
Chapter 8
Uncertainty Analysis of Hydrologic
Forecasts Based on Copulas

8.1 Introduction

Hydrologic forecasting is a crucial non-structural flood mitigation measure and
provides an essential basis for flood warning, flood control and reservoir operation
(Guo et al. 2004; Calvo and Savi 2009; Chen et al. 2014a; Zhang et al. 2015; Fan
et al. 2016; Liu et al. 2017; Wu et al. 2017). Forecasting models that are widely
used at present are typically deterministic, and model outputs are provided to users
in the form of deterministic values (Chen and Yu 2007; Coccia and Todini 2011;
Ma et al. 2013; Bergstrand et al. 2014; Li et al. 2014). However, a hydrological
forecasting model is only a simulation of the real hydrological processes and is
therefore imperfect and not precise (Ravines et al. 2008; Wetterhall et al. 2013).
These models accept hydrological input, meteorological input, etc., and utilize
conceptualized model parameters; and these complex factors cause inevitably
uncertainties in the hydrologic forecasts (Freer et al. 1996; Montanari 2007;
Montanari and Grossi 2008; Renard et al. 2010; Chen et al. 2014b). The principle of
rational decision-making under uncertainty indicates that when a deterministic
forecast turns out to be wrong, the consequences will probably be worse than a
situation where no forecast is available (Krzysztofowicz 1999; Wetterhall et al.
2013; Ramos et al. 2013). A rational decision maker who wants to make optimal
decisions should therefore take forecast uncertainty explicitly into account
(Verkade and Werner 2011; Ramos et al. 2013). Therefore, quantitative assessment
of inherent uncertainty is a critical issue. Hydrologic forecasting services are
trending toward providing users with probabilistic forecasts, in place of traditional
deterministic forecasts.

The transition from a deterministic forecast to a probabilistic forecast is based on
quantification of the uncertainty inherent in the deterministic forecast. The Bayesian
Forecasting System (BFS) proposed by Krzysztofowicz (1999) provides a general
framework to produce probabilistic forecasts via any deterministic hydrological
model. Various probabilistic forecasting systems suited to different purposes have
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been developed within this framework (Reggiani and Weerts 2008; Calvo and Savi
2009; Biondi et al. 2010; Weerts et al. 2011; Sikorska et al. 2012; Pokhrel et al.
2013).

In the BFS, the total uncertainty is decomposed into input uncertainty and
hydrological uncertainty. The hydrological uncertainty processor (HUP) is a
component of the BFS that quantifies the hydrological uncertainty and produces
probabilistic forecast under the hypothesis that there is no input uncertainty
(Krzysztofowicz and Kelly 2000). Through Bayes’ theorem, the HUP combines a
prior distribution, which describes the natural uncertainty about the realization of a
hydrologic process, with a likelihood function which quantifies the uncertainty in
model forecasts, and outputs a posterior distribution, conditional upon the deter-
ministic forecasts. This posterior distribution provides a complete characterization
of uncertainty, including quantiles, prediction intervals and probabilities of
exceedance for specified thresholds which are needed by rational decision makers
and information providers who want to extract forecast products for their
customers.

The HUP can be implemented in many ways, as different mathematical models
for prior distribution and likelihood function can be developed. Krzysztofowicz and
Kelly (2000) introduced a meta-Gaussian HUP, which was developed by con-
verting both original observations and model forecasts into a Gaussian space by
using the Normal Quantile Transform (NQT). This meta-Gaussian HUP has been
widely used by many researchers in the fields of hydrology and meteorology (Chen
and Yu 2007; Biondi et al. 2010; Biondi and De Luca 2013; Chen et al. 2013a).

The prior density and likelihood function are conditional probability distribu-
tions. It is well known that copula function has an outstanding capability to model
joint distributions and gives flexibility in choosing an arbitrary marginal distribution
(e.g. non-Gaussian form), nonlinear and heteroscedastic dependence structure. The
conditional probability distribution can be expressed in the explicit form using
copula function (Favre et al. 2004; Nelsen 2006; Zhang and Singh 2006, 2007a, b,
c; Genest and Favre 2007; Bárdossy and Li 2008; Chen et al. 2010; Zhang et al.
2011, 2012). These advantageous characteristics of the copula function motivate us
to develop the prior distribution and likelihood function models in the original
space directly without a data transformation procedure into Gaussian space. Liu
et al. (2017) proposed a post-processor based on copula function for deterministic
forecast model to produce probabilistic forecasts within the general framework of
the HUP.

Despite the tremendous amount of resources invested in developing more
hydrologic models, no one can convincingly claim that any particular model in
existence today is superior to other models for all type of applications and under all
conditions (Wu et al. 2015; Liu et al. 2016; Ba et al. 2017). Different models are
capable of capturing different aspects of the hydrologic processes. The uncertainty
of each model arises from parameters calibration, the design of the model structure,
and input measurements, which partially brings underlying imprecise influence
(Götzinger and 2008; Li et al. 2011; Hemri et al. 2015). One of the primary
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techniques to reflect different uncertainties in hydrological forecasts is to create an
ensemble of forecast trajectories (Seo et al. 2006; Madadgar et al. 2014).

The Bayesian Model Average (BMA) method introduced by Raftery et al.
(2005) follows a statistical technique to combine the advantages of different
models. Different from other multi-model methods, the BMA method presents a
more realistic description of predictive uncertainty, since the BMA predictive
variance can be decomposed into two components: between-model variability and
within–model variability (Ajami et al. 2007). The BMA method is a statistical
procedure that infers consensus predictions by weighing individual predictions
based on their probabilistic likelihood measures, with the better performing pre-
dictions receiving higher weights than, the worse performing ones. The method has
been explored to improve both the accuracy and reliability of streamflow predic-
tions (Vrugt and Robinson 2007; Liang et al. 2011). Duan et al. (2007) concluded
that the combination of multi-model ensemble strategies using the BMA framework
could quantify statements on prediction uncertainty and significantly improve
verification performances. Zhou et al. (2016) compared the mean prediction of
BMA with its individual parameter transfer method (physical similarity approach)
and demonstrated that the probabilistic predictions of BMA could reduce the
uncertainty with a significant degree. Nevertheless, the standard BMA method
imposes lots of pseudo variation requirements, and this influences precise under-
standing of data variations, which gives rise to further development of this theo-
retical research (Madadgar and Moradkhani 2014).

Klein et al. (2016) used a mixture of marginal density distribution to estimate the
predictive uncertainty of hydrologic multi-model ensembles by using pair-copula
construction. Similar researches show that copula technique is an effective tool for
reflecting the unclear and complex relationships because it can flexibly choose the
arbitrary type of the marginal distributions instead of Gaussian distribution (Carreau
and Bouvier 2016; Khajehei and Moradkhani 2017). According to the promising
results of using copula functions in post-processing of hydrologic forecasts,
Madadgar and Moradkhani (2014) firstly integrated copula functions with BMA to
estimate the posterior distribution and found that Copula-BMA (CBMA) is an
effective post-processor to relax any assumption on the distribution of conditional
probability density function (PDF). The CBMA not only displayed better deter-
ministic skill than BMA but also confirmed the impact of posterior distribution in
calculating the weights of individual models by EM algorithm. Results indicated
that the predictive distributions are more accurate and reliable. It is also shown that
the post-processed forecasts have better correlation with observation after CBMA
application. The CBMA method in the meteorological application does not need to
assume the shape of the posterior distribution and leaves out the data-transformation
procedure and demonstrates that predictive distributions are less bias and more
confident with small uncertainty (Möller et al. 2013). Inspired by the ideas of
Madadgar and Moradkhani (2014), a general framework of the combination of
copula Bayesian processor with BMA (CBP-BMA) is proposed by He et al. (2018).
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8.2 Hydrologic Uncertainty Processor Based on Copula
Function

8.2.1 Hydrologic Uncertainty Processor

Let predict and H be the observed discharge whose realization h is being forecasted.
Let estimator S be the output discharge generated by a corresponding deterministic
forecast model whose realization s constitutes a point estimate of H. Let random
variable H0 represent the observed discharge at the time n = 0 when the forecast is
prepared; then Hn (n = 1, 2, …, N) is the observed discharge at lead time n; and Sn
(n = 1, 2, …, N) is the corresponding deterministic forecast discharge at lead time
n. What the rational decision maker then needs is not a single number sn, but the
distribution function of predictand Hn, conditional on H0 = h0 and Sn = sn. The
purpose of the HUP is to supply such a conditional distribution function through
Bayesian revision (Liu et al. 2017).

The Bayesian procedure for information revision of uncertainty involves two
steps. First, the expected conditional density function of deterministic forecast
discharge Sn given that H0 = h0 is derived via the total probability law:

jnðsnjh0Þ ¼
Zþ1

�1
fnðsnjh0; hnÞ � gðhnjh0Þdhn ð8:1Þ

Second, the posterior density function of predictand Hn conditional on a deter-
ministic forecast Sn = sn and observed discharge at the forecasting time H0 = h0, is
derived via Bayes’ theorem (Krzysztofowicz and Kelly 2000):

/nðhnjh0; snÞ ¼
fnðsnjh0; hnÞ � gnðhnjh0Þ

jnðsnjh0Þ ð8:2Þ

In concept, Bayes’ theorem revises the prior density function gn(hn/h0), which
characterizes the prior uncertainty about Hn, given observed discharge at the
forecasting time H0 = h0 The extent of the revision is determined by the likelihood
function fn(sn/h0, hn), which characterizes the degree to which Sn = sn reduces the
uncertainty about Hn. The result of this revision is the posterior density function
Un(hn/h0, sn), which quantifies the uncertainty about Hn that remains after the
deterministic forecast model generates forecast Sn = sn.

8.2.2 Meta-Gaussian HUP

As we can see from Eq. 8.2, the posterior density depends on the prior density
function and likelihood function. The most widely used technique to describe the
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prior density and likelihood functions is the meta Gaussian model. In this model,
the NQT method (Bogner et al. 2012) is applied to convert both actual flow Hn and
predicted flow Sn into the Gaussian space. Then the transformed {hn/h0} and {sn/h0,
hn} are assumed to be linear and normally distributed. Subsequently, linear
regression method is then employed to determine the posterior density of Hn in the
transformed Gaussian space, from which the posterior density function of Hn in the
original space can be found. For the sake of the following comparison, the detailed
procedure is presented as follows (Krzysztofowicz and Kelly 2000).

8.2.2.1 Normal Quantile Transform

Specifying and determining marginal distributions of the actual flow H0, Hn and
predicted flow {Sn: n = 1, …, N} is the first step. The actual flows {Hn: n = 0, 1,
…, N} are considered as random variables. Given only such a record, there is
usually no basis for assigning a probability distribution to flow Hn that differs from
the distribution assigned to flow H0, for any n = 1, 2, …, N within a few days. In
other words, there is no a statistical difference between these 1 + N flow series
(Koutsoyiannis and Montanari 2015). Therefore, we hold the opinion that the
variables Hn follow the same marginal cumulative distribution functions
(CDF) with H0, and thus only the CDF of H0 needed to be fitted. The predicted
flows {Sn: n = 1, …, N} are considered as different random variables and different
CDFs needed to be fitted for variable Sn.

Let C and Kn be the CDF of H0 and Sn with corresponding densities c and �kn,
respectively. The NQT of a variate is defined as a composition of the inverse of the
standard normal distribution Q, and the CDF of the variate is assumed to be strictly
increasing. The transformed variates are

Wn ¼ Q�1½CðHnÞ�; n ¼ 0; 1; . . .;N ð8:3Þ

Xn ¼ Q�1½KnðSnÞ�; n ¼ 0; 1; . . .;N ð8:4Þ

where Wn and Xn are the normal quantiles of Hn and Sn, respectively. Q
−1 is the

inverse function of Q.

8.2.2.2 Modeling in the Transformed Space

(1) Prior density

The model for the prior density rests on the assumption that the actual river
discharge process in the transformed space is governed by the normal-linear
equation
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Wn ¼ cWn�1 þN ð8:5Þ

where c is a parameter and N is a variate stochastically independent of Wn−1 and
normally distributed with mean zero and variance 1 − c2. Consequently, the con-
ditional mean and variance are

EðWnjWn�1 ¼ wn�1Þ ¼ cwn�1 ð8:6Þ

VarðWnjWn�1 ¼ wn�1Þ ¼ 1� c2 ð8:7Þ

The prior density for lead time n takes the form

gQnðwnjw0Þ ¼ 1

ð1� c2nÞ1=2
� q wn � cnw0

ð1� c2nÞ1=2
" #

ð8:8Þ

where q denotes the standard normal density and subscript Qn denotes a density in
the space of transformed variants.

(2) Likelihood function

The model for the likelihood function rests on the assumption that the stochastic
dependence between the transformed variate is governed by the normal-linear
equation

Xn ¼ anWn þ dnW0 þ bnHn ð8:9Þ

where an; bn and dn are parameters andHn is a stochastically independent variate of
ðWn;W0Þ and normally distributed with mean zero and variance d2n. Consequently,
the conditional mean and variance are

EðXnjWn ¼ wn;W0 ¼ w0Þ ¼ anwn þ dnw0 þ bn ð8:10Þ

VarðXnjWn ¼ wn;W0 ¼ w0Þ ¼ d2n ð8:11Þ

The conditional density function is

fQnðxnjwn;w0Þ ¼ 1
dn

� q xn � anwn � dnw0 � bn
dn

� �
ð8:12Þ

(3) Posterior density

The posterior density derived from the prior density and likelihood function takes
the form as follows
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uQn
ðwnjxn;w0Þ ¼ 1

Tn
q

wn � Anxn � Dnw0 � Bn

Tn

� �
ð8:13Þ

In which An ¼ ant2n
a2nt

2
n þ d2n

;Bn ¼ �anbnt2n
a2nt

2
n þ d2n

, Dn ¼ cnd
2
n � andnt2n
a2nt

2
n þ d2n

, T2
n ¼ t2nd

2
n

a2nt
2
n þ d2n

,

and t2n ¼ 1� c2n.

8.2.2.3 Posterior Density and Distribution in the Original Space

With all densities in the transformed space belonging to the Gaussian family, all
densities in the original space belong to the meta-Gaussian family. The
meta-Gaussian posterior density of actual river discharge conditional on model
output discharge S0 = s0 and observed river discharge H0 = h0 takes the form

/nðhnjsn; h0Þ ¼
cðhnÞ

Tn � q Q�1½CðhnÞ�f g

� q Q�1½CðhnÞ� � An � Q�1½KnðsnÞ� � Dn � Q�1½Cðh0Þ� � Bn

Tn

� �
ð8:14Þ

The corresponding meta-Gaussian posterior distribution takes the form

Unðhnjsn; h0Þ ¼ Q
Q�1½CðhnÞ� � An � Q�1½KnðsnÞ� � Dn � Q�1½Cðh0Þ� � Bn

Tn

� �
ð8:15Þ

8.2.3 Copula-Based HUP

Copula function is an effective tool used to develop prior distribution and likelihood
function models, in which the predictand and the deterministic forecasts are allowed
to have distribution functions of any form, along with nonlinear and heteroscedastic
dependence structure. Therefore, it can be implemented in the original space
directly without a data transformation procedure into Gaussian space. The copula
function and theory have been introduced in detail in Chap. 2.

8.2.3.1 Prior Density

The prior CDF of Hn given H0 = h0 can be expressed as
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Gnðhnjh0Þ ¼ PðHn � hnjH0 ¼ h0Þ ð8:16Þ

where Gn(hn/h0) is the conditional CDF, and P is the non-exceedance probability.
The prior density function gn(hn/h0) is the corresponding probability density

function (PDF) of gn(hn/h0) and can be defined as

gnðhnjh0Þ ¼ dGnðhnjh0Þ
dhn

ð8:17Þ

Let H0 and Hn be random variables with marginal CDFs, U1 = FH(H0) and
U2 = FH(Hn). Then, U1 and U2 are uniformly distributed random variables; and u1
denotes a specific value of U1, and u2 denotes a specific value of U2.

Using the copula function, the joint CDF is expressed by
Gnðhn; h0Þ ¼ CðFHðh0Þ;FHðhnÞÞ ¼ Cðu1; u2Þ

The conditional CDF Gn(hn/h0) and PDF gn(hn/h0) can be rewritten as follows
(Zhang and Singh 2006)

Gnðhnjh0Þ ¼ PðU2 � u2jU1 ¼ u1Þ ¼ @Cðu1; u2Þ
@u1

ð8:18Þ

gnðhnjh0Þ ¼ @2Cðu1; u2Þ
@u1@u2

� du2
@hn

¼ cðu1; u2Þ � fHðhnÞ ð8:19Þ

where cðu1; u2Þ is the density function of Cðu1; u2Þ, and
cðu1; u2Þ ¼ @2Cðu1; u2Þ=@u1@u2; fHðhnÞ is the PDF of Hn. Equation 8.19 is the
expression of the prior PDF.

8.2.3.2 Likelihood Function

It is considered that Sn is a random variable with marginal CDF u3 ¼ FSnðsnÞ and
PDF fSnðsnÞ. The conditional CDF of Sn given H0 = h0 and Hn = hn can be
expressed as

Fnðsnjh0; hnÞ ¼ PðSn � snjH0 ¼ h0;Hn ¼ hnÞ ð8:20Þ

where Fnðsnjh0; hnÞ is the conditional CDF.
The corresponding PDF of Fnðsnjh0; hnÞ is defined as

fnðsnjh0; hnÞ ¼ dFnðsnjh0; hnÞ
dsn

ð8:21Þ

Using the copula function, the joint CDFs of H0, Hn and Sn, denoted as
Fn(h0, hn, sn) can be expressed as Fk h0; hn; snð Þ ¼ CðFH0ðh0Þ;FHnðhnÞ;FSnðsnÞÞ ¼
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Cðu1; u2; u3Þ. Thus, the conditional CDF Fn snjh0; hnð Þ and PDF fn snjh0; hnð Þ are
rewritten as follows, (Zhang and Singh 2007c)

Fn snjh0; hnð Þ ¼ PðU3 � u3jU1 ¼ u1;U2 ¼ u2Þ ¼ @2Cðu1; u2; u3Þ=@u1@u2
cðu1; u2Þ ð8:22Þ

fn snjh0; hnð Þ ¼ 1
cðu1; u2Þ �

@3Cðu1; u2; u3Þ
@u1@u2@u3

� du3
dsn

¼ cðu1; u2; u3Þ
cðu1; u2Þ � fSnðsnÞ ð8:23Þ

where cðu1; u2; u3Þ ¼ @3Cðu1; u2; u3Þ=@u1@u2@u3 is the density function of C(u1,
u2, u3). From another point of view, given H0 = h0 and S0 = s0, the likelihood
function of Hn can be calculated by Eq. 8.23.

8.2.3.3 Posterior Density

Substitute Eqs. 8.19 and 8.23 to Eqs. 8.1 and 8.2, then the posterior density
function of Hn can be rewritten as follows

/nðhnjh0; snÞ ¼
cðu1; u2; u3ÞR 1

0 cðu1; u2; u3Þdu2
� fHðhnÞ ð8:24Þ

For fixed realizations H0 ¼ h0 and Sn ¼ sn; u1 and u3 are constants, while u2
varies from 0 to 1. Since the denominator

R 1
0 cðu1; u2; u3Þdu2 cannot be obtained

directly by an analytic method, the Monte Carlo sampling technique (Yu et al.
2014; Xiong et al. 2014) is applied by following steps: (1) Generate M random
numbers u2 from uniform distribution U(0, 1); (2) Compute the value of C(u1, u2,
u3); (3) The mean value of the M calculated C(u1, u2, u3) equals to the definite

integral
R 1
0 cðu1; u2; u3Þdu2 approximately (Robert and Casella 2013; Kroese et al.

2013). Subsequently, the posterior density function /nðhnjh0; snÞ can also be
estimated.

8.2.3.4 Candidate Marginal Distributions and Trivariate Copulas

The main purpose of this study aims to extrapolate the extreme events far beyond
the observations. The probability distribution of daily flows refers to the flow
duration curve, which gives a summary of flow variability at a site and is interpreted
as a relationship between any discharge value and the percentage of time that this
discharge is equaled or exceeded during a given period (Vogel and Fennessey 1994;
Castellarin et al. 2004; Shao et al. 2009). Flow-duration curve has been widely used
by engineers and hydrologists around the world in numerous applications, such as
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hydropower generation, inflow forecasting, and designing of irrigation systems
(Vogel and Fennessey 1995; Yokoo and Sivapalan 2011; Gottschalk et al. 2013).

Even though flow-duration curve can be defined and constructed for different
time scales, such as daily, weekly or monthly stream flows, our study will focus on
a daily flow-duration curve. If the daily streamflow is assumed to be a random
variable, the flow-duration curve may also be viewed as the complement of the
cumulative distribution function used in hydrologic frequency analysis when
identifying the percentage of time with probability (Castellarin et al. 2004). As a
consequence, the flow-duration curve is also a very practical tool used to describe
hydrological regimes and represents the relationship between magnitude and fre-
quency of flow (Vogel and Fennessey 1995; Liucci et al. 2014; Xiong et al. 2015).

Six commonly used distributions in hydrology, namely Normal, GMA, Gumbel,
P-III, Log-Normal and Log-Weibull, are selected as candidate models for H0 and Sn
(n = 1, …, N). These univariate probability distributions are summarized in
Table 1.1 of Chap. 1. L-moment method is used to estimate the distribution
parameters for given data series (Hosking 1990). The Kolmogorov-Smirnov
statistic D is used to measure the goodness of fit between the hypothesized distri-
bution and the empirical distribution (Tsai et al. 2001; Arya et al. 2010). In this
study, the 95% confidence level is selected to reject or accept a fitted distribution.
The probability distribution which provides the minimum D value is chosen as the
best fitting distribution.

To estimate of the posterior density functions expressed in Eq. 8.24,
three-dimension joint distributions of H0, Hn and Sn are needed to be constructed.
The symmetric copulas are not considered because the dependence among the three
variables pairs (H0, Hn), (H0, Sn) and (Hn, Sn) are not the same, which will be tested
against data for the case study. Hence, we use three widely used asymmetric
trivariate Archimedean copulas, namely Gumbel-Hougaard, Frank and Clayton as
candidates. These three trivariate Archimedean copulas are described in Table 2.2
of Chap. 2. Dependence parameters of the trivariate copula functions are estimated
using the maximum pseudo-likelihood method (Zhang and Singh 2007b, c; Chen
et al. 2010). The RMSE is used to measure the goodness of fit of the copula
distribution (Zhang and Singh 2007a). The copula which has the smallest RMSE
value is preferred.

8.2.4 Evaluation Criteria

8.2.4.1 Performances of Deterministic Forecasts

Two widely applied criteria, namely Nash-Sutcliffe efficiency (NSE) and Relative
Error (RE) are adopted to evaluate the performance of the deterministic forecast
model (Xiong and Guo 1999; Liu et al. 2016).
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(1) Nash-Sutcliffe efficiency

The first criterion is the Nash-Sutcliffe efficiency (NSE) coefficient (Nash and
Sutcliffe 1970) which is defined by

NSE ¼ 1�
PT

t¼1 ðht � stÞ2PT
t¼1 ðht � �hÞ2

" #
� 100% ð8:25Þ

where t is the time step, T is the total number of time steps; ht and st are the
simulated and observed discharges at time t, and �h is the mean value of the observed
discharge. Nash-Sutcliffe efficiency can range from −∞ to 1. An efficiency of 1
(NSE = 1) corresponds to a perfect match of simulated discharge to the observed
data. An efficiency of 0 (NSE = 0) indicates that the model predictions are as
accurate as the mean of the observed data, whereas an efficiency less than zero
(NSE < 0) occurs when the observed mean is a better predictor than the model.
Essentially, the closer the model efficiency is to 1, the more accurate the model is.

(2) Relative error

The second criterion used is the relative error (RE) of the total runoff amount fit
between the observed and simulated discharge series, defined as (Xiong and Guo
1999)

RE ¼ 1�
PT

t¼1 ðht � stÞPT
t¼1 ht

" #
� 100% ð8:26Þ

RE represents a systematic error of water balance simulation. A value of RE
closes to zero indicates a good agreement between observed and simulated runoff
volume. In this study, we rank NSE as the primary criterion, while RE is an
auxiliary criterion. Only when simulated discharge series yield the same (higher)
NSE value, the one with the smaller RE value is preferred. Otherwise, the simu-
lation with smaller RE value does not reveal any superiority (Liu et al. 2016). For
instance, the model with all simulated discharges equal to the mean of observed
values can easily provide RE = 0. Unfortunately, in this case, the NSE = 0, which
clearly means an undesired simulation.

8.2.4.2 Performances of Probabilistic Forecasts

The probabilistic forecast technique is expected to provide (a) accurate forecast
probabilities, further on named reliability; and (b) narrow forecast intervals, further
on the named resolution. Several methods, e.g., predictive quantile-quantile
(QQ) plot, a-index and p-index have been proposed in the literatures to evaluate
probabilistic forecasts (see e.g. Gneiting et al. 2007; Laio and Tamea 2007; Thyer
et al. 2009; Engeland et al. 2010; Renard et al. 2010; Madadgar et al. 2014; Smith
et al. 2015) and are used in this study.
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(1) Predictive QQ plot

The predictive quantile-quantile (QQ) plot provides an overall assessment of
whether the total predictive uncertainty is consistent with the observations. This
requires a diagnostic approach that compares a time-varying distribution (the pre-
dictive distribution at all times t) to a time series of observations (Thyer et al. 2009;
Evin et al. 2014). The predictive QQ plot provides a simple, intuitive and infor-
mative summary of the performance of probabilistic prediction frameworks
(Gneiting et al. 2007; Laio and Tamea 2007).

The predictive QQ plot is constructed as follows: Let Ft be the CDF of the
predictive distribution of runoff at time t, and ht the corresponding observed runoff.
If the hypotheses in the calibration framework are consistent with the data, the
observed value ht should be consistent with the distribution Ft. Hence, under the
assumption that the observation ht is a realization of the predictive distribution, the
p-value Ft(ht) is a realization of a uniform distribution on [0,1]. The predictive QQ
plot compares the empirical CDF of the sample of p values Ft(ht) (t = 1,…, T) with
the CDF of a uniform distribution to assess whether the hypotheses are consistent
with the observations.

As illustrated in Fig. 8.1, the predictive QQ plot can be interpreted as follows
(Thyer et al. 2009): (1) if all points fall on the 1:1 line, the predicted distribution
agrees perfectly with the observations; (2) If the observed p values cluster around
the mid-range (i.e., a low slope around theoretical quantile 0.4–0.6), the predictive
uncertainty is overestimated; (3) If the observed p values cluster around the tails
(i.e., a high slope around theoretical quantile 0.4–0.6), the predictive uncertainty is
underestimated; (4) If the observed p values at the theoretical median are higher/

Fig. 8.1 Interpretation of the predictive QQ plot
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lower than the theoretical quantiles, the modeled predictions systematically under/
over predict the observed data.

Other metrics are the supportive quantitative scores derived from the predictive
QQ plot (Laio and Tamea 2007; Thyer et al. 2009; Madadgar et al. 2014). The
metrics a-index assesses the reliability of forecasts, and p-index indicates the res-
olution (precision, sharpness) of the predictive distribution (PD).

(2) Reliability

Reliability means that the forecast should be well calibrated. This can be checked
graphically: deviations from the bisector (the 1:1 line) denote interpreted defi-
ciencies (see Fig. 8.1). To simplify the comparison of QQ plots, it is summarized
using an index that quantifies the reliability of the PD (Renard et al. 2010;
Madadgar et al. 2014):

a� index ¼ 1� 2
T

XT
t¼1

qemðptÞ � qthðptÞ
�� ��� � ð8:27Þ

where pt is the observed p-value at time t; qemðhtÞ is the empirical quantile of
pt; qtht ðhtÞ is the theoretical quantile of pt obtained from the uniform distribution U
[0, 1]; T is the number of pt values.

The a-index measures the closeness of quantile plot of the observations to the
corresponding uniform quantiles and reflects the overall reliability of the PD.
According to Thyer et al. (2009), as the area between the empirical CDF of the
observed p-values and the CDF of the uniform distribution in the predictive QQ
plot becomes larger, the value of a-index decreases towards zero. It varies between
0 (worst reliability) and 1 (perfect reliability).

(3) Resolution

“Resolution” denotes the sharpness (effectively, the “average precision”) of the PD.
Note that two inferences can both yield reliable PDs, but with different resolutions.
Sharpness refers to the spread of the forecast PDFs and is a property of the pre-
dictions only. The more concentrated the forecast PDF, the sharper the forecast, and
the sharper the better, subject to calibration (Gneiting et al. 2005). In this paper, the
resolution is quantified by p-index defined as the average relative precision of the
predictions (Renard et al. 2010; Madadgar et al. 2014):

p� index ¼ 1
T

XT
t¼1

E½Ht�
Sdev½Ht� ð8:28Þ

where E[Ht] and Sdev[Ht] are the expected value and standard deviation of Ht

obtained from the predictive distribution at time t.
Greater value of p-index indicates greater resolution (lower uncertainty) of

forecasts. However, comparison of sharpness may not be a meaningful approach
when the employed methods do not primarily perform equally in the a-index

8.2 Hydrologic Uncertainty Processor Based on Copula Function 177



metric. Assuming that precision has lower priority than reliability, given similar
forecast reliability, the method with greater resolution (lower uncertainty) is pre-
ferred; otherwise, the method with higher resolution does not reveal any superiority.
Most of literature rank reliability as the primary criterion, while sharpness is sec-
ondary to reliability (Madadgar et al. 2014).

(4) Continuous rank probability score

The goal of probabilistic forecasting is to maximize the sharpness of the forecast
PDFs subject to calibration. However, the trade-off between reliability and sharp-
ness have been discussed in previous researches (Xiong et al. 2009; Li et al. 2010a;
Kasiviswanathan et al. 2013), which show that these two desirable objectives could
not be achieved simultaneously. It is not adequate to judge the performances of
probabilistic forecasts only by reliability or sharpness. The continuous rank prob-
ability score (CRPS) is a standard measure that combines reliability and sharpness
(Hersbach 2000; Gneiting et al. 2005) and is used for selecting the preferred model.

The CRPS measures the average distance between the predicted and the
observed CDFs over the entire period. It is the integral of the Brier scores at all
possible threshold values r for the continuous predictand (Hersbach 2000).
Specifically, if F is the predictive CDF and ht is the verifying observation, the CRPS
is defined as (Hersbach 2000; Gneiting et al. 2007; Pappenberger et al. 2015)

CRPS ¼ 1
T

XT
t¼1

Zþ1

�1
FtðrÞ � Hsðr � htÞ½ �2dr ð8:29Þ

where Hs(r − ht) denotes the Heaviside step function and takes the value 0 when
r < ht and the value one otherwise.

For a deterministic forecast system, the CRPS reduces to the mean absolute error
(MAE). Thus, the CRPS is sometimes interpreted as a generalized version of the
MAE (Zhao et al. 2015). This is an advantage of CRPS and consequently allows the
comparison of deterministic and probabilistic forecasts (Gneiting et al. 2007;
Pappenberger et al. 2015). The smaller the CRPS value is, the better the prediction
performance. Its minimal value of zero is only achieved in the case of a perfect
deterministic forecast.

8.2.5 Case Studies

8.2.5.1 Study Area and Data

Three Gorges Reservoir (TGR) is a vitally important and back-bone project in the
development and harnessing of the Yangtze River in China. The annual average
discharge and runoff volume at the dam site are 14,300 m3/s and 4510 � 108 m3,
respectively. The total storage capacity of the TGR is 393 � 108 m3, of which
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221.5 � 108 m3 is flood control storage. The reservoir has a surface area of about
1080 km2, an average width of about 1100 m, a mean depth of about 70 m and a
maximum depth near the dam of about 170 m. With all the profiles being narrow
and deep, the TGR retains the long narrow belt shape of the original river section
and is a typical river channel-type reservoir.

As shown in Fig. 8.2, the intervening basin of TGR has a catchment area of
55,907 km2, about 5.6% of the upstream Yangtze River basin. There are 40 rainfall
gauged stations in the intervening basin and two hydrological stations (Cuntan and
Wulong), which control the upstream inflow and tributary inflow, respectively. The
data set for TGR inflow forecasting includes the daily runoff data of the Cuntan,
Wulong and Yichang hydrological stations, arithmetic mean of observed rainfall
data in the intervening basin during the flood period (June 1–September 30) from
2003 to 2009. The period 2003–2007 is used for deterministic forecast model
calibration and 2008–2009 is used for validation (Li et al. 2010b; Chen et al. 2015).

8.2.5.2 Deterministic Inflow Forecasts of the TGR

The inflow of TGR consists of three components, i.e., the main upstream inflow, the
tributary inflow from the Wu River, and the lateral flow from the TGR intervening
basin as shown in Fig. 8.2. A multiple-input single-output linear systematic model
is chosen for the inflow forecasting of the TGR (Liang et al. 1992). The total inflow
to the TGR can be expressed by the following equation

Fig. 8.2 Sketch map of the TGR’s intervening basin
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bQt ¼ A
Xm1

j¼1

Rð1Þ
t�jþ 1h

ð1Þ
j þ

Xm2

j¼1

Rð2Þ
t�jþ 1h

ð2Þ
j ð8:30Þ

where Rð1Þ
j is the lateral flow from the TGR intervening basin which is calculated

via the Xinanjiang model (Zhao 1992). Rð2Þ
j is the upstream inflow (inflow at

Wulong is added to the inflow at Cuntan). A is the area of the TGR intervening

basin, m1;m2 are the memory length of the system corresponding to Rð1Þ
j and

Rð2Þ
j ; hð1Þj and hð2Þj are the jth ordinates of the pulse response functions relating inputs

Rð1Þ
j and Rð2Þ

j , which are calculated by the Nash model as follows

hð1Þj ¼ 1
T

ZjT
ðj�1ÞT

SiðtÞ � Siðt � TÞ½ �=T dt ði ¼ 1; 2Þ ð8:31Þ

SiðtÞ ¼
Z t

0

1
NKiCðNKiÞ e

�ðs=NKiÞ snNKið ÞNi�1ds ði ¼ 1; 2Þ ð8:32Þ

where Si(t) is the step response function of the ith input, Ni and NKi are the
parameters, and T is the time-step. Cð�Þ is the gamma function.

The Xinanjiang model was developed in the middle 1970s for forecasting flows
in the Xinanjiang reservoir, China. The model has been widely applied for flood
forecasting in a large number of basins all over the world, especially in China. Until
now, this model is the most popular rainfall-runoff hydrologic model in China for
streamflow forecasting in humid and semi-humid areas. Its main feature is the
concept of runoff formation on the repletion of storage, which denotes that runoff is
not produced until the soil moisture content of the aeration zone reaches field
capacity (Zhao 1992; Xu et al. 2013). The Xinanjiang model includes two com-
ponents, namely, runoff generation and runoff routing. It has 17 parameters that
include seven runoff generating component parameters and 10 runoff routing
parameters. These parameters are abstract conceptual representations of
non-measurable watershed characteristics that have to be calibrated by an opti-
mization method. Figure 8.3 shows the flowchart of the Xinanjiang model for three
water sources. All symbols inside the blocks are variables including inputs, outputs,
state variables and internal variables while those outside the block are parameters
(Zhao 1992; Cheng et al. 2006; Li et al. 2011; Lin et al. 2014; Si et al. 2015).

The deterministic forecast model is calibrated respectively by taking NSE and
RE as objective functions via automatic calibration methods with multiple objec-
tives (Madsen 2000). Table 8.1 presents the calibrated parameters obtained for the
Xinanjiang model of the TGR intervening basin and multiple-input single-output
linear systematic model for TGR. The simulation results for the NSE and RE in the
calibration period are 97.72 and −1.04%, respectively. Meanwhile, in the
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verification period, the NSE and RE are 95.84 and −0.21%, respectively. These
results show that the deterministic forecast model is proved to be quite efficient in
simulating the inflow series for the TGR. The deterministic forecasts obtained from
the well-calibrated deterministic model are subsequently applied to produce the
probabilistic forecasts through the meta-Gaussian HUP and copula-based HUP.

8.2.5.3 Determination of Marginal Distributions

In this study, future rainfalls are treated as the case of perfect foreknowledge, rather
than using the real forecast rainfalls to obtain simulated flows in the future, when
the established deterministic forecast model is operated in the real-time forecasting
mode. This is only for the illustration purpose if forecast rainfalls are available in
reality and these would be used. The forecast lead times are 24 h (n = 1), 48 h
(n = 2), and 72 h (n = 3). Especially, for each forecasting time in the record, the
recorded rainfall data of 24-, 48- and 72- later followed by this forecasting time are
treated as the “deterministic rainfall forecasts” (i.e., assuming perfectly known
rainfalls in the future). Then these perfect forecasts of the rainfalls are input to the
well-calibrated deterministic forecast model, which in turn produced model inflows
(s1, s2, s3). They are attached to actual inflow (h0, h1, h2, h3) to obtain one joint
realization of the model-actual inflow process. The dataset from 2003 to 2009 are
used to calibrate and compare the meta-Gaussian HUP and copula-based HUP.

The sample series of H0 is taken from June 1 to Sept. 27 every year, S1 from
June 2 to Sept. 28, S2 from June 3 to Sept. 29, and S3 from June 4 to Sept. 30, thus
all these four variables will have a data length of 833. The parameters of six
candidate distributions are estimated by the L-moment method, and the K-S tests
are used to verify the null hypothesis. The null hypothesis could not be rejected at
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Fig. 8.3 The flow chart of Xinanjiang model for three water sources
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the 95% confidence level (critical value is 0.0471) for all six candidate distributions
except Normal distribution. For the four hydrological variables, Gumbel distribu-
tion provides the minimum D value and is chosen as the best fitting distribution,
respectively. Figure 8.4 shows the empirical CDF values obtained from the
Gringorten plotting-position formula (Zhang and Singh 2006) and theoretical CDF
values calculated by the Gumbel distributions. It can be seen that the theoretical
values fit the empirical values very well. For comparison purposes, the
copula-based HUP used the same marginal distributions as the meta-Gaussian HUP.

8.2.5.4 Calibration of Meta-Gaussian HUP

For the given climatic record of actual flows, the joint sample {(h0, h1)} is formed
of realizations on two consecutive days. Each joint realization (h0, h1) is processed
through the empirical NQT to obtain the transformed joint sample {(w0, w1)} and
this joint sample is used to estimate the Pearson’s correlation coefficient c. The
advantage of using the empirical distributions in the NQT (instead of the parametric

Table 8.1 Estimated parameters of Xinanjiang model in the TGR intervene basin

Parameter Physical meaning Estimated
value

WM Mean tension water capacity 149.80

UM Areal mean water capacity of the upper layer 65.23

LM Areal mean water capacity of the lower layer 38.64

K Ratio of potential evapotranspiration to pan evaporation 0.433

B Parameter in the distribution of tension water capacity 1.471

SM Areal mean free water storage capacity 25.09

EX Parameter in the distribution of free water storage capacity 0.984

KI Coefficient relating RI 0.151

KG Coefficient relating RG 0.12

IM Impervious area of the basin 0.184

C Evapotranspiration coefficient from deep layer 0.287

CI Interflow reservoir constant 0.832

CG Groundwater reservoir constant 0.904

m1 Memory length of TGR intervening basin 10

N1 Number of cascade linear reservoirs for TGR intervening basin 2.967

NK1 Scale parameter of cascade linear reservoirs for TGR
intervening basin

6.991

m2 Memory length of upstream inflow 14

N2 Number of cascade linear reservoirs for upstream inflow 1.241

NK2 Scale parameter of cascade linear reservoirs for upstream
inflow

1.911

Note The unit of WM, UM, LM and SM is mm, the rest of parameters are dimensionless
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distribution) is that the estimate of c remains unaffected by the choice and the
goodness of fit of the parametric model. The estimated result of Pearson’s corre-
lation coefficient is 0.951.

The procedure for validating the meta-Gaussian dependence structure for the
likelihood function parallels the procedure described in the prior density section
above. The NQT performs adequately, as the empirical structure of dependence
between Xn, Wn and W0, appears to be linear and homoscedastic. The
meta-Gaussian model for the likelihood function captures the nonlinearity and
heteroscedasticity of the dependence structure between Sn, Hn and H0.

8.2.5.5 Calibration of Copula-Based HUP

The rank-based correlation (Kendall’s coefficient) matrix of variables, H0 Hn and Sn
are shown in Table 8.2. It is demonstrated that the dependence among the three
variables pairs (H0, Hn), (H0, Sn) and (Hn, Sn) are not the same. Furthermore, the
highest correlation coefficient is exhibited in the variables pair (Hn, Sn). This result
indicates that rather than symmetric, the asymmetric trivariate copula functions may
be more appropriate to be used to three-dimension joint distributions of H0, Hn and
Sn. When constructing the three-dimension joint distributions using the asymmetric
copula functions, the structures (Hn, Sn)H0 are applied. Specifically, copula was
firstly built for (Hn, Sn), and then for H0 and C(FHn(hn, Fsn(sn))).

The three-dimension joint distributions of H0, Hn and Sn (n = 1, 2, 3) are con-
structed using the three candidate trivariate copula functions. Dependence
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Fig. 8.4 Empirical and theoretical values fitted by Gumbel distributions
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parameters of the trivariate copula functions are estimated using the maximum
pseudo-likelihood method, and the results are listed in Table 8.3. It is found that
Frank copula performs best with the smallest RMSE values for the three joint
distributions. Empirical CDFs obtained from the Gringorten plotting-position for-
mula and theoretical CDFs calculated from Frank copula for three joint distributions
are plotted in Fig. 8.5. An overall satisfactory agreement between the empirical and
theoretical CDF is shown. Hence, the asymmetric trivariate Frank copula functions
have good performances in modeling the joint distributions of H0, Hn and Sn.

8.2.5.6 Comparison of the Meta-Gaussian HUP
and Copula-Based HUP

(1) Posterior median forecasts

For 24-, 48- and 72 h lead times, the model efficiency NSE and relative error RE
calculated by both the deterministic forecast model and posterior median fore-
casting associated with the meta-Gaussian HUP and copula-based HUP are listed in
Table 8.4. It is shown that both the results of the meta-Gaussian HUP and
copula-based HUP are slightly better than those of the deterministic forecast model,

Table 8.2 Ranked based correlation matrix of the variables

Lead times (h) Variables s

24 H0, H1 0.823

H0, S1 0.824

H1, S1 0.929

48 H0, H2 0.694

H0, S2 0.711

H2, S2 0.883

72 H0, H3 0.600

H0, S3 0.658

H3, S3 0.828

Table 8.3 Estimated parameters of the three candidate copulas

Variables Gumbel-Hougaard Frank Clayton

[h1, h2] RMSE [h1, h2] RMSE [h1, h2] RMSE

H0, H1, S1 [9.08,
10.65]

0.0116 [25.44,
35.23]

0.0103 [15.16,
20.78]

0.0150

H0, H2, S2 [4.25, 7.58] 0.0141 [13.45,
20.38]

0.0112 [6.49, 14.33] 0.0186

H0, H3, S3 [2.98, 6.57] 0.0144 [9.58, 16.21] 0.0117 [4.58, 9.34] 0.0188
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and the copula-based HUP is comparable to the meta-Gaussian HUP. Compared
with deterministic forecasts, the NSE and the RE of the copula-based HUP for 24-,
48- and 72 h lead times forecasts are improved by 1.24, 1.26 and 1.26% and
reduced by 0.17, 0.57, and 1.72%, respectively. It is also noted that the accuracy of
posterior median forecasts of the both HUPs decreases as the lead time increases.
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Fig. 8.5 Plots of empirical
and theoretical values
estimated by Frank copulas
for three joint CDFs. Note
Rank represents number of
ordered pair, ranked in the
ascending order in terms of
theoretical joint CDF,
respectively
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(2) Probabilistic forecasts

The predictive QQ plot, a-index, p-index and CRPS are adopted to evaluate the
probabilistic forecasts. Figure 8.6 presents the predictive QQ plots regarding the
meta-Gaussian HUP and copula-based HUP for 24-, 48- and 72 h lead times. Using
Fig. 8.1 as a guide to assess the results, it is clear that the overall performances of all
predictive QQ plots are acceptable. Both meta-Gaussian HUP and copula-based HUP
systematically under-predict the inflows, since the observed p values at the theoretical
median are a bit higher than the theoretical quantiles. In addition, it also shows that the
observed p values cluster around the tails (i.e., a high slope around theoretical quantile
0.4–0.6). This finding means that the predictive uncertainty is somewhat underesti-
mated for bothHUPs. The overall behaviors ofmeta-Gaussian HUP and copula-based
HUP are found to be similar. The QQ plot for copula-based HUP is slightly closer to
the 1:1 line than meta-Gaussian HUP. That is to say, the copula-based HUP performs
marginally better regarding reliability. Nonetheless, these underestimations for both
meta-Gaussian and copula-basedHUPs are in such zoneswhere p values are relatively
higher, indicating such differences may not be statistically significant.

The results of a-index, p-index and CRPS are summarized in Table 8.5. For both
meta-Gaussian HUP and copula-based HUP, it is clearly shown that the a-index
value increases (higher reliability) when the lead time increases. However, it should
be noted that this is at the expense of decreasing p-index value (lower resolution).
Besides, the copula-based HUP has slightly larger a-index values while smaller p-
index values compared with the meta-Gaussian HUP. Regarding CRPS value, both
HUPs outperform the deterministic forecasts which demonstrate the effectiveness of
probabilistic forecasts. Comparison results also indicate that the copula-based HUP
is marginally better than the meta-Gaussian HUP. The CRPS value of the
copula-based HUP for 24-, 48- and 72 h lead times is improved (decreased) by
16.6, 21.2, and 23.3%, respectively.

Although that such marginally better performance does not result for each year,
for illustration purposes, the observed and median discharges, and 90% inflow
prediction intervals estimated by meta-Gaussian HUP and copula-based HUP in
2004 are presented in Figs. 8.7 and 8.8, respectively. It can be seen that most
observed inflows are contained within the 90% prediction intervals. This demon-
strates that these 90% prediction intervals can effectively capture the forecast
uncertainty and provide more information for decision-making in flood control and
reservoir operation. As lead time increases, the 90% prediction intervals become
wider (i.e., greater uncertainty).

Table 8.4 Comparison of performances evaluation criteria for deterministic forecasts

Lead times (h) Deterministic model Meta-Gaussian HUP Copula-based HUP

NSE (%) RE (%) NSE (%) RE (%) NSE (%) RE (%)

24 97.55 −0.34 97.65 −0.31 98.79 −0.17

48 94.10 −0.85 94.54 −0.68 95.36 −0.28

72 88.52 −2.51 89.14 −1.14 89.78 −0.79
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Fig. 8.6 The predictive QQ
plots of meta-Gaussian HUP
and copula-based HUP
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8.3 Uncertainty Analysis of Hydrological Multi-model
Ensembles Based on CBP-BMA Method

Inspired by the ideas of Madadgar and Moradkhani (2014), a general framework of
the combination of copula Bayesian processor with BMA (CBP-BMA) is proposed
by He et al. (2018), where the Bayesian theory is applied in the transformation of
the posterior distribution. The flowchart of different probability forecast methods
based on deterministic models is described in Fig. 8.9.

8.3.1 Description of the Hydrological Models

Three world-famous conceptual hydrological models are implemented in the
Mumahe catchment, including the Xinanjiang (XAJ), HBV and SIMHYD models.
The XAJ model has been used in humid and semi-humid region worldwide (Zhao
1992). It consists of a runoff generation component with seven parameters and a
routing component with ten parameters. Those model physical parameters represent
the abstract conceptual expression of watershed features. The HBV model is a
synthetic flow model with 13 parameters needed to be calibrated. Units of HBV
model makes up of the routines for snowmelt accumulation, evapotranspiration and
soil routine and response function. The core concept assumes runoff volume
changes with soil humidity exponentially (Montero et al. 2016). The SIMHYD
model is a lumped conceptual hydrological model which contains seven parameters
needed to be calibrated. The model divides runoff into three components: surface
flow, interflow and base flow. The surface flow is infiltration excess runoff,
inter-flow is estimated as a linear function of the soil wetness, and base flow is
simulated as a linear recession from the groundwater store (Chiew et al. 2009; Yu
and Zhu 2015). The infiltration rate is a core of the model.

8.3.2 Bayesian Model Averaging (BMA)

Raftery et al. (2005) successfully extended BMA to statistical post-processing for
forecast ensembles. The BMA method addresses total model uncertainty by

Table 8.5 Comparison of performances evaluation criteria for probabilistic forecasts

Lead times (h) Deterministic model Meta-Gaussian HUP Copula-based HUP

CRPS/MAE a-index p-index CRPS a-index p-index CRPS

24 688 0.8028 18.55 608 0.8507 16.39 574

48 1180 0.8555 12.45 975 0.8916 10.42 930

72 1763 0.8879 9.13 1420 0.9184 7.68 1353

Note a-index and p-index are dimensionless; the unit of CRPS is m3/s
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Fig. 8.7 The 90% prediction intervals, median and observed discharges in 2004 (meta-Gaussian
HUP)
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(c) 72h lead times
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Fig. 8.8 The 90% prediction intervals, median and observed discharges in 2004 (copula-based
HUP)
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conditioning not only on a single outstanding model but on the entire ensemble
models. The method was originally proposed as a pathway for method combination
of several competing models (Duan et al. 2007; Liang et al. 2011).

According to BMA (Duan et al. 2007), the ensemble predictive density of the
actual flow variable q, given the different hydrologic model simulations of
K models [S1, S2,…, SK] and the observations during the training period, Q, can be
expressed in terms of the law of total probability:

pðqjS1; S2; . . .; SK ;QÞ ¼
XK
i¼1

pðSijQÞ � piðqjSi;QÞ ð8:33Þ

HBV model
Simulation

SIMHYD model
Simulation

Observed streamflow

inputs

Bias correction

Normal
Transformation

EM algorithm

BMA method CBMA method

2D Copula
parameter estimation

by MLE

EM algorithm

CBP-BMA method

Evaluation criteria of Multi-model techniques

Deterministic Model
Assessment Indices

Verification Performance
of Probabilistic Simulation

XAJ model
Simulation

EM algorithm

Marginal distribution Marginal distribution

2D Copula
parameter estimation

by MLE

Fig. 8.9 Flowchart of hydrologic multi-model ensembles for uncertainty analysis

8.3 Uncertainty Analysis of Hydrological Multi-model Ensembles … 191



where p(Si|Q) is the posterior probability of ith model prediction. This static term
can also be expressed as wi, reflecting how well the ensemble term fits the obser-
vation dataset. It ranges from 0 to 1 since the posterior model probabilities add up to
one. Before the implantation of BMA algorithm, the expected value of observation
and forecast for each model should be equal zero (E[q − Si] = 0). Any
bias-correction method, such as linear regression, should be applied to substitute the
bias-corrected forecast (fi) for the original deterministic forecast:

fi ¼ ai þ bi � Si ð8:34Þ

where {ai, bi} are the coefficients of the linear regression model.
The term pi(q|fi, Q) is the conditional pdf of h based on the bias-corrected

simulation fi and the observation dataset. Moreover, the power Box-cox transfor-
mation is taken for the computational convenience of using a Gaussian distribution.
The posterior distribution pi(q|fi, Q) is mapped to a Gaussian space with mean fi and
variance s2i ; i.e., pi(q|fi, Q) * g(q|fi, r2i ). The BMA predictive mean and variance of
q are defined as follows (Raftery et al. 2005):

EðqjQÞ ¼
XK
i¼1

pðfijQÞ � E½piðqjfi;QÞ� ¼
XK
i¼1

xifi ð8:35Þ

VarðqjQÞ ¼
XK
i¼1

xi fi �
XK
i¼1

xifi

 !2

þ
XK
i¼1

xir
2
i ð8:36Þ

Successful application of the BMA method requires estimations of the weight xi

and variance r2i of the individual pdf. The log maximum likelihood function rather
than the likelihood function is optimized for reasons of both numerical stability and
algebraic simplicity. If the BMA parameters are estimated by
h ¼ xi; ri; i ¼ 1; 2; . . .;Kf g, the log likelihood function of h is mathematically
denoted as:

lðhÞ ¼ log
XK
i¼1

xi � piðqjfi;QÞ
 !

ð8:37Þ

After the completion of BMA parameter estimation by the EM algorithm (Duan
et al. 2007), another feature of the BMA method is to make use of Monte Carlo
method to derive BMA probabilistic ensemble prediction for any time t (Kuczera
and Parent 1998). The procedures are described as follows (Zhou et al. 2016).

(1) Select the probabilistic ensemble size, M (M = 100).
(2) Randomly generate a value of k from the numbers [1, 2, …, K] with proba-

bilities ½x1;x2; . . .;xi�. The detail processes are shown as follows: (a) Initial
the cumulative weight x0

0 ¼ 0 and compute x0
i ¼ x0

i�1 þxi for i ¼ 1; 2; . . .;K;
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(b) Generate a random number u between 0 and 1; and (c) If x0
i�1 � u�x0

i,
then the ith member of the ensemble predictions are chosen.

(3) Generate a value of q from the pdf of pi(q|fi, r2i ).
(4) Repeat steps (2) and (3) for M times.

The results are sorted in ascending order, and the 90% confidence interval can be
derived within the range of the 5 and 95% quantiles.

8.3.3 The Hybrid Copula-BMA (CBMA)

As illustrated before, the BMA predictive distribution provides a weighted average
of simulation pdf which generally complies with a parametric distribution, e.g.,
Gaussian distribution after the box-cox transformation. Madadgar and Moradkhani
(2014) employed copula to estimate the posterior distribution of forecast variables
for each model, i.e., piðqjfi;QÞ, and found that the hydrological forecasts are
improved after the integration of copulas and BMA (CBMA). A series of research
demonstrates that the procedures of CBMA not only eliminate the prophase
bias-correction and the external calculation of variance but also simplify the cal-
culation of the weighted average and the probability model structure by copula
(Möller et al. 2013).

Alternatively, in statistical applications, the conditional probability distribution
of h given si (i = 1, 2, 3) is expressed as (Madadgar and Moradkhani 2014):

f ðqjsiÞ ¼ f ðq; siÞ
f ðsiÞ ¼ cðu; viÞ � f ðqÞ � f ðsiÞ

f ðsiÞ ¼ cðu; viÞ � f ðqÞ ð8:38Þ

where cðu; viÞ is computed for each pair of (u, vi), f ðqÞ represents the marginal
distribution of actual flow. Although different copula families have been proposed
and described in current studies (Chebana and Ouarda 2007), several families of
Archimedean copulas, including Frank, Gumbel, and Clayton, have been popular
choices for dependence models in hydrologic analyses due to their simplicity and
generation properties.

The predictive distribution of CBMA is modified as follows (Madadgar and
Moradkhani 2014):

f ðqjs1; s2; . . .; sKÞ ¼
XK
i¼1

xif ðqjsiÞ ¼
XK
i¼1

xi � cðu; viÞ � f ðqÞ ð8:39Þ

It can be seen from Eq. 8.39 that it relaxes any assumption on the type of
posterior distribution f ðqjsiÞ, whose term can be directly inferred with the help of
copula functions. Once the term f ðqjsiÞ is defined, their weights are estimated by the
EM algorithm with a few adjustments, which can refer to Madadgar and
Moradkhani (2014) for details.
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The hybrid CBMA model applies the idea of “pair and ensemble”. The pair of
observation q and the ith model simulation is established to get the probability task
by the well-developed copula theory, while the ensemble is to formulate a con-
sensus probability interval.

8.3.4 Copula Bayesian Processor Associated with BMA
(CBP-BMA) Method

8.3.4.1 Copula Bayesian Processor (CBP)

Copula Bayesian processor (CBP) is developed as another component of the proba-
bilistic forecasting system in virtue of the integration of Bayesian theory and copula
functions. The CBP procedure generates a probabilistic result and quantifies the
hydrologic uncertainty under the assumption that input uncertainty is ignored, which
refers to hydrologic uncertainty processor (Krzysztofowicz and Kelly 2000). This
method also has the advantage of leaving out a data transformation procedure into
Gaussian space. The Bayesian procedure based on the law of total probability involves
two parts for information revision of uncertainty (Zhang and Singh 2007a, b, c):

(1) The expected conditional density function of deterministic simulation, Si given
Q ¼ q is expressed as:

jðsijqÞ ¼
Z

f ðsijqÞ � gðqÞdq ð8:40Þ

where f ðqjsiÞ has the same conception as before, gðqÞ represents the prior
density function.

(2) The posterior density function conditional on a deterministic result Si ¼ si is
derived via Bayes’ theorem:

/ðqjsiÞ ¼ f ðsijqÞ � gðqÞ
jðsijqÞ ð8:41Þ

Equations 8.40 and 8.41 could be rewritten by using copula functions, i.e., the
CBP form of the right term is mathematically expressed by:

/ðqjsiÞ ¼ f ðsijqÞ � gðqÞR
f ðsijqÞ � gðqÞdq ¼ cðu; viÞR 1

0 cðu; viÞdu
� gðqÞ ð8:42Þ

The final CBP outputs a posterior distribution of the process, conditional upon
the deterministic simulation. Since the analytical solution to the integral termR 1
0 cðu; viÞdu is very complex, the Monte Carlo technique is used to estimate the
posterior density function /ðqjsiÞ (Robert and Casella 2011; Kroese et al. 2013).
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8.3.4.2 The CBP-BMA Method

The difference between the CBP-BMA and CBMA methods is the estimation
procedure of the posterior density function.

/ðqjs1; s2; . . .; sKÞ ¼
XK
i¼1

xi/ðqjsiÞ ¼
XK
i¼1

xi
cðu; viÞR 1

0 cðu; viÞdu
gðqÞ ð8:43Þ

It should be rational to assign weights on account of multiple deterministic
results. The calculation process of weights is conducted by the EM algorithm
(Montanai and Grossi 2008). The three main steps of the presented weights cal-
culating paradigm can be summarized as follows:

wIter
i ¼ 1

T

XT
t¼1

zIteri;t

zIteri;t ¼ wIter�1
i � /ðqtjsi;tÞPK

i¼1 w
Iter�1
i � /ðqtjsi;tÞ

¼ wIter�1
i � cðut; vi;tÞgðqtÞ=

R 1
0 cðui; vi;tÞdutPK

i¼1 w
Iter�1
i � cðut; vi;tÞgðqtÞ=

R 1
0 cðui; vi;tÞdut

lðhIterÞ ¼ log
XK
i¼1

wIter�1
i �

XK
i¼1

cðui; vi;tÞgðqtÞ=
Z 1

0
cðu; vi;tÞdut

 !
ð8:44Þ

where T is the length of the training period; and z is a latent variable. Compared
with the standard BMA method, the calculation of variance and data transforma-
tions are eliminated in Eq. 8.44. The posterior probability of qt is calculated only
once while it need be re-calculated every time in the standard BMA method.

8.3.5 Evaluation Criteria for Multi-model Techniques

8.3.5.1 Deterministic Model Assessment Indices

To evaluate the quality of the deterministic model, three metrics are used.

(1) Nash-Sutcliffe efficiency coefficient (NSE), see Eq. 8.25
(2) Daily root mean square error (DRMS)

DRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ðqio � qimÞ2
T

s
ð8:45Þ
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As the second tool employed is sensitive to the differences between observa-
tions and simulations, the values of DRMS approaching to stand for better
performance.

(3) Kling-Gupta efficiency (KGE)

KGE ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � 1Þ2 þðb� 1Þ2 þðc� 1Þ2

q
b ¼ qm=qo

c ¼ CVm=CVo ¼ rm=qm
ro=qo

ð8:46Þ

where r is the Pearson correlation between the observation and simulation, b is
the bias ratio indicator; g is the variability ratio (Kling et al. 2012). All
calculative variables are replaced by the expected values of the estimate
predictive distributions.

8.3.5.2 Verification of Probabilistic Simulations

With regard to assessment of assessing the uncertainty analysis of simulation
interval, Xiong et al. (2009) and Dong et al. (2013) presented multiple verification
indices and applied in hydrologic practice. Three main metrics are selected to
evaluate the simulation uncertainty intervals generated by the BMA, CBMA and
CBP-BMA methods.

(1) Containing ratio (CR)

The containing ratio is utilized as a significant index for assessing the goodness of
the uncertainty interval. It is defined as the percentage of observed data points that
fall between the prediction bounds, directly reflecting the interval performance.

CR ¼ CN
i¼1ðqil � qio � qiuÞ

N
� 100% ð8:47Þ

where qil is denoted as the lower bound corresponding to 5% quantile at time t, qiu is
denoted as the upper bound corresponding to 95% of the quantile. CN

i¼1 is the
number of the observed data points qio that satisfy the inequality conditions.

(2) Average bandwidth (BW)

B ¼ 1
N

XN
i¼1

ðqiu � qilÞ ð8:48Þ
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where BW is also an index measuring the average width of estimated uncertainty
interval just as the definition name indicates. Smaller values of BW show a greater
precision. Consider two forecasts with the same containing ratio; the situation with
smaller BW is preferred because it has less uncertainty or greater precision.

(3) Average deviation amplitude (DA)

The average deviation amplitude DA is an index to quantify the average deflection
of the curve of the middle points of the prediction bounds from the observed
streamflow hydrograph. It is defined as

D ¼ 1
N

XN
i¼1

1
2
ðqiu � qilÞ � qio

���� ���� ð8:49Þ

where the notations are defined previously.

8.3.6 Case Study

The Mumahe catchment (Fig. 8.10), a sub-basin of Hanjiang River basin in China
is selected as a case study. The catchment lies in Shanxi Province with an area of
1224 km2 and locates in the subtropical monsoon region with a humid climate and
fairly plenty of precipitation. The annual mean precipitation and runoff is 1070 and
687 mm, respectively. The available dataset contains daily precipitation, runoff, and
evaporation with a length of 11 years (1980–1990). The first year (1980) is used as
the spin-up period for each hydrologic model to achieve the best effective model
formulation. The remaining years (1981–1990) are divided into two sub-periods,
with seven years (1981–1987) for calibration and three years (1988–1990) for
validation.

Different multi-model techniques, i.e., BMA, CBMA, and CBP-BMA, are
applied to combine the ensemble flow simulation. The structures of three hydro-
logic models ought to be determined as the deterministic results are crucial to final
uncertainty analysis. As mentioned above, the calibration parameters of the first
BMA method are xk and r2k ; In the CBMA method, they are the parameters of
marginal distributions, weights xk and the parameters of the PDF of the copula. In
the CBP-BMA method, the Monte Carlo sampling technique is also used to obtain
the integral item.

8.3.6.1 Deterministic Hydrologic Model Simulations

The genetic and simplex algorithms are used for model calibration on account of
their flexibility and good convergence. The genetic algorithm can acquire the global
optimal value with independent of initial parameter values. The simplex algorithm
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is of high accuracy with low convergence rate. With the merit of two methods
integrated, the approximately optimal values of model parameters are obtained.
Three deterministic assessment indices: NSE, DRMS and KGE scores over the
calibration period (1981–1987) and the validation period (1988–1990) are calcu-
lated for XAJ, HBV, and SIMHYD models. Table 8.6 indicates that the XAJ model
has the best results, the HBV model takes the second place, and the SIMHYD
model behaves worst among the three. The reason can be attributed to the dissimilar
process for the calibration of each model (Nasonova et al. 2009). In practice, it
might partially refer to inaccurate estimation of model parameters as one of the error
sources of the model structure, abstract formulation of physical processes, and
different sources of forcing data set for each model. In general, these simulation
results can be used as the input data of multi-model ensemble in terms of the NSE
and KGE values, which are 85% and higher than 0.82 respectively beside the ill
value of KGE of HBV.

8.3.6.2 Determination of the Marginal Distributions

The marginal distributions of the random variables of H and Si (i = 1, 2, 3) need to
be determined. Five common candidate distributions, namely Normal, Gamma,
Gumbel, P-III and Log-Normal, have been fitted to the daily mean streamflow
values as well as to the XAJ, HBV and SIMHYD model simulations.

Fig. 8.10 Sketch map of the Mumahe catchment
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Regarding random variable H, the parameters of five candidate distributions are
estimated by the method of L-moment (Hosking 1990), and the parameter values
are listed in Table 8.7. The K-S tests are used to verify the null hypothesis, and the
corresponding statistic DK-S values are also listed in Table 8.7. It is shown that the
null hypothesis could not be rejected at the 95% confidence level (threshold value
Dn ¼ 1:36=

ffiffiffiffi
N

p
, N is the number of sampling points) for Log-Normal distribution

with providing the minimum DK-S value. Meanwhile, Fig. 8.11 indicate the
Log-Normal is satisfactory on visual inspection that the cumulative distribution
function (CDF) plots of the theoretical Log-Normal distributions fitted the empirical
CDF values obtained from the Gringorten plotting-position formula (Zhang and
Singh 2006) relatively well. The estimation of marginal distributions for Si had the
similar procedures. The Kolmogorov-Smirnov statistics DK-S indicate that the
Log-Normal distribution also gives the best fit in this study.

8.3.6.3 Archimedes Copula Selection and Estimation

In the application of the CBMA and CBP-BMA methods, a copula function to link
the CDF of observation and model simulations needs to be defined. The Gumbel,
Clayton and Frank copula belonging to Archimedes family are chosen to test for
flexibility and universality (Madadgar and Moradkhani 2014; Chen et al. 2015).

For Archimedes copula, the Kendall correlation coefficient si (i = 1, 2, 3)
between observed and different simulated flows is firstly derived. The higher si
indicator reflects the stronger correlation between observation and model simula-
tion. The corresponding copula parameter hi is calculated by the method based on
the inversion of si in Table 2.3 of Chap. 2. The parameter estimators and
goodness-of-fit test (RMSE and AIC) are used to determine the best fit copula for
integrating the streamflow properties. The results illustrate that copulas have the
good performance in exploring the associations of observed and simulated flows.
All variables passed the null hypothesis for Gumbel and Frank copulas. Gumbel
copula performs with the lowest RMSE and AIC values.

Table 8.6 Deterministic accuracy assessment of different hydrological models

Model Calibration Validation

NSE (%) DRME KGE (%) NSE (%) DRME KGE (%)

XAJ 88.25 30.06 90.59 84.85 24.06 87.08

HBV 84.81 34.16 52.99 82.24 26.06 42.89

SIMHYD 86.25 32.50 82.51 84.98 23.97 85.01

BMA 88.87 33.79 89.14 85.72 24.81 90.62
CBMA 88.93 26.54 90.06 86.07 21.25 88.45

CBP-BMA 89.76 27.63 90.96 86.69 23.39 89.23

Notes Values in bold represent the optimal result
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8.3.6.4 Deterministic Assessment of Three Ensemble Methods

We check the mean simulation of hydrologic multi-model ensembles using three
criteria illustrated in Sect. 8.3.5.1. The effectiveness results of BMA, CBMA and
CBP-BMA methods are listed in Table 8.6. The performances of different
multi-models are better than that of the individual XAJ model regarding NSE.
The BMA method outperforms the reference model at the cast of DRMS and KGE
indicators, The CBMA and CBP-BMA methods slightly improve in all aspects
during the calibration period, which have excellent properties in the validation
period. The reason of the CBMA and CBP-BMA methods enhancing the perfor-
mance can be attributed to that copula functions are efficient tools to remove bias
instead of a simple bias correction such as linear regression in the BMA method
(Madadgar and Moradkhani 2014). Especially, copula has reliable parameter esti-
mation prior model average procedure. Another reason might be owed to the weight
of each individual model, which is directly influenced by the estimation of posterior
distributions.

Figure 8.12 illustrates the bar plots of KGE score and its components. The KGE
score might be a little descending through BMA or CBMA application, a little
incremental through CBP-BMA application in comparison with the best XAJ
model. The correlation coefficients between observation and simulation of indi-
vidual models are up to 0.93 in the calibration period and 0.92 in the verification

Table 8.7 Estimated parameters and statistic test Dk-s of five candidate marginal distributions

Marginal parameter
distribution and K-S test

H S1 S2 S3

Gumbel r 40.3 40.6 39.5 37.2

l 17.8 14.9 15.1 14.5

Dk-s 0.025 0.024 0.026 0.026

Gamma a 0.4 0.3 0.3 0.3

b 103.4 129.7 153.2 106.5

Dk-s 0.148 0.122 0.141 0.153

P-III a 0.20 0.24 0.20 0.19

b 0.0056 0.0067 0.0050 0.0063

c 6.02 4.43 5.27 4.59

Dk-s 0.034 0.028 0.029 0.031

Log-normal a 2.83 2.11 2.43 2.57

c 1.17 1.46 1.28 1.26

Dk-s 0.016 0.013 0.017 0.015
Normal a 41.08 38.27 38.43 34.69

c 49.57 49.85 41.19 43.03

Dk-s 0.074 0.062 0.075 0.064

Notes Values in bold denote that the distribution model passes the goodness-of-fit test at 0.05
significance levels
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period, which represent stronger correlation for the values are more than 0.9.
However, b indictor of deterministic models varies from 0.64 for HBV model to
0.97 for XAJ model. The value less than 1 indicates the total amount of streamflow
simulation in any individual model is less than that of observation. It might cause
the general underestimation of the mean streamflow (negative bias) in hydrological
multi-model ensemble applications. The BMA method is such a promising method
for locating simulation to observation for its term b closer to 1. Regarding the
variability ratio, all methods except for HBV could perfectly perform, but no
particular method is superior to others with all c � 1.

8.3.6.5 Probabilistic Verification of Three Ensemble Methods

For probabilistic verification of simulation, Figs. 8.13 and 8.14 describe the
uncertainty bands of different methods for the representative year during calibration
and verification periods with a visual inspection. These two plots indicate that the
observed values approximately fall within the 5–95% uncertainty range and fit the

(a) variable H (b) variable S1

2 3(c) variable S (d) variable S

Fig. 8.11 Comparison of the empirical and theoretical cumulative distribution functions
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mean flow hydrograph for all multi-model ensembles. In this case, the 90% con-
fidence interval could capture the flood peaks but miss more low flow values.

Three probabilistic verification measurements (CR, BW, DA) are presented in
Table 8.8. It can be seen from these quantitative indices that they have a good
performance regarding containing ratio, which is corresponding to the confidence
interval. The probability of observed value falling in the range should be in accord
with the percentage of confidence interval containing points through many inde-
pendent statistical experiments. The CBP-BMA method performs better than
CBMA method regarding CR index because it roughly covers 91% of the sample
points, which is more than CBMA does. A combination of CR and BW possess the
power to make a decision on model probabilistic performance. The comparison
between the CBMA (and CBP-BMA) and BMA methods exactly illustrates that the
CBMA method outperforms the BMA method, either CR, BW or DA, especially,
the containing ratios of CBP-BMA method in different periods are up to 91.17 and
91.33%, respectively. Referring to the smaller BW result in the CBMA and
CBP-BMA methods, the total predictive variance is reduced by relaxing the PDF
generated by copula functions rather than the Gaussian posterior distribution via

(a) Calibration period 

(b) Validation period 

Fig. 8.12 The simulation
results of KGE score and its
components
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box-cox transformation. Since the between-model variance keeps identical after
using the same EM algorithm in all three methods, it is inferred that the reduction of
within-model variance works.

The CBMA and CBP-BMA methods are two flexible and robust approaches to
estimate uncertainty regarding the optimal bandwidth and average deviation
amplitude. They have an intuitive and simple structure conditional on several model

(a) BMA

(b) CBMA 

(c) CBP-BMA

Fig. 8.13 The 90% uncertainty interval, observed, mean simulation for the Mumahe catchment in
1987 during the calibration period
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simulations by the integration of BMA and copula tools, which makes this method
promising to derive uncertainty. The difference between them reflected in the
procedure of processing posterior distribution. Further improvement might be
realized through the weight allocation for each model or the nonparametric pos-
terior distribution.

(a) BMA

(b) CBMA

(c) CBP-BMA

Fig. 8.14 The 90% uncertainty interval, observed, mean simulation for the Mumahe catchment in
1990 during the validation period
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8.4 Conclusion

Hydrological forecasting services are trending toward providing users with prob-
abilistic forecasting, and adequate assessment of uncertainty forecasts is an
important issue and task. A copula-based HUP for probabilistic forecasting and
CBP-BMA method for evaluating uncertainties of hydrologic multi-model
ensembles are proposed. Three Gorges Reservoir (TGR) and Mumahe basins are
selected as case studies. The main conclusions are summarized as follows:

(1) The output of the HUP is a posterior distribution of the process, conditional
upon the deterministic forecast. This posterior distribution provides the com-
plete and well-calibrated characterization of uncertainty needed by rational
decision makers who use formal decision models and by information providers
who want to extract various forecast products for their customers (e.g., quan-
tiles with specified exceedance probabilities, prediction intervals with specified
inclusion probabilities, probabilities of exceedance for specified thresholds).

(2) Based on copula function, the prior density and likelihood function of the HUP
are explicitly expressed, and the corresponding posterior density and distribu-
tion can be obtained using the Monte Carlo sampling technique. This
copula-based HUP can be implemented in the original space directly without a
data transformation procedure into Gaussian space and allows for any form of
marginal distribution of predictand and the deterministic forecast variable, and
a nonlinear and heteroscedastic dependence structure.

(3) The proposed copula-based HUP is comparable to the meta-Gaussian HUP
regarding the posterior median forecasts. It is also shown that probabilistic
forecasts produced by the copula-based HUP have slightly higher reliability and
lower resolution compared with the meta-Gaussian HUP. According to the
CRPS value, it is found that both HUPs are superior to deterministic forecasts
which highlight the effectiveness of probabilistic forecasts, and the
copula-based HUP is marginally better than the meta-Gaussian HUP.

(4) Deterministic results of different multi-model ensembles outperform those of
the individual model. The CBMA and CBP-BMA methods slightly outperform
BMA method regarding NSE, DRMS, and KGE. When the CBMA method is
used as a reference, the CBP-BMA method can improve the NSE and KGE and
enlarge DRMS values. Underestimation of all individual models may cause
negative bias of ensemble multi-model.

Table 8.8 Uncertainty assessment of different hydrological multi-model ensembles

Model Calibration Validation

CR (%) BW DA CR (%) BW DA

BMA 87.34 56.79 21.26 88.53 58.14 18.79

CBMA 89.23 38.75 16.52 89.76 40.28 12.26

CBP-MA 91.17 45.28 12.35 91.33 42.35 10.99
Note Values in bold represent the optimal result
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(5) The combination of containing ratio and bandwidth index demonstrates the
probabilistic model performance with the auxiliary index-average deviation
amplitude. It is found that containing ratio is approximately equal to the per-
centage of the confidence interval. The CBMA or CBP-BMA methods out-
perform BMA method regarding evaluation criteria with a high containing
ratio, small uncertainty, and average deviation amplitude.
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