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Abstract
Single cell sequencing (SCS) can be harnessed 
to acquire the genomes, transcriptomes and 
epigenomes from individual cells. Next gener-
ation sequencing (NGS) technology is the 
driving force for single cell sequencing. 
scRNA-seq requires a lengthy pipeline com-
prising of single cell sorting, RNA extraction, 
reverse transcription, amplification, library 
construction, sequencing and subsequent bio-
informatic analysis. Computational algorithms 
are essential to fulfill many tasks of interest 
using scRNA-seq data. scRNA-seq has already 
enabled researchers to revisit long-standing 
questions in cancer biology, including cancer 
metastasis, heterogeneity and evolution. 
Circulating Tumor Cells (CTC) are not only an 
important mechanism for cancer metastasis, 
but also provide a possibility to diagnose and 
monitor cancer in a convenient way indepen-
dent of surgical resection of the cancer.
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4.1	 �Brief Introduction to Single 
Cell Sequencing

Single cell sequencing (SCS) can be harnessed 
to acquire the genomes, transcriptomes and 
epigenomes from individual cells. Next 
generation sequencing (NGS) technology is the 
driving force for single cell sequencing. Though 
various bias could be potentially introduced dur-
ing the molecule amplification, It has been well 
recognized that SCS could help detect single 
nucleotide variations (SNVs) [1], copy number 
variations (CNVs) [2], structure variations (SVs) 
[3], gene expression and fusions [4–8], novel 
transcripts and alternative splicing [9], methyl-
ations [10] and chromatin patterns [11, 12] on 
single cell level with the help of mathematic 
algorithms and models. SCS also has great 
potential to reveal novel biological concepts, 
which have never been investigated. For exam-
ple, researchers used single cell RNA-seq 
(scRNA-seq) to uncover new cell types in ner-
vous system [13], immune system and hemato-
poietic system [14], as well as new insights into 
the clonal evolution of cancer [15]. Most 
recently, the accuracy and throughput of SCS 
have been increased dramatically to be capable 
of profiling more than thousands of single cells 
in parallel [5, 16].
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4.2	 �Large-Scale scRNA-seq 
Library Preparation

scRNA-seq requires a lengthy pipeline compris-
ing of single cell sorting, RNA extraction, reverse 
transcription, amplification, library construction, 
sequencing and subsequent bioinformatic analy-
sis. As the key factor to increase the throughput 
of scRNA-seq study, high-throughput scRNA-
seq library preparation technology developed 
very quickly these few years. FAC sorting-based 
scRNA-seq library preparation combined with 
automatic liquid instrument pipeline enable han-
dling 96-well/384-well plate single cells per run 
[17]. Fluidigm C1 system based on microvalve 
microfluidic chip that was developed by Quake’s 
lab enabled to prepare full-length transcripts of 
96 single cells in parallel in 2012 [7], and a simi-
lar chip with higher throughput up to 800 single 
cells 3’end transcript preparation was released in 
2015. Another type of microfluidic chip, micro-
well chip was also used in single-cell RNA 
amplification. Wu et  al. developed an approach 
called MIRALCS [4], allowing massively paral-
lel single-cell full-length transcripts amplifica-
tion for 500–1000 single cells based on 5184-well 
chip. With the same chip, Wafergen Inc. released 
a single cell preparation system named ICell8, 
allowing the preparation of 3′ single cell tran-
scripts with throughput up to 1800 cells per run 
[18]. Taking the advantage of barcode-bead tech-
nology, two different groups described microwell 
chip based method, with the capacity to obtain 
gene expression from thousands of cells at the 
single cell level, respectively [19, 20]. In addi-
tion, droplet microfluidic technique improves the 
throughput of single cell 3′ end RNA-seq to mil-
lion level, and reduce the reaction volume to pic-
oliter [21, 22]. A commercialized instrument 
with the same strategy was developed by 10X 
genomics, enabling the preparation of at most 
48,000 single cells from eight different samples 
in parallel. With the development of high-
throughput scRNA-seq library preparation tech-
nology, the cost has been reduced to less than one 
dollar per cell, which greatly promotes the stud-
ies at the single cell level.

4.3	 �Computational Analysis 
of scRNA-seq Data

Computational algorithms are essential to fulfill 
many tasks of interest using scRNA-seq data 
(Fig. 4.1). There is a general consensus that anal-
yses of scRNA-seq data sets and conventional 
RNA-seq data have a lot in common. More spe-
cifically, the vast majority of the basic pipelines 
and tools established for sequencing data derived 
from bulk cell populations are applicable to that 
from single cells, following steps including read 
alignment, quality control and gene expression 
estimation. Whereas more dedicated softwares 
for use in fields such as identifying and character-
izing cellular subpopulations, exploring evolu-
tion of cell groups and inferring the transcriptional 
kinetics are urgently needed owing to the zero-
inflated nature and additional functions of 
scRNA-seq data sources.

•	 Quality Control: Single-cell datasets are 
expected to be extra messy, thus should under-
take the quality control step before any down-
stream analysis. To begin with, FASTQC [23], 
Qualimap2 [24] and RSeQC [25] are com-
monly used for assessment of overall sequenc-
ing quality. After removal of adapters or noisy 
data with low quality, raw reads obtained from 
a well-designed experiment are firstly aligned 
to the reference genome using tools such as 
Tophat [26], HISAT [27] and STAR [28]. 
Subsequently, several indicators are calculated 
so as to discriminate cells with degraded RNA 
or substandard sequencing library, for instance, 
the number of expressed genes, the proportion 
of reads mapped to endogenous genes and the 
fraction of external spike-ins in mapped reads 
[9, 29, 30]. In addition, Treutlein considered 
normal expression of housekeeping genes a 
judgment factor of healthy cells [31].

•	 Expression estimation and normalization: 
Gene expression levels of qualified cells can 
be estimated as count from data without UMIs 
using HTSeq [32], WemIQ [33] or RSEM 
[34]. While relative expression including 
transcripts per million mapped reads (TPM) 
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and reads/fragments per kilobase per million 
mapped reads (RPKM/FPKM) is widely 
adopted in downstream analysis. Besides, 
Islam et al. [29] and Hashimshony et al. [35] 
provide solutions to UMI-tagged reads. 
Normalization is essential due to the technical 
variability in comparison to expression levels 
between samples. Median normalization or a 
similar method are popular in many scRNA-
seq studies without spike-ins or UMIs [30, 
36–39]. In single cell experiments where 
spike-ins were applied, technical artifacts can 
be estimated by difference between their 
expected and observed expression. 
Nevertheless, instability arising from incon-
sistent detection of spike-ins brings about a 
more current notion of comparing absolute 
molecular counts of different cells with UMIs, 
which have greatly reduced the amplification 
noise by attaching random sequences to cDNA 
fragments ahead of PCR [21, 29, 40].

•	 Identification of subpopulations: Cellular sub-
population identification in heterogenous cells 
is one of the most exciting areas for explora-
tion in the scRNA-seq experiments. Therefore, 
various algorithms for clustering have been 
developed to date. Pollen et  al. [41] distin-
guished different types of cells along lung 
development using principal component anal-
ysis. The study by Li et al. [42] showed tran-
scriptional heterogeneity in colorectal tumors 
with a novel strategy named reference compo-
nent analysis (RCA). Following similar lines, 
self-organizing maps (SOMs) [43], circular a 
posteriori projection (CAP), ZIFA [44], t-SNE 
[45] and BackSPIN [46] clustering are 
approaches developed for differentiating 
between cells within a biological condition by 
dimensionality reduction of scRNA-seq data. 
In addition, RaceID [6] is a computationally 
efficient tool that relies on k-means clustering, 
whereas SNN-Cliq [47] clusters individual 

Fig. 4.1  Representative tasks enabled by scRNA-seq. (a) 
Subpopulation analysis can be performed with various 
unsupervised clustering algorithms; (b) Pseudotemporal 
ordering is essential to understand developmental trajec-
tory or disease progression; (c) Differential gene expres-
sion analysis is important for the discovery of cell type 

specific biomarkers; (d) Network inference can be per-
formed to learn regulatory intracellular and intercellular 
networks; (e) Analysis of alternative splicing offers a new 
perspective on biology and medicine; (f) Allele specific 
expression patterns can be addressed using scRNA-seq 
data
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cells by a graph-based algorithm based on 
shared nearest neighbor (SNN) similarity 
measurement. Guo et al. [48] further presented 
a pipeline for known cell type enrichment that 
is analogous to gene set enrichment analysis.

•	 Differential expression and transcript iso-
forms across conditions: Once subpopulations 
are distinguished, differential expression can 
be applied for cell type characterization. 
Researchers used to investigate differential 
expressed genes among cells of different types 
or stages with bulk RNA-Seq based strategy. 
However, an abundant zero values on expres-
sion matrix from single cells lead to potential 
fault sets of genes that may have expressed 
differently resulting from noise. As a conse-
quence, plenty of mixture-model-based meth-
ods like MAST [49] and SCDE [50] have been 
created for accommodation of bimodality in 
expression levels. Similarly, D3E [51] identify 
DE genes by comparing two probability distri-
butions on transcriptional bursting model. 
Korthauer et al. [52] have established a more 
accurate Bayesian modeling framework, 
scDD, for differential expression patterns 
detection under a wide range of circumstances 
recently. Unlike the traditional methods with a 
simple mean shift, the scDD model provides 
posterior probabilities differential distribu-
tions (DD) for each gene and classified gene 
as unimodal distributions (traditional DE), 
differential modes (DM), differential propor-
tion (DP), or both DM and DE (abbreviated 
DB).

•	 Pseudotemporal ordering: Knowledge of the 
global expression profile in individual cells 
provides opportunities for the investigation of 
dynamic cellular processes such as normal tis-
sue development, stem cell differentiation and 
tumor progression. A number of computa-
tional methods were built on the basis of the 
theory that differentiation paths can by con-
structed by reordering unsynchronized cells 
with gradual changes in gene expression levels 
at various stages. Similarities to cellular 
subpopulation identification approaches, 
most investigators perform pseudotemporal 

ordering by reducing the dimensionality of 
gene expression data. Take Monocle [53] as an 
example, which was the most effective tool to 
construct the differentiation paths in the 
infancy of single cell technology. Minimal 
spanning tree (MST) was built on data pro-
cessed by independent component analysis 
(ICA) in Monocle, and the longest path 
through the MST was considered as a default 
setting for differentiation. Subsequently, 
Haghverdi L et al. [54] worked out a diffusion 
map based method that allows trajectory 
reconstruction in a single step. Rizvi et al. [55] 
presented a topology-based algorithm named 
single-cell topological data analysis (scTDA) 
for unbiased transcriptional regulation study 
through a nonlinear and unsupervised statisti-
cal framework. Furthermore, when it comes to 
oscillatory processes, Oscope [56] can be used 
for oscillatory trajectory reconstruction with 
co-regulation information among oscillators.

•	 Interrogation of spatial information: In spite 
of looking into the development of cell popu-
lations extending in time, scRNA-seq can be 
applied for spatial reconstruction via the inte-
gration of in situ RNA patterns with genome 
wide gene expression profiles. Satija R et al. 
[57] has established an accurate spatially 
resolved tools, Seurat, for mapping cellular 
localization, with which they inferred cellular 
localization of cells from dissociated zebrafish 
(Danio rerio) embryos and generated a 
transcriptome-wide map of spatial patterning. 
Meanwhile, another high-throughput approach 
by Kaia Achim [58] was published online by 
virtue of a reference gene expression data-
base, which successfully allocates brain cells 
to precise locations from marine annelid 
Platynereis dumerilii by comparing 
specificity-weighted mRNA Profiles. Halpern 
K B et al. [59] reconstructed a genomic blue-
print of mammalian liver by combining land-
mark genes expression and single-molecule 
fluorescence in situ hybridization.

•	 Network inference: Identification of co-
regulated genes with data derived from single 
cell experiments is superior because it can 
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provide insight into regulatory networks that 
are hard to be noticed in bulk level. 
Understanding the transcriptional regulatory 
networks is of primary interest in a myriad of 
studies. For convenience, some statistical 
methods in bulk studies were reused when 
exploring scRNA-seq data. Weighted correla-
tion network analysis (WGCNA) [60] can be 
used for gene clustering and summarizing 
with a comprehensive collection of functions 
for network construction, module detection, 
gene selection, calculations of topological 
properties, data simulation and visualization. 
Cell-centric statistics (CCs) [61] was invented 
to model transcriptome dynamics by analyz-
ing aggregated cell-cell statistical distances 
within biomolecular pathways, for instance, 
differentially expressed pathways for a single 
cell of interest. While SCODE [62] inferred 
the co-regulatory network with ordinary dif-
ferential equations(ODEs) by integrating the 
transformation of linear ODEs and linear 
regression.

•	 Differential Splicing: Experimental protocols 
with full-length transcript coverage to certain 
sequencing depth provides insight into alter-
native splicing isoform determination and 
quantification in scRNA-seq data analysis, 
which reflects heterogeneity among cells of a 
biological component from another perspec-
tive. A study of heterogeneity in immune cells 
in 2013 [9] was the first to reveal the dramatic 
diversity of splicing patterns in mouse bone-
marrow-derived dendritic cells(BMDCs). 
Gokce O et al. [63] used fisher’s exact test for 
differentially splicing junction definition 
among cell types and pointed out splice vari-
ant expressed in mouse striatum. SingleSplice 
[64] is the latest tailored method used to detect 
isoform usage differences in scRNA-seq data, 
which was applied to mouse embryonic stem 
cells and eventually shedded insight into the 
connection between alternative splicing and 
the cell cycle through a series of analysis.

•	 Allelic Expression Patterns: Another subtle 
point is that allele-specific expression can be 
accessed for in scRNA-seq to investigate the 

contribution of parental allele expression. 
Deng et  al. [65] demonstrated an abundant 
random allele-specific gene expression using 
train-specific SNPs at single-cell resolution in 
mouse preimplantation embryos. Reinius B 
et al. [66] argued in an allele-sensitive scRNA–
seq experiment that most patterns of random 
monoallelic expression of autosomal genes 
(aRME) are in a decentralized fashion rather 
than confined to clonally related cells accord-
ing to previous hypothesis.

4.4	 �Application of High 
Throughput scRNA-seq

•	 Cancer Biology: scRNA-seq has already 
enabled researchers to revisit long-standing 
questions in cancer biology, including cancer 
metastasis, heterogeneity and evolution. 
Circulating Tumor Cells (CTC) are not only 
an important mechanism for cancer metastasis 
[67], but also provide a possibility to diagnose 
and monitor cancer in a convenient way inde-
pendent of surgical resection of the cancer. 
One landmark study analysed CTC isolated 
from prostate cancer patients and revealed that 
the mechanism of resistance to androgen 
receptor inhibition in recurrent disease is 
partly due to noncanonical Wnt signaling [68].

A comprehensive picture of cancer heteroge-
neity is redefined by scRNA-seq. Several studies 
revealed the heterogeneity of cancer cells [69, 
70]. A comprehensive profiling of melanoma 
using scRNA-seq is a classical example [70]. It 
was found that two distinct transcriptional signa-
tures were present but they were not mutually 
exclusive. The melanoma characterized by acti-
vation of the transcription factor MITF also har-
bored a small subpopulation of cells with low 
MITF activity. The heterogeneity of cancer is not 
limited to the cell-to-cell variability among can-
cer cells. More importantly, cancer is itself a het-
erogeneous tissue comprised of malignant, 
immune, stromal and endothelial cells [71]. 
Recently, profiling of the immune cells within the 
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tumor microenvironment is attracting lots of 
attention [72–75]. Those studies covered various 
different cancers and single cell omic technolo-
gies. A recent study employed scRNA-seq to 
analyse T cells isolated from tumor tissues and 
adjacent normal tissues from hepatocellular car-
cinoma (HCC) patients, revealing the distinctive 
functional composition of T cells in HCC and the 
clonal enrichment of infiltrating Tregs and 
exhausted CD8 T cells [72].

The clonal evolution of cancer was proposed 
more than 40 years ago [76]. Longitudinal single 
cell analysis is now adding new evidence to this 
widely held concept [77]. Applying single 
nucleus sequencing to biopsy from primary 
breast cancer and its liver metastasis, it was sug-
gested that tumor evolution might follow a punc-
tuated expansion mode instead of a gradual 
progression path [78]. Single cell genome and 
exome sequencing enabled by MDA further 
increased the coverage of single cell genome 
sequencing and rendered the mutation and SNP 
calling at the single cell possible [79, 80]. The 
mutation and SNP information for individual 
cancer cells was valuable for population genetic 
analysis to understand the clonal evolution of 
tumor.

•	 Developmental Biology: Our understanding 
of developmental biology has also been dra-
matically enhanced by scRNA-seq. The iden-
tification of rare cell type was realized by the 
combination of organoid culture, scRNA-seq 
and development of novel algorithm [6]. This 
crystalized in the identification of Reg4 as a 
novel marker for enteroendocrine cells. New 
markers will then facilitate the investigation of 
rare cell types. Another recent study focused 
on the cells in the blood. New types of den-
dritic cells and monocytes were identified 
using scRNA-seq [14]. Our understanding of 
the cell types or subtypes constituting the 
brain was renewed by single-nucleus RNA 
sequencing [81] and scRNA-seq [82], while 
traditionally cell types were defined based on 
morphology, location and function.

•	 The Human Cell Atlas: With the development 
of high throughput single cell molecular 

profiling techniques, an international commu-
nity or network is taking shape rapidly aiming 
to undertake the ambitious project to identify 
all cell types in the human body [83]. Single 
cell omic technologies are situated at the heart 
of the human cell altlas. Key efforts will be 
devoted to key organs, such as the liver, the 
heart, the kidney or the pancreas [84], as well 
key systems, such as the immune system and 
the central nervous system [85].

Our understanding of disease will also be 
greatly refined with the realization of the human 
cell atlas. In the future biopsy from patients will 
be routinely assayed with single cell techniques 
[70, 86] and compared to the normal reference in 
the human cell atlas. Specific abnormalities will 
be identified and used to inform both diagnosis 
and treatment.

The drug industry will benefit dramatically 
from the human cell atlas. Traditionally, drug dis-
covery and development efforts have been hin-
dered by the challenges that all healthy and 
diseased tissues are inherently heterogeneous 
[87]. The emergence and rapid application of 
single cell analysis tools will pave the way to 
eventually understand both health and disease at 
an unprecedented level so that medicine can 
finally ushers in a new era of personalized health-
care [88, 89].
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