
Advances in Experimental Medicine and Biology 1044

Yu Zhang    Editor 

Chromosome 
Translocation



Advances in Experimental Medicine 
and Biology

Volume 1044

Editorial Board
IRUN R. COHEN, The Weizmann Institute of Science, Rehovot, Israel
ABEL LAJTHA, N.S. Kline Institute for Psychiatric Rrch, 
Orangeburg, NY, USA
JOHN D. LAMBRIS, University of Pennsylvania, Philadelphia, PA, USA
RODOLFO PAOLETTI, University of Milan, Milan, Italy
NIMA REZAEI, Tehran University of Medical Sciences Children’s Medical 
Center, Children’s Medical Center Hospital, Tehran, Iran



More information about this series at http://www.springer.com/series/5584

http://www.springer.com/series/5584


Yu Zhang
Editor

Chromosome 
Translocation



ISSN 0065-2598	         ISSN 2214-8019  (electronic)
Advances in Experimental Medicine and Biology
ISBN 978-981-13-0592-4        ISBN 978-981-13-0593-1  (eBook)
https://doi.org/10.1007/978-981-13-0593-1

Library of Congress Control Number: 2018946723

© Springer Nature Singapore Pte Ltd. 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or 
part of the material is concerned, specifically the rights of translation, reprinting, reuse of 
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, 
and transmission or information storage and retrieval, electronic adaptation, computer software, 
or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this 
publication does not imply, even in the absence of a specific statement, that such names are 
exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in 
this book are believed to be true and accurate at the date of publication. Neither the publisher nor 
the authors or the editors give a warranty, express or implied, with respect to the material 
contained herein or for any errors or omissions that may have been made. The publisher remains 
neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 
189721, Singapore

Editor
Yu Zhang
National Institute of Biological Sciences
Beijing, China

https://doi.org/10.1007/978-981-13-0593-1


v

	1	� Historical and Clinical Perspectives on Chromosomal 
Translocations................................................................................. 	 1
Ellen S. Wilch and Cynthia C. Morton

	2	� Induction of Chromosomal Translocations  
with CRISPR-Cas9 and Other Nucleases:  
Understanding the Repair Mechanisms  
That Give Rise to Translocations................................................... 	 15
Erika Brunet and Maria Jasin

	3	� Dynamics of Double-Strand Breaks: Implications 
for the Formation of Chromosome Translocations...................... 	 27
Henrike Johanna Gothe, Vera Minneker, and Vassilis Roukos

	4	� The CRISPR/Cas9 System as a Tool to Engineer  
Chromosomal Translocation In Vivo............................................ 	 39
Taek-Chin Cheong, Rafael B. Blasco, and Roberto Chiarle

	5	� Generation of Genomic Alteration  
from Cytidine Deamination........................................................... 	 49
Xiaojing Liu and Fei-Long Meng

	6	� The Role for the DSB Response Pathway  
in Regulating Chromosome Translocations.................................. 	 65
Rajib Ghosh, Debamitra Das, and Sonia Franco

	7	� Telomeres and Chromosomal Translocations............................... 	 89
Duncan M. Baird and Eric A. Hendrickson

	8	� 3D Genome Organization Influences  
the Chromosome Translocation Pattern....................................... 	 113
Rachel Patton McCord and Adayabalam Balajee

	9	� The Role of Chromosome Deletions in Human Cancers............. 	 135
Mei Chen, Yi Yang, Yu Liu, and Chong Chen

	10	� Processing-Challenges Generated by Clusters  
of DNA Double-Strand Breaks Underpin Increased  
Effectiveness of High-LET Radiation  
and Chromothripsis........................................................................ 	 149
Emil Mladenov, Janapriya Saha, and George Iliakis

Contents



1© Springer Nature Singapore Pte Ltd. 2018 
Y. Zhang (ed.), Chromosome Translocation, Advances in Experimental Medicine and Biology 1044, 
https://doi.org/10.1007/978-981-13-0593-1_1

Historical and Clinical Perspectives 
on Chromosomal Translocations

Ellen S. Wilch and Cynthia C. Morton

Abstract
Chromosomal translocations, rearrangements 
involving the exchange of segments between 
chromosomes, were documented in humans in 
1959. The first accurately reported clinical 
phenotype resulting from a translocation was 
that of Down syndrome. In a small percentage 
of Down syndrome cases, an extra 21q is pro-
vided by a Robertsonian translocation chro-
mosome, either occurring de novo or inherited 
from a phenotypically normal parent with the 
translocation chromosome and a balanced 
genome of 45 chromosomes. Balanced trans-
locations, including both Robertsonian and 
reciprocal translocations, are typically benign, 
but meiosis in germ cells with balanced trans-
locations may result in meiotic arrest and sub-
sequent infertility, or in unbalanced gametes, 

with attendant risks of miscarriage and unbal-
anced progeny. Most reciprocal translocations 
are unique. A few to several percent of translo-
cations disrupt haploinsufficient genes or their 
regulatory regions and result in clinical phe-
notypes. Balanced translocations from patients 
with clinical phenotypes have been valuable in 
mapping disease genes and in illuminating 
cis-regulatory regions. Mapping of discordant 
mate pairs from long-insert, low-pass genome 
sequencing now permits efficient and cost-
effective discovery and nucleotide-level reso-
lution of rearrangement breakpoints, 
information that is absolutely necessary for 
interpreting the etiology of clinical pheno-
types in patients with rearrangements. 
Pathogenic translocations and other balanced 
chromosomal rearrangements constitute a 

E. S. Wilch (*) 
The Developmental Genome Anatomy Project, 
Brigham and Women’s Hospital, Boston, MA, USA

Department of Obstetrics, Gynecology and 
Reproductive Biology, Brigham and Women’s 
Hospital, Boston, MA, USA 
e-mail: cmorton@bwh.harvard.edu

1

C. C. Morton 
The Developmental Genome Anatomy Project, 
Brigham and Women’s Hospital, Boston, MA, USA

Department of Obstetrics, Gynecology and 
Reproductive Biology, Brigham and Women’s 
Hospital, Boston, MA, USA

Harvard Medical School, Boston, MA, USA

Department of Pathology, Brigham and Women’s 
Hospital, Boston, MA, USA

Program in Medical and Population Genetics, Broad 
Institute of Harvard and MIT, Cambridge, MA, USA 

Manchester Academic Health Science Centre, 
University of Manchester, Manchester, UK 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0593-1_1&domain=pdf
mailto:cmorton@bwh.harvard.edu


2

class of typically highly penetrant mutation 
that is cryptic to both clinical microarray and 
exome sequencing. A significant proportion of 
rearrangements include additional complexity 
that is not visible by conventional karyotype 
analysis. Some proportion of patients with 
negative findings on exome/genome sequenc-
ing and clinical microarray will be found to 
have etiologic balanced rearrangements only 
discoverable by genome sequencing with 
analysis pipelines optimized to recover rear-
rangement breakpoints.

Keywords
Cytogenetics · Karyotype · Balanced translo-
cation · Breakpoint · Congenital anomaly · 
Gene mapping · Mate-pair sequencing

1.1	 �Introduction 
and Background

Chromosomal translocations encompass a 
diverse set of rearrangements involving the 
exchange of segments between chromosomes, 
and are common in humans. Balanced transloca-
tions, those without accompanying copy number 
variation, usually have no phenotypic conse-
quence. Estimates vary, but about one in every 
300–500 individuals has a balanced reciprocal 
translocation, and about one per 1000 has a bal-
anced Robertsonian translocation (the joining of 
complete long arms of two acrocentric chromo-
somes in β-satellite sequences in the short arms) 
([16, 24, 27, 28, 36, 51, 57, 60, 89]). From a mul-
ticenter study of 377,357 amniocenteses, the 
incidence of a de novo reciprocal translocation 
has been estimated at about 1 per 2000, and 1 per 
9000 for a Robertsonian translocation [92]. 
Warburton also estimated the risk of congenital 
abnormality associated with a balanced recipro-
cal translocation to be about 6% (an approximate 
2- to 3-fold increase over the general population 
risk), and that from balanced Robertsonian trans-

location to be negligible. Congenital anomaly or 
other clinical phenotype in an individual with a 
balanced translocation may result from any of a 
number of possible effects of a translocation, 
including direct gene disruption, creation of a 
fusion gene, dysregulation of a gene separated 
from its normal extragenic cis-regulatory ele-
ments, or dysregulation of a gene placed in an 
environnment of altered chromatin modification. 
Balanced translocations constitute an important 
class of mutation that are etiologic in hundreds of 
Mendelian diseases, and many cancers. When 
ascertained from individuals with clinical pheno-
types, translocations have been invaluable bio-
logical tools in mapping disease loci and 
cis-regulatory regions of disease genes. Because 
missegregation of balanced translocations in 
meiosis may result in meiotic arrest or unbal-
anced gametes, individuals with balanced trans-
locations have higher risks of subfertility and 
infertility, miscarriage, and genomic imbalance 
in their offspring.

1.2	 �Early Observations 
of Translocations

The field of human cytogenetics was very young 
in 1959 and 1960, when the first human translo-
cations were reported. The correct diploid human 
chromosome number had only been established 
by Tjio and Levan  in 1956 [86], shortly after-
wards confirmed by Ford and Hamerton [17]. 
This foundational achievement depended upon a 
number of technical advances, including 
improved methods of tissue culture, use of col-
chicine for inducing mitotic arrest [18], and most 
critically, incubation of cells in hypotonic solu-
tion for better chromosome spreading [29, 30]. 
Still, only slow progress was made in the late 
1950s in identifying and characterizing human 
chromosomal abnormalities. Until the advent of 
quinacrine mustard banding [7] and Giemsa 
banding [76, 81] in the 1970s, chromosomes 
could be reliably ordered by size and centromere 
position only into seven groups (when this sys-
tem was used, the groups were denoted A-G). 
Distinguishing chromosomes within groups was 
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difficult; many specific chromosome assignments 
published in those years were speculative, and 
some were almost certainly wrong. Before the 
development and widespread adoption of tech-
niques for generating sufficient numbers of 
mitotic cells in cultures of peripheral leukocytes 
[32, 53, 59], bone marrow or testis, neither trivial 
to ask of patients or their family members, were 
the tissues generally sought for karyotyping. 
Thus, early karyotyping was usually limited to 
patients, so it was not possible to assess the seg-
regation of a chromosomal rearrangement with a 
phenotype in a pedigree. In spite of these difficul-
ties, trisomy 21 was convincingly established as 
the chromosomal basis of Down syndrome 
[OMIM #190685] in 1959, on the collective evi-
dence of 30 cases (in order of publication: [43, 
35, 19, 4]), and identification of other aneuploidy 
syndromes quickly followed.

Lejeune’s group was also the first to report a 
human translocation. They found, in a patient 
with intellectual and speech disabilities and 
“polydysspondylie” (spondylocostal dysostosis, 
a skeletal dysplasia with six known loci, most 
demonstrating recessive inheritance [e.g. OMIM 
#277300]), a karyotype of 45 chromosomes with 
what is now known to be a Robertsonian translo-
cation chromosome, which they interpreted as 
composed of 22q and either 14q or 15q ([88], 
described in [87]). Common and easily identifi-
able, particularly in a balanced karyotype of 45 
chromosomes, it is not surprising that the first 
reported human translocation was a Robertsonian. 
However, the phenotype in this case was almost 
certainly not related to the translocation; we now 
know that most individuals with a Robertsonian 
translocation and a balanced karyotype are phe-
notypically normal, and no clinical phenotypes 
have yet to be associated convincingly with any 
balanced Robertsonian translocation, with the 
important exceptions of increased risk of miscar-
riage and reduced fertility.

The second reported human translocation was 
also a Robertsonian, interpreted as comprising 
chromosomes 21 and 14, identified in an unbal-
anced karyotype of a girl with Down syndrome 
and 46 chromosomes, with the translocation 

chromosome providing the extra copy of 21q 
etiologic for Down syndrome [67]. Because the 
maternal age effect in Down syndrome births 
[64] was by then well known, Polani et al. chose 
the children of young mothers to investigate, 
hoping to increase the chances of uncovering 
additional karyotypically-visible etiologies for 
Down syndrome. From the two cases they suc-
cessfully karyotyped, they were lucky to have 
ascertained one case of translocation Down syn-
drome; a translocation chromosome is present in 
only about 3–4% of Down syndrome karyotypes, 
even among young mothers. Because the pheno-
types of trisomy 21 Down syndrome and translo-
cation Down syndrome are indistinguishable, 
Polani et al. were able to make a strong and cor-
rect case for the participation of chromosome 
21 in this rearrangement.

Penrose et  al. [65] were the first to demon-
strate segregation of a balanced translocation in a 
family. A grandmother, mother, and daughter, all 
phenotypically normal, each had 45 chromo-
somes with a translocation chromosome inter-
preted as rob(15;21) [although it may have been 
the much more common rob(14;21)] (Fig. 1.1). 
The mother also had two children with transloca-
tion Down syndrome, and had reported two mis-
carriages. Carter et  al. [6] also reported 
transmission of rob(15;21), in a three-generation 
pedigree where the mothers of two first cousins 
with Down syndrome had each  inherited the 
translocation chromosome from their mother. 
Other Robertsonian translocations besides those 
associated with chromosome 21 were also identi-
fied around the same time. For example, Lejeune 
et al. [44] found, in a man with a 46, XXY karyo-
type and Klinefelter syndrome, a translocation 
between a D group chromosome (chr13–15) and 
chr22. Transmission of a rob(13;15) was 
described in a pedigree including 10 individuals 
with balanced karyotypes and the translocated 
chromosome; among those with the translocation 
were eight phenotypically normal individuals. 
Although the primary amenorrhea in the proband 
was unlikely to have been related to the translo-
cation, azoospermia in Robertsonian transloca-
tion carriers is very common and likely accounted 
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for that reported phenotype in one of the males in 
the pedigree [91].

It was recognized early on that translocations 
between chromosomes would only be detectable 
if the lengths of the exchanged chromosomal seg-
ments were sufficiently different, and large 
enough, to change the length of the translocated 
chromosome arms substantially, or to result in an 
appreciable change in the location of the centro-
mere. In 1962, Edwards et al. [14] reported the 
first two such cases; the first, a translocation 
between chromosomes 4 and 9, and the second, 
between chromosomes 1 and 6. In each case, the 
balanced reciprocal translocation in a phenotypi-
cally normal parent was ascertained through 
investigation of genomically unbalanced off-
spring with mental retardation and congenital 
anomalies. Schmid [74] ascertained a balanced 
translocation carrier solely on the basis of a his-
tory of miscarriage. Among 10 couples who had 
experienced miscarriage and had one or more 
phenotypically normal children, one transloca-
tion carrier (a male) with an apparently balanced 
karyotype of 46 chromosomes was identified. 

The translocation involved one chromosome 21 
or 22, and was non-Robertsonian, but the sizes of 
the exchanged segments were too small to reveal 
the identity of the larger translocation partner.

1.3	 �Clinical Relevance 
of Translocations

1.3.1	 �Balanced Translocation 
Carriers Have Higher Risks 
of Infertility, Miscarriage, 
and Unbalanced Progeny

Most reciprocal translocations arise on paternal 
chromosomes in spermatogenesis, and most 
Robertsonian translocations arise on maternal 
chromosomes in oogenesis [1, 63, 84]. Thomas 
et  al. [84] detected a significant paternal age 
effect in the de novo occurrence of reciprocal 
translocations. Most individuals with balanced 
translocations are phenotypically normal, and 
balanced translocations may be transmitted in 
families through many generations. This was 

Fig. 1.1  The first chromosomal rearrangements to be 
identified in the early days of cytogenetics were 
Robertsonian translocations. These photomicrographs 
published in 1960 show a balanced karyotype of 45 chro-
mosomes with a Robertsonian translocation involving 

chromosome 21, derived from skin cells of a phenotypi-
cally normal woman who had two children with transloca-
tion Down syndrome. This was the first publication to 
document inheritance of a translocation, in a three-
generation family. (Reproduced from Ref. [65])

E. S. Wilch and C. C. Morton
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observed in the earliest pedigrees of transloca-
tion Down syndrome, and it is still the case that 
many balanced chromosomal rearrangements are 
ascertained in couples with an unbalanced fetus 
or child. In meiosis when a balanced transloca-
tion is present, the translocated chromosomes 
associate with their homologs as a trivalent (for 
Robertsonians) or tetravalent (for reciprocal 
translocations), and segregation results in normal 
and balanced, or unbalanced, gametes. Men with 
azoospermia or severe oligospermia (no viable 
sperm or low sperm count) have an incidence of 
balanced translocations that is many times higher 
than that in the general male population [8, 90, 
96], evidence that checkpoints in male gameto-
genesis lead to apoptosis of unbalanced gametes. 
The proportion of normal, balanced, and unbal-
anced gametes produced by men with balanced 
translocations varies from practically none to 
nearly all unbalanced gametes [54, 66], with 
Robertsonian translocations typically yielding 
the lowest proportion of unbalanced gametes, 
and reciprocal translocations the highest. As 
most reciprocal translocations are unique, it is 
difficult to assess the reproductive risk of unbal-
anced progeny for couples in whom one partner 
is known to have a translocation [96], though 
Boué and Gallano [5], from assessing pregnancy 
outcomes in more than 1200 couples where one 
partner had a translocation, estimated the overall 
risk of unbalanced progeny to be 10% for a term 
pregnancy, and 11.5% for a fetus. A balanced 
translocation in one parent is significantly associ-
ated with miscarriage; parental balanced translo-
cation was identified in ~3–4% of couples with 
recurrent miscarriage [62, 80]. In translocation 
Down syndrome, about two thirds of cases arise 
de novo, with about half due to rob(14;21) and 
half due to rea(21;21) [55], although most or all 
rea(21;21) are isochromosomes and not true 
Robertsonian translocations [77]. In inherited 
translocation Down syndrome, the translocation 
chromosome is more frequently inherited from 
the mother, indicating that checkpoints in 
oogenesis are not as stringent as those in sper-
matogenesis. Recurrence risk for Down syn-
drome from inherited Robertsonian translocations 
is believed to be 10–15% if the mother has the 

translocation, and less than 1% if the father has 
the translocation.

Only a few reciprocal translocations have 
been found to be recurrent. Emanuel syndrome 
[OMIM #609029] is characterized by multiple 
congenital anomalies and an unbalanced karyo-
type with a supernumerary der(22) inherited 
from an unaffected parent with a t(11;22)
(q23;q11.2) [20, 94]. Breakpoints in palindromic 
AT-rich repeat (PATRR) sequences on chromo-
somes 11 and 22 suggest that palindrome-
mediated formation of secondary structure 
promotes double-strand breakage and resulting 
translocation [37]. PATRRs have been recog-
nized on chromosomes 1, 4, 8, 11, 17 and 22, and 
rare recurrent translocations between PATRRs 
on chromosomes 8 and 22 [that may result in 
progeny with supernumerary der(22)t(8;22) 
syndrome, OMIM #613700] have been reported 
[78], as well as rare translocations between 
PATRRs on chromosomes 17 and 22, in individu-
als with neurofibromatosis type I [NF1, 
OMIM #162200] [37].

1.3.2	 �Some Somatic Translocations 
Initiate Transformation 
of Cancer Cells

Although interest in cancer had driven much 
early progress in cytogenetic techniques, the 
complex, abundant, and variable chromosomal 
aberrations observed in many cancers were diffi-
cult to interpret, and also led investigators to 
believe that chromosomal rearrangements might 
all be secondary to the events that initiate tumori-
genesis. Two early successes in deciphering the 
molecular biology of oncogenic translocations 
were groundbreaking in understanding the 
importance of chromosomal rearrangements in 
driving tumorigenesis.

Although not initially recognized as such, the 
first translocation associated to a specific cancer 
was the Philadelphia chromosome (Ph), uniquely 
associated with chronic myelogenous leukemia 
[CML, OMIM #608232] [59]. Its identity as a 
der(22) involved in a translocation with chr9 was 
only uncovered 13 years later, once banding tech-
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niques had been developed [73]. In 1982, the 
ABL oncogene [OMIM *189980], known to map 
to chr9, was shown to be translocated to the Ph 
chromosome 22 [10]. Fine-mapping of ABL [25] 
and the chr22 breakpoint cluster region [23] led 
to identification of an ABL-BCR fusion gene that 
results from translocation [79], and the fusion 
gene’s oncogenic activity in CML was demon-
strated [40]. More than 90% of CML cases have 
a t(9;22), and presence of the Ph chromosome 
aids in diagnosis; cryptic rearrangements are 
likely responsible for the remaining 10%.

Three translocations associated with Burkitt’s 
lymphoma [OMIM #113970] and involving 8q24 
were characterized in the late 1970s, with the 
causative gene rearrangement [83] identified 
prior to that of the Ph chromosome in CML. The 
common translocation, t(8;14)(q24;q32), places 
the intact coding exons of MYC [OMIM 
*190080], a gene encoding a cell growth and cell 
cycle transcription factor, close to the enhancer 
of the immunoglobulin heavy chain locus 
[IgH locus, see OMIM *147100], driving consti-
tutive expression in B-lymphocytes and confer-
ring oncogenicity. The t(2;8) and t(8;22) 
translocations place MYC in proximity to enhanc-
ers at the IgK or IgL loci, respectively, with simi-
lar effect. The pathogenicity of the CML and 
Burkitt’s translocations is thus explained by two 
distinct, important, and generalizable models: in 
CML, the formation of a fusion gene results in 
pathogenic gain of function of a novel chimeric 
protein; in Burkitt’s lymphoma, alteration of the 
regulatory environment of a gene drives its mis-
expression, resulting in pathogenic gain of func-
tion of the normal protein.

1.3.3	 �Balanced Reciprocal 
Translocations Are Etiologic 
for Many Clinical Phenotypes

The earliest pedigrees with translocations were 
those of translocation Down syndrome, where 
trisomy for 21q was clearly implicated in the 
clinical phenotype, and parents and other family 
members with the translocated chromosome and 
balanced karyotypes were phenotypically nor-
mal. Early pedigrees of reciprocal translocations 

likewise showed phenotypically normal parents 
with apparently balanced translocations whose 
children with clinical phenotypes had unbalanced 
karyotypes. These pedigrees, though perhaps sur-
prising at first, established the paradigm that rear-
rangement without apparent loss or gain of 
chromosomal material had no consequence other 
than that of the contribution of unbalanced gam-
etes to risks of infertility, miscarriage, and unbal-
anced offspring. Challenging that paradigm, 
Jacobs [34] presented epidemiological evidence 
suggesting that de novo balanced rearrangements 
(translocations and inversions) were overrepre-
sented among mentally retarded individuals com-
pared to consecutive or random newborns and 
individuals ascertained for unspecified reasons. 
Funderburk et al. [21] found balanced rearrange-
ments to be significantly overrepresented among 
mentally retarded individuals when compared to 
children of normal intelligence with psychiatric 
indications. Other studies of outcomes where bal-
anced rearrangements were ascertained from sur-
veys of consecutive newborns [50, 56, 85] were 
underpowered, failing to ascertain large enough 
numbers of subjects with balanced rearrange-
ments to interpret correctly an effect that we now 
know to apply to only a few to several percent of 
individuals with balanced, non-Robertsonian, 
rearrangements [92]; Warburton’s robust esti-
mate of the risk of congenital anomaly associated 
with such rearrangement required the ascertain-
ment of outcomes of 377,357 amniocenteses 
from multiple clinical centers.

A high burden of proof is required for assign-
ing etiology of phenotype to a balanced recipro-
cal translocation, given that most are both unique 
and without phenotypic consequence. 
Nonetheless, a diagnosis can be made when direct 
disruption of a known disease gene can be docu-
mented and correlated to a specific phenotype, as 
abundant case reports attest. Individuals with bal-
anced translocations and clinical phenotypes have 
been useful in mapping a number of Mendelian 
disease loci, particularly those with severe phe-
notypes that usually occur de novo, precluding 
linkage analysis. For instance, the locus for neu-
rofibromatosis type 1 (NF1, OMIM #162200) 
was identified on the basis of two balanced recip-
rocal translocations, both with breakpoints in 
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17q11.2 [42, 75]. Similarly, various rearrange-
ments were reported in patients with Sotos syn-
drome [OMIM #117550], but two translocations 
with breakpoints in 5q35 [33, 52] directed 
investigation to that region; NSD1 [OMIM 
*606681] was cloned, shown to be disrupted in 
the translocation of the tested patient, and point 
mutations and genomic deletions of NSD1, now 
known to explain about 90% of Sotos syndrome 
cases, were found in the majority of a cohort of 
patients [41].

Translocations have also been productive in 
identifying new candidate genes underlying com-
mon clinical phenotypes that may arise from dys-
function of any number of genes, as in autism 
spectrum disorder, cardiac defects, and orofacial 
clefting [26, 71]. Two cases described by Kim 
et  al. [38] contributed to identifying a role for 
neurexin 1 [NRXN1, OMIM *600565] in autism 
spectrum disorder; NRXN1 has since also been 
strongly implicated in other neurodevelopmental 
disorders, including schizophrenia and intellec-
tual disability. Quintero-Rivera et  al. [69] mar-
shalled substantial evidence that matrin 3 
[MATR3, OMIM *164015], previously associ-
ated with amyotrophic lateral sclerosis [ALS21; 
OMIM #606070], is etiologic for cardiac left 
ventricle outflow tract (LVOT) defects in a child 
with a t(1;5) disrupting MATR3 on 5q. 
Interestingly, AHDC1 [AT-hook DNA-binding 
motif-containing protein 1, OMIM *615790] on 
1q was also disrupted by this translocation, and 
several aspects of the child’s phenotype, includ-
ing intellectual disability, facial dysmorphisms, 
and respiratory and sleep disturbances, were con-
cordant with those reported for a newly-described 
syndrome [Xia-Gibbs syndrome, OMIM 
#615829] attributed to heterozygous mutation in 
AHDC1 in only four cases [93].

1.3.4	 �Resolution of Translocation 
Breakpoints by Sequencing 
Provides New Information

Whole-genome sequencing now permits discov-
ery and precise localization of rearrangement 
breakpoints [58, 71, 82] (Table 1.1). Particularly, 

analysis of discordant mate-pair mappings from 
low-coverage, long-insert whole-genome 
sequencing is a cost-effective means of doing so 
[82], and is likely to one day displace standard 
karyotyping. Sequence-level breakpoint mapping 
provides identities of genes directly disrupted in 
a rearrangement, and of nearby genes that may be 
dysregulated by altered positioning of cis-
regulatory enhancers, other regulatory elements, 
or regions of chromatin modification. Sequencing 
discovers complexity that is cryptic to karyotyp-
ing and imbalances that are below the resolution 
of clinical microarrays. De novo balanced trans-
locations detected on prenatal karyotype can be 
assessed in a timely manner by this approach; for 
example, in prenatal cases reported by Ordulu 
et al. [61], sequencing supported or confirmed a 
suspected genetic diagnosis in most of the cases 
referred for abnormal prenatal findings. Redin 
et al. [71] reported sequenced breakpoints in 248 
of 273 subjects, the majority ascertained via the 
Developmental Genome Anatomy Project 
(DGAP), a long-running effort to identify genes 
important in development by investigating appar-
ently balanced rearrangements in patients with a 
wide variety of phenotypes, including neurode-
velopmental disorders and structural congenital 
anomalies [26]. Redin et  al. were able to make 
high-confidence correlations of genes to pheno-
types in about a quarter of the subjects, and iden-
tify, in another 20%, likely candidate genes based 
on gene disruption or predicted position effects. 
They also documented additional complexity, 
cryptic to karyotype, in more than 20% of the 
rearrangements that they analyzed. This com-
plexity included genomic gains or losses, some 
proportion of which would be invisible to clinical 
microarray. Among 65 subjects (26% of the total) 
with complex rearrangements (three or more 
breakpoints), 13 had multiple breakpoints char-
acteristic of the “shattering” phenomena of chro-
mothripsis or chromoplexy; in one case, 57 
breakpoints were mapped. Overall, about 80% of 
the 248 analyzed rearrangements were balanced 
or nearly so, with less than 10  kb of genomic 
imbalance, indicating that  the majority of 
these  pathogenic mutations fail to leave even a 
footprint on clinical microarray.

1  Historical and Clinical Perspectives on Chromosomal Translocations
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Some balanced translocations are also cryptic 
to karyotyping. In an unusual case [68], a child 
with multiple congenital anomalies and some 
features overlapping those of cri-du-chat syn-
drome [OMIM #123450] was found by FISH to 
have a 4.6  Mb deletion at the terminus of 5p, 
much smaller than the canonical cri-du-chat 
region. Two previous pregnancies of the mother 
had been terminated, one for complete lissen-
cephaly [OMIM #607432], and one for intrauter-
ine growth restriction. The karyotypes of both of 
the parents and the affected child were unremark-
able. However, FISH of the mother’s chromo-
somes, including a probe to 17p  (a known 
lissencephaly locus), indicated a balanced trans-
location between 5p and 17p. The affected 
daughter had inherited the der(5) chromosome, 
resulting in gain of 17p as well as loss of 5p, with 
phenotypic features attributable to each. The 
authors hypothesized that the fetus with lissen-
cephaly had inherited the der(17) chromosome, 
with presumed heterozygous loss of PAFAH1B1 
[OMIM *601545] responsible for the lissenceph-
aly phenotype. A cautionary tale, this cryptic 
translocation was hypothesized and uncovered 
only through thoughtful assessment of a “pecu-
liar” pedigree and distinctive phenotypes already 
strongly linked to known loci. Without excep-
tional circumstances such as these, cryptic bal-
anced translocations will remain undetected until 

whole-genome sequencing designed to ascertain 
rearrangements becomes routine.

1.3.5	 �Mapping the Regulatory 
Genome with Translocations

Whole exome sequencing of patients with condi-
tions of suspected single-gene etiology currently 
yields known or likely candidate pathogenic 
mutations in about half. Extragenic regulatory 
mutation is likely to constitute a significant pro-
portion of this “missing” mutation. Mammalian 
genomes are now well-known to be looped, 
folded, and scaffolded into three-dimensional 
architectures that influence gene expression 
through the spatial control of interactions of gene 
promoters with extragenic enhancers and other 
regulatory elements [12, 47, 70]. Chromosomes 
are physically organized into topologically-
associated domains (TADs), “neighborhoods” of 
typically a megabase or smaller, that demonstrate 
higher frequencies of chromatin-chromatin con-
tacts within domains than across domains [48, 
49]. Enhancer-promoter contact frequencies 
define TADs, delimited by boundary elements 
that discourage promiscuous interactions of 
enhancers with non-target neighboring promot-
ers; critical gene-regulatory enhancers may be 
arrayed along a chromosome at distances of sev-

Table 1.1  The resolution of techniques to detect chromosomal structural variation has improved by several orders of 
magnitude since the 1950s

Technique Introduced Capable of detecting translocations? Resolution
Karyotype - 
unbanded

1950s–1960s Yes, but only Robertsonian 
translocations and unbalanced or 
balanced translocations resulting in 
significant change in length of the 
derivative chromosomes

~10–20 Mb, depending on 
chromosome length (although 
misidentification of chromosomes 
was common)

Karyotype - 
banded

1970s Yes ~5–10 Mb

FISH 1980s–1990s Yes, targeted to one or a few loci <1 Mb to gene-level
Chromosomal 
microarray 
analysis (CMA)

2000s No, except if unbalanced and 
suspected by a 
duplication-deficiency

~100 kb (depending on platform and 
laboratory cut-offs)

Next-generation 
sequencing (NGS)

Late 2000s Yes, by discordant mate-pair 
mapping of whole-genome 
sequence

Base pair-level resolution if followed 
up with Sanger or amplicon 
sequencing; otherwise, resolution to 
level of insert (fragment) size

E. S. Wilch and C. C. Morton
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eral 100 kilobases to a megabase or more from 
the genes they regulate, particularly in the case of 
genes important in developmental processes [11].

Translocations can displace important enhanc-
ers or other regulatory elements from the genes 
they regulate. This has been demonstrated for 
several genes where translocations were central 
in flagging locations of distant cis-regulatory ele-
ments. An enhancer controlling limb expression 
of sonic hedgehog (Shh/SHH [OMIM *600725]) 
was localized to an intron of a distant gene and 
implicated in Shh/SHH expression in both mouse 
and human by a combination of evidence, includ-
ing a translocation in a patient with preaxial poly-
dactyly type II [PPD2, OMIM #174500], where 
one breakpoint mapped very close to the 
enhancer, nearly 1 Mb away from SHH itself [45, 
46]. A downstream regulatory region was identi-
fied by mapping translocation and inversion 
breakpoints in patients with aniridia [OMIM 
#106210] where the causative gene, PAX6 
[OMIM *607108], was found to be left intact by 
the rearrangements [15, 39]. Structural variants, 
including translocations, in patients with campo-
melic dysplasia or acampomelic campomelic 
dysplasia [CD and ACD, OMIM #114290] indi-
cate that a complex SOX9 [OMIM *608160] 
regulatory landscape exists as far as 2  Mb 
upstream and 500  kb downstream of the gene 
itself; severity of the phenotype in translocation 
patients is broadly correlated with distance of the 
translocation breakpoint from SOX9 itself [22]. 
Other phenotypes are associated with copy num-
ber variation or rearrangements around SOX9, 
including Pierre-Robin sequence [PRS, OMIM 
%261800] and 46,XX and 46,XY disorders of 
sex development (DSDs) [OMIM #278850 and 
#613080], all of which can occur with or without 
accompanying CD or ACD.  Translocations of 
patients with isolated PRS have been localized to 
two separate regions, about 1  Mb and 400  kb 
upstream of SOX9 [2, 61]; likewise, deletions and 
duplications in DSD patients define critical regu-
latory regions for sex development between 500 
and 640 kb upstream of SOX9.

Brief descriptions belie the complexity of cis-
regulatory regions, the variations that may occur 
among phenotypes of patients with rearrange-

ments variously disrupting a regulatory locus, 
and the many mechanisms proposed to explain 
the pathogenicity of those rearrangements [3]. 
Beyond simply removing an enhancer from its 
cognate promoter, translocations and other rear-
rangements change the physical conformation of 
the regulatory locus, altering or disrupting chro-
matin loops that may affect the function of 
enhancers and other elements that remain 
between a cognate promoter and a rearrangement 
breakpoint. Enhancers brought into a locus by a 
rearrangement may make spurious contacts with 
an existing promoter, altering its expression. New 
chromatin conformations may alter the mainte-
nance of the epigenetic landscape, resulting in 
gene expression changes via classical position 
effect mechanisms. Thus, predicting the effects 
of translocations that disrupt extragenic 
sequences is not trivial. Zepeda-Mendoza et  al. 
[95] collated genome-wide datasets of enhancer 
marks, DNAse-hypersensitivity sites, and TAD 
boundaries predicted by chromatin contacts [13], 
along with haploinsufficiency and triplosensitiv-
ity scores [31] and phenotype information from 
DECIPHER [9] and ClinGen [72] to identify and 
prioritize candidate genes that may be etiologic in 
patients harboring balanced rearrangements with 
intergenic breakpoints. The success of this 
approach relies on the existence of multiple, 
diverse datasets that inform our understanding of 
the complexities of gene regulation and function, 
recognizes that rearrangements may result in 
dysfunction of genes located at distances up to 
several Mb, and depends most critically on the 
availability of large collections of patient 
phenotype-genotype information.

1.4	 �Summary

Much Mendelian disease is rare. Rarer still are 
patients whose congenital anomalies or neurode-
velopmental disorders are caused by balanced 
translocations that disrupt genes or their cis-
regulatory regions. Approaches to diagnosing 
genetic etiologies that discount the contribution 
of balanced chromosomal rearrangements disen-
franchise those patients, lengthening diagnostic 

1  Historical and Clinical Perspectives on Chromosomal Translocations



10

odysseys and adding medical costs, and some-
times compromising patient care. Reciprocal 
translocations and other balanced rearrangements 
represent an important class of pathogenic varia-
tion that is cryptic to chromosomal microarray, 
cannot be ascertained from exome sequencing 
data, and may be incompletely described or even 
undetected by karyotyping. Nucleotide-level res-
olution of rearrangement breakpoints is essential 
for interpreting the etiology of phenotypes in 
patients with balanced rearrangements.
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Abstract
Chromosomal translocations are associated 
with several tumor types, including hemato-
poietic malignancies, sarcomas, and solid 
tumors of epithelial origin, due to their activa-
tion of a proto-oncogene or generation of a 
novel fusion protein with oncogenic potential. 
In many cases, the availability of suitable 
human models has been lacking because of 
the difficulty in recapitulating precise expres-
sion of the fusion protein or other reasons. 
Further, understanding how translocations 
form mechanistically has been a goal, as it 
may suggest ways to prevent their occurrence. 
Chromosomal translocations arise when DNA 
ends from double-strand breaks (DSBs) on 
two heterologous chromosomes are improp-
erly joined. This review provides a summary 
of DSB repair mechanisms and their contribu-
tion to translocation formation, the various 

programmable nuclease platforms that have 
been used to generate translocations, and the 
successes that have been achieved in this area.

Keywords
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Chromosomal translocation · NHEJ

2.1	 �Introduction

Chromosomal translocations join DNA segments 
derived from two heterologous chromosomes. 
Translocations influence the evolution of species, 
but they are mainly considered in the context of 
disease. In particular, they are prominent features 
of several types of cancers, from hematopoietic 
to solid tumors, leading to the expression of a 
new fusion oncogene or to the mis-regulation of a 
proto-oncogene. Models for translocation-
associated cancers typically rely on ectopic 
expression of fusion genes in cell lines or on 
endogenous expression in transformed tumor 
cells. While valuable to the scientific community 
for providing insights into mechanisms of onco-
genesis, these models may fail to fully recapitu-
late the human disease. For instance, mouse 
models overexpressing the NPM1-ALK fusion 
(implicated in Anaplasic Large Cell Lymphoma, 
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or ALCL) mostly induce B cell lymphomas rather 
than T cell lymphomas associated with the human 
disease, therefore failing to provide a robust pre-
clinical model [56]. Moreover, patient-derived 
tumors cells will invariably have a number of 
tumor-acquired mutations.

Chromosomal translocations appear to arise 
from improper repair of DNA double-strand 
breaks (DSBs), which are highly toxic lesions. 
The “guardians” of genome integrity mostly 
ensure reliable repair of DSBs; also, unrepaired 
DSBs can lead to apoptosis or senescence. 
However, imprecise repair of DSBs has the 
potential to be highly deleterious, as it can lead to 
genome instability, including the formation of 
chromosomal rearrangements. In particular, 
chromosomal translocations can arise when DNA 
ends from DSBs on two heterologous chromo-
somes are improperly joined [45]. Given this, 
researchers have been taking advantage of vari-
ous nucleases, especially the recently developed 
programmable nucleases, to deliberately induce 
DSBs at loci of interest to generate transloca-
tions. The goal is to ultimately generate faithful 
tumor models and also to understand the DSB 
“misrepair” mechanisms that lead to 
translocations.

2.2	 �Multiple DSB Repair 
Pathways: Repairing 
a Dangerous Lesion

Given that DSBs can compromise the integrity of 
the genome, it is perhaps not surprising that mul-
tiple pathways exist to repair DSBs [8, 21, 22] 
(Fig. 2.1). The two major DSB repair pathways in 
mammalian cells are nonhomologous end-joining 
(NHEJ) and homologous recombination (HR), 
also termed homology-directed repair. The rela-
tionship of these pathways is complex. In some 
cases, DSB repair is limited to one pathway, as in 
programmed DSBs in the immune system 
(NHEJ) or during meiosis (HR), but the path-
ways can also compete with each other for the 
repair of a single DSB and surprisingly even col-

laborate [26], such that DSB repair initiates by 
HR but is completed by NHEJ [12, 25, 42]

In cycling cells, an early determinant of DSB 
repair pathway choice is whether DNA ends 
undergo resection to generate 3′ single-stranded 
overhangs, which is promoted during the  S/G2 
phases of the cell cycle but suppressed during G1 
[53]. The resected DNA is then coated with the 
RAD51 protein to form a nucleoprotein filament, 
which performs strand invasion of a homologous 
template to prime repair synthesis [36]. If tem-
plated by the sister chromatid, the preferred HR 
partner, repair synthesis leads to restoration of the 
original DNA sequence prior to breakage. By con-
trast, during canonical NHEJ (c-NHEJ), DNA ends 
are protected from resection and can be precisely 
joined, if ends do not require modification, or 
imprecisely joined after processing to make ends 
ligatable, giving rise to a variety of junctions.

End resection also provides single-stranded 
DNA intermediates for two other pathways (Fig. 
2.1). Alternative NHEJ (alt-NHEJ), a major path-
way of which is microhomology-mediated NHEJ 
(MMEJ), involves annealing at short sequence 
identities present near the DNA ends and thus only 
requires limited end resection (<100 bp) [46]. As 
with c-NHEJ, this pathway gives rise to a variety 
of junctions, although deletions may be longer 
with MMEJ due to resection [48]. Because any 
particular breakpoint junction can likely form by 
either NHEJ pathway, identifying which pathway 
is responsible requires statistical analysis to deter-
mine if microhomology is over represented or the 
use of pathway mutants, for example, in ligase IV 
(LIG4) for c-NHEJ and ligase III (LIG3) for alt-
NHEJ [47, 48]. Single-strand annealing (SSA) 
also involves annealing at repeats flanking the 
DSB, but the repeats are much longer, and thus 
requires more extensive end resection than alt-
NHEJ to uncover complementary single-strands. 
The physiological role of SSA in cells is unclear, 
but it has been used to distinguish whether HR 
mutants are defective in the early end-resection 
step of HR (defective in both HR and SSA) from 
those defective only at the strand invasion step 
(defective in HR but elevated SSA) [52].
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2.3	 �Elucidation of Translocation 
Mechanisms in Mouse Cells 
Using a Rare-Cutting 
Endonuclease

As the complexity of DSB repair pathways in 
mammalian cells was uncovered, investigators 
sought to determine how each pathway partici-
pates in translocation formation. In the era before 
programmable endonucleases, DSBs were intro-
duced into the genome using the yeast homing 
endonuclease I-SceI [11], which has an ~18 bp 
recognition site and thus is suitable for studies in 
complex mammalian genomes. Several reporters 
were developed in mammalian cells to determine 
which DSB repair pathway(s) gives rise to trans-
locations upon DSB formation [62]. I-SceI sites 
were introduced at specified chromosomal loca-
tions by gene targeting in mouse embryonic stem 
cells, which are  diploid. Translocations were 
selected by reconstruction of a drug resistance 
marker and confirmed by fluorescence in situ 
hybridization.

Initial studies focused on HR between repeats 
on different chromosomes, given that transloca-
tions will form by HR in budding yeast [20] and 
that mammalian genomes are replete with 
sequence repeats. Introducing a DSB into a repeat 
on one chromosome, however, did not give rise to 
a translocation; rather the DSB was repaired by a 
simple gene conversion event with the other 
chromosome without exchange of flanking mark-
ers [44]. This study, as well as subsequent ones 
(e.g., [30, 51]), indicated that HR in mammalian 
cells is rarely associated with crossing over. A 
follow up study attempted to drive translocation 
formation by HR by truncating the repeats, such 
that restoration of the selectable marker would 
seem to require HR. However, in this case too, 
HR did not lead to translocations; rather, HR was 
coupled to NHEJ, involving a break-induced rep-
lication type of HR that was completed by NHEJ 
[42]. Presumably, the BLM helicase plays a 
major role in suppressing crossing over that 
would drive translocation formation, as it does 
between homologous chromosomes [30]. Thus, 

Fig. 2.1  DSB repair pathways. The two major DSB 
repair pathways in mammalian cells are nonhomologous 
end-joining (NHEJ) and homologous recombination 
(HR). In addition, end resection provides single-stranded 

DNA intermediates for two other pathways: Alternative 
NHEJ (Alt-NHEJ) using microhomology and Single 
Strand Annealing (SSA)

2  Induction of Chromosomal Translocations with CRISPR-Cas9 and Other Nucleases: Understanding…
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these studies indicated that while a DSB on one 
chromosome was sufficient to induce HR with 
another chromosome, it was not sufficient to 
drive translocation formation. Although HR 
between repeated sequences has been reported in 
several contexts, it is notable that many or most 
of these events likely occur during meiosis [27], 
when HR may be under different constraints.

Subsequent studies focused on introducing 
two DSBs, one on each chromosome. Using this 
approach, both NHEJ and SSA were found to 
give rise to reciprocal translocations; in fact, both 
derivative chromosome could form by NHEJ or 
SSA or one derivative chromosome could form 
by NHEJ and the other SSA [15, 43, 60]. SSA 
was highly proficient for translocation formation 
with identical sequence repeats and presumably 
because the DSBs occurred close by the repeats 
and on opposite sides [15]. However, when diver-
gent repeats were used, specifically two different 
Alu elements from the MLL gene, the frequency 
of SSA-mediated translocations dropped sub-
stantially, resulting in more NHEJ-mediated 
events. Mismatch repair components likely sup-
press SSA between diverged, but homologous 
sequences, as it does in other contexts [16]. These 
studies highlight the constraints on SSA for 
mediating translocation formation, in particular, 
the degree of sequence identity between the 
repeats and the positions of the DSBs relative to 
the repeats.

Most translocation breakpoint junctions 
observed in tumors from patients join at 
sequences that do not share significant lengths of 
homology, indicating that they arose by NHEJ 
[32]. The role of c-NHEJ was investigated using 
the NHEJ-based translocation reporters in mouse 
embryonic stem cells. Translocations were found 
to be suppressed by c-NHEJ components LIG4 
and Ku70 [48, 60], consistent with results in lym-
phoid systems where oncogenic translocations 
increased in the absence of these proteins [17]. 
Translocation junctions were biased towards the 
presence of microhomologies, with or without 
these c-NHEJ components, suggesting that alt-
NHEJ (MMEJ) gave rise to translocations, even 

in wild-type cells [48]. Consistent with this, 
translocations were found to be largely depen-
dent on the alt-NHEJ components LIG3 [47], the 
end resection factor CtIP [65], and polymerase 
theta [33], as determined using programmable 
nucleases. Taken together, these results indicate 
that alt-NHEJ is the major mechanism for trans-
location formation in mouse cells.

2.4	 �When ZFNs Then TALENs 
Arrived on the Scene: 
Tailored Nucleases 
for Tailored Translocations

The rare cutting I-SceI endonuclease proved to 
be a valuable tool to induce chromosomal trans-
locations. The limitation of I-SceI is the necessity 
to target genomic loci with the recognition site, 
yet genome modification prior to 2005 was much 
more laborious in human cells than in mouse 
cells. The advent of programmable nucleases tai-
lored to cleave any possible locus within genomes 
has opened tremendous possibilities to create de 
novo translocations to generate cancer models.

The development of tailored (programma-
ble)  endonucleases originated in 1996 with the 
report of a fusion of a zinc finger DNA binding 
domain with the cleavage domain of the FokI 
restriction enzyme to create a zinc finger nucle-
ase (ZFN) [28]. Almost a decade later, a ZFN 
developed by Sangamo Biosciences was shown 
to cleave an endogenous locus in human cells to 
lead to its modification [57]. Building on the ini-
tial results obtained with I-SceI, our group har-
nessed ZFNs to induce chromosomal 
translocations at two endogenous loci in human 
cells [6, 61]. Breakpoint junctions were identified 
by PCR and clones carrying translocations could 
be recovered from tumor cell lines.

This study provided the first proof of concept 
of modeling translocations using custom-
designed nucleases. Remarkably, translocations 
were also obtained in multipotential stem cells, 
both human embryonic stem cells and mesenchy-
mal cells derived from them [6]. Following this 
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work, a cancer-relevant translocation was reca-
pitulated, t(11;22)(q24;q12), the most common 
rearrangement found in Ewing sarcoma, by 
designing ZFNs to target the most common 
breakpoints found in patients. Reciprocal translo-
cations were readily recovered in mesenchymal 
precursor cells, leading to EWSR1-FLI1 fusion 
gene expression from the endogenous EWSR1 
promoter. Notably, the joining characteristics  – 
deletions, insertions, mutations – found in trans-
locations resulting from ZFN cleavage fully 
recapitulated those from Ewing patient cells and 
demonstrated that the junctions arose by an 
NHEJ pathway. Of note, the FokI cleavage 
domain in a ZFN works as a dimer, with each 
monomer fused to a different assembly of zinc 
fingers for DNA recognition. This leaves open 
the possibility that incorrect ZFNs could form to 
cleave newly formed translocation junctions or 
off-target sites. Modified FokI domains that het-
erodimerize have been developed that strongly 
promote the use of the correct partner [14]; these 
are particularly valuable for the simultaneous use 
of pairs of ZFNs as required for translocation 
formation.

The technical complexity of designing and 
assembling highly specific and active zinc fin-
gers, however, prohibited the wide spread use of 
ZFNs (“democratization”; [21]) by academic 
researchers. In 2010 the development of TALENs 
(Transcription Activator-like Effector Nucleases) 
extended the repertoire of tailored nucleases to 
one with a much more elementary code of base 
recognition [35]. TALENs use the same homo- or 
heterodimeric FokI cleavage domains as ZFNs, 
but assembling modules for DNA sequence rec-
ognition became much more trivial. As with 
ZFNs, the use of two TALENs enabled the for-
mation of translocations [38]. Modeling t(2;5)
(p23;q35), found in cases of ALCL, our group 
showed expression of oncogenic NPM1-ALK 
kinase activation in human cell lines. Conversely, 
the NPM1-ALK translocation in a patient cell 
line could be reverted with the same pair of 
TALENs, restoring the integrity of the two par-
ticipating chromosomes and potentially permit-
ting the analysis of phenotypic consequences of 
fusion protein loss once cells are transformed.

2.5	 �The CRISPR-Cas9 Revolution: 
When Easy Is Made Easier

Soon after TALEN development, CRISPR-Cas9 
appeared upon the scene as a highly simplified 
tailored nuclease, using a guide RNA (gRNA or 
sgRNA) to recognize the complementary DNA 
sequence in the genome [24]. This new nuclease 
was quickly used to induce chromosomal translo-
cations, including the previously described mod-
els of NPM1-ALK [18] and Ewing sarcoma [54] 
[41] and new models of lung cancer transloca-
tions [10] and acute myelogenous leukemia [41, 
54].

CRISPR-Cas9 was also used by other teams to 
create chromosomal translocations in mouse 
embryonic stem cells [23] and in mouse myo-
blasts, the latter modeling the human alveolar 
rhabdyomyosarcoma Pax3-Foxo1 [29], but also 
in other organisms, namely C. elegans [9] and 
Leishmania [64].

Thus, it is now possible to faithfully model the 
full outcome of these chromosome rearrange-
ments, including the formation of the reciprocal 
translocation, loss of one intact copy of each par-
ticipating gene, recapitulating potential haploin-
sufficiency, and fusion gene expression from the 
endogenous promoter: basically the holy grail for 
those in quest of relevant translocation cancer 
models.

2.6	 �Isolating Translocation 
Clones

Despite their success, these studies also showed 
that isolation of translocation clones induced de 
novo remains tedious irrespective of the type of 
nuclease used and particularly in primary cells 
for which long sib-selection cycles are mostly 
unworkable. Whether it is just a matter of effi-
ciency – translocation formation being much less 
efficient than simple intra-chromosomal repair – 
or whether expression of the fusion gene directly 
affects proliferation of the cells remains to be 
elucidated. Attempts to increase the translocation 
frequency have involved short single-strand oli-
gonucleotides matching the DSB ends formed by 
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CRISPR-Cas9 to “guide” joining of the two chro-
mosome ends for translocation formation [55].

A strategy for selecting translocation  
clones has also recently been developed, 
with EWSR1-WT1 found in desmoplastic round 
cell tumors as the model [58]. The approach uses 
CRISPR-Cas9 to induce integration of a homolo-
gous donor fragment containing a selectable 
marker at DSBs on the translocating chromo-
somes. The selectable marker is promoterless and 
contains an upstream splice acceptor to strongly 
enrich for HR events at the EWSR1 locus. A fur-
ther refinement is that the selectable marker is 
flanked by LoxP sites, such that fusion protein 
expression is conditional and dependent on 
removal of the selectable marker cassette by 
expression of Cre recombinase. This strategy has 
also proved to be effective in a tumor cell line 
[50].

2.7	 �Modeling Oncogenesis 
Using Programmable 
Nucleases: First Steps 
Towards Full Transformation 
In Vivo

The first example of oncogenesis obtained in vivo 
from a nuclease-induced rearrangement was pub-
lished in 2014 and involved formation of the 
EML4-ALK fusion through an 11 Mb inversion 
[31]. Although not a translocation per se involv-
ing two different chromosomes, this report pro-
vided direct evidence that the formation of the 
EML4-ALK fusion induced by CRISPR-Cas9 
activity in the lungs of mice leads to lung adeno-
carcinomas. In parallel, another group obtained 
similar results [4]. While the high efficiency of 
transformation obtained in these studies is likely 
related to a high rate of intra-chromosomal rear-
rangements, this study suggests that  transloca-
tions between two chromosomes could be tested 
in a similar manner.

While TALENs have been used to generate an 
MLL-AF9 fusion by knock-in [7], faithful de 
novo translocations giving rise to MLL-AF4 and 
MLL-AF9 have been produced by TALENs in 
CD34+ cells [5]. Although transformation to leu-

kemia did not occur in vitro, a range of pheno-
types was observed, from frequent loss of cells 
to the persistent proliferative advantage of a few 
cells, as well as some clones showing a transient 
proliferative advantage. More recently, another 
group reached similar conclusions with the MLL-
ENL translocation in CD34+ cells in vitro, with 
cells forming normal hematopoietic colonies but 
eventually ceasing to proliferate, even if some 
clones shown extended plating capacity [39]. 
However, while the first round recipient mice ini-
tiated a “monocytic leukemia-like phenotype” 
but not immature AML, the second round recipi-
ents developed AML but with incomplete 
penetrance.

Despite the limitations uncovered in these 
studies, nuclease induced-translocation models 
are expected to reveal new aspects of tumorigen-
esis and will undoubtedly in the near future pro-
vide insights about the timing between the 
translocation occurrence and the appearance of 
the disease, more relevant to progression devel-
opment found in patients by bypassing limita-
tions of models expressing ectopically fusion 
genes. The role of the in vivo environment and 
the undeniably pivotal role of accumulation of 
secondary mutations certainly remains to be 
uncovered.

2.8	 �Elucidation of Translocation 
Mechanisms in Human Cells 
Using Programmable 
Nucleases

While translocations induced in mouse cells pri-
marily arise by alt-NHEJ and are suppressed by 
c-NHEJ components, translocations induced by 
programmable nucleases (ZFNs, TALENs, 
CRISPR-Cas9) in human cells have breakpoint 
junctions characterized by little or no end pro-
cessing, suggestive of c-NHEJ [6, 18]. In one 
study, half of the breakpoints in c-NHEJ-
proficient cells demonstrated almost perfect join-
ing of the ends (≤1  bp deletion) with few 
microhomologies [18]. Confirming the involve-
ment of c-NHEJ, loss of LIG4 (or its partner 
XRCC4) reduced translocations in multiple cell 
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lines. More recently, PARP3, which cooperates 
in the recruitment of c-NHEJ factors, has also 
been shown to participate to translocation forma-
tion [13]. Conversely, translocation frequency in 
human cells is not affected by loss of alt-NHEJ 
components LIG3 or CtIP [18]. In the absence of 
active c-NHEJ, the repertoire of breakpoint junc-
tions is substantially modified with the appear-
ance of numerous long deletions and the presence 
of longer microhomologies, consistent with a 
switch from c-NHEJ to alt-NHEJ (MMEJ). This 
conclusion is supported by the drastic reduction 
in translocation frequency when both c-NHEJ 
and alt-NHEJ components are lost.

Paired Cas9 nickases (nCas9) have also been 
used to induce translocations [18]. In this case, 
two gRNAs directed to opposite strands of each 
chromosome are used to generate two nicks 
which can be converted to DSBs with 5′ over-
hangs of ~40 bp that join to form translocations. 
At breakpoint junctions, deletions are substan-
tially longer than found with unmodified Cas9, 
involving loss of sequences from the overhangs. 
The portions of the overhangs that are preserved 
are filled by DNA synthesis, which leads to dupli-
cations of sequences at breakpoint junctions. 
Microhomology is also increased, consistent with 
annealing of bases within the overhangs. Paired 
nickase-generated translocations are largely 

dependent on LIG4, demonstrating that c-NHEJ 
can give rise to junctions with microhomology.

Other groups have implicated PARP1, a 
reported alt-NHEJ component [1], in transloca-
tion formation in human cells. PARP1 knock-
down and PARP1 inhibition (olaparib) have both 
been shown to reduce translocations [49, 63], 
while another report has shown that PARP1 over-
expression can increase translocations in some, 
but not all, cell lines [55]. Translocations induced 
by irradiation have also been studied. 
Interestingly, CtIP has been shown to affect 
translocation formation in G1-irradiated cells at 
late time points after irradiation, but not in 
G2-irradiated cells [2, 3]. The authors suggest 
that these events arise from a subtype of c-NHEJ 
they called resection-dependent c-NHEJ, which 
is dependent on Artemis, DNA-PK and the exo-
nuclease activity of MRE11. As IR induces com-
plex DSBs which probably need a step of 
maturation before joining, we can wonder what 
the contribution of resection-dependent c-NHEJ 
is in the formation of nuclease-induced transloca-
tions where “cleaner” DSBs are induced. In con-
clusion, c-NHEJ is directly implicated in 
translocation formation in human cells, although 
a small contribution of alt-NHEJ cannot be 
excluded (Fig.  2.2). However, when c-NHEJ is 
impaired, alt-NHEJ becomes critical. It should be 

cNHEJ
(XRCC4/LIG4, PARP3)

Alt-NHEJ
(MMEJ)

(PARP1, CtIP)

DSB DSB

DSB : Nucleases

ChrA ChrB

(a)

(b)

(c)

Fig. 2.2  Translocation 
mechanisms in human 
with programmable 
nucleases. Chromosomal 
translocations in human 
cells are principally 
formed by c-NHEJ (a) 
although a small 
contribution of alt-NHEJ 
cannot be excluded (b). 
In absence of active 
c-NHEJ, the 
contribution of alt-NHEJ 
become critical (c)
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noted that the absence of NHEJ components can 
leave spontaneously arising DSBs unrepaired; 
the increased frequency of breakage genome 
wide may then promote translocations. 

2.9	 �How Model Systems 
Recapitulate Patient 
Breakpoints

Numerous studies have reported breakpoint junc-
tions for various translocations found in tumors. 
Oftentimes, only the junction sequences for the 
oncogenic translocation have been reported, 
although several publications include both junc-
tions from the reciprocal (balanced) transloca-
tion. Concerning deletions, while most of the 
breakpoints are accompanied by deletions, the 
median deletion length remains short (e.g., 1 bp, 
[37]; 5  bp, [40]; 14  bp, [19]). Larger deletions 
(>1000 bp) are also observed at lower frequency, 
arising either by resection or possibly as the 
result of several breaks. Notably, perfect joining 
of ends has also been reported (e.g., 37% of junc-
tions [37]). Microhomologies have been observed 
in 20–40% of translocation breakpoint junctions 
from tumors [34, 37, 59]. The definition of micro-
homology can differ, however, as authors have 
sometimes considered there to be microhomolo-
gies when short repeated sequences are found at 
insertions which do not exactly correspond to the 
original two breakpoint sequences [34, 37], mak-
ing it difficult to compare various studies. Part of 
these insertions can arise from a template switch-
ing  mechanism using microhomology to prime 
synthesis at the insertion site. 

ZFN-induction of the common Ewing translo-
cation has been shown to give rise to breakpoint 
junctions that fully recapitulate those found in 
patient tumor cells with a comparable proportion 
of each type of junction (deletions, insertions, 
microhomology) [38] [66]. More complex junc-
tions, albeit happening to a lesser extent, can also 
be recovered in this model and are likely to arise 
by similar repair mechanisms as in tumor cells 
from patients. In some cases, a plausible mecha-
nism for their formation is replication primed by 

one of the DNA ends using microhomology, rem-
iniscent of the template switching mechanism 
described in patient cells [34, 37]. Of note the use 
of nCas9 provides more flexibility in DNA end 
structures, potentially leading to more complex 
rearrangements found in certain type of tumors, 
e.g., duplications [18, 41].

In summary, the induction of chromosomal 
translocations in human cells with programmable 
nucleases provides a relevant model for decipher-
ing repair mechanisms leading to this type 
of genome rearrangement and holds promise for 
deciphering the early events leading to 
oncogenesis.
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Abstract

Illegitimate joining of chromosome breaks 
can lead to the formation of chromosome 
translocations, a catastrophic type of genome 
rearrangements that often plays key roles in 
tumorigenesis. Emerging evidence suggests 
that the mobility of broken DNA loci can be 
an important determinant in partner search 
and clustering of individual breaks, events that 
can influence translocation frequency. We 
summarize here the recent literature on the 
mechanisms that regulate chromatin move-
ment, focusing on studies exploring the 
motion properties of double-strand breaks in 
the context of chromatin, the functional con-
sequences for DNA repair, and the formation 
of chromosome fusions.
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3.1	 �Introduction

Approximately a century after the first hypothe-
sis of the German cytologist Theodor Boveri that 
“malignant tumours might be the consequence of 
a certain abnormal chromosome constitution” 
[1], our knowledge regarding the mechanisms 
that contribute to the formation of chromosome 
translocations is still limited. Translocations 
form by the illegitimate joining of chromosome 
segments that belong to different chromosomes. 
Translocations are clinically highly relevant as 
they can be causal to essentially all types of 
human cancers and account for ≈20% of cancer 
morbidity [2, 3]. Historically, most of these gene 
fusions were found in haematological malignan-
cies, such as the prototypical BCR-ABL translo-
cation, which was identified as the first fusion to 
cause cancer [4]. However, a growing number of 
studies have identified translocations in solid 
tumours of both mesenchymal and epithelial ori-
gin [5]. This is exemplified in prostate cancer, in 
which ≈50% of cases feature translocations 
between transmembrane protease, serine 2 
(TMPRSS2) and genes encoding ETS 
transcription factors [6]. Taking advantage of the 
recurrent nature of specific translocation partners 
and their association with specific cancer types, 
translocations are commonly used as diagnostic 
tools for cancer type stratification, as they can be 
accurately detected using PCR or cytogenetic 
methodologies. A translocation can lead to the 
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formation of chimeric fusion genes or the deregu-
lated expression of oncogenes or tumor suppres-
sor genes. These events may act as drivers of 
deregulated cell growth in initial stages of cancer 
and can therefore undergo positive selection dur-
ing oncogenesis. In addition to this simplistic 
view, complex chromosome rearrangements have 
been also identified in patients and are believed to 
be caused by single catastrophic events during 
the recently identified phenomenon of chro-
mothrypsis [7].

A textbook view on the events that lead to 
the formation of a translocation includes three 
basic, but distinct, steps. First, DNA double-
strand breaks (DSBs) must occur in different 
chromosome loci. Second, these breaks need to 
be placed in spatial proximity before the physi-
cal association and the final joining of the bro-
ken partners. Breaks may arise spontaneously 
during physiological cellular processes, such as 
DNA replication, or from programmed events 
during the development of the immune system, 
such as during V(D)J recombination and immu-
noglobulin gene class-switch recombination 
(CSR) [8]. Exogenous conditions, such as oxi-
dative stress, ionizing radiation or the use of 
chemotherapeutics, are additional sources of 
DSBs. Whilst the majority of these breaks are 
repaired in cis by cellular DNA repair mecha-
nisms, persistent breaks may physically syn-
apse within the mammalian cell nucleus, 
increasing the possibility of getting mis-
repaired with other chromosome breaks in 
trans, leading to the formation of transloca-
tions. The development of novel experimental 
tools that allow the tracking of individual 
breaks within the nucleus has recently enabled 
the investigation of the spatio-temporal regula-
tion of these events in the mammalian cell 
nucleus. Here we discuss the recent findings on 
how intact and broken chromatin moves, how 
breaks find each other, cluster and synapse 
within the nucleus, and how these events may 
have functional consequences for DNA repair 
and the formation of chromosome fusions.

3.2	 �Chromatin Motion

The early view of chromatin as a static entity of 
DNA wrapped around histone octamers has been 
challenged over the years. It is now accepted that 
continuous changes in nucleosome composition 
and occupancy, together with changes in post-
translational modifications of histones and of the 
higher order chromatin structure ensure that 
chromatin is highly dynamic [9, 10]. Seminal 
work to first demonstrate the highly dynamic 
nature of chromatin was performed 20 years ago 
in Sedat’s lab, showing that chromatin loci, 
marked by arrays of fluorescent proteins, move 
randomly within constraint areas in S. cerevisiae 
[11]. The use of LacO/LacR and TetO/TetR [12–
14] operator/repressor system to tag and visual-
ize individual chromosome loci independent of 
nuclear movement, has allowed the tracking of 
any chromosome loci of interest in live cells. 
These experiments revealed that, independently 
of the organism used to perform the experiments 
(bacteria, S. cerevisiae, D. melanogaster, mam-
malian cells), the diffusion coefficient of chroma-
tin movement ranges from 10−4 to 10−3 μm2/sec 
[11, 15–20]. While early studies suggested that 
chromatin movement appears to be a constrained 
random walk [11], it is now clear that genomic 
loci movement does not fully recapitulate 
Brownian random walk as constraints appear to 
restrict chromatin movement [20, 21]. It has been 
demonstrated in both yeast and mammalian cells 
that chromatin motion is dependent on ATP lev-
els [11, 15, 17] and depends disproportionately 
on temperature [18, 20]. Early observations also 
have shown that chromosome loci mobility 
changes during the cell cycle and during devel-
opment, raising the intriguing possibility of a 
regulated process. In cultured Drosophila sper-
matocytes for example, higher mobility was 
observed early in differentiation compared to 
mature spermatocytes during premeiotic devel-
opment [16]. Experiments using chimaeric ver-
sions of core histones fused to photoactivatable 
or to photobleachable proteins to mark chromatin 
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territories have shown similar mobilities from 
middle G1 to late G2 [22, 23]. However, a two 
fold increase in mobility of the chromosome 
domain was observed in early G1 phase [23]. In 
support of a cell cycle-dependent chromosome 
mobility, increased mobility of a fluorescently 
tagged array has been reported in early G1  in 
human cells [24] and tagged loci in yeast have 
shown decreased motion properties during repli-
cation [17]. Along the same lines, tracking of 
decondensed chromatin domains in early S phase 
revealed higher mobility than condensed hetero-
chromatic domains during mid or late S phase in 
human cells [25, 26]. Taken together, these obser-
vations point to a higher mobility of intact chro-
mosome regions in early G1 phase, which is 
decreased as cells progress through S phase.

In addition to cell cycle status, changes in 
transcriptional activity and chromatin state have 
been associated with changes in the nuclear posi-
tioning of a certain locus as a consequence of 
increased mobility (Fig. 3.1). In mammalian cells 
it has been shown that tethering of the viral trans-
activator VP16 to a chromosome site leads to 
transcription activation and long range direc-
tional movement from the nuclear periphery to 
the interior [27]. In addition, tethering of a VP16 
fusion to a non-telomeric locus in yeast increased 
transcription and mobility [21], whereas target-
ing to a silent telomeric region repositions it 
away from the nuclear envelope [28]. Changes in 
chromatin state can also influence chromatin 
motion. Decondensation of chromatin without 
apparent transcriptional changes can mimic the 
repositioning of different genomic loci during 
differentiation, indicating that nuclear reorgani-
zation is driven by chromatin remodeling rather 
than transcription [29]. Moreover, targeting of 
the nucleosome remodeler INO80 to a chromo-
some locus in S. cerevisiae or INO80-dependent 
eviction of nucleosomes at an endogenous locus, 
both resulted in an increased movement of the 
locus [21, 30], arguing that nucleosome remodel-
ing, at least at this specific locus, correlates with 
locus mobility. Additional factors that influence 
chromosome dynamics have been recently iden-
tified. Association of telomeres with the nuclear 
envelope and tethering of centromeres to the 

spindle pole body results in a constrained mobil-
ity in S. cerevisiae [28, 31, 32]. Likewise, in 
mammalian cells association of chromosome loci 
with the nuclear periphery or the nucleolus limits 
their mobility [15, 22]. Overall, the mobility of a 
chromatin locus in the interphase nucleus can be 
considered as an ATP-dependent, non-directed, 
constrained motion that depends on physical and 
biological parameters such as the spatial nuclear 
positioning and chromatin remodeling activities 
(Fig. 3.1).

3.3	 �Double-Strand Break 
Dynamics: Lessons 
from Yeast and Mammalian 
Cells

In response to DNA damage, cells have evolved 
sophisticated response pathways, collectively 
called the DNA damage response (DDR), which 
trigger the coordinated recruitment of repair fac-
tors at the sites of damage, activate checkpoint 
pathways to reversibly halt the cell cycle progres-
sion and to elicit the repair of DNA lesions. In the 
presence of DSBs, the local accumulation of 
repair factors at the sites of breaks results in the 
formation of microscopically detectable discern-
ible DNA repair foci [33]. Time-lapse micros-
copy experiments of various DNA repair foci 
upon different types of DSB-induced DNA dam-
age [25, 34–36] and DNA tagging experiments 
using the LacO/TetO operator repressor system 
in the vicinity of endonuclease-induced breaks 
[17, 19, 37, 38], have been primarily used to 
probe the motion properties of DSBs. In both 
yeast and mammalian cells, upon the induction of 
a single DSB, both intrachromosomal ends 
remain physically tethered [38–40]. In mamma-
lian cells, both DSBs marked by repair foci and 
intact chromosome loci undergo similarly con-
straint motion with a mean squared displacement 
of ≈1 μm2 h−1 [35, 41]. Comparable motion prop-
erties have been reported upon challenging the 
cells with ultrasoft X-rays [36] and when endo-
nuclease induced DSBs were tracked in time by 
tagging chromosome loci with LacO/LacR [38]. 
In contrast, large scale DNA damage induced by 
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α-particles resulted in extensive motion and 
clustering of the damaged chromatin domains 
[34], while increased mobility of DSBs com-
pared to intact loci was observed when 53BP1 
foci, which form by the accumulation of 53BP1 
molecules at the damaged sites, were tracked in 
human cells upon ionizing irradiation [25]. 
However, analysis of motion dynamics of endo-
nuclease ISceI-induced breaks or the correspond-
ing intact chromosome loci demonstrated similar 
motion properties of broken and intact chromatin 
in mammalian cells [19] in accordance with pre-

vious findings [35, 41]. In yeast cells, induction 
of DSBs by the endonuclease ISceI leads to an 
increased motion of undamaged chromosomes 
and the broken site itself [18, 37, 42], although 
this does not take place early upon the induction 
of the breakage [43] or upon induction of differ-
ent types of breaks such as spontaneous breaks or 
breaks arising from protein-DNA cross-links [18, 
37]. It is therefore intriguing that the increased 
mobility of DSBs in yeast is associated only with 
persistent, endonuclease-induced breaks.

It has been suggested that the ability of the 
DSBs to explore larger volumes of the yeast 

Fig. 3.1  Factors reported to affect chromatin motion may 
influence clustering and synapsis of DNA double-strand 
breaks. Cell cycle stage, chromatin status, nuclear posi-
tioning and cytoskeleton-generated mechanical forces 
transferred to the nucleus are all factors that influence the 

motion of chromosome loci. Chromosome breaks with 
increased mobility may exhibit a higher probability of 
clustering, which positively contributes to the formation 
of translocations
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nucleus facilitates homology search, synapsis 
and repair and is therefore intriguingly dependent 
on factors involved in homologous recombina-
tion [37, 42]. In yeast, a possible scenario to 
explain the increased mobility of DSBs has been 
demonstrated by a recent study showing that dis-
ruption of the chromosome anchorage to the 
spindle pole body is a key event governing the 
increase in DSB mobility [44]. Moreover, in 
addition to how the DNA damage was induced, 
the genomic and chromatin context where breaks 
have been induced may directly influence the 
mobility properties (Fig. 3.1). In support of this 
idea, distinct motion properties have been 
reported between sub-telomeric and more inter-
nal DSBs [45], between breaks introduced in 
active genes or intergenic loci [46] or breaks 
within heterochromatin and other chromatin 
domains [47–49]. In S. cerevisiae, breaks within 
the ribosomal DNA (rDNA) locus led to a tran-
sient relocalization to perinucleolar regions in a 
process that is believed to suppress rDNA hyper-
recombination [50]. In a similar manner, in D. 
melanogaster, DSBs in heterochromatic domains 
rapidly accumulate early markers of DDR and 
initiate the first steps of HR, followed by their 
relocalization outside of the domain, apparently 
to avoid inaccurate recombination [47]. In both 
mammalian and yeast cells, phosphorylation of 
H2AX (γH2AX) is found at the periphery of het-
erochromatic regions, further indicating move-
ment of breaks to the periphery [48, 51]. 
Importantly, relocation of breaks does not take 
place in all types of heterochromatin. Breaks 
within the heterochromatic regions that com-
monly associate with the nuclear lamina do not 
relocate [52]. Moreover, DSBs induced by 
CRISPR-Cas9 in pericentric heterochromatin are 
positionally stable in G1 and recruit the non-
homologous end-joining (NHEJ) repair pathway 
protein Ku80, while DSBs in S/G2 relocate to the 
periphery of the heterochromatic domain to be 
bound by the homologous recombination (HR) 
repair pathway protein RAD51 [49]. These 
observations suggest a model in which the com-
mitment to specific DNA repair pathways could 
regulate DSB mobility and position [49].

Regardless of the observed differences in 
mobility of DSBs between mammalian cells and 
yeast, it is important to consider the functional 
consequences of DSB mobility in both organ-
isms. While 1 μm displacement of a certain locus 
in a yeast cell is sufficient to roam the entire 
nucleus, a similar distance travelled in an average 
10  μm in diameter mammalian cell nucleus is 
considered limited [53]. Long range motion of 
DSBs in mammalian cells is possible, as approxi-
mately 5% of DSBs that contribute to transloca-
tions are able to move up to 5  μm [19]. In 
mammalian cells, uncapped telomeres and ioniz-
ing radiation-induced repair foci exhibit mobility 
which is dependent on the presence of the repair 
factor 53BP1 [54]. These findings together with 
the observed dependency on HR factors for DSB-
mobility in yeast [37, 42, 55], point to a role of 
major DSB repair factors in mobility of breaks, 
by yet unidentified mechanisms.

3.4	 �The Role of Cytoskeletal 
Components in Motion 
of Intact Chromosome Loci 
and DSBs: Random or 
Directed Motion?

A key open question is whether the mobility of 
intact or broken chromatin represents an active 
and directed process, or occurs by passive diffu-
sion. So far, only a handful of studies have dem-
onstrated a directed mobility of a chromatin locus 
within the nuclear space. Almost a decade ago, 
Belmont’s lab demonstrated migration of an 
interphase chromosome site from the nuclear 
periphery to the interior upon targeting a tran-
scriptional activator to this site [27]. This directed 
mobility was dependent on actin and nuclear 
myosin I [27]. In similar manner, an actin-
dependent motion along a linear trajectory was 
observed for the U2 small nuclear RNA gene 
locus towards Cajal bodies in human cells [56]. 
More recently, directed movement over microm-
eters was observed for damaged subtelomeric 
regions, which are repaired or maintained by a 
recombination-dependent ALT pathway in 
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human cells [45]. It remains to be elucidated, 
whether the observed actin and myosin-dependent 
motion is due to a directed, filament-driven 
mechanism or is merely a consequence of inter-
ference with chromatin remodeling activities that 
utilize actin as a cofactor. Additional studies have 
demonstrated that cellular cytoskeletal com-
ponents influence chromatin motion. In the 
pioneering study from Sedat’s lab microtubules’ 
depolymerization increased chromatin move-
ment in S. cerevisiae [11]. More recent work in 
mammalian cells showed that the mobility of 
uncapped telomeres was reduced upon treatment 
with microtubule poisons in a reversible manner 
[57]. A similar reduction in mobility was 
observed when the LINC complex, which bridges 
the cytoplasmic cytoskeleton and inner nuclear 
membrane, was absent, suggesting that the cyto-
skeleton to nucleus link is required for telomere 
motion [57]. Importantly, stabilization of micro-
tubules by taxol also led to a decrease in the 
mobility of ionizing radiation induced repair foci, 
suggesting that forces transmitted to chromo-
somes through microtubules influence the motion 
properties of DSBs [57]. Similarly, in human 
cells clustering of DSBs seem to require the 
LINC complex protein SUN2 (but not SUN1) 
and the FMN2 actin organizer [58]. Similar 
experiments in yeast cells demonstrated that both 
cytoplasmic and nuclear actin is required for sub-
telomeric motion, probably through its action in 
chromatin-remodeling complexes [30]. In con-
clusion, these studies suggest that nuclear chro-
mosome motion is influenced by mechanical 
forces transmitted from cytoplasm to the nucleus 
(Fig. 3.1). However, additional work is required 
to fully understand the molecular determinants of 
their contribution to motion.

3.5	 �Partner Search, Clustering 
and Synapsis of DSBs 
in the Nucleus

Translocations form by the illegitimate fusion of 
different chromosome ends. An open question is 
how chromosome ends find their chromosome 
partners and whether cellular factors promote or 

inhibit synapsis within the three-dimensional 
nuclear space. High-throughput sequencing and 
imaging experiments that have recently been per-
formed to track individual breaks as they synapse 
with other breaks within the cell nucleus are 
starting to shed light on this question [19, 42, 
58–60]. In S. cerevisiae, when the sister chroma-
tid is not available, broken chromosomes search 
for homologous templates to use for HR in a 
process that is driven by Rad51 [61–63]. In 
human cells, it has been proposed that homolo-
gous chromosomes also synapse in a process that 
requires ongoing transcription and ATM activity 
[46]. In a similar manner, during a recombination-
dependent telomere maintenance pathway known 
as alternative lengthening of telomeres (ALT), 
DSBs at telomeres trigger long-range movement 
and clustering between chromosome ends, which 
is believed to drive homology-directed mainte-
nance of telomere repeats [45]. Interestingly, the 
damaged telomeres displayed rapid directional 
movement and association with other telomeres 
over long-range distances in a Rad51-dependent 
manner [45].

Factors that influence the clustering and syn-
apsis of DSBs are major candidates as regulators 
of translocation frequency (Fig. 3.2). In S. cerevi-
siae, multiple DSBs coalesce in common repair 
centers, in a process that has been suggested to 
increase repair efficiency and/or to assist the syn-
apsis of DSBs [59]. In mammalian cells, cluster-
ing of DSBs has only been observed sporadically, 
when several DSBs per cell were tracked over 
time [35, 41]. When up to four individual DSBs 
were induced concomitantly in mammalian cells, 
the individual repair foci remain separate in the 
majority of the cells [19, 38]. During the forma-
tion of a translocation however, individual breaks 
coalesce in a common repair focus, which then 
resolves over time as the chromosome ends are 
repaired to form the illegitimate fusion [19]. 
When multiple (≈100) DSBs were induced in 
mammalian cells by the use of the endonuclease 
AsiSI, individual breaks, marked by γH2AX, 
were shown to coalesce in common repair centers 
in a process that is dependent on ATM kinase 
activity [60]. One possibility is that clustering of 
DSBs is merely a consequence of the random 
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motion of breaks and, therefore, a higher number 
of induced breaks increases the probability of 
coalescing in common centers. If not random, 
congregation of multiple DSBs in repair centers 
must be tightly controlled as the spatial proxim-
ity of the breaks could facilitate illegitimate 
fusions to form tumorigenic translocations.

Furthermore, the repair protein Mre11 is a 
well-established factor that mediates the synapsis 
of DSBs and facilitates the formation of translo-
cations. Using a mammalian cell based system 
in which individual DSBs can be tracked by 
high-throughput microscopy and automated 
image-analysis, Mre11 inhibition by treatment 
with a small molecule or by knockdown, leads to 

a substantial decrease in synapsis of DSBs [19]. 
In line with a role of Mre11 in synapsis of DSBs, 
clustering of α-particle-induced breaks is altered 
in cells from patients with ataxia telangiectasia-
like disorder (ATLD), which show reduced levels 
of Mre11 [34]. Moreover, recent studies have 
also confirmed the role of the Mre11-Rad-Nbs1 
(MRN) complex in the synapsis of DSBs, as 
knockdown of MRE11 or NBS1 led to a decrease 
in the number of cells with DSB clusters, as 
shown by γH2AX staining of AsiSI-induced 
breaks [58]. This elegant study combined AsiSI-
induced breakage with high-throughput chromo-
some conformation capture assay (capture Hi-C) 
to show that DSBs in human cells indeed cluster, 

Synapsis of DSBs

Common repair clusters

Chromosome
translocations

Motion

Shared tanscription factories

Mre11ATM

Fig. 3.2  The current view of processes known to influ-
ence the clustering of DSBs. Active DDR signaling and 
repair factor accumulation at damaged sites may con-
tribute to clustering and synapsis of breaks in common 
repair centers. In a similar fashion, active gene tran-

scription promotes clustering of genes in shared tran-
scription factories. Factors that increase DSB mobility 
(Fig. 3.1) may also positively contribute to clustering 
of DSBs and the formation of chromosome 
translocations
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but only when they are induced within transcrip-
tionally active genes [58]. The observed cluster-
ing of damaged genes occurred primarily during 
the G1 phase of the cell cycle and coincided with 
delayed repair [58]. The correlation of transcrip-
tional activity with clustering of breaks is very 
intriguing since analogous to the repair center 
model, coalescing of multiple transcribed genes 
in common transcription factories has been pro-
posed to contribute to the formation of chromo-
some translocations by keeping active genes in 
proximity [64, 65]. For example, MYC and IGH, 
IGK and IGL genes which frequently translocate 
in Burkitt’s lymphoma in many instances share a 
common transcription factory [65] and genome-
wide studies in lymphocytes have mapped trans-
location breakpoints near transcription start sites 
[66, 67]. In an analogous fashion, early replicat-
ing fragile sites which are frequently found in 
translocations that lead to large B cell lymphoma 
are enriched in genome regions of high transcrip-
tional activity [68]. Similar correlations between 
high transcriptional activity and the probability 
to form translocations have been shown for pros-
tate cancer- and anaplastic cell lymphoma-
specific translocations [69–71]. Taken together, 
these observations suggest that DNA repair pro-
teins and active transcription influence the clus-
tering of DSBs and therefore may affect the 
probability to form translocations by retaining 
DSBs in close proximity.

3.6	 �Dynamics of DSBs 
and Translocation Formation

Since the mobility of DSBs influences the prob-
ability of breaks to synapse, altered DSB-
dynamics may influence the frequencies by 
which oncogenic chromosome translocations 
form. Using an experimental system to track indi-
vidual ISceI induced-DSBs as they move within 
the 3D mammalian cell nucleus, a recent study 
has shed light on the timing and sequence of the 
events leading to the formation of translocations 
in individual cells [19]. Time-lapse microscopy 
and single-cell tracking of individual DSBs 
shows that upon their formation, DSBs undergo a 

non-directional random motion [19]. 
Interestingly, both intra-chromosomal ends gen-
erated upon a single DSB move together to the 
area of synapsis with other DSBs. This finding 
suggests that the separation and illegitimate join-
ing of the chromosome partners takes place when 
chromosome partners are in close proximity, an 
observation that can explain the frequent appear-
ance of reciprocal translocations. When different 
DSBs synapse within the 3D mammalian cell 
nucleus, the lesions may undergo several cycles 
of synapsis and dissociation. Few of these syn-
apsed DBSs are finally engaged to permanent 
synapsis, which makes them susceptible for the 
final joining step that is required for the forma-
tion of chromosome translocations. Surprisingly, 
breaks that are involved in translocations show a 
faster component in their motion in comparison 
with non-translocating breaks [19]. The reason 
for this apparent difference is not known. The 
higher mobility of translocating breaks could be 
a consequence of a directed process or simply a 
consequence of a selection process during which 
breaks that move faster have a higher probability 
to synapse and form translocations. In both cases, 
the intrinsic higher mobility of some breaks com-
pared to others has unknown etiology, and there-
fore identifying factors that influence DSB 
motion is essential to uncover molecular mecha-
nisms of translocation biogenesis. An intriguing 
possibility foresees that inherent differences in 
the chromatin environment surrounding individ-
ual breaks can directly influence their motion 
dynamics.

3.7	 �Conclusions

Chromatin mobility is an intrinsic feature and 
consequence of the highly dynamic nature of 
chromatin that has profound effects on genome 
stability and maintenance. Despite the intense 
investigation, however, our understanding of the 
effects of chromatin mobility on the formation of 
oncogenic translocations is still at an early stage. 
Systematic efforts to understand how DSBs are 
generated, move and repaired across the genome 
in the context of chromatin and nuclear architec-
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ture would substantially advance our knowledge 
on the molecular mechanisms that give rise to 
oncogenic chromosome translocations. Versatile 
cell-based systems that are able to track individ-
ual DSBs in different chromatin domains and 
report translocation frequency between different 
partners across the genome are now possible due 
to recent advances in recombineering technolo-
gies [72, 73]. Moreover, integrative analysis of 
datasets produced by genome-wide methodolo-
gies that are able to probe and quantify DSB 
occurrence and repair across the genome [74–76] 
and genome-wide translocation capture method-
ologies [66, 77] will substantially help in this 
direction. Elucidating basic principles underpin-
ning the formation of chromosome translocations 
will unravel fundamental features of cancer 
etiology.
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Abstract
The CRISPR/Cas9 system has emerged as a 
powerful tool to edit the genome. Among 
many applications, the system generates the 
exciting possibility of engineering small and 
large portions of chromosomes to induce a 
variety of structural alterations such as dele-
tions, inversions, insertions and inter-
chromosomal translocations. Furthermore, the 
availability of viral vectors that express Cas9 
has been critical to deliver the CRISPR/Cas9 
system directly in vivo to induce chromosomal 
rearrangements. This review provides an over-
view of the state-of-the-art CRISPR/Cas9 
technology to model a variety of rearrange-
ments in vivo in animal models.

Keywords
CRISPR/Cas9 · Chromosomal translocations · 
Cancer · Mouse models · In vivo delivery

4.1	 �Introduction of CRISPR/Cas9 
System

The clustered regularly interspaced short palin-
dromic repeats (CRISPR)/CRISPR-associated 
(Cas) system was developed by many bacteria 
and archaea as an adaptive immune system that 
can protect themselves against invading genetic 
elements such as viruses or plasmids [1]. Type II 
CRISPR system adapted from Streptococcus 
pyogenes (Sp) has been used for genome editing 
and sequence-specific DNA double-strand breaks 
(DSBs) [1, 2]. For this system, two key compo-
nents are essentially required: a Cas9 endonucle-
ase and a guide RNA (gRNA) fused with a 
CRISPR RNA (crRNA) and a transactivating 
CRISPR RNA (tracrRNA) [2, 3]. In this system, 
the Cas9 endonuclease forms a complex with a 
20-nt gRNA and binds to a target DNA sequence 
using standard RNA-DNA complementarity 
base-pairing rules to generate blunt end DSB at 
3-nt upstream of a protospacer-adjacent motif 
(PAM) sequence, 3’-NGG [2, 4, 5]. While the 
simple 3’-NGG PAM sequence of the SpCas9 
occurs on average every 8–12 bp in the human 
genome, there is a modest limitation of specific 
PAM requirement [2, 3]. This limitation has been 
overcome by developing Type II CRISPR system 
from other species of bacteria because each bac-
terial adaptive immune system recognizes alter-
native PAM sequences and utilizes different 
crRNA and tracrRNA sequences. For instance, 
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Staphylococcus aureus (Sa) Cas9 protein requires 
3’-NNGRRT PAM and the Neisseria meningiti-
des (Nm) Cas9 nuclease prefers 3’-NNNNGATT 
PAM [6, 7]. The Cas9 endonucleases found in 
these type II CRISPR systems generate blunt-end 
DSBs, but the recently discovered nuclease Cpf1, 
adapted from the Francisella novicida (Fn) type 
V CRISPR system, has been shown to cleave 
DNA in a staggered pattern, creating a 4 or 5-nt 
5′ overhang 18–23 bases away from a PAM 
sequence, 5’-TTN [8]. These nuclease-induced 
DSBs can be repaired by non-homologous end-
joining (NHEJ) pathway, which can cause the 
introduction of insertion/deletion mutations 
(indels) [5]. Thus, the CRISPR/Cas9 genome 
editing systems have great potentials to be used 
in many applications that require engineering of 
the genome, including structural rearrangements. 
The topic of this Chapter is a comprehensive 
review of the applications that exploit the 
CRISPR/Cas9 system to introduce specific struc-
tural rearrangements in the genome, with particu-
lar emphasis on its applications in vivo in mouse 
models.

4.2	 �Applications of Nucleases 
to Engineer Chromosomal 
Rearrangements

During the last few years, several methods have 
been developed for engineering structural rear-
rangements in the genome by exploiting the 
capability of nucleases to induce DSBs in the 
genome, including zinc finger nucleases (ZFNs), 
transcription activator-like effector nucleases 
(TALENs), I-SceI meganucleases, and the 
CRISPR/Cas9 systems [9–11]. Each platform 
has its own advantages and disadvantages, but 
this Chapter mostly focuses on the CRISPR/Cas9 
system because this system offers several advan-
tages over the ZFNs and TALENs to induce chro-
mosomal rearrangements in terms of target 
design simplicity and efficiency. The CRISPR/
Cas9 genome editing systems have widely 
applied to RNA-guided targeted genome editing, 

transactivation and silencing module factors, 
gene knockout, chromosomal rearrangements, 
and genome-wide screenings [12–14]. 
Importantly, the CRISPR/Cas9 system has a 
unique advantage compared to other meganucle-
ases to engineer structural rearrangements due to 
its capability of introducing DSBs at multiple 
sites with an easy design. By expressing the Cas9 
nuclease and multiple gRNAs in cells, a variety 
of small and large deletions, inversions, and chro-
mosomal translocations have been obtained 
between two DSB sites [2, 15–18]. Thus, this 
system is one of the most suitable and powerful 
tools for studying chromosomal rearrangement 
because of its simple and efficient generation of 
DNA DSBs at loci between two non-homologous 
genes of interest. Even though there are many 
different types of CRISPR/Cas systems, this 
Chapter focuses on the type II CRISPR/Cas9 sys-
tem adapted from the S. pyogenes because it is 
the most commonly used and extensively charac-
terized system so far.

4.3	 �Model Genomic 
Rearrangements Engineered 
with the CRISPR/Cas9 System 
In Vitro

Chromosomal translocations are one of the most 
common types of genomic rearrangements in the 
genome and are initiated by DNA DSBs at two 
loci of non-homologous chromosomes, followed 
by the illegitimate joining between DSBs to form 
abnormal chromosomes [19] (Fig. 4.1). Since the 
CRISPR/Cas9 system efficiently, rapidly and 
synchronously induces DSBs in target genomic 
loci, chromosomal translocations can be easily 
obtained. The literature on CRISPR/Cas9 appli-
cations in vitro for this purposes is extensive and 
partially reviewed in other chapters, thus we will 
briefly discuss few examples of chromosomal 
translocations as well as other types of genomic 
rearrangements including chromosomal dele-
tions and inversions induced by CRISPR/Cas9 
system in vitro.
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4.3.1	 �Chromosomal Translocations

Since several human cancers are driven by chro-
mosomal translocations, one of the most exten-
sive applications of the CRISPR/Cas9 system in 
this field is to reproduce oncogenic translocations 
in target cells in vitro. Several examples are pub-
lished but virtually any chromosomal transloca-
tion can potentially be engineered in vitro 
provided a good specificity and efficacy of the 
gRNA sequences and Cas9 expression. As 
an  example, the t(8;21)(q22;q22) is frequently 
found in acute myeloid leukemia (AML) and 
generates a fusion between the ETO gene on 
chromosome 8 and the RUNX1 gene on chromo-
some 21 [18]. This translocation is an in-frame 
fusion of almost the entire ETO gene with the 5′ 
region of the RUNX1 gene [20]. By designing 
gRNA targeting the introns often involved by 
DSBs that originate such translocation, the 
CRISPR/Cas9 system induced chromosomal 

translocations with an efficiency of 0.96 to 4.07% 
transduced cells [20]. Together with the t(8;21), a 
reciprocal t(21;8) translocation was also detected, 
similar to human AML, thus indicating that the 
introduction of DSBs at high frequency by the 
CRISPR/Cas9 system is sufficient to recapitulate 
reciprocal genomic rearrangements found in 
human cancers [18]. Indeed, several transloca-
tions can be easily engineered in mouse and 
human cells in vitro, including the CD74-ROS1, 
EWSR1–FLI1, EWSR1-WT1, and Pax3/Foxo1 
translocations [18, 21–24]. To detect CRISPR/
Cas9 induced translocations, several methods are 
available including polymerase chain reaction 
(PCR), fluorescence in situ hybridization (FISH), 
and high-throughput, genome-wide, transloca-
tion sequencing (HTGTS) [10, 11, 18, 25].

Taken together, the simple and efficient 
CRISPR/Cas9 system is easily exploited for the 
generation of chromosomal rearrangements in 
vitro in cell lines with an efficiency varying from 
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Fig. 4.1  Overview of chromosomal rearrangement using 
CRISPR-Cas9 system. (a) Cas9 nuclease generates 
double-strand break (DSB) at a DNA target site with 
complementarity to the 5′ end of a guide RNA (gRNA) at 
3-nt upstream of a protospacer-adjacent motif (PAM). 
gRNA-directed Cas9 nuclease can induce indel mutations. 

(b) Pairs of gRNA-directed Cas9 nucleases in the same 
chromosome can induce chromosomal rearrangements 
(e.g., small or large deletions or inversions). (c) Pairs of 
gRNA-directed Cas9 nucleases in two different 
chromosomes can induce chromosomal translocations. 
NHEJ: Non-homologous end joining
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0.1% to 6–8%, likely depending on additional 
factors including cell type, transduction effi-
ciency, karyotype, efficacy and specificity of 
gRNA, and additional nuclear features such as 
distance between two DSBs and chromatin con-
formation of the target loci.

4.3.2	 �Genomic Deletions 
and Insertions

A classical example of the feasibility of engineer-
ing genomic deletions by CRISPR/Cas9 system 
is the editing of mouse and human immunoglob-
ulin (Ig) genes in B cells as well as hybridomas 
[17]. Class-switch recombination (CSR) in Ig 
genes is a deletional event that requires the gen-
eration of DNA DSBs in the repetitive switch (S) 
regions, typically initiated by the activation-
induced cytidine deaminase (AID) enzyme [26]. 
The CRISPR/Cas9 system can be used to mimic 
these events by targeting two desired S regions 
with specific gRNAs. As a consequence, the 
DNA segment between the gRNAs is deleted and 
joined by NHEJ pathway resulting in a switch of 
the Ig heavy (IgH) chain [17]. Different sizes of 
deletion can be obtained by the CRISPR/Cas9 
system, from few bases up to large deletions of as 
much as 10–12 Mb [16]. Interestingly, Chen and 
colleagues recently applied the nickase Cas9D10A, 
a D10A mutation in the catalytic domain of Cas9 
that produces DNA single-strand break, to target 
rearranged genes [27]. They targeted the break-
points of fusions of TMEM135-CCDC67, a 
fusion gene between intron 13 of transmembrane 
protein 135 (TMEM135) and intron 9 of coiled-
coil domain containing 67 (CCDC67), and 
MAN2A1-FER, a fusion gene between intron 13 
of mannosidase α class 2A member 1 gene 
(MAN2A1) and intron 14 of FER tyrosine kinase 
(FER), with two adenoviruses to deliver both the 
nickase Cas9D10A and gRNAs targeting the break-
point sequences, and an EGFP-thymidine kinase 
[27]. By this approach, they could specifically 
target chromosomal translocations by inserting a 
suicide gene into the genomic breakpoint of 
chromosomal rearrangements.

4.3.3	 �Genomic Inversions

Inversions are genomic events where segments of 
genomic DNA are inverted in position within a 
chromosome, either pericentric or paracentric. 
Because genomic inversions require the genera-
tion of two DSBs flanking the segment to be 
inverted, again the CRISPR/Cas9 system showed 
high efficiency in engineering such events. The 
very first in vitro examples of genomic inversions 
obtained by CRISPR/Cas9 are oncogenic inver-
sions that generate abnormal fusion proteins in 
lung cancer. The echinoderm microtubule-
associated protein like 4 (EML4)- anaplastic lym-
phoma kinase (ALK) rearrangement is an 
inversion on chromosome 2 in human lung can-
cer that generates a transcript that fuses the EML4 
and ALK genes. In mouse cells, this inversion can 
be engineered by designing gRNAs targeting 
intron 13 of the Eml4 gene and intron 19 of the 
mouse Alk gene on mouse chromosome 17. By 
introducing DSBs in these two positions, which 
are approximately 10 megabases (Mb) apart on 
the same chromosome, the flanked genomic seg-
ment can be either inverted or deleted [15, 16]. 
Similarly, the paracentric EML4-ALK inversion 
on chromosome 2p or the pericentric KIF5B-RET 
inversion on chromosome 10 can be easily 
obtained in human cells by designing gRNA in 
their respective breakpoint regions [18, 21].

4.4	 �Model Chromosomal 
Rearrangements Engineered 
by the CRISPR/Cas9 System 
In Vivo

Chromosomal rearrangements are the molecular 
basis of multiple human diseases and mouse mod-
els that recapitulate these events are essential for 
basic and translational experiments. The genera-
tion of Genetic Engineered Mouse Models 
(GEMMs) reproducing chromosomal rearrange-
ments in the endogenous locus by knock-in strat-
egy is a long and an expensive process. 
The CRISPR/Cas9 system has emerged as a flex-
ible and relatively easy technology, enabling to 
simplify the generation of mouse models and par-
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ticularly chromosomal-rearranged mouse models. 
Three main different approaches have been 
exploited to generate chromosomal rearrange-
ments in animal models by the CRISPR/Cas9 sys-
tem: engineering of embryonic stem (ES) cells, ex 
vivo cell engineering with subsequent re-intro-
duction in mice, and in vivo direct engineering of 
mouse tissues typically mediated by delivery of 
viral particles encoding the CRISPR/Cas9 sys-
tem. An overview of the successful methods to 
deliver the components of the CRISPR/Cas9 sys-
tem to mice in vivo is schematically presented in 
Fig. 4.2 and summarized in Table 4.1.

4.4.1	 �Mouse Models of Cancer 
and Genetic Diseases

Multiple hematologic and solid tumors arise or 
progress owing to fusion oncogenic proteins that 

are a result of chromosomal translocations. 
Generation of mouse models that faithfully reca-
pitulate these malignancies is necessary for a 
better understanding of the molecular process 
involved, as well as, for testing innovative treat-
ments in a preclinical stage. In spite of the 
above-described successes in reproducing sev-
eral of these translocations in human cell lines 
and mouse primary cells by the CRISRPR-Cas9 
system in vitro, this technology has been only 
successfully applied in vivo to two mouse mod-
els, both reproducing the EML4-ALK fusion 
involved in non-small cell lung cancer (NSCLC) 
[28]. Simultaneously, two independent groups 
obtained the Eml4-Alk fusion gene as a result of 
an inversion in the chromosome 17 by delivering 
viral particles into the lung of mice [15, 16]. 
Blasco and colleagues inoculated two different 
lentiviruses encoding for the Cas9 and the cor-
responding gRNA targeting Alk or Eml4 into the 

Fig. 4.2  Schematic representation of different approaches to deliver the CRISPR/Cas9 system in mice ex vivo or 
directly in vivo
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lungs of p53+/− and p53−/− mice. Maddalo and 
colleagues reported similar results inoculating 
an adenovirus serotype 5 (Ad5) encoding for the 
Cas9 and both gRNAs into lungs of wild-type 
mice. As a result of the expression of EML4-
ALK in the alveolar cells, both groups observed 
the onset of lung adenocarcinomas within 
3 months, recapitulating the human histopathol-
ogy. Moreover, Maddalo and colleagues showed 
that tumors were sensitive to the ALK-inhibitor 
crizotinib. Even though both approaches were 
successful, there are remarkable differences to 
be considered. The DNA of the adenovirus does 
not integrate into the host genomic DNA, lead-
ing to a transient expression of Cas9 that is suf-
ficient to induce DSBs and chromosomal 
translocations. In contrast, lentivirus typically 
integrates into the genome with long lasting 
Cas9 expression, increasing its potential on-tar-
get and off-target activity. Together with the 
desired Eml4-Alk rearrangement generated by 
the inversion, this approach produced additional 
genomic rearrangements in alveolar cells, 
including large 10  Mb deletions and various 
inter-chromosomal rearrangements between the 
two chromosomes 17.

In the case of Eml4-Alk rearrangement, the 
two genomic loci are separated approximately by 

10 Mb in mice (12.5 Mb in humans). This dis-
tance is still consistent with a high level of prox-
imity between these loci that favors a relatively 
high frequency of these events [29]. A positive 
correlation between the physical proximity of the 
target loci and the frequency of translocations 
obtained by CRISPR/Cas9 was also  shown in 
models of Pax3-Foxo1 translocations where the 
frequency of translocation events in a hindlimb 
or forelimb myoblasts directly correlated with 
the different proximity of the two genes in these 
two cell types [22, 30, 31]. However, Boroviak 
and colleagues showed in mouse zygotes that 
inversion events are frequent when the sequences 
targeted by the sgRNAs are separated by 0.155–
1.5 Mb [32]. Shin and colleague detected a big 
frequency of deletions, but no inversion events, 
by targeting regions separated by <25 kb possibly 
because small segments of DNA are quickly 
degraded by exonucleases, and are therefore less 
likely to be re-integrated into the genome as an 
inversion [33].

The frequency of translocations events also 
directly correlates to the fraction of cells trans-
duced with both gRNAs. Therefore, ex vivo trans-
duction of cells and their subsequent injection in 
mice is a valid alternative to direct in vivo trans-
duction. This approach is particularly attractive 

Table 4.1  Delivery in vivo of the CRISPR/Cas9 system to engineer chromosomal rearrangements in mouse models

Tissue Chromosomal rearrangement Delivery References
ES cells Titin, Mex5 deletion Cas9 RNA and gRNAs in vitro transcribed 

(microinjection in 1-day zygotes)
[43]

ES cells Laf4, 353kb intragenic deletion ES cells transfected with Cas9/gRNA vectors 
(aggregation of ES cells)

[40]

ES cells Chromosome 1, 1.67Mb 
deletion

ES cells transfected with Cas9/gRNA vectors 
(aggregation of ES cells)

[41]

ES cells Chromosome 1, 1.06Mb 
inversion

ES cells transfected with Cas9/gRNA vectors 
(aggregation of ES cells)

[41]

Heart Dystrophin, Ex23 deletion AAV8 (intraperitoneal, neonatal mice) [35, 36]
Heart Dystrophin, Ex23 deletion AAV8 (intravenous, 6 week-old mice) [35, 36]
CD34+ Human 
cells

MLL1-ENL1 translocation Lentivirus (ex vivo infection, cells injected 
intravenously)

[34]

Lung Eml4-Alk inversion Adenovirus5 (intratracheal) [15]
Lung Eml4-Alk inversion Lentivirus (intratracheal or intralung) [16]
Skeletal muscle Dystrophin, Ex23 deletion AAV8 (intramuscular) [35, 36]
Skin Col7a1, Ex80 deletion Cas9/gRNA ribonucleoproteins (in vivo 

electroporation)
[33]

Intestine EIF3E-RSPO2 and PTPRK-
RSPO3 translocations

Transgenic mice with tetracycline-inducible 
Cas9

[44]

T.-C. Cheong et al.



45

with hematopoietic stem cells. Reimer and col-
leagues transduced CD34+ human hematopoietic 
stem cells with a single lentivirus encoding for 
the Cas9 and the gRNAs for MLL1 and ENL1 
before transferring them to immunocompromised 
mice. By this approach, they engineered the 
MLL1-ENL1 translocation which is frequent in 
pediatric acute leukemias, with an efficacy of at 
least 1.6 × 10−3 cells [34]. Freshly infected CD34+ 
cells were injected intravenously into immunode-
ficient mice. Interestingly, the MLL-ENL1 trans-
location induced the development of a monocytic 
leukemia like-disease that evolved into a B-cell 
acute lymphoblastic leukemia (B-ALL) after 
additional in vivo passages, likely due to the 
acquisition of additional genetic events [34]. 
Thus, CRISPR/Cas9-based models are a useful 
tool to study leukemia initiation and progression 
because the expression of oncogenic fusions is 
from the endogenous locus in contrast to previ-
ous approaches based on overexpression of the 
fusion oncogenes in stem cells by retroviral 
transduction.

The high efficiency of the CRISPR/Cas9 sys-
tem to produce small genomic deletions can also 
have therapeutic applications in vivo. Duchenne 
muscular dystrophy (DMD) is a degenerative dis-
ease caused by mutations or deletions in the dys-
trophin gene that shift the reading frame, leading 
to a dysfunctional protein [35]. Following this 
concept, two independent groups simultaneously 
developed a CRISPR/Cas9-based strategy to 
delete exon 23 in a mouse model that faithfully 
recapitulates DMD [36, 37]. The strategy of 
delivery was similar in both cases, injection of an 
adeno-associated virus serotype 8 (AAV8) encod-
ing Cas9 and the gRNAs flanking exon 23 into 
the tibialis anterior muscle. Nelson and  col-
leagues reported 2% of deletion in the whole 
muscle lysate by droplet digital PCR (ddPCR). 
Both groups showed restoration in the expression 
of dystrophin, and more importantly an increase 
in the muscular function. Additionally, when the 
injection of the CRISPR-Cas9 machinery was 
performed in early life, by intraperitoneal injec-
tion, both studies showed recovery of dystrophin 
expression in abdominal muscles, diaphragm, 
and heart.

The same idea has been recently applied to a 
mouse model recapitulating dystrophic epider-
molysis bullosa (RDEB). Patients develop this 
syndrome owing to mutations in the collagen VII 
protein. Wu and colleagues applied the exon-
skipping approach to restoring the expression of 
a functional collagen VII in the skin stem cells by 
injecting the components of the CRISPR/Cas9 
system in the skin followed by in vivo electro-
poration. By this approach, they could efficiently 
excise exon 80, which covers the point mutation 
in the RDEB mouse model and thus restores the 
correct localization of the collagen VII protein in 
vivo [38].

4.4.2	 �Mouse Models by Embryonic 
Stem (ES) Cells Engineering

Several genetic diseases are caused by chromo-
somal rearrangements or other structural varia-
tions of the genome. Duplications, deletions 
and  translocations are involved in the develop-
ment of Mendelian diseases or complex diseases 
such as autism or schizophrenia [39]. The deliv-
ery of the CRISPR/Cas9 system into ES cells by 
transfection facilitates the generation of ES 
clones bearing the desired chromosomal altera-
tions and, therefore, the development of mouse 
models for these diseases. Many of these genomic 
alterations affect coding regions with a pathoge-
nicity typically explained by the altered dosage 
of the genes affected. Several structural variants 
including deletions, inversions, and duplications 
can be engineered in mice by manipulating ES 
cells. Remarkably, Kraft and colleagues engi-
neered deletions, inversions, and also duplica-
tions at six different genomic loci ranging from 
1.1 kb to 1.6 Mb with efficiencies up to 42% [40]. 
In similar applications, the CRISPR/Cas9 system 
can be used to generate structural rearrangements 
in long non-coding DNA regions. Lupiañez and 
colleagues recapitulated such events in mice that 
model rare limb malformations [41]. These par-
ticularly inherited malformations are present in 
families with chromosomal rearrangements 
affecting three topologically associated domains 
(TADs) in the extended WNT6/IHH/EPH4/PAX3 
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region: one gene-dense region containing WNT6 
and IHH, one extended region containing EPHA4 
gene and a third region containing PAX3 [42]. 
TADs are structural partitions of the genome 
thought to work as regulatory units, where pro-
moter and enhancers interact, separated by 
boundaries [42]. Disruption of these organized 
structures might connect enhancers with different 
promoters leading to misexpression of certain 
genes. The authors reported three unrelated fami-
lies, with dominantly inherited brachydactyly, 
presenting different heterozygous deletions (1.7–
1.9 Mb) including the EPHA4 gene along with a 
big portion of his TAD and extend into the non-
coding part of the PAX3 gene TAD. They repro-
duced this deletion in ES cells by cotransfecting 
pairs of gRNAs in order to analyze the mecha-
nism of this genetic disease. The so-called DelB 
mouse model carried this deletion in heterozygo-
sis and homozygosis. Homozygotes DelB mice 
developed a phenotype similar to the one 
observed in human, with a milder version in the 
case of heterozygotes. In a similar way, the 
authors reproduced another rare limb malforma-
tion, so-called F-syndrome, caused by a 1.1 Mb 
heterozygous inversion in the same region. The 
authors conclude that all these pathological syn-
dromes are caused by the disruption of the bound-
aries between TADs and the reorganization of 
this genomic region in new TADs, with a subse-
quent rewiring of the pattern of expression of 
these genes. These examples show how the 
CRISPR/Cas9 system can be exploited to engi-
neer complex structural rearrangements that 
would be technically overwhelming with tradi-
tional targeting systems in ES cells.

In similar applications, the CRISPR/Cas9 
technology is particularly attractive to efficiently 
generate small rearrangements such as alterna-
tive splicing or exon skipping. An example of this 
approach has been shown to manipulate the splic-
ing variants that encode for the is7 domain of the 
titin protein in the mouse skeletal muscles and 
heart. Is7 domain is encoded by the penultimate 
exon, so-called Mex5, of the titin gene, an exon 
alternatively spliced in the M-line of the sarco-
mere. Charton and colleagues generated a mouse 
model - by co-microinjecting the spCas9 mRNA 

and in  vitro transcribed gRNAs in one-day 
zygote  - where the expression of alternatively 
spliced variant(s) carrying the corresponding 
domain was stably prevented and showed that the 
phenotype of mice was related to this exon skip-
ping [43].

A critical limitation for modeling cancer-
related chromosomal rearrangements in vivo is 
the accessibility of the tissue to be targeted. As an 
example, modeling the EIF3E-RSPO2 and 
PTPRK-RSPO3 chromosome rearrangements in 
vivo by direct CRISPR/Cas9 administration is 
challenging. To overcome this limitation, Han 
and colleagues generated a transgenic mouse 
model with a construct expressing Cas9 under the 
control of a tetracycline response element (TRE3G 
promoter) and the U6 promoter driving the 
expression of gRNAs for the corresponding 
genes [44]. Upon crossing with the R26rtTA 
mouse strain, they generated transgenic lines that 
induced the EIF3E-RSPO2 and PTPRK-RSPO3 
translocations upon doxycycline treatment to 
show the pathogenic  role of these fusions in 
tumor initiation and maintenance in the intestine 
[44].

4.5	 �Conclusions

The CRISPR/Cas9 system has dramatically 
empowered and extended the applications to 
engineering genomic rearrangements in the 
genome either in vitro or directly in vivo in mam-
mals. A variety of genomic events including 
chromosomal translocations, large deletions and 
microdeletions, inversions, and exon skipping 
can be efficiently achieved in mice by ex vivo or 
in vivo delivery of the components of the 
CRISPR/Cas9 system. Several factors influence 
the efficacy of gene rearrangement engineering, 
including an efficient delivery of the CRISPR/
Cas9 components, the specificity of gRNA, the 
abundance of off-target sites, the levels of expres-
sion of the Cas9 nuclease in the target tissue, the 
proximity, accessibility and chromatin conforma-
tion of the genomic loci. Several of these factors 
are recurrent themes discussed in the CRISPR/
Cas9 field, including the specificity and efficacy 
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of the system. Other factors, such as proximity of 
the target loci and chromatin conformation, are 
more specifically relevant in the field of chromo-
somal translocations and genomic rearrange-
ments and are also reviewed in other chapters of 
this book. A critical factor for the success of 
CRISPR/Cas9 editing is an effective delivery of 
the CRISPR/Cas9 components. So far, the most 
obvious success has  been obtained in organs 
where a direct delivery is straightforward, such as 
the skin, the muscles, and the lung. To this end, 
the development of smaller forms of the Cas9 
nuclease, such as the Cas9 from Staphylococcus 
aureus (SaCas9) [6], will likely improve the effi-
cacy of delivery together with improved viral or 
particle-mediated delivery system. With an effi-
cient delivery system, the CRISPR/Cas9 system 
could further expand its potential from pre-
clinical studies to therapeutic applications that 
require structural modifications of the genome.
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Generation of Genomic Alteration 
from Cytidine Deamination

Xiaojing Liu and Fei-Long Meng

Abstract
The sources of genome instability can be 
attributed to many extra- and exo- cellular fac-
tors accompanying various biological pro-
cesses. In leukemia and lymphomas, the 
collateral effect of programmed DNA altera-
tions during immune diversification is the 
major source of genome instability. Cytidine 
deamination from cytidine (C) to uridine (U) 
at immunoglobulin (Ig) gene loci is required 
for initiation of antibody diversification, while 
the same process also contributes to recurrent 
translocation or mutations outside of Ig loci in 
lymphocyte-origin tumors. Furthermore, 
genome sequencing of cancer cells from many 
tissue origins revealed a significant enrich-
ment of cytidine deaminase mutagenesis sig-
nature in human cancers. Thus, cytidine 
deamination, which can intensively happen in 
an enzyme-dependent fashion at specific 
genomic regions, is a widespread genome 
instability source across many tumor types. 
AID/APOBEC superfamily proteins are the 
main single-stranded DNA deaminases in 
eukaryotes, which play vital roles in adaptive 
and innate immunity. Their deamination 
products can be channeled into mutations, 

insertions and deletions (indels), clusters of 
mutations called kaetagis, or chromosomal 
rearrangements/translocations. Here, we 
review the generation of genome instability 
from AID/APOBEC-dependent cytidine 
deamination with emphasis on the most stud-
ied enzyme, AID.

Keywords
Genome instability · Cytidine deamination · 
Activation-induced cytidine deaminase · 
APOBEC · Base-editing

5.1	 �AID/APOBEC Deaminase 
Family

AID/APOBEC proteins represent a group of 
single-stranded nucleotide cytidine deaminases, 
which include AID, APOBEC1, APOBEC2, 
APOBEC3 and APOBEC4 [23]. The first identi-
fied member APOBEC1 is responsible for apoli-
poprotein B (ApoB) pre-mRNA editing and 
hence was named apolipoprotein B editing com-
plex 1 (APOBEC1) [51, 79, 130]. Subsequently, 
other members followed the same nomenclature 
even though none were proven to have RNA edit-
ing activity. AID was discovered by Tasuko 
Honjo group through cDNA subtraction in 
cytokine-activated B cell lines, hence named 
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activation-induced deaminase (AID, the coding 
gene was named as AICDA) [75, 76].

5.1.1	 �RNA or DNA Deamination 
Model

AID/APOBEC deaminases preferentially target 
single-stranded (ss) nucleic acids. The RNA edit-
ing activity of APOBEC1 led to the assumption 
that other enzymes in the AID/APOBEC family 
are also ssRNA deaminases, although so far, 
APOBEC1 is the only enzyme possessing RNA 
deamination activity in vivo. APOBEC1 targets 
the 3′ UTR of many cellular mRNAs, which fine-
tunes the gene expression by modifying miRNA-
binding sites [110]. AID and APOBEC3s targets 
genomic or viral DNA, which play vital roles in 
adaptive and innate immunity [132]. Despite the 
debates on whether AID deaminates RNA or 
DNA substrates, lines of evidence point to a DNA 
deamination model [15, 19, 94, 96, 103]. It is 
worth noting that APOBEC1 also deaminates 
ssDNA substrate [43, 95], which makes it part of 
a popular “base editor” tool [54]. Thus, an impor-
tant question that emerges is how APOBEC1 
obtains RNA editing activity during evolution. 
The deamination activity of APOBEC2 and 
APOBEC4 has not been fully tested; neither does 
their physiological role [99, 108].

5.1.2	 �Cytidine Deaminase Domain 
and Structure

The deaminase catalytic site in AID/APOBEC 
proteins lies in the conserved cytidine deaminase 
(CDA) domain. Like other deaminase family 
enzymes, the core structure of AID/APOBEC 
CDA domain contains a zinc-dependent deami-
nase motif (ZDD). All the AID/APOBEC mem-
bers contain either one or two CDA domains 
[23]. AID, APOBEC1, APOBEC2 and APOBEC4 
are single CDA domain proteins, while some of 
the APOBEC3 proteins have dual CDA domains 
[23]. Different from the sole murine APOBEC3 
ortholog, human APOBEC3 has seven members 
named APOBEC3A, APOBEC3B, APOBEC3C, 

APOBEC3DE, APOBEC3F, APOBEC3G and 
APOBEC3H (abbreviated as A3A, A3B, A3C, 
A3DE, A3F, A3G and A3H in this chapter) 
through an anthropoid-specific gene expansion 
[23]. Many efforts had been done to solve the 
structure of AID/APOBEC proteins in the past 
years. The structures have given rich information 
about the deamination catalytic process and also 
implied potential single-stranded nucleic acid 
binding surfaces on the proteins (Reviewed in 
Ref. [114]). Recently, the fine structure of A3A 
with its ssDNA substrate revealed a U-shaped 
DNA conformation [120], while AID prefers to 
recognize structured DNA substrates [101]. Thus, 
the AID/APOBEC members may utilize distinct 
substrate recognition models.

5.1.3	 �DNA Sequence Motif 
Preference and Deamination 
Signature

At nucleotide sequence level, AID/APOBEC 
deaminases have intrinsic preference for local 
sequence motifs. For example, AID is prone to 
deaminate C in WRC (W: A/T, R: G/A) motif 
[53, 109], while A3A and A3B prefer C in the 
TCA motif context [30]. The motif preference 
was explained by the A3A-ssDNA structures, as 
the adjacent nucleotide residues also are involved 
in DNA-protein interaction [120]. A single amino 
acid change (D131A) on A3A protein can alter its 
motif preference [120], and similar change on 
A3G protein can also change its preference from 
CCC to TCC [105]. Similarly, biochemical and 
genetic study had revealed a substrate recogni-
tion loop in AID protein [136]. Sequence swap-
ping of AID substrate recognition loop with A3’s 
substrate recognition loop results in AID-3C/F/G 
mutants that prefer A3C/F/G signatures [136]. 
The motif preference may be highly linked to its 
biology function, which could be a result of co-
evolution of deaminase and its substrate sequence. 
The deamination activity of specific motifs leaves 
footprint of the corresponding enzyme, allowing 
the identification of the responsible enzyme by 
mutation signature. Biochemical and DNA 
sequencing studies have revealed a collection of 
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dinucleotide motif signatures for murine and 
human AID/APOBEC proteins. For different 
AID/APOBEC proteins, the adjacent positions 
around C plays distinct roles, as -1,-2 positions 
are important for AID/A3G deaminase and -1,+1 
positions are important for A3A/B deaminase. 
Furthermore, biochemical study discovered 
unique motif preferences for several other AID 
orthologs [102], implicating that there is a rich 
pool of deamination dinucleotide signatures for 
AID/APOBEC proteins.

5.2	 �Programmed DNA Lesion 
in Immunity

To fight against the numerous pathogens, B cells 
can produce a large number of B cell receptors 
(BCRs, membrane-bound form) or antibodies 
(Abs, secreted form), which is one of the hall-
marks of adaptive immunity [1]. A typical anti-
body is composed of two immunoglobulin (Ig) 
heavy chains and two Ig light (IgL) chain, and 
each Ig chain can be further divided into variable 
(V) region and constant (C) region. The V region 
exon recognizes different antigens, while C 
region exons contain Ig domains that are respon-
sible for activating downstream effectors. V 
region is assembled by V, D and J gene segments 
on chromosome through V(D)J recombination. 
DNA endonuclease complex, RAG1/2, initiates 
V(D)J recombination to form primary immune 
(B and T) cell receptor repertoire [1]. The pri-
mary B cell receptor repertoire mainly contains 
low affinity IgM antibodies. To generate highly 
potent antibody, the antibody gene has to undergo 
two additional diversification processes, called 
somatic hypermutation (SHM) and Ig heavy 
chain (IgH) class switch recombination (CSR) 
[1] (Fig. 5.1a). SHM introduces mutations and/or 
insertions and deletions (indels) in the V exon, 
which allow the selection of B cells that produce 
high affinity antibodies ([29]), while IgH CSR 
switches its C regions from IgM to other Ig class, 
i.e. IgG, IgE, IgA [17] (Fig. 5.1a). Both SHM and 
CSR are initiated by the same enzyme, AID [46, 
75, 106].

5.2.1	 �Secondary Immune Cell 
Receptor Diversification 
Initiated by AID

Naïve mature B cells express IgM and IgD recep-
tors, and circulate to the secondary lymphoid tis-
sues including spleen, Peyer’s patch etc. Upon 
antigen stimulation, B cells can form germinal 
center (GC) structures with the help of T and 
other immune cells [134]. GC can be further 
divided into dark and light zones by immunohis-
tochemistry features. In the GC dark zone, B 
cells actively divide and undergo SHM/CSR, 
while in the light zone, B cells compete for T fol-
licular helper cells (TFH) for survival [122, 134]. 
B cells expressing high affinity BCR are selected 
and undergo clonal expansion, a process termed 
affinity maturation. Eventually, B cells exit GC 
and become plasma or memory B cells, which 
secrete antibody or gain immune memory, 
respectively.

SHM and CSR are two distinct processes with 
different outcomes. Early studies on single B 
cells derived hybridoma have revealed clones 
that secrete IgM antibody that carry mutations in 
the V exon, and also clones that secrete switched 
IgG antibody with un-mutated V exons. The IgH 
C genes, e.g. murine IgH C genes, span ~200kb 
on chromosome 12 in an order of V(D)J-Cμ-Cδ-
Cγ3-Cγ1-Cγ2b-Cγ2a-Cε-Cα [17, 37]. During 
SHM, AID is specifically recruited to the V(D)J 
exons to generate nucleotide mutations or small 
indels, while during CSR, AID targets switch (S) 
regions preceding each C gene to generate DNA 
double-strand breaks (DSBs). S regions are long 
repetitive GC-rich introns that can form second-
ary DNA structures such as G4 or R-loop, which 
contribute to optimal CSR efficiency [37]. A 
long-sought question in the field is how AID dif-
ferentially targets the V(D)J exon and S regions 
within a short genomic region as the V(D)J exon 
and the first S region, Sμ, are less than 2kb apart. 
Until recently, SHM study armed with next-
generation sequencing revealed significant SHM 
events in ex vivo cytokine-activated B cells that 
were considered to be CSR-only cells [143]. 
Thus, similar AID targeting mechanisms might 
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be employed during SHM and CSR.  The 
sequence intrinsic features of V(D)J exon and S 
region may underline the distinct outputs of these 
two processes as the S regions, which contain 
abundant AID-preferred motifs densely packed 
together, may generate DSBs more efficiently 
[37, 39].

General DNA repair proteins are involved in 
AID-initiated immune diversifications in an 
error-prone fashion. Cytidine deamination hap-
pens in many cell types either naturally or spe-
cifically by deaminase activity. To ensure the 
integrity of genomic information, cells use base 
excision repair (BER) and/or mismatch repair 
(MMR) factors to recognize and repair Us on 
genomic DNA, the ssDNA nicks or gaps are 
filled and ligated. B cells use the same set of fac-
tors to initiate the repair process but channel the 
Us into mutations or gene rearrangements ([29]). 
Among the well-defined BER and MMR factors, 
UNG or MSH gene deficiency results in defec-
tive CSR or SHM, suggesting a requirement of 
these factors to generate the intermediate abasic 
site or single-stranded nicks [31, 68, 103, 119, 
140]. However, genetic aberration of the down-

stream BER/MMR factor XRCC1 has no obvi-
ous CSR defect [38]. Thus, B cell employs 
error-prone repair pathways to further process the 
intermediate alterations. In SHM, mutations are 
generated through translesion synthesis [80]; 
while in CSR, DSBs are generated via extensive 
ssDNA nicks [17]. Deficiencies of general DNA 
repair genes in mouse model and human patients 
usually result in immunodeficiency that is accom-
panied by genome instability.

5.2.2	 �Innate Anti-viral Activity 
of APOBEC3s

Through homologous protein searching, an 
anthropoid-specific expansion of APOBEC3 
genes was identified [50]. However, the biologi-
cal function of APOBEC3s in human seems to be 
a big puzzle. At the same time, Michael Malim 
group compared permissive and non-permissive 
cell lines that support or not support the produc-
tion of fully infectious HIV-1 Δvif virions by 
using cDNA subtraction (the same technique 
used to identify AID), and identified CEM15 

Fig. 5.1  AID/APOBEC-dependent genomic alterations 
in immunity and cancer genome. (a) AID initiates anti-
body gene somatic hypermutation and class switch 
recombination in adaptive immunity to generate high 
affinity antibodies with diverse effector functions. (b) A3s 
can deaminate C in the first-strand viral cDNA, playing 

anti-viral roles in innate immunity. (c) AID preferentially 
targets to strong convergent transcription regions in the 
genome. (d) A3s target ssDNA on the lagging strand of 
DNA replication fork. RNAP stands for RNA polymerase 
together with associated factors, and Pol indicates DNA 
polymerases (See text for more details)
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(now known as APOBEC3G) as the innate anti-
viral factor [117]. In the absence of Vif protein, 
A3G can be packaged into viral particles and 
subsequently associates with the viral reverse 
transcription complex [117]. A3G deaminates C 
in the nascent minus-strand viral DNA, resulting 
in degradation and/or non-functional coding of 
viral DNA [41, 67, 145]. Anti-viral studies of 
APOBEC3s quickly extended to other A3s 
besides A3G and to other retroviruses. A3F, A3B, 
A3C and murine A3 were also found to be pack-
aged into viral particles and inhibiting viral pro-
liferation by similar mechanisms [9, 42] (Fig. 
5.1b). A large portion of human genome is com-
posed by retrotransposon elements. Human long 
interspersed nuclear element (LINE-1 or L1) is 
the only autonomous non-LTR retrotransposon, 
which codes L1 proteins that can also mobilize 
other non-autonomouse non-LTR retrotranspo-
sons like Alus. A3 proteins, A3A/B/G/F were 
identified by different groups as potential ret-
rotransposition inhibitors [10, 11, 125].

Some DNA viruses were later found being 
inhibited by A3 proteins. Hepatitis B virus (HBV) 
has to go through a reverse transcription step to 
replicate its genome, leading to the hypothesis 
that A3s may target to the minus-strand cDNA 
[84, 111, 126]. Later study revealed A3A and 
A3B deaminate the HBV covalently closed circu-
lar DNA in nucleus, providing another way of A3 
anti-viral activity [62]. Human papillomaviruses 
(HPVs) infection is also associated with A3B 
expression, and might be inhibited by various 
A3s [133]. By which step A3s inhibit DNA virus 
propagation still need more work.

5.3	 �Collateral Effects of Cytidine 
Deamination

The DNA mutator function of AID/APOBEC 
proteins is like a double-edge sword. AID is 
required for secondary antibody gene diversity, 
and its deficiency causes Hyper-IgM syndrome 
[106]. On the other hand, mis-targeting of AID 
results in chromosomal translocations between 
proto-oncogenes and Ig loci that lead to GC-origin 
B cell lymphomas [107, 146].

5.3.1	 �Discovery of AID-dependent 
Translocations and Mutations

Leukemia and lymphoma were characterized by 
reciprocal chromosomal translocations involving 
the Ig loci and a variety of partners, often proto-
oncogenes. This recurrent feature arises from the 
aberrant DNA breaks during immune diversity 
processes. AID-initiated DNA breaks during 
CSR and SHM are the major sources of genomic 
instability in mature B cell lymphomas of GC 
origin [107, 146]. DSBs at proto-oncogenes jux-
tapose proto-oncogenes next to the Ig loci, bring-
ing the proto-oncogene closer to Ig 
super-enhancers (SEs) [28, 61]. The strong Ig 
SEs activate the oncogene expression and results 
in malignant transformation [61]. In B cell lym-
phomas, chromosomal translocation junctions 
were mapped to the Ig gene regions where pro-
grammed DNA lesion happens via RAG during 
V(D)J recombination or AID during antibody 
CSR/SHM [56].

The aberrant or unrepaired Ig breaks can fuse 
to breaks arising from many endogenous cellular 
activities. In activated B cells, AID off-targets 
beyond Ig genes turn out to be the major translo-
cation partners of Ig break. The DNA mutator 
function makes AID a threat to genomic 
DNA. AID frequently targets many off-targets in 
the genome to generate mutations or DSBs, 
which eventually contribute to B cell lympho-
mas. Even before the identification of AID, 
BCL6, an oncogene, was already found to 
undergo somatic hypermutation in normal GCB 
as side effects of GC reaction [89, 118]. Later, 
more and more genes, such as CD95, CD79a and 
CD79b, were identified as AID off-targets in nor-
mal GCBs [36, 77]. Meanwhile, some proto-
oncogenes were found mutated in B cell 
lymphomas [74, 90].

5.3.2	 �Systematic Identification 
of AID Off-targets

The case-by-case studies and emerging numbers 
of AID off-targets made systematic identification 
essential. Biochemical and genetic studies 
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revealed that transcription is required for AID-
initiated CSR [19, 124, 142]. The Schatz group 
sequenced hundreds of transcribed genes in GC 
B cells by Sanger sequencing methods and found 
a group of AID off-target genes, offering the first 
large-scale characterization of AID off-targets 
[60]. Later, AID ChIP-Seq experiments revealed 
thousands of potential AID targets in the genome 
[141].

The development of high-throughput sequenc-
ing tools has greatly pushed the field forward. The 
Alt lab has developed an approach termed high-
throughput, genome-wide translocation sequenc-
ing (HTGTS) to isolate genome wide translocation 
junctions from large populations of cells [21]. 
HTGTS approach involves generating bait DSB 
and allowing the bait to fuse to endogenous breaks 
in a few cell cycles to avoid oncogenic selection 
[21]. Massively parallel sequencing of the translo-
cation junctions revealed many AID-initiated 
breaks in the genome [21, 73]. TC-Seq used a 
similar approach to identify AID-initiated breaks 
[52]. Combination of AID over-expression and 
DNA repair response deficiency further increase 
the numbers of identified AID off-targets [22, 52, 
73]. Single-stranded DNA binding protein RPA 
ChIP-Seq in 53BP1-deficient cells was also used 
to identify AID off-targets [100], as in 53BP1-/- 
cells DNA breaks undergo extensive resection 
and marked with RPA binding [141]. In summary, 
any method that can detect endogenous DNA 
breaks can be used to mark AID off-targets 
through AID proficient and deficient comparison. 
Oncogenic chromosomal translocation favoring 
cell proliferation is selected during tumor trans-
formation and progression. In HTGTS or other 
methods, cells only proliferate for a few cell 
cycles, thus the method revealed an unbiased pool 
of AID off-target [21]. Surprisingly, more than 
25% of AID off-targets identified in mouse B cells 
have orthologs translocated or mutated in human 
B cell lymphomas [73]. The puzzle was later elab-
orated by the preferential targeting of intragenic 
super-enhancer regions by AID (see below sec-
tions) [73] and super-enhancers are usually asso-
ciated with key cell identity and tumor 
pathogenesis genes [45, 138].

5.3.3	 �Pervasive APOBEC3 Signature 
in Cancer Genomes

The role of AID-initiated genomic instability is 
well recognized in lymphomas of GC B cell ori-
gin and leukemia that have aberrant AID expres-
sion. The expression of AID depends on 
transcription factors that also are involved in 
inflammatory response, leading to the hypothesis 
that genomic instability in inflammation-
associated cancers may also be attributed to AID 
[69]. Aberrant AID expression was detected in 
hepatocytes with chronic inflammation caused by 
HCV infection, cultured cancer lines, etc [128]. 
How and to what extent AID contributes to can-
cer development arising from epithelial cells 
needs more detailed work.

Member of APOBEC3 proteins is expressed 
in many cell types. Whether they could contrib-
ute to cancer genomic instability remains a big 
mystery, as anthropoid-specific expansion of 
APOBEC3 genes makes it difficult to study them 
in other animal models like mouse model. The 
“21 breast cancer genome” sequencing revealed 
many unknown mutational signatures, with one 
group of them showing a clear APOBEC3 signa-
ture [81]. Combining gene expression data and 
APOBEC3 deamination signature, the Harris lab 
identified A3B as the main enzyme responsible 
for APOBEC mutational signature (mutagenesis 
of C in TCA context) [13]. With many other types 
of cancer genome sequencing data, it was found 
that this mutation signature is widespread in 
human cancers [14, 55, 59, 129]. Additional A3 
deaminase activity may also account for this 
mutation signature, as carriers of germline copy 
number polymorphism of A3A-A3B gene (i.e. 
A3B deletion) also possess APOBEC3 mutations 
[82]. The APOBEC signature was mainly found 
on the lagging-strand template during DNA rep-
lication, suggesting a model where A3s may 
hijack the replication machinery to attack ssDNA 
genomic widely [40, 47, 116] (Fig.5.1d). 
Different from AID deamination, so far there has 
been no evidence that the APOBEC3 signature 
associates with recurrent translocations.
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5.4	 �Multilayer Regulation of AID 
Deamination

AID/APOBEC deamination activity must be 
tightly controlled to ensure genome integrity 
while playing their roles in immunity. Amongst 
the AID/APOBEC protein family, AID is  the 
most intensively studied. Here we use AID as an 
example to review the multilayer regulation of 
deaminase activity:

5.4.1	 �Regulation of AID Expression

Although AID was reported to be expressed in 
pluripotent tissues in many studies [8, 98], its 
function in DNA demethylation in early develop-
ment is challenged by the fact that AID-deficient 
mouse show no sign of developmental defect 
[75]. Thus, the role of AID in those tissues 
remains controversial. One of the reasons came 
from the extreme low expression levels in these 
cells compared to the level in activated B cells. 
Early studies with AICDA BAC constructs and 
luciferase assays have discovered four conserved 
regions of cis-elements around AICDA locus [25, 
131]. Deletion of the regulatory region abolishes 
AID-mediated CSR and these regions are respon-
sible for AID expression upon B cell activation 
[25]. With the development of genomic 
approaches such as H3K27ac ChIP-Seq and 
GRO-Seq, a detailed map of regulatory elements 
was revealed for AICDA locus, and more cis reg-
ulatory regions were revealed [73]. The cis-
elements in these regions offers binding site for 
many transcription factors including but not 
restricted to NF-κB, STAT6, Smad4, Pax5, 
E-boxes protein, BATF, etc [35, 49, 115, 131]. 
Transcription of AID is also negatively regulated 
through repressive cis-elements in Intron 1 that 
contain putative binding sites of Myb and E2f 
[131], trans-factors like inhibitory E-box protein 
ID2 [35], or PI3K-Akt-Foxo signaling axis [87]. 
Inhibition of repressive regulatory factors would 
turn on the expression of AID and cause genome 
instability, as shown in the chronic lymphocytic 
leukemia (CLL) cells and normal B cells treated 
with PI3K inhibitors [22]. The tight regulation of 

AID transcription restricts its activity to activated 
B cells undergoing SHM and CSR.

5.4.2	 �Intracellular Localization 
of AID Protein

Once translated, AID protein folds with the assis-
tance from chaperones Hsp90/DnaJA1 [88], and 
further loads to a large cytoplasmic complex 
including eEF1A [44]. The cytoplasmic complex 
protects AID from degradation [44]. To perform 
its cellular function, AID protein must be 
imported to the nucleus from cytoplasm. AID has 
a N-terminal nuclear localization signal (NLS) 
and C-terminal nuclear export signal (NES) 
sequence to regulate its trafficking between 
nucleus and cytoplasm [121]. Mutations of criti-
cal amino acid residues in the NLS sequence lost 
SHM activity but have normal CSR level, i.e. 
AIDG23S knock-in mice show defective SHM but 
normal Ig levels in serum and intestinal secre-
tions [121, 137]. To strictly control its activity, 
nucleus AID is actively excluded by CRM1-
depedent pathway through the C-terminal NES 
sequence [70]. More than 90% of the AID pro-
teins were localized in cytoplasm revealed either 
by immunofluorescent or biochemical fraction-
ation methods [70]. Patients harboring AID 
C-terminal truncation or mutations display 
dominant-negative effects in CSR but SHM lev-
els is less affected [3, 48, 127]. How SHM and 
CSR were differentially regulated by AID still 
need more work. Many labs have shown that 
replacement of AID NES with other NESs can 
restore the nuclear export function but cannot 
fully support CSR [32, 34]. Later on, the AID 
C-terminal peptide was suggested to recruit DNA 
repair factor to Ig loci through a yet-to-be-
characterized pathway [104, 144].

5.4.3	 �Post-translation Modification 
of AID Protein

Post-translation modification adds another layer 
of complexity to AID activity regulation. By 
comparing AID activity purified from activated B 
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cells and 293T cells, the Alt lab found AIDBcell 
specifically interacts with RPA and possess 
deamination activity on transcribed dsDNA sub-
strate [18]. The major difference between AIDBcell 
and AID293T was later identified as Serine 38 
phosphorylation through PKA kinase in activated 
B cells [4]. Mutation of S38 to alanine abolishes 
the deamination activity in vitro, decrease SHM/
CSR level in ex vivo cultured B cells and in in 
vivo GC B cells [6, 16, 20, 71, 72, 97]. A working 
model was proposed that PKA is specifically 
recruited to the S regions to promote active AID 
complex formation with RPA during CSR [135]. 
Along with S38, many other phosphorylation 
residues were also identified on AID protein 
including T27, Y184, which are also required for 
optimal CSR [4]. AID contains 198 a.a. residues 
and is a relative small protein, and many AID 
mutations were reported in human Type II Hyper-
IgM syndrome patients [48, 66]. However, no 
mutation at AID phosphorylation site has yet to 
be identified in human patients. It would be of 
great interest to know whether AID phosphoryla-
tion play important roles in human immunodefi-
ciency. Besides phosphorylation, AID was also 
reported to be poly-ubiquitinated in the nucleus 
[2], which may offer negative regulation of AID 
activity through degradation of nuclear 
AID. Although no specific lysine was identified 
for AID ubiquitination, genetic screening 
revealed RNF126 as the E3 ligase for AID [27].

5.4.4	 �Specific Genomic Targeting 
of AID

How AID specifically recognize Ig loci is a long-
sought question during CSR and SHM.  Before 
AID was identified, genetic evidence suggested 
transcription is absolutely required for IgH CSR 
and SHM [33, 63, 64, 112, 113, 123, 142]. Both 
RNA Polymerase II (Pol II) and Pol I initiated 
transcription are sufficient to support SHM [33]. 
Immediately after AID was proven to be the 
enzyme responsible for CSR and SHM, it was 
found that AID associates with Pol II transcrip-
tion machinery [78]. The link between transcrip-
tion and AID deamination activity strongly 

suggest that AID targets ssDNA generated during 
transcription. However, early studies with indi-
vidual genes revealed that not all transcribed 
genes are targeted by AID nor the highest-
transcribed genes are bona fide AID targets [60]. 
What makes Ig genes so special as AID targets 
became an intensively studied question.

Next-generation sequencing based approaches 
strongly suggested pervasive transcription fea-
ture of eukaryotic genome. ChIP-Seq reveals the 
genome wide localization of a particular protein; 
RNA-Seq reveals many cellular RNA species at 
particular subcellular compartment including 
chromatin associated RNAs [7]; Global Nuclear 
Run-on sequencing (GRO-Seq) and its  related 
methods uncover genome wide transcription 
machinery dynamics and nascent RNA genera-
tion [24, 58]. Combination of these approaches 
together with the identification of AID off-targets 
has given definitive answers for AID targeting 
associated features [73, 100]. The Nussenzweig 
lab used genetic screening to find Spt5 as AID 
interaction protein and suggested AID targets to 
regions with paused Pol II [91]. The Alt lab used 
GRO-Seq to check the transcription machinery in 
ex vivo activated B cells and found AID off-
targets are enriched in sense-antisense conver-
gent transcription regions and AID-dependent 
translocation numbers correlates with the conver-
gent transcription levels (defined by the geomet-
ric mean of sense and antisense transcription 
reads) [73] (Fig. 5.1c). The sense transcription 
comes from gene transcription, while the origin 
of antisense transcript remained a mystery. 
Similarly, AID off-targets were found enriched in 
some divergent transcribed promoters [92]. In 
eukaryotic genome, transcription outside of gene 
region mainly comes from enhancers [26]. The 
Alt lab used H3K27Ac ChIP-Seq to identify typi-
cal enhancers and super-enhancers in ex vivo acti-
vated B cells and found specific enrichment of 
AID activity in SE regions [73]. Similar conclu-
sion was drawn by an independent study from the 
Casellas lab [100]. Further bioinformatics exami-
nation concludes AID preferentially targets to the 
intragenic SEs (overlap region between SE and 
gene pair) with strong convergent transcription 
[73] (Fig. 5.1c).
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GC B cells only take up a small fraction (~5-
10%) of total splenic B cells after immunization, 
which was considered to be impossible for 
genomic studies like ChIP-Seq. With optimized 
protocols, the Alt lab further extended the study 
to in vivo GC B cells, and found most of the iden-
tified AID off-target regions localized in intra-
genic SEs with convergent transcription [73]. 
With human tonsil germinal center SE data, 
recurrent translocation and kataegis (cluster of 
mutations in cancer genome) were found fre-
quently located in intragenic SEs [73, 100]. 
However, most of the conclusions were drawn 
from non-Ig AID off-targets. The repetitive 
nature of Ig gene sequences presents a big obsta-
cle to study AID recruitment on Ig genes 
(Discussed in Refs. [73, 91]). Hopefully, new 
mouse models and long sequencing reads can 
solve the problem.

5.4.5	 �AID Cofactors and Activity 
Regulation

Many AID cofactors were identified in the last 
two decades, including the above-mentioned Pol 
II, CRM1, RPA, Spt5, eEF1A, etc [18, 44, 70, 78, 
91]. AID protein has a large portion of negative-
charged surface, which contribute to its single-
stranded nucleotide acid binding. Purified AID 
binds to many non-specific ssRNAs, which 
intrigued to study the role of ssRNA/DNA bind-
ing/processing factors during AID activity regu-
lation [12]. IgH S region repetitive DNA sequence 
contains AGCT motifs, and biochemical experi-
ment isolated 14-3-3 proteins as AGCT motifs 
binding protein [139]. 14-3-3 proteins were also 
suggested to directly recruit AID to the S regions, 
and 14-3-3 gene deficiency led to defective CSR 
in B cells [139]. In another study, RNA splicing 
factor PTBP2 was identified as AID binding pro-
tein, which was suggested to recruit AID to the S 
region and required for optimal CSR [85].

AID deamination activity was successfully 
reconstituted in vitro with ssDNA and transcribed 
dsDNA substrates [4, 18, 19]. However, it 
remained a big puzzle at the time why AID can 
only deaminate the non-template strand of tran-

scribed dsDNA substrate in vitro [4, 18, 19] as it 
is well documented that AID can deaminate both 
strands in vivo [86]. Biochemical study eventu-
ally discovered RNA exosome as the regulator 
that can target AID activity to both strands [5]. 
Since RNA exosome is the major cellular RNA 
processing machinery, it aroused researcher’s 
curiosity whether RNA or non-coding RNA plays 
a role in antibody diversification. Later, roles of 
lncRNA and G4 RNA were reported by the  
Basu lab [93] and the Chaudhuri lab [147], 
respectively.

5.5	 �Future

Nearly two decades have passed since the discov-
ery of AID/APOBEC DNA mutator enzymes. 
Now we know that multiple layers of regulation 
are evolved to restrict their deamination activity 
in immunity. However, many aspects of AID/
APOBEC regulation are still unclear, and the 
recent development of base-editing (BE) tools 
with AID/APOBEC enzymes [54, 57, 65, 83] 
raises additional questions and concerns. Whether 
the engineered deaminases in BE tools still retain 
dinucleotide motif preference or off-target activ-
ity? How error-free and error-prone DNA repair 
pathways compete for the BE outcomes in differ-
ent cell types? Answers to these questions will 
also benefit the understanding of programed 
AID/APOBEC deamination in both immunity 
and cancer genome integrity.
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The Role for the DSB Response 
Pathway in Regulating 
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Abstract
In response to DNA double strand breaks 
(DSB), mammalian cells activate the DNA 
Damage Response (DDR), a network of fac-
tors that coordinate their detection, signaling 
and repair. Central to this network is the ATM 
kinase and its substrates at chromatin sur-
rounding DSBs H2AX, MDC1 and 53BP1. In 
humans, germline inactivation of ATM causes 
Ataxia Telangiectasia (A-T), an autosomal 
recessive syndrome of increased proneness to 
hematological malignancies driven by clonal 
chromosomal translocations. Studies of can-
cers arising in A-T patients and in genetically 
engineered mouse models (GEMM) deficient 
for ATM and its substrates have revealed com-
plex, multilayered roles for ATM in transloca-
tion suppression and identified functional 
redundancies between ATM and its substrates 
in this context. “Programmed” DSBs at anti-
gen receptor loci in developing lymphocytes 
employ ubiquitous DDR factors for signaling 
and repair and have been particularly useful 
for mechanistic studies because they are 
region-specific and can be monitored in vitro 
and in vivo. In this context, murine thymo-

cytes deficient for ATM recapitulate the 
molecular events that lead to transformation in 
T cells from A-T patients and provide a widely 
used model to study the mechanisms that sup-
press RAG recombinase-dependent transloca-
tions. Similarly, analyses of the fate of 
Activation induced Cytidine Deaminase 
(AID)-dependent DSBs during mature B cell 
Class Switch Recombination (CSR) have 
defined the genetic requirements for end-
joining and translocation suppression in this 
setting. Moreover, a unique role for 53BP1 in 
the promotion of synapsis of distant DSBs has 
emerged from these studies.

Keywords
Class switch recombination · V(D)J recombi-
nation · AID · RAG · ATM · Chromosomal 
translocation

6.1	 �The DNA Damage Response 
(DDR) at Sites of Double-
Strand Breaks (DSBs)

6.1.1	 �Overview: ATM Orchestrates 
the DDR in Mammalian Cells

DNA DSBs represent the most deleterious DNA 
lesion; failure to repair them may lead to genomic 
instability and cell death or senescence [45]. At 
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the organismal level, defective DSB repair trans-
lates into tissue dysfunction and premature aging 
and promotes tumorigenesis [45]. To prevent 
these outcomes, mammalian cells have evolved 
the DDR, a rapid set of responses that coordi-
nates the assembly of repair complexes at the 
break with the activation of cell cycle check-
points and the transcriptional networks that ulti-
mately mediate cellular outcomes [153]. 
Moreover, it is becoming apparent that the DDR 
is not limited to the nucleus but rather coordi-
nates the nuclear and cytoplasmic responses to 
DNA damage [62].

This rapid and widespread response is made 
possible by coordinated posttranslational modifi-
cations of DNA repair factors and histones at the 
break site, including phosphorylation, ubiquitina-
tion, SUMOylation, PARylation and others [15, 
16, 29, 85, 126, 127, 182, 192]. In the context of 
phosphorylation, the DDR is regulated by three 
highly related PI3 kinase-like kinases (PI3KKs): 
Ataxia Telangiectasia Mutated (ATM), Ataxia-
telangiectasia and RAD3 Related protein (ATR) 
and the catalytic subunit of the DNA protein 
kinase (DNA-PKcs) [108]. All three factors are 
activated in response to DSBs and phosphorylate 
hundreds of substrates at target SQ/TQ motifs 
[112], often in a redundant manner [159, 174]. 
Their activity is regulated by multiple mecha-
nisms, including the cell cycle [83] and their 
mutual interactions [119, 193] and ultimately 
promotes repair and suppresses chromosomal 
translocations. In this Chapter, we will focus on 
key roles for the ATM kinase and its substrates in 
translocation suppression. Please see Fig. 6.1 for 
introductory schematic of ATM domains and its 
main regulatory functions at sites of DSBs.

6.1.2	 �General Mechanisms 
of Translocation Suppression 
by the DDR

DSBs threaten genomic integrity because their 
repair may introduce mutations at the break site 
and/or proceed aberrantly to generate chromo-
somal rearrangements. Indeed, genome-wide 

mapping of chromosomal translocations arising 
in primary mouse B lymphocytes harboring 
traceable DSBs revealed that translocation for-
mation is enhanced by proximity [44, 93], favor-
ing intrachromosomal rearrangements and 
resulting in frequent deletions in cis [44, 93]. 
Although most of these translocations likely have 
no consequence to cellular functions, rare events 
may disable anti-cancer mechanisms via inacti-
vation or overexpression of anti- or pro-oncogenic 
factors, respectively [64, 135]. Therefore, a key 
function of the DDR is to suppress pathogenic 
clonal translocations by promoting the rejoining 
of DNA ends across the break.

In mammalian cells, DSB rejoining is medi-
ated via either Homologous Recombination (HR), 
an error-free pathway active in the replicative 
phases of the cell cycle [87, 134] or 
NonHomologous End-Joining (NHEJ), a versa-
tile, ligase IV-dependent pathway that re-ligates 
broken DNA ends across the cell cycle using no 
homology or micro-homologies [21, 102]. In 
addition to the canonical NHEJ pathway, cancer 
cells may activate a back-up or alternative NHEJ 
pathway that rather employs ligase I/III and may 
repair persistent breaks with slower kinetics [41]. 
Regardless of the repair pathway used, DSB 
repair is slow (minutes to hours) and necessitates 
a strategy to prevent DNA end dissociation prior 
to ligation. This end tethering function is provided 
by the DDR in conjunction with repair factors. 
The complex formed by MRE11, RAD50 and 
NBS1 (MRN) ubiquitously binds to broken DNA 
ends and plays key roles in their sensing and pro-
cessing throughout the cell cycle [164]. 
Specifically, the hook domains at the apex of two 
RAD50 coiled coil domains dimerize to bridge 
two DNA molecules bound by the RAD50 globu-
lar heads [78] and this function is facilitated by 
MRE11 dimerization [178]. Indirectly, the endo-
nuclease activity of MRE11 initiates end-resection 
and activates the ATM kinase [129], a main 
orchestrator of the DDR [112]. This role for MRN 
in DNA end alignment and bridging is highly con-
served and occurs in different chromatin contexts, 
including canonical and alternative NHEJ [50, 
180] and programmed breaks generated during 
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V(D)J recombination [74] and Class Switch 
Recombination (CSR; see below) [54].

ATM, together with DNA-PKcs and ATR, 
phosphorylates the amino-terminal tail of histone 
H2AX at Ser139 to form γ-H2AX [142]. This 
modification spreads both sides of the break and 
anchors MDC1 [107] to form a platform for the 
recruitment of BRCA1, 53BP1 and their effec-
tors [14]. These multiprotein complexes, detected 
as “foci” by standard immunocytochemistry 
assays, may themselves function as “glue” to 
suppress DNA end dissociation [11, 186, 191]. In 

addition to DDR factors, components of the 
NHEJ pathway have also been implicated in the 
formation of the synaptic complex via different 
mechanisms [28, 68, 157], and their absence 
eventually results in DNA end dissociation [30, 
103]. Therefore, the DDR and the NHEJ pathway 
normally cooperate to maintain DNA ends 
aligned and tethered until ligated.

In addition to position, transcriptional status 
has emerged as a main determinant of transloca-
tion proneness. Indeed, unbiased genome-wide 
translocation sequencing in primary mouse cells 
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Fig. 6.1  ATM is a kinase with pleiotropic roles in the 
DNA Damage Response (DDR). (a) The carboxi-terminal 
domain of ATM contains 40–50 alpha-helical repeats that 
mediate interaction with the MRE11/RAD50/NBS1 
(MRN) complex. The carboxi-terminal domain contains a 
PI3 kinase-like kinase (PI3KK) domain that modifies 
S/T(Q) motifs in target proteins. The kinase domain is 
flanked by a FRAP-ATM-TRRAP (FAT) domain and a 
FAT carboxi-terminal (FACT) domain. ATM auto-
phosphorylates at Ser1981 upon induction of double 
strand breaks (DSB) and the modified protein is com-
monly used as a biomarker for DDR activation. (b) ATM 

regulates the DDR at multiple steps, including the rapid 
detection of break-induced alterations in chromosomal 
structure leading to auto-phosphorylation at Ser1981 and 
activation; the maintenance of DNA end tethering via 
modification of MRE11/RAD50/NBS1 complex; the 
recruitment of ubiquitin ligases via phosphorylation of 
H2AX and MDC1; and the competition between 53BP1 
and BRCA1 for DNA ends, a critical event during DSB 
repair pathway choice. ATM also phosphorylates many 
proteins in the nucleoplasm (such as p53) and outside the 
nucleus (no depicted)
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revealed that transcribed regions, and in particu-
lar active transcription start sites, are prone to 
translocations [44, 93]. Transcription results in 
the generation of R loops, short RNA-DNA 
hybrids that leave the nontemplate DNA strand 
exposed to mutagenic activities, such as oxida-
tive stress, cellular cytidine deaminases or others 
[147]. R loops are abundant in human cells [65] 
and, in some contexts, have been clearly shown 
to promote DNA DSBs and chromosomal trans-
locations [76, 82]. The best characterized exam-
ple is perhaps the promotion of chromosomal 
translocations between C-MYC and the immuno-
globulin heavy chain (IgH) locus, a hallmark of 
many B cell malignancies [140]. R loops form at 
the at the MYC locus [59] and at the S region of 
the immunoglobulin heavy chain [23, 188]. AID, 
a cytidine deaminase expressed in B cells, binds 
to and modifies these structures, leading to for-
mation of DNA DSBs and IgH-MYC transloca-
tions [59]. In support of a mechanistic role for R 
loops in this setting, loss of TOP3B, which 
relaxes negative supercoiling and increases R 
loop formation at the MYC promoter, also 
increases the frequency of Igh-Myc transloca-
tions in mice [183]. Moreover, AID induces 
translocations involving a heterologous S region 
and MYC in yeast THO mutants, known to accu-
mulate R loops [144]. Together, these data sug-
gest that the simultaneous formation of R loops 
in Ig and transcribed MYC (or other transcribed 
genes) may promote their translocations. Recent 
evidence indicates that many DDR and DNA 
repair factors may suppress chromosomal trans-
locations via direct modulation of R loop forma-
tion and dissolution ([20, 73]; reviewed in [162]). 
In this context, ATM, a suppressor of IgH-Myc 
translocations in vivo [135], also suppresses R 
loop formation in proliferating cells [184] and is 
activated by R loops at sites of UV-induced DNA 
damage [169]. Finally, emerging data implicates 
transcription-independent DSBs generated by 
topoisomerase 2B (TOP2B) at chromosome loop 
anchors as a cause of chromosomal fragility [36], 
another scenario where the DDR may function to 
limit translocations.

6.2	 �Mammalian Genetic Models 
to Study Roles for the DDR 
in Translocation Suppression

6.2.1	 �Genetically Engineered 
Mouse Models (GEMM) of DDR 
Deficiency

Mice with germline inactivation of DDR factors 
have provided valuable insights into their require-
ments in translocation suppression. Embryonic 
fibroblasts and B and T lymphocytes deficient for 
ATM [34, 64], histone H2AX [12, 40, 64], MDC1 
[107] or 53BP1 [64, 117] all accumulate chromo-
somal translocations. Mechanistically, these 
translocations are though to occur as a result of 
defective end-joining across the break leading to 
persistent breaks and end dissociation [11, 63]. In 
addition, DDR factors may play roles in the regu-
lation of pathway choice during translocation. 
For example, ATM and H2AX not only suppress 
translocations but also enhance fidelity at translo-
cation breakpoints by promoting rejoining via 
classical over alternative NHEJ [19]. Although 
all H2AX [31], MDC1 [81, 96, 109, 110] and 
53BP1 [42, 61] are ATM substrates in the DDR, 
their roles in translocation suppression are not 
fully epistatic with ATM. In this regard, cytoge-
netic analysis of primary B and T cells deficient 
for 53BP1 and ATM revealed increased fre-
quency of chromosomal breaks and transloca-
tions in double mutant primary cells associated to 
a greater defect in end-joining [146]. Similarly, 
combined deficiency for H2AX and ATM leads 
to a marked increase in the frequency of chromo-
somal breaks and translocations in embryonic 
fibroblasts [190] and in vitro cultured T cells 
[185]. However, mechanistic understanding of 
these interactions has mostly relied on the analy-
sis of translocations arising at loci undergoing 
programmed DSBs during lymphocyte develop-
ment, which can be traced in time and space. In 
Section 3 below, we discuss roles for ATM and its 
substrates in translocation suppression using 
RAG-dependent DSBs during V(D)J recombina-
tion as a model system. Furthermore, Section 4 
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summarizes our understanding on how the ATM 
network suppresses AID-dependent transloca-
tions during Class Switch Recombination (CSR).

6.2.2	 �Human Genetic Syndromes 
of DDR Deficiency: 
Ataxia-Telangiectasia

Mutations in H2AX, MDC1 or 53BP1 have not 
been observed in humans. In contrast, biallelic 
mutations in the ATM kinase result in the autoso-
mal recessive syndrome Ataxia-Telangiectasia 
(A-T; OMIM#208900). The ATM locus at human 
chromosome 11q22 contains 66 exons and 
encodes a 350 kDa protein with a C-terminal PI3 
kinase-like kinase (PI3KK) domain [149]. 
Mutations leading to A-T span the entire locus 
and most patients are compound heterozygous 
[167]. Approximately 85% of A-T patients har-
bor biallelic null mutations and display the most 
severe or “classical” form of the disease, includ-
ing neurodegeneration, immunodeficiency and 
increased cancer predisposition [22, 143]. 
Neurodegeneration is particularly severe in the 
cerebellum, with progressive loss of Purkinje 
cells (PC) and, to a lesser extent, granule cells 
(GCs) [25, 128, 173]. On average, ataxia first 
manifests in the toddler years and patients 
become wheelchair bound at a mean age of 8 
years [120]. Currently, the mechanisms leading 
to neurodegeneration remain unclear. In contrast, 
the phenotypes of immunodeficiency, gonadal 
atrophy, radiosensitivity, premature aging and 
cancer proneness are clearly related to ATM 
functions in DSB repair. In this regard, A-T pri-
mary cells show frequent chromosomal breaks 
and translocations [94, 95]. Moreover, acceler-
ated telomere shortening [114, 125, 155, 170, 
179], defective response to oxidative stress [70] 
and other phenotypes may cooperate with defec-
tive DSB repair to augment genomic instability 
in A-T cells. Lymphocytes from A-T patients har-
bor chromosomal breaks and clonal transloca-
tions that mainly involve T [77, 92, 94] and B 
[32] cell receptor loci. These translocation are 
detected in the blood of many A-T patients years 
prior to the development of malignancy [165] 
and are discussed in detail in below.

6.3	 �The DDR Suppresses 
Chromosomal Translocations 
During V(D)J Recombination

6.3.1	 �Mechanisms of V(D)J 
Recombination

Adaptive immunity relies on the clonal expansion 
of B and T lymphocytes upon binding of their sur-
face receptors to specific antigens [48, 168]. The 
generation of both B and T cells involves the 
expression of the lymphocyte-specific RAG1/
RAG2 (RAG) endonuclease to introduce DSBs 
between V, D and J coding sequences and their 
flanking recombination signal sequences (RSS) at 
antigen receptor loci, followed by deletional or 
inversional recombination [151]. To prevent 
genomic instability, this process is initiated and 
completed during the G1 phase of the cell cycle 
[88, 152]. In the bone marrow, B lineage cells suc-
cessively rearrange their V to D gene segments in 
the variable region of the immunoglobulin heavy 
chain (IgH) and light chain (IgL) loci to form 
pre-B cells [106]. Additional rearrangement of D 
to J gene segments yields mature B cells that 
express the B cell receptor (BCR) and exit the bone 
marrow to colonize the spleen and lymph nodes 
[106] (diagrammed in Fig. 6.2). Similarly, devel-
oping T cells in the thymus sequentially rearrange 
V, D and J gene segments to generate T cell recep-
tors TCRα, TCRβ, TCRγ and TCRδ. TCRβ, TCRγ 
and TCRδ variable region exons are assembled 
first, at the CD4-/CD8- (“double negative”) stage. 
Productive VδDδJδ and VγJγ rearrangements gen-
erate TCRδ and TCRγ chains, respectively, which 
assemble in the surface to form the TCRγδ recep-
tor and induce differentiation along this lineage 
[18]. Alternatively, a productive VβDβJβ rear-
rangement generates TCRβ chains that promote 
differentiation to the CD4+/CD8+ (“double posi-
tive”) stage. Here, a productive VαJα rearrange-
ment generates a TCRα chain that associates with 
TCRβ to promote differentiation to either CD4+ or 
CD8+ (“single positive”) T cells [18].

In all cases, successful recombination requires 
the rejoining of RAG-liberated DSBs via 
ubiquitous DDR and NHEJ factors [10, 104]. 
Therefore, deficiencies for RAG as well as many 
DDR/NHEJ factors block B and T cell develop-
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ment at early stages to variable extent [156]. 
Specifically, loss of RAG results in a complete 
block or severe combined immunodeficiency 

(scid) with antigen receptor loci in germline con-
figuration. In contrast, loss of DDR or NHEJ fac-
tors results in variable degrees of 
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Fig. 6.2  The DDR prevents translocations of RAG-
dependent DSBs. (a) Schematic of the immunoglobulin 
heavy chain (IgH) locus at mouse chromosome 12. During 
V(D)J recombination, the RAG recombinase introduces 
double-strand breaks (DSBs) adjacent to VH, DH and JH 
segments and the Nonhomologous End-Joining (NHEJ) 
pathway of DSB repair ligates the ends to generate a cod-
ing VDJH exon. The expression of this VDJH exon and a 
downstream constant region (CH) exon generates the 
immunoglobulin heavy chain (IgH). The immunoglobulin 
light chain (IgL) is similarly generated via VL to JL recom-
bination at the immunoglobulin light chain kappa (Igκ) or 
lambda (Igλ) loci. Binding of heavy and light chains 

results in antibody formation (depicted on the right). (b) 
Schematic of molecular events at the TCRα/δ locus in 
developing murine thymocytes. In wild-type mice (Atm+/+ 
mice), RAG-dependent DSBs are sensed and signaled by 
ATM and repaired via NHEJ.  In mice with a germline 
deletion of Atm (Atm-/- mice), a subset of RAG-dependent 
DSBs dissociates prior to repair, leading to either free, 
unrepaired DNA ends or aberrant repair by translocation 
to another broken DNA ends elsewhere in the genome. (c) 
Spectral karyotyping (SKY) analysis of thymic lympho-
mas arising in Atm-/- mice reveals a clonal translocation 
involving chromosomes 12 and 14. The breakpoint at 
chromosome 14 localizes to the TCRα/δ locus

R. Ghosh et al.



71

immunodeficiency as a result of failed recombi-
nation of RAG-dependent DSBs. It is only in the 
latter scenario that unrepaired DSBs signal cell 
death or engage in chromosomal translocations. 
Moreover, concomitant defects in DSB repair 
elsewhere often lead to coexisting nonimmuno-
logical manifestations.

In mice and humans, the genes encoding 
TCRα and TCRδ occupy the same locus in chro-
mosome 14 and their sequential rearrangement is 
regulated via specific enhancers [98]. Both 
human and mouse TCRδ loci resided between Vα 
and Jα segments, and therefore TCRα rearrange-
ment deletes the TCR δ gene and commits cells 
to the α/β lineage. These rearrangements are 
driven by specific enhancer elements, Eδ and Eα 
[154], which play major roles in the generation of 
translocations (see below).

6.3.2	 �RAG-Dependent Breaks 
and Translocations in DDR-
Deficient Mice

Recombining thymocytes deficient for NHEJ 
factors (including Ku70, Ku80, DNA-PKcs, 
Artemis, ligase IV or XRCC4) fail to ligate RAG-
generated DSBs, leading to pro-B and pro-T cell 
apoptosis and absence or marked depletion of 
mature lymphocytes [3]. In contrast, deficiencies 
for DDR factors result in variable, milder defects 
in T cell maturation, in line with their redundant 
roles in DSB detection and signaling. Deficiency 
for components of the MRN complex [74] or 
ATM [7] results in the most severe defects, while 
residual recombination and lymphocyte develop-
ment is observed in thymocytes deficient for 
ATM substrates H2AX [13, 40], MDC1 [107] or 
53BP1 [176]. Of note, deficiencies for specific 
factors impact B and T cell development to dif-
ferent extent. For example, loss of ATM results in 
marked depletion of thymocytes and peripheral T 
cells early in life, while the B cell compartment is 
less affected.

Atm-/- mice [7, 24, 181, 190] have been par-
ticularly valuable to understand how the DDR 
suppresses the translocation of RAG-induced 
DSBs during in developing lymphocytes 

(Fig. 6.2). Cytogenetic analysis of interphase and 
dividing Atm-/- thymocytes and peripheral T cells 
has been used extensively to quantify chromo-
somal breaks at the TCRα/δ locus [24, 80, 105]. 
Moreover, this approach also allows monitoring 
of their progression to nonclonal chromosomal 
translocations and, over a period of a few months, 
clonal selection and full malignant transforma-
tion [7, 24, 181, 190]. The rapid clonal progres-
sion uniquely observed in this model results from 
the requirement for ATM in the activation of the 
p53-dependent G1/S cell cycle checkpoint [37, 
91] and apoptosis in response to unrepaired DSBs 
[58]. Thus, rapid transformation observed in thy-
mocytes deficient for ATM but not its substrates 
(see below) results from the unique pleomorphic 
roles for ATM in DSB detection, signaling and 
repair [34]. Interestingly, breeding into a RAG-
deficient background does not prevent lympho-
magenesis in Atm-/- mice [132, 133]. However, 
lymphomas in Atm-/-/Rag2-/- mice lack chromo-
somal translocations involving antigen receptor 
loci [132, 133], further highlighting the essential 
role for ATM in promoting repair in this context. 
Finally, we note that ATM is activated in response 
cellular stresses other than DSBs [129], a mecha-
nism that may potentially cross-talk with its 
functions at the DDR to modulate the fate of 
RAG-dependent DSBs .

Atm-/- thymi show blockade at the DP to SP 
transition and marked reductions in total cellular-
ity, α/β T cells and SP CD4+ and CD8+ T cells [7, 
24, 181, 190]. Consistent with defective repair of 
RAG-induced DSBs in the absence of ATM, fluo-
rescence in situ hybridization (FISH) analyses of 
Atm-/- T cells with probes that hybridize to 
sequences flanking the TCRα/δ locus in chromo-
some 14 reveal frequent locus-specific chromo-
somal breaks [34, 105] (see Fig.  6.2 for an 
example).

Atm-/- mice succumb to T-cell acute ALLs with 
clonal translocations that typically involve the 
TCRα/δ locus in chromosome 14, the TCRβ 
locus on chromosome 6 and the immunoglobulin 
heavy chain locus in chromosome 12 that recom-
bines D and J segments in thymocytes [33, 105, 
189]. Moreover, T cells harboring translocations 
with a breakpoint at this locus are detected in the 

6  The Role for the DSB Response Pathway in Regulating Chromosome Translocations



72

peripheral blood of Atm-/- mice [34, 105], harbor-
ing the onset of malignancy. Mechanistically, 
elegant experiments by Sleckman and colleagues 
demonstrated that ATM functions to maintain 
RAG-generated DNA ends in repair complexes 
[26], preventing DNA end dissociation and chro-
mosomal translocation.

Using array comparative genomic hybridiza-
tion (CGH) analysis to map the translocation 
breakpoints within TCRα/δ, Zha and colleagues 
demonstrated that the TCRα/δ translocation is 
associated to defective rearrangement at the 
TCRδ rather than the TCRα locus [189], suggest-
ing an earlier developmental origin than previ-
ously thought [33]. In support of this notion, 
deletion of Eδ [89] but not Eα [189] rescued 
clonal translocations in vivo. In addition, the 
CGH data revealed that the T(12;14) is associ-
ated to amplification of a set of genes upstream of 
the TCRα/δ locus [189], suggesting that 
breakage-fusion-bridge (BFB) cycles may act as 
intermediaries. Todate, it remains unclear 
whether the sequences in chromosome 12 repre-
sent “passengers” or, alternatively, contribute to 
tumorigenesis by inactivating a tumor suppressor 
gene [189]. In this regard, the translocation 
deletes one copy of Bcl11b [189], a haploinsuf-
ficient tumor suppressor in the mouse [90], lead-
ing to decreased expression [189]. However, 
monoallelic deletion of Bcl11b in double nega-
tive thymocytes did not accelerate lymphoma-
genesis in Atm-/- mice [60], suggesting an 
alternative mechanism. Finally, the murine trans-
location deletes TCL1 [189], a gene that is trans-
located in the human translocation, even though 
it is located in the syntenic area.

ATM substrates H2AX, MDC1 and 53BP1 
have also been implicated in the suppression of 
chromosomal translocations in developing lym-
phocytes. Immuno-FISH using antibodies that 
recognize γ-H2AX and DNA probes that hybrid-
ize to sequences at TCR loci revealed the pres-
ence of γ-H2AX foci at chromatin surrounding 
RAG-dependent DSBs [43]. The functional sig-
nificance of this ATM- (and likely DNA-PKcs-) 
dependent modification has been investigated in 
detail using mice with germline [13, 40] or T 
cell-specific [185] H2AX inactivation. 

Collectively, these studies clearly demonstrate a 
requirement for H2AX for end-joining of RAG-
dependent DNA ends at the TCRα/δ locus via its 
functions in DNA end anchoring prior to ligation 
[11, 186] and in protection from aberrant CtIP-
mediated resection [75].

Interestingly, the presence of persistent, unre-
paired RAG-dependent breaks in H2afx-/- thymo-
cytes is not sufficient to trigger transformation 
and H2afx-/- mice are not lymphoma prone [13, 
40]. This is likely due to the vigorous p53-
dependent apoptotic response elicited by DSBs 
in H2afx-/- developing T cells. Indeed, breeding 
of H2afx-/- mice to mice with germline inactiva-
tion of p53 (Trp53-/- mice), themselves lymphoma 
prone [55, 72, 84], greatly accelerates lymphom-
agenesis relative to single mutants [13, 39]. Most 
significantly, the mechanisms driving transfor-
mation in Trp53-/- and H2afx-/-/ Trp53-/- thymo-
cytes are distinct. Trp53-/- lymphomas are driven 
by point mutations in Pten and other tumor-
associated loci [56, 101] while H2afx-/-/ Trp53-/- 
lymphomas are driven by clonal chromosomal 
translocations [13, 39]. Interestingly, these trans-
locations do not involve the TCRα/δ locus in 
chromosome 14 or breakpoints at either TCRβ in 
chromosome 6 or TCRγ in chromosome 13, even 
though the TCRβ is rearranged in the tumor cells. 
Instead, Spectral Karyotyping (SKY) analysis of 
H2afx-/-/ Trp53-/- revealed clonal translocations 
originated by rejoining of DSBs that presumably 
occur at “random” sites during periods of rapid 
cellular proliferation. Similarly, conditional inac-
tivation of H2AX and p53 in double negative thy-
mocytes using an Lck-Cre transgenic mouse 
model resulted in thymic lymphomas driven by 
clonal translocations that did not typically involve 
antigen receptor loci [187]. Finally, although 
deletion of an H2AX conditional allele in ATM-
deficient thymocytes increased the number of 
RAG-dependent chromosomal translocations in 
vitro [185], it did not accelerate lymphomagene-
sis in vivo [185]. Altogether, these observations 
suggest that, unlike ATM, H2AX is mostly 
dispensable for the repair of RAG-dependent 
DSBs, but becomes limiting at DSBs that arise 
via other mechanisms, such as replication, oxida-
tion or others. A potential explanation for these 
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findings is that RAG itself may function to pro-
motes DNA end synapsis, providing an overlap-
ping mechanisms with H2AX (and other foci 
factors) in this context [11]. This notion also may 
explain the lack of significant defects in V(D)J 
recombination in Mdc1-/- mice [107].

Similar to H2afx-/- mice, Trp53bp1-/- mice 
show decreased thymic size and decreased num-
ber of peripheral T cells, including α/β and γ/δ T 
cells [52], pointing to a defect in maturation. 
Interestingly, the mechanism driving T cell 
immunodeficiency in the absence of 53BP1 is 
unique. While ATM, H2AX and MDC1 function 
to promote repair across a DSBs, 53BP1 is 
mainly required for the synapsis of two distant 
DSBs, a critical step during recombination. 
Specifically, Trp53bp1-/- thymocytes are impaired 
for V to DJ joining, leading to degradation of per-
sistent coding ends and apoptosis. If the apop-
totic response is blunted by breeding to a 
p53-deficient background, thymic lymphomas 
are observed [116, 175]. However, most 
Trp53bp1-/-/Trp53-/- lymphomas are driven by 
polyploidy or by clonal translocations that spare 
antigen receptor loci [116, 175].

An epistaxis analysis of ATM and 53BP1 
functions at RAG-dependent DSBs was also con-
ducted using a murine model of combined germ-
line deficiency [146]. This work indicated that 
combined loss aggravates the T cells maturation 
defect, further reducing thymic output [146]. 
Moreover, Atm-/-/Trp53bp1-/- mice develop thy-
mic lymphomas earlier in life and with higher 
penetrance than Atm-/- controls [146]. Like Atm-/- 
lymphomas, Atm-/-/Trp53bp1-/- lymphomas are 
driven by clonal chromosomal translocations 
involving the TCRα/δ locus [146]. Altogether, 
these data suggest that H2AX and 53BP1 play 
modest ATM-independent functions in transloca-
tion suppression in vivo.

6.3.3	 �RAG-Dependent Break 
and Translocations in Ataxia-
Telangiectasia Patients

The requirement for ATM in the repair of RAG-
dependent DSBs is highly conserved in mice and 

humans. Approximately two thirds of patients 
with classical A-T have low lymphocyte counts 
and immunodeficiency [121]. Although both cir-
culating B and T cells are decreased, the most 
common observation is low number of CD4+ T 
cells with impaired response to mitogens and 
antigens and anergy [121]. The degree of immu-
nodeficiency varies significantly from one patient 
to another, but tends to be stable over time. 
Immunodeficiency tends to be less common in 
the variant, milder forms of the disease [172].

In addition to lymphopenia, A-T patients show 
increased predisposition to hematological malig-
nancies. Specifically, the risk of lymphoid but not 
myeloid malignancies is markedly increased 
[166]. T cell cancers are more frequent than B 
cell tumors and include T cell acute lymphoblas-
tic leukemia (ALL), T cell lymphomas and, in 
older A-T patients, T cell prolymphocytic leuke-
mia (T-PLL) [166] . Cytogenetic analysis indi-
cates that tumor cells typically harbor clonal 
chromosomal rearrangement involving antigen 
receptor loci [27], suggesting that they originate 
during V(D)J recombination.

Childhood T cell ALL is the most common 
malignancy in A-T and frequently involves clonal 
translocations involving TCRA/D locus in chro-
mosome 14 or TCRB in chromosome 7 [166]. In 
humans, the TCRA/D locus is located in chromo-
some 14 and translocations in A-T leukemias are 
typically inv(14)(q11q32), or tandem transloca-
tions of chromosome 14 with breakpoints at q11 
and q32 and del(14)(q11q32) [27]. Older A-T 
patients can harbor clonal expansions of periph-
eral T cells with inv(14)(q11;q32) and, in addi-
tion, t(14,14)(q11;32.1) and more rarely t(X;14)
(q28;q1); some of these patients will develop T 
cell PLL.  In these translocations, the TCRA/D 
breakpoint at 14q11 is fused with a breakpoint at 
the TCL1 oncogene at 14q32.1 and at the MTCP1 
oncogene at Xq28 [166] [145] [130] [6, 47]. 
These translocations can be detected in the blood 
of asymptomatic patients for years [27] and likely 
evolve to full malignancy upon the acquisition of 
additional alterations, such as trisomy of 8q con-
taining C-MYC and others [27].

Interestingly, over half of non-A-T patients 
with T-PLL carry a somatic mutation of ATM 
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[158] and the same TCRA;TLC1 and 
TCRA;MTCP1 translocations are also recurrent 
clonal lesions in this setting [49, 163]. These 
translocation likely drive transformation in both 
A-T and non A-T patients by placing the TCL1 or 
MTCP1 under the control of the TCRα transcrip-
tional enhancer (Eα) [27]. Similarly, cytogenetic 
abnormalities involving antigen receptor loci are 
often present in T cell ALL in the general popula-
tion [2], suggesting that uncharacterized defects 
in the DDR or NHEJ may promote leukemogen-
esis more broadly.

The improvement in supportive care has 
increased the life expectancy of A-T patients and 
also uncovered their predisposition to solid 
tumors in the second and third decades of life 
[171, 172]. Moreover, patients with the milder, 
“variant” form of the disease tend to develop 
solid tumors rather than leukemias typically 
observed in the classical form of the disease [136, 
171]. Future investigations for the presence of 
fusion transcripts in tumor DNA will help deter-
mine whether the role for ATM in translocation 
suppression may also be relevant in this 
scenario.

6.4	 �The DDR Suppresses 
Chromosomal Translocations 
During Class Switch 
Recombination

6.4.1	 �Mechanisms of Class Switch 
Recombination

Upon encounter with antigen, IgM+ B cells 
undergo CSR to diversify their effector functions 
by expressing the same variable region as a sec-
ondary isotype (i.e., IgG, IgA or IgE). 
Mechanistically, this process involves a dele-
tional recombination reaction at the immuno-
globulin heavy (IgH) chain locus constant region 
(diagrammed in Fig. 6.3). In particular, activation-
induced cytidine deaminase (AID; gene symbol, 
AICDA) [118] works in concert with ubiquitous 
DNA repair pathways (including Base Excision 
Repair (BER) and Mismatch Repair (MMR) to 
introduce DSBs at “Switch” (S) regions upstream 

of Cμ (encoding IgM) and a downstream CH 
exon. AID-dependent DSBs are sensed and sig-
naled via ubiquitous DDR factors, brought 
together across long chromosomal distances 
(“synapsed”) and rejoined via ubiquitous 
NHEJ. Completion of the recombination reaction 
results in deletion of Cμ and expression of the 
variable region together with Cα, Cε or Cγ (to 
encode IgA, IgE or IgG, respectively). Intervening 
DNA is sealed into a circle by NHEJ and eventu-
ally lost upon division. The general mechanisms 
of CSR have been the subject of recent excellent 
reviews [3, 38, 113, 115].

Successful CSR requires that two distant 
DSBs are repaired by rejoining to each other 
rather than via rejoining of DNA ends across 
each individual DSB, exploiting a general cellu-
lar response that promotes DSBs repair in cis 
[67]. As diagrammed in Fig. 6.3, AID is thought 
to introduce numerous DSBs within each of the 
two recombining S regions. These concurrent 
DSBs may be rejoined to either DSBs within the 
same S region (intra-S region recombination, 
leading to an internal deletions or “shorter” S 
region) or to DSBs within the recombining S 
region (inter-S region recombination, leading to 
CSR). Studies in wild-type B cells indicate that 
CSR is normally favored over internal deletion. 
For example, in a typical B cell activation with 
α-CD40 antibody and Il-4, over half of the cells 
undergo CSR.  In contrast, less than 10% show 
intra-S deletions (when assayed by Southern 
blotting which would not detect small deletions). 
As described below, mutations in specific DDR 
components impair end-joining during CSR by 
decreasing the efficiency of synapsis, while oth-
ers impair repair (i.e., NHEJ) per se.

Like V(D)J recombination, CSR is initiated 
and completed in the G1 phase of the cell cycle 
[64]. Consistently, defects for AID or the DDR/
NHEJ factors that regulate DSB repair during the 
G1 phase of the cell cycle impair CSR to variable 
extent. In this context, ATM and its substrates 
H2AX and 53BP1 are required for efficient CSR 
in mice and humans, as described in detail below. 
In contrast, defects in HR or DDR factors that 
regulate DSB repair in the replicative phases of 
the cell cycle do not directly interfere with CSR 
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Fig. 6.3  Mechanisms of Class Switch Recombination 
(CSR). (a) In mature B cells, the VDJH exon formed dur-
ing V(D)J recombination of the immunoglobulin heavy 
chain (IgH) locus at the pro-B cell stage is initially tran-
scribed with the most upstream exon of the IgH constant 
region, Cμ, to generate IgM.  Upon antigen encounter, 
mature B cells may undergo CSR to a secondary isotype 
(such as IgE encoded by the Cε exon in the example 
depicted here). CSR requires sterile transcription of repet-
itive “switch” (S) regions upstream of the recombining 
exons, Sμ and Sε. The nontranscribed strand is preferen-
tially deaminated by AID and processed via ubiquitous 
DNA repair pathways to generate DNA single-strand 
breaks (SSBs). Two SSBs in opposite strands are sensed 

as a double-strand break (DSB) and activate the DNA 
Damage Response (DDR). DSBs at Sμ and Sε are brought 
together (“synapsed”) and rejoined via the ubiquitous 
nonhomologous end-joining (NHEJ) pathway to effect 
recombination. After recombination, the VDJH exon is 
transcribed with the Cε exon, to generate IgE. Intervening 
DNA is rejoined in a circle and is eventually lost upon 
replication. (b) Possible fates for DSBs generated at S 
regions of recombining exons during CSR. DSBs within S 
regions can sometimes rejoin to each other (intra-S region 
recombination) to form an internal deletion. However, 
during normal CSR, DSBs within an S region preferen-
tially rejoin to DSBs at another S region (inter-S region 
recombination), resulting in CSR
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and will not be discussed here. Finally, the IgH 
locus is also modified via programmed lesion-
repair cycles in mature B cells undergoing 
Somatic Hypermutation (SHM). Like CSR, this 
process employs ubiquitous DNA repair pathways 
to introduce point mutations into the IgH variable 
region to increase clonal affinity [51]. However, 
SHM differs from CSR in that it does not proceed 
through intermediary DSBs [57, 115]. Consistent 
with this notion, ATM [122, 123, 137], H2AX 
[139] and 53BP1 [111] are dispensable for SHM.

6.4.2	 �AID-Dependent Breaks 
and Translocations in DDR-
Deficient Mice

Murine B cells activated for CSR in vitro provide 
a facile system to dissect the genetic require-
ments for recombination during CSR.  The IgH 
locus heavy chain of B cells residing in the mouse 
spleen and lymph nodes is mostly in germline 
configuration (IgM+). Upon isolation and activa-
tion with cytokines that mimic either a T cell-
independent or a T cell-dependent response, 
these IgM+ cells proliferate, induce AID and tran-
scription through S regions and switch to a sec-
ondary isotype within a few days in a 
quasi-synchronous manner. Moreover, the effi-
ciency of switching can be readily quantified by 
flow cytometry after labeling with antibodies that 
recognize secondary isotypes in the B cell sur-
face. In addition, the highly proliferative nature 
of these cultures makes them amenable to cyto-
genetic analysis with IgH locus-specific FISH 
probes, providing a correlate between the switch-
ing defect and the frequency of IgH locus-specific 
chromosomal breaks and translocations (locus-
specific genomic instability; see Fig.  6.4 for 
schematic of the FISH assay and possible out-
comes and interpretation). This experimental 
pipeline has been applied extensively to under-
stand the contribution of ATM and many of its 
substrates to the repair of AID-induced DSBs. In 
general, these studies have found that the molec-
ular events upstream of DSBs (i.e., proliferation, 
AID induction and S region transcription) occur 
normally in DDR mutants. Rather, the repair of 

AID-dependent DSBs is compromised, as 
described below in more detail.

Analysis of Atm-/- B cells activated for CSR in 
vitro has revealed that the efficiency of switching 
is reduced to approximately half of the ATM-
proficient control cultures [64] [137]. This defect 
is associated to frequent genomic instability at 
one or both IgH loci [64], revealing a requirement 
for ATM in the rejoining of a subset of AID-
dependent DSBs. In support of this notion, loss of 
AID rescues most chromosomal instability at IgH 
in Atm-/- B cells [34]. Some residual IgH breaks 
observed in B cells deficient for both ATM and 
AID is thought to reflect on persistent RAG-
dependent DSBs in B cells precursors that fail to 
trigger apoptosis in the absence of ATM-dependent 
cell cycle checkpoints [34] and/or when masked 
as dicentric chromosomes [79]. In Atm-/- activated 
B cells, IgH locus breaks and translocations are 
observed frequently (in up to 50% of cells in one 
study) [64]. Indeed, the most common IgH trans-
location partner is the broken IgH locus on the 
other chromosome 12 [64]. Murine chromosomes 
are acrocentric and therefore the majority of de 
novo rearrangements observed in primary Atm-/- B 
cell cultures are dicentrics [64, 79, 135]. In addi-
tion to IgH-IgH dicentrics, dicentrics with break-
points at the IgH locus and a chromosomal break 
elsewhere or between two apparently “random” 
chromosomal breaks are frequent and often coex-
ist in the same cell [64], highlighting the require-
ment for ATM in maintaining genomic stability in 
switching B cells. Moreover, translocations 
between IgH and c-Myc, a hallmark of many 
human B cell lymphomas, are detected at low fre-
quency in primary activated Atm-/- B cells [135]. 
Interestingly, unlike TCRα/δ locus translocations 
arising in Atm-/- thymocytes, IgH-c-myc translo-
cations in Atm-/- B cells are not clonally selected in 
vivo and Atm-/- mice are not prone to B cell lym-
phomas [79, 99]. Although the mechanisms 
underlying these lineage-specific differences are 
not known, they may relate to differential 
responses downstream of DSBs that ultimately 
determine cellular outcomes. In this regard, loss 
of ATM activates type I interferon signaling [71], 
a pathway that promotes cell death or survival in a 
context-dependent manner.
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ATM likely mediates the formation of 
γ-H2AX foci at the IgH locus in B cells undergo-
ing CSR [131]. Although DNA-PKcs may also 
modify H2AX in this context, the ATM-
dependent events may serve an important regula-
tory function by controlling the spread and 
density of the modification [148]. Like Atm-/- B 
cells, H2afx-/- B cells are impaired for CSR to 
multiple isotypes [64], although the severity of 
the defect tends to be lesser. Moreover, activated 
H2afx-/- B cells accumulate IgH locus chromo-
somal breaks and dicentrics with breakpoints at 

IgH, clearly pointing to a defect in the end-
joining phase of CSR.  Breeding into AID-
deficient mice completely rescues genomic 
instability at IgH in H2afx-/- B cells [64], 
indicating that these breaks result from switching 
and excluding their origin as byproducts of tran-
scription, replication or other processes. Finally, 
although H2afx-/- mice develop B cell lymphomas 
when bred into a p53-deficient background, T 
cell malignancies are more frequent [13].

The analysis of CSR in murine B cells defi-
cient for 53BP1 (Trp53bp1-/- B cells) was particu-
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Fig. 6.4  Analysis of the fate of AID-dependent DNA 
ends using two-color fluorescence in situ hybridization 
(FISH) on murine B cell metaphases. (a) Schematic of the 
immunoglobulin heavy chain (IgH) locus in murine chro-
mosome 12. The IgH locus localizes to the subtelomeric 
region, with the variable region (VH) genes oriented 
towards the telomere and the constant region (CH) exons 
oriented towards the centromere. During efficient CSR, 
rejoining of AID-dependent double-strand breaks (DSB) 
results in two close-by FISH signals in the subtelomeric 
region of the chromosome (“intact IgH”). In contrast, fail-
ure to rejoin the ends results in “split signals”, or localiza-
tion of each signal to a distinct chromosome fragment. (b) 
B cells were isolated from the spleen of mice deficient for 
DDR factors and activated for CSR in vitro using cyto-

kines. After about three days, the fate of DNA ends was 
analyzed on metaphase spreads using two-color IgH locus 
FISH. Rejoining of DNA ends results in close-by signals 
and indicates recombination and expression of a second-
ary immunoglobulin isotype (such as IgG, IgE or IgA). 
However, rejoining is impaired in a subset of DDR-
deficient cells, leading to end dissociation and “split sig-
nals” (broken or “free” ends). Defective switching 
manifests clinically as an immunodeficiency character-
ized by decreased titers of secondary isotypes. Finally, 
some breaks are repaired aberrantly by rejoining to a 
break in another chromosome, generating a chromosomal 
translocation. Most translocations in primary B cells 
likely have no consequence, but selection for rare onco-
genic translocations may promote B cell transformation
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larly gratifying in that it led to novel mechanistic 
insights into the unique regulation of this pro-
cess. Unexpectedly, Trp53bp1-/- B cells were 
found to be impaired for CSR to a much greater 
extent than Atm-/- or H2afx-/- B cells [111, 177], 
despite their lesser defect in the repair of “gen-
eral” chromosomal breaks. The CSR defect is 
due to defective end-joining of AID-dependent 
DSBs because IgH locus-specific analysis of 
activated Trp53bp1-/- B cell metaphases revealed 
frequent IgH breaks [64, 135] that were com-
pletely rescued by breeding into an AID-deficient 
background [135]. However, the mechanism 
underlying the end-joining defect uniquely relies 
on defective synapsis of the two recombining 
DSBs. As a result, Trp53bp1-/- B cells show a dra-
matic increase in the frequency of intra-S switch 
region recombination [138], presumably reflect-
ing on increased “local” repair in the absence of 
synapsis. In contrast, activated H2afx-/- B cells do 
not accumulate internal deletions to a greater 
extent than wild-type B cells [139], suggesting 
that they fail at rejoining synapsed S regions. In 
further support of the unique roles for 53BP1 
during CSR, others have shown defective synap-
sis of V and DJ exons during V(D)J recombina-
tion of 53BP1-deficient T cells [52] and defective 
end-joining of dysfunctional telomeres in 53BP1-
deficient cells [53].

6.4.3	 �AID-Dependent Breaks 
and Translocations in A-T 
Patients

The mechanisms and regulation of CSR are gen-
erally conserved between mice and humans 
[124]. Specifically, a conserved role for ATM in 
CSR has been demonstrated by the analysis of B 
cells from A-T patients. Consistent with defec-
tive CSR, individuals with A-T show variable 
decreases in secondary immunoglobulins, most 
commonly IgG4, IgA, IgE and IgG2, isolated or 
in combination [121]. These abnormalities are 
clinically relevant, resulting in impaired antibody 

response to pathogens and frequent sinopulmo-
nary infections that negatively affect the quality 
of life of A-T children. Despite these defects, 
individuals with A-T are not prone to B cell lym-
phomas but rather to T cell leukemias. These 
lineage-specific differences in the progression 
from chromosomal breaks to full malignancy are 
also observed in the murine models and remain 
incompletely understood.

Finally, we note that somatic ATM inactiva-
tion is common in sporadic mature B cell lym-
phomas [4, 5, 46, 100, 160, 161]. Deletions at 
11q22, containing the ATM locus, occur in 
approximately half of mantle cell lymphomas 
(MCLs) [4, 161], a mature B cell malignancy 
characterized by a clonal T(11,14) that fuses the 
IgH locus to cyclin D1 to drive its overexpres-
sion. The 11q22 deletion in MCL typically leads 
to loss of ATM function due to mutation of the 
second allele [35, 150, 161] and correlates with 
poor clinical outcome [46]. However, the 
T(11,14) translocation is thought to occur in 
pro-B cells undergoing V(D)J recombination 
[86], and may precede the ATM mutation during 
malignant progression.

ATM mutations are also observed at low fre-
quency in cancers of the breast [1], pancreas 
[141], bladder [69], prostate [17] and other solid 
tumors. It currently remains unclear whether 
ATM roles in translocation suppression may con-
tribute to tumor initiation and/or progression in 
this context, potentially in cooperation with roles 
in the activation of cell cycle checkpoints, meta-
bolic regulation and others [97]. Finally, roles for 
DDR factors other than ATM in translocation 
suppression in human cancers have not been 
clearly established, although Bartek and col-
leagues reported that MDC1 and 53BP1 were 
lost in a subset of human carcinomas [9]. In sum-
mary, the DDR represents a main barrier to trans-
formation in a wide range of human cancers [8, 
66] and more work is needed to determine 
whether its functions in translocation suppression 
may extend beyond its well-documented roles in 
hematological malignancies.
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Abstract
Chromosomal translocations are now well 
understood to not only constitute signature 
molecular markers for certain human cancers 
but often also to be causative in the genesis 
of that tumor. Despite the obvious impor-
tance of such events, the molecular mecha-
nism of chromosomal translocations in 
human cells remains poorly understood. Part 
of the explanation for this dearth of knowl-
edge is due to the complexity of the reaction 
and the need to archaeologically work back-
wards from the final product (a translocation) 
to the original unrearranged chromosomes to 
infer mechanism. Although not definitive, 
these studies have indicated that the aberrant 
usage of endogenous DNA repair pathways 
likely lies at the heart of the problem. An 
equally obfuscating aspect of this field, how-
ever, has also originated from the unfortunate 
species-specific differences that appear to 
exist in the relevant model systems that have 
been utilized to investigate this process. 
Specifically, yeast and murine systems 

(which are often used by basic science inves-
tigators) rely on different DNA repair path-
ways to promote chromosomal translocations 
than human somatic cells. In this chapter, we 
will review some of the basic concepts of 
chromosomal translocations and the DNA 
repair systems thought to be responsible for 
their genesis with an emphasis on underscor-
ing the differences between other species and 
human cells. In addition, we will focus on a 
specific subset of translocations that involve 
the very end of a chromosome (a telomere). 
A better understanding of the relationship 
between DNA repair pathways and chromo-
somal translocations is guaranteed to lead to 
improved therapeutic treatments for cancer.
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BRCA1	 Breast cancer allele 1
BRCA2	 Breast cancer allele 2
BLM	 Bloom syndrome gene
C-NHEJ	� Classic nonhomologous end 

joining
CtIP	 C-terminal interacting protein
DNA2	 DNA exonuclease 2
DNA-PKcs	� DNA dependent protein kinase 

catalytic subunit
DNA-PK	� DNA dependent protein kinase 

complex
DN-hTERT	� Dominant-negative version of 

human telomerase
DSBs	 DNA double-strand breaks
EME1	 Essential meiotic endonuclease 1
ERCC1	 Excision repair cross-comple-

menting 1
EXO1	 Exonuclease 1
FANCN	� Fanconi anemia complementation 

group N
GEN1	� General endonuclease homolog 1
HDR	 Homology-dependent repair
indels	 Insertions and/or deletions
Ku	 Ku70:Ku86 heterodimer
LIGI	 DNA ligase I
LIGIII	 DNA ligase III
LIGIV	 DNA ligase IV
MRE11	� Meiotic recombination defective 11
MRN	 MRE11/RAD50/NBS1
MUS81	 Mutagen sensitive 81
NBS1	 Nijmegen breakage syndrome 1
NRT	 Non-reciprocal translocation
nt	 Nucleotide
PARP1	 Poly(ADP-ribose) polymerase 1
PAXX	 Paralog of XRCC4 and XLF
POLQ	 DNA polymerase theta
RAD50	 Radiation sensitive 50
RAD51	 Radiation sensitive 51
RAD54	 Radiation sensitive 54
RMI1	� RecQ-mediated genome instability 

homolog 1
RPA	 Replication protein A
SLX1	� Synthetically lethal with unknown 

function (X) 1
SLX4	� Synthetically lethal with unknown 

function (X) 4
ssDNA	 Single-stranded DNA
STELA	 Single telomere length analysis

TALEN	� Transcription activator-like effector 
nuclease

TRF2	 Telomere recognition factor 2
TOPO3α	 Topoisomerase 3α
XLF	 XRCC-4-like factor/Cernunnos
XPF	 Xeroderma pigmentosum gene F
XRCC4	 X-ray cross complementing group 4

7.1	 �Introduction

The concept of chromosomal translocations — in 
which a portion of one chromosome breaks off 
and fuses inappropriately to another chromo-
some — has been part of the scientific conscious-
ness for the better part of eight decades. 
Chromosomal translocations were first described 
by Karl Sax in 1938 [84] and then elaborated by 
Barbara McClintock in the construction of her 
seminal “breakage-fusion-bridging” [BFB] 
model during the 1940s [64]. Chromosomal 
translocations gained significant clinical rele-
vance a couple of decades later when it was dem-
onstrated that a single recurring chromosomal 
translocation (the Philadelphia chromosome) 
was often found in patients suffering from leuke-
mia [71, 83]. Chromosomal translocations are 
now well understood to not only constitute signa-
ture molecular markers of human cancers (solid 
tumors in addition to blood cancers) but to be 
causative in their genesis as well [34, 56]. As 
such, these translocations become extremely 
important for clinical diagnostics as well as 
treatment-related options, respectively. Moreover, 
with the advent of comprehensive cancer genome 
sequencing, it is now appreciated that transloca-
tions, causative or not, are a common feature of 
human tumors [16, 94]. It is not surprisingly, 
therefore, that interest in identifying and quanti-
tating chromosomal translocations has increased 
exponentially in the past decade. As a conse-
quence of this interest — and the experimenta-
tion associated with it  — tens of thousands of 
translocations in a veritable bevy of different 
human cancers have been catalogued and charac-
terized [56, 94]. While incredibly rich in molecu-
lar information, most of these studies suffer 
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(biologically speaking) in being retrospective; 
that is, the mechanism for how the translocation 
occurred is often (correctly or incorrectly) simply 
inferred after the fact from the junctional 
sequences present at the site of a chromosomal 
translocation.

To try and address this dearth of mechanistic 
knowledge, this chapter will focus on the relation-
ship between DNA repair (specifically DNA dou-
ble-strand break [DSB] repair) and chromosomal 
translocations. An understanding of DNA DSB 
repair is paramount to our discussion because it 
seems obvious, if only intuitively, that a chromo-
somal translocation is the result of aberrant DNA 
DSB repair [13, 42, 81]. However, DNA DSB 
repair is infrequently  — and probably only 
rarely — aberrant because it is responsible for the 
stability of the genome. Thus, it needs to be appre-
ciated and emphasized that chromosomal translo-
cations are by far the exception to the rule of the 
normally helpful processes (predominately DNA 
DSB repair) that keep the genome stable.

It is a tautology and a fact appreciated by all 
cancer researchers that a stable genome is highly 
desirable and is inherently anti-oncogenic. While 
this perspective is basically sensible, it is also 
important to remember that complete stability is 
antithetical with evolution/life. That is, perfect 
immutability is contrary to the process of evolu-
tion and thus nature must maintain a balance 
between accurate DNA repair and the formation of 
mutations (i.e., the lack of — or mis-repair of — 
DNA) upon which selection can act. Thus, all 
DNA repair processes, DNA DSB repair included, 
have a bit of “sloppiness” inherent in their mecha-
nism. It is likely that chromosomal translocations 
are the result of one of these rare sloppy DNA 
DSB repair events. Trying to identify how, why 
and when such events occur; and perhaps most 
importantly — whether they can be abrogated — 
is the clinically relevant goal for this field.

7.2	 �DNA Damage

As elaborated above, the human genome needs to 
be nearly (but not completely) immutable in 
order to ensure the survival of the species. This 

turns out to be an extremely tall order as the 
human genome is constantly being chemically 
assaulted by both endogenous and exogenous 
factors. The endogenous sources of damage 
likely vary from cell type to cell type, but can 
include: lesions associated with aberrant lym-
phoid gene recombination, DNA replication 
errors, transcriptional errors, the formation of 
reactive oxygen species during oxidative phos-
phorylation, as well as the spontaneous depurina-
tion or deamination of nucleotides [nts] due to 
the proximity of DNA to adjacent water mole-
cules [100] or the aberrant action of cellular 
deaminases [96]. Exogenous sources of DNA 
damage include, but are certainly not limited to, 
exposure to ultraviolet light, chemotherapeutic 
drugs, or ionizing radiation. Indeed, in toto, it is 
estimated that each human cell sustains an astro-
nomical ~70,000 lesions per day [100]. 
Importantly, however approximately 69,975 of 
these lesions result in DNA damage on only one 
strand of the DNA duplex. Thus, although the 
type of damage can vary extensively and certain 
types of lesions require discrete DNA repair 
pathways (expanded upon in the next section) 
these processes are inherently high fidelity as a 
consequence of having an undamaged DNA 
strand upon which to template the repair events. 
Thus, in human cells there is a surprisingly high 
level of DNA damage occurring on a daily basis 
that is nearly completely neutralized by conser-
vative DNA repair pathways that utilize undam-
aged DNA to restore genome integrity.

In contrast to all the other types of lesions 
combined, human cells suffer only about 25 DSB 
lesions per cell per day [100]. Again, the exact 
cause of the DSB can vary greatly depending 
upon the cell type. Some likely occur due to aber-
rant lymphoid recombination processes [56], 
whereas others may be due to reactive metabolic 
oxygen production, DNA replication errors [7] or 
the inappropriate action of cytidine deaminases 
[48]. Whatever their exact origin, DNA DSBs are 
uniquely toxic to cells because when both strands 
of the chromosome are damaged most of the time 
the only way to restore the chromosome to its 
original state is if an undamaged homologous 
chromosome (or sister chromatid if the DSB 
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should occur during S phase of the cell cycle) is 
available to template the repair event. As a conse-
quence, DSBs are inherently more mutagenic 
than most other types of lesions because of the 
difficultly in enacting their proper repair. A sec-
ond parameter, which is relevant to this chapter, 
is that for all the other lesions, not only can the 
undamaged DNA strand help to enact error-free 
repair, but it also perforce holds the chromosome 
intact. In contrast, the formation of a DSB gener-
ates a window of opportunity, however small, for 
the two chromosomal fragments to move away 
from one another. If this happens, the chances of 
one of those fragments “repairing” itself onto 
another chromosome (i.e., causing a transloca-
tion) rises astronomically.

In summary, the vast majority of the DNA 
lesions that a human cell experiences on a daily 
basis are generally rapidly and correctly repaired 
and are likely not relevant for the genesis of chro-
mosomal translocations. Importantly, this is not 
to say that these types of lesions cannot cause 
chromosomal translocations. It is just likely that 
it is not a single single-stranded lesion per se that 
can trigger translocations, but the juxtaposition 
of two closely spaced single-strand lesions that 
give rise to a de facto DSB that are the culprit. 
Thus, DSBs and DNA DSB repair (or the lack 
thereof) have been firmly established as being 
mechanistically responsible for chromosomal 
translocations.

7.3	 �DNA Repair

7.3.1	 �DNA Repair Involving Only 
a Single Strand

Due to the broad spectrum of lesions that can 
occur to DNA it is not surprising that discrete 
DNA repair pathways have evolved to correct 
these life-threatening alterations. Of all the 
lesions that damage only a single-strand of DNA 
most result in the formation of only a singly mod-
ified nt or an abasic site. These lesions are readily 
repaired by the base excision repair pathway 
(Fig.  7.1a). This process involves the action of 

DNA gylcosylases, apurinic or apyrimidinic 
endonucleases and phosphodiesterases that ulti-
mately convert the lesion into a single-stranded 
nick. This nick is then filled in by a DNA poly-
merase and sealed by a DNA ligase [104].

When the DNA lesion is bulkier than a single 
standard nt or when nts are fused together (e.g. via 
the formation of pyrimidine dimers) then a more 
complicated repair pathway, nucleotide excision 
repair (Fig.  7.1b), is utilized that is capable of 
restoring stretches of nts (up to 24 nts in humans) 
in one event. In nucleotide excision repair, the 
bulkier lesion is recognized by a multi-subunit 
protein complex that introduces nicks 5′ and 3′ of 
the lesion. The offending lesion is then removed 
as an oligonucleotide by the action of a helicase 
and the resulting ~20 nt gap is filled in by a poly-
merase and then sealed by a DNA ligase [92].

A third common type of lesion is the mis-
incorporation of nucleotides and/or generation of 
small insertions or deletions [indels] during DNA 
replication. These types of lesions are repaired by 
mismatch repair (Fig. 7.1c). The mismatch repair 
machinery consists of large heterodimeric com-
plexes that scan DNA and look for helical distor-
tions due to the mispairing or indels. These 
complexes recruit additional factors including 
endonucleases that nick and exonucleases that 
degrade one of the strands resulting in the 
removal of the offending mispaired nucleotide 
and some flanking nucleotides. As before, the 
resulting gap is subsequently filled in by a DNA 
polymerase and sealed by a DNA ligase [53].

All three of the above processes (base excision 
repair, nucleotide excision repair and mismatch 
repair) are critical for cellular and organismal 
well-being. Mutation of any of the factors associ-
ated with these pathways is generally either lethal 
or oncogenic, (although, pertinently, in the latter 
scenario not usually associated with chromo-
somal translocations). The importance of single-
stranded DNA repair for genome stability is 
further evidenced by the awarding of the 2015 
Nobel Prize in Physiology or Medicine to the 
investigators responsible for the discovery and/or 
initial characterization of these DNA repair path-
ways [50].
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7.3.2	 �DNA Double-Strand Break 
Repair

7.3.2.1	 �C-NHEJ
Although DNA DSB lesions occur proportion-
ately much less frequently than single-stranded 
lesions, they are so toxic that cells have evolved 
multiple pathways that utilize hundreds of genes 
to make sure the DSBs are quickly and (semi)-
accurately repaired. The two major pathways are 
nonhomologous end joining [NHEJ] [55, 110] 
and homology-dependent repair [HDR] [44].

In higher eukaryotes, DNA DSB repair pro-
ceeds most frequently by a process that does not 
require extended regions of homology. 
Specifically, mammalian cells — and humans in 

particular — have evolved a highly efficient abil-
ity to join nonhomologous DNA molecules 
together [80]. This pathway is referred to as clas-
sic NHEJ [C-NHEJ] and it is generally error-
prone. The evolution of a repair pathway that is 
error-prone may seem paradoxical but is likely 
due to 1) the increased percentage of non-coding 
DNA in higher eukaryotes, a feature that more 
readily tolerates imprecise rejoining (a luxury 
that bacteria and lower eukaryotes do not have) 
and 2) the requirement for productive error-prone 
repair during lymphoid recombination processes 
to generate a large immune repertoire.

Many of the details of C-NHEJ have been 
worked out, and the process is well (albeit cer-
tainly not completely) understood. Following the 

Glycosylases
Endonucleases
Phosphodiesterases

A. Base Excision Repair

Polymerases
Ligase

5’ & 3’ Excision
nucleases

B. Nucleotide Excision Repair

Helicase

Polymerases
Ligase

C. Mismatch Repair

Mismatch
Heterodimers
Endonucleases

Exonucleases

Polymerases
Ligase

Fig. 7.1  Repair of lesions where one DNA strand is still 
intact. (a) Base Excision Repair. The schematic shows a 
small piece of double-stranded DNA (colored rectangles 
represent nucleotides) containing a singly modified nt (red 
diamond). This lesion is repaired by the action of DNA 
gylcosylases, endonucleases and phosphodiesterases that 
ultimately convert the lesion into a single-stranded nick. 
This nick is then filled in by a DNA polymerase and 
sealed by a DNA ligase. (b) Nucleotide Excision Repair. 
The schematic shows two nts (colored lines) that are fused 
together (red diamond). This lesion is recognized by a 
multi-subunit protein complex that introduces nicks 5′ 

and 3′ of the lesion. The offending lesion is then removed 
as an oligonucleotide by the action of a helicase and the 
resulting ~20 nt gap is filled in by a polymerase and then 
sealed by a DNA ligase. (c) Mismatch Repair. The sche-
matic shows two nts (colored lines) where one base pair is 
mispaired (red diamonds). The mispaired nts are recog-
nized by mismatch heterodimeric complexes that recruit 
endonucleases that nick the DNA.  Exonucleases then 
degrade one of the strands resulting in the removal of the 
offending nt as well as some flanking nts. As before, the 
resulting gap is subsequently filled in by a DNA poly-
merase and sealed by a DNA ligase
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introduction of a DSB into a chromosome, DNA 
Ligase IV [LIGIV] will often (if possible) attempt 
to immediately and precisely rejoin the broken 
ends to generate a perfect repair event. Exactly 
how frequently such “error-free” C-NHEJ repair 
occurs is not known [10], but it is now appreci-
ated that it can occur much more frequently than 
had been believed [73, 107]. At least some frac-
tion of the time, however, the ends cannot be 
properly rejoined (due, for example, to the loss of 
nts and/or to aberrant adducts at the break site). 
In these instances, the ends are bound by the 
Ku86:Ku70 heterodimer [Ku; reviewed by [37]], 
a highly abundant protein complex that binds to 
the broken DNA ends to prevent unnecessary 
DNA degradation (Fig. 7.2). The binding of Ku 
to the free DNA ends subsequently recruits and 
activates the DNA-dependent protein kinase 
complex catalytic subunit [DNA-PKcs, [11, 45]]. 

DNA-PKcs:DNA-PKcs homotypic interactions 
(one molecule on each end of the DSB), in turn, 
are the critical feature required for synapsis, 
which retains the two broken ends near one 
another [87, 91]. Once a Ku:DNA-PKcs dimer 
[also referred to as the DNA dependent protein 
kinase complex; DNA-PK] is properly assembled 
at the broken ends it, in turn, activates a tightly-
associated nuclease, Artemis [69], to help trim 
any damaged DNA ends. The extent of deletion is 
usually only a few nts and generally does not 
extend much beyond 25 nts with few exceptions 
[32, 38, 55]. Subsequently, the X family poly-
merases mu and lambda fill in missing nucleo-
tides [55]. The rejoining of the DNA DSB 
requires the recruitment [24] of LIGIV and 
accessory factors: Paralog of XRCC4 and XLF 
[PAXX, [72]], X-ray cross complementing group 
4 [XRCC4, [23, 52]] and/or XRCC4-like factor/
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Fig. 7.2  A schematic depicting Classic Non-Homologous 
End Joining (C-NHEJ). The black lines represent strands 
of DNA.  First, the Ku heterodimer (orange ball) binds 
onto the ends of the DNA.  Ku then recruits DNA-PKcs 
(blue oval) and the homotypic interactions between two 
DNA-PKcs molecules tethers the ends together. The nucle-
ase Artemis (yellow PacManTM), which is physically asso-
ciated with DNA-PKcs, can then remove any mispaired or 

damaged nucleotides from the ends. Most missing nts are 
then replaced by the DNA polymerases μ or λ (green pen-
tagon). Finally, a ligase complex, consisting of DNA 
ligase IV (purple cylinder) and the accessory proteins 
PAXX (red half oval), XRCC4 (light green tear drop) and 
XLF (Carolina blue cropped pyramid) then religates the 
ends back together. This process often results in indels 
(denoted by the red rectangle) at the site of repair
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Cernunnos [XLF, [2, 15]] (Fig. 7.2). Finally, it is 
relevant to note that most of the cells in a human 
being are either not cycling or in G1 phase of the 
cell cycle. Because HDR (described below) is 
predominately restricted to cells in S phase (when 
a sister chromatid may be available for repair) 
C-NHEJ is perforce the preferred repair pathway 
in human cells and this accounts for its frequent 
usage. In summary, in humans the predominant 
pathway of DSB repair is C-NHEJ and it first uti-
lizes LIGIV to try and simply re-ligate the ends 
of a DSB back together. Failing at that, C-NHEJ 
keeps the ends in proximity, polishes them up by 
limited resection and polymerization as needed 
and then uses LIGIV to religate the ends. Due to 
the nuclease and polymerase action on one or 
both of the ends, small indels are a classic and 
frequent hallmark of chromosomal junctions 
repaired by C-NHEJ.

7.3.2.2	 �A-NHEJ
It had long been appreciated that the kinetics of 
C-NHEJ were biphasic  — most (~80%) of the 
ends were rejoined quickly (within 15′ to 30′ of 
the chromosome breaking), but some ends could 
take hours to finally be rejoined. For many years 
this was interpreted simply as some DSBs being 
“easier” to repair than others. It was the labora-
tory of George Iliakis that first suggested that the 
slow phase of DSB repair may in fact represent a 
completely separate repair pathway [105]. This 
hypothesis dovetailed nicely with earlier work 
done in yeast, which had genetically documented 
that in the absence of Ku, DSBs could be repaired 
by an alternative error-prone end-joining process 
that utilized microhomology [14]. Although still 
somewhat controversial [76] significant evidence 
has accumulated over the past 15 years to 
substantiate the Iliakis hypothesis. The hallmarks 
of this pathway (generally referred to as alter-
native nonhomologous end joining [A-NHEJ] to 
distinguish it from C-NHEJ) are that it is 
Ku-independent and utilizes small (3+ nt) regions 
of homology [14, 30, 42] to facilitate end joining. 
The process of A-NHEJ is mechanistically sim-
ple and straightforward: both ends of the DSB are 
resected to generate 3′ overhangs that are inter-
mediate in length from those generated during 

C-NHEJ (which are a few nts at most) and HDR 
(which are often hundreds or thousands of nts 
long). These resected ends can then base pair 
using now exposed stretches of “microhomol-
ogy” (probably 3+ nts). Nucleases are recruited to 
trim the flaps that are often generated and the 
nicks/ends are then sealed by a ligase [30, 42]. 
Thus, A-NHEJ is inherently an error-prone repair 
process as it always generates deletions including 
one of the two regions of microhomology and all 
the DNA in between the two patches of 
microhomology.

Although the intellectual concept of how 
A-NHEJ occurs is clear, the genetics and bio-
chemistry of the synapsis, processing and liga-
tion of an A-NHEJ DSB repair event are still 
quite obscure leading to heavy debate by investi-
gators in the field as to the precise mechanism. 
Several studies have suggested that, like Ku for 
C-NHEJ, the protein poly(ADP-ribose) poly-
merase 1 [PARP1] may bind to the DNA ends 
(Fig. 7.3). Indeed, there is evidence that PARP1 
may even compete with Ku for access to the 
ends thereby determining the choice of the 
NHEJ pathways used for the repair of specific 
DSBs [20]. Alternatively, the repair complex 
meiotic recombination 11/radiation sensitive 
50/Nijmegen breakage syndrome 1 [MRE11/
RAD50/NBS1; MRN] has also been implicated 
as the A-NHEJ end tethering activity [28, 114]. 
Regardless of whether recognition or tethering of 
the ends is carried out by either PARP1 or MRN, 
resection is required to reveal the microhomology 
that will subsequently be used to mediate the 
repair event. The initial resection is thought to be 
carried out by MRN and an associated nuclease, 
C-terminal interacting protein [CtIP]. The short 
resection mediated by MRN/CtIP is then elon-
gated by DNA exonuclease 2 [DNA2] and/or 
exonuclease 1 [EXO1] [9, 68]. Once sufficient 
3′-single-stranded DNA [ssDNA] overhangs 
have been generated the strands can anneal 
through the exposed microhomology (Fig.  7.3). 
Moreover, the presence of microhomology mod-
ulates further resection activity and stabilizes the 
junction to facilitate ligation [77]. Finally, there 
are likely an additional number of enzymatic 
activities required for A-NHEJ including DNA 
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polymerases and helicases, but most of these 
have only been inferred and not rigorously identi-
fied. Perhaps the only two enzymatic activities 
which seem clearly required are DNA polymerase 
theta [POLQ] and a flap endonuclease activity 
needed to clip off mispaired strands. In the case 
of POLQ, the evidence is strong that much of the 
microhomology introduced at DSB repair junc-
tions is dependent upon this inherently error-
prone enzyme [19, 62]. The flap endonuclease 
activity is very likely supplied by the structure-
specific nuclease complex excision repair cross-
complementing 1/xeroderma pigmentosum gene 

F [ERCC1/XPF] [1]. Ultimately, the repaired 
DSB junction needs to be religated and DNA 
ligase III [LIGIII] appears to be the principal 
ligase used [5, 27, 106] although it is now clear 
that DNA ligase I [LIGI] can functionally substi-
tute for LIGIII as well [3, 59, 73] (Fig. 7.3).

In summary, in order for A-NHEJ to occur, the 
broken DNA ends must somehow bypass being 
repaired by C-NHEJ (how this occurs is poorly 
understood). If the ends are then subjected to sig-
nificant, but nonetheless limited resection, they 
can utilize exposed microhomology to facilitate 
the repair event in a fashion that always generates 
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Fig. 7.3  A schematic depicting Alternative Non-
Homologous End Joining (A-NHEJ). The black lines rep-
resent strands of DNA and the red rectangles blocks of 
microhomology. The broken ends may be held together 
either by PARP1 (Carolina blue hexagon) or by the MRN 
complex (orange oval). The initial resection is carried out 
by MRN and CtIP (crimson PacManTM). This short resec-
tion is then elongated by DNA2 and/or EXO1 (light green 
PacManTM). Once sufficient 3′-single-stranded DNA 

[ssDNA] overhangs have been generated the strands can 
anneal through the exposed microhomology. The pres-
ence of microhomology stabilizes the junction. The result-
ing flaps are likely cleaved off by the ERCC1/XPF 
heterodimer (yellow PacManTM). Before ligation occurs it 
is also likely that POLQ (purple lightning bolt) may act on 
the DNA ends. Ultimately, the repaired DSB junction is 
religated using either LIGIII (red cylinder) or LIGI (pink 
cylinder)

D. M. Baird and E. A. Hendrickson



97

deletions. Although most [albeit certainly not all, 
[76]] investigators now accept that A-NHEJ is a 
discrete DNA repair pathway, it is confounded by 
two serious shortcomings. First, the most promi-
nent feature of this pathway is the residual micro-
homology left at a repaired DNA DSB junction. 
However, the definition of microhomology is 
often investigator-arbitrary and may include 
microhomologies as short as 1 or 2 nts. Thus, 
there are a myriad of published studies where 
A-NHEJ is the inferred DNA repair mechanism 
because short microhomologies were observed at 
the repair junctions. This is unfortunate because 
C-NHEJ can also use and generate microhomolo-
gies of 1 or 2 nts during repair [76]. Thus, to be 
rigorous, at least 3 nt of homology is probably 
required before an assignment of A-NHEJ can 
confidently be given. When this criterion is uti-
lized, the vast majority of DNA repair events sug-
gested to be caused by A-NHEJ is dramatically 
reduced [see, for example [21]]. The second fail-
ing of A-NHEJ is that there is no specific factor 
required for the repair event. LIGIII was one of 
the best candidates for such a factor, but recent 
work has shown that even this enzyme is dispens-
able for A-NHEJ [3, 73]. Thus, until this situation 
is clarified it seems as if the best operational 
definition of A-NHEJ is: 1) a DNA DSB process 
that is Ku- and LIGIV-independent but POLQ-
dependent, 2) relies upon LIGIII or LIGI and 3) 
generates repair junctions with 3+ nts of 
microhomology.

7.3.2.3	 �HDR
Whereas C-NHEJ is the major DNA DSB repair 
pathway in human cells, DNA DSBs that occur in 
S phase of the cell cycle can instead be, and often 
are, repaired by HDR (Fig.  7.4). In HDR 
[reviewed by [44]], the DNA ends of the incom-
ing DNA are likely extensively resected to yield 
3′-single-stranded DNA overhangs. As described 
above for A-NHEJ, the nuclease(s) responsible 
for this resection are the MRN:CtIP complex 
(which generates the initial resection) followed 
by the action of DNA2 and EXOI [9, 68]. The 
resulting overhangs are then coated by replica-
tion protein A [RPA], a heterotrimeric single-
stranded DNA binding protein, which removes 

the secondary structures from the overhangs 
[reviewed by [41]]. The breast cancer allele 1 and 
2 [BRCA1 and BRCA2, respectively] proteins 
and the Fanconi anemia complementation group 
N protein [FANCN] then help to recruit radiation 
sensitive 51 [RAD51] to the overhangs [103]. 
RAD51 is the key strand exchange protein in 
HDR [reviewed by [98]]. In humans, there are at 
least seven Rad51 family members and almost all 
of them have been implicated in some aspect of 
HDR and also in human disease. Strand invasion 
into the homologous chromosomal sequence 
requires RAD54 [radiation sensitive 54] and 
DNA replication. Rad54 is a double-stranded 
DNA-dependent ATPase that can remodel chro-
matin and it probably plays critical roles at sev-
eral steps in the recombination process [reviewed 
by [39]]. In particular, Rad54 is critical for stabi-
lizing the Rad51-dependent joint molecule for-
mation as well as for promoting the disassembly 
of Rad51 following exchange [90]. Strand 
exchange generates an interdigitated set of 
strands that can be resolved into a complicated 
set of products. In mitotic cells most of the inter-
mediates are resolved as non-crossover products 
by dissolving the interdigitated strands back into 
their original duplexes after sufficient DNA repli-
cation has occurred to restore the genetic infor-
mation lost at the site of the DSB (Fig. 7.4a). The 
dissolution process requires the action of the 
Bloom syndrome gene, topoisomerase 3α and 
RecQ-mediated genome instability homolog 1 
[BLM, TOPO 3α, RMI1, respectively] complex 
[113]. Less frequently the second end of DNA is 
captured and a covalently closed “Holliday junc-
tion” [40] is formed that can be resolved as either 
non-crossover products (which are functionally 
identical to dissolution) or crossover products 
(Fig. 7.4b). The resolution of Holliday junctions 
is complicated and in human cells appears to be 
carried out by at least three partially, redundant 
resolvases consisting of mutagen sensitive 81/
essential meiotic endonuclease 1 [MUS81/
EME1, respectively], synthetically lethal with 
genes of unknown function (X) 1 and 4 [SLX1 
and SLX4, respectively], and general homolog of 
endonuclease 1 GEN1] [63]. Finally, LIGI is uti-
lized to covalently seal any nicks left in the DNA.
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Although HDR is often referred to as error-
free repair, that characterization is only partially 
true. Thus, in the case of non-crossover events in 
which the repair is templated from a sister chro-
matid the DSB is in fact repaired in an error-free 
fashion. However, when a homolog, rather than a 

sister chromatid, is utilized there is a risk of the 
loss of heterozygosity and uniparental disomy as 
observed in several developmental disorders and 
numerous tumor types [101]. In summary, human 
somatic cells express all of the gene products 
needed to carry out HDR.  These events occur, 
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Fig. 7.4  A schematic depicting Homology-Dependent 
Repair (HDR). The black lines represent strands of DNA 
where a DSB has occurred and the blue lines represent an 
undamaged sister chromatid or a homologue. In HDR, the 
DNA ends of the DSB are extensively resected to yield 
3′-single-stranded DNA overhangs. As described for 
A-NHEJ, the nuclease(s) responsible for this resection are 
the MRN:CtIP complex (which generates the initial resec-
tion; orange oval and crimson PacManTM, respectively) fol-
lowed by the action of DNA2 and EXOI (light green 
PacManTM). The resulting overhangs are then coated by 
RPA (red circles), which removes the secondary structures 
from the overhangs. A complex of proteins including 
BRCA1, BRCA2, and FANCN (purple cloud) then help to 
recruit RAD51 (pink diamond) to the overhangs. Strand 
invasion into the homologous chromosomal sequence 
requires RAD54 (yellow moon) and DNA replication 
(blue-green cloud). Strand exchange generates an interdigi-
tated set of strands that can be resolved into a complicated 
set of products. (a) In mitotic cells most of the intermedi-

ates are resolved as non-crossover products by dissolving 
the interdigitated strands back into their original duplexes 
after sufficient DNA replication has occurred to restore the 
genetic information lost at the site of the DSB. The dissolu-
tion process requires the action of the BLM/TOPO 3α/
RMI1 complex (green hexagon). (b) Less frequently the 
second end of DNA is captured and a covalently closed 
“Holliday junction” is formed that can be resolved as either 
non-crossover products (which are functionally identical to 
dissolution) or crossover products. The resolution of 
Holliday junctions is complicated and in human cells 
appears to be carried out by at least three partially redun-
dant resolvases consisting of mutagen sensitive 81/essential 
meiotic endonuclease 1 [MUS81/EME1, respectively], 
synthetically lethal with genes of unknown function (X) 1 
and 4 [SLX1 and SLX4, respectively], and general homo-
log of endonuclease 1 GEN1] (1) (light blue cloud). Finally, 
LIGI (pink cylinder) is utilized to covalently seal any nicks 
left in the DNA. Note that only the non-crossover product 
for Holliday Junction resolution is diagrammed
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however, only at very low frequency and usually 
only in S phase due to the preferred usage of 
NHEJ.

In summary, human cells can repair DNA 
DSBs by at least three discrete pathways: 
C-NHEJ, A-NHEJ and HDR.  How pathway 
choice (which pathway is utilized in which cells 
during which phases in the cell cycle, etc.) is bio-
chemically determined is the focus of much 
research. Regardless, from a logistical perspec-
tive, one thing that clearly differentiates these 
repair pathways is their reliance on different 
DNA ligases to complete the reaction. Thus, 
C-NHEJ utilizes exclusively LIGIV, whereas 
A-NHEJ prefers to use LIGIII (although it can 
utilize LIGI) and HDR uses exclusively LIGI. In 
conclusion, until better biochemical or genetic 
markers become available, ligation is one the 
most distinguishing features of these repair 
pathways.

7.4	 �Translocations

7.4.1	 �DSBs and Translocations

As enumerated above, DNA DSBs in human 
cells can occur either spontaneously or through 
exposure of the cells to environmental toxins. 
The vast majority of the time, the two ends of a 
DSB are rejoined back to one another either by 
C-NHEJ, A-NHEJ or HDR with a varying loss of 
genetic information, but in a fashion that almost 
always restores genome stability. Rarely, one or 
both ends of a DSB will be incorrectly rejoined to 
another DSB end resulting in a translocation. The 
biological consequences of this can be enormous 
as translocations can inactivate tumor suppressor 
genes, activate oncogenes or make new chimeric 
oncogenes [13, 16, 56]. All of these scenarios 
promote the formation of tumors.

Translocations can occur within a chromo-
some (an intrachromosomal translocation) 
which can result in inversions or to another 
chromosome (interchromosomal translocation). 
In the latter case, the simplest outcome is a 
reciprocal translocation where the proximal 
portion of one chromosome is joined to the dis-

tal portion of another chromosome and vice 
versa. Needless to say, since the occurrence of 
any one DSB is a relatively rare event (only 25 
DSBs, per cell, per day) the likelihood of con-
comitant DSBs existing in the same cell at the 
same time is quite small and likely explains why 
translocations occur so much less frequently 
than other types of mutations. The only situation 
where two DSBs are not required is when one of 
the DSBs is the natural end of a chromosome; 
i.e., a telomere. As we will discuss below, this is 
a specialized case of translocation. In all other 
cases, there is a requirement for 2 DSBs to exist 
simultaneously in order for a translocation to 
occur. The basic, but as yet still unanswered, 
question that drives virtually all research in this 
field is why are these DSBs simply not repaired 
normally? That is, two DSBs yield four DNA 
ends: 1 and 2 as well as 3 and 4. In normal repair 
reactions end 1 would get re-joined to 2 and end 
3 would become re-joined to 4. In a transloca-
tion, however, 1 joins to 3 (or 4) and 2 joins to 4 
(or 3). Why and how the ends of a DSB become 
available to join with an end other than the one 
they were normally connected with is key to 
understanding the genesis of translocations.

7.4.1.1	 �Of Men, Mice 
and Translocations

Before a discussion of the mechanistic aspects of 
this process can begin however, it is important to 
understand that the translocations that occur in 
human cells appear to arise by a different process 
than translocations that occur in the laboratory 
workhorse model organism, the mouse. This 
appears to be an exceptionally unfortunate bio-
logical difference as the mouse is used for a veri-
table plethora of cancer modeling studies and an 
enormous amount of pre-clinical cancer research 
is carried out with the mouse.

In the mouse, it is manifestly compelling that 
translocations are mechanistically dependent 
upon A-NHEJ.  This conclusion rests upon at 
least three pieces of evidence. First, in the mouse, 
when genes involved in C-NHEJ are mutated the 
translocation frequency actually increases [12, 
116]. This observation is consistent with the 
interpretation that in the absence of C-NHEJ that 
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there is likely a greater cellular reliance on 
A-NHEJ. Second, when DNA sequence analyses 
are utilized to investigate the junctional diversity 
of translocations in the mouse, the frequency of 
microhomology  — a quasi-hallmark of 
A-NHEJ — found at the repair site is quite high 
[21, 31]. As noted above, however, the appear-
ance of microhomology in and of itself is not 
unequivocally proof of the use of A-NHEJ. Thus, 
in one very large study of translocations carried 
out by the Alt laboratory 75 to 90% of all translo-
cations had microhomologies of 1 to 5 nts at the 
breakpoint junction. However, only 10% of those 
same junctions were 5 nts or longer [21]. In con-
clusion, while clearly not unequivocal, these data 
are consistent with the use of A-NHEJ.  Third, 
and perhaps the strongest piece of data, comes 
from a demonstration that genetic ablation of 
nuclear LIGIII, reduced the occurrence of trans-
locations in the mouse [88]. In summary, the 
increase in translocations when C-NHEJ is 
absent, the frequent use of microhomology at 
translocation breakpoints and the reduction of 
translocations when LIGIII is absent, compel-
lingly indicate that translocations in the mouse 
are LIGIII-dependent and likely mediated by 
A-NHEJ.

In contrast (and certainly confusingly), by the 
same set of criteria it appears as if translocations 
in human cells are mediated by C-NHEJ. Thus, in 
contrast to the mouse, mutations in C-NHEJ 
genes LIGIV and XRCC4 greatly reduce the fre-
quency of translocations in human somatic cells 
[33, 47, 54]. In addition, although microhomol-
ogy can be found at translocations breakpoint 
junctions in human tumors [99], the frequency 
and amount of it is generally small [8, 93]. 
Finally, the functional inactivation of LIGIII has 
little to no impact on translocations in human 
somatic cells [33]. It should be noted, however, 
that inhibition of PARP1, an A-NHEJ gene, 
reduced translocations in some human cells [17, 
111], but not in others [54]. This latter observa-
tion notwithstanding, the reduction in transloca-
tions when C-NHEJ is absent, the infrequent use 
of microhomology at translocation breakpoints 
and the lack of an impact on the frequency of 
translocations when LIGIII is absent, compel-

lingly indicate that most translocations in human 
cells are LIGIV-dependent and likely mediated 
by C-NHEJ.

Needless to say, these observations raise the 
question of why a seemingly similar process 
should be mechanistically so different in these 
two organisms. To date, there is no clear answer. 
The most likely explanation has to do with 
species-specific differences in the factors that 
make up the DSB repair pathways. For example, 
DNA-PKcs is the key C-NHEJ factor that tethers 
the two ends of a DSB together through homodi-
merization [87, 91]. Relevantly, DNA-PKcs is 
more abundant (by ~ an order of magnitude) in 
human cells than it is in rodent cells [29]. Thus, 
the reduced quantities of DNA-PKcs (and pre-
sumably therefore reduced numbers of tethered 
ends) may provide A-NHEJ in the mouse with 
additional windows of opportunity for the ends to 
dissociate and be conscripted by A-NHEJ factors, 
whereas in human cells, with a superabundance 
of DNA-PKcs [there are estimated to be between 
one-half to one million molecules of DNA-PKcs 
in every human cell; [66]] C-NHEJ is the domi-
nant repair pathway. The obvious follow-up 
question of why human cells should contain so 
much more DNA-PKcs than rodents is unfortu-
nately not biochemically obvious, but the empiri-
cal fact that they do likely provides at least a 
partial answer for why the two organisms utilize 
the C-NHEJ and A-NHEJ pathways differen-
tially. In addition, it is well known that chromatin 
organization and epigenetic modifications can 
affect the mutation rate across genomes [85, 
100]. Specific chromatin features and epigenetic 
marks are unlikely to be highly conserved across 
species and these differences may also impact 
upon the process of translocations. Finally, it is 
now appreciated that at least some of the endog-
enous DSBs generated in vertebrate cells may be 
due to the aberrant action of apolipoprotein B 
editing complex 3 [APOBEC3], a cytidine deam-
inase capable of introducing closely spaced nicks 
into the DNA [96, 100]. Importantly, there is a 
single APOBEC3 gene in the mouse, whereas in 
humans that locus has been significantly 
expanded to eight functional isoforms. Thus, dif-
ferences in APOBEC3 expression could certainly 
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causes significant differences in either the fre-
quency and/or location of DSBs in the genome. 
Whatever the correct answer(s) may be, it is 
important to appreciate that particular care must 
be taken in interpreting or extrapolating experi-
mental results obtained in rodent model systems 
to humans since some of the basic biology 
appears to be different [discussed at length as 
well by [56]].

7.4.1.2	 �Spatial Karma 
and Translocations

Regardless of which pathway of end joining 
(C-NHEJ or A-NHEJ) is used for repair, why are 
these processes not always faithful? The correla-
tion of translocations with aberrant A-NHEJ is 
easiest to reconcile. Thus, while PARP1 can bind 
tightly to DNA ends, it is not known to homodi-
merize. Moreover, while some studies have sug-
gested that MRN, or subunits thereof, are capable 
of homodimerization [109] there is frankly no 
A-NHEJ factor comparable to DNA-PKcs. As a 
consequence of this, it seems likely that the ends 
of a DSB that are being repaired by A-NHEJ may 
not be as synaptically as stable as ends being 
repaired by C-NHEJ and therefore simply stand a 
statistically higher chance of separating from one 
another before the repair event is completed. This 
model dovetails nicely with the reduced amounts 
of DNA-PKcs observed in rodents and their cor-
respondingly greater propensity to utilize 
A-NHEJ in the formation of translocations. The 
flip side of this rationalization is more complex. 
Thus, in humans, where C-NHEJ apparently pre-
dominates, why does the end of DSB ever become 
capable of joining to an end other than its cognate 
end? Indeed, it is well known (albeit mostly from 
mouse studies) that C-NHEJ is more likely to 
join DSBs intrachromosomally rather than inter-
chromosomally [21, 60]. In essence then, when 
C-NHEJ is utilized it is simply less likely that a 
translocation will result. The most compelling 
explanation for the translocations that do result is 
that the DSBs may be spatially adjacent to one 
another. For example, even early experiments on 
the spatial organization of the human genome 
noted that translocations often involved regions 
that were physically closer to one another than to 

other regions of the genome [65]. These observa-
tions have been confirmed and extended over the 
past decade as technology has improved the char-
acterization of the large-scale organization of 
chromosomes [13, 81, 82]. Thus, nuclear DSBs 
have a tendency not to move very much [43, 49] 
and this correlates well with the observation that 
more than 80% of DSBs translocate to regions 
that are physically located to within 2.5 μm of 
each other [81, 82]. In conclusion, the current 
best explanation for why translocations occur in 
human cells is “bad karma”. That is, a transloca-
tion likely only occurs when two concomitant 
DSBs are also spatially close to one another in 
the nucleus such that a synaptic complex (likely a 
requirement for repair) can form  — albeit in 
these rare instances between non-cognate ends.

7.4.1.3	 �Selection, Not 
the Translocation, Drives 
Cancer

It is well known that particular translocations are 
the hallmark of certain cancers [16, 56]. However, 
it is important to appreciate that the predomi-
nance of a translocation in a tumor is due solely 
to the subsequent selection that is imposed upon 
all the translocations that may have occurred dur-
ing the genesis of that tumor. That is, if, and only 
if  — and this is a stochastic probability  — the 
translocation generates a novel chromosome that 
gives the cell a selective growth advantage, will 
these cells be subsequently amplified to generate 
the tumor. Indeed, translocations that are onco-
genic have invariably inactivated a tumor sup-
pressor gene, activated an oncogene and/or 
created a chimeric gene that is acting as an onco-
gene. This event, however, is independent from 
the mechanism of the translocation; that is, there 
is nothing inherently oncogenic about transloca-
tions. Both ends of a DSB have a similar propen-
sity to translocate [21] and although there is a 
bias towards translocations happening near tran-
scriptional start sites in the mouse [21], this bias 
is not observed in human cells [56] (yet another 
difference between mice and humans). 
Consequently, it is important to appreciate is that 
there is no evidence of directionality or specific-
ity intrinsic to translocations themselves. Thus, 
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both ends of a broken chromosome likely have 
the potential to translocate to an infinite number 
of chromosomal locations and this is likely 
limited only by the spatial parameters discussed 
above.

7.4.2	 �Considerations for When One 
DSB is a Telomeric End

Up until now, all of the translocations that have 
been discussed were canonical ones requiring the 
formation of two DSBs and the generation of 
four DNA ends. There is one biologically impor-
tant scenario, however, where translocations can 
occur between a DSB and a “single-ended DSB” 
and hence only involve three DNA ends. This 
scenario occurs when the end of a chromosome, 
i.e., a telomere, participates in the translocation 
reaction.

7.4.2.1	 �Telomeres Stabilize 
the Genome

There are 46 chromosomes in a normal diploid 
human cell and because each chromosome has 2 
ends, there are in principle 92 natural DSBs con-
stitutively present in a cell. Such a scenario, if it 
truly existed, would be lethal, so evolution has 
devised an answer in the form of telomeres. 
Telomeres are specialized nucleoprotein struc-
tures that are found at the extreme termini of 
linear eukaryotic chromosomes. Telomeres 
“cap” those ends and prevent the recognition of 
the chromosomal termini as DSBs by the cellular 
DNA damage response apparatus. Telomeres 
consist of a repetitive hexameric tract of DNA 
(TTAGGG) bound by an evolutionarily-
conserved complex of proteins collectively called 

Shelterin [26]. Importantly, ongoing cell division 
(i.e., aging) results in gradual telomere erosion 
[36], and ultimately, the loss of the end-capping 
function which, in the context of a functional 
DNA damage response, leads to the induction of 
a p53-dependent G1/S cell cycle arrest, known as 
replicative senescence [25]. This cell-intrinsic 
limit on replicative lifespan provides a stringent 
tumor suppressive mechanism. However, in the 
absence of a fully functional DNA damage 
checkpoint response, older cells containing short 
dysfunctional telomeres (which are essentially 
one-ended DSBs) enter a state of crisis during 
which telomeres undergo fusion, either between 
sister chromatids (Fig. 7.5a), with interchromo-
somal telomeres (Fig. 7.5b) or with non-telomeric 
DSBs, creating dicentric chromosomes and initi-
ating BFB cycles [22, 70]. This, in turn, leads to 
the creation of genomic rearrangements, includ-
ing the translocations that are common in cells 
from many different tumor types [4, 86]. The 
development of single-molecule approaches to 
characterize the sequence of telomere fusion 
events, has revealed that short dysfunctional telo-
meres are capable of recombining with both telo-
meric and non-telomeric loci across the genome 
[51, 54]. Thus, whilst BFB cycles initiated 
because of telomere dysfunction can lead to 
chromosomal translocations [70], telomere 
fusions themselves can also lead directly to trans-
location events. Intra-chromosomal telomere 
fusion involving sister-chromatids predominates 
over inter-chromosomal telomere fusion, which 
in turn is more frequent than inter-chromosomal 
fusion between telomeres and non-telomeric loci 
[54]. The characteristics of the non-telomeric loci 
involved in telomere fusion have yet to be fully 
characterized, but thus far it is apparent that they 

Fig. 7.5  (continued)  Shelterin complex. Fusion between 
sister-chromatids results in the formation of a dicentric 
chromosome, that can form a bridge between daughter 
cells at anaphase, that is subjected to a breakage event. 
Depending on the position of the break, this can lead to a 
daughter cell that has lost terminal sequences, or has an 
addition copy of a gene — in this example, gene B. Further 
BFB cycles can lead to further amplification and deletion. 
This process can be stopped by the healing of a DSB via 
the acquisition of a de novo telomere, either by telomerase-

mediated extension or by recombination with a pre-existing 
telomere. Centromeres are depicted as green ovals, telo-
meres by black and white rectangles and genes in colored 
squares. (b)  Inter-chromosomal telomere fusion between 
short dysfunction telomeres (depicted), or with non-telo-
meric DSBs, can lead to the formation of dicentric chro-
mosomes and the initiation of BFB cycles that can lead to 
the formation of non-reciprocal translocations (NRT) and 
deletions. This process can be prevented by chromosomal 
healing via the acquisition of new telomere
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Fig. 7.5  Short dysfunctional telomeres can be subjected to 
sister-chromatid fusion, or inter-chromosomal fusion 
events to create amplifications, deletions and non-recipro-

cal translocations. (a) Gradual telomere erosion in the 
absence of functional DNA damage checkpoints, leads to 
short telomeres that are no longer protected by the  
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occur predominantly within coding regions of the 
genome; indicating a potential role for chromatin 
structure and replication timing in conferring 
sensitivity to fusion [54]. Larger datasets docu-
menting the specific loci involved in telomere 
fusion are required before a definition of these 
fusagenic loci can be provided and potential hot 
spots identified.

Thus, telomere-dependent crisis is a key event 
in driving genomic instability and clonal evolu-
tion during the progression to malignancy; this is 
consistent with data and observations of telomere 
dynamics and fusion in a broad range of human 
tumor types in which extreme telomere erosion 
and fusion is observed that correlates with the 
presence of large-scale genomic rearrangements 
[57, 67, 79]. Moreover, patients with tumors that 
display short dysfunctional telomeres, within the 
length ranges at which fusion can occur, exhibit a 
poorer prognosis and response to treatments [58, 
95, 108]. Short dysfunctional telomeres have 
been identified in the very earliest lesions, includ-
ing very small adenomatous colorectal polyps 
[79] and in leukemias prior to clinical progres-
sion [57]. Importantly, the short telomeres 
observed in early stage lesions are identical in 
length to those observed in more advanced dis-
ease clones, indicating that telomere length does 
not vary considerably during progression. 
Together these data are consistent with the pres-
ence of short telomeres in the cell in which the 
initiating mutation occurred and that this dictates 
the telomere length distribution of the developing 
clone. In this model, if the initiating cell contains 
short telomeres then the subsequent clone may 
have a “telomere-mutator” phenotype that drives 
genomic instability, translocations and clonal 
progression, whereas a cell with long telomeres 
gives rise to a clone with a more stable genome, 
which exhibits slower rates of clonal progression 
(92). Finally, it is important to note that short 
dysfunctional telomeres have been observed in 
the majority of tumor types analyzed [46] and 
thus it appears that a period of telomere-driven 
genome instability may be a common mechanism 
underlying the progression to malignancy. 
Therefore, there is a requirement to understand 

the mechanisms by which telomere dysfunction 
can facilitate genome instability.

7.4.2.2	 �Translocations Involving 
Telomeres are Mechanistically 
Distinct

Telomere fusion is clearly an important and phys-
iologically relevant mutational event. Key to the 
function of mammalian telomeres is the Shelterin 
complex that plays a fundamental role in protect-
ing the natural chromosomal termini from aber-
rant NHEJ-mediated joining events [26]. For 
example, in the mouse, the abrogation of telo-
mere recognition factor 2 [TRF2], a core compo-
nent of Shelterin, confers a widespread telomere 
fusion phenotype [102] that is dependent upon 
the activity of LIGIV.  In contrast, fusions were 
readily detected in telomerase-deficient mice, 
with short dysfunctional telomeres, despite the 
absence of core components of C-NHEJ path-
way, including DNA-PKcs or LIGIV [61, 78]. 
Thus, in the mouse and in the context of short 
dysfunctional telomeres, which is likely the most 
biologically relevant form of telomere dysfunc-
tion, telomeres are no longer fully recognized 
by the Shelterin complex and the processing of 
telomere fusion appears to be mediated by either 
C-NHEJ or A-NHEJ.

The view that telomere-mediated transloca-
tions may be mechanistically distinct from 
canonical two DSB-mediated translocations is 
consistent with the molecular analysis of telo-
mere fusion events directly from human cells 
undergoing a telomere-driven crisis in culture. 
These data show that fusion between short 
telomeres  — ones that are almost completely 
denuded of telomere repeats — is accompanied 
by deletion and microhomology across the fusion 
points [18]. The deletion that accompanies telo-
mere fusion, includes not just the telomere repeat 
array itself, but extends into the telomere-adjacent 
DNA, up to the limit of the assays used (6.1 kb), 
the distribution of fusion points from the start of 
the telomere repeat arrays, indicates that deletion 
may be much more extensive. This characteristic 
profile is also observed at telomere fusion junc-
tions isolated from some human malignancies, 
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including early-stage and pre-malignant lesions 
[57, 79], as well normal human cells, in which 
rare stochastic telomeric deletion results in fusion 
[18, 57, 79]. Finally, molecular analysis of fusion 
events following replicative telomere erosion in 
human cells carrying hypomorphic MRE11 
alleles revealed a change in the mutational spec-
trum with an increase in insertions at the fusion 
point [97]. The reliance on MRE11, the extensive 
deletion and the high degree of microhomology 
that accompanied these human telomere fusions 
was indicative of error-prone processing of short 
dysfunctional telomeres via the A-NHEJ path-
way and suggested that telomere-mediated 
fusions in human cells may be mechanistically 
fundamentally different than canonical two DSB-
mediated translocations, which, as detailed 
above, appear to be predominately mediated by 
C-NHEJ.

7.4.2.3	 �Translocations Involving 
Human Telomeres can 
be Mediated by LIGIII or LIGIV

To experimentally test this idea, a study was 
undertaken utilizing human cell lines in which 
either nuclear LIGIII [73] or LIGIV [74] (and 
presumably A-NHEJ or C-NHEJ, respectively) 
had been inactivated by gene targeting. A 
dominant-negative version of human telomerase 
[DN-hTERT; [35]] was then expressed in these 
cells to cause gradual telomere shortening and 
the status of the telomere stability was assessed 
by a single telomere length analysis [STELA; 
[6]] and single-molecule telomere fusion analy-
ses. These approaches allow one to either (1) 
quantitate the length of a single telomere, (2) 
detect and characterize the DNA sequence of 
translocations or (3) detect and quantitate sister 
chromatid:sister chromatid fusions/transloca-
tions. These experiments demonstrated that 
translocations involving telomeres occurred in 
either LIGIII- or LIGIV-null cells [47]. Thus, 
unlike canonical translocations, which are heav-
ily dependent upon LIGIV, a high frequency of 
telomere-mediated translocations was still 
observed in LIGIV-null cells. There were, how-
ever, some parallels with canonical transloca-
tions. Thus, the majority of the translocations that 

occurred in LIGIII-null cells (i.e., translocations 
perforce mediated by LIGIV) were biased 3:1 
towards interchromosomal translocations, as is 
observed for canonical translocations. Similarly, 
in LIGIV-null cells (i.e., translocations perforce 
mediated by LIGIII) while there were still inter-
chromosomal translocations, telomere fusions 
were now biased 52:1 towards intrachromosomal 
sister chromatid fusion events [47]. These biases 
were so significant that they had a profound bio-
logical effect — cells that were LIGIII-null were 
not able to survive the DN-hTERT-induced crisis 
whereas those that were either wild type or 
LIGIV-null readily survived. A parsimonious 
interpretation of this data is that the LIGIV-
mediated interchromosomal translocations were 
predominately toxic und ultimately lethal for 
cells whereas the LIGIII-mediated intrachromo-
somal fusions provided a growth advantage that 
could be selected for during crisis. This interpre-
tation is consistent with the gene duplications 
and localized amplifications that are associated 
with sister:sister fusion events that are not 
observed with interchromosomal translocations 
[70].

These experiments beg the question as to why 
a telomere-mediated translocation (as compared 
to a interchromosomal DSB-mediated transloca-
tion) should be less reliant on C-NHEJ (and/or 
more reliant on A-NHEJ). The most obvious dif-
ference is simply that while a shortened telomere 
can bind a single DNA-PK complex, there is no 
corresponding end to bind a second DNA-PK 
complex and hence there is a greatly reduced 
chance of forming a synaptic complex. The lack 
of a synaptic complex presumably now permits 
the recruitment of A-NHEJ factors to the end 
and/or the displacement of the DNAPK complex 
from the end such that a higher frequency of 
A-NHEJ-mediated fusions can occur. Another 
factor that might influence the relative activities 
of A- and C-NHEJ at telomeres may be the nature 
of a short telomere, compared to a non-telomeric 
DSB. The telomeres terminate not with a blunted-
ended DSB, but instead have a large (200 to 300 
nt) overhang composed of TTAGGG repeats 
[112]. This unique structure has the potential to 
fold into G-quadruplex structures [115] and may 
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represent a non-canonical substrate for DNA 
repair activity that may favor the slower kinetics 
of the A-NHEJ pathway over that of C-NHEJ.

7.4.2.4	 �Translocations Involving 
Human Telomeres can 
be Mediated by LIGI

The above data strongly suggested that the geom-
etry of the DNA ends and the availability of a 
requisite DNA ligase controls the type of translo-
cations that can occur in human cells. To extend 
these observations a follow-up study was carried 
out in which the frequency and kind of transloca-
tion was quantitated in cells that were genetically 
engineered to be deficient for both LIGIII and 
LIGIV, where, presumably, both C-NHEJ and 
A-NHEJ would be ablated. In this experimental 
set-up the telomere was not gradually exposed by 
the expression of DN-hTERT as before, but was 
rapidly deleted by the use of a transcription 
activator-like effector nuclease [TALEN; [75]]. A 
TALEN pair was designed to introduce a DSB 14 
base pairs from the start of the telomeric 
TTAGGG repeat on the petite arm of chromo-
some 17. Thus, this experimental system is some-
what of a hybrid between those measuring 
canonical fusions and the system to gradually 
uncover a telomere end by enforced DN-hTERT 
expression. Specifically, the TALEN should gen-
erate a DSB with two ends, however, one of those 
ends is only a couple of kilobases long and con-
sists solely of the telomeric TTAGGG hexameric 
repeat. It is unclear whether this end can function 
in a fashion similar to a canonical chromosomal 
end. With this caveat in mind, it was reassuringly 
observed that in the absence of LIGIV a greatly 
decreased frequency of interchromosomal trans-
locations was observed [54]. Very surprisingly, 
however, in the combined absence of LIGIII and 
LIGIV significant amounts of both inter-and 
intrachromosomal translocations were observed 
although inter-chromosomal translocations 
were detected at a  reduced frequency [54]. 
Interestingly, whilst the frequency of inter-
chromosomal fusion events was decreased in the 
absence of LIGIV, intra-chromosomal sister 
chromatid fusion events appeared to be largely 
unchanged in the different genetic backgrounds 

tested. Moreover, there were differences in the 
utilization of microhomology, with significantly 
greater microhomology observed at intra-
chromosomal events compared to inter-
chromosomal events. Taken to together these 
data are consistent with a role for LIGIV-
dependent C-NHEJ in driving interchromosomal 
telomere fusion and A-NHEJ being predominant 
for intrachromosomal sister chromatid telomere 
fusion. These data were also important because 
they provided the first demonstration in human 
cells that LIGI can facilitate chromosomal trans-
locations  — both inter-chromosomal and intra-
chromosomal sister chromatid translocations. 
Moreover, these data revealed considerable 
redundancy in the utilization of the specific 
ligases for end-joining, with LIGI being able to 
facilitate intra-chromosomal fusion as well as 
inter-chromosomal fusion, albeit less efficiently. 
This may be discouraging from the clinical per-
spective, as these data indicate that attempts to 
inhibit human translocations using small mole-
cule inhibitors to LIGIII and LIGIV [89] are des-
tined to fail due to the robust ability of LIGI to 
compensate for their absence. That said, any 
intervention that can skew the fusion spectrum 
towards inter-chromosomal events, creating a 
larger mutational burden on cells and influencing 
their ability to escape a telomere-driven crisis, 
may have clinical utility. A deeper understanding 
of the key proteins involved in A-NHEJ and telo-
mere fusion may identify additional therapeutic 
targets that could allow for more selective inter-
ventions into these pathways.

7.5	 �Summary and Future 
Considerations

In summary, DSBs are normally repaired with 
high fidelity in the sense that the pieces of DNA 
that were contiguous before the DSB are contigu-
ous after DNA repair, regardless of the “sloppi-
ness” of the actual join. In order for a canonical 
chromosomal translocation to occur there needs 
to be two contemporaneous DSBs within a cell 
(which is a low frequency event) and the ends 
that were contiguous with one another before the 
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DSBs, need to be rejoined aberrantly. This (mis)
rejoining of the ends is likely mediated, at least in 
part, by their spatial proximity within the nucleus 
with the closer that the DSB ends are to each 
other the greater the likelihood of a translocation 
occurring. In the mouse, these events are pre-
dominately mediated by LIGIII/A-NHEJ whereas 
in human cells they are mediated by LIGIV/C--
NHEJ. When a telomere shortens or when it loses 
its protective proteinaceous cap, the Shelterin 
complex, it is treated by the cell as a one-ended 
DSB and can engage in the formation of translo-
cations as well. In this instance, however, both 
A-NHEJ and C-NHEJ seem to play an active role 
in mediating the resulting translocations. Layered 
over all of this is an additional layer of complex-
ity provided by the recent demonstration that 
LIGI can fully compensate for translocations that 
were previously exclusively or predominately 
ascribed to LIGIII/A-NHEJ or LIGIV/C-NHEJ.

As is often the case in biology, reality is often 
much more complex than first envisioned. In the 
beginning, most models of chromosomal translo-
cations invoked the aberrant use of either LIGIII 
or LIGIV. It is now clear that the situation is sig-
nificantly more complicated with all three DNA 
ligases capable of generating translocations in a 
fashion that likely depends upon the state of the 
cell cycle, the level of expression of the various 
ligases within a given cell type and whether one 
of the translocating ends is telomeric or not. As a 
consequence, simplistic approaches of inhibiting 
a single ligase [and such specific inhibitors are 
not even currently available; [89]] are likely des-
tined to fail. Nonetheless, it is clear that in a 
human cell where all three ligases are expressed 
that inhibiting LIGIV will significantly decrease 
interchromosomal translocations, which could 
potentially be used to therapeutic benefit. What is 
clinically perhaps more relevant however, is try-
ing to inhibit the intrachromosomal sister 
chromatid:sister chromatid fusions as these 
appear to be critical for cells to escape crisis and 
thus become oncogenic [47]. In this scenario, 
inhibition of both LIGI and LIGIII will likely be 
necessary to achieve a therapeutic outcome. 
Given that LIGI also has important functions in 
DNA replication (an essential cellular process) it 

is likely that such approaches will have signifi-
cant toxic side effects. Nonetheless, as more is 
learned about all three DNA ligases, and espe-
cially about how pathway choice for DSB repair 
is regulated there is still significant cause for 
optimism that windows of opportunity for thera-
peutic intervention will be uncovered.
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3D Genome Organization 
Influences the Chromosome 
Translocation Pattern

Rachel Patton McCord and Adayabalam Balajee

Abstract
Recent imaging, molecular, and computa-
tional modeling studies have greatly enhanced 
our knowledge of how eukaryotic chromo-
somes are folded in the nuclear space. This 
work has begun to reveal how 3D genome 
structure contributes to various DNA-mediated 
metabolic activities such as replication, tran-
scription, recombination, and repair. Failure 
of proper DNA repair can lead to the chromo-
somal translocations observed in human can-
cers and other diseases. Questions about the 
role of 3D genome structure in translocation 
mechanisms have interested scientists for 
decades. Recent applications of imaging and 
Chromosome Conformation Capture 
approaches have clarified the influence of 
proximal positioning of chromosomal 
domains and gene loci on the formation of 
chromosomal translocations. These 
approaches have revealed the importance of 
3D genome structure not only in translocation 

partner selection, but also in repair efficiency, 
likelihood of DNA damage, and the biological 
implications of translocations. This chapter 
focuses on our current understanding of the 
role of 3D genome structure in chromosome 
translocation formation and its potential 
implications in disease outcome.

Keywords
3D Genome · Chromosome organization · 
Translocation mechanisms · Hi-C · 
Chromatin structure · Radiation exposure

8.1	 �Introduction

The structural integrity of chromosomes is vital 
for proper genome function. Disruptions in gene 
linkage caused by structural chromosomal aber-
rations can profoundly affect gene expression 
patterns and result in serious health consequences 
[1]. Chromosomal translocations involve an ille-
gitimate fusion of two or more broken chromo-
somes, and are often associated with cancer 
[2–4]. The biological processes leading to the 
formation of chromosome translocations in vivo 
are highly complex. At the most basic level, 
translocations form when DNA double strand 
breaks (DSBs) at two different genomic loci are 
joined by DNA repair/recombination activity. 
Numerous factors can influence which 
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translocations form, including nuclear architec-
ture, DSB frequencies at different loci, and 
details of recombination and DNA repair path-
ways. Two models are often proposed for how 
DSBs become juxtaposed in translocation forma-
tion: (I) breakage first and (II) contact first [5]. 
The breakage first model suggests that broken 
chromosome ends move through the nucleus in 
search of a pairing partner for rejoining. The con-
tact first model assumes that the translocation 
partners are pre-determined by the proximal 
positioning of chromosome domains and gene 
loci.

Extensive work has been carried out over the 
past several decades to investigate the relative 
roles of genome organization and DSB move-
ment in translocation formation. Fixed and live 
cell imaging methods have contributed both 
foundational principles and more recent break-
throughs in our understanding of 3D genome 
structure and translocations. A recent explosion 
of data from DNA sequencing-based chromo-
some contact mapping has revealed additional 
layers of 3D genome structure. These data have 
allowed larger-scale studies comparing this 
genome structure to the landscape of transloca-
tions. In this chapter, we will describe how imag-
ing and chromosome conformation capture-based 
methods have revealed the influence of 3D 
genome structure on translocations. We will dis-
cuss the extensive evidence supporting the idea 
that genomic locus proximity influences translo-
cation partner selection. But, we will also 
describe the complexities introduced by varia-
tions in DSB frequency, repair efficiency, and 
mobility. A synthesis of the literature reveals that 
chromatin organization can affect many impor-
tant steps of translocation formation, from DSB 
generation to the downstream biological implica-
tions of the translocation. We will discuss remain-
ing important questions in this area, and describe 
implications for clinical interpretation.

8.2	 �The Impact of Spatial 
Proximity on Partner 
Selection in DNA Break 
Repair

8.2.1	 �Evidence from Imaging 
Methods

An astounding observation in early cancer biol-
ogy was that different individuals with the same 
cancer all had the same spontaneously occurring 
translocation [6]. For decades, scientists have 
looked for causative factors of such cancer-
specific “recurrent translocations”. One com-
monly tested hypothesis is that translocations 
tend to occur between genomic regions already 
near each other in 3D nuclear space. To test 
whether translocated loci are near each other in 
pre-cancerous cells, researchers have often 
employed the fluorescence in situ hybridization 
(FISH) technique. FISH uses fluorescently-
labeled gene locus-specific probes to measure the 
distance between loci across a population of nor-
mal cells (Fig. 8.1a). For example, the BCR and 
ABL loci, despite their location on different 
chromosomes (chr9 and chr22), exhibit translo-
cations in 90% of chronic myelogenous leukemia 
patients. Using FISH, it was demonstrated that 
these loci are already closer to each other than to 
their own homologs in normal bone marrow cells 
[7]. Similarly, a translocation event involving 
c-myc on chromosome 8 and IgH on chromo-
some 14 has been observed in 70% of Burkitt’s 
lymphoma patients. This is consistent with their 
proximal positioning commonly observed in the 
genome of normal B-lymphocytes. Meanwhile, 
c-myc rearranges less frequently with Igκ (chr2) 
and Igλ (chr22) in Burkitt’s lymphoma. This cor-
responds to the observation that these loci are 
less frequently proximal in the normal B-cell 
genome [8]. Similar results have been shown for 
the PML-RARA loci that form a translocation in 
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acute promyelocytic leukemia [9], and the prox-
imity of IgH-BCL2 in B cell cancers [8]. Many of 
these studies only examine locus proximity in 
one cell type, often blood lymphocytes. But, as 
results of this type continue to accumulate, tissue 
specific translocations have been shown to cor-
relate with tissue specific genome organization 
[10]. Certain chromosome pairs have distinctly 
different preferred neighbors in liver cells as 

compared to lymphocytes (Fig.  8.1a). 
Accordingly, hepatomas display a different spec-
trum of translocations than lymphomas [10].

Imaging studies have further revealed that 
translocations are influenced not only by the 
positioning of whole chromosomes, but also by 
folding structures within chromosomes. For 
example, the RET and H4 loci, which often form 
translocations in thyroid cancer, are separated by 

Ai
d

–/
–

Igh
Interac�ons

Igh
Transloca�ons

Myc
Interac�ons

Myc
Transloca�ons

Chr 17

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

1 2 3 4 5 7 6 8 10 14 9 11 12 15 16 17 18 19

1 2 3 4 5 7 6 8 10 14 9 11 12 15 16 17 18 19

Hi-C Interactions
IR Translocations

Chromosome

Chr 18 pro-B cell Hi-C vs. Translocations

Cortex Hi-C = -0.28
ES Hi-C = 0.40 

chr1 chr11 chr15 chr19
pro-B Translocations pro-B Hi-C

ES Hi-C CortexHi C

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

Lo
g(

ob
s/

ex
p)

Lo
g(

ob
s/

ex
p)

chr: 

-3

lo
g2

(o
bs

/e
xp

 H
i-C

 re
ad

s)

Pro-B Hi-C = 0.82

Correlation with pro-B cell Translocations:

Induced 
Break

HepatocytesLymphocytes HepatocytesLymphocytesa

b

chr 12 & 15 chr 5 & 6

c

3

0

1
2
3
4
5
7
6
8

10
14
9

11
12
15
16
17
18
19

Fig. 8.1  3D Genome Structure Guides Translocations 
from Local to Global Scales. (a) FISH staining of chro-
mosome territories. Frequent translocation partners in a 
given cell type (chr12 / 15  in lymphocytes or chr5/6  in 
hepatocytes) are more often spatially proximal in that cell 
type compared to a tissue in which translocations are not 
frequently observed. (Reprinted with permission under 
Open Access policy from Genome Biology: Ref. [10], 
Copyright Parada et al. 2004) (b) Hi-C data shows a cor-
relation genome wide between interchromosomal interac-

tion frequency and translocation frequency from an 
induced break on chr18. Pro-B cell translocations corre-
late much less well with Hi-C data from mismatched cell 
types. (Figure adapted with permission from Cell Press: 
Ref. [47], Copyright 2012) (c) Aid independent transloca-
tions in mouse are highly correlated with 4C-derived 
interaction frequency at a local scale. (Reprinted by per-
mission from Macmillan Publishers Ltd: Ref. [46], 
Copyright 2012)
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30 Mb on the linear chromosome (chr10). But, 
these loci colocalize much more frequently in 
thyroid cells (35% of cells by FISH) than mam-
mary epithelial cells (6%) [11]. In general, in 
mammalian cells, each chromosome exists in a 
territory, interacting much more within itself than 
with other different chromosomes [12]. 
Accordingly, researchers have found that broken 
chromosomes are much more likely to repair 
within their own territory than with other chro-
mosomes [13]. For example, 11 rearranged gene 
loci have been reported in papillary thyroid carci-
noma (PTC 1-11), but 90% of cases involve the 
two intrachromosomal translocations: PTC1 (H4, 
CCDC6)-RET and PTC3 (NCOA4)-RET [14]. 
Chromosome territories may also explain why 
plutonium workers exposed to high LET radia-
tion experience elevated frequencies of 
chromosome inversions (inter and intra-arm 
exchanges) in their lymphocytes [3, 15, 16].

In yeast, no enrichment of intra- vs. interchro-
mosomal translocations was observed. But, this 
apparent discrepancy is in fact even stronger evi-
dence for the influence of 3D structure on trans-
locations. Yeast do not have the strongly evident 
chromosome territories that higher eukaryotes 
exhibit, and thus experience much more promis-
cuous translocations [17]. Further supporting this 
claim, there is evidence that through evolutionary 
history the unique Rabl conformation of the yeast 
genome has contributed to break joining fre-
quency. In the Rabl structure, chromosome arms 
run parallel to each other away from the centro-
mere, interacting at the telomeres. There is a con-
cordant pattern of genome rearrangements that 
favors joining regions from opposite chromo-
some arms that are equidistant from the centro-
mere [18]. So, even in an organism with a 
fundamentally different 3D chromosome organi-
zation, the spatial arrangement influences 
translocations.

Further evidence for the influence of chromo-
some spatial proximity on translocations has 
been obtained recently in multiple myeloma. 
Spatial distances were determined for four pairs 
of chromosomes that often exhibit translocations 
in myeloma. These chromosomes were found to 
be proximal to each other more often than one 

negative control pair of chromosomes [19]. 
Certainly, each new example of this phenomenon 
lends additional credibility to idea that 3D 
genome proximity influences translocation for-
mation. But, it is unclear exactly when such a 
collection of isolated examples can be considered 
to prove a general principle or when additional 
examples become redundant. Further, there is a 
danger that such isolated studies can from confir-
mation bias. Researchers tend to focus on testing 
pairs of chromosomes known to be involved in 
translocations with only one or two contrasting 
negative controls. Only occasionally have such 
comparisons extended to spatial arrangements of 
these chromosomes in other tissues. This selec-
tion bias can be circumvented by newly emerging 
methods for high content/high throughput imag-
ing. Recent studies have employed either spectral 
karyotyping or multicolor FISH to image the 
positions of all chromosomes simultaneously 
[20]. Other new methods, like HIP-Map and 
HiBA-FISH, measure distances between many 
specific loci in numerous cells using high 
throughput FISH [21]. Similar high-throughput 
imaging approaches are being used to detect 
translocations in interphase cells [21]. But, for 
most FISH-based approaches, analysis of a large 
number of cells is still often time consuming and 
labor intensive. Further, inter-cellular variations 
related to cell cycle stage, cell size, cell shape, 
and imaging artifacts must be carefully moni-
tored for proper interpretation of the results. 
Therefore, complementary genome-wide tech-
niques with higher resolution are invaluable for 
analyzing the role of genome organization in 
translocation formation.

8.2.2	 �Implications of DNA DSB 
Movement

The formation of DSBs is pivotal for chromo-
some translocation. At minimum, two DSBs are 
required, one on each of the participating chro-
mosomes or gene loci in translocation. Consistent 
with observations that proximally positioned 
chromosomes have a high probability of forming 
translocations, imaging studies in mammalian 
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cells have shown that DSBs remain fairly close to 
their original positions. These DSBs show little 
movement in search of repair partners [22]. Live 
cell imaging using fluorescently tagged repair 
factors suggested a limited local DSB motion of 
approximately 1μM2 h-1. Further damaged chro-
matin in human fibroblasts was found to be 
largely static following exposure to ultrasoft 
X-rays [23]. In yeast, by contrast, DSB tracking 
has revealed substantial movements of broken 
DNA loci, as well as increased mobility of intact 
loci after DNA damage [24, 25]. This difference 
may in part be reconciled by considering the sig-
nificantly smaller size of the yeast—the same 
amount of DSB motion would naturally cover a 
much larger fraction of the yeast nucleus as com-
pared to a mammalian nucleus. Another possible 
explanation is that the yeast genome is only 
equipped with the homologous recombination 
(HR) repair pathway. As discussed below, HR 
may require DSBs to diffuse as they search for 
homology [26]. Evidence of substantial DSB 
movement has also been suggested in Drosophila, 
where heterochromatic regions were found to 
move out of their pre-existing domain for repair 
[27]. While such dramatic motion of heterochro-
matic DSBs could be specific to Drosophila, 
other work has shown a 30-40% decondensation 
of damaged chromatin within mammalian nuclei 
[28]. Building a more complete picture, Misteli 
and colleagues have shown the importance of 
both condensation and decondensation in the 
DNA repair process [29]. By imaging a photoac-
tivated spot on chromatin after DNA damage, 
they demonstrated that chromatin undergoes an 
initial rapid decondensation followed by hyper-
condensation and finally relaxation in response to 
DNA damage induction. The extensive conden-
sation process signals for the activation of the 
DNA damage response pathway. Inhibiting any 
of these phases: decondensation, hypercondensa-
tion, or recovery from condensation, interfered 
with DNA damage response signaling and DNA 
repair [29]. However, the chromatin did not 
undergo any large scale nuclear movements in 
these experiments despite the occurrence of 
relaxation and condensation events in 
succession.

Some discrepancies between observations of 
DSB motion and DSB stability could stem from 
the source of DNA damage and the type of repair 
that is necessary. For example, while only limited 
DSB movement was observed after X-ray irradi-
ation, α-particle irradiation led to large scale 
(several micrometer) chromatin motion and clus-
tering of damaged chromatin domains [20, 30]. 
Breaks induced by a topoisomerase II (TopoII) 
inhibitor also appear to be more mobile than 
irradiation-induced DSBs [31]. DSBs caused by 
this topological strain likely occur at different 
locations than those induced by irradiation, lead-
ing some to hypothesize that the location of 
breaks within the genome influences their mobil-
ity [32]. Further supporting this idea, DSBs that 
occur in different nuclear compartments (e.g. at 
the nuclear membrane, near the nucleolus, in the 
nuclear interior) display different mobility and 
tend to choose different repair pathways (non-
homologous end joining, NHEJ vs. homologous 
recombination, HR) [33]. DSB mobility may be 
needed to facilitate a productive homology search 
for HR. Thus, HR translocation junctions may be 
more influenced by sequence similarity and less 
constrained by initial partner proximity [34], 
while proximity exerts a greater effect on NHEJ 
translocations.

Observations of increased chromatin move-
ment and changes in chromatin condensation 
after DNA damage are important to consider. 
But, this does not negate the importance of 3D 
genome structure in translocation outcome. On 
the contrary, the evidence that DSB mobility is 
influenced by chromatin compaction and nuclear 
positioning suggests that DSB motion is yet be 
another step in the DNA damage repair process 
that is influenced by the 3D genome structure.

8.3	 �Conceptual Contributions 
from Chromosome 
Conformation Capture

Many studies relating 3D genome structure and 
translocation frequency by imaging methods suf-
fer from two technical limitations: low resolution 
and relatively small sample sizes. Observing 
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changes in the positions of whole chromosomes 
can be informative, but it is difficult for imaging 
approaches to measure the distance between 
regions separated by only 100 kb. And, despite 
the recent emergence of recent high throughput 
imaging techniques, most imaging studies com-
paring spatial positioning to translocations are 
confined to a few gene loci. The analysis of a few 
chromosomes or gene loci of interest introduces 
some bias in interpreting the significance of such 
interactions in the context of whole genome orga-
nization. In recent years, the suite of techniques 
based on chromosome conformation capture [35] 
have provided researchers with a complementary 
tool for examining 3D genome contact frequency. 
These approaches can measure the interaction 
frequency between many loci and even agnostic 
detection of common translocations genome-
wide across a population of cells.

The chromosome conformation capture fam-
ily of techniques (which includes 3C, 4C, 5C, 
Hi-C, ChIA-PET, Capture-C, and others) are all 
based on converting spatially proximal genomic 
regions into chimeric ligation products. 3D 
genome interactions can then be identified by 
probing for specific ligated pairs or high through-
put sequencing of all ligation products [36–39]. 
Over the last decade, these techniques have 
allowed researchers to characterize genome 
structures across a range of length scales. The 
data reveal small-scale looping interactions 
between enhancers and promoters as well as 
large-scale segregation of chromosomes into 
individual territories [40–42]. At intermediate 
length scales, Hi-C and other methods have dem-
onstrated that active and inactive chromatin is 
spatially segregated into compartments. 
Interaction maps have also revealed new building 
blocks of genome structure- most significantly, 
topologically associating domains (TADs). 
TADs, which are hundreds of kilobases in size, 
have been shown to structurally organize gene 
expression regulation [43–45]. 3C-based meth-
ods report interaction frequencies in a cell popu-
lation between genomic loci at a resolution that 
can be as high as 1 kb, and thus provide a power-
ful tool for comparing genome structure to trans-
location patterns.

8.3.1	 �Characterizing Pre-existing 
3D Genome Structure 
Before Translocations to Link 
Translocation Frequency 
to 3D Structure

Several 3C-based methods have been used to 
relate pre-existing 3D genome organization to 
translocation frequency (Fig. 8.1b, c). In B lym-
phocytes, 4C (circular chromosome conforma-
tion capture) experiments were used to identify 
all interacting partners of the IgH and c-myc loci 
genome-wide. These loci commonly form trans-
locations in cancer. The pre-existing interaction 
patterns of these loci were then compared with 
patterns of translocations resulting from an 
induced break at either the IgH or the c-myc 
locus. Unlike previous imaging experiments, 
which compared distances between c-myc and 
just a few loci, this experiment revealed the full 
interaction profile of the c-myc locus. The trans-
location patterns were strikingly correlated to 
the interaction profiles of these loci. Notable 
exceptions to this correlation occurred where 
localized DNA breaks were highly frequent due 
to processes such as V(D)J recombination and 
the activity of the protein AID (Fig. 8.1c) [46]. 
To address the concern that the commonly-stud-
ied IgH and c-myc loci might not fairly repre-
sent the rest of the genome, a related study 
induced breaks at several random locations in 
mouse pro-B cells [47] (Fig. 8.1b). The translo-
cation partners of these breaks were then com-
pared with pre-existing genome structure 
measured by Hi-C (genome wide chromosome 
conformation capture), which measures interac-
tion frequencies between all loci genome-wide. 
As in the 4C study, translocation and interaction 
frequencies were found to be correlated along 
the chromosome. The correlation was strongest 
when DSB frequency was equalized across the 
genome by irradiating the cells and disrupting 
their normal DNA damage response. Hi-C can 
provide information about the positioning of 
whole chromosome territories by measuring 
their overall frequencies of interaction 
(Fig.  8.1b). This is similar to the experiments 
performed by imaging labeled chromosomes, 
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except that Hi-C collects information across 
millions of nuclei simultaneously, and reports 
contacts rather than distance. This measure 
showed that chromosomes 2 and 18, which have 
entirely different nuclear localization and chro-
mosomal neighbors, also have correspondingly 
different translocation partner distributions 
across chromosomes [47]. Since the original 
study comparing Hi-C to translocation data, 
Hi-C has been used to characterize 3D genome 
structure in additional mouse cell types. 
Interchromosomal interaction frequencies differ 
dramatically for some chromosomes between 
pro-B, cortex, and embryonic stem cell types. 
Reanalysis of the published data shows that 
pro-B cell translocations follow the specific 
interactions of pro-B cell chromosomes but are 
discordant with the interaction patterns of other 
cell types (Fig. 8.1b). At a very local scale, the 
correlation between translocation partners and 
Hi-C interaction frequency was weak, perhaps 
due to the local dynamic motion of DSBs 
described earlier [48]. Both Hi-C and 4C com-
parisons of 3D genome structure to transloca-
tions show that both pre-existing locus 
positioning and DSB frequency have a large 
impact on translocation frequency.

Hi-C data from non-cancerous cell lines has 
also been used to evaluate the interaction fre-
quency between regions that are associated with 
disease-related translocations [49]. This 
approach, like most FISH studies of proximity 
between cancer-associated translocation part-
ners, is somewhat indirect. It cannot connect 
translocations to proximity as directly as the 
studies in which translocations were identified 
immediately after DNA damage in the same pop-
ulation of cells used for Hi-C or 4C.  But, this 
approach does alleviate some of the technical 
issues of small sample size and biased gene locus 
selection frequently encountered in FISH-based 
imaging studies. With Hi-C data, the proximity of 
candidate loci can easily be compared to all sur-
rounding loci as a control. Disease translocated 
loci are found to be more frequently proximal in 
a related non-cancerous cell type than would be 
expected at random. This shows that the effect of 
proximity is still visible even after accounting for 

other factors like selection that will have occurred 
in the development of the cancer cell line.

8.3.2	 �3C-Based Methods 
for Agnostic Translocation 
Identification

The utility of 3C-based methods in studying 
translocations is not limited to measuring pre-
translocation interaction frequencies. Techniques 
such as 4C and Hi-C can also be used to identify 
translocations that occur frequently in a popula-
tion of cells (Fig. 8.2a). Long-range PCR coupled 
with DNA sequencing is routinely performed to 
identify translocation breakpoints at the DNA 
sequence level but this technique involves design-
ing of several overlapping primer sets for DNA 
amplification. Further, primer design requires the 
prior knowledge of gene loci involved in the 
translocation [50]. If regions involved in the 
translocation are not known, finding DNA 
sequences that happen to cross a translocation 
junction can be like looking for a needle in the 
haystack of the entire genome sequence. Even 
with high-throughput sequencing methods, and 
increasingly high throughput long-read sequenc-
ing, identifying unknown translocations remains 
challenging [51]. But, with chromosome confor-
mation capture technologies, evidence for trans-
locations comes not only from the sequence 
directly at the breakpoint, but also from dramati-
cally increased interaction frequencies between 
translocated chromosomes for up to several 
megabases beyond the breakpoint (Fig.  8.2a). 
The average interaction frequency between 
unconnected chromosomes is normally at least 
10 fold lower than regions separated by 1 Mb on 
the same chromosome. So, when two chromo-
somes are newly connected in a translocation, 
their interaction frequencies show a sharp 
increase for several megabases on each side of 
the breakpoint. Identified translocations match 
with those identified using imaging approaches 
such as SKY-FISH [52]. With even the very first 
low resolution Hi-C dataset, it was possible to 
identify the known BCR-ABL translocation in 
the K562 cancer cell line. The increased interac-
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tions defining the translocation were clearly not 
present in the GM06990 lymphoblast Hi-C data 
[49]. In another example, most of the transloca-
tions identified in the MCF7 breast cancer cell 
line by spectral karyotyping and mFISH tech-
niques were detected with Hi-C data [53]. When 
SNPs were used to generate maternal and pater-
nal chromosome-specific Hi-C maps in diploid 
cells, translocations specific to the paternal 
homologs were identified. These translocations 
could be detected even though they were only 
present in about 1-5% of the cell population [54]. 
Hi-C has been used to characterize novel rear-
rangements in repetitive regions of highly rear-
ranged HeLa cells [55]. These rearrangements 

were not detected by linear sequencing methods 
[56]. Beyond cancer cell lines, recent work has 
shown that Hi-C can characterize translocations 
and copy number variations in clinical samples 
from patients with cancer or constitutional trans-
locations [57]. Occasionally, it may be hard to 
distinguish an infrequent translocation from an 
increased interaction between separate chromo-
somes in a cancer cell [58]. But, careful analysis 
of whether the Hi-C interactions are asymmetric 
on one side of a potential breakpoint (Fig. 8.2a, 
center) can help to resolve these ambiguities.

The 4C technique is particularly well suited to 
screen for translocations of a candidate locus 
since it measures detailed interactions of one 
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Fig. 8.2  Identifying Translocations with Hi-C and 4C. 
(a) (Left) Hi-C heatmap of genome-wide interaction pat-
tern of breast cancer cell line MDA-MB-231. Unusually 
strong interactions between chromosomes indicate trans-
locations (blue circle). (Center) Translocation breakpoints 
are evident as sharp transitions between high and low 
interaction frequency. Level of true (not translocation) 
interchromosomal interactions shown for comparison 
(grey circle). (Right) New hybrid chromosomes resulting 
from translocation can be inferred from Hi-C interactions. 
This matches SKY-FISH observation (Ref. [52]). (b) 4C 

measures interactions of anchors on either side of an 
inversion breakpoint (red and blue triangles) with the rest 
of chromosome 7. Each anchor shows an unexpectedly 
large peak of interactions with a region on the opposite 
end of the chromosome (grey box) because of an inver-
sion. Zooming in on these unexpected peaks shows that 
anchor 1 interacts with regions upstream of the break 
while anchor 2 interacts with regions downstream of the 
break. The break occurs at the HOXA cluster as shown. 
(Adapted by permission from Nature Publishing Group: 
Ref. [59] Copyright 2009)
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locus genome-wide (Fig.  8.2b). 4C can identify 
translocations in small sub-populations of cells, 
complex rearrangements, and even breakpoints in 
repetitive DNA sequences, which are usually very 
hard to identify definitively by sequencing [59]. 
This translocation-detection approach has been 
shown to work in non-mammalian species as 
well. A variant of the Hi-C protocol called teth-
ered chromosome conformation capture (TCC) 
was recently used to characterize translocations, 
deletions, and inversions in C. elegans [60].

One technical drawback for the Hi-C technique 
is that it effectively averages interactions across a 
large population of cells and thus would miss very 
infrequent interactions or translocations. Such 
problems can be in part mitigated by the develop-
ment of the single cell Hi-C technique [61].

8.3.3	 �Interpreting the Biological/
Medical Impact 
of Translocations

When translocations are identified in research or 
the clinic, the 3D genome structures identified by 

3C-based methods can also be used to help inter-
pret the biological impact of these translocations. 
Some well-studied cancer-causing translocations 
have obvious mechanisms: they may create new 
oncogenic fusion proteins by linking parts of two 
genes together, they may result in genomic region 
duplications that increase the copy number of 
oncogenes, or they bring strong regulatory ele-
ments close to an oncogene [62]. In many B and 
T cell malignancies, translocations have been 
shown to juxtapose proto-oncogenes with new 
cis regulatory elements, leading to their overex-
pression. Transposition of genes by translocation 
can also lead to inactivation of tumor suppressor 
genes such as P53 and PTEN either by genetic or 
epigenetic mechanisms. Despite such examples 
of enhancer hijacking after translocations [63, 
64], until recently, no systematic theory was 
available to predict which regulatory regions 
would affect genes newly positioned by a rear-
rangement. Recent work has revealed that some 
these cancer-causing genomic aberrations are 
easily interpretable when placed in the context of 
TADs (Fig. 8.3).
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Fig. 8.3  TADs and translocations. The Hi-C heatmap 
(40 kb resolution) shows triangles of enriched interactions 
(TADs) separated by boundaries. Several ways that TADs 
influence translocations are depicted: (1) Translocations 
that cross TAD boundaries can lead to gene misregulation 
and diseases like cancer. (2) Intra-TAD interactions pro-

mote γH2Ax spread within TADs but restricts spread 
beyond TAD boundaries, favoring intra-TAD repair. (3) 
The enrichment of TopoII, topological strain, and actively 
expressed genes increases the likelihood of DNA DSBs 
near TAD boundaries
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The detailed mechanisms by which TADs 
form are still being elucidated. But, a model 
called “loop extrusion” explains many features of 
TADs and their boundaries. In this model, chro-
matin loops are extruded by a factor such as 
cohesin, and extrusion is blocked by CTCF pro-
teins binding in a certain orientation [65, 66]. If 
the DNA sequence defining a TAD boundary is 
deleted or the CTCF sites at that boundary are 
inverted, extrusion can proceed through the 
boundary, increasing contacts across the former 
boundary [44, 66]. Similarly, removing the CTCF 
protein drastically reduces TAD boundary con-
tact insulation [67]. Correspondingly, clear 4C 
and Hi-C evidence has shown that congenital 
copy number variations of chromosomal regions 
can disrupt TAD structure [45, 68]. If the dupli-
cated or deleted region includes a TAD boundary, 
there can be a loss or gain of enhancer-promoter 
interactions, resulting in deleterious gene 
expression.

Following the same principles, chromosomal 
aberrations in cancer can change the position of 
TAD boundaries by moving the corresponding 
CTCF sites. Recurrent microdeletions in T cell 
acute lymphoblastic leukemia (T-ALL) patients 
span TAD boundary sites as defined by 5C and 
ChIA-PET analysis of the local genomic region 
[69]. Experimentally deleting just this boundary 
region in normal cells is enough to drive proto-
oncogene activation. Without the TAD boundary, 
nearby super enhancers interact with and activate 
the prominent T-ALL proto-oncogenes LMO2 or 
TAL1. Similar mutations of TAD boundaries are 
found in many cancers that have been character-
ized by The Cancer Genome Atlas. Even just 
altering CTCF binding can disrupt a TAD bound-
ary in a way that activates oncogenes and leads to 
cancer [70]. Similar principles of TAD fusion 
would occur any time translocations cross TAD 
boundaries or juxtapose parts of TADs from dif-
ferent chromosomes. Further suggesting the dan-
ger of disrupting TADs, it appears that evolution 
has selected against genomic rearrangements 
within TADs. Retrotransposons have tended to 

integrate at TAD boundaries rather than inside 
TADs [43], and synteny breaks between organ-
isms also tend not to disrupt TADs [71]. Overall, 
knowing the 3D genome structure of normal cells 
aids in the interpretation of cancer genome 
abnormalities.

A deletion commonly found in prostate cancer 
cells was found to result in a depletion of Hi-C 
interactions reminiscent of a new TAD boundary 
[72]. However, given the described model of 
TAD formation, deletions would usually lead to 
the loss of insulation rather than the formation of 
a new boundary. This discrepancy points to the 
need for continued work in this area and empha-
sizes that Hi-C data of highly rearranged cancer 
cells must be interpreted with caution. First, TAD 
detection can vary depending on algorithm, data 
quality, and resolution [73]. Indeed, the study 
reporting a new TAD boundary after a deletion 
reported an average TAD size of 7.8 Mb, even 
though this is typically the size associated with 
active/inactive compartments rather than TADs. 
In contrast, the study reporting the loss of TAD 
boundaries after a deletion described an average 
TAD of about 300 kb. So, such studies may be 
observing phenomena at different scales. Further, 
if cancer genome interaction data is mapped to 
the wildtype genome sequence, features that 
actually reflect genomic rearrangements them-
selves could be mistakenly interpreted as new 3D 
genome structures. For example, an apparently 
new TAD boundary at the site of a CNV could 
simply reflect that deleted regions inherently can-
not form interactions with surrounding sites and 
amplified regions inherently increase linear dis-
tances between genomic regions.

8.4	 �Importance of Heterogeneity 
in Interpreting the Influence 
of 3D Genome Organization

If translocated loci are not found to be physically 
proximal on average in normal cells, it is tempt-
ing to conclude that DSBs must have moved a 
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long distance to find their partners. However, it is 
also possible that these translocations occurred in 
the few cells out of the population in which the 
genomic loci were proximal. There are several 
potential explanations for the observation of 
translocations between loci that are only rarely 
proximal. First, the translocation may activate an 
oncogene that increases proliferation and confers 
a selective advantage to a given cell, leading 
eventually to a clonal population of cells. Or, 
DSBs at these loci may be much more frequent 
than at other places in the genome. Then, even on 
the rare occasions that these loci interact, they 
form translocations, while other much more fre-
quently interacting loci are never broken and thus 
rarely form translocations. Further, proximity 
measurements during G1 may not reflect the state 
of all cells in the population. 3D genome struc-
ture exhibits large-scale stability within individ-
ual cells during G1 [74], but subtle changes in 
structure occur as the cell progresses through S 
and G2 phases [75]. Additionally, with each 
round of cell division, chromosome territory 
positioning and lamin association can change 
dramatically [74, 76]. Dynamic motion of chro-
matin also occurs within individual cells at 
smaller scales [77]. These factors lead to inter-
cellular variability in chromatin domain organi-
zation. Indeed, single cell Hi-C experiments as 
well as single cell FISH imaging experiments 
have shown that individual cells of the same type 
and stage can exhibit large variations around the 
average trends of whole chromosome positioning 
[61, 78]. So, it is plausible that average distances 
between loci are not the best measure of whether 
those loci interact in any cells in the population. 
The heterogeneity of 3D genome structure may 
also contribute to heterogeneous DNA damage 
responses of cells within a population, leading to 
the death of some cells and translocations in oth-
ers. It is generally accepted that the G2/M phase 
is the most radiation sensitive phase, and it would 
be interesting to determine whether this radiosen-
sitivity is due to 3D genome organizational dif-
ferences between G1 and G2/M cells.

8.5	 �Widespread DSBs Exacerbate 
3D Genome Proximity Effects 
on Translocations: 
Implications for Radiation-
Induced Translocations

As noted above, genome-wide studies have 
shown that translocation events are more closely 
correlated with 3D genome organization when 
cells in culture are exposed to ionizing radiation 
[47]. When DSBs are very rare, then endogenous 
sites of DNA breaks, such as V(D)J recombina-
tion loci in lymphocytes, are much more likely to 
participate in translocations, even if these sites 
are not the most frequently proximal in the cell 
population [79, 80]. But, if DSBs are more widely 
available, as is true after radiation, then spatial 
proximity predicts translocation partners well. 
The assumption of this principle has even led 
researchers to use chromosomal aberrations after 
LET radiation as a functional measure of chro-
mosome spatial clustering [81]. And, indeed, the 
frequency of translocations from this study was 
later explicitly shown to correlate strongly with 
the pre-existing average intermingling volume of 
chromosome pairs in human lymphocytes [82]. 
The observation that IR-induced DSBs are less 
mobile than breaks from other causes further 
increases the effect of pre-existing genome struc-
ture on translocations that arise from radiation 
exposure [31]. Future work with 3C-based meth-
ods will be needed to clarify the effects of ioniz-
ing radiation-induced DNA damage on 3D 
genome structure.

The increased role of spatial proximity in gov-
erning translocations after radiation has also been 
suggested in clinical settings. Thyroid papillary 
carcinoma patients with a history of radiation 
exposure have a higher incidence of a RET/PTC 
translocation than sporadic cases. These loci are 
naturally proximal in normal thyroid cells, and 
irradiation also increases the frequency of RET/
PTC translocation cultured cells in a dose depen-
dent manner [83]. Similarly, as noted earlier, plu-
tonium workers who were exposed to ionizing 
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radiation show translocations exhibiting signa-
tures of locus proximity within chromosome ter-
ritories [3, 16]. These results suggest that patients 
who develop cancer after radiation incidents 
could have fundamentally different oncogenic 
translocations than patients with cancer of the 
same tissue that developed for other reasons. 
Now that Hi-C 3D genome structure profiles are 
becoming available across many human tissues 
and cell types [84], translocations discovered in 
cancer patients could be classified according to 
the likely initial spatial proximity of the 
exchanged chromosomal regions. Such analysis 
could help assess whether widespread DNA dam-
age (e.g. irradiation) vs. localized recombination-
mediated chromatin breaks likely played a larger 
role in the development of an individual cancer. 
By determining whether TADs are disrupted, 
pathologists could also use existing Hi-C data to 
evaluate the likelihood that a clinically observed 
translocation is an oncogenic driver of cancer vs. 
a side effect of genome instability.

8.6	 �3D Genome Contributions 
to DSB Incidence and Control 
of DNA Repair

Given that DSB frequency strongly influences 
the spectrum of translocations that can occur, it is 
important to note that 3D genome structure also 
influences the likelihood of DSB formation by 
DNA damaging agents. Biophysical alterations 
of chromatin state by salt-induced nuclear swell-
ing or compaction has shown that condensed 
chromatin is less likely to be damaged by ioniz-
ing radiation than decondensed chromatin [85]. 
Similarly, in cancer treatment, histone deacety-
lase inhibitors, which tend to decondense chro-
matin, can render tumor cells more susceptible to 
damage by radiation treatment [86].

The physical stress caused by 3D chromatin 
packing can also increase the incidence of spon-
taneous DSBs at certain loci. If TopoII is inhib-

ited, the topological stress of chromatin structure 
leads to increased DSBs [87, 88]. Related to this 
phenomenon, DSBs are likely to be more com-
mon at TAD boundaries (Fig. 8.3). A combina-
tion of factors likely lead to this enrichment of 
DSBs at TAD boundaries: 1) Gene promoters, 
which are more likely to experience breaks due to 
the activity of transcription machinery, are 
enriched at TAD boundaries [80, 89] and 2) 
Higher topological stress, demonstrated by the 
enrichment of TopoII, is likely to be found at 
TAD boundaries [90].

Recent work has also implicated 3D chroma-
tin structure as a modulator of DNA repair. DSB 
repair is generally inhibited by condensed chro-
matin, which appears to both inhibit the DNA 
damage response pathway and decrease repair 
efficiency [91, 92]. With our new understanding 
of chromatin organization in TADs, the relation 
between this 3D genome folding and DNA repair 
has become even stronger. The ataxia telangiecta-
sia mutated protein (ATM) aids DNA repair by 
locally decondensing chromatin through the 
phosphorylation of histone H2Ax and KAP-1 
[92, 93]. It is now known that H2Ax phosphory-
lation occurs throughout a single TAD containing 
a DSB, but is restricted by TAD boundaries [93]. 
Specifically, chromatin immunoprecipitation 
experiments suggest that cohesin is a substrate of 
ATM, and that cohesin binding restricts the 
spread of H2Ax marking after DNA damage 
[94]. As noted earlier, cohesin is a protein com-
plex implicated in extruding DNA loops as a part 
of TAD formation [65, 95]. So, it is plausible that 
loop extrusion would bring ATM at a DSB into 
contact with other DNA throughout the same 
TAD, spreading DNA damage marks. But, as 
cohesin loop extrusion is blocked by CTCF, the 
spread of DNA damage marks would be restricted 
by TAD boundary, largely confining repair within 
TADs (Fig.  8.3). Overall, we see that the 3D 
genome structure can inform not only likely 
translocation partners, but also the likelihood and 
fidelity of DNA damage and repair.
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8.7	 �Key Persistent Questions

8.7.1	 �How Can We Reconcile 3D DSB 
Movement with 3D Genome 
Stability and Influence 
on Translocations?

Throughout this chapter, we have seen evidence 
of both DSB movement and spatial stability, and 
the degree to which each of these contributes to 
translocations. Some experimental factors may 
complicate observations of DSB movement and 
stability and lead to apparent conflicts. Although 
live cell imaging studies are valuable for moni-
toring the DSB movement analysis, such studies 
often rely on cancer cells for ease of transfection 
and exogenously expressed proteins. Cancer cells 
may have inherently different chromosome orga-
nization, epigenetics, and chromatin mobility, 
and exogenously expressed proteins may have 
different effects than their endogenous counter-
parts. So, other methods are needed to directly 
evaluate the relative roles of DSB movement and 
stability in translocation formation. These more 
direct methods would complement existing 
approaches evaluating DSB movement and the 
large number of studies correlating 3D genome 
proximity with translocations.

The best approaches to answer this question 
allow researchers to watch the same chromosomal 
locations from their initial spatial position 
through the process of DNA damage and repair. 
This shows more decisively whether broken 
chromosome ends do or do not move large dis-
tances to form translocations. A major advance in 
this direction was made by the development of a 
cellular system to induce and visualize chromo-
some damage at specific sites in living mamma-
lian cells. This approach couples an I-SceI 
endonuclease cut site to a LacO array that can be 
fluorescently imaged with labeled LacI in live 
cells. This I-SceI LacO/LacI was integrated into 
the genome on one chromosome and a similar 
I-SceI TetO/TetR was integrated on another chro-
mosome [96]. Thus, the motion and proximity of 

the two cut sites could be visualized with high 
throughput imaging before and after DSBs in liv-
ing cells. In this work, colocalization of cut sites 
increased from 2% to 12% over the 36 hours after 
endonuclease activity, indicating DSB pairing. 
Occasionally, labeled DSBs traveled over large 
(4 um) distances during a 24 h imaging time-
course. But, in the majority of cases, DSBs that 
formed translocations were already within 2 μm 
of each other before DNA damage [97]. Future 
work can extend this idea by examining the 
hypothesis that even more translocations would 
occur with proximal regions in an individual cell 
if more DNA breaks were present. It will also be 
interesting to observe how these results vary 
when labeling pairs of chromosomes that are nor-
mally further from or closer to each other. A 
remaining challenge is the inability to visualize 
loci in live cells without bulky insertions of repet-
itive arrays that may already change the chroma-
tin state of the locus before the experiment 
proceeds.

Hi-C generally reports on populations of cells, 
and thus cannot show movement of individual 
breaks. But, Hi-C data on cell populations after 
induction of widespread DNA damage could help 
to evaluate the effective extent of DSB movement 
within the 3D genome structure. It is possible 
that chromatin contact frequency and topology 
change very little on average even when average 
motion or condensation state changes after DNA 
damage. Alternatively, a blurring of the structure 
observed by Hi-C could indicate a substantial 
impact of DSB movement on 3D genome 
interactions.

8.7.2	 �How Much Do DSBs 
and Translocations Affect 
Existing 3D Genome 
Structure?

Over the past 15 years, researchers have found 
several examples in which typical chromosome 
territory positioning in the nucleus is apparently 
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changed by translocations [98, 99]. For example, 
translocations which attach chr18 (normally 
peripheral) to chr19 (normally internal) can cause 
chr18 to adopt the internal positioning of chr19 in 
the resulting cancer cells [99]. This suggests that 
regions of the genome can have their normal spa-
tial positions reprogrammed by translocations. 
Alternately, following the idea that translocations 
usually occur when chromosomes are proximal 
in an individual cell, it may also be that chr18 
was already localized internally in some cells 
before the translocation. Perhaps some pre-
malignant signal (changes in histone modifica-
tions, aberrant gene activation etc.) brought chr18 
near chr19  in some cells, increasing the likeli-
hood of the 18-19 translocation.

Hi-C evidence has demonstrated that cancer 
cells with chromosomal aberrations exhibit dif-
ferent spatial compartmentalization and looping 
contacts than normal cells of the same lineage 
[53, 72]. These changes could be a direct result of 
the translocations themselves, but may also 
reflect broader cancer-related gene expression 
changes. As noted earlier, it appears that translo-
cations may primarily move or duplicate existing 
TAD boundaries rather than creating fundamen-
tally new TAD boundaries at sequences that were 
not boundaries to begin with [69]. But, more 
work tracing the 3D genome structure of the 
same cell before and after translocations is 
needed to thoroughly address how translocations 
may change the broader genome structure.

8.7.3	 �Do Pre-cancerous 3D Genome 
Organization Changes Affect 
Which Translocations Occur 
and Thus Affect Cancer 
Phenotype or Outcome?

If 3D genome structure influences translocations, 
it is plausible that oncogenic translocations in an 
individual cancer patient would be affected by 
specific details of 3D genome organization of 
that individual and tissue type. Along these lines, 
there may be externally or internally induced 
changes in the 3D arrangement of chromosomes 
before the development of cancer that would 

influence which translocations are most likely to 
occur. Since different cancer genotypes have dif-
ferent aggressiveness and susceptibility to treat-
ment [100–102], translocation frequency could 
be a mechanism by which the pre-cancerous 
genome structure could influence cancer progno-
sis. Indeed, some studies have shown spatial reor-
ganization of specific loci in early tumorigenesis 
[103]. Even more intriguing, a study of chromo-
some positioning, not only before transforma-
tion, but during cancer treatment and relapse, has 
suggested the existence of “transitional nuclei.” 
In these cells of the population, chromosomes 
that later form translocations in leukemia begin 
to approach each other, perhaps setting up the 
later initiation of leukemia [104]. Hi-C studies 
confirm that genes can change their spatial com-
partmentalization in cancer vs. non cancer cells 
[53] and as a result of oncogene overexpression 
[58], but it is unclear whether these might con-
tribute to or be an effect of translocations.

It is also possible that changes in 3D genome 
structure after irradiation reposition certain loci 
in a manner that favors certain translocations. 
While many DSBs exhibit positional stability 
after DNA damage, commonly translocated loci 
like BCR and ABL have been observed to shift 
toward the center of the nucleus after gamma 
irradiation [105]. This would bring BCR and 
ABL closer together after gamma radiation expo-
sure, and would make the CML-causing BCR/
ABL translocation more likely. In this example, a 
pre-cancerous reorganization of chromatin struc-
ture in response to a stimulus (gamma radiation) 
would predispose a cell to cancer development. 
Some studies have suggested other genome-wide 
changes in 3D genome structure in response to 
radiation, such as a decrease in superhelical den-
sity of chromatin in radiosensitive cell lines 
[106]. Future work is needed to better character-
ize 3D genome organization changes that precede 
translocations or cancer development. Can such 
pre-cancerous changes in genome structure make 
oncogenic translocations more likely? Future 
work must distinguish whether cancer-specific 
genome folding changes are a downstream side-
effect of initial translocations and mutations or an 
upstream driving force of cancerous transloca-
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tions. Studies relating cancer genomics to envi-
ronmental and underlying genetic factors, such as 
those encouraged by The Cancer Genome Atlas, 
may contribute to this future work as well [107]. 
Surveys of which cancer translocations correlate 
to which environmental exposures or underlying 
genotypes could be linked to the impact of those 
environmental conditions on the 3D genome.

8.8	 �Conclusion

The past decades of research have shown that the 
effect of 3D genome structure on chromosomal 
translocations is more complex than a simple 
choice between the “break first” or “contact first” 
model. Certainly, both imaging and molecular 
methods have shown that pre-existing proximity 
of loci in the genome influences their likelihood 
of forming a translocation. But, layered on top of 
this truth are important complexities. Variations 
in DSB frequency, DSB motion, and repair sig-
naling pathways and efficiency, and heterogene-
ity in 3D structure across cell populations can all 
influence translocation patterns. Importantly, 3D 
genome structure influences many of these fac-
tors as well (Fig.  8.4). As we have described, 
TAD boundaries influence DSB frequency and 

constrain DNA damage signal spreading. 
Chromatin compaction and locations of genomic 
regions in the nuclear space influences DSB fre-
quency, DNA repair efficiency and pathway 
choice, and DSB mobility. After translocations 
occur, the disruption or preservation of genomic 
structures like TADs influence the biological 
implications of translocations and their likelihood 
of driving diseases like cancer. So, while the 
translocation landscape is a product of many fea-
tures, understanding the pre-existing 3D genome 
structure will shed light on aspects of all of them. 
The complexity of translocation mechanisms 
also makes it valuable to identify particular prac-
tical circumstances in which 3D genome struc-
ture is likely to play a large role. For example, in 
clinical cases where patients have been exposed 
to radiation, DSBs will be widespread and break 
mobility likely low. Therefore, the influence of 
pre-existing 3D genome structure on transloca-
tion outcomes is likely to be stronger in these 
patients.

Knowledge of different aspects chromatin 
remodeling, histone modifications, transcrip-
tional programming and higher order chromatin 
organization is required to understand the bio-
genesis of chromosome translocations. With 
increasingly sensitive imaging and molecular 
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methods for characterizing 3D genome structures 
and monitoring translocations, the field is poised 
for important advances in the next decade. Future 
work will transform a descriptive catalog of 
translocations and contributing causes to a pre-
dictive understanding of what conditions lead to 
different translocation profiles and the down-
stream implications for human health. Gaining a 
comprehensive knowledge of the driving forces 
for translocation formation may lead to effective 
therapeutic strategies for many of the human dis-
eases triggered by translocation events that range 
from infertility to cancer.
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Abstract

Chromosome deletions are a hallmark of 
human cancers. These chromosome abnor-
malities have been observed for over than a 
century and frequently associated with poor 
prognosis. However, their functions and 
potential underlying mechanisms remain elu-
sive until recently. Recent technique break-
throughs, including cancer genomics, high 
throughput library screening and genome edit-
ing, opened a new era in the mechanistic 
studying of chromosome deletions in human 
cancer. In this chapter, we will focus on the 
latest studies on the functions of chromosome 
deletions in human cancers, especially hema-
topoietic malignancies and try to persuade the 
readers that these chromosome alterations 
could play significant roles in the genesis and 
drug responses of human cancers.

Keywords
Chromosome deletion · Human cancer · 
Knudson’s two-hit hypothesis · 
Haploinsufficient tumor suppressor · Genome 
editing

9.1	 �Introduction

Copy number variation (CNV) is one of the hall-
marks of human cancers [1]. Deletions and 
amplifications of focal chromosome regions, 
chromosome arms or even whole chromosomes 
are frequent in both blood and solid cancers. 
Back to the end of the eighteenth century, German 
pathologist David Hansemann first observed 
asymmetric distribution of “chromatin loops” 
even though it was difficult to clearly see the 
chromosomes under the microscopes at his age 
[2, 3]. Following this seminal observation, 
another German pathologist Theodor Boveri pro-
posed that “a particular, incorrect chromosome 
combination which is the cause of the abnormal 
growth characteristics passed on to daughter 
cells” [4].

Hansemann and Boveri’s initial observations 
were further confirmed in the following more 
than 100 years. After the first chromosome abnor-
mality in cancer, the Philadelphia chromosome, 
was discovered in 1960, sophisticated cytogenet-
ics technologies have been developed to study 
the karyotyping of cancer, especially leukemia 
[5]. Given that CNVs are frequent and associated 
with poor prognosis, it is crucial to understand 
the functions of these chromosome alterations in 
tumorigenesis and drug response. It is generally 
believed that chromosome deletion regions con-
tain tumor suppressors while chromosome ampli-
fication regions contain oncogenes [6, 7].

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0593-1_9&domain=pdf
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However, so far, majority of chromosome dele-
tions don’t contain obvious confirmed tumor sup-
pressors. It has been argued that most chromosome 
abnormalities, including chromosome deletions, 
are the consequences of genome instability of can-
cer. In other words, cancers first have loss-of-func-
tion mutations on genes critical for genome 
integrity, such as TP53 and BRCA1/2, and then, as 
a consequence, these mutant cells acquire largely 
randomly chromosome deletions, together with 
many other genome abnormalities [1]. Though this 
hypothesis has been widely accepted, there are 
emerging evidences suggesting that at least it 
might not be the entire story. First, there are mul-
tiple cases of human cancer have chromosome 
large deletions or chromosome losses, while no 
mutation on any known genome integrity regulator 
genes [8]. More importantly, there are emerging 
evidences demonstrating the functions of chromo-
some deletions, as a whole, on tumor initiation and 
progress [9–12]. More and more tumor suppres-
sors have been identified in these frequently 
deleted chromosome regions [13, 14]. Interestingly, 
co-deficiencies of these tumor suppressors in the 
same region promoted faster tumorigenesis than 
knockdown of any single tumor suppressor, sug-
gesting the synergy of these tumor suppressors [8, 
10]. Therefore, we propose a “synergy of multiple 
tumor suppressors” theory that there are multiple 
collaborating tumor suppressors in the common 
deleted regions in cancer, which make the chromo-
some large deletions more detrimental than single 
tumor suppressor mutations.

In this chapter we will focus on the studies of 
the functions and mechanisms of chromosome 
deletions on cancer and explain our “synergy of 
multiple tumor suppressors” theory.

9.2	 �Chromosome Deletions Are 
Frequent in Human Cancers 
and Associated with Poor 
Prognosis

9.2.1	 �The Boveri’s Hypothesis 
on the Origin of Cancer

David Paul Hansemann was the first person to 
report unbalanced anaphases and telophases in 

freshly isolated epithelial cancer cells in 1890 
[2]. He described in details the mitotic chromo-
somes of 13 cultured epithelial cancer cells and 
noted the aberrant multipolar mitoses and ana-
phases with asymmetrical distribution of “chro-
matin loops”. However, Hansemann considered 
that these features were not unique to cancers. He 
thought that these chromosome alterations in 
tumor cells were the same process as in normal 
embryonic development [2, 3].

Soon after Hansemann’s initial observation, 
Boveri made his own similar observations of hypo- 
and hyperchromacy and proposed his famous 
tumorigenesis hypothesis that “a tumor originates 
from a single cell in which there is a defined but 
incorrect combination of chromosomes” [4]. His 
work on sea urchin let him conclude that individual 
chromosome transmitted different inheritance fac-
tors. Therefore, Boveri is credited to the chromo-
some theory, together with Sutton [15]. Boveri 
applied his concept of chromosome to explain 
tumorigenesis and made many bold and accurate 
predictions, including the existence of tumour-sup-
pressor genes (“teilungshemmende chromo-
somen”) and oncogenes (“teilungsfoerdernde 
chromosomen”). Majority of Boveri’s hypothesis 
and concepts have been approved and widely 
accepted by subsequent scientists.

Though chromosome alterations were fre-
quently observed in cancers, Boveri’s hypothesis 
on tumorigenesis was not well appreciated until 
the historic discovery of the Philadelphia chromo-
some in 1960 [5]. Nowell described the 
Philadelphia chromosome as the first consistent 
chromosome alteration in human cancers. Now 
the Philadelphia chromosome has become the 
golden standard to diagnose chronic myeloid leu-
kemia and the resulting fusion protein BCR-ABL 
is the target of the first target therapy drug Gleevec 
[16–18]. The discovery of the Philadelphia chro-
mosome and the target therapy against it opened 
new era for cancer research and clinical practice.

9.2.2	 �Chromosome Deletions Are 
a Hallmark of Human Cancers

Cancer cytogenetics is a new field ushered by the 
description of the Philadelphia chromosome for 
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the diagnosis and prognosis of human cancer, 
especially hematopoietic malignancies [6]. Over 
the last half century, a series of technique 
advances have improved karyotyping with high 
resolution, accuracy and convenience. In the late 
1960s, Torbjorn Caspersson developed Q-binding 
staining to reveal unique banding patterns of each 
chromosome [19]. This staining is generally 
applied to detect multiple types of chromosome 
abnormalities, including translocations, deletions 
and inversions. Later molecular cytogenetics was 
developed with fluorescent- or radioisotope-
labeled molecular probes. Labeled sequence-
specific probes were hybridized with 
chromosomes with the techniques as fluores-
cence in situ hybridization (FISH) [20, 21]. In 
1990s, array comparative genomic hybridization 
(aCGH) was applied to analyze copy number 
variations of cancer cells compared to reference 
samples [22, 23]. Microarrays used for aCGH 
can contain limited customized probes or mil-
lions of probes for the whole genome. The 
increased number of probes will improve the 
resolution of CGH analysis and less than 100 kb 
focal copy number variations can be detected. 
With the introduction of high-throughput 

sequencing techniques, CNV-seq reaches the 
highest resolution to single nucleotides [24, 25]. 
With these advanced technologies, accumulating 
chromosome deletions in human cancers have 
been documented [26].

Right now, up to millions of human cancers 
have been analyzed for their chromosome altera-
tions (Table 9.1). It has been estimated that aver-
agely about 30% of the genome is affected by 
chromosome arm-level or focal deletions in a 
typical human cancer [24, 25]. It seems that chro-
mosome deletions in human cancers involve all 
regions of the genome. It is interesting that there 
are significant “peaks” of deletions and amplifica-
tions, while these peaks vary among different 
types of cancer. Some of these chromosome dele-
tions are common among human cancers or a spe-
cific type of cancer. For example, one third of 
human cancers contain chromosome 17 loss or 
17p deletions [10]. Chromosome 1p and 16q loss 
are common in solid cancer [27]. Acute myeloid 
leukemia (AML) frequently have chromosome 5 
loss or 5q deletions (-5/del(5q)) and chromosome 
7 loss or 7q deletions (about 10% in de novo AML 
and 50% in relapsed or treatment-related AML, 
respectively) [28, 29], while chromosome 3p 

Table 9.1  The common chromosome deletions and their frequencies in selected types of human cancers

Disease category
Chromosome 
abnormality

Frequency of 
occurrence References

Acute Myeloid Leukemia 
(AML)

-7/del(7q) ~10% Greenberg et al. [31]
-5/del(5q) ~10% Nimer et al. [32]
Del(20q) ~5% Haase et al. [33]
Del(17p) ~3%–4% Valerie Soenen et al. [34] and Yvon 

Sterkers et al. [35]
Therapy-related AML -7/del(7q)/-5/del(5q) ~75% Smith et al. [36]
Non-Hodgkin lymphomas Del(17p) ~19% Levine et al. [37]
B-chronic lymphocyte 
leukemia

Del(13q) ~30% Caporaso et al. [38]

Multiple myeloma -13/del(13q) ~40% Chng et al. [39]
Lung cancer Del(13q) ~32% Jun Yokota et al. [40]

Del(17p) ~25% Jun Yokota et al. [40]
Ovarian cancer Del(17q) ~39% Hiroko Saito et al. [41]

Del(8p) ~33% Mitsuru Emi et al. [42]
Breast cancer Del(17q) ~41% Hiroko Saito et al. [41]

Del(10q23) ~40–48% Garcia et al. [43]
Del(8p) ~9% Mitsuru Emi et al. [42]

Hepatocellular carcinoma Del(8p) ~47% Mitsuru Emi et al. [42]
Colorectal cancer Del(8p) ~46% Mitsuru Emi et al. [42]
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deletions are detected in almost all small cell lung 
cancers and 90% of non-small cell lung cancers 
[30]. The high frequent common chromosome 
deletions suggest that these phenomena might be 
important to these diseases and of clinical value.

9.2.3	 �Chromosome Deletions Are 
Associated with Poor 
Prognosis in Some Cancers

Chromosome deletions, and other chromosome 
abnormalities have been widely applied for can-
cer diagnosis, prognosis and guiding clinical 
treatments. Back to 100  years ago, Boveri has 
proposed to detect malignant cells with chromo-
some abnormalities [4]. The Philadelphia chro-
mosome is the golden marker for chronic myeloid 
leukemia [5].

Following Chromosome 5q deletion syn-
drome (5q- syndrome) is a hematopoietic disor-
der called myelodysplastic syndrome 
characterized with acquired interstitial chromo-
some 5q33.1 deletion and macrocytic anemia. 
In1974, Van den Berghe et al. reported the first 
5q- syndrome [44]. Though most of these patients 
have only moderate thrombocytosis, erythroblas-
topenia, and megakaryocyte hyperplasia with a 
good prognosis, 10% of them would transform to 
AML [45, 46]. Generally these patients have less 
than 5% blast count in their peripheral blood and 
lenalidomide is the standard therapy. Interestingly, 
-5/del(5q) are one of the most frequent chromo-
some abnormalities in AML, especially relapsed 
or treatment-related AML. -5/del(5q) is associ-
ated with very poor prognosis, with less than 
10% 5-year survival rate [47]. Of note, the chro-
mosome regions involved in 5q- syndrome 
(5q33.1) and -5/del(5q) AML (5q31) are close 
but exclusive [48]. Thus characterizing chromo-
some deletions in detail is critic for clinic diagno-
sis and prognosis.

-7/del(7q) is the most frequent chromosome 
abnormality in AML, found in more than 50% 
secondary and 10% de novo myeloid disorders 
[49, 50]. Two minimal deleted regions, 7q22 and 
7q35–36, have been mapped in -7/del(7q) AML 
[51, 52]. Both of them are associated with poor 

prognosis. While -7/del(7q) can happen indepen-
dently, they also frequently co-occur with many 
other chromosome alterations, especially -5/
del(5q) and -17/del(17p). When these multiple 
chromosome abnormalities happen together, 
these AML are called complex karyotype AML 
and have the worst prognosis with a 5-year sur-
vival of less than 5% [47].

Chromosome 17p deletions, generally involv-
ing the whole short arm of chromosome 17 and 
containing the well-known tumor suppressor 
TP53, are frequent in almost all human cancers, 
including AML, CLL and non-Hodgkin’s lym-
phoma [53, 54]. In all of these cases, del(17P) are 
associated with poor prognosis [49, 55].

9.3	 �Identifying Tumor 
Suppressors in Chromosome 
Deletions

9.3.1	 �Knudson Theory

Given the frequency and prognosis value of chro-
mosome deletions in human cancer, it is critical 
to understand the mechanisms of these chromo-
some abnormalities in cancer initiation, progress, 
metastasis and drug response. According to 
Boveri’s theory, chromosome deletions would be 
rich of tumor suppressors [4]. Great efforts have 
done to uncover these functionally important 
genes over the last 30 years.

Traditionally there were two major criteria to 
identify tumor suppressors in chromosome loss 
or deleted regions. First the candidate tumor sup-
pressors should located in the commonly deleted 
regions among multiple patients, echoing Koch’s 
postulates. Chromosome loss or deletions gener-
ally involve large chromosome regions of several 
hundreds of genes, or the whole arms and some-
times the entire chromosomes of up to thousands 
of genes. In these cases, identifying critical tumor 
suppressors in these chromosome loss and dele-
tions would be challenging [6, 10, 24]. To narrow 
down the candidate genes involved in specific 
types of cancer, a lot of work has been done to 
identify minimal deleted regions or commonly 
deleted regions among these patients, taking the 
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advantage of the variance of chromosome dele-
tions and focal deletions in rare patients [56]. 
Recently, GISTIC (Genomic Identification of 
Significant Targets in Cancer), a powerful algo-
rithm, is developed to identify tumor suppressors 
in chromosome deletion regions in cancer (and 
also oncogenic drivers in amplified regions) [57].

The second criterion is Knudson theory or the 
two-hit hypothesis. It was assumed that most of 
the mutations on tumor suppressors were loss-of-
function mutations and recessive. Thus, both of 
the alleles of a putative tumor suppressor must be 
mutated. It is proposed that there is a first hit in a 
tumor suppressor, classically assumed to be a 
point mutation, and followed by a second hit, 
which is commonly thought as a chromosome 
deletion. This loss-of-heterozygosity hypothesis 
is called as the two-hit hypothesis, proposed by 
Alfred Knudson in 1971 [58]. Knudson theory 
has been the basis for identifying tumor suppres-
sors during the last four decades [59].

The first example of Knudson theory is the 
retinoblastoma gene RB1 on chromosome 13q14. 
Knudson observed that retinoblastoma patients 
with bilateral retinoblastoma were first diagnosed 
at significantly earlier age than those patients 
with unilateral disease and sufferers of bilateral 
Rb1 were six times more likely to develop other 
cancer than those of a unilateral Rb1 [58]. 
Knudson explained that in the case of a bilateral 
Rb1 (familial form), one allele is already mutated 
in all somatic cells and only a second hit is needed 
to mutate the second working allele, a process of 
loss of Heterozygosity [60]. Thus, Knudson pro-
posed his two-hit hypothesis through his studies 
on RB1.

Many negative regulators of cell cycle display 
similar mutation pattern as RB1. For example, 
cyclin-dependent kinase inhibitor 2A (CDKN2A) 
is a regulator of RB1 through inhibiting cyclin-
dependent kinase 4 and 6, which in turn inhibiting 
RB1 [61]. Therefore CDKN2A blocks cells in 
from G1 phase to S phase. CDKN2A resides on 
chromosome 9p21, which is one of the most com-
monly deleted regions in human cancers, especially 
in melanoma, small cell lung cancer and lymphoma 
[62]. Similar to those with familial retinoblastoma, 
familiar melanoma patients are more likely to carry 

inherited mutations in one allele of CDKN2A 
gene, and the second allele of this loci is deleted 
through the loss-of-heterozygosity process.

TP53 is the most frequently mutated tumor 
suppressor in human cancers, which is also rec-
ognized as an example for Kudson theory. 
Interestingly, TP53 was first found to be overex-
pressed in many human cancers, which is in con-
trast to classic tumor suppressors. Therefore it 
was assumed to be an oncogene at the beginning 
instead of tumor suppressor. Later, it turned out 
that the overexpressed “TP53” is a  gain-of-
function mutant and TP53 fits to the classic two-
hit tumor suppressor [63]. TP53 is located on 
chromosome 17p13. Generally one allele of 
TP53 carries missense or frameshift mutations, 
with hotspots on R175, R248 and R273, which 
have been confirmed as gain-of-function muta-
tions, and the second allele is generally deleted 
together with the whole short arm of chromo-
some 17 [64]. Familial TP53 mutations count for 
about half of Li-Fraumeni syndrome, almost all 
of these patients would develop multiple types of 
cancers, including sarcoma, leukemia, breast 
cancer and brain cancers as results of loss of het-
erozygosity of TP53 [65].

Following these examples, great efforts have 
been applied to reveal putative tumor suppressors 
in chromosome deletions through mapping mini-
mal deleted regions to narrow down the candidate 
genes and searching the point mutations or epi-
genetic silencing on the second allele as an evi-
dence of loss of heterozygosity [59]. A long list 
of tumor suppressors, including PTEN on chro-
mosome 10q23 [66], APC on chromosome 5q22 
[54], NF1 on chromosome 17q11 [67], BRCA1 
on chromosome 17q21 [68] and VHL on chro-
mosome 3p25 [69], have been identified.

9.3.2	 �Haploinsufficient Tumor 
Suppressors

Despite the large success of Knudson theory, 
there are two obvious puzzles about chromosome 
deletions in human cancers. First there are no 
verified classic tumor suppressors in many chro-
mosome deletions even after great efforts of 
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searching. And second, chromosome deletions 
generally contain several hundreds genes while 
only one or very few of them have been validated 
as tumor suppressors [24, 25]. These contradic-
tions suggest that classic tumor suppressors con-
sistent with the two-hit hypothesis might not be 
the whole stories. Around 2000, a novel type of 
tumor suppressors, haploinsufficient tumor sup-
pressor, has been proposed. Heterozygous loss of 
function of these genes, such as mutations or 
deletions on only one allele (and the second allele 
is still functioning), would contribute tumor gen-
esis and progression [70, 71]. The new concept of 
haploinsufficiency dramatically expands the can-
didate genes for tumor suppressors, especially in 
chromosome deletion regions.

One of the first identified haploinsufficient 
tumor suppressor is the cyclin-dependent kinase 
inhibitor p27Kip1 [72]. p27kip1, a regulator of 
RB1-E2F pathway, is in chromosome 12p12, a 
region frequently deleted in pediatric acute lym-
phoblastic leukemia. All deletions involved chro-
mosome 12p12 are heterozygous while  neither 
missense nor truncated mutations were detected 
in the retained allele [73, 74]. And expression of 
p27Kip1 was detected in the nuclei of these 
effected cancer cells by immunostaining though 
at a reduced levels [72], suggesting a non-
Knudson mechanism. With a genetically engi-
neered mouse model, Fero et  al. clearly 
demonstrated that p27Kip1 heterozygous loss 
resulted in spontaneous multiple organ tumors at 
a penetrance of 32% in mice. When exposed to 
X-ray irradiation, these mice developed dramati-
cally more tumors than wildtype control mice, 
though fewer than those of p27Kip1 homozygous 
loss. More importantly, all of the tumors from 
p27Kip1+/− mice retained the wildtype allele 
and the expression of p27Kip1 were revealed by 
west blotting [72]. Thus p27Kip1 is a haploinsuf-
ficient tumor suppressor.

Haploinsufficent tumor suppressors may also 
residue in chromosome 7q, the most frequently 
deleted region in AML. Since its mapping by cyto-
genetics, great efforts of decades to identify classic 
tumor suppressors in this region have been in vain. 
By analyzing the big data of cancer genomics and 
in vivo function tests, we showed that the mixed 

lineage leukemia 3 gene, MLL3, was a haploinsuf-
ficient tumor suppressor in chromosome 7q36 
[13]. MLL3 is a member of the MLL protein fam-
ily with a SET domain capable of methylating 
lysine 4 on histone H3 and a core component of 
the COMPASS-like complex regulating transcrip-
tion elongation [75]. MLL3 is one of the most fre-
quently mutated chromatin modifiers in solid 
cancers. But all of these mutations are heterozy-
gous [76, 77]. 7q is the most commonly deleted 
region in AML but so far no loss-of-function muta-
tion of MLL3 (nor other genes) was found in 7q 
loss patients [49]. shRNAs knocking down Mll3, 
together with p53 and Nf1 loss, promoted full 
blown AML genesis, indicating Mlll3 as a tumor 
suppressor. Though these shRNAs could potently 
reduce the expression level of Mll3  in NIH3T3 
cells at 90%, the inhibition of Mll3 expression by 
the same shRNAs in the resulting AML cells were 
only about 50%. Further CRISPR/Cas9-mediated 
genome editing of Mll3 leukemia cells also 
remained one intact wildtype allele. All of these 
evidences demonstrated that Mll3 is a haploinsuf-
ficient tumor suppressor in AML [13]. These 
results are striking given that MLL3 is an epigen-
etic regulator, which affects the expressions of 
many downstream genes but at a moderate level. 
The remaining questions would be how the mod-
erate dosage change of an epigenetic gene would 
transform hematopoietic stem cells and whether 
restoring the expression of MLL3 (two-fold 
increase) in leukemia would be able to restrain the 
progression of the disease.

Interestingly, many of the putative classic 
tumor suppressors also show haploinsufficiency 
in preventing tumorigenesis. One example is 
PTEN, residing in chromosome 10q23 and 
encoding a lipid phosphatase that negatively reg-
ulates PI3K-AKT pathway [78]. It was estimated 
that up to 70% prostate cancer patients carried a 
heterozygous loss of PTEN, generally covered by 
a large deletion of one copy of chromosome 10 
similar to MLL3 in chromosome 7q, while only 
less than 10% of the patients had homozygous 
deletions or mutations at diagnosis [79]. 
Consistent with the human clinic genetics, Pten 
Heterozygosity dramatically increased the rate of 
prostate cancer progression in TRAMP mice 
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[80]. Later, with a Pten hypermorphic mouse 
model whose expression level of Pten was 80% 
of that in wildtype control mice Alimonti et  al. 
reported that even such subtle reduction of Pten 
dosage would promote the development of a wide 
spectrum of cancers [81]. Thus haploinsuffi-
ciency is a general principle for tumorigenesis.

Arguably all potential tumor suppressors in 
chromosome deletions without loss-of-function 
mutations on the second allele may be haploin-
sufficient tumor suppressors, which would strik-
ingly deep our understanding of the molecular 
mechanisms of chromosome deletions in human 
cancers. It is also interesting to test whether these 
haploinsufficient tumor suppressors might be 
valuable therapeutic targets for the cancers with 
the corresponding defects.

9.4	 �The Role of Chromosome 
Deletions as a Whole 
in Carcinogenesis

9.4.1	 �Modeling Chromosome 
Deletions with Genetic 
Engineered Mouse Models

Identifying tumor suppressors in chromosome 
deletions is very important to study the functions 
of chromosome deletions in tumorigenesis. 
However, given the broad effects of chromosome 
deletions with generally several hundreds genes 
and structural abnormalities, none of any single 
tumor suppressor could recapitulate all of the 
phenomena of a chromosome deletion in cancer. 
Thus the full functions of chromosome deletions 
must be studied as a whole. Investigating the bio-
logical roles of chromosome deletions as a whole 
has been significantly delayed due to lack of 
available techniques to precisely model these 
chromosome configurators and confused by the 
results of spontaneous aneuploidies. At odds to 
being a hallmark of cancer, aneuploidy, including 
chromosome loss and large chromosome dele-
tions, has been shown to be detrimental to normal 
cells, specifically yeast cells and mouse embry-
onic fibroblast cells, in some context [82]. It is 
argued that both gene-specific and general non-

gene-specific effects of aneuploidy could inter-
fere cell proliferation through “aneuploidy 
associated stresses”. These experimental obser-
vations seem at odds with the frequent chromo-
some alterations associated with human cancers 
and Boveri’s chromosome theory of carcinogen-
esis [83]. Therefore it is critical to provide direct 
evidences that chromosome deletions are able to 
drive tumorigenesis.

Recent technique advances including sophisti-
cated genetically engineered mouse modeling, 
genome editing and high throughput library 
screening, made it possible to reveal the biologi-
cal consequences of chromosome deletions in 
cancer [14, 84–87]. The first example is chromo-
some 17p deletion [10]. 17p loss is one of the 
most, if not the most, frequently genetical abnor-
malities found in various cancers and associates 
with tumor aggressiveness and poor prognosis 
[88]. Given the well-studied tumor suppressor 
TP53 on chromosome 17p13, it was generally 
assumed that chromosome 17p loss is to loss of 
Heterozygosity of the second allele of TP53, fol-
lowing the classic Knudson theory [63]. However, 
by analyzing the CNV and mutation data of more 
than 4000 human cancers, we found that one 
third of cases with TP53 alterations had heterozy-
gous chromosome 17p loss but didn’t have any 
detectable mutation of TP53 on the other allele 
[10]. Therefore it is very important to investigate 
whether chromosome 17p has more tumor sup-
pression capacity beyond TP53 only. Taking the 
advantage of the high synteny between mouse 
chromosome 11B3 and human chromosome 
17p13, which share the exact same over than 100 
coding genes and noncoding microRNA genes 
even at the same order, we genetically engineered 
a conditional 11B3 knockout mouse model. 
Compared to p53 deleted tumors, heterozygous 
deletion of chromosome 11B3 can promote either 
Myc-driven lymphomagenesis or Nf1; Mll3-
defective leukemogenesis with shorter tumor 
latency and overall survival. Moreover, the result-
ing 11B3-deleted tumor cells are more resistant 
to chemodrug like cyclophosphamide, vincristine 
and methotrexate. Interestingly, many lympho-
mas generated from heterozygous deletion of 
11B3 carry spontaneously missense or frame-
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shift mutations on the wildtype p53 allele, likely 
resulting from the procession of Trp53 loss-of-
heterozygosity. Other 11B3-deleted lymphomas 
keep wildtype Trp53 allele. Together, 11B3 
tumors represent the chromosome 17p deletion 
configurations in human cancers [10]. These 
findings would not only shed light on understand-
ing the molecular mechanisms under which chro-
mosome 17p deletions impact on cancer biology, 
but also provide a platform to develop new thera-
peutic methods.

Chromosome 7q22 is another frequently 
deleted region in AML and so far no classic tumor 
suppressor has been validated in the context of 
AML [89]. To shed light on the sealed function of 
7q22 deletions to Myelodysplastic Syndrome 
(MDS) pathogenesis, Wong et al. generated mice 
with a heterozygous germ line deletion of a 2 Mb 
interval of the murine chromosome band 5A3, 
which removing 13 genes correspondent to a 
commonly deleted segment of human 7q22 [12]. 
The resulting 5A3+/del mice exhibited typical 
characterizations of MDS. The 5A3+/del mouse 
model provided a novel platform for the studies of 
human 7q22 deletion MDS or AML.

These genetically engineered mouse models 
provide clear and direct evidences that chromo-
some deletions as a whole can be drivers of 
tumorigenesis and experimentally prove the 
100-year-old Boveri’s cancer theory. However, 
the big limitation of this strategy is that, though 
99% of human and mouse genes are identical, the 
synteny between human and mouse chromo-
somes are poor [90, 91]. Therefore it is difficult 
to model chromosome large deletions of human 
cancers in mouse models.

9.4.2	 �Modeling Chromosome 
Deletions in Human Cell 
Models

Obviously human cells can be the best model to 
study chromosome alterations in human cancers. 
The efficiency of genome editing made it feasible 
[92]. It is widely known that chromosome 8p loss 
recurrently occurs in human breast cancer 
patients and it is tightly associated with poor 

patient survival. In order to elucidate the role of 
8p loss in tumorigenic transformation, Cai et al. 
made a good use of TALEN-directed genomic 
engineering technology to generate human cellu-
lar models based on an non-malignant MCF10A 
mammary epithelial cell line, which mimicking 
8p loss of heterozygosity and avoiding introduc-
ing other genomic abnormalities [9]. Though the 
entire loss of 8p chromosome showed limited 
tumor transformation capacity alone or cooperat-
ing with other driver genes like MYC, ERBB2 or 
loss of TP53, these cells displayed abnormal fatty 
acid and ceramide metabolism. The shift of fatty 
acid metabolism led to actin filament reorganiza-
tion and further contributed to cell invasiveness. 
Besides, alterations in ceramide metabolism ren-
dered cells increased autophagy capacity and bet-
ter growth ability under hypoxia context. Primary 
human breast cancers with 8p loss deriving from 
clinical patients bear these metabolic changes as 
well. These discoveries suggest that models of 
chromosomal large deletions could be used to 
predict the responsiveness of cancer patients to 
anticancer therapies and could help to improve 
our understandings of human cancer [93].

Taking advantage of induce pluripotent stem 
cells (iPSCs), Papapetrou’s laboratory investi-
gated the biological consequences of chromo-
some 7q loss, the most frequent chromosome 
abnormalities in AML [11, 94]. First they gener-
ated iPS cells from chromosome 7q loss and 
intact cells from the same patients and showed 
that iPS cells with chromosome 7q deletions had 
defects to differentiate into hematopoietic cells 
and had increased apoptosis, similar to those 
observed in MDS patients with chromosome 7q 
deletions. Then using AAV-delivered CRISPR/
Cas9, they generated chromosome 7q deletions 
in normal human iPS cells. These genome edited 
iPS cells also displayed reduced capacity to dif-
ferentiate into CD45+ hematopoietic cells while 
increased percentage of CD34+ (a marker of 
hematopoietic stem and progenitor cells) popula-
tion. These phenotypes are consistent with those 
in chromosome 7q deleted MDS patients [11]. It 
is of interest that spontaneous correction of chro-
mosome 7q by a chromosome 7 trisomy largely 
rescued most of these abnormalities associated 
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with the disease [94]. These studies indicate that 
chromosome 7q deletions as a whole are respon-
sible for the pathology of MDS with chromo-
some 7q loss. The combination of iPS cells and 
genome editing opens a new era to study chromo-
some alterations in human cancers. In principle, 
this strategy could model all kinds of chromo-
some deletions in various types of human cancers 
[95]. A shortcoming is that in patients somatic 
chromosome deletions assumably occur in tissue-
specific stem or progenitor cells while genome 
edited iPS cells are not physiologically related. 
Thus direct genome editing of cell-of-origin of 
human cancers might be more accurate to inves-
tigate the biological functions of chromosome 
abnormalities in the right context.

A new era in preclinical cancer research is 
emerging, in which human-based models are tak-
ing center stage and patient-derived cells are 
increasingly being used as primary discovery 
platforms. In this modern era of basic cancer 
research and precision oncology, iPSCs derived 
from patients with cancer can substantially 
expand the experimental repertoire applicable to 
human cells in ways that were hitherto restricted 
to model organisms. We envision that models for 
at least some cancers can be developed using 
iPSC technologies, and that these will occupy a 
unique place in this new era, bridging primary 
cells with immortalized cell lines by combining 
the physiological relevance of the former with 
the amenability to experimentation of the latter. 
Interdisciplinary collaborations between stem 
cell researchers, cancer researchers, physicians, 
translational scientists, bioengineers and drug 
developers will be paramount to harness the full 
potential of iPSCs as a new tool in this modern 
era of cancer research.

9.4.3	 �The Collaborative Effect 
of Multiple Tumor 
Suppressors in Chromosome 
Deletions

There are accumulating evidences indicating that 
chromosome deletions are powerful drivers for 
carcinogenesis and distinguishable to deficiency 

of single tumor suppressors. A plausible explana-
tion is that there are multiple tumor suppressors 
in a chromosome deletion region and these tumor 
suppressors collaborate to inhibit tumor genesis 
and progress. To dissect these cooperative tumor 
suppressors, shRNA, CRISPR/Cas9 and ORF 
library screening have been successfully per-
formed on several commonly deleted chromo-
some regions. Since chromosome 17p has tumor 
suppression capacity beyond TP53, it was pro-
posed that there were other tumor suppressors 
besides TP53 in this region. To identify potential 
new tumor suppressors in chromosome 17p, Liu 
et al. generated a shRNA library against all of the 
coding genes except p53 and performed a high 
throughput in vivo screening. Multiple candidate 
tumor suppressors, including a cluster of Alox 
genes, were scored. After validating Eif5a and 
Alox15b as tumor suppressors in lymphoma, 
they further showed that simultaneously knock-
ing down Eif5a and p53, or Alox15b and p53 led 
to shorter tumor-free survival of recipient mice 
compared to knocking down any single of these 
genes, indicating the collaboration between Eif5a 
and p53, and Alox15b and p53, respectively [10]. 
Kotini et  al. applied ORF screening to identify 
key players in chromosome 7q with an iPS cell-
blood cell differentiation assay. Multiple candi-
date tumor suppressors were hit and further work 
is needed to validate them in the context of AML 
genesis (Fig. 9.1) [11].

More high throughput library screenings have 
been performed in multiple cancer types. Zender 
et  al. did in  vivo shRNA library screening for 
genes recurrently deleted in human HCC cells in 
a mouse HCC model and identified 12 novel 
tumor suppressors [14]. Further they showed that 
these tumor suppressors from chromosome 8p 
could synergistically restrained HCC growth at 
least in mice [96]. A survey of genes in 82 recur-
rently focal deletions from 3131 tumors, Solimini 
demonstrated that these regions are rich of so 
called STOP genes than GO genes, which nega-
tively and positively regulated cell growth and 
proliferation. They proposed that though major-
ity of these STOP genes were hemizygously 
deleted and each of them had moderate effects on 
tumorigenesis, the cumulative haploinsufficien-
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Fig. 9.1  (a) Knudson “Two-hit” theory of tumorigenesis. (b) “synergy of multiple tumor suppressors” theory on the 
role of chromosome large deletions in human cancers
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cies led to tumorigenesis, which explained the 
driver role of chromosome deletions in human 
cancer [8, 97].

9.5	 �Perspective

It has been over 100  years since Hansemann’s 
initial observations of chromosome abnormali-
ties in cancer and Boveri’s seminal hypothesis of 
chromosome alterations as drivers of cancer. 
Amounting data have documented them as a hall-
mark and association with pathology and progno-
sis of cancer. However, partially due to the 
technical challenges, we just start to understand 
the mechanisms of this critical phenomenon in 
cancer with both conceptual and technic break-
throughs. Solid evidences have provided that 
chromosome deletions are distinguishable and 
powerful drivers of cancers. These critical drivers 
display significant characteristics in terms of 
genetic configurations, biological consequences 
and more important, treatment vulnerabilities 
[98]. For example, passenger deletions of 
ENO1 in chromosome 1p36 give rise to sensitiv-
ity of the mutant GBM cells to ENO2 inhibition 
[99]. Chromosome deletions, together with other 
chromosome abnormalities, might also change 
the expressions of certain immune markers 
through unknown mechanisms, rendering the 
affected cancer cells resistance to immunothera-
pies [100]. Thus further efforts are in need to 
fully understand the biological functions, molec-
ular mechanisms and vulnerabilities for the treat-
ment of the diseases driven by these numerous 
and notorious chromosome abnormalities.
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Abstract
Whereas most endogenous and exogenous 
DNA damaging agents typically generate 
lesions that are relatively isolated and can be 
repaired easily, ionizing radiation (IR) also 
induces clustered lesions causing DNA double 
strand breaks (DSBs). Moreover, forms of IR 
characterized by high linear  energy  transfer 
(LET) induce not only isolated DSBs but also 
DSB clusters – multiple DSBs in close prox-
imity -that pose increased risks for the cell. 
DSB clusters can destabilize chromatin locally 
and compromise processing of individual 
DSBs within the cluster. Since the discovery 
of chromothripsis, a phenomenon whereby 
multiple DSBs locally generated by a cata-
strophic event causes genomic rearrangements 
that feed carcinogenesis, DSB clusters receive 
increased attention also in the field of cancer. 
While formation of DSB clusters after expo-
sure to high LET is a direct and inherent con-
sequence of the spatial distribution of the 
constituting energy deposition events, also 
called track structure, the sources of local 
genomic shattering underpinning chro-
mothripsis are under investigation. Notably, 

many consequences of DSB clusters in the 
affected genome reflect processing by path-
ways that have evolved to repair DSBs, but 
which operate with widely different degrees 
of fidelity. The molecular underpinnings and 
the basis of the underlying repair pathway 
choices that ultimately lead to the observed 
consequences from DSB clusters remain 
unknown. We developed a tractable model of 
DSB clustering that allows direct analysis in 
cells of the consequences of certain configura-
tions of DSB clusters. We outline the rationale 
for the development of this model and describe 
its key characteristics. We summarize results 
suggesting that DSB clusters compromise the 
first-line DSB-processing pathways of 
c-NHEJ and HRR, increasing as a conse-
quence the contribution of alt-EJ, which has 
high propensity of generating chromosomal 
rearrangements. The results suggest a mecha-
nism for the increased toxicity of high LET 
radiation and the extensive genomic rear-
rangements associated with chromothripsis.
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10.1	 �Introduction

Ruptures in the genome in the form of DNA dou-
ble strand breaks (DSBs) and the consequences 
of their erroneous processing are central not only 
to carcinogenesis but also to the toxicity of ion-
izing radiation (IR). This is because although IR 
is an oxidizing agent in a broad sense, it gener-
ates most of its adverse biological consequences 
in a unique way. Specifically, whereas many of 
the ionizing events associated with exposures to 
X-rays or γ-rays are spatially well-separated, a 
proportion of them occurs as clusters of ioniza-
tions that generate clusters of damage when they 
hit the DNA. One such form of clustered DNA 
damage is the DSB, which is generated when two 
single strand breaks are induced in opposite DNA 
strands, but only a few base pairs apart. It is this 
clustering of ionizations and the associated clus-
tering of DNA single strand breaks that combine 
to form a DSB that makes IR a higher risk agent 
than many common oxidizing agents. As we dis-
cuss below, owing to the presence of damages in 
both DNA strands, repair of DSBs cannot rely on 
the complementary strand, as other DNA repair 
pathways do, and resorts therefore to unique 
solutions.

Whereas ionizations by electrons generated 
after absorption of the photons constituting 
X-rays or γ-rays are relatively randomly distrib-
uted in the irradiated space and typically cluster 
only at the ends of electron tracks (Fig. 10.1a, b), 
ionizations produced by heavier charged parti-
cles, such as protons and particularly by even 
heavier nuclei, tend to localize along the particle 
track and to be highly clustered –especially at the 
end of the particle’s range (Fig.  10.1c, d). 
Notably, as the mass and charge of a particle 
increases, the clustering of ionizations along its 
track also increases. This clustering is described 
by the parameter of linear energy transfer (LET) 
that gives the energy imparted by the particle in 
the irradiated medium close to the particle track 
per unit of track-length (Fig.  10.1). Thus, after 
exposure to high LET radiation, a higher propor-
tion of the constituting ionizing events will be 
clustered.

The effects of IR are uniformly described as a 
function of the administered radiation dose, 

which is defined as energy in Joules absorbed per 
Kg of mass and is given in Gray (1Gy = 1 J/Kg). 
One key discovery in the field of radiation biol-
ogy is that the same dose of two radiation modal-
ities  – expected to produce approximately the 
same number of ionizations  – causes dramati-
cally different biological effects (Fig. 10.1e). For 
example deposition of energy to cells from 
α-particles causes orders of magnitude more kill-
ing than deposition of the same energy from 
X-rays (Fig.  10.1e), i.e. the biological effect at 
the same radiation dose, increases dramatically 
with increasing LET of radiation.

This unique and in many ways unprecedented 
increase in effect directly demonstrates that the 
increased clustering of ionizations (Fig.  10.1d) 
that is inherent in high LET IR increases biologi-
cal efficacy. Considering that DNA is the main 
target for IR-induced killing, the inference that 
clustered DNA damage from ionization clusters 
underpins increased biological efficacy is obvi-
ous. Yet, half a century after discovery of these 
effects (Fig. 10.1e), the nature of DNA damage-
clustering and the reasons for the dramatically 
increased severity of biological consequences 
remain poorly characterized. In the following 
chapters, we systematically analyze conse-
quences of damage clustering in the DNA, intro-
duce the concept of DSB complexity and outline 
how certain levels of DSB complexity affect DSB 
repair pathway choice and contribute to the 
observed biological effects.

10.2	 �Forms of DSBs and DSB 
Clusters

While DSBs are often regarded as a single lesion, 
observations such as those discussed above sug-
gest that further classification is required for 
improved understanding of the spectrum and 
magnitude of IR-induced biological effects. To 
facilitate such analyses, we generated a classifi-
cation of events causing DSBs that considers the 
underlying “event complexity”: defined as num-
ber of events underpinning the ultimate breakage 
of the DNA molecule (Fig.  10.2) [102]. In this 
classification, Type 1 (T1) DSBs, the simplest 
form, are those typically generated by restriction 
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endonucleases (RE), including meganucleases 
and the CRISPR/Cas9 system. These families of 
proteins simultaneously disrupt the phosphodies-
ter bonds on both DNA strands to generate 
directly-ligatable blunt or staggered ends without 
chemically modifying DNA constituents. RE are 
frequently used as model reagents to generate 
DSBs in cells and study their biological conse-
quences. Advantage of this approach is that DSBs 
are generated at a defined/known genomic loca-
tion, in a known sequence context. The outcome 
of DSB processing can be analyzed using appro-
priately constructed reporters, or approaches, 
such as those described below [102].

When DSBs are induced by IR instead of RE, 
the alterations generated in the DNA molecule go 
beyond the clean, sequence-defined digestion of 
the phosphodiester backbone. They are random 
and include damaged sugar and base moieties. It 
is known that chemically active DNA end modi-
fications are frequently generated by the extrac-
tion of a hydrogen atom at 4′-C or 5′-C position 
of the sugar moiety and the addition of oxygen 
[91]. The DNA ends thus generated are fre-
quently modified with nucleoside 5′-aldehyde on 
the 5′-terminus; at the 3′-terminus phosphogly-
colate (PG), phosphoglycoaldehyde, formyl 
phosphate, and 3′-keto-2′-deoxynucleotide fre-
quently occur [47, 53]. Such residues are recur-
rently unstable and are eventually converted to a 
hydroxyl (-OH) group with the exception of PG, 
which frequently generates a 3′ phosphoglyco-
late and a 5′-OH (Fig. 10.2). This form of ends 
precludes direct DNA ligation and necessitates 
end-processing for repair [127]. We, therefore 
term this form of more complex DSB Type 2 or, 
T2-DSB. The added level of chemical complex-
ity of a T2-DSB at its ends, necessitates addi-
tional processing and thus more steps in the 
ensuing repair activities.

As mentioned above, DSBs generated by low 
LET IR, such as X-rays or γ-rays, form from 
individual ionization clusters produced at the 
ends of electron tracks [38, 125] rather than by 
the coincidence of independent ionizations on 
opposite DNA strands, hence, the linear induc-
tion of DSBs as a function of IR dose. In Type 3 
(T3) DSBs, complexity increases further by the 
presence of additional lesions in the immediate 

vicinity of the DNA break – such as base dam-
ages or SSBs induced by ionizations in the same 
cluster. After exposure to high LET IR, ioniza-
tion clusters are even more frequent and larger; as 
a result the induction of T3-DSBs will increase. 
Indeed, whereas only about 30% of DSBs are 
expected to contain lesions in addition to the two 
strand breaks after exposure to low energy elec-
trons, this fraction increases up to 70% after 
exposure to α-particles. Also, the ratio of the 
number of SSBs to DSBs decreases from 22.8 for 
60Co γ-rays to 3.4 for 50 MeV 12C-ions [3, 80–
82]. Since increases in the yield of DSBs alone 
cannot explain the increased killing observed 
after exposure to high versus low LET radiation, 
it is frequently hypothesized that increased clus-
tering of damage at the DSB, as in T3-form, is an 
important determinant of the resulting biological 
effect [37].

Type 4 (T4) and 5 (T5) DSBs (Fig. 10.2) com-
prise DNA damaging events from ionization 
clusters that do not break the DNA directly, but 
do so after enzymatic opening of the damaged 
strand to repair a lesion (T4-DSBs), or the chemi-
cal evolution of a non-strand-breaking sugar 
lesion to a DNA strand-breaking entity 
(T5-DSBs). In T5-DSBs, the chemical evolution 
of the sugar lesion is accelerated at temperatures 
above 10  °C.  The importance of this form of 
DSBs in the biological consequences of IR has 
been reviewed earlier [13, 102].

Another form of DSB derives from DNA sin-
gle strand breaks or base damages at the sites of 
replication forks in replication competent cells. 
The initiating lesions can be induced in addition 
to IR by radiomimetic drugs, topoisomerase or 
polymerase inhibitors etc. They can be converted 
to one-ended DSBs during DNA replication, 
which we classify as Type 6 (T6) DSBs (Fig. 10.2).

A further level of DSB complexity, that is 
increasingly considered highly relevant for high 
LET effects, are clusters of DSBs (T7-DSBs), 
where the individual DSBs can in principle 
belong to any of the above defined types. DSB 
clustering as a peculiarity of high LET IR and a 
cause of adverse radiation effects has been 
experimentally considered by several investiga-
tors. Bryant and colleagues [56] observed that 
DSB clustering in higher order chromatin loops 
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affects DSB reparability. Fast repair is measured 
in loops containing a single DSB, but slow repair 
occurs in loops containing multiple DSBs. Small 
DNA fragments presumably originating from 
DSB clusters were detected using pulsed-field 
gel electrophoresis after high LET IR and impli-
cated in the effects observed [65, 99]. Atomic 
force microscopy imaging also shows the induc-
tion of clustered DSBs even when irradiating 
“naked” DNA, and indeed such fragments inhibit 
DNA-PK activity in vitro [87]. Small (<70 bp) 
DNA fragments generated from clustered DSBs 
have also been implicated by Wang et al. [123] in 
the enhanced killing observed after exposure of 
cells to high LET IR and are proposed to act by 
virtue of their inability to accommodate bi-
directional binding of Ku-protein.

Immunofluorescence, super-resolution 
microscopy and transmission electron micros-
copy (TEM) approaches for detecting DSBs after 
high LET exposure further support the formation 
of DSB clusters [67–69, 118]. Indeed, multiple 
DSBs are visualized as ionizing radiation-
induced foci (IRIF) along the tracks of charged 
particles by γ-H2AX, pS1981-ATM or 53BP1 
detection [2, 23, 35, 54, 55]. Foci forming after 
high LET IR are brighter and larger and may 
comprise multiple DSBs [48, 66, 100]. Also, high 
resolution analysis by TEM using gold-labeled 
antibodies against a phosphorylated form of Ku70 
reveals that high-LET irradiation generates clus-
ters with multiple DSBs that can reach, depending 
on local state of chromatin condensation, densi-
ties of ∼500 DSBs per μm3 track volume [67].

The generation of DSB clusters and their con-
tribution to high LET IR-induced cell killing has 
also been the subject of extensive mathematical 
modeling. Holley and Chatterjee considered DSB 
clusters as a particularly consequential form of 
radiation damage and performed Monte Carlo 
simulations for the induction of such clusters in 
chromatin with increasing LET [45]. The calcula-
tions showed an increase in the production of 
DSB clusters with increasing LET according to 
rules that were compatible with the revolution 
period of the DNA about the histone core and the 
periodicity of nucleosomes in a solenoid model of 
chromatin. Ostashevsky et al. [84, 85] considered 

in his model that small DNA fragments are gener-
ated by IR but are unstable and can be lost from 
the chromatin context, thus compromising repair. 
A more specialized induction of DSB clusters 
within chromatin loops, similar to that considered 
by Bryant and Johnston, has been used to develop 
alternative mathematical models by Scholz et al. 
[26, 31, 32], as well as by Friedland et al. [27–30] 
and Cucinotta et al. [89, 90].

It is evident from this outline that DSB clus-
tering and the associated production of small 
DNA fragments have been extensively consid-
ered for describing IR effects, particularly high 
LET IR effects. Notably, all approaches taken 
hitherto to understand the consequences of 
T7-DSBs are indirect and mainly based on math-
ematical modeling. Conversely, experiments doc-
umenting the formation of small DNA fragments 
are rarely accompanied by demonstrations of 
directly linked biological effects.

It is highly relevant to mention at this point 
that the nature of DSB induction by IR precludes 
mechanistic experiments on T7-DSBs using IR 
as inducing agent. This is because in an irradiated 
cell population, each of the irradiated cells sus-
tains DSBs in a stochastic manner at different 
numbers (spread around an average) and severity, 
which are randomly distributed throughout the 
genome. As a result, it is impossible to analyze 
the processing of each type of DSB individually. 
This has been a major handicap in all attempts to 
implicate DSB clusters in the effects of high LET 
IR. We outline below a model developed in our 
laboratory for the generation of DSB-clusters by 
I-SceI endonuclease that overcomes some of 
these limitations and allows the generation of 
results that help our understanding of the under-
lying molecular processes underpinning the 
observed biological effects.

10.3	 �Physiological Processes That 
Require the Generation 
of DSB Clusters

There are physiological process that require or 
are associated with the formation of DSB clus-
ters. Two essential processes, V(D)J recombina-
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tion and class-switch recombination, which are 
required for the maturation of the immune sys-
tem are mediated by the programmed and highly 
regulated induction of clustered DSBs [1, 25].

It has also been reported that the DSBs 
together with the molecular factors involved in 
their repair are critical for neural development, 
and that brain cells frequently display somatic 
genomic variations that might involve DSB inter-
mediates [126]. Multiple recurrent DSB clusters 
have been characterized within gene structures of 
primary neural stem/progenitor cells (NSPCs) by 
unbiased, high-throughput approaches designed 
to identify genomic regions with such DSB clus-
ters [126]. Along those lines, the physiological 
functions of programmed DNA breaks in signal-
induced transcription reveals that indeed DSBs are 
present near transcription start sites (TSSs) in neu-
ral stem and progenitor cells. In addition, recurrent 
DSB clusters are located within long, transcrip-
tionally active, late-replicating genes [93].

Notably, the formation of DSBs by Spo11 
nuclease is a prerequisite for initiation of meiotic 
recombination, which plays an important role in 
genetic diversity [61, 95]. Pulse-field gel electro-
phoresis (PFGE) experiments indicate that mei-
otic recombination associated DSBs occur at 
numerous locations within the genome, and could 
be organized in clusters, separated by about 
50–200 nucleotides [133] with no sequence pref-
erence [19]. Clustering of meiotic DSBs has been 
also shown by experimental analysis of recombi-
nation hot-spots mapping along chromosome 3 
of S. cerevisiae [4].

10.4	 �DSB Cluster Formation 
and Carcinogenesis: 
The Phenomenon 
of Chromothripsis

A phenomenon of relevance to the above discus-
sion that has been the focus of attention since its 
recent discovery is chromothripsis. Indeed, analy-
sis of cancer genomes by next generation sequenc-
ing frequently reveals the presence of massive 
genomic rearrangements, acquired through a sin-
gle catastrophic event affecting a small proportion 

of the genome [96, 114]. There is evidence that 
single chromothriptic events affecting one or few 
chromosomes occur in malignant carcinomas, 
and such events are considered critical for the 
evolution of cancerous phenotype [57, 71]. On the 
basis of its constitution, Type 7 DSBs are a form 
of local chromothripsis, and strikingly chromo-
some shattering is detectable after high-LET radi-
ation exposures [40].

How such massive chromosomal pulveriza-
tion, or chromothripsis events are generated 
remains unknown, but recent models consider 
premature chromosome condensation in cell-
cycle-progression-lagging micronuclei a likely 
cause [17, 135]. Combination of live-cell imag-
ing and single-cell genome sequencing suggests 
that micronuclei formation is a prerequisite for 
generation of the specific spectrum of genomic 
rearrangements, which recapitulate all known 
features of chromothripsis [16, 135]. Importantly, 
these events are found restricted to mis-segregated 
chromosomes and are revealed in just one cell 
division [16].

The above outline summarizes physiological 
and exogenous sources of DSB clustering and 
shows its relevance to normal cell physiology, the 
evolution of cancer, as well as the biological 
effects of high LET IR.  Yet, the underlying 
causes for the risks posed by DSB clusters are not 
immediately obvious. Indeed, one could postu-
late that DSBs within clusters can be repaired 
with the same ease as individual DSBs.

Below, we describe a model system that helps 
to experimentally address consequences of 
defined constellations of DSB clusters in living 
cells and in the processing of constituent DSBs. 
However, before discussing results obtained with 
this model system, it will be useful to outline rel-
evant properties of the repair pathways engaged 
in DSB processing and their contributions to 
genome stability.

10.5	 �DSB Processing Pathways

Three pathways are mainly implicated in the  
processing of DSBs in mammalian cells. 
Homologous recombination repair (HRR),  
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classical non-homologous endjoining (c-NHEJ) 
and alternative end-joining (alt-EJ) [78, 102].

HRR [43, 101] can be divided into three main 
stages: presynaptic, synaptic and postsynaptic 
(Fig.  10.3). After sensing of the DSB by MRN 
complex (Mre11-Rad50-Nbs1) in the presynaptic 
stage, the DNA is resected to form an extended 
region of single stranded DNA (ssDNA) with 
3′-overhangs. This step utilizes amongst other 
proteins MRN, CtIP, Exo1 and Dna2, as well as 
the BLM helicase [115], and generates an RPA 

coated filament that initiates HRR [18]. In the 
next step, RPA is replaced by the Rad51 protein 
to generate a presynaptic nucleoprotein filament. 
For efficient Rad51 filament formation, different 
classes of mediator proteins like the Rad51 para-
logs (Rad51B, Rad51C, Rad51D, Xrcc2, Xrcc3), 
as well as Rad52 and Brca2 are utilized. The pre-
synaptic Rad51 filament is essential for homol-
ogy search and strand invasion [64, 72, 116]. 
During synapsis, the Rad51 nucleoprotein fila-
ment searches for homology in the sister chroma-
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tid and performs strand invasion to form a 
Holliday junctions and to initiate DNA synthesis 
with the help of Rad54 [8, 9, 46, 75, 120, 121]. In 
one version of the postsynaptic stage [12], the 
extended Holliday junction is resolved by 
synthesis-dependent strand annealing (SDSA). 
This enables the annealing of the newly synthe-
sized strand with the resected strand of the sec-
ond DNA end and the restoration of the broken 
DNA molecule by DNA synthesis and ligation. 
Alternatively, a double Holliday junction forms, 
which is subsequently resolved by resolvases [5, 
11, 94].

The templated nature of DSB-repair by HRR 
not only ensures the structural restoration of the 
DNA molecule, but also enables the preservation 
of the DNA sequence at the break. As a result, 
HRR is an, in principle, error-free repair pathway 
on every count. The events initiating HRR imply 
that a wide spectrum of structural DNA-end sub-
strate configurations at the DSB, like variations 
in the overhang length, DNA-end sequence and 
DNA-end chemistry (e.g. 3′ phosphoglycolate or 
5′-OH present in T2 and T3-DSBs) can be 
accommodated. This is because many of the 
altered or missing bases will be removed during 
resection and those present at the non-resected 
3′-ends may be removed by limited resection, or 
remain for processing after completion of 
HRR.  HRR can thus function well for T1-T5 
DSBs. It plays a major part in the processing of 
T6-DSBs that are generated during DNA replica-
tion. On the other hand, HRR is likely to be dis-
rupted by DSB clusters that may cause the loss of 
DNA segments and thus compromise chromatin 
stability at the DSB.

C-NHEJ is widely considered as the prevalent 
DSB repair pathway in higher eukaryotes [50, 58, 
78]. It mediates the fast ligation of broken DNA 
ends to ensure chromosome integrity [62] 
(Fig.  10.3). It is initiated by the binding of the 
Ku70/Ku80 heterodimer to DSB termini, which 
in-turn recruits and activates the large protein 
kinase, DNA-PKcs, to generate a binding scaf-
fold for other NHEJ factors. DNA-PKcs also 
enables the regulation by phosphorylation of par-
ticipating proteins [128]. The process culminates 
with the ligation of the two DNA ends by the 

Ligase 4/Xrcc4/Xlf/PAXX protein complex after 
displacement from the ends of DNA-PKcs 
through autophosphorylation [77, 119]. When 
required, various DNA end-processing functions, 
including the addition of a 5′-phosphate by Pnk 
and the removal of 3′-phosphoglycolates by 
Tdp1, Pnk or Artemis ensure the generation of 
ligatable DNA ends [91]. Filling of occasionally 
missing nucleotides is mediated by DNA poly-
merases λ and μ.

C-NHEJ enzymes tolerate a wide spectrum of 
structural DNA-end substrate configurations. 
These include variations in the overhang length, 
DNA-end sequence and DNA-end chemistry. It, 
thus, can also function as an important integrator 
of DNA ends with different chemistry, such as 
those of DSBs of types T1-T5. The pathway 
gains its speed by the functional coordination of 
the cooperating factors that operate like a highly 
efficient molecular machine, which reduces the 
probability that DNA ends will diffuse away and 
will engage in the formation of chromosomal 
translocations [39, 51, 52, 63]. Yet, c-NHEJ has 
no built-in means to ensure re-joining of the orig-
inal DNA ends and translocations are in principle 
possible, nor does it possess mechanisms to 
ensure restoration of DNA sequence at the DSB 
site. However, it seems, plausible that c-NHEJ 
will be severely compromised by DSB clusters, 
which are likely to impair de-novo buildup of the 
associated molecular machinery.

Alt-EJ is an alternative form of DNA end-
joining [7, 58, 76] thought to function as backup 
to c-NHEJ and HRR – hence its frequent desig-
nation by us as backup or B-NHEJ [50, 51] 
(Fig.  10.3). Although it functions on similar 
principles as c-NHEJ, alt-EJ is slower and less 
efficient and as a result, more error-prone on two 
counts. First, deletions and other modifications at 
the junction are larger than after processing with 
c-NHEJ.  Second, and of particular relevancy 
here, the joining probability of unrelated ends is 
markedly increased. Thus, while the differences 
in the type of errors generated by c-NHEJ and 
alt-EJ are quantitative rather than qualitative, alt-
EJ is considered an important source of chromo-
somal translocations [20, 39, 50–52, 63, 106, 
113, 136].
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Alt-EJ is rather diverse and may even have 
distinct sub-pathways [15, 20, 22, 24, 33, 41, 50, 
51, 130]. Alt-EJ utilizes DNA Ligases I and III 
(Lig1 and Lig3) [34, 88, 106, 107], as well as 
Parp-1 [124] and possibly also Xrcc1 [21] and 
histone H1 [97]. Some aspects of alt-EJ benefit 
from resection at the DNA ends that exposes 
microhomologies facilitating repair and there-
fore, many factors described above for the resec-
tion step of HRR including CtIP and MRN 
complex are also implicated in alt-EJ [20, 76, 86, 
104, 112] (Fig. 10.3).

Like c-NHEJ, alt-EJ is also active throughout 
the cell cycle [49, 70, 108, 131, 132]. However, 
unlike c-NHEJ, alt-EJ shows strong cell cycle 
dependent fluctuations with increased activity in 
G2 [131, 132], reduced in G1 and markedly 
ablated in resting cells [6, 49, 108, 111, 129]. A 
recently identified and highly relevant compo-
nent of alt-EJ is Polθ [10, 73, 74]. Polθ mediates 
DNA end joining of two resected DNA ends with 
3′- tails, harboring small sequence homology. 
The utilization of microhomologies at DSBs and 
the insertion of nucleotides at the joining sites are 
prominent signatures of Polθ activity. Polθ is 
involved in the formation of chromosome trans-
locations and preserves genome integrity by lim-
iting large deletions [130, 134].

By virtue of its molecular makeup, alt-EJ 
could accommodate all forms of DSBs described 
in Fig.  10.2. Indeed alt-EJ is frequently impli-
cated in the processing of DSBs whenever other 
pathways fail to engage – for whatever reason. As 
we will see below, we consider that alt-EJ is par-
ticularly relevant for the processing of T7 –DSBs, 
where other pathways are likely to fail (Fig. 10.3).

10.6	 �DSB Repair Pathway Choice 
in Cells Exposed to High 
LET IR

Considering the cell cycle dependence and fidel-
ity divergence of the DSB repair pathways 
described above and the striking biological effec-

tives of high LET IR outlined in Sects. 10.1 and 
10.2, the question whether DSB repair pathway 
choice manifests LET-dependence becomes cen-
tral. Indeed, some characteristics of DSBs that 
differ between high and low LET IR may force 
the cell to choose the “wrong” pathway causing 
thus its demise. In this regard, it is striking that in 
contrast to the large increase in radiosensitivity 
observed in wild-type cells, the radiosensitivity 
of mutants defective in c-NHEJ is similar after 
exposure to high LET IR and X-rays [44, 60, 79, 
83, 92, 105, 117, 122, 137]. This is illustrated by 
the results shown in Fig. 10.4a, b for the DNA-
PKcs proficient M059  K cells and DNA-PKcs 
deficient M059 J cells after exposure to iron ions 
[109]. Direct conclusion from this observation is 
that lesions contributing to the survival of cells 
exposed to high LET IR are not processed by 
c-NHEJ.

Although cells defective in HRR show a clear 
enhancement in cell killing after exposure to high 
versus low LET IR [44], the effect is consider-
ably smaller than that observed in wild-type cells. 
Thus, although HRR contributes to the process-
ing of high LET IR lesions determining cell sur-
vival, the contribution is smaller than during 
processing of low LET lesions.

Strikingly, the results obtained at the cell sur-
vival level with HRR and c-NHEJ mutants after 
exposure to high LET IR and X-rays are not 
duplicated when repair of DSBs is analyzed 
using various techniques including PFGE 
(Fig.  10.4c, d). Here, active repair of DSBs is 
observed after exposure to high LET IR and 
X-rays, not only in wild-type cells, but also in 
c-NHEJ and HRR deficient mutants [92, 109, 
110]. We conclude that only a subset of high-
LET-IR-induced DSBs contributes to cell lethal-
ity and that this fraction has properties strongly 
compromising c-NHEJ and partly impairing 
HRR. In the following section, we will show that 
forms of T7-DSBs representing DSB clusters ful-
fill the biological-effect requirements of this sub-
set of DNA damage.
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10.7	 �A Model of Defined DSB-
Clusters at Fixed Genomic 
Locations

To study the biological consequences of DSB-
clustering in a conclusive manner, we constructed 
cell lines harboring DNA sequences at which 
single DSBs and DSB clusters of known consti-
tution can be enzymatically generated. We uti-
lized the sequence of the I-SceI meganuclease, 
which we engineered in plasmids at combina-
tions and orientations as shown in Fig. 10.5. In 
addition to constructs harboring a single I-SceI 
site, we generated constructs harboring pairs of 
I-SceI sites locates 100 and 200 bp apart – the lat-
ter to mimic the approximate inter-nucleosomal 
distance. When these I-SceI pairs are placed in 
direct orientation in the construct, compatible 
ends are generated in the apical ends. However, 

by selecting the reverse relative orientation, 
incompatible apical ends are generated upon 
digestion. Finally, we engineered clusters of four 
I-SceI sites at the distances and orientations 
shown in Fig. 10.5.

With these constructs at hand, we generated in 
Chinese hamster cells (CHO) clones, harboring 
multiple copies of each construct in their genomes 
[103]. We wished to generate a system in which, 
similar to IR-exposure, multiple individual 
DSBs, or multiple, defined DSB clusters are 
induced after I-SceI expression, in order to study 
their biological consequences. Each clone har-
bors a known number of integrations at fixed 
genomic locations. We have not yet determined 
the sites of integration of the indicated constructs 
in the selected clones.

To achieve multiple I-SceI-construct integra-
tions in the CHO genome, we utilized the 
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representation of 
constructs containing 
I-SceI recognition 
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clusters comprising DSB 
pairs or quadruplets
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Sleeping-Beauty (SB) transposon system [103]. 
Clones were analyzed by Southern blotting to 
determine the number of integrations. From a 
pool of integration-characterized clones, we 
selected for experiments those shown in 
Table 10.1. In these clones, we studied the conse-
quences of single-DSBs and DSB-clusters at dif-
ferent endpoints. SSBs and base damages, which 
far outnumber DSBs in cells exposed to IR, and 
contribute to cell lethality and translocation-
formation to degrees that cannot be quantitatively 
separated from those of DSBs, are not confound-
ing factors in this model system as they are com-
pletely absent.

Figure 10.6a shows results from colony for-
mation assay when cells are plated immediately 
after transfection for transient I-SceI expression 
to generate the corresponding DSB-clusters in 
the indicated clones. Single-DSBs and DSB-
pairs separated by 100 bps cause relatively low 
cell killing (~30%), suggesting low efficacy in 
generating lethal events. Generation of DSB pairs 
with compatible apical ends separated by 200 bps 
causes more cell killing (~40%). Notably, a sig-
nificant increase in cell killing (to 70%) is 
observed with a comparable number of DSB-
pairs in the clone where incompatible apical ends 
are generated. Strikingly, DSB quadruplets with 
incompatible ends kill over 90% of cells. This 
result becomes even more impressive if one con-

siders that transfection efficiency is about 90%. 
Thus, the vast majority of cells harboring I-SceI-
quadruplets and sustaining, therefore, DSB clus-
ters of this complexity, succumb to this form of 
DNA damage.

Analysis of DSB recognition by the cellular 
DNA damage response system shows that single 
DSB and DSB clusters of the type shown here are 
detected as single events and form single γ-H2AX 
or MDC1 foci [103]. We assessed formation of 
chromosome translocations at metaphase, 
12–24  h after I-SceI expression. Figure  10.6b 
shows representative metaphases from these 
clones and demonstrates extensive formation of 
translocations at numbers and complexities that 
increase with increasing DSB-clustering. While 
low levels of chromosomal translocations are 
detected in the clones harboring 8 integrations of 
single I-SceI sites or I-SceI pairs separated by 
100  bps, a statistically significant increase is 
noted in the clone harboring 12 I-SceI pairs with 
compatible apical ends (Fig.  10.4c). Further 
increase is noted when 14 DSB pairs with incom-
patible ends are generated. Notably, the highest 
incidence of chromosomal translocations is 
found in the clone harboring 12 DSB-quadruplets 
(Fig. 10.4c). We conclude that DSB-clusters kill 
cells by destabilizing chromatin thus generating 
gross genomic rearrangements, frequently mani-
festing as chromosomal translocations.

Inhibition of c-NHEJ with NU7441 (a selec-
tive DNA-PK inhibitor) allows estimates of the 
contributions of c-NHEJ and alt-EJ to transloca-
tion formation. Figure  10.6d shows the relative 
change in translocation formation following 
incubation of each clone with NU7441. This 
number is obtained by dividing the incidence of 
translocations measured in cells treated with the 
inhibitor by the number of translocations mea-
sured in untreated controls. Treatment of WT 
cells with NU7441 causes an increase in translo-
cation formation by over a factor of two. An 
increase in translocation formation by about 50% 
is observed with the clone harboring DSB pairs 
engineered 100  bps apart. Also, treatment of 
clones harboring pairs of DSBs in compatible or 
incompatible orientation causes an over two-fold 

Table 10.1  List of clonal cell lines used to characterize 
the biological effects of DSB clusters.

Name Properties
CHO-1xS.
D8

CHO cells with 8 integrations of single 
I-SceI site

CHO-2xS.
Ds8

CHO cells with 8 integrations of I-SceI 
pairs at 10bp distance in direct 
orientation

CHO-2xS.
D12

CHO cells with 12 integrations of I-SceI 
pairs at 200bp distance in direct 
orientation

CHO.2xS.
R14

CHO cells with 14 integrations of I-SceI 
pairs at 200bp distance in reverse 
orientation

CHO.4xS.
R12

CHO cells with 12 integrations of I-SceI 
quadruplets at 200, 62, 200bp distance in 
orientation resulting in incompatible 
apical ends
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increase in translocation formation. We conclude 
that c-NHEJ operates on these forms of DSBs 
and contributes to the suppression of transloca-
tions. Pharmacological inhibition of c-NHEJ 
impairs this processing and shunts DSBs to alt-
EJ causing the translocations observed. 
Strikingly, treatment of cells harboring DSB-
quadruplets with NU7441 has only a minor effect 
on translocation formation suggesting that with 
increasing DSB-clustering the engagement of 
c-NHEJ is inherently compromised and lesions 
are shunted by default to alt-EJ.  As a conse-
quence, pharmacological c-NHEJ inhibition by 
NU7441 generates only a minor effect.

This conclusion is further supported by the 
results obtained by inhibiting Parp1, a compo-

nent of alt-EJ (Fig. 10.6c). Indeed treatment with 
the Parp1 inhibitor PJ34 has no effect, or has only 
a small effect on translocations forming from 
single-DSBs and DSB-pairs located 100  bps 
apart. A stronger PJ34 effect is noted for DSB 
pairs located 200 bps apart either when they pres-
ent in direct or in inverse orientation. Notably, 
PJ34 has a strong inhibitory effect on transloca-
tions forming in cells harboring DSB-quadruplets 
(Fig. 10.6c). We, therefore, conclude that in the 
case of single-DSBs and DSB-pairs, c-NHEJ 
protects cells from chromosome translocation-
formation and that its inhibition causes alt-EJ-
mediated increase in translocations. In contrast, 
c-NHEJ is inherently compromised in the case of 
DSB-quadruples, which are constitutively pro-
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Fig. 10.6  Processing of single DSBs and DSBs clusters 
in CHO cells. (a) Survival experiments of CHO-cells har-
boring different numbers of I-SceI recognition sequences, 
designed to produce after I-SceI expression single DSBs 
or DSB clusters with increased complexity. (b) 
Representative images of chromosomal aberration forma-

tion in CHO-I-SceI clones as indicated. (c) Quantification 
analysis of chromosomal translocations in CHO-I-SceI 
clones in the presense or absense of PARP1 inhibitor (PJ-
34). (d) Relative increased in chromosomal translocations 
after inhibition of c-NHEJ by the DNAPKcs inhibitor 
NU7441
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cessed by alt-EJ giving rise with high probability 
to chromosomal translocations.

10.8	 �Summary and Conclusions

The above outline provides strong evidence that 
clusters of DSBs pose increased risks for cells 
and may have adverse consequences that go 
beyond those of individual DSBs. This can be 
particularly relevant for cells exposed to high 
LET IR, but may also occur during chromothrip-
sis and in all cases where physiological processes 
involving the generation of DSB clusters some-
how fail. The precise mechanisms underpinning 
these effects are not well understood.

Results obtained using defined clusters of 
I-SceI generated DSBs show that DSB clusters 
compromise c-NHEJ, allowing thus alt-EJ to pro-
mote chromosome translocation formation that is 
known to be lethal or carcinogenic. While both 
c-NHEJ and alt-EJ are candidates for the forma-
tion of chromosomal translocations, alt-EJ may 
contribute more prominently, although the actual 
contribution may depend on cell type, cell-cycle-
phase and DSB-location [36, 50, 113].

Requirement for translocation-formation is 
that the ends of the participating DSBs drift apart 
and join with ends from neighboring DSBs also 
experiencing processing complications [14, 42, 
59, 98]. It is evident that the chromatin destabili-
zation caused by DSB clusters can perfectly 
facilitate such drifting. We envision similar 
mechanisms for the genomic alterations that 
underpin chromothripsis.

Our observations explain the enhanced 
adverse effects of forms of radiation such as 
radon and space radiation, and define DSB-
clustering as a determinant of radiation-induced 
cell killing and possibly also carcinogenesis. The 
results suggest a mechanism for the increased 
toxicity of high LET radiations and the extensive 
genomic rearrangements associated with 
chromothripsis.
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