
Chapter 3
Copula-Based Flood Frequency Analysis

3.1 Introduction

Flood frequency analysis is a constant concern in the hydrological practice. The
sizing of bridges, culverts and other facilities, the design capacities of levees,
spillways and other control structures, and reservoir operation or management
depend upon the estimated magnitude of various design flood values (ASCE 1996).
Nowadays, the general methodology based on the univariate distribution is to
derive the fitted distribution representing the probability of an annual maximum
flood being exceeded (USWRC 1981; MWR 2006).

As the duration of gauged record rarely exceeds 50 years, estimates corre-
sponding to high return period obtained from the systematic data alone are subject
to large sampling errors. Furthermore, the existence of a cyclic variation over
periods longer than the duration of the records might well introduce further bias
(Leese 1973; Stedinger and Cohn 1986; Guo and Cunnane 1991). Therefore, to
overcome the problem of relatively short data series for frequency analysis, the
need to augment the flow record with historical is widely acknowledged in the
hydrological community. Several methods for incorporating historical information
into flood frequency studies have been suggested, including historically weighted
moments, maximum likelihood, probability weighted moments and L-moments
(USWRC 1982; Guo and Cunnane 1991; Hosking 1995).

The hydrologic extreme values and critical thresholds derived from complex
hydrological events for engineering design are usually obtained from single site
characteristics (e.g., annual maximum peak discharge). Therefore, conventional
hydrological frequency analysis has also mainly focused on one characteristic value
and univariate distributions that cannot provide a complete description of hydro-
logic events with multi-characteristics. Many hydrological frequency problems,
such as design flood hydrograph that includes flood peak and flood volumes, should
be solved by the multivariate distributions (Dupuis 2007; Xiao et al. 2008, 2009).

© Springer Nature Singapore Pte Ltd. 2019
L. Chen and S. Guo, Copulas and Its Application in Hydrology
and Water Resources, Springer Water, https://doi.org/10.1007/978-981-13-0574-0_3

39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0574-0_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0574-0_3&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0574-0_3&amp;domain=pdf


In this chapter, the multivariate frequency analysis has been carried out. One of
the main difficulties in the multivariate quantile estimation is how to choose the
proper combinations of design values of the concerned random variables for a given
multivariate return period of hydrologic structure design. Take the bivariate case
(peak discharge Q and flood volume W) as an example. The combinations can differ
greatly regarding their values: moving along the multivariate quantile curve to an
asymptote, one of the two variables will approach its marginal value, while the
other tends to increase indefinitely (for unbounded random variables). Chebana and
Ouarda (2011) proposed the decomposition of the level curve into a naive part (tail)
and the proper part (central); they assumed that the naive part was composed of two
segments starting at the end of each extremity of the proper part. Salvadori et al.
(2011) introduced two basic design realizations, i.e., component-wise excess design
realization and most-likely design realization. Li et al. (2016) used the conditional
expectation combination method to derive the quantiles of flood peak and 7-day
volume under different JRPs, and they found that the bivariate design values have
smaller flood volume and larger flood peak than bivariate equivalent frequency
combination results.

3.2 Annual Maximum Flood Frequency Analysis
Based on Copula

Annual maximum (AM) flood series can be characterized by flood occurrence dates
and flood magnitudes. The marginal distribution of flood occurrence dates, peak
discharges, and flood volumes are established.

3.2.1 Margin Distribution of AM Flood Occurrence Dates

The AM flood occurrence dates can be described by the directional statistics
(DS) method. The date firstly should be converted to the angle of a circle by

ai ¼ Di
2p
L

0� ai � 2p ð3:1Þ

where L is the length of flood season; Di is the flood occurrence date.
The x and y coordinates of the flood dates described by the angles is determined

by

ðai; biÞ ¼ ðcos ai; sin aiÞ ð3:2Þ

�a ¼
Xn
i¼1

cos xi=n ð3:3Þ

40 3 Copula-Based Flood Frequency Analysis



�a ¼
Xn
i¼1

sin xi=n ð3:4Þ

where n is the sample size.
The mean direction of the circular data (denoted by �h) is estimated by

h ¼

arctan b=a �a[ 0; �b[ 0
2pþ arctan b=a �a[ 0; �b\0
pþ arctan b=a �a\0
p=2 �a ¼ 0; �b[ 0
3p=2 �a ¼ 0; �b\0
unkown �a ¼ 0; �b ¼ 0

8>>>>>><
>>>>>>:

ð3:5Þ

A measure of the variability of the flood occurrences about the mean date is
determined by defining the mean resultant vector as:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

2
q

0� r� 1 ð3:6Þ

where �r describes the dispersion measure (Black and Werritty 1997).
Since the distribution of dates is on a circle, rather than along a line, the use of

the normal distribution is no longer appropriate. Therefore, the von Mises distri-
bution is introduced and used to describe seasonal data with a single peak.

Fisher (1993) termed the von Mises distribution as the “natural” analog of the
normal distribution for seasonal data with a single peak. It is the most commonly
used and has some similar characteristics to the normal distribution (Mardia 1972).
The probability density function of von Mises distribution is given by:

f ðxÞ ¼ 1
2pI0ðjÞ exp½j cosðx� lÞ� 0� x� 2p; 0� l� 2p; j� 0 ð3:7Þ

It is symmetric and unimodal, with a mean direction at l and the dispersion
given by a concentration parameter j ¼ A�1ðrÞ∙ A�1ðrÞ is the inverse function of
A∙I0ðjÞ is the modified Bessel function of order zero. For large values of к, the
distribution is concentrated around the mean. When к = 0, the density gives the
uniform distribution on [0, 2].

3.2.2 Margin Distribution of AM Flood Peaks and Volumes

For the AM flood series, the Pearson type III (P-III) has been recommended by
MWR (2006) as a uniform procedure for flood frequency analysis in China.
The PDF of the P-Ш distribution is given in Table 1.1 of Chap. 1.
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3.2.3 Bivariate Distribution of AM Flood Occurrence
Dates and Magnitudes

For estimating the design flood, the bivariate joint distributions of AM flood
occurrence dates and magnitudes (or flood peaks and volumes) need to be built.
Every joint distribution can be written regarding a copula and its univariate mar-
ginal distributions. The copula is a function that links univariate marginal distri-
bution functions to construct a multivariate distribution function. The definition and
establishment of copulas can be seen in Chap. 2. The Gumbel copula is used to
establish the joint distribution in this section.

3.2.4 Case Study

As an illustrative example, the Geheyan reservoir is selected as a case study. The
Geheyan reservoir is a key control and multi-purpose water resources engineering
project in the Qingjiang Basin, which is one of the main tributaries of the Yangtze
River in China. The basin encompasses an area of 17,000 km2 with the annual
average rainfall 1500 mm. The annual average discharge and runoff at dam site are
393 m3/s and 124 � 108 m3 (from 1951 to 2005), respectively. The flood season
lasts for five months from 1 May to 30 September (153 days).

3.2.4.1 Computation of Empirical Probability

The empirical probabilities can be computed by the Gringorten plotting–position
formula

PðjÞ ¼ j� 0:44
nþ 0:12

ð3:8Þ

where P(j) is the cumulative frequency, indicating the probability that a given value
is less than the jth smallest observation in the data set of n observations.

Observed joint probabilities are computed based on the same principle as in the
case of a single variable. A two-dimensional table is constructed first in which the
variables X and Y are arranged in ascending order. The joint cumulative frequency
(non-exceedance joint probability) is then given by (Yue et al. 1999):

Fðtk; qjÞ ¼ PðX � tk; Y � qjÞ ¼
Pk
m¼1

Pj
l¼1

nm; l � 0:44

nþ 0:12
ð3:9Þ
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3.2.4.2 Evaluation Criteria

A Chi-Square Goodness-of-fit test (v2), mean Rbias and RRMSE are selected to test
the fitting descriptive ability of flood frequency curve, which can be calculated by

v2 ¼
Xn
i¼1

PtheðiÞ � PempðiÞ
� �2

=PempðiÞ ð3:10Þ

Rbias ¼ 1
n

Xn
i¼1

Q̂ðiÞ � QðiÞ� �
=QðiÞ ð3:11Þ

RRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

Q̂ðiÞ � QðiÞ
QðiÞ

� �2
vuut ð3:12Þ

where Pthe and Pemp are the theoretical and empirical frequencies; and Q̂ðiÞ and QðiÞ
are the estimated and observed values, respectively.

3.2.4.3 Conditional Probability

The parameters of Von Mises and P-III distribution are estimated by L-moments
method for given AM flood series of occurrence dates, peak discharges or volumes,
respectively. A Chi-Square Goodness-of-fit test is performed to test the assumption,
H0, that the flood occurrence dates and magnitudes follow the Von Mises and P-III
distributions. Table 3.1 shows that the assumption cannot be rejected at the 0.5%
significance level. It is shown that the values of Rbias and RRMSE are very small,
which mean that the marginal distribution can fit data set very well.

Table 3.2 lists the conditional probability of P(X > xp|Y > y1%) given xp. Under
the condition of annual maximum flood magnitude Y > y1%, the probability cor-
responding occurrence date after May 27 is 98.45%, the probability of annual
maximum flood occurred during May 27 to 29 is (98.45−29.86%) = 68.59%, and
during July 18 to 29 is (81.16−75.29%) = 5.87%.

Table 3.1 The goodness of fit and v2 test statistics

Index Rbias RRMSE v2 c v20:995ðN � c� 1Þ
Von Mises −4.378 0.982 0.253 2 82.001

P-III 0.254 0.327 0.903 3 80.747

Bivariate 4.400 6 76.969
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3.2.4.4 Fitting Marginal Distributions

The marginal distribution frequency curves of flood peaks and 7-day flood volumes
are shown in Fig. 3.1, in which the line represents the theoretical distribution, and
the crossing represents the empirical probabilities. Figure 3.1 indicates that these
theoretical distributions can fit the observed data reasonably well.

The Gumbel copula is used to model the dependence between the extreme
maximum annual flood peaks and 7-day flood volume in this study. The probability
plot of joint distribution is shown in Fig. 3.2, in which the Gumbel copula can fit
the empirical bivariate distribution very well.

3.3 Copula-Based Flood Frequency Considering
Historical Information

Flood events consist of flood peaks and flood volumes that are mutually correlated
and need to be described by multivariate analysis methods, of which the copula
functions are most desirable ones. Until now, the multivariate flood frequency

Table 3.2 Conditional probability of X given Y > y1%

P (%) 0.01 0.1 1 10 20 30 40 50 70 90 99

xp
(Arc)

6.28 6.27 6.09 4.48 3.71 3.27 2.92 2.62 2.02 1.11 0.17

Dates 9/
29

9/
28

9/25 8/17 7/29 7/18 7/10 7/2 6/18 5/27 5/4

CP
(%)

0.84 6.17 29.86 65.42 75.29 81.16 85.47 88.93 94.36 98.45 99.87

Note CP means the conditional probabilities P(X > xp|Y > y1%)

(a) Flood peak (b) 7-day flood volume

Fig. 3.1 Probability curves of flood peak and 7-day flood volume
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analysis methods based on copulas doesn’t consider the historical flood informa-
tion. This may underestimate or overestimate the flood quantiles or conditional
probabilities corresponding to high return periods, especially when the length of
gauged record data series is relatively short.

3.3.1 Maximum Likelihood Estimation for Censored
Samples

In certain sampling situations, the exact values of a proportion of the sample are
unknown, although their range may be specified. Usually, the range consists of all
points above or below a threshold level. Under these circumstances, the sample is
said to be censored. Censored samples occur, for example, when instruments are
not calibrated for measurements above or below a certain level. Both historical data
and recent flood data (i.e., systematic record) may give rise to censored samples, but
because the censoring is generally above a threshold in the former and below in the
latter, they must be treated separately (Leese 1973).

Censored-sample maximum likelihood estimators were initially developed by
Hald (1949) and Cohen (1976) for the normal and lognormal distributions. They
were subsequently adapted by Leese (1973), Condie and Lee (1982), and Stedinger
and Cohn (1986) for common case in hydrology where one have both a
censored-sample historical flood record and also a systematic gaged record. The
maximum likelihood estimation method for type-I censoring is described as
follows.

In the annual maximum flood series of Fig. 3.3, there is a total of g known
floods. Of these, k is known to be the k largest in the period of n years. The n year
period contains within it a systematic record (recently gauged data) of s years
(s � n) length. Of the k largest floods, c occurred during the systematic record

(a) Bivariate probability distribution (b) Kendall’s function results

Fig. 3.2 Comparison of observed and theoretical bivariate probability distribution
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(c � k and c < s, and also g = s+k−c). Assume a fixed threshold X0 exceeded by
the k largest floods and not exceeded by any of the remaining n–k floods, recorded
or not (i.e., the k values which exceed X0 form a type I censored sample). It is also
noted that the m (m = k−c) floods in the pre-gauging period h (h = n−s) are known
as they are included in the k values which exceed X0, and it is assumed that no other
floods exceeded the threshold during that period.

Let fX and FX denote the probability density function (PDF) and the cumulative
distribution function (CDF) of variable X, respectively. The resulting likelihood
function for the whole sample of s+m known and h−m unknown values is given by
(Leese 1973; Condie 1986; Stedinger and Cohn 1986; Guo and Cunnane 1991)

lðaÞ ¼
Ysþm

i¼1

fXðxiÞ½
ZX0

�1
fXðxÞdx�h�m ð3:13Þ

where a is the parameter vector of fX and FX.
Since c flood events exceeding the perception threshold X0 occur among the

systematic data (analogously to the sketch in Fig. 3.3), the c events are virtually
removed from the period s and are treated as historical data (Bayliss and Reed
2001). Then, Eq. 3.13 can be expressed as

Fig. 3.3 Sketch of the annual maximum flood series when historical floods are available.
Notations: s—the length of the systematic record; h—the length of the pre-gauging period; y1, y2,
y3—historical flood events; X0—perception threshold
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lðaÞ ¼
Ys�c

i¼1

fXðxiÞ
Yk
j¼1

fXðyjÞ½
ZX0

�1
fXðxÞdx�h�m ð3:14Þ

where xi(i = 1, 2 … s − c) denotes the systematic data less than the threshold
X0 and yi(j = 1, 2 … k) denotes the k (k = m+c) largest floods exceeding the

threshold X0;
Qs�c

i¼1
fXðxiÞ and

Qk
j¼1

fXðyjÞ are the likelihood functions of s−c systematic

records and the k largest floods, respectively; and ½R X0

�1 fXðxÞdx�h�m represents the
likelihood function for the h−m unknown values, which has been defined and
applied by Leese (1973), Condie (1986), Stedinger and Cohn (1986), and Guo and
Cunnane (1991).

The log-likelihood function for the univariate distribution can be expressed as

LðaÞ ¼
Xs�c

i¼1

log fXðxiÞþ
Xk
j¼1

log fXðyjÞþ ðh� mÞ logFXðX0Þ ð3:15Þ

The maximum likelihood estimates are those values of a that maximize
Eq. 3.15.

3.3.2 Bivariate Flood Frequency Analysis with Historical
Information

The conventional flood frequency analysis incorporation with historical information
is based on univariate distribution. To overcome the shortcomings of univariate
frequency analysis, a multivariate copula-based flood frequency analysis model that
considers historical information was proposed and discussed by Li et al. (2013). As
the historic flood events occurred hundreds of years ago, the durations of them are
hard to measure or investigate. There is no publication or any gauged record related
to the duration samples of historical floods. Besides, the perception threshold of
flood duration is also difficult to fix for maximum likelihood estimation. Thus, only
the distribution of flood peak and volume with historical information is studied.

3.3.3 Inference Function for Margins Method

In classical statistics, the inference function for margins (IFM) method was first
defined as a terminology by McLeish and Small (1988). Compared with other
estimation methods, the IFM method is the preferred fully parametric method for
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multidimensional parameter estimation because it is close to maximum likelihood
(ML) in approach and is easier to implement (Joe and Xu 1996; Joe 1997).
Comparisons of various types have been made in Xu (1996) for some multivariate
models which suggest that the IFM method is highly efficient compared to maxi-
mum likelihood. Similar comparisons have also been made by Joe (1997), (2005)
and the derived conclusions are: (1) the ML estimation is much more
time-consuming than IFM method, (2) the IFM method allows one to do inference
and modelling starting with univariate and lower-dimensional margins, (3) there is
some robustness against misspecification of the dependence structure and also there
should be more robustness against outliers or perturbations of the data, compared
with the ML method; and (4) the IFM rather than the ML method avoids the
sparseness problem to a certain degree, especially if parameters can all be estimated
from univariate and bivariate likelihoods. Therefore, the IFM method is selected
and described briefly as follows:

Under the assumption that the marginal distributions are continuous with
probability density functions fXðx; a1Þ and fYðy; a2Þ, the joint PDF then becomes

fX;Yðx; y; a1; a2; hÞ ¼ ch½FXðx; a1Þ;FY ðy; a2Þ�fXðx; a1ÞfYðy; a2Þ ð3:16Þ

where FX and FY are univariate CDFs with respective parameter vectors a1, a2, and
ch is the density of Ch parametrized by a parameter h, defined as

chðu; vÞ ¼ @2Chðu; vÞ
@u@v

ð3:17Þ

For the observed bivariate series (x1, y1),…, (xs, ys) with a sample size s, we can
consider the two log-likelihood functions for the univariate marginal distribution,
i.e.

L1ða1Þ ¼
Xs
i¼1

log fXðxi; a1Þ ð3:18aÞ

L2ða2Þ ¼
Xs
i¼1

log fYðyi; a2Þ ð318bÞ

and the log-likelihood function for the joint distribution,

Lðh; a1; a2Þ ¼
Xs
i¼1

log fX;Yðxi; yi; a1; a2; hÞ ð3:19Þ

The IFM method consists of two separate optimizations of univariate likeli-
hoods, followed by an optimization of multivariate likelihood as a function of the
dependence parameter vector. More specifically,
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(a) The log-likelihoods L1ða1Þ and L2ða2Þ of the two univariate marginal distri-
butions are separately maximized by Eq. 3.18a, 318b to get estimates â1 and
â2;

(b) The function Lðh; â1; â2Þ is maximized over h to get ĥ in Eq. 3.19.

That is, under regularity conditions, ðâ1; â2; ĥÞ is the solution of

ð@L1=@a1; @L2=@a2; @L=@hÞ ¼ 0 ð3:20Þ

This procedure is computationally simpler than that of estimating all parameters
a1; a2; h simultaneously in Eq. 3.19.

3.3.4 Modified IFM Method with Incorporation
of Historical Information

Since the current IFM method can only be used for systematic data series, a
modified IFM (MIFM) method with an incorporation of historical and paleological
information is proposed and described as follows.

Let xi and yi (i = 1,…, s-c) respectively denote the systematic data of marginal
distributions (flood peak and volume); gj and pj (j = 1,…, k) respectively denote the
k largest floods of marginal distributions (flood peak and volume) with the same
years of occurrence. Of the k largest floods, c occurred during the systematic record
and m occurred during the pre-gauging period h (k = m+c and h = n − s); X0 (or
Y0) is the fixed threshold of margin exceeded by the k largest flood peaks (or
volumes) and not exceeded by any of the remaining n − k flood peaks (or volumes).
Furthermore, let fx, and fy denote the univariate marginal PDFs, and Fx, and Fy

denote the univariate marginal CDFs of variables X and Y, respectively. fXY denotes
the joint PDF.

Referring to Eq. 3.14, the likelihood function with historical floods for joint
distributions can be described as

lðh; a1; a2Þ ¼
Ys�c

i¼1

fXY ðxi; yiÞ
Yk
j¼1

fXY ðgj; pjÞ½
ZX0

�1

ZY0
�1

fXY ðx; yÞdxdy�h�m

¼
Ys�c

i¼1

fXY ðxi; yiÞ
Yk
j¼1

fXY ðgj; pjÞfCh½FXðX0Þ;FYðY0Þ�gh�m

ð3:21Þ
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Then, the log-likelihood function for joint distribution can be expressed as:

Lðh; a1; a2Þ ¼
Xs�c

i¼1

log ch½FXðxiÞ;FY ðyiÞ�þ
Xk
j¼1

log ch½FXðgjÞ;FYðpjÞ�

þ ðh� mÞ logCh½FXðX0Þ;FYðY0Þ� þ
Xs�c

i¼1

log fXðxiÞþ
Xk
j¼1

log fXðgjÞ

þ
Xs�c

i¼1

log fYðyiÞþ
Xk
j¼1

log fYðpjÞ

ð3:22Þ

In which, the two log-likelihood functions for the univariate marginal distribu-
tion are

L1ða1Þ ¼
Xs�c

i¼1

log fXðxiÞþ
Xk
j¼1

log fXðgjÞ ð3:23Þ

L2ða2Þ ¼
Xs�c

i¼1

log fYðyiÞþ
Xk
j¼1

log fYðpjÞ ð3:24Þ

Similar to the IFM method, the MIFM method also consists of two separate
procedures:

(a) The log-likelihoods L1ða1Þ and L2ða2Þ are separately maximized by Eqs. 3.23
and 3.24 to get estimates â1 and â2;

(b) The function Lðh; â1; â2Þ is maximized by Eq. 3.22 over h to get ĥ.

As a consequence, the precious historical information is used to estimate not
only the parameters of marginal distributions but also the dependence parameters of
joint distribution that is based on the correlation of the marginal distributions. The
more additional information of marginal distribution provides, the more precise
dependence structure will be obtained.

3.3.5 Case Study

The Three Gorges reservoir (TGR) in China is selected as an illustrative example.
The basin area of TGR is one million km2, and the annual average discharge and
runoff volume at the dam site are 14,300 m3/s and 4510 � 108 m3, respectively.
The TGR located on middle reaches of the Yangtze River is the largest water
conservancy project in the world, with a normal pool level at an elevation of 175 m.
The total storage capacity of the TGR is 393 � 108 m3, of which 221.5 � 108 m3
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is flood control storage, and 165 � 108 m3 is the conservation regulating storage
volume. With 26 hydro-generators installed, the mean annual electricity output of
the TGR reaches up to 847 � 108 kW•h. The TGR also plays a key role in the
flood prevention of Yangtze River basin which is the richest area in China (Li et al.
2010).

3.3.5.1 Systematic Record and Historical Floods

The annual maximum peak discharge (Q), 3-day flood volume (W3), and 15-day
flood volume (W15) are available with a systematic record of 128 years (1882–
2009, i.e., no systematic data are formally gauged before 1882). Besides the sys-
tematic observations, a lot of historical flood events had been investigated by
CWRC (Changjiang Water Resources Commission) in the last century for the
design of the Three Gorges Project. The gathered information from gauging
authority records, historical documents, archives, flood marks and stone inscriptions
showed the concrete positions of high water stages recorded. As a result, the eight
largest historical floods since 1153 were quantificationally evaluated by CWRC and
other relevant units (CWRC 1996).

As the same notations defined previously, the length of the systematic obser-
vations is unequivocally given: s = 128 years; since no extraordinary flood
occurred during the systematic record, c = 0 and k = m; for the joint distribution of
flood peak (Q) and 3-day flood volume (W3), k = m = 8; for the joint distribution of
flood peak and 15-day flood volume (W15), k = m = 3; the perception thresholds of
peak discharge, 3-day flood volume and 15-day flood volume are X0Q = 80,000 m3/
s, X0w3 = 200 � 108 m3 and X0w15 = 780 � 108 m3, respectively; and the
pre-gauging period, h = 730 (i.e. from 1153 to 1882). These data settings are also
listed in Table 3.3.

3.3.5.2 Parameter Estimation for Marginal Distributions

The empirical probabilities of univariate discontinuous series can be computed by
Weibull formula recommended by MWR (2006)

Pi ¼ Pðx� xiÞ ¼ PhðiÞ ¼ i
nþ 1 i ¼ 1; � � � ; k

PsðiÞ ¼ PhðkÞþ ð1� PhðkÞÞ � i
s�cþ 1 i ¼ 1; � � � ; s� c

�
ð3:25Þ

Table 3.3 Data settings for
the modified IFM method

Variables Threshold X0/Y0 h s k m

Q (m3/s) 80,000 730 128 8 8

W3 (10
8 m3) 200

Q (m3/s) 80,000 730 128 3 3

W15 (10
8 m3) 780
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where Pi represents the exceedance probability; Ph(i) is the empirical probabilities
of historical floods for i = 1,…, k; Ps(i) is the empirical probabilities of systematic
data for i = 1,…, s−c; and the meanings of n, k, s, c are the same as those defined in
Fig. 3.3.

The parameters of the P-III marginal distributions estimated by the first stage of
the MIFM method in Eqs. 3.23 and 3.24 are listed in Table 3.4. A Chi-Square
Goodness-of-fit test is performed to test the assumption, H0, that the flood mag-
nitudes follow the P-III distribution. Table 3.5 shows that the assumption cannot be
rejected at the 5% significance level. The marginal distribution frequency curves of
flood peak and flood volumes are drawn in Fig. 3.4, in which the line represents the
theoretical distribution, the crossings and circles represent systematic record and
historical flood data, respectively. Figure 3.4 indicates that all the theoretical dis-
tributions can fit the observed data reasonably well.

3.3.5.3 Empirical Joint Probabilities of Dependence Flood Variables

Empirical (observed) joint probabilities of flood peak (Q) and volume (W) are
computed in a manner analogous to that for a univariate variable.
A two-dimensional table is constructed in which the variable X and Y are arranged
in descending order. The joint probabilities (exceedance) of k historical floods and
s-c systematic data are empirically computed separately, which are expressed as

Fðxi; yiÞ ¼
PðX� xi; Y � yiÞ ¼

PhðiÞ ¼
Pi
l¼1

Pi
p¼1

Nlp

nþ 1 i ¼ 1; . . .; k

PsðiÞ ¼ PhðkÞþ ð1� PhðkÞÞ �
Pi
l¼1

Pi
p¼1

Mlp

s�cþ 1 i ¼ 1; . . .; s� c

8>>>><
>>>>:

ð3:26Þ

where F(xi, yi) is obtained by arranging the number of (xi, yi) by either xi or yi;
Ph(i) is the empirical joint probabilities of historical floods and Nlp is the number of
(xi, yi) counted as xj � xi and yj � yi, i = 1,…, k, 1 � j� i; Ps(i) is the empirical

Table 3.4 Estimated
parameters of P-III marginal
distributions for flood peak
and volumes by MIFM

Variables â b̂ d̂

Q (m3/s) 11.11 0.0003 17066.7

W3 (10
8 m3) 11.89 0.1348 39.7

W15 (10
8 m3) 18.26 0.0463 118.22

Table 3.5 Hypothesis test
results of P-III marginal
distributions for flood peak
and volumes

Variables v0.05 Chi-Square statistics, v2

Q (m3/s) 7.815 4.924

W3 (10
8 m3) 9.488 5.048

W15 (10
8 m3) 7.815 4.110
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joint probabilities of systematic data and Mlp is the number of (xi, yi) counted as
xj � xi and yj � yi, i = 1,…, s−c, 1 � j� i; and n is the total length of the
analyzed time period (n = s+h).

3.3.5.4 Identification of Copula

The parameters of marginal distributions are estimated in the first stage of MIFM
method. The dependence parameter h is obtained by maximizing the log-likelihood
function of the joint distribution. For Gumbel copula, the estimation results are
h = 16.2524 for the joint distribution of flood peak and 3-day flood volume, and
h = 3.2977 for that of flood peak and 15-day flood volume. For Student copula, the

(a) Flood peak (b) 3-day flood volume

(c) 15-day flood volume

Fig. 3.4 P-III distributions fitted to flood peak and volumes with historical information
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estimation results are (h = 0.9947, m = 6) for the joint distribution of flood peak and
3-day flood volume, and (h = 0.8598, m = 5) for that of flood peak and 15-day flood
volume. The root mean square errors (RMSE) of Gumbel and Student copulas are
listed in Table 3.6. The comparison results show that the Gumbel copula represents
the bivariate distribution of correlated flood peak and volumes better than that of
Student copula.

The upper tail dependence coefficients (TDC) of Gumbel copula (kU ¼ 2� 21=h)
and student’s t copula (kU ¼ 2tmþ 1 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmþ 1Þð1� hÞ=ð1þ hÞp� �

) are computed by
the estimated parameters and listed in Table 3.6. The upper TDC can also be
estimated by the nonparametric estimation, which is a much more general as no
assumption is made about copula and marginal distributions (Poulin et al. 2007).
The Log, Sec and CFG estimators of upper TDC (Coles et al. 1999; Joe et al. 1997;
Poulin et al. 2007; Frahm et al. 2005) are respectively determined as follows.

k
_LOG

U ¼ 2� logCn ðn� kÞ=n; ðn� kÞ=nð Þ
log ðn� kÞ=nð Þ ; 0\k\n ð3:27Þ

k
_SEC

U ¼ 2� 1� Cn ðn� kÞ=n; ðn� kÞ=nð Þ
1� ðn� kÞ=n ; 0\k\n ð3:28Þ

k
_CFG

U ¼ 2� 2 exp
1
n

Xn
i¼1

log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

1
Ui

log
1
Vi

r
= log

1

maxðUi;ViÞ2
 !" #

ð3:29Þ

in which

Cnðu; vÞ ¼ 1
n

Xn
i¼1

Ið Ri

nþ 1
� u;

Si
nþ 1

� vÞ ð3:30Þ

where Cnðu; vÞ is the empirical copula, I denote the indicator function, Ri and Si are
the ranks of block maxima xi and yi, respectively. ðU1;V1Þf ; . . .; ðUn;VnÞg denote
random sample obtained from the copula C.

The nonparametric estimation results of upper TDC are calculated and also listed
in Table 3.6. The comparison results of Table 3.7 show that the upper TDC of
Gumbel copula is much closer to the nonparametric estimation results than that of

Table 3.6 RMSE of Gumbel and student’s copulas and upper TDC estimated by parametric and
nonparametric methods

Variables RMSE kU of copula k̂LOGU k̂SECU k̂CFGU
Gumbel Student Gumbel Student

Q (m3/s) 0.0262 0.0874 0.9564 0.8954 0.9442 0.9511 0.9482

W3 (10
8 m3)

Q (m3/s) 0.0413 0.2149 0.7661 0.5262 0.7218 0.7618 0.7109

W15 (10
8 m3)
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student copula. This indicates that Gumbel copula reproduces better the observed
tail dependence coefficient, and the extreme behavior of Gumbel copula is more
similar to that of the sample. Therefore, the Gumbel copula is used to model the
dependence between the extreme maximum annual flood peak and volumes in this
study.

3.3.5.5 Copula-Based Conditional Distributions

The conditional flood distributions with historical flood data can be easily derived if
the copula-based bivariate flood distribution is constructed. For instance, the con-
ditional distributions for flood volume given that the peak discharge exceeding a
certain threshold qx0 can be expressed as

PðW �w Q[ qX0j Þ ¼ PðW �w;Q[ qX0Þ
PðQ[ qX0Þ

¼ FYðwÞ � Ch½FXðqX0Þ;FYðwÞ�
1� FXðqX0Þ

ð3:31aÞ

PðW [w Q[ qX0j Þ ¼ PðW [w;Q[ qX0Þ
PðQ[ qX0Þ

¼ 1� FXðqX0Þ � FY ðwÞþCh½FXðqX0Þ;FYðwÞ�
1� FXðqX0Þ

ð3:31bÞ

where Fx and FY represent the marginal distributions, and h represents the depen-
dence parameter of the bivariate distribution.

Likewise, the conditional distribution functions for peak discharge given that the
flood volumes exceeding a certain threshold WY0 can be expressed as

PðQ� q W [wY0j Þ ¼ PðQ� q;W [wY0Þ
PðW [wY0Þ

¼ FXðqÞ � Ch½FXðqÞ;FYðwY0Þ�
1� FYðwY0Þ

ð3:32aÞ

Table 3.7 Parameters of marginal distributions and copula estimated by different data and
methods

Variables IFM MIFM

P-III Copula P-III Copula

â b̂ d̂ ĥ â b̂ d̂ ĥ

Q (m3/s) 13.72 0.0004 16933.3 15.1545 11.11 0.0003 17066.7 16.2524

W3 (10
8 m3) 15.75 0.1736 36.28 11.89 0.1348 39.7

Q (m3/s) 13.72 0.0004 16933.3 3.0962 11.11 0.0003 17066.7 3.2977

W15 (10
8 m3) 22.15 0.0541 102.38 18.26 0.0463 118.22
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PðQ[ q W [wY0j Þ ¼ PðQ[ q;W [wY0Þ
PðW [wY0Þ

¼ 1� FXðqÞ � FY ðwY0ÞþCh½FXðqÞ;FY ðwY0Þ�
1� FY ðwY0Þ

ð3:32bÞ

The historical floods, which usually occurred as extraordinary events, may help
exposit the correlation of variables with high return period. As a consequence, the
incorporation of historical information into bivariate frequency analysis can provide
better insight into the dependence structure of variables. The conditional proba-
bilities accounting for historical floods can provide more comprehensive and ade-
quate information, which is useful in evaluating the flood prevention capability.

3.3.5.6 Comparative Study and Discussions

The comparative study and discussions of MIFM and IFM methods are conducted
in this section. First, the parameters of marginal distributions (Q, W3, and W15) and
copulas are estimated by IFM and MIFM methods, respectively. Table 3.7 shows
that the different data and methods lead to different parameter estimation results of
both marginal distributions and copula. Second, the quantiles of flood peak (Q),
3-day flood volume (W3) and 15-day flood volume (W15) are estimated by uni-
variate distribution (Chinese design flood guidelines), MIFM and IFM methods,
respectively.

The Relative Errors (RE) of T-year quantile estimator are calculated by

RE ¼ X̂T � XT

XT
� 100% ð3:33Þ

where XT is the univariate quantile estimated by univariate distribution (Chinese
design flood guidelines) with an incorporation of historical information; X̂T rep-
resents the bivariate quantiles estimated by MIFM method with an incorporation of
historical information or by IFM method using systematic records alone.

The relative errors (RE) of flood peak, 3-day flood volume, and 15-day flood
volume are calculated and listed in Tables 3.8, 3.9, and 3.10, respectively. The
results of these tables indicate that the bivariate quantiles estimated by MIFM

Table 3.8 Comparison of quantile Q estimated by univariate and bivariate distributions

T (years) Univariate quantile QT (m3/s) MIFM IFM

Q̂T (m3/s) RE (%) Q̂T (m3/s) RE (%)

10,000 102,900 103,100 0.19 95,900 −6.80

1000 91,700 91,900 0.22 86,400 −5.78

100 79,400 79,700 0.38 75,800 −4.53

Mean relative error 0.26 −5.70
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approach is much closer to the univariate quantiles than that estimated by IFM
method. The quantiles estimated by IFM method are much smaller than that of
Chinese design flood guidelines. The mean relative errors are equal to −5.70,
−3.24, and −1.88% for flood peak, 3-day flood volume, and 15-day flood volume,
respectively.

3.4 Bivariate Design Flood Quantile Selection
Using Copulas

To derive the feasible range, a boundary identification method is suggested, which
is inspired by the ideas of Chebana and Ouarda (2011) and Volpi and Fiori (2012).
Li et al. (2016) estimated the bivariate feasible ranges of flood peak and flood
volume suitable for combination in the critical level curve. Two combination
methods for estimating unique bivariate flood quantiles, i.e., the EFC method and
the CEC method, are proposed based on the assumption of the relationship between
u and v (or q and w).

3.4.1 Bivariate Return Period

In the conventional univariate analysis, flood events of interest are often defined by
return periods. In the bivariate domain, however, it is still discussed by the

Table 3.9 Comparison of quantile W3 estimated by univariate and bivariate distributions

T (years) Univariate quantile W3T

(108 m3)
MIFM IFM

Ŵ3T

(108m3)
RE
(%)

Ŵ3T

(108m3)
RE
(%)

10,000 255.9 256.3 0.16 246.0 −3.87

1000 228.4 228.9 0.22 220.8 −0.33

100 198.0 198.6 0.30 193.0 −2.53

Mean relative error 0.23 −3.24

Table 3.10 Comparison of quantile W15 estimated by univariate and bivariate distributions

T (years) Univariate quantile W15T

(108 m3)
MIFM IFM

Ŵ15T

(108 m3)
RE
(%)

Ŵ15T

(108 m3)
RE
(%)

10,000 950.3 958.2 0.83 924.4 −2.73

1000 859.5 868.1 1.00 842.5 −1.97

100 757.9 767.8 1.31 750.7 −0.95

Mean relative error 1.05 −1.88
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community as to which method is most suitable to transform the joint exceedance
probability to a bivariate joint return period (JRP). Different JPRs estimated by
copula function have been developed for the case of a bivariate flood frequency
analysis. Eight types of possible joint events were presented by Salvadori and De
Michele (2004) using “OR” and “AND” operators, of which, two cases are of the
greatest interest in hydrological applications (Shiau et al. 2006; Salvadori and De
Michele 2004):

(1) (OR case) either Q > q or W > w, i.e.,

Eor ¼ Q[ q orW [wf g ð3:34Þ

(2) (AND case) both Q > q and W > w, i.e.,

Eand ¼ Q[ q andW [wf g ð3:35Þ

In simple words: for Eor to happen it is sufficient that either peak discharge Q or
flood volume W (or both) exceed given thresholds; instead; for Eand to happen it is
necessary that both Q and W are larger than prescribed values. Thus, two different
JRPs can be defined accordingly (De Michele et al. 2005):

Tor ¼ l
P Q[ q or W [w½ � ¼

l
1� Fðq;wÞ ð3:36Þ

Tand ¼ l
P Q[ q and W [w½ � ¼

l
1� FQðqÞ � FWðwÞþFðq;wÞ ð3:37Þ

where l is the mean inter-arrival time between two consecutive events (in the case
of annual maxima l = 1 year), and F(q, w) = P(Q � q, W � w).

The Kendall JRP was introduced by Salvadori and De Michele (2004) to identify
the univariate critical threshold in a multivariate context, which is given by:

ht ¼ lT
1� KCðtÞ ð3:38Þ

where KC is the Kendall’s distribution function associated with the joint cumulative
distribution function of the copula’s level curves: KC(t) = P[C(u, v) � t]. It allows
for the calculation of the probability that a random point (u, v) in the unit square has
a smaller (or larger) copula value than a given critical probability level t. In other
words, it is related to the probability of occurrence of an event in the area over the
copula level curve of value t.

Different definitions of the multivariate return period are available in the literature,
based on regression analysis, bivariate conditional distributions, survival Kendall
distribution function, and structure performance function. For instance, some studies
have focused on a structure-based return period for the design and or risk assessment
of hydrological structures in a bivariate environment (Volpi and Fiori 2014).
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A comprehensive review of the JRP estimation methods was given by Volpi and Fiori
(2014).

The OR return period given in Eq. 3.36 has been extensively applied in multi-
variate hydrological frequency analysis (e.g., Shiau et al. 2006; Salvadori and De
Michele 2004; Chebana and Ouarda 2011; Volpi and Fiori 2012; Li et al. 2013). In
this study, we focus on the OR case for quantile estimation in a bivariate context.

3.4.2 Feasible Range Identification for Bivariate
Quantile Curve

The critical level curve, as shown in Fig. 3.5, was defined as a bivariate quantile
curve by Chebana and Ouarda (2011). As previously stated, for the case of OR
return period, the function that describes the level curve for any given return period
T or critical probability level p has two asymptotes, q = qp and w = wp, where
qp ¼ F�1

Q ðpÞ and wp ¼ F�1
W ðpÞ are the quantiles of the marginal distribution for the

given probability level p. According to Eq. 3.36 in the bivariate case, the choice of
an appropriate return period T or a critical probability level p for hydraulic structure
design will lead to the infinite combinations of flood peak and volume. However, all
the bivariate flood events with the same value of T or p along the level curve differ
greatly not only in terms of their quantile values, but also in terms of their prob-
ability of occurrence, which is measured by the joint probability density function
(PDF), i.e., f(q, w), evaluated along the critical level curve (Volpi and Fiori 2012).
Meanwhile, different combinations of Q and W are generally not equivalent from a
practical point of view, although they all satisfy the flood prevention standards. The
boundaries (see points B and C in Fig. 3.5) for selection of design flood peak and
volume are necessary in the case that the flood combinations are outside the
boundaries with unrealistically low occurrence probabilities.

Chebana and Ouarda (2011) proposed a method to decompose the quantile curve
in Fig. 3.5 into a naive part (i.e., the subset BC) and a proper part (outside subset

Fig. 3.5 Bivariate quantile
curve with a critical
probability level p
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BC). They assumed that the naive part is composed of two segments starting at the
end of each extremity of the proper part. They also suggested selecting these
boundary points according to the empirical version or as close as to the asymptotes
(the naive part). Volpi and Fiori (2012) defined the distance of each point along the
quantile curve in Fig. 3.5 from its vertex as a random variable (s) and derived its
PDF. The boundary points of the quantile curve are identified with a chosen per-
centage in the probability of the events. They also proposed a way of decomposition
of the quantile curve into the naive part and proper part. However, the procedure
presented by Volpi and Fiori (2012) is difficult to apply in the curvilinear coordinate
system [s(x, y), n(x, y)] or to derive the expression of a random variable (s). To
overcome these limitations, an approach to identify the boundary points (i.e., B and
C) of the quantile curve is developed. A new density function u(q) is used to
measure the relative likelihood of flood events, which is a non-curvilinear variable
in the procedure.

To derive the new density function with a chosen probability level to decompose
the quantile curve, a joint distribution of annual maximum flood peak (Q) and flood
volume (W) should be built by copula functions. The joint distribution function F(q,
w) can be expressed in terms of its marginal functions and FW(w) by using an
associated dependence function C, F(q, w) = C[FQ(q), FW(w)].

It is found that flood peak and volumes are usually upper-tailed dependent
variables and the Gumbel copula can reproduce best the observed tail dependence
coefficient (e.g., Poulin et al. 2007) Therefore, the Gumbel copula is taken as an
example to illustrate the developed boundary identification method because of its
easy expression and wide applications (Li et al. 2013).

For the Gumbel copula function, the relationship of joint distribution Ch(u,
v) and bivariate return period T can be expressed as (l = 1 for annual maxima flood
series):

Chðu; vÞ ¼ expf�½ð� ln uÞh þð� ln vÞh�1=hg ¼ 1� 1
T

ð3:39Þ

where h is the dependence parameter of the Gumbel copula, u = FQ(q), v = FW(w).
Thus, the relationship between u and v with the given bivariate return period

T can be derived as:

v ¼ exp �½ð� ln uÞh � ð� lnð1� 1
T
ÞÞh�1=h

� �
ð3:40Þ

Replacing u = FQ(q), and v = FW(w)into the above equation yields:

FWðwÞ ¼ exp �½ð� ln FQðqÞÞh � ð� lnð1� 1
T
ÞÞh�1=h

� �
¼ gðFQðqÞÞ ð3:41Þ

in which, gðxÞ ¼ exp �½ð� ln xÞh � ð� lnð1� 1
TÞÞh�1=h

n o
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Thus, the relationship between Q and W with the fixed bivariate return period
T can be derived as:

w ¼ F�1
W ðvÞ ¼ F�1

W gðFQðqÞð Þ ¼ 1ðqÞ ð3:42Þ

where F�1
W vð Þ is the inverse CDF of flood volume W. The above equation reveals

that W can be derived by Q if the bivariate return period T is fixed.
It should be noted that other copulas with more complicated formulas sometimes

may be needed. For the Frank copula, Clayton copula and several two-parameter
copulas, the implicit expression for describing the relationship between Q and W in
Eqs. 3.39 to 3.42 can be derived. For copulas with more complicated expressions,
the numerical method should be applied. For example, the unique value of w could
be obtained with given q by a trial and error method.

After obtaining the corresponding relationship of the values of w and q for the
flood events along the critical level curve, the bivariate joint PDF of w and q can be
expressed according to Sklar’s theory as (Nelsen 2006):

f ðq;wÞ ¼ chðFQðqÞ;FW ðwÞÞ � fQðqÞ � fWðwÞ ð3:43Þ

where fQ(q) and fW(w) are univariate PDFs of flood peak and volume, respectively,
and chðu; vÞ is the density of Chðu; vÞ and defined as:

ch ¼ @2Chðu; vÞ
@u@v

ð3:44Þ

Referring to Eqs. 3.41 and 3.42, the bivariate joint PDF of flood peak and
volume can be finally described as the function of the single random variable of
flood peak Q for the fixed bivariate return period T, i.e.,

f ðq;wÞ ¼ chðFQðqÞ; gðFQðqÞÞÞ � fQðqÞ � fWð1ðqÞÞ ð3:45Þ

According to Eq. 3.45, there is a curve that can describe the relationship between
joint PDF f(q, w)and flood peak Q for a given bivariate return period T or a critical
probability level p. Assume that the area between the curve of f(q, w) and the
horizontal axis of flood peak Q is A, i.e.,

A¼
Zþ1

qp

f ðq;wÞdq ¼
Zþ1

qp

cðFQðqÞ; gðFQðqÞÞÞ � fQðqÞ � fW ð1ðqÞÞdp ð3:46Þ

where qp represents univariate design value of flood peak, i.e., qp ¼ F�1
Q ðpÞ, which

is chosen as the lower bound of flood peak in the estimation of the bivariate design
flood values.
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As f(q, w) is a joint density function of q and w, area A does not equal to 1 if only
q is taken as an integral variable (i.e., A 6¼ 1). A new density function u(q) over the
area A which has proper density characters is constructed and expressed as follows:

uðqÞ ¼ f ðq;wÞ
A

¼ f ðq;wÞR þ1
qp

f ðq;wÞdq ð3:47Þ

Obviously, there is a one-to-one correspondence between the density function
u(q) and bivariate PDF f(q, w). The density function u(q) varies with the horizontal
axis and

R þ1
qT

uðqÞdq ¼ 1.

As previously stated, the bivariate design flood combinations near the upper and
lower bounds of the quantile curve have lower occurrence probability than that near
the middle of the quantile curve. As a consequence, the bivariate PDF f(q, w) of
bivariate design flood combination near the upper and lower bounds of quantile
curve is smaller than that near the middle of the quantile curve. The density
function u(q) has the same property as the bivariate PDF f(q, w). As the design
flood peak (or flood volume) varies from the lower bound, i.e., (qp) to infinitely
great, the density function u(q) increases to the maximum value and then decreases
gradually, as shown in Fig. 3.6. The vertex of the density function u(q) describing
the full dependence (Chebana and Ouarda 2011; Volpi and Fiori 2012) between
peak and volume has the highest density. In other words, this is the most likely
bivariate design flood event.

Once the density function u(q) along Q is defined by Eq. 3.43, we can evaluate
the lower and upper bounds that contain u(q) with probability of 1−e, for a given
probability level e. The quantiles of lower and upper bounds (qB and qC) are
specified respectively by (Volpi and Fiori 2012):

ZqB
qp

uðqÞdq ¼ a1 ð3:48Þ

ZqC
qp

uðqÞdq ¼ 1� a2 ð3:49Þ

Fig. 3.6 Relationship
between density function
u(q) and flood peak Q
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where a1 + a2 = e. The lower and upper bounds qB and qC identify a feasible range
on the quantile curve, bounded by the points of coordinates (qB, f(qB)) and (qC,
f(qC)), that excludes the e percentage in the probability of the critical events. The
probability levels a1 and a2 can be arbitrarily chosen, taking account of the specific
problem under investigation (Volpi and Fiori 2012).

3.4.3 Bivariate Flood Quantile Selection

For a given bivariate return period T, there are countless combinations of u and
v that satisfy Eq. 3.39. To derive the design values of flood peak q and flood
volume w, the unique combination of u and v (or q and w) should be determined.
Hence besides Eq. 3.39, one more equation that can establish the relationship
between u and v (or q and w) is necessary. Two combination methods were pro-
posed to derive the quantiles of flood peak and flood volume for given multivariate
return periods, and they are now outlined.

3.4.3.1 Equivalent Frequency Combination Method

With a given bivariate return period T, we assume that the flood peak and flood
volume have the same probability of occurrence, i.e., u = v (or FQ(q) = FW(w)).
This assumption is usually taken as a uniform procedure for the derivations of
design flood values and design flood hydrograph in China (MWR 2006; Xiao et al.
2008, 2009; Chen et al. 2010). Then, the design frequency of bivariate equivalent
frequency combination can be obtained by jointly solve the equation u = v and
Eq. (3.39).

Taking the Gumbel copula for example, the relationship between u and v with
the given bivariate return period T is described in Eq. 3.39. Based on the
assumption that u = v, the probabilities of occurrence of flood peak and volume
(i.e., u and v) can be estimated by the solution of the following equation.

u ¼ v ¼ ð1� 1
T
Þ1 ð3:50Þ

where 1¼ 2�
1
h, and h is the dependence parameter of the Gumbel copula.

Consequently, the design value of bivariate equivalent frequency combination
can be derived by the inverse function of marginal distributions:

q ¼ Fð�1Þ
Q ðuÞ ð3:51aÞ

w ¼ Fð�1Þ
W ðvÞ ð3:51bÞ
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3.4.3.2 Conditional Expectation Combination Method

Since the flood peak Q and flood volume W are dependent variables, one may wish
to predict the value of W based on an observed value of Q. Let g(Q) be a predictor,
i.e., g2N = {all Borel functions g with E[g(Q)]2 < ∞ Each predictor is assessed by
the “mean squared prediction error” E[W−g(Q)]2. The conditional expectation E(W|
Q) is the best predictor of W in the sense that

E W � EðW jQÞ½ �2¼ min
g2N

E W � gðQÞ½ �2 ð3:52Þ

Herein, during a flood event, when the flood peak Q = q takes place; the con-
ditional expectation EðwjqÞ is used to estimate the value of flood volume, which can
be derived by

EðwjqÞ ¼
Zþ1

�1
wfW jQðwÞdw ð3:53Þ

where fW|Q(w) is the density function of the conditional CDF FW|Q(w) and defined as
(Zhang and Singh 2006).

fW jQðwÞ ¼ f ðq;wÞ
fQðqÞ ¼ chðu; vÞfQðqÞfW ðwÞ

fQðqÞ ¼ chðu; vÞfWðwÞ ð3:54Þ

Hence, Eq. 3.53 can be expressed by

EðwjqÞ ¼
Zþ1

�1
wfW jQðwÞdw ¼

Z þ1

�1
wchðu; vÞfWðwÞdw ¼

Z 1

0
F�1
W ðvÞchðu; vÞdv

ð3:55Þ

where F�1
W ð�Þ is the inverse CDF of W.

Then, the flood peak q and E(w|q) will be the conditional expectation combi-
nation if the following equations are satisfied

u ¼ FQðqÞ
v ¼ FW ½EðwjqÞ�

1
1�Chðu;vÞ ¼ T

8<
: ð3:56Þ

The above equation can be solved by trial and error method with different values
of q.
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3.4.4 Case Study

3.4.4.1 Bivariate Quantile Curve and Feasible Range Identification

The return period of design flood of Geheyan reservoir, i.e., T = 1000-year, is
selected as the bivariate return period and T = 200-year is also chosen for com-
parison. The bivariate quantile curves of the two return periods are shown in
Fig. 3.7. Even if the Gumbel copula model is symmetric, the probability density
function u(q) is not symmetrical due to the difference in the marginal distributions.

The upper and lower bounds on the level curve are estimated numerically by
solving Eqs. 3.48 and 3.49, and assuming for simplicity (although other assump-
tions are possible) a1 = a2 = e/2, with e = 0.05. The upper and lower bounds are
denoted as B1 and C1, respectively, in Fig. 3.7. It is found that the bounds are close
to the horizontal asymptote (i.e., w7 = 61.49 � 108 m3 for T = 1000 and
w7 = 50.23 � 108 m3 for T = 200) and vertical asymptote (i.e., qp = 22,800 m3/
s for T = 1000 and qp = 19,300 m3/s for T = 200) due to the small value assumed
for the probability level e. The upper and lower bounds are also calculated by the
boundary identification method proposed by Volpi and Fiori (2012). The results are
also presented in Table 3.11, and the derived bounds are denoted as B2 and C2, as
shown in Fig. 3.7. It is shown that the bounds estimated by the proposed method
and that proposed by Volpi and Fiori (2012) are very similar.

3.4.4.2 Estimation of Bivariate Flood Quantiles

The bivariate EFC and CEC methods are used to estimate flood peak and 7-day
flood volume quantiles with return periods of T = 1000 and T = 200 years,

Fig. 3.7 Bivariate quantile curve of joint distribution of flood peak and 7-day flood volume
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respectively. For comparison, the univariate flood quantiles (called marginal
quantiles by Chebana and Ouarda 2011) are estimated by marginal distributions,
assuming that the univariate return periods (TQ and TW) are equal to the bivariate
return period (i.e., TQ = TW = T). The univariate flood quantiles can be obtained
from the equations q ¼ F�1

Q ðpÞ ¼ F�1
Q ð1� 1

TÞ and w ¼ F�1
W ðpÞ ¼ F�1

W ð1� 1
TÞ. The

results of the component-wise excess realization and the most likely realization
proposed by Salvadori et al. (2011) are also estimated. The estimation results of
bivariate and univariate quantiles are listed in Table 3.12. It is shown that the
design values of bivariate quantiles are larger than those of univariate quantiles. The
quantiles estimated by the four bivariate event selection methods are also shown in
Fig. 3.7, and the estimation points of the EFC method are denoted as point E, while
the quantiles estimated by the CEC method are denoted as point F. For the results of
selection approaches proposed by Salvadori et al. (2011), the events of
component-wise excess realization are denoted as point W, and the events of most
likely realization are denoted as point L. From Fig. 3.7, we find that the joint design
values estimated by the four event-selection methods are within the feasible
regions. Consequently, the two proposed methods and selection approaches pro-
posed by Salvadori et al. (2011) can be selected as an option of deriving unique
flood quantiles, and they can satisfy the inherent law of hydrologic events and have
a statistical basis to some degree. It can be seen from Table 3.12 and Fig. 3.7 that

Table 3.11 Comparison of the lower and upper bounds of the quantile curve

Boundary identification
method

Return
period

Lower bound Upper bound

Qp(m
3/

s)
W7

(108 m3)
Qp(m

3/
s)

W7

(108 m3)

Volpi and Fiori (2012) 1000 22,930 65.84 26,080 61.54

200 19,350 50.27 22,460 55.86

Li et al. (2016) 1000 23,000 65.76 26,100 61.52

200 19,400 54.49 22,500 50.26

Table 3.12 Design flood values and corresponding highest water levels estimated by bivariate
quantile combinations and univariate distribution

T Method Qp(m
3/s) W7 (�108 m3) Zmax (m)

1000 EFC 23,390 63.09 202.97

CEC 23,420 62.98 202.92

Component-wise excess realization 23,510 62.78 202.90

Most-likely realization 23,400 63.05 202.95

Univariate distribution 22,800 61.49 202.58

200 EFC 19,800 51.87 198.10

CEC 20,130 51.11 197.79

Component-wise excess realization 20,200 51.03 197.59

Most-likely realization 19,940 51.50 197.82

Univariate distribution 19,300 50.23 197.30
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the estimated events of the EFC method and that of the most likely realization are
similar. The bivariate EFC results have larger flood volume and smaller flood peak
than bivariate CEC results. As well, the results estimated by the component-wise
excess realization have larger flood peak and smaller flood volume than the other
three methods.

3.4.4.3 Design Flood Hydrograph Based on Joint Distribution

The two combination methods are applied to derive the design flood hydrograph
(DFH), and the resulting highest reservoir water level is selected as an index to
evaluate the effects of different hydrological loads on the structure. The DFH for a
dam is the flood of suitable probability and magnitudes adopted to ensure safety of
the dam in accordance with appropriate design standards. The annual maximum
flood hydrograph of 1997, which has a high peak and large volume with a
posterior-peak shape, is selected as a typical flood hydrograph (TFH). The DFH
with bivariate combinations is amplified from a TFH by the following method
(Xiao et al. 2008):

DFHðtÞ ¼ ðTFHðtÞ � QTFHÞ � ðw=DT � qÞ=ðWTFH=DT � QTFHÞþ q ð3:57Þ

where DFH(t) and TFH(t) are the flood discharges of the DFH and TFH for time
t respectively; QTFH is flood peak discharge of TFH; WTFH is 7-day flood volume of
TFH for flood duration DT; q and w are flood peaks and 7-day flood volumes of
bivariate design flood combination, respectively. Nevertheless, other DFH gener-
ation methods based on flood peak and volume are also available and can be
applied with the bivariate design value combinations.

The DFHs of 1000-year and 200-year return periods are constructed, respec-
tively, with the bivariate EFC method and bivariate CEC method as shown in
Fig. 3.8. It is found in Fig. 3.8 that only a few differences exist between the DFHs
estimated by the EFC and CEC methods. This is because that the differences
between the bivariate design values vary within a small range. Volpi and Fiori
(2012) found that the feasible range on a p-level curve strongly depends on the
correlation coefficient of Q and W. In the limiting case of full dependence, the level
curve reduces to its vertex and the width of the feasible range tends to 0 (Volpi and
Fiori 2012). Since the Kendall correlation coefficient between flood peak and 7-day
volume in Geheyan reservoir equals to 0.66, the differences of quantiles estimated
by EFC and CEC methods are relatively small in this case study.

The DFH rescaled by univariate distribution design values and two realizations
proposed by Salvadori et al. (2011) is also derived from TFH by Eq. 3.59. These
DFHs are routed through the Geheyan reservoir with initial water level (flood
control limiting water level, 192.2 m). The corresponding highest reservoir water
levels (Zmax) are calculated and are listed in Table 3.12.

It is shown in Table 3.12 that the design values of flood peak and 7-day flood
volume obtained by univariate distribution method are both smaller than those
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obtained by four bivariate methods. The resulting Zmax of the univariate method is
relatively lower than those of bivariate approaches. Since flood events are naturally
multivariate phenomena and flood peak and flood volume are mutually correlated,
the quantiles estimated by bivariate distribution are more rational than these by
univariate distribution (Chebana and Ouarda 2011).

The comparison results listed in Table 3.12 also show that Zmax obtained by
bivariate EFC method is larger than that obtained by the other three bivariate
methods, while the component-wise excess method reaches the lowest Zmax. The

(a) EFC method

(b) CEC method

Fig. 3.8 DFHs derived by EFC method and CEC method
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results of Zmax calculated by most-likely realization are a little lower than those of
the EFC method, and the CEC method obtains a slightly higher Zmax than the
component-wise excess method. Comparing the results of 200-year and 1000-year
return period, it is found that the differences among the four bivariate methods
decrease as the return period increases. The water level reaches 202.97 m by the
EFC method and is slightly higher than other methods for the 1000-year return
period. Since the Geheyan reservoir has a large amount of flood control storage with
annual regulation ability, the design flood volume is relatively more important than
peak discharge for flood prevention safety. As a consequence, the bivariate EFC
method with slightly larger 7-day flood volume is safer for reservoir design than
other methods.

3.5 Conclusion

According to the bivariate joint distribution of annual maximum flood occurrence
dates and magnitudes, flood peaks and volumes, a flood frequency analysis model
with an incorporation of historical floods are established based on GH copula.
Modified inference functions for the margins (MIFM) method and the quantile
curve boundary identification method are developed. The following conclusions are
drawn from this Chapter:

(1) The Von Mises and Pearson Type III distributions can fit observed data series
very well. The goodness-of-fit tests indicate a good agreement between
observed and theoretical probabilities for both marginal and joint distributions.

(2) The proposed MIFM method may reduce the uncertainties of parameter esti-
mation in flood frequency analysis, since the historical floods have been taken
into account.

(3) The quantile combination methods provide a simple but effective way for
bivariate quantile estimation with given bivariate return period. The results
illustrate that the joint design values estimated by the two proposed combina-
tion methods are within the feasible regions, and the equivalent frequency
combination method perform satisfactorily.
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