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Chapter 1
Introduction

1.1 Univariate Hydrological Frequency Analysis

Univariate hydrological frequency plays a vital role in estimating the recurrence of
floods or rainfall, which is used for designing structures such as dams, bridges,
culverts, levees, highways, sewage disposal plants, waterworks and industrial
buildings. By using the univariate hydrological frequency analysis method, the
probability for a given event can be estimated, and the value of a T-year design
rainfall or flood also can be calculated. The main objective of univariate hydro-
logical frequency analysis therefore is to establish a relationship between flood or
rainfall magnitude and recurrence interval or return period.

Two kinds of samples are usually utilized for univariate hydrological frequency
analysis. One is the annual maximum (AM) sampling method, and the other is
peaks-over-threshold (POT) (or partial duration series (PDS)) sampling method.
The AM series includes the maximum peaks or volumes for every year in the
observational period, and the other includes all and only the peaks for events that
exceed a given threshold (Ben-Zvi 2009). The univariate return periods are tradi-
tionally estimated by fitting a probability distribution function to the historical
observations, such as AM and POT hydrological extreme series (Li and Zheng
2016).

The procedures for hydrological frequency analysis mainly include two steps:
selection of an appropriate parent distribution and estimates of the parameters for
the selected distribution. The distribution for univariate hydrological analysis has
been discussed and investigated by many research. Numerous probability distri-
bution models have been used in hydrological frequency studies, including
two-parameter distributions, i.e. Gumbel, Weibull, Gamma and Lognormal (Du
et al. 2015; Giraldo and García 2012; Jiang et al. 2015; Villarini et al. 2009), and
three-parameter distributions, i.e. general extreme value (GEV) (Cannon 2010; El
Adlouni et al. 2007) and Pearson type III (Chen et al. 2010, 2015). The commonly
used distributions in hydrology are summarized in Table 1.1. To determine whether

© Springer Nature Singapore Pte Ltd. 2019
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the distribution model can fit the data series properly, certain goodness-of-fit test,
such as Kolmogorov-Smirnov, Anderson-Darling, and Chi-squared tests, can be
used.

The parameter estimation methods, which are widely used for univariate
hydrological frequency analysis, are the method of moments (MOM), the maximum
likelihood (ML) method, and the L-moments method. The limitation of the MOM is
that the moments of data series are equally influenced by small values, and the
higher moments (e.g., coefficient of variation and skewness) are much affected by
extremes in the data series (Haddad and Rahman 2011). An alternative method to
MOM is ML for estimating the parameters of a distribution. Haddad and Rahman
(2011) indicated that the ML is a robust method in most cases and will provide
estimators with good statistical properties. Another method, L-moments are highly
recommended by many researches. This method is less affected by extremes in the
data series (Hosking 1990). Also, the L-moments provide more weights to the
larger values in the hydrological series and hence are expected to provide better fits
to the upper tail of the distribution (Wang 1997).

The method mentioned above mainly focus on the univariate hydrological
analysis. A complex phenomenon is often characterized by multiple aspects.
Several hydrological phenomena are described by two or more correlated charac-
teristics. For example, for a flood event, which can be characterized by flood peak,
flood magnitude and duration, a univariate probability distribution analysis is
apparently not enough, since these three random variables are not mutually inde-
pendent due to the multivariate nature of the phenomenon. For a system with two or
more variables, the return period is not equal to the forcing return period of a variate
(Hawkes et al. 2002). In the case of flood frequency estimation, merely analyzing
the flood peak or flood volume frequency will lead to an underestimation or
overestimation of risk (De Michele et al.2005; Yue and Rasmussen 2002).
Therefore, a multivariate statistical analysis is required for a more complicated
hydrological phenomenon with more variables (Grimaldi and Serinaldi 2006a, b).

1.2 Multivariate Hydrological Frequency Analysis

As hydrological phenomena are usually described by two or more correlated
variables, a multivariate statistical analysis and dependence analysis are required.
The most significant issue of multivariate probability analysis is the construction of
dependence structure for the involved correlated random variables (Li and Zheng
2016). Multivariate distribution functions have been widely used in the literature for
modeling two or more dependent hydrological variables and their dependence
structure (Salvadori and De Michele 2007). The multivariate hydrological analysis
mainly includes the following three elements: (1) showing the importance and
explaining the usefulness of the multivariate framework, (2) fitting the appropriate
multivariate distribution in order to model hydrological phenomenon, and esti-
mating the corresponding parameters, and (3) studying multivariate return periods
or other related hydrological analysis and simulation (Chebana and Ouarda 2011).
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In the past years, some multivariate approaches have been introduced in
hydrological and environmental applications. The most widely used joint cumu-
lative distribution function (CDF) is the Gaussian one, but it has the limitation that
the marginal distributions must be normal. Then bivariate distributions with
non-normal margins have been proposed, such as bivariate exponential (Favre et al.
2002), bivariate gamma (Yue et al. 2001), and bivariate extreme value distributions
(Adamson et al. 1999). Favre et al. (2004) summarized the drawbacks of these types
of distributions are that (1) the same family is needed for each marginal distribution,
(2) extensions to more than the bivariate case are not clear, and (3) parameters of
the marginal distributions are also used to model the dependence between the
random variables. To overcome these shortcomings, copula functions that represent
the most recent and promising mathematical tool for investigating multivariate
problems have been applied in the hydrological analysis (Xiao et al. 2008). The
advantages in using copulas to model joint distributions are manifold: (1) flexibility
in choosing arbitrary margins and structure of dependence, (2) extensions to more
than two variables, and (3) split of marginal and dependence structure analysis
(Salvadori et al. 2007; Serinaldi et al. 2009).

In the past decade, copulas have been used for multivariate hydrological anal-
yses. Favre et al. (2004) used 2-copula to describe the dependence between flow
peak and volume. Shiau et al. (2006) analyzed the bivariate frequency of flood peak
and volume. Zhang and Singh (2006) exploited Archimedean copulas to build
bivariate distributions of flood peak and volume, flood peak and duration, and flood
volume and duration. Grimaldi and Serinaldi (2006a, b) built a trivariate joint
distribution of flood event variables using the fully nested or asymmetric
Archimedean copula functions and performed extensive simulations to highlight
differences with the well-known symmetric Archimedean copulas. Salvatore and De
Michele (2007) presented some advances in hydrological modeling that exploit
copulas, such as the calculation of conditional probabilities and return periods of
bivariate events. Zhang and Singh (2007a) used the Gumbel–Hougaard copula to
derive trivariate distributions of flood peak, volume and duration. Kao and
Govindaraju (2008) examined a non-Archimedean copula from the Plackett family
and applied it to the study of the temporal distribution of extreme rainfall events.
Serinaldi et al. (2009) applied copulas to the probabilistic analysis of drought
characteristics. Until now, the utilization of copulas in hydrology and water
resources can be summarized as: rainfall frequency analysis (Michele and Salvadori
2003; Grimaldi and Serinaldi 2006a; Kao and Govindaraju 2007; Zhang and Singh
2007a; Kuhn et al. 2007; and Keef et al. 2009), flood frequency analysis (Favre
et al. 2004; Shiau et al. 2006; Zhang and Singh 2006, 2007b; Renard and Lang
2007; Xiao et al. 2009), drought frequency analysis (Shiau 2006; Kao and
Govindaraju 2010; Song and Singh 2010), sea storm analysis (Michele et al. 2007),
streamflow simulation (Chen et al. 2015), and some other theoretical analyses of
multivariate extreme problems (Salvadori et al. 2007; Salvadori and Michele 2010).
Therefore, copula function has been proved to be very useful and effective tools for
multivariate hydrological analysis and simulation.
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1.3 Dependence Analysis

There are several well-known methods that describe the stochastic dependence. One
is a linear relation which mainly exists in regression models measured by covari-
ance and correlation coefficient, and it is based on the multivariate normal distri-
bution (Xu 2005; Zhao and Lin 2011). Calsaverini and Vicente (2009) clarified the
danger of using linear correlation as a measure of dependence for, e.g., portfolio
optimization or time series analysis, as this measure is bound to underestimate the
dependence that would be better captured by easily estimated marginal invariant
measures. Zhao and Lin (2011) stated that the method of linear relationship ignores
some fluctuations, such as high peak and fat tail relative to kurtosis and skewness,
which have frequently been reported in data analyses. The drawbacks of the linear
correlation method are summarized as: (1) it only applies to a linear correlation,
(2) it tends to focus on the degree of dependence, and ignore the structure of the
dependence, and (3) it is a dimensionless quantity, and is difficult to compare with
three or more sets of variables (Zhao and Lin 2011).

Two important measures of dependence (concordance) known as Kendall’s tau
and Spearman’s rho, provide perhaps the best alternatives to the linear correlation
coefficient as a measure of dependence for non-Gaussian distributions, for which
the linear correlation coefficient is inappropriate and often misleading. The
Spearman rank correlation coefficient is its analog when the data is regarding ranks.
One can therefore also call it correlation coefficient between the ranks. Kendall’s
tau is equivalent to Spearman’s rho, with regards to the underlying assumptions, but
Spearman’s rho and Kendall’s tau are not identical in magnitude, since their
underlying logic and computational formulae are quite different. The main
advantage of using Kendall’s tau over Spearman’s rho is that one can interpret its
value as a direct measure of the probabilities of observing concordant and discor-
dant pairs. The disadvantage of the rank-based correlation coefficient is that there is
a loss of information when the data are converted to ranks; if the data are normally
distributed, it is less powerful than the Pearson correlation coefficient (Gauthier
2001). Furthermore, they cannot be used to detect the dependence when more than
two variables are involved.

Kendall’s tau and Spearman’s rho correlation coefficients have a relationship
with the copula function, and are usually used to estimate the parameters of
bivariate copulas. Thus, the copula function also can measure the dependence
relationship, which has been applied to investigate nonlinear dependence and has
received a lot of attention in recent years (Zhao and Lin 2011). The copula function
is capable of exhibiting the type of the dependence between two or more random
variables, and has recently emerged as a practical and efficient method for modeling
the general dependence in multivariate data (e.g., Joe 1997; Nelsen 2006). The
advantages in using copulas to model joint distributions have been described above.

Another method is based on entropy theory. A comprehensive review of the use
of information theory in hydrology and water resources can be found in Singh
(1997, 2011). In the entropy theory, mutual information (MI) has been successfully
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employed as a nonlinear measure of inference among variables by many researchers
(e.g., Khan et al. 2006; Molini et al. 2006; Ng et al. 2007; Hejazi et al. 2008).
Mutual information, defined as the difference between marginal and conditional
entropy, is a measure of the amount of information that one random variable
contains or explains about another random variable. It can be used to indicate the
dependence or independence between variables. If the two variables are indepen-
dent, the mutual information between them is zero. If the two are strongly
dependent, e.g., one is a function of another; the mutual information between them
is large (Li 1990). The use of mutual information has become popular in several
fields of science to measure the dependence between variables (Alfonso et al.
2010). For example, using the MI method, Harmancioglu and Yevjevich (1987)
analyzed three types of information transferring among river points. The mutual
information was also used for the network design (Alfonso et al. 2010). Some of the
advantages of this method have been reported widely (e.g., Li 1990; Singh 2000;
Steuer et al. 2002). The advantages of MI are summarized as follows: (1) it is a
non-linear measure of statistical dependence based on information theory (Steuer
2006), (2) it is a non-parametric method and makes no assumptions about the
functional form (Gaussian or non-Gaussian) of the statistical distribution that
produce the data, and (3) it can be extended to higher dimensions.

Therefore, copulas and entropy theory have been taken as effective tools for
measuring the non-linear dependences of multi-variables in hydrology and water
resources. This book will propose a new method based on these two theories for the
multi-variate dependence analysis.

1.4 Scope and Organization of the Book

This book presents an overview of the copula theory and its applications in
hydrology and water resources. The specific applications include the studies of
flood frequency analysis, drought frequency analysis, flood coincidence risk anal-
ysis, stochastic simulation using copulas and dependence analysis. In this book, we
also extend the traditional bivariate copula model to a trivariate or multivariate
model. This book provides valuable knowledge, useful methods and practical
applications with respect to multivariate hydrological analysis using copulas.
Researchers, scientists and engineers in the fields of hydrology and water resources
can benefit from this book. This book is also useful for graduate or doctoral students
with basic knowledge of copula functions who want to learn about the latest
research developments in this field.

Chapter 1 reviews the univariate hydrological frequency analysis, multivariate
hydrological frequency analysis and dependence analysis. Copula and copula
entropy methods are introduced in hydrology and water resources.

Chapter 2 gives the detailed information of copula theory. The contents involve the
definition of copulas, introduction of two kinds of copulas widely used in hydrology,
parameter estimation methods, goodness of fit methods, and copula entropy theory.
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Chapter 3 proposes an annual maximum flood frequency analysis method
considering flood occurrence dates and magnitudes as well as a bivariate flood
frequency analysis method with historical information considering flood peaks and
volumes.

Chapter 4 proposes a new seasonal design flood method that considers the flood
occurrence dates and magnitudes of the peaks (runoff) based on copula functions.

Chapter 5 presents a method for estimating the return periods of drought events
based on copulas, in which four drought characteristics, namely drought duration,
severity, time interval and the minimum SPI values, are considered.

Chapter 6 analyzes the coincidence of flood flows of the mainstream and its
tributaries by considering flood magnitudes and time (dates) of occurrence based on
the four-dimensional copula functions.

Chapter 7 introduces a new copula-based method for generating long-term
multisite monthly and daily streamflow data.

Chapter 8 introduces a hydrologic uncertainty processor (HUP) based on a
copula function, in which a Bayesian copula processor associated with the Bayesian
model averaging (CBP-BMA) method is presented with ensemble lumped hydro-
logical models.

Chapter 9 proposes a copula-based uncertainty evolution (CUE) model to
describe the evolution of streamflow forecast uncertainty.

Chapter 10 proposes a new method based on the copula entropy (CE) theory to
identify the inputs of ANN-based flood forecasting models.

Chapter 11 measures the total correlation between the mainstream and its upper
tributaries by using the copula entropy method.
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Chapter 2
Copula Theory

2.1 Copula Function

The copulas were first introduced by Sklar (1959). Copulas are functions that join
or “couple” multivariate distribution functions to their one-dimensional marginal
distribution functions (Nelsen 2006). The copula function is capable of exhibiting
the structure of dependence between two or more random variables and has recently
emerged as a practical and efficient method for modeling the general dependence in
multivariate data (e.g., Joe 1997; Nelsen 2006). The advantages of using copulas to
model joint distributions are manifold: (1) flexibility in choosing arbitrary marginal
and structure of dependence, (2) extension to more than two variables, and
(3) separated analysis of marginal distributions and dependence structure (Salvadori
et al. 2007; Serinaldi et al. 2009). Hydrological applications of copulas have surged
in recent years (e.g. Wang et al. 2010).

2.1.1 Definition

To give a precise definition of copulas, here we restate the Sklar’s theorem. If
random variables x1, …, xn follow an arbitrary marginal distribution function
F1(x1), …, Fn(xn), respectively, there then exists a copula, C, that combines these
marginal distribution functions to give the joint distribution function, F(x1, …, xn)
as follows

Fðx1; . . .; xnÞ ¼ C F1ðx1Þ; . . .;FnðxnÞf g¼Cðu1; . . .; unÞ; x1; . . .; xn 2 R ð2:1Þ

If the marginal distributions Fi(xi) are continuous, the copula function C is
unique. On the contrary, if C is a k-dimensional copula function, F is an
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n-dimensional distribution function and F1(x1), …, Fn(xn) are the respective mar-
ginal distributions.

2.1.2 Properties of Copulas

Let C(u, v) be an arbitrary two-dimensional copula function. Then the function
C has the following elementary properties (Nelsen 2006).

For every u and v,

Cðu; 0Þ ¼ Cð0; vÞ ¼ 0 ð2:2Þ

and

Cðu; 1Þ ¼ u ð2:3Þ

and

Cð1; vÞ ¼ v ð2:4Þ

For each u1 and u2, v1 and v2, if u1 � u2 and v1 � v2

Cðu2; v2Þ � Cðu2; v1Þ � Cðu1; v2ÞþCðu1; v1Þ� 0 ð2:5Þ

Many families of copulas exist andmainly include the following: (1)meta-elliptical
copulas (normal and t), (2) Archimedean copulas (Clayton, Gumbel, Frank, and
Ali-Mikhail-Haq), (3) Extreme Value copulas (Gumbel, Husler-Reiss, Galambos,
Tawn, and t-EV), and (4) other families (Plackett and Farlie-Gumbel-Morgenstern).
Among the various families of copulas, the Archimedean and the meta-elliptical
copulas are more popular for hydrologic applications.

2.1.3 Conditional Copulas

Let X and Y be random variables with U1 = FX(x) and U2 = FY(y). u1 and u2 are
specific values. As an example, the conditional distribution function of X given
Y = y can be expressed by

HðX � xjY ¼ yÞ ¼ Chðu1jU2 ¼ u2Þ

¼ lim
Du2!0

Chðu1; u2 þDu2Þ � Chðu1; u2Þ
Du2

¼ @

@u2
Chðu1; u2ÞjU2¼u2

ð2:6Þ
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Similarly, an equivalent formula for the conditional distribution function for
Y given X = x can be obtained.

Furthermore, the conditional distribution function of X given Y � y can be
expressed by

H0ðX� xjY � yÞ ¼ Chðu1jU2 � u2Þ ¼ Chðu1; u2Þ
u2

ð2:7Þ

Likewise, an equivalent formula for the conditional distribution function for
Y given X � x can be obtained.

2.2 Archimedean Copulas

Different families of copulas have been proposed and described by Nelsen (2006)
and Salvadori et al. (2007). Of all the copula families, the Archimedean family is
more desirable for hydrological analyses, because it can be more easily constructed
and can be applied whether the correlation among the hydrological variables is
positive or negative (Zhang and Singh 2006).

2.2.1 Bivariate Archimedean Copulas

Archimedean copulas are widely used in hydrology, especially the bivariate
Archimedean copulas. Previous studies have indicated that copulas perform well for
bivariate problems, and in particular, several families of Archimedean copulas,
including Gumbel, Frank, and Clayton, have been popular choices for dependence
models because of their simplicity and generation properties (Nelson 2006).

2.2.1.1 Gumbel Copula

This family of copulas was defined by Gumbel (1960). It is also a member of the
important class of bivariate extreme value copulas (Nelson 1999) and has been
widely used in the hydrological analysis of bivariate extreme value. The Gumbel
copula C can be written as

Cðu1; u2Þ ¼ exp �½ð� ln u1Þh þð� ln u2Þh�
1
h

n o
; h 2 ½1; þ1Þ ð2:8aÞ

The generator of Gumbel copula is

uðtÞ ¼ ð� ln tÞh; h 2 ½1; þ1Þ ð2:8bÞ

2.1 Copula Function 15



2.2.1.2 Frank Copula

This family was defined by Frank in 1979. A Frank copula is given by

Cðu1; u2Þ ¼ 1
h
logð1þ ðehu1 � 1Þðehu2 � 1Þ

eh � 1
Þ; h 2 ð�1; þ1Þ ð2:9aÞ

The generator of Frank copula is

uðtÞ ¼ ln½expðhtÞ � 1
expðhÞ � 1

�; h 2 ð�1; þ1Þ ð2:9bÞ

2.2.1.3 Clayton Copula

A Clayton copula is defined by

Cðu1; u2Þ ¼ ðu�h
1 þ u�h

2 � 1Þ�1
h; h 2 ð0; þ1Þ ð2:10aÞ

The generator of Clayton copula is

uðtÞ ¼ t�h � 1; h 2 ð0; þ1Þ ð2:10bÞ

2.2.1.4 Ali-Milhail-Haq Copula

Ali et al. (1978) defined Ali-Milhail-Haq copula as

Cðu1; u2Þ ¼ u1u2
1� hð1� u1Þð1� u2Þ ; h 2 ½�1; 1� ð2:11aÞ

The generator of Ali-Milhail-Haq copula is

uðtÞ ¼ ln
1� hð1� tÞ

t
; h 2 ½�1; 1� ð2:11bÞ

2.2.1.5 Joe Copula

This family was first discussed by Joe (1993). The Joe Copula can be written as

Cðu; vÞ ¼ 1� ½ð1� uÞh þð1� vÞh � ð1� uÞhð1� vÞh�1h; h 2 ½1; þ1Þ
ð2:12aÞ

16 2 Copula Theory



The generator of Joe copula is

uðtÞ ¼ � ln½1� ð1� tÞh�; h 2 ½1; þ1Þ ð2:12bÞ

2.2.2 Multivariate Archimedean Copulas

For multi-variables (greater than two), the Archimedean copulas can be divided into
symmetric and asymmetric copulas (Chen et al. 2013a, b). Compared with asym-
metric ones, the symmetric Archimedean copula in higher dimensions is easily
built. However, this copula has only one parameter, which forces that all pairs of
variables share the same dependence structure (Chen et al. 2013a, b). To model
different dependence structures, Grimaldi and Serinaldi (2006) applied nested
classes of the Archimedean copulas. However, the nested method for building
multivariate copulas is complicated, and their parameters are estimated by the
maximum likelihood method instead of the Kendall tau method.

2.2.2.1 Symmetric Archimedean

The symmetric Archimedean copulas allow modeling dependence in arbitrarily
high dimensions with only one parameter, governing the strength of dependence.
Joe (1997) defined symmetric Archimedean copulas as

CðuÞ ¼ u�1ð
Xn
k¼1

uðukÞÞ ð2:13Þ

where function u(u), called the generator of the copula, is continuous strictly
decreasing function from [0, 1] to [0, ∞) such that u(0) = ∞ and u(1) = 0
(Serinaldi and Grimaldi 2007), and its inverse u−1 is “completely monotone” on
[0, ∞), that is u−1 has derivatives of all orders which alternate in sign (Nelsen
1999; Embrechts et al. 2003).

ð�1Þk d
ku�1ðtÞ
dtk

� 0 t 2 0;1½ Þ; ð2:14Þ

The commonly used trivariate, four-dimensional and multi-dimensional sym-
metric Archimedean copulas are given in Table 2.1.
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2.2.2.2 Asymmetric Archimedean Copula

However, correlated hydrological variables can have different bivariate dependence
structures. For multi-variables (greater than two), the symmetric Archimedean
copula has only one parameter, which forces that all pairs of variables share the
same dependence structure. To model the different dependence structures, Grimaldi
and Serinaldi (2006) applied nested classes of the Archimedean copulas.

Following Joe (1997), Nelsen (1999), Embrechts et al. (2003) and Whelan
(2004), a generalization of Archimedean 2-copulas can be written in the form called
“fully nested”:

Cðu1; . . .; unÞ ¼ C1ðun;C2ðun�1; . . .;Cn�1ðu2; u1Þ � � �ÞÞ
¼ u�1

1 ðu1ðunÞþu1ðu�1
2 ðu2ðun�1Þþ � � �

þu�1
n�1ðun�1ðu2Þþun�1ðu1ÞÞ � � �ÞÞÞ

ð2:15Þ

In general, first two variables are coupled by a 2-copula, then this copula is
coupled with another variable by a second copula, and so on.

The commonly used trivariate and four-dimensional asymmetric Archimedean
copulas are given in Table 2.2.

2.2.2.3 X-Gumbel Copula

Salvadori and Michele (2010) outlined a procedure for introducing a suitable
number of extra parameters in a given copula model. In this method, a family of
copulas can be defined as

CaðuÞ ¼ AðuaÞ � Bðu1�aÞ ¼ Aðua11 ; . . .; uann Þ � Bðua11 ; . . .; uann Þ ð2:16Þ

where A and B represents d-copulas; a = (a1, …, an), and a 2 I; n represents set of
n parameters.

The X-Gumbel model, which is a bivariate version of the symmetric Gumbel
model given in a previous section, can be extra parameterized by using Eq. 2.16 as

Cðu1; u2; u3; u4Þ ¼ Cnðua11 ; ua22 ; ua33 ; ua44 Þ � Cvðu1�a1
1 ; u1�a2

2 ; u1�a3
3 ; u1�a4

4 Þ ð2:17Þ

2.2.3 Application of Archimedean Copulas in Hydrology

Complex hydrological events such as storms, floods, and droughts are often
characterized by several correlated random variables. Copulas can model the
dependence structure independently of the marginal distributions and allow for

2.2 Archimedean Copulas 19
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multivariate distributions with different margins and dependence structures to be
built (Dupuis 2007).

Favre (2004) tested four Archimedean copulas on peak flows from the watershed
of Peribonka in Quebec, Canada. Zhang (2007) computed the distributions of
bivariate rainfall frequency in Amite River, USA by using Archimedean copulas.
Grimaldi (2006) analyzed the relationships between peak, volume and duration of a
flood frequency by Archimedean copulas. Kao (2008) extended Frank copula to a
trivariate one and applied it to the study of the temporal distribution of extreme
rainfall events for several stations in Indiana where the estimated parameters lay in
the feasible region. Zhang (2012) studied joint probabilities, changing character-
istics of extremes and the implications of these changes in Xinjiang by using
Archimedean copulas. Gräler et al. (2013) proposed an approach to estimate the
expected value of the conditional distribution when the joint density along the level
curve is derived, which is developed as conditional expectation combination
(CEC) method. Li et al. (2016) used the CEC method to derive the quantiles of
flood peak and 7-day volume under different joint return periods, and they found
that the bivariate CEC design values have smaller flood volume and larger flood
peak than bivariate equivalent frequency combination results in Geheyan reservoir.
Xu et al. (2016) derived the general formulae of conditional most likely combi-
nation (CMLC) method to describe the dependence between flood peak and vol-
umes using the conditional density function to measure the occurrence likelihood of
flood events.

2.3 Meta-Elliptical Copulas

The meta-elliptical copulas were first introduced by Fang et al. (2002), which were
extended from the so-called meta-Gaussian distributions constructed by
Krzysztofowicz and Kelly (1996), and its properties were examined by Frahm et al.
(2003) and Abdous et al. (2005). The meta-elliptical copulas can provide a wide
range of positive and negative degrees of joint behavior and model
high-dimensional dependence structure with a very simple structure (Kao and
Govindaraju 2008). Therefore, they are often employed to solve some
high-dimensional problems (Chen et al. 2012).

2.3.1 Meta-Elliptical Copulas

Following Fang (2002), the elliptically contoured distributions are the basic
framework of meta-elliptical distributions. A d-dimensional vector Z is said to have
an elliptically contoured distribution (or called ECD) with parameters l(d � 1) and
R(d � d) if it can be expressed in the form
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Z ¼ lþ rAu ð2:18Þ

where r is a nonnegative random variable; AAT = R and A is a d � d constant
matrix; u is a d-dimensional vector which is uniformly distributed and independent
of r. If r has a density function, then the density of the vector Z can be written as

hðzÞ ¼ Rj jð�1=2Þgððz� lÞ0Rð�1Þðz� lÞÞ ð2:19Þ

where g(∙) is a scale function which is controlled by the distribution of r. When a
particular g(∙) is given, for example, g(t) / e−at/2 with a is a non-negative real
number, then the vector Z can be called multivariate Gaussian. Other common
examples of g can be found in Genest (2007).

Suppose X is a d-dimensional random vector which can be expressed in the form

Zi ¼ Q�1
g ðFiðxiÞÞ ð2:20Þ

where Qg is the CDF of Z and Q�1
g is the inverse of Qg; and Fi(xi) is the distribution

function of xi. Then X has a meta-elliptical distribution when its density function is
given by

hðx1; x2; . . .; xdÞ ¼ UðQð�1Þ
g ðF1ðx1ÞÞ; . . .;Qð�1Þ

g ðFdðxdÞÞÞ
Yd
i¼1

fiðxiÞ ð2:21Þ

where fi(xi) is the density function of xi; U is the d-variate density weighting
function

Uðx1; . . .; xdÞ ¼ Rj jð�1=2ÞgðxTRð�1ÞxÞQd
i¼1 qgðziÞ

ð2:22Þ

where R = {qij: qii = 1, −1 < qij < 1; for i 6¼ j, qij = qji; i, j = 1, …, d}; and qg is
the PDF of Z.

2.3.2 Structure of Copulas

Two main copulas of meta-elliptical distribution, Meta-Gaussian Copula, and
Student t Copula, are discussed in this section. Without loss of generality, we
discuss the d-dimensional case.
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2.3.2.1 Meta-Gaussian Copula

According to Kelly and Krzyszofowicz (1997), Meta-Gaussian copula’s distribu-
tion function is given by

Cðu1; u2; . . .; ud ;RÞ ¼ URð �1ðu1Þ;U�1ðu2Þ; . . .;U�1ðudÞÞ

¼
Z U�1ðu1Þ

�1
� � �

Z U�1ðudÞ

�1

1

2pð Þd2 Rj j12
exp � 1

2
wTR�1w

� �
dw

ð2:23Þ

where U−1 is the inverse of the standard normal distribution; UR(U
−1(u1),U

−1(u2),
…, U−1(ud)) multivariate normal distribution function; R is a symmetric covariance
matrix, and

X
¼

1 � � � q1d
..
. . .

. ..
.

qd1 � � � 1

0B@
1CA ð2:24Þ

where

qij ¼
1; i ¼ j
qji; i 6¼ j



�1� qij � 1
� � ð2:25Þ

and w is a d-dimensional integral variable, with the density function

cðu1; u2; . . .; ud ;RÞ ¼ @dCðu1; u2; . . .; ud ;RÞ
@u1@u2. . .@ud

¼ Rj j�1=2exp � 1
2
ðfTR�1f� fTf

� � ð2:26Þ

where f = [U−1(u1),U
−1(u2), …, U−1(ud)]

T.

2.3.2.2 Student T Copula

According to Demarta and Mcneil (2005), the distribution function of Student
t copula is given by

Cðu1; u2; . . .; ud;R; vÞ ¼ TR;vðT�1
v ðu1Þ; T�1

v ðu2Þ; . . .; T�1
v ðudÞÞ

¼
Z T�1

v ðu1Þ

�1
� � �

Z T�1
v ðu2Þ

�1

C � vþ d
2

� �
C v

2

� � 1

pvð Þd2 Rj j12
1þ wTR�1w

v

� ��vþ d
2

dw

ð2:27Þ
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where T�1
v (�) is the inverse of Student t distribution; v is the degree of freedom; TR,v

T�1
v u1ð Þ; T�1

v u2ð Þ; . . .; T�1
v udð Þ� �

is distribution function of multivariate Student t;
and the other symbols are as the same as previously mentioned.

With the density function

cðu1; u2; . . .; ud;R; vÞ ¼ @dCðu1; u2; . . .; ud;R; vÞ
@u1@u2. . .@ud

¼ Rj j�1
2
C vþ d

2

� �
C v

2

� � C v
2

� �
C vþ 1

2

� �" #d 1þ fTR�1f
v

� 	vþ d
2

Qd
i¼1 1þ b2i

v

� 	�vþ 1
2

ð2:28Þ

where bi ¼ T�1
v uið Þ and f ¼ T�1

v u1ð Þ; T�1
v u2ð Þ; . . .;T�1

v ðudÞ
� �� �T

.

2.3.3 Applications of Meta-Elliptical Copulas in Hydrology

Genest and Favre (2007) implemented the goodness-of-fit tests to meta-elliptical
copulas and analyzed flood peak, volume and duration data of the Romaine River,
Canada. Wong et al. (2008) established a joint distribution function of drought
intensity, duration, and severity by using Gaussian and Gumbel copulas. Ghosh
(2010) showed that meta-elliptical copula was an efficient method to modeling
multivariate distribution. Wang et al. (2010) built a trivariate model among volume,
duration and peak intensity of extreme rainfall events at 12 stations in Connecticut
by using meta-elliptical copula method. Song and Singh (2010) used several
meta-elliptical copulas in drought analysis and found that meta-Gaussian and
t copula had a better fit. Ma et al. (2013) investigated the drought events in the
Weihe river basin and selected the Gaussian and Student t copulas to model the
joint distribution among drought duration, severity, and peaks. Chen et al. (2013a,
b) measured the correlation between river flows in China and built joint distribu-
tions of rivers among several stations by using meta-elliptical copulas. Chen et al.
(2013a, b) investigated the dependence structure in different drought states and
calculated drought probabilities and return periods based on a four-dimensional
meta-elliptical copula for the upper Han River basin in China. Xu et al. (2015)
developed a regional drought frequency analysis model based on trivariate copulas
by considering the spatio-temporal variations of drought events. Cui et al. (2017)
utilized k-means classification and t-copula to demonstrate the regional drought
occurrence probability and return period based on trivariate drought properties, i.e.,
drought duration, severity, and peak.
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2.4 Parameter Estimation Method for Copulas

2.4.1 Parameter Estimation Method of Archimedean
Copulas

The parameters of symmetric Archimedean copulas can be estimated by the method
of moments with the use of the Kendall’s correlation coefficient. For asymmetric
Archimedean copulas, the inference functions for margins method (IFM) or max-
imum pseudo-likelihood (MPL) method can be selected.

2.4.1.1 Kendall’s Correlation Coefficient

Kendall correlation coefficient is widely used for measures of association for
non-normal multivariate distributions. If X1 and X2 are two random vectors,
Kendall’s correlation coefficient s of them can be written as (Kruskal 1958)

s ¼ P X1i\X1j;X2i\X2j
� �

or X1i [X1j;X2i [X2j
� �� �

� P X1i\X1j;X2i [X2j
� �

or X1i [X1j;X2i\X2j
� �� � ð2:29Þ

Parameters h and s have connections with the Archimedean copulas. The
relationships between them for four widely used copulas are summarized in
Table 2.3.

2.4.1.2 The Maximum Pseudo-likelihood Method

The maximum pseudo-likelihood method is a semiparametric approach, where
pseudo-observation values always lie between 0 and 1 ([0, 1]n) (Bezak 2014). The
pseudo log-likelihood has the form:

L hð Þ ¼
Xn
k¼1

log ch F1nðX1kÞ; . . .;FpnðXpkÞ
� �
 � ð2:30Þ

where Fin stands for the empirical distribution function of the ith variable; ch is
copula density which can be calculated as partial derivative of copula functions:

ch u1; . . .; unð Þ ¼ @nCh u1; . . .; unð Þ
@u1. . .@un

ð2:31Þ
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Take the derivative of Eq. 2.30 concerning h and equating it to zero yields:

1
n
@

@h
LðhÞ¼ 1

n

Xn
k¼1

lhfh;F1nðX1kÞ; . . .;FpnðXpkÞg ¼ 0 ð2:32Þ

where L denotes the log-likelihood function; and lh denotes the derivative of
L concerning parameter h (Zhang and Singh 2007). Then, we can get the estimator
of parameter h by solving the Eq. 2.32.

2.4.1.3 The Inference Functions for Margins Method

Joe (1997) recommended a parametric two-step procedure known as the inference
function for margins (IFM). The IFM method includes two procedures: (1) marginal
distributions are computed from the observed values; and (2) the copula depen-
dence parameter, h, is estimated through the maximization of the log-likelihood
function of the copula (Mirabbasi 2012). The log-likelihood has the form:

l hð Þ ¼
Xn
i¼1

lncðF1 xi1; h1
� �

; . . .;Fp xip; hp
� 	

; aÞþ
Xn
i¼1

Xn
j¼1

lnfj xij; hj
� 	

ð2:33Þ

First, we can perform n separate estimations, one for each univariate marginal
distribution, i.e., obtain

�hj ¼ arg max
Xn
i¼1

fj xij; hj
� 	

ð2:34Þ

for i = 1, …, n and then estimate a given the previous marginal estimates

�a ¼ argmax
Xn
i¼1

lncðF1 xi1; h1
� �

; . . .;Fp xip; hp
� 	

; aÞ ð2:35Þ

Table 2.3 Four common families of Archimedean copulas and their generator

Copula h

GH Copula s ¼ 1� 1
h

Frank Copula
s¼1þ 4

h ð1h
Rh
0

t
et�1dt� 1Þ

Clayton Copula s ¼ h=ðhþ 2Þ
Ali-Mikhail-Haq Copula s ¼ 1� 2ðhþð1�hÞ2 lnð1�hÞ

3h2
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2.4.2 Parameter Estimation Method of Meta-Elliptical
Copulas

The parameters of meta-elliptical copulas are determined by the linear correlation
coefficient q, and R is a symmetrical correlation matrix, we need only estimate its d
(d − 1)/2 supradiagonal elements (Genest and Favre 2007). According to Hult and
Lindskog (2002), the linear correlation coefficient q can be computed by

qkl ¼
rklffiffiffiffiffiffiffiffiffiffiffi
rkkrll

p ð2:36Þ

where rkl is the covariance of samples k and l; and rkk and rll are the variance of
sample k and l, respectively.

2.4.2.1 Parameter Estimation Based on Kendall Correlation
Coefficient

We can directly find the q by Eq. 2.36. However, the correlation coefficient q is
somewhat complicated for elliptically contoured distributions (Fang 2002), it is
more convenient to compute q by considering Kendall’s correlation coefficient [see,
e.g., Nelson (1992, 1998)]. According to Hult and Lindskog (2002), the population
value of Kendall’s tau is linked to qkl through the relation

skl ¼ 2
p
arcsinðqklÞ ð2:37Þ

Thus, the parameters of meta-elliptical copulas can be computed based on the
inversion of Kendall’s correlation coefficient.

2.4.2.2 The Maximum Pseudo-likelihood Method

The maximum pseudo-likelihood estimation method (MPL) mentioned above can
also be used to compute the parameters of Gaussian and Student copulas (Genest
1995; Nadarajah 2005). In the MPL method, the parametric marginal distribution is
substituted by empirical or rank-based marginal distribution (Reddy and Ganguli
2012). If X is a vector of observations, the empirical distribution function of it can
be calculated by the following expression:

ûktðXktÞ ¼ 1
Nþ 1

XN
i¼1

1ðXki �XktÞ ð2:38Þ
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where N is the sample size.
Considering the Gaussian copula, the maximum pseudo-likelihood function is

given by

L x1; x2; . . .; xd ;Rð Þ ¼
Yd
i¼1

c û1i; û2i; . . .; ûdi;Rið Þ ð2:39Þ

where c(�) is the density of Gaussian copula; ûdi is the empirical marginal distri-
bution value of current variables; Ri is the symmetrical covariance matrix of
X. Then, build an equation based on Eq. 2.39

Xn
i¼1

@

@R
ln c û1i; û2i; . . .; ûdi;Rið Þ½ �f g ¼ 0 ð2:40Þ

We can get the estimator of parameter R by solving Eq. 2.40. This method can
also estimate the parameters of Student copula. The maximum pseudo-likelihood
function is given by

L x1; x2; . . .; xd ;R; vð Þ ¼
Yd
i¼1

c û1i; û2i; . . .; ûdi;Ri; vð Þ ð2:41Þ

Then let ∂lnL/∂R = 0 and ∂lnL/∂v = 0 as following:

Xn
i¼1

@

@R
ln c û1i,û2i,. . .,ûdi;Ri; vð Þ½ �f g ¼ 0

Xn
i¼1

@

@v
ln c û1i,û2i,. . .,ûdi;Ri; vð Þ½ �f g ¼ 0

8>>>><>>>>: ð2:42Þ

where c(�) is the density of Student copula. By solving Eq. 2.42, R and v can be
determined.

2.5 Goodness-of-Fit for Copulas

2.5.1 Fitting Evaluation of Copulas

When evaluating the goodness-of-fit of a model, maybe the most natural idea is
plotting a scatter plot of the pairs ( bFi ;Ci), where bFi and Ci are respectively the
empirical and theoretical values (Genest and Favre 2007). Empirical copulas are
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rank-based, empirically joint cumulative probability measures (Nelsen 2006). For
the bivariate case, the empirical copula of the observed data (ui, mi) is as follows:

Fðui; viÞ ¼ 1
N

XN
i¼1

Ið Di

nþ 1
� ui;

Si
nþ 1

� viÞ ð2:43Þ

where N is the sample size; I(A) denotes the indicator variable of the logical
expression A and assumes a value of 0 if A is false and 1 if A is true; and the ranks
of the ith observed duration and the severity data are represented as Di and Si,
respectively (Mirabbasi et al. 2012).

By the graphical model selection method proposed by Genest and Rivest (1993),
the best-fitting model is the one whose scatter plot is the closest to the 45° diagonal.

The graphical diagnostic is intuitive but not accurate, so the root mean square
error (RMSE), Bayesian information criteria (BIC), and Akaike’s information cri-
terion (AIC) are three more common methods to measure the fitting biases of
various copulas (Ma et al. 2011; Zhang 2005). The AIC can be obtained either by
calculating the maximum likelihood or by calculating the mean square error of the
model (Zhang and Singh 2006).

RMSE and BIC can be calculated by

MSE ¼ 1
N

XN
i¼1

Pei � Pið Þ2 ð2:44Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffi
MSE

p
ð2:45Þ

BIC ¼ N ln MSEð Þþm ln Nð Þ ð2:46Þ

The AIC values related to maximum likelihood values can be calculated by

AIC ¼ 2m� 2 lnðLÞ ð2:47aÞ

The AIC values related to mean square error can be calculated by

AIC ¼ 2mþN lnðMSEÞ ð2:47bÞ

where MSE is the mean square error of the chosen copula model concerning
empirical copula; Pei and Pi is respectively the empirical probability and theoretical
probability; m is the number of parameters; and L is the maximized value of the
likelihood function for the estimated model. The copula function with the smaller
AIC, BIC and RMSE values is the better one. Thus, these three values can play a
guiding role in choosing copulas.
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2.5.2 Goodness-of-Fit Test for Copulas

To test whether a copula function can adequately describe the dependence between
given series, several goodness-of-fit procedures have been proposed. The
Kolmogorov-Smirnov test (Kolmogorov 1933; Smirnov 1948) and the Anderson–
Darling test (Anderson and Darling 1952) are two common ways to test our
hypothesis (Malevergne and Sornette 2003). Computing statistics DN and A2

N by
K-S and A-D methods, and comparing them with corresponding critical values at a
certain significance level, if the statistics are less than the corresponding critical
values, our hypothesis can be accepted. The statistics DN and A2

N can be
computed by

DN ¼ max
1� i�N

i
N
� CðxiÞ;CðxiÞ � i� 1

N

� �
ð2:48Þ

A2
N ¼ �N � 1

N

XN
i¼1

ð2i� 1Þ lnCðxiÞþ lnð1� CðxNþ 1�iÞÞ½ � ð2:49Þ

where N is the number of observations; C(�) is the hypothesized model that needs to
be tested; and xi is observation in increasing order.

2.6 Copula Entropy Theory

2.6.1 Entropy Theory

The Shannon entropy (Shannon 1948) quantitatively measures the mean uncertainty
associated with a probability distribution of a random variable and in turn with the
random variable itself in concert with several consistency requirements (Kapur and
Kesavan 1992). The entropy of a random variable (r.v.) X can be expressed as:

HðXÞ ¼ �
Z1
0

f ðxÞ log f ðxÞdx ð2:50Þ

where f ðxÞ is the probability density function of variable X. In this book, we focus
on flood flow, so the range of the variable is from 0 to infinite. In fact, the domain
can be extended to any real number.

Equation 2.50 defines the univariate continuous entropy or marginal entropy of
X. The units of entropy are given by the base of the logarithm, being “nats” for base
e and “bits” for base 2. The natural logarithm will be used in this book.

For two random variables X1 and X2, the joint entropy can be expressed as
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HðX1; X2Þ ¼ �
Z1
0

Z1
0

f ðx1; x2Þ log f ðx1; x2Þdx1dx2 ð2:51Þ

Let X1, X2, …, Xd denote the random variable series, the multidimensional joint
entropy can be expressed as:

HðX1;X2; . . .;XdÞ ¼ �
Z1
0

. . .

Z1
0

f ðx1; x2; . . .; xdÞ log½f ðx1; x2; . . .; xdÞ�dx1 dx2. . .dxd

ð2:52Þ

The mutual information can be expressed as:

TðX1;X2Þ ¼ HðX1ÞþHðX2Þ � HðX1;X2Þ ð2:53Þ

Using Eq. 2.50 and 2.51 into Eq. 2.53, the formulation can be written as:

TðX1;X2Þ ¼ �
Z1
0

f ðx1Þ log f ðx1Þdx�
Z1
0

f ðx2Þ log f ðx2Þdx

þ
Z1
0

Z1
0

f ðx1; x2Þ log f ðx1; x2Þdx1 dx2

¼ �
Z1
0

Z1
0

f ðx1; x2Þ log f ðx1Þdx1 dx2 �
Z1
0

Z1
0

f ðx1; x2Þ log f ðx2Þdx1 dx2

þ
Z1
0

Z1
0

f ðx1; x2Þ log f ðx1; x2Þdx1 dx2

¼
Z1
0

Z1
0

f ðx1; x2Þ½� log f ðx1Þ � log f ðx2Þþ log f ðx1; x2Þ�dx1 dx2

¼
Z1
0

Z1
0

f ðx1; x2Þ log f ðx1; x2Þ
f ðx2Þf ðx1Þ dx1 dx2

ð2:54Þ
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2.6.2 Definition of Copula Entropy

Ma and Sun (2011) took into accounts the copula function and entropy theory
together and introduced the concept of copula entropy. Calsaverini and Vicente
(2009) discuss a couple of consequences yield by connections between the copula
and entropy methods, which involve copula entropy.

Copula entropy is defined as the entropy of copula function, which is related to
the joint entropy, marginal entropy and mutual information. Let x 2 Rd be random
variables with marginal functions Fi(x), Ui = Fi(x), i = 1, 2, …, d. Then, Ui are
uniformly distributed random variables; and ui will denote a specific value of Ui.
The entropy of the copula function is defined as variable CE, which can be
expressed as

HCðU1;U2; . . .;UdÞ ¼ �
Z 1

0
� � �

Z 1

0
cðu1; u2; . . .; udÞlog(cðu1; u2; . . .; udÞÞdu1. . .dud

ð2:55Þ

where c(u1, u2, …, ud) is the probability density function of copulas and expressed

as @Cðu1;u2;...;udÞ
@u1@u2...@ud

.
For a bivariate case, the CE can be expressed as

HCðU1;U2Þ ¼ �
Z 1

0
cðu1; u2Þlog(cðu1; u2ÞÞdu1du2 ð2:56Þ

2.6.3 Relationship Between CE and MI

The purpose of this section is to find a relationship between CE and MI. The joint
probability density function of vector random variable X can be defined as Grimaldi
and Serinaldi (2006):

f ðx1; x2; . . .; xdÞ ¼ cðu1; . . .; udÞ
Yd
i¼1

f ðxiÞ ð2:57Þ

Based on Eq. 2.50, the joint entropy can be expressed as:
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HðX1;X2; . . .;XdÞ ¼ �
Z1
0

. . .

Z1
0

f ðx1; x2; . . .; xdÞ log½f ðx1; x2; . . .; xdÞ�dx1 dx2. . .dxd

¼ �
Z1
0

. . .

Z1
0

cðu1; . . .; unÞ
Yd
i¼1

f ðxiÞ log½cðu1; . . .; unÞ
Yd
i¼1

f ðxiÞ�dx1 dx2. . .dxd

¼ �
Z1
0

. . .

Z1
0

cðu1; . . .; udÞ
Yd
i¼1

f ðxiÞflog½cðu1; . . .; udÞ� þ
Xd
i¼1

log½f ðxiÞ�gdx1 dx2. . .dxd

¼ �
Z1
0

. . .

Z1
0

cðu1; . . .; udÞ
Yd
i¼1

f ðxiÞ � log½cðu1; . . .; udÞ�dx1 dx2. . .dxd

�
Z1
0

. . .

Z1
0

cðu1; . . .; udÞ
Yd
i¼1

f ðxiÞ �
Xd
i¼1

log½f ðxiÞ�dx1 dx2. . .dxd

¼ AþB

ð2:58Þ

where

A ¼ �
Z1
0

. . .

Z1
0

cðu1; . . .; udÞ
Yd
i¼1

f ðxiÞ �
Xd
i¼1

log½f ðxiÞ�dx1 dx2. . .dxd

¼ �
Z1
0

. . .

Z1
0

f ðx1; x2; . . .; xdÞ �
Xn
i¼1

log½f ðxiÞ�dx1 dx2. . .dxd

¼ �
Z1
0

. . .

Z1
0

f ðx1; x2; . . .; xdÞ � flog½f ðx1Þ� þ � � � þ log½f ðxdÞ�gdx1 dx2. . .dxd

¼ �
Z1
0

. . .

Z1
0

f ðx1; x2; . . .; xdÞ � log½f ðx1Þ�dx1 dx2. . .dxd

. . .�
Z1
0

. . .

Z1
0

f ðx1; x2; . . .; xdÞ � log½f ðxdÞ�dx1 dx2. . .dxd

¼ �
Z1
0

log½f ðx1Þ�½
Z1
0

. . .

Z1
0

f ðx1; x2; . . .; xdÞ � dx2. . .dxd�dx1
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¼ . . .�
Z1
0

log½f ðxdÞ�½
Z1
0

. . .

Z1
0

f ðx1; x2; . . .; xdÞ � dx1. . .dxd�1�dxd

¼ �
Xd
i¼1

Z1
0

f ðxiÞ log½f ðxiÞ�dxi ¼
Xd
i¼1

HðXiÞ ð2:59Þ

Noting that du = dx � f(xi),

B ¼ �
Z1
0

. . .

Z1
0

cðu1; . . .; udÞ
Yn
i¼1

f ðxiÞ � log½cðu1; . . .; udÞ�dx1 dx2. . .dxd

¼ �
Z1
0

. . .

Z1
0

cðu1; . . .; udÞ � log½cðu1; . . .; udÞ�du1 du2. . .dud ¼ HCðuÞ
ð2:60Þ

Therefore, the joint entropy can be expressed as the sum of the d univariate
marginal entropies and the copula entropy.

HðX1;X2; . . .;XdÞ ¼
Xd
i¼1

HðXiÞþHCðu1; u2; . . .; udÞ ð2:61Þ

Equation 2.61 indicates that the joint entropy H(X1, X2, …, Xd) is divided into
two parts: the sum of the d marginal entropies H(Xi) and the copula entropy HC(U1,
U2, …, Ud).

For d = 2,

HðX1;X2Þ ¼ HðX1ÞþHðX2ÞþHCðU1;U2Þ ð2:62Þ

From Eq. 2.53,

TðX1; X2Þ ¼ HðX1ÞþHðX2Þ � HðX1; X2Þ ¼ �HCðX1;X2Þ ð2:63Þ

From Eq. 2.63, it can be seen that the mutual information is the negative copula
entropy. It is well known that the mutual information can measure the linear and
non-linear dependencies. Therefore, the copula entropy can be used to estimate the
linear and non-linear dependencies.

Research on copula entropy has received significant attention recently.
Calsaverini and Vicente (2009) discussed a couple of consequences yielded by
connections between the copula and entropy methods, which involve copula
entropy. Zhao and Lin (2011) applied copula entropy models with two and three
variables to measure the dependence in stock markets. The advantage of the copula
entropy is summarized as follows: (1) it makes no assumptions about the marginal
distributions and can be used for higher dimensions, (2) the mutual information can
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be obtained from the calculation of the copula entropy instead of the marginal or
joint entropy, which estimates the MI more directly and avoids the accumulation of
systematic bias. Until now the copula entropy method has not been widely used in
the hydrological field.

2.6.4 Calculation of Copula Entropy

Two methods are proposed to calculate the copula entropy. One is multiple inte-
gration method, and the other is Monte Carlo method.

2.6.4.1 Multiple Integration Method

From Eq. 2.55, the copula entropy can be derived using the multiple integration
method. First, parameters of the copula function need to be estimated, and then the
copula probability density function can be determined. The multiple integration
method, proposed by Berntsen et al. (1991), is applied to calculate the multiple
integrations. In order to test this multiple integration method, we use the copula
probability density function as an integrand. The result of integration should be 1.

2.6.4.2 Monte Carlo Method

For more variables, it may be difficult to calculate multiple integrations. The Monte
Carlo method can be used to calculate the copula entropy. For a multivariate vector
with support in [0, 1], the copula entropy can be obtained by

HCðu1; u2; . . .; udÞ ¼ �
Z

½0;1�d
cðUÞ ln cðUÞdU ¼ �E½ln cðUÞ� ð2:64Þ

The copula entropy equals the expected value of −ln[c(U)], which can be
derived by the Monte Carlo method. Similar to the multiple integration method, first
the dependence structure and parameters of the copula function need to be deter-
mined. M pairs of u are generated from the determined copula function, and then
average values of the −ln[c(U)] are calculated.

An example for calculating the copula entropy is given as follows.
The FORTRAN code is used to do the calculation. For example, we calculate the
copula entropy of two variables X and Y. The Gumbel Copula is used to establish
the joint distribution of variables X and Y. The parameter of Gumbel copula is 1.5.
The Gumbel copula can be described as:
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C u1; u2ð Þ ¼ expf�½ð� ln u1Þ1:5 þð� ln u2Þ1:5�1=1:5g ð2:65Þ

First, the multiple integration method is used. The integrand function is
Eq. 2.65. The multiple integration method, proposed by Berntsen et al. (1991), is
applied to calculate the multiple integrations. The value of copula entropy of
variables X and Y is—0.166.

Second, the Monte Carlo method is used. According to Eq. 2.64, The copula
entropy equals the expected value of −ln[c(U)]. First, the copula function is
established as shown in Eq. 2.65. 10,000 pairs of u are generated from the deter-
mined copula function, and then the average values of −ln[c(U)] are calculated. The
value of copula entropy is −0.153.
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Chapter 3
Copula-Based Flood Frequency Analysis

3.1 Introduction

Flood frequency analysis is a constant concern in the hydrological practice. The
sizing of bridges, culverts and other facilities, the design capacities of levees,
spillways and other control structures, and reservoir operation or management
depend upon the estimated magnitude of various design flood values (ASCE 1996).
Nowadays, the general methodology based on the univariate distribution is to
derive the fitted distribution representing the probability of an annual maximum
flood being exceeded (USWRC 1981; MWR 2006).

As the duration of gauged record rarely exceeds 50 years, estimates corre-
sponding to high return period obtained from the systematic data alone are subject
to large sampling errors. Furthermore, the existence of a cyclic variation over
periods longer than the duration of the records might well introduce further bias
(Leese 1973; Stedinger and Cohn 1986; Guo and Cunnane 1991). Therefore, to
overcome the problem of relatively short data series for frequency analysis, the
need to augment the flow record with historical is widely acknowledged in the
hydrological community. Several methods for incorporating historical information
into flood frequency studies have been suggested, including historically weighted
moments, maximum likelihood, probability weighted moments and L-moments
(USWRC 1982; Guo and Cunnane 1991; Hosking 1995).

The hydrologic extreme values and critical thresholds derived from complex
hydrological events for engineering design are usually obtained from single site
characteristics (e.g., annual maximum peak discharge). Therefore, conventional
hydrological frequency analysis has also mainly focused on one characteristic value
and univariate distributions that cannot provide a complete description of hydro-
logic events with multi-characteristics. Many hydrological frequency problems,
such as design flood hydrograph that includes flood peak and flood volumes, should
be solved by the multivariate distributions (Dupuis 2007; Xiao et al. 2008, 2009).
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In this chapter, the multivariate frequency analysis has been carried out. One of
the main difficulties in the multivariate quantile estimation is how to choose the
proper combinations of design values of the concerned random variables for a given
multivariate return period of hydrologic structure design. Take the bivariate case
(peak discharge Q and flood volume W) as an example. The combinations can differ
greatly regarding their values: moving along the multivariate quantile curve to an
asymptote, one of the two variables will approach its marginal value, while the
other tends to increase indefinitely (for unbounded random variables). Chebana and
Ouarda (2011) proposed the decomposition of the level curve into a naive part (tail)
and the proper part (central); they assumed that the naive part was composed of two
segments starting at the end of each extremity of the proper part. Salvadori et al.
(2011) introduced two basic design realizations, i.e., component-wise excess design
realization and most-likely design realization. Li et al. (2016) used the conditional
expectation combination method to derive the quantiles of flood peak and 7-day
volume under different JRPs, and they found that the bivariate design values have
smaller flood volume and larger flood peak than bivariate equivalent frequency
combination results.

3.2 Annual Maximum Flood Frequency Analysis
Based on Copula

Annual maximum (AM) flood series can be characterized by flood occurrence dates
and flood magnitudes. The marginal distribution of flood occurrence dates, peak
discharges, and flood volumes are established.

3.2.1 Margin Distribution of AM Flood Occurrence Dates

The AM flood occurrence dates can be described by the directional statistics
(DS) method. The date firstly should be converted to the angle of a circle by

ai ¼ Di
2p
L

0� ai � 2p ð3:1Þ

where L is the length of flood season; Di is the flood occurrence date.
The x and y coordinates of the flood dates described by the angles is determined

by

ðai; biÞ ¼ ðcos ai; sin aiÞ ð3:2Þ

�a ¼
Xn
i¼1

cos xi=n ð3:3Þ
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�a ¼
Xn
i¼1

sin xi=n ð3:4Þ

where n is the sample size.
The mean direction of the circular data (denoted by �h) is estimated by

h ¼

arctan b=a �a[ 0; �b[ 0
2pþ arctan b=a �a[ 0; �b\0
pþ arctan b=a �a\0
p=2 �a ¼ 0; �b[ 0
3p=2 �a ¼ 0; �b\0
unkown �a ¼ 0; �b ¼ 0

8>>>>>><
>>>>>>:

ð3:5Þ

A measure of the variability of the flood occurrences about the mean date is
determined by defining the mean resultant vector as:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b

2
q

0� r� 1 ð3:6Þ

where �r describes the dispersion measure (Black and Werritty 1997).
Since the distribution of dates is on a circle, rather than along a line, the use of

the normal distribution is no longer appropriate. Therefore, the von Mises distri-
bution is introduced and used to describe seasonal data with a single peak.

Fisher (1993) termed the von Mises distribution as the “natural” analog of the
normal distribution for seasonal data with a single peak. It is the most commonly
used and has some similar characteristics to the normal distribution (Mardia 1972).
The probability density function of von Mises distribution is given by:

f ðxÞ ¼ 1
2pI0ðjÞ exp½j cosðx� lÞ� 0� x� 2p; 0� l� 2p; j� 0 ð3:7Þ

It is symmetric and unimodal, with a mean direction at l and the dispersion
given by a concentration parameter j ¼ A�1ðrÞ∙ A�1ðrÞ is the inverse function of
A∙I0ðjÞ is the modified Bessel function of order zero. For large values of к, the
distribution is concentrated around the mean. When к = 0, the density gives the
uniform distribution on [0, 2].

3.2.2 Margin Distribution of AM Flood Peaks and Volumes

For the AM flood series, the Pearson type III (P-III) has been recommended by
MWR (2006) as a uniform procedure for flood frequency analysis in China.
The PDF of the P-Ш distribution is given in Table 1.1 of Chap. 1.
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3.2.3 Bivariate Distribution of AM Flood Occurrence
Dates and Magnitudes

For estimating the design flood, the bivariate joint distributions of AM flood
occurrence dates and magnitudes (or flood peaks and volumes) need to be built.
Every joint distribution can be written regarding a copula and its univariate mar-
ginal distributions. The copula is a function that links univariate marginal distri-
bution functions to construct a multivariate distribution function. The definition and
establishment of copulas can be seen in Chap. 2. The Gumbel copula is used to
establish the joint distribution in this section.

3.2.4 Case Study

As an illustrative example, the Geheyan reservoir is selected as a case study. The
Geheyan reservoir is a key control and multi-purpose water resources engineering
project in the Qingjiang Basin, which is one of the main tributaries of the Yangtze
River in China. The basin encompasses an area of 17,000 km2 with the annual
average rainfall 1500 mm. The annual average discharge and runoff at dam site are
393 m3/s and 124 � 108 m3 (from 1951 to 2005), respectively. The flood season
lasts for five months from 1 May to 30 September (153 days).

3.2.4.1 Computation of Empirical Probability

The empirical probabilities can be computed by the Gringorten plotting–position
formula

PðjÞ ¼ j� 0:44
nþ 0:12

ð3:8Þ

where P(j) is the cumulative frequency, indicating the probability that a given value
is less than the jth smallest observation in the data set of n observations.

Observed joint probabilities are computed based on the same principle as in the
case of a single variable. A two-dimensional table is constructed first in which the
variables X and Y are arranged in ascending order. The joint cumulative frequency
(non-exceedance joint probability) is then given by (Yue et al. 1999):

Fðtk; qjÞ ¼ PðX � tk; Y � qjÞ ¼
Pk
m¼1

Pj
l¼1

nm; l � 0:44

nþ 0:12
ð3:9Þ
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3.2.4.2 Evaluation Criteria

A Chi-Square Goodness-of-fit test (v2), mean Rbias and RRMSE are selected to test
the fitting descriptive ability of flood frequency curve, which can be calculated by

v2 ¼
Xn
i¼1

PtheðiÞ � PempðiÞ
� �2

=PempðiÞ ð3:10Þ

Rbias ¼ 1
n

Xn
i¼1

Q̂ðiÞ � QðiÞ� �
=QðiÞ ð3:11Þ

RRMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

Q̂ðiÞ � QðiÞ
QðiÞ

� �2
vuut ð3:12Þ

where Pthe and Pemp are the theoretical and empirical frequencies; and Q̂ðiÞ and QðiÞ
are the estimated and observed values, respectively.

3.2.4.3 Conditional Probability

The parameters of Von Mises and P-III distribution are estimated by L-moments
method for given AM flood series of occurrence dates, peak discharges or volumes,
respectively. A Chi-Square Goodness-of-fit test is performed to test the assumption,
H0, that the flood occurrence dates and magnitudes follow the Von Mises and P-III
distributions. Table 3.1 shows that the assumption cannot be rejected at the 0.5%
significance level. It is shown that the values of Rbias and RRMSE are very small,
which mean that the marginal distribution can fit data set very well.

Table 3.2 lists the conditional probability of P(X > xp|Y > y1%) given xp. Under
the condition of annual maximum flood magnitude Y > y1%, the probability cor-
responding occurrence date after May 27 is 98.45%, the probability of annual
maximum flood occurred during May 27 to 29 is (98.45−29.86%) = 68.59%, and
during July 18 to 29 is (81.16−75.29%) = 5.87%.

Table 3.1 The goodness of fit and v2 test statistics

Index Rbias RRMSE v2 c v20:995ðN � c� 1Þ
Von Mises −4.378 0.982 0.253 2 82.001

P-III 0.254 0.327 0.903 3 80.747

Bivariate 4.400 6 76.969
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3.2.4.4 Fitting Marginal Distributions

The marginal distribution frequency curves of flood peaks and 7-day flood volumes
are shown in Fig. 3.1, in which the line represents the theoretical distribution, and
the crossing represents the empirical probabilities. Figure 3.1 indicates that these
theoretical distributions can fit the observed data reasonably well.

The Gumbel copula is used to model the dependence between the extreme
maximum annual flood peaks and 7-day flood volume in this study. The probability
plot of joint distribution is shown in Fig. 3.2, in which the Gumbel copula can fit
the empirical bivariate distribution very well.

3.3 Copula-Based Flood Frequency Considering
Historical Information

Flood events consist of flood peaks and flood volumes that are mutually correlated
and need to be described by multivariate analysis methods, of which the copula
functions are most desirable ones. Until now, the multivariate flood frequency

Table 3.2 Conditional probability of X given Y > y1%

P (%) 0.01 0.1 1 10 20 30 40 50 70 90 99

xp
(Arc)

6.28 6.27 6.09 4.48 3.71 3.27 2.92 2.62 2.02 1.11 0.17

Dates 9/
29

9/
28

9/25 8/17 7/29 7/18 7/10 7/2 6/18 5/27 5/4

CP
(%)

0.84 6.17 29.86 65.42 75.29 81.16 85.47 88.93 94.36 98.45 99.87

Note CP means the conditional probabilities P(X > xp|Y > y1%)

(a) Flood peak (b) 7-day flood volume

Fig. 3.1 Probability curves of flood peak and 7-day flood volume
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analysis methods based on copulas doesn’t consider the historical flood informa-
tion. This may underestimate or overestimate the flood quantiles or conditional
probabilities corresponding to high return periods, especially when the length of
gauged record data series is relatively short.

3.3.1 Maximum Likelihood Estimation for Censored
Samples

In certain sampling situations, the exact values of a proportion of the sample are
unknown, although their range may be specified. Usually, the range consists of all
points above or below a threshold level. Under these circumstances, the sample is
said to be censored. Censored samples occur, for example, when instruments are
not calibrated for measurements above or below a certain level. Both historical data
and recent flood data (i.e., systematic record) may give rise to censored samples, but
because the censoring is generally above a threshold in the former and below in the
latter, they must be treated separately (Leese 1973).

Censored-sample maximum likelihood estimators were initially developed by
Hald (1949) and Cohen (1976) for the normal and lognormal distributions. They
were subsequently adapted by Leese (1973), Condie and Lee (1982), and Stedinger
and Cohn (1986) for common case in hydrology where one have both a
censored-sample historical flood record and also a systematic gaged record. The
maximum likelihood estimation method for type-I censoring is described as
follows.

In the annual maximum flood series of Fig. 3.3, there is a total of g known
floods. Of these, k is known to be the k largest in the period of n years. The n year
period contains within it a systematic record (recently gauged data) of s years
(s � n) length. Of the k largest floods, c occurred during the systematic record

(a) Bivariate probability distribution (b) Kendall’s function results

Fig. 3.2 Comparison of observed and theoretical bivariate probability distribution
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(c � k and c < s, and also g = s+k−c). Assume a fixed threshold X0 exceeded by
the k largest floods and not exceeded by any of the remaining n–k floods, recorded
or not (i.e., the k values which exceed X0 form a type I censored sample). It is also
noted that the m (m = k−c) floods in the pre-gauging period h (h = n−s) are known
as they are included in the k values which exceed X0, and it is assumed that no other
floods exceeded the threshold during that period.

Let fX and FX denote the probability density function (PDF) and the cumulative
distribution function (CDF) of variable X, respectively. The resulting likelihood
function for the whole sample of s+m known and h−m unknown values is given by
(Leese 1973; Condie 1986; Stedinger and Cohn 1986; Guo and Cunnane 1991)

lðaÞ ¼
Ysþm

i¼1

fXðxiÞ½
ZX0

�1
fXðxÞdx�h�m ð3:13Þ

where a is the parameter vector of fX and FX.
Since c flood events exceeding the perception threshold X0 occur among the

systematic data (analogously to the sketch in Fig. 3.3), the c events are virtually
removed from the period s and are treated as historical data (Bayliss and Reed
2001). Then, Eq. 3.13 can be expressed as

Fig. 3.3 Sketch of the annual maximum flood series when historical floods are available.
Notations: s—the length of the systematic record; h—the length of the pre-gauging period; y1, y2,
y3—historical flood events; X0—perception threshold
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lðaÞ ¼
Ys�c

i¼1

fXðxiÞ
Yk
j¼1

fXðyjÞ½
ZX0

�1
fXðxÞdx�h�m ð3:14Þ

where xi(i = 1, 2 … s − c) denotes the systematic data less than the threshold
X0 and yi(j = 1, 2 … k) denotes the k (k = m+c) largest floods exceeding the

threshold X0;
Qs�c

i¼1
fXðxiÞ and

Qk
j¼1

fXðyjÞ are the likelihood functions of s−c systematic

records and the k largest floods, respectively; and ½R X0

�1 fXðxÞdx�h�m represents the
likelihood function for the h−m unknown values, which has been defined and
applied by Leese (1973), Condie (1986), Stedinger and Cohn (1986), and Guo and
Cunnane (1991).

The log-likelihood function for the univariate distribution can be expressed as

LðaÞ ¼
Xs�c

i¼1

log fXðxiÞþ
Xk
j¼1

log fXðyjÞþ ðh� mÞ logFXðX0Þ ð3:15Þ

The maximum likelihood estimates are those values of a that maximize
Eq. 3.15.

3.3.2 Bivariate Flood Frequency Analysis with Historical
Information

The conventional flood frequency analysis incorporation with historical information
is based on univariate distribution. To overcome the shortcomings of univariate
frequency analysis, a multivariate copula-based flood frequency analysis model that
considers historical information was proposed and discussed by Li et al. (2013). As
the historic flood events occurred hundreds of years ago, the durations of them are
hard to measure or investigate. There is no publication or any gauged record related
to the duration samples of historical floods. Besides, the perception threshold of
flood duration is also difficult to fix for maximum likelihood estimation. Thus, only
the distribution of flood peak and volume with historical information is studied.

3.3.3 Inference Function for Margins Method

In classical statistics, the inference function for margins (IFM) method was first
defined as a terminology by McLeish and Small (1988). Compared with other
estimation methods, the IFM method is the preferred fully parametric method for

3.3 Copula-Based Flood Frequency Considering Historical Information 47



multidimensional parameter estimation because it is close to maximum likelihood
(ML) in approach and is easier to implement (Joe and Xu 1996; Joe 1997).
Comparisons of various types have been made in Xu (1996) for some multivariate
models which suggest that the IFM method is highly efficient compared to maxi-
mum likelihood. Similar comparisons have also been made by Joe (1997), (2005)
and the derived conclusions are: (1) the ML estimation is much more
time-consuming than IFM method, (2) the IFM method allows one to do inference
and modelling starting with univariate and lower-dimensional margins, (3) there is
some robustness against misspecification of the dependence structure and also there
should be more robustness against outliers or perturbations of the data, compared
with the ML method; and (4) the IFM rather than the ML method avoids the
sparseness problem to a certain degree, especially if parameters can all be estimated
from univariate and bivariate likelihoods. Therefore, the IFM method is selected
and described briefly as follows:

Under the assumption that the marginal distributions are continuous with
probability density functions fXðx; a1Þ and fYðy; a2Þ, the joint PDF then becomes

fX;Yðx; y; a1; a2; hÞ ¼ ch½FXðx; a1Þ;FY ðy; a2Þ�fXðx; a1ÞfYðy; a2Þ ð3:16Þ

where FX and FY are univariate CDFs with respective parameter vectors a1, a2, and
ch is the density of Ch parametrized by a parameter h, defined as

chðu; vÞ ¼ @2Chðu; vÞ
@u@v

ð3:17Þ

For the observed bivariate series (x1, y1),…, (xs, ys) with a sample size s, we can
consider the two log-likelihood functions for the univariate marginal distribution,
i.e.

L1ða1Þ ¼
Xs
i¼1

log fXðxi; a1Þ ð3:18aÞ

L2ða2Þ ¼
Xs
i¼1

log fYðyi; a2Þ ð318bÞ

and the log-likelihood function for the joint distribution,

Lðh; a1; a2Þ ¼
Xs
i¼1

log fX;Yðxi; yi; a1; a2; hÞ ð3:19Þ

The IFM method consists of two separate optimizations of univariate likeli-
hoods, followed by an optimization of multivariate likelihood as a function of the
dependence parameter vector. More specifically,
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(a) The log-likelihoods L1ða1Þ and L2ða2Þ of the two univariate marginal distri-
butions are separately maximized by Eq. 3.18a, 318b to get estimates â1 and
â2;

(b) The function Lðh; â1; â2Þ is maximized over h to get ĥ in Eq. 3.19.

That is, under regularity conditions, ðâ1; â2; ĥÞ is the solution of

ð@L1=@a1; @L2=@a2; @L=@hÞ ¼ 0 ð3:20Þ

This procedure is computationally simpler than that of estimating all parameters
a1; a2; h simultaneously in Eq. 3.19.

3.3.4 Modified IFM Method with Incorporation
of Historical Information

Since the current IFM method can only be used for systematic data series, a
modified IFM (MIFM) method with an incorporation of historical and paleological
information is proposed and described as follows.

Let xi and yi (i = 1,…, s-c) respectively denote the systematic data of marginal
distributions (flood peak and volume); gj and pj (j = 1,…, k) respectively denote the
k largest floods of marginal distributions (flood peak and volume) with the same
years of occurrence. Of the k largest floods, c occurred during the systematic record
and m occurred during the pre-gauging period h (k = m+c and h = n − s); X0 (or
Y0) is the fixed threshold of margin exceeded by the k largest flood peaks (or
volumes) and not exceeded by any of the remaining n − k flood peaks (or volumes).
Furthermore, let fx, and fy denote the univariate marginal PDFs, and Fx, and Fy

denote the univariate marginal CDFs of variables X and Y, respectively. fXY denotes
the joint PDF.

Referring to Eq. 3.14, the likelihood function with historical floods for joint
distributions can be described as

lðh; a1; a2Þ ¼
Ys�c

i¼1

fXY ðxi; yiÞ
Yk
j¼1

fXY ðgj; pjÞ½
ZX0

�1

ZY0
�1

fXY ðx; yÞdxdy�h�m

¼
Ys�c

i¼1

fXY ðxi; yiÞ
Yk
j¼1

fXY ðgj; pjÞfCh½FXðX0Þ;FYðY0Þ�gh�m

ð3:21Þ
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Then, the log-likelihood function for joint distribution can be expressed as:

Lðh; a1; a2Þ ¼
Xs�c

i¼1

log ch½FXðxiÞ;FY ðyiÞ�þ
Xk
j¼1

log ch½FXðgjÞ;FYðpjÞ�

þ ðh� mÞ logCh½FXðX0Þ;FYðY0Þ� þ
Xs�c

i¼1

log fXðxiÞþ
Xk
j¼1

log fXðgjÞ

þ
Xs�c

i¼1

log fYðyiÞþ
Xk
j¼1

log fYðpjÞ

ð3:22Þ

In which, the two log-likelihood functions for the univariate marginal distribu-
tion are

L1ða1Þ ¼
Xs�c

i¼1

log fXðxiÞþ
Xk
j¼1

log fXðgjÞ ð3:23Þ

L2ða2Þ ¼
Xs�c

i¼1

log fYðyiÞþ
Xk
j¼1

log fYðpjÞ ð3:24Þ

Similar to the IFM method, the MIFM method also consists of two separate
procedures:

(a) The log-likelihoods L1ða1Þ and L2ða2Þ are separately maximized by Eqs. 3.23
and 3.24 to get estimates â1 and â2;

(b) The function Lðh; â1; â2Þ is maximized by Eq. 3.22 over h to get ĥ.

As a consequence, the precious historical information is used to estimate not
only the parameters of marginal distributions but also the dependence parameters of
joint distribution that is based on the correlation of the marginal distributions. The
more additional information of marginal distribution provides, the more precise
dependence structure will be obtained.

3.3.5 Case Study

The Three Gorges reservoir (TGR) in China is selected as an illustrative example.
The basin area of TGR is one million km2, and the annual average discharge and
runoff volume at the dam site are 14,300 m3/s and 4510 � 108 m3, respectively.
The TGR located on middle reaches of the Yangtze River is the largest water
conservancy project in the world, with a normal pool level at an elevation of 175 m.
The total storage capacity of the TGR is 393 � 108 m3, of which 221.5 � 108 m3
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is flood control storage, and 165 � 108 m3 is the conservation regulating storage
volume. With 26 hydro-generators installed, the mean annual electricity output of
the TGR reaches up to 847 � 108 kW•h. The TGR also plays a key role in the
flood prevention of Yangtze River basin which is the richest area in China (Li et al.
2010).

3.3.5.1 Systematic Record and Historical Floods

The annual maximum peak discharge (Q), 3-day flood volume (W3), and 15-day
flood volume (W15) are available with a systematic record of 128 years (1882–
2009, i.e., no systematic data are formally gauged before 1882). Besides the sys-
tematic observations, a lot of historical flood events had been investigated by
CWRC (Changjiang Water Resources Commission) in the last century for the
design of the Three Gorges Project. The gathered information from gauging
authority records, historical documents, archives, flood marks and stone inscriptions
showed the concrete positions of high water stages recorded. As a result, the eight
largest historical floods since 1153 were quantificationally evaluated by CWRC and
other relevant units (CWRC 1996).

As the same notations defined previously, the length of the systematic obser-
vations is unequivocally given: s = 128 years; since no extraordinary flood
occurred during the systematic record, c = 0 and k = m; for the joint distribution of
flood peak (Q) and 3-day flood volume (W3), k = m = 8; for the joint distribution of
flood peak and 15-day flood volume (W15), k = m = 3; the perception thresholds of
peak discharge, 3-day flood volume and 15-day flood volume are X0Q = 80,000 m3/
s, X0w3 = 200 � 108 m3 and X0w15 = 780 � 108 m3, respectively; and the
pre-gauging period, h = 730 (i.e. from 1153 to 1882). These data settings are also
listed in Table 3.3.

3.3.5.2 Parameter Estimation for Marginal Distributions

The empirical probabilities of univariate discontinuous series can be computed by
Weibull formula recommended by MWR (2006)

Pi ¼ Pðx� xiÞ ¼ PhðiÞ ¼ i
nþ 1 i ¼ 1; � � � ; k

PsðiÞ ¼ PhðkÞþ ð1� PhðkÞÞ � i
s�cþ 1 i ¼ 1; � � � ; s� c

�
ð3:25Þ

Table 3.3 Data settings for
the modified IFM method

Variables Threshold X0/Y0 h s k m

Q (m3/s) 80,000 730 128 8 8

W3 (10
8 m3) 200

Q (m3/s) 80,000 730 128 3 3

W15 (10
8 m3) 780

3.3 Copula-Based Flood Frequency Considering Historical Information 51



where Pi represents the exceedance probability; Ph(i) is the empirical probabilities
of historical floods for i = 1,…, k; Ps(i) is the empirical probabilities of systematic
data for i = 1,…, s−c; and the meanings of n, k, s, c are the same as those defined in
Fig. 3.3.

The parameters of the P-III marginal distributions estimated by the first stage of
the MIFM method in Eqs. 3.23 and 3.24 are listed in Table 3.4. A Chi-Square
Goodness-of-fit test is performed to test the assumption, H0, that the flood mag-
nitudes follow the P-III distribution. Table 3.5 shows that the assumption cannot be
rejected at the 5% significance level. The marginal distribution frequency curves of
flood peak and flood volumes are drawn in Fig. 3.4, in which the line represents the
theoretical distribution, the crossings and circles represent systematic record and
historical flood data, respectively. Figure 3.4 indicates that all the theoretical dis-
tributions can fit the observed data reasonably well.

3.3.5.3 Empirical Joint Probabilities of Dependence Flood Variables

Empirical (observed) joint probabilities of flood peak (Q) and volume (W) are
computed in a manner analogous to that for a univariate variable.
A two-dimensional table is constructed in which the variable X and Y are arranged
in descending order. The joint probabilities (exceedance) of k historical floods and
s-c systematic data are empirically computed separately, which are expressed as

Fðxi; yiÞ ¼
PðX� xi; Y � yiÞ ¼

PhðiÞ ¼
Pi
l¼1

Pi
p¼1

Nlp

nþ 1 i ¼ 1; . . .; k

PsðiÞ ¼ PhðkÞþ ð1� PhðkÞÞ �
Pi
l¼1

Pi
p¼1

Mlp

s�cþ 1 i ¼ 1; . . .; s� c

8>>>><
>>>>:

ð3:26Þ

where F(xi, yi) is obtained by arranging the number of (xi, yi) by either xi or yi;
Ph(i) is the empirical joint probabilities of historical floods and Nlp is the number of
(xi, yi) counted as xj � xi and yj � yi, i = 1,…, k, 1 � j� i; Ps(i) is the empirical

Table 3.4 Estimated
parameters of P-III marginal
distributions for flood peak
and volumes by MIFM

Variables â b̂ d̂

Q (m3/s) 11.11 0.0003 17066.7

W3 (10
8 m3) 11.89 0.1348 39.7

W15 (10
8 m3) 18.26 0.0463 118.22

Table 3.5 Hypothesis test
results of P-III marginal
distributions for flood peak
and volumes

Variables v0.05 Chi-Square statistics, v2

Q (m3/s) 7.815 4.924

W3 (10
8 m3) 9.488 5.048

W15 (10
8 m3) 7.815 4.110
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joint probabilities of systematic data and Mlp is the number of (xi, yi) counted as
xj � xi and yj � yi, i = 1,…, s−c, 1 � j� i; and n is the total length of the
analyzed time period (n = s+h).

3.3.5.4 Identification of Copula

The parameters of marginal distributions are estimated in the first stage of MIFM
method. The dependence parameter h is obtained by maximizing the log-likelihood
function of the joint distribution. For Gumbel copula, the estimation results are
h = 16.2524 for the joint distribution of flood peak and 3-day flood volume, and
h = 3.2977 for that of flood peak and 15-day flood volume. For Student copula, the

(a) Flood peak (b) 3-day flood volume

(c) 15-day flood volume

Fig. 3.4 P-III distributions fitted to flood peak and volumes with historical information
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estimation results are (h = 0.9947, m = 6) for the joint distribution of flood peak and
3-day flood volume, and (h = 0.8598, m = 5) for that of flood peak and 15-day flood
volume. The root mean square errors (RMSE) of Gumbel and Student copulas are
listed in Table 3.6. The comparison results show that the Gumbel copula represents
the bivariate distribution of correlated flood peak and volumes better than that of
Student copula.

The upper tail dependence coefficients (TDC) of Gumbel copula (kU ¼ 2� 21=h)
and student’s t copula (kU ¼ 2tmþ 1 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðmþ 1Þð1� hÞ=ð1þ hÞp� �

) are computed by
the estimated parameters and listed in Table 3.6. The upper TDC can also be
estimated by the nonparametric estimation, which is a much more general as no
assumption is made about copula and marginal distributions (Poulin et al. 2007).
The Log, Sec and CFG estimators of upper TDC (Coles et al. 1999; Joe et al. 1997;
Poulin et al. 2007; Frahm et al. 2005) are respectively determined as follows.

k
_LOG

U ¼ 2� logCn ðn� kÞ=n; ðn� kÞ=nð Þ
log ðn� kÞ=nð Þ ; 0\k\n ð3:27Þ

k
_SEC

U ¼ 2� 1� Cn ðn� kÞ=n; ðn� kÞ=nð Þ
1� ðn� kÞ=n ; 0\k\n ð3:28Þ

k
_CFG

U ¼ 2� 2 exp
1
n

Xn
i¼1

log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log

1
Ui

log
1
Vi

r
= log

1

maxðUi;ViÞ2
 !" #

ð3:29Þ

in which

Cnðu; vÞ ¼ 1
n

Xn
i¼1

Ið Ri

nþ 1
� u;

Si
nþ 1

� vÞ ð3:30Þ

where Cnðu; vÞ is the empirical copula, I denote the indicator function, Ri and Si are
the ranks of block maxima xi and yi, respectively. ðU1;V1Þf ; . . .; ðUn;VnÞg denote
random sample obtained from the copula C.

The nonparametric estimation results of upper TDC are calculated and also listed
in Table 3.6. The comparison results of Table 3.7 show that the upper TDC of
Gumbel copula is much closer to the nonparametric estimation results than that of

Table 3.6 RMSE of Gumbel and student’s copulas and upper TDC estimated by parametric and
nonparametric methods

Variables RMSE kU of copula k̂LOGU k̂SECU k̂CFGU
Gumbel Student Gumbel Student

Q (m3/s) 0.0262 0.0874 0.9564 0.8954 0.9442 0.9511 0.9482

W3 (10
8 m3)

Q (m3/s) 0.0413 0.2149 0.7661 0.5262 0.7218 0.7618 0.7109

W15 (10
8 m3)
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student copula. This indicates that Gumbel copula reproduces better the observed
tail dependence coefficient, and the extreme behavior of Gumbel copula is more
similar to that of the sample. Therefore, the Gumbel copula is used to model the
dependence between the extreme maximum annual flood peak and volumes in this
study.

3.3.5.5 Copula-Based Conditional Distributions

The conditional flood distributions with historical flood data can be easily derived if
the copula-based bivariate flood distribution is constructed. For instance, the con-
ditional distributions for flood volume given that the peak discharge exceeding a
certain threshold qx0 can be expressed as

PðW �w Q[ qX0j Þ ¼ PðW �w;Q[ qX0Þ
PðQ[ qX0Þ

¼ FYðwÞ � Ch½FXðqX0Þ;FYðwÞ�
1� FXðqX0Þ

ð3:31aÞ

PðW [w Q[ qX0j Þ ¼ PðW [w;Q[ qX0Þ
PðQ[ qX0Þ

¼ 1� FXðqX0Þ � FY ðwÞþCh½FXðqX0Þ;FYðwÞ�
1� FXðqX0Þ

ð3:31bÞ

where Fx and FY represent the marginal distributions, and h represents the depen-
dence parameter of the bivariate distribution.

Likewise, the conditional distribution functions for peak discharge given that the
flood volumes exceeding a certain threshold WY0 can be expressed as

PðQ� q W [wY0j Þ ¼ PðQ� q;W [wY0Þ
PðW [wY0Þ

¼ FXðqÞ � Ch½FXðqÞ;FYðwY0Þ�
1� FYðwY0Þ

ð3:32aÞ

Table 3.7 Parameters of marginal distributions and copula estimated by different data and
methods

Variables IFM MIFM

P-III Copula P-III Copula

â b̂ d̂ ĥ â b̂ d̂ ĥ

Q (m3/s) 13.72 0.0004 16933.3 15.1545 11.11 0.0003 17066.7 16.2524

W3 (10
8 m3) 15.75 0.1736 36.28 11.89 0.1348 39.7

Q (m3/s) 13.72 0.0004 16933.3 3.0962 11.11 0.0003 17066.7 3.2977

W15 (10
8 m3) 22.15 0.0541 102.38 18.26 0.0463 118.22
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PðQ[ q W [wY0j Þ ¼ PðQ[ q;W [wY0Þ
PðW [wY0Þ

¼ 1� FXðqÞ � FY ðwY0ÞþCh½FXðqÞ;FY ðwY0Þ�
1� FY ðwY0Þ

ð3:32bÞ

The historical floods, which usually occurred as extraordinary events, may help
exposit the correlation of variables with high return period. As a consequence, the
incorporation of historical information into bivariate frequency analysis can provide
better insight into the dependence structure of variables. The conditional proba-
bilities accounting for historical floods can provide more comprehensive and ade-
quate information, which is useful in evaluating the flood prevention capability.

3.3.5.6 Comparative Study and Discussions

The comparative study and discussions of MIFM and IFM methods are conducted
in this section. First, the parameters of marginal distributions (Q, W3, and W15) and
copulas are estimated by IFM and MIFM methods, respectively. Table 3.7 shows
that the different data and methods lead to different parameter estimation results of
both marginal distributions and copula. Second, the quantiles of flood peak (Q),
3-day flood volume (W3) and 15-day flood volume (W15) are estimated by uni-
variate distribution (Chinese design flood guidelines), MIFM and IFM methods,
respectively.

The Relative Errors (RE) of T-year quantile estimator are calculated by

RE ¼ X̂T � XT

XT
� 100% ð3:33Þ

where XT is the univariate quantile estimated by univariate distribution (Chinese
design flood guidelines) with an incorporation of historical information; X̂T rep-
resents the bivariate quantiles estimated by MIFM method with an incorporation of
historical information or by IFM method using systematic records alone.

The relative errors (RE) of flood peak, 3-day flood volume, and 15-day flood
volume are calculated and listed in Tables 3.8, 3.9, and 3.10, respectively. The
results of these tables indicate that the bivariate quantiles estimated by MIFM

Table 3.8 Comparison of quantile Q estimated by univariate and bivariate distributions

T (years) Univariate quantile QT (m3/s) MIFM IFM

Q̂T (m3/s) RE (%) Q̂T (m3/s) RE (%)

10,000 102,900 103,100 0.19 95,900 −6.80

1000 91,700 91,900 0.22 86,400 −5.78

100 79,400 79,700 0.38 75,800 −4.53

Mean relative error 0.26 −5.70
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approach is much closer to the univariate quantiles than that estimated by IFM
method. The quantiles estimated by IFM method are much smaller than that of
Chinese design flood guidelines. The mean relative errors are equal to −5.70,
−3.24, and −1.88% for flood peak, 3-day flood volume, and 15-day flood volume,
respectively.

3.4 Bivariate Design Flood Quantile Selection
Using Copulas

To derive the feasible range, a boundary identification method is suggested, which
is inspired by the ideas of Chebana and Ouarda (2011) and Volpi and Fiori (2012).
Li et al. (2016) estimated the bivariate feasible ranges of flood peak and flood
volume suitable for combination in the critical level curve. Two combination
methods for estimating unique bivariate flood quantiles, i.e., the EFC method and
the CEC method, are proposed based on the assumption of the relationship between
u and v (or q and w).

3.4.1 Bivariate Return Period

In the conventional univariate analysis, flood events of interest are often defined by
return periods. In the bivariate domain, however, it is still discussed by the

Table 3.9 Comparison of quantile W3 estimated by univariate and bivariate distributions

T (years) Univariate quantile W3T

(108 m3)
MIFM IFM

Ŵ3T

(108m3)
RE
(%)

Ŵ3T

(108m3)
RE
(%)

10,000 255.9 256.3 0.16 246.0 −3.87

1000 228.4 228.9 0.22 220.8 −0.33

100 198.0 198.6 0.30 193.0 −2.53

Mean relative error 0.23 −3.24

Table 3.10 Comparison of quantile W15 estimated by univariate and bivariate distributions

T (years) Univariate quantile W15T

(108 m3)
MIFM IFM

Ŵ15T

(108 m3)
RE
(%)

Ŵ15T

(108 m3)
RE
(%)

10,000 950.3 958.2 0.83 924.4 −2.73

1000 859.5 868.1 1.00 842.5 −1.97

100 757.9 767.8 1.31 750.7 −0.95

Mean relative error 1.05 −1.88
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community as to which method is most suitable to transform the joint exceedance
probability to a bivariate joint return period (JRP). Different JPRs estimated by
copula function have been developed for the case of a bivariate flood frequency
analysis. Eight types of possible joint events were presented by Salvadori and De
Michele (2004) using “OR” and “AND” operators, of which, two cases are of the
greatest interest in hydrological applications (Shiau et al. 2006; Salvadori and De
Michele 2004):

(1) (OR case) either Q > q or W > w, i.e.,

Eor ¼ Q[ q orW [wf g ð3:34Þ

(2) (AND case) both Q > q and W > w, i.e.,

Eand ¼ Q[ q andW [wf g ð3:35Þ

In simple words: for Eor to happen it is sufficient that either peak discharge Q or
flood volume W (or both) exceed given thresholds; instead; for Eand to happen it is
necessary that both Q and W are larger than prescribed values. Thus, two different
JRPs can be defined accordingly (De Michele et al. 2005):

Tor ¼ l
P Q[ q or W [w½ � ¼

l
1� Fðq;wÞ ð3:36Þ

Tand ¼ l
P Q[ q and W [w½ � ¼

l
1� FQðqÞ � FWðwÞþFðq;wÞ ð3:37Þ

where l is the mean inter-arrival time between two consecutive events (in the case
of annual maxima l = 1 year), and F(q, w) = P(Q � q, W � w).

The Kendall JRP was introduced by Salvadori and De Michele (2004) to identify
the univariate critical threshold in a multivariate context, which is given by:

ht ¼ lT
1� KCðtÞ ð3:38Þ

where KC is the Kendall’s distribution function associated with the joint cumulative
distribution function of the copula’s level curves: KC(t) = P[C(u, v) � t]. It allows
for the calculation of the probability that a random point (u, v) in the unit square has
a smaller (or larger) copula value than a given critical probability level t. In other
words, it is related to the probability of occurrence of an event in the area over the
copula level curve of value t.

Different definitions of the multivariate return period are available in the literature,
based on regression analysis, bivariate conditional distributions, survival Kendall
distribution function, and structure performance function. For instance, some studies
have focused on a structure-based return period for the design and or risk assessment
of hydrological structures in a bivariate environment (Volpi and Fiori 2014).
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A comprehensive review of the JRP estimation methods was given by Volpi and Fiori
(2014).

The OR return period given in Eq. 3.36 has been extensively applied in multi-
variate hydrological frequency analysis (e.g., Shiau et al. 2006; Salvadori and De
Michele 2004; Chebana and Ouarda 2011; Volpi and Fiori 2012; Li et al. 2013). In
this study, we focus on the OR case for quantile estimation in a bivariate context.

3.4.2 Feasible Range Identification for Bivariate
Quantile Curve

The critical level curve, as shown in Fig. 3.5, was defined as a bivariate quantile
curve by Chebana and Ouarda (2011). As previously stated, for the case of OR
return period, the function that describes the level curve for any given return period
T or critical probability level p has two asymptotes, q = qp and w = wp, where
qp ¼ F�1

Q ðpÞ and wp ¼ F�1
W ðpÞ are the quantiles of the marginal distribution for the

given probability level p. According to Eq. 3.36 in the bivariate case, the choice of
an appropriate return period T or a critical probability level p for hydraulic structure
design will lead to the infinite combinations of flood peak and volume. However, all
the bivariate flood events with the same value of T or p along the level curve differ
greatly not only in terms of their quantile values, but also in terms of their prob-
ability of occurrence, which is measured by the joint probability density function
(PDF), i.e., f(q, w), evaluated along the critical level curve (Volpi and Fiori 2012).
Meanwhile, different combinations of Q and W are generally not equivalent from a
practical point of view, although they all satisfy the flood prevention standards. The
boundaries (see points B and C in Fig. 3.5) for selection of design flood peak and
volume are necessary in the case that the flood combinations are outside the
boundaries with unrealistically low occurrence probabilities.

Chebana and Ouarda (2011) proposed a method to decompose the quantile curve
in Fig. 3.5 into a naive part (i.e., the subset BC) and a proper part (outside subset

Fig. 3.5 Bivariate quantile
curve with a critical
probability level p
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BC). They assumed that the naive part is composed of two segments starting at the
end of each extremity of the proper part. They also suggested selecting these
boundary points according to the empirical version or as close as to the asymptotes
(the naive part). Volpi and Fiori (2012) defined the distance of each point along the
quantile curve in Fig. 3.5 from its vertex as a random variable (s) and derived its
PDF. The boundary points of the quantile curve are identified with a chosen per-
centage in the probability of the events. They also proposed a way of decomposition
of the quantile curve into the naive part and proper part. However, the procedure
presented by Volpi and Fiori (2012) is difficult to apply in the curvilinear coordinate
system [s(x, y), n(x, y)] or to derive the expression of a random variable (s). To
overcome these limitations, an approach to identify the boundary points (i.e., B and
C) of the quantile curve is developed. A new density function u(q) is used to
measure the relative likelihood of flood events, which is a non-curvilinear variable
in the procedure.

To derive the new density function with a chosen probability level to decompose
the quantile curve, a joint distribution of annual maximum flood peak (Q) and flood
volume (W) should be built by copula functions. The joint distribution function F(q,
w) can be expressed in terms of its marginal functions and FW(w) by using an
associated dependence function C, F(q, w) = C[FQ(q), FW(w)].

It is found that flood peak and volumes are usually upper-tailed dependent
variables and the Gumbel copula can reproduce best the observed tail dependence
coefficient (e.g., Poulin et al. 2007) Therefore, the Gumbel copula is taken as an
example to illustrate the developed boundary identification method because of its
easy expression and wide applications (Li et al. 2013).

For the Gumbel copula function, the relationship of joint distribution Ch(u,
v) and bivariate return period T can be expressed as (l = 1 for annual maxima flood
series):

Chðu; vÞ ¼ expf�½ð� ln uÞh þð� ln vÞh�1=hg ¼ 1� 1
T

ð3:39Þ

where h is the dependence parameter of the Gumbel copula, u = FQ(q), v = FW(w).
Thus, the relationship between u and v with the given bivariate return period

T can be derived as:

v ¼ exp �½ð� ln uÞh � ð� lnð1� 1
T
ÞÞh�1=h

� �
ð3:40Þ

Replacing u = FQ(q), and v = FW(w)into the above equation yields:

FWðwÞ ¼ exp �½ð� ln FQðqÞÞh � ð� lnð1� 1
T
ÞÞh�1=h

� �
¼ gðFQðqÞÞ ð3:41Þ

in which, gðxÞ ¼ exp �½ð� ln xÞh � ð� lnð1� 1
TÞÞh�1=h

n o
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Thus, the relationship between Q and W with the fixed bivariate return period
T can be derived as:

w ¼ F�1
W ðvÞ ¼ F�1

W gðFQðqÞð Þ ¼ 1ðqÞ ð3:42Þ

where F�1
W vð Þ is the inverse CDF of flood volume W. The above equation reveals

that W can be derived by Q if the bivariate return period T is fixed.
It should be noted that other copulas with more complicated formulas sometimes

may be needed. For the Frank copula, Clayton copula and several two-parameter
copulas, the implicit expression for describing the relationship between Q and W in
Eqs. 3.39 to 3.42 can be derived. For copulas with more complicated expressions,
the numerical method should be applied. For example, the unique value of w could
be obtained with given q by a trial and error method.

After obtaining the corresponding relationship of the values of w and q for the
flood events along the critical level curve, the bivariate joint PDF of w and q can be
expressed according to Sklar’s theory as (Nelsen 2006):

f ðq;wÞ ¼ chðFQðqÞ;FW ðwÞÞ � fQðqÞ � fWðwÞ ð3:43Þ

where fQ(q) and fW(w) are univariate PDFs of flood peak and volume, respectively,
and chðu; vÞ is the density of Chðu; vÞ and defined as:

ch ¼ @2Chðu; vÞ
@u@v

ð3:44Þ

Referring to Eqs. 3.41 and 3.42, the bivariate joint PDF of flood peak and
volume can be finally described as the function of the single random variable of
flood peak Q for the fixed bivariate return period T, i.e.,

f ðq;wÞ ¼ chðFQðqÞ; gðFQðqÞÞÞ � fQðqÞ � fWð1ðqÞÞ ð3:45Þ

According to Eq. 3.45, there is a curve that can describe the relationship between
joint PDF f(q, w)and flood peak Q for a given bivariate return period T or a critical
probability level p. Assume that the area between the curve of f(q, w) and the
horizontal axis of flood peak Q is A, i.e.,

A¼
Zþ1

qp

f ðq;wÞdq ¼
Zþ1

qp

cðFQðqÞ; gðFQðqÞÞÞ � fQðqÞ � fW ð1ðqÞÞdp ð3:46Þ

where qp represents univariate design value of flood peak, i.e., qp ¼ F�1
Q ðpÞ, which

is chosen as the lower bound of flood peak in the estimation of the bivariate design
flood values.
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As f(q, w) is a joint density function of q and w, area A does not equal to 1 if only
q is taken as an integral variable (i.e., A 6¼ 1). A new density function u(q) over the
area A which has proper density characters is constructed and expressed as follows:

uðqÞ ¼ f ðq;wÞ
A

¼ f ðq;wÞR þ1
qp

f ðq;wÞdq ð3:47Þ

Obviously, there is a one-to-one correspondence between the density function
u(q) and bivariate PDF f(q, w). The density function u(q) varies with the horizontal
axis and

R þ1
qT

uðqÞdq ¼ 1.

As previously stated, the bivariate design flood combinations near the upper and
lower bounds of the quantile curve have lower occurrence probability than that near
the middle of the quantile curve. As a consequence, the bivariate PDF f(q, w) of
bivariate design flood combination near the upper and lower bounds of quantile
curve is smaller than that near the middle of the quantile curve. The density
function u(q) has the same property as the bivariate PDF f(q, w). As the design
flood peak (or flood volume) varies from the lower bound, i.e., (qp) to infinitely
great, the density function u(q) increases to the maximum value and then decreases
gradually, as shown in Fig. 3.6. The vertex of the density function u(q) describing
the full dependence (Chebana and Ouarda 2011; Volpi and Fiori 2012) between
peak and volume has the highest density. In other words, this is the most likely
bivariate design flood event.

Once the density function u(q) along Q is defined by Eq. 3.43, we can evaluate
the lower and upper bounds that contain u(q) with probability of 1−e, for a given
probability level e. The quantiles of lower and upper bounds (qB and qC) are
specified respectively by (Volpi and Fiori 2012):

ZqB
qp

uðqÞdq ¼ a1 ð3:48Þ

ZqC
qp

uðqÞdq ¼ 1� a2 ð3:49Þ

Fig. 3.6 Relationship
between density function
u(q) and flood peak Q
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where a1 + a2 = e. The lower and upper bounds qB and qC identify a feasible range
on the quantile curve, bounded by the points of coordinates (qB, f(qB)) and (qC,
f(qC)), that excludes the e percentage in the probability of the critical events. The
probability levels a1 and a2 can be arbitrarily chosen, taking account of the specific
problem under investigation (Volpi and Fiori 2012).

3.4.3 Bivariate Flood Quantile Selection

For a given bivariate return period T, there are countless combinations of u and
v that satisfy Eq. 3.39. To derive the design values of flood peak q and flood
volume w, the unique combination of u and v (or q and w) should be determined.
Hence besides Eq. 3.39, one more equation that can establish the relationship
between u and v (or q and w) is necessary. Two combination methods were pro-
posed to derive the quantiles of flood peak and flood volume for given multivariate
return periods, and they are now outlined.

3.4.3.1 Equivalent Frequency Combination Method

With a given bivariate return period T, we assume that the flood peak and flood
volume have the same probability of occurrence, i.e., u = v (or FQ(q) = FW(w)).
This assumption is usually taken as a uniform procedure for the derivations of
design flood values and design flood hydrograph in China (MWR 2006; Xiao et al.
2008, 2009; Chen et al. 2010). Then, the design frequency of bivariate equivalent
frequency combination can be obtained by jointly solve the equation u = v and
Eq. (3.39).

Taking the Gumbel copula for example, the relationship between u and v with
the given bivariate return period T is described in Eq. 3.39. Based on the
assumption that u = v, the probabilities of occurrence of flood peak and volume
(i.e., u and v) can be estimated by the solution of the following equation.

u ¼ v ¼ ð1� 1
T
Þ1 ð3:50Þ

where 1¼ 2�
1
h, and h is the dependence parameter of the Gumbel copula.

Consequently, the design value of bivariate equivalent frequency combination
can be derived by the inverse function of marginal distributions:

q ¼ Fð�1Þ
Q ðuÞ ð3:51aÞ

w ¼ Fð�1Þ
W ðvÞ ð3:51bÞ
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3.4.3.2 Conditional Expectation Combination Method

Since the flood peak Q and flood volume W are dependent variables, one may wish
to predict the value of W based on an observed value of Q. Let g(Q) be a predictor,
i.e., g2N = {all Borel functions g with E[g(Q)]2 < ∞ Each predictor is assessed by
the “mean squared prediction error” E[W−g(Q)]2. The conditional expectation E(W|
Q) is the best predictor of W in the sense that

E W � EðW jQÞ½ �2¼ min
g2N

E W � gðQÞ½ �2 ð3:52Þ

Herein, during a flood event, when the flood peak Q = q takes place; the con-
ditional expectation EðwjqÞ is used to estimate the value of flood volume, which can
be derived by

EðwjqÞ ¼
Zþ1

�1
wfW jQðwÞdw ð3:53Þ

where fW|Q(w) is the density function of the conditional CDF FW|Q(w) and defined as
(Zhang and Singh 2006).

fW jQðwÞ ¼ f ðq;wÞ
fQðqÞ ¼ chðu; vÞfQðqÞfW ðwÞ

fQðqÞ ¼ chðu; vÞfWðwÞ ð3:54Þ

Hence, Eq. 3.53 can be expressed by

EðwjqÞ ¼
Zþ1

�1
wfW jQðwÞdw ¼

Z þ1

�1
wchðu; vÞfWðwÞdw ¼

Z 1

0
F�1
W ðvÞchðu; vÞdv

ð3:55Þ

where F�1
W ð�Þ is the inverse CDF of W.

Then, the flood peak q and E(w|q) will be the conditional expectation combi-
nation if the following equations are satisfied

u ¼ FQðqÞ
v ¼ FW ½EðwjqÞ�

1
1�Chðu;vÞ ¼ T

8<
: ð3:56Þ

The above equation can be solved by trial and error method with different values
of q.
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3.4.4 Case Study

3.4.4.1 Bivariate Quantile Curve and Feasible Range Identification

The return period of design flood of Geheyan reservoir, i.e., T = 1000-year, is
selected as the bivariate return period and T = 200-year is also chosen for com-
parison. The bivariate quantile curves of the two return periods are shown in
Fig. 3.7. Even if the Gumbel copula model is symmetric, the probability density
function u(q) is not symmetrical due to the difference in the marginal distributions.

The upper and lower bounds on the level curve are estimated numerically by
solving Eqs. 3.48 and 3.49, and assuming for simplicity (although other assump-
tions are possible) a1 = a2 = e/2, with e = 0.05. The upper and lower bounds are
denoted as B1 and C1, respectively, in Fig. 3.7. It is found that the bounds are close
to the horizontal asymptote (i.e., w7 = 61.49 � 108 m3 for T = 1000 and
w7 = 50.23 � 108 m3 for T = 200) and vertical asymptote (i.e., qp = 22,800 m3/
s for T = 1000 and qp = 19,300 m3/s for T = 200) due to the small value assumed
for the probability level e. The upper and lower bounds are also calculated by the
boundary identification method proposed by Volpi and Fiori (2012). The results are
also presented in Table 3.11, and the derived bounds are denoted as B2 and C2, as
shown in Fig. 3.7. It is shown that the bounds estimated by the proposed method
and that proposed by Volpi and Fiori (2012) are very similar.

3.4.4.2 Estimation of Bivariate Flood Quantiles

The bivariate EFC and CEC methods are used to estimate flood peak and 7-day
flood volume quantiles with return periods of T = 1000 and T = 200 years,

Fig. 3.7 Bivariate quantile curve of joint distribution of flood peak and 7-day flood volume
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respectively. For comparison, the univariate flood quantiles (called marginal
quantiles by Chebana and Ouarda 2011) are estimated by marginal distributions,
assuming that the univariate return periods (TQ and TW) are equal to the bivariate
return period (i.e., TQ = TW = T). The univariate flood quantiles can be obtained
from the equations q ¼ F�1

Q ðpÞ ¼ F�1
Q ð1� 1

TÞ and w ¼ F�1
W ðpÞ ¼ F�1

W ð1� 1
TÞ. The

results of the component-wise excess realization and the most likely realization
proposed by Salvadori et al. (2011) are also estimated. The estimation results of
bivariate and univariate quantiles are listed in Table 3.12. It is shown that the
design values of bivariate quantiles are larger than those of univariate quantiles. The
quantiles estimated by the four bivariate event selection methods are also shown in
Fig. 3.7, and the estimation points of the EFC method are denoted as point E, while
the quantiles estimated by the CEC method are denoted as point F. For the results of
selection approaches proposed by Salvadori et al. (2011), the events of
component-wise excess realization are denoted as point W, and the events of most
likely realization are denoted as point L. From Fig. 3.7, we find that the joint design
values estimated by the four event-selection methods are within the feasible
regions. Consequently, the two proposed methods and selection approaches pro-
posed by Salvadori et al. (2011) can be selected as an option of deriving unique
flood quantiles, and they can satisfy the inherent law of hydrologic events and have
a statistical basis to some degree. It can be seen from Table 3.12 and Fig. 3.7 that

Table 3.11 Comparison of the lower and upper bounds of the quantile curve

Boundary identification
method

Return
period

Lower bound Upper bound

Qp(m
3/

s)
W7

(108 m3)
Qp(m

3/
s)

W7

(108 m3)

Volpi and Fiori (2012) 1000 22,930 65.84 26,080 61.54

200 19,350 50.27 22,460 55.86

Li et al. (2016) 1000 23,000 65.76 26,100 61.52

200 19,400 54.49 22,500 50.26

Table 3.12 Design flood values and corresponding highest water levels estimated by bivariate
quantile combinations and univariate distribution

T Method Qp(m
3/s) W7 (�108 m3) Zmax (m)

1000 EFC 23,390 63.09 202.97

CEC 23,420 62.98 202.92

Component-wise excess realization 23,510 62.78 202.90

Most-likely realization 23,400 63.05 202.95

Univariate distribution 22,800 61.49 202.58

200 EFC 19,800 51.87 198.10

CEC 20,130 51.11 197.79

Component-wise excess realization 20,200 51.03 197.59

Most-likely realization 19,940 51.50 197.82

Univariate distribution 19,300 50.23 197.30
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the estimated events of the EFC method and that of the most likely realization are
similar. The bivariate EFC results have larger flood volume and smaller flood peak
than bivariate CEC results. As well, the results estimated by the component-wise
excess realization have larger flood peak and smaller flood volume than the other
three methods.

3.4.4.3 Design Flood Hydrograph Based on Joint Distribution

The two combination methods are applied to derive the design flood hydrograph
(DFH), and the resulting highest reservoir water level is selected as an index to
evaluate the effects of different hydrological loads on the structure. The DFH for a
dam is the flood of suitable probability and magnitudes adopted to ensure safety of
the dam in accordance with appropriate design standards. The annual maximum
flood hydrograph of 1997, which has a high peak and large volume with a
posterior-peak shape, is selected as a typical flood hydrograph (TFH). The DFH
with bivariate combinations is amplified from a TFH by the following method
(Xiao et al. 2008):

DFHðtÞ ¼ ðTFHðtÞ � QTFHÞ � ðw=DT � qÞ=ðWTFH=DT � QTFHÞþ q ð3:57Þ

where DFH(t) and TFH(t) are the flood discharges of the DFH and TFH for time
t respectively; QTFH is flood peak discharge of TFH; WTFH is 7-day flood volume of
TFH for flood duration DT; q and w are flood peaks and 7-day flood volumes of
bivariate design flood combination, respectively. Nevertheless, other DFH gener-
ation methods based on flood peak and volume are also available and can be
applied with the bivariate design value combinations.

The DFHs of 1000-year and 200-year return periods are constructed, respec-
tively, with the bivariate EFC method and bivariate CEC method as shown in
Fig. 3.8. It is found in Fig. 3.8 that only a few differences exist between the DFHs
estimated by the EFC and CEC methods. This is because that the differences
between the bivariate design values vary within a small range. Volpi and Fiori
(2012) found that the feasible range on a p-level curve strongly depends on the
correlation coefficient of Q and W. In the limiting case of full dependence, the level
curve reduces to its vertex and the width of the feasible range tends to 0 (Volpi and
Fiori 2012). Since the Kendall correlation coefficient between flood peak and 7-day
volume in Geheyan reservoir equals to 0.66, the differences of quantiles estimated
by EFC and CEC methods are relatively small in this case study.

The DFH rescaled by univariate distribution design values and two realizations
proposed by Salvadori et al. (2011) is also derived from TFH by Eq. 3.59. These
DFHs are routed through the Geheyan reservoir with initial water level (flood
control limiting water level, 192.2 m). The corresponding highest reservoir water
levels (Zmax) are calculated and are listed in Table 3.12.

It is shown in Table 3.12 that the design values of flood peak and 7-day flood
volume obtained by univariate distribution method are both smaller than those
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obtained by four bivariate methods. The resulting Zmax of the univariate method is
relatively lower than those of bivariate approaches. Since flood events are naturally
multivariate phenomena and flood peak and flood volume are mutually correlated,
the quantiles estimated by bivariate distribution are more rational than these by
univariate distribution (Chebana and Ouarda 2011).

The comparison results listed in Table 3.12 also show that Zmax obtained by
bivariate EFC method is larger than that obtained by the other three bivariate
methods, while the component-wise excess method reaches the lowest Zmax. The

(a) EFC method

(b) CEC method

Fig. 3.8 DFHs derived by EFC method and CEC method
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results of Zmax calculated by most-likely realization are a little lower than those of
the EFC method, and the CEC method obtains a slightly higher Zmax than the
component-wise excess method. Comparing the results of 200-year and 1000-year
return period, it is found that the differences among the four bivariate methods
decrease as the return period increases. The water level reaches 202.97 m by the
EFC method and is slightly higher than other methods for the 1000-year return
period. Since the Geheyan reservoir has a large amount of flood control storage with
annual regulation ability, the design flood volume is relatively more important than
peak discharge for flood prevention safety. As a consequence, the bivariate EFC
method with slightly larger 7-day flood volume is safer for reservoir design than
other methods.

3.5 Conclusion

According to the bivariate joint distribution of annual maximum flood occurrence
dates and magnitudes, flood peaks and volumes, a flood frequency analysis model
with an incorporation of historical floods are established based on GH copula.
Modified inference functions for the margins (MIFM) method and the quantile
curve boundary identification method are developed. The following conclusions are
drawn from this Chapter:

(1) The Von Mises and Pearson Type III distributions can fit observed data series
very well. The goodness-of-fit tests indicate a good agreement between
observed and theoretical probabilities for both marginal and joint distributions.

(2) The proposed MIFM method may reduce the uncertainties of parameter esti-
mation in flood frequency analysis, since the historical floods have been taken
into account.

(3) The quantile combination methods provide a simple but effective way for
bivariate quantile estimation with given bivariate return period. The results
illustrate that the joint design values estimated by the two proposed combina-
tion methods are within the feasible regions, and the equivalent frequency
combination method perform satisfactorily.
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Chapter 4
Copula-Based Seasonal Design
Flood Estimation

4.1 Introduction

Since the rain-producing systems vary with season, the river flood is usually
characterized as seasonality. Seasonal fluctuations are a significant source of vari-
ability in runoff records. However, seasonality is often overlooked when evaluating
flood risk due to the use of annual value for defining extreme values. The phrase “1
in 100 years” flood does not inform whether a given extreme value is more likely to
come from one season over another. The oversight of seasonality is also common to
the peak-over-threshold method, even though this method is capable of obtaining
more than one extreme value per year (Michael et al. 2007).

In the reservoir operation, the water level of the reservoir should be limited
below the flood control water level (FCWL) during flood season to offer adequate
storage for flood control. The current FCWL, which plays a key role in the flood
prevention and floodwater utilization, is mainly determined according to the design
floods estimated from annual maximum flood series while neglecting the seasonal
information. This results in over-standard for flood prevention and a waste of
floodwater in most of the years. Therefore, the design flood guideline in China
stresses the importance of classifying the annual maximum floods caused by dif-
ferent generating mechanisms (MWR 1993). For floodwater utilization, it’s very
valuable to use the seasonal flood information in flood frequency analysis o operate
the reservoir more effectively during flood seasons without enhancing the flood
prevention risk. How to reasonably and optimally design seasonal floods that
reflects seasonal variations poses a challenge to hydrologists and engineers
nowadays. It is a very important and urgent issue in the management of reservoirs
in China (Guo et al. 2004; Fang et al. 2007).

The conventional flood frequency analysis methods are based on univariate
distributions, mainly concentrated on the analysis of peak discharge or flood vol-
ume series. For seasonal design flood, statistical analysis of the flood occurrence
dates is also very useful and important. Generally, the annual maximum flood often
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occurs in main flood season, and median or small floods occur in other ones. The
flood occurrence date is also a random variable and follows a particular distribution,
which is different from that of flood magnitude. Thus, seasonal design flood should
consider both the dates and magnitudes of flood events that may be described by a
bivariate joint distribution. Chen et al. (2010) proposed a new seasonal design flood
method, which considers dates of flood occurrence and magnitudes of the peaks
(runoff) based on copula function. Their results show that the proposed method can
satisfy the flood prevention standard, and provide more information about the flood
occurrence probabilities in each sub-season. Yin et al. (2017) used three bivariate
flood quantile selection methods, namely equivalent frequency combination
(EFC) method, conditional expectation combination (CEC) method and conditional
most likely combination (CMLC) method, to estimate unique seasonal design flood
to meet the needs in engineering. Results showed that the CMLC method is more
rational in physical realism and recommended for estimating the seasonal design
floods, which can provide rich information as the references for flood risk assess-
ment, reservoir scheduling, and management.

4.2 Review of Seasonal Design Flood Methods

The issue of seasonal flood frequency analysis was identified by Creager et al. as
early as in 1951. The aim of the seasonal design flood is to determine the rela-
tionship between hydrograph and return period in each season. Two current sea-
sonal design flood methods: one was suggested by Chinese design flood guideline
(MWR 1993), other was proposed by Singh et al. (2005). These two methods are
referred as Chinese method and Singh’s method in this study and reviewed as
follows.

4.2.1 Chinese Method

The seasonal maximum (SM) flood series extract the maximum peak discharge (or
runoff volumes) from each season during each year of record. The seasonal T-year
design flood is obtained by fitting a particular distribution, such as P-III distribution
used in China (MWR 1993).

In this method, the annual maximum values Y can be described as:

Y ¼ Y1; Y2; . . .; Ysf g ð4:1Þ

where Y1; Y2; . . .; Ys are the seasonal maximum flood series; and s is the number of
the sub-seasons.
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According to the Eq. (4.1), the extreme value distribution of the annual maxi-
mum flood series can be defined as:

FTðyÞ ¼ F1ðyÞF2ðyÞ � � �FSðyÞ ð4:2Þ

where FTðyÞ is the distribution of the annual maximum flood series; and
F1ðyÞ; . . .;FsðyÞ are the distributions of seasonal maximum flood series (Waylen
and Woo 1982). For a fixed value y, Eq. 4.2 shows that FTðyÞ will always be less
than or equal to the smallest of the FiðyÞ, since each of the latter values must always
be in the range [0, 1]. In other words, the annual frequency curve must always lie
on or above the highest of the seasonal frequency curves on a common probability
paper, i.e., T-year seasonal design floods are always less than the annual design
floods (Durrans et al. 2003).

The Chinese flood prevention standard is defined by annual return period
T,T ¼ 1=ð1� FTðyÞÞ, while the Chinese design flood guideline assumes that the
seasonal design frequency is equal to the annual design frequency, namely
FTðyÞ ¼ F1ðy1Þ ¼ F2ðy2Þ ¼ 1� 1=T(MWR 1993). Assuming two sub-seasons,
take the 100-year design flood for example. If F1ðyÞ ¼ F2ðyÞ, i.e., in the case of
identical distribution, Eq. 4.2 leads to FTðyÞ ¼ ðF1ðyÞÞ2 ¼ 0:98. This means that
when the seasonal design method is used, the combined frequency of them cannot
reach the annual prevention standard. If the combination frequency must reach to
the annual design frequency, at least one of the seasonal frequencies must exceed
the annual frequency analysis. Therefore, the current Chinese seasonal design flood
method cannot satisfy the flood prevention standard.

4.2.2 Singh’s Method

Annual maximum flood series are formed by extracting the annual maximum peak
discharge (or runoff volumes) from each year of record. If n is the number of
recorded years and ni is the number of annual maxima that occur in the ith season,

then n ¼ Ps
i¼1

ni (Durrans et al. 2003).

This method can be described as follows: considering that the occurrence of a
flood event B ¼ fY [ yg must be associated with one of the events fAig, i = 1, …,
s. fAig means the annual maximum flood that occurs during the ith season.

The exceedance frequency Pðy;AiÞ of seasonal design flood is defined as:

Pðy;AiÞ ¼ Pðy Aij ÞPðAiÞ ð4:3Þ

where PðyjAiÞ is the exceedance probability that an annual flood maximum
occurring in the ith season. PðAiÞ is the probability of an annual maximum
occurring in the ith season, i = 1, …, s.
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This method has been described by Thomas et al. (1998), who pointed out that
its use is valid for both independent and dependent seasonal flood distributions.
Singh et al. (2005) applied this method to estimate design flood from a noniden-
tically distributed series and provided an estimation procedure for practical use.

The sum of the probabilities of seasonal design flood is given by:

PðY � yÞ ¼
Xs

i¼1

PðB\AiÞ ¼
Xs

i¼1

PðAiÞP y Aijð Þ ð4:4Þ

Equation 4.4 is the total probability law and expresses the frequency distribution
of the annual maximum flood as the sum of the frequency distribution of those
annual maximum floods that are conditioned on the maxima occurring in the ith
season with the probability weight PðAiÞ (Singh et al. 2005).

Assuming the annual maxima occurring in different seasons are identically
distributed, the conditional frequency distribution PðyjAiÞ is free of Ai, then Eq. 4.4
leads to

PðyÞ ¼ Pðy0Þ
Xs

i¼1

PðAiÞ ¼ Pðy0Þ ð4:5Þ

where Pðy0Þ is a fixed frequency distribution indicating that the overall annual
maxima are identically distributed. Equation 4.5 shows the validity of Eq. 4.4
which can satisfy the flood prevention standard (Singh et al. 2005).

The flood frequency distribution PðyjAiÞ should be estimated from those
observed values of the Yi flood series that are picked as the annual maximum floods.
For some drier season, there may be few or even no samples to be drawn. It is not
accurate and reliable to use these data series for calculation. Equation 4.4 suffers in
practice from the fact that ni for one season will usually be considerably smaller
than ni for another season. Because of this, the reliability with which each condi-
tional distribution in Eq. 4.4 may be estimated will vary from season to season.
Furthermore, since ni for any season will always be less than or equal to n, this
approach essentially limits the lengths of the record samples (Durrans et al. 2003).

4.3 A New Seasonal Design Flood Method

The sampling methods, flood seasonality identification methods, and the copula
functions are introduced and discussed. The von Mises distribution is used to
describe the flood occurrence dates, while the P-III distribution or exponential
distribution (Ex) is selected as marginal distribution for annual maximum flood
series or peak-over-threshold samples, respectively. A new seasonal design flood
method is described as follows.
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4.3.1 Sampling Method

Sampling methods play an important role in flood frequency analysis. The annual
maximum (AM), seasonal maximum (SM) and peaks-over-threshold
(POT) sampling methods are used and compared in this section.

The POT sampling method is also widely used in flood frequency analysis
because more information can be obtained compared with that of the AM or SM
sampling method. To guarantee the independence of the samples, the flood peaks
are selected by two criteria suggested by Institute of Hydrology of UK (IH 1999):
(1) two peaks have to be separated by at least three times the average time to rise, in
which the average time to rise is determined from the synthetic records as 2 days
and is kept constant throughout the study; and (2) The minimum discharge between
two peaks has to be less than two-thirds of the discharge of the first of the two
peaks.

4.3.2 Identification of Seasonality

The whole flood season is usually divided into three sub-seasons, and these
sub-seasons are defined as the pre-flood season, main flood season and post-flood
season (MWR 1993; Ngo et al. 2007).

Several types of approaches for detecting flood seasonality have been proposed.
One type of approaches is to segment flood season regarding climatological and
river basin physiographic characteristics by analyzing the rain-producing system
(Black and Werrity 1997; Singh et al. 2005). The other type is to segment flood
season by using visual identification based on some measurements of flood sea-
sonality. Ouarda et al. (1993) proposed two variations of a graphical method for
identification of river flood season from peaks-over-threshold (POT) data.
Cunderlik et al. (2004) used the relative frequency (RF) method and directional
statistics (DS) method to identify the seasonality. The RF method is based on
counting the number of events in each season, to allow comparisons between
records, expressing these counts as a percentage of the total number of events in
each record (Black and Werritty 1997; Cunderlik et al. 2004; Ouarda et al. 2006).
The DS method describes the seasonality by defining the mean day of the flood
(directional mean) and the flood variability measure. The DS, RF, and POT
methods are compared in this study.

4.3.3 Seasonal Design Flood Estimation

The season design flood can be characterized by flood occurrence dates and flood
magnitudes. In this section, first, the marginal distribution of flood occurrence dates
and flood magnitudes are established.
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4.3.3.1 Margin Distribution of Flood Occurrence Dates

The von Mises distribution introduced in Chap. 3. Three can only be used for
unimodal distribution. Since the annual maximum floods may be generated by
different mechanisms, the flood occurrence data series often obey a multimodal
distribution. Thus, a mixed von Mises distribution which can describe the multi-
modal character is comprised of a finite mixture of von Mises distributions. The
probability density function for a mixture of N von Mises distributions (vM-pdf)
takes the following form:

fXðxÞ ¼
XN
i¼1

pi
2pI0ðjiÞ exp½ji cosðx� liÞ�

0� x� 2p; 0� li � 2p; ji � 0

ð4:6Þ

where pi is the mixing proportion, li is the mean direction, and ji is the concen-
tration parameter.

Various methods can be used to estimate the 3 N parameters on which the
mixture of N vM-pdfs depends (Carta and Ramírez 2007). The least squares
(LS) method is used in this book, in which the 3 N unknown parameter values can
be estimated by minimizing the sum of the squares of the deviations between the
experimental data and the calculated value (Carta et al. 2008).

4.3.3.2 Margin Distribution of Flood Magnitudes

For the AM flood series, the P-III distribution has been recommended by MWR
(1993) as a uniform procedure for flood frequency analysis in China. The formula
of P-III distribution is given in Table 1.1.

The classical use of the POT sampling method comprises the assumptions of a
Poisson-distributed number of threshold exceedances and exponentially distributed
peak exceedances (Lang et al. 1999). The probability density function of
2-parameter Ex distribution is given in Table 1.1 as well. For POT flood series, the
1-parameter Ex distribution is used by setting the parameter c = 0

fYPOTðyÞ ¼ 1
a
eð�y=a0Þ ð4:7Þ

where a0 is a parameter of the Ex distribution.
The parameters of P-III and Ex distributions are estimated by L-moments

method (Hosking and Wallis 1997).
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4.3.3.3 Bivariate Distribution of Flood Occurrence Dates
and Magnitudes

For estimating seasonal design flood, the bivariate joint distributions of flood
occurrence dates and magnitudes need to be built. Every joint distribution can be
written regarding a copula and its univariate marginal distributions. The copula is a
function that links univariate marginal distribution functions to construct a multi-
variate distribution function. The definition and establishment of copulas can be
seen in Chap. 2. The Gumbel–Hougaard, Frank, Clayton, and Ali-Mikhail–Haq
copulas are used to establish the joint distribution.

4.3.3.4 Seasonal Design Flood Estimation

Seasonal design flood is related to the flood dates X and magnitudes Y and follows a
two-dimensional distribution F(x, y). Assuming all floods occur during whole flood
season, the annual exceedance probability can be defined as:

PðX� t; Y [ qÞ ¼ FXðtÞ � Fðt; qÞ ð4:8Þ

where t is the last day of the flood season, and q is a specific discharge value. FXðtÞ
is the marginal distribution function of t.

Fðt; qÞ is the joint distribution of the flood peak which occurs before the date
t with the value less than or equal to the discharge q, and can be described by

Fðt; qÞ ¼
Zq

�1

Z t

�1
f ðx; yÞdxdy

¼
Zq

�1

Z t

�1
fXðxÞfYðyjxÞdxdy

¼
Z t

�1
fXðxÞ

Zq

�1
fYðyjxÞdydx

¼
Z t

�1
fXðxÞFðqjxÞdx

¼
Z t

0

FðqjxÞdFXðxÞ

¼
Xs

i¼1

PðY � qjxi\x\xiþ 1ÞFXðxi\x\xiþ 1Þ

ð4:9Þ
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PðX� t; Y [ qÞ ¼ FXðtÞ �
Xs

i¼1

PðY � qjDxiÞFXðxi\x\xiþ 1Þ

¼
Xs

i¼1

FXðxi\x\xiþ 1Þ

Xs

i¼1

PðY � qjDxiÞFXðxi\x\xiþ 1Þ

¼
Xs

i¼1

FXðxi\x\xiþ 1Þð1� PðY � qjxi\x\xiþ 1ÞÞ

¼
Xs

i¼1

FXðxi\x\xiþ 1ÞPðY � qjxi\x\xiþ 1Þ

ð4:10Þ

where fXðxÞ is the marginal density function of variable x; f ðx; yÞ is
two-dimensional density function; fYðyjxÞ and FYðyjxÞ are the conditional proba-
bility density and distribution function of y; and xi represents a segmentation point.
If s equals the number of the sub-seasons, then Eq. 4.10 is as the same as that of
Eq. 4.4. It is also indicated from Eq. 4.10 that the seasonal design flood frequency
curves are located below the annual one.

If FXðxi�1\x\xiÞ is replaced with PðAiÞ, the exceedance probability for the
seasonal design flood frequency Pðq;AiÞ is defined as:

Pðq;AiÞ ¼ PiðYi [ qjAiÞPðAiÞ
¼ Pðxi�1 �X� xi; Yi [ qÞ
¼ FðxiÞ � Fðxi�1Þ � Fðxi; qÞþFðxi�1; qÞ

ð4:11Þ

where xi�1 and xi are the segmentation points. Equation 4.11 indicates that seasonal
design flood is related to bivariate joint distributions. The seasonal design flood
frequency Pðq;AiÞ can be described by the probability weight PðAiÞ and the con-
ditional frequency distribution PðqjAiÞ. Since the range of the PðqjAiÞ is from 0 to
1, the value of Pðq;AiÞ is restricted within PðAiÞ.

4.4 Case Study

4.4.1 Identification of Flood Seasonality

The Geheyan reservoir is selected as a case study. Fifty-four year (1954–2004)
discharge records are used to analyze seasonal design flood. For the POT sampling
method, the threshold value with 3500 m3/s is selected, which corresponds to a
mean of 2.57 exceedances per year.
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In the Qingjiang basin, floods frequently occur in summer from June to early
August when the monsoon fronts advance from south to north or in the fall from
late August to early October when the fronts withdraw from north to south.
Although both summer and fall floods result from frontal rains, their hydrological
characteristics are distinctly different because the intensity of the rain-producing
system is varied with seasons (Singh et al. 2005). The statistical analysis results of
10-day rainfall data are listed in Table 4.1. It can be seen from Table 4.1 that most
of the rainfall occurs from late June to middle July, whereas in other time of the
flood season a relatively small amount of rainfall is received. Seasonal variation of
trends is that flood events begin to increase from late June and decrease in late July.
Therefore, those two periods might be the segmentation points.

The DS, RF and POT methods are used to describe the flood seasonality, and the
results of these methods are listed in Table 4.2. It can be seen that the RF method
has the shortest main flood season (from June 21 to July 20) because of the
clustering of dates of flood occurrences into ten days. Ouarda et al. (2006) pointed
out that the seasonality method based on the peaks-over-threshold (POT) approach
lead to the best results. However, the result of POT method also has the shortest
main flood season (from June 26 to July 26) at the Qingjiang basin as shown in
Table 4.2. Compared with POT method, the result of DS approach has a 5-day
difference for each sub-season.

In order to ensure the flood control safety, the results of DS method are chosen,
since it has the longest main flood season from June 21 to July 31. The mean day of
the flood (directional mean) is on July 2. The flood occurrence dates sampled by

Table 4.1 Statistical analysis results of 10-day rainfall data of the Geheyan basin

Date � 60 mm 50–59 mm 40–49 mm 30–39 mm Mean
values
(mm)

Percentage
(%)

May Early 1 2 3 9 58 6.26

Mid. 1 1 4 11 58 6.19

Late 0 2 2 13 61 6.51

June Early 3 3 2 18 61 6.56

Mid. 4 0 1 9 60 6.40

Late 4 2 18 13 85 9.14

July Early 3 6 14 11 86 9.20

Mid. 7 7 11 9 84 9.03

Late 1 2 6 7 60 6.42

August Early 2 2 4 6 60 6.42

Mid. 1 1 4 9 59 6.27

Late 3 1 5 8 56 5.96

Sept. Early 0 2 7 11 49 5.30

Mid. 4 3 5 9 58 6.25

Late 0 2 2 3 38 4.08
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POT method are translated into a location on the circumference of a circular drawn
in Fig. 4.1. It can be seen from Fig. 4.1 that the flood events are mainly centered
June 20 to July 31, and the interval time of the adjacent flood events is obviously
shorter in this period.

In summary, the flood season of the Qingjiang basin can be divided into three
sub-seasons, i.e., the pre-flood season, main flood season and post-flood season.
Based on the analysis results above, the pre-flood season is from May 1 to June 20;
the main flood season is from June 21 to July 31, and the post-flood season is from
August 1 to Sept. 30.

4.4.2 Computation of Empirical Frequency

The empirical probabilities can be computed by Eqs. 3.8 and 3.9.

Table 4.2 Results of three methods for identification of the seasonality

Methods The pre-flood season The main flood season The post-flood season

DS May 1–June 20 June 21–July 31 Aug. 1–Sept. 30

RF May 1–June 20 June 21–July 20 July 21–Sept. 30

POT May 1–June 25 June 26–July 26 July 27–Sept. 30

Fig. 4.1 Application of DS method for flood occurrence dates based on POT samples
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4.4.3 Bivariate Distribution

The joint distribution is established for the AM and POT samples respectively, and
the estimated parameters of the margin distribution and joint distribution are listed
in Table 4.3. Some statistical tests are used for margin and joint distributions.
A chi-square goodness-of-fit test is performed to test the assumption H0 that the
flood magnitude follows P-III distribution or Ex distribution. A Kolmogorov–
Smirnov (K-S) test is used to test the assumption H0 that the flood occurrence dates
follow mixed von Mises distribution. The results shown in Table 4.4 indicate that
these assumptions cannot be rejected at the 5% significant level. The fitted fre-
quency histograms of the flood occurrence date by the mixed von Mises distribution
for POT sample series are drawn in Fig. 4.2. The margin distribution frequency
curves of flood occurrence dates and magnitudes are shown in Figs. 4.3 and 4.4,
respectively, of which the line represents the theoretical distribution, and the
crossing means empirical probability of observations. Figures 4.3 and 4.4 indicate
that all the theoretical distributions can fit the observed data reasonably well,
although there are some uncertainties in the dataset itself.

Four widely used copulas, namely the Gumbel-Hougaard, the Ali-Mikhail-Haq,
the Frank and the Clayton are compared and discussed. The root mean square error
(RMSE) and Akaike’s information criterion (AIC) are used to identify the most
appropriate copula distribution (Zhang and Singh 2006). The equation for RMSE
can be expressed by

Table 4.3 Estimated parameters of the marginal and joint distributions for peak discharges

Sampling
method

P-III or Ex distribution Mixed von Mises
distribution

Joint
distribution

li ji pi h

a b d 1.03 4.80 0.17

AM 2.520 0.001 2 467 2.81 3.28 0.70 1.82

5.66 27.43 0.13

k a0 0.62 16.52 0.11

POT 2.58 2.361 2.72 1.61 0.72 0.83

5.60 3.76 0.17

Table 4.4 Hypothesis test for margin distributions

Samples P-III or Ex distribution Mixed von Mises distribution

v0.95
2 Chi-squared statistics v2 Dn,0.95 K-S statistics Dn

AM 7.815 1.800 0.180 0.089

POT 12.592 2.758 0.115 0.047
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

ðxtheðiÞ � xempðiÞÞ2
vuut ð4:12Þ

where N represents the number of observations; and xtheðiÞ and xempðiÞ denote the
ith calculated and observed values, respectively.

The Akaike information criterion (AIC), developed by Akaike (1974), is used to
identify the appropriate probability distribution. The AIC can be obtained either by
calculating the maximum likelihood or by calculating the mean square error of the
model (Zhang and Singh 2006). The AIC values related to maximum likelihood
values can be expressed by

AIC ¼ 2k � 2 lnðLÞ ð4:13aÞ

The AIC values related to mean square error can be expressed by

AIC ¼ 2kþN lnðMSEÞ ð4:13bÞ

where k is the number of parameters in the statistical model; L is the maximized
value of the likelihood function for the estimated model; and MSE ¼ RMSE2.

The RMSE and AIC values related to MSE (Eq. 4.13b) for different copulas are
listed in Table 4.5. The best family is the one which has the minimum RMSE and
AIC values. It can be seen that Frank and Clayton family fit the empirical joint
probabilities better than Gumbel and Ali-Mikhail–Haq. No obvious difference
exists between Frank family and Clayton family.

The empirical joint probabilities of the combinations of flood occurrence dates
and flood peak magnitudes are plotted versus theoretical probabilities as shown in
Fig. 4.5, which shows that no significant difference between empirical and theo-
retical joint probabilities can be detected.

It may be concluded that the proposed bivariate joint distribution is suitable to
represent the flood occurrence dates and magnitudes at the Geheyan reservoir basin.
The joint distribution of the AM flood series is shown in Fig. 4.6.

Table 4.5 The RMSE and AIC values for different copula functions

Family AM POT

h RMSE AIC h RMSE AIC

Gumbel–Hougaard 1.24 0.042 −318 1.10 0.031 −942

Ali-Mikhail–Haq 0.70 0.080 −249 0.37 0.045 −838

Frank 1.82 0.038 −329 0.83 0.028 −970

Clayton 0.49 0.039 −326 0.20 0.028 −970
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4.4.4 Seasonal Design Flood Estimation

The seasonal design floods in the pre-flood, main flood and post-flood sub-seasons
are calculated by Eq. 4.11. The curve fitting method that based on minimizing the
sum of the squares of the deviations between the observed values obtained from a
plotting position formula and theoretical values calculated by Eq. 4.11 for each
sub-season is used. An objective function of curve fitting method is given by
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Min GðqjÞ ¼
Xs

i¼1

XNi

j¼1

ðPðjÞ � Pðqj;AiÞÞ2 ð4:14Þ

where Ni is the number of the observed data in the ith sub-season; qj is the observed
data in the ith sub-season. PðjÞ is the cumulative frequency calculated by Eq. 3.9.

The Quasi-Newton method is used to optimize above objective function, and the
estimated parameters of von Mises distribution and the seasonal design flood values
for AM and POT samples are listed in Tables 4.6 and 4.7 respectively. Figure 4.7
shows that the theoretical curve of seasonal design floods can fit the observational
data well.

The relations between the seasonal and annual frequency curves are shown in
Fig. 4.8. The seasonal design flood frequency curves are rational, from the point of
view that they are lower than the annual design flood frequency curve. Furthermore,
the relations between the annual and seasonal design flood frequency curves must
be obeyed the Eq. 4.4 or 4.10, which is also taken as a criterion to test the
rationality of the seasonal design flood. A goodness-of-fit test for observed and

Table 4.6 Estimated parameters of the Mixed von Mises distribution for AM and POT samples

AM POT

li ji pi li ji pi
1.03 4.80 0.19 0.61 14.11 0.12

2.81 3.28 0.71 2.77 1.96 0.73

5.66 27.43 0.10 5.61 5.17 0.15

Table 4.7 Comparisons of annual maximum design flood with seasonal design floods estimated
by different methods (m3/s)

Methods Return
period
(year)

Annual
design

Design values

Pre-flood season Main flood season Post-flood season

Chinese
method

1,000 22,800 18,700 (−17.98%) 22,200 (−2.63%) 20,500 (−10.09%)

200 18900 15,090 (−20.31%) 18,383 (−2.92%) 15,890 (−16.08%)

100 17,400 13,500 (−22.41%) 16,800 (−3.45%) 14,500 (−16.67%)

Singh’s
method

1,000 22,800 18,384 (−19.37%) 27,298 (19.73%) 15,018 (−34.13%)

200 18,900 15,206 (−19.69%) 22,883 (20.85%) 13,395 (−29.26%)

100 17,400 14,282 (−17.92%) 20,626 (18.54%) 12,545 (−27.90%)

Proposed
method
AM

1,000 22,800 20,300 (−10.96%) 24,000 (5.26%) 22,200 (−0.03%)

200 18,900 15,400 (−18.52%) 19,200 (1.59%) 17,300 (−0.08%)

100 17,400 14,200 (−18.39%) 18,100 (4.02%) 16,200 (−0.07%)

POT 1,000 22,044 21,040 (−4.55%) 22,750 (3.20%) 22,042 (−0.01%)

200 18,270 17,013 (−6.88%) 19,216 (5.18%) 17,986 (−1.55%)

100 16,606 15,608 (−6.01%) 17,315 (4.27%) 16,604 (−0.01%)

4.4 Case Study 87



calculated data are shown in Fig. 4.9, in which the line represents the annual
theoretical probabilities derived by summing up the seasonal probabilities calcu-
lated by Eqs. 4.10 and 4.11, and the crossings represent the empirical probabilities.

1000-year seasonal design floods are estimated by Eq. 4.11, and the results
based on AM series are shown in Fig. 4.10. It shows that a surface formed in a
three-dimensional Cartesian coordinate system, indicating that various combina-
tions of seasonal design floods can be obtained for a given return period T. As the
increase of either or both of two seasonal design flood values, another design flood
values will be decreased.

4.4.5 Comparisons of Different Methods

The current seasonal design flood method used in China assumes that the design
frequency in each sub-season is identical. In accordance with this hypothesis and
the demand of satisfying the flood prevention standards, the seasonal design fre-
quencies must obey the following rules

PX ¼ PY ¼ PZ ¼ P0 ð4:15Þ

where PX, PY, and PZ are the design frequencies of the pre-flood season, main flood
season and post-flood season, respectively. If the annual maximum flood series is

0.
00

1

0.
01 0.

1

0.
5 2 10 30

P (q, A1)%

0

10000

20000

30000
q 

(m
3
/s

)

Pre-flood season

0.
00

1
0.

01 0.
1

0.
5 2 10 30 50

P (q, A2)%

0

10000

20000

30000

q 
(m

3
/s

)

Main flood season

0.
00

1

0.
01 0.

1

0.
5 2 10

P (q, A3)%

0

10000

20000

30000

q 
(m

3
/s

)

Post-flood season

0.
00

1
0.

00
5

0.
01

0.
05 0.

1
0.

2
0.

5 1 2 5 10 20 30

P (q, A1)%

0

10000

20000

30000

q 
(m

3 /s
)

Pre-flood season

0.
00

1

0.
01 0.

1
0.

5 2 10 30 50

P (q, A2)%

0

10000

20000

30000
q 

(m
3 /s

)

Main flood season

0.
00

1

0.
01 0.

1

0.
5 2 10 30

P (q, A3)%

0

10000

20000

30000

q 
(m

3
/s

)

Post-flood season

Fig. 4.7 Frequency curves of sub-season design floods based on AM and POT samples

88 4 Copula-Based Seasonal Design Flood Estimation



used, then P0 equals 1/(3T). If the POT samples are used, the annual return period
needs to be converted to the exceedance probability of the POT method as follows
(Rosbjerg 1993):

PðQ�QTÞ ¼ 1
kT

ð4:16Þ

The comparisons of the annual maximum and seasonal design floods estimated
by different methods are given in Table 4.7, where the relative error describes the
deviation between the annual design values and seasonal design values. Table 4.7
implies that the seasonal design flood values based on the seasonal maximum series
are underestimated in all sub-seasons. Since all of the seasonal design values are
less than the annual ones, the current seasonal design flood method used in China is
unable to satisfy the flood prevention standards.
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For the seasonal design flood method suggested by Singh et al. (2005), the
sample size of the pre-flood season, main flood season and post-flood season are 16,
20 and 19, respectively. The design values in the pre-flood and post-flood season
are lower than those calculated by the Chinese seasonal design flood method. On
the other hand, the design values in the main flood season are much higher than that
of the annual maximum design floods. The annual and seasonal frequency curves
based on Singh’s method are drawn in Fig. 4.11. It is shown that the seasonal
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frequency curve of the main flood season is above the annual maximum one. The
seasonal frequency curve in the pre-flood season is higher than that in the post-flood
season. Actually, the flood in the post-flood season is much larger than that in the
pre-flood season. The mean values of the annual maximum flood peak in the
pre-flood and post-flood season are 5792 m3/s and 7060 m3/s, respectively. The
reason for these unreasonable results may be mainly due to that the sample series
for some sub-seasons are too short for flood frequency analysis.

The seasonal design floods calculated by the proposed method are also listed in
Table 4.7. It indicates that the seasonal design flood values based on AM samples
are much higher than the annual maximum design flood values in the main flood
season. The design values in the other sub-seasons are less than their corresponding
annual maximum ones but greater than those calculated by current seasonal design
flood methods. The T-year design flood values calculated by the POT samples are
also listed in Table 4.7. It is shown that the seasonal design values of the POT
samples in the main flood season exceed the T-year annual design values and less
than them in other sub-seasons. The results based on two sampling methods
demonstrate that the seasonal design floods estimated by the proposed method are
slightly greater than annual design floods in the main flood season and less than
them in other flood sub-seasons. Furthermore, the seasonal design floods calculated
by Eqs. 4.10 and 4.11 can meet the flood prevention standards.

The design values of the POT samples is less than that of the AM flood series in
the main flood season, whereas the values of POT series are larger than AM series
in the pre-flood season. The reason for this is mainly due to that the discrepancy
exists between the P-III distribution and Ex distribution. For example, 1000-year
design values based on the POT and AM samples are equal to 22,044 m3/s and
22,800 m3/s, respectively. Compared with the 24% flood occurrence probability for
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AM samples, it is about 30% for POT samples in the pre-flood season. No sig-
nificant difference exists between the results of the POT and AM series in the
post-flood season.

The design values of the 1-day maximum runoff volume W1d, 3-day maximum
runoff volume W3d, and 7-day maximum runoff volume W7d are also calculated by
the proposed method. The parameters of the margin and joint distributions are
estimated and listed in Table 4.8. 1000-year and 100-year design flood runoff
volumes for each sub-season are calculated by Eq. 4.11 and listed in Table 4.9.

The seasonal FCWL is obtained by the flood hydrograph routing method based
on the design flood hydrograph (DFH). One of the methods to derive the DFH is the
typical flood hydrograph (TFH) method which has been widely used by practi-
tioners (Nezhikhovsky 1971; Yue et al. 2002). The flood hydrograph with the
highest peak or biggest volume is usually selected as a TFH. The DFH is con-
structed by multiplying each discharge ordinate of the TFH by an amplifier.
The TFH of 1979, 1997 and 1998 were selected for the pre-flood season, the main
flood season and the post-flood season, respectively. The peak and
volume-amplitude (PVA) method is used to derive DFH (MWR 1993; Xiao et al.
2009), and the results are shown in Fig. 4.12. The design flood hydrographs are
routed through the reservoir, and the seasonal design FCWL values are determined.
They are 201.2, 192.1 and 200.1 m in the pre-flood season, main flood season and
post-flood season, respectively.

Table 4.8 Estimated parameters of the marginal and joint distributions for runoff volumes

P-III distribution Mixed von Mises
distribution

Joint distribution

a b d li ji pi h

W1 1.03 7.22 0.10

2.195 0.646 1.700 2.83 3.55 0.78 2.28

5.67 35.59 0.11

W3 0.93 7.00 0.10

1.582 0.231 3.423 2.71 2.95 0.79 1.39

5.50 8.88 0.11

W7 0.60 1.45 0.04

1.644 0.156 5.267 2.70 3.22 0.85 2.26

5.55 4.35 0.12

Table 4.9 Estimated design runoff volumes by the proposed method (billion m3)

T 1000 200 100

Days Pre-flood Main
flood

Post-flood Pre-flood Main
flood

Post-flood Pre-flood Main
flood

Post-flood

W1 13.55 17.71 16.61 10.64 14.9 13.77 9.38 13.67 12.51

W3 31.27 37.45 32.93 24.99 31.3 26.68 22.23 28.62 23.93

W7 44.78 60.15 55.89 34.38 49.97 45.60 29.89 45.53 41.08
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(a)  The pre-flood season

(b)  The main flood season
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Fig. 4.12 The derived DFH of the Geheyan reservoir by PVA method
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The daily discharge data set from 1951 to 2004 is used to analyze and compare
the benefit of seasonal design FCWL with the current scheme. Three representative
years, wet year (1964), normal year (1985) and dry year (2001) are selected for the
analysis. Annual electricity generation, spill release and flood water resources
utilization at the Geheyan reservoir are calculated and listed in Table 4.10. It can be
seen that compared with the current scheme, the annual electricity generations
based on the proposed FCWL is increased 1.87, 2.19 and 2.02% in the wet year,
normal year and dry year respectively. The annual spill release is reduced. The
flood water utilization rate is increased from 82.57 to 83.29% for the wet year, and
from 95.70 to 98.05% for the dry year. Therefore, the proposed FCWL can increase
energy output and flood water utilization rate.

4.5 Conclusion

Seasonal design floods, which reflect the seasonal flood variation, are very
important for reservoir operation and management. A bivariate joint distribution
based on copula function, which considers the flood occurrence dates and magni-
tudes is proposed and established. The main conclusions of this chapter are sum-
marized as follows:

(1) The current seasonal design flood method used in China cannot satisfy the flood
prevention standards. Although the Singh’s method based on the annual
maximum series can meet these standards, the estimated design floods have
large errors due to the short length of sample series.

(2) Compared with two current seasonal design flood methods, the proposed
method that considers both flood occurrence dates and flood magnitudes is

Table 4.10 Comparisons of energy output and flood water utilization rates based on different
seasonal design FWCL

Index Comparison of methods Year

Wet Normal Dry

Annual electricity generation Current (108 kW h) 35.23 27.44 23.21

Proposed (108 kW h) 35.89 28.04 23.68

Increment of generation
(%)

1.87 2.19 2.02

Annual spill release Current (108m3) 25.57 6.85 3.83

Proposed (108m3) 24.01 5.34 1.75

Reduced spill release (%) 6.04 10.14 55.24

Flood water resources utilization
rate

Current (%) 82.57 93.02 95.70

Proposed (%) 83.29 94.56 98.05
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much more rational in the physical mechanism and can satisfy flood prevention
standards in China.

(3) The proposed method can increase energy output and flood water utilization
rate and provides a new way for seasonal flood estimation.
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Chapter 5
Drought Analysis Using Copulas

5.1 Introduction

A drought is a natural hazard that results from a deficiency of precipitation as
compared with the expected or normal amount, which can translate into the
insufficient amount of water to meet the demands of human activities and the
environment (Estrela and Vargas 2012). It occurs in virtually all climatic zones,
such as high as well as low rainfall areas. Each year one or the other part of the
world experiences drought and suffers from huge economic losses, and this has
been the case ever since the birth of human civilization. The impacts produced by
droughts are numerous. Historical droughts have affected large populations (and
represent up to 35% of those affected by natural disasters), often resulting in sig-
nificant fatalities (50% of the mortality due to natural disasters), whereas 7% of
world economic losses have been attributed to their occurrence (Below et al. 2007;
Núñez et al. 2011). Thus, droughts are of great importance in the planning and
management of water resources (Mishra and Singh 2010).

The Han River, which is divided into three regions: the Danjiangkou Reservoir
sub-basin (upper sub-basin), the middle sub-basin, and the lower sub-basin, is a
tributary of the Yangtze River. This river is the source of water for the middle route
of the well-known South-to-North Water Diversion Project (SNWDP) in China.
The middle route, located between the Danjiangkou Reservoir in the Han River and
Beijing, will transfer 14 billion m3 of water annually from the Han River to Beijing
by 2030. As some of its water is transferred via the SNWDP, the Han River has an
impact on socioeconomic development both in the middle and lower sub-basins and
northern China.

Various indices have been developed to detect and monitor droughts, and
commonly, Palmer Drought Severity Index (PDSI) and the Standardized
Precipitation Index (SPI) are more frequently used indices for drought characteri-
zation (Mishra and Singh 2010). Palmer (1965) proposed a moisture index (Palmer
Drought Severity Index, PDSI) based on water budget accounting using
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precipitation and temperature data. McKee et al. (1993) proposed the concept of
standardized precipitation index (SPI) based on the long-term precipitation record
for the desired period. PDSI has several limitations (see Alley 1984; Guttman 1991,
1998). For instance, the soundness of proposed water balance model is question-
able, the temporal scale of PDSI is not clear, and the values of PDSI possess neither
a physical (such as required rainfall depth) nor statistical meaning (such as recur-
rence probability) (Kao and Govindaraju 2007). Due to the limitations of PDSI,
Guttman (1998) recommended the use of SPI as a primary drought index because it
is simple, spatially invariant in its interpretation, and probabilistic. Therefore, SPI
series is used for this book.

Drought properties are usually investigated separately by univariate frequency
analysis (e.g., Tallaksen et al. 1997; Fernández and Salas 1999; Cancelliere and
Salas 2004; Serinaldi et al. 2009). Since droughts are complex phenomena, one
variable cannot provide a comprehensive evaluation of droughts (Shiau et al. 2007).
A separate analysis of drought duration distribution and drought severity distri-
butions cannot reveal the significant correlation between them. Instead of using
traditional univariate analysis for drought assessment, a better approach for
describing drought characteristics is to derive the joint distribution of drought
variables (Mishra and Singh 2010). For example, Shiau and Shen (2001),
Bonaccorso et al. (2003), Kim et al. (2003), González and Valdés (2003), Salas
et al. (2005) and Cancelliere and Salas (2010) proposed different methods to
investigate the joint distribution of drought duration and drought severity or
intensity. These bivariate distributions have either complex mathematical deriva-
tions or their parameters are obtained by fitting the observed or generated data
(Shiau 2006).

Until now most of the work has focused on bivariate cases. Investigators have
used many different ways to build bivariate distributions of drought duration and
severity. Actually, drought events have some other characteristics, such the mini-
mum SPI (values) in one drought event, and drought interval time, which are
mutually correlated. The studies mentioned above have only included some of the
drought characteristics. However, it is important for design engineers and water
resources planners to know not only the frequency of droughts but also the risk of
having droughts of differing duration, severity, interval time and the minimum SPI
value within a drought period. For this purpose, Chen et al. (2013) established a
multivariate distribution for analyzing the probabilities and return periods of
drought events with more variables. In order to simplify inference procedures and to
derive flexible multivariate distributions, copulas can be efficiently employed.

The content of this chapter is therefore to employ the Archimedean and
meta-elliptical copulas to construct four-dimensional joint distributions for
droughts. The dry events are divided into four states, and copula functions are built
in each state to investigate their applicability in drought analysis. The drought risk
is defined and analyzed based on the return period (recurrence interval) of drought
events, which has become standard practice for the risk-based design of hydraulic
structures.
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5.2 Definition of Drought and Univariate Variable

5.2.1 Definition of Drought Events

Drought identification based on an SPI series can be carried out by assuming a
drought period as a consecutive number of time intervals where SPI values are less
than 0 (Shiau 2006). Figure 5.1 illustrates the time series of SPI and drought events.
Each drought event is characterized by four main properties, drought duration Dd,
drought severity Sd, minimum SPI(MSPI) Id, and drought interval time Ld. The
definitions of these variables are discussed below:

Drought duration Dd is defined as the number of consecutive intervals (months)
where SPI remains below the threshold value 0 (Shiau 2006).

Drought severity Sd is defined as a cumulative SPI value during a drought
period, Sd ¼

PDd
i¼1 SPIi where SPIi means the SPI value in the ith month (Mishra

and Singh 2010).
The Minimum SPI (MSPI) value, defined as the minimum SPI value within a

drought period (Serinaldi et al. 2009), is used in this chapter to describe the peak of
drought events.

The drought interval time Ld is defined as the period elapsing from the initiation
of drought to the beginning of the next drought (Song and Singh 2010).

Based on the SPI values, the dry states can be divided into four states shown in
Table 5.1 (Mishra et al. 2009).
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Fig. 5.1 Definition sketch of
drought events

Table 5.1 Drought
classification based on SPI

SPI Classes

2.00 and above Extremely wet

1.50 to 1.99 Very wet

1.00 to 1.49 Moderately wet

−0.99 to 0.99 Near normal

−1 to −1.49 Moderately dry

−1.5 to −1.99 Severely dry

−2.00 and less Extremely dry
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5.2.2 Distributions of Univariate Drought Variables

Generally, drought duration is fitted as a geometric distribution (Kendall and
Dracup 1992; Mathier et al. 1992) by treating it as a discrete random variable.
Similarly, Shiau and Shen (2001) computed drought interval time as equal to the
sum of drought duration and non-drought duration, on the assumption that drought
and non-drought durations follow a geometric distribution. As Sklar’s theorem
requires the continuity of marginal distributions, the continuous distribution is
needed in this study. Two continuous distributions used mostly in drought analysis
are exponential and gamma distributions. For example, the exponential distribution
was selected for fitting drought duration (Zelenhastic and Salvai 1987). The gamma
distribution has generally been used to describe drought severity (Shiau 2006).
According to five drought states considered, twenty marginal distributions will be
determined. Exponential or gamma distributions cannot fit every case well. Thus,
the P-III distribution, the generalized Pareto distribution and the generalized
extreme value distribution, which have also been used to describe hydrologic
variables, are considered. Among these distributions, the one with the smallest root
mean square error (RMSE) value between observed and theoretical probabilities
will be selected.

5.3 Return Period for Drought Events

A common approach to hydraulic and hydrologic design is frequency analysis or
the recurrence interval or return period of hydrologic events (Shiau and Shen 2001).
In particular, drought return periods provide useful information for proper water use
under drought conditions (Serinaldi et al. 2009). The return period of a drought can
be defined as the average elapsed time or mean interval time between occurrences
of two droughts (Shiau and Shen 2001; Serinaldi et al. 2009).

5.3.1 Univariate Return Period

Shiau and Shen (2001) calculated the return period of a drought event with severity
equal to or greater than a certain value Sd. Shiau (2006) calculated the return period
of a drought event with a duration equal to or greater than a certain value Dd.
Similarly, the return period of drought intensity can be obtained using the same
formula expressed as

Td ¼ EðLdÞ
1� FDd ðxÞ

; Td ¼ EðLdÞ
1� FSd ðxÞ

; Td ¼ EðLdÞ
1� FId ðxÞ

ð5:1Þ

where E(Ld) is the expected drought interval time.
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5.3.2 Multivariate Return Period

Salas et al. (2005) extend Eq. 5.1 to a more general case of drought events defined
regarding either severity or MSPI and duration. The interval time between two
drought events E is TE ¼ PNd

j¼1 Ldj , where Ldj is the interval time between any two
droughts in general (i.e., droughts not necessarily characterized by E); and Nd is the
number of droughts until the next drought event E occurs. Then, the return period
T is the expected value of TE, and can be expressed as

T ¼ EðTEÞ ¼ EðNdÞEðLdÞ ð5:2Þ

where EðNdÞ ¼ 1=PðEÞ. The multivariate return period can be calculated based on
Eq. 5.2.

Shiau (2006) defined the bivariate joint return period Tand and Tor as

Tand ¼ EðLdÞ
1� PðXi � xi;Xj � xjÞ ¼

EðLdÞ
1� FðxiÞ � FðxjÞþCðFðxiÞ;FðxjÞÞ ð5:3Þ

Tor ¼ EðLdÞ
1� PðXi � xi or Xj � xjÞ ¼

EðLdÞ
1� CðFðxiÞ;FðxjÞÞ ð5:4Þ

According to Eq. 5.2, the trivariate return period can be defined as

Tand ¼ EðLdÞ
1� PðXi � xi;Xj � xj;Xk � xkÞ

¼ EðLdÞ=ð1� FðxiÞ � FðxjÞ � FðxkÞþCðFðxiÞ;FðxjÞÞ
þCðFðxiÞ;FðxkÞÞþCðFðxjÞ;FðxkÞÞ � CðFðxiÞ;FðxjÞ;FðxkÞÞÞ

ð5:5Þ

Tor ¼ EðLdÞ
1� PðXi � xiorXj � xjorXk � xkÞ ¼

EðLdÞ
1� CðFðxiÞ;FðxjÞ;FðxkÞÞ ð5:6Þ

5.3.3 Conditional Return Period

Shiau (2006) defined the bivariate conditional return period as

Txijxj ¼
EðLdÞ

ð1� FxjðxjÞÞð1� FxiðxiÞ � FxjðxjÞþCðxi; xjÞÞ ð5:7Þ

where Txijxj denotes the conditional return period for Xi given Xj � xj.
The bivariate conditional return period of drought duration, severity and MSPI

are calculated.
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5.4 Data Set

5.4.1 Historical Data

The daily rainfall data from 1961 to 2007 in the upper Han River basin is used to
evaluate drought characteristics. The Han River is a left tributary of the Yangtze
River with a length of 1532 km. Daily rainfall data from nine gauged stations,
including the Ankang, Foping, Hanzhong, Lueyang, Shangzhou, Shiquan,
Wanyuan, Xixia, and Zhenan are used in this study. The locations of these stations
are shown in Fig. 5.2. The average areal rainfall of this basin is calculated based on
these nine stations.

5.4.2 Rainfall Data Generation

Since a drought may last for several months or even years, the recorded series are
usually short for evaluating drought characteristics (Mishra et al. 2009). In order to
avoid this disadvantage, 500-year daily rainfall data are generated based on his-
torical data characteristics. The Markov model is applied to produce precipitation
occurrence, and the two-parameter gamma distribution is used to generate the
precipitation quantity (Chen et al. 2010).
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Fig. 5.2 Location of stations in the Hanjiang basin and the middle route of the SNWDP in China
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5.5 Application

5.5.1 Comparisons Between Historical and Synthetic
Precipitation Series

The three-order Markov model is applied to produce precipitation occurrence, and
the two-parameter gamma distribution is used to generate the precipitation amount.
In order to test the rationality of the rainfall simulation model, synthetic data with
the same length of the historical data is generated. Their mean and standard vari-
ation values are calculated and given in Table 5.2. The absolute and relative errors
between historical and synthetic data are also shown in this table. Results
demonstrate that the maximum absolute error of mean values is 0.1 mm, corre-
sponding to the maximum relative error of 4.65%, and the relative error for the
standard deviation is less than 10%. Therefore, the synthetic data can be applied to
the calculation hereafter. This model is used to generate daily rainfall data from the
nine stations with a length of 500 years. The observed and theoretical cumulative
monthly rainfall is shown in Fig. 5.3, in which the shape and the cumulative
monthly values of these two series are nearly the same. The SPI series for different
time scales are obtained and shown in Fig. 5.4. The monthly SPI values are used for
analysis hereafter.

5.5.2 Correlation Analysis

The Pearson and Kendall correlation coefficients for all drought variables are given
in Tables 5.3. Results confirm that for drought events, normal dry state, and
moderate dry states, all variables show positive association and a highly correlated
relationship between monthly rainfall data is observed. For the left dry states, some
drought variables show a small negative correlation, but the negative correlations
are small, close to zero. This means that the association between the two variables
can be negligible and the fully nested copulas can be used in these cases.

5.5.3 Estimation of Marginal Distributions

The Ex, gamma, P-III, GP and GEV distributions are applied to fit every drought
variable. The CDF and PDF of these distributions are given in Table 1.1 of
Chap. 1. Parameters of marginal distributions are estimated by L-moments
(Hosking 1990). The distribution with the smallest RMSE values between
observed and theoretical probabilities is selected. The chosen distributions and their
estimated parameters are listed in Table 5.4. Figure 5.5 compares computed and
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empirical marginal distributions of observed drought duration, interval, severity,
and MSPI in the case of SPI < 0 and normal dry events, which demonstrate that the
theoretical and empirical values fit well for all marginal distributions.
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5.5.4 Estimation of Joint Distributions

Four-dimensional Archimedean and meta-elliptic copulas are tested to determine
the best-fit copula for modeling the dependence amongst the four drought char-
acteristics. For the Archimedean family, three widely used copulas, including
Gumbel-Hougaard, Frank, and Clayton, are used; for the meta-elliptical copulas,
normal and Student copula are used. A pseudo-likelihood technique involving the
ranks of the data is used for estimating parameters of the symmetric and asymmetric
Archimedean copulas. The estimated parameters of both symmetric and asymmetric
Archimedean copulas are given in Table 5.5. The inversion of Kendall’s tau
method (Genest et al. 2007) is used to estimate the parameters of the Normal
copula, while the maximum pseudo-likelihood method is used to estimate the
parameters of Student copula. The estimated parameter values of both Normal and
Student copulas are given in Table 5.6.

Table 5.3 Values of Pearson and Kendall correlation coefficients for all drought variables in
different drought states

Drought states Correlation
coefficient

Duration Severity MSPI Interval
time

Dry event Duration 1.00 0.59 0.34 0.60

Severity 0.82 1.00 0.77 0.37

MSPI 0.42 0.78 1.00 0.21

Interval time 0.71 0.59 0.27 1.00

Near normal dry Duration 1.00 0.49 0.26 0.35

Severity 0.77 1.00 0.82 0.18

MSPI 0.33 0.78 1.00 0.10

Interval time 0.37 0.29 0.13 1.00

Moderately dry Duration 1.00 0.41 0.13 0.02

Severity 0.93 1.00 0.88 0.02

MSPI 0.15 0.49 1.00 0.01

Interval time 0.01 0.00 −0.04 1.00

Severe dry Duration 1.00 0.23 0.09 −0.05

Severity 0.90 1.00 0.97 −0.03

MSPI 0.11 0.53 1.00 −0.02

Interval time −0.06 −0.06 −0.01 1.00

Extreme dry Duration 1.00 0.24 0.12 −0.03

Severity 0.78 1.00 0.97 −0.03

MSPI 0.17 0.74 1.00 −0.03

Interval time −0.02 −0.04 −0.04 1.00

Note the super-diagonal elements are the Kendall correlation, and the sub-diagonal elements are
the Pearson correlation
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In order to select an appropriate copula, the root mean square error (RMSE) and
the Akaike information criterion (AIC) are used (Zhang and Singh 2006). The
formulas for calculating these indexes are given in Chap. 2. The RMSE and AIC
values of the Archimedean and meta-elliptical copulas are shown in Table 5.7,
which indicates that the asymmetric copulas given a better fit than the symmetric
copula for the Archimedean family. Generally meta-elliptical copulas fitted better
than the Archimedean copulas, except for the Clayton copula. The RMSE and AIC
values of the Normal copula exhibited a better fit than the Student copula.

Figure 5.6 compares observed and theoretical joint probabilities, which indicates
that the observed and theoretical values fitted each other well. For drought events
with SPI values less than 0 and near normal dry state, the Normal copula gives a
better fit than others. For the remaining three states, the Clayton copula is better.
The theoretical probabilities of moderately, severely and extremely dry states cal-
culated by both the Normal and Clayton copulas are shown in Fig. 5.6. It is indi-
cated from the RMSE and AIC values in Table 5.7 and the fitting results in Fig. 5.6
that the difference between Normal and Clayton copulas is small. Therefore, the
Normal copula is an appropriate copula for all of the dry events in the upper Han
River basin.

Table 5.4 Selected marginal distributions and their estimated parameters

Events Severity MSPI Duration Interval time

Dry event P-III GP GAM GAM

1.63 0.08 2.73 2.17

1.47 1.50 0.75 1.43

1.83

Near normal dry GAM P-III GAM GAM

1.22 1.05 4.33 2.31

1.34 0.53 0.35 1.47

1.52

Moderately dry GP GP GAM GP

1.01 0.99 18.66 −0.03

1.25 0.44 0.06 11.37

Severe dry GEV GP GAM GAM

1.65 1.51 61.79 1.01

0.13 0.40 0.02 22.35

−0.26 0.82

Extreme dry GP GP GAM GAM

2.02 2.01 60.33 1.18

0.37 0.46 0.02 34.94

−0.16 0.16

Note the characters above the numbers in each cell mean the selected distributions
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5.5.5 Return Period Analysis

The average drought interval time estimated from both observed data and theo-
retical distributions is 3.09 months. Therefore, the calculated value of 3.09 months
is used hereafter. First, the univariate return period is analyzed based on Eq. 5.1.
Given the return values T of 5, 10, 20, 50 and 100 years, the marginal probabilities
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Fig. 5.5 Frequency curves of marginal distributions
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F(x) are derived. The magnitudes corresponding to the return periods defined by
separate values of drought duration, severity and MSPI are calculated by solving
the inverse function F and given in Table 5.8.

The joint return period is related to the marginal probabilities and joint proba-
bility. The marginal probabilities have been calculated before for analyzing the
univariate return period. The joint probabilities of drought variables are also given
in Table 5.8. The bivariate and trivariate return periods Tand and Tor are then cal-
culated and listed in Table 5.9, which shows that the univariate return period is
larger than the joint return period Tor and less than the joint return period Tand. The

(b) Normal dry event

Fig. 5.5 (continued)

Table 5.5 Estimated parameters of symmetric and asymmetric Archimedean copulas

Dry events Family Symmetric Asymmetric

h h1 h2 h3
Drought (SPI < 0) Gumbel 1.66 1.40 1.40 2.80

Frank 4.62 3.38 3.38 12.50

Clayton 1.27 0.54 0.55 6.78

Near normal Gumbel 1.32 1.18 1.26 2.53

Frank 2.70 1.38 1.39 14.95

Clayton 0.79 0.28 0.28 8.51

Moderately dry Gumbel 1.07 1.00 1.02 2.83

Frank 2.69 0.17 0.17 21.52

Clayton 0.39 0.11 0.11 14.97

Severe dry Gumbel 1.03 1.00 1.00 6.26

Frank 0.66 0.001 0.10 35

Clayton 0.27 0.04 0.06 59.53

Extreme dry Gumbel 1.03 1.00 1.00 8.81

Frank 0.66 0.001 0.26 30.0

Clayton 0.28 0.04 0.06 66.26
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trivariate joint return period Tand is larger than bivariate one in the same row in
Table 5.9, but the trivariate joint return period Tor is less than the bivariate one. This
is because that adding one variable in the model makes the exceedance probabilities
P (X1 > x1, X2 > x2, X3 > x3) smaller than the two bivariate one P (X1 > x1,
X2 > x2).

According to Eq. 5.7, the values of bivariate conditional return period of drought
duration, severity and MSPI are calculated and plotted in Fig. 5.7, which shows that
the conditional return period increases when the values of drought variables
increase. The derived conditional return periods of drought duration, severity and
MSPI can be used to evaluate the risk of a specific water resources system. For
instance, based on the derived conditional distribution, water resources managers
are informed that the probabilities for a drought severity greater than 1.0 and 2.0
given drought duration exceeding one month are equal to 6.65 and 12.85 years,
respectively.

5.5.6 Drought Probability Analysis

In this chapter, drought events are defined by drought duration, severity, interval
time and MSPI. It is necessary to know the occurrence probabilities of arbitrary
drought events. Table 5.8 gives Dd, Sd, Id and Ld values corresponding to different
values of F(x). The joint probabilities of some drought events E = {Dd � dd,
Sd � sd, Id � id, Ld � ld} are also given in Table 5.8. Taking F(x) equal to 0.1,
for example, the corresponding magnitudes in Table 5.8 for drought duration,
severity, MSPI and time interval are 0.25, 0.24, 0.65 and 0.95, respectively. The
joint probability of this drought event is 0.01. Based on this model, the joint
probability of any drought event can be obtained. The joint probability increases
when marginal probabilities increase. From this point of view, the calculated results
seem justified.

Table 5.6 Estimated parameters of normal and student copulas

Number Classifications Copulas q1 q2 q3 q4 q5 q6 t

1 Drought event Normal 0.92 0.73 0.50 0.45 0.30 0.70

Stuent 0.88 0.59 0.51 0.32 0.26 0.79 18.95

2 Normal dry Normal 0.93 0.62 0.27 0.34 0.15 0.42

Stuent 0.90 0.33 0.25 0.16 0.12 0.50 8.67

3 Moderately dry Normal 0.92 0.51 0.03 0.16 0.008 0.03

Stuent 0.97 −0.17 0.003 −0.12 0.01 0.05 3.26

4 Severe dry Normal 0.98 0.30 −0.04 0.12 −0.03 −0.06

Stuent 0.85 0.60 0.28 0.14 0.06 0.47 8.19

5 Extreme dry Normal 0.98 0.30 −0.05 0.15 −0.05 −0.03

Stuent 0.99 −0.09 −0.31 −0.07 −0.30 0.01 10.95

110 5 Drought Analysis Using Copulas



T
ab

le
5.
7

R
M
SE

an
d
A
IC

va
lu
es

of
di
ff
er
en
t
co
pu

la
s

E
ve
nt
s

Fa
m
ily

A
rc
hi
m
ed
ea
n

M
et
a-
el
lip

tic
al

G
um

be
l

Fr
an
k

C
la
yt
on

N
or
m
al

St
ud

en
t

A
B

A
B

A
B

D
ro
ug

ht
ev
en
t

R
M
SE

0.
04

8
0.
02

8
0.
03

1
0.
02

2
0.
05

2
0.
04

9
0.
01

3
0.
02

2

A
IC

−
88

97
−
10

,4
82

−
10

,1
79

−
11

,1
89

−
86

62
−
88

41
−
12

,7
21

−
11

,1
77

N
or
m
al

ye
ar

R
M
SE

0.
06

8
0.
05

0.
05

5
0.
03

7
0.
05

5
0.
04

5
0.
01

8
0.
03

6

A
IC

−
73

21
−
81

54
−
78

99
−
89

75
−
78

99
−
84

41
−
10

,9
31

−
90

43

M
od

er
at
el
y
dr
y

R
M
SE

0.
05

3
0.
09

9
0.
05

6
0.
03

4
0.
07

9
0.
02

8
0.
03

2
0.
04

1

A
IC

−
29

06
−
22

84
−
28

52
−
33

42
−
25

11
−
35

34
−
33

96
−
31

48

Se
ve
re

dr
y

R
M
SE

0.
10

3
0.
02

4
0.
09

5
0.
01

9
0.
08

6
0.
01

3
0.
02

5
0.
03

4

A
IC

−
11

44
−
18

74
−
11

84
−
19

92
−
12

35
−
21

83
−
18

47
−
16

90

E
xt
re
m
e
dr
y

R
M
SE

0.
10

2
0.
02

0.
09

2
0.
02

1
0.
08

3
0.
01

4
0.
02

2
0.
04

3

A
IC

−
63

7
−
10

89
−
66

6
−
10

76
−
69

5
−
11

89
−
10

57
−
86

7

5.5 Application 111



(a) SPI <0 (b) Normal dry event

(c) Moderate drought event (d) Extreme drought events

(e) Severe drought events

Fig. 5.6 Observed and theoretical joint probabilities for the four drought characteristics described
in the text

Table 5.8 Results of joint and conditional distributions

F(x) Dd Sd Id Ld Joint probabilities Conditional probabilities

0.1 0.25 0.24 0.65 0.95 0.01 0.14

0.3 0.68 0.57 1.22 1.82 0.10 0.33

0.5 1.21 0.95 1.78 2.67 0.25 0.49

0.7 1.98 1.40 2.49 3.76 0.46 0.66

0.9 3.58 2.03 3.81 5.78 0.78 0.86

0.99 6.84 2.57 6.24 9.55 0.97 0.98
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The probability of events E = {Dd � dd, Sd � sd, Id � id} under the condi-
tion Ld � ld can be defined as:

PðDd � dd ; Sd � sd ; Id � idjLd � ldÞ

¼ PðDd � dd ; Sd � sd ; Id � id; Ld � ldÞ
PðLd � ldÞ

ð5:8Þ

The conditional probability defined in Eq. 5.8 is calculated, as given in
Table 5.8. When F(x) equals 0.99, the corresponding magnitudes for drought
duration, severity, MSPI and interval time in Table 5.8 are 6.84, 2.57, 6.24 and
9.55, respectively. The conditional probability of event E = {Dd � dd, Sd � sd,
Id � id} under the condition Ld � ld is 0.98. Thus, the conditional probability of
any drought event can be obtained from Eq. 5.8.

Table 5.9 Joint return periods (years) of drought events E

T F(x) Dd Sd Id Sd> sd, Id> id Dd > dd, Sd > sd
F(x,y) Tand Tor F(x,y) Tand Tor

5 0.38 1.44 0.88 0.72 0.32 5.55 4.55 0.27 6.13 4.22

10 0.69 2.45 1.94 1.38 0.63 12.24 8.45 0.59 15.15 7.46

20 0.85 3.31 2.95 1.83 0.81 26.51 16.06 0.78 36.39 13.79

50 0.94 4.34 4.27 2.21 0.92 72.66 38.11 0.90 113.35 32.07

100 0.97 5.08 5.25 2.39 0.96 154.81 73.85 0.95 265.09 61.62

T F(x) Dd Sd Id Dd> dd, Id> id Dd> dd, Sd> sd, Id > id
F(x,y) Tand Tor F(x,y,z) Tand Tor

5 0.38 1.44 0.88 0.72 0.21 6.85 3.94 0.21 6.95 3.92

10 0.69 2.45 1.94 1.38 0.54 19.80 6.69 0.53 19.99 6.59

20 0.85 3.31 2.95 1.83 0.75 55.47 12.20 0.74 55.84 11.81

50 0.94 4.34 4.27 2.21 0.89 211.55 28.35 0.88 216.57 26.81

100 0.97 5.08 5.25 2.39 0.94 576.19 54.75 0.94 594.73 50.73
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5.6 Conclusion

In this Chapter, drought is defined by drought duration, severity, MSPI and interval
time. The upstream Han River is selected as a case study. The exponential, gamma,
GP, P-III and GEV distributions are applied to fit univariate data series. The
Archimedean and meta-elliptical copulas are used to establish the joint multivariate
distributions. The joint probabilities and return period are then estimated. The main
conclusions of this chapter are following:
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Fig. 5.7 Conditional return periods of drought events
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(1) The established marginal distributions of the four drought variables fit the
empirical data well and can be used for drought analysis.

(2) Five copula functions are constructed for different drought states. The RMSE
and AIC values are used to select the appropriate copula. Results of fitting
indicate that it is applicable to use copulas for multivariate drought analysis.
The Normal copula basically fits data series well and it is suggested for com-
puting probabilities and return period analysis.

(3) The drought risk is estimated based on joint probabilities and return periods,
which give important information for water management and planning.
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Chapter 6
Flood Coincidence Risk Analysis
Using Multivariate Copula Functions

6.1 Introduction

Disastrous floods can be caused by unusual combinations of hydrometeorological
factors and river basin conditions. Topography, land cover, and temporal and
spatial distribution of rainfall play a dominant role in the generation of floods,
which can be reflected in the contributions that major tributaries make to the
mainstream flow. The coincidence of flood flows of mainstream and its tributaries
may determine the peak flow. Therefore, the risk of flooding due to the combination
of flood flows from different rivers is important for hydraulic design. The combi-
nation risk arises when large floods occur simultaneously in the mainstream as well
as in its tributaries, and this risk is characterized regarding flood magnitude and
occurrence date. Traditional methods focus only on the flood magnitudes, and a
more realistic approach is therefore needed.

The traditional approach to the risk assessment entails determining the proba-
bility that a pre-selected value of the flood characteristic will be exceeded or
equivalently determining the return period (Prohaska et al. 2008). This approach is
based on univariate frequency analysis or regional frequency analysis. However,
this approach does not consider the correlation of flows from different regions. The
risk of combining floods involves at least two sites in the mainstream and its
tributaries or two tributaries. This suggests that a multivariate hydrological analysis,
which considers the dependence between flood variables, is needed.

Prohaska et al. (2008) used a two-dimensional probability distribution to eval-
uate the coincidence of floods on two adjacent streams, on the assumption that
floods followed log-normal distribution. The use of the log-normal distribution for
representing the frequency distribution of peak flow is not supported by hydrologic
practices in many countries. For example, the Pearson three (P-Ш) distribution is
assumed for frequency analysis of flood peaks in China (MWR 1993), log-Pearson
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three in the U.S. (IACWD 1982) and the generalized logistic (GL) distribution in
the UK (Robson and Reed 1999). Further, Prohaska’s study is limited to only two
variables. It is usual that there is more than one tributary of the mainstream.

For these reasons, a new multivariate model, based on the copula function, is
applied in this study. Most of these studies involve bivariate copulas (Kao and
Govindaraju 2010; De Michele and Salvadori 2003; Favre et al. 2004; Shiau et al.
2006; Dupuis 2007; Zhang and Singh 2006, 2007b). Trivariate copula functions
also have been used. Grimaldi and Serinaldi (2006) applied the Archimedean
copula to model the trivariate joint distribution of floods. Serinaldi and Grimaldi
(2007) described an inference procedure to carry out a trivariate frequency analysis
via asymmetric Archimedean copulas. Zhang and Singh (2007a, c) applied the
Archimedean copulas to trivariate frequency analysis of floods as well as rainfall
events. Kao and Govindaraju (2008) applied the Plackett copulas to trivariate sta-
tistical analysis of extreme rainfall events (e.g., Song and Singh 2010b); Song and
Singh (2010b) modeled the joint probability distribution of drought duration,
severity and inter-arrival time using a trivariate Plackett copula. Applications of
four-dimensional copula functions in hydrological fields have also been reported
recently. De Michele et al. (2007) introduced a method for constructing multivariate
distributions, given 2-copulas for each bivariate marginal law and applied the
method to provide a four-dimensional characterization of sea state statistics.
Serinaldi et al. (2009) used a four-dimensional student copula to analyze drought
probabilistic characteristics. Since more variables are involved, four-dimensional
copulas will be used in this study.

The content of this chapter is to apply a multivariate copula to analyze the
coincidence flood risk of rivers. The upper Yangtze and Colorado River are selected
as case studies. Daily flow data from four sites at the upper Yangtze and Colorado
River is chosen. Four-dimensional copula functions are applied to construct the
joint distribution of flood occurrence dates and magnitudes. The von Mises distri-
bution is used to describe the flood occurrence dates, while the Pearson type three
(P-Ш) and log Pearson type three distributions are selected as the marginal dis-
tribution of annual maximum flood peaks. The coincidence probabilities of flood
magnitudes and occurrence dates are analyzed. The conditional probabilities for the
Three Gorges Reservoir (TGR) are calculated.

6.2 Methodology

In this section, copula functions are selected to construct the joint distribution. The
detailed information of copula theory can be found in Chap. 2. The von Mises
distribution is selected as a marginal distribution function for flood occurrence
dates, and the characteristic and expression of the von Mises distribution are
described in Chap. 3.
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The Flood Estimation Handbook (Reed 1999) states the flood risk assessment is
to estimate the risk of a flood occurrence. The Environment Agency’s Strategy for
Flood Risk Management 2003/4-2007/8 (EA 2003) states that one task of flood risk
estimation is to estimate the chance of a probability of a certain flood event.
A methodology is presented herein for the estimation of a kind of special flood
event, namely the coincidence of flood flows in the main river and its tributary. The
term coincidence is used to denote the simultaneous occurrence of floods at two (or
more) rivers. The degree of coincidence is measured by the probability of flood
events. The theoretical background draws from the practical application of a
multivariate probability distribution function, or its conditional probabilities
(Prohaska et al. 2008). As flood events are characterized by flood occurrence dates
and magnitudes, both of the two factors should be considered. This study consid-
ered the quantitative characteristics of simultaneous floods on the main river and its
tributaries, and the flood dates of simultaneous floods.

First, flood magnitude is selected as a reference variable for analysis (Favre et al.
2004). The P-III and log P-III distributions are selected as marginal distribution
functions for flood magnitude. The copula function is used to establish the joint
distribution. The exceedance probability of coinciding flood volumes considered in
flow profiles is defined as:

PT
Qn

¼ PðQ1 [ qT1 ;Qi [ qTi ; . . .;Qn [ qTn Þ ð6:1Þ

where PT
Qn

is the exceedance probability of coinciding flood magnitudes; i is the ith
gauge station; n is the number of variables and can be equal to two, three, and four
in this study; Q1… Qi … Qn are flow magnitudes; qT1 . . .q

T
i . . .q

T
n mean the design

flood volume for the return period T.
Second, flood date is selected as a reference variable for analysis. In this study, if

annual maximum floods occur within dt days, the floods were defined as contem-
porary temporal occurrences. The coincidence probability of flood dates at two or
more considered inflow profiles is defined as:

Pt
n ¼ Ptðtk\Ti � tkþ 1; tk � dtij\Tj � tkþ 1 þ dtij; . . .; tk � dtin\Tn � tkþ 1 þ dtinÞ

ð6:2Þ

where i, j represent any river in the data set, and gauge station j is located down-
stream of the catchment; Ti means the random variable of flood occurrence dates,
and dt is the time interval and equals one day in this study. The flood travel time
between the two sites also should be considered. Equation 6.2 can compute the
probabilities of simultaneous floods for two, three rivers in the basin. To calculate
Pt
n, the marginal distribution for Ti is needed to build first. The von Mises distri-

bution was selected as a marginal distribution function for flood occurrence dates.
The detailed information for deriving the distribution of flood occurrence dates is
given in Chaps. 3 and 4. Then, the joint distribution is built for evaluating the
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coincidence probability of flood dates. The detailed information for establishing
copulas is given in Chap. 2.

Third, both the flood magnitudes and flood dates are selected as reference
variables for risk analysis. Assuming that the flood occurrence dates are indepen-
dent of flood magnitudes and flood peaks occur simultaneously at two or more
rivers in the same basin, the flood coincidence probabilities of rivers for given flood
magnitudes were estimated as

PT
n ¼

XN

t¼1

Pt
n � PðQ1 [ qT1 ;Qi [ qTi ; . . .;Qn [ qTn Þ ð6:3Þ

6.3 Data

The upper Yangtze River, which is the longest river in China and third longest in
the world, is selected as a case study. The Three Gorges Project (TGP) is located on
the Yangtze River. Floods in the middle and lower reaches of the Yangtze River
mainly stem from the upper region of Yichang site, which is also the control site for
TGP. Usually, the flood volume of upper Yichang site is about 50% of the total
flow volume of the Yangtze River, about 90% of the Jingjiang River reach, which is
regarded as the most key area for flood prevention. Hence, studying flood char-
acteristics in upper Yangtze River is an important task for flood prevention.

The upper Yangtze River comprises a complex of tributaries, principally Yalong
River, Min River, Jialing River on the left bank, and Wu River on the right bank.
A schematic of the regional main tributary rivers and gauging stations is shown in
Fig. 6.1. Some basic features of the available data are given in Table 6.1. Yalong

Fig. 6.1 Locations of regional tributary rivers and gaging stations
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River joins Jinsha River which is also recognized as part of the Yangtze River.
Therefore, the Jinsha River, instead of the Yalong River, is used in this study.
Relative frequencies of annual maximum floods in these rivers are calculated, as
graphed in Fig. 6.1. It is shown that large floods always occur in July and August,
except in the Wu River, in which the highest RF occurs in the middle of June.
Therefore, it is more likely that floods in Jinsha River, Min River, and Jialing River
occur simultaneously. Therefore, Jinsha, Min and Jialing rivers are selected in this
study. Yichang site at the location of TGP is an important site on the Yangtze River
and is also selected.

The Colorado River, in the Southwestern United States and northwestern
Mexico, approximately 1450 miles (2330 km) long (Munro 1992), is also selected
as a case study. The Colorado River above Lees Ferry is defined as upper Colorado
River basin with about 17,800 square miles. The Colorado River originates in the
mountains of central Colorado and flows about 230 miles southwest into Utah.
There are some tributaries in the upper Colorado River basin, principally Green
River, Gunnison River and San Juan River. A schematic of the regional main
tributary rivers and gauging stations is shown in Table 6.2. The Green River,
located in the western United States, is the chief tributary of the Colorado River.
The watershed of the river, the Green River basin, covers parts of Wyoming, Utah,
and Colorado. It is only slightly smaller than that of the Colorado when the two
rivers merge. The average yearly mean flow of the river at Green River, Utah, is
173.3 m3/s (6121 cubic feet) (Enright et al. 2008). The Gunnison River is a sig-
nificant tributary of the Colorado River, 264 km (164 miles) long, in the southwest
state of Colorado (U.S. Geological Survey 2011). It is the fifth largest tributary of

Table 6.1 Major tributaries to the upstream Yangtze River

Major 
tributary 

Catchment 
area (km2) 
>80,000 
km 2

Record of 
length 

Yangtze 
River 

Major tributary 

Catchment 
area (km2) 
>80,000 km2

Record of 
length 

Yalong River 144,200 1951–2007
485,099 1951–2007 Jinsha River

Min River 135,400 1951–2007
Jialing River 157,900 1951–2007

Wu River 87,920 1951–2007 

1,005,501 1951–2007 Yichang 
(TGR) 1,005,501 1951–2007 

6.3 Data 121



the Colorado River, with a mean flow of 122 m3/s (4320 ft3/s). The San Juan River
is a tributary of the Colorado River in the southwestern United States, about
616 km (383 miles) long, the mean flow of which is about 62.4 m3/s (2205 cubic
feet per second) at its mouth (U.S. Geological Survey 2011). Comparing with the
other two major tributaries, the mean flow of San Juan River is relatively smaller.
Therefore, only Green and Gunnison River are considered in this study. As Lees
Ferry is the division site between upper and lower Colorado River, this site is
considered. The site near Grand Junction (named upper Cor. hereafter) is selected
for analyzing the flow above Cameo of Colorado River. Therefore, four sites in
Colorado River basin are considered in this study.

Pairwise dependence structures of the four stations in the two river basins are
estimated. Empirical estimates of bivariate Kendall’s s of flood magnitudes and
occurrence dates for all the pairs of interest here are given in Tables 6.3 and 6.4.
The correlation coefficient between the Beibei and Yichang stations in upper

Table 6.2 Major tributaries to the upper Colorado River

Major
tributary

Catchment 
area (km2)

Record of 
length 

Colorado 
River

Major tributary
Catchment 
area (km2)

Record of 
length 

20,800 
1933–2011 Above 

Cameo 20,800
1933–2011 

Gunnison River 20,533 1896–2011
Green River 44,850 1894–2011

San Juan River 12,000 1914–2011 

111,800 1921–2011 Lees Ferry 111,800 1921–2011 

Table 6.3 Values of Kendall’s s of flood magnitudes and occurrence dates for all pairs of the four
stations in the upper Colorado River

Stations Above Cameo Green River Gunnison River Lees Ferry

Above Cameo 1.00 0.68 0.66 0.49

Green River 0.37 1.00 0.58 0.42

Gunnison River 0.19 0.32 1.00 0.50

Lees Ferry 0.19 0.19 0.13 1.00

Note Upper triangular matrix is Kendall’s s of flood magnitude, and the lower triangular matrix is
Kendall’s s of flood dates. The meaning is the same hereafter
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Yangtze River is negative, but it is very small and close to 0. This means that the
association between the two variables can be negligible and the Gumbel copula is
therefore used.

6.4 Application

6.4.1 Estimation of Marginal Distributions

In order to show the validity of the mixed von Mises distribution, other distribu-
tions, such as Gumbel, normal, and Pearson III distributions, are selected as pos-
sible marginal distributions for the upper Yangtze River. Parameters of the mixed
von Mises distribution are estimated by the maximum likelihood method.
Parameters of other distributions are estimated by the L-moment method. Then
these distributions are fitted to the data and compared with the mixed von Mises
distribution. The best-fitted distributions are selected using the root mean square
error (RMSE) values shown in Table 6.5 (Zhang and Singh 2007b). It is found that
the mixed von Mises distribution has the smallest RMSE values for the flood dates

Table 6.4 Values of Kendall’s s of flood magnitudes and occurrence dates for all pairs of the four
stations in the upper Yangtze River

Stations Pingsha Gaochang Beibei Yichang

Pingsha 1.00 0.11 −0.08 0.28

Gaochang 0.07 1.00 0.03 0.21

Beibei 0.08 0.08 1.00 0.32

Yichang 0.19 0.18 0.34 1.00

Table 6.5 RMSE Values of different probability distributions of flood occurrence dates in the
upper Yangtze River (%)

Distribution Pingshan Gaochang Beibei Yichang

Mixed von Mises 1.898 1.413 1.725 2.067

Generalized logistic (GLO) 4.028 3.291 3.646 7.148

Generalized Pareto (GP) 3.688 3.911 2.574 3.465

Pearson type 3 (P-Ш) 3.184 2.773 2.725 5.591

Generalized extreme-value (GEV) 2.927 2.688 2.654 5.988

Gamma distribution 4.539 2.806 4.450 6.280

Normal distribution 3.560 2.887 3.021 7.393

Gumbel distribution 6.641 4.525 4.255 5.985

Wakeby distribution 2.796 2.566 1.848 3.465

Kappa distribution 2.734 2.664 2.102 2.195

Exponential distribution 10.432 8.735 8.426 6.340

Note The bold characters mean the minimum value of each column
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at all four stations in upper Yangtze River. The values of estimated parameters of
the von Mises distribution of both river basins are listed in Table 6.6. The
Kolmogorov-Smirnov (KS) test is selected as the goodness-of-fit test to evaluate the
validity of the assumption that the flood occurrence dates followed the mixed von
Mises distribution. Results shown in Table 6.6 indicate that this assumption cannot
be rejected at the 5% significance level. The frequency histograms of the flood
occurrence dates fitted by the mixed von Mises distribution for AM sample series in
upper Colorado River are shown in Fig. 6.2a–d. The marginal distribution curves of
flood occurrence dates in upper Yangtze River are shown in Fig. 6.3, in which the
line represents the theoretical distribution, and the crosses the empirical frequencies
of observations. Figures 6.2 and 6.3 indicate that all the theoretical distributions
fitted the observed data reasonably well.

The values of estimated parameters of the P-III and log P-III distributions are
given in Table 6.6. A chi-square goodness-of-fit test is performed to test the
assumption, H0, that the flood magnitude followed the P-III or LP-III distribution.
It is shown that P-III or LP-III distribution is valid for flood magnitudes at four sites

Table 6.6 Parameters and hypothesis test results of margin distributions
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(a) Upper Cor.

(b) Green River

(c) Gunnison River

(d) Lees ferry

Fig. 6.2 Frequency histograms of flood occurrence dates fitted by the mixed von Mises
distribution for the four stations in upper Colorado River
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studied with a critical value 0.05. The marginal distribution frequency curves of
flood magnitudes in the Upper Yangtze River are shown in Fig. 6.4. It is seen that
graphically the P-III distribution fit the empirical distribution.

6.4.2 Estimation of Joint Distributions

A four-variate symmetric Gumbel, asymmetric Gumbel, and X-Gumbel copulas are
used for modelling the dependence amongst the four stations. The formulas of these
copulas are given in Chap. 2.

A pseudo-likelihood technique involving the ranks of the data is used for esti-
mating parameters of the four-variate symmetric Gumbel and asymmetric Gumbel
copulas. For the Yangtze River, the value of estimated parameter of symmetric
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Fig. 6.3 Frequency curves of flood occurrence dates based on AM samples
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Gumbel is ĥ = 1.14 for flood magnitudes, and ĥ = 1.20 for flood occurrence dates.
Estimates of parameters of the asymmetric Gumbel are ĥ1 = 1.06, ĥ2 = 1.16, and
ĥ3 = 1.46 for flood magnitudes; and ĥ1 = 1.18, ĥ2 = 1.20, and ĥ3 = 1.38 for the
flood occurrence dates. For the Colorado River, the value of estimated parameter of
symmetric Gumbel is ĥ = 1.99 for flood magnitudes, and ĥ = 1.22 for flood
occurrence dates. Estimates of parameters of the asymmetric Gumbel are ĥ1 = 1.82,
ĥ2 = 2.35, and ĥ3 = 2.72 for flood magnitudes; and ĥ1 = 1.13, ĥ2 = 1.30, and
ĥ3 = 1.54 for the flood occurrence dates. Pickand’s dependence function, which
was recommended by Salvadori and De Michele (2010), is used for estimating
parameters of the X-Gumbel copula. The values of parameters of X-Gumbel for
flood magnitudes and flood dates in Upper Colorado River are given in Table 6.7.
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The empirical and fitted Pickands’ function for all the pairs of stations and three
copula models of flood magnitudes in the two basins are plotted in Figs. 6.5 and
6.6, respectively. The symmetric Gumbel dependence functions are the same in all
the plots. The asymmetric Gumbel dependence functions are different corre-
sponding to different pairs. The asymmetric Gumbel copula fits better than the
symmetric one. The X-Gumbel provides a better fit than the other two models. The
empirical joint probabilities of flood occurrence dates and flood peak magnitudes
are plotted against theoretical probabilities, as shown in Fig. 6.7, in which the
theoretical joint probabilities, F, of the real occurrence combinations of x and y are
estimated. Figure 6.7 shows that no significant difference between empirical and
theoretical joint probabilities can be detected.

Table 6.7 Parameters of X-Gumbel joint distributions

Rivers Parameters a1 a2 a3 a4 x s

Upper Yangtze
River

Magnitude 0.039 1.0 0.92 0.63 2.99 1.46

Dates 0.999 0.132 0.137 0.576 1.09 2.19

Upper Colorado
River

Magnitudes 0.707 0.773 0.725 0.268 3.267 2.763

dates 0.221 0.396 1.000 0.193 1.181 3.372
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Fig. 6.5 Plots of empirical and fitted Pickand’s dependence functions of flood magnitude for all
pairs of stations and the three models
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6.4.3 Analysis of Flood Coincidence Risk

6.4.3.1 Coincidence Probabilities Analysis

According to the analysis above, the X-Gumbel copula is used for the flood
coincidence risk analysis hereafter. The exceedance probabilities of coinciding T-
year flood volumes at two and three considered inflow profiles are calculated as
shown in Tables 6.8 and 6.9. The average exceedance probabilities of 100, 50, 10,
5, and 2-year for the four sites are 0.0075, 0.015, 0.0763, 0.1561 and 0.4196,
respectively.

The coincidence probabilities of flood dates in two, three and four rivers, Pt
2, P

t
3

and Pt
4, are evaluated as shown in Fig. 6.8a–e, respectively. For the Jinsha and Min

Rivers, the higher coincidence probabilities occur in late July and middle August.
According to the observed data, there are seven times that the flood occurred
simultaneously in the two rivers, five of which is within this period. For the Jinsha
and Jialing Rivers, the curve demonstrates the multi-modal characteristic, and the
higher coincidence probabilities occur in the middle July and early September,
which indicates that the flood control water level of the Three Gorges Reservoir
(TGR) should not be raised too high and certain flood control storage is needed for
TGR. For the Jialing and Min tributaries, the highest probability occurs in July. Six
of eight flood events that occurring simultaneously in the two rivers, are within this
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Fig. 6.6 Plots of empirical and fitted Pickand’s dependence functions of flood occurrence dates
for all pairs of stations and the three models

6.4 Application 129



period. For the three rivers in the upper Yangtze River, July has the highest
coincidence probabilities. For the four stations, the higher probabilities occur in
July. It is indicated that in May and June, the coincidence probabilities are very
small, which means the low coincidence risk. Therefore, it is possible to raise the
flood control water level of TGR in the two months. All the analysis mentioned
above demonstrates that the calculated results are in accordance with historical data.

The coincidence probabilities of T-year design flood for two and three tributaries
are calculated based on Eq. 6.3, and results are listed in Tables 6.10 and 6.11.
Results are reasonable from the point of view that the coincidence probabilities
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Fig. 6.7 Joint distribution and empirical probabilities of observed combinations based on a and
b are for flood magnitudes, and flood occurrence dates in upper Yangtze River; c and d are for
flood magnitudes and flood occurrence dates in upper Colorado River
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increase when the return period T is decreasing. The average coincidence proba-
bilities of 100 and 10-year design flood in two tributaries are 0.000143 and
0.001467, respectively. The coincidence probabilities of 1000 and 500-year design
flood in three tributaries are 3.63 � 10−6 and 3.71 � 10−5. From Tables 6.10 and
6.11, the coincidence probabilities of any other return period can be obtained
directly or by interpolation.

6.4.3.2 Conditional Probabilities Analysis

The flood control standard of TGR is 1000 years. To analyze the effect of the upper
tributaries on TGR, the conditional probabilities are calculated. The conditional
probabilities of the occurrence of the T-year flood at the TGR, given the occurrence
of flood in the upper tributaries can be defined as:

PðQn [ qTn jQ1 [ qT1 ; . . .;Qn�1 [ qTn�1Þ
¼ PðQ1 [ qT1 ; . . .;Qn [ qTn Þ=PðQ1 [ qT1 ; . . .;Qn�1 [ qTn�1Þ

ð6:4Þ

where n is the number of random variables and is from two to four; Q1,…,…Qn are
flow magnitudes in any of the two rivers; qT1 ; . . .; q

T
n mean the T-year design flood.

For the case n equal to 2, the conditional probabilities of T-year design flood for the
Yangtze River at TGR, given the flood volume in one of the upper tributary by

Table 6.8 The exceedance probability of coinciding T-year flood volumes at two considered
inflow profiles

Tributaries T 100 50 10 5 2

Upper Col. and Green
Rivers

100 0.00746 0.00921 0.00997 0.00999 0.01000

50 0.00929 0.01495 0.01976 0.01995 0.019994

10 0.00998 0.01982 0.07607 0.09390 0.099553

5 0.00999 0.01997 0.09458 0.15562 0.196065

2 0.01000 0.02000 0.09969 0.19677 0.418765

Upper Col. and
Gunnison Rivers

100 0.00751 0.00927 0.00997 0.00999 0.01000

50 0.00929 0.01505 0.01979 0.01996 0.02000

10 0.00998 0.01981 0.07654 0.09441 0.09962

5 0.00999 0.01996 0.09458 0.15647 0.19651

2 0.01000 0.02000 0.09966 0.19669 0.42025

Green and Gunnison
Rivers

100 0.00749 0.00930 0.00998 0.00999 0.01000

50 0.00925 0.01502 0.01982 0.01997 0.02000

10 0.00997 0.01978 0.07639 0.09467 0.09969

5 0.00999 0.01995 0.09420 0.15621 0.19682

2 0.01000 0.01999 0.09959 0.19632 0.41979
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specifying Q1 [ qT1 , is obtained by Eq. 6.4. In a similar manner, the conditional
probabilities of Yichang Station given the flood volume of two or three upper rivers
are obtained. The calculated conditional probabilities are listed in the Table 6.12.

Table 6.12 shows that for a fixed return period in the upper rivers, the condi-
tional probabilities show an increasing trend when the return period of TGR
decreases. For example, given the occurrence of 1000-year design flood in Jinsha
River, the conditional probabilities of 1000 and 10-year design flood in TGR are
0.35 and 0.71, respectively. The conditional probabilities of TGR given T-year
design floods in three rivers are greater than those given T-year design floods in two
rivers, and the conditional probabilities of TGR given T-year design floods in two
rivers is greater than those only given T-year flood in one river. From these points
of view, results of the calculation are reasonable. It is shown in Table 6.12, the

Table 6.9 The exceedance probability of coinciding T-year flood volumes at three considered
inflow profiles

Upper Col. Gunnison 100 50 10 5 2

Green

100 100 0.00671 0.00744 0.00751 0.00751 0.00751

50 0.00744 0.00899 0.00929 0.00929 0.00929

10 0.00749 0.00925 0.00996 0.00997 0.00998

5 0.00749 0.00925 0.00997 0.00999 0.00999

2 0.00749 0.00925 0.00997 0.00999 0.01000

50 100 0.00741 0.00896 0.00927 0.00927 0.00927

50 0.00904 0.01346 0.01505 0.01505 0.01505

10 0.00930 0.01502 0.01971 0.01980 0.01981

5 0.00930 0.01502 0.01978 0.01994 0.01996

2 0.00930 0.01502 0.01978 0.01995 0.01999

10 100 0.00746 0.00921 0.00996 0.00997 0.00997

50 0.00929 0.01495 0.01969 0.01979 0.01979

10 0.00997 0.01975 0.06874 0.07602 0.07654

5 0.00998 0.01982 0.07605 0.09207 0.09456

2 0.00998 0.01982 0.07639 0.09419 0.09944

5 100 0.00746 0.00921 0.00997 0.00999 0.00999

50 0.00929 0.01495 0.01976 0.01993 0.01996

10 0.00998 0.01982 0.07573 0.09180 0.09439

5 0.00999 0.01995 0.09247 0.14128 0.15632

2 0.00999 0.01997 0.09466 0.15613 0.19480

2 100 0.00746 0.00921 0.00997 0.00999 0.01000

50 0.00929 0.01495 0.01976 0.01995 0.01999

10 0.00998 0.01982 0.07607 0.09389 0.09939

5 0.00999 0.01997 0.09457 0.15553 0.19452

2 0.01000 0.02000 0.09954 0.19528 0.38732
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(a) Jinsha and Min Rivers (b) Jinsha and Jialing Rivers 

(c) Min and Jialing tributaries
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Fig. 6.8 The coincidence probabilities of flood dates on each day in the upper Yangtze River and
its tributaries

Table 6.10 Coincidence probabilities considering flood magnitudes and occurrence dates in two
of the tributaries in the upper Yangtze River

Rivers T 100 50 10 5 2

Upper Col. and Green
Rivers

100 0.00023 0.00029 0.00031 0.00031 0.00031

50 0.00029 0.00047 0.00062 0.00062 0.00062

10 0.00031 0.00062 0.00237 0.00293 0.00311

5 0.00031 0.00062 0.00295 0.00486 0.00612

2 0.00031 0.00062 0.00311 0.00614 0.01307

Upper Col. and
Gunnison Rivers

100 0.00006 0.00007 0.00007 0.00007 0.00007

50 0.00007 0.00011 0.00015 0.00015 0.00015

10 0.00007 0.00015 0.00057 0.00070 0.00074

5 0.00007 0.00015 0.00070 0.00116 0.00144

2 0.00007 0.00015 0.00074 0.00144 0.00287

Green and Gunnison
Rivers

100 0.00014 0.00018 0.00019 0.00019 0.00019

50 0.00018 0.00029 0.00038 0.00038 0.00038

10 0.00019 0.00038 0.00146 0.00181 0.00191

5 0.00019 0.00038 0.00180 0.00299 0.00377

2 0.00019 0.00038 0.00191 0.00376 0.00804

6.4 Application 133



Jialing River has the most significant impact on the flow of TGR. The coefficient of
correlation between Jialing River (at Beibei Station) and Yangtze River (at Yichang
Station) is 0.318, the largest value in Table 6.4, which shows the close relationship
between the two rivers. It is demonstrated that from Table 6.13, the higher con-
ditional probabilities of TGR are generally obtained when the flows of Jinsha and
Jialing Rivers are known. Table 6.14 gives the conditional probabilities of TGR
when T-year design flood in the upper three rivers are known. It can be seen that
when the three rivers upper have a 1000-year flood, the conditional probabilities of
TGR is 1.0.

Table 6.11 Coincidence probabilities considering flood magnitudes and occurrence dates in three
tributaries of the upper Yangtze River

Jinsha Jialing 100 50 10 5 2

Min

100 100 3.63E-06 4.02E-06 4.06E-06 4.06E-06 4.06E-06

50 4.02E-06 4.86E-06 5.02E-06 5.02E-06 5.02E-06

10 4.05E-06 5E-06 5.38E-06 5.39E-06 5.39E-06

5 4.05E-06 5E-06 5.39E-06 5.4E-06 5.4E-06

2 4.05E-06 5E-06 5.39E-06 5.4E-06 5.4E-06

50 100 4.00E-06 4.84E-06 5.01E-06 5.01E-06 5.01E-06

50 4.88E-06 7.27E-06 8.13E-06 8.13E-06 8.13E-06

10 5.03E-06 8.11E-06 1.06E-05 1.07E-05 1.07E-05

5 5.03E-06 8.11E-06 1.07E-05 1.08E-05 1.08E-05

2 5.03E-06 8.11E-06 1.07E-05 1.08E-05 1.08E-05

10 100 4.03E-06 4.98E-06 5.38E-06 5.39E-06 5.39E-06

50 5.02E-06 8.08E-06 1.06E-05 1.07E-05 1.07E-05

10 5.39E-06 1.07E-05 3.71E-05 4.11E-05 4.13E-05

5 5.39E-06 1.07E-05 4.11E-05 4.97E-05 5.11E-05

2 5.39E-06 1.07E-05 4.13E-05 5.09E-05 5.37E-05

5 100 4.03E-06 4.98E-06 5.38E-06 5.40E-06 5.40E-06

50 5.02E-06 8.08E-06 1.07E-05 1.08E-05 1.08E-05

10 5.39E-06 1.07E-05 4.09E-05 4.96E-05 5.10E-05

5 5.40E-06 1.08E-05 5.00E-05 7.63E-05 8.45E-05

2 5.40E-06 1.08E-05 5.11E-05 8.44E-05 1.05E-04

2 100 4.03E-06 4.98E-06 5.38E-06 5.40E-06 5.40E-06

50 5.02E-06 8.08E-06 1.07E-05 1.08E-05 1.08E-05

10 5.39E-06 1.07E-05 4.11E-05 5.07E-05 5.37E-05

5 5.40E-06 1.08E-05 5.11E-05 8.40E-05 1.05E-04

2 5.40E-06 1.08E-05 5.38E-05 1.06E-04 2.09E-04
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Table 6.12 Conditional probabilities PðQY [ qTY
��Q1 [ qT1 Þ of TGR, under the condition of the

flood occurring in one of upper Yangtze River

Yichang Return Period 1000 500 100 50 10

Jinsha River 1000 0.35 0.47 0.71 0.78 0.89

500 0.24 0.35 0.62 0.71 0.86

100 0.07 0.12 0.36 0.48 0.74

50 0.04 0.07 0.24 0.36 0.66

10 0.01 0.02 0.07 0.13 0.41

Min River 1000 0.27 0.37 0.58 0.65 0.79

500 0.18 0.27 0.50 0.58 0.75

100 0.06 0.10 0.28 0.38 0.62

50 0.03 0.06 0.19 0.28 0.55

10 0.01 0.02 0.06 0.11 0.34

Jialing River 1000 0.39 0.53 0.77 0.83 0.93

500 0.26 0.39 0.68 0.77 0.90

100 0.08 0.14 0.40 0.54 0.79

50 0.04 0.08 0.27 0.40 0.72

10 0.01 0.02 0.08 0.14 0.44

Table 6.13 Conditional probabilities PðQY [ qTY
��Q1 [ qT1 ;Q2 [ qT2 Þ of TGR, under the condi-

tion of the flood occurring in two of upper Yangtze River

Yichang Return period 1000 500 100 50 10

Jinsha and Jialing River 1000 0.99 1.00 1.00 1.00 1.00

500 0.97 0.98 1.00 1.00 1.00

100 0.72 0.81 0.93 0.98 1.00

50 0.45 0.62 0.80 0.88 1.00

10 0.05 0.10 0.31 0.40 0.76

Jinsha and Min River 1000 0.73 0.96 1.00 1.00 1.00

500 0.42 0.73 1.00 1.00 1.00

100 0.09 0.18 0.73 0.96 1.00

50 0.04 0.09 0.42 0.73 1.00

10 0.01 0.02 0.09 0.18 0.75

Jialing and Min River 1000 0.90 0.95 1.00 1.00 1.00

500 0.81 0.89 0.99 1.00 1.00

100 0.50 0.63 0.88 0.95 1.00

50 0.32 0.47 0.75 0.86 0.99

10 0.05 0.10 0.32 0.43 0.80
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6.5 Conclusions

The flood combination risk, which reflects the probability of coincidence of
multi-dimensional flood peaks, is important for reservoir operation and flood
management. The copula function is used to establish the joint distribution of flood
magnitudes and flood occurrence dates. The coincidence probabilities of flood
magnitudes and dates are calculated. The conditional probabilities of TGR for
different return periods are analyzed. The main conclusions of this study are
summarized as follows:

(1) Symmetric Gumble, asymmetric Gumble and X-Gumble copula function are
used. The X-Gumble copula provides the best fit. Therefore, the X-Gumble
copula is used for the combination risk analysis in this chapter.

(2) By analyzing the coincidence probabilities of flood magnitudes and flood dates,
this Chapter contributes to better practical knowledge in the area of engineering
hydrology, particularly about the assessment of flood events and the perfor-
mance of comprehensive flood-risk analyses. According to the analysis results,
it is possible to raise the flood control water level of TGR in May and June. To
the contrary, in September, the flood control water level of the TGR should not
be raised too high, and certain flood control storage is needed for TGR. The
flow in Jialing River has the most significant impact on the inflow in TGR. If
the three upper rivers have a 1000-year design flood, the TGR also experiences
a 1000-year flood. The coincidence probabilities or conditional probabilities of
any other return period can be obtained directly from Tables 6.8, 6.9, 6.10,
6.11, 6.12, 6.13 and 6.14 or by interpolation.
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Chapter 7
Copula-Based Method for Multisite
Monthly and Daily Streamflow
Simulation

7.1 Introduction

Stochastic simulation of flow discharge sequences is needed for water resources
planning and management. It may help prepare for events that have not yet been
observed in the past but nonetheless can be expected in the future (Szilagyi et al.
2006). Since multiple reservoirs and river sections are often considered in a sys-
tem’s operation plan, and more information is needed accompanying the rapidly
increasing construction of reservoirs, there is a need to generate concurrent multisite
streamflow series. Generated multisite flow data can serve as useful input for the
design of reservoirs, evaluation of alternative operating policies for a system of
reservoirs, and assessment of risk and reliability of water resources system opera-
tion (Srinivas and Srinivasan 2005).

A variety of methods have been proposed for stochastic multisite streamflow
simulation. The first type is autoregressive moving average (ARMA) model and its
variants, which assume that the current flow is linearly related to the previous
observations. In these models, the actual flow is transformed to an alternative
variable that satisfies the assumptions of linearity and normal probability distri-
bution in the model structure (Sharma and O’Neill 2002). The disadvantages of
ARMA are the limitation in representing nonlinear dependences and nonstandard
probability distribution forms (Sharma and O’Neill 2002; Hao and Singh 2013).
These limitations may result in less than an accurate representation of flows that are
likely to occur and may lead to biased reservoir operating policies. In addition,
these models are usually incapable of representing sudden bursts or jumps, which
constitute a feature which often observed in short-period streamflow (Sharma et al.
1997).

The second type entails disaggregation models, which divide annual flows into
seasonal or monthly flows or divide the aggregate basin flows into flows at indi-
vidual sites (Kumar et al. 2000). A linear stochastic framework for streamflow
disaggregation was proposed first by Valencia and Schaake (1973) and
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subsequently modified and improved by several researchers (Mejia and Rousselle
1976; Lane 1979; Salas et al. 1980; Stedinger and Vogel 1984; Stedinger et al.
1985). However, the parametric assumption of the probability distribution of
streamflow is usually invoked (Kumar et al. 2000). To overcome this assumption, a
nonparametric approach for space or time disaggregation based on the kernel
density estimation was proposed by Lall et al. (1996) and Tarboton et al. (1998).
Since then, nonparametric models, such as moving block bootstrapping method
(Srinivas and Srinivasan 2005) or K-nearest neighbor resampling method (Prairie
et al. 2007), have been developed for multisite streamflow simulation. However,
these methods, such as kernel method, are known to be inefficient and cumbersome
to implement in higher dimensions. This limits their extension to space and time
disaggregation (Prairie et al. 2007). The traditional bootstrapping or k-nearest
neighbor model generates only observed values that are in the sample data (Lee and
Salas 2008).

Though a variety of methods have been proposed in the hydrologic literature for
multisite simulation of streamflow, none of the methods seem to have gained
universal acceptability among practicing engineers for various water resources
applications (Srinivas and Srinivasan 2005). Recently, copulas have been used for
stochastic simulation of hydrological data, because they are flexible in choosing
arbitrary marginal distributions, representing the dependence structure, extending to
more than two variables, and permitting separate analysis of marginal distributions
and dependence structure. The copula method is simple in the sense that it does not
have to deal with the uncertainties associated with the identification of normalizing
transformation. Lee and Salas (2008) used the copula method for modeling and
simulation of annual streamflows. Bárdossy and Pegram (2009) used the copula
method for multisite precipitation simulation. Hao and Singh (2013) proposed an
entropy-copula method for single-site monthly streamflow simulation, in which the
marginal distribution was built using the entropy method and the joint distribution
of adjacent monthly streamflow was built using the copula method. These studies
indicate that the copula method can be an effective tool for the stochastic simulation
of hydrological data.

Srinivas and Srinivasan (2005) indicated that an ideal model for stochastic
simulation of multisite multi-seasonal streamflow should ensure the preservation of
marginal distributions at various temporal levels at each site and cross-correlations
among sites. The copula method can use any marginal distributions. Furthermore,
since copulas are capable of exhibiting the dependence between two or more
random variables and modeling the general dependence in multivariate data (e.g.,
Joe 1997; Nelsen 2006), cross-correlations among sites can be realized by building
the multivariate joint distributions of hydrological series at different locations.

However, the ability of commonly used parametric copulas to model depen-
dences in higher dimensions is rather restricted, e.g., for the Archimedean copulas.
The conflicts between multiple dependences required in multisite streamflow
stochastic simulation and the difficulty of simulating the dependences in higher
dimensions have limited the application of copulas to multisite streamflow simu-
lation. To overcome these difficulties, Hao and Singh (2013) proposed the
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maximum entropy copula method for multisite monthly streamflow simulation, in
which the copula function was built by maximizing entropy. This method can
extend copulas to higher dimensions. However, it involves too many parameters
that need to be estimated. To illustrate, consider bivariate copulas as an example.
The method needs to estimate 2m + 2 (m is the maximum order of moments, m = 3
in that study) parameters. Therefore, a simple multisite stochastic simulation
method based on copulas with less parameter needs to be developed.

Very often a hydrologic stochastic process must be studied at different time
scales (Koutsoyiannis 2001). In comparison with monthly or yearly applications,
less research has been reported on multisite daily flow simulation which may be
desirable for practical use. For example, a daily record of multisite streamflow is
usually required for simulating the behavior of multi-reservoir operating policies.
The traditional ARMA model has been shown to produce an adequate synthetic
record for periods as short as five days (Xu et al. 2003). Kumar et al. (2000)
indicated that disaggregating monthly streamflow to daily flows involves a higher
dimensional problem that cannot always be well represented by traditional para-
metric disaggregation techniques. They adopted K-NN bootstrap techniques in
conjunction with an optimization scheme for spatial and temporal disaggregation of
monthly streamflow to daily flows. However, until now, simulation of multisite
daily streamflow has remained a challenge.

The content of this chapter is therefore to introduce an efficient, reliable and
parsimonious method for generating monthly and daily multisite streamflows,
which can capture the features exhibited by observed data (Chen et al. 2015). To
this end, we establish multivariate copulas based on bivariate and conditional
copulas to characterize the temporal and spatial dependences between multiple
sites. This makes it easier to estimate the parameters of copulas. The monthly and
daily flows are simulated based on the multivariate conditional distribution given
the previous flow and the concurrent flow of the other site. Monthly data from three
tributaries in the Colorado River basin, daily data from two gauging stations on
mainstream and four gauging stations on tributaries in the upper Yangtze River
basin, are used for case studies. Basic statistics of observed and simulated data are
calculated and compared. Finally, the performance of the copula-based method is
comprehensively evaluated.

7.2 Methodology

In this section, we develop a new method for multisite stochastic simulation. This
method seeks to generate monthly or daily flow data at multiple sites for a period of
N years. The sketch of the locations of these sites is shown in Fig. 7.1. There are
two cases. Figure 7.1a shows that all the sites (A, B and C) are located on the
tributaries. Figure 7.1b shows that some of the sites are located on the mainstream
(A and D) and some on the tributaries (B and C). First, streamflow of single site A
is simulated using the copula method proposed by Lee and Salas (2008, 2011).
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Streamflow of site B, which has spatial dependence with site A, is generated using
the method described below. Streamflow of sites C, D and so on, which also have
the spatial dependence with site A, are generated using the same method. For case
(a), site A can be any of the stations in the tributaries. For case (b), we select the site
located on the downstream of the mainstream as site A, because there is a strong
dependence between site A and other sites upstream. Therefore, multisite stream-
flow simulation entails two steps. First, the streamflow of site A is generated using
the copula method. Then, the streamflow at sites B, C and so on are simulated,
based on the spatial dependence between site A and other sites.

7.2.1 Single-Site Streamflow Simulation Based on Bivariate
Copulas

The most important issue for single-site streamflow simulation is to preserve the
temporal dependences of site A. Bivariate copula functions are used to describe the
correlation between consecutive months or days. Thus, the method for establishing
the bivariate copulas is described first, and then the single-site stochastic simulation
method proposed by Lee and Salas (2011) is described.

Supposes Yt is the simulated streamflow of site A at time t. The streamflow at
time t is related to the previous streamflow at time t − 1. To describe the correlation
between them, the copulas are used to establish the joint distributions. Since the
streamflow at time t is conditioned on the previous streamflow at t − 1, the con-
ditional distribution is employed to generate the streamflow data. The generating
procedures with the conditional copula are summarized as follows

(1) Fit the marginal distributions FðytÞ and Fðyt�1Þ using the P-III distribution,
ut1 ¼ FðytÞ and ut�1

1 ¼ Fðyt�1Þ.

Fig. 7.1 Sketch showing
locations of gauged stations
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(2) Establish the joint distribution Fðyt�1; ytÞ using copulas, Fðyt�1; ytÞ ¼
Cðut�1

1 ; ut1Þ, and estimate their parameters based on the Kendall tau method.
(3) As the streamflow at the previous time t − 1 is known, ut�1

1 ¼ F yt�1ð Þ can be
calculated using the fitted P-III distribution. Generate a uniform random
number e, Cðut1jut�1

1 Þ ¼ e. Since ut�1
1 and e are known, the value of ut1 can be

obtained from the inverse function C�1ðut1 ut�1
1

�� Þ.
(4) Derive the monthly or daily streamflow yt of site A from the inverse function

F�1ðut1Þ.
Note that the first value y1 is generated from the marginal distribution F(y1).

Other detailed information can be found in Lee and Salas (2008, 2011).

7.2.2 Multi-Site Streamflow Simulation

The most important issue for multisite streamflow simulation is to preserve the
temporal and spatial dependences. Multivariate copula functions are used to
describe the correlation between hydrological variables. Thus, the method for
establishing the multivariate copulas is described first, and then the multisite
stochastic simulation method is proposed.

Suppose that Xt and Xt–1 are the simulated streamflow of site B at time t and
t − 1, respectively. Yt is the simulated streamflow of site A at time t. The value of Xt

is related to both Xt–1 and Yt. There exists a temporal dependence between Xt and
Xt–1, and a spatial dependence between Xt and Yt. To describe the temporal and
spatial dependences among sites, we can build three-dimensional copulas using the
method mentioned above.

The trivariate copula function is given by:

Cðu1; u2; u3Þ ¼ FðFðytÞ;Fðxt�1Þ;FðxtÞÞ

¼
Zxt�1

�1
CXY ðFYt jXt�1ðytjxt�1Þ;FXt jXt�1ðxtjxt�1ÞÞFðdxt�1Þ

ð7:1Þ

where u1 ¼ FðytÞ, u2 ¼ Fðxt�1Þ and u3 ¼ FðxtÞ are the marginal distributions.
FXt jXt�1ðxtjxt�1Þ and FYt jXt�1ðytjxt�1Þ are the conditional probability distributions
given variable Xt–1, which can be obtained using Eq. 2.6 of Chap. 2.

Since the method mentioned above uses the bivariate Archimedean copulas to
build multivariate copulas, we only need to estimate the parameters of bivariate
copulas. There are several methods for parameter estimation of bivariate copulas.
They include the Kendall tau method, maximum likelihood (ML) method,
the method of inference function for margins (IFM), semi-parametric
pseudo-maximum-likelihood method, and so on, which have been discussed in
Chap. 2. When simulating daily streamflow data, there are 365 trivariate copulas that
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need to be established. It is difficult to estimate the parameters of these copulas using
IFM or the semi-parametric pseudo-maximum-likelihood method, since usually
some optimization algorithms are often used to obtain the maximum likelihood value
and its corresponding parameters. On the contrary, the advantage of the proposed
method is to use the bivariate copulas to derive the trivariate one. Therefore, the
Kendall tau method can be used to estimate the parameters of trivariate copulas
instead of the IFM or semi-parametric pseudo-maximum-likelihood method, which
makes it possible for the practical application.

The Kendall tau correlation coefficients have a relationship with the copula
function, and can be used to estimate the parameters of bivariate copulas, the
relationship between Kendall tau and copula parameters are summarized in
Table 2.3 of Chap. 2.

To obtain the values of FXt jXt�1ðxtjxt�1Þ and FYt jXt�1ðytjxt�1Þ, the bivariate joint
distributions of C(u1,u2) and C(u3,u2) are needed to be built. The parameters of
these copulas can be estimated using the equations given in Table 2.3. In addition,
the parameter of the joint distribution CXY of Eq. 7.1 can also be estimated based on
the Kendall tau. Since variables Xt and Yt have a dependence with variable Xt–1, the
partial correlation coefficient, which is a measure of a pair of random variables after
removing the effects of other variables, needs to be involved. The partial correlation
coefficient corresponding to the Kendall tau can be calculated as (Kendall 1948;
Sidney 1956; Ebuh and Oyeka 2012)

sXtYt jXt�1 ¼
sXtYt � sXtXt�1sYtXt�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� s2XtXt�1
Þð1� s2YtXt�1

Þ
q ð7:2Þ

where sXtYt Xt�1j is the partial correlation given the controlling variable Xt–1; sXtYt is
the Kendall tau rank correlation coefficient between Xt and Yt; is the Kendall tau
rank correlation coefficient between and Xt and Xt–1, and is the Kendall tau rank
correlation coefficient between Yt and Xt–1.

In order to sample from the continuous joint CDF, FðFðytÞ;Fðxt�1Þ;FðxtÞÞ, for
obtaining the random values of (Yt, Xt–1, Xt), the conditional distribution method is
employed in this book. For generation of multisite streamflow at time t while
preserving the temporal correlation between consecutive months or days and spatial
correlation between sites A and B, the streamflow values at time t at site B can be
generated from the conditional distribution, given the streamflow value of its pre-
vious time at site B and of current time at site A. The multivariate probability
distribution of three variables Xt–1, Xt and Yt is thus built. When the method is
applied to generate monthly streamflow of each year, 12 conditional distributions
have to be used sequentially. When the method is applied to generate daily
streamflow of each year, 365 conditional distributions have to be used sequentially.
For time t, when the current streamflow yt at site A and the previous flow xt–1 at site
B are known, u1 and u2 can be calculated. The current flow xt at site B can be
obtained from the conditional distribution of u3, given the values u1 and u2, which is
expressed as:
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Gðu3ju1; u2Þ ¼ @u1;u2Cðu1; u2; u3Þ
@u1;u2Cu1;u2ðu1; u2Þ

¼ @u1Cu1u3ð@u2Cu1u2ðu1; u2Þ; @u2Cu2u3ðu2; u3ÞÞ
@u1;u2Cu1;u2ðu1; u2Þ

ð7:3Þ

where the variables u1 and u2 next to the partial derivation operator means that the
derivative of a function C with respect to variables u1 and u2:

@u1;u2Cðu1; u2; u3Þ ¼
@Cðu1; u2; u3Þ

@u1@u2
ð7:4aÞ

@u1;u2Cu1u2ðu1; u2Þ ¼
@Cu1u2ðu1; u2Þ

@u1@u2
ð7:4bÞ

@u2Cu1u2ðu1; u2Þ ¼
@Cu1u2ðu1; u2Þ

@u2
ð7:4cÞ

@u2Cu2u3ðu2; u3Þ ¼
@Cu2u3ðu2; u3Þ

@u2
ð7:4dÞ

From Eq. 7.4a, 7.4b, 7.4c, 7.4d, @u2Cu1u2ðu1; u2Þ and @u2Cu2u3ðu2; u3Þ can be
defined as Q1 and Q2,

Q1ðu1; u2Þ ¼ @Cu1u2ðu1; u2Þ
@u2

; Q2ðu2; u3Þ ¼ @Cu2u3ðu2; u3Þ
@u2

ð7:5Þ

Then,

Gðu3ju1; u2Þ ¼ @u1Cu1u3ðQ1;Q2Þ
@u1;u2Cu1;u2ðu1; u2Þ

¼
@Cu1u3ðQ1;Q2Þ

@Q1

@Q1

@u1
þ @Cu1u3ðQ1;Q2Þ

@Q2

@Q2

@u1
@Cu1;u2ðu1; u2Þ

@u1u2

¼
@Cu1u3 ðQ1;Q2Þ

@Q1

@Q1
@u1

þ 0
@Q1
@u1

¼ @Cu1u3ðQ1;Q2Þ
@Q1

¼ HðQ2jQ1Þ

ð7:6Þ

where H represents the conditional distribution. Q1 and Q2 can be calculated by
Eq. 7.5. Knowing the values of u1, u2 and u3, the intermediate variables Q1 and Q2

can be calculated. Substituting Q1 and Q2 into Eq. 7.6, the value of Gðu3ju1; u2Þ is
finally determined. It can be seen that Gðu3ju1; u2Þ is actually the conditional dis-
tribution of Q2 given Q1.
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This indicates that at time t the current streamflow Xt at site B is conditioned on
the previous flow Xt–1 at the same site and the current flow Yt at the other site A,
which has the spatial correlation with site B. Since u1 and u2 are known, Q1 can be
calculated using Eq. 7.5. A uniform random number e is generated and Gðu3ju1; u2Þ
equals e. Substituting the value of Q1 and e into Eq. 7.6, the value of Q2 can be
obtained by solving Eq. 7.6. Since u2 ¼ Fðxt�1Þ is already known, the subsequent
u3 is determined. The generated data in the real domain is obtained from the inverse
function xt ¼ F�1ðu3Þ.

The step by step generation procedure with the conditional probability function
of Eq. 7.6 can be summarized as follows.

(1) Establish the marginal distribution based on the P-III distribution and estimate
its parameters using the L-moment method.

(2) Calculate the Kendall tau rank correlation coefficients sXtYt , sXtXt�1 and sYtXt�1 .
Then the partial correlation coefficient sXtYt jXt�1

is obtained using Eq. 7.2.
(3) Simulate the single-site streamflow data using the bivariate copulas.
(4) To carry out the multisite streamflow simulation, three bivariate joint distri-

butions, C(u1,u2), C(u2,u3) and CXY ðFYt jXt�1ðytjxt�1Þ;FXt jXt�1ðxtjxt�1ÞÞ, need to
be built. The parameters of the first two copulas are estimated using the
equations listed in Table 2.3. For the third copula, the partial correlation
coefficient is calculated using Eq. 7.2. Then the parameter of the third copula
CXY is also derived based on the relationship between Kendall tau and copulas
parameters.

(5) Calculate the conditional distribution Q1ðu1; u2Þ based on the established joint
distribution C(u1,u2). A uniform random number e is generated so that
Gðu3ju1; u2Þ ¼ e. Substitute the value of Q1 and e into Eq. 7.6, the value of
Q2ðu2; u3Þ is obtained from the inverse function H�1ðQ2jQ1Þ.

(6) The subsequent u3 is derived by solving the inverse function of Q2. Finally, the
generated streamflow data at gauging station B is obtained from the inverse
function xt ¼ F�1ðu3Þ.
Note that for the first data of site B, it is only related to the first data of site A.

Therefore, the simulated streamflow data of the first day is directly generated from
the conditional copula function C(u3| u1).

7.3 Multisite Monthly Streamflow Simulation

The coupla-based method is applied for simulating multisite monthly streamflow in
the Colorado River Basin. A schematic of the rivers and gauging stations is shown
in Fig. 7.2. Monthly flows of three tributaries of Colorado River, namely Paria
River, Little Colorado River and Virgin River, are generated using the proposed
method. The data sets with a length of 103 years (1906–2008) from the sites at Lees
Ferry located on Paria River (denoted as site A), near Cameron on Little Colorado
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River (denoted as site B), and at Littlefield on Virgin River (denoted as site C) are
used. More details about the datasets are given by Hao and Singh (2013).

The bivariate Kendall tau and partial correlation coefficient corresponding to the
Kendall tau are estimated. These correlations include the temporal dependence of
single site and the spatial dependence between sites. Results are given in Table 7.1.
Several coefficients are negative, but are very small, almost close to zero, which
means that the association between the two variables can be negligible, and the
Gumbel copula therefore can be used in this study. The Kendall tau of streamflow

A

B

C

Fig. 7.2 Locations of rivers and gauging stations in the Colorado River basin

Table 7.1 Values of Kendall tau representing temporal and spatial dependences of sites A, B
and C

Sites s 1 2 3 4 5 6 7 8 9 10 11 12

A sYt�1Yt 0.38 0.24 0.50 0.55 0.49 0.35 0.04 0.26 0.11 0.11 0.37 0.17

B sXt�1Xt 0.28 0.42 0.47 0.45 0.47 0.05 −0.05 0.27 0.15 0.10 0.31 0.29

C sXt�1Xt 0.41 0.44 0.61 0.66 0.70 0.69 0.37 0.31 0.15 0.26 0.45 0.41

A–B sXtYt 0.21 0.44 0.36 0.39 0.37 0.39 0.36 0.39 0.32 0.27 0.31 0.13

sXt�1Yt 0.03 0.20 0.25 0.27 0.21 0.13 −0.01 0.12 0.03 0.02 0.08 −0.01

sXtYt Xt�1j 0.21 0.40 0.28 0.32 0.31 0.39 0.36 0.37 0.32 0.27 0.30 0.14

A–C sXtYt 0.42 0.55 0.62 0.57 0.44 0.33 0.39 0.46 0.51 0.35 0.38 0.41

sXt�1Yt 0.25 0.27 0.42 0.46 0.31 0.21 0.21 0.17 0.06 0.17 0.25 0.24

sXtYt Xt�1j 0.36 0.50 0.50 0.40 0.32 0.26 0.34 0.43 0.51 0.33 0.31 0.35
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for two consecutive months at site A, sYt�1Yt , is used for single-site stochastic
simulation. The other dependencies, such as sXtYt , sXtXt�1 and sXt�1Yt , are used in the
multisite stochastic simulation for calculating the partial correlation coefficient and
estimating the parameters of copulas.

First, the marginal distributions of each month are constructed. The P-III dis-
tribution is fitted to the monthly data, and the L-moment method is used to estimate
its parameters. The marginal distribution frequency curves of flood magnitudes of
the Paria River, Little Colorado River, and Virgin River are shown in Figs. 7.3, 7.4
and 7.5, respectively. It is seen that the P-III distribution can fit empirical distri-
bution well.
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Fig. 7.3 Comparison of empirical and theoretical probabilities for streamflow of Paria River
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Fig. 7.4 Comparison of empirical and theoretical probabilities for streamflow of Little Colorado
River
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Second, the single-site monthly flow is simulated using the method described by
Lee and Salas (2011) who concluded that the Gumbel copula shows a better fit than
the Frank and Clayton copulas. Therefore, the Gumbel copula is used to generate
the single-site monthly flow. To demonstrate the performance of single-site
monthly streamflow simulation, basic statistics, including mean value, standard
deviation (Sd), skewness (Cs), and lag-1 correlation (lag-1), are calculated and
shown in Table 7.2. The relative error (RE) is calculated for each month, as given
in Table 7.2, which shows that the maximum RE values corresponding to mean,
standard deviation Sd, the coefficient of skewness Cs and lag-1 are 1.29, 4.68, 6.60
and 2.45%, respectively. In addition, boxplots are used to display the observed and
simulated statistics, and the performance is judged to be good when a statistic falls
within the boxplot (Salas and Lee 2011; Hao and Singh 2013). Boxplots of statistics
(mean flow, standard deviation Sd and coefficient of skewness Cs) of the observed
and simulated monthly streamflows for site A are shown in Fig. 7.6, which indi-
cates that all these simulations show good results since those statistics fall within
the boxplots for most of the months. Therefore, the copula-based stochastic sim-
ulation method performs well in preserving mean flow, Sd, Cs and lag-1 correlation.
The generated single-site data can be used for multisite monthly streamflow
simulation.

We illustrate the derivation of the joint distribution for monthly streamflow at
sites A and B as an example. Denote monthly streamflow for month t at sites A and
B as yt and xt, and for month t − 1 at site B as xt–1. Their corresponding marginal
distributions are u1 ¼ FðytÞ, u2 ¼ Fðxt�1Þ and u3 ¼ FðxtÞ. The trivariate joint
distribution of monthly streamflow yt, xt–1 and xt are built using Eq. 7.1. To obtain
the trivariate joint distribution, three bivariate distributions need to be established.
They are Cðu1; u2Þ, Cðu2; u3Þ and CXY ðFYt jXt�1ðytjxt�1Þ;FXt jXt�1ðxtjxt�1ÞÞ.
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Fig. 7.5 Comparison of empirical and theoretical probabilities for streamflow of Little Colorado
River
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Fig. 7.6 Observed and simulated statistics of monthly streamflow at site A

The Gumbel, Frank and Clayton copula functions are employed to establish those
bivariate distributions. And the same kind of copulas is used for each trivariate joint
distribution. The Kendall tau method is used to estimate their parameters. For the
third joint distribution, the partial correlation coefficient corresponding to the
Kendall tau is applied instead of the regular one.

Both empirical and theoretical probabilities of trivariate joint distribution are
computed. The theoretical copulas are calculated by the Gumbel, Frank and Clayton
copulas, respectively. The root mean square error (RMSE) values between empirical
and theoretical copulas of trivariate joint distribution are calculated and given in
Table 7.3. It can be seen that there is no significant difference when using different
copulas for calculation. The mean values of RMSE are calculated and listed in the
last column of Table 7.3. The Gumbel copula has the smallest mean RMSE value
for sites A–B and A–C. The empirical joint probabilities of the three variables are
plotted against theoretical probabilities calculated by the Gumbel copulas for sites
A–B and A–C, as shown in Figs. 7.7 and 7.8, which show that no significant
difference between empirical and theoretical joint probabilities can be detected.

Generally, several copulas are used for establishing the joint distribution, and the
one with the maximum likelihood value is usually selected. And the SP method is
widely used for parameter estimation. In this study, the Gumbel copula coupled
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Fig. 7.7 Observed and theoretical joint probabilities of monthly streamflow xt–1, xt and yt (yt
represents the monthly streamflow of Paria River at time t; and xt–1 and xt represents the monthly
streamflow of Little Colorado River at time t − 1 and t, respectively)

with the Kendall tau parameter estimation method is used instead of the selected
copula with the SP method. Before using the Gumbel copula with the Kendal tau
parameter estimation method for multi-site stochastic simulation, further compar-
isons should be carried out. In order to further test the performance of the Gumbel
copula, we use the Gumbel, Frank and Clayton copulas to construct each bivariate
distribution and employed the SP method for parameter estimation. The copula with
the maximum likelihood values is selected to construct the trivariate distribution.
The performances of the selected and Gumbel copulas are compared. The RMSE
values for those two copulas are computed and results are given in Table 7.3.
Figures 7.7 and 7.8 show the empirical and theoretical probabilities of trivariate
joint distribution calculated by the selected copula and the Gumbel copula.
Table 7.3, and Figs. 7.7 and 7.8 indicate that both the selected and the Gumbel
copula perform well, and sometimes the Gumbel copula fits better than the selected
copulas. Generally there is no obvious difference between those two models.
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Fig. 7.8 Observed and theoretical joint probabilities of monthly streamflow xt–1, xt and yt (yt
represents monthly streamflow of Paria River at time t; and xt–1 and xt represents monthly
streamflow of Virgin River at time t − 1 and t, respectively)

Therefore, the model established by the Gumbel copula with the Kendal tau
parameter estimation method is used hereafter to generate monthly streamflow at
sites B and C.

Using the established trivariate joint distributions, multisite monthly flows are
simulated. The monthly streamflow at sites B is generated based on the spatial
dependences between sites A and B. Similarly, monthly streamflow at site C is
generated based on the spatial dependence between sites A and C. Since the values
of u1 and u2 are already known, the conditional probability distribution Q1ðu1; u2Þ
is obtained. A uniform random number e is generated, and Gðu3ju1; u2Þ equal e.
Substituting the value of Q1 and e into Eq. 7.6, subsequent u3 is derived by solving
the inverse function of Q2ðu2; u3Þ. Finally, the generated streamflow data at gauging
stations B and C is obtained from the inverse function xt= F−1(u3), respectively.
The performance of the Gumbel copula is evaluated by comparing mean flow,
standard deviation (Sd) and skewness of the generated data with those of the
observed data. Boxplots of statistics (mean flow, standard deviation Sd and
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coefficient of skewness Cs) of the observed and simulated monthly streamflows for
sites B and C are shown in Figs. 7.9 and 7.10, respectively, which indicate that all
the simulations show good results, since these statistics fall within the boxplots for
most of the months. The mean values of the statistics and RE are given in Table 7.4
which shows that for site B, the mean value of RE is less than 5% except for June.
The mean value of RE in June is higher and reaches 12.17%. Since the discharge in
the Little Colorado River is generated from snowmelt and rainfall, there is no
snowmelt and is less rainfall in June, which leads to very small discharge. The
observed mean monthly streamflow for June is 1,151 m3/s. From 1906 to 2008,
there are 57 years in which the discharge in June is zero, which influences the
simulated results. The standard deviation and skewness of RE at site B is less than
9%. For site C, the performance of the proposed method is satisfactory. The RE
value of the mean is less than 1%. The RE values of the standard deviation and
skewness are less than 7%.

Boxplots of the Kendall tau correlation of the observed and simulated monthly
streamflows for three sites A, B and C are shown in Fig. 7.11, in which (a), (b) and
(c) show the correlations for consecutive months at sites A, B and C, and (d), (e) and
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Fig. 7.9 Observed and simulated statistics of monthly streamflow at site B
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Fig. 7.10 Observed and simulated statistics of monthly streamflow at site C

(f) show the correlations for the same month at different sites. Figure 7.11 indicates
that all these simulations show good results, since the observed Kendall tau corre-
lation falls within the boxplots for most of the months. Although monthly flows at
sites B and C are generated, based on the dependence between those and site A, the
spatial correlation between sites B and C can still be preserved relatively well.

For flood and drought statistics, the minimum and maximum streamflows are
usually considered. Monthly streamflow is often applied for drought analysis. The
mean annual maximum and minimum streamflow of the generated and observed
series are computed and shown in Table 7.5, which demonstrates that the difference
between those two series regarding extreme events is not large.

7.4 Multisite Daily Streamflow Simulation

The upper Yangtze River basin as shown in Fig. 6.1 is selected as a case study. We
denote the Yichang station on the Yangtze River as site A, the Pingshan station on
the Jinsha River as site B, the Gaochang station on the Min River as site C, the
Lijiawan station on the Tuo River as site D, the Beibei station on the Jialing River
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as site E, and the Wulong station on the Wu River as site F. The Yichang gauging
station is on the mainstream and has a high dependence with the other gauging
stations. In addition, since the flow generation process is very different among these
tributaries, the dependences among sites B, C, D, E, and F are relative small,
especially for the sites Beibei gauging station on the Jialing River and the Pingshan
gauging station on the Jinsha River. The Kendall correlation coefficient between
these two sites is only 0.05, which can be taken as independent. Therefore, daily
steamflow at sites B, C, D, E, and F are generated based on the simulated daily flow
data at sites A. In other words, the temporal dependences of single sites and spatial
dependences between sites A and B (A–B), A and C (A–C), A and D (A–D), A and
E (A–E) and A and F (A–F) are simulated using the trivariate copulas.

Fig. 7.11 Observed and simulated Kendall tau correlation of monthly streamflow for consecutive
months at sites A (a), B (b) and C (c) and for the same month at different sites A–B (d), A–C
(e) and B–C (f)

Table 7.5 Results of mean
annual maximum and
minimum monthly streamflow
for observed and simulated
series

Sites Observed Simulated

Maximum Minimum Maximum Minimum

A 5948 326 5923 307

B 73,768 69 74,296 34

C 35,459 4730 34,970 4407
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First, the marginal distributions of each day are constructed. The P-III distri-
bution is fitted to the daily data. The L-moments method is used for estimating their
parameters. Second, the daily streamflow at site A is simulated using the copula
method proposed by Lee and Salas (2011) and applied by Hao and Singh (2013).
Due to the satisfactory performance of the Gumbel copula for monthly streamflow
simulation recommended by Lee and Salas (2011), the Gumbel copula is used to
simulate the single-site daily flow data at site A. The basic statistics of observed and
simulated data, including the mean value, standard deviation and skewness, are
calculated and shown in Fig. 7.12. It can be seen that the mean value, standard
deviation and skewness of the simulated data fit those of observed data well.
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Fig. 7.12 Basic statistics of observed and generated data
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For multi-site simulation, the same method is used to establish the trivairate joint
distribution between sites A–B, A–C, A–D, A–E, and A–F. There are three
bivariate copulas that need to be built for each day. If we use three kinds of copulas
(Gumbel, Frank and Clayton) and select the best one among them, 33 � 365
copulas need to be built for simulating daily flows for the whole year. This will
require a lot of calculation work, which makes this method impossible for practical
applications. According to the calculated results of monthly streamflow simulation,
the Gumbel copula with the Kendall parameter estimation method performs well.
Therefore, the Gumbel copula model is used hereafter for multi-site daily stream-
flow simulation. The simulated results of basic statistics at sites B, C, D, E and F are
shown in Fig. 7.12, which indicate that the mean value, standard deviation and
skewness of the simulated data fit those of observed data well.

The temporal correlation coefficients, namely correlations for consecutive days,
of the observed and simulated daily streamflow from June to September for five
gauging stations B, C, D, E and F are calculated and drawn in boxplots. Results are
given in Fig. 7.13, which indicate a good agreement, since the observed Kendall tau
correlation falls within the boxplots for most of the days. The performance of the
algorithm is then assessed through the spatial correlation between observed and
simulated daily flows. The mean lag-0 cross correlations of the whole year for sites
A–B, A–C, A–D, A–E, and A–F are calculated and listed in Table 7.6, which
indicates that the cross correlation values of simulated streamflows are consistent
with those of observed flows.

We have discussed the lag-1 correlation above. However, the correlations
beyond lag-1 may influence modeling the overall stochastic structure of streamflow.
In the following, we investigate other autocorrelations besides lag-1. The depen-
dences between lag-t (t = 1, …, 5) and current flow are studied. Since the corre-
lation between consecutive days is usually larger than that between consecutive
months, daily streamflow data is employed. We calculate the mean autocorrelations
between lag-t and current flow for each of the five gauging stations in the Yangtze
River Basin, which indicate that the correlation coefficient is still large till lag-5.
However, these dependencies do not remove the impact of lag-1. To describe the
relationship between lag-t (t = 2, …, 5) and current flow while taking away the
effects of lag-1, the partial correlation coefficients are calculated and shown in
Table 7.7, which indicate that the partial correlation coefficients are relative low. In
other words, compared with the lag-1, the influence of lag-2 to 5 on current flow
can be neglected. Thus, in this method, only autocorrelation of lag-1 is considered.

In order to test the proposed method for preserving the autocorrelation of lag-1
and lag-2, the mean correlation for both the simulated and observed series is
computed and shown in Table 7.8, which demonstrates that the mean lag-1 cor-
relations calculated based on the generated and observed series are nearly the same.
For lag-2 correlation, the difference between the observed and generated series
becomes large, but is still acceptable.

Hence, a satisfactory reproduction of these statistics and the temporal and spatial
correlations provides an indication of the success of the copula-based method.
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Fig. 7.13 Temporal dependences between consecutive days for gauging stations B, C, D, E and F
in the flood season (from June to September)
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7.5 Conclusion

This chapter introduces a simple and robust method for space-time simulation of
streamflow of both small and large rivers. The copula-based method can be used for
generating monthly and daily streamflow data at multiple sites. Three tributaries of
Colorado River and the upper Yangtze River are selected as case studies. The
conclusions are summarized as follows:

(1) Trivariate copulas are used to describe the temporal and spatial correlation
structure of streamflow. The bivariate and conditional probability distributions
are used to construct multivariate copulas. Comparison between empirical and
theoretical joint probabilities shows no significant differences for the case
studies used in this paper. Therefore, the copulas generally can be used for
multisite stochastic simulation. For simulating streamflow at multiple sites,
trivariate copulas are constructed, although the method can be used for higher
dimensions. Streamflow at sites B, C and so on are generated, based on the

Table 7.6 Lag-0 cross correlations among observed and simulated streamflows for sites A–B, A–
C, A–D, A–E and A–F in the upper Yangtze River

Items A–B A–C A–D A–E A–F Mean

Observed 0.319 0.311 0.262 0.409 0.389 0.338

Simulated 0.315 0.317 0.258 0.403 0.378 0.334

Absolute error 0.004 0.006 0.004 0.006 0.011 0.004

RE (%) 1.25 1.93 1.53 1.47 2.83 1.18

Table 7.7 Results of partial correlation coefficients for the five rivers in the upper Yangtze River
Basin

Rivers lag-2 lag-3 lag-4 lag-5

Jinsha 0.08 0.10 0.11 0.11

Min 0.11 0.13 0.13 0.13

Tuo 0.12 0.14 0.14 0.14

Jialing 0.10 0.11 0.11 0.11

Wu 0.06 0.08 0.08 0.09

Table 7.8 Mean lag-1 and lag-2 correlation calculated based on the simulated and observed series

Lags Types Jinsha Min Tuo Jialing Wu

Lag-1 Generated 0.90 0.69 0.78 0.82 0.81

Observed 0.90 0.69 0.79 0.82 0.81

Lag-2 Generated 0.85 0.57 0.70 0.75 0.73

Observed 0.83 0.53 0.66 0.71 0.68
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streamflow at site A. This avoids errors caused by establishing the complicated
models and reduces the amount of calculation.

(2) The copula-based method is applied for simulating multisite monthly and daily
streamflow. Statistical attributes, such as mean, standard deviation, skewness,
lag-1 correlation and lag-0 cross correlation, are effectively reproduced, which
show that the generated data at both higher and lower time scales capture the
distribution properties of the single site and preserve the spatial correlation of
streamflow at different locations.

(3) The main advantage of the copula-based method is that parameters of the
models can be easily estimated based on the Kendall tau method. This makes it
possible to generate daily streamflow data because 365 trivariate copulas need
to be built for multisite daily flow generation. Furthermore, this method can
preserve linear and non-linear correlation structures and can be used for any
marginal distribution. Compared with other multisite stochastic simulation
methods, the algorithm is simple, which makes it possible for practical use.
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Chapter 8
Uncertainty Analysis of Hydrologic
Forecasts Based on Copulas

8.1 Introduction

Hydrologic forecasting is a crucial non-structural flood mitigation measure and
provides an essential basis for flood warning, flood control and reservoir operation
(Guo et al. 2004; Calvo and Savi 2009; Chen et al. 2014a; Zhang et al. 2015; Fan
et al. 2016; Liu et al. 2017; Wu et al. 2017). Forecasting models that are widely
used at present are typically deterministic, and model outputs are provided to users
in the form of deterministic values (Chen and Yu 2007; Coccia and Todini 2011;
Ma et al. 2013; Bergstrand et al. 2014; Li et al. 2014). However, a hydrological
forecasting model is only a simulation of the real hydrological processes and is
therefore imperfect and not precise (Ravines et al. 2008; Wetterhall et al. 2013).
These models accept hydrological input, meteorological input, etc., and utilize
conceptualized model parameters; and these complex factors cause inevitably
uncertainties in the hydrologic forecasts (Freer et al. 1996; Montanari 2007;
Montanari and Grossi 2008; Renard et al. 2010; Chen et al. 2014b). The principle of
rational decision-making under uncertainty indicates that when a deterministic
forecast turns out to be wrong, the consequences will probably be worse than a
situation where no forecast is available (Krzysztofowicz 1999; Wetterhall et al.
2013; Ramos et al. 2013). A rational decision maker who wants to make optimal
decisions should therefore take forecast uncertainty explicitly into account
(Verkade and Werner 2011; Ramos et al. 2013). Therefore, quantitative assessment
of inherent uncertainty is a critical issue. Hydrologic forecasting services are
trending toward providing users with probabilistic forecasts, in place of traditional
deterministic forecasts.

The transition from a deterministic forecast to a probabilistic forecast is based on
quantification of the uncertainty inherent in the deterministic forecast. The Bayesian
Forecasting System (BFS) proposed by Krzysztofowicz (1999) provides a general
framework to produce probabilistic forecasts via any deterministic hydrological
model. Various probabilistic forecasting systems suited to different purposes have
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been developed within this framework (Reggiani and Weerts 2008; Calvo and Savi
2009; Biondi et al. 2010; Weerts et al. 2011; Sikorska et al. 2012; Pokhrel et al.
2013).

In the BFS, the total uncertainty is decomposed into input uncertainty and
hydrological uncertainty. The hydrological uncertainty processor (HUP) is a
component of the BFS that quantifies the hydrological uncertainty and produces
probabilistic forecast under the hypothesis that there is no input uncertainty
(Krzysztofowicz and Kelly 2000). Through Bayes’ theorem, the HUP combines a
prior distribution, which describes the natural uncertainty about the realization of a
hydrologic process, with a likelihood function which quantifies the uncertainty in
model forecasts, and outputs a posterior distribution, conditional upon the deter-
ministic forecasts. This posterior distribution provides a complete characterization
of uncertainty, including quantiles, prediction intervals and probabilities of
exceedance for specified thresholds which are needed by rational decision makers
and information providers who want to extract forecast products for their
customers.

The HUP can be implemented in many ways, as different mathematical models
for prior distribution and likelihood function can be developed. Krzysztofowicz and
Kelly (2000) introduced a meta-Gaussian HUP, which was developed by con-
verting both original observations and model forecasts into a Gaussian space by
using the Normal Quantile Transform (NQT). This meta-Gaussian HUP has been
widely used by many researchers in the fields of hydrology and meteorology (Chen
and Yu 2007; Biondi et al. 2010; Biondi and De Luca 2013; Chen et al. 2013a).

The prior density and likelihood function are conditional probability distribu-
tions. It is well known that copula function has an outstanding capability to model
joint distributions and gives flexibility in choosing an arbitrary marginal distribution
(e.g. non-Gaussian form), nonlinear and heteroscedastic dependence structure. The
conditional probability distribution can be expressed in the explicit form using
copula function (Favre et al. 2004; Nelsen 2006; Zhang and Singh 2006, 2007a, b,
c; Genest and Favre 2007; Bárdossy and Li 2008; Chen et al. 2010; Zhang et al.
2011, 2012). These advantageous characteristics of the copula function motivate us
to develop the prior distribution and likelihood function models in the original
space directly without a data transformation procedure into Gaussian space. Liu
et al. (2017) proposed a post-processor based on copula function for deterministic
forecast model to produce probabilistic forecasts within the general framework of
the HUP.

Despite the tremendous amount of resources invested in developing more
hydrologic models, no one can convincingly claim that any particular model in
existence today is superior to other models for all type of applications and under all
conditions (Wu et al. 2015; Liu et al. 2016; Ba et al. 2017). Different models are
capable of capturing different aspects of the hydrologic processes. The uncertainty
of each model arises from parameters calibration, the design of the model structure,
and input measurements, which partially brings underlying imprecise influence
(Götzinger and 2008; Li et al. 2011; Hemri et al. 2015). One of the primary
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techniques to reflect different uncertainties in hydrological forecasts is to create an
ensemble of forecast trajectories (Seo et al. 2006; Madadgar et al. 2014).

The Bayesian Model Average (BMA) method introduced by Raftery et al.
(2005) follows a statistical technique to combine the advantages of different
models. Different from other multi-model methods, the BMA method presents a
more realistic description of predictive uncertainty, since the BMA predictive
variance can be decomposed into two components: between-model variability and
within–model variability (Ajami et al. 2007). The BMA method is a statistical
procedure that infers consensus predictions by weighing individual predictions
based on their probabilistic likelihood measures, with the better performing pre-
dictions receiving higher weights than, the worse performing ones. The method has
been explored to improve both the accuracy and reliability of streamflow predic-
tions (Vrugt and Robinson 2007; Liang et al. 2011). Duan et al. (2007) concluded
that the combination of multi-model ensemble strategies using the BMA framework
could quantify statements on prediction uncertainty and significantly improve
verification performances. Zhou et al. (2016) compared the mean prediction of
BMA with its individual parameter transfer method (physical similarity approach)
and demonstrated that the probabilistic predictions of BMA could reduce the
uncertainty with a significant degree. Nevertheless, the standard BMA method
imposes lots of pseudo variation requirements, and this influences precise under-
standing of data variations, which gives rise to further development of this theo-
retical research (Madadgar and Moradkhani 2014).

Klein et al. (2016) used a mixture of marginal density distribution to estimate the
predictive uncertainty of hydrologic multi-model ensembles by using pair-copula
construction. Similar researches show that copula technique is an effective tool for
reflecting the unclear and complex relationships because it can flexibly choose the
arbitrary type of the marginal distributions instead of Gaussian distribution (Carreau
and Bouvier 2016; Khajehei and Moradkhani 2017). According to the promising
results of using copula functions in post-processing of hydrologic forecasts,
Madadgar and Moradkhani (2014) firstly integrated copula functions with BMA to
estimate the posterior distribution and found that Copula-BMA (CBMA) is an
effective post-processor to relax any assumption on the distribution of conditional
probability density function (PDF). The CBMA not only displayed better deter-
ministic skill than BMA but also confirmed the impact of posterior distribution in
calculating the weights of individual models by EM algorithm. Results indicated
that the predictive distributions are more accurate and reliable. It is also shown that
the post-processed forecasts have better correlation with observation after CBMA
application. The CBMA method in the meteorological application does not need to
assume the shape of the posterior distribution and leaves out the data-transformation
procedure and demonstrates that predictive distributions are less bias and more
confident with small uncertainty (Möller et al. 2013). Inspired by the ideas of
Madadgar and Moradkhani (2014), a general framework of the combination of
copula Bayesian processor with BMA (CBP-BMA) is proposed by He et al. (2018).
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8.2 Hydrologic Uncertainty Processor Based on Copula
Function

8.2.1 Hydrologic Uncertainty Processor

Let predict and H be the observed discharge whose realization h is being forecasted.
Let estimator S be the output discharge generated by a corresponding deterministic
forecast model whose realization s constitutes a point estimate of H. Let random
variable H0 represent the observed discharge at the time n = 0 when the forecast is
prepared; then Hn (n = 1, 2, …, N) is the observed discharge at lead time n; and Sn
(n = 1, 2, …, N) is the corresponding deterministic forecast discharge at lead time
n. What the rational decision maker then needs is not a single number sn, but the
distribution function of predictand Hn, conditional on H0 = h0 and Sn = sn. The
purpose of the HUP is to supply such a conditional distribution function through
Bayesian revision (Liu et al. 2017).

The Bayesian procedure for information revision of uncertainty involves two
steps. First, the expected conditional density function of deterministic forecast
discharge Sn given that H0 = h0 is derived via the total probability law:

jnðsnjh0Þ ¼
Zþ1

�1
fnðsnjh0; hnÞ � gðhnjh0Þdhn ð8:1Þ

Second, the posterior density function of predictand Hn conditional on a deter-
ministic forecast Sn = sn and observed discharge at the forecasting time H0 = h0, is
derived via Bayes’ theorem (Krzysztofowicz and Kelly 2000):

/nðhnjh0; snÞ ¼
fnðsnjh0; hnÞ � gnðhnjh0Þ

jnðsnjh0Þ ð8:2Þ

In concept, Bayes’ theorem revises the prior density function gn(hn/h0), which
characterizes the prior uncertainty about Hn, given observed discharge at the
forecasting time H0 = h0 The extent of the revision is determined by the likelihood
function fn(sn/h0, hn), which characterizes the degree to which Sn = sn reduces the
uncertainty about Hn. The result of this revision is the posterior density function
Un(hn/h0, sn), which quantifies the uncertainty about Hn that remains after the
deterministic forecast model generates forecast Sn = sn.

8.2.2 Meta-Gaussian HUP

As we can see from Eq. 8.2, the posterior density depends on the prior density
function and likelihood function. The most widely used technique to describe the
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prior density and likelihood functions is the meta Gaussian model. In this model,
the NQT method (Bogner et al. 2012) is applied to convert both actual flow Hn and
predicted flow Sn into the Gaussian space. Then the transformed {hn/h0} and {sn/h0,
hn} are assumed to be linear and normally distributed. Subsequently, linear
regression method is then employed to determine the posterior density of Hn in the
transformed Gaussian space, from which the posterior density function of Hn in the
original space can be found. For the sake of the following comparison, the detailed
procedure is presented as follows (Krzysztofowicz and Kelly 2000).

8.2.2.1 Normal Quantile Transform

Specifying and determining marginal distributions of the actual flow H0, Hn and
predicted flow {Sn: n = 1, …, N} is the first step. The actual flows {Hn: n = 0, 1,
…, N} are considered as random variables. Given only such a record, there is
usually no basis for assigning a probability distribution to flow Hn that differs from
the distribution assigned to flow H0, for any n = 1, 2, …, N within a few days. In
other words, there is no a statistical difference between these 1 + N flow series
(Koutsoyiannis and Montanari 2015). Therefore, we hold the opinion that the
variables Hn follow the same marginal cumulative distribution functions
(CDF) with H0, and thus only the CDF of H0 needed to be fitted. The predicted
flows {Sn: n = 1, …, N} are considered as different random variables and different
CDFs needed to be fitted for variable Sn.

Let C and Kn be the CDF of H0 and Sn with corresponding densities c and �kn,
respectively. The NQT of a variate is defined as a composition of the inverse of the
standard normal distribution Q, and the CDF of the variate is assumed to be strictly
increasing. The transformed variates are

Wn ¼ Q�1½CðHnÞ�; n ¼ 0; 1; . . .;N ð8:3Þ

Xn ¼ Q�1½KnðSnÞ�; n ¼ 0; 1; . . .;N ð8:4Þ

where Wn and Xn are the normal quantiles of Hn and Sn, respectively. Q
−1 is the

inverse function of Q.

8.2.2.2 Modeling in the Transformed Space

(1) Prior density

The model for the prior density rests on the assumption that the actual river
discharge process in the transformed space is governed by the normal-linear
equation
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Wn ¼ cWn�1 þN ð8:5Þ

where c is a parameter and N is a variate stochastically independent of Wn−1 and
normally distributed with mean zero and variance 1 − c2. Consequently, the con-
ditional mean and variance are

EðWnjWn�1 ¼ wn�1Þ ¼ cwn�1 ð8:6Þ

VarðWnjWn�1 ¼ wn�1Þ ¼ 1� c2 ð8:7Þ

The prior density for lead time n takes the form

gQnðwnjw0Þ ¼ 1

ð1� c2nÞ1=2
� q wn � cnw0

ð1� c2nÞ1=2
" #

ð8:8Þ

where q denotes the standard normal density and subscript Qn denotes a density in
the space of transformed variants.

(2) Likelihood function

The model for the likelihood function rests on the assumption that the stochastic
dependence between the transformed variate is governed by the normal-linear
equation

Xn ¼ anWn þ dnW0 þ bnHn ð8:9Þ

where an; bn and dn are parameters andHn is a stochastically independent variate of
ðWn;W0Þ and normally distributed with mean zero and variance d2n. Consequently,
the conditional mean and variance are

EðXnjWn ¼ wn;W0 ¼ w0Þ ¼ anwn þ dnw0 þ bn ð8:10Þ

VarðXnjWn ¼ wn;W0 ¼ w0Þ ¼ d2n ð8:11Þ

The conditional density function is

fQnðxnjwn;w0Þ ¼ 1
dn

� q xn � anwn � dnw0 � bn
dn

� �
ð8:12Þ

(3) Posterior density

The posterior density derived from the prior density and likelihood function takes
the form as follows
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uQn
ðwnjxn;w0Þ ¼ 1

Tn
q

wn � Anxn � Dnw0 � Bn

Tn

� �
ð8:13Þ

In which An ¼ ant2n
a2nt

2
n þ d2n

;Bn ¼ �anbnt2n
a2nt

2
n þ d2n

, Dn ¼ cnd
2
n � andnt2n
a2nt

2
n þ d2n

, T2
n ¼ t2nd

2
n

a2nt
2
n þ d2n

,

and t2n ¼ 1� c2n.

8.2.2.3 Posterior Density and Distribution in the Original Space

With all densities in the transformed space belonging to the Gaussian family, all
densities in the original space belong to the meta-Gaussian family. The
meta-Gaussian posterior density of actual river discharge conditional on model
output discharge S0 = s0 and observed river discharge H0 = h0 takes the form

/nðhnjsn; h0Þ ¼
cðhnÞ

Tn � q Q�1½CðhnÞ�f g

� q Q�1½CðhnÞ� � An � Q�1½KnðsnÞ� � Dn � Q�1½Cðh0Þ� � Bn

Tn

� �
ð8:14Þ

The corresponding meta-Gaussian posterior distribution takes the form

Unðhnjsn; h0Þ ¼ Q
Q�1½CðhnÞ� � An � Q�1½KnðsnÞ� � Dn � Q�1½Cðh0Þ� � Bn

Tn

� �
ð8:15Þ

8.2.3 Copula-Based HUP

Copula function is an effective tool used to develop prior distribution and likelihood
function models, in which the predictand and the deterministic forecasts are allowed
to have distribution functions of any form, along with nonlinear and heteroscedastic
dependence structure. Therefore, it can be implemented in the original space
directly without a data transformation procedure into Gaussian space. The copula
function and theory have been introduced in detail in Chap. 2.

8.2.3.1 Prior Density

The prior CDF of Hn given H0 = h0 can be expressed as
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Gnðhnjh0Þ ¼ PðHn � hnjH0 ¼ h0Þ ð8:16Þ

where Gn(hn/h0) is the conditional CDF, and P is the non-exceedance probability.
The prior density function gn(hn/h0) is the corresponding probability density

function (PDF) of gn(hn/h0) and can be defined as

gnðhnjh0Þ ¼ dGnðhnjh0Þ
dhn

ð8:17Þ

Let H0 and Hn be random variables with marginal CDFs, U1 = FH(H0) and
U2 = FH(Hn). Then, U1 and U2 are uniformly distributed random variables; and u1
denotes a specific value of U1, and u2 denotes a specific value of U2.

Using the copula function, the joint CDF is expressed by
Gnðhn; h0Þ ¼ CðFHðh0Þ;FHðhnÞÞ ¼ Cðu1; u2Þ

The conditional CDF Gn(hn/h0) and PDF gn(hn/h0) can be rewritten as follows
(Zhang and Singh 2006)

Gnðhnjh0Þ ¼ PðU2 � u2jU1 ¼ u1Þ ¼ @Cðu1; u2Þ
@u1

ð8:18Þ

gnðhnjh0Þ ¼ @2Cðu1; u2Þ
@u1@u2

� du2
@hn

¼ cðu1; u2Þ � fHðhnÞ ð8:19Þ

where cðu1; u2Þ is the density function of Cðu1; u2Þ, and
cðu1; u2Þ ¼ @2Cðu1; u2Þ=@u1@u2; fHðhnÞ is the PDF of Hn. Equation 8.19 is the
expression of the prior PDF.

8.2.3.2 Likelihood Function

It is considered that Sn is a random variable with marginal CDF u3 ¼ FSnðsnÞ and
PDF fSnðsnÞ. The conditional CDF of Sn given H0 = h0 and Hn = hn can be
expressed as

Fnðsnjh0; hnÞ ¼ PðSn � snjH0 ¼ h0;Hn ¼ hnÞ ð8:20Þ

where Fnðsnjh0; hnÞ is the conditional CDF.
The corresponding PDF of Fnðsnjh0; hnÞ is defined as

fnðsnjh0; hnÞ ¼ dFnðsnjh0; hnÞ
dsn

ð8:21Þ

Using the copula function, the joint CDFs of H0, Hn and Sn, denoted as
Fn(h0, hn, sn) can be expressed as Fk h0; hn; snð Þ ¼ CðFH0ðh0Þ;FHnðhnÞ;FSnðsnÞÞ ¼
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Cðu1; u2; u3Þ. Thus, the conditional CDF Fn snjh0; hnð Þ and PDF fn snjh0; hnð Þ are
rewritten as follows, (Zhang and Singh 2007c)

Fn snjh0; hnð Þ ¼ PðU3 � u3jU1 ¼ u1;U2 ¼ u2Þ ¼ @2Cðu1; u2; u3Þ=@u1@u2
cðu1; u2Þ ð8:22Þ

fn snjh0; hnð Þ ¼ 1
cðu1; u2Þ �

@3Cðu1; u2; u3Þ
@u1@u2@u3

� du3
dsn

¼ cðu1; u2; u3Þ
cðu1; u2Þ � fSnðsnÞ ð8:23Þ

where cðu1; u2; u3Þ ¼ @3Cðu1; u2; u3Þ=@u1@u2@u3 is the density function of C(u1,
u2, u3). From another point of view, given H0 = h0 and S0 = s0, the likelihood
function of Hn can be calculated by Eq. 8.23.

8.2.3.3 Posterior Density

Substitute Eqs. 8.19 and 8.23 to Eqs. 8.1 and 8.2, then the posterior density
function of Hn can be rewritten as follows

/nðhnjh0; snÞ ¼
cðu1; u2; u3ÞR 1

0 cðu1; u2; u3Þdu2
� fHðhnÞ ð8:24Þ

For fixed realizations H0 ¼ h0 and Sn ¼ sn; u1 and u3 are constants, while u2
varies from 0 to 1. Since the denominator

R 1
0 cðu1; u2; u3Þdu2 cannot be obtained

directly by an analytic method, the Monte Carlo sampling technique (Yu et al.
2014; Xiong et al. 2014) is applied by following steps: (1) Generate M random
numbers u2 from uniform distribution U(0, 1); (2) Compute the value of C(u1, u2,
u3); (3) The mean value of the M calculated C(u1, u2, u3) equals to the definite

integral
R 1
0 cðu1; u2; u3Þdu2 approximately (Robert and Casella 2013; Kroese et al.

2013). Subsequently, the posterior density function /nðhnjh0; snÞ can also be
estimated.

8.2.3.4 Candidate Marginal Distributions and Trivariate Copulas

The main purpose of this study aims to extrapolate the extreme events far beyond
the observations. The probability distribution of daily flows refers to the flow
duration curve, which gives a summary of flow variability at a site and is interpreted
as a relationship between any discharge value and the percentage of time that this
discharge is equaled or exceeded during a given period (Vogel and Fennessey 1994;
Castellarin et al. 2004; Shao et al. 2009). Flow-duration curve has been widely used
by engineers and hydrologists around the world in numerous applications, such as
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hydropower generation, inflow forecasting, and designing of irrigation systems
(Vogel and Fennessey 1995; Yokoo and Sivapalan 2011; Gottschalk et al. 2013).

Even though flow-duration curve can be defined and constructed for different
time scales, such as daily, weekly or monthly stream flows, our study will focus on
a daily flow-duration curve. If the daily streamflow is assumed to be a random
variable, the flow-duration curve may also be viewed as the complement of the
cumulative distribution function used in hydrologic frequency analysis when
identifying the percentage of time with probability (Castellarin et al. 2004). As a
consequence, the flow-duration curve is also a very practical tool used to describe
hydrological regimes and represents the relationship between magnitude and fre-
quency of flow (Vogel and Fennessey 1995; Liucci et al. 2014; Xiong et al. 2015).

Six commonly used distributions in hydrology, namely Normal, GMA, Gumbel,
P-III, Log-Normal and Log-Weibull, are selected as candidate models for H0 and Sn
(n = 1, …, N). These univariate probability distributions are summarized in
Table 1.1 of Chap. 1. L-moment method is used to estimate the distribution
parameters for given data series (Hosking 1990). The Kolmogorov-Smirnov
statistic D is used to measure the goodness of fit between the hypothesized distri-
bution and the empirical distribution (Tsai et al. 2001; Arya et al. 2010). In this
study, the 95% confidence level is selected to reject or accept a fitted distribution.
The probability distribution which provides the minimum D value is chosen as the
best fitting distribution.

To estimate of the posterior density functions expressed in Eq. 8.24,
three-dimension joint distributions of H0, Hn and Sn are needed to be constructed.
The symmetric copulas are not considered because the dependence among the three
variables pairs (H0, Hn), (H0, Sn) and (Hn, Sn) are not the same, which will be tested
against data for the case study. Hence, we use three widely used asymmetric
trivariate Archimedean copulas, namely Gumbel-Hougaard, Frank and Clayton as
candidates. These three trivariate Archimedean copulas are described in Table 2.2
of Chap. 2. Dependence parameters of the trivariate copula functions are estimated
using the maximum pseudo-likelihood method (Zhang and Singh 2007b, c; Chen
et al. 2010). The RMSE is used to measure the goodness of fit of the copula
distribution (Zhang and Singh 2007a). The copula which has the smallest RMSE
value is preferred.

8.2.4 Evaluation Criteria

8.2.4.1 Performances of Deterministic Forecasts

Two widely applied criteria, namely Nash-Sutcliffe efficiency (NSE) and Relative
Error (RE) are adopted to evaluate the performance of the deterministic forecast
model (Xiong and Guo 1999; Liu et al. 2016).
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(1) Nash-Sutcliffe efficiency

The first criterion is the Nash-Sutcliffe efficiency (NSE) coefficient (Nash and
Sutcliffe 1970) which is defined by

NSE ¼ 1�
PT

t¼1 ðht � stÞ2PT
t¼1 ðht � �hÞ2

" #
� 100% ð8:25Þ

where t is the time step, T is the total number of time steps; ht and st are the
simulated and observed discharges at time t, and �h is the mean value of the observed
discharge. Nash-Sutcliffe efficiency can range from −∞ to 1. An efficiency of 1
(NSE = 1) corresponds to a perfect match of simulated discharge to the observed
data. An efficiency of 0 (NSE = 0) indicates that the model predictions are as
accurate as the mean of the observed data, whereas an efficiency less than zero
(NSE < 0) occurs when the observed mean is a better predictor than the model.
Essentially, the closer the model efficiency is to 1, the more accurate the model is.

(2) Relative error

The second criterion used is the relative error (RE) of the total runoff amount fit
between the observed and simulated discharge series, defined as (Xiong and Guo
1999)

RE ¼ 1�
PT

t¼1 ðht � stÞPT
t¼1 ht

" #
� 100% ð8:26Þ

RE represents a systematic error of water balance simulation. A value of RE
closes to zero indicates a good agreement between observed and simulated runoff
volume. In this study, we rank NSE as the primary criterion, while RE is an
auxiliary criterion. Only when simulated discharge series yield the same (higher)
NSE value, the one with the smaller RE value is preferred. Otherwise, the simu-
lation with smaller RE value does not reveal any superiority (Liu et al. 2016). For
instance, the model with all simulated discharges equal to the mean of observed
values can easily provide RE = 0. Unfortunately, in this case, the NSE = 0, which
clearly means an undesired simulation.

8.2.4.2 Performances of Probabilistic Forecasts

The probabilistic forecast technique is expected to provide (a) accurate forecast
probabilities, further on named reliability; and (b) narrow forecast intervals, further
on the named resolution. Several methods, e.g., predictive quantile-quantile
(QQ) plot, a-index and p-index have been proposed in the literatures to evaluate
probabilistic forecasts (see e.g. Gneiting et al. 2007; Laio and Tamea 2007; Thyer
et al. 2009; Engeland et al. 2010; Renard et al. 2010; Madadgar et al. 2014; Smith
et al. 2015) and are used in this study.
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(1) Predictive QQ plot

The predictive quantile-quantile (QQ) plot provides an overall assessment of
whether the total predictive uncertainty is consistent with the observations. This
requires a diagnostic approach that compares a time-varying distribution (the pre-
dictive distribution at all times t) to a time series of observations (Thyer et al. 2009;
Evin et al. 2014). The predictive QQ plot provides a simple, intuitive and infor-
mative summary of the performance of probabilistic prediction frameworks
(Gneiting et al. 2007; Laio and Tamea 2007).

The predictive QQ plot is constructed as follows: Let Ft be the CDF of the
predictive distribution of runoff at time t, and ht the corresponding observed runoff.
If the hypotheses in the calibration framework are consistent with the data, the
observed value ht should be consistent with the distribution Ft. Hence, under the
assumption that the observation ht is a realization of the predictive distribution, the
p-value Ft(ht) is a realization of a uniform distribution on [0,1]. The predictive QQ
plot compares the empirical CDF of the sample of p values Ft(ht) (t = 1,…, T) with
the CDF of a uniform distribution to assess whether the hypotheses are consistent
with the observations.

As illustrated in Fig. 8.1, the predictive QQ plot can be interpreted as follows
(Thyer et al. 2009): (1) if all points fall on the 1:1 line, the predicted distribution
agrees perfectly with the observations; (2) If the observed p values cluster around
the mid-range (i.e., a low slope around theoretical quantile 0.4–0.6), the predictive
uncertainty is overestimated; (3) If the observed p values cluster around the tails
(i.e., a high slope around theoretical quantile 0.4–0.6), the predictive uncertainty is
underestimated; (4) If the observed p values at the theoretical median are higher/

Fig. 8.1 Interpretation of the predictive QQ plot
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lower than the theoretical quantiles, the modeled predictions systematically under/
over predict the observed data.

Other metrics are the supportive quantitative scores derived from the predictive
QQ plot (Laio and Tamea 2007; Thyer et al. 2009; Madadgar et al. 2014). The
metrics a-index assesses the reliability of forecasts, and p-index indicates the res-
olution (precision, sharpness) of the predictive distribution (PD).

(2) Reliability

Reliability means that the forecast should be well calibrated. This can be checked
graphically: deviations from the bisector (the 1:1 line) denote interpreted defi-
ciencies (see Fig. 8.1). To simplify the comparison of QQ plots, it is summarized
using an index that quantifies the reliability of the PD (Renard et al. 2010;
Madadgar et al. 2014):

a� index ¼ 1� 2
T

XT
t¼1

qemðptÞ � qthðptÞ
�� ��� � ð8:27Þ

where pt is the observed p-value at time t; qemðhtÞ is the empirical quantile of
pt; qtht ðhtÞ is the theoretical quantile of pt obtained from the uniform distribution U
[0, 1]; T is the number of pt values.

The a-index measures the closeness of quantile plot of the observations to the
corresponding uniform quantiles and reflects the overall reliability of the PD.
According to Thyer et al. (2009), as the area between the empirical CDF of the
observed p-values and the CDF of the uniform distribution in the predictive QQ
plot becomes larger, the value of a-index decreases towards zero. It varies between
0 (worst reliability) and 1 (perfect reliability).

(3) Resolution

“Resolution” denotes the sharpness (effectively, the “average precision”) of the PD.
Note that two inferences can both yield reliable PDs, but with different resolutions.
Sharpness refers to the spread of the forecast PDFs and is a property of the pre-
dictions only. The more concentrated the forecast PDF, the sharper the forecast, and
the sharper the better, subject to calibration (Gneiting et al. 2005). In this paper, the
resolution is quantified by p-index defined as the average relative precision of the
predictions (Renard et al. 2010; Madadgar et al. 2014):

p� index ¼ 1
T

XT
t¼1

E½Ht�
Sdev½Ht� ð8:28Þ

where E[Ht] and Sdev[Ht] are the expected value and standard deviation of Ht

obtained from the predictive distribution at time t.
Greater value of p-index indicates greater resolution (lower uncertainty) of

forecasts. However, comparison of sharpness may not be a meaningful approach
when the employed methods do not primarily perform equally in the a-index
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metric. Assuming that precision has lower priority than reliability, given similar
forecast reliability, the method with greater resolution (lower uncertainty) is pre-
ferred; otherwise, the method with higher resolution does not reveal any superiority.
Most of literature rank reliability as the primary criterion, while sharpness is sec-
ondary to reliability (Madadgar et al. 2014).

(4) Continuous rank probability score

The goal of probabilistic forecasting is to maximize the sharpness of the forecast
PDFs subject to calibration. However, the trade-off between reliability and sharp-
ness have been discussed in previous researches (Xiong et al. 2009; Li et al. 2010a;
Kasiviswanathan et al. 2013), which show that these two desirable objectives could
not be achieved simultaneously. It is not adequate to judge the performances of
probabilistic forecasts only by reliability or sharpness. The continuous rank prob-
ability score (CRPS) is a standard measure that combines reliability and sharpness
(Hersbach 2000; Gneiting et al. 2005) and is used for selecting the preferred model.

The CRPS measures the average distance between the predicted and the
observed CDFs over the entire period. It is the integral of the Brier scores at all
possible threshold values r for the continuous predictand (Hersbach 2000).
Specifically, if F is the predictive CDF and ht is the verifying observation, the CRPS
is defined as (Hersbach 2000; Gneiting et al. 2007; Pappenberger et al. 2015)

CRPS ¼ 1
T

XT
t¼1

Zþ1

�1
FtðrÞ � Hsðr � htÞ½ �2dr ð8:29Þ

where Hs(r − ht) denotes the Heaviside step function and takes the value 0 when
r < ht and the value one otherwise.

For a deterministic forecast system, the CRPS reduces to the mean absolute error
(MAE). Thus, the CRPS is sometimes interpreted as a generalized version of the
MAE (Zhao et al. 2015). This is an advantage of CRPS and consequently allows the
comparison of deterministic and probabilistic forecasts (Gneiting et al. 2007;
Pappenberger et al. 2015). The smaller the CRPS value is, the better the prediction
performance. Its minimal value of zero is only achieved in the case of a perfect
deterministic forecast.

8.2.5 Case Studies

8.2.5.1 Study Area and Data

Three Gorges Reservoir (TGR) is a vitally important and back-bone project in the
development and harnessing of the Yangtze River in China. The annual average
discharge and runoff volume at the dam site are 14,300 m3/s and 4510 � 108 m3,
respectively. The total storage capacity of the TGR is 393 � 108 m3, of which
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221.5 � 108 m3 is flood control storage. The reservoir has a surface area of about
1080 km2, an average width of about 1100 m, a mean depth of about 70 m and a
maximum depth near the dam of about 170 m. With all the profiles being narrow
and deep, the TGR retains the long narrow belt shape of the original river section
and is a typical river channel-type reservoir.

As shown in Fig. 8.2, the intervening basin of TGR has a catchment area of
55,907 km2, about 5.6% of the upstream Yangtze River basin. There are 40 rainfall
gauged stations in the intervening basin and two hydrological stations (Cuntan and
Wulong), which control the upstream inflow and tributary inflow, respectively. The
data set for TGR inflow forecasting includes the daily runoff data of the Cuntan,
Wulong and Yichang hydrological stations, arithmetic mean of observed rainfall
data in the intervening basin during the flood period (June 1–September 30) from
2003 to 2009. The period 2003–2007 is used for deterministic forecast model
calibration and 2008–2009 is used for validation (Li et al. 2010b; Chen et al. 2015).

8.2.5.2 Deterministic Inflow Forecasts of the TGR

The inflow of TGR consists of three components, i.e., the main upstream inflow, the
tributary inflow from the Wu River, and the lateral flow from the TGR intervening
basin as shown in Fig. 8.2. A multiple-input single-output linear systematic model
is chosen for the inflow forecasting of the TGR (Liang et al. 1992). The total inflow
to the TGR can be expressed by the following equation

Fig. 8.2 Sketch map of the TGR’s intervening basin
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bQt ¼ A
Xm1

j¼1

Rð1Þ
t�jþ 1h

ð1Þ
j þ

Xm2

j¼1

Rð2Þ
t�jþ 1h

ð2Þ
j ð8:30Þ

where Rð1Þ
j is the lateral flow from the TGR intervening basin which is calculated

via the Xinanjiang model (Zhao 1992). Rð2Þ
j is the upstream inflow (inflow at

Wulong is added to the inflow at Cuntan). A is the area of the TGR intervening

basin, m1;m2 are the memory length of the system corresponding to Rð1Þ
j and

Rð2Þ
j ; hð1Þj and hð2Þj are the jth ordinates of the pulse response functions relating inputs

Rð1Þ
j and Rð2Þ

j , which are calculated by the Nash model as follows

hð1Þj ¼ 1
T

ZjT
ðj�1ÞT

SiðtÞ � Siðt � TÞ½ �=T dt ði ¼ 1; 2Þ ð8:31Þ

SiðtÞ ¼
Z t

0

1
NKiCðNKiÞ e

�ðs=NKiÞ snNKið ÞNi�1ds ði ¼ 1; 2Þ ð8:32Þ

where Si(t) is the step response function of the ith input, Ni and NKi are the
parameters, and T is the time-step. Cð�Þ is the gamma function.

The Xinanjiang model was developed in the middle 1970s for forecasting flows
in the Xinanjiang reservoir, China. The model has been widely applied for flood
forecasting in a large number of basins all over the world, especially in China. Until
now, this model is the most popular rainfall-runoff hydrologic model in China for
streamflow forecasting in humid and semi-humid areas. Its main feature is the
concept of runoff formation on the repletion of storage, which denotes that runoff is
not produced until the soil moisture content of the aeration zone reaches field
capacity (Zhao 1992; Xu et al. 2013). The Xinanjiang model includes two com-
ponents, namely, runoff generation and runoff routing. It has 17 parameters that
include seven runoff generating component parameters and 10 runoff routing
parameters. These parameters are abstract conceptual representations of
non-measurable watershed characteristics that have to be calibrated by an opti-
mization method. Figure 8.3 shows the flowchart of the Xinanjiang model for three
water sources. All symbols inside the blocks are variables including inputs, outputs,
state variables and internal variables while those outside the block are parameters
(Zhao 1992; Cheng et al. 2006; Li et al. 2011; Lin et al. 2014; Si et al. 2015).

The deterministic forecast model is calibrated respectively by taking NSE and
RE as objective functions via automatic calibration methods with multiple objec-
tives (Madsen 2000). Table 8.1 presents the calibrated parameters obtained for the
Xinanjiang model of the TGR intervening basin and multiple-input single-output
linear systematic model for TGR. The simulation results for the NSE and RE in the
calibration period are 97.72 and −1.04%, respectively. Meanwhile, in the
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verification period, the NSE and RE are 95.84 and −0.21%, respectively. These
results show that the deterministic forecast model is proved to be quite efficient in
simulating the inflow series for the TGR. The deterministic forecasts obtained from
the well-calibrated deterministic model are subsequently applied to produce the
probabilistic forecasts through the meta-Gaussian HUP and copula-based HUP.

8.2.5.3 Determination of Marginal Distributions

In this study, future rainfalls are treated as the case of perfect foreknowledge, rather
than using the real forecast rainfalls to obtain simulated flows in the future, when
the established deterministic forecast model is operated in the real-time forecasting
mode. This is only for the illustration purpose if forecast rainfalls are available in
reality and these would be used. The forecast lead times are 24 h (n = 1), 48 h
(n = 2), and 72 h (n = 3). Especially, for each forecasting time in the record, the
recorded rainfall data of 24-, 48- and 72- later followed by this forecasting time are
treated as the “deterministic rainfall forecasts” (i.e., assuming perfectly known
rainfalls in the future). Then these perfect forecasts of the rainfalls are input to the
well-calibrated deterministic forecast model, which in turn produced model inflows
(s1, s2, s3). They are attached to actual inflow (h0, h1, h2, h3) to obtain one joint
realization of the model-actual inflow process. The dataset from 2003 to 2009 are
used to calibrate and compare the meta-Gaussian HUP and copula-based HUP.

The sample series of H0 is taken from June 1 to Sept. 27 every year, S1 from
June 2 to Sept. 28, S2 from June 3 to Sept. 29, and S3 from June 4 to Sept. 30, thus
all these four variables will have a data length of 833. The parameters of six
candidate distributions are estimated by the L-moment method, and the K-S tests
are used to verify the null hypothesis. The null hypothesis could not be rejected at
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Fig. 8.3 The flow chart of Xinanjiang model for three water sources
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the 95% confidence level (critical value is 0.0471) for all six candidate distributions
except Normal distribution. For the four hydrological variables, Gumbel distribu-
tion provides the minimum D value and is chosen as the best fitting distribution,
respectively. Figure 8.4 shows the empirical CDF values obtained from the
Gringorten plotting-position formula (Zhang and Singh 2006) and theoretical CDF
values calculated by the Gumbel distributions. It can be seen that the theoretical
values fit the empirical values very well. For comparison purposes, the
copula-based HUP used the same marginal distributions as the meta-Gaussian HUP.

8.2.5.4 Calibration of Meta-Gaussian HUP

For the given climatic record of actual flows, the joint sample {(h0, h1)} is formed
of realizations on two consecutive days. Each joint realization (h0, h1) is processed
through the empirical NQT to obtain the transformed joint sample {(w0, w1)} and
this joint sample is used to estimate the Pearson’s correlation coefficient c. The
advantage of using the empirical distributions in the NQT (instead of the parametric

Table 8.1 Estimated parameters of Xinanjiang model in the TGR intervene basin

Parameter Physical meaning Estimated
value

WM Mean tension water capacity 149.80

UM Areal mean water capacity of the upper layer 65.23

LM Areal mean water capacity of the lower layer 38.64

K Ratio of potential evapotranspiration to pan evaporation 0.433

B Parameter in the distribution of tension water capacity 1.471

SM Areal mean free water storage capacity 25.09

EX Parameter in the distribution of free water storage capacity 0.984

KI Coefficient relating RI 0.151

KG Coefficient relating RG 0.12

IM Impervious area of the basin 0.184

C Evapotranspiration coefficient from deep layer 0.287

CI Interflow reservoir constant 0.832

CG Groundwater reservoir constant 0.904

m1 Memory length of TGR intervening basin 10

N1 Number of cascade linear reservoirs for TGR intervening basin 2.967

NK1 Scale parameter of cascade linear reservoirs for TGR
intervening basin

6.991

m2 Memory length of upstream inflow 14

N2 Number of cascade linear reservoirs for upstream inflow 1.241

NK2 Scale parameter of cascade linear reservoirs for upstream
inflow

1.911

Note The unit of WM, UM, LM and SM is mm, the rest of parameters are dimensionless
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distribution) is that the estimate of c remains unaffected by the choice and the
goodness of fit of the parametric model. The estimated result of Pearson’s corre-
lation coefficient is 0.951.

The procedure for validating the meta-Gaussian dependence structure for the
likelihood function parallels the procedure described in the prior density section
above. The NQT performs adequately, as the empirical structure of dependence
between Xn, Wn and W0, appears to be linear and homoscedastic. The
meta-Gaussian model for the likelihood function captures the nonlinearity and
heteroscedasticity of the dependence structure between Sn, Hn and H0.

8.2.5.5 Calibration of Copula-Based HUP

The rank-based correlation (Kendall’s coefficient) matrix of variables, H0 Hn and Sn
are shown in Table 8.2. It is demonstrated that the dependence among the three
variables pairs (H0, Hn), (H0, Sn) and (Hn, Sn) are not the same. Furthermore, the
highest correlation coefficient is exhibited in the variables pair (Hn, Sn). This result
indicates that rather than symmetric, the asymmetric trivariate copula functions may
be more appropriate to be used to three-dimension joint distributions of H0, Hn and
Sn. When constructing the three-dimension joint distributions using the asymmetric
copula functions, the structures (Hn, Sn)H0 are applied. Specifically, copula was
firstly built for (Hn, Sn), and then for H0 and C(FHn(hn, Fsn(sn))).

The three-dimension joint distributions of H0, Hn and Sn (n = 1, 2, 3) are con-
structed using the three candidate trivariate copula functions. Dependence
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Fig. 8.4 Empirical and theoretical values fitted by Gumbel distributions
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parameters of the trivariate copula functions are estimated using the maximum
pseudo-likelihood method, and the results are listed in Table 8.3. It is found that
Frank copula performs best with the smallest RMSE values for the three joint
distributions. Empirical CDFs obtained from the Gringorten plotting-position for-
mula and theoretical CDFs calculated from Frank copula for three joint distributions
are plotted in Fig. 8.5. An overall satisfactory agreement between the empirical and
theoretical CDF is shown. Hence, the asymmetric trivariate Frank copula functions
have good performances in modeling the joint distributions of H0, Hn and Sn.

8.2.5.6 Comparison of the Meta-Gaussian HUP
and Copula-Based HUP

(1) Posterior median forecasts

For 24-, 48- and 72 h lead times, the model efficiency NSE and relative error RE
calculated by both the deterministic forecast model and posterior median fore-
casting associated with the meta-Gaussian HUP and copula-based HUP are listed in
Table 8.4. It is shown that both the results of the meta-Gaussian HUP and
copula-based HUP are slightly better than those of the deterministic forecast model,

Table 8.2 Ranked based correlation matrix of the variables

Lead times (h) Variables s

24 H0, H1 0.823

H0, S1 0.824

H1, S1 0.929

48 H0, H2 0.694

H0, S2 0.711

H2, S2 0.883

72 H0, H3 0.600

H0, S3 0.658

H3, S3 0.828

Table 8.3 Estimated parameters of the three candidate copulas

Variables Gumbel-Hougaard Frank Clayton

[h1, h2] RMSE [h1, h2] RMSE [h1, h2] RMSE

H0, H1, S1 [9.08,
10.65]

0.0116 [25.44,
35.23]

0.0103 [15.16,
20.78]

0.0150

H0, H2, S2 [4.25, 7.58] 0.0141 [13.45,
20.38]

0.0112 [6.49, 14.33] 0.0186

H0, H3, S3 [2.98, 6.57] 0.0144 [9.58, 16.21] 0.0117 [4.58, 9.34] 0.0188
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and the copula-based HUP is comparable to the meta-Gaussian HUP. Compared
with deterministic forecasts, the NSE and the RE of the copula-based HUP for 24-,
48- and 72 h lead times forecasts are improved by 1.24, 1.26 and 1.26% and
reduced by 0.17, 0.57, and 1.72%, respectively. It is also noted that the accuracy of
posterior median forecasts of the both HUPs decreases as the lead time increases.
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Fig. 8.5 Plots of empirical
and theoretical values
estimated by Frank copulas
for three joint CDFs. Note
Rank represents number of
ordered pair, ranked in the
ascending order in terms of
theoretical joint CDF,
respectively
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(2) Probabilistic forecasts

The predictive QQ plot, a-index, p-index and CRPS are adopted to evaluate the
probabilistic forecasts. Figure 8.6 presents the predictive QQ plots regarding the
meta-Gaussian HUP and copula-based HUP for 24-, 48- and 72 h lead times. Using
Fig. 8.1 as a guide to assess the results, it is clear that the overall performances of all
predictive QQ plots are acceptable. Both meta-Gaussian HUP and copula-based HUP
systematically under-predict the inflows, since the observed p values at the theoretical
median are a bit higher than the theoretical quantiles. In addition, it also shows that the
observed p values cluster around the tails (i.e., a high slope around theoretical quantile
0.4–0.6). This finding means that the predictive uncertainty is somewhat underesti-
mated for bothHUPs. The overall behaviors ofmeta-Gaussian HUP and copula-based
HUP are found to be similar. The QQ plot for copula-based HUP is slightly closer to
the 1:1 line than meta-Gaussian HUP. That is to say, the copula-based HUP performs
marginally better regarding reliability. Nonetheless, these underestimations for both
meta-Gaussian and copula-basedHUPs are in such zoneswhere p values are relatively
higher, indicating such differences may not be statistically significant.

The results of a-index, p-index and CRPS are summarized in Table 8.5. For both
meta-Gaussian HUP and copula-based HUP, it is clearly shown that the a-index
value increases (higher reliability) when the lead time increases. However, it should
be noted that this is at the expense of decreasing p-index value (lower resolution).
Besides, the copula-based HUP has slightly larger a-index values while smaller p-
index values compared with the meta-Gaussian HUP. Regarding CRPS value, both
HUPs outperform the deterministic forecasts which demonstrate the effectiveness of
probabilistic forecasts. Comparison results also indicate that the copula-based HUP
is marginally better than the meta-Gaussian HUP. The CRPS value of the
copula-based HUP for 24-, 48- and 72 h lead times is improved (decreased) by
16.6, 21.2, and 23.3%, respectively.

Although that such marginally better performance does not result for each year,
for illustration purposes, the observed and median discharges, and 90% inflow
prediction intervals estimated by meta-Gaussian HUP and copula-based HUP in
2004 are presented in Figs. 8.7 and 8.8, respectively. It can be seen that most
observed inflows are contained within the 90% prediction intervals. This demon-
strates that these 90% prediction intervals can effectively capture the forecast
uncertainty and provide more information for decision-making in flood control and
reservoir operation. As lead time increases, the 90% prediction intervals become
wider (i.e., greater uncertainty).

Table 8.4 Comparison of performances evaluation criteria for deterministic forecasts

Lead times (h) Deterministic model Meta-Gaussian HUP Copula-based HUP

NSE (%) RE (%) NSE (%) RE (%) NSE (%) RE (%)

24 97.55 −0.34 97.65 −0.31 98.79 −0.17

48 94.10 −0.85 94.54 −0.68 95.36 −0.28

72 88.52 −2.51 89.14 −1.14 89.78 −0.79
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Fig. 8.6 The predictive QQ
plots of meta-Gaussian HUP
and copula-based HUP
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8.3 Uncertainty Analysis of Hydrological Multi-model
Ensembles Based on CBP-BMA Method

Inspired by the ideas of Madadgar and Moradkhani (2014), a general framework of
the combination of copula Bayesian processor with BMA (CBP-BMA) is proposed
by He et al. (2018), where the Bayesian theory is applied in the transformation of
the posterior distribution. The flowchart of different probability forecast methods
based on deterministic models is described in Fig. 8.9.

8.3.1 Description of the Hydrological Models

Three world-famous conceptual hydrological models are implemented in the
Mumahe catchment, including the Xinanjiang (XAJ), HBV and SIMHYD models.
The XAJ model has been used in humid and semi-humid region worldwide (Zhao
1992). It consists of a runoff generation component with seven parameters and a
routing component with ten parameters. Those model physical parameters represent
the abstract conceptual expression of watershed features. The HBV model is a
synthetic flow model with 13 parameters needed to be calibrated. Units of HBV
model makes up of the routines for snowmelt accumulation, evapotranspiration and
soil routine and response function. The core concept assumes runoff volume
changes with soil humidity exponentially (Montero et al. 2016). The SIMHYD
model is a lumped conceptual hydrological model which contains seven parameters
needed to be calibrated. The model divides runoff into three components: surface
flow, interflow and base flow. The surface flow is infiltration excess runoff,
inter-flow is estimated as a linear function of the soil wetness, and base flow is
simulated as a linear recession from the groundwater store (Chiew et al. 2009; Yu
and Zhu 2015). The infiltration rate is a core of the model.

8.3.2 Bayesian Model Averaging (BMA)

Raftery et al. (2005) successfully extended BMA to statistical post-processing for
forecast ensembles. The BMA method addresses total model uncertainty by

Table 8.5 Comparison of performances evaluation criteria for probabilistic forecasts

Lead times (h) Deterministic model Meta-Gaussian HUP Copula-based HUP

CRPS/MAE a-index p-index CRPS a-index p-index CRPS

24 688 0.8028 18.55 608 0.8507 16.39 574

48 1180 0.8555 12.45 975 0.8916 10.42 930

72 1763 0.8879 9.13 1420 0.9184 7.68 1353

Note a-index and p-index are dimensionless; the unit of CRPS is m3/s
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Fig. 8.7 The 90% prediction intervals, median and observed discharges in 2004 (meta-Gaussian
HUP)
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Fig. 8.8 The 90% prediction intervals, median and observed discharges in 2004 (copula-based
HUP)
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conditioning not only on a single outstanding model but on the entire ensemble
models. The method was originally proposed as a pathway for method combination
of several competing models (Duan et al. 2007; Liang et al. 2011).

According to BMA (Duan et al. 2007), the ensemble predictive density of the
actual flow variable q, given the different hydrologic model simulations of
K models [S1, S2,…, SK] and the observations during the training period, Q, can be
expressed in terms of the law of total probability:

pðqjS1; S2; . . .; SK ;QÞ ¼
XK
i¼1

pðSijQÞ � piðqjSi;QÞ ð8:33Þ

HBV model
Simulation

SIMHYD model
Simulation

Observed streamflow

inputs

Bias correction

Normal
Transformation

EM algorithm

BMA method CBMA method

2D Copula
parameter estimation

by MLE

EM algorithm

CBP-BMA method

Evaluation criteria of Multi-model techniques

Deterministic Model
Assessment Indices

Verification Performance
of Probabilistic Simulation

XAJ model
Simulation

EM algorithm

Marginal distribution Marginal distribution

2D Copula
parameter estimation

by MLE

Fig. 8.9 Flowchart of hydrologic multi-model ensembles for uncertainty analysis
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where p(Si|Q) is the posterior probability of ith model prediction. This static term
can also be expressed as wi, reflecting how well the ensemble term fits the obser-
vation dataset. It ranges from 0 to 1 since the posterior model probabilities add up to
one. Before the implantation of BMA algorithm, the expected value of observation
and forecast for each model should be equal zero (E[q − Si] = 0). Any
bias-correction method, such as linear regression, should be applied to substitute the
bias-corrected forecast (fi) for the original deterministic forecast:

fi ¼ ai þ bi � Si ð8:34Þ

where {ai, bi} are the coefficients of the linear regression model.
The term pi(q|fi, Q) is the conditional pdf of h based on the bias-corrected

simulation fi and the observation dataset. Moreover, the power Box-cox transfor-
mation is taken for the computational convenience of using a Gaussian distribution.
The posterior distribution pi(q|fi, Q) is mapped to a Gaussian space with mean fi and
variance s2i ; i.e., pi(q|fi, Q) * g(q|fi, r2i ). The BMA predictive mean and variance of
q are defined as follows (Raftery et al. 2005):

EðqjQÞ ¼
XK
i¼1

pðfijQÞ � E½piðqjfi;QÞ� ¼
XK
i¼1

xifi ð8:35Þ

VarðqjQÞ ¼
XK
i¼1

xi fi �
XK
i¼1

xifi

 !2

þ
XK
i¼1

xir
2
i ð8:36Þ

Successful application of the BMA method requires estimations of the weight xi

and variance r2i of the individual pdf. The log maximum likelihood function rather
than the likelihood function is optimized for reasons of both numerical stability and
algebraic simplicity. If the BMA parameters are estimated by
h ¼ xi; ri; i ¼ 1; 2; . . .;Kf g, the log likelihood function of h is mathematically
denoted as:

lðhÞ ¼ log
XK
i¼1

xi � piðqjfi;QÞ
 !

ð8:37Þ

After the completion of BMA parameter estimation by the EM algorithm (Duan
et al. 2007), another feature of the BMA method is to make use of Monte Carlo
method to derive BMA probabilistic ensemble prediction for any time t (Kuczera
and Parent 1998). The procedures are described as follows (Zhou et al. 2016).

(1) Select the probabilistic ensemble size, M (M = 100).
(2) Randomly generate a value of k from the numbers [1, 2, …, K] with proba-

bilities ½x1;x2; . . .;xi�. The detail processes are shown as follows: (a) Initial
the cumulative weight x0

0 ¼ 0 and compute x0
i ¼ x0

i�1 þxi for i ¼ 1; 2; . . .;K;
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(b) Generate a random number u between 0 and 1; and (c) If x0
i�1 � u�x0

i,
then the ith member of the ensemble predictions are chosen.

(3) Generate a value of q from the pdf of pi(q|fi, r2i ).
(4) Repeat steps (2) and (3) for M times.

The results are sorted in ascending order, and the 90% confidence interval can be
derived within the range of the 5 and 95% quantiles.

8.3.3 The Hybrid Copula-BMA (CBMA)

As illustrated before, the BMA predictive distribution provides a weighted average
of simulation pdf which generally complies with a parametric distribution, e.g.,
Gaussian distribution after the box-cox transformation. Madadgar and Moradkhani
(2014) employed copula to estimate the posterior distribution of forecast variables
for each model, i.e., piðqjfi;QÞ, and found that the hydrological forecasts are
improved after the integration of copulas and BMA (CBMA). A series of research
demonstrates that the procedures of CBMA not only eliminate the prophase
bias-correction and the external calculation of variance but also simplify the cal-
culation of the weighted average and the probability model structure by copula
(Möller et al. 2013).

Alternatively, in statistical applications, the conditional probability distribution
of h given si (i = 1, 2, 3) is expressed as (Madadgar and Moradkhani 2014):

f ðqjsiÞ ¼ f ðq; siÞ
f ðsiÞ ¼ cðu; viÞ � f ðqÞ � f ðsiÞ

f ðsiÞ ¼ cðu; viÞ � f ðqÞ ð8:38Þ

where cðu; viÞ is computed for each pair of (u, vi), f ðqÞ represents the marginal
distribution of actual flow. Although different copula families have been proposed
and described in current studies (Chebana and Ouarda 2007), several families of
Archimedean copulas, including Frank, Gumbel, and Clayton, have been popular
choices for dependence models in hydrologic analyses due to their simplicity and
generation properties.

The predictive distribution of CBMA is modified as follows (Madadgar and
Moradkhani 2014):

f ðqjs1; s2; . . .; sKÞ ¼
XK
i¼1

xif ðqjsiÞ ¼
XK
i¼1

xi � cðu; viÞ � f ðqÞ ð8:39Þ

It can be seen from Eq. 8.39 that it relaxes any assumption on the type of
posterior distribution f ðqjsiÞ, whose term can be directly inferred with the help of
copula functions. Once the term f ðqjsiÞ is defined, their weights are estimated by the
EM algorithm with a few adjustments, which can refer to Madadgar and
Moradkhani (2014) for details.
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The hybrid CBMA model applies the idea of “pair and ensemble”. The pair of
observation q and the ith model simulation is established to get the probability task
by the well-developed copula theory, while the ensemble is to formulate a con-
sensus probability interval.

8.3.4 Copula Bayesian Processor Associated with BMA
(CBP-BMA) Method

8.3.4.1 Copula Bayesian Processor (CBP)

Copula Bayesian processor (CBP) is developed as another component of the proba-
bilistic forecasting system in virtue of the integration of Bayesian theory and copula
functions. The CBP procedure generates a probabilistic result and quantifies the
hydrologic uncertainty under the assumption that input uncertainty is ignored, which
refers to hydrologic uncertainty processor (Krzysztofowicz and Kelly 2000). This
method also has the advantage of leaving out a data transformation procedure into
Gaussian space. The Bayesian procedure based on the law of total probability involves
two parts for information revision of uncertainty (Zhang and Singh 2007a, b, c):

(1) The expected conditional density function of deterministic simulation, Si given
Q ¼ q is expressed as:

jðsijqÞ ¼
Z

f ðsijqÞ � gðqÞdq ð8:40Þ

where f ðqjsiÞ has the same conception as before, gðqÞ represents the prior
density function.

(2) The posterior density function conditional on a deterministic result Si ¼ si is
derived via Bayes’ theorem:

/ðqjsiÞ ¼ f ðsijqÞ � gðqÞ
jðsijqÞ ð8:41Þ

Equations 8.40 and 8.41 could be rewritten by using copula functions, i.e., the
CBP form of the right term is mathematically expressed by:

/ðqjsiÞ ¼ f ðsijqÞ � gðqÞR
f ðsijqÞ � gðqÞdq ¼ cðu; viÞR 1

0 cðu; viÞdu
� gðqÞ ð8:42Þ

The final CBP outputs a posterior distribution of the process, conditional upon
the deterministic simulation. Since the analytical solution to the integral termR 1
0 cðu; viÞdu is very complex, the Monte Carlo technique is used to estimate the
posterior density function /ðqjsiÞ (Robert and Casella 2011; Kroese et al. 2013).
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8.3.4.2 The CBP-BMA Method

The difference between the CBP-BMA and CBMA methods is the estimation
procedure of the posterior density function.

/ðqjs1; s2; . . .; sKÞ ¼
XK
i¼1

xi/ðqjsiÞ ¼
XK
i¼1

xi
cðu; viÞR 1

0 cðu; viÞdu
gðqÞ ð8:43Þ

It should be rational to assign weights on account of multiple deterministic
results. The calculation process of weights is conducted by the EM algorithm
(Montanai and Grossi 2008). The three main steps of the presented weights cal-
culating paradigm can be summarized as follows:

wIter
i ¼ 1

T

XT
t¼1

zIteri;t

zIteri;t ¼ wIter�1
i � /ðqtjsi;tÞPK

i¼1 w
Iter�1
i � /ðqtjsi;tÞ

¼ wIter�1
i � cðut; vi;tÞgðqtÞ=

R 1
0 cðui; vi;tÞdutPK

i¼1 w
Iter�1
i � cðut; vi;tÞgðqtÞ=

R 1
0 cðui; vi;tÞdut

lðhIterÞ ¼ log
XK
i¼1

wIter�1
i �

XK
i¼1

cðui; vi;tÞgðqtÞ=
Z 1

0
cðu; vi;tÞdut

 !
ð8:44Þ

where T is the length of the training period; and z is a latent variable. Compared
with the standard BMA method, the calculation of variance and data transforma-
tions are eliminated in Eq. 8.44. The posterior probability of qt is calculated only
once while it need be re-calculated every time in the standard BMA method.

8.3.5 Evaluation Criteria for Multi-model Techniques

8.3.5.1 Deterministic Model Assessment Indices

To evaluate the quality of the deterministic model, three metrics are used.

(1) Nash-Sutcliffe efficiency coefficient (NSE), see Eq. 8.25
(2) Daily root mean square error (DRMS)

DRMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ðqio � qimÞ2
T

s
ð8:45Þ
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As the second tool employed is sensitive to the differences between observa-
tions and simulations, the values of DRMS approaching to stand for better
performance.

(3) Kling-Gupta efficiency (KGE)

KGE ¼ 1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � 1Þ2 þðb� 1Þ2 þðc� 1Þ2

q
b ¼ qm=qo

c ¼ CVm=CVo ¼ rm=qm
ro=qo

ð8:46Þ

where r is the Pearson correlation between the observation and simulation, b is
the bias ratio indicator; g is the variability ratio (Kling et al. 2012). All
calculative variables are replaced by the expected values of the estimate
predictive distributions.

8.3.5.2 Verification of Probabilistic Simulations

With regard to assessment of assessing the uncertainty analysis of simulation
interval, Xiong et al. (2009) and Dong et al. (2013) presented multiple verification
indices and applied in hydrologic practice. Three main metrics are selected to
evaluate the simulation uncertainty intervals generated by the BMA, CBMA and
CBP-BMA methods.

(1) Containing ratio (CR)

The containing ratio is utilized as a significant index for assessing the goodness of
the uncertainty interval. It is defined as the percentage of observed data points that
fall between the prediction bounds, directly reflecting the interval performance.

CR ¼ CN
i¼1ðqil � qio � qiuÞ

N
� 100% ð8:47Þ

where qil is denoted as the lower bound corresponding to 5% quantile at time t, qiu is
denoted as the upper bound corresponding to 95% of the quantile. CN

i¼1 is the
number of the observed data points qio that satisfy the inequality conditions.

(2) Average bandwidth (BW)

B ¼ 1
N

XN
i¼1

ðqiu � qilÞ ð8:48Þ
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where BW is also an index measuring the average width of estimated uncertainty
interval just as the definition name indicates. Smaller values of BW show a greater
precision. Consider two forecasts with the same containing ratio; the situation with
smaller BW is preferred because it has less uncertainty or greater precision.

(3) Average deviation amplitude (DA)

The average deviation amplitude DA is an index to quantify the average deflection
of the curve of the middle points of the prediction bounds from the observed
streamflow hydrograph. It is defined as

D ¼ 1
N

XN
i¼1

1
2
ðqiu � qilÞ � qio

���� ���� ð8:49Þ

where the notations are defined previously.

8.3.6 Case Study

The Mumahe catchment (Fig. 8.10), a sub-basin of Hanjiang River basin in China
is selected as a case study. The catchment lies in Shanxi Province with an area of
1224 km2 and locates in the subtropical monsoon region with a humid climate and
fairly plenty of precipitation. The annual mean precipitation and runoff is 1070 and
687 mm, respectively. The available dataset contains daily precipitation, runoff, and
evaporation with a length of 11 years (1980–1990). The first year (1980) is used as
the spin-up period for each hydrologic model to achieve the best effective model
formulation. The remaining years (1981–1990) are divided into two sub-periods,
with seven years (1981–1987) for calibration and three years (1988–1990) for
validation.

Different multi-model techniques, i.e., BMA, CBMA, and CBP-BMA, are
applied to combine the ensemble flow simulation. The structures of three hydro-
logic models ought to be determined as the deterministic results are crucial to final
uncertainty analysis. As mentioned above, the calibration parameters of the first
BMA method are xk and r2k ; In the CBMA method, they are the parameters of
marginal distributions, weights xk and the parameters of the PDF of the copula. In
the CBP-BMA method, the Monte Carlo sampling technique is also used to obtain
the integral item.

8.3.6.1 Deterministic Hydrologic Model Simulations

The genetic and simplex algorithms are used for model calibration on account of
their flexibility and good convergence. The genetic algorithm can acquire the global
optimal value with independent of initial parameter values. The simplex algorithm
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is of high accuracy with low convergence rate. With the merit of two methods
integrated, the approximately optimal values of model parameters are obtained.
Three deterministic assessment indices: NSE, DRMS and KGE scores over the
calibration period (1981–1987) and the validation period (1988–1990) are calcu-
lated for XAJ, HBV, and SIMHYD models. Table 8.6 indicates that the XAJ model
has the best results, the HBV model takes the second place, and the SIMHYD
model behaves worst among the three. The reason can be attributed to the dissimilar
process for the calibration of each model (Nasonova et al. 2009). In practice, it
might partially refer to inaccurate estimation of model parameters as one of the error
sources of the model structure, abstract formulation of physical processes, and
different sources of forcing data set for each model. In general, these simulation
results can be used as the input data of multi-model ensemble in terms of the NSE
and KGE values, which are 85% and higher than 0.82 respectively beside the ill
value of KGE of HBV.

8.3.6.2 Determination of the Marginal Distributions

The marginal distributions of the random variables of H and Si (i = 1, 2, 3) need to
be determined. Five common candidate distributions, namely Normal, Gamma,
Gumbel, P-III and Log-Normal, have been fitted to the daily mean streamflow
values as well as to the XAJ, HBV and SIMHYD model simulations.

Fig. 8.10 Sketch map of the Mumahe catchment
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Regarding random variable H, the parameters of five candidate distributions are
estimated by the method of L-moment (Hosking 1990), and the parameter values
are listed in Table 8.7. The K-S tests are used to verify the null hypothesis, and the
corresponding statistic DK-S values are also listed in Table 8.7. It is shown that the
null hypothesis could not be rejected at the 95% confidence level (threshold value
Dn ¼ 1:36=

ffiffiffiffi
N

p
, N is the number of sampling points) for Log-Normal distribution

with providing the minimum DK-S value. Meanwhile, Fig. 8.11 indicate the
Log-Normal is satisfactory on visual inspection that the cumulative distribution
function (CDF) plots of the theoretical Log-Normal distributions fitted the empirical
CDF values obtained from the Gringorten plotting-position formula (Zhang and
Singh 2006) relatively well. The estimation of marginal distributions for Si had the
similar procedures. The Kolmogorov-Smirnov statistics DK-S indicate that the
Log-Normal distribution also gives the best fit in this study.

8.3.6.3 Archimedes Copula Selection and Estimation

In the application of the CBMA and CBP-BMA methods, a copula function to link
the CDF of observation and model simulations needs to be defined. The Gumbel,
Clayton and Frank copula belonging to Archimedes family are chosen to test for
flexibility and universality (Madadgar and Moradkhani 2014; Chen et al. 2015).

For Archimedes copula, the Kendall correlation coefficient si (i = 1, 2, 3)
between observed and different simulated flows is firstly derived. The higher si
indicator reflects the stronger correlation between observation and model simula-
tion. The corresponding copula parameter hi is calculated by the method based on
the inversion of si in Table 2.3 of Chap. 2. The parameter estimators and
goodness-of-fit test (RMSE and AIC) are used to determine the best fit copula for
integrating the streamflow properties. The results illustrate that copulas have the
good performance in exploring the associations of observed and simulated flows.
All variables passed the null hypothesis for Gumbel and Frank copulas. Gumbel
copula performs with the lowest RMSE and AIC values.

Table 8.6 Deterministic accuracy assessment of different hydrological models

Model Calibration Validation

NSE (%) DRME KGE (%) NSE (%) DRME KGE (%)

XAJ 88.25 30.06 90.59 84.85 24.06 87.08

HBV 84.81 34.16 52.99 82.24 26.06 42.89

SIMHYD 86.25 32.50 82.51 84.98 23.97 85.01

BMA 88.87 33.79 89.14 85.72 24.81 90.62
CBMA 88.93 26.54 90.06 86.07 21.25 88.45

CBP-BMA 89.76 27.63 90.96 86.69 23.39 89.23

Notes Values in bold represent the optimal result
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8.3.6.4 Deterministic Assessment of Three Ensemble Methods

We check the mean simulation of hydrologic multi-model ensembles using three
criteria illustrated in Sect. 8.3.5.1. The effectiveness results of BMA, CBMA and
CBP-BMA methods are listed in Table 8.6. The performances of different
multi-models are better than that of the individual XAJ model regarding NSE.
The BMA method outperforms the reference model at the cast of DRMS and KGE
indicators, The CBMA and CBP-BMA methods slightly improve in all aspects
during the calibration period, which have excellent properties in the validation
period. The reason of the CBMA and CBP-BMA methods enhancing the perfor-
mance can be attributed to that copula functions are efficient tools to remove bias
instead of a simple bias correction such as linear regression in the BMA method
(Madadgar and Moradkhani 2014). Especially, copula has reliable parameter esti-
mation prior model average procedure. Another reason might be owed to the weight
of each individual model, which is directly influenced by the estimation of posterior
distributions.

Figure 8.12 illustrates the bar plots of KGE score and its components. The KGE
score might be a little descending through BMA or CBMA application, a little
incremental through CBP-BMA application in comparison with the best XAJ
model. The correlation coefficients between observation and simulation of indi-
vidual models are up to 0.93 in the calibration period and 0.92 in the verification

Table 8.7 Estimated parameters and statistic test Dk-s of five candidate marginal distributions

Marginal parameter
distribution and K-S test

H S1 S2 S3

Gumbel r 40.3 40.6 39.5 37.2

l 17.8 14.9 15.1 14.5

Dk-s 0.025 0.024 0.026 0.026

Gamma a 0.4 0.3 0.3 0.3

b 103.4 129.7 153.2 106.5

Dk-s 0.148 0.122 0.141 0.153

P-III a 0.20 0.24 0.20 0.19

b 0.0056 0.0067 0.0050 0.0063

c 6.02 4.43 5.27 4.59

Dk-s 0.034 0.028 0.029 0.031

Log-normal a 2.83 2.11 2.43 2.57

c 1.17 1.46 1.28 1.26

Dk-s 0.016 0.013 0.017 0.015
Normal a 41.08 38.27 38.43 34.69

c 49.57 49.85 41.19 43.03

Dk-s 0.074 0.062 0.075 0.064

Notes Values in bold denote that the distribution model passes the goodness-of-fit test at 0.05
significance levels
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period, which represent stronger correlation for the values are more than 0.9.
However, b indictor of deterministic models varies from 0.64 for HBV model to
0.97 for XAJ model. The value less than 1 indicates the total amount of streamflow
simulation in any individual model is less than that of observation. It might cause
the general underestimation of the mean streamflow (negative bias) in hydrological
multi-model ensemble applications. The BMA method is such a promising method
for locating simulation to observation for its term b closer to 1. Regarding the
variability ratio, all methods except for HBV could perfectly perform, but no
particular method is superior to others with all c � 1.

8.3.6.5 Probabilistic Verification of Three Ensemble Methods

For probabilistic verification of simulation, Figs. 8.13 and 8.14 describe the
uncertainty bands of different methods for the representative year during calibration
and verification periods with a visual inspection. These two plots indicate that the
observed values approximately fall within the 5–95% uncertainty range and fit the

(a) variable H (b) variable S1

2 3(c) variable S (d) variable S

Fig. 8.11 Comparison of the empirical and theoretical cumulative distribution functions
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mean flow hydrograph for all multi-model ensembles. In this case, the 90% con-
fidence interval could capture the flood peaks but miss more low flow values.

Three probabilistic verification measurements (CR, BW, DA) are presented in
Table 8.8. It can be seen from these quantitative indices that they have a good
performance regarding containing ratio, which is corresponding to the confidence
interval. The probability of observed value falling in the range should be in accord
with the percentage of confidence interval containing points through many inde-
pendent statistical experiments. The CBP-BMA method performs better than
CBMA method regarding CR index because it roughly covers 91% of the sample
points, which is more than CBMA does. A combination of CR and BW possess the
power to make a decision on model probabilistic performance. The comparison
between the CBMA (and CBP-BMA) and BMA methods exactly illustrates that the
CBMA method outperforms the BMA method, either CR, BW or DA, especially,
the containing ratios of CBP-BMA method in different periods are up to 91.17 and
91.33%, respectively. Referring to the smaller BW result in the CBMA and
CBP-BMA methods, the total predictive variance is reduced by relaxing the PDF
generated by copula functions rather than the Gaussian posterior distribution via

(a) Calibration period 

(b) Validation period 

Fig. 8.12 The simulation
results of KGE score and its
components
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box-cox transformation. Since the between-model variance keeps identical after
using the same EM algorithm in all three methods, it is inferred that the reduction of
within-model variance works.

The CBMA and CBP-BMA methods are two flexible and robust approaches to
estimate uncertainty regarding the optimal bandwidth and average deviation
amplitude. They have an intuitive and simple structure conditional on several model

(a) BMA

(b) CBMA 

(c) CBP-BMA

Fig. 8.13 The 90% uncertainty interval, observed, mean simulation for the Mumahe catchment in
1987 during the calibration period
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simulations by the integration of BMA and copula tools, which makes this method
promising to derive uncertainty. The difference between them reflected in the
procedure of processing posterior distribution. Further improvement might be
realized through the weight allocation for each model or the nonparametric pos-
terior distribution.

(a) BMA

(b) CBMA

(c) CBP-BMA

Fig. 8.14 The 90% uncertainty interval, observed, mean simulation for the Mumahe catchment in
1990 during the validation period
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8.4 Conclusion

Hydrological forecasting services are trending toward providing users with prob-
abilistic forecasting, and adequate assessment of uncertainty forecasts is an
important issue and task. A copula-based HUP for probabilistic forecasting and
CBP-BMA method for evaluating uncertainties of hydrologic multi-model
ensembles are proposed. Three Gorges Reservoir (TGR) and Mumahe basins are
selected as case studies. The main conclusions are summarized as follows:

(1) The output of the HUP is a posterior distribution of the process, conditional
upon the deterministic forecast. This posterior distribution provides the com-
plete and well-calibrated characterization of uncertainty needed by rational
decision makers who use formal decision models and by information providers
who want to extract various forecast products for their customers (e.g., quan-
tiles with specified exceedance probabilities, prediction intervals with specified
inclusion probabilities, probabilities of exceedance for specified thresholds).

(2) Based on copula function, the prior density and likelihood function of the HUP
are explicitly expressed, and the corresponding posterior density and distribu-
tion can be obtained using the Monte Carlo sampling technique. This
copula-based HUP can be implemented in the original space directly without a
data transformation procedure into Gaussian space and allows for any form of
marginal distribution of predictand and the deterministic forecast variable, and
a nonlinear and heteroscedastic dependence structure.

(3) The proposed copula-based HUP is comparable to the meta-Gaussian HUP
regarding the posterior median forecasts. It is also shown that probabilistic
forecasts produced by the copula-based HUP have slightly higher reliability and
lower resolution compared with the meta-Gaussian HUP. According to the
CRPS value, it is found that both HUPs are superior to deterministic forecasts
which highlight the effectiveness of probabilistic forecasts, and the
copula-based HUP is marginally better than the meta-Gaussian HUP.

(4) Deterministic results of different multi-model ensembles outperform those of
the individual model. The CBMA and CBP-BMA methods slightly outperform
BMA method regarding NSE, DRMS, and KGE. When the CBMA method is
used as a reference, the CBP-BMA method can improve the NSE and KGE and
enlarge DRMS values. Underestimation of all individual models may cause
negative bias of ensemble multi-model.

Table 8.8 Uncertainty assessment of different hydrological multi-model ensembles

Model Calibration Validation

CR (%) BW DA CR (%) BW DA

BMA 87.34 56.79 21.26 88.53 58.14 18.79

CBMA 89.23 38.75 16.52 89.76 40.28 12.26

CBP-MA 91.17 45.28 12.35 91.33 42.35 10.99
Note Values in bold represent the optimal result
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(5) The combination of containing ratio and bandwidth index demonstrates the
probabilistic model performance with the auxiliary index-average deviation
amplitude. It is found that containing ratio is approximately equal to the per-
centage of the confidence interval. The CBMA or CBP-BMA methods out-
perform BMA method regarding evaluation criteria with a high containing
ratio, small uncertainty, and average deviation amplitude.
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Chapter 9
Copula-Based Uncertainty Evolution
Model for Flood Forecasting

9.1 Introduction

Flood is a major natural disaster in many countries and its consequences can be
enormous in terms of property loss and fatalities (Pham 2011). From the year 1983–
2003, floods caused an average of 98 deaths and $4.5 billion in property damage
per year in the United States (Morss et al. 2005). According to the European
Commission (2011), in Europe, there were more than 100 major damaging floods
within a period of three years between 1998 and 2002, which represents, on
average, more than 30 floods per year. Flood forecasting provides much informa-
tion for future floods and water resources management (Alemu et al. 2011; Boucher
et al. 2012). However, the uncertainty in flood forecasting has been identified as the
major factor influencing the accuracy of forecasting. Uncertainty in flood fore-
casting may lead to under-preparation which can cause damages or losses, or
over-preparation which can cause unnecessary expense and anxiety (Smith and
Ward 1998). Therefore, one important issue is to deal with the uncertainty in flood
forecasting (Chen et al. 2015).

Until now, there is a large amount of work on forecasting uncertainty.
The uncertainties typically consist of a combination of input, model structural,
output, and parameter uncertainty (Schoups and Vrugt 2010), and are usually
measured by forecast error series. A multitude of investigations have been carried
out to quantify forecast uncertainties (Pokhrel et al. 2013; Li et al. 2010; Montanari
and Grossi 2008; Krzysztofowicz 2002). Since flood forecasts are dynamically
updated, forecast uncertainty evolves in real-time. Usually, the forecast uncertainty
for a certain time period decreases over time as more hydrologic information
becomes available (Zhao et al. 2011). However, limited attention has been paid to
investigate the relationship of the forecast uncertainty between the adjacent time
steps, and study the evolution of uncertainty over time in real-time flood forecasting.

Heath and Jackson (1994) proposed a martingale model to describe the evolution of
uncertainty of demand forecasts in the supply chain management. Zhao et al. (2011)
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introduced this method in hydrology and used it to describe the evolution of
streamflow forecast uncertainty. However, this method makes assumptions regarding
un-biasedness, Gaussianity, temporal independence and stationary, which limits their
application in hydrology. Zhang et al. (2015) demonstrated that the assumption of
normal distribution was not justified for the flood forecast error series. In order to
overcome these limitations, Zhao et al. (2013) modified this method and proposed the
generalizedmartingalemodel for the evolution of uncertainty in streamflow forecasting
to address cases wherein the assumptions are violated. However, the method they
proposed is based on a normal quantile transform (NQT), which needs to convert the
original variables into a standard Gaussian random variable and an inverse transfor-
mation is also needed in the last step. These transformations may bring cumbersome
calculation work and potential errors. Chen et al. (2016) proposed a copula-based
uncertainty evolution (CUE) model to quantify the evolution of uncertainty in flood
forecasting.

Forecasting products predict the inflow of reservoirs and provide hydrologic
information to guide reservoir operation. However, flood forecasting is inherently
uncertain. That is why some of the reservoir operation risk is unavoidable and the
reservoir may sometimes become even an operational failure. Tracing the uncer-
tainties associated with the predicted inflow volumes of reservoirs and propagating
them through the reservoir system can help gain information for reservoir decision
making, improve reservoir operation efficiency, and reduce flood risk under extreme
conditions.

Limited research has been carried out to study the effect of forecast uncertainty
on real-time reservoir operation (Zhao et al. 2011). Li et al. (2010) discussed the
dynamic control of flood limited water level by considering the inflow uncertainty
in the reservoir operation. Zhao et al. (2011) modeled the dynamic evolution of
uncertainties involved in the various forecast products and explored their effect on
real-time reservoir operation decisions. However, all these studies are based on
certain assumptions, e.g., unbiasedness, and Gaussian distribution of flood forecast
uncertainty. Zhao et al. (2013) concluded that (1) real-world forecasts can be biased
and tend to underestimate actual flood, and (2) real-world forecast uncertainty is
non-Gaussian and heavy-tailed. In addition, the stochastic simulation technique has
been used to assess the intrinsic risk of reservoir operation (Xu et al. 1997; Li et al.
2010; Zhao et al. 2011, 2013), in which large synthetic flood series are generated.
The statistical expectation of an impact is estimated using a process that involves
running many hundreds or thousands of simulations (Harvey et al. 2012). These
studies show that simulation techniques can provide useful insights into flood
processes.

The content of this chapter is therefore to introduce a copula-based uncertainty
evolution (CUE) model to describe the evolution of uncertainties in flood fore-
casting. The flood forecast series with different lead times, that contain forecast
uncertainty, are simulated based on the CUE model. Then, the generated flood
forecasting sequences are used to evaluate the effect of forecast uncertainty on
real-time reservoir operation (Chen et al. 2016).
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9.2 Copula-Based Uncertainty Evolution (CUE) Model

First, a copula-based uncertainty evolution (CUE) model is introduced to describe
the evolution of uncertainty in flood forecasting. Second, the uncertainty in fore-
casting is simulated using the proposed CUE model. Third, the predicted flood is
generated by adding the simulated uncertainty to the generated flood data. Finally,
the effect of flood forecast uncertainty on reservoir operation is evaluated using a
flood risk analysis method.

9.2.1 Evolution of Forecast Uncertainty

Heath and Jackson (1994) proposed a martingale model to formulate the evolution
of uncertainty of demand forecasts in a supply chain management. Zhao et al.
(2011) introduced this method in hydrology. In the following, we describe this
uncertainty evolution model for application to flood forecasting.

The rainfall-runoff model is usually used to predict the flood with different lead
time. Let Q define the predicted flow, and h the forecasting horizon with forecast
lead time from 0 to h. Figure 9.1 shows a schematic of forecasting made at time
s for time t. This means that the prediction is made at time s for forecasting future
flood at time t (t = s + 0, s + 1, …, s + h) simultaneously. For example, assume
that today is June 1st and the forecast lead time h is equal to 4. Therefore, s equals
June 1st. Since h = 4, the future flood occurring on June 2nd, 3rd, 4th and 5th are
predicted simultaneously. Those predicted results are organized as a vector Q1,−,
Q1;� ¼ ½Q1;1;Q1;2;Q1;3;Q1;4;Q1;5�, in which for Q1,1 we directly substitute the
observed value. The general form of vector Qs,− is defined as

Fig. 9.1 Schematic of flood forecasting at time s
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Qs;� ¼ ½Qs;s;Qs;sþ 1; . . .;Qs;sþ h� ð9:1aÞ

where Qs;s equals the observed flood at time s, since the flood at time s is known.
Similarly, flood at the coming time t corresponds to multiple predictions made at

preceding times, shown in Fig. 9.2. For example, assume that today is June 1st
(variable s) and the forecast lead time h is equal to 4. The flood occurring on June
5th (variable t) is predicted today. Actually, the flood occurring on June 5th will be
predicted for four times (i.e. it will be predicted on June 1st, 2nd, 3rd, and 4th).
We define those predicted flood values for June 5th as Q−,5,
Q�;5 ¼ ½Q1;5;Q2;5;Q3;5;Q4;5;Q5;5�. The general form of vector Q−,t is defined as

Q�;t ¼ ½Qt�h;t;Qt�hþ 1;t; . . .;Qt;t� ð9:1bÞ

where Qt;t equals the observed flood at time t.
Let qt denote the observed flow at time t, and let Qs;t denote the flow predicted at

time s for time t (s � t). At last, a meaningful definition: the absolute forecast
uncertainty error is defined by Eq. 9.2.

es;t ¼ Qs;t � qt ð9:2Þ

According to Eqs. 9.1 and 9.2, vectors es;� and e�;t are defined as

es;� ¼ ½Qs;s � qs;Qs;sþ 1 � qsþ 1; . . .;Qs;sþ h � qsþ h� ð9:3aÞ
e�;t ¼ ½Qt�h;t � qt;Qt�hþ 1;t � qt; . . .;Qt;t � qt� ð9:3bÞ

Fig. 9.2 Schematic of flood forecasting at time t
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For vector es;�, the prediction is made at time s, and the future flood at time
s + 1, s + 2,…, s + h are predicted. Thus, their corresponding observed flood are
qsþ 1, qsþ 2,…, qsþ h, respectively. For vector e�;t, since the future flood at time t is
predicted, the observed flow is qt. The special cases are es,s and et,t, in which the
time that the prediction made at is equal to the time that the prediction is made for.
In this case, the error equals 0, because we directly substitute the observed value
and there is no prediction.

As shown in Fig. 9.2, the flow at the coming time t corresponds to multiple
prediction made at preceding time, the uncertainty decreases with decrease in the
lead period in the vector, and uncertainties of predictions generally can sequenced
like this et−h, t > et−h+1,t > … > et, t. Therefore, uncertainty reduction of a single
period (namely from time s − 1 to time s) can be defined as the reduction from
es�1;t to es;t

ws;t ¼ es;t � es�1;t ð9:4Þ

where ws;t is uncertainty reduction of a single period (from time s − 1 to time s).
Equation 9.4 demonstrates the changes in uncertainty from time s − 1 to time

s for forecasting the future flood at time t. As the uncertainty is time-dependent, the
uncertainty evolution can be described as a gradual development of uncertainty.

Fig. 9.3 Description of forecast uncertainty evolution
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Figure 9.3 illustrates the process of uncertainty evolution in forecasting. The
number in the first row represents the time t that the forecasting is made for, and the
number in the first column represents the time s that the forecasting is made at. Each
row and column represent vector es;� and e�;t, respectively.

Take s and t equaling 2 for example. According to Eq. 9.4, uncertainty reduction
or the improvement of the predicted results from time s − 1 to s is equal to
w2;2 ¼ e2;2 � e1;2. Thus, the forecast uncertainty e1;2 plus the improvement w2;2

equals to the uncertainty e2;2. Using the same method, we can obtain the equations
shown in Fig. 9.3. It can be seen from Fig. 9.3 that the uncertainty e2;3 is equal to
e1;3 þw2;3. The single-period uncertainty reduction between e2;3 and e3;3 is w3;3.
The uncertainty e3;3 can be qualified by e1;3 þw2;3 þw3;3, namely e3;3 ¼ w2;3 þ
w3;3 þ e1;3, from which we can derive the e1;3, e1;3 ¼ e3;3 � w2;3 � w3;3.
We have mentioned that es;s or et;t equals zero. e1;3 can be expressed as
e1;3 ¼ 0� w2;3 � w3;3. Thus, the uncertainty is time-dependent and evolves over
time. The earlier the forecast is made, the larger the uncertainty is. The longer the
lead time is, the less reliable the forecast is. Based on Eq. 9.4 and Fig. 9.3, a
more generalized equation describing the evolution of forecast uncertainty can be
given as

et�h;t ¼ �
Xt

i¼t�hþ 1

wi;t ð9:5Þ

Equation 9.5 describes the evolution of forecast uncertainty using the absolute
forecast uncertainty. Actually, the relative flood forecast error has been usually used
for describing the uncertainties of forecasted floods (Rabuffetti et al. 2008; Li et al.
2010; Yan et al. 2014; Nester et al. 2012; Hossain et al. 2004). Relative error,
which indicates how good a forecast is relative to the observed flood, is more
appropriate to describe the uncertainty than the absolute one. This is because that
the absolute error in the forecasts is affected by the magnitudes of the flood.
Usually, a large (small) flood magnitude corresponds to a large (small) absolute
error. Therefore, the relative flood forecast error instead of the absolute one is used
in this study.

The uncertainty, characterized by the relative flood forecasting error, can be
defined as

res;t ¼ Qs;t � qt
qt

¼ es;t
qt

ð9:6Þ

where res;t is the relative flood forecast error, whose flood is predicted at time s for
time t. Define the vectors res;� and re�;t. The meanings of subscripts are the same
as those in Qs;� and Q�;t.

Dividing both sides by qt of Eq. 9.4, the relative single-period reduction of
forecast uncertainty rws;t can be expressed as
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rws;t ¼ ws;t

qt
¼ es;t � es�1;t

qt
¼ res;t � res�1;t ð9:7Þ

where rws;t is the relative reduction of forecast uncertainty in a single period.
For a special case, s = t, ret;t is equal to 0, since the observed value at time t is

known and there is no error. According to Eq. 9.7, the relative single-period
reduction of forecast uncertainty under this situation can be written as

rwt;t ¼ �ret�1;t ð9:8Þ

from which it can be seen that when two subscripts of variable rw with the same
value, the relative reduction of uncertainty equals the negative relative forecast error
ret�1;t.

Similarly, dividing both sides of Eq. 9.5 by qt, the evolution of uncertainty can
be expressed as

ret�h;t ¼
� Pt

i¼t�hþ 1
wi;t

qt
¼ �

Xt

i¼t�hþ 1

rwi;t ð9:9Þ

where rwi;t ¼ wi;t=qt.
Equation 9.9 is an improvement of the traditional uncertainty evolution model

that is developed based on the absolute forecast error. It is also seen from Eq. 9.9
that if the value of rw is known, the forecast uncertainty can be derived. Therefore,
in the following, we will give the details for deriving the values of rw.

9.2.2 Derivation of Single-Period Reduction of
Forecast Uncertainty

Real-time flood forecast model can dynamically predict flood for different lead
times. The rolling process of real-time flood forecasts is shown in Table 9.1, in
which the numbers in the first column mean the days that the prediction is made.
The numbers in other columns mean the coming day. Take the first line for
example. As h = 4, on day 1, the future flood on days 2, 3, 4 and 5 are predicted.
On day 2, the future flood on days 3, 4, 5, and 6 are predicted. Their corresponding

Table 9.1 The rolling
process of real-time flood
forecasts

Days h = 1 h = 2 h = 3 h = 4

1 2 3 4 5

2 3 4 5 6

3 4 5 6 7

4 5 6 7 8
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errors are given in Fig. 9.4a. Since the error reduction is equal to forecast
improvements from res−1,t to res,t, the rw are calculated in Fig. 9.4a and recorded in
Fig. 9.4b. For the lead time equaling to 1 day, based on Eq. 9.8, the value of rw
equals to negative re. In Fig. 9.4c, each column represents a variable, and this is a
four-dimensional data set. We define the four variables as X1, X2, X3 and X4. Thus,
the relative single-period reduction of forecast uncertainty is finally derived.

9.2.3 Construction of the Joint Distribution of
Uncertainty Reduction

In this section, the copula function is used to establish the joint distribution of
relative single-period reduction of forecast uncertainty by linking the marginal
distributions. First, the marginal distribution is established. In order to properly
capture the behavior of the relative uncertainty reduction series, several univariate
distributions are selected as candidates. Second, the joint distribution is constructed
using student copulas.

9.2.3.1 Selection of Marginal Distribution

The exponential (Ex), generalized extreme-value (GEV), generalized logistic (GL),
generalized Pareto (GP), generalized normal (GN), Gumbel, Kappa, lognormal
(LN), Normal, and Wakeby distributions have been widely used in hydrology.
The cumulative probability distributions (CDF, F(x)) and their parameters are given
in Table 1.1 of Chap. 1. They are selected as alternatives for representing the
probability distribution of relative reduction of forecast uncertainty. The L-moments
method is employed to estimate their parameters.

Fig. 9.4 Relationship between uncertainty and single-period uncertainty reduction
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9.2.3.2 Construction of the Joint Distribution Using Copulas

The metaelliptical copula and vine-copula are two kinds of copulas, which are
employed to establish a higher dimensional probability distribution recently.
Compared with the vine-copula, the meta-elliptical copulas can provide a wide
range of positive and negative degrees of joint behavior, and model
high-dimensional dependence structure with a very simple structure. Especially, for
high-dimensional variables, the regular vine-copula embraces a large amount of
possible pair-copula decompositions (Aas et al. 2009), which means that we need
additional structure to select reasonable and suitable vine specification. Therefore,
considering the limitations of vine copulas, the metaelliptical one is employed in
this study.

In this study, the variables X1, X2, …, Xn are denoted as rwt,t, rwt,t+1,…, rwt,t+n−1,
which represent the relative single-period reduction of forecast uncertainty. The F
(rwt,t), F(rwt,t+1),…, and F(rwt, t+n−1) are the marginal distributions of the variable
set. The student copula are used to establish the joint distribution of variables rwt,t,

rwt,t+1,…, rwt,t+n−1. The joint distribution F(rwt,t, rwt,t+1,…, rwt,t+n−1) can be
expressed as

Fðrwt;t; rwt;tþ 1; . . .; rwt;tþ n�1Þ ¼ CðFðrwt;tÞ;Fðrwt;tþ 1Þ; . . .;Fðrwt;tþ n�1ÞÞ
¼ Cðu1; u2; . . .; unÞ

ð9:10Þ

where F(rwt,t+i) * U(0,1) for i = 0, 1, 2, …, n−1.

9.3 Generation of Synthetic Predicted Flood Series

Based on the CUE method, the flood forecasting series is generated. The generating
process entails three steps. First, the relative single-period uncertainty reduction
series are generated based on the established copulas. Second, the uncertainty
characterized by relative flood forecast error is obtained according to the uncer-
tainty evolution model. Third, the predicted flood series is simulated by adding the
forecast uncertainty to the generated flood series. These series can be applied to
analyze the effect of uncertainty on reservoir operation. Information on the process
for simulation of the predicted flood series is provided as follows.

Step 1 Generation of relative single-period forecast reduction series

The Student copula is used to generate the uncertainty reduction series. R copula
package (http://cran.r-project.org/web/packages/copula/index.html), which provides
a carefully designed and easily extensible platform for multivariate modeling with
copulas, is used in this generation (Yan 2007).
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Assume that the marginal distributions Fðrwt;tÞ, Fðrwt;tþ 1Þ, Fðrwt;tþ 2Þ,
Fðrwt;tþ 3Þ and joint distribution Fðrwt;t; rwt;tþ 1; . . .; rwt;tþ 3Þ are established.
The student copula is used to fit this joint distribution. According to the definition
of student copula (Demarta et al. 2005), the copula function Cðu1; u2; u3; u4;R; vÞ
can turn into a student t probability distribution: Cðu1; u2; u3; u4;R; mÞ ¼
tR;mðt�1

m ðu1Þ; . . .t�1
m ðu4ÞÞ ¼ tR;mðX1;X2;X3;X4Þ, where R is correlation matrix, and

m is degrees of freedom. Given R and m which are derived from tR;mðX1;X2;X3;X4Þ,
the procedures for generating of variables rwt;t; rwt;tþ 1; rwt;tþ 2; rwt;tþ 3 were
summarized by Hörmann and Sak (2010).

Step 2 Generation of forecast uncertainty

Since the relative single-period reduction of forecast uncertainty is known, the
uncertainty characterized by the relative forecast error can be generated using
Eq. 9.9. A schematic for calculation of uncertainty is given in Fig. 9.4, in which the
right figure shows the simulated relative uncertainty reduction. As illustrated
before, if the two subscripts of variables rw have the same value, the values of
uncertainty equal the negative relative uncertainty reduction. Therefore, values in
the second column of the left figure are directly equal to −rwt,t. The values in the
third column are then calculated based on Eq. 9.7. Then the values in the third
column of the left figure are derived. A similar method is used to calculate the
values in the fourth and fifth columns of the left figure. Finally, the whole series of
forecast uncertainty is simulated.

Step 3 Generation of synthetic flood series

Two kinds of data set are used to represent the observed flood series, one of
which is the simulated daily flood and the other is the design flood hydrograph.

The daily flood flow is simulated using the copula method proposed by Lee and
Salas (2008, 2011). For this simulation, the bivariate copula is used. Considering
the advantages of the Archimedean copulas in the bivariate analysis, the
Archimedean copula is used to construct the joint distribution. Lee and Salas (2011)
concluded that the Gumbel copula showed a better fit than the Frank or Clayton
copula. Furthermore, we paid much attention on the flood data, and the Gumbel
copula can capture the upper tail dependences very well. Therefore, the synthetic
flood series is obtained using the Gumbel copula.

Step 4 Generation of synthetic predicted flood series

Finally, synthetic predicted flood series Qs;t is generated from flood series qt
using the equation

Qs;t ¼ qtð1þ res;tÞ ð9:11Þ
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9.4 Effect of Uncertainty on Reservoir Operation

Real-world forecast uncertainties are complex and depend on the hydrological
model, and have a great significant influence on the decision making of reservoir
operation. This influence can be quantified by a risk estimate. The propagation of
these uncertainties to the reservoir system can be described using a flood risk chain,
namely runoff generation-reservoir flood routing-risk analysis.

We have discussed the method for runoff generation before. For flood routing,
the pre-release module is applied, which has also been used by Li et al. (2010). This
method, making use of the real-time inflow forecast information, aims to alleviate
the flood severity by releasing the water stored in the reservoir before the arrival of
a large flood.

According to the available real-time inflow forecasting information with h-day
lead time, the pre-release flow can be defined as (Li et al. 2010):

�O ¼
Zsþ h

s

Itdt=h ð9:12Þ

where �O is the mean release flow during the effective lead time; It is the predicted
inflow at time t; and s is the time that the prediction made at. Since reservoir
operation utilizes a rolling-horizon process to incorporate the dynamically updated
flood forecasting into decision making (Zhao et al. 2013), the release flow is
real-time updated for each period.

After reservoir routing, the corresponding risk is estimated. In the reservoir
operation, the undesirable event is that the reservoir storage (or water level) exceeds
Vc (Zc). This corresponding risk can be defined as (Yan et al. 2014)

R ¼ PðmaxfVðtÞ; t ¼ 1; 2; . . .; Lg[VCÞ ð9:13aÞ

or

R ¼ PðmaxfZðtÞ; t ¼ 1; 2; . . .; Lg[ ZCÞ ð9:13bÞ

where L is the length of the inflow series. V(t) and Z(t) are the reservoir storage and
water level at time t, respectively. Vc or Zc is a water storage (water level) corre-
sponding to a flood control criterion.

Stochastic simulation is taken as an effective approach for estimating risks and
uncertainty, which has been widely used to assess the likelihood of specified out-
comes for studying different kinds of uncertainty. Using the proposed method, the
simulated daily forecasting inflow series are generated to simulate uncertainties in
flood forecasting and flood hydrograph shape. Equation 9.13 is used to assess the
corresponding flood risk.
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9.5 Case Study

9.5.1 Data

Three Gorges Reservoir (TGR), located upstream of the Yangtze River, is selected
as a case study. The inflow of TGR stems from the mainstream, the tributary of the
Wu River, and the rainfall-runoff in the TGR intervening basin. The catchment area
of the intervening basin is 55,907 km2, about 5.6% of the upstream Yangtze River
basin. Two hydrological stations (Cuntan and Wulong) control the flood from the
mainstream and tributary (Wu River), respectively. In the intervening basin, the
data from 40 precipitation stations are used to calculate the areal average rainfall.
The current inflow forecasting is updated daily with a forecast horizon of 4-day
(Zhao et al. 2013). The predicted and observed inflow data of TGR from 2003 to
2009 in the flood season is used in this study. According to the current operation
policies, the flood season of TGR is from June 1st to September 30th.

The parametric characteristic of TGR is given in Table 9.2, in which the flood
control water level (FCWL) is the operation water level in the flood season in order
to offer adequate storage for flood prevention. The determination of FCWL is
usually according to the annual maximum flood frequency analysis. From June to
September, the water level of TGR cannot always be higher than FCWL, because of
the possible incidences of large floods. In order to illustrate the influence of
uncertainty on predicted flow, the observed, predicted flow and their corresponding
absolute forecast errors during the flood season of the year 2003 are given in
Fig. 9.5, which shows that the absolute forecast errors are usually from −8000 to
8000 m3/s, and these uncertainties cannot be neglected.

Table 9.2 Characteristic parameters of TGR

FCWL
(m)

Normal water
level (m)

Height of the
dam (m)

Flood protection
storage (108 m3)

Total reservoir
storage (108 m3)

145 175 185 221.5 393
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Fig. 9.5 Observed, predicted flow and forecast errors during the flood season of the year 2003
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9.5.2 Generation of Forecast Uncertainty

First, the uncertainty of the predicted flood from 2003 to 2009 characterized by the
flood forecast error is calculated. Then the relative single-period reduction of
forecast uncertainty is derived using Eq. 9.7. Zhao et al. (2013) tested the stationary
of the forecast uncertainty reduction series of TGR and concludes that the whole
series is non-stationary. They divided the whole flood season into two sub-seasons,
namely pre-flood season (June) and main flood season (from July to September).
For each sub-season, different marginal and joint distributions were constructed.

The exponential, generalized extreme-value, generalized logistic, generalized
pareto, generalized normal, Gumbel, Kappa, lognormal, normal, and Wakeby dis-
tributions are selected as candidates for the probability distribution of forecast
uncertainty reduction. The L-moments method is employed to estimate distribution
parameters. Two criteria, namely bias and RMSE, are used to measure the perfor-
mance of these distributions. The bias and RMSE between the observed and the-
oretical values for the pre-flood and main flood seasons are calculated and listed in
Tables 9.3 and 9.4, respectively. The Kolmogorov-Smirnov (K-S) test is employed
for the goodness-of-fit test. Their p-values are calculated and also given in
Tables 9.3 and 9.4. If the p-values are small, the K-S test is rejected. In other words,
the null hypothesis (H0) is accepted for all the p-values greater than a. The fixed
values of a (0.01, 0.05, and 0.1) are usually used to assess the null hypothesis (H0).
In this chapter, a is equal to 0.05, except for variable X2 in the main flood season.
For X2, a lower a (a = 0.005) is applied, since the p-values for all of the distri-
butions are very small. According to the results of bias, RMSE, and K-S test, it
indicates that the generalized logistic (GL) distribution give a better fit than the
other distributions. It is seen from Table 9.4 that the normal distribution is rejected
for variable X1, X2, and X3 in the main flood season. In order to show the perfor-
mance of normal distribution for those variables, the marginal distribution and
histogram fitted by normal distribution are given in Fig. 9.6, in which the left
section shows the marginal distributions, and the right shows the histogram.
Figure 9.6 demonstrates that the normal distribution is found to be inappropriate in
these cases and the GL distribution fits better than the normal distribution.
Therefore, the assumption of the Gaussianity is not justified all the time in the
practical application. The marginal distributions of single-period forecast reduction
fitted by GL distribution are shown in Fig. 9.7 for the pre-flood and main flood
seasons, respectively, in which the line represents the theoretical distribution and
the circles the empirical frequencies of observations. Figure 9.7 indicates that the
GL distribution fitted the empirical distribution well. Thus, the GL distribution is
used as the marginal distribution hereafter.

After determining the marginal distributions, the joint distribution is constructed.
Since copula function requires that each variable is independent, we must make sure
that there is no autocorrelation in the variables for building copulas. The autocor-
relation functions for each variable in copula functions for both pre-flood and main
flood seasons are calculated and shown in Fig. 9.8. The lags are from 1 to 23.
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Results show that the autocorrelations are not large and usually within the range of
−0.2 to 0.2. Therefore, each variable is slightly time-dependent, and we can take it
as independent. A number of recent papers, such as Breymann and Dias (2003) and
Demarta and McNeil (2005), have shown that the empirical fit of the Student copula
is generally superior to that of the so-called Gaussian copula. In addition, Student

Fig. 9.6 Marginal distributions fitted by normal distribution and histograms fitted by normal and
GL distributions for variables X1, X2, and X3 in the main flood season
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(a) Pre-flood season 

(b) Main flood season 

Fig. 9.7 Marginal distributions of single-period reduction of forecast uncertainty fitted by the GL
distributions for the main season
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copula can capture better the phenomenon of dependent extreme values (Demarta
and McNeil 2005), which is often observed in hydrological data. Therefore, the
four-dimensional Student copula is used for modeling the dependence among
forecast uncertainty reduction for the pre-flood and main flood seasons, respec-
tively. The maximum likelihood method is used to estimate the parameters of those

(a) Pre-flood season
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Fig. 9.8 Autocorrelation functions for the variables X1, X2, X3, and X4 in copula function for
pre-flood and main flood seasons
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two copulas. The estimated parameters of Student copulas for the pre-flood and
main flood seasons are given in Table 9.5. The p-values are also calculated. Results
demonstrate that the selected bivariate copulas can be accepted. The empirical and
theoretical joint probabilities are calculated and plotted as shown in Fig. 9.9, in
which the x-axis represents the empirical copula value, and the y-axis represents the
theoretical copula value. If the copula model gives a better fit, the values calculated
by empirical copulas should be equal to those calculated by theoretical copulas.
Figure 9.9 indicates that there are no significant differences between empirical and
theoretical probabilities in both pre-flood and main flood seasons.

Based on the established Student copulas, the forecast uncertainty series are
generated step by step. First, the relative reduction of forecast uncertainty in a single
period rw is generated for both the pre-flood and main flood seasons using the CUE
model. Since the forecast horizon is 4, four variables are simulated at each time.
1000 samples of rw are generated finally. Statistics of the observed and simulated
single-period reduction of forecast uncertainty, including the mean, standard
deviation and skewness, are compared. In order to illustrate the distribution

Table 9.5 Parameters of Student t copulas in June and main flood season

Periods h1 h2 h3 h4 h5 h6 df p-value

June 0.337 0.034 0.032 0.490 0.078 0.500 3 0.21

Main flood
season

0.418 0.087 −0.030 0.600 0.200 0.546 3 0.10

Note df means the degree of freedom

Fig. 9.9 Joint distributions and empirical probabilities of observed combinations for the pre-flood
season (June) and main flood seasons (July to Sept.)
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characteristic of mean value, standard deviation and skewness, the box figures are
drawn and shown in Fig. 9.10. The box figure can give the information of mini-
mum, lower quartile (25% of data less than this value), median, upper quartile (25%
of data greater this value) and maximum values. If the stochastic simulated model
performs well, the observed values should be around the median value in the box. It
can be seen from Fig. 9.10 that the generated statistics fit the observed statistics
well. Therefore, the generated single-period reduction of forecast uncertainty can be
used for calculation hereafter.

Second, knowing the single-period uncertainty reduction, the forecast uncer-
tainty is calculated based on the uncertainty evolution method. The uncertainties
with a lead-time from 1-day to 4-day are computed. The performance of the pro-
posed method is evaluated by comparing mean, standard deviation and skewness of
the generated uncertainty values with those of the observed uncertainty. These
statistics are presented by boxplots in Fig. 9.11. It can be seen that the generated
forecast uncertainty fitted the observed one well. The simulated forecast uncertainty
captures all the statistics of the observed uncertainty, which can be used for risk
analysis. The generated forecast uncertainty hydrograph in flood season is shown in
Fig. 9.12.

(a) Pre-flood season 

(b) Main flood season 

Fig. 9.10 Observed and simulated mean value, standard deviation and skewness of single-period
forecasting reduction in the pre-flood and main flood seasons
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9.5.3 Generation of Predicted Inflow Series

The observed daily inflow of the Three Gorges Reservoir is simulated using the
copula method described by Lee and Salas (2011) who concluded that the Gumbel
copula showed a better fit than the Frank or Clayton copula. Therefore, the Gumbel
copula is used to generate the inflow series. In order to demonstrate the performance
of synthetic daily flood simulation, basic statistics, including mean value, standard

(a) Pre-flood season 

(b) Main flood season 

Fig. 9.11 Means, standard deviations, and coefficients of skewness of the observed and simulated
forecast uncertainty in the pre-flood and main flood seasons

Fig. 9.12 The simulated relative flood forecast errors during the flood season
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deviation, and skewness, are calculated and shown in Fig. 9.13. Results show that
the generated series can be used as the observed data in forecast uncertainty
analysis. Since the forecast uncertainty series and observed flood data are available,
the predicted daily inflow series is obtained using Eq. 9.11.

9.5.4 Flood Risk Analysis

In order to analyze the flood risk of TGR, we first need to know its operation policy
that is summarized as follows. From May 20 to the beginning of June, the water
level of TGR needs to be dropped to 145 m. During the flood season (from June to
September), the water level should not be higher than 145 m, if there is no large
flood occurring. In October, the water level needs to increase to the normal water
level, 175 m. From November to the end of April the following year, the water

Fig. 9.13 Observed and simulated mean flood, standard deviation and skewness of the inflow
data of TGR
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level of TGR should be kept as high as possible in order to have more water to
generate electricity. For flood control, we only focus on the reservoir operation in
the flood season, when the water level should be kept at FCWL 145 m.

The most important area for flood control is the Jinjiang River, which is part of
the Yangtze River from the Zhicheng to Chenglingji stations. The water level at
Shashi, which is the control gauging station of the Jingjiang River, should not
exceed 44.5 m during the flood season. Usually the TGR can control 95% flood of
the Jingjiang River reach. If the release of TGR is equal to or less than 53,900 m3/s,
flood discharge in the Jingjiang River should not exceed 56,700 m3/s, and its
corresponding water level will not surpass 44.5 m. The reservoir release is calcu-
lated by Eq. 9.12 for each period. If it is greater than 53,900 m3/s, it will be equal to
53,900 m3/s in order to keep the safety of the Jingjiang River reach. When the
water level is higher than 175 m and below 180.4 m, the calculated reservoir
release should be not greater than 79,000 m3/s. If it is, it will be equal to 79,000 m3/
s. If the water level is higher than 180.4 m, the reservoir release will be determined
by the reservoir’s release capacity.

The predicted daily flow data with the lead time from 1-day to 4-day is simulated
based on the proposed method. The system state of interest is the 10,000-year flood,
since the highest water level, 180.4 m, is determined by 10,000-year design flood.
This extreme flood event is not contained in the available observations. Therefore, a
stochastic simulation method is used to estimate the flood risk. Then, the risk of
10,000-year daily flow data with forecast uncertainty is generated.

After calculation using the observed data coupled with regular reservoir flood
routing method, when the 10,000-year design flood q10,000 occurs, the water level
will reach 180.4 m. Therefore, the water level of 180.4 m corresponds to the
10,000-year design flood. In other words, when Zc is equal to 180 m, the occur-
rence probability PðmaxfZðtÞ; t ¼ 1; 2; . . .; Tg[ 180:4Þ in the flood season is
0.01%.

The risk of PðmaxfZðtÞ; t ¼ 1; 2; . . .;Tg[ 180:4Þ is estimated using the gen-
erated 10,000-year predicted daily inflow data with the lead time from 1-day to
4-day and the pre-release model. Results show that the risk is 0, which is less than
0.01%. This means that the risk calculated by the predicted daily flood coupled with
the pre-release model is lower than that by the observed data coupled with the
regular reservoir routing method.

9.6 Conclusion

The uncertainty in flood forecast has been recognized as a major factor that impacts
the accuracy of forecasting. One important issue is to deal with the uncertainty in
forecasting when predicting flood. This chapter introduces an approach to estimate
the forecast uncertainty evolution and assesses its effect on real-time reservoir
operation. A copula-based uncertainty evolution (CUE) model is used to generate
the uncertainty in flood forecasting. Then, the effects of forecast uncertainty on
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real-time reservoir operation are assessed using a flood risk analysis method.
The Three Gorges reservoir is selected as a case study. The main conclusions are
summarized as follows.

(1) The forecast uncertainty evolution model decomposes the total forecast
uncertainty into uncertainty reductions of individual single periods. The pro-
posed CUE method overcomes the disadvantages of the traditional uncertainty
evolution model, including the assumptions of unbiasedness, Gaussianity, and
stationarity of forecast uncertainty or errors. The performance of the proposed
method for simulating the forecast uncertainty is evaluated by comparing mean,
standard deviation and skewness of the generated uncertainty series with those
of the observed series. It can be seen that the generated forecast uncertainty
series captures all the statistics of the observed uncertainty series.

(2) The synthetic predicted daily flow is simulated to represent the predicted inflow
of TGR. Results show that using the forecasted inflow coupled with the
pre-release module for real-time reservoir operation of TGR in the flood season
will not increase flood risks.
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Chapter 10
Flood Forecasting Using Copula
Entropy Method

10.1 Introduction

There are many models used for flood forecasting. A data-driven technique that has
gained significant attention for its effectiveness in function approximation charac-
teristics is artificial neural network (ANN) modeling (de Vos and Rientjes 2005;
Kasiviswanathan and Sudheer 2013). Artificial neurons (AN), first introduced in
1943 (McCulloch and Pitts 1943), which mimic the functioning of a human brain
by acquiring knowledge through a learning process that involves finding an optimal
set of weights for the connections and threshold values for the nodes. Many studies
focusing on flood forecasting have shown that ANN is superior to traditional
regression techniques and time-series models, including autoregressive (AR) and
autoregressive moving average (ARMA) (Raman and Sunilkumar 1995; Jain et al.
1999; Thirumalaiah and Deo 2000; Abrahart and See 2002; Castellano-Méndeza
et al. 2004). Hsu et al. (1995) showed that the ANN model provided a better
representation of the rainfall–runoff relationship than the ARMAX time series
model or the conceptual SAC-SMA (Sacramento soil moisture accounting) models.
Shamseldin (1997) examined the effectiveness of rainfall-runoff modeling with
ANNs by comparing their results with the Simple Linear Model (SLM), the sea-
sonally based Linear Perturbation Model (LPM) and the Nearest Neighbor Linear
Perturbation Model (NNLPM), and concluded that ANNs provided more accurate
discharge forecasts than some of the traditional models. Birikundavyi et al. (2002)
investigated the ANN models for daily streamflow prediction and also showed that
ANNs outperformed the classic autoregressive model coupled with a Kalman filter
(ARMAX-KF) and a conceptual model (PREVIS). Therefore, ANNs have proved
to be an excellent tool for flood forecasting.

One of the most important steps in the ANN development is the determination of
significant input variables (Bowden et al. 2005a; Fernando et al. 2009). In most
water resources applications of ANNs, little attention has been given to the task of
selecting appropriate model inputs (Maier and Dandy 2000). In general, not all of

© Springer Nature Singapore Pte Ltd. 2019
L. Chen and S. Guo, Copulas and Its Application in Hydrology
and Water Resources, Springer Water, https://doi.org/10.1007/978-981-13-0574-0_10

237

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0574-0_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0574-0_10&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0574-0_10&amp;domain=pdf


the potential input variables will be equally informative, since some may be cor-
related, noisy or may have no significant relationship with the output variable being
modeled (Bowden et al. 2005a). Including a large number of inputs in ANN models
and relying on the network to determine the critical model inputs usually increase
the network size (Maier and Dandy 2000). This also brings a number of disad-
vantages, such as decreasing processing speed and increasing the amount of data
required to efficiently estimate the connection weights (Lachtermacher and Fuller
1994).

Fernando et al. (2009) indicated that the task of an input selection algorithm is to
determine the strength of the relationship between potential model inputs and
outputs. However, the real systems are generally complex and mostly associated
with nonlinear processes. Therefore, the dependencies between output and input
variables are difficult to measure. Bowden et al. (2005a) reviewed the methods for
input determination in water resources ANN applications. Three most commonly
used approaches are methods that rely on the use of a priori knowledge of the
system being modeled, methods based on linear correlation, and methods that
utilize a heuristic approach. The prior knowledge method which depends on an
expert’s knowledge is very subjective and case dependent. The drawbacks of the
linear correlation method are summarized as (a) it only applies to linear correlation,
and (b) it tends to focus on the degree of dependence, and ignore the structure of
dependence (Zhao and Lin 2011). For a heuristic approach, various ANN models
are trained using different subsets of inputs. The main disadvantage of these
approaches is that they are based on trial-and-error, and as such there is no guar-
antee that they will find the globally best subsets. Another disadvantage of stepwise
approaches is that they are computationally intensive (Bowden et al. 2005a).

Maier and Dandy (2000) indicated that there were distinct advantages in using
analytical techniques to help determine the inputs for multivariate ANN models.
Mutual information is an analytical and non-linear method to measure the depen-
dences, which has been successfully employed by many researchers (e.g., Mishra
and Singh 2009; Angulo et al. 2011; Jeong et al. 2012; Tongal et al. 2013; Mishra
et al. 2013). However, there is a disadvantage when using MI to select inputs of
ANN. Although a candidate model input might have a strong relationship with the
model output, this information might be redundant if the same information is
already provided by another input (Fernando et al. 2009). Sharma (2000) proposed
an input determination method based on the partial mutual information
(PMI) criterion. In a review of approaches used to select the inputs to ANN models,
Bowden et al. (2005a) concluded that the partial mutual information
(PMI) algorithm of Sharma is superior to methods commonly used to determine the
inputs to ANN models, as it is model-free, uses a non-linear measure of dependence
(mutual information), and able to cater to input redundancy and has a well-defined
stopping criterion (Fernando et al. 2009). May et al. (2008a) used this model for
forecasting water quality in water distribution systems. Furthermore, Fernando et al.
(2009) modified PMI input selection algorithm to increase its computational
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efficiency, while maintaining its accuracy. They introduced the average shifted
histograms (ASHs) as an alternative to kernel-based methods for the estimation of
mutual information (MI).

However, there are several disadvantages of the methods of PMI algorithm
mentioned above. First, hydrological events, such as rainfall and runoff, are con-
tinuous. Some methods mentioned above used the discrete version to calculate PMI.
Therefore, a method for the continuous variable should be used. Second, these
methods need to estimate both the marginal and joint probability density distri-
butions, which involves a product of two terms and lead to a complex calculation
work. In order to overcome this problem, the copula and entropy-based method,
named copula entropy (CE) method was proposed by Chen et al. (2014a, b) to
calculate the MI and PMI values.

Furthermore, when using an ANN model, the appropriate ANN model needs to
be selected. Lekkas et al. (2004) indicated that it is preferable for every new
application to test different types of ANNs rather than using a pre-selected one.
A large number of ANN architectures and algorithms have been developed so far,
such as multilayer feedforward networks (Rumelhart et al. 1986), self-organizing
feature maps (Kohonen 1982), Hopfield networks (Hopfield 1987), counter prop-
agation networks (Hecht-Nielsen 1987), radial basis function networks (Powell
1987), general regression neural network (GRNN) (Specht 1991), and recurrent
ANNs (Elman 1988). Of these networks, the most commonly used are feedforward
networks and radial basis function networks (Karunanithi et al. 1994). Multi-layer
feed forward networks have been found to perform best when used in hydrological
applications (Hsu et al. 1995), and as such, they are by far the most commonly used
(Maier and Dandy 2000; Lekkas et al. 2004). Jayawardena et al. (1997) compared
multilayer Perceptions (MLP), radial basis function (RBF) and artificial neural
network (ANN) approaches in flood forecasting. Results showed that the RBF
network-based models gives predictions comparable in accuracy to those from the
MLP based models. Park and Sandberg (1991) proved theoretically that the RBF
type ANNs are capable of universal approximations and learning without local
minima, thereby guaranteeing convergence to globally optimum parameters. In
addition, Bowden et al. (2005a, b) recommended the general regression neural
network (GRNN), a class of ANN that was introduced firstly by Specht (1991), for
hydrological prediction, because of its advantages of nonlinear modeling between
inputs and output, fixed network architecture and quicker training than other ANNs.
Therefore, the multi-layer feed (MLF) forward networks, RBF networks and GRNN
are considered in this chapter.

This chapter aims to build and improve the accuracy of the hydrological forecast
model established by an ANN method. The input technique, copula entropy
method, is first used to select optimal model inputs. Three representative models,
namely MLF forward networks, RBF networks and GRNN, are then applied to
conduct streamflow prediction. The upper Yangtze River and Jinsha River are
selected as case studies. The performance of these models is analyzed and com-
pared. Finally, the model with best-predicted results is determined.
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10.2 Flood Forecasting Based on Artificial Neural
Networks (ANN)

10.2.1 ANN Models

Therefore, in this study, a representative ANN model for flood forecasting model
can be defined as

Q̂t ¼ f ðQt�l1 ;Rt�l2 ;Xt�l3Þ ð10:1Þ

where Q̂t stands for the predicted flow at time instance t; Qt�l1 is the antecedent
flow (up to t − l1 time steps); Rt�l2 is the antecedent rainfall, and Xt�l3 represents
the observed runoff at a neighboring sub-basin in this study.

In this chapter, three ANN models are used. They are multi-layer feedforward
networks, radial basis function (RBF) networks, and general regression neural
network (GRNN).

10.2.1.1 GRNN Model

The general regression neural network (GRNN), developed by Specht (1991), is a
simple yet very effective local approximation based neural network in the sense of
estimating a probability distribution function (Islam et al. 2001). The GRNN net-
work is a three-layer network with one hidden layer. The GRNN paradigm is briefly
outlined below, and details can be found in Specht (1991). Assume that f (x,
y) represents a known joint continuous probability density function of a vector
random variable x, and a scalar random variable y. Let x be a specific measured
value of the random variable X. The conditional mean of y given x, also called the
regression of y on x, is given by Specht (1991):

E½yjx� ¼
R1
�1 yf ðx; yÞdyR1
�1 f ðx; yÞdy ð10:2Þ

where f (x, y) is not known, then a sample of observations of x and y is used to
obtain an estimate f̂ ðx; yÞ. The GRNN is an estimate of E½yjx�, which is the con-
ditional expectation of y given x.

10.2.1.2 Multi-layer Feed-Forward Networks (MLF)

The feed-forward neural network is the first and is arguably the simplest type of
artificial neural network devised. In this network, the information moves in only
one direction, forward, from the input nodes, through the hidden nodes (if any), to
the output nodes. There are no cycles or loops in the network. MLF neural net-
works, trained with a back-propagation learning algorithm, are the most popular
neural networks (Zupan and Gasteiger 1993).
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An MLF neural network consists of neurons, which are ordered into layers. The
first layer is called the input layer, the last layer is called the output layer, and the
layers between are hidden layers (Svozil et al. 1997). Each neuron in a particular
layer is connected with all neurons in the next layer. The connection between the i-
th and j-th neuron is characterized by the weight coefficient wij and the i-th neuron
by the threshold coefficient #i. The weight coefficient reflects the degree of
importance of the given connection in the neural network. The output value (ac-
tivity) of the i-th neuron xi is determined by

xi ¼ f ðniÞ ð10:3Þ

ni ¼ #i þ
X

xijxj ð10:4Þ

where ni is the potential of the i-th neuron, and f(•) is so-called transfer function. In
multi-layer feed forward neural networks, the most popular non-linear transfer
function used in neural network studies is the logistic function, defined by

f ðnÞ ¼ 1
1þ e�n

ð10:5Þ

The supervised adaptation process varies the threshold coefficients #i and weight
coefficients wij to minimize the sum of the squared differences between the com-
puted and required output values (Svozil et al. 1997).

10.2.1.3 Radial Basis Function (RBF)

An RBF network is a three-layer feed-forward type network. The three layers
include the input layer, the hidden layer and the output layer. The input of RBF is
transformed by the basic functions at the hidden layer. At the output layer, linear
combinations of the hidden layer node responses are added to form the output
(Jayawardena et al. 1997).

The name RBF comes from the fact that the basic functions in the hidden layer
nodes are radially symmetric. The most common choice, however, is the Gaussian
function which can be defined by a mean U and a standard deviation r. For an input
X, the j-th hidden node produces a response given as (Jayawardena et al. 1997):

hj ¼ expf� Xi � Uj

�� ��
2r2j

g ð10:6Þ

where Xi − Uj is the distance between the point representing the input X and the
center of the hidden node as measured by some norm. In RBF networks, the
connections between input and hidden layers are not weighted. The inputs therefore
reach the hidden layer nodes unchanged.

10.2 Flood Forecasting Based on Artificial Neural Networks (ANN) 241



The output yi of the network at the output node is given as:

yi ¼
Xm
i¼1

hiwij ð10:7Þ

Parameters of an RBF type neural network are the mean U and standard devi-
ation r of the basic functions at the hidden layer nodes, and the synaptic weights wij

of the output layer nodes.

10.2.2 Performance Indexes

The performance indexes are used to evaluate the established ANN model, and the
one with the best performance is finally selected for the streamflow forecasting.

The performance of the hydrological forecasting models is assessed by the
criteria specified by the Ministry of Water Resources of China (MWR 2006). These
are the coefficient of efficiency (i.e., Nash–Sutcliffe efficiency), which is a measure
of the goodness-of-fit between recorded and predicted discharge time series data,
and the ‘qualified rate’ (a) of predicted individual flood event peak discharges and
volumes (Li et al. 2010). A forecast peak discharge or flood volume is termed
‘qualified,’ when the difference between the predicted and the recorded values is
within ±20% of the recorded value. The root-mean-square error (RMSE) between
observed and predicted flood values is also used as a performance criterion in this
study. The formula for Nash–Sutcliffe efficiency (NSE) is given in Eq. 8.25 of
Chap. 8.

10.3 Determination of Inputs of ANN Using
the CE Theory

In this section, a new method for input identification is introduced. First, the relation
between PMI and CE is discussed, and the theory of CE is applied for input
identification. Second, according to the calculated value of CE, a reliable and
efficient criterion to decide when to stop the addition of new inputs to the list of
selected inputs is developed. Third, a detailed procedure of the proposed method is
given.

10.3.1 Application of CE to Input Identification

In the following, first, the definition of PMI (partial mutual information) is intro-
duced. Second, the relation between CE and PMI is discussed.
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MI, which is equal to the negative CE, can be used to identify the non-linear
dependence between candidate input and output variables (Fernando et al. 2009).
However, the MI method is not directly able to deal with the issue of redundant
inputs (Bowden et al. 2005a). To overcome this problem, Sharma (2000) introduced
the concept of partial mutual information (PMI), which represents the information
between two observations that is not contained in a third one and provides a
measure of partial or additional dependence the new input can add to the existing
prediction model (Bowden et al. 2005a).

The PMI between the output (dependent variable) y and the input (independent
variable) x, for a set of pre-existing inputs z, can be given by (Bowden et al. 2005a):

PMI ¼
ZZ

fX 0;Y 0 ðx0; y0Þ ln½ fX 0;Y 0 ðx0; y0Þ
fX 0 ðx0ÞfY 0 ðy0Þ�dx

0dy0 ð10:8Þ

where x′ = x − E[x|z]; and y′ = y − E[y|z], where E denotes the expectation oper-
ation. Variables x′ and y′ only contain the residual information in variables x and
y after considering the effect of already selected input z (Fernando et al. 2009), and
can be calculated based on the GRNN model. MATLAB is used to realize for
GRNN modelling.

From the discussions in Chap. 2, PMI also can be described using the CE:

PMI ¼
ZZ

fX 0;Y 0 ðx0; y0Þ ln½ fX 0;Y 0 ðx0; y0Þ
fX 0 ðx0ÞfY 0 ðy0Þ�dxdy

0 ¼ �HcðX 0; Y 0Þ ð10:9Þ

Equation 10.9 shows that PMI is equal to the negative CE of variables of X′ and
Y′. Therefore, the CE can be used to determine the inputs instead of MI and PMI
method.

10.3.2 Termination Criterion

The CE algorithm requires a reliable and efficient criterion to decide when to stop
the addition of new inputs to the list of selected inputs (Fernando et al. 2009). There
are several methods that can be used to achieve this. Sharma (2000) and Bowden
et al. (2005a, b) used the 95th percentile confidence limit for the sample PMI to
decide whether the PMI of a candidate input is significantly different from zero and
should therefore be added to the set of already selected inputs. May et al. (2008b)
and Fernando et al. (2009) indicated that this method, which used the bootstrap with
100 bootstraps to estimate the 95th percentile confidence limit, places a significant
computational burden on the algorithm. And a bootstrap so small might not provide
a reliable estimation of the confidence bound, which could lead to unreliable and/or
sub-optimal input variable selection (May et al. 2008b; Fernando et al. 2009).
Fernando et al. (2009) introduced the Hampel identifier which is proposed by
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Davies and Gather (1993) as a termination criterion. Using this method, May et al.
(2008b) and Fernando et al. (2009) recommended a termination algorithm. The
details of the Hampel test criterion are described in the following.

The Hampel identifier is an outlier detection method for determining whether a
given value x is significantly different from others within a set of values X. Assume
that a set of candidates will initially contain some proportion of redundant variables,
and the significant variable will be detected. The Hampel distance begins by cal-
culating the absolute deviation from the median negative CE for all candidates and
defined as (Fernando et al. 2005; May et al. 2008b):

dj ¼ NH � NHð50Þ�� �� ð10:10Þ

where dj is the absolute deviation; NH represents the negative CE values; and
NHð50Þ denotes the median NH for the candidate set.

Then the Hampel distance is calculated by Fernando et al. (2005) and May et al.
(2008b):

Zj ¼ dj

1:4826dð50Þj

ð10:11Þ

where dj denotes the Hampel distance; and dð50Þj denotes the median absolute
deviation dj. If the Hampel distance, Zj is greater than 3, namely Zj > 3, then the
candidates are added to the selected input set.

10.3.3 Procedures of Input Variable Selection

A stepwise input selection algorithm is now formulated for determining the inputs
of an ANN using the CE method described above. First, determine the set of
variables that can be taken as potential input of the ANN. This variable set is
defined as the vector Iin. Denote the vector that will store the final identified input as
I. The algorithm is as follows.

(1) Based on Eq. 10.10, use the copula-entropy method to calculate the PMI
between the output and each of the potential new inputs in Iin, conditional on
the preexisting input set I. The conditional expectations are computed using the
GRNN method (Bowden et al. 2005a).

(2) Calculate the Hampel distance Zj corresponding to the PMI obtained in step (1).
(3) If the Hampel distance for the highest PMI is greater than 3, then move the

candidate to the selected input set I.
(4) Repeat steps (1) to (3) until all significant inputs have been selected.

244 10 Flood Forecasting Using Copula Entropy Method



10.4 Evaluation of the Proposed Method

In order to assess the accuracy and performance of the proposed method, two tests
are carried out. One test is based on the Gaussian variables whose MI values are
known beforehand. The other is based on a range of synthetically generated
datasets, whose dependence attributes are known beforehand.

10.4.1 Accuracy Test

The copula-entropy method is used to calculate the PMI values. Two calculation
methods, namely multiple integration method and Monte Carlo method introduced
in Chap. 2, are employed to calculate PMI values. In order to test the accuracy of
those two methods, the estimated MI values are compared with the theoretical ones.
The theoretical PMI values for the normal (Gaussian) copula are given as follows
(Calsaverini and Vicente 2009).

TgaussðX; YÞ ¼ � 1
2
logð1� q2Þ ð10:12Þ

where q is the Pearson linear correlation coefficient between Gaussian variables
X and Y.

Assuming Person correlation coefficient q ranges from −0.9 to 0.9 with step 0.1,
the MI is calculated according to the Eq. 10.12 and the two proposed methods,
respectively. The errors between the exact value of MI and the MI estimates
obtained using the copula-entropy method is therefore given by:

E ¼ TGaussðX; YÞ � TðX; YÞ ð10:13aÞ

R ¼ ðIGaussðX; YÞ � IðX; YÞÞ=IGaussðX; YÞ ð10:13bÞ

where E represents the absolute error, and R the relative error.
Assuming that the Pearson correlation coefficient q ranges from −0.9 to 0.9 with

a step size of 0.1, the exact and estimated MI values are calculated by Eq. 10.12 and
the proposed method, respectively. Multiple integration and Monte Carlo methods
are used for calculating the CE, respectively. For the first method, the multiple
integration method proposed by Berntsen et al. (1991) is applied. For the second
method, 10,000 pairs of u are generated, and average values of ln[c(u)] are cal-
culated. The absolute and relative errors are calculated and listed in Table 10.1 and
results of the calculation are also shown in Fig. 10.1. It is indicated that the MI
values calculated by the three methods are very close and the values calculated by
the multiple integration method are more accurate than that by Monte Carlo
method. Therefore, the proposed method is satisfactory and the multiple integration
method can be used for calculations hereafter.
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Table 10.1 Absolute and Relative Errors between the Estimates and Theoretical MI value

q EI RI EM RM

−0.9 0.000 −0.01 −0.009 −1.10

−0.8 0.008 1.59 −0.004 −0.88

−0.7 0.009 2.70 −0.001 −0.18

−0.6 0.000 0.00 0.002 0.67

−0.5 0.000 0.00 0.013 9.18

−0.4 0.000 0.00 0.002 1.83

−0.3 0.000 0.00 0.000 −0.42

−0.2 0.000 0.00 0.002 10.29

−0.1 0.000 0.00 −0.001 −10.00

0 0.000 – 0.000 –

0.1 0.000 0.00 0.000 −6.00

0.2 0.000 0.00 0.002 7.35

0.3 0.000 0.00 0.002 5.08

0.4 0.000 0.00 0.002 2.18

0.5 0.000 0.00 −0.003 −2.43

0.6 0.000 0.00 −0.002 −0.94

0.7 0.009 2.70 0.009 2.70

0.8 0.008 1.59 0.008 1.59

0.9 0.000 −0.01 0.000 −0.01

Fig. 10.1 Comparisons of estimated and theoretical MI values, which is calculated by copula
entropy method and Eq. 10.13a, b, respectively
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10.4.2 Function Text

Before applying the proposed method to a real-world case study, it is necessary to
carry out a statistical test based on the generated synthetic data. Bowden et al.
(2005a), May et al. (2008b) and Fernando et al. (2009) used several models for
testing, four of which are applied in this chapter. These included three time-series
models and one a nonlinear system. The four models are given as follows.

(1) AR(1)

xt ¼ 0:9xt�1 þ 0:866et ð10:14Þ

where et is Gaussian random noise with a zero mean and unit standard
deviation for both models. xt is the time series, and 1 denotes the number of
lags.

(2) AR(9)

xt ¼ 0:3xt�1 � 0:6xt�4 � 0:5xt�9 þ et ð10:15Þ

where 1, 4, and 9 represent the number of lags.
(3) TAR(2) Threshold Autoregressive order 2

xt ¼ �0:5xt�6 þ 0:5xt�10 þ 0:1et if xt�6 � 0
0:8xt�10 þ 0:1et if xt�6 [ 0

�
ð10:16Þ

(4) ADD(15)

f ðx1; . . .; x15Þ ¼ 10 sinð
Y

x1x2Þþ 20ðx3 � 0:5Þ2 þ 10x4 þ 5x5 þ e ð10:17Þ

where e is Gaussian noise with zero mean and unit variance; and x1, x2, x3, x4,
and x5 can be generated from a uniform distribution

1020 data points from each of the above synthetic models are generated with the
first 20 points being discarded to reduce the effect of an arbitrary initialization
(Bowden et al. 2005a). For these models, the first 15 lags are chosen as potential
model inputs. The GRNN model with two hidden layers is used to calculate E[x|
z] and E[y|z]. A trial-and-error method is employed to determine a suitable number
of hidden layer nodes for each time. The final input subset is obtained based on the
improved PMI method. The tested results for each of these models are shown in
Tables 10.2, 10.3, 10.4 and 10.5. Take AR(9) model as an example. For the first
iteration, the MI value is calculated. The highest MI value occurs in lag 4, which is
0.239 with a Zj of 4.43. Since the Zj is greater than 3, the lag 4 is selected. The
highest PMI value for the second, third and fourth iterations show up in lags 9, 1
and 8 with the Zj of 7.00, 5.86 and 1.99, respectively. Therefore, lags 9 and 1 are
selected and lag 8 is discarded. The final input sets for these test functions are given
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in Table 10.6. It is seen from Tables 10.2, 10.3, 10.4, 10.5 and 10.6 that the
proposed method is rational and can be applied to both time series and non-linear
models. The proposed method is capable of choosing inputs in their correct order of
significance.

Table 10.2 Test results based on generated data for AR(1) model

First iteration Second iteration

Lags MI Zj Lags PMI Zj

1 0.935 4.47 2 0.001 0.64

2 0.594 2.43 3 0.003 0.49

3 0.430 1.45 4 0.004 0.71

4 0.329 0.84 5 0.006 1.76

5 0.277 0.53 6 0.004 1.00

6 0.248 0.36 7 0.002 0.42

7 0.213 0.15 8 0.003 0.44

8 0.188 0.00 9 0.000 1.00

9 0.155 0.20 10 0.000 1.18

10 0.128 0.36 11 0.000 1.21

11 0.110 0.47 12 0.002 0.22

12 0.075 0.67 13 0.003 0.20

13 0.064 0.74 14 0.002 0.20

14 0.048 0.83 15 0.006 1.74

15 0.031 0.94

Table 10.3 Test results based on generated data for AR(9) model

First iteration Second iteration Third iteration Fourth iteration

Lags MI Zj Lags PMI Zj Lags PMI Zj Lags PMI Zj
1 0.081 1.03 1 0.051 1.37 1 0.142 5.86 2 0.000 0.72

2 0.002 0.67 2 0.006 0.50 2 0.019 0.15 3 0.000 0.66

3 0.037 0.09 3 0.000 0.73 3 0.003 0.60 5 0.001 0.15

4 0.239 4.43 5 0.013 0.20 5 0.070 2.49 6 0.001 0.02

5 0.011 0.47 6 0.006 0.50 6 0.002 0.67 7 0.002 0.82

6 0.002 0.67 7 0.003 0.62 7 0.004 0.55 8 0.004 1.99

7 0.007 0.55 8 0.058 1.67 8 0.016 0.00 10 0.000 0.69

8 0.030 0.06 9 0.188 7.00 10 0.039 1.05 11 0.001 0.02

9 0.090 1.22 10 0.093 3.10 11 0.010 0.27 12 0.004 1.74

10 0.068 0.75 11 0.014 0.15 12 0.001 0.72 13 0.002 0.46

11 0.018 0.32 12 0.010 0.32 13 0.002 0.68 14 0.002 0.45

12 0.001 0.69 13 0.117 4.07 14 0.059 1.97 15 0.000 0.74

13 0.200 3.60 14 0.078 2.49 15 0.031 0.67

14 0.126 2.00 15 0.021 0.15

15 0.033 0.00
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Table 10.4 Test results based on generated data for TAR(2) model

First iteration Second iteration Third iteration

Lags PMI Zj Lags PMI Zj Lags PMI Zj
1 0.006 0.72 1 0.000 0.72 1 0.000 0.53

2 0.014 0.70 2 0.003 0.70 2 0.000 0.69

3 0.006 0.63 3 0.003 0.63 3 0.003 0.87

4 0.021 0.37 4 0.001 0.37 4 0.003 1.34

5 0.004 0.67 5 0.000 0.67 5 0.001 0.00

6 0.041 15.94 6 0.029 15.94 7 0.000 0.67

7 0.004 0.79 7 0.000 0.79 8 0.003 1.17

8 0.012 0.31 8 0.001 0.31 9 0.001 0.16

9 0.009 0.11 9 0.001 0.11 11 0.001 0.00

10 0.359 0.11 11 0.002 0.11 12 0.000 0.60

11 0.009 0.69 12 0.003 0.69 13 0.003 1.03

12 0.018 0.68 13 0.003 0.68 14 0.004 1.90

13 0.011 0.92 14 0.003 0.92 15 0.001 0.23

14 0.012 0.34 15 0.001 0.34

15 0.005 0.72

10.5 Flood Forecasting for Three Gorges Reservoir

10.5.1 Study Area

The map and introductions of the study area are given in Chap. 6. A total of six
gauging stations are taken into accounts. From upstream to downstream, they are
Pingshan, Gaochang, Lijiawan, Beibei, Wulong, and Yichang, each with concurrent
mean daily flow data from the year 1998 to 2007. The flow of each gauging station
is taken as a variable. The past values of Pingshan, Gaochang, Lijiawan, Beibei,
Wulong and Yichang stations are taken as potential input candidate variables and
the runoff of Yichang station at time t as the output variable. The data used at
Yichang gauging station is naturalized, and the storage effects of Three Gorges
Reservoir (TGR) can be removed. We use this data to represent the input flow of
Three Gorges Reservoir, which cannot measure directly. Therefore, this flood
forecasting model aims to predict the input flow of Three Gorges Reservoir. The CE
algorithm with the Hampel distance outlier detection approach as the termination
criterion is used to identify the significant inputs.

10.5.2 Selection of Input Variables for ANN Model

Bowden et al. (2005b) proposed a two-stage procedure for input selection. The
same method is used in this case study. The first step is called bivariate stage, which
aims to determine the significant lag of each variable. The second step is called
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Table 10.5 Test results based on generated data for ADD(15) model

First iteration Second iteration Third iteration

Lags PMI Zj Lags PMI Zj Lags PMI Zj
1 0.001 0.00 1 0.001 0.01 1 0.002 0.23

2 0.001 0.15 2 0.001 0.26 2 0.007 2.67

3 0.190 172.88 4 0.516 493.78 5 0.255 135.51

4 0.132 119.90 5 0.144 137.10 6 0.004 1.28

5 0.051 45.66 6 0.001 0.28 7 0.002 0.00

6 0.001 0.05 7 0.001 0.20 8 0.002 0.23

7 0.001 0.22 8 0.001 0.01 9 0.000 0.82

8 0.000 0.86 9 0.002 0.95 10 0.000 0.79

9 0.000 0.67 10 0.000 0.94 11 0.000 0.67

10 0.000 0.83 11 0.002 0.72 12 0.003 0.51

11 0.002 0.54 12 0.000 0.81 13 0.000 0.86

12 0.000 0.42 13 0.001 0.40 14 0.001 0.43

13 0.000 0.71 14 0.006 4.48 15 0.001 0.48

14 0.005 3.37 15 0.000 0.63

15 0.001 0.29

Fourth iteration Fifth iteration Sixth iteration

Lags PMI Zj Lags PMI Zj Lags PMI Zj
1 0.007 8.81 2 0.002 3.56 6 0.000 0.03

2 0.000 0.53 6 0.000 0.00 7 0.000 0.69

6 0.001 0.23 7 0.000 0.67 8 0.000 1.01

7 0.000 0.91 8 0.000 0.21 9 0.000 0.03

8 0.000 0.54 9 0.000 0.56 10 0.001 0.80

9 0.000 0.79 10 0.000 1.11 11 0.001 0.09

10 0.000 0.23 11 0.001 2.50 12 0.000 0.61

11 0.002 2.25 12 0.000 0.57 13 0.000 0.66

12 0.001 0.76 13 0.000 0.44 14 0.002 2.37

13 0.002 1.51 14 0.001 1.76 15 0.001 1.58

14 0.000 0.58 15 0.001 0.74

15 0.001 0.59

Table 10.6 Final selected
input sets for the four models

Model Final selected input sets

AR(1) xt−1
AR(9) xt−4, xt−9, xt−1
TAR(2) x10, x6
TR x3, x4, x5, x1, x2
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multivariate stages, in which the significant lags selected in the previous step are
combined to form a subset of candidates. Then, the final set of significant input can
be obtained using the same PMI method as in step 1.

Details of the method are described as follows. If the number of candidate
variables is (i.e., x1, x2, xi, …, xd) and the output variable is yt, then their own past
values (xi;t�1, xi;t�2, …, xi;t�k) and (yt�1, yt�2, …, yt�k) are potential inputs, where
k refers to the maximum lag that has been included as a potential input. Bowden
et al. (2005b) indicated that if prior knowledge about the relationship between the
input and output time series is available, then k can be chosen such that the lags of
the input variable that exceed k are not likely to have any significant effect on the
output time series. Noting that 3-day and 7-day flood volumes have usually been
employed in flood analysis, a flood event lasts less than two weeks. The period of
two weeks, which is double the time of 7-day, is taken into account in this study.
Except for time t, the first 13 lags of each variable are used as candidate inputs.

First, the MI values between each of (xi;t�1, xi;t�2, …, xi;t�k) and yt and between
(yt�1, yt�2, …, yt�k) and yt are calculated. The significant lags, which have the
highest MI values, are selected. Then the PMI value and its Zj are calculated in each
iteration, the maximum of which with its Zj greater than 3 is selected. The final
selected results of all the stations in step one are summarized in Table 10.7. During
this stage, the original 78 inputs are reduced to 12 inputs. The past runoff (yt�1, yt�2,
…, yt�k) at Yichang station has a great impact on yt. Therefore, several values of
past runoff at Yichang station are also selected. Only one input is selected for
Gaochang, Beibei, Lijiawan and Wulong, and the selected lag times of these sta-
tions matched the flood travel times. The travel times from Pingshan, Gaochang,
Lijiawan, Beibei, Wulong to Yichang station are about 3, 3, 3, 2 and 2 days. From
this point of view, this method is adequate.

Second, the significant lags selected in step one are combined to form a subset of
candidates. The PMI values are calculated based on the CE method. During this
stage, 12 inputs are reduced to 7. The final input set for ANN consisted of Xyc,t−1,
Xyc,t−2, Xps,t−1, Xgc,t−3, Xbb,t−2, Xwl,t−2, Xljw,t−3, in which subscript yc, ps, gc, bb, wl,
ljw mean Yichang, Pingshan, Gaochang, Beibei, Wulong, Lijiawan gauging station,
respectively.

Table 10.7 Final selected
inputs in step one

Stations Selected inputs

Pingshan Lag t − 1, t − 4, t − 2

Gaochang Lag t − 3

Beibei Lag t − 2

Lijiawan Lag t − 3

Wulong Lag t − 2

Yichang Lag t − 1, t − 2, t − 3, t − 4, t − 5
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10.5.3 Flood Forecasting Results Based on the Selected
Inputs

The selected variables based on CE method are used as inputs of the ANN model.
As mentioned above, we use 10-year (1998–2007) data series, eight years of which
are used for training the ANN model, and two of which are used for model vali-
dation. A cross-validation is conducted to evaluate the performance of the proposed
model, which avoids problems of arbitrarily dividing data into calibration and
validation sets.

The GRNN method with two hidden layers is used to establish the ANN model.
Since the cross-validation are used in the case study, it is not possible to use the
same hidden nodes for each data set. A trial-and-error method is employed to
determine a suitable number of hidden layer nodes for each time.

The performance of the hydrological forecasting models is assessed based on the
coefficient of efficiency (i.e., Nash–Sutcliffe efficiency) and qualified rate given
before. Results of flood forecasting are shown in Table 10.8. Time series plots of
observed and predicted flood values obtained with seven inputs selected using the
copula-entropy method are shown in Fig. 10.2. It can be seen that from Table 10.8
and Fig. 10.2 that the model performs quite well.

10.5.4 Comparisons with Other Methods

10.5.4.1 Comparison with Inputs Obtained by the Linear
Correlation Coefficients

Bowden et al. (2005a) pointed out that the linear correlation method is the most
popular analytical technique for selecting appropriate inputs. The proposed method
is compared with the linear correlation coefficient in this section.

Table 10.8 The
cross-validation results based
on the inputs selected by the
CE method

Validation
period

Periods Qualified
rate

RMSE NSE

1998–1999 Training 0.961 2026 0.954

Validation 0.954 3064 0.948

2000–2001 Training 0.962 2242 0.963

Validation 0.960 2182 0.932

2002–2003 Training 0.977 2159 0.964

Validation 0.945 2390 0.938

2004–2005 Training 0.977 1999 0.970

Validation 0.933 2802 0.906

2006–2007 Training 0.973 2017 0.966

Validation 0.937 2423 0.960
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Two assumptions need to be satisfied for the Pearson correlation coefficient. One
is that the variable must follow the multivariate normal distribution, and the other is
that the pairwise dependency is linear. We presume the normal distribution for the
marginal variables. The marginal probability density functions estimated by the
normal assumption and the principle of maximum entropy (POME) method for the
five rivers are shown in Fig. 10.3. It is seen that the distribution estimated by
POME fitted the empirical distribution better than the normal distribution, espe-
cially, for the data of Min, Tuo and Wu Rivers which show high kurtosis and
skewness. The assumption of normality is found to be inappropriate in this case.
However, the notation that this parameter can be measured by the usual linear
correlation relies on the additional assumption that marginal functions are also
normal (Calsaverini and Vicente 2009).

In order to test the validity of the assumption that the pairwise dependence is
linear, the time series of flow data is divided into two segments. Pearson’s corre-
lations are calculated for each segment. The calculated results of the Gaochang
gauging and Wulong gauging stations are listed in Table 10.9, which indicate that
Pearson’s correlation is changing over time, and therefore linear correlation coef-
ficients are not valid for these stations.

In the following, we discuss if the linear correlation coefficient is used, which
inputs are finally selected. Pearson’s correlation coefficients are computed, and the
results are given in Table 10.10. The variable at lag t with the largest correlation
coefficients is definitely selected as an input of ANN. The partial correlation
coefficients (PCC) are used to remove the effect of the selected input variable and
measure the true correlation between potential inputs and output. The theory of PMI
is employed to calculate the PCC between each potential input and output given the
selected input lag t. The calculated results are shown in Fig. 10.4, where the value
for the selected variable is the linear correlation coefficient, and for the other is the
PCC value given the selected input lag t.

Fig. 10.2 Comparison of observed daily flow series with flood forecasting results based on the
proposed input identification method and the traditional linear correlation method
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(b) Tuo River 

(c) Wu River 

(a) Min River 

Fig. 10.3 Fitting frequency
histograms of flood magnitude
by the POME method and
normal distribution
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It can be seen that compared with the value of the correlation coefficients, which
are the largest one in Fig. 10.4, PCC is not large. Take the Beibei gauging station
for example. The largest linear correlation coefficient occurred at lag 2, which is the
largest one in the figure and equals 0.634. Therefore, the variable at lag 2 is
definitely taken as the input of the ANN model. The PCC, which removes the effect
of the selected variable at lag t-2, is calculated and shown in Fig. 10.4. The second
highest value for Beibei is 0.26, and nearly one-third of the largest one. Therefore,
only one variable is selected for each gauging station. The selected inputs, based on
the linear correlation method, are listed in Table 10.11, and the selected input set of
the proposed method is also shown. Results show that the input set selected by the
proposed method and correlation coefficient is somewhat different. For example, the
proposed method selected the Gaochang lag 3 as input, and the correlation method

(d) Jinsha River 

(e) Jialing River 

Fig. 10.3 (continued)
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selected the Gaochang lag 4 as input. Actually, the travel time between Gaochang
sand Yichang is three days.

Both of those two input sets, which are selected by the proposed method and
Pearson linear correlation coefficients, are employed to forecast the flood at the
Yichang station. The same data sets are used to predict the input flow of the Three
Gorges Reservoir. The performance criteria are calculated, and the results, given in
Table 10.12, indicate that the network trained with the inputs selected by the PMI
method has a higher NSE and a, and smaller RMSE values. In addition, the ANN
model results based on the inputs selected by the LCC method are also shown in
Fig. 10.2, where indicates that the predicted results based on the inputs selected by
the CE method are superior to those based on the inputs selected by the LCC
method. Therefore, the flood forecasting model with the selected inputs set based on
PMI is better.

Fig. 10.4 Correlation coefficients between inputs and output of the ANN model (for the selected,
the value is the linear correlation coefficient, and for the other potential inputs, it is the PCC given
the selected variable)
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10.5.4.2 Comparisons with the Current Flood Forecasting
Model of TGR

The current flood forecasting method is used to predict the flow of 2006 and 2007
of TGR (Liang et al. 1992). The RMSE, NSE and a values, calculated using the
current flood forecasting model, are 2425 m3/s, 0.9340 and 0.95; and those of the
proposed model are 2423 m3/s, 0.937 and 0.96, respectively. The current regression
method performs well, and the results of the proposed method based on ANN
model are comparable to the current method.

10.6 Flood Forecasting for the Jinsha River

In the above section, the flood forecasting model of TGR is built based on the
runoff in the upstream mainstream and its tributaries. In this sub-section, the
rainfall-runoff relationship is simulated using the ANN models. In order to compare
different ANN models, the GRNN, MLF, and RBF ANNs are used hereafter.

10.6.1 Study Area

The Yangtze River rises in the Tanggula Mountains and the Qinghai-Tibet plateau
in southwestern China. The reach from Yushu in Qinghai province to Yibin in

Table 10.11 Comparisons between the selected input sets based on the Pearson linear correlation
coefficients and proposed PMI method

Rivers Stations Pearson correlation coefficient PMI

Jinsha Pingshan Lag t − 1 Lag t − 1

Min Gaochang Lag t − 4 Lag t − 3

Tuo Lijiawan Lag t − 3 Lag t − 3

Jialing Beibei Lag t − 2 Lag t − 2

Wu Wulong Lag t − 2 Lag t − 2

Yangzte Yichang Lag t − 1 Lag t − 1, t − 2

Table 10.12 Comparison of results obtained with different input variables

Methods Nash–Sutcliffe
efficiency

RMSE (m3/s) Qualified rate

Training Validation Training Validation Training Validation

Linear
correlation

0.9231 0.9036 1476 2932 0.9857 0.8566

CE 0.9402 0.9341 1281 2423 0.9898 0.9590
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Sichuan province is called the Jinsha River, lying on the eastern edge of the Plateau
and influenced by a variety of monsoons, e.g., tropical monsoon, subtropical
monsoon, and Qinghai-Tibetan plateau monsoon. Jinsha River is the westernmost
of the major headwater streams of the Yangtze River. It flows through the Qinghai,
Sichuan and Yunnan provinces in western China. The Jinsha River basin is divided
into nine sub-basins controlled by the Pingshan gauging station, shown in
Fig. 10.5. The rainfall stations in those sub-basins used in this study are listed in
Table 10.13. The areal average rainfall of each sub-basin is calculated.

The first and most important steps for building an ANN model is the determi-
nation of potential input variables (Bowden et al. 2005a; Fernando et al. 2009).
Figure 10.6 demonstrates the areal average rainfall and daily runoff time series in
the upper Jinsha basin. It can be seen from Fig. 10.6 that the discharge at Pingshan
station has a strong relationship with that at Tongzilin and Shigu stations, and
rainfall in some sub-basins has a significant impact on the daily discharge at
Pingshan station, such as rainfall in sub-basins 1, 2, 3 and 4. Therefore, the areal
average rainfall of each sub-basin and the previous discharge of Tongziling, Shigu
and Pingshan stations with different lags are taken as potential inputs of ANN
models. The discharge of Pingshan station is predicted based on the established
rainfall-runoff model.

10.6.2 Selection of Model Inputs

The two-stage procedure, proposed by Bowden et al. (2005b) for an input selection
using PMI, is used in this section as well. First, the copula entropy values between
each of (xi;t�1, xi;t�2,…, xi;t�k) and yt, and (yt�1, yt�2,…, yt�k) and yt are calculated.

Fig. 10.5 The sub-basins of the Jinsha River basin
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Then the variable with the maximum negative copula entropy value and its Zj
greater than 3 are listed in Table 10.14.

During this stage, the original 180 inputs are reduced to 17 inputs. The past
runoff (yt�1, yt�2, …, yt�k) at Pingshan Station has great impacts on yt. Therefore,
lags t − 1, t − 2, t − 3, t − 4 and t − 5 are selected for Pingshan station. Only one

Table 10.13 Rainfall stations used in this study for the rainfall-runoff simulation

Sub-basin Stations Longitude Latitude Length of Record

1 Shigu 99°56′00″E 26°54′00″N 1990–2010

Daqiaotou 102°54′00″ 26°37′00″

Luoji 102°54′00″ 28°48′00″ 2004–2010

Jinmian 101°35′59″ 27°11′0″ 2004–2010

Zongguantian 100°34’33” 26°48’23” 2002–2010

Huangping 100°23′12″ 26°05′25″ 2004–2010

2 Jinjiangjie 100°32′32″ 26°13′22″ 2001–2010

Dahuizhuang 100°32′11″ 25°57′41″ 2004–2010

Renli 101°00′00″ 26°29′00″ 2000–2010

3 Fengtun 101°22′42″ 25°17′51″ 2000–2010

Baihe 101°12′00″ 26°40′0″ 2004–2010

Duoke 101°51′44″ 25°49′43″ 2004–2010

Doubashi 102°45′40″ 25°23′11″ 2004–2010

4 Panzhihua 101°40′29″ 26°34’50” 1998–2010

Tongzilin 101°50′15″ 26°41′28″ 1998–2010

Xiaohuangua 101°52′00″ 25°50′00″ 2000–2010

5 Sanduizi 101°50′30″ 26°29′0″ 2004–2010

Gaoqiao 102°10′00″ 26°38′0″ 2004–2010

Fengguo 102°22′00″ 26°9′0″ 2004–2010

6 Yunlong 102°23′30″ 25°5′16″ 2004–2010

Chemuhe 102°22′00″ 25°37′0″ 2004–2010

Caijiacun 102°28′54″ 25°18′53″ 2004–2010

7 Dacun 103°02′32″ 27°04′38″ 2004–2010

Dashuijing 103°34′00″ 27°04′02″ 2004–2010

Jinle 103°28′11″ 26°29′03″ 2004–2010

8 Xiaohe 103°12′00″ 27°13′00″ 2004–2010

Huanggeshu 104°34′00″ 28°0′0″ 2004–2010

Moshiyi 103°44′06″ 27°49′38″ 2004–2010

Malucun 104°02′00″ 27°38′36″ 1998–2010

Doushaguan 104°07′42″ 28°02′00″ 1995–2010

9 Ningnan 102°43′07″ 27°02′33″ 1992–2010

Zhaojue 102°51′09″ 28°00′41″ 1991–2010

Huapingzi 103°9′7″ 27°26′5″ 1980–2010

Xiluodu 103°41′39″ 28°13′31″ 2004–2010

Xinhua 103°56′54″ 28°34′18″ 2000–2010
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Fig. 10.6 Daily rainfall-runoff (runoff-runoff) time series of the Jinsha River basin
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Fig. 10.6 (continued)
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or two inputs are selected for sub-basins 1–9. And the selected lag time of these
stations basically matched the flood travel time.

Second, significant lags selected in step one are combined to form a subset of
candidates and then the copula entropy is calculated. During this stage, 17 inputs
are reduced to 11. The final selected variables for ANN model are given in
Table 10.15.
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Fig. 10.6 (continued)

Table 10.14 Selected input
variables in the first stage

Stations Lags

Pingshan t – 1, t – 2, t – 3, t – 4, t − 5

Tongziling t − 2

Shigu t − 3

Sub-basin 1 t − 5

Sub-basin 2 t – 4, t − 6

Sub-basin 3 t − 4

Sub-basin 4 t − 4

Sub-basin 5 t − 5

Sub-basin 6 t − 4

Sub-basin 7 t − 5

Sub-basin 8 t − 6

Sub-basin 9 t − 6

Table 10.15 Final selected
input variables for the ANN
model based on the copula
entropy method

Stations Lags

Pingshan t − 1, t − 2, t − 3, t − 4, t − 5

Tongzilin t − 2

Shigu t − 3

Sub-basin 1 t − 5

Sub-basin 2 t − 4

Sub-basin 3 t − 4

Sub-basin 4 t − 4

Sub-basin 5 t − 5
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Bowden et al. (2005a) pointed out that the linear correlation analysis
(LCA) method is the most popular analytical technique for selecting appropriate
inputs. The Pearson linear correlation coefficients are calculated and shown in
Fig. 10.7. It can be seen that the dependencies between rainfall of sub-basin 1,
sub-basin 2, Tongzilin and Shigu and the flow of Pingshan station are high. The
lags of these stations are selected by the copula entropy method as inputs of the
model. There are still some differences between these two methods. For both the
Tongzilin and Shigu stations, the highest correlation coefficient values occur at lag
t − 2. However, the input selected by the copula entropy method is lag t − 3 for the
Shigu station. According to Fig. 10.5, the Shigu station is farther than Tongzilin
station. From this point of view, the inputs selected by the copula entropy method
are more appropriate.

10.6.3 Identification of Models

The inputs obtained by the copula entropy method are used for rainfall-runoff
modeling. The identification of a prediction model is to determine the structure by
using training data to optimize relevant model parameters, once model inputs are
already obtained (Wu and Chau 2011). Three ANN models, namely MLF, RBF,
and GRNN, are used in this study. The identification of ANN models is to find the
model which performs best when the model inputs have been determined. Three
performance criteria are used to assess these models. The initial data set consisted of
7 years, from which data for 2004 to 2008 for model calibration and those for 2009
and 2010 are used for model validation.

Table 10.16 comprises the results obtained using different ANN models. The
fitting curves between observed and predicted daily flows at Pingshan station are
given in Fig. 10.8. It can be seen from Table 10.16 and Fig. 10.8 that the
MLF ANN model performs better with small NSE, RMSE and Qualified rate than
any other ANN model. Therefore, the MLF ANN model with the inputs derived by
the copula entropy method gives the best results for predicting the flow at Pingshan
station. The values of NSE, RMSE and Qualified rate for validation period calcu-
lated by the MLF ANN model are 0.9524, 751 m3/s and 0.9786, which indicate that
the proposed model can predict daily flow at Pingshan station extremely well.

10.6.4 Comparisons of Predicted Results with Different
Input Sets

Two input sets are used for establishing the ANN rainfall-runoff model, one of
which is obtained by the linear correlation coefficient (LCC) method and the other
by the copula entropy method. The forecasting performances of those two input sets
are shown in Table 10.17. It can be seen that the RMSE values based on the inputs

10.6 Flood Forecasting for the Jinsha River 265



Fig. 10.7 Linear correlation coefficients between potential inputs and output of ANN model
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Table 10.16 Comparison of results obtained with different ANN models

Methods ANN NSE RMSE (m3/s) Qualified rate

Training Validation Training Validation Training Validation

Copula
entropy

MLF 0.9781 0.9524 548 751 0.9880 0.9786

GRNN 0.9797 0.9427 528 825 0.9675 0.8846

RBF 0.9395 0.9008 911 1086 0.9077 0.8426

(a) MLF ANN model 
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Fig. 10.8 Comparison between observed and predicted runoff values
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(b) RBF ANN model 

(c) GRNN ANN model 
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Fig. 10.8 (continued)

Table 10.17 Comparison of results obtained with different input variables

Methods ANN NSE RMSE (m3/s) Qualified rate

Training Validation Training Validation Training Validation

CE MLF 0.9781 0.9524 548 751 0.9880 0.9786

LCC BP 0.9674 0.9170 649 906 0.9738 0.9393
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selected by the CE method are smaller than those based on the inputs selected by
LCC method, and the NSE and Qualified rate based on the inputs selected by the CE
method are higher than those based on the inputs selected by the LCC method.
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Chapter 11
Correlations Among Rivers Using
Copula Entropy

11.1 Introduction

According to historical records, 1092 large flood events have occurred since 206
BC in China during a period of 2155 years, averaging once every two years
(Technical support unit 2004). Disastrous floods can be caused by unusual com-
binations of hydro-meteorological factors and river basin conditions. Topography,
land cover, and temporal and spatial distribution of rainfall play the dominant role
in the generation of floods, which can be reflected in the contributions that major
tributaries make to the mainstream flow. The coincidence of flood flows of the
mainstream and its tributaries may determine peak flow. Therefore, analysis of the
dependence of these tributaries and the influence of upper tributaries on the
mainstream is important for hydraulic design, flood prevention and risk control.

The Yangtze River and its flood characteristic had been introduced in Chap. 9.
There are also two hydrometric stations in the Yichang and Datong which are
considered as the separating points for the three basins. The Three Gorges Dam
(TGD), is located in the city of Yichang in Hubei province, China, which is also the
world’s largest capacity hydroelectric power station with a total generating capacity
of 18,200 MW. An important function of this dam is to control flooding, which is a
major problem for the seasonal Yangtze. Millions of people live downstream of the
dam, with many large, important cities like Wuhan, Nanjing, and Shanghai situated
adjacent to the river. Plenty of farmlands and China’s most important industrial
areas are built along the river. For flood control by TGD, the larger the information,
the more accurate the decisions are made for reservoir operation and the smaller the
chances are for under-design or over-design for peak discharge. Thus, it is
important to investigate the characteristics of inflow to TGD, which mainly stems
from five rivers in the upper Yangtze River. Most of the common practices for
analysis of the associated risk for TGD, however, have relied on frequency analysis
of flows of only one of the rivers, ignoring the structure dependence between flows
of rivers solely for mathematical simplicity. Actually, there exists plenty of
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evidence for the dependence among flows of these rivers. Failure to taking into
account the dependence between them may lead to overestimating or underesti-
mating of the design peak flow and associated risk. Dependence and random
characteristics of the upstream rivers are of practical value and important for flood
forecasting and reservoir management.

Often there is a need to evaluate the dependence among more variables (Alfonso
et al. 2010). Another way of investigating multivariate dependence is by assessing
the total amount of information that is shared by all variables at the same time
(Alfonso et al. 2010). In probability theory and information theory, the total cor-
relation (Watanabe 1960) is one of several generalizations of mutual information. It
is also known as the multivariate constraint (Garner 1962) or multi information
(Studený and Vejnarová 1999). It quantifies the redundancy or dependency among
a set of d random variables. Total correlation tells in the most general sense how
cohesive or related a group of variables are. A near-zero total correlation indicates
that the variables in the group are essentially statistically independent; they are
completely unrelated, in the sense that knowing the value of one variable does not
provide any clue as to the values of the other variables.

Since runoff is stochastic and a response of a dynamic and potentially nonlinear
system, we choose to employ information theory and a copula function, nonlinear
techniques, to extract relations between the mainstream and tributaries or between
the gauge station upstream or downstream of a river site. The total correlation
method, related to a d-dimensional copula-based joint distribution function, which
is an extension of the mutual information, can be applied to measure the depen-
dence of multivariate functions. The objective of this chapter is therefore to
establish multivariate distributions associated with different dependencies based on
copula functions and analyze the total correlation among rivers in the upper
Yangtze River Bain by using the copula entropy theory (Chen et al. 2013).

11.2 Total Correlation

There is a need to evaluate the dependence among several variables, which involves
a difficult assessment of multivariate joint probabilities. A number of pairwise
approximations have been proposed for this assessment (Lewis 1959; Chow and
Liu 1968; Kirshner et al. 2004). Another way of looking at multivariate dependence
is by assessing the total amount of information that is shared by all variables at the
same time. The total correlation can be defined as (McGill 1954; Watanabe 1960;
Alfonso et al. 2010):

TðX1;X2;X3; . . .;XdÞ ¼
Xd
i¼1

HðXiÞ � HðX1;X2;X3; . . .;XdÞ ð11:1Þ
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where T is the total correlation. It can be noted that for the case of d = 2, total
correlation is equivalent to the well-known mutual information (or
trans-information).

According to Eq. 2.61, Eq. 11.1 can be written as

TðX1;X2;X3; . . .;XdÞ ¼ �HcðxÞ ð11:2Þ

The total correlation is always positive since the sum of the entropy of all of the
variables will always be greater than the joint entropy of all of them, and T is equal
to zero if and only if all the variables being considered are independent. However,
T is greater than zero if two of the variables have some dependence, even though
the rest of the variables are independent (Alfonso et al. 2010).

In light of Eq. 11.2, the total correlation of random variables is equivalent to
their negative copula entropy, which is invariant under arbitrary choices of marginal
densities fi(x). The proposed method only needs to calculate the copula entropy
instead of marginal or joint entropy, which estimates the total correlation more
directly and avoids the accumulation of systematic bias inherent in terms HðXiÞ and
HðX1;X2;X3; . . .;XNÞ. It also may be found that the copula-entropy based total
correlation only relies on the copula density function that is determined by the
copula parameter. Therefore, only the copula parameter is required for the esti-
mation of total correlation. Thus, the proposed method provides an effective way to
calculate the total correlation and reduces the complexity and computational
requirements, which makes it easier to use than the previous methods.

11.3 Application

11.3.1 Data

The upstream Yangtze River is taken into account in this study. Its major charac-
teristics have been described in Chaps. 6 and 9. The annual maximum (AM) sample
method is used in this study. The POME method is applied to obtain the marginal
distribution whose parameters are given in Table 11.1. The marginal distributions
of tributaries of the upper Yangtze River are shown in Fig. 11.1, in which the line
represents the theoretical distribution and the crosses the empirical frequency dis-
tribution. The figure indicates that all theoretical distributions fit the observed data
reasonably well.

Table 11.1 Estimated
parameters of POME method

Rivers k0 k1 k2 k3
Jinsha 17.7103 −2.2973 0.1064 −0.0014

Jialing 8.2541 −0.5538 0.0168 −0.0001

Min 17.0250 −2.4144 0.1233 −0.0019

Tuo 5.1232 −1.8333 0.2813 −0.0106

Wu 12.1272 −2.3221 0.1711 −0.0038
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(a) (b)

(c) (d)

(e)

Fig. 11.1 Frequency curves of flood magnitudes based on AM samples
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When quantifying dependence, it is a common practice to start by measuring
linear correlation, namely Pearson correlation coefficients. The Pearson’s correla-
tions are also computed to estimate the dependence of the AM series from 1951 to
2007, and the results are given in Table 11.2. Two assumptions need to be satisfied
for Pearson correlation coefficient, which are mentioned in Chap. 10 as well. One is
that the variable must follow the multivariate normal distribution, and the other is
that the pairwise dependency is linear. According to Fig. 10.4 of Chap. 10, the data
of the Min, Tuo, and Wu Rivers show high kurtosis and skewness, and the
assumption of normality is found to be inappropriate. In order to test the validity of
the assumption that the pairwise dependence is linear, the time series of flow data is
also divided into two segments. The t-test is used for the significance test of Pearson
correlation coefficient. The P-values are calculated. If P-values are small, less than
a, then the Pearson correlation coefficient is significant at the level (a is equal to 0.1
in this study). Otherwise, the correlation coefficient is not significant and equal to 0.
The calculated correlation coefficient and P-values are given in Table 11.3, which
indicates that Pearson’s correlation is changing over time. In addition, the linear
correlation coefficients are not valid. Kendall’s coefficients for all pairs of the
variables are calculated, because of their rank based characteristic. Genest and
Verret (2005) indicated that Kendall’s coefficients or the Spearman’s correlation is
known to be robust to departures from normality, while remaining powerful. The
calculated results of Kendall’s and Pearson’s coefficients are given in Table 11.2. It
is indicated that there are some dependencies between these variables.

11.3.2 Two-Variable Model

First, joint distributions of any two rivers in the upper Yangtze River are deter-
mined. According to five rivers in this area, ten bivariate joint distributions are built.
Gumbel, Clayton, Frank, normal and student copulas are, respectively, used for
modeling the dependence among the five stations. A pseudo-likelihood technique
involving the ranks of data is used for estimating parameters of these copulas
hereafter. The Cramer-von Mises functional Sn defined by Genest et al. (2009) is
used for the goodness of fit test. The P-values are calculated. The AIC values of the
Archimedean and meta-elliptical copulas are shown in Table 11.4. The selected
copulas and their parameters are given in Table 11.5. Generally, the Archimedean

Table 11.2 Dependence
measures for the upper
Yangtze River based on
annual maximum data

Rivers Jinsha Jialing Min Tuo Wu

Jinsha 1.00 −0.08 0.11 0.13 0.12

Jialing −0.12 1.00 0.03 0.18 −0.15

Min 0.16 0.13 1.00 0.36 0.01

Tuo 0.19 0.37 0.50 1.00 −0.05

Wu 0.16 −0.26 −0.02 −0.10 1.00

Note the super-diagonal elements are the Kendall correlation; the
sub-diagonal elements are the Pearson correlation
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copulas give a better fit than the meta-elliptical ones. Only the P-values of the
selected copulas are given in the brackets of Table 11.5. Results indicate that the
selected bivariate copulas cannot be rejected.

Multiple integration and Monte Carlo methods are used for calculating the
copula entropy, respectively. For the first method, the multiple integration method
proposed by Berntsen et al. (1991) is applied. For the second method, 10,000 pairs
of u are generated, and the average value of the ln[c(u)] are calculated and given in
Table 11.6, which indicates that the two methods are similar. It is also indicated
from Table 11.6 that the total correlation values are not so large. This is in
accordance with the meteorological conditions. The reasons are as follows: First,
there are two important and large rainfall zones in the study area. The Jialing and
Min River basins belong to different rainfall zones, respectively. Second, in the
upper Jinsha River, as the annual average temperature is below 0 °C, the flow is
mainly from snow-melting. The flow of Jinsha River downstream of the Zhimenda
is formed by snow-melting and rainfall together. Third, the Wu River is the only
one located on the right bank of the Yangtze River in the study area. Generally, in
normal years, the flood occurrence time of the tributaries located on the right bank
of Yangtze River is earlier than those on the left bank. Due to the different causes of
floods in these rivers, the dependence among them is relatively small. The largest
total correlation is 0.33 between Min and Tuo Rivers. This is because the distance
between the two rivers is the smallest and they belong to the same rainfall zone.

Table 11.3 Calculated Pearson correlation coefficients and their corresponding P-values

Rivers Periods Correlation coefficients P-values

Jinsha-Jialing 1951–1957 −0.73 0.09

1958–2007 −0.08 0.54

Jinsha-Min 1951–1960 −0.26 0.46

1961–2007 0.26 0.07

Jinsha-Tuo 1951–1960 −0.37 0.28

1961–2007 0.28 0.06

Jinsha-Wu 1951–1970 −0.04 0.86

1971–2007 0.29 0.08

Jialing-Min 1951–1970 −0.19 0.43

1971–2007 0.29 0.09

Jialing-Tuo 1951–1970 −0.19 0.43

1971–2007 0.53 0.001

Jialing-Wu 1951–1970 −0.19 0.42

1971–2007 −0.30 0.08

Min-Tuo 1951–1970 0.56 0.01

1971–2007 0.49 0.003

Min-Tuo 1951–1999 −0.16 0.28

2000–2007 0.74 0.06

Tuo-Wu 1951–1999 −0.22 0.1

2000–2007 0.22 0.77
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Table 11.4 The log maximum likelihood and AIC values of bivariate joint distributions

Rivers Copula Jinsha Jialing Min Tuo Wu

Jinsha Gumbel – 0.85 1.11 0.56

Frank 0.39 0.87 0.81 1.02

Clayton – – 2.19 2.51 1.05

Normal 0.34 1.22 1.73 1.05

Student 0.32 1.55 1.68 1.02

Jialing Gumbel – 0.53 3.22 –

Frank 1.22 0.08 2.12 0.94

Clayton – – 0.12 2 –

Normal 1.32 0.32 2.81 1.38

Student 1.36 0.39 3 1.36

Min Gumbel 0.3 0.94 7.91 –

Frank 0.26 1.84 8.36 0.01

Clayton −2.38 1.76 – 11.2 –

Normal −0.44 1.36 9.85 0.02

Student −1.1 1.22 10.12 3.88

Tuo Gumbel −0.22 −4.44 −13.82 –

Frank 0.38 −2.24 −14.72 0.14

Clayton −3.02 −2 −20.4 – –

Normal −1.46 −3.62 −17.7 0.01

Student −1.36 −4 −18.24 0.07

Wu Gumbel 0.88 – – –

Frank −0.04 0.12 1.98 1.72

Clayton −0.1 – – – –

Normal −0.1 −0.76 1.96 1.98

Student −0.04 −0.72 −5.76 1.86

Note The super-diagonal elements are the maximum likelihood values; the sub-diagonal elements
are the AIC values

Table 11.5 Selections of copulas and determination of the parameters

Parameters Copula

Jinsha Jialing Min Tuo Wu

Jinsha – Frank Clayton Clayton Clayton

Jialing −0.74(0.71) – Gumbel Gumbel Normal

Min 0.41(0.60) 1.09(0.10) – Clayton Student

Tuo 0.43(0.49) 1.23(0.94) 1.21(0.38) – Frank

Wu 0.30(0.39) −0.25(0.91) 0.04, 2.0(0.81) −0.45(0.94) –

Note The super-diagonal elements are the selected copula; the sub-diagonal elements are the
parameters corresponding to the selected copulas; the values in the bracket are P-values
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There are some dependencies among Jinsha, Min and Tuo Rivers. The floods of
1931, 1954 and 1998 are caused by the large floods of the three rivers. In a normal
year, rainfall on the left and right banks of Yangtze River does not happen simul-
taneously, but the dependence between Min andWu Rivers cannot be neglected. The
dependence between Jialing and Min or Tuo Rivers also exists. The dependence
between Min and Jialing is not obvious, but we still need to pay more attention.

In order to compare the Pearson correlation coefficients (PCC) with the proposed
methods, the total correlation values are calculated and given in Table 11.7 which

Table 11.6 Total correlation values of two tributaries in upstream Yangtze River

Total correlation Jinsha Jialing Min Tuo Wu

Jinsha 1 0.008 0.053 0.057 0.032

Jialing 0.009 1 0.013 0.056 0.032

Min 0.049 0.014 1 0.245 0.083

Tuo 0.055 0.054 0.235 1 0.003

Wu 0.033 0.033 0.085 0.004 1

Note the super-diagonal elements are the values based on multiple integration method; the sub
diagonal elements are the values based on Monte Carlo method

Table 11.7 Comparison of total correlation calculated by different methods

Comparisons Methods Jinsha Jialing Min Tuo Wu

Proposed 0.008 0.053 0.057 0.032

Jinsha Equation (19) — 0.007 0.013 0.018 0.013 

Absolute error 0.001 0.040 0.039 0.019 

Proposed 0.009 0.013 0.083 0.032

Jialing Equation (19) 0.007 — 0.009 0.074 0.035 

Absolute error 0.002 0.004 0.009 0.003 

Proposed 0.049 0.014 — 0.245 0.083

Min Equation (19) 0.013 0.009 0.144 0.000 

Absolute error 0.036 0.005 1.000 0.101 0.083 

Proposed 0.055 0.082 0.235 0.003

Tuo Equation (19) 0.018 0.074 0.144 — 0.005 

Absolute error 0.037 0.008 0.091 0.002 

Proposed 0.033 0.033 0.085 0.004

Wu Equation (19) 0.013 0.035 0.000 0.005 —

Absolute error 0.020 0.002 0.085 0.001 

−

−

− −

Note the super-diagonal elements are the values based on multiple integration method; the sub
diagonal elements are the values based on Monte Carlo method. Absolute error means the values
of the proposed method minus the values calculated by PCC
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indicates that the total correlation calculated by the proposed methods is generally
larger than that calculated by Pearson correlation coefficients. In other words, the
Pearson correlation coefficient underestimates the dependence of variables.

11.3.3 Three-Variable Model

Joint distributions of any three rivers in the upper Yangtze River are determined.
According to five rivers in this area, ten bivariate joint distributions are derived. The
three-dimensional Gumbel, Clayton and Frank copulas belonging to the Archimedean
class and Normal and Student copulas belonging to the meta-elliptical class are used
for modeling the dependence among the three stations. Since the asymmetric
Archimedean copula can only simulate the positive correlation, for some cases only
normal and Student copulas are used to build the joint distribution. A pseudo-
likelihood technique involving the ranks of the data is used for estimating parameters.
The estimated parameters of these copulas are given in Table 11.8. The AIC values of
the Archimedean and meta-elliptical copulas are also shown in that Table. The
dependence of the symmetric Archimedean copulas is the same for all variables. The
dependencies of asymmetric Archimedean copula functions are different corre-
sponding to different pairs, but they can only simulate the dependencies between
d − 1 variables. It is indicated that the asymmetric copulas give a better fit than the
symmetric one in the Archimedean family. For the positive dependence cases, gen-
erally the asymmetric Clayton copula gives a better fit. No significant difference exists
between the AIC values of the Normal and Student copulas. The copula corresponding
to the smallest AIC values are selected to calculate the theoretical probabilities. The
empirical joint probabilities are plotted against theoretical probabilities calculated by
the joint distribution, as shown in Fig. 11.2, which shows that no significant differ-
ences between empirical and theoretical joint probabilities can be detected.

The first method, namely the multiple integration method, is used to calculate the
total correlation, and results are also given in Table 11.8. It is shown that for a
specific case, there are some differences in the total correlation values when
selecting different copula functions. In other words, choosing an appropriate copula
is important to measure the total correlation of variables. Taking the Jinsha, Min
and Tuo Rivers as an example, the total correlation corresponding to the smallest
AIC value −3.16 is 0.28. However, if the Gumbel copula, which is usually selected,
is used, the calculated total correlation is only 0.10. There is a large difference
between them. Generally, the copulas with maximum copula entropy value also
have the smallest AIC values, such as in the case of numbers 4 and 5 in Table 11.8.
The smallest AIC values −3.16 and −0.47 are corresponding to the maximum
copula entropy values 0.28 and 0.08, respectively. The calculated results seem to be
justified from the point of view that the three-variable correlation is larger than that
of the two-variable copula. By analyzing the three-dimensional total correlation, the
correlation amongst Jinsha, Min and Tuo Rivers, Jialing, Min and Tuo Rivers, and
Min, Tuo and Wu Rivers are much higher.
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Table 11.8 Total correlation analysis of trivariate joint distribution

Note Values mean maximized likelihood values for these models. The same meaning is hereafter
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Fig. 11.2 Trivariate joint distribution and empirical probabilities of observed combinations
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11.3.4 Multivariable Model

The four-variable copula is built. Due to the complicated dependence structure, the
meta-elliptical copulas, namely Normal and Student copulas are used.
A pseudo-likelihood technique involving the ranks of data is used for estimating
parameters. The estimated parameters are given in Table 11.9, in which parameter
qi means the element of the Pearson correlation matrix. For example, the first line of
Table 11.9 can be written as a matrix in the following:
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Fig. 11.2 (continued)
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1 �0:11 0:24 0:27
�0:11 1 0:13 0:34
0:24 0:13 1 0:58
0:27 0:34 0:58 1

2
664

3
775

Similarly, the same meanings hold for others:

1 q1 q2 q3
q1 1 q4 q5
q2 q4 1 q6
q3 q5 q6 1

2
664

3
775

The empirical and theoretical bivariate joint probabilities of four variables are
shown in Fig. 11.3, which indicates that the theoretical curves fit the empirical
probabilities well.

From Table 11.9, one can see the highest total correlation with a value of 0.36
exists for the combination of Jinsha, Min, Tuo and Jialing rivers. All of the four
rivers are located on the left bank. Thus, some climatic factors may be similar. Due
to the large dependence and average annual rainfall in Jinsha, Min, Jialing and Tuo
River basins, the flows in the four rivers have an important impact on the flood
occurrence in the upper Yangtze River and provide a bigger flood threat to the
middle reach of the river.

The joint distribution of five rivers is built. The meta-elliptical copulas, namely
Normal and Student copulas are used. The estimated parameters are listed in
Table 11.10. The empirical and theoretical bivariate joint probabilities of five
variables are shown in Fig. 11.4, which indicates that the theoretical curves fit the
empirical probabilities well. The calculated total correlation value of the both
Normal and Student copula is 0.39 which is larger than the four-variable total
correlation. From this point of view, it is rational.

11.3 Application 285



T
ab

le
11

.9
T
ot
al

co
rr
el
at
io
n
an
al
ys
is
of

fo
ur
-d
im

en
si
on

al
jo
in
t
di
st
ri
bu

tio
n

286 11 Correlations Among Rivers Using Copula Entropy



0.00

0.20

0.40

0.60

0.80

0 20 40 60

Pr
ob

ab
ili

ty

Order

Jinsha, Jialing, Min and  Tuo 

Empirical
probability

Joint
distribution

0.00

0.20

0.40

0 20 40 60

Pr
ob

ab
ili

ty

Order

Jinsha, Jialing, Min and  Wu 

Empirical
probability

Joint
distribution

0.00

0.20

0.40

0.60

0 20 40 60

Pr
ob

ab
ili

ty

Order

Jinsha, Jialing, Tuo and  Wu 

Empirical
probability

Joint
distribution

0.00

0.20

0.40

0.60

0 20 40 60

Pr
ob

ab
ili

ty

Order

Jialing, Min, Tuo and  Wu 

Empirical
probability

Joint
distribution

0.00

0.20

0.40

0.60

0 20 40 60

Pr
ob

ab
ili

ty

Order

Jinsha, Min, Tuo and  Wu 

Empirical
probability

Joint
distribution

Fig. 11.3 Four-dimensional joint distribution and empirical probabilities of observed
combinations
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11.4 Conclusions

This chapter analyzes the dependence among the five rivers in the upper Yangtze
River. Copula entropy, which is constructed by the copula and entropy theory, is
first introduced in the hydrological field. Because the non-linear correlation struc-
ture and multivariate variables involved, the total correlation method is calculated
based on the copula-entropy model. Using two-step algorithm, first, the copula
function is built with the parameter estimation. Second, the total correlation values
are obtained from the copula entropy. The conclusions are given as follows:

(1) Both the Archimedean and meta-elliptical copulas are applied to build bivariate
and trivariate joint distributions. Generally, the Archimedean copula gives a
better fit for the lower dimension cases. For higher dimensions, due to the
complicated dependence structure, only the metaelliptical copula is used. All of
the built joint distributions fit the empirical probabilities well.

(2) The copula entropy can measure the linear and non-linear dependencies based
on information theory and copula function. It makes no assumptions about the
marginal distributions and can be used for higher dimensions. Furthermore, the
proposed method only needs to calculate the copula entropy instead of the
marginal or joint entropy, which estimates the total correlation more directly
and avoids the accumulation of systematic bias.

(3) Multiple integration and the Monte Carlo methods are used to obtain the total
correlation values, and both methods lead to similar results. For a specific case,
several kinds of copulas are employed. There is a significant difference in total
correlation values when using different copula functions. Therefore, it is
important to select an appropriate copula for the dependence estimation.

(4) Application results indicate that the total correlations among rivers are not so
large, which is in accordance with by the climatic characteristics of the study
area. The largest total correlation is 0.33 between Min and Tuo Rivers because
the distance between the two rivers is the shortest and they belong to the same
rainfall zone. There are some dependencies among Jinsha, Min and Tuo Rivers.
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Fig. 11.4 Five-dimensional joint distribution and empirical probabilities of the observed
combination
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In normal years, rainfall on the left and right banks of Yangtze River does not
happen simultaneously, but the dependence between Min and Wu River cannot
be neglected. Due to the large dependence and average annual rainfall in Jinsha,
Min, Jialing and Tuo Rivers, flows in these four rivers have an important
impact on the flood occurrence in the upper Yangtze River and provide a bigger
flood threat to the middle reach of the river.
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