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Abstract
In response to DNA double strand breaks 
(DSB), mammalian cells activate the DNA 
Damage Response (DDR), a network of fac-
tors that coordinate their detection, signaling 
and repair. Central to this network is the ATM 
kinase and its substrates at chromatin sur-
rounding DSBs H2AX, MDC1 and 53BP1. In 
humans, germline inactivation of ATM causes 
Ataxia Telangiectasia (A-T), an autosomal 
recessive syndrome of increased proneness to 
hematological malignancies driven by clonal 
chromosomal translocations. Studies of can-
cers arising in A-T patients and in genetically 
engineered mouse models (GEMM) deficient 
for ATM and its substrates have revealed com-
plex, multilayered roles for ATM in transloca-
tion suppression and identified functional 
redundancies between ATM and its substrates 
in this context. “Programmed” DSBs at anti-
gen receptor loci in developing lymphocytes 
employ ubiquitous DDR factors for signaling 
and repair and have been particularly useful 
for mechanistic studies because they are 
region-specific and can be monitored in vitro 
and in vivo. In this context, murine thymo-

cytes deficient for ATM recapitulate the 
molecular events that lead to transformation in 
T cells from A-T patients and provide a widely 
used model to study the mechanisms that sup-
press RAG recombinase-dependent transloca-
tions. Similarly, analyses of the fate of 
Activation induced Cytidine Deaminase 
(AID)-dependent DSBs during mature B cell 
Class Switch Recombination (CSR) have 
defined the genetic requirements for end-
joining and translocation suppression in this 
setting. Moreover, a unique role for 53BP1 in 
the promotion of synapsis of distant DSBs has 
emerged from these studies.
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6.1	 �The DNA Damage Response 
(DDR) at Sites of Double-
Strand Breaks (DSBs)

6.1.1	 �Overview: ATM Orchestrates 
the DDR in Mammalian Cells

DNA DSBs represent the most deleterious DNA 
lesion; failure to repair them may lead to genomic 
instability and cell death or senescence [45]. At 
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the organismal level, defective DSB repair trans-
lates into tissue dysfunction and premature aging 
and promotes tumorigenesis [45]. To prevent 
these outcomes, mammalian cells have evolved 
the DDR, a rapid set of responses that coordi-
nates the assembly of repair complexes at the 
break with the activation of cell cycle check-
points and the transcriptional networks that ulti-
mately mediate cellular outcomes [153]. 
Moreover, it is becoming apparent that the DDR 
is not limited to the nucleus but rather coordi-
nates the nuclear and cytoplasmic responses to 
DNA damage [62].

This rapid and widespread response is made 
possible by coordinated posttranslational modifi-
cations of DNA repair factors and histones at the 
break site, including phosphorylation, ubiquitina-
tion, SUMOylation, PARylation and others [15, 
16, 29, 85, 126, 127, 182, 192]. In the context of 
phosphorylation, the DDR is regulated by three 
highly related PI3 kinase-like kinases (PI3KKs): 
Ataxia Telangiectasia Mutated (ATM), Ataxia-
telangiectasia and RAD3 Related protein (ATR) 
and the catalytic subunit of the DNA protein 
kinase (DNA-PKcs) [108]. All three factors are 
activated in response to DSBs and phosphorylate 
hundreds of substrates at target SQ/TQ motifs 
[112], often in a redundant manner [159, 174]. 
Their activity is regulated by multiple mecha-
nisms, including the cell cycle [83] and their 
mutual interactions [119, 193] and ultimately 
promotes repair and suppresses chromosomal 
translocations. In this Chapter, we will focus on 
key roles for the ATM kinase and its substrates in 
translocation suppression. Please see Fig. 6.1 for 
introductory schematic of ATM domains and its 
main regulatory functions at sites of DSBs.

6.1.2	 �General Mechanisms 
of Translocation Suppression 
by the DDR

DSBs threaten genomic integrity because their 
repair may introduce mutations at the break site 
and/or proceed aberrantly to generate chromo-
somal rearrangements. Indeed, genome-wide 

mapping of chromosomal translocations arising 
in primary mouse B lymphocytes harboring 
traceable DSBs revealed that translocation for-
mation is enhanced by proximity [44, 93], favor-
ing intrachromosomal rearrangements and 
resulting in frequent deletions in cis [44, 93]. 
Although most of these translocations likely have 
no consequence to cellular functions, rare events 
may disable anti-cancer mechanisms via inacti-
vation or overexpression of anti- or pro-oncogenic 
factors, respectively [64, 135]. Therefore, a key 
function of the DDR is to suppress pathogenic 
clonal translocations by promoting the rejoining 
of DNA ends across the break.

In mammalian cells, DSB rejoining is medi-
ated via either Homologous Recombination (HR), 
an error-free pathway active in the replicative 
phases of the cell cycle [87, 134] or 
NonHomologous End-Joining (NHEJ), a versa-
tile, ligase IV-dependent pathway that re-ligates 
broken DNA ends across the cell cycle using no 
homology or micro-homologies [21, 102]. In 
addition to the canonical NHEJ pathway, cancer 
cells may activate a back-up or alternative NHEJ 
pathway that rather employs ligase I/III and may 
repair persistent breaks with slower kinetics [41]. 
Regardless of the repair pathway used, DSB 
repair is slow (minutes to hours) and necessitates 
a strategy to prevent DNA end dissociation prior 
to ligation. This end tethering function is provided 
by the DDR in conjunction with repair factors. 
The complex formed by MRE11, RAD50 and 
NBS1 (MRN) ubiquitously binds to broken DNA 
ends and plays key roles in their sensing and pro-
cessing throughout the cell cycle [164]. 
Specifically, the hook domains at the apex of two 
RAD50 coiled coil domains dimerize to bridge 
two DNA molecules bound by the RAD50 globu-
lar heads [78] and this function is facilitated by 
MRE11 dimerization [178]. Indirectly, the endo-
nuclease activity of MRE11 initiates end-resection 
and activates the ATM kinase [129], a main 
orchestrator of the DDR [112]. This role for MRN 
in DNA end alignment and bridging is highly con-
served and occurs in different chromatin contexts, 
including canonical and alternative NHEJ [50, 
180] and programmed breaks generated during 

R. Ghosh et al.



67

V(D)J recombination [74] and Class Switch 
Recombination (CSR; see below) [54].

ATM, together with DNA-PKcs and ATR, 
phosphorylates the amino-terminal tail of histone 
H2AX at Ser139 to form γ-H2AX [142]. This 
modification spreads both sides of the break and 
anchors MDC1 [107] to form a platform for the 
recruitment of BRCA1, 53BP1 and their effec-
tors [14]. These multiprotein complexes, detected 
as “foci” by standard immunocytochemistry 
assays, may themselves function as “glue” to 
suppress DNA end dissociation [11, 186, 191]. In 

addition to DDR factors, components of the 
NHEJ pathway have also been implicated in the 
formation of the synaptic complex via different 
mechanisms [28, 68, 157], and their absence 
eventually results in DNA end dissociation [30, 
103]. Therefore, the DDR and the NHEJ pathway 
normally cooperate to maintain DNA ends 
aligned and tethered until ligated.

In addition to position, transcriptional status 
has emerged as a main determinant of transloca-
tion proneness. Indeed, unbiased genome-wide 
translocation sequencing in primary mouse cells 
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Fig. 6.1  ATM is a kinase with pleiotropic roles in the 
DNA Damage Response (DDR). (a) The carboxi-terminal 
domain of ATM contains 40–50 alpha-helical repeats that 
mediate interaction with the MRE11/RAD50/NBS1 
(MRN) complex. The carboxi-terminal domain contains a 
PI3 kinase-like kinase (PI3KK) domain that modifies 
S/T(Q) motifs in target proteins. The kinase domain is 
flanked by a FRAP-ATM-TRRAP (FAT) domain and a 
FAT carboxi-terminal (FACT) domain. ATM auto-
phosphorylates at Ser1981 upon induction of double 
strand breaks (DSB) and the modified protein is com-
monly used as a biomarker for DDR activation. (b) ATM 

regulates the DDR at multiple steps, including the rapid 
detection of break-induced alterations in chromosomal 
structure leading to auto-phosphorylation at Ser1981 and 
activation; the maintenance of DNA end tethering via 
modification of MRE11/RAD50/NBS1 complex; the 
recruitment of ubiquitin ligases via phosphorylation of 
H2AX and MDC1; and the competition between 53BP1 
and BRCA1 for DNA ends, a critical event during DSB 
repair pathway choice. ATM also phosphorylates many 
proteins in the nucleoplasm (such as p53) and outside the 
nucleus (no depicted)
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revealed that transcribed regions, and in particu-
lar active transcription start sites, are prone to 
translocations [44, 93]. Transcription results in 
the generation of R loops, short RNA-DNA 
hybrids that leave the nontemplate DNA strand 
exposed to mutagenic activities, such as oxida-
tive stress, cellular cytidine deaminases or others 
[147]. R loops are abundant in human cells [65] 
and, in some contexts, have been clearly shown 
to promote DNA DSBs and chromosomal trans-
locations [76, 82]. The best characterized exam-
ple is perhaps the promotion of chromosomal 
translocations between C-MYC and the immuno-
globulin heavy chain (IgH) locus, a hallmark of 
many B cell malignancies [140]. R loops form at 
the at the MYC locus [59] and at the S region of 
the immunoglobulin heavy chain [23, 188]. AID, 
a cytidine deaminase expressed in B cells, binds 
to and modifies these structures, leading to for-
mation of DNA DSBs and IgH-MYC transloca-
tions [59]. In support of a mechanistic role for R 
loops in this setting, loss of TOP3B, which 
relaxes negative supercoiling and increases R 
loop formation at the MYC promoter, also 
increases the frequency of Igh-Myc transloca-
tions in mice [183]. Moreover, AID induces 
translocations involving a heterologous S region 
and MYC in yeast THO mutants, known to accu-
mulate R loops [144]. Together, these data sug-
gest that the simultaneous formation of R loops 
in Ig and transcribed MYC (or other transcribed 
genes) may promote their translocations. Recent 
evidence indicates that many DDR and DNA 
repair factors may suppress chromosomal trans-
locations via direct modulation of R loop forma-
tion and dissolution ([20, 73]; reviewed in [162]). 
In this context, ATM, a suppressor of IgH-Myc 
translocations in vivo [135], also suppresses R 
loop formation in proliferating cells [184] and is 
activated by R loops at sites of UV-induced DNA 
damage [169]. Finally, emerging data implicates 
transcription-independent DSBs generated by 
topoisomerase 2B (TOP2B) at chromosome loop 
anchors as a cause of chromosomal fragility [36], 
another scenario where the DDR may function to 
limit translocations.

6.2	 �Mammalian Genetic Models 
to Study Roles for the DDR 
in Translocation Suppression

6.2.1	 �Genetically Engineered 
Mouse Models (GEMM) of DDR 
Deficiency

Mice with germline inactivation of DDR factors 
have provided valuable insights into their require-
ments in translocation suppression. Embryonic 
fibroblasts and B and T lymphocytes deficient for 
ATM [34, 64], histone H2AX [12, 40, 64], MDC1 
[107] or 53BP1 [64, 117] all accumulate chromo-
somal translocations. Mechanistically, these 
translocations are though to occur as a result of 
defective end-joining across the break leading to 
persistent breaks and end dissociation [11, 63]. In 
addition, DDR factors may play roles in the regu-
lation of pathway choice during translocation. 
For example, ATM and H2AX not only suppress 
translocations but also enhance fidelity at translo-
cation breakpoints by promoting rejoining via 
classical over alternative NHEJ [19]. Although 
all H2AX [31], MDC1 [81, 96, 109, 110] and 
53BP1 [42, 61] are ATM substrates in the DDR, 
their roles in translocation suppression are not 
fully epistatic with ATM. In this regard, cytoge-
netic analysis of primary B and T cells deficient 
for 53BP1 and ATM revealed increased fre-
quency of chromosomal breaks and transloca-
tions in double mutant primary cells associated to 
a greater defect in end-joining [146]. Similarly, 
combined deficiency for H2AX and ATM leads 
to a marked increase in the frequency of chromo-
somal breaks and translocations in embryonic 
fibroblasts [190] and in vitro cultured T cells 
[185]. However, mechanistic understanding of 
these interactions has mostly relied on the analy-
sis of translocations arising at loci undergoing 
programmed DSBs during lymphocyte develop-
ment, which can be traced in time and space. In 
Section 3 below, we discuss roles for ATM and its 
substrates in translocation suppression using 
RAG-dependent DSBs during V(D)J recombina-
tion as a model system. Furthermore, Section 4 
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summarizes our understanding on how the ATM 
network suppresses AID-dependent transloca-
tions during Class Switch Recombination (CSR).

6.2.2	 �Human Genetic Syndromes 
of DDR Deficiency: 
Ataxia-Telangiectasia

Mutations in H2AX, MDC1 or 53BP1 have not 
been observed in humans. In contrast, biallelic 
mutations in the ATM kinase result in the autoso-
mal recessive syndrome Ataxia-Telangiectasia 
(A-T; OMIM#208900). The ATM locus at human 
chromosome 11q22 contains 66 exons and 
encodes a 350 kDa protein with a C-terminal PI3 
kinase-like kinase (PI3KK) domain [149]. 
Mutations leading to A-T span the entire locus 
and most patients are compound heterozygous 
[167]. Approximately 85% of A-T patients har-
bor biallelic null mutations and display the most 
severe or “classical” form of the disease, includ-
ing neurodegeneration, immunodeficiency and 
increased cancer predisposition [22, 143]. 
Neurodegeneration is particularly severe in the 
cerebellum, with progressive loss of Purkinje 
cells (PC) and, to a lesser extent, granule cells 
(GCs) [25, 128, 173]. On average, ataxia first 
manifests in the toddler years and patients 
become wheelchair bound at a mean age of 8 
years [120]. Currently, the mechanisms leading 
to neurodegeneration remain unclear. In contrast, 
the phenotypes of immunodeficiency, gonadal 
atrophy, radiosensitivity, premature aging and 
cancer proneness are clearly related to ATM 
functions in DSB repair. In this regard, A-T pri-
mary cells show frequent chromosomal breaks 
and translocations [94, 95]. Moreover, acceler-
ated telomere shortening [114, 125, 155, 170, 
179], defective response to oxidative stress [70] 
and other phenotypes may cooperate with defec-
tive DSB repair to augment genomic instability 
in A-T cells. Lymphocytes from A-T patients har-
bor chromosomal breaks and clonal transloca-
tions that mainly involve T [77, 92, 94] and B 
[32] cell receptor loci. These translocation are 
detected in the blood of many A-T patients years 
prior to the development of malignancy [165] 
and are discussed in detail in below.

6.3	 �The DDR Suppresses 
Chromosomal Translocations 
During V(D)J Recombination

6.3.1	 �Mechanisms of V(D)J 
Recombination

Adaptive immunity relies on the clonal expansion 
of B and T lymphocytes upon binding of their sur-
face receptors to specific antigens [48, 168]. The 
generation of both B and T cells involves the 
expression of the lymphocyte-specific RAG1/
RAG2 (RAG) endonuclease to introduce DSBs 
between V, D and J coding sequences and their 
flanking recombination signal sequences (RSS) at 
antigen receptor loci, followed by deletional or 
inversional recombination [151]. To prevent 
genomic instability, this process is initiated and 
completed during the G1 phase of the cell cycle 
[88, 152]. In the bone marrow, B lineage cells suc-
cessively rearrange their V to D gene segments in 
the variable region of the immunoglobulin heavy 
chain (IgH) and light chain (IgL) loci to form 
pre-B cells [106]. Additional rearrangement of D 
to J gene segments yields mature B cells that 
express the B cell receptor (BCR) and exit the bone 
marrow to colonize the spleen and lymph nodes 
[106] (diagrammed in Fig. 6.2). Similarly, devel-
oping T cells in the thymus sequentially rearrange 
V, D and J gene segments to generate T cell recep-
tors TCRα, TCRβ, TCRγ and TCRδ. TCRβ, TCRγ 
and TCRδ variable region exons are assembled 
first, at the CD4-/CD8- (“double negative”) stage. 
Productive VδDδJδ and VγJγ rearrangements gen-
erate TCRδ and TCRγ chains, respectively, which 
assemble in the surface to form the TCRγδ recep-
tor and induce differentiation along this lineage 
[18]. Alternatively, a productive VβDβJβ rear-
rangement generates TCRβ chains that promote 
differentiation to the CD4+/CD8+ (“double posi-
tive”) stage. Here, a productive VαJα rearrange-
ment generates a TCRα chain that associates with 
TCRβ to promote differentiation to either CD4+ or 
CD8+ (“single positive”) T cells [18].

In all cases, successful recombination requires 
the rejoining of RAG-liberated DSBs via 
ubiquitous DDR and NHEJ factors [10, 104]. 
Therefore, deficiencies for RAG as well as many 
DDR/NHEJ factors block B and T cell develop-
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ment at early stages to variable extent [156]. 
Specifically, loss of RAG results in a complete 
block or severe combined immunodeficiency 

(scid) with antigen receptor loci in germline con-
figuration. In contrast, loss of DDR or NHEJ fac-
tors results in variable degrees of 
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Fig. 6.2  The DDR prevents translocations of RAG-
dependent DSBs. (a) Schematic of the immunoglobulin 
heavy chain (IgH) locus at mouse chromosome 12. During 
V(D)J recombination, the RAG recombinase introduces 
double-strand breaks (DSBs) adjacent to VH, DH and JH 
segments and the Nonhomologous End-Joining (NHEJ) 
pathway of DSB repair ligates the ends to generate a cod-
ing VDJH exon. The expression of this VDJH exon and a 
downstream constant region (CH) exon generates the 
immunoglobulin heavy chain (IgH). The immunoglobulin 
light chain (IgL) is similarly generated via VL to JL recom-
bination at the immunoglobulin light chain kappa (Igκ) or 
lambda (Igλ) loci. Binding of heavy and light chains 

results in antibody formation (depicted on the right). (b) 
Schematic of molecular events at the TCRα/δ locus in 
developing murine thymocytes. In wild-type mice (Atm+/+ 
mice), RAG-dependent DSBs are sensed and signaled by 
ATM and repaired via NHEJ.  In mice with a germline 
deletion of Atm (Atm-/- mice), a subset of RAG-dependent 
DSBs dissociates prior to repair, leading to either free, 
unrepaired DNA ends or aberrant repair by translocation 
to another broken DNA ends elsewhere in the genome. (c) 
Spectral karyotyping (SKY) analysis of thymic lympho-
mas arising in Atm-/- mice reveals a clonal translocation 
involving chromosomes 12 and 14. The breakpoint at 
chromosome 14 localizes to the TCRα/δ locus
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immunodeficiency as a result of failed recombi-
nation of RAG-dependent DSBs. It is only in the 
latter scenario that unrepaired DSBs signal cell 
death or engage in chromosomal translocations. 
Moreover, concomitant defects in DSB repair 
elsewhere often lead to coexisting nonimmuno-
logical manifestations.

In mice and humans, the genes encoding 
TCRα and TCRδ occupy the same locus in chro-
mosome 14 and their sequential rearrangement is 
regulated via specific enhancers [98]. Both 
human and mouse TCRδ loci resided between Vα 
and Jα segments, and therefore TCRα rearrange-
ment deletes the TCR δ gene and commits cells 
to the α/β lineage. These rearrangements are 
driven by specific enhancer elements, Eδ and Eα 
[154], which play major roles in the generation of 
translocations (see below).

6.3.2	 �RAG-Dependent Breaks 
and Translocations in DDR-
Deficient Mice

Recombining thymocytes deficient for NHEJ 
factors (including Ku70, Ku80, DNA-PKcs, 
Artemis, ligase IV or XRCC4) fail to ligate RAG-
generated DSBs, leading to pro-B and pro-T cell 
apoptosis and absence or marked depletion of 
mature lymphocytes [3]. In contrast, deficiencies 
for DDR factors result in variable, milder defects 
in T cell maturation, in line with their redundant 
roles in DSB detection and signaling. Deficiency 
for components of the MRN complex [74] or 
ATM [7] results in the most severe defects, while 
residual recombination and lymphocyte develop-
ment is observed in thymocytes deficient for 
ATM substrates H2AX [13, 40], MDC1 [107] or 
53BP1 [176]. Of note, deficiencies for specific 
factors impact B and T cell development to dif-
ferent extent. For example, loss of ATM results in 
marked depletion of thymocytes and peripheral T 
cells early in life, while the B cell compartment is 
less affected.

Atm-/- mice [7, 24, 181, 190] have been par-
ticularly valuable to understand how the DDR 
suppresses the translocation of RAG-induced 
DSBs during in developing lymphocytes 

(Fig. 6.2). Cytogenetic analysis of interphase and 
dividing Atm-/- thymocytes and peripheral T cells 
has been used extensively to quantify chromo-
somal breaks at the TCRα/δ locus [24, 80, 105]. 
Moreover, this approach also allows monitoring 
of their progression to nonclonal chromosomal 
translocations and, over a period of a few months, 
clonal selection and full malignant transforma-
tion [7, 24, 181, 190]. The rapid clonal progres-
sion uniquely observed in this model results from 
the requirement for ATM in the activation of the 
p53-dependent G1/S cell cycle checkpoint [37, 
91] and apoptosis in response to unrepaired DSBs 
[58]. Thus, rapid transformation observed in thy-
mocytes deficient for ATM but not its substrates 
(see below) results from the unique pleomorphic 
roles for ATM in DSB detection, signaling and 
repair [34]. Interestingly, breeding into a RAG-
deficient background does not prevent lympho-
magenesis in Atm-/- mice [132, 133]. However, 
lymphomas in Atm-/-/Rag2-/- mice lack chromo-
somal translocations involving antigen receptor 
loci [132, 133], further highlighting the essential 
role for ATM in promoting repair in this context. 
Finally, we note that ATM is activated in response 
cellular stresses other than DSBs [129], a mecha-
nism that may potentially cross-talk with its 
functions at the DDR to modulate the fate of 
RAG-dependent DSBs .

Atm-/- thymi show blockade at the DP to SP 
transition and marked reductions in total cellular-
ity, α/β T cells and SP CD4+ and CD8+ T cells [7, 
24, 181, 190]. Consistent with defective repair of 
RAG-induced DSBs in the absence of ATM, fluo-
rescence in situ hybridization (FISH) analyses of 
Atm-/- T cells with probes that hybridize to 
sequences flanking the TCRα/δ locus in chromo-
some 14 reveal frequent locus-specific chromo-
somal breaks [34, 105] (see Fig.  6.2 for an 
example).

Atm-/- mice succumb to T-cell acute ALLs with 
clonal translocations that typically involve the 
TCRα/δ locus in chromosome 14, the TCRβ 
locus on chromosome 6 and the immunoglobulin 
heavy chain locus in chromosome 12 that recom-
bines D and J segments in thymocytes [33, 105, 
189]. Moreover, T cells harboring translocations 
with a breakpoint at this locus are detected in the 
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peripheral blood of Atm-/- mice [34, 105], harbor-
ing the onset of malignancy. Mechanistically, 
elegant experiments by Sleckman and colleagues 
demonstrated that ATM functions to maintain 
RAG-generated DNA ends in repair complexes 
[26], preventing DNA end dissociation and chro-
mosomal translocation.

Using array comparative genomic hybridiza-
tion (CGH) analysis to map the translocation 
breakpoints within TCRα/δ, Zha and colleagues 
demonstrated that the TCRα/δ translocation is 
associated to defective rearrangement at the 
TCRδ rather than the TCRα locus [189], suggest-
ing an earlier developmental origin than previ-
ously thought [33]. In support of this notion, 
deletion of Eδ [89] but not Eα [189] rescued 
clonal translocations in vivo. In addition, the 
CGH data revealed that the T(12;14) is associ-
ated to amplification of a set of genes upstream of 
the TCRα/δ locus [189], suggesting that 
breakage-fusion-bridge (BFB) cycles may act as 
intermediaries. Todate, it remains unclear 
whether the sequences in chromosome 12 repre-
sent “passengers” or, alternatively, contribute to 
tumorigenesis by inactivating a tumor suppressor 
gene [189]. In this regard, the translocation 
deletes one copy of Bcl11b [189], a haploinsuf-
ficient tumor suppressor in the mouse [90], lead-
ing to decreased expression [189]. However, 
monoallelic deletion of Bcl11b in double nega-
tive thymocytes did not accelerate lymphoma-
genesis in Atm-/- mice [60], suggesting an 
alternative mechanism. Finally, the murine trans-
location deletes TCL1 [189], a gene that is trans-
located in the human translocation, even though 
it is located in the syntenic area.

ATM substrates H2AX, MDC1 and 53BP1 
have also been implicated in the suppression of 
chromosomal translocations in developing lym-
phocytes. Immuno-FISH using antibodies that 
recognize γ-H2AX and DNA probes that hybrid-
ize to sequences at TCR loci revealed the pres-
ence of γ-H2AX foci at chromatin surrounding 
RAG-dependent DSBs [43]. The functional sig-
nificance of this ATM- (and likely DNA-PKcs-) 
dependent modification has been investigated in 
detail using mice with germline [13, 40] or T 
cell-specific [185] H2AX inactivation. 

Collectively, these studies clearly demonstrate a 
requirement for H2AX for end-joining of RAG-
dependent DNA ends at the TCRα/δ locus via its 
functions in DNA end anchoring prior to ligation 
[11, 186] and in protection from aberrant CtIP-
mediated resection [75].

Interestingly, the presence of persistent, unre-
paired RAG-dependent breaks in H2afx-/- thymo-
cytes is not sufficient to trigger transformation 
and H2afx-/- mice are not lymphoma prone [13, 
40]. This is likely due to the vigorous p53-
dependent apoptotic response elicited by DSBs 
in H2afx-/- developing T cells. Indeed, breeding 
of H2afx-/- mice to mice with germline inactiva-
tion of p53 (Trp53-/- mice), themselves lymphoma 
prone [55, 72, 84], greatly accelerates lymphom-
agenesis relative to single mutants [13, 39]. Most 
significantly, the mechanisms driving transfor-
mation in Trp53-/- and H2afx-/-/ Trp53-/- thymo-
cytes are distinct. Trp53-/- lymphomas are driven 
by point mutations in Pten and other tumor-
associated loci [56, 101] while H2afx-/-/ Trp53-/- 
lymphomas are driven by clonal chromosomal 
translocations [13, 39]. Interestingly, these trans-
locations do not involve the TCRα/δ locus in 
chromosome 14 or breakpoints at either TCRβ in 
chromosome 6 or TCRγ in chromosome 13, even 
though the TCRβ is rearranged in the tumor cells. 
Instead, Spectral Karyotyping (SKY) analysis of 
H2afx-/-/ Trp53-/- revealed clonal translocations 
originated by rejoining of DSBs that presumably 
occur at “random” sites during periods of rapid 
cellular proliferation. Similarly, conditional inac-
tivation of H2AX and p53 in double negative thy-
mocytes using an Lck-Cre transgenic mouse 
model resulted in thymic lymphomas driven by 
clonal translocations that did not typically involve 
antigen receptor loci [187]. Finally, although 
deletion of an H2AX conditional allele in ATM-
deficient thymocytes increased the number of 
RAG-dependent chromosomal translocations in 
vitro [185], it did not accelerate lymphomagene-
sis in vivo [185]. Altogether, these observations 
suggest that, unlike ATM, H2AX is mostly 
dispensable for the repair of RAG-dependent 
DSBs, but becomes limiting at DSBs that arise 
via other mechanisms, such as replication, oxida-
tion or others. A potential explanation for these 
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findings is that RAG itself may function to pro-
motes DNA end synapsis, providing an overlap-
ping mechanisms with H2AX (and other foci 
factors) in this context [11]. This notion also may 
explain the lack of significant defects in V(D)J 
recombination in Mdc1-/- mice [107].

Similar to H2afx-/- mice, Trp53bp1-/- mice 
show decreased thymic size and decreased num-
ber of peripheral T cells, including α/β and γ/δ T 
cells [52], pointing to a defect in maturation. 
Interestingly, the mechanism driving T cell 
immunodeficiency in the absence of 53BP1 is 
unique. While ATM, H2AX and MDC1 function 
to promote repair across a DSBs, 53BP1 is 
mainly required for the synapsis of two distant 
DSBs, a critical step during recombination. 
Specifically, Trp53bp1-/- thymocytes are impaired 
for V to DJ joining, leading to degradation of per-
sistent coding ends and apoptosis. If the apop-
totic response is blunted by breeding to a 
p53-deficient background, thymic lymphomas 
are observed [116, 175]. However, most 
Trp53bp1-/-/Trp53-/- lymphomas are driven by 
polyploidy or by clonal translocations that spare 
antigen receptor loci [116, 175].

An epistaxis analysis of ATM and 53BP1 
functions at RAG-dependent DSBs was also con-
ducted using a murine model of combined germ-
line deficiency [146]. This work indicated that 
combined loss aggravates the T cells maturation 
defect, further reducing thymic output [146]. 
Moreover, Atm-/-/Trp53bp1-/- mice develop thy-
mic lymphomas earlier in life and with higher 
penetrance than Atm-/- controls [146]. Like Atm-/- 
lymphomas, Atm-/-/Trp53bp1-/- lymphomas are 
driven by clonal chromosomal translocations 
involving the TCRα/δ locus [146]. Altogether, 
these data suggest that H2AX and 53BP1 play 
modest ATM-independent functions in transloca-
tion suppression in vivo.

6.3.3	 �RAG-Dependent Break 
and Translocations in Ataxia-
Telangiectasia Patients

The requirement for ATM in the repair of RAG-
dependent DSBs is highly conserved in mice and 

humans. Approximately two thirds of patients 
with classical A-T have low lymphocyte counts 
and immunodeficiency [121]. Although both cir-
culating B and T cells are decreased, the most 
common observation is low number of CD4+ T 
cells with impaired response to mitogens and 
antigens and anergy [121]. The degree of immu-
nodeficiency varies significantly from one patient 
to another, but tends to be stable over time. 
Immunodeficiency tends to be less common in 
the variant, milder forms of the disease [172].

In addition to lymphopenia, A-T patients show 
increased predisposition to hematological malig-
nancies. Specifically, the risk of lymphoid but not 
myeloid malignancies is markedly increased 
[166]. T cell cancers are more frequent than B 
cell tumors and include T cell acute lymphoblas-
tic leukemia (ALL), T cell lymphomas and, in 
older A-T patients, T cell prolymphocytic leuke-
mia (T-PLL) [166] . Cytogenetic analysis indi-
cates that tumor cells typically harbor clonal 
chromosomal rearrangement involving antigen 
receptor loci [27], suggesting that they originate 
during V(D)J recombination.

Childhood T cell ALL is the most common 
malignancy in A-T and frequently involves clonal 
translocations involving TCRA/D locus in chro-
mosome 14 or TCRB in chromosome 7 [166]. In 
humans, the TCRA/D locus is located in chromo-
some 14 and translocations in A-T leukemias are 
typically inv(14)(q11q32), or tandem transloca-
tions of chromosome 14 with breakpoints at q11 
and q32 and del(14)(q11q32) [27]. Older A-T 
patients can harbor clonal expansions of periph-
eral T cells with inv(14)(q11;q32) and, in addi-
tion, t(14,14)(q11;32.1) and more rarely t(X;14)
(q28;q1); some of these patients will develop T 
cell PLL.  In these translocations, the TCRA/D 
breakpoint at 14q11 is fused with a breakpoint at 
the TCL1 oncogene at 14q32.1 and at the MTCP1 
oncogene at Xq28 [166] [145] [130] [6, 47]. 
These translocations can be detected in the blood 
of asymptomatic patients for years [27] and likely 
evolve to full malignancy upon the acquisition of 
additional alterations, such as trisomy of 8q con-
taining C-MYC and others [27].

Interestingly, over half of non-A-T patients 
with T-PLL carry a somatic mutation of ATM 
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[158] and the same TCRA;TLC1 and 
TCRA;MTCP1 translocations are also recurrent 
clonal lesions in this setting [49, 163]. These 
translocation likely drive transformation in both 
A-T and non A-T patients by placing the TCL1 or 
MTCP1 under the control of the TCRα transcrip-
tional enhancer (Eα) [27]. Similarly, cytogenetic 
abnormalities involving antigen receptor loci are 
often present in T cell ALL in the general popula-
tion [2], suggesting that uncharacterized defects 
in the DDR or NHEJ may promote leukemogen-
esis more broadly.

The improvement in supportive care has 
increased the life expectancy of A-T patients and 
also uncovered their predisposition to solid 
tumors in the second and third decades of life 
[171, 172]. Moreover, patients with the milder, 
“variant” form of the disease tend to develop 
solid tumors rather than leukemias typically 
observed in the classical form of the disease [136, 
171]. Future investigations for the presence of 
fusion transcripts in tumor DNA will help deter-
mine whether the role for ATM in translocation 
suppression may also be relevant in this 
scenario.

6.4	 �The DDR Suppresses 
Chromosomal Translocations 
During Class Switch 
Recombination

6.4.1	 �Mechanisms of Class Switch 
Recombination

Upon encounter with antigen, IgM+ B cells 
undergo CSR to diversify their effector functions 
by expressing the same variable region as a sec-
ondary isotype (i.e., IgG, IgA or IgE). 
Mechanistically, this process involves a dele-
tional recombination reaction at the immuno-
globulin heavy (IgH) chain locus constant region 
(diagrammed in Fig. 6.3). In particular, activation-
induced cytidine deaminase (AID; gene symbol, 
AICDA) [118] works in concert with ubiquitous 
DNA repair pathways (including Base Excision 
Repair (BER) and Mismatch Repair (MMR) to 
introduce DSBs at “Switch” (S) regions upstream 

of Cμ (encoding IgM) and a downstream CH 
exon. AID-dependent DSBs are sensed and sig-
naled via ubiquitous DDR factors, brought 
together across long chromosomal distances 
(“synapsed”) and rejoined via ubiquitous 
NHEJ. Completion of the recombination reaction 
results in deletion of Cμ and expression of the 
variable region together with Cα, Cε or Cγ (to 
encode IgA, IgE or IgG, respectively). Intervening 
DNA is sealed into a circle by NHEJ and eventu-
ally lost upon division. The general mechanisms 
of CSR have been the subject of recent excellent 
reviews [3, 38, 113, 115].

Successful CSR requires that two distant 
DSBs are repaired by rejoining to each other 
rather than via rejoining of DNA ends across 
each individual DSB, exploiting a general cellu-
lar response that promotes DSBs repair in cis 
[67]. As diagrammed in Fig. 6.3, AID is thought 
to introduce numerous DSBs within each of the 
two recombining S regions. These concurrent 
DSBs may be rejoined to either DSBs within the 
same S region (intra-S region recombination, 
leading to an internal deletions or “shorter” S 
region) or to DSBs within the recombining S 
region (inter-S region recombination, leading to 
CSR). Studies in wild-type B cells indicate that 
CSR is normally favored over internal deletion. 
For example, in a typical B cell activation with 
α-CD40 antibody and Il-4, over half of the cells 
undergo CSR.  In contrast, less than 10% show 
intra-S deletions (when assayed by Southern 
blotting which would not detect small deletions). 
As described below, mutations in specific DDR 
components impair end-joining during CSR by 
decreasing the efficiency of synapsis, while oth-
ers impair repair (i.e., NHEJ) per se.

Like V(D)J recombination, CSR is initiated 
and completed in the G1 phase of the cell cycle 
[64]. Consistently, defects for AID or the DDR/
NHEJ factors that regulate DSB repair during the 
G1 phase of the cell cycle impair CSR to variable 
extent. In this context, ATM and its substrates 
H2AX and 53BP1 are required for efficient CSR 
in mice and humans, as described in detail below. 
In contrast, defects in HR or DDR factors that 
regulate DSB repair in the replicative phases of 
the cell cycle do not directly interfere with CSR 
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Fig. 6.3  Mechanisms of Class Switch Recombination 
(CSR). (a) In mature B cells, the VDJH exon formed dur-
ing V(D)J recombination of the immunoglobulin heavy 
chain (IgH) locus at the pro-B cell stage is initially tran-
scribed with the most upstream exon of the IgH constant 
region, Cμ, to generate IgM.  Upon antigen encounter, 
mature B cells may undergo CSR to a secondary isotype 
(such as IgE encoded by the Cε exon in the example 
depicted here). CSR requires sterile transcription of repet-
itive “switch” (S) regions upstream of the recombining 
exons, Sμ and Sε. The nontranscribed strand is preferen-
tially deaminated by AID and processed via ubiquitous 
DNA repair pathways to generate DNA single-strand 
breaks (SSBs). Two SSBs in opposite strands are sensed 

as a double-strand break (DSB) and activate the DNA 
Damage Response (DDR). DSBs at Sμ and Sε are brought 
together (“synapsed”) and rejoined via the ubiquitous 
nonhomologous end-joining (NHEJ) pathway to effect 
recombination. After recombination, the VDJH exon is 
transcribed with the Cε exon, to generate IgE. Intervening 
DNA is rejoined in a circle and is eventually lost upon 
replication. (b) Possible fates for DSBs generated at S 
regions of recombining exons during CSR. DSBs within S 
regions can sometimes rejoin to each other (intra-S region 
recombination) to form an internal deletion. However, 
during normal CSR, DSBs within an S region preferen-
tially rejoin to DSBs at another S region (inter-S region 
recombination), resulting in CSR
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and will not be discussed here. Finally, the IgH 
locus is also modified via programmed lesion-
repair cycles in mature B cells undergoing 
Somatic Hypermutation (SHM). Like CSR, this 
process employs ubiquitous DNA repair pathways 
to introduce point mutations into the IgH variable 
region to increase clonal affinity [51]. However, 
SHM differs from CSR in that it does not proceed 
through intermediary DSBs [57, 115]. Consistent 
with this notion, ATM [122, 123, 137], H2AX 
[139] and 53BP1 [111] are dispensable for SHM.

6.4.2	 �AID-Dependent Breaks 
and Translocations in DDR-
Deficient Mice

Murine B cells activated for CSR in vitro provide 
a facile system to dissect the genetic require-
ments for recombination during CSR.  The IgH 
locus heavy chain of B cells residing in the mouse 
spleen and lymph nodes is mostly in germline 
configuration (IgM+). Upon isolation and activa-
tion with cytokines that mimic either a T cell-
independent or a T cell-dependent response, 
these IgM+ cells proliferate, induce AID and tran-
scription through S regions and switch to a sec-
ondary isotype within a few days in a 
quasi-synchronous manner. Moreover, the effi-
ciency of switching can be readily quantified by 
flow cytometry after labeling with antibodies that 
recognize secondary isotypes in the B cell sur-
face. In addition, the highly proliferative nature 
of these cultures makes them amenable to cyto-
genetic analysis with IgH locus-specific FISH 
probes, providing a correlate between the switch-
ing defect and the frequency of IgH locus-specific 
chromosomal breaks and translocations (locus-
specific genomic instability; see Fig.  6.4 for 
schematic of the FISH assay and possible out-
comes and interpretation). This experimental 
pipeline has been applied extensively to under-
stand the contribution of ATM and many of its 
substrates to the repair of AID-induced DSBs. In 
general, these studies have found that the molec-
ular events upstream of DSBs (i.e., proliferation, 
AID induction and S region transcription) occur 
normally in DDR mutants. Rather, the repair of 

AID-dependent DSBs is compromised, as 
described below in more detail.

Analysis of Atm-/- B cells activated for CSR in 
vitro has revealed that the efficiency of switching 
is reduced to approximately half of the ATM-
proficient control cultures [64] [137]. This defect 
is associated to frequent genomic instability at 
one or both IgH loci [64], revealing a requirement 
for ATM in the rejoining of a subset of AID-
dependent DSBs. In support of this notion, loss of 
AID rescues most chromosomal instability at IgH 
in Atm-/- B cells [34]. Some residual IgH breaks 
observed in B cells deficient for both ATM and 
AID is thought to reflect on persistent RAG-
dependent DSBs in B cells precursors that fail to 
trigger apoptosis in the absence of ATM-dependent 
cell cycle checkpoints [34] and/or when masked 
as dicentric chromosomes [79]. In Atm-/- activated 
B cells, IgH locus breaks and translocations are 
observed frequently (in up to 50% of cells in one 
study) [64]. Indeed, the most common IgH trans-
location partner is the broken IgH locus on the 
other chromosome 12 [64]. Murine chromosomes 
are acrocentric and therefore the majority of de 
novo rearrangements observed in primary Atm-/- B 
cell cultures are dicentrics [64, 79, 135]. In addi-
tion to IgH-IgH dicentrics, dicentrics with break-
points at the IgH locus and a chromosomal break 
elsewhere or between two apparently “random” 
chromosomal breaks are frequent and often coex-
ist in the same cell [64], highlighting the require-
ment for ATM in maintaining genomic stability in 
switching B cells. Moreover, translocations 
between IgH and c-Myc, a hallmark of many 
human B cell lymphomas, are detected at low fre-
quency in primary activated Atm-/- B cells [135]. 
Interestingly, unlike TCRα/δ locus translocations 
arising in Atm-/- thymocytes, IgH-c-myc translo-
cations in Atm-/- B cells are not clonally selected in 
vivo and Atm-/- mice are not prone to B cell lym-
phomas [79, 99]. Although the mechanisms 
underlying these lineage-specific differences are 
not known, they may relate to differential 
responses downstream of DSBs that ultimately 
determine cellular outcomes. In this regard, loss 
of ATM activates type I interferon signaling [71], 
a pathway that promotes cell death or survival in a 
context-dependent manner.
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ATM likely mediates the formation of 
γ-H2AX foci at the IgH locus in B cells undergo-
ing CSR [131]. Although DNA-PKcs may also 
modify H2AX in this context, the ATM-
dependent events may serve an important regula-
tory function by controlling the spread and 
density of the modification [148]. Like Atm-/- B 
cells, H2afx-/- B cells are impaired for CSR to 
multiple isotypes [64], although the severity of 
the defect tends to be lesser. Moreover, activated 
H2afx-/- B cells accumulate IgH locus chromo-
somal breaks and dicentrics with breakpoints at 

IgH, clearly pointing to a defect in the end-
joining phase of CSR.  Breeding into AID-
deficient mice completely rescues genomic 
instability at IgH in H2afx-/- B cells [64], 
indicating that these breaks result from switching 
and excluding their origin as byproducts of tran-
scription, replication or other processes. Finally, 
although H2afx-/- mice develop B cell lymphomas 
when bred into a p53-deficient background, T 
cell malignancies are more frequent [13].

The analysis of CSR in murine B cells defi-
cient for 53BP1 (Trp53bp1-/- B cells) was particu-
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Fig. 6.4  Analysis of the fate of AID-dependent DNA 
ends using two-color fluorescence in situ hybridization 
(FISH) on murine B cell metaphases. (a) Schematic of the 
immunoglobulin heavy chain (IgH) locus in murine chro-
mosome 12. The IgH locus localizes to the subtelomeric 
region, with the variable region (VH) genes oriented 
towards the telomere and the constant region (CH) exons 
oriented towards the centromere. During efficient CSR, 
rejoining of AID-dependent double-strand breaks (DSB) 
results in two close-by FISH signals in the subtelomeric 
region of the chromosome (“intact IgH”). In contrast, fail-
ure to rejoin the ends results in “split signals”, or localiza-
tion of each signal to a distinct chromosome fragment. (b) 
B cells were isolated from the spleen of mice deficient for 
DDR factors and activated for CSR in vitro using cyto-

kines. After about three days, the fate of DNA ends was 
analyzed on metaphase spreads using two-color IgH locus 
FISH. Rejoining of DNA ends results in close-by signals 
and indicates recombination and expression of a second-
ary immunoglobulin isotype (such as IgG, IgE or IgA). 
However, rejoining is impaired in a subset of DDR-
deficient cells, leading to end dissociation and “split sig-
nals” (broken or “free” ends). Defective switching 
manifests clinically as an immunodeficiency character-
ized by decreased titers of secondary isotypes. Finally, 
some breaks are repaired aberrantly by rejoining to a 
break in another chromosome, generating a chromosomal 
translocation. Most translocations in primary B cells 
likely have no consequence, but selection for rare onco-
genic translocations may promote B cell transformation
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larly gratifying in that it led to novel mechanistic 
insights into the unique regulation of this pro-
cess. Unexpectedly, Trp53bp1-/- B cells were 
found to be impaired for CSR to a much greater 
extent than Atm-/- or H2afx-/- B cells [111, 177], 
despite their lesser defect in the repair of “gen-
eral” chromosomal breaks. The CSR defect is 
due to defective end-joining of AID-dependent 
DSBs because IgH locus-specific analysis of 
activated Trp53bp1-/- B cell metaphases revealed 
frequent IgH breaks [64, 135] that were com-
pletely rescued by breeding into an AID-deficient 
background [135]. However, the mechanism 
underlying the end-joining defect uniquely relies 
on defective synapsis of the two recombining 
DSBs. As a result, Trp53bp1-/- B cells show a dra-
matic increase in the frequency of intra-S switch 
region recombination [138], presumably reflect-
ing on increased “local” repair in the absence of 
synapsis. In contrast, activated H2afx-/- B cells do 
not accumulate internal deletions to a greater 
extent than wild-type B cells [139], suggesting 
that they fail at rejoining synapsed S regions. In 
further support of the unique roles for 53BP1 
during CSR, others have shown defective synap-
sis of V and DJ exons during V(D)J recombina-
tion of 53BP1-deficient T cells [52] and defective 
end-joining of dysfunctional telomeres in 53BP1-
deficient cells [53].

6.4.3	 �AID-Dependent Breaks 
and Translocations in A-T 
Patients

The mechanisms and regulation of CSR are gen-
erally conserved between mice and humans 
[124]. Specifically, a conserved role for ATM in 
CSR has been demonstrated by the analysis of B 
cells from A-T patients. Consistent with defec-
tive CSR, individuals with A-T show variable 
decreases in secondary immunoglobulins, most 
commonly IgG4, IgA, IgE and IgG2, isolated or 
in combination [121]. These abnormalities are 
clinically relevant, resulting in impaired antibody 

response to pathogens and frequent sinopulmo-
nary infections that negatively affect the quality 
of life of A-T children. Despite these defects, 
individuals with A-T are not prone to B cell lym-
phomas but rather to T cell leukemias. These 
lineage-specific differences in the progression 
from chromosomal breaks to full malignancy are 
also observed in the murine models and remain 
incompletely understood.

Finally, we note that somatic ATM inactiva-
tion is common in sporadic mature B cell lym-
phomas [4, 5, 46, 100, 160, 161]. Deletions at 
11q22, containing the ATM locus, occur in 
approximately half of mantle cell lymphomas 
(MCLs) [4, 161], a mature B cell malignancy 
characterized by a clonal T(11,14) that fuses the 
IgH locus to cyclin D1 to drive its overexpres-
sion. The 11q22 deletion in MCL typically leads 
to loss of ATM function due to mutation of the 
second allele [35, 150, 161] and correlates with 
poor clinical outcome [46]. However, the 
T(11,14) translocation is thought to occur in 
pro-B cells undergoing V(D)J recombination 
[86], and may precede the ATM mutation during 
malignant progression.

ATM mutations are also observed at low fre-
quency in cancers of the breast [1], pancreas 
[141], bladder [69], prostate [17] and other solid 
tumors. It currently remains unclear whether 
ATM roles in translocation suppression may con-
tribute to tumor initiation and/or progression in 
this context, potentially in cooperation with roles 
in the activation of cell cycle checkpoints, meta-
bolic regulation and others [97]. Finally, roles for 
DDR factors other than ATM in translocation 
suppression in human cancers have not been 
clearly established, although Bartek and col-
leagues reported that MDC1 and 53BP1 were 
lost in a subset of human carcinomas [9]. In sum-
mary, the DDR represents a main barrier to trans-
formation in a wide range of human cancers [8, 
66] and more work is needed to determine 
whether its functions in translocation suppression 
may extend beyond its well-documented roles in 
hematological malignancies.
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