. Rollins, A Comparison of Client and Enterprise SSD Data Path Protection (Micron Tech-

nology, Inc., 2011)

230. W. Ryan, S. Lin, Channel Codes: Classical and Modern (Cambridge University Press, Cam-

bridge, UK, 2009)

231. Samsung Electronics Co., Ltd., Samsung V-NAND Technology (2014), http://www.samsung.

com/us/business/oem-solutions/pdfs/V-NAND_technology_WP.pdf

232. Samsung Electronics Co., Ltd., Samsung SSD 960 PRO M.2 Data Sheet Rev. 1.1 (2017)

233. B. Schroeder, R. Lagisetty, A. Merchant, Flash reliability in production: the expected and the

unexpected, in FAST (2016)

234. B. Schroeder, E. Pinheiro, W.-D. Weber, DRAM errors in the wild: a large-scale field study,

in SIGMETRICS (2009)

235. M. Seaborn, T. Dullien, Exploiting the DRAM Rowhammer Bug to Gain Kernel Privileges,

(Google Project Zero Blog, 2015)

236. M. Seaborn, T. Dullien, Exploiting the DRAM Rowhammer bug to gain kernel privileges, in

BlackHat (2015)

237. Seagate Technology LLC, Enterprise Performance 15K HDD Data Sheet (2016)

238. Serial ATA International Organization, Serial ATA Revision 3.3 Specification (2016)

239. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. (July 1948)

240. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. (Oct 1948)

241. H. Shim et al., Highly reliable 26nm 64Gb MLC E2NAND (embedded-ECC and enhanced-

efficiency) flash memory with MSP (memory signal processing) controller, in VLSIT (2011)

242. S.-H. Shin et al., A new 3-bit programming algorithm using SLC-to-TLC migration for 8

MB/s high performance TLC NAND flash memory, in VLSIC (2012)

243. L. Shu, D.J. Costello, Error Control Coding, 2nd edn. (Prentice-Hall, Englewood Cliffs, NJ,

USA, 2004)

244. S. Sills, S. Yasuda, A. Calderoni, C. Cardon, J. Strand, K. Aratani, N. Ramaswamy, Challenges

for high-density 16Gb ReRAM with 27nm technology, in VLSIC (2015)

245. S. Sills, S. Yasuda, J. Strand, A. Calderoni, K. Aratani, A. Johnson, N. Ramaswamy, A copper

ReRAM cell for storage class memory applications, in VLSIT (2014)

http://www.samsung.com/us/business/oem-solutions/pdfs/V-NAND_technology_WP.pdf
http://www.samsung.com/us/business/oem-solutions/pdfs/V-NAND_technology_WP.pdf

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 339

246. V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard, S. Gurumurthi, Feng Shui of super-

computer memory: positional effects in DRAM and SRAM faults, in SC (2013)

247. V. Sridharan, N. DeBardeleben, S. Blanchard, K.B. Ferreira, J. Stearley, J. Shalf, S. Guru-

murthi, Memory errors in modern systems: the good, the bad, and the ugly, in ASPLOS (2015)

248. D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature

(2008)

249. J. Stuecheli, D. Kaseridis, H.C. Hunter, L.K. John, Elastic refresh: techniques to mitigate

refresh penalties in high density memory, in MICRO (2010)

250. L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, O. Mutlu, The blacklisting memory sched-

uler: achieving high performance and fairness at low cost, in ICCD (2014)

251. L. Subramanian, D. Lee, V. Seshadri, H. Rastogi, O. Mutlu, BLISS: balancing performance,
fairness and complexity in memory access scheduling (IEEE Trans. Parallel Distrib, Syst,

2016)

252. L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, O. Mutlu, MISE: providing performance

predictability and improving fairness in shared main memory systems, in HPCA (2013)

253. K.-D. Suh et al., A 3.3V 32 Mb NAND Flash memory with incremental step pulse program-

ming scheme. IEEE J. Solid-State Circuits (1995)

254. K. Takeuchi, S. Satoh, T. Tanaka, K.-I. Imamiya, K. Sakui, A negative Vth cell architecture for
highly scalable, excellently noise-immune, and highly reliable NAND flash memories (IEEE

J, Solid-State Circuits, 1999)

255. H. Tanaka et al., Bit cost scalable technology with punch and plug process for ultra high

density flash memory, in VLSIT (2007)

256. S. Tanakamaru, C. Hung, A. Esumi, M. Ito, K. Li, K. Takeuchi, 95%-lower-BER 43%-lower-

power intelligent solid-state drive (SSD) with asymmetric coding and stripe pattern elimina-

tion algorithm, in ISSCC (2011)

257. L. Tang, Q. Huang, W. Lloyd, S. Kumar, K. Li, RIPQ: advanced photo caching on flash for

facebook, in FAST (2015)

258. R. Tanner, A recursive approach to low complexity codes (IEEE Trans. Inf, Theory, 1981)

259. Techman Electronics Co., Techman XC100 NVMe SSD, White Paper v1.0, 2016

260. Toshiba Corp., 3D Flash Memory: Scalable, High Density Storage for Large Capacity Appli-

cations (2017), http://www.toshiba.com/taec/adinfo/technologymoves/3d-flash.jsp

261. A.N. Udipi, N. Muralimanohar, R. Balasubramonian, A. Davis, N.P. Jouppi, LOT-ECC: local-

ized and tiered reliability mechanisms for commodity memory systems, in ISCA (2012)

262. V. van der Veen, Y. Fratanonio, M. Lindorfer, D. Gruss, C. Maurice, G. Vigna, H. Bos,

K. Razavi, C. Guiffrida, Drammer: deterministic Rowhammer attacks on mobile platforms,

in CCS (2016)

263. N. Varnica, LDPC decoding: VLSI architectures and implementations—module 1: LDPC

decoding, in Flash Memory Summit (2013)

264. R.K. Venkatesan, S. Herr, E. Rotenberg, Retention-aware placement in DRAM (RAPID):

software methods for quasi-non-volatile DRAM, in HPCA (2006)

265. C. Wang, W.-F. Wong, Extending the lifetime of NAND flash memory by salvaging bad

blocks, in DATE (2012)

266. J. Wang, K. Vakilinia, T.-Y. Chen, T. Courtade, G. Dong, T. Zhang, H. Shankar, R. Weselk,

Enhanced precision through multiple reads for LDPC decoding in flash memories (IEEE J.

Sel, Areas Commun, 2014)

267. W. Wang, T. Xie, D. Zhou, Understanding the impact of threshold voltage on MLC flash

memory performance and reliability, in ICS (2014)

268. H.A.R. Wegener, A.J. Lincoln, H.C. Pao, M.R. O’Connell, R.E. Oleksiak, H. Lawrence, The

variable threshold transistor, a new electrically-alterable, non-destructive read-only storage

device, in IEDM (1967)

269. J. Werner, A look under the hood at some unique SSD features, in Flash Memory Summit
(2010)

270. C. Wilkerson, A. R. Alameldeen, Z. Chishti, W. Wu, D. Somasekhar, S.-L. Lu, Reducing

cache power with low-cost, multi-bit error-correcting codes, in ISCA (2010)

http://www.toshiba.com/taec/adinfo/technologymoves/3d-flash.jsp

340 Y. Cai et al.

271. M. Willett, Encrypted SSDs: self-encryption versus software solutions, in Flash Memory
Summit 2015

272. E.H. Wilson, M. Jung, M.T. Kandemir, Zombie NAND: resurrecting dead NAND flash for

improved SSD longevity, in MASCOTS (2014)

273. H.-S.P. Wong, H.-Y. Lee, S. Yu, Y.-S. Chen, Y. Wu, P.-S. Chen, B. Lee, F.T. Chen, M.-J. Tsai,

Metal-Oxide RRAM (Proc, IEEE, 2012)

274. H.-S.P. Wong, S. Raoux, S. Kim, J. Liang, J.P. Reifenberg, B. Rajendran, M. Asheghi, K.E.

Goodson, Phase change memory (Proc, IEEE, 2010)

275. G. Wu, X. He, N. Xie, T. Zhang, DiffECC: improving SSD read performance using differen-

tiated error correction coding schemes, in MASCOTS (2010)

276. G. Wu, X. He, Reducing SSD read latency via NAND flash program and erase suspension,

in FAST (2012)

277. Y. Wu, Y. Cai, E.F. Haratsch, Fixed point conversion of LLR values based on correlation,

U.S. Patent 9,582,361 (2017)

278. Y. Wu, Y. Cai, E.F. Haratsch, Systems and methods for soft data utilization in a solid state

memory system, U.S. Patent 9,201,729 (2017)

279. Y. Wu, Z. Chen, Y. Cai, E.F. Haratsch, Method of erase state handling in flash channel track-

ing, U.S. Patent 9,213,599 (2015)

280. Y. Wu, E.T. Cohen, Optimization of read thresholds for non-volatile memory, U.S. Patent

9,595,320 (2015)

281. Y. Xiao, X. Zhang, Y. Zhang, R. Teodorescu, One bit flips, one cloud flops: cross-VM

Rowhammer attacks and privilege escalation, in USENIX Security (2016)

282. M. Xu, M. Li, C. Tan, Extended Arrhenius law of time-to-breakdown of ultrathin gate oxides
(Appl. Phys, Lett, 2003)

283. Q. Xu, H. Siyamwala, M. Ghosh, M. Awasthi, T. Suri, Z. Guz, A. Shayesteh, V. Balakrishnan,

Performance characterization of hyperscale applications on NVMe SSDs, in SIGMETRICS,

(2015)

284. Q. Xu, H. Siyamwala, M. Ghosh, T. Suri, M. Awasthi, Z. Guz, A. Shayesteh, V. Balakrish-

nan, Performance analysis of NVMe SSDs and their implication on real world databases, in

SYSTOR (2015)

285. R.-I. Yamada, Y. Mori, Y. Okuyama, J. Yugami, T. Nishimoto, H. Kume, Analysis of detrap

current due to oxide traps to improve flash memory retention, in IRPS (2000)

286. D.S. Yaney, C.Y. Lu, R.A. Kohler, M.J. Kelly, J.T. Nelson, A meta-stable leakage phe-

nomenon in DRAM charge storage—variable hold time, in IEDM (1987)

287. J. Yang, High-Efficiency SSD for reliable data storage systems, in Flash Memory Summit
(2011)

288. M.-C. Yang, Y.-M. Chang, C.-W. Tsao, P.-C. Huang, Y.-H. Chang, T.-W. Kuo, Garbage col-

lection and wear leveling for flash memory: past and future, in SMARTCOMP (2014)

289. N.N. Yang, C. Avila, S. Sprouse, A. Bauche, Systems and methods for read disturb manage-

ment in non-volatile memory, U.S. Patent 9,245,637 (2015)

290. H. Yoon, J. Meza, N. Muralimanohar, N.P. Jouppi, O. Mutlu, Efficient data mapping and

buffering techniques for multi-level cell phase-change memories. ACM TACO (2014)

291. H. Yoon, J. Meza, R. Ausavarungnirun, R. Harding, O. Mutlu, Row buffer locality aware

caching policies for hybrid memories, in ICCD (2012)

292. J. H. Yoon, 3D NAND technology: implications to enterprise storage applications, in Flash
Memory Summit (2015)

293. J. H. Yoon, R. Godse, G. Tressler, H. Hunter, 3D-NAND scaling and 3D-SCM—implications

to enterprise storage, in Flash Memory Summit (2017)

294. J.H. Yoon, G.A. Tressler, Advanced flash technology status, scaling trends and implications

to enterprise SSD technology enablement, in Flash Memory Summit (2012)

295. X. Yu, C.J. Hughes, N. Satish, O. Mutlu, S. Devadas, Banshee: bandwidth-efficient DRAM

caching via software/hardware cooperation, in MICRO (2017)

296. W. Zhang, T. Li, Exploring phase change memory and 3D die-stacking for power/thermal

friendly, fast and durable memory architectures, in PACT (2009)

9 Reliability Issues in Flash-Memory-Based Solid-State . . . 341

297. Z. Zhang, W. Xiao, N. Park, D.J. Lilja, Memory module-level testing and error behaviors for

phase change memory, in ICCD (2012)

298. K. Zhao, W. Zhao, H. Sun, X. Zhang, N. Zheng, T. Zhang, LDPC-in-SSD: making advanced

error correction codes work effectively in solid state drives, in FAST (2013)

299. P. Zhou, B. Zhao, J. Yang, Y. Zhang, A durable and energy efficient main memory using phase

change memory technology, in ISCA (2009)

300. A. Zuck, S. Toledo, D. Sotnikov, D. Harnik, Compression and SSDs: where and how? in

INFLOW (2014)

301. Y. Luo, S. Ghose, Y. Cai, E.F. Haratsch, O. Mutlu, Improving 3D NAND flash memory life-

time by tolerating early retention loss and process variation, in SIGMETRICS (2018)

Chapter 10
Efficient Wear Leveling in NAND Flash
Memory

Yuan-Hao Chang and Li-Pin Chang

Abstract In the recent years, flash storage devices such as solid-state drives
(SSDs) and flash cards have become a popular choice for the replacement of hard
disk drives, especially in the applications of mobile computing devices and con-
sumer electronics. However, the physical constraints of flash memory pose a life-
time limitation on these storage devices. New technologies for ultra-high density
flash memory such as multilevel-cell (MLC) flash further degrade flash endurance
and worsen this lifetime concern. As a result, flash storage devices may experience
a unexpectedly short lifespan, especially when accessing these devices with high
frequencies. In order to enhance the endurance of flash storage device, various wear
leveling algorithms are proposed to evenly erase blocks of the flash memory so as
to prevent wearing out any block excessively. In this chapter, various existing wear
leveling algorithms are investigated to point out their design issues and potential
problems. Based on this investigation, two efficient wear leveling algorithms (i.e.,
the evenness-aware algorithm and dual-pool algorithm) are presented to solve the
problems of the existing algorithms with the considerations of the limited com-
puting power and memory space in flash storage devices. The evenness-aware
algorithm maintains a bit array to keep track of the distribution of block erases to
prevent any cold data from staying in any block for a long period of time. The
dual-pool algorithm maintains one hot pool and one cold pool to maintain the
blocks that store hot data and cold data, respectively, and the excessively erased
blocks in the hot pool are exchanged with the rarely erased blocks in the cold pool
to prevent any block from being erased excessively. In this chapter, a series of
explanations and analyses shows that these two wear leveling algorithms could
evenly distribute block erases to the whole flash memory to enhance the endurance
of flash memory.

Y.-H. Chang (✉)
Academia Sinica, Institute of Information Science, Taipei, Taiwan
e-mail: johnson@iis.sinica.edu.tw

L.-P. Chang
Department of Computer Science, National Chiao-Tung University, Hsinchu, Taiwan
e-mail: lpchang@cs.nctu.edu.tw

© Springer Nature Singapore Pte Ltd. 2018
R. Micheloni et al. (eds.), Inside Solid State Drives (SSDs),
Springer Series in Advanced Microelectronics 37,
https://doi.org/10.1007/978-981-13-0599-3_10

343

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_10&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_10&domain=pdf

10.1 Introduction

NAND flash memory has been widely adopted in various mobile embedded
applications, due to its non-volatility, shock-resistance, low-power consumption,
and low cost. It is widely adopted in various storage systems, and its applications
have grown much beyond its original designs. The two popular NAND flash
memory designs are single-level-cell (SLC) flash memory and multi-level-cell
(MLC) flash memory. Each SLC flash-memory cell can accommodate 1-bit
information while each MLC× n flash-memory cell can contain n-bit information.
As n increases, the endurance of each block in MLC flash memory decreases
substantially.1 In recent years, Well-known examples are flash-memory cache of
hard drives (known as TurboMemory) [13, 40, 48], fast booting devices (for
Microsoft Windows Visa), and solid-state disks (SSD) (for the replacement of hard
drives).

As the low-cost MLC flash-memory designs are gaining market momentum [11],
the endurance of flash memory is an even more challenging problem. For example,
the endurance of an MLC×2 flash-memory block is only 10,000 (or 5,000) erase
cycles whereas that of its SLC flash memory counterpart is 100,000 erase cycles
[35, 41]. As the number of bits of information per cell would keep increasing for
MLC in the near future, the endurance of a block might also get worse, such as few
thousand or even hundred erase cycles. This underlines the endurance issue of flash
memory. However, improving endurance is problematic because flash-memory
designs allow little compromise between system performance and cost, especially
for low-cost flash storage devices. Such developments reveal the limitations of flash
memory, especially in terms of endurance.

A NAND flash storage device or storage system, e.g., a solid-state disk
(SSD) and flash cards, may be associated with multiple chips. Each chip is com-
posed of one or more sub-chips or dies. Each sub-chip might have multiple planes.
Each plane is organized in terms of blocks that are the basic unit for erase opera-
tions. A block is further divided into a fixed number of pages and can only endure
limited erase cycles. A page (that is the unit of read and write operations) consists of
a user area and a spare area, where the user area is for data storage, and the spare
area stores house-keeping information such as the corresponding logical block
addresses (LBAs), status flags, and error correction codes (ECCs). When a page is
written with data, it is no longer available unless it is erased. This is called the
“write-once property”. As a result, “out-place updates” are adopted so that data are
usually updated over free pages. Pages that contain the latest copy of data (i.e., valid
data) are considered as live (or valid) pages, and pages with old versions (i.e.,
invalid data) are dead (or invalid) pages. Therefore, address translation is needed to
map logical addresses of data to their physical addresses, and “garbage collection”
is needed to reclaim dead pages. Because each block has a limited number of erase

1In this chapter, we consider NAND flash memory, which is the most widely adopted flash
memory in storage-system designs.

344 Y.-H. Chang and L.-P. Chang

cycles, “wear-leveling” is needed to evenly erase blocks so as to prevent wearing
out some blocks excessively.

Engineers and researchers have recently become concerned with how long flash
storage devices can withstand daily use when they are adopted in applications with
high access frequencies. The host systems, e.g., smart phones and notebooks,
access their secondary storages (such as hard drives and SSDs) with temporal
localities [6, 32, 33, 46]. Frequently updated data and rarely updated data coexist
under such workloads. When reclaiming free space, block erases are always
directed to the blocks with few valid data so as to reduce data-copy overheads.
Thus, blocks having many static (or immutable) data are rarely chosen for erases,
while other blocks are erased many times to circulate frequently updated data. As a
result, some blocks are worn out when other blocks remain fresh. The problem of
wearing out blocks is a crucial concern for new-generation flash memory, and wear
leveling is the policy of evenly erasing all flash-memory blocks to keep all the
blocks alive as long as possible. Strategies friendly to wear leveling can be adopted
in various system layers, including applications, file systems, and firmware. To
closely monitor wear in all blocks, the flash management strategies that are usually
implemented as firmware implements wear leveling. However, wear leveling is not
free, since extra data movement is required. Alleviating wear-leveling overheads is
an important task, as wear leveling activities themselves wear flash memory too.

Many excellent wear leveling algorithms have been proposed by academia and
industry. Updating data out of place is a simple wear-leveling technique [12, 23, 29,
31, 38]. However, this simple policy is vulnerable in the presence of static data
because static data are rarely invalidated and need to be copied out before their
residing blocks are erased. In order to reduce live-data-copying overhead, blocks
storing a lot of static data rarely participate in the activities of reclaiming free space.
Therefore, the key to wear leveling may be to encourage the blocks with static data to
participate in block erases. Kim and Lee [20] and Chiang et al. [9] proposed value
functions for choosing victim blocks. In their approach, a block receives a high score
if it currently has few valid data or its number of accumulated erase cycles is low.
Another technique is to erase blocks in favor of reclaiming free space most of the
time, but periodically, a block is erased in favor of wear leveling [24, 47]. A typical
strategy is to occasionally erase a random block. Wear leveling activities can also be
completely detached from free-space reclaiming. Hot-cold swapping [6, 10, 17, 20,
27] involves swapping data in a frequently erased block with that in an infrequently
erased block whenever the wear of all blocks is unbalanced.

These existing approaches share a common idea: encouraging infrequently
erased blocks to contribute to erases cycles. Under the workload of most real access
patterns, most block erases are contributed by a small fraction of blocks if wear
leveling is not used. According to such observations, static wear leveling algorithms
are proposed to move static data away from infrequently erased blocks [2, 7, 43].
However, some existing static wear leveling algorithms don’t consider the limited
computing power or restricted RAM space, while some don’t consider the access
patterns and data access frequencies [3, 4, 18, 39, 42]. As a result, these existing
static wear leveling algorithms either consume too many hardware resources or

10 Efficient Wear Leveling in NAND Flash Memory 345

introduce too many overheads on extra live page copies and block erases. In order
to achieve static wear leveling effectively with limited computing power, limited
main memory, and limited overheads, two efficient wear leveling algorithms (i.e.,
the evenness-aware algorithm and dual-pool algorithm) are proposed and presented
in this chapter. The evenness-aware algorithm [8] maintains a house-keeping data
structure, i.e., a bit array, with a cyclic-queue-based scanning procedure to keep
track of the distribution of block erases to prevent any static or cold data staying in
any block for a long period of time. The objective is to improve the endurance of
flash memory with limited overhead and without excessively modifying popular
implementations of flash management designs, such as FTL, NFTL, and BL [1, 14,
16, 45]. The dual-pool algorithm [5] maintains one hot pool and one cold pool to
maintain the blocks that store hot data and cold data, respectively, and the exces-
sively erased blocks in the hot pool are exchanged with the rarely erased blocks in
the cold pool to prevent any block being erased excessively. Whenever a block is
excessively erased, it is filled with static data. In this way, such blocks stop par-
ticipating in free-space reclaiming. This strategy helps conserve data movement
because the major contributors of block erases are only a small fraction of all
blocks. Second, blocks recently involved in wear leveling should be temporarily
isolated from wear leveling activities. For example, after static data are written to a
block which has been erased many times, the dual-pool algorithm decides how long
this block should wait before it can contribute more erase cycles.

The rest of this paper is organized as follows: Sect. 10.2 presents the
evenness-aware algorithm with the worst-case analysis. In Sect. 10.3, the dual-pool
algorithm is presented with a real case study. Section 10.4 concludes this chapter.

10.2 Evenness-Aware Algorithm

10.2.1 Algorithm Design

10.2.1.1 Overview

The motivation of the evenness-aware algorithm is to prevent static data from
staying at any block for a long period of time. It minimizes the maximum
erase-count difference between any two blocks, so flash memory lifetime is
extended. This algorithm could be implemented as a module. In this algorithm, it
maintain a Block Erasing Table (BET) that identifies the blocks erased during a
given period of time (Sect. 10.2.1.2). The BET is associated with the process SW
Leveler that is activated by some system parameters for the needs of static wear
leveling (Sect. 10.2.1.3). When the SW Leveler runs, it either resets the BET or
picks up a block that has not been erased so far (based on the BET information),
and triggers the garbage collector to do garbage collection on the block (note that
the selection procedure of a block must be performed efficiently and within a

346 Y.-H. Chang and L.-P. Chang

limited time). Whenever a block is recycled by the garbage collection, any modi-
fication to the address translation is performed as in the original design of a flash
management design. The SW Leveler can be implemented as a thread or as a
procedure triggered by a timer or the garbage collector based on some preset
conditions. Note that, whenever a block is erased, the BET must be updated by a
triggering action to the SW Leveler. The design of the BET is scalable to
accommodate rapidly increasing flash-memory capacity [34] and the limited RAM
space on a controller.

10.2.1.2 Block Erasing Table

The Block Erasing Table (BET) attempts to remember which block has been erased
in a pre-determined time frame, referred to as the resetting interval, so as to locate
blocks of cold data. A BET is a bit array in which each bit corresponds to a set of 2k

contiguous blocks where k is an integer that equals or exceeds 0. Whenever a block
is erased by the Cleaner, the SW Leveler is triggered to set the corresponding bit as
1. Initially, the BET is reset to 0 for every bit. As shown in Fig. 10.1, information
maintenance is performed in one-to-one and one-to-many modes, and one flag is
used to track whether any one of the corresponding 2k blocks is erased. When
k = 0, one flag is used for one block (i.e., in the one-to-one mode). The larger the
value of k, the greater the chance in the overlooking of blocks of cold data.
However, a large value for k could help reduce the RAM space required by a BET
controller.

The worst case for a large k value occurs when hot and cold data co-exist in a
block set. Fortunately, such a case is eventually resolved when hot data are

user data

physical
address (block)

Flash Memory

0
1
2
3
4
5
6
7
8
9
10
11

one flag for one block

0
1
0
1
0
0
0
0
0
0
0
0

Block3 has
been erased.

Block 1 has
been erased.

Block Erasing Table

One-to-One Mode

0
1
2
3
4
5
6
7
8
9

10
11

one-bit
flag number

user data

physical
address (block)

Flash Memory

0
1
2
3
4
5
6
7
8
9
10
11

one flag for 2 blocks

0
1
0
1
0
0
0
0
0
0
0
0 At least one of

Block6 and
Block7 has
been erased.

Block Erasing Table

One-to-Many Mode

0
1
2
3
4
5
6
7
8
9
10
11

one-bit
flag number

At least one of
Block 2 and
Block 3 has
been erased.

(a) (b)

Fig. 10.1 The mapping mechanism between flags and blocks. a One-to-One mode.
b One-to-Many mode

10 Efficient Wear Leveling in NAND Flash Memory 347

invalidated. As a result, cold data could be moved to other blocks by the SW
Leveler (see Sect. 10.2.1.3). The technical problem relies on the tradeoff between
the time to resolve such a case (bias in favor of a small k) and the available RAM
space for the BET (bias in favor of a large k).

Another technical issue is efficiently rebuilding the BET when a flash-memory
storage system is attached. One simple but effective solution is to save the BET in
the flash-memory storage system when the system shuts down, and then to reload it
from the system when needed. Meanwhile, the whole BET is stored in flash
memory and loaded to main memory in an on-demand fashion, so that the required
main memory could be minimized. If the system is not properly shut down, we
propose loading any existing correct version of the BET when the system is
attached. Such a solution is reasonable as long as loss of erase count information is
not excessive. Note that the crash resistance of the BET information in the storage
system could be provided by the popular dual buffer concept. Scanning of the spare
areas of pages when collecting related information should also be avoid because of
the potentially huge capacity of a flash-memory storage system.

10.2.1.3 SW Leveler

The SW Leveler consists of two procedures in executing wear leveling:
SWL-Procedure and SWL-BETUpdate (please see Algorithms 1 and 2).
SWL-BETUpdate is invoked by the garbage collector to update the BET whenever
any block is erased by the garbage collector during garbage collection. The
SWL-Procedure is invoked whenever static wear leveling is needed. Such a need is
tracked by two variables, fcnt and ecnt, which denote the number of 1s in the BET
and the total number of block erases performed since the BET was reset, respec-
tively. When the unevenness level, i.e., the ratio of ecnt and fcnt, equals or exceeds a
given threshold T, SWL-Procedure is invoked to trigger the garbage collector to do
garbage collection over selected blocks such that cold data are moved. Note that a
high unevenness level reflects the fact that a lot of erases are done on a small
portion of the flash memory.

Algorithm 1 shows the algorithm for the SWL-Procedure: the SWL-Procedure
simply returns if the BET is just reset (Step 1). When the unevenness level, i.e.,
ecnt =fcnt, equals or exceeds a given threshold T, the garbage collector is invoked in
each iteration to do garbage collection over a selected set of blocks (Steps 2–15). In
each iteration, it is checked up if all of the flags in the BET are set as 1 (Step 3). If
so, the BET is reset, and the corresponding variables (i.e., ecnt, fcnt, and findex) are
reset (Steps 4–7). The findex is the index in the selection of a block set for static wear
leveling and is reset to a randomly selected block set or to a predefined block set,
e.g. 0. After the BET is reset, SWL-Procedure simply returns to start the next
resetting interval (Step 8). Otherwise, the selection index, i.e., findex, moves to the
next block set with a zero-valued flag (Steps 10–12). Note that the sequential
scanning of blocks in the selection of block sets for static wear leveling is very
effective in the implementation. We surmise that the design approximates that of an

348 Y.-H. Chang and L.-P. Chang

actual random selection policy because cold data can virtually exist in any block in
the physical address space of the flash memory. The SWL-Procedure then invokes
the garbage collector to do garbage collection over a selected block set (Step 13)
and moves to the next block set (Step 14) for the next iteration. We must point out
that fcnt and BET are updated by SWL-BETUpdate because SWL-BETUpdate is
invoked by the garbage collector during garbage collection. The loop in static wear
leveling ends when the unevenness level drops to a satisfactory value.

The SWL-BETUpdate is as shown in Algorithm 2: Given the address bindex of
the block erased by the garbage collector, SWL-BETUpdate first increases the
number of blocks erased in the resetting interval (Step 1). If the corresponding BET
entry is not 1, then the entry is set as 1, and the number of 1s in the BET is
increased by one (Steps 2–5). The remaining technical question is how to maintain

10 Efficient Wear Leveling in NAND Flash Memory 349

the values of ecnt, fcnt, and findex. To optimize static wear leveling, ecnt, fcnt, and findex
should be saved to flash memory as system parameters and retrieved in the
attachment of the flash memory. Notably, these values can tolerate some errors with
minor modifications to SWL-Procedure in either the condition in Step 3 or the
linear traversal of the BET (Steps 10–12). That is, if the system crashes before their
values are saved to flash memory, it simply uses the values previously saved to
flash memory.

10.2.2 Worst-Case Analysis

10.2.2.1 Worst-Case Model for Extra Overheads

Block recycling overhead is indeed increased by the proposed evenness-aware
algorithm. A very minor cause of the increase is the execution of SWL-BETUpdate
whenever the garbage collector erases a block, i.e., the value updates of ecnt and fcnt
as well as the BET flags (compared to the block erase time, which could be about
1.5 ms over a 1 GB MLC×2 flash memory [28]). As astute readers might point out,
the garbage collector might be triggered more often than before because of wear
leveling. That might increase the number of block erases and live-page copyings.
The increased overheads caused by extra block erases and extra live-page copyings
are apparent in the following worst-case scenario: the flash memory contains blocks
of hot data, blocks of static data, and exactly one free block in a resetting interval.

Figure 10.2 shows the worst-case model based on a block-level address trans-
lation mechanism. In the block-level address translation mechanism, each LBA is
divided into a virtual block address (VBA) and a block offset, and a mapping table
is adopted for VBAs and their physical block addresses (PBAs). For each write
operation, a free block is allocated to save the data of the remaining valid pages of
the original mapped block and the new data of the write operation. Assume there
are (H − 1) blocks of hot data and C blocks of static data where the number of
blocks in the system is (H + C). The worst-case situation occurs when the C blocks
are erased, only due to the evenness-aware algorithm. The worst case occurs when
hot data are updated with the same frequency and only to the free block or the
blocks of hot data, where k = 0. Sections 10.2.2.2 and 10.2.2.3 show the analyses
for extra block erases and extra live-page copyings in the worst-case model,
respectively.

C blocks storing static data

H-1 blocks storing hot data

Flash Memory
(H+C blocks in total)

1 free blockFig. 10.2 Flash memory of
only static data and hot data

350 Y.-H. Chang and L.-P. Chang

10.2.2.2 Extra Block Erases

When k = 0, the BET contains (H + C) bits, i.e., (H + C) 1-bit flags. In each
resetting interval, when the updates of hot data result in (T × H) block erases,
SWL-Procedure is activated to recycle one block of cold data for the first time
because only H bits of the BET are set, and the unevenness level reaches T (i.e.,
(T × H)=H). After one block of cold data is recycled by SWL-Procedure, (H + 1)
bits of the BET are set, and the number of block erases reaches (T × H + 1). The
unevenness level (i.e., ðT ×H +1Þ ̸ðH +1Þ) is then smaller than the threshold
T. Thereafter, SWL-Procedure is activated to recycle one block of cold data on all
other (T − 1) block erases resulting from hot data updates. Finally, this procedure is
repeated C times such that all BET flags are set and the resetting interval ends.
Therefore, the resetting interval has T × (H + C) block erases. For every
T × (H + C) block erases in a resetting interval, SWL-Procedure performs
C block erases. Therefore, the increased ratio of block erases (due to static wear
leveling) is derived as follows:

C
T × ðH +CÞ−C

≈
C

T × ðH +CÞ , when T × ðH +CÞ≫C.

The increased ratio is even worse when C is the dominant part of (H + C) (an
earlier study [18] showed that the amount of non-hot data is often several times that
of hot data). Table 10.1 shows different increased ratios in extra block erasing for
different configurations of H, C, and T. As shown in the table, the increased
overhead ratio in extra block erasing is sensitive to the setting of T. Therefore, to
avoid excessive triggering of static wear leveling, T must not be set too small.

10.2.2.3 Extra Live-Page Copyings

The extra overheads in live-page copyings due to the static wear leveling mecha-
nism can be explored by the worst-case model. Let N be the number of pages in a
block. Suppose that L is the average number of pages copied by the garbage
collector when erasing a block of hot data. Thus, in the worst case, totally
(C × N) live-pages are copied when erasing C blocks of static data (due to the
evenness-aware algorithm) in a resetting interval, and ðT × ðH +CÞ−CÞ× L

Table 10.1 The increased
ratio of block erases of a
1 GB MLC×2 flash-memory
storage system

H C H:C T Increased ratio (%)

256 3,840 1:15 10 9.46
2048 2,048 1:1 10 5.03
256 3,840 1:15 100 0.95
2,048 2,048 1:1 100 0.50
256 3,840 1:15 1,000 0.09
2,048 2,048 1:1 1,000 0.05

10 Efficient Wear Leveling in NAND Flash Memory 351

live-page copyings are performed in the course of regular garbage collection
activities in a resetting interval. The increased ratio in live-page copyings, due to
static wear leveling, can be derived as follows:

C ×N
ðT × ðH +CÞ−CÞ× L

≈
C ×N

T × L× ðH +CÞ , when T × ðH +CÞ≫C.

Table 10.2 shows varying increases in the ratios of live-page copyings for dif-
ferent configurations of H, C, T, and L, when N = 128. The increased ratio of
live-page copyingscan be estimated by N

L times the increased ratio of extra block
erases. For example, when T = 100, L = 16, N = 128, and H

C = 1
15, the increased

ratio of block erases is 0.95% (the third row of Table 10.1) and its corresponding
increased ratio of live-page copyings is 7.57%, i.e., 0.95% × 128

16 (the third row of
Table 10.2). As shown in Tables 10.1 and 10.2, the increased ratios of block erases
and live-page copyings would be limited with a proper selection of T and other
parameters. The increased ratios could be limited to very small percentages of flash
management strategies when the evenness-aware algorithm is supported.

10.3 Dual-Pool Algorithm

10.3.1 Algorithm Design

10.3.1.1 Algorithm Concept

This section introduces the basic concepts of the dual-pool algorithm. Let write
requests arriving at the flash storage device be ordered by their arrival times. Let the
temperature of a piece of data be inversely proportional to the number of requests

Table 10.2 The increased ratio in live-page copyings of a 1 GB MLC×2 flash-memory storage
system

H C H:C T L N
T × L Increased ratio (%)

256 3,840 1:15 10 16 0.800 75.72
2,048 2,048 1:1 10 16 0.800 40.02
256 3,840 1:15 10 32 0.400 37.86
2,048 2,048 1:1 10 32 0.400 20.00
256 3,840 1:15 100 16 0.0800 7.57
2,048 2,048 1:1 100 16 0.0800 4.00
256 3,840 1:15 100 32 0.0400 3.79
2,048 2,048 1:1 100 32 0.0400 2.00
256 3,840 1:15 1,000 16 0.0080 0.76
2,048 2,048 1:1 1,000 16 0.0080 0.40
256 3,840 1:15 1,000 32 0.0040 0.38
2,048 2,048 1:1 1,000 32 0.0040 0.20

352 Y.-H. Chang and L.-P. Chang

between the two most recent writes to that data. A piece of data is hot if its
temperature is higher than the average temperature of all data. Otherwise, the data is
cold or non-hot. A block is referred to as a young(/old) block if its erase-cycle count
is smaller(/larger) than the average erase-cycle count of all blocks.

We say that a block contributes or accumulates erase cycles if garbage collection
erases this block to reclaim free space. Garbage collection avoids erasing a block
having many valid data. If a block has more cold data than other blocks, then it will
stop contributing erase cycles. This is because cold data remains valid in the block
for a long time. Conversely, if a block has many hot data, then it can accumulate
erase cycles faster than other blocks. This is because hot data are invalidated faster
than cold data, and the block can become a victim of garbage collection before
other blocks. After the block is erased, it can again be written with many hot data,
because writes to hot data arrive more frequently than writes to cold data. Thus, this
block is again erased and is written with many hot data.

The dual-pool algorithm monitors the erase-cycle count of each block. If an old
block’s erase-cycle count is larger than that of a young block by a predefined
threshold, wear leveling activities are triggered. Cold data are moved to the old
block to prevent it from being erased by garbage collection. This strategy is referred
to as cold-data migration. After this, the old block should stop accumulating erase
cycles. Compared to encouraging young blocks to contribute erase cycles, this
strategy reduces data-movement overhead. This is because only a small fraction of
blocks are worn into old blocks, while the majority are young blocks. Right after
cold data are written to an old block, the old block still has a large erase-cycle
count. If we are not aware that the old block has been involved in cold-data
migration, we may again write some other cold data to the old block. This point-
lessly reduces the block’s lifetime. Similarly, after a young block is involved in
cold-data migration, cold data previously stored in the block are removed. At this
point, the young block has no cold data, even though its erase-cycle count is small.
So, right after a block is involved in cold-data migration, it should be protected
from immediate re-involvement. This strategy is called block protection. The
protection of an old block is no longer required when other blocks become older
than it. The protection of a young block expires when it is worn into an old block.

The access patterns from the host to the flash storage devices can change peri-
odically. For example, a user application in the host may finish using some files and
then begin accessing other files. These application-level behaviors can change the
frequency with which a piece of data is updated, and thus cold data can change into
hot data. Consider an old block written with cold data for cold-data migration. The
old block is then protected against cold-data migration. Now suppose that the cold
data in the old block happens to become hot. The protected old block will again
start participating in garbage collection, and continues to age without interruption
from wear leveling because its protection cannot expire. Now consider a young
block under protection. The block should accumulate erase cycles. If the young
block happens to be written with many cold data, then it stops contributing erase
cycles. The young block attracts no attention from wear leveling because its

10 Efficient Wear Leveling in NAND Flash Memory 353

protection cannot expire. This dilemma highlights the special cases that must be
carefully considered by block protection.

10.3.1.2 The Dual-Pool Algorithm: A Basic Form

The dual-pool algorithm, as implied by its name, uses a hot pool and a cold pool.
A pool is merely a logical aggregation of blocks. Initially, a block arbitrarily joins
one of these two pools. Note that the dual-pool algorithm is not to write cold data to
blocks in the cold pool. Instead, it migrates blocks storing cold data to the cold pool.

The dual-pool algorithm uses priority queues to sort blocks in terms of different
wearing information. The following section defines some symbols for ease of
presentation: Let C and H denote the cold pool and the hot pool, respectively. Each
element in C and H is a block. Let U be a collection of all blocks. C ∩ H =∅ and
C ∪ H = U are invariants. Let Qw

P be a priority queue that prioritizes all blocks in
pool P in terms of wearing information w. The larger the value of w is, the higher
the priority is. Each element Qw

P in w corresponds to a block. For block b, let
function ec(b) present its erase-cycle count. In priority queue Qw

P , M Qw
P

� �
is the

element with the highest priority and m Qw
P

� �
is the element with the lowest priority.

M Qw
P

� �
and m Qw

P

� �
are referred to as the largest queue head and the smallest queue

head, respectively. For example, m Qec
C

� �
denotes the block with the smallest

erase-cycle count of all the blocks in the cold pool.
The dual-pool algorithm adopts a user-configurable parameter TH to direct how

even the wear of blocks is to be pursued. The smaller the value of TH is, the more
aggressive the wear-leveling activities would be. Table 10.3 summarizes the
symbol definitions, and the following section defines cold-data migration (CDM for
short): Cold-Data Migration (CDM): Upon the completion of block erase, check
the following condition:

ecðMðQec
H ÞÞ− ecðmðQec

C ÞÞ>TH.

Table 10.3 A summary of symbols used in the dual-pool algorithm

Symbol Definition

C The cold pool, a collection of blocks
H The hot pool, a collection of blocks
U A collection of all blocks. C ∩ H =∅ and C ∪ H = U

Qw
P A priority queue that sorts blocks in pool P in terms of information w

M Qw
P

� �
The element with the largest priority in Qw

P

m Qw
P

� �
The element with the smallest priority in Qw

P

ec(b) The erase-cycle count of block b

rec(b) The recent erase-cycle count of block b

TH The threshold parameter for wear leveling

354 Y.-H. Chang and L.-P. Chang

If this condition is true, then the largest erase-cycle count of the blocks in the hot
pool is larger than the smallest count of the blocks in the cold pool by TH. Perform
the following procedure:

Step 1. Copy data from m Qec
C

� �
to M Qec

H

� �

Step 2. Erase m Qec
C

� �
; ec(m Qec

C

� �
) ← ec(m Qec

C

� �
) + 1

Step 3. C ← C ∪ {M Qec
H

� �
}; H ← H \{M Qec

H

� �
}

Step 4. H ← H ∪ {m Qec
C

� �
}; C ← C\{m Qec

C

� �
}

Because cold-data migration checks the condition immediately after a block is
erased, block ec(M Qec

H

� �
) must be the most-recently erased block if the condition is

true. Whenever ec(M Qec
H

� �
) − ec(m Qec

C

� �
) is found larger than TH, it is deduced

that, on the one hand, block m Qec
C

� �
has not been erased for a long time because of

the storing of many cold data. On the other hand, garbage collection had erased
block M Qec

H

� �
many times, because this block infrequently stores cold data. Next,

migrate cold data from block m Qec
C

� �
to block M Qec

H

� �
. Step 1 moves data from

block m Qec
C

� �
to block M Qec

H

� �
to complete cold-data migration. After this move,

block M Qec
H

� �
can stop being erased by garbage collection. Step 2 erases block m

Qec
C

� �
and increases the block’s erase-cycle count. This erase does not affect the

pool membership of block m Qec
C

� �
.

Step 3 moves block M Qec
H

� �
to the cold pool, and Step 4 moves block m Qec

C

� �
to

the hot pool. These steps swap the two blocks’ pool memberships, and enable block
protection. When the young block (previously m Qec

C

� �
) joins the hot pool, it may be

younger than many blocks in the hot pool. That is because most of the blocks in the
hot pool are old. The young block is then protected, because cold-data migration is
not interested in a young block in the hot pool. Analogously, when the old block
(previously block M Qec

H

� �
) migrates to the cold pool, it may be older than many

blocks in the cold pool. The old block in the cold pool is then protected, as
cold-data migration is concerned with the youngest block in the cold pool.

The young block in the hot pool (previously m Qec
C

� �
) starts accumulating erase

cycles. When the block is worn into the oldest in the hot pool, it will again
participate in cold-data migration. On the other hand, the old block in the cold pool
(previously M Qec

C

� �
) now stops being erased. When the block becomes the

youngest in the cold pool, it is again ready for cold-data migration.

10.3.1.3 Pool Adjustment

The cold pool collects blocks that store cold data. However, the cold pool may also
contain blocks that have no cold data. This may be because all the blocks’ pool
memberships were arbitrarily decided in the very beginning, as all blocks’
erase-cycle counts are initially zero. Another possible cause is that applications in

10 Efficient Wear Leveling in NAND Flash Memory 355

the host may change their data-access behaviors. These changes can turn a piece of
cold data into hot data.

Garbage collection selects erase victims based on how many invalid data a block
has, regardless the block’s pool membership. If a block has no cold data, it will
continue participating in garbage collection even if it is in the cold pool. In this
case, the block’s erase-cycle count increases without interruption from wear
leveling. This is because cold-data migration always involves the youngest block in
the cold pool. Similarly, if a block in the hot pool has many cold data, garbage
collection avoids erasing this block. The block cannot be erased into the oldest
block in the hot pool, and cannot attract attention from wear leveling.

To deal with this problem, the dual-pool algorithm introduces two operations,
cold-pool adjustment (CPA for short) and hot-pool adjustment (HPA for short).
These two operations identify and correct any improper pool membership in the
blocks. Specifically, blocks’ pool membership is adjusted according to how fre-
quently they have been erased since their last involvement in cold-data migration.
Hot-pool adjustment removes the blocks that do not accumulate erase cycles from
the hot pool. Cold-pool adjustment removes the blocks that actively contribute
erase cycles from the cold pool. To enable these operations to function, new
block-wearing information (i.e., the recent erase-cycle count) is introduced.
A block’s recent erase-cycle count is initially zero. It increases as along with the
erase-cycle count, but reset to zero whenever the block is involved in cold-data
migration. Thus, cold-data migration includes a new step:

(CDM) Step 5. recðMðQec
H ÞÞ←0; recðmðQec

C ÞÞ←0

The hot-pool adjustment and cold-pool adjustment operations also require new
priority queues and queue heads, which are summarized in Table 10.4. Let function
rec() return the recent erase-cycle count of a block. The hot-pool adjustment and
cold-pool adjustment are then as follows:

Cold-Pool Adjustment (CPA): Upon completion of block erase, check the fol-
lowing condition:

recðMðQrec
C ÞÞ− recðmðQrec

H ÞÞ> TH.

Table 10.4 A summary of the five queue heads used by the dual-pool algorithm

Queue heads Belongs to Used in

M Qec
H

� �
The hot pool Cold-data migration and hot-pool adjustment

m Qec
H

� �
The hot pool Hot-pool adjustment

m Qrec
H

� �
The hot pool Cold-pool adjustment

m Qec
C

� �
The cold pool Cold-data migration

M Qrec
C

� �
The cold pool Cold-pool adjustment

356 Y.-H. Chang and L.-P. Chang

If it holds, then the largest recent erase-cycle count of the blocks in the cold pool
is larger than the smallest count of the blocks in the hot pool by TH. Perform the
following steps:

Step 1. H←H ∪ fMðQrec
C Þg ; C←C\fMðQrec

C Þg
If a block has a large recent erase-cycle count, then the block has contributed

many erase cycles since the last time it was involved in cold-data migration.
Cold-pool adjustment evicts such a block from the cold pool. This is because the
last attempt to stop the block from being erased was not successful, or the block did
not have cold data in the very beginning.

Hot-Pool Adjustment (HPA): Upon completion of block erase, check the fol-
lowing condition:

ecðMðQec
H ÞÞ− ecðmðQec

H ÞÞ>2× TH.

If this condition holds, then in the hot pool the smallest erase-cycle count is
smaller than the largest count by 2 × TH. Perform the following steps:

Step 1. C←C ∪ mðQec
H Þ

� �
;H←H\ mðQec

H Þ
� �

Whether or not a block should be written with cold data for wear leveling
depends on the size of its erase-cycle count. If a block in the hot pool accumulates
erase cycles more slowly than other blocks, then the block contains cold data, and
the hot-pool adjustment operations removes this block from the hot pool. Readers
may question that why 2 × TH is in this condition. It is to prevent hot-pool
adjustment from conflicting with cold-data migration: when cold-data migration
moves a young block from the cold pool to the hot pool, the young block’s
erase-cycle count is already smaller than the oldest block in the hot pool by TH (see
the condition for cold-data migration). To prevent hot-pool adjustment from
immediately bouncing the young block back to the cold pool, the condition of
hot-pool adjustment allows additional TH cycles (2 × TH in total).

In the worst case, every time after cold-data migration writes cold data to an old
block and moves this block to the cold pool, the cold data become hot. Cold-pool
adjustment can identify this old block and move it to the hot pool, after the block
contributes TH more cycles of erase operations. Right after this, cold-data migration
makes another attempt to write cold data to the block. So in this worst case, the
dual-pool algorithm guarantees to involve this old block every other TH erase
operations to this block.

10.3.1.4 Algorithm Demonstration

This section presents an example demonstrating how the dual-pool algorithm
accomplishes wear leveling.

In Fig. 10.3, there are six flash-memory blocks, labeled from PBA 0 to PBA 5.
The threshold parameter TH is 16. In the illustration, each block corresponds to two

10 Efficient Wear Leveling in NAND Flash Memory 357

Fig. 10.3 A scenario of the dual-pool algorithm. There are six flash-memory blocks, labeled from
PBA 0 to PBA 5. Each block is associated with an erase-cycle count (ec), a recent erase-cycle
count (rec), and the attribute of its data (hot or cold)

358 Y.-H. Chang and L.-P. Chang

boxes, which indicate the block’s erase-cycle count (ec) and recent erase-cycle
count (rec). If a block currently stores cold data, then “C” appears under the block’s
boxes, and “H” otherwise. The example includes 11 steps. At each step, a block’s
boxes are shaded in gray if the block has been erased by garbage collection since
the last step. A block’s boxes are indicated black if it is currently involved in wear
leveling. The following discussion refers to a block at PBA x as Block x, where
x can be from 0 to 5.

In Step 1, the first three blocks join the hot pool and the rest join the cold pool.
Step 2 shows that Blocks 0, 1, and 4 start accumulating erase cycles because they
store no cold data. At this point, the largest erase-cycle count in the hot pool and the
smallest erase-cycle count in the cold pool are 17 and 0, respectively. As this
difference is greater than TH = 16, cold-data migration is triggered. Step 3 shows
that the cold data in Block 3 are moved to Block 0, and the pool memberships are
switched for both blocks. Notice that a block’s wearing information sticks together
with that block during cold-data migration. In Step 4, garbage collection erases
Blocks 1, 3, and 4 because they had no cold data since Step 3.

Block 0, an old block previously involved in cold-data migration, is written with
cold data and stops accumulating erase cycles since Step 3. Even though Block 0 is
the oldest among all the blocks in the cold pool, it is now protected against
cold-data migration because it is not youngest in the cold pool. In Step 5, cold-data
migration is triggered by Blocks 1 and 5, and cold data are migrated from Blocks 5
to 1. In Step 6, Blocks 3–5 contribute some more erase cycles since Step 5. Note
that after two cold-data migrations, Blocks 0 and 1, which were previously the
contributors of erase cycles in Step 2, now store cold data in the cold pool and are
no longer being erased.

In Step 6, Block 4 in the cold pool stores no cold data. In Step 7, it is evicted
from the cold pool by cold-pool adjustment, because the difference between Block
4 s recent erase-cycle count and the smallest recent erase-cycle count in the hot pool
(i.e., that of Block 2) is greater than TH = 16. In Step 8, Blocks 3–5 keep accu-
mulating erase cycles, and have done so since Step 5. In Step 9, hot-pool adjust-
ment is triggered because the difference between the erase-cycle counts of Blocks 2
and 3 is greater than 2 × TH = 32. Hot-pool adjustment moves Block 2 to the cold
pool. Right after Step 9, cold-data migration for Blocks 2 and 3 occurs in Step 10.
In Step 11, garbage collection erases some more blocks. At this point, the wear of
all blocks is considered even, with respect to TH = 16.

10.3.2 Case Study: An SSD Implementation of the
Dual-Pool Algorithm

10.3.2.1 The Firmware and Disk Emulation

The SSD platform in this study is the FreeScale M68KIT912UF32 development kit
[15, 25]. This platform integrates an MC9S12UF32 SoC (referred to as the SSD

10 Efficient Wear Leveling in NAND Flash Memory 359

controller hereafter), various flash-memory interfaces, and a USB interface. The
controller contains a 16-bit MCU M68HCS12, 3 KB of RAM, 32 KB of
EEPROM, a USB 2.0 interface controller, various flash-memory host controllers,
and a DMA engine with an 1.5 KB buffer. The MCU is normally rated at 33 MHz.
The NAND flash considered in this study is a 128 MB SmartMedia card (abbre-
viated as SM card hereafter). SM cards have the same appearance as bare
NAND-flash chips in terms of physical characteristics. The block size and the page
size of the SM card are 16 KB and 512 bytes, respectively, and it has a block
endurance of 100 K erase cycles. Readers may notice that its geometry is finer than
that of mainstream NAND flash memory [37]. However, the design and imple-
mentation of the proposed algorithm is independent of the block size and the page
size.

An SSD presents itself to the host system as a logical disk,2 so ordinary
disk-based file systems (such as FAT and NTFS) are compatible with SSDs. The
flash-translation layer (FTL), which is a part of SSD firmware, performs disk
emulation [21, 22, 26, 44]. Basically, FTL implements a mapping scheme, an
update policy, and a garbage-collection policy. For ease of presentation, this section
introduces some necessary terms and assumptions: Let a disk be addressed in terms
of disk sectors, each of which is as large as a flash-memory page. A physical block
refers to a flash-memory block. Let the entire disk space be partitioned in terms of
logical blocks, each of which is as large as a physical block. LBAs and PBAs are
abbreviations of logical-block addresses and physical-block addresses, respectively.
Let a physical segment be a group of contiguous physical blocks, and a logical
segment be a group of contiguous logical blocks.

The FTL needs logical-to-physical translation because data in flash memory are
updated out of place. However, a solid-state-disk controller cannot afford the space
overhead of the RAM-resident data structures for this translation. To save RAM-
space requirements, the FTL adopts a two-level mapping scheme. The fist level
maps eight logical segments to eight physical segments. This first-level mapping
has a one-to-one correspondence. The first level uses a RAM-resident segment
translation table (“segment L2P table” for short). This table is indexed by
logical-segment numbers, and each table entry represents a physical-segment
number. As the first level maps a logical segment to a physical segment, the second
level uses a RAM-resident block translation table (“block L2P table” for short) to
map the 1,000 logical blocks in the logical block to the 1,024 physical blocks in the
physical segment. This table is indexed by logical-block addresses and each table
entry represents a physical-block address. Each physical segment has
1, 024− 1, 000= 24 unmapped physical blocks, which are spare blocks for garbage
collection and bad-block retirement. Thus, the SSD has a total volume of 8 *
1,000 = 8,000 logical blocks, while the SM card has 8 * 1,024 = 8, 192 physical
blocks.

2A logical disk is also referred to as a logical unit (i.e., LUN) [30].

360 Y.-H. Chang and L.-P. Chang

The FTL sequentially writes all sectors of a logical block to the physical block
mapped to this logical block, because the smallest granularity for address transla-
tion is one block. To translate an LBA into a PBA, first divide the LBA by 1,000.
The quotient and the remainder are the logical-segment number and the
logical-block offset, respectively. Looking up the segment L2P table and the block
L2P table generates a physical segment number and a physical-block offset,
respectively. The final PBA is calculated by adding the physical-block offset to the
physical-segment number multiplied by 1,024.

For this FTL, there are two types of sector write operations: a write no larger
than 4 KB (i.e., eight 512-byte disk sectors) and a write larger than 4 KB. A write
larger than 4 KB effectively rewrites a logical block with the necessary copy-back
operations: Unchanged sector data are copied from the logical block encompassing
the written sectors, and combined with the newly written sector data. A spare block
is allocated from the physical segment to which the logical block is mapped, and the
combined data are then written to the spare block. The block L2P table is then
revised to re-map the logical block to the spare block. The old physical block of the
invalidated logical block is erased and converted to a spare block. Spare blocks are
allocated in a FIFO fashion for fair use.

Writes no larger than 4 KB are handled in a different way. In this case, a separate
spare block collects the newly written data. This spare block is referred to as a log
block, as it can be seen as a log of small writes. Whenever the log block is full, the
logical blocks modified by the writes recorded in the log block must be rewritten
with copy-back operations to apply the changes. In this way, rewriting logical
blocks is delayed until the log block is full. After rewriting all the involved logical
blocks, the physical blocks previously mapped to the logical blocks and the spare
blocks can be erased and converted to spare blocks. Note that the 4 KB threshold is
an empirical setting, and this study provides no further discussion on it. erase and
data copy activities for free-space reclaiming are referred to as garbage collection.

Figure 10.4 depicts a scenario of the proposed disk-emulation algorithm
involving three logical blocks and five physical blocks. Let each physical block
have four pages, and let each page be as large as a disk sector. A write is considered
large if it is larger than two sectors. The left upper corner shows the initial state. Let
a write be denoted by sector numbers enclosed within a pair of braces. Three small
writes {0}, {0}, and {0, 1} arrive in turn. As they are small, they are appended to
the free space in the log block at PBA 1 in Step 1. At this point, the log block is full.
Step 2 then conducts copy-back operations to gather valid data from blocks at PBAs
0 and 1, and then rewrites the valid data to the block at PBA 3. Step 3 erases the
blocks at PBAs 0 and 1. Step 4 revised the block L2P table. In Step 5, the fourth
write {5, 6, 7} arrives. This write is large, and therefore requires that a logical block
be rewritten. However, the unchanged data of Sector 4 are first copied from the
block at PBA 4 to the log block at PBA 0. Step 6 then appends {5, 6, 7} to the log
block, and Step 7 erases the block of invalid data. Step 8 then revises the block L2P
table. Note that disk emulation is traditionally considered to be an issue indepen-
dent of wear leveling. Refer to [19, 21, 22, 44] for further discussion on
disk-emulation algorithms.

10 Efficient Wear Leveling in NAND Flash Memory 361

The segment L2P table is small enough to be kept in RAM because it has only
eight entries. There are eight block L2P tables, one for each pair of a logical
segment and a physical segment. As mentioned above, since RAM space is very
limited, only two block L2P tables can be cached in RAM. Whenever a block L2P
table is needed but is absent from RAM, the least-recently used table in the cache is
discarded. The needed table is then constructed by scanning all the physical blocks
of the corresponding physical segment. This scanning involves only the spare areas
of every physical block’s first page, which contain the mapping information.3

10.3.2.2 Block-Wearing Information and Priority Queues

The dual-pool algorithm keeps track of every block’s wearing information. This
includes an erase-cycle count, a recent erase-cycle count, and pool member-
ship. Ideally, this information should be kept in RAM for efficient access. However,

Fig. 10.4 A scenario of our disk-emulation algorithm

3The scanning is read-only and does not affect wear leveling. Previous research has developed
excellent methods for reducing the time overhead of this scanning. Refer to [19, 21] for details.

362 Y.-H. Chang and L.-P. Chang

this is not feasible because the SSD controller has only about 1 KB of RAM as
working space.

One option is to write a block’s wearing information in its spare areas [26]. In
this approach, a block’s wearing information must be committed to one of its spare
areas immediately after the block is erased. Later on, when user data are written,
error-correcting codes and mapping information are also written to these spare
areas. However, this approach can overwrite a spare area multiple times. This is
prohibited by many new NAND flash [36, 37]. One alternative is to exclusively
write the wearing information to a spare area, but this spoils the existing data layout
in spare areas for disk emulation.

Our approach is to reserve one physical block for writing the wearing infor-
mation. An on-flash block-wearing information table (“BWI table” for short) keeps
the blocks’ wearing information. A new BWI-table can be written to an arbitrarily
allocated spare block, which means that the BWI table is subject to wear leveling.
Since the entire flash memory is divided into eight physical segments, each segment
has its own BWI table. A BWI table contains 1,024 entries, one for each physical
block. Each table entry has 4 bytes, including a 18-bit erase-cycle count, a 13-bit
recent erase-cycle count, and 1 bit for pool membership. Note that 13 bits are large
enough for a recent erase-cycle count because it is reset upon cold-data migration.
A BWI table is 1,024 * 4 = 4 KB large, so one 16-KB physical block can
accommodate four revisions of a BWI table. If the block is full, another spare block
is allocated for writing the BWI table, and the prior block is discarded for erase.

The on-flash BWI table can be entirely rewritten every time a block’s wearing
information changes. However, this method considerably increases write traffic to
flash memory. Instead, the PBAs of the recently erased blocks are temporarily
logged in a RAM buffer. In the current design, this buffer, named the erase-history
table (“EH table” for short), has eight entries. If the EH table is full, a new version
of the BWI table is written to the block reserved for the BWI table to apply the
changes. After this, the in-RAM EH table is emptied.

Blocks are sorted in terms of different wearing information, and the dual-pool
algorithm must check queue heads every time it is invoked. To scan the on-flash
BWI table to find the queue heads is very slow. To reduce the frequency of
BWI-table scanning, a small number of queue-head elements can be fetched for
later use. For example, for fast access toM Qec

H

� �
, after the BWI table is scanned, the

wearing information of the two blocks with the two largest erase-cycles counts in
the hot pool can be stored in RAM. An in-RAM queue-head table (“QH table” for
short) is created for this purpose. The size of the QH table is fixed, and each of the
five types of queue heads (shown in Table 10.4) is allocated to two table entries.
A QH-table entry consists of a 2-byte PBA and 4-byte block-wearing information.
Cold-data migration, hot-pool adjustment, and cold-pool adjustment check the QH
table for queue heads. Wear leveling consumes QH-table entries and modifies the
wearing information in the entries. A modified table entry is treated as an EH-table
entry. The following section discusses when and how a QH table can be refreshed.

10 Efficient Wear Leveling in NAND Flash Memory 363

10.3.2.3 Segment Check-In/Check-Out

This section shows how the proposed wear-leveling data structures can be inte-
grated into the segmented management scheme for disk emulation.

Disk emulation uses a two-level mapping scheme, as previously mentioned in
Sect. 10.3.2.1. The segment L2P table is indexed by logical-segment numbers, has
only eight entries, and is always stored in RAM. Second-level mapping manages
the physical segments as if they were small pieces of flash memory. Each segment
has an in-RAM L2P table, which maps 1,000 logical blocks to 1,024 physical
blocks. Only two segments can have their block L2P tables cached in RAM.
A segment is cached if its block L2P table is in RAM.

Each of the two cached segment uses an in-RAM EH table and an in-RAM QH
table. Whenever a logical block is accessed, the corresponding physical segment is
located by the segment L2P table. The dual-pool algorithm then checks if the
segment’s block L2P table, the EH table, and the QH table are in RAM. If they are
absent, the following procedure, named segment check-in, is performed to bring
them in: The in-RAM block L2P table is constructed by scanning the spare areas of
each block’s first page containing the mapping information. During scanning, if a
block is found storing the on-flash BWI table, then the most up-to-date BWI table in
the block is scanned to create the in-RAM QH table. By the end of this segment
check-in procedure, the QH table and the block L2P table are ready. The in-RAM
EH table is emptied, and the segment is all set for data access.

As the EH table continues to record the PBAs of erased blocks, sooner or later it
will become be full. In this case, a new version of the on-flash BWI table should be
created to merge the wearing information in the current on-flash BWI table, the
in-RAM EH table, and the in-RAM QH table. The QH table is involved because
QH-table entries could have been switched to EH-table entries. This merging pro-
cedure, called the BWI-table merge, is as follows: First the block storing the current
BWI table is located. The dual-pool algorithm creates a new BWI table in the same
block right after the current BWI table. If there is no free space left, a new spare
block is allocated. The four flash-memory pages storing the current BWI table are
then copied to the new location. During copying a BWI-table page, the DMA engine
first loads one of the four pages from flash memory into the DMA buffer, and then
the dual-pool algorithm performs a three-way synchronization that involves the
wearing information from the DMA buffer, the QH table, and the EH table. By the
end of this merging procedure, the QH table is refreshed to contain new queue-head
physical block addresses and their wearing information, and the EH table is emptied.

A segment’s in-RAM data structures can also be evicted from RAM to
accommodate those of a newly accessed segment. Before a segment vacates RAM
space, its EH table and QH table must be merged with the on-flash BWI table. This
process is called segment check-out. To check out a segment, the BWI-table merge
procedure is first performed, and the in-RAM structures of the segment can then be
discarded.

Figure 10.5 shows how by wear leveling, disk emulation, and segment opera-
tions use the proposed data structures. Step 1 shows that when a segment is checked

364 Y.-H. Chang and L.-P. Chang

in, the spare areas of the blocks in that segment are scanned to build the in-RAM
block L2P table. This scanning process also locates the block storing the on-flash
BWI table. Step 2 refreshes the in-RAM QH table of the segment with information
in the on-flash BWI table. Step 3 shows that QH-table entries are consumed by wear
leveling. If any block is erased by garbage collection, then a record of the erase is
appended to the in-RAM EH table, as shown in Step 4. When the segment is
checked out, Step 5 merges the information in the in-RAM QH table, in-RAM EH
table, and on-flash old BWI table and writes it to a new BWI table on flash.

10.4 Conclusion

This work addresses a key endurance issue in the deployment of flash memory in
various system designs. Unlike the wear leveling algorithms proposed in the pre-
vious work, two efficient wear leveling algorithms (i.e., the evenness-aware algo-
rithm and dual-pool algorithm) are presented to solve the problems of the existing
algorithms with the considerations of the limited computing power and memory
space in flash storage devices. The evenness-aware algorithm proactively moves

CDM HPA CPA

M(Q) m(Q) m(Q)
Queue-head table

(QH table)

M(Q) m(Q)
Erasure-history table

(EH table)

Wear-leveling algorithm Disk-emulation algorithm

A segment of blocksBlock storing
the BWI table

The block storing the BWI table is
located on segment check-in

Queue-head table is refreshed
by using the BWI table

Wear leveling consumes
QH-table entries

Garbage collection adds
new records to the EH table

On segment check-out, the EH
table, the QH table, and the

old BWI table are merged as a
new BWI table

Block storing
the BWI table

Fi
rm

w
ar

e
R

A
M

Fl
as

h

EC EC ECREC REC

C CC HH

1

5

2

4

3

Fig. 10.5 Relationship between the in-RAM/on-flash data structures and how they are used by
wear leveling, disk emulation, and segment operations

10 Efficient Wear Leveling in NAND Flash Memory 365

static or infrequently updated data with an efficient implementation and limited
memory-space requirements so as to spread out the wear-leveling actions over the
entire physical address space. It proposes an adjustable house-keeping data struc-
ture and an efficient wear leveling implementation based on cyclic queue scanning.
Its goal is to improve the endurance of flash memory with only limited increases in
overhead and without extensive modifications of popular implementation designs.
The dual-pool algorithm is to protect a flash-memory block from being worn out if
the block is already excessively erased. This goal is accomplished by moving rarely
updated data to excessively erased blocks. Because the micro-controllers of flash
storage devices are subject to very tight resource budgets, keeping track of wear
levels for a large number of blocks is a very challenging task. The dual-pool
algorithm keeps only the most frequently accessed data in RAM, while the rest is
written to flash memory.

References

1. A. Ban, Flash file system. US Patent 5,404,485, in M-Systems, Apr 1995
2. A. Ban, Wear leveling of static areas in flash memory. US Patent 6732221 (2004)
3. A. Ban, R. Hasbaron, Wear leveling of static areas in flash memory, US Patent 6,732,221, in

M-systems, May 2004
4. A. Ben-Aroya, S. Toledo, Competitive analysis of flash-memory algorithms, in Proceedings

of the 14th Conference on Annual European Symposium (2006)
5. L.-P. Chang, On efficient wear-leveling for large-scale flash-memory storage systems, in 22nd

ACM Symposium on Applied Computing (ACM SAC), Mar 2007
6. L.-P. Chang, T.-W. Kuo, Efficient management for large-scale flash-memory stroage systems

with resource conservation. ACM Trans. Storage 1(4), 381–418 (2005)
7. L.-P. Chang, T.-W. Kuo, S.-W. Lo, Real-time garbage collection for flash-memory storage

systems of real-time embedded systems. ACM Trans. Embed. Comput. Syst. 3(4), 837–863
(2004)

8. Y.-H. Chang, J.-W. Hsieh, T.-W. Kuo, Endurance enhancement of flash-memory storage
systems: an efficient static wear leveling design, in DAC’07: Proceedings of the 44th Annual
Conference on Design Automation New York, NY, USA, (ACM, 2007), pp. 212–217

9. M.L. Chiang, P.C.H. Lee, R. Chuan Chang, Using data clustering to improve cleaning
performance for flash memory. Softw. Pract. Exp. 29(3), 267–290 (1999)

10. R.J. Defouw, T. Nguyen, Method and system for improving usable life of memory devices
using vector processing. US Patent 7139863 (2006)

11. DRAM market-share games shifting from a knockout to a marathon; 4 × nm process and
multi-bit/cell as fundamental criteria to judge NAND Flash production competitiveness.
Technical report, DRAMeXchange, Apr 2008

12. R.A.R.P. Estakhri, M. Assar, B. Iman, Method of and architecture for controlling system data
with automatic wear leveling in a semiconductor non-volatile mass storage memory. US
Patent 5835935 (1998)

13. Flash Cache Memory Puts Robson in the Middle. Intel
14. Flash-memory translation layer for NAND flash (NFTL). M-Systems (1998)
15. Freescale Semiconductor. USB Thumb Drive reference design DRM061 (2004)
16. FTL Logger Exchanging Data with FTL Systems. Technical Report, Intel
17. C.J. Gonzalez, K.M. Conley, Automated wear leveling in non-volatile storage systems. US

Patent 7120729 (2006)

366 Y.-H. Chang and L.-P. Chang

18. Increasing Flash Solid State Disk Reliability. Technical report, SiliconSystems, Apr 2005
19. J.-U. Kang, H. Jo, J.-S. Kim, J. Lee, A superblock-based flash translation layer for NAND

flash memory, in EMSOFT ’06: Proceedings of the 6th ACM and IEEE International
Conference on Embedded Software, New York, NY, USA (ACM, 2006), pp. 161–170

21. H.-J. Kim, S.-G. Lee, An effective flash memory manager for reliable flash memory space
management. IEICE Trans. Inf. Syst. 85(6), 950–964 (2002)

22. J. Kim, J.-M. Kim, S. Noh, S.-L. Min, Y. Cho, A space-efficient flash translation layer for
compact flash systems. IEEE Trans. Consum. Electron. 48(2), 366–375 (2002)

23. S.-W. Lee, D.-J. Park, T.-S. Chung, D.-H. Lee, S. Park, H.-J. Song, A log buffer-based flash
translation layer using fully-associative sector translation. Trans. Embed. Comput. Syst. 6(3),
18 (2007)

24. Micron Technology, Wear-Leveling Techniques in NAND Flash Devices (2008)
25. Microsoft, Flash-memory abstraction layer (FAL), in Windows Embedded CE 6.0 Source

Code (2007)
26. Motorola, Inc., MC9S12UF32 System on a Chip Guide V01.04 (2002)
27. M-Systems, Flash-Memory Translation Layer for NAND Flash (NFTL) (1998)
28. M-Systems. TrufFFS Wear-Leveling Mechanism, Technical Note TN-DOC-017 (2002)
29. NAND08Gx3C2A 8Gbit Multi-level NAND Flash Memory. STMicroelectronics (2005)
30. Numonyx, Wear Leveling in NAND Flash Memories (2008)
31. Open NAND Flash Interface (ONFi), Open NAND Flash Interface Specification Revision 2.1

(2009)
20. K. Perdue, Wear Leveling (2008)
32. C. Ruemmler, J. Wilkes, UNIX disk access patterns, in Usenix Conference (Winter 1993),

pp. 405–420
33. D. Roselli, J.R. Lorch, T.E. Anderson, A comparison of file system workloads, in Proceedings

of the USENIX Annual Technical Conference, pp. 41–54
34. M. Rosenblum, J.K. Ousterhout, The design and implementation of a log-structured file

system. ACM Trans. Comput. Syst. 10(1) (1992)
35. Samsung Electronics, K9F2808U0B 16 M * 8 Bit NAND Flash Memory Data Sheet (2001)
36. Samsung Electronics Company, K9GAG08U0 M 2G * 8 Bit MLC NAND Flash Memory

Data Sheet (Preliminary)
37. Samsung Electronics Company, K9NBG08U5 M 4 Gb * 8 Bit NAND Flash Memory Data

Sheet
38. SanDisk Corporation, Sandisk Flash Memory Cards Wear Leveling (2003)
39. D. Shmidt, Technical note: Trueffs wear-leveling mechanism (tn-doc-017). Technical report,

M-System (2002)
40. Software Concerns of Implementing a Resident Flash Disk. Intel
41. Spectek, NAND Flash Memory MLC (2003)
42. M. Spivak, S. Toledo, Storing a persistent transactional object heap on flash memory, in

LCTES ’06: Proceedings of the 2006 ACM SIGPLAN/SIGBED Conference on Language,
Compilers, and Tool Support for Embedded Systems (2006), pp. 22–33

43. STMicroelectronics, Wear Leveling in Single Level Cell NAND Flash Memories (2006)
44. S.P.D.-H.L.S.-W.L. Tae-Sun Chung, D.-J. Park, H.-J. Song, System software for flash

memory: a survey, in EUC ’06: Embedded and Ubiquitous Computing (2006), pp. 394–404
45. Understanding the Flash Translation Layer (FTL) Specification. Technical report, Intel

Corporation (Dec 1998), http://developer.intel.com/
46. W. Vogels, File system usage in windows nt 4.0. SIGOPS Oper. Syst. Rev. 33(5), 93–109

(1999)
47. D. Woodhouse, Jffs: the journalling flash file system, in Proceedings of Ottawa Linux

Symposium (2001)
48. M. Wu, W. Zwaenepoel, eNVy: a non-volatile main memory storage system, in Proceedings

of the Sixth International Conference on Architectural Support for Programming Languages
and Operating Systems (1994), pp. 86–97

10 Efficient Wear Leveling in NAND Flash Memory 367

http://developer.intel.com/

Chapter 11
BCH Codes for Solid-State-Drives

Alessia Marelli and Rino Micheloni

Abstract Given that the NAND Flash memory is not a very reliable medium, it
follows that a Solid State Disk needs some help to achieve a reliability suitable for
computing applications: the Error Correction Code (ECC). As the NAND tech-
nology scales down, ECC becomes a critical design topic. This chapter deals with
BCH, the most common ECC in solid state disks. Two main issues arise when an
ECC is used inside an SSD. First of all, the ECC should not limit the bandwidth,
being the bottleneck of the entire drive: this translates in a hardware implementation
that needs to handle multiple devices (channel) in parallel. At the same time, ECC
must avoid erroneous corrections when the error correction capability of the code is
overcome, i.e. it must have a high detection property. In this chapter the ECC
definitions are reviewed, then the BCH code is presented along with the
multi-channel topic. Finally, BCH and LDPC detection property are discussed.

11.1 Error Correction Codes Basic Definitions

In 1948 Claude Shannon’s article “A Mathematical Theory of Communication”
gave birth to the two twin disciplines: information theory and coding theory. The
article specifies the meaning of efficient and reliable information and, there, the very
well known term “bit” has been used for the first time [1]. Anyway, it was only with
Richard Hamming in 1950 that a constructive generating method and the basic
parameters of Error Correction Codes (ECC) were defined.

Hamming made his discovery at the Bell Telephone’s laboratories during a study
on communication on long telephone lines corrupted by lightening and crosstalk.
The discovery environment shows how the interest in error-correcting codes has
taken shape, since the beginning, outside a purely mathematical field.

A. Marelli (✉) ⋅ R. Micheloni
Storage Solutions, Microsemi Corporation, Vimercate, MB, Italy
e-mail: alessiamarelli@gmail.com

R. Micheloni
e-mail: rino.micheloni@ieee.org

© Springer Nature Singapore Pte Ltd. 2018
R. Micheloni et al. (eds.), Inside Solid State Drives (SSDs),
Springer Series in Advanced Microelectronics 37,
https://doi.org/10.1007/978-981-13-0599-3_11

369

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_11&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_11&domain=pdf

The codes discovered by Hamming are able to correct only one error, they are
simple and widely used in several applications where the probability of error is
small and the correction of a single error is considered sufficient.

More powerful codes, such as BCH and Reed-Solomon, were discovered
between 1958 and 1960. The first ones were described by Bose and Chaudhuri [2]
and through an independent study by Hocquengheim [3]; the second ones were
defined by Reed and Solomon a few years later, between 1959 and 1960 [4]. They
were immediately used in space missions, and today they are still used in compact
discs.

Afterwards, they stopped being of interest for space missions and were replaced
by convolutional codes, introduced for the first time by Elias in 1955. Convolu-
tional codes can also be combined with cyclic codes. The study of optimum con-
volutional codes and the best decoding algorithms continued until 1993 when turbo
codes were presented for the first time in the communication environment [5]. In
fact, it is in the sector of telecommunications where they have received greater
success.

A singular history is that of LDPC (Low Density Parity Checks) codes first
discovered in 1962 by Gallager [6], but whose applications are being studied only
today [7].

Error correction codes add redundant bits called parity bits to the information
data bits so that, on reception, it is possible to detect the errors and to recover the
message that has most probably been transmitted.

One of the biggest families in coding theory is block codes [8–10]. Block coding
deals with messages of fixed length. Schematically (Fig. 11.1), a block m of
k symbols is encoded in a block c of n symbols (n > k) and written in a memory.
Inside the memory, different sources may generate errors e, so that the block
message r is read. The block r is then decoded in d by using the maximum
likelihood decoding strategy, so that d is the message that has most probably been
written.

A Code C is the set of codewords obtained by associating the qk messages of
length k of the space A to qk words of length n of the space B in a univocal way.

Fig. 11.1 Representation of coding and decoding operations for block codes

370 A. Marelli and R. Micheloni

A code is defined as linear if, given two codewords, also their sum is a code-
word. When a code is linear, encoding and decoding can be described with matrix
operations.

Definition 11.1.1 G is called generator matrix of a code C when all the codewords
are obtainable as a combination of the rows of G.

Each code has more than one generator matrix, i.e. all its linear combinations. It
follows that each code has infinite equivalent codes, i.e. all those obtained by
permutations or linear combinations of the matrix G.

Definition 11.1.2 A set of equations that gives parity positions in terms of data
positions is called parity equations set.

It is possible to express all these equations as a matrix. The matrix H is called
parity matrix for a block code.

Therefore, with reference to Fig. 11.1, encoding a data message m consists in
multiplying the message m by the code generator matrix G, according to (11.1).

c=m ⋅G ð11:1Þ
Definition 11.1.3 G is said in standard form or in systematic form if G = (Ik, P),
where Ik is the identity matrix k × k and P is a matrix k × (n – k). If G is in
standard form then the first k symbols of a word are called information symbols.

Theorem 11.1.1 If a code C[n, k] has a matrix G – (Ik, P) in standard form, then a
parity matrix of C is H = (−PT, In–k) where PT is the transpose of P and it is a
matrix (n – k) x k and In−k is the identity matrix (n – k) × (n – k).

Systematic codes have the advantage that the data message is visible in the
codeword and can be read before decoding. For codes in non-systematic form the
message is no more recognizable in the encoded sequence and it is necessary to
have the inverse encoding function to recognize the data sequence.

Definition 11.1.4 The code rate is defined as the ratio between the number of
information bits and the codeword length. Given a linear code [n, k] the ratio k/n is
defined as code efficiency.

Definition 11.1.5 It is called minimum distance or Hamming distance d of a code,
the minimum number of different symbols between any two codewords.

We can see that for a linear code the minimum distance is equivalent to the
minimum distance between all the codewords and the codeword 0.

Definition 11.1.6 A code has detection capability v if it is able to recognize all the
messages, containing v errors at the most, as corrupted.

The detection capability is related to the minimum distance as described in
(11.2).

v= d− 1 ð11:2Þ

11 BCH Codes for Solid-State-Drives 371

Definition 11.1.7 A code has correction capability t if it is able to correct each
combination of a number of errors equal to t at the most. The correction capability
is calculated from the minimum distance d by the relation:

t=
d− 1
2

� �
ð11:3Þ

where the square brackets mean the floor function.

Definition 11.1.8 Given a code C[n, k] Ai represents the number of codeword with
weight i. The set {Ai} is called weight distribution of the code C and {Ai} are called
the weights of C.

The code C has a symmetric distribution if (11.4) holds true.

Ai =An− 1 0≤ i≤
n− 1
2

� �
ð11:4Þ

Definition 11.1.9 The dual code C* of a code C[n, k] is the set of vectors
orthogonal to all the codewords of C:

C* = fv∈ ðFqÞnjv ⋅ c=0∀c∈Cg ð11:5Þ

The weight distribution or the distance of the dual code gives a lot of information
on the code itself as the following sections show.

Definition 11.1.10 Given a code C, its dual code C* and {Ai} with i = {0, …,n} its
weight distribution, we define the weight enumerator of the code C the polynomial

WC x, yð Þ= ∑
n

i=0
Aixn− iyi ∈Z x, y½ � ð11:6Þ

A fundamental theorem that describe the relationship between WC (x, y) and WC*

(x, y) is MacWilliams theorem. Here it will be present only the version for linear
binary codes.

Theorem 11.1.2 (MacWilliams equality for binary codes) Given a linear binary
code C[n, k] and C* its dual code the following equation holds true

WC* x, yð Þ= 1
Cj jWC x+ y, x− yð Þ ð11:7Þ

where |C| = 2k is the number of words in C. In other words:

∑
n

i=0
A*
i x

n− iyi =
1
Cj j ∑

n

i=0
Ai x+ yð Þn− i x− yð Þi ð11:8Þ

This latter equality is called MacWilliams identity.

372 A. Marelli and R. Micheloni

There is an important operation we can apply to a linear code C called ex-
tension. Also in this case, there is a relationship between the original code weights
and the weights of its extension.

Definition 11.1.11 Given a code C[n, k, d] we call extension of the code CE the
code obtained from C by adding one more parity bit computed as the logical XOR
of all the other bits. The code CE has only even weighted codeword and

• if d is even CE is a code [n + 1, k, d]
• if d is odd CE is a code [n + 1, k, d + 1]

Given a code C with weight distribution {ai}, and {Ai} the weight distribution of
its extension code CE, we have

A2i = a2i + a2i− 1 ð11:9Þ

with 2≤ 2i≤ n − 1.
Given a code C[n, k, d] and CE its extension: if n is odd and C has a symmetrical

weight distribution, then CE has symmetrical weight distribution.
In a lot of applications there are external factors not subject to error check which

determine the length permitted to an error correction code. Non volatile memories,
for example, operate on codewords that have a length power of 2.

When the “natural” length of the code is not suitable it is possible to change it
with the shortening operation.

Definition 11.1.12 A code C[n, k] is shortened into a code C′[n − j, k − j] by
erasing j columns of the parity matrix.

Codes can be combined together in order to improve their correction capabilities.
One way to combine them is with concatenation. In this operation we have an inner
code (CIN) and an outer code (COUT) that work together (Fig. 11.2).

Typically, CIN is decoded with a maximum-likelihood approach and COUT is a
block code of length n. In this way the concatenation combines the error probability
property of the inner code and the decoding time property of the outer code.

Fig. 11.2 Schematic diagram of code concatenation

11 BCH Codes for Solid-State-Drives 373

As sketched in Fig. 11.2 the message is firstly encoded with the outer code and
the resulting codeword is encoded with the inner code. During the decoding phase
the message is decoded with the inner code and the result is then decoded with the
outer code. From this description it is clear that a key feature is that the inner code
must have a good detection property, since we must be sure that the inner code
doesn’t perform erroneous correction when the correction capability of the code is
overcome.

11.2 BCH Codes

BCH codes belong to the family of cyclic codes. These are, perhaps, the most used
codes in applications, since they can be implemented by using high-speed
shift-register encoders and decoders [11–13].

Definition 11.2.1 A linear code C[n, k] is called cyclic if (x1,x2, …,xn) є C = > (xn,
x1, …,xn−1) є C.

In other words, if we write the vector a(x) = (a0, …,an−1) as the polynomial
a0 + a1x + a2x

2 + ⋅ ⋅ ⋅ + an1x
n−1, the previous definition states that, if a(x) є C,

then also the right shift belongs to C.
As seen in the previous section, the distance is a key feature in characterizing a

code; in BCH codes the minimum distance can be ensured during construction.
Generally speaking, in order to know the minimum distance for a linear code

with generator polynomial g(x), it is necessary to compute the distance between all
the possible codewords. BCH codes, by imposing some constraints on the generator
polynomial, are able to ensure a “designed distance”.

Definition 11.2.2 Let β be an element of GF(qm). Let b be a non-negative integer.
A BCH code with “designed” distance d is generated by the polynomial g(x) of
minimal degree that has d − 1 consecutive powers of β: βb, βb+1, …, βb+d−2 as
roots. Given Ψ i the minimal polynomial of βb+i for 0 ≤ i < d − 1, g(x) is com-
puted as:

gðxÞ= LCM ψ0ðxÞ,ψ1ðxÞ, . . . ,ψd− 2ðxÞf g ð11:10Þ

and the data protected by the code is k = n-deg(g(x)).
It is possible to show that the designed distance d is at least 2t + 1, hence the

code is able to correct t errors. The number of parity bits for a binary BCH code is
less than or equal to mt. Generally, this number is equal to mt; it is less only when
the minimum distance is greater than the designed distance the code is constructed
with.

If we assume b = 1, and β a primitive element of GF(qm) the code becomes a
narrow-sense and primitive BCH code of length qm − 1 able to correct t errors. We
shall now consider primitive BCH codes.

374 A. Marelli and R. Micheloni

As regards the distance, the important result of Carlitz-Uchiyama inequality is
proven.

Theorem 11.2.1 (Carlitz-Uchiyama inequality) Given a binary BCH code C of
length n = 2m–1 with designed distance δ = 2t + 1, for the minimum distance of the
dual code C* the following inequality holds true

d* ≥ 2m− 1 − t− 1ð Þ2 m
2½ � ð11:11Þ

The general decoding structure is represented in Fig. 11.3.
In BCH structure there is only one step to encode a message, while there are

three steps to decode a message. Generally, we can state that the decoding is ten
times more complex than encoding.

The encoding of a systematic BCH code is performed by multiplying the message
m(x) by xn−k and calculating the parity bits as the remainder of the division of this
multiplication by the generator polynomial, in accordance with (11.12) and
(11.13).

mðxÞ ⋅ xn− k

gðxÞ = qðxÞ+ rðxÞ
gðxÞ ð11:12Þ

cðxÞ=mðxÞ ⋅ xn− k + rðxÞ ð11:13Þ

The structure that implements this division is represented in Fig. 11.4.
The decoding operation follows three fundamental steps, as shown in Fig. 11.3.

• calculation of the syndromes;
• calculation of the coefficients of the error locator polynomial;
• calculation of the roots of the error locator polynomial.

Fig. 11.3 Structure of a binary BCH decoder

11 BCH Codes for Solid-State-Drives 375

Errors in the storage media can be represented by a polynomial that has
coefficient 1 in correspondence with every error’s position:

EðxÞ=E0 +E1x+⋯+En− 1xn− 1 ð11:14Þ

Observe that, in order for the code to be corrector of t errors, at most t non-null
coefficients are allowed in (11.14). The read vector R(x) is therefore:

RðxÞ= cðxÞ+EðxÞ ð11:15Þ

The first decoding step consists in calculating the 2t syndromes for the read
message:

RðxÞ
ψ iðxÞ

=QiðxÞ+ SiðxÞ
ψ iðxÞ

with 1≤ i≤ 2t ð11:16Þ

SiðxÞ=QiðxÞ ⋅ψ iðxÞ+RðxÞ with 1≤ i≤ 2t ð11:17Þ

In accordance with (11.16) and (11.17), the received vector is divided by each
minimal polynomial Ψ i forming the generator polynomial, thus getting a quotient
Qi(x) and a remainder Si(x) called syndrome.

At this point the 2t syndromes must be evaluated into the elements β, β2, β3, …,
β2t whose Ψ i are the minimal polynomials. With reference to (11.18), this evalu-
ation is computed as the evaluation of the message received in β, β2, β3, …, β2t,
since Ψ i(βi) = 0 (for 1 ≤ i ≤ 2t) by definition of minimal polynomial.

Fig. 11.4 Binary BCH encoder

376 A. Marelli and R. Micheloni

Si βi
� �

= Si =Qi β
i� �
⋅ψ i β

i� �
+R βi

� �
=R βi

� � ð11:18Þ

Consequently, the i-th syndrome can be calculated either as the remainder of the
division between the received message and the minimal polynomial Ψ i, then
evaluated in βi, or as the evaluation in βi of the received message.

Observe that, in case no errors occur, the polynomial received is a codeword:
therefore the remainder of the division of (11.16) is null and all the syndromes are
identically null. On the other hand, verifying if the syndromes are identically null is
a necessary and sufficient condition to understand if the read message is a code-
word or if some errors occurred.

An useful property described in (11.19) can be exploited to compute only t
syndromes.

S2i = S2i ð11:19Þ

The syndromes calculation for a BCH code existing over GF(2m) involves t
structures which contemporarily calculate the remainder of the divisions between
the received polynomial and the t minimal polynomials. These structures are very
similar to the one depicted in Fig. 11.4.

Once the syndromes are computed, they are used to search the error locator
polynomial.

By indicating the error positions with X and the number of errors that occurred
with v the following equality holds true:

Si = ∑
v

l=1
Xi
l ð11:20Þ

Definition 11.2.3 It is defined error locator polynomial Λ(x) the polynomial whose
roots are the inverse of the error positions.

From the definition we have:

ΛðxÞ= ∏
v

i=1
1− xXið Þ ð11:21Þ

Please observe that the degree of the error locator polynomial gives the number
of errors that occurred. The degree of Λ(x) is t at most, hence, in the case more than
t errors occur, the polynomial Λ(x) could erroneously indicate t or less errors.

The most used algebraic method to perform this step of the decoding is the
Berlekamp-Massey algorithm [14]. The complexity of this algorithm grows in a
linear way, enabling the construction of efficient decoders able to correct dozens of
errors.

Berlekamp algorithm finds the coefficients of the error locator polynomial in an
iterative way. At the i-th step of the algorithm we find a polynomial Λ(x) whose
coefficients solve the first i equations of (11.20). Then, we test if Λ(x) also solves

11 BCH Codes for Solid-State-Drives 377

the equation i + 1; if not, we calculate the discrepancy term d so that Λ(x)
+ d solves the first i + 1 equations. After 2t iterations Λ(x) is the error locator
polynomial.

In the binary case it is possible to perform the Berlekamp algorithm in t itera-
tions. There are a number of different implementations of Berlekamp algorithm
[15–17], here below we will explain the one following the diagram of Fig. 11.5.

Equation (11.22) shows the syndrome polynomial and the initial conditions for
the algorithm:

1+ S=1+ S1z+ S2z2 +⋯+ S2t− 1z2t− 1

Λð0ÞðzÞ=1 dð0Þ =1
ð11:22Þ

Fig. 11.5 Flow diagram for the Berlekamp algorithm

378 A. Marelli and R. Micheloni

At the i-th step we proceed as follows:

• if S2i+1 is unknown the algorithm is finished;
• otherwise we define Δ(2i) the coefficient of z2i+1 in the product (1 + S(z))Λ(2i)(z).

Λ 2i+2ð ÞðzÞ=Λ 2ið ÞðzÞ+Δ 2ið Þ ⋅ d 2ið ÞðzÞ ⋅ z ð11:23Þ

d 2i+2ð ÞðzÞ=
z2d 2ið Þðz) if Δ 2ið Þ =0 or if °Λ 2ið ÞðzÞ> i

zΛ 2ið ÞðzÞ
Δ 2ið Þ if Δ 2ið Þ ≠ 0 or if °Λ 2ið ÞðzÞ≤ i

8><
>: ð11:24Þ

The polynomial Λ(2t)(z) is the error locator polynomial.
A number of paper have been published to avoid the inversion or to parallelize

the structure. It is not the purpose of this chapter to present these paper but they can
be found in [15–17].

The last step of the decoding process consists in searching for the roots of the
error locator polynomial. If the roots are separate and they are in the field, then it is
enough to calculate their inverse to have the error positions. If they are not separate
or they are not in the correct field, it means that the word received has a distance
from a codeword greater than t. In this case an uncorrectable error pattern occurred
and the decoding process fails.

The algorithm used to search the roots, known as Chien algorithm, is a method
based on trial and error. Substantially each field element is substituted in the error
locator polynomial: if it satisfies the equation it is a root, otherwise the following
element is tested. The inverse of the found root indicates an error location.

Recall that the error locator polynomialΛ(x) of degree t at themost, for aBCH[n, k],
is defined as:

ΛðxÞ=1+Λ1x+⋯+Λtxt ð11:25Þ

Hence, verifying if a field element αi satisfies the equation means verifying
(11.26):

1 +Λ1α
i +⋯+Λt α

i� �t
=0 ð11:26Þ

If the equation is not satisfied the following element is considered, otherwise αi
is a root. In this case the inverse is an error position, i.e. the position 2m−1−i is the
erroneous one.

11 BCH Codes for Solid-State-Drives 379

11.3 BCH Decoding Failures

BCH codes are not perfect codes: for this reason it is difficult that a codeword with
more than t errors moves in the correction sphere of another codeword. The
codewords of BCH codes are well separated one from another and only a number of
errors much greater than t could partially overlap their correction spheres.

This is the reason why, when more than t errors occur, most of the time the
decoding process fails but erroneous corrections are not performed. It is therefore
possible to use an error message showing that more than t errors have occurred.

Suppose we have a message containing more than t errors and see how the
decoding proceeds. At the exit of the syndromes calculation block it is not possible
to detect if the correction capability has been exceeded; on the contrary, the cal-
culation is completed with success by finding t, apparently valid, syndromes.

The syndromes are transferred to the block that searches for the error locator
polynomial. As mentioned, the Berlekamp algorithm is a recursive algorithm that
searches for the coefficients of the error locator polynomial using successive
approximations, by adding at the i-th iteration a discrepancy term d so that
Λ(x) + d solves the first i + 1 equations. The discrepancy term is a monomial that
is added to the error locator polynomial previously found. When the degree of the
monomial to be added is greater than t, the correction capability of the code has
been exceeded. Recalling that the degree of the error locator polynomial is equal to
the number of errors that most likely occurred, we can state that this number is
reliable up to t. If a degree higher than t is detected at some point in the algorithm,
the decoding terminates with an error message.

Unfortunately it is not granted that, when the correction capability of the code is
exceeded, this is what happens. On the contrary, most of the times this does not
happen and the error locator polynomial apparently seems a valid one with a degree
smaller than or equal to t (most of the times equal to t). Consequently, these
coefficients, apparently valid, are loaded into the Chien machine.

When the correction capability of the code is exceeded, the Chien algorithm
discloses it, since one of the following cases occurs:

• there are coincident roots;
• a sufficient number of roots is not found. Remember that a number of roots

equal to the degree of the error locator polynomial has to be found;
• in case of shortened codes it can also happen that the shortened positions, those

ones ideally filled in with 0 s, are recognized as erroneous.

In practical implementations the first condition never happens because, given the
implementation of the Chien machine, the same element is never tested more than
once.

The second condition is the one that actually occurs in real applications. At the
end of the Chien algorithm we verify, through a comparator, if the number of roots
found is equal to the degree of the error locator polynomial. If this condition is not

380 A. Marelli and R. Micheloni

satisfied, an error message shows that the correction capability of the code has been
exceeded.

Finally, the third condition generally never occurs in shortened codes cases,
because the use of an “initialization” constant avoids the testing of shortened
positions.

However, remember that if the number of errors is much greater then the cor-
rection capability, the received message can be found in a correction sphere of
another codeword: in this case the code might not be able to understand if the
correction capability has been exceeded and might perform erroneous corrections.

Summarizing, we can state that the BCH decoder can be approximate with an
ideal one, since erroneous correction are very unlikely to occur [8], unless the
received message really falls in another correction sphere. These cases must be
studied based on the algebraic structure of the code and will be presented in the next
sections.

11.4 Detection Properties

As explained in the previous section, it is unlikely that the BCH decoding algorithm
makes erroneous corrections, i.e. we can approximate it with an ideal decoding. It
follows that the erroneous corrections are made only when the received message is
located in a correction sphere different from the original codeword.

Definition 11.4.1 Given a binary linear code C able to correct t errors, we call the
probability of miscorrection PME the probability that an ideal bounded distance
decoder executes erroneous corrections.

Definition 11.4.2 The weighted probability PE(w) is the probability of executing
erroneous corrections when w errors occurred.

Observe that the probability PME depends on the code C and on the transmission
channel.

Theorem 11.4.1 The weighted probability PE(w) is computed as:

PEðwÞ= Dw

n
w

� � ð11:27Þ

where Dw is the number of decodable words and w is in the range [t + 1, n].
The number of decodable words can be computed as

Dw = ∑
n

i=0
ai ∑

t

s=0
Nði,w; sÞ ð11:28Þ

11 BCH Codes for Solid-State-Drives 381

where N(i,w;s) is the number of words with weight w with a distance s from a word
of weight i. This is computed by (11.29)

N i,w; sð Þ=
n− i
s+w− i

2

� �
i

s−w+ i
2

� �
if w− ij j≤ s

0 if w− ij j> s

8<
: ð11:29Þ

Substituting (11.28) in (11.27) we have:

PEðwÞ= ∑n
i=0 ai ∑

t
s=0 Nði,w; sÞ
n
w

� � ð11:30Þ

PME is computed based on PE(w) as described in (11.31)

PME = ∑
n

w= t+1
PEðwÞϕðwÞ ð11:31Þ

where Φ(w) is the probability that a word has weight w.
For a binary symmetric channel BSC we have:

PME = ∑
n

w= t+1
Dwpw 1− pð Þn−w ð11:32Þ

where p is the bit error probability.
It follows that we have to compute the value Dw. This value can be computed

according with (11.28). Unfortunately the weights ai are unknown for BCH codes
and must be estimated.

11.5 BCH Weight Estimation

There are a number of different theorems that helps in estimating the weight of a
BCH code. Here below we will see the major ones and how they behave in
comparison with real weights.

First of all, we present a result that establishes a relationship between the weight
distribution of a BCH code and the weight distribution of its dual code.

Theorem 11.5.1 Given C a BCH[n, k, d] code and CE its extension, C has weight
distribution {ai} and CE has weight distribution {Ai}. The following equations hold
true:

382 A. Marelli and R. Micheloni

a2i− 1 =
2i
n
A2i

a2i =
n− 2i
n

A2i

ð11:33Þ

Observe that a BCH code has symmetrical weight distribution and the word
composed by all 1 is a valid codeword. Moreover, given that BCH has an odd
length (i.e ⋅ n = 2m−1), also for the extension BCHE the word composed by all 1 is
a valid codeword. Finally, observe that the dual code of CE has only even weight
codewords.

One of the most important weight estimation is the Peterson one. It was the first
estimation and it is not an upper or a lower bound but an approximation.

Theorem 11.5.2 ([18] Peterson Estimation) The weight ai of a primitive BCH code
of length n and error correction capability t can be approximated as

ai ≅

n
i

� �
n+1ð Þt ð11:34Þ

In order to have upper bounds, different correction terms are added to (11.34).
In other words, for the extension code BCHE the estimations use the following
relationship:

Ai =
0 i≡ 1 mod 2
n
i

� �
2mt 1+Eið Þ i≡ 0 mod 2

8<
: ð11:35Þ

In order to compare different estimations a real case is shown. For BCH
[255,207,13] the weights w are known. Figure 11.6 shows the relative errors with
respect to the real weights with different estimations for this code. On the x-axis
there is the weight w, while on the y-axis we find

RðwÞ= AðwÞEST −AðwÞREAL
AðwÞREAL

ð11:36Þ

We distinguish three different behaviors. The first estimation set has a very low
error on the first weights but a very high error in the middle.

The following theorems describe the estimations belonging to this set.

Theorem 11.5.3 ([19]) Given

t≥ 3,w= n− 2d*, t< i≤
n−w
4

11 BCH Codes for Solid-State-Drives 383

For cases:

i= t+1, t=3,m≥ 5
t=4,m≥ 9
t=5,m≥ 15

i= t+2, t=4,m≥ 7
t=5,m≥ 9
t=6,m≥ 11
t=7,m≥ 15

Equation (11.37) holds true

E2i

2
≤ 2−m i− tð Þ ∏

2i− 1

h=1
1−

h
n+1

� �− 1

∏
i

h=1
2h− 1ð Þ 2i− 1 − 1

� � ð11:37Þ

For all other cases (11.38) holds true

Fig. 11.6 Relative error between real weights and different estimations for BCH[255,207,13]

384 A. Marelli and R. Micheloni

E2i
2 ≤ 2−m i− tð Þ ∏

2i− 1

h=1
1− h

n+1

� �− 1 ∏
i

h=1
2h− 1ð Þ ∑

⌊ i2⌋

h= ⌊i− t
2 ⌋+1

i
2h

� �
+

(

∏
i

h=1
2h− 1ð Þ 2ið Þ! 2 t− 1ð Þ½ �2i− 2q− 2t

2qq! 2i− 2qð Þ!

�

q = i+ 3
4 + t− 1ð Þ2 −

ffi
1
16 + 2i+ 3

2

� �
t− 1ð Þ2 + t− 1ð Þ4

q� � ð11:38Þ

The proof of this theorem is behind the purpose of this chapter. However, note
that this is a very complex equation that estimates very well the weights, but the big
drawback is that it can be applied only to some cases. For BCH[255,207,13]
sketched in Fig. 11.6 this estimation (labeled as FKL_1) is applicable only for
weight w in the range [13,64] and in the range [256–64, 256]. However, there is
another estimation (labeled as FKL_2 in Fig. 11.6) extended to all weights.

Theorem 11.5.4 ([19]) For t < i ≤ 2m−2 the following inequality holds true:

E2i

2

 ≤ 2−m i− tð Þ

ffi
8
π

1−
2i

n+1

� �s
2ið Þie− ic i, t− 1ð Þ

(
+

2
π

ffiffiffiffiffiffiffiffiffiffiffi
2i

2i− 1

r

∏
t

j=1
2j− 1ð Þ 2 t− 1ð Þj j− 2t t− 1+

ffi
2i+ t− 1ð Þ2

q� �2i

e2ib 2ið Þ
)

c u, xð Þ=1− ln 2ð ÞH x
u

� �
−

5u
2 n+1ð Þ

HðxÞ − x log2 x− 1− xð Þ log2 1− xð Þ 0≤ x≤ 1
2

1 1
2 < x≤ 1

(

bðsÞ= −
1
2
+

5s
8 n+1ð Þ +

1

1+
ffi
1+ 4s n+1ð Þu− 2

p

ð11:39Þ

As shown in Fig. 11.6 this estimation is very similar to the previous one for
small weights but it has a huge error in the middle.

Another family of estimations has a big error on the first weights but a very low
error in the middle.

Theorem 11.5.5 ([20]) For a primitive BCH code of length n = 2m−1, an upper
bound for the weight distribution is:

ai =

n
i

� �
n+1ð Þt 1+Ei*ð Þ ð11:40Þ

11 BCH Codes for Solid-State-Drives 385

where i * = i + 1 if i is odd and i* = i if i is even and Ei is computed with the
following inequality:

Eij j≤
nt

n+1
n+1
2

� �
n+1
2
1
2

� �
n+1
i

� �
n+1
d*

� � ð11:41Þ

Another estimation of the correction term Ei is proposed in the following
theorem.

Theorem 11.5.6 ([21]) The correction term Ei can be estimated as:

Eij j≤ n+1ð Þt

ffi
2i n+1− ið Þ+ n+1ð Þ n+1ð Þt i

i
2

� �
n+1− i

n+1− i
2

� �

2 n− d*ð Þ n+1
d*

� �
n+1
i

� �
vuuuuut ð11:42Þ

As before, the proof of this theorem is behind the purpose of this chapter.
However, it is important to state that it is based on the maximization of a specific
class of polynomials called Krawtchouk polynomials.

Definition 11.5.1 For every positive integer n we call Krawtchouk polynomial of
degree k Pk(x, n) = Pk(x)

Pk x, nð Þ= ∑
k

j=0
− 1ð Þ j x

j

� �
n− x
k− j

� �
ð11:43Þ

By using a result of [22] it is possible to prove that:

Eij j≤ 2mt

n
i

� � max
d* ≤ x≤ 2m− 1

PiðxÞj j ð11:44Þ

It follows that an upper bound for max |Pi(x)| is an upper bound for Ei.
It is possible to compute exactly this maximum value, with the drawback of a

high computational cost. Hence, it is not always possible for all the length and
correction capability. In Fig. 11.6 the relative error obtained with the maximization
of Krawtchouk polynomials is labeled as “Kr”. Finally the last estimation is pre-
sented below.

Theorem 11.5.7 ([23]) Given f(x) and g(x) even function with respect (n + 1)/2
described by (11.45)

386 A. Marelli and R. Micheloni

f ðxÞ= ∑
k

i=0
f2iP2iðxÞ and gðxÞ= ∑

k

i=0
g2iP2iðxÞ ð11:45Þ

with the following properties

f2k >0
g2k >0
f ðxÞ≥ 0 ∀x
gðxÞ≤ 0 d* ≤ x≤ n− d*

ð11:46Þ

It follows that

A f
2k ≤A2k ≤Ag

2k

A f
2k =

2m

2k

� �
2mt

1−E f
2k

� �
=

f ð0Þ
2mt − f ð0Þ− ∑

k − 1

i= t+1
f2iA2i

f2k

Ag
2k =

2m

2k

� �
2mt

1−Eg
2k

� �
=

gð0Þ
2mt − gð0Þ− ∑

k − 1

i= t+1
g2iA2i

g2k

ð11:47Þ

A convenient choice for function f(x) and g(x) is proposed by the authors and is
the following

f ðxÞ=P2
kðxÞ

gðxÞ= P2ðxÞ+Ctð ÞP2
k− 1ðxÞ Ct = −P2 d*

� � ð11:48Þ

Figure 11.7 shows the relative error with respect the real weights (as described
in (11.36)) for the estimation made with the maximization of Krawtchouk polyno-
mials, for the best estimation among all the theoretical estimation and for the
estimation with linear programming technique.

As shown in Fig. 11.7, Krawtchouk estimation is better compared with the
minimum among all other theoretical estimations. Anyway, we have the special
case of linear programming estimation which shows a quasi-null error.

A linear programming problem (LP) with N real variables x1, …,xN with M
constraints like

∑
N

j=1
αijxj ≤ ci or ∑

N

j=1
αijxj = ci ð11:49Þ

with ci and αi positive real variables, can be represented in a matrix form:

11 BCH Codes for Solid-State-Drives 387

α11 ⋯ α1N
⋮ ⋱ ⋮

αM1 ⋯ αMN

0
@

1
A x1

⋮
xN

0
@

1
A RELð Þ

c1
⋮
cN

0
@

1
A ð11:50Þ

where REL represents the relationship for each components. The purpose is to
find a solution x able to maximize or minimize the objective function

∑
N

i=1
oixi ð11:51Þ

Linear programming technique is applied to the BCH weight estimation by
means of Fujiwara algorithm described in [19, 24].

MacWilliams identity is the objective function we need to maximize, where Bj is
the weight distribution for the extension of the dual code:

max ∑
2m − d* − 1

i= d*
PsðjÞBj s= d*, . . . , 2m − d* − 1 ð11:52Þ

The constraints that we need to add on Bj are the Pless power-moment identities
[14]

∑
2m − d* − 1

j= d*

2m
2 − j

� �2lBj =22
m − kM2l − 1+Bnð Þ 2m

2

� �2l0≤ l≤ t

Mi =2− i di
dxi cosh

2m x
� �

x=0

ð11:53Þ

Fig. 11.7 Relative error
between real weights and
Krawtchouk estimation, linear
programming estimation and
the minimum among all
theoretical estimations for
BCH[255,207,13]

388 A. Marelli and R. Micheloni

The more constraints we add the easier to find a solution in a fast way. In this
case we can add constraints involving the distance of the extension of the dual code
as shown in the following example.

Example 1 Let’s take the extension of BCH[2048,1992] with distance 12. We can
exploit the properties of Reed-Muller codes [9, 10] so that

RM r,mð Þ⊂BCHE 2m, 2m− r − 1ð Þ
RM 7, 11ð Þ⊂BCHE 2048, 16ð Þ⊂BCHE 2048, 12ð Þ
RM 7, 11ð Þ⊃BCHE* 2048, 16ð Þ⊃BCHE* 2048, 12ð Þ
RM 11− 7− 1, 11ð Þ⊂BCHE* 2048, 12ð Þ

ð11:54Þ

The weights of this Reed-Muller code are non-null and multiple of 2s with s =3.
It follows that the weights of the code EBCH*(2048,12) are non-null and multiple
of 8 starting from the minimum distance. By using Reed-Muller properties this
distance is d* ≥ 2m−r= 256, while we obtain d* ≥ 2m−1 − (t − 1)√2m = 844 with
Carlitz-Uchiyama inequality.

The estimation made with Krawtchouk maximization and Linear Programming
technique are the most effective ones even if they are prohibitive for long codes due
to computational complexity. Moreover, it’s not always possible to find all the
constraints and, even if they would be available, it could take a year to find an
estimation with today’s computers.

11.6 BCH Weight Estimation: Real Cases Analysis

In this part we will analyze different cases to compare different behaviors among
estimations.

11.6.1 BCH[255,207,13]

In this case the weights of the code are known, since the code is short and the error
correction capability of the code is small, i.e. six errors. Figures 11.6 and 11.7
represent the weight estimation comparison for this code. Observe that the weight
estimation depends a lot on the estimation on the first weight.

PME graph is shown on Fig. 11.8. As it is possible to see the behavior is
monotonic increasing. The comparison graph for PE estimation is shown in
Fig. 11.9. In the graph, there is the PE computed by taking the minimum among all
the theoretical estimations, the estimation obtained with linear programming tech-
nique and the real one (as we know the real weights).

11 BCH Codes for Solid-State-Drives 389

As it is possible to see, the real PE is a monotonic increasing function, while all
the estimations are very good in the middle but have a bump on the first (and last)
weight.

Fig. 11.8 PME behavior for BCH[255,207,13]

Fig. 11.9 PE behavior for
BCH[255,207,13]. The graph
shows the real PE, the one
obtained with linear
programming technique and
the one obtained by taking the
minimum among all the
theorical estimations

390 A. Marelli and R. Micheloni

11.6.2 BCH[1023,993,7]

Also in this case the weights are known since the error correction capability of the
code is only 3. Figures 11.10 and 11.11 shows the relative error for different weight
estimations compared with the real weights and compared with the minimum
among all the estimations.

As it possible to see the two figures are quite identical. Figure 11.12 shows PE
behavior for this code using real weights. Also in this case we note that the behavior
is monotonic increasing with a very long floor in the middle.

In Fig. 11.13 PME is shown. The x-axis represents a probability belonging to the
range [0, 1/2] and is divided in 500 subsets.

11.6.3 BCH[4095,3975,21]

This is the first case where we don’t know the real weights (Fig. 11.14). The
behavior is similar to the previous cases, but a bump on the first weight estimation
pops up. This is partially due to the fact that we don’t know the minimum distance
of the dual code of the extension.

For example, in BCH[255,207,13] case the distance of the code with
Carlitz-Uchiyama bound is 48, while the real one is 64. Note that here it is not
possible anymore to use Linear Programming technique due to computational
complexity.

Fig. 11.10 Relative error between real weights and different estimations for BCH[1023,993,7]

11 BCH Codes for Solid-State-Drives 391

Figure 11.15 shows PE behavior: it has the usual long floor, but for the first time
we see a bump on the first weights. This behavior is shown also in Fig. 11.16 where
we have a zoom on the first weights.

PME function is not represented here, since it has the same behavior as PE.

Fig. 11.11 Relative error between different estimations and the minimum among all the different
estimations for BCH[1023,993,7]

Fig. 11.12 PE behavior for BCH[1023,993,7]

392 A. Marelli and R. Micheloni

11.6.4 BCH[16383,15851,77]

Also in this case the real weights are unknown. Moreover, it is not possible any-
more to use the Krawtchouk estimation and the linear programming estimation due
to computational complexity. As shown in Fig. 11.17, we have an error on the first

Fig. 11.13 PME behavior for BCH[1023,993,7]

Fig. 11.14 Relative error between different estimations and the minimum among all the different
estimations for BCH[4095,3975,21]

11 BCH Codes for Solid-State-Drives 393

Fig. 11.15 PE behavior for BCH[4095,3975,21]

Fig. 11.16 PE zoom on the
first weights for BCH
[4095,3975,21]

394 A. Marelli and R. Micheloni

weights of hundreds of order of magnitudes. This is mainly due to the poor esti-
mation on the distance of the dual code that gives also a big error on PE and PME

estimation (Figs. 11.18 and 11.19).
Please observe that, in this case, PME is almost 1 for low p values!

Fig. 11.17 Relative error between different estimations and the minimum among all the different
estimations for BCH[16383,15851,77]

Fig. 11.18 PME behavior for
BCH[16383,15851,77]

11 BCH Codes for Solid-State-Drives 395

11.7 BCH Detection Conclusion

As shown in the previous section, the error on the estimation on the first weights
has a huge effect on PE and PME. In particular a poor estimation shows up as a
bump on the first weights that become greater as the code length increases.

One of the best estimation, even if it is not an upper bound, is the Peterson
estimation (Theorem 11.5.2). Figures 11.20 and 11.21 shows PE and PME behavior
for BCH[255,207,13] using Peterson estimation. We can see that we have the
monotonic increasing behavior that we expect when real weights are known.

Fig. 11.19 PME zoom on the
first weights for BCH
[16383,15851,77]

Fig. 11.20 PE behavior for
BCH[255,207,13] using
Peterson estimation

396 A. Marelli and R. Micheloni

Figure 11.22 shows PME behavior for BCH[16383,15851,77] using Peterson
estimation. Recall (Sect. 11.6.4) that here the real weights are unknown and we had
a bump at the beginning using upper bound estimations. Instead, by using Peterson
estimation a monotonic behavior can be seen.

It follows that the real PE and PME profile should be monotonic with a wide floor
in the middle. When the code length is high and the code rate is high this floor can
be approximate with [25].

Fig. 11.21 PME for BCH
[255,207,13] for Peterson
estimation

Fig. 11.22 PME for BCH
[16383,15851,77] for
Peterson estimation

11 BCH Codes for Solid-State-Drives 397

Q=2− n− kð Þ ∑
t

s=0

n
s

� �
ð11:55Þ

Summarizing, we can state that when the length is high, the BCH code has a
very good detection properties that made it suitable for the implementation in SSDs.
In fact, when a catastrophic error occurs or when the error correction capability of
the code is passed, the BCH code declares a decoding failure without attempting
erroneous corrections. This is a key point when using BCH code concatenated with
another code.

11.8 Multi-channel BCH

Solid State Disks are built with many Flash channels connected to the host through
a high-speed interface such as SATA or PCI Express (Chap. 2). In this scenario the
performance of the SSD is determined by the ECC needed to overcome the high
error-rate. It follows that binary BCH code must have a structure able to handle a
number of channels together, without being the performance bottleneck.

It has already been studied [4] how the native serial structure of BCH can be
parallelized to work on one byte or dword at a time. In multi-channel architectures,
this is not enough and multiple encoding and decoding machines must be imple-
mented. In particular, given raw bit error rate higher than 10−4, the most likely
situation is that almost all the pages read in parallel need correction.

Figure 11.23 shows the probability that n chunks require correction given a bit
error probability. For example, if the bit error probability is 10−5, we have a
probability of around 10−2 of having 32 error-free chunks, a probability of 10−1 that
three chunks over 32 require correction, a probability of 10−10 that 24 chunks
require correction and so on. The highest curve in the graph is the most likely
number of correction required: for example, at BER of 10−5 3-err and 6-err are the
highest.

If BER is higher than 2 * 10−4 the most likely number of correction over 32
chunks is 32; in other words every chunk requires correction.

In order to keep up with the bandwidth requirements, the most straightforward
solution would be to have one encoder and one decoder per channel. However, this
approach is extremely area consuming, especially because of the decoder.

As far as the encoding is concerned, it is very important that data coming from
the host are dispatched to the various channels without latency. There are three
possible approaches, starting from the less area consuming:

• single encoder shared among all Flash channels [26];
• a pool of encoders;
• one encoder per channel.

398 A. Marelli and R. Micheloni

The right hardware choice comes from the tradeoff between silicon area and
latency.

The decoding is trickier than encoding since the algorithm is composed of three
steps as shown in Fig. 11.3. Please note that null syndromes mean an error-free
message: therefore, decoding doesn’t need to go through Berlekamp and Chien.
This situation is very common when the solid state drive is fresh.

As the reader can notice, Fig. 11.3 shows a pipelined structure. In order to
design each decoding step in the correct way, we need to study its latency:

• the input of the syndrome computation is the read codeword of length n. If the
t syndrome machines works with a parallelism of b bits, the latency of the
syndrome computation is proportional to n/b;

• Berlekamp algorithm takes the t syndromes as input and finds the error locator
polynomial coefficients in t iterations. It follows that it has a latency proportional
to t;

• Chien search takes the error locator polynomial computed by Berlekamp as
input. It substitutes n elements in the polynomial to see if they are roots. If the
machine is able to work on c elements at a time, its latency is proportional to n/c.
If the degree of the error locator polynomial is v, the Chien machine stops when
it finds v roots, without substituting the remaining elements of the field. Hence
n/c is the worst case latency.

Fig. 11.23 Probability of n chunks over 32 requiring correction

11 BCH Codes for Solid-State-Drives 399

In order to exploit the pipelined architecture we must have numbers n/b, t, and n/
c as similar as possible. However, n is generally much higher than t and there are
design constraints on b and c. Hence, we can achieve a balance by adding more
machines either to syndrome or Chien.

Let’s assume n1 HW machines to perform syndrome computation, n2 HW
machines to execute Berlekamp algorithm and n3 HW machines to perform Chien
search. We choose n1, n2 and n3 so that (11.56) holds true:

n
n1 * bð Þ≈

t
n2

≈
n

n3 * cð Þ ð11:56Þ

The resulting decoding structure is sketched in Fig. 11.24.
Finally we can use probabilistic consideration in choosing the number and the

size of Chien machines. The size of the Chien block depends on the parallelism and
on the error correction capability. In other words, a machine able to correct x errors
is half in area with respect to a machine able to correct 2x errors (given the same
parallelism). What happens in a real SSD is that the decoding (and so the Chien
machine) is always needed but the number of errors that must be corrected is not
always t.

Figure 11.25 shows, for a 2112-Byte page, the probability of having to correct
only one error, the probability of having to correct two to five errors, and the
probability of error (PER) after 5 bits correction as a function of the BERin. For a
value of BERin around 10

−6, we have that the probability of a single error is equal to
3 * 10−2 and the probability of two to five errors is equal to 6 * 10−4 respectively.
The probability of a single error is definitely more significant and since the Ber-
lekamp algorithm exactly indicates the number of errors to correct, it may be useful
to exploit this information [8]. For example, suppose that from (11.56) we obtain
n3 = 3. If t is equal to 5 and the area of a Chien machine able to correct one error is
1 U, we obtain an area of 5 * 3 = 15 U for implementing three machines able to
correct five errors. However, from Fig. 11.25 we see that most of the time the
correction of only one error is required. It follows that we can implement twom-
achines able to correct one error and only one complete Chien machine able to
correct five errors. The area would be 1 + 1 + 5 = 7 U with a gain of 6 U at same
performances.

Fig. 11.24 ECC decoding structure for handling multiple channels

400 A. Marelli and R. Micheloni

This approach can always be used when the error density function is known. The
result is that we can have a pool of Chien machines with different correction
capabilities and parallelism. It’s Berlekamp machine’s task to dispatch the message
to the correct Chien machines depending on its degree.

With a good optimization in the number of machines per each step, BCH does
not limit the bandwidth between the drive and the host.

As explained in this chapter, multi-channel management and detection properties
are the key points to address when developing a BCH engine for Enterprise Class
Solid State Disks.

11.9 LDPC False Correction

As already described for BCH codes, false correction probability, also called de-
tection, is a key point for SSD applications. Having a false corrected message is
much worse than having an uncorrected message because it is a silent catastrophic
event; in other words users will use the message as corrected while it is not, without
any suspect of the additional errors introduced.

False correction is part of the code itself and can’t be avoided [27]. Figure 11.26
shows the sphere-packing scheme for a bounded distance decoder. In this example
there are 4 codewords labeled as CW1, …, CW4 with minimum distance d and a
correction sphere of radius t. Error patterns, represented as squares, can lead to three
different cases:

Fig. 11.25 For a 2112-Byte page, representation of single error probability, of two to five error
probability and of page error rate using an ECC able to correct five errors

11 BCH Codes for Solid-State-Drives 401

• Correctable error: starting from CW4, less than t errors are introduced, so that
the erroneous pattern falls in the correction sphere of CW4 and can be corrected.

• Detectable error: starting from CW2, more than t errors are introduced, so that
the error pattern is outside CW2 correction sphere but does not fall in any
correction sphere. In this case the code is able to recognize that errors occurred
but is unable to perform any correction.

• Miscorrectable error: starting from CW4, more than t errors are introduced, so
that the error pattern is outside CW4 correction sphere and falls in CW3 cor-
rection sphere. Due to the decoder used, in this case the code will correct the
erroneous pattern with CW3, introducing new errors and creating a silent
catastrophic event.

Even if the BCH weight estimation was difficult, the issue with LDPC is even
worse because the used decoder is not bounded distance: belief propagation is used
instead [28, 29]. With reference to Fig. 11.27, we see that it is still true that error
patterns can lead to correctable, detectable or miscorrectable error but there isn’t the
correction sphere concept. In addition to that, this picture represents only hard
decoding, soft decoding has a different approach. In the picture we can see that the
correction area is different from one codeword to another and is not deterministic.
In addition to that, since we are dealing with iterative decoding, the shape of the
correction area changes iteration after iteration. It follows that it is not possible to
apply weight estimation in this case or to predict the false correction probability
with a closed formula. LDPC hard decoding is very powerful because it relies on its
sparseness, so that it is very unlikely to fall in another codeword correction region
because there are few codewords in the algebraic space.

Figure 11.28 shows the space for soft belief propagation. Here the Hamming
distance is replaced by the Euclidean distance. For sake of simplicity, in the picture
we have 3 codewords generating a 3D-space. As the reader can see, even if the
algebraic space changes, the false decoding probability does not, because we are
still using belief propagation decoding algorithm. In addition to that, soft decoding

Fig. 11.26 Sphere-packing scheme for a bounded distance decoder

402 A. Marelli and R. Micheloni

probability can be higher in the soft case than in the hard one, and can not be
deducted from the latter one.

Due to the fact that it is not possible to predict this probability in the LDPC case,
right now the only viable solution is simulation. Generally speaking, performance
in simulation is evaluated on a known codeword, e.g. all0 codeword, so that even
when the decoder ends with a success, there is a comparison between the decoded
codeword and the known input codeword [27]. If we call PDEC the probability that

Fig. 11.27 Correction areas for hard LDPC belief propagation decoding algorithm

Fig. 11.28 Correction areas for soft LDPC belief propagation decoding algorithm

11 BCH Codes for Solid-State-Drives 403

the decoder is unable to recover the input codeword and PME the probability of
having a miscorrection we get that

PFER = PME + PDEC ð11:57Þ

as shown in Fig. 11.29. It follows that PFER is an upper bound for PME.
When the upper bound of PFER is not enough for the PME requirent, and lower

values are needed, LDPC codes can be concatenated with CRC.
Figure 11.30 shows the concatenation scheme for LDPC and CRC. Messages

are first encoded with CRC code; the message with CRC parity appended is then
encoded with LDPC. On the decoder side, read message is first decoded with LDPC
and then with CRC. In this way if the LDPC has performed some erroneous
correction, CRC will detect it.

Fig. 11.29 FER versus BER curve for LDPC code

Fig. 11.30 Concatenation LDPC + CRC

404 A. Marelli and R. Micheloni

References

1. C.E. Shannon, A mathematical theory of communication. Bell Syst. Tech. J. 27(379–423),
623–656 (1948)

2. R.C. Bose, D.K. Ray-Chaudhuri, On a class of error-correcting binary group codes. Inform.
Contr. 3(1), 68–79 (1960)

3. A. Hocquenghem, Codes correcteurs d’erreurs. Chiffres 2 (1959)
4. I.S. Reed, G. Solomon, Polynomial codes over certain finite fields. J. SIAM 8(2), 300–304

(1960)
5. C. Berrou, A. Glavieux, P. Thitimajshimima, Near Shannon limit error-correcting coding and

decoding: turbo-codes, in Proceedings of ICC’93 (Geneva, Switzerland, May 1993),
pp. 1064–1070

6. R.G. Gallager, Low-density parity-check codes. IRE Trans. Inf. Theory IT 8, 21–28 (1962)
7. D.J.C. MacKay, R.M. Neal, Near Shannon limit performance of low density parity check

codes. Electron. Lett. 32(18), 1645–1646 (1996)
8. R. Micheloni, A. Marelli, R. Ravasio, Error Correction Codes for Non-volatile Memories

(Springer, Berlin, 2008)
9. S. Lin, D.J. Costello, Error Control Coding (Prentice Hall, Upper Saddle River, 2004)

10. T.K. Moon, Error Correcting Coding—Mathematical Methods and Algorithms (Wiley,
Hoboken, 2005)

11. Y. Chen, K. Parthi, Small area parallel Chien search architecture for long BCH codes. IEEE
Trans. Very Large Scale Integr. (VLSI) Syst. 12(5), 545–549 (2004)

12. R. Micheloni et al., A 4 Gb 2b/cell NAND flash memory with embedded 5b BCH ECC for
36 MB/s system read throughput, in ISCC Digest of Technical Papers, San Francisco, Feb
2006

13. R. Micheloni, L. Crippa, A. Marelli, Inside NAND Flash Memories (Springer, Berlin, 2010)
14. E.R. Berlekamp, Algebraic Coding Theory (McGraw-Hill, New York, 1968)
15. H.O. Burton, Inversionless decoding of binary BCH codes. IEEE Trans. Inf. Theory 17(4),

464–466 (1971)
16. I.S. Reed, M.T. Shih, T.K. Truong, VLSI design of inverse-free Berlekamp-Massey

algorithm. IEEE Proc. 138, 295–298 (1991)
17. S. Mizrachi, D. Stopler, Efficient method for fast decoding of BCH binary codes. US Patent

2003/0159103 A1, Aug 2003
18. W.W. Peterson, E.J. Weldon Jr., Error-Correcting Codes, 2nd edn. (MIT Press, Cambridge,

1972)
19. T. Kasami, T. Fujiwara, S. Lin, An approximation to the weight distribution of binary linear

codes. IEEE Trans. Inf. Theory 31(6), 769–780 (1985)
20. I. Krasikov, S. Litsyn, On spectra of BCH codes. IEEE Trans. Inf. Theory 41, 786–788 (1995)
21. I. Krasikov, S. Litsyn, On the distance distribution of duals BCH codes. IEEE Trans. Inf.

Theory 45, 247–250 (2001)
22. F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes. North-Holland

Mathematical Library, vol. 16 (North-Holland Publishing Company, Amsterdam, 1977)
23. O. Keren, S. Litsyn, More on the distance distribution of BCH Codes. IEEE Trans. Inf.

Theory 1, 251–155 (1999)
24. M. Sala, A. Tamponi, A linear programming estimate of the weight distribution of BCH(255,

k). IEEE Trans. Inf. Theory 46(6), 2235–2237 (2000)
25. M.G. Kim, J.H. Lee, Decoder error probability of binary linear block codes and its application

to binary primitive BCH codes. IEICE Trans. Fundam. E79-A(4), 592–599 (1996)
26. Y. Lee, H. Yoo, I. Yoo, I.C. Park, 6.4 Gb/s multi-threaded BCH encoder and decoder for

multi-channel SSD controllers, in ISCC Digest of Technical Papers, San Francisco, Feb 2012
27. A. Marelli, R. Micheloni, False Decoding Probability (Detection) of BCH and LDPC Codes,

Flash Memory Summit 2016

11 BCH Codes for Solid-State-Drives 405

28. M. Hagiwara, M.P.C. Fossorier, H. Imai, Fixed Initialization decoding of LDPC codes over
binary simmetric channel, in IEEE Transaction on Information Theory, April 2012

29. S.M. Khatami, L. Danjean, D.V. Nguyen, B. Vasic, An Efficient Exhaustive Low-Weight
Codeword Search for Structured LDPC Codes

406 A. Marelli and R. Micheloni

Chapter 12
Low-Density Parity-Check (LDPC)
Codes

E. Paolini

Abstract In this chapter, low-density parity-check (LDPC) codes, a class of
powerful iteratively decodable error correcting codes, are introduced. The chapter
first reviews some basic concepts and results in information theory such as Shan-
non’s channel capacity and channel coding theorem. It then overviews the flash
memory channel model. Next, it addresses binary LDPC codes describing both their
structure and efficient implementation, and their belief propagation and
reduced-complexity decoding algorithms. Non-binary LDPC codes and their belief
propagation decoding algorithm are also addressed. Finally simulation results are
provided.

12.1 Shannon Limit

12.1.1 Entropy and Mutual Information

Let X be a discrete random variable taking its values in a set X , according to some
probability mass function (pmf) p xð Þ=Pr X = xf g. The entropy of X is defined as

H Xð Þ= − ∑
x
p xð Þ log2 p xð Þ.

Intuitively, the entropy H Xð Þ may be thought as the uncertainty associated with
the random variable. For example, a deterministic variable is characterized by a
zero entropy while, for a given positive integer M, the random variable with the
largest entropy among all discrete random variables whose support set X has
cardinality M is the uniform one, i.e., p xð Þ=1 ̸M for all x∈X . In this latter case we
obtain H Xð Þ= log2 M.

E. Paolini (✉)
DEI, University of Bologna, Bologna, Italy
e-mail: e.paolini@unibo.it

© Springer Nature Singapore Pte Ltd. 2018
R. Micheloni et al. (eds.), Inside Solid State Drives (SSDs),
Springer Series in Advanced Microelectronics 37,
https://doi.org/10.1007/978-981-13-0599-3_12

407

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_12&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_12&domain=pdf

Consider now a second discrete random variable Y ∈Y characterized by a pmf
p yð Þ. Let p yjxð Þ=PrfY = yjX = xg be the pmf of Y conditioned to the event X = xf g.
The entropy of Y given the event X = xf g is defined as

H Y jX = xð Þ= − ∑
y
pðyjxÞ log2 pðyjxÞ.

Next, the conditional entropy H Y jXð Þ is defined as

H Y jXð Þ= ∑
x
p xð ÞH Y jX = xð Þ

= − ∑
x
∑
y
pðyjxÞp xð Þ log2 pðyjxÞ.

Finally, the mutual information I X; Yð Þ between X and Y is defined as

I X; Yð Þ= ∑
x
∑
y
p yjxð Þp xð Þ log2

p yjxð Þp xð Þ
p xð Þp yð Þ . ð12:1Þ

It can be shown that I X; Yð Þ=H Yð Þ−H Y jXð Þ=H Xð Þ−H XjYð Þ. As such,
I X; Yð Þ intuitively represents the reduction of uncertainty about X due to the fact
that we can observe Y (equivalently, reduction of uncertainty about Y due to the fact
that we can observe X). The mutual information is well-defined also for continuous
random variables. In this case, p xð Þ, p yð Þ, and p yjxð Þ are probability density
functions (pdfs), and we have

I X; Yð Þ=
Z

p yjxð Þp xð Þ log2
p yjxð Þp xð Þ
p xð Þp yð Þ dxdy. ð12:2Þ

Moreover, if X is a discrete random variable and Y is a continuous one, I X; Yð Þ is
defined as

I X; Yð Þ= ∑
x
p xð Þ∫ p yjxð Þ log2

p yjxð Þp xð Þ
p xð Þp yð Þ dy. ð12:3Þ

12.1.2 System Model and Channel Capacity

The fundamental limit of point-to-point digital communication over a noisy channel
was established in 1948 by C. Shannon, who showed that a vanishing error
probability can be attained at a finite information rate, provided this rate is smaller
than the capacity of the noisy channel.

With reference to Fig. 12.1, a source S of information generates messages that
must be delivered to a destination D through a noisy channel. The generic message,

408 E. Paolini

denoted by W, is drawn from a set of M possible messages 1, 2, . . . ,Mf g, where all
messages are a priori equally likely. Prior to transmission over the channel, the
message W is encoded through a channel encoder, that maps deterministically (and
univocally) each message onto a codeword x= x0, x1, . . . , xn− 1½ �, i.e., an n-tuple of
symbols belonging to some alphabet X . The ratio

R=
log2 M

n

is the code rate of the channel code and the code is named an n, 2nRð Þ code. All
n codeword symbols are then transmitted sequentially over the channel, resulting in
a sequence y= y0, y1, . . . , yn− 1½ � whose symbols belong to an alphabet Y. A de-
coding algorithm is then performed by a channel decoder to decide which code-
word, out of the set of M candidate codewords, had been transmitted over the
channel, given the noisy observation y. The codeword x ̂ returned by the decoder is
converted back to the corresponding message Ŵ that is finally delivered to the
destination. As error occurs whenever W ≠ Ŵ , i.e., a wrong message is delivered.

A probability of error can be defined for each of the M transmitted messages as
follows. The probability of error associated with the j-th message,
j∈ 1, 2, . . . ,Mf g, is denoted by Pe, j and is defined as

Pe, j = Pr Ŵ ≠W jW = j
� �

.

Furthermore, the maximum probability of error is defined as

Pe,max = max
j∈ 1, 2, ...,Mf g

Pe, j ð12:4Þ

and the average probability of error as

Pe =
1
M

∑
M

j=1
Pe, j. ð12:5Þ

The channel code along with its decoding algorithm shall be designed in order to
make the maximum probability of error over the given channel as small as possible.

Assume that both the input alphabet X and the output alphabet Y are discrete.
Let X ∈X and Y ∈Y be two discrete random variables, representing the input to the
channel and the corresponding output. Moreover, assume that the channel is fully
defined by the transition probabilities p yjxð Þ=PrfY = yjX = xg. In this case,

Fig. 12.1 Communication model

12 Low-Density Parity-Check (LDPC) Codes 409

the channel is called a discrete memory-less channel (DMC). The capacity of a
DMC is defined as

C= max
p xð Þ

I X; Yð Þ ð12:6Þ

i.e., as the maximum amount of uncertainty we can remove from the input symbol
(which cannot be observed directly) by observing the output symbol, where the
maximum is taken over all possible pmfs for the input symbol. The capacity is an
intrinsic parameter of the channel, only depending on the cardinalities of X and Y
and on the transition probabilities p yjxð Þ. It is expressed in terms of information bits
(or Shannon) per channel use.

Example 12.1 The DMC depicted in Fig. 12.2 is characterized by
X =Y = +1, − 1f g and by Pr Y = +1jX = +1f g= Pr Y = − 1jX = − 1f g=1− p,
Pr Y = +1jX = − 1f g= Pr Y = − 1jX = +1f g= p. This channel is known as binary
symmetric channel (BSC), and p is called the error (or crossover) probability. Every
binary symbol input to the channel is received in error with probability p and is
correctly received with probability 1− p. The capacity of the BSC is achieved for
Pr X = +1f g= Pr X = − 1f g=1 ̸2 and is given by1

C=1− − p log2 p− 1− pð Þ log2 1− pð Þ½ �. ð12:7Þ

As we shall see later, the BSC is a possible channel model for SLC Flash
memories. Assuming p≤ 1 ̸2, its capacity is maximum for p=0, where we have
C=1 (every binary symbol outcoming from the channel is reliable) and is mini-
mum for p=1 ̸2, where we have C=0 (no uncertainty is removed from X by
observing Y).

The concept of capacity, so far introduced for a DMC, can be extended to
time-discrete memory-less channels whose input symbol is either a discrete or a
continuous random variable and whose output symbol is a continuous one. The
capacity is still defined by (12.6), where the mutual information is now given by
(12.2) if X is continuous, and by (12.3) if X is discrete. As opposed to the DMC
case, however, additional constraints to the optimization problem may be intro-
duced (for example, an upper bound on the average transmitted power). The reason
is that the solution to the unconstrained optimization problem may correspond to an
input variable X for which the channel is essentially noiseless.

Additive noise channels represent an important class of such channels. Here, the
output symbol is obtained as Y =X +Z, where Z is a continuous random variable,
namely, an additive noise. If Z is independent of X and is normally distributed with
zero mean and variance σ2,

1The capacity of the BSC only depends on the crossover probability and not on the values assumed
by X and Y.

410 E. Paolini

p zð Þ= 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p e−
z2

2σ2 ,

then the corresponding channel is called an additive Gaussian channel.

Example 12.2 Consider the additive Gaussian channel depicted in Fig. 12.3, and
assume that X is a Bernoulli (i.e., discrete with a binary alphabet) random variable.
Without any further constraint, it is possible to achieve the capacity C=1 (corre-
sponding to a noiseless channel) regardless of σ2 by letting X ∈ −A, +Af g, where
A>0 is a real, choosing Pr X = −Af g=Pr X = +Af g=1 ̸2, and letting A→∞.
On the other hand, if the maximization problem is constrained to
1 ̸nð Þ∑n− 1

i=0 x2i ≤Es for any transmitted codeword, then the maximum is attained for
X ∈ −

ffiffiffiffiffi
Es

p
, +

ffiffiffiffiffi
Es

p� �
and Pr X = −

ffiffiffiffiffi
Es

p� �
=Pr X = +

ffiffiffiffiffi
Es

p� �
=1 ̸2. In this case

(12.3) yields

C= −
Z

p yð Þ log2 p yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffi
2πeσ2

p� �
dy,

where

p yð Þ= 1ffiffiffiffiffiffiffiffiffiffi
8πσ2

p e−
y−
ffiffiffi
Es

pð Þ2
2σ2 + e−

y+
ffiffiffi
Es

pð Þ2
2σ2

� �
.

and where the capacity, that does not admit a closed-form expression, must be
computed via numerical integration. This channel model is known as the
binary-input additive white Gaussian noise (Bi-AWGN) channel. It is possible to
show that its capacity is a function of parameter Es ̸N0, where N0 = 2σ2. In general,
the larger Es ̸N0 the higher C. Moreover, C→ 1 as Es ̸N0 →∞.

Example 12.3 Consider a channel X→ Y ′ → Y composed of the cascade of a
Bi-AWGN channel and a one-bit quantizer, returning Y = +1 if Y ′ >0 and Y = − 1
otherwise (if Y ′ =0, +1 or −1 is returned with equal probability). It is readily shown
that this channel is equivalent to a BSC whose crossover probability p is

Fig. 12.2 Binary symmetric
channel (BSC) model

12 Low-Density Parity-Check (LDPC) Codes 411

p=
1
2
erfc

ffiffiffiffiffiffi
Es

N0

r� �
ð12:8Þ

where

erfc xð Þ= 2ffiffiffi
π

p
Z ∞

x
e− θ2dθ.

Again, the capacity is a monotonically increasing function of parameter Es ̸N0,
and again C→ 1 as Es ̸N0 →∞. For the same value of Es ̸N0, the capacity of the
output-quantized Bi-AWGN channel is always smaller than the capacity of the
corresponding unquantized channel.

With reference to the last two examples, if Y is allowed to assume q>2 different
quantized values (which corresponds to adopting ⌈log2 q⌉ quantization bits), the
capacity of the obtained channel is upper bounded by that of the unquantized
Bi-AWGN channel and is lower bounded by that of the one-bit quantized channel.
(Note that the q− 1 quantization thresholds shall be properly designed.) In general,
the higher q the larger the capacity.

12.1.3 The Channel Coding Theorem

Adopting the formulation in [1], which makes use of the maximum error probability
defined in (12.4), Shannon’s channel coding theorem can be stated as follows.
“For every rate R<C there exists a sequence of n, 2nRð Þ codes for which
limn→∞ Pe,max nð Þ=0. Conversely, if limn→∞ Pe,max nð Þ=0 for a sequence of
n, 2nRð Þ codes, then R≤C.” Note that limn→∞ Pe,max nð Þ=0 implies
limn→∞ Pe nð Þ=0, where Pe nð Þ is the average error probability defined in (12.5).

Essentially, Shannon’s channel coding theorem states that communication over a
noisy channel is possible with an arbitrarily small maximum error rate if and only if
the code rate of the employed channel code does not exceed the channel capacity.
On the other hand, from the proof of the converse, it is possible to show that, when
R>C, the average probability of error probability is bounded away from zero.
Specifically, we have

Fig. 12.3 Binary-input
additive white Gaussian noise
channel model

412 E. Paolini

Pe nð Þ≥ 1−
C
R
−

1
nR

ð12:9Þ

→ 1−
C
R

ð12:10Þ

in the limit where n→∞. Inequality (12.9) defines a non-achievable region for the
considered communication channel. No channel code of length n exists whose
average probability of error over the considered channel is smaller than the
right-hand side of (12.9). For n→∞, the non-achievable region is identified by
(12.10). For a channel parametrized by some parameter γ (e.g., the crossover
probability p for a BSC, or Es ̸N0 for the Bi-AWGN channel or its output-quantized
version), the non-achievable region can be reported in the Pe nð Þ versus γ plane for a
specific code rate R, as illustrated in the following example.

Example 12.4 In Fig. 12.4 the non-achievable region is depicted for both the
unquantized Bi-AWGN channel and its one-bit output-quantized version, for code
rate R=9 ̸10 and infinite codeword length. Specifically, for fixed R=9 ̸10 the
right-hand side of (12.10) is plotted as a function of Eb ̸N0 (in logarithmic scale),
where Eb =REs. If Es is interpreted as the energy per transmitted binary symbol, Eb

can be regarded as the energy per information bit. The dashed curve identifies a
non-achievable region over the unquantized Bi-AWGN channel (i.e., no
Eb ̸N0,Peð Þ point inside the corresponding area is achievable), while the solid one a
non-achievable region over its one-bit output-quantized version. That the
unquantized non-achievable region is contained in the quantized one is coherent
with the fact that the capacity of the Bi-AWGN channel is larger than the capacity
of its output-quantized version, for the same value of Es ̸N0. In general, if q>2

Fig. 12.4 Plot of the Shannon limit for code rate R=9 ̸10, over the Bi-AWGN channel and over
the BSC obtained via one-bit quantization of the output of the Bi-AWGN channel

12 Low-Density Parity-Check (LDPC) Codes 413

quantization levels are allowed, the corresponding non-achievable region is iden-
tified by a curve falling between the two plotted curves. This serves to illustrate
how soft information at the decoder can be exploited to improve the system per-
formance. The smallest value of Eb ̸N0 for which communication is possible with a
vanishing error probability at the given rate R=9 ̸10 over the Bi-AWGN channel is
about 3.198 dB. The corresponding value over the one-bit quantized Bi-AWGN
channel is about 4.400 dB.

12.2 Maximum a Posteriori and Maximum Likelihood
Decoding of Linear Block Codes

As from Sect. 12.1.2, decoding is essentially a decision problem. Given the
observation y from the communication channel, the decoder has to decide which of
the M codewords has been most likely transmitted, in order to minimize the
maximum probability of error. Optimum decoding is based on maximum a poste-
riori (MAP) decision criterion, and consists of assuming as the transmitted code-
word the one maximizing the a posteriori probability:

x ̂= argmaxxp xjyð Þ.

When the codewords are a priori equally likely, then MAP decoding is equiv-
alent to maximum likelihood (ML) decoding, that returns the codeword

x ̂= argmaxxp yjxð Þ.

It is readily shown that, over a BSC, ML decoding is equivalent to returning the
codeword exhibiting the minimum Hamming distance from the received word
y. (Recall that the Hamming distance between two sequences is the number of
positions at which the corresponding symbols are different.) Moreover, over a
Bi-AWGN channel, ML decoding consists of returning the codeword (whose
symbols belong to the set f− ffiffiffiffiffi

Es
p

, +
ffiffiffiffiffi
Es

p g) exhibiting the minimum Euclidean
distance from y.

Optimum decoding is unfeasible for most codes (including linear codes), due to
the need of computing M metrics, with M prohibitively large. Low-density
parity-check codes, introduced in Sect. 12.4, are capable to perform close to the
Shannon limit at a manageable complexity.

414 E. Paolini

12.3 NAND Flash Memory Channel Model

In NAND flash memories, the generic memory cell is a floating gate transistor.
Writing the cell consists of exploiting Fowler-Nordheim tunneling effect [2] to
inject a certain amount of charges into the floating gate in order to program the
threshold voltage Vth of the transistor. For an MLC memory with b bits per cell,
there are 2b nominal values for threshold voltage Vth, each bijectively associated
with a word of b bits. (There are two nominal values for Vth in the particular case of
an SLC memory.) The whole range of possible values of Vth is then partitioned into
2b intervals, each corresponding to a nominal value of the threshold voltage.

Reading a cell is a decision problem consisting of picking one of the 2b nominal
values of Vth and forwarding the corresponding binary b-tuple. The value of Vth,
however, cannot be observed directly. In order to read the cell, a word-line voltage
must be applied and the corresponding transistor drain current measured. In this
chapter, we refer to the word-line voltage simply as the “read voltage”, denoting it
by VREAD. If for some VREAD a sufficiently high drain current is detected then we
conclude that VREAD >Vth, otherwise we conclude that VREAD <Vth. In this sense,
the application of a specific read voltage value is capable to provide exactly one bit
of information. Therefore, in order to read the full content of a cell in an MLC
memory the drain current must be analyzed for a sufficiently large number of read
voltage values. A single VREAD value is sufficient in the SLC case unless we wish to
extract some soft information to improve the performance of the adopted error
control coding scheme.

In ideal flash memories, after a cell is written the corresponding value of Vth is
exactly equal to one of the 2b nominal values. In real memories, however, the actual
value of Vth may differ, even significantly, from its nominal value due to a number
of possible physical impairments. For a thorough description of these impairments
we refer the reader, for example, to [3, Chap. 4], [4]. As such, the actual value of Vth

may fall into a voltage interval whose nominal voltage threshold is different from
the one we attempted to set during the write operation. When this happens the
forwarded binary b-tuple after a read operation differs from the one that was written
into the cell. A bit error generated by an erroneous decision about the interval of
voltage values Vth belongs to is called a raw bit error, and the probability of
occurrence of raw bit errors is called the raw bit error probability.

The raw bit error probability may be analyzed by modeling the threshold voltage
Vth of the generic cell as a continuous random variable whose pdf is here denoted
by p Vthð Þ. It must be pointed out that p Vthð Þ is not constant during the memory
lifetime, as it is modified by subsequent write and read operations, leading to a
progressive degradation of the channel in terms of increasing raw bit error proba-
bility. The threshold voltages for two different memory cells are typically assumed
to be independent and identically distributed (i.i.d.) random variables. In the fol-
lowing two subsections, the channel model for SLC and MLC flash memories is
addressed.

12 Low-Density Parity-Check (LDPC) Codes 415

12.3.1 SLC Channel Model

The simplest channel model for an SLC flash memory consists of modeling the
threshold voltage Vth of the generic cell as the weighted sum (with the same
weights) of two independent Gaussian random variables with the same variance σ2

neglecting that, in principle, Gaussian random variables assume their values over an
infinite range. The mean values of the two Gaussian distributions are the two
nominal values of the threshold voltage, namely,Vth, 1 and Vth, 2 where we assume
Vth, 1 <Vth, 2. Let X ∈ 0, 1f g be a Bernoulli random variable with equiprobable
values, representing the bit originally written into the memory cell. Moreover, let
Y be the symbol read from the cell. Conditionally to X, the threshold voltage Vth is a
Gaussian random variable with variance σ2 and whose mean is Vth, 1 if X =1 (erase
state) and Vth, 2 if X =0. This is depicted in Fig. 12.5. Overall, we have

p Vthð Þ= 1
2
p VthjX =1ð Þ+ 1

2
p VthjX =0ð Þ

=
1ffiffiffiffiffiffiffiffiffiffi
8πσ2

p e−
Vth −Vth, 1ð Þ2

2σ2 + e−
Vth −Vth, 2ð Þ2

2σ2

� �
.

If we apply only one read voltage Vth, 1 <VREAD, 1 <Vth, 2 we get information
about the actual value of Vth being larger or smaller than the applied read voltage
value. Hence, if only one read voltage value is used, Y is a Bernoulli random

Fig. 12.5 Plot of pðVthjX =1Þ and pðVthjX =0Þ for an SLC flash memory where the threshold
voltage Vth is modeled as the sum of two independent and identically distributed (i.i.d.) Gaussian
random variables

416 E. Paolini

variable as well as X. In particular, we have Y =1 if Vth <VREAD is detected, and
Y =0 otherwise. A raw bit error occurs any time Y ≠X, and the raw bit error
probability is trivially minimized by setting VREAD, 1 = Vth, 1 +Vth, 2ð Þ ̸2, as depicted
in Fig. 12.5. In this situation, the channel is clearly equivalent to the cascade of a
Bi-AWGN channel and a one-bit quantizer described in Example 12.2 (i.e., to a
BSC), and the raw bit error probability is given by (12.8) where
Es ̸N0 = Vth, 2 −VREAD, 1ð Þ2 ̸2σ2. At the beginning of the memory life, σ2 is very
small and the memory is almost ideal. Then, σ2 increases with the memory use,
increasing the raw error probability and degrading the channel. A typical value of
the raw bit error probability towards the end of the memory life is 10− 2.

If an error correcting code is employed to protect the data stored in the flash
memory, hard-decision decoding must be necessarily performed if only one VREAD

value is used as no soft information is available at the decoder. As it will be shown
in Sect. 0, however, the availability of soft information at the decoder input rep-
resents an essential feature to boost the performance of the coding scheme. In order
to provide the decoder with soft information, and consequently to increase its
coding gain, more read voltages must be applied sequentially. For example, with
reference again to Fig. 12.5 we may employ three read voltage values VREAD, 1,
VREAD, 2, and VREAD, 3 and apply two of them for each cell read operation. Specifi-
cally, VREAD, 1 is applied at first. if Vth <VREAD, 1 then VREAD, 2 is applied to
discriminate between Vth <VREAD, 2 and VREAD, 2 <Vth <VREAD, 1. On the contrary,
VREAD, 3 is applied to discriminate between Vth >VREAD, 3 and
VREAD, 1 <Vth <VREAD, 3. In this case the output symbol Y is a discrete random
variable assuming the four possible values in the set fY1,Y2,Y3,Y4g and the channel
may be represented as the DMC depicted in Fig. 12.6.

Each arrow in the depicted DMC is associated with a transition probability
p yjxð Þ, where the transition probabilities depend on the choice of the read voltages
VREAD, 2 and VREAD, 3. A “natural” approach to choose them consists of maximizing
the mutual information between the random variables X and Y under the setting
Pr X =0ð Þ= Pr X =1ð Þ=1 ̸2. This approach, proposed in [5], may be easily

Fig. 12.6 Equivalent channel
model for an SLC flash
memory where the threshold
voltage is modeled as the sum
of two i.i.d. Gaussian random
variables and where three read
voltage values are employed.
Each read operation involves
two read voltages

12 Low-Density Parity-Check (LDPC) Codes 417

extended to any number of read voltages. It may also be easily extended to different
choices of the pdf p Vthð Þ, and therefore to MLC Flash memories.

12.3.2 MLC Channel Model

While the channel model for SLC Flash memories is rather well-established, the
development of an MLC channel model is still a subject of research and mea-
surement campaigns, and several models may be found in the literature. These
models typically assume the random variable Vth to be the weighted sum (with the
same weights) of 2b independent random variables, each corresponding to a
nominal value of the threshold voltage. Among these models, the one described
next has been adopted in several works [6]. Letting X denote the binary b-tuple that
was written in the cell, the pdf pðVthjX1 = 11 . . . 1Þ associated with the lowest
nominal threshold voltage value Vth, 1 (erase state) is modeled as Gaussian with
mean Vth, 1 and variance σ20, while the pdf pðVthjXiÞ associated with any other
nominal value Vth, i ðXi ≠ 11 . . . 1Þ is characterized by a uniform central region of
size ΔV centered in the mean value Vth, i and by two Gaussian tails of variance
σ2 < σ20. Formally, for i∈ 2, 3, . . . , 2b

� �
we have

p VthjXið Þ=
1ffiffiffiffiffiffiffi

2πσ2
p

+ΔV
e−

Vth −Vth, i −ΔV ̸2ð Þ2
2σ2 Vth >Vth, 1 + ΔV

2
1ffiffiffiffiffiffiffi

2πσ2
p

+ΔV
Vth, 1 − ΔV

2 <Vth <Vth, 1 + ΔV
2

1ffiffiffiffiffiffiffi
2πσ2

p
+ΔV

e−
Vth −Vth, i +ΔV ̸2ð Þ2

2σ2 Vth <Vth, 1 − ΔV
2

8>>>><
>>>>:

and

p Vthð Þ= 1
2b

∑
2b

i=1
p VthjXið Þ.

A pictorial representation of the four conditional pdfs p VthjXið Þ, i∈ 1, 2, 3, 4f g,
for an MLC flash memory with b=2 bits per cell and equally spaced threshold
voltages is shown in Fig. 12.7.

In an analogous way as for the SLC case, a read is performed by applying
sequentially a certain number of read voltages VREAD in order to identify the interval
in which the actual value of the threshold voltage belongs. If N ≥ 2b − 1 different
read voltages are employed, the equivalent communication channel is a DMC with
2b equiprobable input symbols X and N +1 output symbols Y. Again, the larger the
number of employed read voltages (i.e., the larger the number of intervals in which
the range of possible Vth values is partitioned) the more accurate the soft infor-
mation at the decoder input, the lower the bit error rate after decoding. Again, the
values of the N read voltages must be properly designed, for instance, maximizing

418 E. Paolini

the mutual information I X; Yð Þ under the assumption Pr X =Xið Þ=2− b for all
i∈ 1, 2, . . . , 2b
� �

.

12.4 Low-Density Parity-Check Codes

Low-density parity-check (LDPC) codes were introduced by Gallager in [7] and
have been almost forgotten for about 30 years. They gained a new interest only
after the discovery of turbo codes [8], when it was shown that iterative decoding
schemes can attain performances very close to the Shannon limit with a manageable
complexity [9, 10].

A binary LDPC code is defined as a binary linear block code whose parity-check
matrix H is characterized by a relatively small number of 1 entries, i.e., whose
parity-check matrix is sparse. LDPC codes are often represented graphically
through a bipartite graph G= V ∪ C, Eð Þ called the Tanner graph [11]. In the Tanner
graph there are two different types of nodes, namely, the variable nodes (whose set
is V) and the check nodes (whose set is C). The n variable nodes and the m check
nodes are associated in a bijective way with the n encoded bits of the generic
codeword and with the m parity-check equations, respectively. Each edge e∈ E in
the Tanner graph connects a variable node V ∈V with a check node C∈ C if and
only if the bit corresponding to V is involved in the parity-check equation corre-
sponding to C. Note that in general not all the m parity-check equations may be
linearly independent, so that the actual code rate R of the LDPC code fulfills

Fig. 12.7 Representation of the four conditional probability density functions p VthjXið Þ of the
threshold voltage in an MLC flash memory with b=2 bits per cell

12 Low-Density Parity-Check (LDPC) Codes 419

R≥
n−m
n

where equality holds when all m equations are independent. In the Tanner graph of
an LDPC code a cycle (or loop) is any closed path starting from a node and ending
on the same node. The length of a cycle is the number of edges involved in the
cycle. Moreover, the girth g of the Tanner graph is the length of its shortest
loop. For reasons that will be clear in the next section, the Tanner graph of an
LDPC code should exhibit a large girth. In the Tanner graph, the degree of a
variable node or check node is the number of edges incident to it. An LDPC code is
said to be regular if all of its variable nodes have the same degree and all of its
check nodes have the same degree, and is said to be irregular otherwise.

The representation of LDPC codes in terms of their Tanner graphs is very
convenient in order to describe their iterative decoding algorithm, known as belief
propagation (BP). In fact, as it will be addressed in Sect. 12.5, BP decoding of
LDPC codes may be interpreted as an iterative exchange of messages between the
variable nodes and the check nodes along the edges of the Tanner graph. In prin-
ciple, the Tanner graph can be drawn for any H matrix of any linear block code. As
an example, in Fig. 12.8 the Tanner graph is depicted for the 7, 4ð Þ Hamming code
represented by H = 1110100, 1101010, 10111001½ �.

In this section we provide a few details about binary LDPC code design, while
LDPC decoding is discussed in the next section. One of the major issues in LDPC
coding is represented by efficient encoding, i.e., the efficient computation of the
encoded codeword of n bits from a message W represented by a binary k-tuple.
Hence, we focus on the design of quasi-cyclic LDPC (QC-LDPC) codes based on
circulant matrices, a class of LDPC codes characterized by low-complexity
encoding and good performances [12]. In general, a linear block code is said to be
quasi-cyclic when there exists some positive integer q such that a cyclic shift by
q positions of any codeword results in another codeword. The encoder of

Fig. 12.8 Tanner graph of a 7, 4ð Þ Hamming code represented by H = 1110100, 1101010,½
10111001�. There are seven variable nodes variable nodes V0, . . . ,V6f g, one for each encoded bit,
and three check nodes, C0, . . . ,C2f g, one for each parity-check equation

420 E. Paolini

QC-LDPC codes may be implemented very efficiently in hardware using shift
register-based circuits [13]. Efficient hardware implementations for the decoder are
also available [14].

12.4.1 LDPC Code Ensembles

As opposed to classical algebraic codes, LDPC codes are typically analyzed in
terms of average ensemble properties, where an LDPC code ensemble is formed by
all LDPC codes having the same codeword length n and nominally the same rate R,
and sharing common properties. This approach was introduced by Gallager to
analyze his regular LDPC codes [7], and has been successfully adopted to design
irregular LDPC codes performing very close to the Shannon limit [15, 16].

An example of LDPC code ensemble is the unstructured irregular one [15]. Let
n and m be the numbers of variable and check nodes, respectively. Moreover, let Λi

and Pi be the fractions of variable nodes and check nodes of degree i, respectively.
Hence, in the Tanner graph there are Λin variable nodes with i sockets and Pim
check nodes with i sockets and the number of edges is E= n∑D

i=2 iΛi =m∑H
i=2 iPi

where D is the maximum variable node degree and H the maximum check node
degree. For given Λi, i=2, . . . ,D and Pi, i=2, . . . ,H,2 the unstructured C n,Λ, Pð Þ
ensemble includes all LDPC codes corresponding to all possible E! edge permu-
tations between the variable node and the check node sockets, according to a
uniform probability distribution.

Another example is the protograph ensemble [17] (see also the work [18] on
LDPC codes from superposition). A protograph is defined as a small Tanner graph
and represents the starting point to derive a larger Tanner graph via a
“copy-and-permute” procedure. Specifically, the protograph is first copied Q times.
Then, the edges of the individual replicas are permuted among the replicas, leading
to a larger graph. The edge permutation is performed in such a way that, if an edge
e connects a variable node V to a check node C in the protograph, then in the final
graph any of the Q replicas of e may connect only a replica of V to a replica of
C. Note that, while parallel edges between nodes are allowed in the protograph,
they are avoided in the permutation phase. An example of this copy-and-permute
procedure is depicted in Fig. 12.9. For a given protograph and a given Q the
ensemble is composed of the LDPC codes corresponding to all possible edge
permutations fulfilling the described constraints (again, the probability distribution
over such permutations is uniform).

2For unstructured ensemble, the minimum variable and check nodes are usually set to. The reason
for this choice is out of the scope of this chapter.

12 Low-Density Parity-Check (LDPC) Codes 421

12.4.2 QC-LDPC Codes Construction

A very popular technique to design finite length LDPC codes consists of two
subsequent steps. An ensemble of LDPC codes with desired properties is first
designed and then a code from the ensemble is picked constructing its Tanner graph
according to some graph-lifting algorithm. In the first design phase (ensemble
optimization) asymptotic ensembles are considered, i.e., ensembles of LDPC codes
whose codeword length tends to infinity (examples are the unstructured C ∞,Λ, Pð Þ
ensemble and the protograph ensemble defined by a specific finite-length pro-
tograph in the limit where Q→∞). The main parameter characterizing an
asymptotic ensemble of LDPC codes under iterative decoding is the asymptotic
decoding threshold [19, 15]. Letting ℓ be the iteration index and assuming that the
communication channel is parameterized by some real parameter θ such that θ1 < θ2
means that the channel corresponding to θ2 is a degraded version of the channel
corresponding to θ1, the asymptotic threshold θ* is defined as

θ* = sup θ s.t.P∞
e,ℓ → 0 as ℓ→∞

� �
where P∞

e,ℓ is the average error probability under iterative decoding over the
asymptotic ensemble (i.e., the expected probability of error for an LDPC code
randomly picked in the asymptotic ensemble). For example, over a BSC the
parameter θ is the crossover probability p, while over a Bi-AWGN channel it is the
noise power σ2 for given Es (therefore over the Bi-AWGN channel the threshold

Fig. 12.9 Conceptual example of copy-and-permute protograph procedure

422 E. Paolini

may be expressed as Eb ̸N0ð Þ* where Eb =REs and R is the nominal ensemble rate).
Note that for the same ensemble, the threshold is different for different message
passing decoders. For unstructured ensembles the threshold may be calculated
exactly via a procedure called density evolution [15] or approximately via a tool
known as EXIT chart [20]. For protograph ensembles it may be calculated with
good approximation via multi-dimensional EXIT analysis [21]. In Sect. 12.6.2
density evolution is reviewed for unstructured regular LDPC ensembles and for a
very simple decoder called the Gallager B decoder.

Once a protograph ensemble with a satisfying threshold over the channel of
interest has been designed, a QC-LDPC code can be constructed from the proto-
graph. This step is usually performed by first representing the protograph as a base
matrix B. The number of rows and columns in the base matrix equal the number of
check and variable nodes in the protograph, respectively. Moreover, the j, ið Þth
entry of B is equal to the number of connection between check node Cj and variable
node Vi in the protograph. For example, the base matrix corresponding to the
protograph depicted in Fig. 12.9 is

B=
1 2 1
1 1 1

	

.

In order to construct the parity-check matrix H of a QC-LDPC code from B,
each entry in the base matrix is replaced with a Q×Q circulant matrix, where a
circulant matrix is any square matrix such that every row is obtained from the
previous row by a cyclic shift to the right by one position. An entry in B equal to t is
replaced by a circulant matrix whose rows and columns all have Hamming weight
t. (Null entries in B are replaced by zero Q×Q square matrices.) If the number of
variable nodes in the protograph is np then the final LDPC code has length Qnp.
Moreover, it is a QC-LDPC code as the cyclic shift of any codeword by np positions
results in another codeword. The specific circulant matrices used to replace the
entries of the base matrix are chosen according to algorithms aimed at increasing
the girth g of the graph, making it suitable to iterative message-passing decoding. It
is pointed out that sometimes the parity-check matrix H is obtained by lifting the
base matrix in several steps. For example, instead of replacing each entry of B by a
Q×Q matrix (for large Q), Q ̃×Q ̃ circulant matrices may be used at first, with
Q being a multiple of Q ̃, and then circulant permutation matrices of size Q ̸Q ̃ may
replace each entry in the “intermediate” matrix.3

3The described protograph-based technique is not the only one to construct good QC-LDPC codes.
Another possible approach is based on Euclidean and projective finite geometries [22, 23].

12 Low-Density Parity-Check (LDPC) Codes 423

12.4.3 Error Floor

Finite length LDPC codes are affected by a phenomenon known as the “error floor”
[24, 25]. Considering again a communication channel parameterized by a real
parameter θ indicating the level of channel noise, the error floor consists of a
sudden reduction in the slope of the LDPC code performance curve when θ
becomes lower than some value. For example, over the BSC the error floor appears
at sufficiently low values of the error probability p, while over the Bi-AWGN
channel it appears at sufficiently high values of Eb ̸N0. An example performance
curve in term of bit error rate (BER) versus Eb ̸N0 exhibiting an error floor is
depicted in Fig. 12.10. In NAND Flash memories applications, very pressing
requirements are usually imposed on the error floor. More specifically, it is often
required that the error floor must not appear above page error rate (i.e., codeword
error rate) 10− 15.

The error floor of LDPC codes under belief propagation decoding is mainly due
to graphical structures in the Tanner graph called trapping sets [25]. Given a subset
W of the variable nodes, the subgraph induced by W is the bipartite graph com-
posed of W, of the subset U of check nodes connected to W and of the corre-
sponding edges. By definition, an a, bð Þ trapping set is any size-a subset W of the
variable nodes, such that there are exactly b check nodes of odd degree (an arbitrary
number of check nodes of even degree) in the corresponding induced subgraph. The
parameter a is called the size of the trapping set. If there are only degree-1 and
degree-2 check nodes in the induced subgraph, then the trapping set is said to be
elementary. Elementary trapping sets of small size are a major cause of error floor

Fig. 12.10 Performance curve (in terms of BER vs. Eb ̸N0) exhibiting an error floor at
BER≈ 10− 7 (Eb ̸N0 > 4.6 dB)

424 E. Paolini

for iteratively decoded LDPC codes. We point out that small weight codewords
may also contribute to the error floor together with trapping sets.

The need to construct LDPC codes characterized by very low error floors
imposes some modifications to the QC-LDPC code design procedure described in
the previous subsection, which becomes more involved. The asymptotic decoding
threshold is not the only metric to be taken into account during the ensemble
optimization phase, as other asymptotic parameters such as the typical relative
minimum distance or smallest trapping set size must be considered [26, 27]. We
also point out that reliable error floor analysis at very low error rates of LDPC codes
for storage applications still represents an open issue. In fact, Monte Carlo software
simulation is not feasible at very low error rates because of prohibitively long
simulation times. Approaches proposed in the literature are hardware simulation,
importance sampling [6, 28], and estimation techniques [29].

12.5 Belief Propagation (BP) Decoding of LDPC Codes

12.5.1 Introduction

As opposed to MAP and ML decoding algorithms (Sect. 12.2), that are block-wise
algorithms, BP is a bit-wise decoding algorithm, working iteratively. More
specifically, at the end of each decoding iteration a separate decision is taken about
each bit in the codeword, and then it is checked whether the currently decoded
hard-decision sequence is a codeword or it is not. Letting y= y0, y1, . . . , yn− 1½ �
denote the sequence outcoming from the communication channel, the decision
about encoded bit ci, i=0, . . . , n− 1, is taken according to its a posteriori likeli-
hood ratio (LR), namely,

L cijyð Þ= Pr(ci =0jyÞ
Pr(ci =1jyÞ

cî =0
≷

cî =1
1.

Unfortunately, the only information available at variable node i at the beginning
of the decoding process is the a priori LR

LðcijyiÞ= Pr(ci =0jyiÞ
Pr(ci =1jyiÞ

i.e., the LR conditioned only to the local observation, not the a posteriori LR LðcijyÞ
as required. Indeed, the task of the BP decoder consists of calculating the a pos-
teriori LR for each variable node, starting from the individual a priori LRs,
exploiting an iterative exchange of information among the nodes of the bipartite
graph. In the following description of the BP decoder, we will not make any

12 Low-Density Parity-Check (LDPC) Codes 425

assumption on the communication channel, but that the channel is memory-less
with binary input and equally likely input values.

12.5.2 Preliminaries

We start with some preliminary material that will be useful to properly describe BP
decoding of LDPC codes.

Let us consider a Bernoulli random variable B taking the values 0 and 1 with
equal probabilities. As depicted in Fig. 12.11, assume that N random experiments
are performed to get information about the value assumed by B and that all these
experiments are independent. The outcome of the n-th experiment (n-th observa-
tion) is denoted by ωn, while the vector of N observables by ω= ω1,ω2, . . . ,ωN½ �.
We define the likelihood ratio (LR) of B conditioned to the observation ωn as

L Bjωnð Þ= Pr(B=0jωnÞ
Pr(B=1jωnÞ ð12:11Þ

and the a posteriori likelihood ratio of B (i.e., conditioned to the whole set of
N independent observations), as

L Bjωð Þ= Pr(B=0jωÞ
Pr(B=1jωÞ . ð12:12Þ

We now seek for an expression of the a posteriori LR, LðBjωÞ, as a function of
the individual LRs, each conditioned to a specific observation. By Bayes rule we
have

Fig. 12.11 N random
experiments are conducted to
obtain some information
about the value of a Bernoulli
random variable B. The
observation associated with
the n-th random experiment is
ωn

426 E. Paolini

L Bjωð Þ= pðωjB=0Þ
p ωjB=1ð Þ

= ∏
N

n=1

pðωnjB=0Þ
p ωnjB=1ð Þ

= ∏
N

n=1
L Bjωnð Þ,

ð12:13Þ

where the second equality follows from independence of the random experiments.
We also observe that, through (12.12) and the relationship Pr B=0jωð Þ+

Pr B=1jωð Þ=1, the probabilities Pr B=0jωð Þ and Pr B=1jωð Þ may be expressed as
functions of the a posteriori LR as follows:

Pr B=0jωð Þ= LðBjωÞ
1+LðBjωÞ , ð12:14Þ

Pr B=1jωð Þ= 1
1+ LðBjωÞ . ð12:15Þ

This is sometimes referred to as soft bit. Analogous relationships may be derived
for PrðB=0jωnÞ and PrðB=1jωnÞ.

Next, consider n statistically independent Bernoulli random variables
B1,B2, . . . ,Bn each taking its value in 0, 1f g. We allow Pr Bk =1ð Þ≠ Pr Bl =1ð Þ if
k≠ l. We ask what is the probability that the n variables sum to 0 (in binary
algebra), i.e., the probability that an even number of such random variables take
value 1. This problem was solved in [7], where it was shown that

PrðB1 +B2 +⋯+Bn =0Þ= 1+ ∏n
k= 1 1− 2 Pr Bk =1ð Þð Þ

2
. ð12:16Þ

Consider now n Bernoulli random variables B1,B2, . . . ,Bn fulfilling a parity
constraint B1 +B2 +⋯+Bn =0. Moreover, assume that some reliability informa-
tion is known about variables B1, . . . ,Bi− 1,Bi+1, . . . ,Bn, in terms of LRs L Bkð Þ,
k∈ 1, . . . , i− 1, i+1, . . . , nf g and that B1, . . . ,Bi− 1,Bi+1, . . . ,Bn are statistically
independent. We seek for an expression of the LR L Bið Þ, conditional on all
available information about the other n− 1 variables. Since PrðBi =0Þ=
PrðB1 +⋯Bi− 1 +Bi+1 +⋯+Bn =0), through (12.16) we obtain

Pr Bi =0jL B1ð Þ, . . . , L Bi− 1ð Þ,L Bi+1ð Þ, . . . ,L Bnð Þð Þ

=
1+ ∏k≠ i 1− 2 Pr Bk =1ð Þð Þ

2

12 Low-Density Parity-Check (LDPC) Codes 427

and, consequently,

Pr Bi =1jL B1ð Þ, . . . , L Bi− 1ð Þ,L Bi+1ð Þ, . . . ,L Bnð Þð Þ

=
1− ∏k≠ i 1− 2 Pr Bk =1ð Þð Þ

2
.

Note that each term Pr Bk =1ð Þ involved in the multiplication may be expressed
in terms of the corresponding L Bkð Þ through (12.15). From the term-by-term ratio
between these two latter equations, we obtain

LðBijL B1ð Þ, . . . ,L Bi− 1ð Þ,L Bi+1ð Þ, . . . ,L Bnð ÞÞ= 1+ ∏k≠ i 1− 2 Pr Bk =1ð Þð Þ
1− ∏k≠ i 1− 2 Pr Bk =1ð Þð Þ .

Through (12.15), after a few calculations this leads to

LðBijL B1ð Þ, . . . ,L Bi− 1ð Þ,L Bi+1ð Þ, . . . ,L Bnð ÞÞ=
∏k≠ i

L Bkð Þ+1
L Bkð Þ− 1 + 1

∏k≠ i
L Bkð Þ+1
L Bkð Þ− 1 − 1

. ð12:17Þ

12.5.3 Algorithm Description

12.5.3.1 Overview

For ease of presentation, in the description of the algorithm we omit the decoding
iteration index. We denote by r ji the message sent by variable node Vi,
i=0, . . . , n− 1, to check node Cj, j=0, . . . ,m− 1 during the current iteration, and
by mi

j the message sent back by check node Cj, to variable node Vi, during the same
iteration. For i=0, . . . , n− 1, we also denote by wi the a priori LR for variable node
Vi, i.e.,

wi =
Pr ci =0jyið Þ
Pr ci =1jyið Þ .

This is illustrated in Fig. 12.12.
Belief-propagation decoding is composed of four steps, namely4:

• initialization;
• horizontal step;

4The words “horizontal” and “vertical” remind us that the check nodes and the variable nodes are
associated with the rows and the columns of the parity-check matrix, respectively.

428 E. Paolini

• vertical step;
• hard decision and stopping criterion step.

Out of them, the initialization step is executed only once, at the beginning of
decoding. The other three steps are executed iteratively, until a termination con-
dition is verified or a maximum number of iterations, denoted by Imax, is reached.
Each decoding iteration is split into two half-iterations. During the first
half-iteration (horizontal step), check nodes process messages incoming from their
neighboring variable nodes. Then, each check node sends one message along every
edge incident on it. Thus, every check node sends one message per iteration to each
of its neighboring variable nodes. During the second half-iteration (vertical step)
variable nodes process messages incoming from their neighboring check nodes.
Similar to the previous half-iteration, at the end of this processing each variable
node sends one message along each edge incident on it. Thus, every variable node
sends one message per iteration to each of its neighboring check nodes. At the end
of the two half-iterations, a hard decision is taken in each variable node, about the
value of the corresponding encoded bit.

The message transmitted by check node Cj, j=0, . . . ,m− 1, to variable node Vi,
i=0, . . . , n− 1, where Vi belongs to the neighborhood of Cj, may be interpreted as
the best estimate Cj has about the value of Vi up to the current iteration. This is the
estimate of the value of Vi given all information about Vi the check node has got
from the variable nodes connected to it other than Vi. This is known as extrinsic
information. Analogously, the message sent back by variable node Vi to check node
Cj may be interpreted as the best estimate Vi has about itself up to the current
iteration. This is the estimate of its value given all information the variable node has
got from the communication channel and from the check nodes connected to it
other than Cj (extrinsic information). All messages exchanged between variable
nodes and check nodes are LRs or, equivalently, soft bits.

At the end of the vertical step, each variable node takes a hard decision about the
value of its associated bit, based on the a priori information incoming from the
channel and on all estimates incoming from the check nodes connected to it. If
the obtained hard-decision binary sequence c ̂ is a codeword of the LDPC code, i.e.,
if every check node is connected to an even number of variable nodes whose

Fig. 12.12 Tanner graph of
an LDPC code. The message
sent by variable node Vi to
check node Cj and the
message sent by check node
Cj to variable node Vi are
denoted by r ji and mi

j,
respectively

12 Low-Density Parity-Check (LDPC) Codes 429

current estimate is 1, then a decoding success is declared, decoding is terminated,
and c ̂ is returned as the decoded codeword. Otherwise, a new iteration is started,
unless the maximum number of iterations has been reached. In this latter case, no
codeword has been found and a decoding failure is declared. LDPC codes decoded
via belief propagation are then characterized by two different error events: detected
errors and undetected errors. A detected error takes place whenever no codeword is
found up to the maximum number of iterations. An undetected error takes place
whenever, at some iteration, the hard-decision sequence c ̂ is a codeword but not the
transmitted one. Undetected errors may be extremely dangerous is some contexts,
including NAND Flash memories.

12.5.3.2 Initialization

At the beginning, each variable node broadcasts to all its neighboring check nodes
the a priori LR received from the communication channel. Hence, we have

r ji =wi

for all j∈N ið Þ, where N ið Þ is the set of indexes of check nodes connected to Vi. The
expression of wi depends on the nature of the channel. For example, it is easy to
check that over a BSC with error probability p and antipodal mapping
xi =1− 2ci ∈ f− 1, + 1g, we have

wi =
1− p
p if yi = +1
p

1− p if yi = − 1.

(
ð12:18Þ

As another example, over a Bi-AWGN channel and again antipodal mapping
xi =1− 2ci, (meaning Es normalized to 1) we have

wi = eð2 ̸σ2Þyi . ð12:19Þ

Importantly, the initialization step requires a knowledge of the channel. For
instance, in the case of a BSC the error probability p must be known, as well as the
noise power σ2 in the Bi-AWGN case.

12.5.3.3 Horizontal Step

For j=0, . . . ,m− 1, check node Cj, of degree hj, sends to each of the hj variable
nodes connected to it its current estimate of the corresponding bit. If variable node
Vi is connected to Cj, the message from Cj to Vi is the LR of bit ci, conditional on
the information available at Cj incoming from all its neighboring variable nodes,
except the information incoming from Vi. A pictorial representation of this process

430 E. Paolini

is provided in Fig. 12.13. Note that two different variable nodes connected to Cj

will receive, in general, different messages.
The message mi

j from Cj to Vi can be calculated exploiting one of the results
introduced in Sect. 12.5.2. In fact, each of the hj incoming messages is the LR of a
specific bit on which the check node imposes a parity constraint. Hence, under
independence hypothesis, denoting by N jð Þ\ if g the set of indexes of variable nodes
connected to Cj except Vi, from (12.17) we immediately obtain

mi
j =

∏k ∈N jð Þ\ if g
r jk +1

r jk − 1
+ 1

∏k ∈N jð Þ\ if g
r jk +1

r jk − 1
− 1

. ð12:20Þ

Note that the independence hypothesis is fulfilled only during the first g ̸2
decoding iterations, where g is the girth of the Tanner graph. On the other hand, it
represents an approximation during all subsequent iterations.

12.5.3.4 Vertical Step

For i=0, . . . , n− 1, variable node Vi, of degree di, sends to each of its di neigh-
boring check nodes its current estimate of the associated bit. With reference to
Fig. 12.14, the message r ji sent to check node Cj is the LR about bit ci, conditional
on the a priori information available from the communication channel and on the
information incoming from all check nodes connected to it, except Cj. Again, two
different check nodes connected to Vi will receive, in general, different messages.

The message r ji that variable node Vi sends to check node Cj connected to it can
be easily computed based on the result in Sect. 12.5.2. In fact, each of the di
messages incoming towards the variable node (including the message wi incoming

Fig. 12.13 Check node
processing of incoming
messages during the
horizontal step

12 Low-Density Parity-Check (LDPC) Codes 431

from the channel), represents the LR of ci conditioned to some observation.
Under the hypothesis of independence for the di observations, denoting by N ið Þ\ jf g
the set of indexes check nodes connected to Vi except check node of index j, we
have

r ji =wi ∏
k∈N ið Þ\ jf g

mi
k. ð12:21Þ

(Again, the independence hypothesis is valid rigorously only during the first g ̸2
decoding iterations.)

12.5.3.5 Hard Decision and Stopping Criterion

At the last step of each iteration, every variable node takes a decision about its
associated encoded bit. This decision is based on all currently available information
about the bit, i.e., on the a priori information from the communication channel and
on all messages incoming from the check nodes. Let mi denote the list of all
messages incoming towards the variable node Vi. Applying again the result
developed in Sect. 12.5.2 under the hypothesis of independence of the incoming
messages, we may write

L cijwi,mi� �
=wi ∏

k∈N ið Þ
mi

k. ð12:22Þ

(Again, the independence hypothesis is fulfilled rigorously only during the first
g ̸2 decoding iterations.) The decision about encoded bit ci at the end of the generic
iteration is then

Fig. 12.14 Variable node
processing of incoming
messages during the vertical
step

432 E. Paolini

L cijwi,mi� � cî =0
≷

cî =1
1.

If the current hard-decision sequence c ̂ is a codeword (c ̂HT =0, where H is any
parity-check matrix of the code) then the algorithm is terminated and c ̂ is returned
as the decoded codeword. Else, if c ̂ is not a codeword and the maximum number of
iterations Imax has been reached, the algorithm is terminated and a failure is
reported. Else, a new iteration is started jumping to the horizontal step. Belief
propagation decoding of LDPC codes may be summarized as follows.

0

12.5.4 Log-Domain BP Decoder

The main issue when implementing BP decoding described in Sect. 12.5.3 is
represented by the need to handle and combine, through multiplications and divi-
sions, likelihood ratios whose values may differ by several orders of magnitude.

12 Low-Density Parity-Check (LDPC) Codes 433

For this reason, a log-domain implementation is usually preferred from an imple-
mentation viewpoint. In the log-domain version of BP decoding, log-likelihood
ratios (LLRs) of the encoded bits are exchanged between variable and check nodes.
Next, we discuss how the above-described BP decoding shall be modified in the
log-domain. All logarithms are assumed to be natural logarithms. Moreover, sgn xð Þ
will denote the sign function, i.e., sgn xð Þ= +1 if x≥ 0 and sgn xð Þ= − 1 otherwise.

The initialization step remains the same, the only difference being that the first
message each variable node sends to all its neighboring check nodes is the a priori
LLR of the corresponding encoded bit. Neglecting again the iteration index and
denoting by Rj

i the message sent from variable node i∈ 0, . . . , n− 1f g to check
node j∈N ið Þ, we have

Rj
i =Wi,

where Wi = logwi. For instance, assuming antipodal mapping xi =1− 2ci, over a
BSC with error probability p we have

Wi =
log 1− p

p ifyi = +1
log p

1− p ifyi = − 1

(
ð12:23Þ

while, over a Bi-AWGN channel,

Wi =
2
σ2

yi. ð12:24Þ

The development of check node message processing (horizontal step) in the log
domain is more involved. Denoting Rj

i = log r ji and Mi
j = logmi

j, from (12.20) we
may write

Mi
j = log

∏k∈N jð Þ\ if g
eR

j
k +1

e
R j
k − 1

+ 1

∏k∈N jð Þ\ if g
eR

j
k +1

e
R j
k − 1

− 1

= log
∏k∈N jð Þ\ if g sgn Rj

k

� �
⋅ ∏k ∈N jð Þ\ if g

e
R j
kj j +1

e
R j
kj j − 1

+ 1

∏k∈N jð Þ\ if g sgn Rj
k

� �
⋅ ∏k ∈N jð Þ\ if g

e
R j
kj j +1

e
R j
kj j − 1

− 1
,

where we have exploited the fact that any odd function fulfills f xð Þ= sgn xð Þf xj jð Þ
and the fact that f xð Þ= ðex +1Þ ̸ ex − 1ð Þ is odd. The obtained expression of Mi

j can
be further developed through the identity log x+1ð Þ ̸ x− 1ð Þð Þ= sgn xð Þ ⋅
log xj j+1ð Þ ̸ xj j− 1ð Þð Þ and through the fact that e Rj j ≥ 1. This yields

434 E. Paolini

Mi
j = ∏

k∈N jð Þ\ if g
sgn Rj

k

� �
⋅ log

∏k∈N jð Þ\ if g
ejR

j
k
j +1

e
R j
kj j − 1

+ 1

∏k∈N jð Þ\ if g
e

R j
kj j +1

e
R j
kj j − 1

− 1

= ∏
k∈N jð Þ\ if g

sgn Rj
k

� �
⋅ log

e
∑k∈N jð Þ\ if g log

e
jR j
k
j
+1

e
R j
kj j − 1 + 1

e
∑k∈N jð Þ\ if g log

e
jR j
k
j
+1

e
R j
kj j − 1 − 1

= ∏
k∈N jð Þ\ if g

sgn Rj
k

� �
⋅φ ∑

k ∈N jð Þ\ if g
φðjRj

kjÞ
 !

ð12:25Þ

where, for x>0, we have introduced the nonlinear function

φ xð Þ= log
ex +1
ex − 1

= − logðtanh x ̸2ð ÞÞ.

A plot of this function is depicted in Fig. 12.15. Note that the function coincides
with its inverse, i.e., φ φ xð Þð Þ= x.

The transposition of the variable node processing (vertical step) to the loga-
rithmic domain is much simpler. In fact, from (12.21) we immediately obtain

Rj
i =Wi + ∑

k∈N ið Þ\ jf g
Mi

k . ð12:26Þ

Fig. 12.15 Plot of function φ xð Þ= − logðtanh x ̸2ð ÞÞ.

12 Low-Density Parity-Check (LDPC) Codes 435

Analogously, (12.22) shall be updated as

logL cijWi,Mi� �
=Wi + ∑

k ∈N ið Þ
Mi

k. ð12:27Þ

The algorithm may be then summarized as follows.

0

Although an enhanced numerical stability is achieved operating on
log-likelihood ratios, as well as a lower complexity (as, for instance, products in
(12.21) and (12.22) are transformed in sums in (12.25) and (12.26), respectively),
check node processing in the log-domain imposes the evaluation of the nonlinear
function φ. For a single check node Cj of degree hj, this function should in principle
be evaluated ðhjÞ2 times per iteration (even if techniques to limit the number of φ
evaluations exist). The calculation of function φ is typically performed by means of
lookup-tables. Note that, however, for small x the graph of φ xð Þ is very steep, thus
requiring a very fine (in general, nonuniform) discretization of the corresponding
region of the function domain, and that the implementation of φ xð Þ through a
lookup table may be quite inconvenient in hardware implementation. For these
reasons, extensive work has been carried out to develop either approximations of
the log-domain BP decoder or other reduced-complexity decoding schemes.

436 E. Paolini

All of these decoders offer a reduced error correction capability than actual
BP. However, they also exhibit a lower decoding complexity and, hence, a higher
decoding speed.

12.6 Reduced-Complexity Decoders

So far we have focused on the BP decoder (both in probability domain and
log-domain) originally developed by Gallager. Next, we present a few
reduced-complexity, implementation-friendly decoders for LDPC codes. It must be
pointed out that a large amount of reduced-complexity decoding schemes for LDPC
codes have been developed in the last decade [30]. Most of these decoding schemes
may be seen as approximations of the BP decoder, in the sense that they are
characterized by approximations of the most complex step of BP decoding, namely,
the horizontal step (consisting of the calculation of extrinsic messages from the
check nodes to the variable nodes). As such, these approximate BP decoding
algorithms can be formalized via the same pseudo-code we have adopted for the
log-domain BP decoder, with a difference in step 2.

We only present the most famous approximation of the BP decoder, called the
Min-Sum (MS) decoder. We then move to describe decoders exhibiting an even
lower complexities. More specifically, we present a binary message-passing algo-
rithm known as “Gallager B” (and originally proposed in [7]) and a class of
non-message-passing decoders named “flipping algorithms” (the idea of bit flipping
appears again in [7]). These very low complexity decoding algorithms (along with
some of their modifications, not addressed in this chapter) are of interest in NAND
Flash memories at the beginning of the memory life, when the raw bit error
probability is extremely low.

12.6.1 Min-Sum Decoder

The MS decoder can be directly developed from the log-domain BP decoder as
follows. From Fig. 12.15 observe that the graph of function φ xð Þ is very steep for
small values of x. Then, when x assumes small values, a small perturbation in terms
of x determines a large deviation in terms of φ xð Þ. For this reason, if at least one of
the magnitudes jRj

kj in the summation appearing in (12.25) is sufficiently small, the
corresponding value of φðjRj

kjÞ dominates the other summands. Hence, we can
write

12 Low-Density Parity-Check (LDPC) Codes 437

Mi
j = ∏

k∈N jð Þ\ if g
sgn Rj

k

� �
⋅φ ∑

k∈N jð Þ\ if g
φðjRj

kjÞ
 !

≈ ∏
k∈N jð Þ\ if g

sgn Rj
k

� �
⋅φ max

k∈N jð Þ\ if g
φðjRj

kjÞ
� �

= ∏
k∈N jð Þ\ if g

sgn Rj
k

� �
⋅ min
k∈N jð Þ\ if g

jRj
kj

ð12:28Þ

where the last equality follows from φ xð Þ being self-invertible (i.e., φ φ xð Þð Þ= x)
and monotonically decreasing. The MS decoding algorithm is summarized next.

0

Several improvements to the MS decoder have been proposed in the literature, to
reduce the gap between its performance and that of BP decoding, at the expense of a
small increase in terms of computational cost. These refinements are out of the
scope of this book. Interested readers may refer, for example, to [31, 32].

438 E. Paolini

12.6.2 Gallager B Decoder

The BP and MS decoders are characterized by real-valued (properly quantized, in
hardware implementation) messages exchanged between the variable nodes and the
check nodes. Moreover, as previously emphasized, both algorithms remain
unchanged over a wide range of communication channels. In contrast, Gallager B
decoder, first proposed in [7], is a message-passing decoding algorithm for LDPC
codes characterized by binary-valued messages and is specifically tailored for the
BSC (i.e., no soft information is available at the decoder input). Although its
performance is poor compared with that of BP and MS algorithms over the BSC, it
has been proved that it represents the optimum LDPC decoder over the BSC when
the extrinsic messages are constrained to be binary.

The algorithm works as follows. Assuming transmission over a BSC with error
probability p and input and output alphabets X =Y = 0, 1f g, for i=0, . . . , n− 1
variable node Vi is fed with the corresponding binary symbol yi ∈ 0, 1f g received
from the channel. (In contrast, to perform BP decoding over the BSC variable node
i is initialized according to (12.18) or to its logarithmic version (12.23).) The
symbol yi is broadcasted by variable node Vi to each of its neighboring check
nodes. The algorithm is then structured in a similar way as BP or MS, where the
horizontal, vertical, and stopping criterion steps are specified as follows.

During the horizontal step, for j=0, . . . ,m− 1 the message propagating from
check node Cj to variable node Vi, i∈N jð Þ, is simply the modulo-2 summation of
all binary messages incoming from variable nodes connected to Cj but the message
incoming from Vi. Hence, we can write

mi
j = ∑

k∈N jð Þ\ if g
r jk ð12:29Þ

where the summation is modulo-2. (Note that r ji = yi for all i=0, . . . , n− 1 at the
first iteration.) During the vertical step, for i=0, . . . , n− 1 the message from
variable node Vi to check node Cj, j∈N ið Þ, is equal to the modulo-2 complement of
yi if the number of incoming extrinsic messages different from yi is above some
threshold, and is equal to yi otherwise. Letting

Xi
j = mi

k ≠ yi s.t. k∈N ið Þ\ jf g� �
and T ið Þ be the number of such extrinsic messages and the threshold at the current
iteration, respectively, and letting C yið Þ be the modulo-2 complement of yi, we have

r ji =
C yið Þ if Xi

j ≥ T ið Þ

yi otherwise.

�
ð12:30Þ

At the end of each decoding iteration, for each variable node Vi the decision
about the current value of the local bit cî is taken according to a majority policy.

12 Low-Density Parity-Check (LDPC) Codes 439

More specifically, if the variable node degree di is even, then cî is set equal to the
value assumed by the majority of the incoming messages mi

j and of yi. On the other
hand, if the variable node degree is odd, then cî is set equal to the value assumed by
the majority of the incoming messages mi

j (yi is not considered).

0

Appropriate values for the threshold T ið Þ range between ⌊ðdi − 1Þ ̸2⌋ and di, as
the number of incoming extrinsic messages enforcing an outgoing message different
from yĩ must be sufficiently high. Note that in principle, for irregular codes the value
of the threshold may be different for two different variable nodes, even during the
same iteration. Also note that, for the same variable node, the value of the threshold
may not remain constant with the iteration index, as it may be adjusted dynamically.
In [7] it was shown that for a regular d, hð Þ LDPC code, the optimum value of the
threshold (the same for all variable nodes at the same iteration) is the smallest
integer T for which the inequality

1− p
p

≤
1+ 1− 2εð Þh− 1

1− 1− 2εð Þh− 1

 !2T − d+1

ð12:31Þ

440 E. Paolini

is fulfilled, where p is the BSC error probability and ε is the extrinsic error prob-
ability. This latter parameter represents the average probability that an edge in the
Tanner graph carries an error message from the variable node set to the check node
set at the considered iteration, and varies over iterations. In the asymptotic setting
where the Tanner graph is assumed to be cycle-free, the update equation for ε for
regular LDPC codes is [7]

εℓ+1 = p− p ∑
d− 1

z= Tℓ

d− 1

z

� �
1+ 1− 2εℓð Þh− 1

2

" #z
1− 1− 2εℓð Þh− 1

2

" #d− 1− z

+ 1− pð Þ ∑
d− 1

z= Tℓ

d− 1

z

� �
1− 1− 2εℓð Þh− 1

2

" #z
1+ 1− 2εℓð Þh− 1

2

" #d− 1− z

ð12:32Þ
where ℓ≥ 0 is the iteration index and where ε0 = p.

Example 12.5 Equation (12.32) represents density evolution recursion for Gallager
B decoding of regular unstructured d, hð Þ LDPC code ensembles. The asymptotic
decoding threshold p* for this ensemble under Gallager B decoding is then the sup
of the set of all p>0 such that limℓ→∞εℓ =0. For given d and h, whether or not
some p is above or below threshold can be easily checked by running the recursion
(with starting point ε0 = p), adapting the value of Tℓ at each iteration according to
(12.31) for the current value of εℓ. For example, for d=4 and h=40 (which
corresponds to a rate R=9 ̸10 ensemble) we obtain a threshold p* = 0.0041.
Through (12.8) and Es =REb, this corresponds to a threshold ðEb ̸NoÞ* = 5.892 dB,
about 1.5 dB away from the Shannon limit relevant to the one-bit quantized
Bi-AWGN channel.

12.6.3 Flipping Algorithms

Flipping algorithms are a class of low-complexity, iterative decoding algorithms for
LDPC codes over the BSC different from message-passing ones. The decoding
strategy consists of flipping, at the end of each decoding iteration, the current value
of a subset of variable nodes for which a certain flipping condition is fulfilled. If the
obtained binary sequence is a codeword, decoding is stopped and the codeword is
returned. Otherwise, a new iteration is started. The process continues until a
codeword is found or a maximum number of iterations is reached. Different flipping
algorithms are characterized by different criteria to identify the variable nodes to be
flipped.

A popular flipping algorithm, hereafter referred to simply as bit-flipping
(BF) algorithm, consists of flipping at each iteration those variable nodes for which

12 Low-Density Parity-Check (LDPC) Codes 441

the number u of unsatisfied check nodes is maximum. A BSC with input and output
alphabets X =Y = 0, 1f g is assumed.

12.7 Non-binary LDPC Codes

The so far introduced LDPC codes are binary, in that the code represents an
Rn-dimensional subspace of the vector space GF 2ð Þn, where R is the code rate, n is
the codeword length, and GF 2ð Þ is the Galois field of order 2. More specifically, the
LDPC code is the (Rn-dimensional) null space of an m× n sparse parity-check
matrix H. All n encoded vectors belong to GF 2ð Þ as well as all of the elements of
H. If row vector a belongs to GF 2ð Þn, then the syndrome of a is s= aHT ∈GF 2ð Þm,
where all operations are performed in GF 2ð Þ. Vector a is a codeword if and only if
its syndrome is null.

Like other classes of linear block codes, also LDPC codes may be constructed on
Galois fields of order q>2 [33]. In this case the code can be represented by a sparse
parity-check matrix H on GF qð Þ i.e., a matrix whose elements hj, i,
j∈ 0, 1, . . . ,m− 1f g and i∈ 0, 1, . . . , n− 1f g, belong to GF qð Þ and with a rela-
tively small number of nonzero elements. The code is an Rn-dimensional subspace
of the vector space GF qð Þn, where R is still the code rate and the codeword length
n is expressed in Galois field symbols. Letting row vector a belong to GF qð Þn, the
syndrome of a is still s= aHT ∈GF qð Þm, where now all operations are performed in

442 E. Paolini

GF qð Þ. Still, a is a codeword if and only if its syndrome is null. Hereafter we focus
on LDPC codes constructed on extension fields GF qð Þ with q=2p for integer p>2.
We denote by α a primitive element of GF qð Þ. We use the terminology non-binary
LDPC (NB-LDPC) code to refer to an LDPC code constructed on the Galois field
GF qð Þ.

12.7.1 NB-LDPC Code Ensembles

As binary LDPC codes, also NB-LDPC ones admit a graphical representation
through a Tanner graph G= V ∪ C, Eð Þ. Again, V = V0,V1, . . . ,Vn− 1f g is the set of
variable nodes, C= C0,C1, . . . ,Cm− 1f g is the set of check nodes, and E is the set of
edges. The number of edges, equal to the number of non-zero entries of H, is still
denoted by E. The n variable nodes and the m check nodes are still bijectively
associated with the n codeword symbols and with the m parity-check equations,
respectively; each encoded symbol now belongs to GF qð Þ and each parity-check
equation is a linear equation in GF qð Þ. In the Tanner graph, variable node Vi ∈V is
connected to check node Cj ∈ C by an edge if and only if hj, i ∈GF qð Þ\ 0f g, i.e., if
and only if the element of H in row j∈ 0, 1, . . . ,m− 1f g and column
i∈ 0, 1, . . . , n− 1f g is non-zero. Equivalently, Vi is connected to Cj if and only if
the non-binary codeword symbol ci, associated with Vi, is involved in the parity-
check equation corresponding to Cj. Edge labeling represents the main difference
between the Tanner graphs of binary and non-binary LDPC codes. As opposed to
the Tanner graph of a binary LDPC code, in fact, in the Tanner graph of a
NB-LDPC code the edge connecting variable node Vi to check node Cj is labeled by
the corresponding non-zero element hj, i of the parity-check matrix.

As an example, the Tanner graph of a linear block code with codeword length
n=5 and dimension k=3 (where both n and k are measured in field symbols) is
shown in Fig. 12.16. The Tanner graph has two check nodes, each imposing a
linear constraint on the variable nodes connected to it, and five variable nodes, each

Fig. 12.16 Tanner graph of a
non-binary linear block code
over GF 4ð Þ with codeword
length 5 (field symbols) and
code rate 3/5. Each edge in
the Tanner graph is labeled
with a non-zero element of
GF 4ð Þ

12 Low-Density Parity-Check (LDPC) Codes 443

representing a codeword symbol. The parity-check matrix of the corresponding
linear block code is

H =
α 1 0 1 0
0 α2 α2 α 1

	

.

Similarly to their binary counterparts, NB-LDPC codes are usually analyzed in
terms of ensemble average. Ensembles of NB-LDPC codes are defined similarly to
ensembles of binary LDPC codes, with the difference that edge labeling is also
considered in the ensemble definition. For example, the unstructured ensemble of
NB-LDPC codes over GF qð Þ of length n and degree distribution Λ, Pð Þ, denoted by
Cq n,Λ, Pð Þ, includes the LDPC codes constructed GF qð Þ corresponding to all
possible E! edge permutations between the variable node and the check node
sockets, according to a uniform probability distribution and, for each such per-
mutation, all possible edges labelings with non-zero elements of GF qð Þ again
according to a uniform probability measure. Ensembles of ultra-sparse NB-LDPC
codes (where all variable nodes have degree 2) have attracted an increasing interest
in the past decade [34, 35]. Ensembles of protograph-based NB-LDPC codes may
also be defined similarly to their binary counterparts, by including edge labeling in
the ensemble definition [36, 37].

12.7.2 Iterative Decoding of NB-LDPC Codes

Similarly to binary LDPC codes, NB-LDPC codes may be decoded iteratively via
BP decoding. The BP decoder for NB-LDPC codes may be regarded as a gener-
alization of the above-described BP decoder for binary LDPC codes. Hereafter, we
provide a description of such a decoder, focusing on its probability-domain
implementation. We assume an extension field of order q=2p for integer p>2. For
the sake of clarity, we divide the algorithm into six steps called initialization,
message permutation, horizontal step, message de-permutation, vertical step and
hard decision and stopping criterion. Out of these six steps, the first one (initial-
ization) is performed only once, at the beginning of the algorithm, while the others
are performed iteratively until a stopping rule is verified.

In the non-binary BP decoder, each message still represents extrinsic informa-
tion. As opposed to the binary case, in which each message exchanged between a
variable node Vi and a check node Cj is (in the log-domain implementation) a scalar
value representing a likelihood ratio or log-likelihood ratio, in the non-binary set-
ting each message is a vector of length q=2p representing a pmf for the non-binary
symbol associated with Vi. For example, for an LDPC code constructed over the
Galois field GF 4ð Þ, the message mi

j from check node Cj to variable node Vi is a

vector with four elements having the form mi
j = mi

j 0ð Þ,mi
j 1ð Þ,mi

j αð Þ,mi
j α

2ð Þ
� �

444 E. Paolini

where mi
j 0ð Þ= Pr Vi =0ð Þ, mi

j 1ð Þ= Pr Vi =1f g, mi
j αð Þ= Pr Vi = αf g, and

mi
j α

2ð Þ= Pr Vi = α2
� �

, each probability being conditioned to the extrinsic infor-
mation received by the check node along all of its edges but the one towards Vi.

12.7.2.1 Initialization

In the initialization step, each variable node receives a priori information from the
channel and simply broadcasts it along all of its edges, towards the check nodes that
are connected to it. Hereafter we denote by ri a priori information for variable node
Vi. As well as messages exchanged between variable nodes and check nodes, ri is a
pmf for the non-binary symbol ci ∈GF 2pð Þ associated with Vi. The way a priori
information ri is computed depends on the channel.

For example, let us consider transmission of a NB-LDPC code constructed
on GF 2pð Þ over the Bi-AWGN channel depicted in Fig. 12.16. Let
c= c0, c1, . . . , cn− 1ð Þ be the NB-LDPC codeword, ci ∈GF 2pð Þ for
i∈ 0, 1, . . . , n− 1f g. In this case the generic non-binary codeword symbol ci is first
converted to its binary representation ci = ci, 0, ci, 1, . . . , ci, p− 1

� �
, ct, j ∈GF 2ð Þ for

j∈ 0, 1, . . . , p− 1f g. Then, the binary representation is mapped onto a word of
p antipodal symbols xi =1− 2ci (meaning Es normalized to 1), yielding a sequence
x= x0, x1, . . . , xn− 1ð Þ of np channel symbols that are transmitted sequentially over
the channel. Letting y= y0, y1, . . . , yn− 1ð Þ be the corresponding Bi-AWGN channel
output, it is easy to verify that, for all i∈ 0, 1, . . . , n− 1f g and for each β∈GF 2pð Þ,
we have

Pr ci = βjyið Þ α 2πσ2
� �− p

2exp −
jjxi βð Þjj2 + jjyijj2

2σ2

 !
exp

< xi βð Þ, yi >
σ2

� �
ð12:33Þ

where xi βð Þ is the antipodal version of the binary representation of β, where σ2 is
the variance of each noise sample, and where ⟨xi βð Þ, yi⟩ is the inner product
between xi βð Þ and yi. In this example, a priori information for Vi (coinciding with
the message Vi sends to all of its neighboring check nodes during the initialization
step) is therefore ri = Pr ci =0f g, Pr ci =1f g, Pr ci = αf g, . . . , Pr ci = αq− 2

� �� �
where each element of the pmf ri is computed according to (12.33). Over an SLC or
MLC channel model, a priori information shall be appropriately computed, usually
based again on the binary representation of each non-binary codeword symbol.

All subsequent steps of the BP decoder for NB-LDPC codes, described next,
remain the same regardless of the specific channel model and therefore irrespective
of how a priori information is computed.

12 Low-Density Parity-Check (LDPC) Codes 445

12.7.2.2 Message Permutation

As previously described, each edge in the Tanner graph of a NB-LDPC code is
labeled by the corresponding non-zero element of the parity-check matrix. Con-
sidering check node Cj and letting ci ∈GF 2pð Þ be the jth codeword symbol, the
check node imposes the constraint

∑
k ∈N jð Þ

hj, kck =0. ð12:34Þ

where hj, k ∈GF 2pð Þ\ 0f g is the element of H in position j, kð Þ. This means that the
value of each variable node Vi, connected to Cj, is first multiplied by the corre-
sponding edge label and then is checked by the check node through (12.34). In
terms of BP decoding, where message r ji is a pmf for symbol ci ∈GF 2pð Þ, multi-
plication of by the non-zero edge label simply entails a permutation of the elements
of r ji . To make a distinction between the message sent by Vi and the message
received by Cj (after the permutation), hereafter we denote the former by r ji and the
latter by Πðr ji Þ. An example is provided next.

Example 12.6 Let the Galois field order be q=4. Let the edge connecting variable
node Vi and check node Cj be labeled by α∈GF 4ð Þ, and the message sent by Vi be
r ji = 0.4, 0.3, 0.2, 0.1ð Þ. Since in GF 4ð Þ we have 0 ⋅ α=0, 1 ⋅ α= α, α ⋅ α= α2, and
α2 ⋅ α=1, the effect of the edge label α on the message is a permutation of its
elements, leading to the message Π r ji

� �
= 0.4, 0.1, 0.3, 0.2ð Þ received by Cj. Each

non-zero edge label induces a specific permutation.

12.7.2.3 Horizontal Step

Check node Cj, j∈ 0, 1, . . . ,m− 1f g, receives one message Πðr ji Þ, i∈N jð Þ, from
each of its neighboring variable nodes and sends back one message mi

j, i∈N jð Þ, to
each of them. To understand how extrinsic information shall be generated at the
check node and forwarded to the relevant variable node, we can look at (12.34) that
we recast in the form ∑k ∈N jð Þ zk =0 by defining zk = hj, kck. For some i∈N jð Þ, the
constraint imposed by the check node is zi = − ∑k∈N jð Þ\ if g zk = ∑k∈N jð Þ\ if g zk
where the “− ” sign can be omitted owing to the fact that q=2p. We may regard
each summand zk as a random variable taking values in GF qð Þ and with pmf equal
to that of the incoming message Πðr jkÞ. Under the assumption that all zk are inde-
pendent, the pmf of their sum (hence the pmf of zi) is the convolution of their pmfs.
That is, we may write

446 E. Paolini

mi
j =⊛k∈N jð Þ\ if gΠ r jk

� � ð12:35Þ

where ⊛ denotes convolution between pmfs.
Since the complexity of convolution scales quadratically with the vector size, a

naïve implementation of the horizontal step based on (12.35) leads to a complexity
scaling as O q2ð Þ, such a complexity dominating the overall decoding complexity
and becoming problematic even for moderate q. A reduced-complexity but
equivalent implementation of the horizontal step is based on applying fast Hada-
mard transform to both sides of (12.35). Hadamard transform turns vector convo-
lution into element-wise multiplication of the transformed vectors; therefore, letting
H denote the Hadamard transform and recalling that Hadamard transform coincides
with its inverse, mi

j in (12.35) may equivalently be calculated as

mi
j =H ⊗k∈N jð Þ\ if gH Π r jk

� �� �� � ð12:36Þ

where ⊗ denotes element-wise product between two vectors. Using fast Hadamard
transform reduces the horizontal step complexity (and more in general the com-
plexity of the whole decoder) to O q log qð Þ.

12.7.2.4 Message De-permutation

In the previously described message permutation step, the elements of message r ji ,
sent by variable node Vi to check node Cj, are permuted according to the permu-
tation established by the edge label hj, i. The message mi

j, sent by Cj towards Vi,
must undergo the inverse permutation (equivalently, the permutation established by
the inverse label h− 1

j, k) before reaching Vi. For the sake of clarity, in order to
distinguish the message sent by Cj from the message received by Vi after

de-permutation, we keep denoting by mi
j the former and by Π− 1 mi

j

� �
the latter.

12.7.2.5 Vertical Step

Variable node Vi, i∈ 0, 1, . . . , n− 1f g, receives the di messages Π− 1 mi
j

� �
,

j∈N ið Þ, and generates di messages r ji , j∈N ið Þ, each of which is sent towards a
specific edge to the corresponding check node. Each message r ji is computed based
on a priori information ri available from the channel and on extrinsic information
Π− 1 mi

k

� �
, k∈N ið Þ\ jf g. Specifically, assuming independence between all of the

incoming messages (including a priori information), r ji is computed as

12 Low-Density Parity-Check (LDPC) Codes 447

r ji = γj ⋅ ri⊗ ⊗k∈N ið Þ\ jf gΠ− 1 mi
k

� �� � ð12:37Þ

where again ⊗ denotes element-wise product between two vectors and where the
scalar γj is a scaling factor whose value makes the sum of the elements of r ji equal
to 1.

12.7.2.6 Hard Decision and Stopping Criterion

At the end of each BP decoding iteration, a hard decision is made about the value
taken by each variable node; this hard decision exploits a posteriori information for
the variable node. In probability-domain BP decoding of NB-LDPC codes, a
posteriori information is represented by the pmf of the Galois field symbol ci
associated with the variable node given all incoming messages and a priori infor-
mation. Under independence assumption this is given by

rAPPi = γ ⋅ ri⊗ ⊗j∈N ið Þ Π− 1 mi
j

� �� �h i
ð12:38Þ

where again γ is a normalization factor. Let Π− 1ðmiÞ be the ordered list of mes-
sages received by variable node Vi. Once the a posteriori pmf rAPPi for symbol ci has
been computed, a symbol-wise MAP decision is made, namely,

cî =argmaxc∈GF qð Þ Pr cjri,Π− 1ðmiÞ� �
. ð12:39Þ

In other words, cî is the element of GF qð Þ that corresponds to the largest element
of the pmf rAPPi . Note that, as the scaling factor γ is the same for all elements of
rAPPi , it does not affect the final decision and therefore it can be set to 1 for all
i∈ 0, 1, . . . , n− 1f g.

Similarly to the binary case, if the current hard-decision sequence
c ̂= c0̂, c1̂, . . . , c ̂n− 1ð Þ fulfills c ̂HT = 0, then the algorithm terminates and c ̂ is
returned as the detected codeword. Else, if c ̂ is not a codeword and the maximum
number of iterations Imax has been reached, the algorithm is terminated and a failure
is reported. Else, a new iteration is started jumping to the message permutation step.

Belief propagation decoding of LDPC codes over GF qð Þ, q=2p, may be sum-
marized as follows.

448 E. Paolini

0

12.8 Numerical Example

In this section, we present some numerical results aimed at comparing the perfor-
mance of binary LDPC and BCH codes, with the purpose to highlight the potential
of LDPC codes in Flash memories applications. We assume an SLC memory as the
reference channel model. We compare the performance of a regular QC-LDPC
code, under several decoding algorithms offering different tradeoffs between per-
formance and complexity, with the performance of a narrowsense binary BCH code
with similar parameters, decoded via bounded distance decoding.

The LDPC code is characterized by a length nLDPC = 8200 and a dimension
kLDPC = 7379 bits, and therefore by a code rate R very close to 9 ̸10. Its minimum
distance, estimated with the impulse method proposed in [38], is equal to
dLDPC = 114. All variable nodes of the LDPC code have degree 4, and all of its
check nodes have degree 40. Its 820 × 8200 parity-check matrix is in block

12 Low-Density Parity-Check (LDPC) Codes 449

circulant form, where the generic block is a 205 × 205 circulant permutation
matrix, and has been constructed according to a block circulant version of the
progressive edge-growth (PEG) algorithm. The performance of this code has been
evaluated via Monte Carlo software simulation, under BP, MS, and BF decoding
algorithms. The performance curves under both BP and MS decoding have been
obtained under two different settings, namely, soft-decision and hard-decision
decoding. These two settings correspond to assuming the Bi-AWGN channel with
unquantized output (Example 12.2) and with one-bit quantized output (Example
12.3), respectively, as the channel model. The first setting is equivalent to assuming
an SLC memory with an infinite number of reads per bit, while the second one to
assuming an SLC memory with one read per bit. The variable nodes are initialized
according to (12.19) in the unquantized case and according to (12.18) in the
quantized one. In the quantized case, the raw bit error rate of the channel can be
obtained from Eb ̸N0 according to (12.8), where Es ̸N0 =REb ̸N0. For instance,
Eb ̸N0 = 5 dB corresponds to a raw bit error rate p=8.5 ⋅ 10− 3. The Shannon limit
for the unquantized case and for the one-bit quantized case are also evaluated, for
benchmarking purposes.

The competitor BCH code has nominal parameters nBCH = 8191, kBCH = 7372,
t=63 (error correction capability), and minimum distance dBCH = 127. Its code rate
is approximately equal to 9 ̸10, similar to the code rate of the QC-LDPC code. The
codeword error rate (CER) and the bit error rate (BER) of the BCH code under hard
decision bounded distance decoding have been evaluated analytically according to
the relationships

Pe = ∑
nBCH

r= t+1

nBCH
r

� �
pr 1− pð ÞnBCH − r ð12:40Þ

and

Pb ≈
dBCH
k

⋅Pe ð12:41Þ

respectively.
With reference to Fig. 12.17, we see that over the hard-decision channel (SLC

with one read) the BCH code exhibits nearly the same performance as the
QC-LDPC code decoded via BP and that its performance is even slightly better at
low error rates. This is not surprising, as BCH codes are well known to offer very
good performances over hard-decision channels, especially at high code rates. As
opposed to BCH codes, however, LDPC codes can handle in a very natural way
soft information incoming from the communication channel, which allows to attain
substantial performance improvements over the error correction capabilities
achievable with hard-decision decoding. In our example, when the LDPC decoder
is fed with unquantized soft information, its coding gain with respect to that
achieved under hard-decision decoding is improved by about 1.6 dB under both BP

450 E. Paolini

and MS decoding algorithms at CER=10− 4. Moreover, again at CER=10− 4, the
LDPC code under unquantized BP decoding performs only 0.8 dB away from the
corresponding Shannon limit, in terms of BER.

For the same decoding algorithm (BP or MS), the performance curves of the
LDPC code labeled as “soft” and “hard” represent the two extreme cases in which
unconstrained soft information is available at the decoder, and no soft information
is available. In general, when a finite number of cell reads is performed with
different read voltage values, the corresponding performance curve will lie between
the two extreme curves: The larger the number of cell reads, the closer the per-
formance curve to the “soft” one. Therefore, LDPC codes can largely outperform
BCH codes in Flash memory applications, provided a sufficient amount of soft
information is available at the decoder. It is also pointed out that the design of
appropriate QC irregular LDPC codes can favor an even larger coding gain with
respect to BCH codes.

We also highlight how very simple decoding algorithms of LDPC codes such as
BF (or Gallager B) decoding, can be of interest at the beginning of the memory life,
i.e., when the raw bit error rate is very small. For example, as from Fig. 12.17, BF
decoding could become of interest for values of Eb ̸N0 larger of 7.0 dB, corre-
sponding to a raw bit error rate smaller than 1.3 ⋅ 10− 3.

Fig. 12.17 Bit and codeword error rates for an (8191, 7372) QC-LDPC code (under different
decoding algorithms) and an (8191, 7372), t = 63 narrowsense binary BCH code under bounded
distance decoding, over an SLC flash memory channel. Curves corresponding to filled and empty
symbols illustrate the codeword error rates and the bit error rates of the LDPC code, respectively.
The dashed and dot-dashed lines illustrate the codeword error rate and the bit error rate of the BCH
code, respectively. The two straight solid lines are the Shannon limits for rate R = 9/10 under
soft-decision and hard-decision decoding, respectively

12 Low-Density Parity-Check (LDPC) Codes 451

Acknowledgements The author wishes to thank R. Micheloni and A. Marelli for their careful
proofcheck of this chapter.

References

1. T.M. Cover, J.A. Thomas, Elements of Information Theory (Wiley, 1991)
2. R.D. Fowler, L. Nordheim, Electron emission in intense electric fields. Proc. R. S. Lond. 119,

173–181 (1928)
3. R. Micheloni, L. Crippa, A. Marelli (eds.), Inside NAND Flash Memories (Springer, 2010)
4. N. Mielke et al., Bit error rate in NAND Flash memories, in Proceedings of the 2008 IEEE

International Symposium on Reliability Physics, Phoenix, AZ, USA, April/May 2008,
pp. 9–19

5. J. Wang, T. Courtade, H. Shankar, R. Wesel, Soft information for LDPC decoding in flash:
mutual-information optimized quantization, in Proceedings of the 2011 IEEE Global
Telecommunication Conference, Houston, TX, USA, Dec 2011

6. S. Li, T. Zhang, Improving multi-level NAND flash memory storage reliability using
concatenated BCH-TCM coding. IEEE Trans. VLSI 18, 1412–1420 (2010)

7. R.G. Gallager, Low-Density Parity-Check Codes (MIT Press, Cambridge, Massachusetts,
1963)

8. C. Berrou, A. Glavieux, P. Thitimajshima, Near Shannon limit error-correcting coding and
decoding: turbo-codes, in Proceedings of the 2003 International Symposium on Communi-
cation, vol. 2, May 1993, pp. 1064–1070

9. T. Richardson, R. Urbanke, The renaissance of Gallager’s low-density parity-check codes.
IEEE Commun. Mag. 41, 126–131 (2003)

10. N. Bonello, S. Chen, L. Hanzo, Low-density parity-check codes and their rateless relatives.
IEEE Commun. Surv. Tutor. 13, 3–26 (2011)

11. M. Tanner, A recursive approach to low complexity codes. IEEE Trans. Inf. Theory 27, 533–
547 (1981)

12. M. Fossorier, Quasi-cyclic low-density parity-check codes from circulant permutation
matrices. IEEE Trans. Inf. Theory 50, 1788–1793 (2004)

13. Z. Li, L. Chen, L. Zeng, S. Lin, W. Fong, Efficient encoding of low-density parity-check
codes. IEEE Trans. Commun. 54, 71–81 (2006)

14. M. Mansour, High-performance decoders for regular and irregular repeat-accumulate codes,
in Proceedings of the IEEE 2004 IEEE Global Telecommunications Conference, Nov/Dec
2004, pp. 2583–2588

15. T. Richardson, M. Shokrollahi, R. Urbanke, Design of capacity-approaching irregular
low-density parity-check codes. IEEE Trans. Inf. Theory 47, 619–637 (2001)

16. S.-Y. Chung, G.D. Forney Jr., T. Richardson, R. Urbanke, On the design of low-density
parity-check codes within 0.0045 dB of the Shannon limit. IEEE Commun. Lett. 5, 58–60
(2001)

17. J. Thorpe, Low-density parity-check (LDPC) codes constructed from protographs, JPL INP,
Technical Report, Aug 2003, pp. 42–154

18. J. Xu, L. Chen, L. Zeng, L. Lan, S. Lin, Construction of low-density parity-check codes by
superposition. IEEE Trans. Commun. 53, 243–251 (2005)

19. T. Richardson, R. Urbanke, The capacity of low-density parity-check codes under
message-passing decoding. IEEE Trans. Inf. Theory 47, 599–618 (2001)

20. S. ten Brink, Convergence behavior of iteratively decoded parallel concatenated codes. IEEE
Trans. Commun. 49, 1727–1737 (2001)

21. G. Liva, M. Chiani, Protograph LDPC codes design based on EXIT analysis, in Proceedings
of the 2007 IEEE Global Telecommunications Conference, Washington, DC, USA, Nov
2007, pp. 3250–3254

452 E. Paolini

22. L. Chen, J. Xu, I. Djurdjevic, S. Lin, Near Shannon limit quasi cyclic low-density
parity-check codes. IEEE Trans. Commun. 52, 1038–1042 (2004)

23. H. Tang, J. Xu, Y. Kou, S. Lin, K. Abdel-Ghaffar, On algebraic construction of Gallager and
circulant low density parity-check codes. IEEE Trans. Inf. Theory 50, 1269–1279 (2004)

24. M. Chiani, A. Ventura, Design and performance evaluation of some high-rate irregular
low-density parity-check codes, in Proceedings of the 2001 Global Telecommunication
Conference, San Antonio, TX, USA, Nov 2001, pp. 990–994

25. T. Richardson, Error floors of LDPC codes, in Proceedings of the 41st Annual Allerton
Conference on Communication, Control and Computing (2003)

26. S. Abu-Surra, D. Divsalar, W.E. Ryan, Enumerators for protograph-based ensembles of
LDPC and generalized LDPC codes. IEEE Trans. Inf. Theory 57, 858–886 (2011)

27. M. Flanagan, E. Paolini, M. Chiani, M. Fossorier, On the growth rate of the weight
distribution of irregular doubly-generalized LDPC codes. IEEE Trans. Inf. Theory 57, 3721–
3737 (2011)

28. D. Cavus, C. Haymes, Low BER performance estimation of LDPC codes via application of
importance sampling to trapping sets. IEEE Trans. Commun. 57, 1886–1888 (2009)

29. L. Dolecek et al., Predicting error floors of structured LDPC codes: Deterministic bounds and
estimates. IEEE J. Sel. Areas Commun. 27, 908–917 (2009)

30. J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, X.-Y. Hu, Reduced-complexity decoding
of LDPC codes. IEEE Trans. Commun. 53, 1288–1299 (2005)

31. J. Zhao, F. Zarkeshvari, A. Banihashemi, On implementation of min-sum algorithm and its
modifications for decoding low-density parity-check (LDPC) codes. IEEE Trans. Commun.
53, 549–554 (2005)

32. J. Chen, M. Tanner, C. Jones, Y. Li, Improved min-sum decoding algorithms for irregular
LDPC codes, in Proceedings of the 2005 IEEE International Symposium on Information
Theory, Sept 2005, pp. 449–453

33. M. Davey, D. MacKay, Low-density parity check codes over GF(q). IEEE Commun. Lett. 2
(6), 165–167 (1998)

34. C. Poulliat, M. Fossorier, D. Declercq, Design of regular (2, dc) -LDPC codes over GF(q)
using their binary images. IEEE Trans. Commun. 56(10), 1626–1635 (2008)

35. G. Liva, E. Paolini, B. Matuz, S. Scalise, M. Chiani, Short turbo codes over high order fields.
IEEE Trans. Commun. 61(6), 2201–2211 (2013)

36. L. Dolecek, D. Divsalar, Y. Sun, B. Amiri, Non-binary protograph-based LDPC codes:
enumerators, analysis, and designs. IEEE Trans. Inf. Theory 60(7), 3913–3941 (2014)

37. E. Paolini, M. Flanagan, Efficient and exact evaluation of the weight spectral shape and
typical minimum distance of protograph LDPC Codes. IEEE Commun. Lett. 20(11), 2141–
2144 (2016)

38. X.-Y. Hu, M. Fossorier, E. Eleftheriou, On the computation of the minimum distance of
low-density parity-check codes, in Proceedings of the 2004 International Conference on
Communication, June 2004, pp. 767–771

12 Low-Density Parity-Check (LDPC) Codes 453

Chapter 13
Protecting SSD Data Against Attacks

Alessia Marelli and Rino Micheloni

Abstract When a drive is broken and we have to throw it away, we want to be sure
that no hackers can recover the data stored in that disk, especially in the enterprise
environment where sensitive date are stored on the drive, such as financial trans-
actions or military applications. As the SSD market is growing, the security issue
must be carefully considered. Some methods used with HDDs, such as degaussian,
are not applicable to SSDs, due to the different storage technique. Recent studies
indicate that encryption is the necessary step to protect data stored in SSD against
hackers attacks. This chapter describes the SSD security approach in comparison to
HDD, then it walks the reader through the encryption world: how a cryptosystem is
built, how a cryptosystem is broken, different encryption applications, and then the
AES cryptosystem as it is the most used in SSDs; finally, it addresses the security
applications in SSDs.

13.1 Challenges of SSD Security Versus HDD

Hard Disk Drives as well as Solid State Disks contain a number of sensible data that
must be kept secret. When a disk is thrown away or stolen, it is very important that
nobody can access these data.

The purpose of HDD is to store data and protect them from corruption or
accidental erase. In this latter case, procedures like folder or un-erase are used. In
addition, data erasure is unlikely to occur because it takes a lot of time, hence
reducing performances. The drawback is that user data are vulnerable to recovery
by unauthorized person. Increased storage of sensitive data, combined with rapid
technological change and the shorter lifespan of IT assets, has driven the need for
permanent data erasure of electronic devices as they are retired.

A. Marelli (✉) ⋅ R. Micheloni
Storage Solutions, Microsemi Corporation, Vimercate, MB, Italy
e-mail: alessiamarelli@gmail.com

R. Micheloni
e-mail: rino.micheloni@ieee.org

© Springer Nature Singapore Pte Ltd. 2018
R. Micheloni et al. (eds.), Inside Solid State Drives (SSDs),
Springer Series in Advanced Microelectronics 37,
https://doi.org/10.1007/978-981-13-0599-3_13

455

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0599-3_13&domain=pdf

If data erasure does not occur when a disk is retired or lost, an organization or a
user faces the possibility that data will be stolen and compromised, leading to
identity theft, loss of corporate reputation, threats to regulatory compliance and
financial impacts. There are well-known cases of sensible data loss such as
CardSystems Solutions where Credit card breach exposed 40 million accounts in
2005. In addition, government laws oblige disk makers to have a method to secure
data. Nowadays, there are four methods to secure data:

• physical drive destruction;
• degaussian;
• secure erase;
• encryption.

In the following we will see what these methods are and how they are applied to
SSD and HDD.

To prevent data from recovery, disks can be broken up to microscopic pieces.
However, such physical destruction is not absolute if any remaining disk pieces are
larger than a single 512-byte block. In case of HDD this is not easy and a magnetic
microscopy is able to recover the data. In case of SSD it is easier to destroy the
physical component but this method is old and not used.

Degaussian uses magnetic field to erase data stored on HDD. Degaussers create
high intensity magnetic fields that erase all the magnetic recordings in a hard disk
drive, including the sector header information on drive data tracks. Like physical
destruction, once this procedure is applied, the disk is no longer usable. However,
as the storage density increases, higher magnetic fields are required, so that old
degaussers cannot be reused in modern HDD. In addition, new perpendicular
recording drives my not be erasable by present degaussers designed for past lon-
gitudinal recording drives. Due to the different physical media, degaussian proce-
dure is not applicable to SSD. However, there are companies [1] that build a
self-destructive SSD by applying an over-current to the NAND Flash memories.

As regards erase, four security levels are defined: weak erase (deleting files),
block erase (overwrite by external software), secure erase and fast secure erase.
There is a big difference in terms of security achieved and time required by these
four levels as depicted in Fig. 13.1.

Sanitation of HDD through erase is not easy, because when we delete a file, we
just remove its name from the directory structure. The user data remain on the drive
where they can be retrieved until the sectors are overwritten by new data. Even
reformatting the drive only file directories and links among sectors are cleared, but
the user data remain and can be recovered. Moreover, software utilities that over-
write files are susceptible to error or malicious virus attack and require constant
update.

Secure Erase (SE) is the name given to a set of commands available in PATA
and SATA hard drives. The Secure Erase commands are used as data sanitization
method to completely overwrite all the data on a hard drive. The method is very
simple: it writes a binary one or zero in all the locations.

456 A. Marelli and R. Micheloni

After SE file recovery programs will not be able to extract data from the drive.
Secure Erase is a simple addition to the existing “format drive” command and adds
no cost to hard disk drives. Usually, HDDs ask for multiple SE operations; in the
SSD case a single erase should be enough because data are erased in blocks. The
bad news is that the operating system is not aware of where data are physically
stored; only the Flash controller inside the SSD knows the logical-to-physical
mapping (Chap. 2). Recently it has been published [2] a study on limitations about
secure erase applied to SSDs.

• First, ATA and SCSI built-in commands are effective, but manufacturers
sometimes implement them incorrectly. Moreover, sometimes they are not
implemented in SSDs.

• Second, overwriting the entire visible address space of an SSD twice is usually,
but not always, sufficient to sanitize the drive. In addition, due to the Firmware
Transaction Layer (FTL) (Chap. 2) the procedure is more complex and time
consuming compared to HDD.

• Third, none of the existing hard drive techniques for individual file sanitization
are effective on SSDs.

Even if there is a lot of effort on developing a stronger secure erase for SSDs,
nowadays encryption is the preferred method. Encryption should be used on the
drive since beginning of life: when we want to destroy data, it is enough to delete
all the keys in order to be sure that all the data are un-recoverable.

The next section walks the reader through the encryption world before dis-
cussing encryption applied to SSDs.

speed

se
cu

ri
ty

Physical
Destruction

Block
Erase

Secure
Erase

Fast Secure
Erase

Weak
Erase

Fig. 13.1 Trade-off between
speed and security among
different security levels

13 Protecting SSD Data Against Attacks 457

13.2 Introduction to Cryptography

The fascinating art of cryptography was born as soon as the civilized man began to
communicate information to another man. In fact, quite at the beginning he felt the
need of secrecy or privacy, so that if Alessia wants to send a message to Rino, she
doesn’t want Kam, who heard the message, to understand its meaning.

There are evidence of cryptographic schemes in the ancient Jew population and
their atbash schemes, the Spartans with their scytale (Fig. 13.2) but the first
“published” encryption scheme is the Caesar ciphrary invented by emperor Caius
Julius Caesar. From then a number of different schemes were used during the ages,
till the popular Enigma during the Second World War, used by the Germans to send
encrypted messages to U-boots (Fig. 13.3).

Together with encryption methods, more and more efforts were put on the
opposite side of the story: the codebreakers that invented the science of crypt-
analysis. The most famous were the scientists of Bletchey park (Alan Touring was
one of them) that were able to decrypt the messages sent with Enigma. This was a
key point in the defeat of Germany in the Second World War.

Modern encryption science was born in 1949 with Shannon [3], the father of
Information theory with the paper “Communication Theory of Secrecy Systems”.
After that, the encryption science was pushed by military industry and then applied
to telephone lines, computer networks, financial transactions and so on.

More and more complex schemes were discovered and then analyzed to find
their weakness. The next sub-sections introduce the basic concept of a crypto-
graphic system and how it is possible to find if it is secure or not. Last sub-section
describes encryption applied to MAC (Message Authentication Code) and digital
signatures.

S
E

N
D

H

E L P
!

S

E

E

L

N

P

D

!

H

Fig. 13.2 The scytale used by spartans to encrypt codes: it was a wooden stick used to roll the
message to be encrypted

458 A. Marelli and R. Micheloni

13.2.1 Basic Concepts

As the name cryptography suggests (from the greek kryptos = hidden and
graphia = written language) the purpose of this science is to hide an information
under an apparent random message.

Let’s say Alessia wants to send a message to Rino and be sure that listener Kam
doesn’t understand the message (Fig. 13.4). The message Alessia wants to send is
called plaintext. She applies an encryption function, that generally involves a key, to
the plaintext in order to get a ciphertext to be sent to Rino. On the other side, Rino
receives the ciphertext and applies his decryption function, that generally involves
another key, in order to recover the original plaintext. If Kam hears the ciphertext,
he is unable to recover the plaintext because he hasn’t the key.

A basic example of an encryption scheme is based on letter substitution.
Figure 13.5 shows the Caesar code (Fig. 13.5). The key is the width of the rotation,
3 in this example.

Alessia wants to send the plaintext “Caesar” to Rino. She uses her key (rotation
of 3 positions) to obtain the cyphertext “Zxbpxo”. Rino receives the message and
rotates back of 3 positions to read the original message.

This is a very simple example where Rino and Alessia have the same key. Of
course, a number of modifications have been introduced in order to have a different

Fig. 13.3 The enigma
machine

13 Protecting SSD Data Against Attacks 459

number of rotations for each letter of the message (Vigenère codes) or different keys
for Alessia and Rino, or different encryption methods.

However, it is necessary to have a “metric” to evaluate the security of a
cryptosystem.

Shannon was able to give a mathematical structure to the encryption science,
first of all by evaluating the secrecy of a system. In fact there are different levels of
security of a cryptosystem as shown in Fig. 13.6.

The low level of security is the computational security. This is a measure of the
computational effort required to break a cryptosystem; in other words a system is

Fig. 13.4 A cryptographic
system

Fig. 13.5 Caesar codes

460 A. Marelli and R. Micheloni

considered computational secure if it requires at least N operations. However, given
the speed of the technology evolution, what is secure today will unlikely be secure
tomorrow. Moreover, there aren’t any practical secure cryptosystems based on this
definition. The problem is that people study the computational security of a system
under a specific attack, but this does not guarantee its security under another attack.

The second level of security is the provable security. A cryptosystem is said to
be provable secure if its construction is based on a very difficult mathematical
problem, not yet theoretically solved. For example, as it will be discussed later,
RSA system is based on integer factorization. Until now, there aren’t any methods
that can easily factorize an integer. If some day a method will be found, RSA will
be easily broken, but until then it is provable secure.

The highest level of security is the unconditional security. In this case there are
no bounds on the computational effort that Kam can use: the cryptosystem can’t be
broken even with infinite computational resources.

We won’t go through all the mathematical description of this analysis, but we
report here only an interesting result: the Vigenère cipher is unconditional secure if
the keyword has the same length of the plaintext. It is even more secure if the key is
used only once.

Nowadays, there is only one cryptosystem known as unconditional secure: the
One-Time Pad. Historically, this encryption method was used by KGB agents. The
system was so secure that some messages have been decrypted only when agents
re-used the same key more than once or some spies have been arrested and revealed
the keys. We explain this method with an example.

Alessia wants to send the message “hello” to Rino. They have the same pads of
keys to be used only one time and they decided for “xmckl” (same length of the

Computational
Security

Provable
Security

Unconditional
Security

S
ec

ur
ity

 L
ev

el

Fig. 13.6 The pyramid of security

13 Protecting SSD Data Against Attacks 461

message). The encryption method follows Fig. 13.7. Based on the alphabet, letters
are translated in numbers, and the sum of message and key gives the ciphertext.

The sum is performed mod(26). Alessia immediately destroys the key. Rino
receives the message “eqnvz”, translates it in numbers, and subtracts the key to
obtain the original message. At this point Rino destroys the key.

If Kam hears the cipthertext and tries to decrypt it with infinite computing
power, he fill find “xmckl” as key but also “tquri” that gives the word “later” with
same probability.

This is a very simple and fast encryption method, easily performed by xoring the
key with either the plaintext (during encryption) or ciphertext (during decryption).

Difficulties arise in the key management: the key must be as long as the message,
it must be random, it must be used only once and destroyed immediately after use.
In addition, it is very difficult to distribute keys among multiple users. Especially
the requirement on the key length is so difficult to achieve that different encryption
methods are preferred, such as AES (Sect. 13.3) even if not unconditional secure.

This discussion leads us to the problem of the key. In fact, till few years ago all
those methods were based on a symmetric encryption [4, 5]. In other words it is
very easy to understand the key that Rino has, given Alessia’s key. In particular
most of the time the key is the same. It follows that this key must be secret
otherwise all the messages will be decrypted by Kam.

This leads us to some kind of paradox: we want to send secret messages but we
must exchange a secure key over a secure channel. This is what happens in internet,
when we are accessing a secure channel (e.g. home banking, credit card payment,
etc.): we are exchanging a secure key to encrypt and decrypt messages. In financial
transactions, however, we have the logistic problem of keys distribution. In other
words, a bank must provide a different key to each user: handling of all these keys
is translated in time and cost. It’s not the purpose of this chapter to address the
problem of keys distribution. One way to solve it is the use of the Diffie-Hellman
algorithm, i.e. an asymmetric encryption. The interested reader can refer to [5–8].

In order to overcome the problem of the key exchange, the public-key cryp-
tosystem has been developed. The idea behind is that it might be unfeasible to find
out Alessia’s key d, given Rino’s key k. It follows that Rino can publish his key and
Alessia uses it to encrypt the message (Fig. 13.8). The sent message is received by
Rino, that now uses his private key to decrypt the message.

Fig. 13.7 Example of one-time pad encryption

462 A. Marelli and R. Micheloni

Observe that this method can also be reversed, that is Rino can use his private
key to encrypt the message and sends it to Alessia. Alessia uses Rino’s public key
to decrypt the message. In this case everyone can decrypt the message, since Rino’s
key is public, but we are sure of the authenticity of the message, because it was
encrypted using Rino’s private key (Sect. 13.2.3).

The advantage of the public-key cryptosystems is that Alessia can send mes-
sages using the public key without any secret prior exchange of keys and be sure
that only Rino is able to decrypt the message.

The public-key cryptosystem was first discussed by Rivest, Shamir and Adleman
in 1978 with the very famous system called RSA [9]. Several systems have then be
proposed, but their security remains computational. In fact, asymmetric encryption
could never provide unconditional security. When Kam intercepts the ciphertext y,
he can encrypt each possible plaintext using the public encryption rule until he finds
the unique solution so that y = e(x). This x is the decryption of y.

Public-key cryptosystem is based on one-way functions which are very easy to
compute but very difficult to be inverted. There are a lot of functions that are
believed to be one-way but never proven.

An example of such function is the factorization of an integer into two prime
numbers, used in RSA. This cryptosystem can be summarized as follows:

• Rino picks up two large prime numbers p and q;
• Rino sends the number n = p × q to Alessia. Everyone can see it;
• Alessia uses n to encrypt the message;
• Alessia sends the cipthertext to Rino. Everyone can see it but nobody can

decrypt it;
• Rino receives the message and, knowing p and q, is able to decrypt it.

Fig. 13.8 The asymmetric cryptosystem

13 Protecting SSD Data Against Attacks 463

The difficulty of this algorithm is the primality test of large integers. Today only
numbers with al least 300 ciphers are considered secure [10, 11].

Asymmetric cryptosystems are used in a number of different protocols like SSH,
Internet Key Exchange and PGP. The main advantage is that the generation of the
key pair solves the logistic problem of key distribution and the problem of au-
thentication (Sect. 13.2.3).

These systems are not broadly used because they are too slow and can limit
performances in most of the cases, like in SSDs. A solution that sometimes is
adopted is to transmit the keys with a public-key cryptosystems and then switch to a
symmetric cryptosystem.

13.2.2 Cryptanalysis

Let’s analyze the cryptosystem from Kam’s side. Kam is not the bad guy of the
story; of course, he could be a hacker that wants to intercept our credit card but he
could also be a secret agent that needs to intercept a terroristic attack. This is the
reason why the government puts a lot of effort and money in finding a good code
but also in breaking codes.

Cryptoanalysis science, as the name suggests (from Greek cryptos = “hidden”
and analyein = “to untie”) has the purpose to break codes.

Generally speaking, we suppose that Kam knows the cryptosystem in use: this is
known as the Kerckhoffs’ principle. Hence, given a ciphertext, Kam’s goal is to
understand the key of the system.

Different attacks are based on the amount of information that Kam has.

• Ciphertext only attack: Kam knows a ciphertext or a part of it.
• Known plaintext attack: Kam knows plaintexts and their corresponding

ciphertexts.
• Chosen plaintext attack: Kam can choose a set of plaintexts and encrypt them.
• Chosen ciphertext attack: Kam can choose a set of ciphertexts and decrypt them.

The attacks are based on available resources, i.e. computing power, storage
memory, and time.

At this point we need to clarify what “break the code” means. Generally
speaking, Kam wants to know the key, but if he is unable to recover the key, he
could attempt a partial break of the code.

In the pyramid of Fig. 13.9 the highest level is the total break where Kam
understands the key. The second level is the global deduction: Kam does not know
the key but he discovers a functionally equivalent encryption and decryption
method. Then we have instance deduction: Kam produces additional plaintexts or
ciphertexts. Finally, we have distinguishing algorithm: Kam is able to distinguish a
ciphertext from a random permutation.

464 A. Marelli and R. Micheloni

For example, if we want to discover a key of a ciphertext obtained with a Caesar
code (and all the substitution cryptosystems) we can use an attack called Frequency
Analysis. This attack is based on the analysis of the frequency of letters or group of
letters in a particular language. Typical distribution of letters in English language is
shown in Fig. 13.10.

When Kam intercepts a message, he can easily find out the most frequent letter
and decrypts it as either E or A or T, but unlikely as Z. By analyzing letter’s
frequency, and group of letters together, he can recover the plaintext.

Distinguishing Algorithm

Instance Deduction B
re

ak
in

g
Le

ve
l

Total Break

Global Deduction

Fig. 13.9 The pyramid of codebreaking

0
a b c d e f g h i j k l m n o p q r s t u v w x y z

0.02

0.04

0.06

0.08

0.1

0.12

0.14Fig. 13.10 Typical
frequency distribution of
letters in an English text

13 Protecting SSD Data Against Attacks 465

An evolution of this attack, used in more complex cryptosystems, as Vigenère
codes, is called Kasiski method. The purpose of this attack is to understand the
length of the key and then reduce the ciphertext to a cipher substitution that can be
analyzed with frequency analysis attack. The method was discovered by Kasiski in
1863 and independently by Babbage in 1846.

The method is based on these observations:

1. two identical segments of plaintext will be encrypted to the same ciphertext
whenever their occurrence in the plaintext is d position apart;

2. if we observe two identical segments of ciphertext, each of length at least 3,
there is a good chance that they correspond to identical segment of plaintext.

Hence, the first thing to do is to find groups of equal characters, of at least 3
letters, and record their position. Suppose that in a text we have the same group of 3
letters separated of 165, 235, 275 and 285 positions. The greatest common divisor
is 5 and it is very likely to be the keyword length. Now that the length is known,
every group of 5 letters can be broken via the frequency analysis attack.

These two attacks (Frequency analysis and Kasiski method) are based on lin-
guistic statistics, but as the cryptosystems complexity increases, more mathematics
and computational power are required.

There are cases where codes are broken not because of the weakness of the code
itself, but because of an erroneous or insecure usage. For example, encrypting two
messages with the same key is an insecure process, the messages are said to be in
depth: Kam gains a lot of information by analyzing more than one ciphertext
encrypted with the same key.

Another weakness that historically helped breaking a code is the indicator
transmission with the Enigma machine.

The key was kept constant for a period of time, generally a day. However, a
different rotor position (Fig. 13.11) was used for each message, a sort of initial-
ization message.

The starting position of these rotors was transmitted just before the ciphertext. It
was design weakness and operator sloppiness in this indicator procedure that broke
Enigma. The procedure works as follows: the operator sets the rotor as indicated by
his list to the initial setting, i.e. to some specific combination of letters (e.g. RDKP)
visible in the rotor window. Then the operator chooses a starting position for his
message which becomes the indicator to be sent with the message (e.g. ABGY). He
then types ABGY two times in the machine so that the message is encoded twice,
for example in SWTHNQLM. He transmits this string and then the encrypted
plaintext.

At the receiver side, the operator sets the rotor in the initial settings and then
types SWTHNQLM. Immediately RDKP pops up, the receiver sets the rotors in
that position and starts typing the ciphertext to obtain the plaintext.

The weakness of this scheme is that it is used as a worldwide setting. Moreover,
the repetition of this value causes a security flaw.

466 A. Marelli and R. Micheloni

The attacks used for symmetric-type cryptosystems are based on difficult
mathematical problems. The most obvious way to attack this system is solving
those mathematical problems. In case of RSA cryptosystem, 3 algorithms seem to
be the most effective to factorize integers: quadratic sieve, elliptic-curve factor-
ization and number field sieve [12–15].

Today Cryptanalysis tries to break RSA encryption by using a huge computa-
tional power. In 1980 1012 CPU operations were required to factor a number of 50
digits. The same number of operations was required to factor a number of 75 digits
in 1984. Nowadays, it is possible to factor a number of 150 digits. Given the speed
trend of CPUs, more and more digits are required to secure RSA cryptosystems.

13.2.3 Hash Functions

The previous sections described the use of encryption for the general case where
Alessia wants to send a message to Rino and doesn’t want Kam, who hears the
message, to understand. However, encryption is used to solve also a number of
other issues in telecommunication world. In this section we address these issues and
how they are solved.

The hash function is any algorithm that maps a large bunch of data of variable
length to a smaller set of data of fixed length [16, 17]. A cryptographic hash
function is used to provide data integrity: in some way, it builds a fingerprint of
data, so that when data change, the fingerprint is not valid anymore. It is also used
when data are stored in an insecure location: fingerprints are re-computed from time

Fig. 13.11 An example of a rotor position to send an indicator for the Enigma machine

13 Protecting SSD Data Against Attacks 467

to time to verify that they have not changed. This fingerprint is usually called
digest. With a good hash function it is easy to compute a digest given a message,
but it is unfeasible to find the message given the hash; in other words it is an
unidirectional function. This is very different from encryption where we encrypt
and decrypt, and the ciphertext has the same length of plaintext (Fig. 13.12). On the
contrary, hash functions are unidirectional and the length of the digest is fixed
despite the length of the message (Fig. 13.13).

hello word
Kidfg rtna

What's Montague? it is nor hand, nor foot,
Nor arm, nor face, nor any other part
Belonging to a man. O, be some other name!
What's in a name? That which we call a rose
By any other name would smell as sweet.
So Romeo would, were he not Romeo call'd,
Retain that dear perfection which he owes
Without that title. Romeo, doff thy name;
And for that name, which is no part of thee
Take all myself.

Ygqw‘z Kqvbmazx? sd lf frr zxpf, bbg wcvb,
wjg sbh, lhj qofn, emd ayh ijsnd hwnd
Enfoswghs tn h nsj. T, ns wndk wufmr bsog!
Bdow‘n ap r nsog? Xaor akgne qm nsol e maof
Ne amk mbfpq nwov mpnqs napdw nq makqr.
Qm Kfpqw mapfn, qmfg nq map Onape kqmf‘e,
Qmtpsn nqot mgos maotnwpoqn nalfr mq mplq
Tandoenq unsk akntl. Uoame, negg kan mane;
Han msp hqns mxbc, anfkl mq fk pqmd yn nadh
Nath fnn naidn.

encrypt

encrypt

decrypt

decrypt

Fig. 13.12 General properties of encryption

hello word
NSY289HN45BSOTH
S3HWNF9T2JA83NH

What's Montague? it is nor hand, nor foot,
Nor arm, nor face, nor any other part
Belonging to a man. O, be some other name!
What's in a name? That which we call a rose
By any other name would smell as sweet.
So Romeo would, were he not Romeo call'd,
Retain that dear perfection which he owes
Without that title. Romeo, doff thy name;
And for that name, which is no part of thee
Take all myself.

hash

hash
YQNFO630T1M9HQN
12KN93USNR4J2KG

Plaintext Digest

Fig. 13.13 General properties of hash function

468 A. Marelli and R. Micheloni

Being unidirectional is a basic requirement for security. If a hash function hasn’t
this property, we say that it has preimage resistance. Another bad property is called
collision resistance: given a message and its digest, there is another message with
the same digest.

These bad properties imply that somebody can change a message without
changing its digest. As discussed, hash functions are used to verify data integrity.
For example, when we download a file from the web, our PC computes the hash
function and compares it with the one published on the website as data integrity
check [18, 19]. Please note that the digest is not visible on the screen but embedded
in the properties of the file.

Another application is the password storage (Fig. 13.14).
PCs do not store cleartext password, because it would be too dangerous if the

personal computer is stolen or somebody has access to its storage area. Therefore,
the hash function of the password is stored, since it is unfeasible to recover the
cleartext password from the hash. On the following login, the system re-computes
the hash for the cleartext password and compares it with the stored one. Since it is
impossible to have two messages with the same hash, the user must have typed the
correct password to login in the system.

Fig. 13.14 Hash function in the password storage

13 Protecting SSD Data Against Attacks 469

A special application is the Message Authentication Code (MAC). In this case
keyed cryptographic functions are used [20–22]. These functions have stringent
security requirements: specifically, even if the attacker is able to generate MACs for
some messages, the attacker cannot guess the MAC for other messages without
performing unfeasible amounts of computations.

The power of the MAC is that it guarantees both data integrity and authenticity
of the message (Fig. 13.15). Moreover, since MACs require the same key for both
receiver and sender, MAC functions are similar to symmetric encryption functions.

Another important usage of the hash function is the digital signature. There are
three reasons to use a digital signature.

1. Authentication: this is the same reason why we sign documents. We want to
authenticate the source of the messages. This is especially true in financial
transactions.

2. Integrity: sender and receiver want to be sure that the message has not been
corrupted during transition, even if it has been encrypted. Since there is no valid
way to change a message without changing its signature, a non-valid signature
detects a corrupted message.

3. Non-repudiation: once we have signed a document, we can’t later deny it.

Although the discussion is very complex about how to digitally sign a document,
high level blocks are sketched in Fig. 13.16.

Fig. 13.15 Block scheme of the MAC usage

470 A. Marelli and R. Micheloni

First of all, the asymmetric encryption is used. This is because everybody should
be able to decrypt, but nobody could modify the signed document. The hash
function is computed on data. At this point the resulting digest is encrypted using
Rino’s private key, in order to produce the signature. Finally, there is a certificate
that binds the signature to the document so that they can’t be split.

On the receiver side, Alessia reads the signed message and decrypts the digest
using Rino’s public key to obtain the received cleartext digest.

She computes the hash function on the received document and compares the
result with the obtained cleartext digest. If they are equal, she accepts the message
from Rino, otherwise she repudiates it.

13.3 AES

Advanced Encryption Standard (AES), or its variant XTS-AES, is the encryption
system generally used in Solid State Disks. It is an iterative symmetric encryption
method, it supports 128, 192 and 256 bits as key length, and is available worldwide

Fig. 13.16 Block diagram of the digital signature

13 Protecting SSD Data Against Attacks 471

on a royalty-free basis. The algorithm was originally proposed by Daemen and
Rijmen (called Rijndael) and it was published in the Federal Register on December
4, 2001 [23].

AES is iterative and the number of iterations (rounds) Nr depends on the key
length: Nr = 10 if the key length is 128, Nr = 12 if the key length is 192 and
Nr = 14 if the key length is 256.

AES works on a basic unit called state. Each state consists of a matrix: 4 × 4
bytes in the 128 case, and 4 × 8 bytes in the 256 case. We can split the algorithm
in two parts: key generation and core algorithm [24–27].

13.3.1 Key Generator

Every key is split in 32-bit word. We have 8 words in the 256 case. At iteration i we
have 32-bit word as input and 32-bit word as output. The algorithm proceeds as
follows:

1. copy the input over the output;
2. rotate operation to rotate 8 bits to the left;
3. apply S-box to the 4 bytes individually;
4. on the first (leftmost) byte of the output word, XOR the byte with 2 (i − 1). In

other words, perform the rcon operation with i as the input, and XOR the rcon
output with the first byte of the output word.

As the name may suggest, the rotate operation cyclically shifts bytes to the left:

rotate (B0, B1, B2, B3Þ = (B1, B2, B3, B0Þ.

The rcon operation is equal to

rconðiÞ= xi− 1 in GFð28Þ or rconðiÞ= xi− 1 mod x8 + x4 + x3 + x+1 in GF(2).

For example rcon(1) = 1, rcon(4) = 3 and rcon(9) = 27.
Finally, we define the S-box in Fig. 13.17: it indicates a substitution to be made

for each byte combination.
For example: S-box(9c) = de or S-box(f2) = 89.

13.3.2 AES Algorithm Core

Once we have defined how the keys and sub-keys are computed we now describe
the AES algorithm.

472 A. Marelli and R. Micheloni

• State = plaintext. Perform the AddRoundKey operation between the state and
the key.

• For each iteration:

– Execute SubBytes
– Execute ShiftRows
– Execute MixColumns
– Execute AddRoundKey
– Execute SubBytes
– Execute ShiftRows
– Execute AddRoundKey

• The resulting ciphertext = State.

The AddRoundKey operation is simply the XOR (Fig. 13.18) between the State
and the subkey obtained at that point using the key generator.

In the SubBytes step, each byte in the state matrix is replaced with a SubByte
using an 8-bit substitution box, the S-box (Fig. 13.19). This operation provides the
non-linearity in the cipher.

The ShiftRow operation operates on the rows of the State. Each byte of the row
is cyclically shifted to the left by some locations. The first row does not shift, the
second row shifts by one location, the third row by two locations and so on and so
forth (Fig. 13.20).

In the MixColumn operation four bytes of each column of the state are combined
using an invertible linear transformation. Together with the ShiftRow operation it
provides diffusion, i.e. non-uniformity of the ciphertext.

x0
0x

bx cx dx ex fxax1x 2x 3x 4x 5x 6x 7x 8x 9x

1x
2x
3x
4x
5x
6x
7x
8x
9x
ax
bx
cx
dx
ex
fx

7c
82
fd
c7
83
d1
ef
a3
0c
81
32
c8
78
e3
f8
a1

63
ca
b7
04
09
53
d0
51
cd
60
e0
e7
ba
70
e1
8c

77
c9
93
23
2c
00
aa
40
13
4f
3a
37
25
b5
98
89

7b
7d
26
c3
1a
ed
fb
8f
ec
dc
0a
6d
2e
66
11
0d

f2
fa
36
18
1b
20
43
92
5f
22
49
8d
1c
48
69
bf

6b
59
3f
96
6e
fc
4d
9d
97
2a
06
d5
a6
03
d9
e6

6f
47
f7
05
5a
b1
33
38
44
90
24
4e
b4
f6
8e
42

c5
f0
cc
9a
a0
5b
85
f5
17
88
5c
a9
c6
0e
94
68

30
ad
34
07
52
6a
45
bc
c4
46
c2
6c
e8
61
9b
41

01
d4
a5
12
3b
cb
f9
b6
a7
ee
d3
56
dd
35
1e
99

67
a2
e5
80
d6
be
02
da
7e
b8
ac
f4
74
57
87
2d

2b
af
f1
e2
b3
39
7f
21
3d
14
62
ea
1f
b9
e9
0f

fe
9c
71
eb
29
4a
50
10
64
de
91
65
4b
86
ce
b0

d7
a4
d8
27
e3
4c
3c
ff
5d
5e
95
7a
bd
c1
55
54

ab
72
31
b2
2f
58
9f
f3
19
0b
e4
ae
8b
1d
28
bb

76
c0
15
75
84
cf
a8
d2
73
db
79
08
8a
9e
df
16

Fig. 13.17 S-box for AES

13 Protecting SSD Data Against Attacks 473

Each column is multiplied by a known matrix which is

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

0
BB@

1
CCA

in the 128 case. Multiplication by 1 means no change, multiplication by 2 means
shifting to the left, and multiplication by 3 means shifting to the left and then
performing XOR with the initial unshifted value. After shifting, a conditional XOR
with 0x1B should be performed if the shifted value is larger than 0xFF. This
operation is represented in Fig. 13.21.

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

S-box

Fig. 13.19 Representation of
the SubBytes operation

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

k0,0 k0,1 k0,2 k0,3

k1,0 k1,1 k1,2 k1,3

k2,0 k2,1 k2,2 k2,3

k3,0 k3,1 k3,2 k3,3

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

Keys

XOR

Fig. 13.18 Representation of the AddRoundKey operation

474 A. Marelli and R. Micheloni

So far there aren’t any known successful attacks to AES. Especially AES-256 is
considered very secure, because all the operations are studied to mix data and avoid
any linearity or uniformity.

13.4 SSD Security and Applications

As described in Sect. 13.1, SSDs are gaining popularity, but security is a hard
matter. More and more companies build military-grade SSDs, protecting sensitive
data from environmental and human threats. In fact, this is a very important issue in
defense applications or financial applications where sensitive data are treated.

SSD security is so difficult because they are based on industry-standard NAND
Flash chips that were designed for cameras and MP3 players: these memories have
no physical security hooks that prevent them from being removed from enclosures.
A hacker could easily unsolder NAND chips and read data using a standard Flash
programmer. Once raw data are read, corresponding files could be reassembled
using data recovery software.

When the SSD is broken, we want data to be erased or unreadable before
throwing away the SSD. Secure Erase command exists but it has its own

shift 1

shift 2

shift 3

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

a0,0 a0,1 a0,2 a0,3

a1,1 a1,2 a1,3 a1,0

a2,2 a2,3 a2,0 a2,1

a3,3 a3,0 a3,1 a3,2

Fig. 13.20 Representation of the ShiftRow operation

• c(x)

a0,0 a0,1 a0,2 a0,3

a1,0 a1,1 a1,2 a1,3

a2,0 a2,1 a2,2 a2,3

a3,0 a3,1 a3,2 a3,3

b0,0 b0,1 b0,2 b0,3

b1,0 b1,1 b1,2 b1,3

b2,0 b2,1 b2,2 b2,3

b3,0 b3,1 b3,2 b3,3

Fig. 13.21 Representation of
the MixColumn operation

13 Protecting SSD Data Against Attacks 475

drawbacks. First of all, if the SSD is broken, it could be possible that some blocks
become un-erasable, but a hacker can read back data from those blocks.

In addition there isn’t a mechanism to erase single files, but the entire SSD must
be erased.

The logical-to-physical mapping of SSDs makes files even harder to be com-
pletely erased. In fact, the erase operation is a slow operation in NAND Flash, so it
happens that files are not really erased but just “marked” as erased to avoid a drop
in performance. The problem is that the file-system does not know the real blocks
where data are stored. Logical-to-physical mapping is managed by the Flash con-
troller inside the SSD. In other words, it’s like saying that the file-system hasn’t a
full control on the block locations. In this context, the most common way to
increase security is encryption, and it must be done within the SSD itself.

Here is what happens. Data are input by the host, encrypted by the Flash con-
troller, and then stored in NAND. During read operation, data are read from NAND,
decrypted and output to the host. Encryption and key generation are completely
transparent to the host. In this way, when we want to make data unreadable, it is
enough to erase the locations where keys are stored. This location can be a NAND
block or a RAM block in the Flash controller.

As already pointed out, AES-256 or the XTS-AES-256 are generally used in
SSDs. The firmware running on the Flash controller sets the first key; following
keys are computed by the key generator described in Sect. 13.3. All the keys are
stored in specific NAND blocks.

Finally, we can state that encryption is the first step to secure data on SSDs, and
the sooner we use it the more secure system we have. While it is easy to encrypt
data already stored on a HDD, because we can re-write encrypted data in the same
locations, this is not so easy with SSDs. NAND storage doesn’t allow to re-write
data on the same locations: actually, encrypted data are stored in different locations
(logical-to-physical mapping). At the end of the day, encryption must be activated
when the device is fresh in order to secure data from external attacks.

References

1. www.runcore.com
2. M. Wei, L.M. Grupp, F.E. Spada, S. Swanson, Reliably erasing data from flash-based solid

state drives, in Usenix FAST 11 Conference (San Jose, 2011)
3. C. Shannon, Communication theory of secrecy systems. Bell Syst. Tech. J. 27, 379–423

(1949)
4. O. Goldreich, Foundations of Criptography: Basic Tools (Cambridge University Press,

Cambridge, 2001)
5. D.R. Stinson, Cryptography: Theory and Practice (Chapman & Hall/CRC, London, 2006)
6. W. Diffie, M.E. Hellman, Multiuser cryptographic techniques. Fed. Inf. Process. Stand. Conf.

Proc. 45, 109–112 (1979)
7. U. Maurer, S. Wolf, The Diffie-Hellman protocol. Des. Codes Cryptogr. 19, 147–171 (2000)
8. B. Schneier, Secrets and Lies: Digital Security in a Networked World (Wiley, New York,

2000)

476 A. Marelli and R. Micheloni

9. R.L. Rivest, A. Shamir, L. Adleman, A method for obtaining digital signatures and public key
cryptosystems. Commun. ACM 21, 120–126 (1978)

10. A.K. Lenstra, E.R. Verheaul, Selecting cryptographic key sizes. J. Cryptolo. 14, 255–293
(2001)

11. M.O. Rabin, Probabilistic algorithms for testing primality. J. Number Theory 12, 128–138
(1980)

12. M.J. Wiener, Cryptoanalysis of short RSA secret exponents. IEEE Trans. Inf. Theory 36,
553–558 (1990)

13. A.K. Lenstra, Integer factoring. Des. Codes Cryptogr. 19, 101–128 (2000)
14. D. Boneh, G. Durfee, Cryptoanalysis of RSA with private key d less than N0.292. IEEE Trans.

Inf. Theory 46, 1339–1349 (2000)
15. D. Boneh, Twenty years of attacks on the RSA cryptosystem. Not. Am. Math. Soc. 46, 203–

213 (1999)
16. N. Ferguson, B. Schneier, Practical Cryptography (Wiley, New York, 2003)
17. H. Delfs, H. Knebl, Introduction to Cryptography: Principles and Applications (Springer,

New York, Berlin, 2002)
18. R. Churchhouse, Codes and Ciphers: Julius Caesar, the Enigma and the Internet (Cambridge

University Press, Cambridge, 2002)
19. M. Bellare, R. Canetti, H. Krawczyk, Keying hash function for message authentication. Lect.

Notes Comput. Sci. 1109, 1–15 (1996)
20. P. Preneel, P.C. Van Oorschot, On the security of iterated message authentication codes. IEEE

Trans. Inf. Theory 45, 188–199 (1999)
21. D. Pointcheval, J. Stern, Security arguments for signature schemes and blind signatures.

J. Cryptol. 13, 361–396 (2000)
22. T.P. Pedersen, Signing contracts and paying electronically. Lect. Notes Comput. Sci. 1561,

134–157 (1999)
23. Advanced Encryption Standard in Federal Information Processing Standard (FIPS) Publica-

tion 197 (2001)
24. J. Nechvatal, E. Barker, L. Bassham, W. Burr, M. Dworkin, J. Foti, E. Roback, Report on the

development of the advanced encryption standard (AES), 2 Oct 2000
25. S. Murphy, M.J.B. Robshaw, Essential algebraic structure within AES. Lect. Notes

Comput. Sci. 2442, 1–16 (2002)
26. S. Landau, Polynomials in the nation’s service: using algebra to design the advanced

encryption standard. Am. Math. Mon. 111, 89–117 (2004)
27. S. Landau, Standing the test of time: the data encryption standard. Not. Am. Math. Soc. 47,

341–349 (2000)

13 Protecting SSD Data Against Attacks 477

Index

A
Access time, 7, 20, 49, 193, 325
AC characteristics, 149
Adaptive memory, 48, 49
AddRoundKey, 473, 474
Adleman, L., 463
Advanced Encryption Standard (AES), 455,

471–473, 475, 476
AES, see Advanced Encryption Standard

(AES)
All Bit Line (ABL), 85, 160–163
ALU, see Arithmetic Logic Unit (ALU)
Application classes, 222
Arithmetic Logic Unit (ALU), 141
Asymmetric coding, 153, 462, 471
Asynchronous interface, 6–8, 139, 144
ATA, 20, 33, 34, 36, 38, 457
Authentication, 458, 464, 470

B
Babbage, C., 466
Backwards-compatibility, 34
Bad block, 1, 10, 12, 56, 190, 245–247, 285
Bad Block Management (BBM), 12
BAR, see Base Address Register (BAR)
BBM, see Bad Block Management (BBM)
BCH, 12, 184–186, 189, 212–214, 369, 370,

374–377, 379–385, 388–398, 401, 402,
449–451

Belief propagation decoding, 402, 403, 407,
424, 433, 448

BER, see Bit Error Rate (BER)
Berlekamp, 184, 293, 377, 378, 380, 399–401
BET, see Block Erasing Table (BET)
BGA package, 2

Binary-input AWGN channel, 411, 413, 417,
422, 424, 430, 445, 450

Binary Symmetric Channel (BSC), 382, 410,
411, 413, 414, 417, 422, 424, 430, 434,
439, 441, 442

Bit Error Rate (BER) estimation, 18, 424, 450
Bit flipping decoding, 437
Bitline

capacitance, 156, 158, 159
parasitic, 156, 158, 160
pitch, 80, 84, 91, 94
precharge, 158

BLe, see Even page (BLe)
Block Erasing Table (BET), 346–351
BLO, see Odd page (BLO)
Block protection, 353–355
Blockwearing information table, 362, 363
Boot time, 31, 33
Bose, R.C., 370
Bose–Chaudhuri–Hocquenghem (BCH), 245,

289–291, 293, 302, 303, 305, 306
BSC, see Binary Symmetric Channel (BSC)
Bulk, 65, 75, 113, 167, 221
BWI-table merge, 364

C
Cached file selection algorithm, 50
Caching, 3, 44, 50, 193, 194
Caesar, J.C., 458
Capacitive coupling model, 64–66
Carlitz-Uchiyama inequality, 375, 389
CDM, see Cold-Data Migration (CDM)
CD variations, 93
Cell-to-cell variability, 93
Channel capacity, 407, 408, 412

© Springer Nature Singapore Pte Ltd. 2018
R. Micheloni et al. (eds.), Inside Solid State Drives (SSDs),
Springer Series in Advanced Microelectronics 37,
https://doi.org/10.1007/978-981-13-0599-3

479

Channel coding theorem, 407, 412
Channel encoder, 409
Charge pump, 171–175
Charge retention, 3, 64, 66, 76–78, 87
Charge trapping cells, 100
Charge Trapping Layer (CTL), 94–97, 99
Check nodes, 295, 296, 300, 419–421, 424,

428–432, 434, 437, 439, 442, 443, 445,
449

Chemical-Mechanical Planarization (CMP), 92
Chiang, M.L., 345
Chien, E.K., 399
Ciphertext, 459, 462–466, 468, 473
Client, 1, 26, 33, 219, 220, 222, 223, 225–227,

229
CMP, see Chemical-Mechanical Planarization

(CMP)
Codebreakers, 458
Code ensemble, 421
Code Rate (CR), 371
Co-design, 196, 198
Cold data, 52, 285, 288, 343, 346–349, 351,

353–357, 359
Cold-Data Migration (CDM), 354, 356
Cold pool, 343, 346, 354–357, 359
Cold-Pool Adjustment (CPA), 356, 357
Collision resistance, 469
Computational security, 460, 461
Concatenation, 373, 404
Configuration read messages, 17
Consumer SSD, 31, 33
Control Interface (CI), 136–139
Correction capability, 184, 185, 243, 248, 259,

271, 274, 276, 279, 280, 282, 283, 293,
304, 306, 307, 369, 372, 374, 380, 381,
383, 386, 389, 391, 398, 400, 437, 450

CPA, see Cold-Pool Adjustment (CPA)
CR, see Code Rate (CR)
CRC, see Cyclic Redundancy Check (CRC)
Cryptoanalysis, 464
Cryptosystem, 455, 460, 461, 463, 464, 467
CTL, see Charge Trapping Layer (CTL)
Current consumption, 157
Cyclic code, 370, 374
Cyclic Redundancy Check (CRC), 18, 19, 32,

219, 220, 404

D
Daemen, J., 472
Data buffer, 190
Data center, 1, 25, 29–31, 33, 37, 40, 41, 240,

267
Data eviction, 194

Data fragmentation, 91, 94, 100
Data integrity, 8, 32, 467, 469, 470
Data link layer, 17–19
Datapath, 137–140
Data sensor, 52
Data strobe signal (DQS), 8, 144, 145
DC-DC converter, 2, 174, 175
DCO, see Digital Controlled Oscillator (DCO)
Decoder, 135, 136, 141, 176, 178, 184–188,

276, 291–293, 295–300, 304, 325, 375,
381, 398, 401–404, 409, 414, 417, 418,
421, 423, 425, 433, 436–439, 444, 445,
447, 450, 451

Degaussian, 455, 456
Density evolution, 423, 441
Detection, 12, 35, 152, 244, 269, 325, 369,

374, 381, 396, 398, 401
Detection capability, 212, 371
Diffusion, 108, 129, 221, 473
Digest, 468, 469, 471
Digital signatures, 458
DIMM, 47
Discrete capacitors, 220, 221
Distinguishing algorithm, 464
Disturbs, 11, 74, 118, 128, 152, 167, 183, 184,

211, 283
Double Data Rate (DDR) interface, 144
Double Data Rate (DDR) memory, 144
Double patterning, 91, 92
Double-supply voltage regulator, 175, 177
Downstream (DP), 15–17, 139, 141
DP, see Downstream (DP)
DQS, see Data Strobe Signal (DQS)
Drain, 65, 66, 89, 114, 118, 119, 121, 123, 128,

176, 212, 254, 256, 310, 415
DRAM, 20, 43, 44, 47, 91, 144, 190, 193–195,

197, 198, 206, 218, 219, 236, 239, 244,
245, 314–327

Dual-pool, 343, 346, 352–354, 356–359,
362–366

Dual port, 34, 35
Dynamic wear leveling, 11, 215

E
ECCs, see Error Correcting Codes (ECCs)
Electrical IPD thickness (EOT), 70, 81, 83, 84,

87, 97
Electrical physical layer, 18
Elias, P., 370
Embedded microcontroller, 135
Encoder, 184, 185, 376, 398, 420
Encryption, 455–464, 467, 468, 471, 476
EndPoints, 15–17

480 Index

Endurance, 11, 31–33, 39, 41, 52, 53, 79, 98,
105, 183, 184, 187, 188, 193, 206,
209–211, 213, 215, 221–227, 229, 230,
248, 250, 260, 275, 283, 288, 313, 343,
344, 346, 360, 365, 366

Endurance stress, 210, 223, 225–227, 229, 230
Enigma, 458, 459, 466, 467
Enterprise, 1, 15, 19–23, 26, 29–37, 39–41, 52,

183, 195, 197, 207, 219–223, 225, 240,
401, 455

Enterprise SSD, 31, 33, 34, 229
Entropy of random variables, 407
Enumeration process, 16, 17
EOT, see Electrical IPD thickness (EOT)
EPROM, see Erasable Programmable Read

Only Memory (EPROM)
Erasable Programmable Read Only Memory

(EPROM), 3
Erase-history table, 363
Erase saturation, 71, 81, 82, 95, 99
Error Correcting Codes (ECCs), 184, 205, 344
Error floor, 424, 425
Error locator polynomial, 184, 375, 377–380,

399
Error prediction LDPC, 402, 403
Error reduction pulse, 183
Evenness-aware, 343, 346, 350–352, 365
Even page (BLe), 6
Extension, 25, 373, 382, 383, 388, 389, 391,

443, 444
External NAND, 45

F
Factorization, 461, 463, 467
FAT, see File Allocation Table (FAT)
FeRAM, 46
FFR, see Functional Failure Requirement

(FFR)
FFS, see Flash File System (FFS)
FG, see Floating Gate (FG)
Fiber Channel (FC)
File Allocation Table (FAT), 10, 360
Filesystem, 44
Firmware Transaction Layer (FTL), 457
Flash cache, 22
Flash channel, 13, 145, 146
Flash controller, 1, 9, 23, 24, 55, 135, 200, 457,

476
Flash File System (FFS), 10
Flash management, 24, 31, 33, 39, 345–347,

352
Flash Transaction Layer (FTL), 10, 182, 183,

190, 196–201, 215, 216, 219, 346, 360,
361, 457

Floating Gate (FG), 3, 62–66, 68–72, 74–85,
87–89, 93–96, 98–100, 106, 115,
117–121, 123–127, 207, 208, 210–212,
233, 234, 251, 254, 255, 264, 309, 310

Floating gate NAND, 61–64, 68, 76, 79, 81,
82, 88, 90, 94, 117

Floorplan, 125, 135, 136
Form factor, 20, 21, 37, 234
Fowler-Nordheim tunneling, 67, 68, 86, 95,

168, 415
Frequency analysis, 465, 466
FTL, see Firmware Transaction Layer (FTL)
Functional Failure Requirement (FFR),

222–224, 229, 230

G
Gallager, R.G., 370, 419, 437
Gallager B decoding, 441
Garbage collection, 1, 10–12, 44, 56, 190, 196,

197, 241–243, 249, 250, 285, 289, 344,
346–349, 352, 353, 355, 356, 359–361,
365

Generator matrix, 290, 295, 300, 371
Global deduction, 464
Global Wordlines (GWLs), 176
GWLs, see Global wordlines (GWLs)

H
Hamming, R., 369
Hamming distance, 252, 290, 371, 402, 414
Hard-decision decoding, 213, 417, 450, 451
Hard Disk Drive (HDD), 38, 43–45, 47, 48, 50,

51, 196, 205, 206, 223, 455–457, 476
Hash function, 467–471
HDD, see Hard Disk Drive (HDD)
HDD reliability, 206
High speed, 144, 150
High voltage management, 135, 171
High voltage PMOS, 176
Hocquengheim, A., 370
Host data transfer, 31
Hot-cold swapping, 345
Hot data, 52, 53, 284, 343, 346, 347, 350, 351,

353, 356
Hot plug, 35, 36
Hot pool, 343, 346, 354–357, 359, 363
Hot Pool Adjustment (HPA), 356, 357
HPA, see Hot Pool Adjustment (HPA)
HPC, see High Performance Computing (HPC)
Hybrid SSD, 51, 53, 55

Index 481

I
I/O, 13, 21, 23, 25, 45, 50, 68, 95–97, 137,

139, 141, 144–147, 150, 152, 153, 155,
192, 194, 197–200, 234, 238–240, 242

I/O operations per second (IOPS), 3, 6, 8,
11–13, 19, 21, 23, 25, 32, 38, 39, 45, 50,
72, 92, 94, 108, 125, 137, 139, 141,
144–147, 150, 152–155, 159, 163, 171,
174, 176, 183, 184, 186, 188–194,
197–200, 206, 207, 210–213, 217, 220,
343, 344, 346–348, 350–352, 356,
359–361, 365, 369, 371–374, 376–383,
385, 386, 389, 407, 409–411, 413,
415–420, 422, 424–429, 432, 434, 435,
438, 439, 442, 443, 451, 462, 464, 466,
472, 473

Incremental Step Pulse Programming (ISPP)
algorithm, 67–70, 72, 74, 81, 84, 95, 99,
165, 166, 170, 255

Indicator, 466, 467
Information deduction, 464
Instance deduction, 464
Integrity, 32, 144, 151, 153, 470
Interleaved architecture, 6, 14, 160
Interleaving, 6, 13, 52, 158–160, 255
IPD layer, 68, 69, 81
ISPP, see Incremental step pulse programming

(ISPP) algorithm

K
Kang, D., 62
Kasiski method, 466
Key, 34, 41, 47, 65, 120, 124, 151, 183, 199,

243, 268, 272, 273, 275, 277, 280, 284,
303, 318, 326, 345, 365, 374, 398, 401,
458, 459, 461–466, 470–473, 476

Key generator, 472, 473, 476
Kim, H.J., 345
Krawtchouk polynomial, 386

L
Lane, 15, 16, 18, 21
LBF, see Line-by-fill (LBF)
LBS, see Line-by-spacer (LBS)
LDPC, see Low-density Parity-check (LDPC)

codes
Leakage current, 77, 78, 85, 129, 256
Least Significant Bit (LSB), 6, 169, 170, 252
Legacy flash memory, 23
Legacy NAND, 144
Likelihood Ratio (LR), 425–428, 430–432
Line-by-fill (LBF), 92–94
Line-by-spacer (LBS), 92–94
Logical block, 6, 10, 194, 344, 360, 361, 364

Logical page, 6, 302
Logical physical layer, 18
Logical segment, 360, 362
Low-Density Parity-Check (LDPC) codes, 13,

184–187, 212–214, 289, 293, 369, 370,
401–404, 407, 414, 419–426, 429, 430,
433, 437, 439–446, 448–451

LR, see Likelihood Ratio (LR)
LRU, 51, 53, 193, 194
LSB, see Least Significant Bit (LSB)

M
MacWilliams equality, 372
MacWilliams, F.J., 372
Matrix ip-well, 167, 168
Mechanical reliability, 39, 66
Memory controller, 8, 9, 11–13, 16, 47, 143,

183, 233, 321, 325
Message Authentication Code (MAC), 458,

470
Miscorrection probability, 381, 404
MixColumns, 473
MLC, see Multi-level cells (MLC)
MLC channel model, 415, 418, 445
Most-Recently-Used (MRU) algorithm, 355
Most Significant Bit (MSB), 6, 170, 252
MRAM, 43, 197, 326
MSB, see Most Significant Bit (MSB)
Multi-channel, 13, 21, 369, 398, 401
Multi-core system, 25
Multi-Level Cells (MLC), 4, 6, 11, 43, 51–53,

71, 72, 75, 84, 85, 90, 95–97, 129, 156,
169, 170, 183, 208, 210, 215, 217, 220,
233, 234, 251, 253, 295, 343, 344,
350–352, 415, 418, 419, 445

Multi-thread, 32
Mutual information, 304, 407, 408, 410, 417,

419

N
NAND channel, 2, 3, 5, 7, 13, 72, 74, 89, 112,

121, 144, 167, 198, 424
NAND flash, 3, 4, 6–8, 12, 21, 39, 41, 43, 47,

48, 51, 52, 55, 61, 62, 71, 75, 76, 79, 83,
85, 87, 88, 90, 91, 96, 98, 100, 105, 106,
111, 113, 117–122, 125, 126, 129, 135,
136, 166, 177, 178, 181–188, 190–193,
195–201, 205–221, 233–237, 239, 241,
245, 251, 252, 254, 255, 257–261, 263,
264, 266, 267, 270, 272, 275, 278, 280,
283, 286, 288, 291, 297, 300, 308–315,
319, 327, 328, 344, 360, 363, 369, 415,
424, 430, 437, 456, 475, 476

NAND interface, 6, 144

482 Index

NAND on motherboard, 47
NMOS transistors, 152, 172
Non-repudiation, 470
Non-transparent bridging (NTB), 17, 18
Non Volatile Memory (NVM), 3, 24
Non-volatile RAM, 2, 197
NOR memories, 3, 61, 95
NTB, see Non-Transparent Bridging (NTB)
NVM, see Non Volatile Memory (NVM)

O
OCD, see Off Chip Driver (OCD)
Odd page (BLO), 6
Off Chip Driver (OCD), 146, 150, 150–152
One-time pad, 461, 462
One-way function, 463
ONFI, see Open NAND flash interface (ONFI)
ONFI interface, 47, 144
ONO layer, 68, 70
Open-drain, 151
Open NAND Flash Interface (ONFI), 7, 8, 144,

145
Operating System (OS), 24, 48, 55, 196,

199–201
Optical litho gap, 91
OS, see Operating system (OS)
Over-programming, 208
Overprovisioning, 248, 250, 285–288

P
Paired storage computer, 47
Parallel BCH, 15, 34, 155, 184, 369, 398
Parity, 13, 184, 212, 217–220, 237, 244–247,

250, 290–292, 294–296, 300, 302–305,
370, 371, 373–375, 404, 419, 420, 427,
431, 443

Parity-check matrix, 419, 423, 428, 433,
442–444, 446, 449

Pass disturb, 73–76, 86, 167
Passtransistor (PT), 176, 177, 371
Pass window, 75
Pattern-based PDC (PB-PDC), 50
p-BICS, see Pipe-shaped bit cost scalable

(p-BICS)
PB-PDC, see Pattern-based PDC (PB-PDC)
PCB, 2, 152
PCI, 1, 2, 14–16, 183, 187, 188, 198, 199, 201,

398
PCI express (PCIe), 1, 9, 15, 16, 18, 21, 23, 25,

26, 195
switch, 16

PCI-PCI Bridges, 16
PDC, see Popular Data Concentration (PDC)

Peterson estimation, 383, 396, 397
Physical destruction, 456
Physical segment, 360–362, 364
Pinheiro, E., 50
Plaintext, 459, 461–466, 468, 473
Popular Data Concentration (PDC), 50
Power consumption, 14, 19, 31, 43, 49, 106,

115, 145, 159, 167, 174, 183, 184, 196,
317, 344

Power failure, 220
Power failure protection, 220
Preconditioning, 39
Preimage resistance, 469
Program counter, 141
Program disturb, 48, 73, 115, 128, 129, 167,

170, 211
Program enable signal, 6, 147, 177
Program inhibit, 72, 74, 86, 167
Program pulse, 67, 68, 72, 115, 170, 175
Program saturation, 69–71, 94–96, 100
Provable security, 461
Public-key cryptosystem, 462, 463
Pushpull, 147
PVG, see Program Voltage Generator (PVG)

Q
Quadruple Patterning (QP), 94
Quasi-Cyclic LDPC (QCLDPC), 420
Queue-Head table (QH table), 363

R
Random Access Memories (RAM), 3, 16, 24,

141, 142, 327, 345, 347, 348, 360,
362–366, 476

Random Telegraph Noise (RTN), 88–90, 100,
105, 210

Raw Bit Error Rate (RBER), 183, 186–188,
206, 209–213, 215, 216, 228, 245, 287,
305

Ray-Chaudhuri, D.K., 472
Rcon operation, 472
Read disturb, 48, 76, 170, 190, 193, 209, 211,

215, 257, 261, 266, 267, 274, 275, 277,
282, 283, 288, 289, 307, 308, 313, 314,
319–321, 326, 327

Read Only Memories (ROM), 3, 141, 142
Readyboost, 45
Ready/busy signal, 7, 84, 144, 200, 355, 364
Readydrive, 49
Recent erase-cycle count, 354, 356–359, 362,

363
Redundancy, 33, 136, 137

Index 483

Redundant Array of Independent Disks
(RAID), 23, 206, 207, 217, 218

Reed, I.S., 12, 370
Replacement algorithm, 50
ReRAM, 43
Resetting interval, 347–352
Retention, 8, 48, 52, 72, 77, 79, 96, 97, 105,

110, 115, 121, 183, 206, 209, 210, 221,
225, 227–229

stress, 223
time, 223

Rijmen, V., 472
Rijndael, 472
Rivest, R.L., 463
Root complex, 15–17
Rotate operation, 472
Rotational latency, 20, 38
RSA, 461, 463, 467

S
Sample Size (SS), 223, 224
Sanitation, 456
SAS, 9, 20–24, 29, 33–41, 52, 183, 195
SAS expander, 34
SATA, 9, 20–24, 29, 33–41, 52, 182, 183, 195,

398, 456
S-box, 472, 473
SCSI, 20, 34, 36, 38
SCSI express, 33, 34, 38, 457
Second preimage resistance, 469
Sector size, 47, 75, 206, 217, 218, 225, 361,

456
Secure erase, 456, 457, 475
Seek latency, 38
Self-Aligned Double Patterning (SADP),

91–94
Self-Aligned STI (SASTI), 93
Self boost, 167
Self-Boosted Program Inhibit (SBPI), 72–74
Sense amplifier, 84, 85, 156, 160, 161, 254,

311
Sequential read, 20
Serial ATA Tunneled Protocol (SATP), 36
Shannon, C., 408
Shannon, E.C., 369
Shannon limit, 13, 293, 407, 413, 414, 419,

421, 441, 450, 451
ShiftRows, 473
Shortening, 373
SILC, see Stress Induced Leakage Current

(SILC)
Simultaneous Switching Noise (SSN), 147,

149, 150

Single Data Rate (SDR), 145, 150
Single-Level Cells (SLC), 4, 6, 11, 43, 51–53,

71, 72, 76, 156, 169, 182, 184, 208, 234,
251, 344, 410, 415–418, 445, 449–451

SLC channel model, 410, 415, 418
Slew rate, 148, 150–152
Soft decoding, 185, 205, 282, 295, 300,

303–306, 402
Solomon, G., 12, 370
Source, 4, 61, 64–66, 74, 75, 90, 106, 108, 110,

112, 114, 118, 119, 121, 123, 125, 153,
155, 158, 159, 220, 236, 251, 256, 263,
267, 270, 281, 289, 310, 313, 314, 408,
470

Source line, 4, 61, 75, 106, 110, 125, 159
capacitance, 65, 74, 83, 119, 145, 146, 172,

221
program, 75, 113

SRAM, 47, 91, 144
SSD form factor, 1, 20, 33, 37
SSD interface, 20
SSD performance(s), 21, 39, 43, 194, 195, 198
SSD power consumption, 14
Static wear leveling, 11, 215, 345, 346,

348–352
Storage Class Memories (SCM), 43
Storage management, 47, 51
Stress Induced Leakage Current (SILC), 77, 78,

210, 211, 264, 265
Stress methods, 223
SubBytes, 473, 474
Supercapacitors, 197, 221
SWL-BETUpdate, 348–350
SW Leveler, 346–348
SWL-Procedure, 348–351
Symmetric encryption, 462, 470, 471
Syndrome, 184, 291–293, 376–378, 399, 400,

442, 443
Systematic code, 371
Sze, S.M., 62

T
Tanner graph, 295, 296, 419–422, 424, 429,

431, 441, 443, 446
TANOS, 95–98
Temp sensor, 3
Terabit Cell Array Transistor (TCAT)

technology, 112
Testing, 12, 31, 137, 141, 206, 221–223, 225,

226, 246, 258, 282, 324, 381
Test Interface (TI), 137–139
Testmode, 136, 138–140
Test of primality, 464

484 Index

The NVM express (NVMe), 1, 24–26, 33
The sense amplifier, 153, 157, 254, 311
3D memory cell integration, 125
Threshold voltage, 3, 63, 66–71, 74, 76, 78, 83,

84, 86–88, 90, 153, 156, 157, 164, 165,
177, 184, 185, 207–211, 217, 234,
251–262, 264–267, 272, 273, 275, 276,
278, 279, 281, 282, 285, 288, 297, 298,
304, 307–310, 313, 415–419

Through Silicon Vias (TSV), 146
Toggle mode, 144
Total break, 464
TOX field, 66, 68, 100
Transaction Layer Package (TLP), 17–19
Trap Assisted Tunneling (TAT), 210, 211, 264,

265
Trapping set, 424, 425
TSOP package, 7
TSV-integrated SSD, 205
Tunnel dielectric, 66, 67, 95
Tunnel Oxide (TOX), 64–70, 77–79, 81, 83,

84, 87–89, 95, 98–100

U
Unconditional security, 461, 463
Uncorrectable Bit Error Rate (UBER), 206,

207, 212, 222–225, 229, 230, 305
Unevenness level, 348, 349, 351

Upstream (UP), 15–17, 139, 141
Usermode, 138, 139
Usertestmode, 138, 139
Utilization limiter, 52

V
Vertical-stacked-array-transistor (VSAT), 112
Video-on-demand (VOD), 171–174
Voltage doubler, 171–174
Voltage regulator(s), 135, 136, 164, 174, 175
VTH window, 79, 170

W
Wear-leveling, 39, 56, 345, 354, 364, 366
Weight distribution, 372, 373, 382, 383, 385,

388
Weighted probability, 381
Wordline, 105, 113, 115, 129, 135, 136, 158,

159, 166–168, 176, 178, 220, 252, 254,
255, 261–263, 266, 271–273, 275, 276,
288, 325

Wordline decoder, 176
Write Amplification Factor (WAF), 43, 56, 190

X
XLC, 85, 87, 169, 170
XTS-AES, 471, 476

Index 485

	Foreword
	Error Correcting Coding for Solid State Disk Data Storage

	Preface to the Second Edition
	Preface to the First Edition
	Acknowledgements
	Contents
	Editors and Contributors
	1 SSD Architecture and PCI Express Interface
	Abstract
	1.1 Introduction
	1.2 SSD Architecture
	1.3 Non-volatile Memories
	1.4 NAND Flash
	1.4.1 NAND Array
	1.4.2 NAND Interface

	1.5 Memory Controller
	1.5.1 Wear Leveling
	1.5.2 Garbage Collection
	1.5.3 Bad Block Management
	1.5.4 Error Correction Code (ECC)

	1.6 Multi-channel Architecture
	1.7 What Is PCIe?
	1.8 The Need for Storage Speed
	1.9 Why PCIe for SSD Interface?
	1.10 PCIe SSD Implementations
	1.11 NVM Express Driving Broader Adoption of PCIe SSDs
	References

	2 SAS and SATA SSDs
	Abstract
	2.1 Introduction
	2.2 Enterprise Versus Consumer SSDs
	2.3 SAS Versus SATA Protocol
	2.3.1 Connectivity and High Availability
	2.3.2 Form Factor and Capacity
	2.3.3 Performance

	2.4 What’s Ahead
	References

	3 Hybrid Storage Systems
	Abstract
	3.1 NAND Flash Memory and HDD
	3.2 External NAND + HDD
	3.3 NAND on Motherboard + HDD
	3.4 NAND/SSD + HDD
	3.5 Hybrid SSD
	3.6 Over-Provisioning
	References

	4 2D NAND Flash Technology
	Abstract
	4.1 Flash for SSD Application
	4.2 Introduction to Floating Gate NAND Operation
	4.2.1 The Floating Gate NAND Memory Structure
	4.2.2 The Floating Gate Cell Capacitive Coupling Model
	4.2.3 Program and Erase of a Single Floating Gate Cell
	4.2.4 Program, Erase, and Read of FG Cells in the NAND String
	4.2.4.1 NAND Cell Programming and Self-boosted Program Inhibit (SBPI)
	4.2.4.2 Erase and Read of FG Cells in the NAND String

	4.3 Reliability of Floating Gate NAND Memory Cells
	4.4 Scaling of Floating Gate NAND Memory Cells
	4.4.1 Scaling of the Floating Gate Cell Geometry
	4.4.2 Floating Gate Cell Cross-Coupling
	4.4.3 Word Line to Word Line Leakage Current
	4.4.4 Number of Stored Floating Gate Electrons
	4.4.5 Random Telegraph Noise

	4.5 Shrinking the Floating Gate NAND Technology Beyond the Direct Optical Lithography Limitation
	4.6 Planar NAND Memory Cells as Conventional Floating Gate Cell Replacement
	Acknowledgement
	References

	5 3D NAND Flash Memories
	5.1 3D Charge Trap NAND Flash Memories
	5.2 3D Floating Gate NAND Flash Memories
	5.3 Key Challenges for 3D Flash Development
	5.3.1 Number of Layers
	5.3.2 Peripheral Circuits Under Memory Arrays
	5.3.3 Data Retention
	5.3.4 3D Program Disturb

	5.4 Future Trend for 3D NAND Flash
	References

	6 NAND Flash Design
	Abstract
	6.1 NAND Flash Memories
	6.2 Logic Device View
	6.2.1 Command Interface
	6.2.2 Test Interface
	6.2.3 Datapath
	6.2.4 Microcontroller

	6.3 NAND DDR Interface
	6.3.1 DDR Interface
	6.3.2 Power
	6.3.3 Capacity

	6.4 I/O Design
	6.4.1 Basic CMOS Output Buffer Design
	6.4.2 Simultaneous Switching Noise (SSN)
	6.4.3 High Speed NAND I/O Design
	6.4.4 Double Data Rate OCD
	6.4.4.1 OCD Linearity: Push-Pull and Open-Drain Configurations
	6.4.4.2 Slew Rate Control and Bandwidth
	6.4.4.3 Voltage Domain Change: Level Shifting
	6.4.4.4 Jitter Sources and Duty Cycle Distortion

	6.5 Read Operation: The Sense Amplifier
	6.5.1 Interleaving Architecture
	6.5.2 All BitLine (ABL) Architecture
	6.5.3 Read Voltage with Thermal Tracking

	6.6 Program
	6.7 Erase
	6.8 MLC and XLC Storage
	6.9 High Voltage Management
	6.9.1 Charge Pumps
	6.9.2 Internal Supply Voltage Regulator
	6.9.3 Double-Supply Voltage Regulator

	6.10 Wordline Decoder
	References

	7 Memory Driven Design Methodologies for Optimal SSD Performance
	7.1 Introduction
	7.2 The Impact of ECC on SSD Performance
	7.3 SSD Controller Design
	7.3.1 Efficient Command Management
	7.3.2 DRAM Data Caching

	7.4 Criteria for Optimal Host Interface Selection
	7.5 Future Applications Opened by Hardware-Software Co-design for High-performance SSDs
	7.5.1 HB-FTL
	7.5.2 The Open-Channel Architecture

	References

	8 SSD Reliability Assessment and Improvement
	8.1 Introduction
	8.2 Common Terms in SSD Reliability: HDD Heritage
	8.3 NAND Flash Reliability: Intrinsic Failures
	8.3.1 Raw Bit Errors
	8.3.2 Reliability-Loss Mechanisms Affecting RBER
	8.3.3 Mitigating the Raw Bit Errors Through ECC
	8.3.4 Mitigating the Raw Bit Errors Through Firmware

	8.4 NAND Flash Reliability: Defects and Extrinsic Failures
	8.4.1 Mitigating Defects and Extrinsic Failures Through RAID

	8.5 SSD Reliability: Non-NAND Flash Failures
	8.5.1 SSD Controller, DRAM Errors, and Firmware Failures
	8.5.2 The Power-Loss Issue

	8.6 Assessing SSD Reliability Through Testing
	8.6.1 SSD Endurance and Retention Rating
	8.6.2 Endurance and Retention Stress Methods
	8.6.3 Direct Method
	8.6.3.1 Sample Size
	8.6.3.2 Endurance Stress
	8.6.3.3 Retention Stress

	8.6.4 Extrapolation Method
	8.6.4.1 Extrapolation of FFR and Bad-Block Trends
	8.6.4.2 FFR and UBER Estimation from Reduced-Capacity SSDs

	References

	9 Reliability Issues in Flash-Memory-Based Solid-State Drives: Experimental Analysis, Mitigation, Recovery
	9.1 State-of-the-Art SSD Architecture
	9.1.1 Flash Memory Organization
	9.1.2 Memory Channel
	9.1.3 SSD Controller
	9.1.4 Design Tradeoffs for Reliability

	9.2 NAND Flash Memory Basics
	9.2.1 Storing Data in a Flash Cell
	9.2.2 Flash Block Design
	9.2.3 Read Operation
	9.2.4 Program and Erase Operations

	9.3 NAND Flash Error Characterization
	9.3.1 P/E Cycling Errors
	9.3.2 Program Errors
	9.3.3 Cell-to-Cell Program Interference Errors
	9.3.4 Data Retention Errors
	9.3.5 Read Disturb Errors
	9.3.6 Large-Scale Studies on SSD Errors

	9.4 Error Mitigation
	9.4.1 Shadow Program Sequencing
	9.4.2 Neighbor-Cell Assisted Error Correction
	9.4.3 Refresh Mechanisms
	9.4.4 Read-Retry
	9.4.5 Voltage Optimization
	9.4.6 Hot Data Management
	9.4.7 Adaptive Error Mitigation Mechanisms

	9.5 Error Correction and Data Recovery Techniques
	9.5.1 Error-Correcting Codes Used in SSDs
	9.5.2 Error Correction Flow
	9.5.3 BCH and LDPC Error Correction Strength
	9.5.4 SSD Data Recovery

	9.6 Emerging Reliability Issues for 3D NAND Flash Memory
	9.6.1 3D NAND Flash Design and Operation
	9.6.2 Errors in 3D NAND Flash Memory
	9.6.3 Changes in Error Mitigation for 3D NAND Flash Memory

	9.7 Similar Errors in Other Memory Technologies
	9.7.1 Cell-to-Cell Interference Errors in DRAM
	9.7.2 Data Retention Errors in DRAM
	9.7.3 Read Disturb Errors in DRAM
	9.7.4 Large-Scale DRAM Error Studies
	9.7.5 Latency-Related Errors in DRAM
	9.7.6 Error Correction in DRAM
	9.7.7 Errors in Emerging Nonvolatile Memory Technologies

	9.8 Conclusion
	References

	10 Efficient Wear Leveling in NAND Flash Memory
	Abstract
	10.1 Introduction
	10.2 Evenness-Aware Algorithm
	10.2.1 Algorithm Design
	10.2.1.1 Overview
	10.2.1.2 Block Erasing Table
	10.2.1.3 SW Leveler

	10.2.2 Worst-Case Analysis
	10.2.2.1 Worst-Case Model for Extra Overheads
	10.2.2.2 Extra Block Erases
	10.2.2.3 Extra Live-Page Copyings

	10.3 Dual-Pool Algorithm
	10.3.1 Algorithm Design
	10.3.1.1 Algorithm Concept
	10.3.1.2 The Dual-Pool Algorithm: A Basic Form
	10.3.1.3 Pool Adjustment
	10.3.1.4 Algorithm Demonstration

	10.3.2 Case Study: An SSD Implementation of the Dual-Pool Algorithm
	10.3.2.1 The Firmware and Disk Emulation
	10.3.2.2 Block-Wearing Information and Priority Queues
	10.3.2.3 Segment Check-In/Check-Out

	10.4 Conclusion
	References

	11 BCH Codes for Solid-State-Drives
	Abstract
	11.1 Error Correction Codes Basic Definitions
	11.2 BCH Codes
	11.3 BCH Decoding Failures
	11.4 Detection Properties
	11.5 BCH Weight Estimation
	11.6 BCH Weight Estimation: Real Cases Analysis
	11.6.1 BCH[255,207,13]
	11.6.2 BCH[1023,993,7]
	11.6.3 BCH[4095,3975,21]
	11.6.4 BCH[16383,15851,77]

	11.7 BCH Detection Conclusion
	11.8 Multi-channel BCH
	11.9 LDPC False Correction
	References

	12 Low-Density Parity-Check (LDPC) Codes
	Abstract
	12.1 Shannon Limit
	12.1.1 Entropy and Mutual Information
	12.1.2 System Model and Channel Capacity
	12.1.3 The Channel Coding Theorem

	12.2 Maximum a Posteriori and Maximum Likelihood Decoding of Linear Block Codes
	12.3 NAND Flash Memory Channel Model
	12.3.1 SLC Channel Model
	12.3.2 MLC Channel Model

	12.4 Low-Density Parity-Check Codes
	12.4.1 LDPC Code Ensembles
	12.4.2 QC-LDPC Codes Construction
	12.4.3 Error Floor

	12.5 Belief Propagation (BP) Decoding of LDPC Codes
	12.5.1 Introduction
	12.5.2 Preliminaries
	12.5.3 Algorithm Description
	12.5.3.1 Overview
	12.5.3.2 Initialization
	12.5.3.3 Horizontal Step
	12.5.3.4 Vertical Step
	12.5.3.5 Hard Decision and Stopping Criterion

	12.5.4 Log-Domain BP Decoder

	12.6 Reduced-Complexity Decoders
	12.6.1 Min-Sum Decoder
	12.6.2 Gallager B Decoder
	12.6.3 Flipping Algorithms

	12.7 Non-binary LDPC Codes
	12.7.1 NB-LDPC Code Ensembles
	12.7.2 Iterative Decoding of NB-LDPC Codes
	12.7.2.1 Initialization
	12.7.2.2 Message Permutation
	12.7.2.3 Horizontal Step
	12.7.2.4 Message De-permutation
	12.7.2.5 Vertical Step
	12.7.2.6 Hard Decision and Stopping Criterion

	12.8 Numerical Example
	Acknowledgements
	References

	13 Protecting SSD Data Against Attacks
	Abstract
	13.1 Challenges of SSD Security Versus HDD
	13.2 Introduction to Cryptography
	13.2.1 Basic Concepts
	13.2.2 Cryptanalysis
	13.2.3 Hash Functions

	13.3 AES
	13.3.1 Key Generator
	13.3.2 AES Algorithm Core

	13.4 SSD Security and Applications
	References

	Index

