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Can the Single Cell Make 
Biomedicine Different?

Yuming Wang, Li Li, Xiangdong Wang, 
and Jianqian Gu

Abstract
The single-cell as the basic unit of biological 
organs and tissues has recently been consid-
ered an important window to furthermore 
understand molecular mechanisms of organ 
function and biology. The current issue with a 
special focus on single cell biomedicine is the 
first effort to collect the evidence of disease- 
associated single cell research, define the sig-
nificance of single cell biomedicine in the 
pathogenesis of diseases, value the correlation 
of single cell gene sequencing with disease- 
specific biomarkers, and monitor the dynam-
ics of RNA processes and responses to 
microenvironmental changes and drug 
resistances.

Keywords
Single cell · Sequencing · Imaging · 
Bioinformatics · Systems biology

1.1  Introduction

The single-cell as the basic unit of biological 
organs and tissues has recently been considered 
an important window to furthermore understand 
molecular mechanisms of organ function and 
biology. With the development of single cell bio-
technology, the single cell biomedicine becomes 
more and more important area to understand the 
heterogeneity among cells, identify disease- 
specific biomarkers, and explore molecular regu-
lations and signals. The single cell systems 
biology is emphasized as an approach to under-
stand single-cell mechanical phenotypes, single- 
cell biology, heterogeneity and organization of 
genome function [1]. Multi-dimensional, multi- 
layer, multi-crossing and stereoscopic single-cell 
biology definitely will benefit the discovery and 
development of disease-specific biomarkers, 
translation of single-cell systems biology into 
clinical phenotype, and understanding of single- 
cell gene sequencing and function in patient 
response to therapies. As a part of single cell bio-
medicine, single cell RNA sequencing (scRNA- 
seq) is used as a critical and initial tools to define 
the alterations of transcriptomes, development of 
intratumor and intercellular heterogeneity, and 
genotoxicity in response to drugs [2]. scRNA-seq 
can detect somatic mutations and epigenetic 
alterations in evolution, post-transcriptional RNA 
modifications, and RNA editing. It is also impor-
tant to illuminate the effects of single-cell RNA 
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isoform diversity on gene, protein expression, 
and regulation. The current issue with a special 
focus on single cell biomedicine is the first effort 
to collect the evidence of disease-associated sin-
gle cell research, define the significance of single 
cell biomedicine in the pathogenesis of diseases, 
value the correlation of single cell gene 
 sequencing with disease-specific biomarkers, and 
monitor the dynamics of RNA processes and 
responses to microenvironmental changes and 
drug resistances.

1.2  Rapid Development 
of Single Cell Measurements

The accuracy of targeted single cell isolation, 
purification, and measurement is the critical 
step to ensure the trust of single cell biomedi-
cine. Tatematsu and Kuroda as the leading sci-
entists developed an automated robot that 
facilitates non-invasive isolation of a single cell 
with the most favorable properties from arrays 
containing >105 cells, and described the system 
as a “single- cell robot” to compare with a con-
ventional fluorescence- activated cell sorter [3]. 
Such system can carry out a high-throughput 
screening for single cell isolation with targeted 
labelling and perform the comprehensive analy-
sis the biological function of receptor-associ-
ated signaling between single cells. In addition, 
they also clearly described the advantages 
between single colony- based and single cell-
based breeding methods, and between “single 
cell robot” with conventional single-cell analy-
sis, automated single-cell analysis, or other cell 
screening methods enabled by automated sin-
gle-cell analysis. It is more critical to monitor 
alterations of single-cell dynamic phenotypes 
during evolution, microenvironmental changes, 
disease progression, and therapy, with the devel-
opment of single-cell technologies in the deep 
understanding and value of the constituents 
within dynamic phenotypes [4]. The detection 
of single-cell dynamic phenotypes will require 
more precise readouts from “single cell robot”, 
not only on the findings but also the meaning  
of tumor heterogeneity and evolution to 

 carcinogenicity, metastasis, and responses to 
targeted therapies.

Huang et al. systemically addressed the meth-
odology of high throughput single cell RNA 
sequencing, bioinformatics analysis and applica-
tions, by combining their own innovative experi-
ence in the current volume [5]. Hou’s group as 
one of the pioneer scientists on the development 
of high throughput scRNA-seq published their 
early work to measure the single-cell exome 
sequencing on a clear cell renal cell carcinoma 
and its adjacent kidney tissue to better understand 
the intratumoral genetics underlying mutations of 
cancer in 2012 [6]. It was proposed that such 
quantitative population genetic analysis as new 
ways could identify the clonal subpopulations, 
mutation spectrums, or detailed intratumoral 
genetic landscape at a single-cell level. They fur-
thermore described the difference of large-scale 
scRNA-seq library preparations in the accuracy 
and throughput of scRNA-seq, and the impor-
tance of computational analysis of scRNA-seq 
data. When analyzing scRNA-seq data, we 
should clearly define what the quality control, 
criteria of subpopulations identified, or differen-
tial expression and transcript isoforms across 
conditions are, how expression estimation and 
normalization, pseudotemporal ordering, or 
interrogation of spatial information are settled 
out, as well as why network inference, differen-
tial Splicing, or allelic expression patterns should 
have the special attentions.

More approaches are used to determine 
dynamic phenotypes of single cells by the cross- 
disciplinary nature of these techniques, e.g. quan-
titative live cell imaging, time series analysis, 
computational modeling, and statistical testing 
on multi-dimensional data sets. Ruderman head-
lined the computational models as a predictor 
reflecting the quantitative phenotypes of cells, 
new theories as a system screening the key 
response variables of phenotypes, or multidisci-
plinary dynamic phenotype research teams [7]. 
Feng et  al. overviewed and discussed recent 
applications of super-resolution techniques in 
single cell imaging for multi-dimensional, multi-
color, live-cell imaging [8]. The quality and 
potentials of multimodal imaging are compared 
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among stimulated emission depletion, structured 
illumination, single-molecule localization, and 
other super-resolution microscopies. It will sig-
nificantly improve our vision and understanding 
of single cells if cell imaging can be integrated 
with molecular biology, signaling, regulation, 
and bio-computing algorithms.

1.3  Single Cell Biology 
in Development 
and Evolution

Single-cell transcription kinetics and variability 
play an important role in cell development and 
evolution through gene regulation. Of those, non- 
coding RNA (ncRNA) is suggested to regulate 
cell mechanic changes and volume flexibility. Fu 
et al. illuminated the emerging single-cell RNA 
sequencing technique and he expression of 
ncRNAs during embryo development [9]. The 
expression of ncRNAs within single cells mea-
sured with single-cell RNA-seq techniques can 
vary with stages of embryonic development. 
ncRNA, especially lncRNAs and miRNAs, can 
regulate and prevent embryonic cell development 
from the disorder. Although partial functions of 
single-cell lncRNAs and miRNAs was explored, 
the most of single-cell circRNAs, piRNAs, or 
snoRNAs functions remain unclear in embryonic 
development. Wei et  al. described the contribu-
tions of single cell genetics and epigenetics in 
early embryo from basic research to reproductive 
medical application and the knowledge of pro-
gramming/reprogramming and the epigenetics 
dynamics in the cell lineage differentiation [10]. 
This is a special vision from the reproductive 
medicine to evaluate the meaning of embryo or 
polar body scRNA-seq to genetic diagnosis and 
prediction. The single cell techniques and bioin-
formatics analyses for early embryo were listed 
and compared with other tissue cells. Single-cell 
biomedicine in the development will provide the 
details of each cell origination and sources as 
well as molecular mechanisms by the landscape 
shaped itself. Single cell DNA methylation will 
demonstrate the mechanisms of cell lineage dif-
ferentiation, gene expression heterogeneity in the 

pluripotent state of mouse embryonic stem cells, 
or the start of a lineage transition or a transient 
phase of altered sensitivity to lineage-specific 
signals.

1.4  Heterogeneity of Single 
Circulating Tumor Cells

The cancer heterogeneity can be described by 
single cell sequencing and comprehensive molec-
ular characterizations of cancer cells, including 
hereditary and somatic gene changes and muta-
tions. The specificity, characterization, and roles 
of cancer cell heterogeneity can decide the sensi-
tivity and resistance of cells to therapies and be 
considered as the critical factor to develop target- 
driven therapies and strategies applied in clinical 
trials based on a proposed precise self-validation 
system [11]. Cancer heterogeneity can act as a 
potential cause of drug resistance to targeted 
therapy, contribute to tumor evolution and adap-
tation, and influence the efficacy of personalized- 
medicine strategies. The influence of tumor 
heterogeneity on drug efficacy and resistance 
should be monitored by disease- and biology- 
specific biomarkers [12]. The intelligent single- 
cell robot of human cells were proposed to 
integrate together systems information of mole-
cules, genes, proteins, organelles, membranes, 
architectures, signals, and functions to assist cli-
nicians in the decision-making, molecular under-
standing, risk analyzing, and prognosis predicting 
[13]. Heymann and Téllez-Gabriel pointed out 
the characterization of heterogeneity among cir-
culating tumor cells (CTCs) at the single cell 
level could be an important approach to explore 
the causes and progression of disease and the 
accurate selection of molecular biomarkers [14]. 
This is an initiative of disease-orientated figure to 
enrich, isolate, purify, and measure the single 
CTCs at different levels, including RNA, DNA, 
protein and epigenetic events. In addition to the 
value of cancer indication, the single CSCs will 
provide more clinical and biological importance 
to identify the heterogeneity, origin, subtypes, 
and malignancy of the cancer. The single circu-
lating cell will be the major source and play the 
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critical role in identification and validation of 
disease-specific biomarkers metastases, drug 
resistance, prognosis, phenotypes, metabolism, 
or proliferation. With advances in single-cell 
sequencing technologies, the complete genome 
of the single CTC can be defined and compared 
with corresponding primary and metastatic tumor 
single cells to monitor genomic variations in met-
astatic and recurrent tumors, infer tumor evolu-
tion during treatment, and examine mechanisms 
of the epithelial-mesenchymal transition [15]. 
The sequencing of single CTC genomes and tran-
scriptomes is even more complex and difficult, 
e.g. eliminating backgrounds of white blood 
cells, isolating and collecting cells without dam-
aging or losing DNA and RNA, obtaining unbi-
ased and even whole-genome and transcriptome 
amplification material, and analyzing sequencing 
data.

1.5  Single Cell Values in Cancer

The cancer is a major area where the single cell 
technologies were applied mostly to define the 
heterogeneity of intra- or inter-tumor cells, rare 
cancer cell types, gene mutation and characters, 
evolution and developmental lineage relation-
ships, or sensitivity to therapies. Lung cancer is 
one of the most severe cancers with the highest 
incidence and mortality, with a complex mecha-
nisms and available targeted therapies. A large 
number of lung cancer-associated biomarkers 
have been developed to monitor the severity, 
duration, subtypes, and transit from chronic lung 
diseases to cancer [16–19]. Wang and Zhang 
brought out single cell proteomics as a front point 
of single cell biomedicine with a clear focus on 
lung cancer and summarized potential technolo-
gies to measure single cell protein profiles [20], 
including flow cytometry, mass cytometry, 
microfluidics and chip technologies, chemical 
cytometry, single-cell western blotting, or quan-
tity and functions of proteins. The single-cell 
proteomics are mainly applied for the identifica-
tion and screening of diagnostic biomarkers and 
therapeutic targets for prevention, early detec-
tion, prognosis, and response to therapy, as well 

as for the understanding of mechanisms. While, 
the single cell sequencing is often used to iden-
tify gene mutations and intercellular heterogene-
ity. It would be important to define the correlation 
and biological consequences between the gene 
mutation and protein expression at the single cell. 
As Yu et al. summarized in the current book [21], 
the single-cell sequencing has been widely 
applied in cancer research, e.g. breast cancer, 
ovarian cancer, lung cancer, hematopoietic 
tumors, renal cell cancer, glioblastoma, circulat-
ing tumor cells, or cancer stem cells. In addition 
to the gene mutation, the single cell sequencing is 
expected to provide more indications or potential 
evidence on which clinicians can consider or 
select the individualized or targeting therapies. 
The single cell sequencing can benefit to identify 
the new sub-populations of cancer cells, the vari-
ation between cancer cells and cancer stem cells, 
and the development of drug resistance.

Hematological malignancies are one of chal-
lenging cancers with poor prognosis and non- 
specific therapies due to the downregulation of 
target antigens and the immunosuppressive envi-
ronment against the host immune response [22]. 
A number of potential immunotherapies, e.g. T 
cells, NK cells, or monoclonal antibodies, or 
inducing and/or recovering T cell activation, pro-
vide the exciting future for the patients, while the 
large number of blood cancer cell heterogeneity 
as an important factor in response to treatment 
may influence or decline the efficacy of thera-
pies. Chu et  al. recently emphasized there is a 
great heterogeneity among subclones and their 
extensions, especially in hematological malig-
nancies and called special attention to define the 
aggregate populations, intra-clonal and inter- 
clonal heterogeneity, and its frequency, using 
single cell sequencing [23]. It seems that single 
cell systems biology may generate more unique 
and important information on cancer cell sub-
types, heterogeneities, or epigenetics to assist cli-
nicians in the diagnosis and therapeutic design 
for diseases and in the prognosis of patients with 
individualized therapies. Shi et  al. furthermore 
overviewed potential roles of single cell sequenc-
ing in the diagnosis and treatment of hematologic 
malignancies and tried to headline the advantages 
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of the single cell biology from the clinical point 
[24]. This particular article collected the scien-
tific evidence from studies and summarized 
genomic, transcriptomic, and epigenomic find-
ings in single cells of acute leukemia, multiple 
myeloma, or chronic myeloid leukemia. The 
most valuable point of single cell biology, e.g. 
circulating tumor cell sequencing, is to monitor 
minimal residual disease of hematologic malig-
nancies and define functional heterogeneity and 
clonal evolution in such life-threatening hemato-
logical diseases.

Clustered regularly interspaced short palin-
dromic repeats (CRISPR)/Cas (CRISPR associ-
ated) system has been applied in many aspects to 
understand the molecular mechanisms of a gene, 
signal pathway, and regulatory function, as “the 
solution for gene editing’s Gordian knot” [25]. 
For example, CRISPR was proposed to play the 
important role in the understanding of drug geno-
toxicity and resistance, during which how gene 
changes, mutations, and heterogeneity may con-
trol and dominate the cell signaling, regulation, 
and sensitivity to drugs [26]. During the interac-
tion between cells and drugs, the perturbation 
and phenotype of a cell can be changed and mon-
itored using the single-cell CRISPR screening. In 
addition, CRISPR can be one of the most impor-
tant genome editing-assisted gene knock-in tech-
nologies, to repair genetic changes and cure 
inherit diseases [27]. In the current volume, Qian 
and Wang demonstrated that the RNA editing as 
a RNA structure research tool also plays impor-
tant role in cancer research, especially in the 
understanding of biological function of RNA 
species, structures, and expression [28].

Nowadays, transcriptomics studies mainly 
focus on three aspects, the RNA species (mRNA 
and non-coding RNA), the RNA structure (start 
sites, splicing patterns and post-transcriptional 
process) and the expression levels of 
RNA. Among them, the RNA structure research 
tool, RNA editing, remains the least popular one 
which we still have more to explore on the role of 
it in cancer research [28]. RNA editing enzymes 

such as ADARs and APOBECs are all promising 
targets in cancer therapeutic strategy. Here we 
listed several examples of RNA editing studies in 
some cancers. However, their pathways are dif-
ferentially regulated in cancers which should be 
further clearly studied. The best tool to study 
RNA editing is NGS. Here, we also discussed the 
challenges and the possible ways to overcome 
them. We are sure to believe that RNA editing 
performed by NGS has the ability in studying 
transcriptomes, even at single cell level. It will be 
sure to help a lot in cancer diagnosis and treat-
ment in the near future.

1.6  Other Biological Significance

Single-cell-based biotechnologies can be also 
used in multiple aspects. Voigt A et  al. initially 
proposed to develop protein-based therapies, e.g. 
antigen-specific monoantibody, through single 
cell system [29]. The specificity of protein-based 
therapy can be screened and validated in the sin-
gle cell system. Single cell analysis can define 
the heterogeneity-associated efficacy among 
cells. The measurement of such heterogeneity is 
fully dependent upon the quantitative accuracy of 
scRNA-seq, including the protocol, RNA reverse 
transcription, or cDNA pre-amplification [30]. In 
addition, scRNA-seq is suggested as a powerful 
tool to measure the heterogeneity and germline 
of stem cells [31]. Furthermore, scRNA-seq was 
applied in pulmonary epithelial cells isolated and 
harvested from the lung of animals or patients 
suffered from diseases [32].

In conclusion, the current issue with a special 
focus on single cell biomedicine is the first effort 
to collect the evidence of disease-associated sin-
gle cell research, define the significance of single 
cell biomedicine in the pathogenesis of diseases, 
value the correlation of single cell gene sequenc-
ing with disease-specific biomarkers, and moni-
tor the dynamics of RNA processes and responses 
to microenvironmental changes and drug 
resistances.

1 Can the Single Cell Make Biomedicine Different?



6

References

 1. Niu F, Wang DC, Lu J, Wu W, Wang X (2016) 
Potentials of single-cell biology in identification 
and validation of disease biomarkers. J  Cell Mol 
Med 20(9):1789–1795. https://doi.org/10.1111/
jcmm.12868

 2. Wang W, Gao D, Wang X (2017) Can single-cell 
RNA sequencing crack the mystery of cells? Cell Biol 
Toxicol https://doi.org/10.1007/s10565-017-9404-y

 3. Tatematsu K, Kuroda S (2018) Automated single-cell 
analysis and isolation system: a paradigm shift in cell 
screening methods for bio-medicines. Adv Exp Med 
Biol 1068

 4. Wang W, Zhu BJ, Wang X (2017) Dynamic pheno-
types: illustrating a single-cell odyssey. Cell Biol 
Toxicol 33(5):423–427

 5. Huang X, Liu S, Wu L, Jiang M, Hou Y (2018) High 
throughput single cell RNA sequencing, bioinformat-
ics analysis and applications. Adv Exp Med Biol 1068

 6. Xu X, Hou Y, Yin X, Bao L, Tang A, Song L et  al 
(2012) Single-cell exome sequencing reveals single- 
nucleotide mutation characteristics of a kidney tumor. 
Cell 148(5):886–895. https://doi.org/10.1016/j.
cell.2012.02.025

 7. Ruderman D (2017) The emergence of dynamic phe-
notyping. Cell Biol Toxicol 33(6):507–509. https://
doi.org/10.1007/s10565-017-9413-x

 8. Feng H, Wang X, Xu Z, Zhang X, Gao Y (2018) 
Super-resolution fluorescence microscopy for single 
cell imaging. Adv Exp Med Biol 1068

 9. Fu Q, Liu CJ, Zhai ZS, Zhang X, Qin T, Zhang HW 
(2018) Single-cell non-coding RNA in embryonic 
development. Adv Exp Med Biol 1068

 10. Wei Y, Zhang H, Wang Q, Zhang C (2017) Chapter 9: 
single cell genetics and epigenetics in early embryo: 
from oocyte to blastocyst. Adv Exp Med Biol 1068

 11. Wang DC, Wang W, Zhu B, Wang X (2017) Lung can-
cer heterogeneity and new strategies for drug therapy. 
Annu Rev Pharmacol Toxicol https://doi.org/10.1146/
annurev-pharmtox-010716-104523

 12. Wu D, Wang DC, Cheng Y, Qian M, Zhang M, Shen 
Q, Wang X (2017) Roles of tumor heterogeneity in the 
development of drug resistance: a call for precision 
therapy. Semin Cancer Biol 42:13–19

 13. Wang DC, Wang X (2017) Tomorrow’s genome medi-
cine in lung cancer. Semin Cancer Biol 42:39–43

 14. Heymann D, Téllez-Gabriel M (2017) Circulating 
tumor cells: the importance of single cell analysis. 
Adv Exp Med Biol 1068

 15. Zhu Z, Qiu S, Shao K, Hou Y (2017) Progress and 
challenges of sequencing and analyzing circulating 
tumor cells. Cell Biol Toxicol https://doi.org/10.1007/
s10565-017-9418-5

 16. Wang X (2016) New biomarkers and therapeutics 
can be discovered during COPD-lung cancer transi-
tion. Cell Biol Toxicol 32(5):359–361. https://doi.
org/10.1007/s10565-016-9350-0

 17. Xu M, Wang X (2017) Critical roles of mucin-1  in 
sensitivity of lung cancer cells to tumor necro-
sis factor-alpha and dexamethasone. Cell Biol 
Toxicol 33(4):361–371. https://doi.org/10.1007/
s10565-017-9393-x

 18. Bao L, Zhang Y, Wang J, Wang H, Dong N, Su X, Xu 
M, Wang X (2016) Variations of chromosome 2 gene 
expressions among patients with lung cancer or non- 
cancer. Cell Biol Toxicol 32(5):419–435. https://doi.
org/10.1007/s10565-016-9343-z

 19. Bao L, Diao H, Dong N, Su X, Wang B, Mo Q et al 
(2016) Histone deacetylase inhibitor induces cell 
apoptosis and cycle arrest in lung cancer cells via 
mitochondrial injury and p53 up-acetylation. Cell 
Biol Toxicol 32(6):469–482

 20. Wang Z, Zhang X (2018) Single cell proteomics 
for molecular targets in lung Cancer: high-dimen-
sional data acquisition and analysis. Adv Exp Med 
Biol 1068

 21. Yu L, Zhao H, Meng L, Zhang C (2018) Application 
of single cell sequencing in cancer. Adv Exp Med 
Biol 1068

 22. Lin C, Chen S, Li Y (2017) T cell modulation in 
immunotherapy for hematological malignancies. Cell 
Biol Toxicol 33(4):323–327. https://doi.org/10.1007/
s10565-017-9397-6

 23. Chu MP, Kriangkum J, Venner CP, Sandhu I, Hewitt J, 
Belch AR, Pilarski LM (2017) Addressing heteroge-
neity of individual blood cancers: the need for single 
cell analysis. Cell Biol Toxicol 33(2):83–97. https://
doi.org/10.1007/s10565-016-9367-4

 24. Shi M, Dong X, Wei X, Wang F, Huo L, Sun K (2018) 
The potential roles and advantages of single cell 
sequencing in the diagnosis and treatment of hemato-
logic malignancies. Adv Exp Med Biol 1068

 25. Fang H, Wang W (2016) Could CRISPR be the 
solution for gene editing’s Gordian knot? Cell Biol 
Toxicol 32(6):465–467

 26. Wang W, Wang X (2017) Single-cell CRISPR screen-
ing in drug resistance. Cell Biol Toxicol 33(3):207–
210. https://doi.org/10.1007/s10565-017-9396-7

 27. Sakuma T, Yamamoto T (2017) Magic wands of 
CRISPR-lots of choices for gene knock-in. Cell 
Biol Toxicol 33(6):501–505. https://doi.org/10.1007/
s10565-017-9409-6

 28. Qian M, Wang X (2018) Detection and application of 
RNA editing in cancer. Adv Exp Med Biol 1068

 29. Voigt A, Semenova T, Yamamoto J, Tienne V, Nguyen 
CQ (2018) Therapeutic antibody discovery in infec-
tious diseases using single-cell analysis. Adv Exp 
Med Biol 1068

 30. Zhuge W, Wang X (2018) The significance of single- 
cell analysis in stem cells. Adv Exp Med Biol 1068

 31. Wang X, Zeng Y (2018) Single cell sequencing in 
respiratory diseases. Adv Exp Med Biol 1068

 32. Xu Y, Mizuno T, Sridharan A, Du Y, Guo M, Tang J, 
et al (2016) Single-cell RNA sequencing identifies 
diverse roles of epithelial cells in idiopathic pulmo-
nary fibrosis. JCI Insight 1(20):e90558

Y. Wang et al.

https://doi.org/10.1111/jcmm.12868
https://doi.org/10.1111/jcmm.12868
https://doi.org/10.1007/s10565-017-9404-y
https://doi.org/10.1016/j.cell.2012.02.025
https://doi.org/10.1016/j.cell.2012.02.025
https://doi.org/10.1007/s10565-017-9413-x
https://doi.org/10.1007/s10565-017-9413-x
https://doi.org/10.1146/annurev-pharmtox-010716-104523
https://doi.org/10.1146/annurev-pharmtox-010716-104523
https://doi.org/10.1007/s10565-017-9418-5
https://doi.org/10.1007/s10565-017-9418-5
https://doi.org/10.1007/s10565-016-9350-0
https://doi.org/10.1007/s10565-016-9350-0
https://doi.org/10.1007/s10565-017-9393-x
https://doi.org/10.1007/s10565-017-9393-x
https://doi.org/10.1007/s10565-016-9343-z
https://doi.org/10.1007/s10565-016-9343-z
https://doi.org/10.1007/s10565-017-9397-6
https://doi.org/10.1007/s10565-017-9397-6
https://doi.org/10.1007/s10565-016-9367-4
https://doi.org/10.1007/s10565-016-9367-4
https://doi.org/10.1007/s10565-017-9396-7
https://doi.org/10.1007/s10565-017-9409-6
https://doi.org/10.1007/s10565-017-9409-6


7© Springer Nature Singapore Pte Ltd. 2018 
J. Gu, X. Wang (eds.), Single Cell Biomedicine, Advances in Experimental Medicine and Biology 1068, 
https://doi.org/10.1007/978-981-13-0502-3_2

Automated Single-Cell Analysis 
and Isolation System: A Paradigm 
Shift in Cell Screening Methods 
for Bio-medicines

Kenji Tatematsu and Shun’ichi Kuroda

Abstract
We have developed an automated robot that 
facilitates non-invasive isolation of a single 
cell with the most favorable properties from 
arrays containing >105 cells, thus allowing the 
establishment of new cell screening methods 
for bio-medicines. In this chapter, an outline 
of the proposed automated single-cell analysis 
and isolation system (hereafter called ‘single- 
cell robot’) is reviewed by comparison with a 
conventional fluorescence-activated cell sorter 
(FACS). The single-cell robot could perform 
high-throughput screening for both mamma-
lian cells secreting the highest amount of bio- 
medicines (e.g. Chinese hamster ovary (CHO) 
cells or hybridomas), and stem cells with the 
highest pluripotency (e.g., embryonic stem 
(ES) cells), from huge number of cell libraries 
based on the recently proposed concept of 
“single cell-based breeding”. The rational 
screening method for the de novo agonist 
design could also be performed using yeast 
cells expressing functional mammalian cyto-
kine receptors (e.g., epidermal growth factor 
receptor (EGFR), somatostatin G protein- 
coupled receptor (SSTR5), and interleukin 5 

receptor (IL5R)). Furthermore, the single-cell 
robot could comprehensively analyze the 
reaction between olfactory sensory neurons 
and specific odorants, which will shed light on 
how odorants are recognized by olfactory 
receptors. Taken together, these unique fea-
tures of the proposed single-cell robot will 
contribute to the high-throughput develop-
ment of forthcoming bio-medicines.

Keywords
Time-lapse single-cell array cytometry · 
High-throughput screening · Single cell- 
based breeding · CHO cells · Hybridomas · 
ES cells · Yeast cells · Olfactory sensory 
neurons

2.1  Introduction

Non-invasive single-cell isolation, separating 
individual target cells from vast cell libraries, is 
very important for cell analysis in the field of bio- 
science field, establishing high-producing cells in 
the bio-engineering and bio-medical fields, and 
performing cell diagnostics in the bio-medical 
field. Conventionally, the fluorescence-activated 
cell sorter (FACS) has been widely used for this 
purpose; however, FACS cannot be used for the 
samples containing very few target cells (content 
percentage <0.1%), rare samples that will be 
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reused, or samples that are highly susceptible to 
various stresses. Furthermore, FACS cannot sort 
cells based on time-dependent changes in cellular 
properties. This chapter presents an outline of an 
automated single-cell analysis and isolation sys-
tem (hereafter called “single-cell robot”) that the 
authors have recently developed and commer-
cialized in Japan [19], and introduces new cell 
screening methods for developing bio-medicines 
based on the “single cell-based breeding” con-
cept [20].

2.2  Single Colony-Based 
Breeding Versus Single 
Cell-Based Breeding

In order to select microorganisms possessing the 
most favorable properties from a cell library, con-
temporary methods require single-colony isola-
tion followed by cultivation for further evaluation 
steps. Similarly, mammalian cells possessing the 
most favorable properties are currently selected 
from cell libraries using the limiting dilution 

method followed by colony formation and culti-
vation. In both cases, as a single colony is formed 
from single cell monoclonally, it has long been 
believed that the phenotype of each cell in the 
resulting colony is identical and unchanged. 
However, due to the epigenetic effect, a ‘stochas-
tic fluctuation’ in the gene expression of each cell 
has been indicated to occur during colony forma-
tion, resulting in ‘cellular heterogeneity’ among 
the cells in these colonies [2] (Fig.  2.1a). This 
differentiation in expression has forced scientists 
to perform laborious steps to permanently main-
tain the conventional “single colony-based breed-
ing” in cell-based research projects and industries. 
It is known, however, that “elite cells” exhibiting 
the most favorable properties with less cellular 
heterogeneity can be found in cell libraries. These 
elite cells have been isolated as a result of long- 
term research and development efforts, and have 
proven to be able to sustain the mass production 
of bio-materials and bio-medicines in cell-based 
industries. Therefore, this work aimed to estab-
lish a rapid and high-throughput selection method 
for isolating elite cells that no longer requires 

Single colony-based breeding

④

① ② ③

⑤ ⑥

⑦ ⑧

Single colony with 
the most favorable properties

Cell library

Culture
Limiting 
dilution

Repeat screening

Cell library Master cell bank
containing elite cell

candidates
exclusively

Single cell with 
the most favorable

properties 
(elite cell candidate)

Single cell-based breeding

Single-cell
robot 

A

B

Master cell bank
containing elite cell

candidates
partially

Culture

Fig. 2.1 Single colony-based breeding method (conventional, A) and single cell-based breeding method (new, B)
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either time-consuming colony formation or the 
laborious handling of a large number of colonies 
(shifting the paradigm from “single colony-based 
breeding” to “single cell-based breeding”) [20]. 
For example, it is probable that a master cell bank 
established by single colony-based breeding will 
be contaminated by non-elite cells, whereas a 
colony established using single cell-based breed-
ing could be obtained through short-term steps 
and will contain exclusively elite cells or elite 
cell candidates (Fig. 2.1b).

2.3  Conventional Single-Cell 
Analysis and Isolation 
System

FACS has been recognized as the de facto stan-
dard machine in the process of isolating single 
target cells from cell libraries consisting of huge 
numbers of cells. Using FACS, droplets contain-
ing single cells are aligned in laminar flow. The 
properties of each cell (e.g., shape, size, and cell- 
surface markers) are analyzed via scatter-patterns 
of light and fluorescence, and each droplet con-
taining a target cell is independently charged and 
then sorted in a charge-dependent manner. 
Although FACS possesses high-throughput pro-
cessing capability (>104 cells/s) the sorted cells 
are often damaged by chemical (sheath solution) 
and physical stresses (high voltage, high hydrau-
lic pressure, ultrasound), resulting in a low sur-
vival rate of the sorted cells. Furthermore, FACS 
is not able to identify rare target cells (content 
percentage <0.1%) because of its low spectro-
photometric resolution, and is unable to analyze 
entire samples, because pre-run selections of 
samples are required for gate adjustment and 
samples in the dead space of the flow path cannot 
be used. To address the cell damage issues of 
FACS, a micro total analysis system (microTAS; 
microfluidics technology) has recently been 
applied to single-cell analysis and isolation sys-
tems (e.g., On-chip Sort, On-Chip 
Biotechnologies Co., Ltd., Japan). This system 
facilitates single- cell isolation in a non-invasive 
manner; however, it is limited by a low process-
ing capability (approximately 4000 cells/s). 

Moreover, both FACS and microTAS are inca-
pable of sorting cells based on time-dependent 
changes of cellular properties (e.g., transient 
changes of second messengers (Ca2+, cAMP), 
fluorescence, or morphology). New develop-
ments in single-cell analysis and isolation sys-
tems are expected to include time-lapse 
cytometric functions to expand their applicabil-
ity into the cellular engineering and bio-medical 
fields (Table 2.1).

2.4  Automated Single-Cell 
Analysis and Isolation 
System

As compared with conventional single-cell anal-
ysis and isolation systems, the system proposed 
in this work is expected to possess the following 

Table 2.1 FACS versus single-cell robot

Specifications FACS Single-cell robot
Cell sample:
Min. content of 
target cells

>0.1% ~0.0003%

Optimum cell 
concentration

106 ~ 107 
cells/ml

~3 × 105 cells/ml

Max. number of 
cells

∞ ~3.4 × 105 cells 
(φ10-μm 
chamber)

Cell suspension 
buffer

Sheath 
solution/
buffer

Cell culture 
medium

Isolation of cell 
aggregates

No Yes

Instrument:
Analyzing speed ~7 × 104 

cells/sec
~2.5 × 104 
cells/20 min

Sorting speed ~3 × 104 
cells/sec

96 cells/30 min

Disposability of 
cell-contacted 
parts

No Yes

Pre-run for gate 
adjustment

Necessary Not necessary

Reusability of 
used cells

No Yes

Available colors >8 colors ~3 colors
Time-laps analysis No Yes
Observation of 
cell morphology

No Yes

2 Automated Single-Cell Analysis and Isolation System: A Paradigm Shift in Cell Screening Methods…
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five performance features: target cells should be 
recovered without chemical or physical stress, 
rare target cells (content percentage <0.1%) can 
be identified and recovered non-invasively, entire 
samples can be subjected to analysis and target 
cell isolation, samples should be reusable for 
future analyses, and finally the system should 
measure time-dependent changes in cellular 
properties. In 2003, it was considered that most 
of these issues could be solved by changing con-
ventional systems from flow cytometry to array 
cytometry. In 2013, the development of “an auto-
mated single-cell analysis and isolation system” 
(hereafter called single cell robot) has finally 
proved successful [19]. The resulting robot con-
sists of four units (the single-cell robot (main 
unit), perfusion pump, light source, and personal 
computer) (Fig. 2.2a). The main unit is composed 
of two parts: the analysis part contains an inverted 
fluorescence microscope, CCD camera, optical 
unit, temperature control unit, and micro-
chamber array; and the isolation part contains a 
glass capillary- equipped micropump on a 

 micromanipulator (for Z-axis movement) and 
reservoir plate on a motorized stage (for XY-axis 
 movement). Seven types of glass capillaries are 
available for selection. For example, the inner 
diameter of a rank 0 capillary is 8–14 μm (fitting 
yeast cells), whereas that of a rank 3 capillary is 
25–29 μm (most cells) and that of a rank 6 capil-
lary is 39–45 μm (cell aggregates). Microchamber 
arrays can also be selected with three well diam-
eters (10, 20, and 30 μm), with respective well 
numbers of 338,560 (for yeast cells and blood- 
derived cells), 196,000, and 84,640 (for most 
cells) (Fig. 2.2c). Microchamber arrays are made 
of low fluorescence polystyrene, and the surface 
of this material can be modified with several 
functional groups (for an immunochamber, 
described below) and/or plasma (hydrophilic 
treatment).

If approximately 8.5 × 104 hybridoma cells in 
a culture medium are introduced to a 30  μm 
microchamber array via brief centrifugation 
(conditions: 50  ×  g, 1  min, room temperature), 
approximately 70% of wells in the microchamber 

Fig. 2.2 Automated single-cell analysis and isolation 
system. (a) Overview of the single-cell robot, composed 
of 4 units. (b) Transparent view of the single-cell robot. 

(c) Microchamber arrays (3 types: well diameters 10, 20, 
and 30 μm)

K. Tatematsu and S. Kuroda
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array could be occupied by hybridomas. When 
twice this number of hybridomas are used under 
the same conditions, >90% of wells can be occu-
pied [19]. In the analysis mode, both fluorescence 
and transmission images of all cells on 
 microchamber array (in culture medium) are 
automatically captured with a resolution of 
approximately 1 μm by an inverted fluorescence 
microscope (three colors are available for excita-
tion). Gate adjustment was performed for collect-
ing target cells based on the histogram of 
fluorescent intensity of each cell. Conversely, in 
the isolation mode the positions of target cells in 
the microchamber array are automatically recog-
nized by the robot, and these cells are retrieved 
from the microchamber array with the selected 
glass capillary and then released into the culture 
medium on the reservoir plate. Both fluorescence 
and transmission images of all target cells in the 
microchamber array are automatically saved 
before and after the isolation step. The robot uti-
lizes an array cytometry-based system, whereas 
FACS utilizes a flow cytometry-based system 
that creates a larger dead volume. Thus, small 
volume of cell libraries can be analyzed by the 
single-cell robot without unnecessary waste for 
pre-runs and dead volume (Table  2.1). 
Furthermore, the array cytometry-based system 
allows for the identification of rare target cells in 
a sample (theoretically down to a content per-
centage of ~0.0003%, or 1 cell out of approxi-
mately 3.4 × 105 cells on 10-μm microchamber 
array) and the identification of target cells show-
ing time-dependent changes in their cellular 
properties. As for the viability of sorted cells, 
mouse embryonic stem (ES) cells isolated by the 
robot were shown to grow from single cells with 
a 96% survival rate (23 live cells out of 24 iso-
lated cells), whereas the same cells isolated using 
FACS had a 25% survival rate (24 live cells out of 
96 isolated cells) (unpublished data). These 
results suggest that the proposed single-cell robot 
is less invasive to target cells than FACS.  The 
single-cell robot may prove able to sufficiently 
solve the five aforementioned issues that exist in 
conventional single-cell analysis and isolation 
systems.

2.5  Cell Screening Methods 
Enabled by Automated 
Single-Cell Analysis 
and Isolation System

2.5.1  ES Cells

Stem cells including ES cells, induced pluripo-
tent stem (iPS) cells, and mesenchymal stem 
cells (MSCs) have played a pivotal role in regen-
erative therapy. It is important for stem cells to 
exhibit high pluripotency over an extended 
period; however, they often lose their pluripo-
tency in the manner of stochastic fluctuation [6]. 
This work therefore established mouse ES cells 
containing the Rex1 gene (a marker gene for plu-
ripotency), internal ribosome entry site (IRES) 
sequence, and enhanced green fluorescence pro-
tein (EGFP) gene. From a sample of approxi-
mately 1.0 × 105 cells of the mouse ES cells, the 
single-cell robot was able to isolate 23 cells 
exhibiting the highest levels of EGFP-derived 
fluorescence within 1  h (Fig.  2.3a). After a 
3  weeks culturing period, five single cells had 
produced colonies in which nearly all cells were 
found to evenly express higher levels of EGFP 
[19]. This result indicates that the single cell- 
based breeding technique enabled by the single- 
cell robot is effective for isolating elite-cell 
candidates from stem cell libraries.

2.5.2  Antibody-Producing Cells

Recently, the biomedical field has seen a marked 
increase in interest in antibody medicines. For 
this purpose, it is important to isolate the cells 
secreting the highest number of antibodies from a 
cell library (e.g., hybridomas, Chinese hamster 
ovary (CHO) cells) and to identify the cells with 
the most efficient and stable antibody-secreting 
abilities. Using conventional methods, cell librar-
ies undergo limited dilution, after which all sin-
gle cells are allowed to form colonies for 
2–3 weeks. In this experiment, all colonies were 
cultured on a small scale for 1 week before being 
subjected to enzyme-linked immunosorbent 

2 Automated Single-Cell Analysis and Isolation System: A Paradigm Shift in Cell Screening Methods…
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assay (ELISA) to evaluating the antibody- 
secreting ability of each colony. This single 
colony- based breeding is not a high-throughput 
cell screening system, because the colony forma-
tion and culture steps are excessively time- 
consuming (usually 1  month) and the 
simultaneous culture of all colonies is laborious 
(usually less than 1  ×  104 colonies/round show 
the desired results). This work therefore tried to 

adapt the single-cell robot to single cell-based 
breeding by performing real-time measurements 
of the antibodies secreted from single cells. After 
evenly modifying the chosen cell surfaces with 
lipid-polyethylene glycol (PEG)-conjugated anti- 
IgG Fc antibody (capture antibody), nascent anti-
bodies secreted from the single cell in question 
were promptly captured on the cell surface 
(within 15 min). These secreted antibodies could 
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Fig. 2.3 Single cell-based breeding of ES cells and 
hybridomas. (a) Colony of mouse ES cells containing 
Rex1-IRES-EGFP gene (parent cell), expressing EGFP- 
derived fluorescence in a scattering manner. Colony for-
mation of single mouse ES cell showing the highest 
expression of Rex1-IRES-EGFP gene (daughter cell), 
evenly expressing EGFP-derived fluorescence. Left pan-
els, fluorescence images; right panels, DIC images. (b) 
Cell-surface fluorescence-linked immunosorbent assay 
(CS-FIA) (upper left panels). Lower panels, hybridomas 
in CS-FIA (left panel, fluorescence image; right panel, 
DIC). Immunochamber array (upper right panels). Lower 
panels, hybridomas in immunochamber array (left panel, 

fluorescence image; right panel, DIC). (C) Fluctuations in 
antibody secretion rate of hybridomas after 21 day propa-
gation from single cells. From parent hybridoma, seven 
single hybridomas showing the highest secretion rates 
(daughter hybridomas) were isolated by the single-cell 
robot using CS-FIA (gray bars). After a 21-day culture, 
the media were analyzed using conventional ELISA to 
detect secreted antibodies (black bars). The daughter 
hybridoma No. 1 was found to have kept a higher secre-
tion rate for at least the 21 day propagation from single 
cell isolation, while the other daughter hybridomas did 
not. Error bars, p < 0.05, n = 6
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then be detected with fluorescence-labeled anti- 
IgG F(ab′)2 F(ab′)2 (detection antibody) in using 
the sandwich FIA protocol (Fig. 2.3b, left panel). 
This method, designated as a cell surface- 
fluorescence immunosorbent assay (CS-FIA), 
was able to detect nascent antibodies secreted 
from single cell at the femtogram level (e.g., 
6.25 fg/cell for hybridomas [10], 0.66 fg/cell for 
CHO cells (Tatematsu et  al., submitted)). From 
approximately 5.0 × 104 parental hybridomas, the 
combination of the single-cell robot and CS-FIA 
was able to isolate seven daughter hybridomas 
secreting >10-fold higher amounts of antibodies 
than the parental hybridomas within 2  h. One 
daughter hybridoma was found to keep this high 
antibody-secreting characteristic for >3  weeks, 
making it a potential elite-cell candidate among 
hybridomas (Fig.  2.3c; [19]). The single cell- 
based breeding enabled by the single-cell robot 
facilitates rapid identification of such elite-cell 
candidates from huge numbers of bio-medicine- 
secreting cells without the most prohibitively 
time-consuming steps (i.e., colony formation, 
cell culture, and conventional ELISA).

Since modifying the cell-surface modification 
with a capture antibody may reduce the viability 
of isolated single cells, this work also more 
recently developed an immunochamber array, in 
which an amino group was introduced to the sur-
face for conjugation with capture antibody 
(Fig. 2.3b, right panel; Tatematsu et al. submit-
ted). Nascent antibodies secreted from single 
cells were promptly captured around the well 
before being quantified by the detection antibody 
in a sandwich FIA. Another research group has 
also developed a microchamber array possessing 
similar function, the immunospot array assay on 
a chip (ISAAC) [8].

The immune system contains B lymphocytes, 
naturally occurring antibody-producing cells. To 
identify B cells that react with specific antigens, 
it is useful to note that intracellular Ca2+ concen-
tration is transiently increased by antigen stimu-
lation [1]. Several research groups have therefore 
treated mouse and human B cells with Ca2+ indi-
cator (e.g., Fluo-4, Fura-2), introduced them into 
a microchamber array, stimulated them with anti-

gens, analyzed the time-dependent fluorescence 
change, and then isolated positive single cells 
manually. Recent variants of these research proj-
ects have succeeded in isolating single B cells 
producing antigen-specific antibodies [13, 17, 
18]. If such projects are combined with a single- 
cell robot equipped with time-lapse single-cell 
array cytometry (see below; [16]) in the future, 
these endogenously antibody-producing cells 
could be isolated in a high-throughput manner, 
significantly facilitating the generation of human 
monoclonal antibodies for antibody medications.

2.5.3  Yeast Cells Expressing 
Functional Mammalian 
Cytokine Receptors

Agonists and antagonists of cytokine receptors, 
recognized as important targets for drug discov-
ery, have been screened from huge numbers of 
chemical libraries. Conventionally, each chemical 
compound has been examined using mammalian 
cells expressing the receptor of interest. However, 
preparing these chemical libraries and performing 
such global screenings using the chemical librar-
ies and mammalian cells is costly, time-consum-
ing, and laborious. Although the emergence of 
automated screening robots has reduced the labor 
required for these processes, it has not changed 
the methodology of drug screening. Furthermore, 
it is difficult to quantitatively measure the activa-
tion of receptors of interest in mammalian cells 
because endogenous signal cascades often inter-
fere with the receptor-mediated signal cascade 
(due to unpredictable signaling crosstalks or simi-
lar phenomena). This work therefore tried to 
reconstitute the signal cascades of mammalian 
cytokine receptors in yeast cells, as yeast signal-
ing molecules have negligible effects on mamma-
lian receptors. This was successful in the 
functional expression of receptor Tyr kinase (epi-
dermal growth factor receptor (EGFR); [21]), 
non-receptor Tyr kinase (interleukin- 5 receptor 
(IL5R); [22]), and G protein- coupled receptors 
(somatostatin receptor (SSTR5); [7]) in yeast 
cells (Fig.  2.4). Next, in order to adapt the 

2 Automated Single-Cell Analysis and Isolation System: A Paradigm Shift in Cell Screening Methods…
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 mammalian receptor- expressing yeast cells to the 
single-cell robot, a randomized peptide library (as 
a substitute for chemical library) was designed to 
display in the yeast cell walls via fusion with 
FLO42 peptide (a cell wall-anchoring moiety of 
FLO1; [15]). This facilitated the activation of 
proximal receptors in an autocrine manner as well 
as the subsequent identification of individual 
yeast cells displaying agonistic peptide ligands. 
Linear peptide libraries generally display flexible 
structures, which could show a weak, induced fit 
interaction with receptors and thereby unexpect-
edly generate pseudo- positive peptides. To 
address this issue, a helix-loop-helix (HLH) 
library was utilized, consisting of two α-helixes 
supported by leucine zipper interaction in which 
the second α-helix contained five randomized 
amino acids on its solvent-accessible surface 
(Fig. 2.4a; [4]). Since the HLH library shows rigid 
structure, it is expected to lower the possibility of 
emerging pseudo-positive peptides as well as 
allow for easy identification of the pharmacoph-
ores in positive HLH-based peptides for the in 

silico drug design of chemical compounds [3]. 
Cyclic peptides showing limited flexibility have 
recently attracted attention in the development of 
middle-molecule medicines (molecular mass 
range, 500–5000  Da) [23]. The affinity to 
 receptors of HLH-based peptides (about 4 kDa) 
could be additionally increased by enhancing the 
structural rigidity via cyclization [5, 9, 12].

About 2.0  ×  105 yeast cells coexpressing 
EGFR and the HLH library were fixed with para-
formaldehyde, spheroplasted with Zymolyase, 
treated with fluorescence-labeled anti-phospho- 
Tyr antibodies, and then entered as a sample in 
the single-cell robot (Fig. 2.4a; [21]). Eight yeast 
cells exhibiting the highest fluorescent intensity 
were isolated, and the genes encoding HLH- 
based peptide were amplified via single-cell 
PCR.  These HLH-based peptides expressed in 
Escherichia coli were purified and then added to 
the EGFR-overexpressing A431 cells. Finally, six 
out of eight HLH-based peptides were found to 
act as EGFR agonists with de novo structures. 
Besides expressing EGFR, yeast cells coexpress-
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expressing functional mammalian cytokine receptors. (a) 
EGFR. A cell wall-anchored form of HLH peptide library 
(HLH-FLO42) consisting of two α-helixes (blue) linked 
with a hepta-Gly loop, in which the second α-helix con-
tains five randomized amino acids on its solvent- accessible 
surface. When HLH acts as an EGFR agonist, EGFR 
starts clustering and thereby auto-phosphorylating cyto-
plasmic Tyr residues form, which can be detected by 
fluorescence- labeled anti-phospho-Tyr antibodies. (b) 

IL5R.  When HLH acts as an IL5R agonist, IL5R starts 
clustering, activating JAK2 kinase, phosphorylating tran-
scription factor STAT5a, and thereby translocating 
STAT5a to nucleus, which can be detected by fluorescence- 
labeled anti-phospho-STAT5a antibodies. (c) SSTR5. 
When HLH acts as a SSTR5 agonist, SSTR5 starts acti-
vating the MAPK cascade via heterotrimeric GTP-binding 
protein, and thereby induces EGFP expression by MAPK- 
dependent Fig. 2.1 promoter

K. Tatematsu and S. Kuroda



15

ing IL5α chain, β chain, JAK2 Tyr kinase, and 
STAT5a transcription factor were able to respond 
to exogenous IL5 stimulation, start the clustering 
of IL5α and β chains, activate JAK2 kinase, and 
then phosphorylate STAT5a. The nuclear 
 translocation of STAT5a was detected by 
fluorescence- labeled anti-phospho-STAT5a 
 antibodies (Fig.  2.4b; [22]). Meanwhile, yeast 
cells coexpressing SSTR5, a chimeric G protein 
(Gi3tp, a hybrid of human Gαi3 and yeast Gpa1), 
and EGFP (placed downstream of Fig. 2.1 pro-
moter) were able to respond to exogenous soma-
tostatin (SSTR5 ligand), initialize the activation 
of the MAPK cascade using Gi3tp protein, and 
then induce EGFP expression through MAPK- 
dependent Fig. 2.1 promoter (Fig. 2.4c; [7]). In 
combination, these results revealed that yeast 
cells could express a wide range of mammalian 
receptors and allow for agonist-dependent activa-
tion of these receptors. Relative to conventional 
receptor agonist screening procedures, the com-
bination of the single-cell robot and yeast cells 
coexpressing mammalian receptors and HLH 
library shows promise for dramatically reducing 
the amount of time required (total 10 days from 
yeast library), lowering costs by eliminating the 
use of huge chemical libraries, and consequently 
contributing to the development of middle- 
molecule medicines with de novo structures.

2.5.4  Olfactory Sensory Neurons

Mammals are able to identify specific odorants in 
>105 species of odorants, although the number of 
mammalian odorant receptors (ORs) is limited 

(e.g., ~400 ORs for humans and ~1100 ORs for 
mouse). At this time, there is no definitive answer 
for how such a small number of ORs is able to 
discriminate between this much greater numbers 
of odorants. One present working hypothesis is 
that a single OR could be activated to varying 
degrees by multiple different odorants and that 
this pattern of activated ORs is recognized by the 
central nerve system (for additional details, see a 
concept of OR repertory; [11]). To understand 
how each OR contributes to the separate identifi-
cation of various odorants, it is essential to com-
prehensively analyze which ORs can be activated 
by specific odorants. However, the process of 
using current technologies to isolate all the olfac-
tory sensory neurons (OSNs) responding to a 
specific odorant simultaneously in a single cell- 
based manner has proven too difficult. Since 
mammalian cells cannot express a fully func-
tional form of mammalian ORs due to the ineffi-
ciency of membrane translocation and incorrect 
folding seen in ectopically synthesized ORs [14], 
it is impossible to prepare all human ORs in their 
functional forms simultaneously for the purpose 
of evaluating their activation by a specific odor-
ant. Therefore, this work isolated primary mouse 
olfactory epithelial cells containing OSNs, 
treated them with Ca2+ indicator Fluo-4, intro-
duced them into a microchamber array equipped 
with a perfusion apparatus, and then stimulated 
them with the odorant of interest (Fig. 2.5). When 
an OR was activated by an odorant, adenylate 
cyclase was activated by the OR through the 
Gαolf/β/γ complex, the subsequent production of 
cAMP activated cyclic nucleotide-gated ion 
channel (CNG), and consequently Fluo-4-derived 
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fluorescence was increased by the influx of extra-
cellular Ca2+. Using a single-cell robot equipped 
with time-lapse single-cell array cytometry, it 
was possible to isolate all primary mouse  
OSNs responding to the specific odorants  
(e.g., 2- pentanone, pyridine, 2-butanone) 
 simultaneously by viewing the transient increases 
(average 30  s) of Fluo-4-derived fluorescence. 
The isolated ORs could then be reactivated by the 
respective odorant in modified HEK293T cells 
[16], strongly suggesting that the single-cell 
robot equipped with time-lapse single-cell array 
cytometry was able to both decipher the entirety 
of the mammalian OR repertory and deorphanize 
mammalian orphan receptors.

2.6  Conclusion

The proposed automated single-cell analysis and 
isolation system (the single-cell robot) has many 
advantages in comparison to FACS, although the 
high-throughput processing capability is still low 
(Table  2.1). In this chapter, many single cell- 
based applications of the single-cell robot were 
introduced which have been difficult or impossi-
ble up until this point using FACS. It is believed 
that the single-cell robot has nearly infinite pos-
sibilities for future applications, and the authors 
anticipate the creativity of researchers around the 
world in developing new single-cell applications.
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Abstract
Non-coding RNAs (ncRNAs) have significant 
regulatory functions on the regulation of gene 
expression of various life activities after tran-
scription, even though they do not encode pro-
teins. During the development of embryos, 
ncRNAs, such as long non-coding RNAs 
(lncRNAs), microRNAs (miRNAs), circular 
RNAs (circRNAs), small nucleolar RNAs 
(snoRNAs), and Piwi-interacting RNAs (piR-
NAs), have been widely proven as key regula-
tors. The emerging single-cell RNA 
sequencing technique is powerful for profiling 
“cell-to-cell” variability at the genomic level. 
It has been applied to detect the expression of 
ncRNAs during embryo development. In this 
chapter, we pay close attention to single-cell 
ncRNA expression and summarize their roles 
in embryo development.

Keywords
Single-Cell · Non-coding RNA · Embryo

3.1  Introduction

The process of embryo development involves the 
proliferation and differentiation of embryonic 
stem cells (ESCs). This dynamic and compli-
cated process is coupled with an orchestrated re- 
organization of the epigenome that shapes the 
chromatin environment to prepare for the subse-
quent developmental stages [1]. ESCs, which are 
inner cells isolated from the blastocyst at d4 or 
d5, possess self-renewal and pluripotency prop-
erties [2].

The mammalian genome is classified into two 
clusters by function, “coding” and “non-coding” 
regions. There are many genes involved in the 
regulation of embryo development including 
ncRNAs. Most of the non-coding genome, which 
is transcribed into RNAs but does not code for 
proteins, was originally thought to be junk 
DNA.  Only a small number of genes, which 
encode proteins, and some structural non-coding 
RNAs have been considered as essential for cell 
functions (Fig. 3.1). Small structural RNAs that 
include small nuclear RNAs, snoRNAs, rRNAs, 
and tRNAs can regulate gene splicing, ribosome 
biogenesis and translation [3–6]. Additional 
research in recent years has demonstrated that 
ncRNAs, such as lncRNAs, miRNAs, circRNAs, 
snoRNAs, and piRNAs, are involved in the regu-
lation of gene expression, especially embryo 
development and cell regulation [7–11].
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An emerging technique, single-cell RNA 
sequencing, is powerful for profiling “cell-to- 
cell” variability at the genomic level and has been 
broadly applied for genetic analysis. Analysis of 
single cells utilizing various tools might impact 
the current conceptual understanding of diverse 
biological processes. Studying cell genomes in 
individual cells provides a rare opportunity to 
dissect the interactions between the inner cell 
process and external stimuli. For example, cell 
fate can depend on these circumstances [12]. In 
this article, we focus our attention on the expres-
sion of ncRNAs in single-cell ESCs and preim-
plantation embryos and then summarize their 
role in embryo development.

3.2  Single-Cell lncRNAs 
in Embryonic Development

LncRNAs, a class of RNAs longer than 200 
nucleotides, are mainly distributed in the nucleus, 
though they also are present in the cytoplasm. 
LncRNAs were originally considered genomic 
transcription “noise“ and a by-product of RNA 
polymerase II transcription without biological 
functions. However, further studies identified 
more and more lncRNAs. LncRNAs display 
numerous features, types and multi-modes of 
action [13]. They can be classified into intergenic 
lncRNAs and intragenic lncRNAs (lincRNAs) 

according to their genome localization. 
LincRNAs can also be further subdivided into the 
following four categories depending on the 
lncRNA position related to an associated protein- 
coding gene: “sense lncRNAs”, “antisense 
lncRNAs”, “bidirectional lncRNAs” and 
“intronic lncRNAs” [14].

LncRNAs play an important role in biological 
processes including epigenetic regulation, dose 
compensation, cell cycle and cell differentiation, 
proliferation, apoptosis through gene imprinting, 
chromatin remodelling, transcriptional activa-
tion, transcriptional interference, nuclear splicing 
regulation, mRNA degradation and translational 
regulation. More and more studies have shown 
that lncRNAs are associated with various dis-
eases including cancer, metabolic diseases, neu-
rodegenerative diseases and psychiatric disorders, 
cardiovascular disease and hypertension, immune 
dysfunction and autoimmune diseases, especially 
in embryo development [15, 16]. Various func-
tional lncRNAs are important during embryonic 
development. Some of them potentially decide 
one cell’s fate and differentiation direction during 
embryogenesis to finally form different organs or 
special tissues that contain various cells express-
ing specific and stable genes [17].

X-inactive specific transcript (Xist), the first 
identified lncRNA associated with embryo 
 development, is important for the induction of 
mammalian X-chromosome cis-inactivation.  

Nontranscriptional genome

Transcriptome

Non-coding RNAs

98%

5%-10%

90%-95%
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Protein coding 
RNAs

Fig. 3.1 Approximately 5%–10% of the human genome sequence is stably transcribed. NcRNAs constitute a majority 
(98%) of the transcriptome with protein-coding RNAs making up the rest (2%)
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In individual human embryo cells, Xist expres-
sion begins at the 4-cell stage on d3 and contin-
ues asynchronously; it is essential and pivotal for 
X-genome inactivation and mammalian dosage 
compensation [18, 19]. Abnormal expression of 
some lincRNAs can result in a number of human 
development disorders, such as DBE-T, 
SNORD115 and SNORD116 for “facioscapulo-
humeral muscular dystrophy”, “Prader-Willi 
Syndrome” [20, 21].

In 2013, a study showed that there were 
2733 novel lncRNAs among 8701 lncRNAs 
using single- cell sequencing analysis of 124 
individual cells from human ESCs and human 
preimplantation embryos at different passages, 
and many of these lincRNAs were expressed in 
specific developmental stages [22]. Julien et al. 
completed a meta-analysis of RNAs in this arti-
cle and another study at the single-cell level, 
though they did not analyse lncRNA profiles 
specifically [23]. The results showed lncRNAs 
expression from the beginning of human 
embryo development; lncRNAs became the 
predominant category of transcripts after 
embryonic gene activation at the 4-cell to 8-cell 
stage. Some lncRNAs, which were detected at 
crucial and specific steps of embryonic devel-
opment, could represent candidate markers of 
embryonic gene activation and embryo compe-
tency. These results provide strong evidence to 
support the notion that lncRNAs are integral to 
the dynamic changes in transcript expression 
that occurs during human early embryo devel-
opment and participate in the dramatic morpho-
logical changes during development [7]. A 
previous report performed a transcriptome 
assembly and identified 4438 putative lin-
cRNAs in mice before embryo implantation 
depending on the published single-cell RNA 
sequencing. Moreover, a referable catalogue, 
which included 5808 lincRNAs in pre- 
implantation embryonic development, was 
established and systematically analysed the lin-
cRNAs. The catalogue of mouse pre-implanta-
tion embryonic development lincRNAs is now 
a valuable database for deep functional analysis 
and is helpful for elucidating regulatory mecha-
nisms before embryo implantation [24].

“Weighted gene co-expression network analy-
sis” is a powerful technique and effective method 
that is used to broadly analyse and discover the 
relationships between genes, networks and phe-
notypes [25]. By using expression profile analy-
sis and “weighted gene co-expression network 
analysis,” Qiu et al. completed a comprehensive 
and comparison analysis of lncRNAs during 
embryonic development using existing single- 
cell RNA sequencing data from humans and 
mice. The results showed that lncRNAs were 
expressed a “developmental stage-specific man-
ner” pattern during the human early embryo stage 
that was different from the “temporal-specific 
expression pattern” during mouse embryo devel-
opment. “Weighted gene co-expression network 
analysis” revealed that lncRNAs were tightly 
connected with mitochondrial functions and 
numerous significant processes, including oocyte 
maturation and zygotic genome activation during 
early-stage embryonic development. Additionally, 
lncRNA networks involved in zygotic genome 
activation were conserved in both human and 
mouse embryos, whereas no strong correlation 
was observed in other stages between human and 
mouse embryos [26]. In general, lncRNAs play 
an absolutely necessary role in embryonic 
development.

3.3  Single-Cell miRNAs 
in Embryonic Development

MiRNAs, which are approximately 22–25 nucle-
otides long, are endogenously small ncRNAs that 
play important roles in mammals [27]. Lin-4 was 
the first discovered miRNA; it regulates 
Caenorhabditis elegans development by repress-
ing lin-14 expression [28]. To date, more than 
15000 miRNAs have been studied in over 140 
species [29].

Several kinds of RNA enzymes are involved in 
the step-by-step generation of mature miRNAs. 
First, “RNA polymerase II” transcribes the pri- 
miRNA. Then, “nuclear RNase III Drosha” and 
“DGCR8/Pasha” process the pri-miRNA into the 
pre-miRNA, which is approximately 60–70 
nucleotides in length and possess a “stem loop 
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structure” [30–32]. “Ran-GTP” transports the 
pre-miRNA to the cytoplasm where it is further 
processed by a second RNase III, Dicer, which 
generates a mature small miRNA by cutting off 
the terminal loop. After mature miRNAs release 
their complementary miRNA*, then post- 
transcriptionally regulate function (Fig. 3.2). For 
example, miR-135a and miR-22, which we dis-
covered in rat, could bind to ErbB3 and Ptk2 
mRNA, respectively, and trigger either transla-
tion inhibition or mRNA degradation (Fig.  3.3) 
[5, 33, 34].

Most studies have demonstrated that miRNAs 
can cause target mRNA degradation if they match 
them perfectly; in contrast, miRNAs repress tar-
get mRNAs when imperfect target duplexes are 
formed [35, 36]. In recent years, the functions of 

miRNAs have been to be complex and that miR-
NAs can up-regulate target genes; however, this 
requires further studies [37]. MiRNAs are 
involved in a variety of cell types under physio-
logical and pathological conditions and are 
essential in various cellular processes such as 
“development, proliferation, apoptosis, metabo-
lism and morphogenesis” [38, 39].

MiRNAs have been demonstrated as signifi-
cant regulators of ESCs. ESCs with genetically 
deleted Dicer−/− or Dgcr−/−, both of which are 
essential for miRNA maturation, show abnormal 
differentiation [40, 41]. DGCR8-deficient ESCs 
express a few differentiation markers, but some 
of the pluripotency markers can be still detected, 
which confirms the important function of miR-
NAs in ESC differentiation [42]. Studies on 
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Pre-miRNA 

Drosha/Pasha 

Ran-GTP 
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Mature miRNA 

Post-transcriptional 
regulation 
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Fig. 3.2 The miRNA biogenesis pathway. RNA poly-
merase II, nuclear RNase III Drosha and DGCR8/Pasha, 
process the pre-miRNA.  Ran-GTP transports the pre- 
miRNA to the cytoplasm where it is further processed by 

a second RNase III, Dicer, which generates a mature  
small miRNA. After mature miRNAs release their com-
plementary miRNA*, then post-transcriptionally regulate 
function
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miRNAs in ESC differentiation have been rap-
idly increasing. By directly binding to the 
3’-UTR of pluripotency factors, miRNAs can 
regulate the state of ESCs. For example, miR-
145 decreases ESC pluripotency by targeting 
Oct4, Sox2 and Klf4  in humans [43]. 
Additionally, the coding region of Nanog, Oct4 
and Sox2 can also be targeted by miR-296, miR-
470, and miR-134, which are involved in the 
regulation of mouse ESC differentiation [44]. 
More and more studies have shown that ESC-
specific miRNAs, c-Myc- induced miRNAs, 
early embryonic miRNA clusters and p53-target-
ing miRNAs can regulate ESC self-renewal, 

reprogramming and differentiation [45–48]. 
MiRNAs also play a regulatory role in the early 
stages of embryonic development. Mouse 
Dicer−/− oocytes are deficient in spindle organi-
zation and chromosomal alignment. Even when 
they are fertilized with wild-type sperm, the 
mouse zygotes cannot divide into two daughter 
cells [49, 50]. Recent studies in zebrafish 
embryos under hypoxic conditions have shown 
that miR-125c plays an important role in inhibit-
ing ESC proliferation, these actions lead to cell 
cycle arrest in G1 phase and the induction 
 apoptosis, which helps embryos adapt to anoxic 
environments [51].
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Fig. 3.3 miR-22 directly targets ERBB3 and miR-135a 
directly targets Ptk2 by binding to the 3’UTR. (a)The pre-
dicted miR-22 (miR-135a) binding sites within the 3’UTR 
of ERBB3 (Ptk2) and mutant version generated by site 
mutagenesis are shown. (b) Luciferase activity was deter-
mined 48 h after transfection. The ratio of normalized sen-

sor to control luciferase activity is shown. Data are shown 
as the mean ± S.D. and were obtained from three indepen-
dent experiments performed in triplicate. *Significant dif-
ference from control miR-transfected cells (P < 0.05). (c) 
Quantitative real time RT-PCR analysis of ERBB3 and 
Ptk2 expression in AR42J cells after transfection
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MiRNA expression profiling of ESCs at the 
single-cell level was first undertaken using a 
“real-time PCR-based 220-plex miRNA 
 expression profiling method”, which was essen-
tial to illuminate the diverse roles of miRNAs. 
The miRNA profiling data for the 220 miRNAs 
correlated well with cloning and northern blot 
data, which proved that this expression profiling 
method worked reliably for individual ESCs [52]. 
In another study, a dual-fluorescence reporter/
sensor plasmid was imported into zebrafish blas-
tomeres and mouse embryos via different meth-
ods to detect the dynamics of specific miRNAs at 
the single-cell level. The results revealed that 
both post-mitotic neurons and neuronal progeni-
tor cells from developing mice express miR- 
124a, whereas miR-1 cannot be detected in the 
early stage of zebrafish development. This tech-
nique allows for the monitoring of miRNA 
appearance and disappearance during vertebrate 
development [53]. Another analysis was per-
formed on 330 miRNAs using single-cell RNA- 
Seq analysis during the transition from the mouse 
blastocyst inner cell mass to pluripotent ESCs. 
The results indicated that pluripotency-related 
miRNAs, such as miR-290 and the miR-295 clus-
ter, are expressed similarly in the inner cell mass 
cells and ESCs, while 51 miRNAs showed dif-
ferential expression. For example, the let-7 fam-
ily expression was reduced approximately 
4–12-fold in ESCs compared to the inner cell 
mass cells, whereas the expression of miR-302c 
and miR-367 increased by 5- and 33-fold, respec-
tively. Further study revealed that miRNAs could 
target the genes driving differentiation or ESC- 
specific pluripotency, thus contributing to main-
taining the balance between pluripotency and the 
potential for rapid ESC differentiation [54].

A recent study performed in 2016 on single- 
cell miRNAs in embryo development described a 
new method for sequencing the small RNA tran-
scriptome from individual naive and primed 
human ESCs. First, libraries were constructed by 
ligating adapters to whole RNA species possess-
ing 5′-phosphate and 3′-hydroxyl groups regard-
less of their size. Then, designated masking 
oligonucleotides were used to evade the highly 
abundant 5.8S rRNAs followed by an enzymatic 

digestion step to reduce the formation of adaptor 
dimers. Finally, unique molecular identifiers were 
added to the 5′-adapters to counteract PCR sto-
chasticity and enable RNA molecule counting. 
No experimental size-selection step was used, and 
the small RNAs were identified computationally 
[55, 56]. Sixty percent of 3800 captured miRNAs 
were differentially expressed between naive and 
primed human ESCs, which is consistent with 
miRNA profiling data from naive and primed 
cells in bulk. Notably, the miR-302 family, which 
regulates the cell cycle and apoptosis in human 
ESCs, displayed increased expression in primed 
human ESCs. The expression of the miR-371-3 
cluster, which is crucial for the maintenance of 
human ESC pluripotency, was significantly high 
in naive cells [57]. In summary, miRNAs, which 
are considered the most important small non-cod-
ing RNAs, showed different expression profiles at 
various stages and play a highly important role in 
embryonic development.

3.4  Single-Cell circRNAs 
in Embryo Development

CircRNAs, a new special class of endogenous 
ncRNAs, are formed by back-splicing events via 
the circularization of an exon or intron [58]. 
CircRNAs are characterized by a covalently 
closed loop without a “5′-cap” or “3′-Poly A tail” 
[59]. They were thought to be the results of splic-
ing errors for several decades after they were dis-
covered in RNA viruses in 1976 [60]. The features 
of circRNAs, including abundance, stability, con-
servation and tissue-specific expression, were 
revealed by RNA-sequencing technologies and 
bioinformatics [61, 62]. CircRNAs can be classi-
fied into the following four categories: “exonic 
circRNAs”, “circular intronic RNAs”, “exon-
intron circRNAs” and “intergenic circRNAs”, 
based on their different biogenesis patterns from 
genomic regions [61, 63–66].

To date, many studies have shown that 
 circRNAs have numerous biological functions, 
such as sequestering proteins from their native 
subcellular localizations, regulating alternative 
splicing, modulating the expression of parental 
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genes, functioning as miRNA sponges, and act-
ing as scaffolds in the assembly of protein com-
plexes and RNA–protein interactions [67–73]. 
Some reports have demonstrated that altered cir-
cRNAs are associated with human diseases, such 
as hsa- circRNA- 103,636  in Major depressive 
disorder (MDD) and hsa-circ-002059  in gastric 
carcinoma [74, 75].

During embryonic development, the induction 
of circRNAs is a universal phenomenon; for 
example, the circRNA Sry is highly expressed in 
mice [76]. Another study showed that the intro-
duction of circRNAs was important for directing 
human pluripotent stem cells to differentiate into 
cardiomyocytes. The developmental induction of 
circRNA from the NCX1 gene, which codes for a 
calcium transporter essential for cardiac develop-
ment, is conserved between mouse and human, 
indicating that the developmental regulation of 
circRNAs may be evolutionarily conserved [77].

Single-cell universal poly(A)-independent 
RNA sequencing (SUPeR-seq), which utilizes 
random primers with fixed anchor sequences for 
cDNA synthesis, is a novel and highly robust 
single-cell transcriptome profiling method that 
can detect both poly(A+) and poly(A-) RNAs 
from individual cells. Fan et  al. applied  
SUP-eR- seq to detect polyadenylated and non- 
polyadenylated RNAs from individual mouse 
oocytes and early embryos and discovered 2891 
circRNAs. Further analysis showed that cir-
cRNAs began to express in mature oocytes, 
increased until the 8-cell stage, and then declined. 
They also selected 8 circRNAs for independent 
validation and verified 7 of them at single-base 
resolution by standard Sanger sequencing and 
RT-PCR. The results indicated that the most vital 
circRNAs were authentic and deciphered the reg-
ulation mechanisms for circRNAs in mouse early 
embryos [78].

3.5  Single-Cell snoRNAs 
in Embryo Development

SnoRNAs, which are approximately 60–300 nt in 
length, are another class of ncRNAs that are 
found in the cell nucleolus [79]. They are the 

 targeting components of enzymes that methylate, 
cleave, or pseudouridylate ribosomal RNAs [80]. 
“RNA polymerase II” is involved in transcription 
of snoRNAs, which are divided into the follow-
ing two types: “box H/ACA” and “box C/D”. 
“Box H/ACA” snoRNAs bind to the conserved 
core “box H/ACA” snoRNP proteins and can 
guide pseudouridylation of target rRNAs. In con-
trast, “boxC/D” snoRNAs (NOP56, NOP5/
NOP58, NHP2L1, and fibrillarin) can direct 
2′-O-ribose methylation of nucleotides by bind-
ing to conserved core “box C/D” snoRNP pro-
teins [81, 82]. Both modifications, which are 
essential for RNA maturation, are introduced 
concurrently or immediately after rRNA operon 
transcription or before 45S rRNA cleavage. Some 
special snoRNAs, such as U3, can direct 45S 
rRNA pyrolysis steps, but not chemical modifica-
tions [83]. Small Cajal body-specific RNAs 
(scaRNAs), which are similar to snoRNAs and 
considered special snoRNAs, accumulate within 
the Cajal bodies, which are conserved subnuclear 
organelles present in the nucleoplasm. Small 
Cajal body-specific RNAs possess characteristic 
boxes for both the “box H/ACA” and “box C/D” 
regions as well as a “CAB box” (UGAG), so they 
are longer than the predominant classes of snoR-
NAs [84].

The location of snoRNAs in the nucleolus 
indicates their functions as guides for the post- 
transcriptional modification of ribosomal and 
some spliceosomal RNAs involved in the 
nucleolytic processing of original ribosomal 
RNA transcripts [85, 86]. These post-transcrip-
tional modifications are essential for producing 
accurate and efficient ribosomes. Small Cajal 
body- specific RNAs can also target other RNAs, 
including tRNAs and mRNAs, and have some 
functions that remain to be clarified. In verte-
brates, many small Cajal body-specific RNAs 
reside in the introns of protein-coding host 
genes and are processed out of the excised 
introns [80, 86, 87]. Furthermore, approxi-
mately 60% of snoRNAs can be processed into 
miRNAs, though most of their targets have not 
been confirmed [88].

The mutation of snoRNA genes has been 
demonstrated to be associated with various 
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human diseases. For example, losing paternally 
expressed imprinted genes, including the “HBII- 
52” and “HBII-85” snoRNAs, caused the neuro-
genetic disorder “Prader-Willi syndrome” (PWS) 
[89, 90]. Suppression of U26, U44 and U78 
expression in zebrafish by disrupting host gene 
splicing or inhibiting snoRNA precursor process-
ing reduced the snoRNA-guided methylation of 
target nucleotides. This could lead to severe mor-
phological defects and zebrafish embryo lethal-
ity, which suggests that ribosomal RNA 
modifications play an important role in vertebrate 
development [91]. The dyskerin ribonucleopro-
tein complex, which regulates the expression of 
pluripotency genes that are critical for ESC self- 
renewal, has also been proven to be controlled by 
snoRNAs [92].

Using the new method described above, 
Faridani et al. detected the expression of snoR-
NAs in individual naive and primed human ESCs. 
On average, there were approximately 600 snoR-
NAs per cell. The snoRNA abundance profiles 
indicated cell-type specificity that corresponded 
with the variable expression of snoRNAs across 
cell types. However, the cell-type specificity was 
not as pronounced as that of miRNAs [57].

3.6  Single-Cell piRNAs 
in Embryonic Development

The last small ncRNA, piRNAs, is a class that is 
approximately 24–35 nt in length and is enriched 
in mammalian gonads and germ cells [93]. They 
are structurally characterized by 2′-O-methyl 
modification sites at their 3′-terminus and are 
processed from single-stranded precursor tran-
scripts transcribed by intergenomic regions 
termed piRNA clusters via a Dicer-independent 
mechanism [94]. The first report of piRNAs as a 
class of RNAs was obtained from male mouse 
germ cells in 2006 by Aravin et al. [81]. Further 
studies showed that piRNAs can be divided into 
the following three classes depending on the 
genomic localization: simple repetitive, repeat- 
associated and non-repetitive piRNAs, which can 

be further classified into intergenic, intronic and 
exonic piRNAs [95, 96].

PiRNAs were first discovered to be associated 
with PIWI subfamily proteins (PIWI proteins), a 
subfamily of Argonaute proteins, and then to 
form piRNA complexes (pIRICS), which are 
silencing transposable elements in animal gonads 
[11]. The regulation of piRNAs is mainly focused 
on the activation of transposons because various 
transposons are located in piRNA clusters. There 
is a high risk of intracellular genome damaging 
during the transposition of transposons; there-
fore, the piRNA-mediated regulation of transpo-
sons is essential, especially for preserving normal 
gametogenesis and reproduction [97]. PiRNA- 
mediated regulation can achieve self and non-self 
recognition similar to the immune systems, and a 
complex mechanism is used to effectively select 
and regulate non-self genes [98]. Since the dis-
covery of piRNAs, their functions as RNAs that 
ensure the repression of transposable element 
activity in germ cells have been verified compre-
hensively, meaning that they maintain genome 
integrity [99, 100]. It is has been demonstrated 
that piRNAs are necessary for successful sper-
matogenesis in the gonads of mammals [101]. 
Further studies confirmed the epigenetic regula-
tory role and gene silencing role of piRNAs, indi-
cating that piRNAs in the testicles can regulate 
gene expression related to testicular development 
or conditions, even in embryonic development 
[102, 103].

XIWI, a Xenopus PIWI homologue, and piR-
NAs were characterized systematically from 
Xenopus eggs and oocytes. Small RNA analysis 
at the single-cell level showed abundant piRNAs 
and piRNA clusters located in the Xenopus tropi-
calis genome. However, in early embryos, XIWI 
staining was lost from the mitotic spindles and 
localized exclusively to germplasm islands that 
became restricted to a few blastomeres during the 
course of development, suggesting that piRNAs 
and XIWI were essential components of the 
germplasm [104]. The expression and function of 
piRNAs at the single-cell level in various stages 
of embryonic development needs further study.
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3.7  Conclusions

Since the invention and development of single- 
cell RNA-seq transcriptome analysis technolo-
gies, they have been widely used in embryonic 
development research due to their powerful func-
tion. NcRNAs have been widely proven as key 
regulators of mammalian embryonic develop-
ment. Using single-cell RNA-seq techniques, the 
differential abundance and expression of non- 
coding RNAs at different stages of embryonic 
development have been examined and identified. 
Some non-coding RNAs are essential for embry-
onic development, especially lncRNAs and miR-
NAs, which have been studied extensively. The 
reduction, deletion or overexpression of non- 
coding RNAs can result in abnormal embryonic 
development, even leading to congenital diseases 
or embryonic death. According to current non- 
coding RNA databases, single-cell studies focused 
on lncRNAs and miRNAs are more complicated 
than other non-coding RNAs. Moreover, single-
cell circRNAs, piRNAs and snoRNAs need to be 
studied further in embryonic development.
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Abstract
Single cell sequencing (SCS) can be harnessed 
to acquire the genomes, transcriptomes and 
epigenomes from individual cells. Next gener-
ation sequencing (NGS) technology is the 
driving force for single cell sequencing. 
scRNA-seq requires a lengthy pipeline com-
prising of single cell sorting, RNA extraction, 
reverse transcription, amplification, library 
construction, sequencing and subsequent bio-
informatic analysis. Computational algorithms 
are essential to fulfill many tasks of interest 
using scRNA-seq data. scRNA-seq has already 
enabled researchers to revisit long-standing 
questions in cancer biology, including cancer 
metastasis, heterogeneity and evolution. 
Circulating Tumor Cells (CTC) are not only an 
important mechanism for cancer metastasis, 
but also provide a possibility to diagnose and 
monitor cancer in a convenient way indepen-
dent of surgical resection of the cancer.
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4.1  Brief Introduction to Single 
Cell Sequencing

Single cell sequencing (SCS) can be harnessed 
to acquire the genomes, transcriptomes and 
epigenomes from individual cells. Next 
 generation sequencing (NGS) technology is the 
driving force for single cell sequencing. Though 
various bias could be potentially introduced dur-
ing the molecule amplification, It has been well 
recognized that SCS could help detect single 
nucleotide variations (SNVs) [1], copy number 
variations (CNVs) [2], structure variations (SVs) 
[3], gene expression and fusions [4–8], novel 
transcripts and alternative splicing [9], methyl-
ations [10] and chromatin patterns [11, 12] on 
single cell level with the help of mathematic 
algorithms and models. SCS also has great 
potential to reveal novel biological concepts, 
which have never been investigated. For exam-
ple, researchers used single cell RNA-seq 
(scRNA- seq) to uncover new cell types in ner-
vous system [13], immune system and hemato-
poietic system [14], as well as new insights into 
the clonal evolution of cancer [15]. Most 
recently, the accuracy and throughput of SCS 
have been increased dramatically to be capable 
of profiling more than thousands of single cells 
in parallel [5, 16].
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4.2  Large-Scale scRNA-seq 
Library Preparation

scRNA-seq requires a lengthy pipeline compris-
ing of single cell sorting, RNA extraction, reverse 
transcription, amplification, library construction, 
sequencing and subsequent bioinformatic analy-
sis. As the key factor to increase the throughput 
of scRNA-seq study, high-throughput scRNA- 
seq library preparation technology developed 
very quickly these few years. FAC sorting-based 
scRNA-seq library preparation combined with 
automatic liquid instrument pipeline enable han-
dling 96-well/384-well plate single cells per run 
[17]. Fluidigm C1 system based on microvalve 
microfluidic chip that was developed by Quake’s 
lab enabled to prepare full-length transcripts of 
96 single cells in parallel in 2012 [7], and a simi-
lar chip with higher throughput up to 800 single 
cells 3’end transcript preparation was released in 
2015. Another type of microfluidic chip, micro- 
well chip was also used in single-cell RNA 
amplification. Wu et  al. developed an approach 
called MIRALCS [4], allowing massively paral-
lel single-cell full-length transcripts amplifica-
tion for 500–1000 single cells based on 5184-well 
chip. With the same chip, Wafergen Inc. released 
a single cell preparation system named ICell8, 
allowing the preparation of 3′ single cell tran-
scripts with throughput up to 1800 cells per run 
[18]. Taking the advantage of barcode-bead tech-
nology, two different groups described microwell 
chip based method, with the capacity to obtain 
gene expression from thousands of cells at the 
single cell level, respectively [19, 20]. In addi-
tion, droplet microfluidic technique improves the 
throughput of single cell 3′ end RNA-seq to mil-
lion level, and reduce the reaction volume to pic-
oliter [21, 22]. A commercialized instrument 
with the same strategy was developed by 10X 
genomics, enabling the preparation of at most 
48,000 single cells from eight different samples 
in parallel. With the development of high- 
throughput scRNA-seq library preparation tech-
nology, the cost has been reduced to less than one 
dollar per cell, which greatly promotes the stud-
ies at the single cell level.

4.3  Computational Analysis 
of scRNA-seq Data

Computational algorithms are essential to fulfill 
many tasks of interest using scRNA-seq data 
(Fig. 4.1). There is a general consensus that anal-
yses of scRNA-seq data sets and conventional 
RNA-seq data have a lot in common. More spe-
cifically, the vast majority of the basic pipelines 
and tools established for sequencing data derived 
from bulk cell populations are applicable to that 
from single cells, following steps including read 
alignment, quality control and gene expression 
estimation. Whereas more dedicated softwares 
for use in fields such as identifying and character-
izing cellular subpopulations, exploring evolu-
tion of cell groups and inferring the transcriptional 
kinetics are urgently needed owing to the zero- 
inflated nature and additional functions of 
scRNA-seq data sources.

• Quality Control: Single-cell datasets are 
expected to be extra messy, thus should under-
take the quality control step before any down-
stream analysis. To begin with, FASTQC [23], 
Qualimap2 [24] and RSeQC [25] are com-
monly used for assessment of overall sequenc-
ing quality. After removal of adapters or noisy 
data with low quality, raw reads obtained from 
a well-designed experiment are firstly aligned 
to the reference genome using tools such as 
Tophat [26], HISAT [27] and STAR [28]. 
Subsequently, several indicators are calculated 
so as to discriminate cells with degraded RNA 
or substandard sequencing library, for instance, 
the number of expressed genes, the proportion 
of reads mapped to endogenous genes and the 
fraction of external spike-ins in mapped reads 
[9, 29, 30]. In addition, Treutlein considered 
normal expression of housekeeping genes a 
judgment factor of healthy cells [31].

• Expression estimation and normalization: 
Gene expression levels of qualified cells can 
be estimated as count from data without UMIs 
using HTSeq [32], WemIQ [33] or RSEM 
[34]. While relative expression including 
 transcripts per million mapped reads (TPM) 
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and reads/fragments per kilobase per million 
mapped reads (RPKM/FPKM) is widely 
adopted in downstream analysis. Besides, 
Islam et al. [29] and Hashimshony et al. [35] 
provide solutions to UMI-tagged reads. 
Normalization is essential due to the technical 
variability in comparison to expression levels 
between samples. Median normalization or a 
similar method are popular in many scRNA- 
seq studies without spike-ins or UMIs [30, 
36–39]. In single cell experiments where 
spike-ins were applied, technical artifacts can 
be estimated by difference between their 
expected and observed expression. 
Nevertheless, instability arising from incon-
sistent detection of spike-ins brings about a 
more current notion of comparing absolute 
molecular counts of different cells with UMIs, 
which have greatly reduced the amplification 
noise by attaching random sequences to cDNA 
fragments ahead of PCR [21, 29, 40].

• Identification of subpopulations: Cellular sub-
population identification in heterogenous cells 
is one of the most exciting areas for explora-
tion in the scRNA-seq experiments. Therefore, 
various algorithms for clustering have been 
developed to date. Pollen et  al. [41] distin-
guished different types of cells along lung 
development using principal component anal-
ysis. The study by Li et al. [42] showed tran-
scriptional heterogeneity in colorectal tumors 
with a novel strategy named reference compo-
nent analysis (RCA). Following similar lines, 
self-organizing maps (SOMs) [43], circular a 
posteriori projection (CAP), ZIFA [44], t-SNE 
[45] and BackSPIN [46] clustering are 
approaches developed for differentiating 
between cells within a biological condition by 
dimensionality reduction of scRNA-seq data. 
In addition, RaceID [6] is a computationally 
efficient tool that relies on k-means clustering, 
whereas SNN-Cliq [47] clusters individual 

Fig. 4.1 Representative tasks enabled by scRNA-seq. (a) 
Subpopulation analysis can be performed with various 
unsupervised clustering algorithms; (b) Pseudotemporal 
ordering is essential to understand developmental trajec-
tory or disease progression; (c) Differential gene expres-
sion analysis is important for the discovery of cell type 

specific biomarkers; (d) Network inference can be per-
formed to learn regulatory intracellular and intercellular 
networks; (e) Analysis of alternative splicing offers a new 
perspective on biology and medicine; (f) Allele specific 
expression patterns can be addressed using scRNA-seq 
data
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cells by a graph-based algorithm based on 
shared nearest neighbor (SNN) similarity 
measurement. Guo et al. [48] further presented 
a pipeline for known cell type enrichment that 
is analogous to gene set enrichment analysis.

• Differential expression and transcript iso-
forms across conditions: Once subpopulations 
are distinguished, differential expression can 
be applied for cell type characterization. 
Researchers used to investigate differential 
expressed genes among cells of different types 
or stages with bulk RNA-Seq based strategy. 
However, an abundant zero values on expres-
sion matrix from single cells lead to potential 
fault sets of genes that may have expressed 
differently resulting from noise. As a conse-
quence, plenty of mixture-model-based meth-
ods like MAST [49] and SCDE [50] have been 
created for accommodation of bimodality in 
expression levels. Similarly, D3E [51] identify 
DE genes by comparing two probability distri-
butions on transcriptional bursting model. 
Korthauer et al. [52] have established a more 
accurate Bayesian modeling framework, 
scDD, for differential expression patterns 
detection under a wide range of circumstances 
recently. Unlike the traditional methods with a 
simple mean shift, the scDD model provides 
posterior probabilities differential distribu-
tions (DD) for each gene and classified gene 
as unimodal distributions (traditional DE), 
differential modes (DM), differential propor-
tion (DP), or both DM and DE (abbreviated 
DB).

• Pseudotemporal ordering: Knowledge of the 
global expression profile in individual cells 
provides opportunities for the investigation of 
dynamic cellular processes such as normal tis-
sue development, stem cell differentiation and 
tumor progression. A number of computa-
tional methods were built on the basis of the 
theory that differentiation paths can by con-
structed by reordering unsynchronized cells 
with gradual changes in gene expression  levels 
at various stages. Similarities to cellular 
 subpopulation identification approaches, 
most investigators perform pseudotemporal 

 ordering by reducing the dimensionality of 
gene expression data. Take Monocle [53] as an 
example, which was the most effective tool to 
construct the differentiation paths in the 
infancy of single cell technology. Minimal 
spanning tree (MST) was built on data pro-
cessed by independent component analysis 
(ICA) in Monocle, and the longest path 
through the MST was considered as a default 
setting for differentiation. Subsequently, 
Haghverdi L et al. [54] worked out a diffusion 
map based method that allows trajectory 
reconstruction in a single step. Rizvi et al. [55] 
presented a topology-based algorithm named 
single-cell topological data analysis (scTDA) 
for unbiased transcriptional regulation study 
through a nonlinear and unsupervised statisti-
cal framework. Furthermore, when it comes to 
oscillatory processes, Oscope [56] can be used 
for oscillatory trajectory reconstruction with 
co-regulation information among oscillators.

• Interrogation of spatial information: In spite 
of looking into the development of cell popu-
lations extending in time, scRNA-seq can be 
applied for spatial reconstruction via the inte-
gration of in situ RNA patterns with genome 
wide gene expression profiles. Satija R et al. 
[57] has established an accurate spatially 
resolved tools, Seurat, for mapping cellular 
localization, with which they inferred cellular 
localization of cells from dissociated zebrafish 
(Danio rerio) embryos and generated a 
transcriptome- wide map of spatial patterning. 
Meanwhile, another high-throughput approach 
by Kaia Achim [58] was published online by 
virtue of a reference gene expression data-
base, which successfully allocates brain cells 
to precise locations from marine annelid 
Platynereis dumerilii by comparing 
specificity- weighted mRNA Profiles. Halpern 
K B et al. [59] reconstructed a genomic blue-
print of mammalian liver by combining land-
mark genes expression and single-molecule 
fluorescence in situ hybridization.

• Network inference: Identification of co- 
regulated genes with data derived from single 
cell experiments is superior because it can 
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provide insight into regulatory networks that 
are hard to be noticed in bulk level. 
Understanding the transcriptional regulatory 
networks is of primary interest in a myriad of 
studies. For convenience, some statistical 
methods in bulk studies were reused when 
exploring scRNA-seq data. Weighted correla-
tion network analysis (WGCNA) [60] can be 
used for gene clustering and summarizing 
with a comprehensive collection of functions 
for network construction, module detection, 
gene selection, calculations of topological 
properties, data simulation and visualization. 
Cell-centric statistics (CCs) [61] was invented 
to model transcriptome dynamics by analyz-
ing aggregated cell-cell statistical distances 
within biomolecular pathways, for instance, 
differentially expressed pathways for a single 
cell of interest. While SCODE [62] inferred 
the co-regulatory network with ordinary dif-
ferential equations(ODEs) by integrating the 
transformation of linear ODEs and linear 
regression.

• Differential Splicing: Experimental protocols 
with full-length transcript coverage to certain 
sequencing depth provides insight into alter-
native splicing isoform determination and 
quantification in scRNA-seq data analysis, 
which reflects heterogeneity among cells of a 
biological component from another perspec-
tive. A study of heterogeneity in immune cells 
in 2013 [9] was the first to reveal the dramatic 
diversity of splicing patterns in mouse bone- 
marrow- derived dendritic cells(BMDCs). 
Gokce O et al. [63] used fisher’s exact test for 
differentially splicing junction definition 
among cell types and pointed out splice vari-
ant expressed in mouse striatum. SingleSplice 
[64] is the latest tailored method used to detect 
isoform usage differences in scRNA-seq data, 
which was applied to mouse embryonic stem 
cells and eventually shedded insight into the 
connection between alternative splicing and 
the cell cycle through a series of analysis.

• Allelic Expression Patterns: Another subtle 
point is that allele-specific expression can be 
accessed for in scRNA-seq to investigate the 

contribution of parental allele expression. 
Deng et  al. [65] demonstrated an abundant 
random allele-specific gene expression using 
train-specific SNPs at single-cell resolution in 
mouse preimplantation embryos. Reinius B 
et al. [66] argued in an allele-sensitive scRNA–
seq experiment that most patterns of random 
monoallelic expression of autosomal genes 
(aRME) are in a decentralized fashion rather 
than confined to clonally related cells accord-
ing to previous hypothesis.

4.4  Application of High 
Throughput scRNA-seq

• Cancer Biology: scRNA-seq has already 
enabled researchers to revisit long-standing 
questions in cancer biology, including cancer 
metastasis, heterogeneity and evolution. 
Circulating Tumor Cells (CTC) are not only 
an important mechanism for cancer metastasis 
[67], but also provide a possibility to diagnose 
and monitor cancer in a convenient way inde-
pendent of surgical resection of the cancer. 
One landmark study analysed CTC isolated 
from prostate cancer patients and revealed that 
the mechanism of resistance to androgen 
receptor inhibition in recurrent disease is 
partly due to noncanonical Wnt signaling [68].

A comprehensive picture of cancer heteroge-
neity is redefined by scRNA-seq. Several studies 
revealed the heterogeneity of cancer cells [69, 
70]. A comprehensive profiling of melanoma 
using scRNA-seq is a classical example [70]. It 
was found that two distinct transcriptional signa-
tures were present but they were not mutually 
exclusive. The melanoma characterized by acti-
vation of the transcription factor MITF also har-
bored a small subpopulation of cells with low 
MITF activity. The heterogeneity of cancer is not 
limited to the cell-to-cell variability among can-
cer cells. More importantly, cancer is itself a het-
erogeneous tissue comprised of malignant, 
immune, stromal and endothelial cells [71]. 
Recently, profiling of the immune cells within the 
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tumor microenvironment is attracting lots of 
attention [72–75]. Those studies covered various 
different cancers and single cell omic technolo-
gies. A recent study employed scRNA- seq to 
analyse T cells isolated from tumor tissues and 
adjacent normal tissues from hepatocellular car-
cinoma (HCC) patients, revealing the distinctive 
functional composition of T cells in HCC and the 
clonal enrichment of infiltrating Tregs and 
exhausted CD8 T cells [72].

The clonal evolution of cancer was proposed 
more than 40 years ago [76]. Longitudinal single 
cell analysis is now adding new evidence to this 
widely held concept [77]. Applying single 
nucleus sequencing to biopsy from primary 
breast cancer and its liver metastasis, it was sug-
gested that tumor evolution might follow a punc-
tuated expansion mode instead of a gradual 
progression path [78]. Single cell genome and 
exome sequencing enabled by MDA further 
increased the coverage of single cell genome 
sequencing and rendered the mutation and SNP 
calling at the single cell possible [79, 80]. The 
mutation and SNP information for individual 
cancer cells was valuable for population genetic 
analysis to understand the clonal evolution of 
tumor.

• Developmental Biology: Our understanding 
of developmental biology has also been dra-
matically enhanced by scRNA-seq. The iden-
tification of rare cell type was realized by the 
combination of organoid culture, scRNA-seq 
and development of novel algorithm [6]. This 
crystalized in the identification of Reg4 as a 
novel marker for enteroendocrine cells. New 
markers will then facilitate the investigation of 
rare cell types. Another recent study focused 
on the cells in the blood. New types of den-
dritic cells and monocytes were identified 
using scRNA-seq [14]. Our understanding of 
the cell types or subtypes constituting the 
brain was renewed by single-nucleus RNA 
sequencing [81] and scRNA-seq [82], while 
traditionally cell types were defined based on 
morphology, location and function.

• The Human Cell Atlas: With the development 
of high throughput single cell molecular 

 profiling techniques, an international commu-
nity or network is taking shape rapidly aiming 
to undertake the ambitious project to identify 
all cell types in the human body [83]. Single 
cell omic technologies are situated at the heart 
of the human cell altlas. Key efforts will be 
devoted to key organs, such as the liver, the 
heart, the kidney or the pancreas [84], as well 
key systems, such as the immune system and 
the central nervous system [85].

Our understanding of disease will also be 
greatly refined with the realization of the human 
cell atlas. In the future biopsy from patients will 
be routinely assayed with single cell techniques 
[70, 86] and compared to the normal reference in 
the human cell atlas. Specific abnormalities will 
be identified and used to inform both diagnosis 
and treatment.

The drug industry will benefit dramatically 
from the human cell atlas. Traditionally, drug dis-
covery and development efforts have been hin-
dered by the challenges that all healthy and 
diseased tissues are inherently heterogeneous 
[87]. The emergence and rapid application of 
single cell analysis tools will pave the way to 
eventually understand both health and disease at 
an unprecedented level so that medicine can 
finally ushers in a new era of personalized health-
care [88, 89].
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Circulating Tumor Cells: 
The Importance of Single Cell 
Analysis

D. Heymann and M. Téllez-Gabriel

Abstract
Cancer cells that have shed from the primary 
tumor are able to invade into surrounding tis-
sues, to intravasate into the bloodstream to 
become circulating tumor cells (CTCs), at 
least one part of that cells will be able to gen-
erate distant metastases. The discovery of 
CTCs has improved the study of cancer dis-
ease as it represents a non invasive biopsy that 
can be used as prognostic and prediction bio-
markers. Tumour heterogeneity is a concept 
related to differences in tumor cells within the 
same tumor or between tumours in terms of 
genetic and phenotypic profiles, such as mor-
phology, metabolic activity, proliferation rate, 
migration and metastatic abilities. 
Characterization of heterogeneity among 
CTCs at the single cell level may be useful to 

better understand the causes and progression 
of disease and for an accurate selection of 
molecular prognostic/prediction markers. In 
this chapter we aimed to describe methods for 
CTC enrichment and isolation as well as cur-
rent methodologies for single cell analysis at 
different levels, including RNA, DNA, protein 
and epigenetic events. Finally we wanted to 
stress clinical and biological importance of 
single CTC analysis by reviewing some stud-
ies carried out in different cancer subtypes.

Keywords
Biomarkers · Circulating tumor cells · Liquid 
biopsy · Single cells · Tumor heterogeneity

5.1  Introduction

Circulating tumor cells constitute a heteroge-
neous population of cells derived from tumor 
which could contribute to spread from the pri-
mary to the metastasis sites or/and from metasta-
sis to metastasis foci. This process, depicted in 
Fig. 5.1, is iniciated when CTCs invade the sur-
rounding tissue through the lymphatic vessels or 
the bloodstream, survive in the circulation, are 
able to extravasate into a tissue and finally grow 
at the new site [76] (Fig. 5.1).

Several studies indicated that CTCs can be 
isolated at relatively early stages of the disease 
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[30, 68], even before the detection of the primary 
tumor mass or metastatic foci by conventional 
methods. The absence of apparent relationship 
between CTCs and micrometastases is specifi-
cally explained by the current imaging technolo-
gies which are not sensitive enough to detect 
early tumor cell dissemination events or micro-
metastases, that represent key of cancer progres-
sion [39]. In this specific context, CTCs are very 
attractive as clinical biomarkers of recurrent and/
or metastatic diseases.

This chapter aims to stress the existence of 
CTCs heterogeneity and remarks the importance 
of the analysis at single cell level to unravel the 
disease progression and to help in the therapeutic 
management and clinical follow up. The present 
chapter will summarize the main current methods 
available for the enrichment and isolation of 
CTCs as well as the state-of-the-art for studying 
cell heterogeneity at the single cell scale. The 
biological and therapeutic interest of single CTCs 
will be illustrated by various studies carried out 
in different cancer subtypes.

5.2  Methods for the Enrichment 
and Isolation of CTCs

Despite the study of circulating tumor cells is 
very promising for a better understanding of 
oncogenic events, there are certain issues intrin-
sic to the nature of CTCs that should be consid-
ered. CTCs are present at very low concentrations 

in the blood (i.e. CTCs can be find at rates as low 
as one in 109 erythrocytes and one in 107 leuko-
cytes) [28]. Consequently, based on this very low 
frequency, the first challenge for isolating CTCs 
is their pre-enrichment and the depletion of blood 
cells [16]. While mature erythrocytes have dis-
tinct physicochemical and biological properties 
that allow them to be easily removed from blood, 
leukocytes present many properties which are 
similar to CTCs, resulting in a high level of leu-
kocyte contamination in many separation meth-
ods. Therefore, the most important requirement 
of any separation process is an effective discrimi-
nation of CTCs from leukocytes. However, CTCs 
are heterogeneous and so they do not express uni-
versal specific tumor markers leading difficult 
the use of biochemical separation methods [16]. 
The clinical use of CTCs detection was preceded 
by the discovery that the expression of the 
EpCAMs were present on epithelial derived car-
cinomas and related cancers at different levels, 
but were absent in peripheral blood cells [62]. 
This finding promoted the research and develop-
ment of different methodologies based on the 
EpCAM marker for the enrichment and isolation 
of CTCs [47] and led to the CellSearch® system 
(Janssen Diagnostics), the only method currently 
approved by the US Food and Drug Administration 
for clinical use which is based in EpCAM/cyto-
keratin separation. This system was considered 
as the gold standard method for CTC detection 
[2, 35]. However, the suitability of this method 
has been challenged by current studies that 

Extravasation Proliferation

Dormancy

Death

Metastases clinically detectableMetastases clinically undetectable

Primary tumor

1 2

3

Fig. 5.1 Metastatic process and circulating tumor cells. 
Cells escaping from the primary tumour into the blood 
circulation (1) are carried by the flow, either blood 
stream or lymphatic system (2), to secondary sites where 
they grow if they find a favourable environment (3). 

Following the arrival of CTCs into a secondary organ 
only a subset will survive and generate metastases  
(clinically detectable) and remainder cells might either 
go into a state of dormancy/quiescence, or will die  
(clinically undetectable)
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 demonstrate the presence of EpCAM-positive 
circulating epithelial cells in patients with benign 
colon diseases leading to a potential source of 
false-positive results [59]. In addition, during the 
epithelial–mesenchymal transition (EMT) in car-
cinoma cells has been observed a downregulation 
in epithelial markers, such as EpCAM and 
Cytokeratins (CK) [52], concomitant with an 
increased expression of mesenchymal markers 
(e.g. vimentin). The decrease in the expression of 
epithelial markers may therefore result in false- 
negative findings. Furthermore, remains unclear 
if all CK stained cells are CTCs as it has been 
observed that activated leukocytes can occasion-
ally express epithelial markers [73, 74]. In this 
context, the EpCAM marker is not suitable to 
detect CTCs from carcinomas of mesenchymal 
origin or those cells that have undergone 
EMT. Consequently, these findings question the 
idea of considering EpCAM as a universal marker 
for CTC detection, highlighting the need to 
develop non–EpCAM-based technologies for 
isolating and detecting CTCs. This complexity is 
also enhanced by the heterogeneous functional 
properties of CTCs. Indeed, all CTCs do no 
exhibit an ability to generate metastases [87] and 
for clinical purposes it is mandatory to distin-
guish CTCs with metastatic and non-metastatic 
properties.

Current CTC separation methods can be clas-
sified in two categories: those based on biochem-
ical properties (cell surface protein expression, 
invasive or migration capacity, viability) and 
those based on physical properties (size, shape, 
density, electric charges, deformability and mag-
netic susceptibility) (Fig. 5.1). Sects. 5.2.1. and 
5.2.2. will then review some of the most used 
technologies for CTC isolation based on either 
physical or biochemical properties.

5.2.1  Methods of CTC Isolation 
Based on Physical Properties

Density gradient centrifugation is widely-used 
technique for separating blood components. It is 
based in the migration of cellular components 
through a medium of higher or graded density 

when they are exposed to a elevated centrifugal 
force. Erythrocytes or polymorphonuclear leuko-
cytes migrate to the bottom, whereas mononu-
clear leukocytes and CTCs remain at the top as a 
buffy coat (Fig.  5.2a) [41]. Percoll, Ficoll- 
Hypaque (GE Healthcare Life Sciences), and 
OncoQuick® (Greiner Bio-One) are the most 
commonly used density gradient media in pre-
clinical and clinical studies. Pitfalls associated to 
these techniques include: (i) the loss of large 
CTCs and CTC clusters that fall to the bottom 
[26]; (ii) the cytotoxicity of the density medium 
which can affect the results of dowstream analy-
sis [66]; (iii) the very low purity due to the con-
tamination with leukocytes that are difficult to 
eliminate, making necessary to combine centrifu-
gation with another enrichment method.

Microfiltration enrichment methods capture 
target cells according to their size and/or their 
deformability when they pass through an array of 
microscale constrictions. There are several types 
of microconstrictions: weir, pillar and pore 
(Fig. 5.2b). Several commercial devices utilizing 
the pore structure concept have been introduced, 
including the ISET®(RareCells) [50], ScreenCell® 
(ScreenCell) [16], CellSieve™(CreaTV 
Microtech), Flexible MicroSpring Array (FMSA) 
[32] or the FaCTChecker (Circulogix) [89]. 
Filtration allows processing large volumes of 
sample for rapid CTC enrichment with minimal 
sample manipulation. Recovery rates are around 
90%, but with low final purity about 10%. The 
main limitation of the filtration approach is due to 
the high heterogeneity of CTC size, the possibil-
ity of membrane clogging, and troubles in the 
recovery of cells retained in the filter for further 
analysis. To minimize this last issue, Lim et al., 
designed a system based on a silicon micro-sieve 
that allows CTC antibody staining, separation 
and enumeration. They also demonstrated the 
feasibility of this method for fluorescence in situ 
hybridization (FISH) at the single cell level [48]. 
By the other hand, Zheng et  al., developed a 
parylene membrane microfilter for capturing 
CTCs and allowing a genomic analysis based in 
polymerase chain reaction (PCR) [88].

Microfluidics comprises a variety of separa-
tion methods, which makes it possible to 
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 manipulate very small volumes of biological flu-
ids. There are microfluidic devices based on dif-
ferent size and deformability properties of CTCs 
and other blood cells, like the Parsortix system 
(Angle) [83], the ClearCell FX® (Clearbridge 
BioMedics) [45] or Vortex (Vortex Biosciences) 
[75]. Recent studies describing the important 
clinical value of CTC clusters [36] have impulsed 
the development of a microfluidic device based 
on the structural properties of CTC clusters, 
called Cluster-Chip (National Institute of 
Biomedical Imaging and Bioengineering 
(NIBIB)) [71]. Unfortunately, like mentioned for 
the microfiltration approaches, heterogeneity of 
CTC size leads to the loss of CTCs that have 
scaped through the white/red cell microchannels, 
and the contamination of CTC fraction with 
white blood cells. Dielectric properties, deter-
mined by differences in cell size, nuclear mor-
phology, and membrane morphology is a property 
also used for CTC isolation in microfluidic 
devices. The ApoStream™ system (ApoCell) 
[29] or the DEPArray™ technology (Silicon 
Biosystems) benefit from dielectrophoretic 
(DEP) force to separate cells in basis on dielec-

tric properties. The DEPArray™ device allows 
single-cell and high-fidelity recovery, cell viabil-
ity and, it is possible the isolation of individual 
cells from paraffin-embedded samples in the last 
version of this device [63]. Despite the multiple 
advantages presented by DEPbased methods 
(Fig.  5.2.c) they present also some limitations, 
such as the low volumes of samples that can be 
processed in a non-continuous manner. Cells can 
suffer changes in their dielectric properties due to 
ion leakage and thus the isolation should be 
achieved within a short period of time ([82]). In 
addition, the medium used must have low con-
ductivity, which sometimes is not achievable for 
studied samples.

5.2.2  Immunoafinity Based 
Methods

CTC isolation based on antibody use takes advan-
tage of highly specific affinity reactions between 
antibodies and the target antigens present on the 
cells of interest. The antibodies used for cell cap-
ture are typically attached to either the device 
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Nega�ve selec�on

Erythrocytes

Leukocytes

CTCs

+ -
+
+
+

-
-
-

Electric proper�es

C

Size /deformability

B

CTCs & PBMCs 
(BUFFY

plasma

Ficoll

RBCs & granulocytes

Layers a�er 
centrifuga�on

blood

Ficoll

Layers before 
centrifuga�on

Cell density

A

D

Fig. 5.2 Methods for the enrichment or isolation of 
CTCs from whole blood. Physical properties based: (a) 
cell density; (b) size/deformability; and (c) electrical 

properties. Immunoafinity – based techniques (d), either 
positive or negative selection of CTCs
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surface or a magnetic substance for subsequent 
immunomagnetic capture [58]. This method is 
able to achieve high recovery and purity rates, 
with single-step detection and isolation of CTCs 
[77]. The performance of the immunomagnetic 
methods relays on the expression and specificity 
of the targeted antigen, as well as the binding 
ability of associated antibodies, the efficiency of 
the immunomagnetic labeling process and mag-
netic particles, and the separation method of iso-
lated labeled cells. The lack of specificity of 
current tumor markers can be partially overcome 
using a mixture of antibodies targeting multiple 
antigens [27]. This section will give a brief over-
view of the devices available for direct (positive 
selection) or indirect CTC capture (negative 
selection) [21, 23] (Fig. 5.2d).

5.2.2.1  Positive CTC Selection
In positive selection, tumor antigens localized at 
the cell surface are targeted. Due to the high het-
erogeneity of CTC surface antigens it has been 
impossible to identify a universal CTC-specific 
marker. Currently there are multiple devices 
available in the market based on CTC positive 
selection. The most known and the only FDA 
approved despite their pitfalls previously men-
tioned, is CellSearch® (Janssen Diagnostics). In 
addition, they exist in other devices based on the 
same principle. The AdnaTest (Adnagen AG) 
uses a cocktail of antibodies specific to the type 
of cancer, currently this device is able for pros-
tate, breast or ovarian carcinoma. The 
MagSweeper device, based on EpCAM selec-
tion, has the ability of processing whole blood 
without a previous step of red cell depletion [67]. 
Microfluidic adhesion-based devices consist in 
microchannels coated with an antibody against 
CTCs: the CEE™ chip (Biocept Laboratories) 
based on a cocktail of antibodies for CTC isola-
tion and the CTC-Chip based on EpCAM selec-
tion that have incorporated 3D structures 
(microposts) to increase the effective surface, and 
then increasing cell adhesion. The CTC-iChip 
technology (D.A. Harber, Massachusetts General 
Hospital Cancer Center; M.  Toner, Harvard 
Medical School, Boston, MA) combines cell size 
and EpCAM expression for CTC isolation. The 

IsoFlux™ is an automated, continuous flow 
microfluidic device based on the recognition of 
EpCAM expression at the cell surface of CTCs 
[31].

5.2.2.2  Negative CTC Selection
Another strategy is the indirect isolation of CTCs 
by successive steps of erythrocytes lysis and 
magnetically depletion of leukocytes targeting 
the CD45 antigen, as the most common marker. 
The RosetteSepTM (STEMCELL Tech) is based 
on a cocktail of antibodies that specifically cross-
link red blood cells to each other and to white 
blood cells, forming high density cell complexes 
(rosettes) which can be easily separate from 
CTCs by a centrifugation step. In the batch sepa-
ration approach, labeled cells (usually with CD45 
antibody) migrate to the regions of higher mag-
netic frequency when the whole labeled sample is 
subjected to a magnetic field. The EasySep™ 
system (STEMCELL Tech), Dynabeads® 
(ThermoFisher) and MojoSort™ (Biolegend) are 
commercialized devices based on this principle. 
Continuous-flow separation devices were 
designed to increase the processed volume. The 
sample is continuously fed through within the 
module. This module can be provided with an 
activated filter that allow the retention of labeled 
cells, like the commercially available MACS® 
(Miltenyi Biotec) and MagniSort™ (eBiosci-
ence). There is a negative selection version of 
CTC-iChip based on the combination of CD45 
and CD66b selection and cell size [44]. Negative 
selection methods are completely independent 
from the CTC phenotype, do not interact with 
CTCs which may result in their better viability. 
The most important requierement of this separa-
tion method is a very high specificity to remove 
all the leukocytes avoiding nonspecific CTC 
binding in order to achieve an acceptable degree 
of CTC purity.

5.3  Tumor Heterogeneity

Tumor heterogeneity refers to the fact that differ-
ent tumor cells can show distinct genetic and 
phenotypic profiles, including their capacity to 
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generate metastasis. This phenomenon is 
observed both between tumors (inter-tumor het-
erogeneity) and within tumors (intra-tumor het-
erogeneity), and can be associated to genetic and 
non-genetic factors.

5.3.1  Clinical Implications of Tumor 
Heterogeneity and Single CTC 
Analysis as a Solution

Tumor heterogeneity has several clinical impacts: 
(i) it introduces significant challenges in using 
molecular prognostic markers as well as for clas-
sifying patients that might benefit from specific 
therapies; (ii) it must be one of the main causes of 
drug resistance; (ii) it limits the precision of histo-
logical diagnoses and consequently reduces the 
value of a biopsy; (ii) it is one of the main param-
eter explaining the lack of numerous therapies in 
oncology which have not been designed to address 
the tumor heterogeneity. Thus, for a better under-
standing of the pathogenesis of the disease would 
be necessary an accurate characterization of the 
tumor heterogeneity. Most of the methods used 
for the tumor characterization give a global over-
view of the cancer tissue, corresponding to an 
average picture of all the tumor clones and their 
microenvironment. In addition, metastatic tumor 
cells have divergent evolution in different micro-
environments at the metastatic sites that may con-
tribute to the change in the expression of 
biomarkers that were initially identified in the pri-
mary tumor [81]. Treating metastatic disease 
based on the biomarkers expressed in the primary 
tumor may thus be less than optimal. CTCs are a 
potential alternative for cancer diagnostic based 
on biopsies and offer the opportunity for monitor-
ing serial changes in the evolution of tumor biol-
ogy more accurately than a single biopsy of a 
primary or metastatic tumor [34, 79]. Latest 
advances in CTCs research area have offered the 
possibility of a reliable  quantification and molec-
ular characterization of CTCs at the single cell 
level that will help to do a better cancer diagnosis 
and therapeutic design [1, 23]. The heterogeneity 
of CTC has been shown in several studies (more 
details in Sect. 5.4.3. of this chapter). Dynamic 

changes or transitions in the biomarker status of 
CTCs may reflect the presence of the selective 
pressure that can be exerted by therapeutic inter-
ventions. Monitoring changes in the expression of 
longitudinal biomarkers displayed in CTCs over 
the course of multiple sequential therapies, may 
provide insight into the tumor evolution [55]. 
Furthermore, measuring CTC heterogeneity in 
time may help to identify the most effective drugs 
in individual cancer patients [86], especially those 
who already have or will soon have tumors that 
are resistant to anti- cancer treatments. Ideally, the 
identification of promoters or suppressors of 
genome instability in solid tumors, whose activa-
tion or inactivation is required to initiate intra-
tumor heterogeneity and diversity, could provide 
a tractable means of ultimately attempting to limit 
tumors evolutionary processes [22].

5.3.2  Methods for Studying 
the Heterogeneity of Single 
Cell

In this section we will make a summary of the 
most used technologies for the identification of 
molecular differences at the single-cell level that 
are used nowadays. Advances in Next Generation 
Sequence (NGS), Whole Genome Analysis 
(WGA),, fluorescence-activated cell sorting 
(FACS) and many other methods allow for the 
analysis of multiple markers in single tumor cells 
isolated either from fresh or fixed primary tumors 
and metastases [56, 84]. These technical 
approaches have also been used for exploring 
tumor heterogeneity in individual CTCs isolated 
from blood or bone marrow [34].

From single cells, it is a necessary step of 
amplification to generate sufficient material for 
NGS minimizing artefacts. Whole-genome 
amplification (WGA) is used to analyze single- 
cell genomes, while Whole-Transcriptome 
Amplification (WTA) is the previous step for the 
subsequent analysis of the transcriptome. There 
are three main Whole Genome Amplification 
(WGA) methods [10, 37] (Fig. 5.3): (i) degener-
ate oligonucleotide-primed polymerase chain 
reaction (DOP-PCR) [3]. High amplification 
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bias, in which only certain regions of the genome 
are preferentially amplified and thus amenable to 
large-scale sequencing, results in relatively low 
coverage of the genome (~10%), making DOP- 
PCR useful for copy-number assessment in sin-
gle cells but undesirable for single nucleotide 
variant (SNV) detection; (ii) multiple- 
displacement amplification (MDA) [15]. MDA 
works best for mutation detection but is not suf-
ficient for copy number analysis due to moderate 
amplification bias and non-uniform genome cov-
erage; and (iii) multiple annealing and looping 
based amplification cycles (MALBAC or 
PicoPLEX) [90]. This method provides high uni-
formity in coverage across the genome and is 
useful for detecting copy number variants 
(CNVs) in single cells. However, MALBAC has 
a high false positive error rate and it fails in the 
detection of point mutations. Depending on the 
objective of the study, there are different genomic 
interrogations of the amplified genomes. It is 
possible to query specific gene of interest either 
by PCR using a target-specific probe; or target 
capture through hybridization [25]; sequence all 
exomes (WES) [84]; or sequence the whole 
genome, called Whole Genome Sequencing 
(WGS) [56]. This last method provides informa-
tion such as the single nucleotide variant (SNVs), 
copy number variants (CNVs) and non-coding 
and structural variants than the other two 
approaches don’t. The main drawback is the high 
cost. For the determination of genetic heteroge-
neity between single cells after WGS must be 
applied model-based clustering, which allows to 
include false-negative errors [85].

If the aim of the study is the analysis of hetero-
geneity at the transcriptomic level, WTA must be 
the first step before applying single-cell RNA 
sequencing methods. Currently, there exist many 
methodologies available for WTA at single-cell 
level. RNA-seq [78], Quartz-seq [72], CEL-seq2 
(cell expression by linear amplification and 
sequencing) [33], STRT-seq [40], Smart-seq2 
(Switching mechanism at the 5′-end of the RNA 
transcript) [65] are the most common, each one 
having both assets and drawbacks [70]. The multi-
plexed error robust FISH (MERFISH) is a single- 
molecule imaging method that allows thousands 

of RNA species to be imaged in single cells by 
using combinatorial FISH labeling with encoding 
schemes capable of detecting and/or correcting 
errors [12]. Independently the performed single 
cell analysis, WGS or Whole- Transcriptome 
Sequencing (WTS), and due to the high number of 
technical errors that emerge during the process, 
the results must be validated, in order to avoid the 
interpretation of these technical errors as real bio-
logical variations. Despite the “omics” techniques 
initially presented some restrictions in the field of 
CTC research, many studies have now been 
described using these methodologies to explore 
heterogeneity in single CTCs.

Epigenetic events may be another cause of 
tumor cell heterogeneity, including histone modi-
fication, and DNA base modifications (such as 
methylation and hydroxymethylation). There have 
been developed robust technologies to provide 
genome-wide maps of most epigenetic marks, 
such as the ChIP-seq (Illumina), available for the 
study histone marks at the single-cell level [46]. To 
assess methylation levels, the whole- genome 
bisulphite sequencing (WGBS) offers the most 
comprehensive picture ([19] but precipitation 
techniques (methylated-DNA immunoprecipita-
tion sequencing and methylated–DNA-binding 
domain sequencing) or reduced-representation 
bisulphite sequencing (RRBS) [17] are also used. 
Illumina’s To minimize the DNA-damaging 
effects of bisulphite treatment the Infinium Human 
Methylation450 BeadChip platform has been 
developed, being an array-like alternative that has 
been found to provide acceptable DNA methyla-
tion profiles, [54].

Multiple methods for quantifying proteins in 
single cells have been developed, including 
single- cell Western blots [38], CyTOF–a mass 
cytometry in which antibodies are labeled with 
heavy metal ions- [7] and Proseek Multiplex [13], 
however these methods are limited by the quantity 
of proteins that can be analyzed (up to 40) and by 
the availability of highly-specific antibodies. To 
overcome some of these drawbacks, Budnik et al. 
designed the most recent high- throughput method 
that can quantify thousands of proteins in single 
cells: the Single Cell ProtEomics by Mass 
Spectrometry (SCoPE-MS) [9].
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5.4  Clinical Value of CTCs

Historically, the therapeutic decision was made 
essentially from the analysis of the primary 
tumor. It is now admitted that the therapeutic 
strategy should integrate the analysis of meta-
static lesions that may become detectable many 
years after primary tumor detection. However, 
taking a biopsy from a metastatic site is always 
an invasive procedure, thus the analysis of CTCs 
might be a noninvasive good alternative (liquid 
biopsy) for monitoring treatment efficacy in real- 
time and for detecting metastatic relapse and dis-
ease progression. In contrast to the 
characterization of primary tumors, that only pro-
vides a static view at the time of diagnosis, the 
analysis of CTCs may improve understanding of 
the different steps involved in the metastatic cas-
cade, from invasion of tumor cells into the blood-
stream to the formation of clinically detectable 
metastases [60].

5.4.1  Analysis of Single CTC 
in Clinical Practice

To implement single cell analysis in the clinic, 
blood collection, handling protocols require stan-
dardization (Standard Operating Procedures) and 
validation methods in order to minimize sample 
alterations and false positive or negative results. 
This section will review some of the most recent 
studies in the analysis of single CTCs heteroge-
neity with high clinical and scientific impact in 
different cancer types, using different technolo-
gies described in previous sections.

5.4.1.1  Colorectal Cancer (CRC)
Gasch C et al. used micromanipulation technique 
in order to obtain single CTC from previous 
enriched blood samples from CRC patients. 
Afterwards, these authors performed WGA for 
the sequencing of KRAS (v-Ki-ras2 Kirsten rat 
sarcoma viral oncogene homolog), BRAF (v-raf 
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murine sarcoma viral oncogene homolog B1) and 
PIK3CA (phosphatidylinositol-4,5-bisphosphate 
3-kinase, catalytic subunit α) genes and also ana-
lyzed the EGFR amplification by quantitative 
PCR (qPCR). The results revealed a high intra- 
and inter-patient heterogeneity in EGFR expres-
sion and genetic alterations in EGFR, KRAS and 
PIK3A, which could explain differences in 
response rates to EGFR inhibition therapy in 
colorectal cancer patients [24]. One study con-
ducted by Heitzer et  al. compared the mutation 
spectrum in the primary tumors (PT), metastases 
(MET), and the corresponding CTCs of a panel 
of 68 CRC-associated genes by using array-CGH 
and next-generation sequencing. CTC from blood 
patients were enriched using the CellSearch® sys-
tem, and individual CTCs were isolated with the 
help of micromanipulation. They found muta-
tions on known driver genes, like APC, KRAS or 
PIK3CA in PT, MET and corresponding CTCs. 
This study supported the idea of using CTCs as a 
liquid biopsy in cancer patients, can be an addi-
tional option to monitor tumor genomes, which 
are prone to change during progression, treat-
ment and relapse [34]. Using the DEPArray™ 
platform for the isolation of single CTCs from 
peripheral blood of patients with metastatic colon 
cancer and further WGA amplification, Frabbri 
et  al., screened KRAS gene status mutation in 
CTCs and in the primary tumor tissue. They 
found more than 50% of discordance of KRAS 
gene mutation between CTCs and primary tissue, 
indicating again the importance of CTC monitor-
ing to detect the changing genome along cancer 
progression [18].

5.4.1.2  Breast Cancer
Babayan et al. isolated CTCs by micromanipula-
tion after a previous enrichment step of Ficoll 
from blood metastatic breast cancer patients, they 
assessed the expression of the estrogen receptor 
(ER) after WGA.  Interestingly, they found that 
individual CTCs were both ER+ and ER- in 
patients with ER+ primary tumor, which may 
explain the 20% of ER-targeted therapy fails. 
These results suggest that ER expression moni-
toring on CTCs could optimize breast cancer 
treatment [6]. In a similar manner, Fernandez 

et al., isolated single CTC from metastatic triple 
negative breast cancer patients. The CellSearch™ 
system was used as a primary enrichment of CTC 
for further single-cell selection in the 
DEPArray™. After WGA, they analyze TP53 
mutations in single isolated CTC, resulting in 
high heterogeneity and in some cases different to 
primary tumor status [20]. Pestrin et al. combined 
similar technology and found a high heterogene-
ity of PIK3CA mutational status in CTCs from 
metastatic breast cancer patients [64]. Such vari-
ations of PIK3CA mutational status have been 
confirmed during progressive and recurrent dis-
ease in breast cancer patients demonstrating the 
clinical utility to isolated CTCs combined with a 
PIK3CA allele-specific asymmetric rapid PCR 
and melting analysis of the amplified single cell 
DNA [51]. A recent study of De Luca et al., ana-
lyzed by NGS 50 cancer-related genes of the 
amplified DNA from CTC breast cancer patients, 
previously enriched by the combination of the 
CellSearh and the Deparray. They observed 51 
sequence variants in 25 genes which demon-
strated again the high heterogeneity in the muta-
tional status of CTCs in cancer either between 
patients or within the same patient[14]. Jordan 
et  al. identified dynamic functional states of 
HER2 within circulating breast cancer cells. 
Fresh whole blood was first processed through 
the microfluidic CTC-iChip for depletion of leu-
kocytes and CTC isolation, individual CTCs 
were picked by micromanipulation. The RNAseq 
of individual CTCs documented the emergence 
of HER2+ CTCs in women initially diagnosed 
HER2-negative breast cancer. These results sug-
gested the capacity of HER2 phenotype sponta-
neous interconversion in CTC may be responsible 
for the progression of breast cancer and acquisi-
tion of drug resistance [43]. Interestingly, Powell 
et  al. were pioneers in the studies on CTCs 
focused on single-cell transcriptomic data. They 
introduced purified CTCs from the MagSweeper 
to a microfluidic platform (Fluidigm) to perform 
multiplexed quantitative PCR (qPCR) on 87 can-
cer genes in individual CTCs. Importantly, genes 
associated with metastatic process and EMT pre-
sented heterogeneous expression [67].

5 Circulating Tumor Cells: The Importance of Single Cell Analysis



54

5.4.1.3  Prostate Cancer
In a study performed by Jiang et al., the authors 
combined the NanoVelcro chip and laser capture 
microdissection for the isolation of single CTCs. 
They amplified the single cell DNA by MDA and 
performed WGS.  Importantly, they validated a 
high resolution protocol for the study of single 
CTC heterogeneity of the mutational landscape of 
somatic single nucleotide variations (SSNVs) and 
structural variations (SVs) [42]. Another single- 
cell analysis of prostate CTCs revealed an 
increased expression pattern of EMT-related 
genes in metastatic prostate cancer patients. CTC 
were enriched from blood by the ScreenCell® CC 
system and individual cells were recovered by 
micromanipulation. For the single-cell DNA anal-
ysis, Chen et  al. used a microfluidic-based 
RT-PCR analysis (CellsDirect™) and the 
Fluidigm [11]. Miyamoto et al. isolated individual 
CTCs from prostate cancer by micromanipulation 
and previously enriched using the CTC-i-Chip. 
Afterwards they performed RNA amplification 
and WTA. They identified multiple differences in 
gene expression among CTCs isolated from the 
same patient and between CTCs and the primary 
tumor. Interestingly they found heterogeneity in 
the various signalling pathways that could con-
tribute to the anti-androgen therapy failure [53]. A 
different strategy was used by Lohr et al. for the 
analysis of CTC isolated from metastatic prostate 
cancer patients. They enriched CTC fraction with 
the Magsweeper device, and then used two differ-
ent strategies for single cell isolation before WES: 
a nanowell-based method with automated imag-
ing and robotic retrieval of cells, and microma-
nipulation. Data supported the idea that the 
sequencing of can detect mutations in the early 
steps of tumor evolution as well as those shared 
with metastatic sites or trunk mutations [49].

5.4.1.4  Other Malignancies
In other types of cancer, the use of CTCs for clin-
ical purposes has reported less studies or they are 
still ongoing. This section point out some of the 
studies already published in different 
malignancies.

A recent study in pancreatic cancer showed 
CTCs associated aberrations in the expression of 

extracellular matrix genes, then underlining the 
involvement of the tumor microenvironment for 
the spread of cancer to distant organ. CTCs were 
enriched by using the CTC-iChip previous to 
micromanipulation for single cell collection to 
further RNA amplification and WTS [80]. Ni 
et al. analyzed CTCs in non-small-cell lung can-
cer (NSCLC) and found a heterogeneity of 
single- nucleotide variations (SNVs) and inser-
tions/deletions (INDELs), but with similar pro-
files than metastatic tumor tissues. These genes 
were involved in resistance to drugs and pheno-
typic transitions, indicating the utility of sequenc-
ing CTCs for cancer diagnosis. Authors 
performed an enrichment step of CTCs by 
CellSearch® system and isolated single cells by 
micropipetting before performing WES to ana-
lyze SNVs and INDELs [57]. Ramsköld, D et al. 
performed a Smart-Seq analysis in single CTCs 
from melanoma patients, isolated by microma-
nipulation previously enriched with the 
MagSweeper instrument. The transcriptomic 
analysis revealed high heterogeneity in gene 
expression patterns of melanoma CTCs highly 
informative for identifying candidate biomarkers 
[69]. The study performed by Blassl et al., found 
inter-cellular and intra/inter patient heterogene-
ity, single CTCs isolated from ovarian cancer 
patients bear the co-expression of epithelial, mes-
enchymal and stem cell transcripts. For single 
CTCs analysis, the first step was the enrichment 
of CTC by a combination of density gradient cen-
trifugation and CD45 depletion, followed by an 
immunofluorescent labeling with EpCAM and 
Muc-1 antibodies and isolation of single cells via 
micromanipulation. Remarkably, they developed 
a gene expression analysis by reverse transcrip-
tion and multiplex-RT-PCR analysis without the 
need of pre-amplification steps [8]. Recently 
Park S M et  al. reported a high throughput, 
 multiplexed strategy for single-cell mutation pro-
filing of individual lung cancer CTCs for mini-
mally invasive cancer therapy prediction and 
disease monitoring. Briefly, this nanoplatform 
consists in a magnetic sifter and single cell 
nanowell array capable of sorting up to 25,600 
single CTCs from blood to capture, compartmen-
talize, and molecularly characterize them [61].
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5.5  Discussion

Tumor heterogeneity is the result of the natural 
history of the tumor development and is a key 
issue of therapeutic approaches and its follow up 
is challenging. The identification of specific bio-
markers predicting the therapeutic response or/
and the metastatic process or/and the local recur-
rence would help to the therapeutic management. 
CTCs belong to the list of potential biomarkers 
and their heterogeneity could reflect those of the 
tumor.

The rarity of CTCs in the bloodstream of can-
cer patients made necessary the development of 
very accurately methodologies for their enrich-
ment and isolation. Despite the numerous meth-
odologies reported in the literature (reviewed in 
Sect. 5.2), there are still pitfalls that difficult the 
recovery of all the CTCs present in the sample. 
Moreover, some technologies are still at the 
proof-of concept stage only demonstrated using 
cultured cells. However, frequently set up on cell 
lines which do not effectively reflect the real state 
of CTCs in a natural biological fluid, especially 
in terms of heterogeneity [5], separation technol-
ogies over-predict their performance. The isola-
tion of new cell lines exhibiting a large genomic 
and transcriptomic heterogeneity is mandatory. 
CTCs can be isolated and interrogated as a 
“potential biological window “into the genetics 
of a tumor by means of non-invasive sampling, 
making it possible to evaluate the tumor temporal 
heterogeneity during the clinical course of the 
disease. To overcome the averaging approach 
determined by using bulk CTC analysis, it is nec-
essary to perform a single-cell analysis using 
sophisticated instrumentation. However, data 
mined from single-cell studies must be carefully 
studied with rigorous computational analyses, 
which are imperative for distinguishing pre- 
existing genetic alterations from amplification 
errors. Improper computation may result in bias 
and errors in data interpretation, especially in 
highly heterogeneous samples. Independent anal-
yses from multiple single cells may also be used 
to reveal repeated and specific mutational pat-
terns, which will be pivotal in distinguishing 
technical noise from biological signals. A com-

plete picture of a cell state will often require mea-
surements of different parameters in the same 
cells (i.e., transcriptome, genome and epig-
enome). Although it is usually possible to per-
form multiple assays on a bulk sample, this is 
only possible in certain cases for single-cell mea-
surements. Further development of multi-model 
measurement methods will help understand dif-
ferent sources of heterogeneity. In addition, 
future studies on single cells with defined clinical 
endpoints need to address the question of how 
many CTCs should be profiled to account for het-
erogeneity. Another consideration that affects 
directly to clinical decision is that depending on 
the methodology used for their isolation, the 
number of recovered CTCs may be altered and 
thus the analysis of heterogeneity will be differ-
entially reported. The relevance and significance 
of CTCs is by itself questionable. Do these cells 
have malignant properties themselves? It is more 
relevant to analyze CTC clusters? Indeed, recent 
findings have identified the importance of CTC 
clusters in tumor dissemination [4]. This may be 
a major source of heterogeneity at the metastatic 
point, and may imply more effort for developing 
methodologies to isolate and characterize CTC 
clusters, such as the ClusterChip.

Even of a lot of questions remain today without 
a clear answer, many studies have demonstrated 
the success of single CTCs characterization for 
clinical purposes, especially in colorectal cancer, 
prostate cancer and breast cancer. However, the 
development of new CTC isolation and single cell 
analysis technologies, that avoid current pitfalls, 
as well as the improvement on the data analysis 
could improve significantly their clinical value and 
thus increase their use in clinical practice.
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Abstract
In the past two decades, super-resolution fluo-
rescence microscopy has undergone a dynamic 
evolution. Following proof-of- concept studies 
with stimulated emission depletion (STED) 
microscopy, several new approaches such as 
structured illumination microscopy (SIM), 
photoactivation localization microscopy 
(PALM) and stochastic optical reconstruction 
microscopy (STORM), have been developed 
for imaging of nanoscale structural details and 
fast cellular dynamics in biological research. 
In this chapter, after briefly explaining their 
principles, we will describe the recent 
application of these super-resolution tech-
niques in single cell imaging. In addition, the 

extension of super-resolution microscopy to 
3D, multicolor, live-cell imaging and multi-
modal imaging are also discussed, signifi-
cantly improving the precision of single cell 
imaging. Combining with molecular biology, 
biochemistry and bio-computing algorithms, 
super-resolution fluorescence microscopy 
continues to expand its capabilities and pro-
vide comprehensive insights into the details of 
single cells.
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6.1  Introduction

The cellular structures and biological mecha-
nisms undergoing fundamental human life pro-
cesses often occur at a nanometer scale in single 
cells. It is critical to develop analytical methods 
for observing single cells at a nanoscale resolu-
tion, aiming at fully understanding the cellular 
processes such as apoptosis and carcinogenesis, 
addressing fundamental biological issues and 
ultimately providing unique strategies for the 
diagnosis and treatment of disease [1, 2]. Among 
them, various attempts have been focused on 
single cell imaging. Electron microscopy (EM) 
has atomic resolution of approximately 0.1–
10  nm and is able to reveal the ultrastructural 
characterization of cellular organelles [3, 4]. 
However, the fixation procedures in sample 
preparation make it problematic for single live- 
cell imaging. Fluorescence microscopy offers a 
ubiquitous choice for single cell imaging in 
biological studies [5]. Unfortunately, the optical 
resolution of fluorescence microscopy has been 
limited by Abbe’s law and has been restricted 
within 200  nm [6]. Thus, various biological 
processes that occur inside the single cell at 
nanometer scale are difficult to be resolved by 
fluorescence microscopy.

It is exceptionally challenging for achieving 
high spatiotemporal resolutions to observe 
nanoscale structural details and monitor fast 
cellular dynamics.

The emergence of super-resolution fluores-
cence microscopy has begun to attract notice 
because it can bypass the barrier of light diffrac-
tion and obtain nanoscale resolution in single cell 
imaging [7–10]. In the past two decades, super-
resolution fluorescence microscopy has undergone 
a dynamic evolution. Following proof-of-concept 
studies with stimulated emission depletion (STED) 
microscopy, several new approaches such as struc-
tured illumination microscopy (SIM), photoacti-
vation localization microscopy (PALM) and 
stochastic optical reconstruction microscopy 
(STORM), have been developed for super- 
resolution imaging in biological research. These 
innovative techniques have improved the reso-
lution by an order of magnitude or more over 

conventional fluorescence microscopy and have 
empowered the visualization nanoscale structural 
details and fast cellular dynamics at the subcellular 
and molecular scale with unprecedented details. In 
2014, the Nobel Prize in Chemistry has been 
awarded to Prof. Eric Betzig, Prof. William Esco 
Moerner, and Prof. Stefan Walter Hell for their 
ground-breaking work in super-resolution fluores-
cence microscopy [11–13].

In this chapter, after briefly explaining their 
principles, we describe the recent application of 
these super-resolution techniques in single cell 
imaging. In addition, the extension of super- 
resolution microscopy to 3D, multicolor, live-cell 
imaging and multimodal imaging are also 
discussed, significantly improving the precision 
of single cell imaging. Combining with molecular 
biology, biochemistry and bio-computing 
algorithms, super-resolution fluorescence 
microscopy continues to expand its capabilities 
and provide comprehensive insights into the 
details of single cells.

6.2  Super-Resolution 
Techniques for Single Cell 
Imaging

In general, super-resolution fluorescence micros-
copy is a type of far-field optical technique that 
relies on different principles for obtaining super-
resolution (Fig. 6.1). Despite its relatively short 
history, super-resolution fluorescence micros-
copy has had a profound influence on almost all 
branches of life science. It is impossible to 
describe all of these applications in this chapter. 
Instead, after briefly explaining their principles, 
we will discuss some representative examples of 
these super-resolution techniques for single cell 
imaging in cell biology.

6.2.1  Stimulated Emission 
Depletion (STED) Microscopy

In 1994, Hell and his coworkers first proposed the 
schematic diagram of STED microscopy that was 
experimentally demonstrated as a sub- diffraction 
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imaging technique later [14, 15]. In STED micros-
copy, the fluorescence response is negatively 
modulated by a STED laser beam using the pro-
cess of stimulated emission. Generally, when an 
excited fluorophore encounters an appropriate 
photon, it can jump to the ground state with emit-
ting an identical photon. However, the stimulated 
emission can effectively deplete excited fluoro-
phores without fluorescence emission using a 
strong STED laser. Because of the doughnut-
shaped spatial pattern of laser beam, the fluores-
cence emission is generated from a smaller subset 
of fluorophores at the center of doughnut while 
suppressing the majority of fluorophores located 
in the overlapping region of the two laser beams. 
This effectively narrows the point spread func-
tions (PSFs), minimizes blurring, and ultimately 
accomplishes resolution improvement beyond the 
diffraction limit.

Since first proposed in 1994, STED micros-
copy has seen its paradigm-shifting application 
in many aspects of cell biology [16–22]. For 
example, Hell et al. demonstrated that this tech-
nique has the ability to visualize individual vesi-
cles in the synapse (approximately 40  nm in 
diameter). This study revealed synaptotagmin I, a 
protein in the vesicle membrane, remains isolated 
clusters on the presynaptic membrane [16]. Most 
impressively, video-rate STED microscopy imag-
ing of synaptic vesicle movement in live hippo-
campal neurons was achieved by Westphal et al. 
with a 62 nm lateral resolution using ATTO647N-
conjugated anti-synaptotagmin antibodies [23]. 
STED microscopy revealed the vesicle mobility 
within the highly confined space of synaptic bou-
tons. However, the movement of vesicle was sub-
stantially faster in non-bouton regions, which 
might represent continuous transit through axons.

Fig. 6.1 Super-resolution fluorescence microscopy. 
Upper panel: Principles of super-resolution microscopy 
techniques. Lower panel: Confocal and super-resolution 
images of fluorescent protein labeled microtubules in liv-
ing cells, showing confocal and STED microscopy of 
mCitrine-tubulin in a living PtK2 cell, SIM of EGFP- 

tubulin in a living Drosophila S2 cell, and STORM/PALM 
of mEos2-tubulin in a living Drosophila S2 cell, respec-
tively. All images are shown with the same magnification. 
Scale bars: 2 μm. (Adapted with permission from Ref. [8], 
Copyright 2013 American Chemical Society)
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Along with STED microscopy technique, the 
development of new fluorescent probes has also 
attracted great attention of chemists and 
biochemists. Correspondingly, a surge of fluores-
cent probes including organic dyes, fluorescent 
protein and nanomaterials have been furnished 
for STED microscopy [24–27]. For example, 
super-resolution imaging of the Golgi apparatus 
structures and dynamics in single live- cells with 
STED microscopy using a bioorthogonal 
ceramide probe was achieved [28]. Schepartz 
et al. treated live-cells with a trans- cyclooctene- 
containing ceramide lipid (Cer- TCO) for target-
ing Golgi, and then utilize a tetrazine-tagged 
near-IR dye, SiR-Tz, to specifically recognize 
Cer-TCO via a “tetrazine- click” reaction. The 
assembling production of Cer-SiR, a highly pho-
tostable “vital dye”, enabled the visualization of 
the Golgi apparatus by STED super-resolution 
microscopy in live- cells (Fig.  6.2). In addition, 
this “vital dye” was sufficiently safe and did not 
perturb the mobility of the Golgi-resident 
enzymes as well as the traffic of cargo through 
the Golgi. The commercially available quantum 
dots (QDs) with red-emittion have been employed 
in STED super- resolution microscopy by using 
an increasingly popular 775 nm STED laser light. 
Super- resolution imaging of fibroblasts with 
QDs- labeled vimentin filaments in 50 nm spatial 
resolution were obtained [29]. Specifically, the 
high photo-stability of QDs enables more than 
1000 frames of superimposed STED scans 
without blinking; consequently, QDs hold 
promise for extended time-lapse imaging.

6.2.2  Structured Illumination 
Microscopy (SIM)

SIM, first reported by Gustafssonis et  al., is 
another type of super-resolution techniques [30, 
31]. In SIM, the fluorescent response is positively 
modulated by a sinusoidal pattern, which is gen-
erated by the interference of two excitation light 
beams through the excitation optics. This modula-
tion pattern was used to reveal the hidden fre-
quencies from unresolved sample structures that 

can be used to reconstruct a full SIM image. To 
achieve this, a set of images were captured by 
changing the defined angles and the phase of sinu-
soidal modulation pattern. Compared with con-
ventional fluorescence microscope, SIM has a 
~2-fold improvement in resolution, with an 
approximately 100–150  nm practical resolution. 
Furthermore, three dimension (3D) SIM has been 
achieved by using a 3D modulation pattern that is 
created by the interference of three excitation 
laser, resulting in a ~2-fold resolution improve-
ment in all three dimensions [32]. In addition, 
saturated structural illumination microscopy 
(SSIM), a variation of SIM, has been developed 
for increasing the resolution up to ~ 5-fold by 
using nonlinear patterned excitation [33].

SIM improves its resolution by means of 
optics and is therefore compatible with all 
fluorophores and labeling protocols previously 
developed for conventional fluorescence 
microscopy. Second, it is based on wide-field 
microscopy techniques and needs very few 
frames for reconstruction of SIM images. 
Therefore, SIM is faster compared with other 
high-resolution methods. These features make it 
favorable for super-resolution imaging in single 
live-cells. SIM has demonstrated its capability 
for long term, live-cell imaging in subcellular 
dynamic structures such as microtubules [34, 
35]. Furthermore, 3D-SIM has been achieved and 
opens new and facile possibilities for sub- 
diffraction multicolor imaging [36–38]. For 
example, Schermelleh and his colleagues 
performed multicolor imaging of the nuclear 
periphery including chromatin, nuclear lamina, 
and the nuclear pore complex (NPC) in single 
mammalian cells with 3D structured illumination 
microscopy [36]. Several features have been 
observed in SIM, which previously escaped from 
conventional microscopy and were detected only 
by electron microscopy [36].

The single NPCs were colocalized with chan-
nels in the lamin network and peripheral hetero-
chromatin. The distinct NPC components were 
differentially localized. The double-layered 
invaginations of the nuclear envelope in prophase 
were detected. More interestingly, high-speed 
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Fig. 6.2 Two-step procedure for high-density labeling of 
the Golgi in live cells. Cells are treated first with Cer- 
TCO, a trans-cyclooctenecontaining ceramide lipid, and 
then reacted with SiR-Tz, a tetrazine derivative of a highly 

photostable silicon rhodamine dye. The product of this 
reaction, Cer-SiR, allows extensive live-cell imaging by 
STED super-resolution microscopy
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SIM imaging (11  Hz) has even been developed 
with 100-nm resolution [39]. With this technique, 
Kner et  al. demonstrated the super-resolution 
video imaging of tubulin and kinesin dynamics by 
structured illumination in living Drosophila mela-
nogaster S2 cells [39]. Additionally, SIM still can 
theoretically improve the resolution with the 
emission rate of fluorophores nonlinearly depend-
ing on the illumination intensity. As a realization 
of this idea, nonlinear SSIM has achieved 2D 
resolution of approximately 50-nm on a bead 
sample [40]. However, the high photostability of 
fluorescent probes and photo- damage required for 
SSIM are challenging for live-cells imaging. 
Fortunately, Rego et  al. demonstrated reversible 
photoswitching of the fluorescent protein Dronpa 
with the required nonlinearity at six orders of 
magnitude lower light intensities for saturation 
[41]. With this fluorescent photoswitchable pro-
tein, cellular structures such as mammalian 
nuclear pore, microtubules, and actin cytoskele-
ton have been visualized in ~40 nm resolution.

6.2.3  Single-Molecule Localization 
Microscopy

Another approach to overcome the diffraction 
restriction is the single-molecule localization 
microscopy method, including PALM developed 
by Betzig et al. in 2006 [42], and STORM first 
developed by Zhuang’s group almost at the same 
time [43]. These approaches rely on stochastic 
photoswitching of fluorophores between the fluo-
rescent “ON” and “OFF” state. This stochastic 
photoswitching brings the possibility that only a 
random subset of activated fluorophores can be 
sparse enough to be optically resolved at any 
given time point. In each imaging cycle, a sparse 
subset of fluorophores were activated and opti-
cally resolved, which allows their positions to be 
accurately determined after algorithm analysis. 
Ultimately, the super- resolution images are 
reconstructed by the fusion of position informa-
tion from thousands of frames. The localization 
precision of PALM and STORM techniques 
depends on sufficient photons collected from 
each activation event, and therefore on the reli-
ability of the fluorophores used.

Although working with the same principle, 
PALM and STORM techniques have been reported 
to utilize different photoswitchable fluorophores 
independently. The fluorophores usually employed 
in PALM are genetically encoded fluorescent pro-
teins or organic fluorophores that undergo only 
several cycles of photoconversion or photoactiva-
tion before being permanently photobleached. 
However, in STORM, the fluorescent probes are 
often reversibly photoswitchable organic fluoro-
phores. In addition, variations of single-molecule 
localization techniques including fluorescence 
PALM (FPALM) and direct STORM (dSTORM) 
have also been embraced in this field [44, 45].

Together with fluorescent proteins such as 
Kaede and dEosFP, Betzig and his coworkers 
have successfully used PALM method to super- 
resolution imaging of intracellular proteins such 
as the lysosomal transmembrane protein CD63, 
cytochrome-C oxidase import sequence, vincu-
lin at focal adhesions and actin within a lamel-
lipodium [42]. Recently, Moerner et al. designed 
a  family of photoactivatable push-pull fluoro-
phores, HaloTag-based target-specific azido 
DCDHFs, to precisely locate cellular proteins 
in fixed and live single cell imaging [46]. 
Moreover, the cytoskeletal proteins (Popz, FtsZ, 
and AmiC) in live bacterial cells have been 
localized exactly by PALM imaging with these 
photoactivatable fluorophores. In addition, pho-
toswitchable rhodamine fluorophore and hemi-
cyanine dyes have also undergone extensive 
research in the field of photoactivated localiza-
tion microscopy [47–51].

In 2007, Zhuang et  al. developed a class of 
photoswitchable fluorescent probes and demon-
strated multicolor STORM imaging [52]. These 
fluorescent probes are composed of a photo-
switchable “reporter” fluorophore (e.g., Cy5) that 
can be switched between fluorescent “ON” and 
“OFF” state, and an “activator” (e.g., Alexa405, 
Cy2, Cy3) that facilitates photoactivation of the 
reporter. The different combination of reporters 
and activators generates a family of photoswitch-
able fluorescent probes for multicolor imaging. 
Using this approach, three-color STORM imag-
ing of three different DNA constructs labeled 
with Alexa 405-Cy5, Cy2-Cy5, and Cy3-Cy5 
was achieved. In addition, the authors further 
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extended this method to STORM imaging of 
microtubules labeled with Cy2-Alexa 647 and 
clathrin-coated pits (CPPs) labeled with Cy3-
Alexa 647  in mammalian cells with 20–30  nm 
resolution. Furthermore, 3D STORM imaging 
was obtained by using optical astigmatism to 
determine the axial and lateral positions of each 
individual probe, which allows for resolving the 
three-dimensional morphology of nanoscopic 
cellular structures [53]. Additionally, Sauer and 
his coworkers reported a facile strategy for 
reversible photoswitching of Alexa Fluor and 
ATTO dyes under physiological conditions [54]. 
Subsequently, they demonstrated the potential of 
this method for STORM imaging of cytoskeletal 

network and mRNA with an approximately 
20  nm resolution in fixed and living cells. 
Recently, a class of SiR fluorophores have been 
developed for STORM imaging of intracellular 
proteins in single live-cells [55, 56]. More inter-
esting, a photoluminescence phenomenon termed 
aggregation-induced emission (AIE) has been 
employed in super- resolution imaging. As shown 
in Fig. 6.3, Tang and his co-workers have synthe-
sized and demonstrated a new family of AIE-
based bioprobes for super-resolution imaging of 
subcellular organelles in single cells with 
STORM [57, 58]. These results facilitate the 
development of AIE luminogens for super- 
resolution imaging in more fields.

Fig. 6.3 Mitochondrion-specific photoactivatable fluo-
rescence turn-on AIE-based bioprobes for localization 
super-resolution microscope. (a) Principle of design for 

the photoactivatable turn-on AIE-based probe; (b) 
Photocyclodehydrogenation of o-TPP3M; (c) 
Photocyclodehydrogenation process of o-TPE-ON+
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6.2.4  Other Super-Resolution 
Microscopy

In 2009, Dertinger and his colleagues developed 
the super-resolution optical fluctuation imaging 
(SOFI) that is entirely different from the 
techniques mentioned above [59]. This approach 
depends on the higher-order statistical analysis of 
temporal fluctuations from each single fluorescent 
molecule recorded in a sequence of images to 
obtain resolution improvement. SOFI outfits the 
power of high-order cumulants to create 
resolution enhancement in all three-dimensions. 
The advantages of SOFI include the technical 
simplicity, use of off-the-shelf equipment, 
genetically encodable labels, simple and rapid 
data acquisition, and the robustness to significant 
background rejection and spatiotemporal 
resolution improvement [60, 61].

Compared with super-resolution techniques 
mentioned above, SOFI is a relatively young 
member of the super-resolution technique family. 
Nevertheless, SOFI has attracted substantial 
attention worldwide during the past few years for 
its rational balance in spatial and temporal reso-
lution, imaging depth, and phototoxicity. 
Dertinger and his colleagues demonstrated super- 
resolution optical fluctuation imaging of β-tubulin 
networks labeled with Alexa-647-conjugated 
antibodies in fixed COS-7 cells under the same 
experimental conditions as in dSTORM [62]. Xu 
et  al. developed and optimized a reversible 
switching fluorescent protein, Skylan-S for SOFI 
[63]. The photostability, contrast ratio, and aver-
aged fluorescence intensity of Skylan-S in the 
fluctuation state are higher than these of Dronpa 
[61]. This fluorescent protein provided a 4-fold 
improvement of fluctuation range of pixels and a 
higher SOFI resolution. Furthermore, to demon-
strate the capability of Skylan-S in SOFI, tubulin 
structures and clathrin-coated pits (CCPs) were 
separately labeled with Skylan-S in living U2OS 
cells and were observed using the SOFI tech-
nique. Recently, semiconductor polymer dots 
(Pdots) with high brightness, extraordinary 

 photostability, and favorable biocompatibility, 
have been designed as fluorescent probes for 
SOFI technique (Fig. 6.4) [64].

Imaging of subcellular structures labelled 
with these small photoblinking Pdots was 
achieved with improved spatial resolution. 
Although promising, the feasibility of live-cell 
imaging is largely restricted by the labeling den-
sity of switched-on fluorophores. Xi and his 
coworkers improved the labeling density of fluo-
rophores using a joint tagging super- resolution 
technique (JT-SOFI) [65]. To demonstrate the 
feasibility of JT-SOFI, commercially available 
QDs (525, QD625, and QD705) were employed 
to jointly label the tubulin in live COS7 cells, 
greatly improving their labeling density. After 
analyzing and combining the images obtained 
from all QDs, the microtubule networks could be 
visualized with high fidelity and remarkably 
enhanced sub- diffraction resolution. In addition, 
Landes et  al. combined SOFI microscopy with 
fluorescence correlation microscopy (FCS) to 
develop a new technique termed “fcsSOFI” that 
allows to reveal nanometer dimensions and diffu-
sion dynamics of cellular cytosol [66].

Fig. 6.4 Small photoblinking semiconductor polymer 
dots for super-resolution optical fluctuation imaging. 
Chemical structure of semiconductor polymer dots, 
poly[(9,9- dioctylfluorenyl-2,7-diyl)-co-(1,4-benzo-
{2,1′,3}-thiadazole)](PFBT) and poly[2-methoxy-5-(2- 
ethylhexyloxy)-1,4-(1-cyanovinylene-1,4-phenylene)] 
(CN-PPV)
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6.3  New Developments 
and Challenges

Although super-resolution approaches have well 
demonstrated their potentials in imaging 
previously unresolved details in single cells, they 
still need further development to become more 
routinely applicable. The extension of super- 
resolution microscopy to 3D, multicolor and live- 
cell imaging reveals the true details inside single 
cells, overcomes the limitations of light 
microscopy such as resolution, dimensionality, 
quantitation and imaging speed, and enables new 
applications in many biological systems. As 
illustrated multiple times in many reviews [7–9, 
67], this chapter will not dwell on these 
techniques. However, each approach has its own 
strengths and weaknesses for single cell imaging 
[67]. In combination with two or more super- 
resolution techniques that were performed on the 
same sample, one can produce results that 
emphasize the advantages of each technique 
while offsetting their individual drawbacks. This 
multimodal approach, known as correlative 
super-resolution microscopy, adds new 
dimensions of information and provides new 
opportunities in this fast-growing field [68].

For example, Betzig et  al. first demonstrated 
the high degree of correlation between TEM and 
PALM results of FP-tagged proteins on cryopre-
pared thin sections of fixed cells, helping to vali-
date PALM as an accurate technique for imaging 
intracellular proteins with sub- diffraction- limit 
resolution [42]. Watanabe et al. described a cor-
relative fluorescence electron microscopy that 
combines STED microscopy or PALM with elec-
tron microscopy for localization of tagged pro-
teins in electron micrographs [69]. These 
multimodal approaches have been extended to 
virtually all super-resolution fluorescence micros-
copy and electron microscopy methods.

Simultaneously, these advances bring in new 
challenges such as the robustness, simplicity, and 
availability of optical instrumentation, fluores-
cent probes and fluorescent labeling methods, 
imaging routines and analysis algorithms. One 
obvious challenge is with fluorescent probes and 
fluorescent labeling methods that were originally 

designed for conventional fluorescence micros-
copy. As just one example, antibody-based fluo-
rescent probes have been widely used in 
fluorescence microscopy. However, in super- 
resolution microscopy, there are problematic 
because of their relatively large size (~15  nm) 
and insufficient labeling density. In some cases, 
the clustering artifacts were introduced and eas-
ily misinterpreted in the super-resolution images 
[70]. Therefore, the development of small and 
bright fluorescent probes and new labeling meth-
ods for super-resolution imaging of single cells is 
highly in demand [71–74].

6.4  Conclusions 
and Perspectives

Because of the diffraction limit, the resolution of 
fluorescence microscopy seems to be insur-
mountable for a long time. However, super- 
resolution fluorescence microscopy breaks this 
seemingly impenetrable barrier and resolves 
complex mechanisms inside biological struc-
tures. Over the last 20  years, various super-
resolution techniques have been developed, 
shattered the diffraction barrier and featured an 
order of magnitude higher resolution compared 
to that of conventional fluorescence microscopy. 
More importantly, these super-resolution tech-
niques are beginning to provide a wealth of new 
insights in the life sciences including nanoscale 
architectures of cell organelles, organizations and 
heterogeneities of cellular components, biochem-
ical reactions, cell-to-cell variations at a subcel-
lular level. With the further developments 
outlined above, there exist a wide variety of opti-
cal enhancements of the standard super- resolution 
fluorescence microscopy that enable multidimen-
sional, quantitative and holistic measurements, 
significantly improving the precision of single 
cell imaging. Combining with molecular biology, 
biochemistry and theoretical bio-computing 
algorithms, super-resolution fluorescence micros-
copy continues to expand its capabilities and pro-
vide comprehensive insights into the details of 
single cells that persist only within their native 
environments.
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In the field of life and medicine, there is a gap 
between the dynamic fate of single molecules 
and cells and the overall behavior during 
development. Super-resolution fluorescence 
microscopy may be promising to bridge this gap 
by directly accessing molecular structural and 
functional information in tissue or even in vivo in 
whole organisms. Along with these new 
possibilities, extensive opportunities and 
challenges arise. In the future, super-resolution 
fluorescence microscopy is expected to 
substantially improve adaptive optics and 
fluorescent labels for the diagnosis and treatment 
of human diseases.
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Single Cell Proteomics 
for Molecular Targets in Lung 
Cancer: High-Dimensional Data 
Acquisition and Analysis

Zheng Wang and Xiaoju Zhang

Abstract
In the proteomic and genomic era, lung cancer 
researchers are increasingly under challenge 
with traditional protein analyzing tools. High 
output, multiplexed analytical procedures are 
in demand for disclosing the post-translational 
modification, molecular interactions and sig-
naling pathways of proteins precisely, specifi-
cally, dynamically and systematically, as well 
as for identifying novel proteins and their 
functions. This could be better realized by 
single-cell proteomic methods than conven-
tional proteomic methods. Using single-cell 
proteomic tools including flow cytometry, 
mass cytometry, microfluidics and chip tech-
nologies, chemical cytometry, single-cell 
western blotting, the quantity and functions of 
proteins are analyzed simultaneously. Aside 
from deciphering disease mechanisms, single- 
cell proteomic techniques facilitate the identi-
fication and screening of biomarkers, 
molecular targets and promising compounds 

as well. This review summarized single-cell 
proteomic tools and their use in lung cancer.

Keywords
Lung cancer · Mass spectrometry · Single 
nucleotide polymorphism · Biomarker

7.1  Introduction

Reportedly, lung carcinoma is the leading cause 
of cancer-related mortality worldwide, which 
accounts for 27% of all cancer-related deaths in 
men and 25% in women in the United States of 
America [1]. The two primary types of lung can-
cer are small cell lung cancer (SCLC) and non- 
small cell lung cancer (NSCLC). Apparently, 
chemotherapeutic agents and radiotherapy tech-
niques have undergone a significant progress in 
the last two decades. Novel chemotherapeutic 
agents were developed with higher efficiency and 
lower adverse effects, and which greatly improves 
the tolerance and survival in lung cancer patients. 
In addition, molecular targeted therapy has 
attracted considerable attention to enhance the 
efficacy of the lung cancer treatment, and has 
evolved as a milestone for lung cancer treatment. 
Through molecular target screening and selec-
tion, the overall survival (OS) and progression- 
free survival (PFS0 overwhelmingly increases 
with epidermal growth factor receptor-tyrosine 
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kinase inhibitor (EGFR-TKIs) treatment com-
pared with chemotherapy in selected unresect-
able NSCLC patients, supporting the latter as the 
first-line treatment regime for them [2].

Nonetheless, these advancements are insuffi-
cient for both reducing the mortality of NSCLC 
and effectively treat SCLC and some types of 
NSCLC. Despite all that medical science has to 
offer, the overall 5-year survival rate of all 
patients diagnosed with lung cancer remains 
approximately 15%~20%, with less than 7% of 
all patients surviving for 10  years [1]. 
Development of biomarkers, treatment targets 
and agents is thus urged for reducing the mortal-
ity of NSCLC or to effectively treating SCLC and 
some types of NSCLC [2, 3]. The complexity of 
molecular network in the pathogenesis of lung 
cancer awaits for further elucidations as well.

Proteins are involved in critical biological pro-
cesses in lung cancer, including oncogenesis, pro-
liferation, angiogenesis and metastasis. The 
complexity of deciphering the functioning pro-
teins lies in their large number, previously uniden-
tified origin, post-translational modifications and 
transformations, as well as protein- protein inter-
actions that build networks. Hence, traditional 
protein analyzing methods, such as two-dimen-
sional electrophoresis (2DE), are no longer inad-
equate for assessing the interaction networks of 
proteins in lung cancer. Conversely, proteomics 
offers a myriad of analytical procedures that when 
used in a large-scale might help in revealing the 
post-translational modification and biological 
activities of proteins dynamically and systemati-
cally [4, 5]. Using proteomic methods, protein 
abundance could be quantified or semi-quantified 
in lung or lung cancer tissues, which allows fur-
ther identification of molecular interactions and 
signaling pathways in lung cancer [6]. In addition, 
protein biomarkers could be identified, protein 
biomarker panels could be verified, facilitating 
the validation of further clinical trials or transla-
tional studies [7]. Most importantly, novel molec-
ular targets and promising compounds are 
identified with proteomic methods that benefit 
disease therapies in lung cancer [8].

7.2  The Usage of Proteomics 
in Lung Cancer

The usage of proteomics in lung cancer has been 
explored in several different aspects [9–11]. 
According to a preliminary study, histology, 
metastases and nodal involvement could be iden-
tified in frozen lung cancer sections with high 
accuracy using matrix-assisted laser desorption/
ionization mass spectrometry [12]. Using an 
aptamer-based proteomic method, serum pro-
teins are identified as markers that discriminate 
NSCLC from control subjects [13], or identify 
NSCLC from pulmonary nodules [14]. Liquid 
chromatography-tandem mass spectrometry 
(LC-MS/MS) was used to characterize the pro-
teome profile of lung adenocarcinomas that is 
distinguishable from that of benign nodules or of 
normal lung tissues [15]. Using isotope labeling 
technique and high resolution mass spectrometer, 
the quantitative phosphoproteomic analysis 
revealed the phosphorylation status of multiple 
kinases, including crucial kinases controlling 
PI3K/AKT/mTOR and CDC42-PAK signaling 
pathways, are identified in human lung mucoepi-
dermoid carcinoma cells chronically exposed to 
cigarette smoke [16].

A recent study revealed the differential value of 
protein profiles in exhaled breath condensate 
(EBC) samples of healthy subjects, healthy smok-
ers, chronic obstructive pulmonary disease 
(COPD) and lung cancer patients, which offers a 
potential non-invasive diagnostic method for lung 
cancer [17]. The abundance of several extracellu-
lar matrix (ECM) proteins, including fibronectin 
and tenascin-C (Tnc), are significantly increased 
in primary lung tumors and associated lymph 
node metastases compared with normal tissue. A 
three-gene expression signature comprising TNC, 
S100A10, and S100A11 is strongly predictive of 
patient survival independent of age, sex, smoking 
history, and mutational load [18]. A signature of 
25 mass spectrometry signals was associated with 
both relapse-free survival and overall survival 
(OS) in NSCLC patients using frozen resected tis-
sue specimens [19]. An eight- peak profile signa-
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ture was established in NSCLC patients that 
predict their responses to  EGFR- tyrosine kinase 
inhibitor (TKI) treatment, as assessed by progres-
sion and overall survival [20]. VeriStrat, a MALDI 
mass spectrometry method, was evolved later on 
for prediction of the efficacy of monotherapy or 
combination therapy in NSCLC patients [21].

Basing on the proteomic profile, patients could 
be classified as either poorer outcome or better 
outcome by VeriStrat system, which is in accor-
dance with the disease progression. Except for 
EGFR-TKI, VeriStrat system was also tried for 
assessing the efficacy of EGFR-TKI plus bevaci-
zumab (an pan-EGFR monoantibody). Another 
study tried matrix-assisted laser desorption/ion-
ization MS proteomic algorithm developed from a 
small dataset of erlotinib-bevacizumab treated 
patients to predict the clinical outcome of patients 
treated with erlotinib alone [22]. The prognostic 
value of VeriStrat was also demonstrated for treat-
ment-naïve non-squamous advanced NSCLC 
patients treated with first-line chemotherapy, or 
erlotinib plus first-line chemotherapy [23, 24]. 
Prediction models have also been developed for 
etoposide chemoresistance using global proteomic 
profiling in NSCLC [25]. Both therapeutic effi-
cacy and severe adverse effects are predictable by 
serum peptide profiling with MALDI-TOF mass 
spectrometry in NSCLC patients [26]. Multivariate 
protein predictive models have been developed for 
gefitinib-related interstitial lung diseases in phar-
macoproteomic studies [27]. Recently, the value 
of VeriStrat system in treatment strategy selection 
was investigated in several clinical trials. Although 
it seems too early to make the conclusion for 
inconsistent clinical trial results, this proteomic 
method do show its potentials.

Beyond being a prognostic biomarker, pro-
teomics is potentiated as a candidate for precise 
medicine in lung cancer [28, 29]. Proteomic 
methods are also used for drug development in 
lung cancer. OSU03013, a derivative of cele-
coxib, was found to induce cell cycle G1 phase 
arrest, apoptosis and expressive changes in pro-
teomics in lung cancer cells, as revealed by 2DE, 
matrix-assisted laser desorption/ionization time- 
of- flight mass spectrometry (MALDI-TOF-MS) 
and MALDI-TOF-tandem mass spectrometry 

(MS/MS) [30]. The antitumor activity of 
Microcystis viridis lectin (MVL), a mannose- 
binding protein, has been tested in A549 lung 
cancer cells by flow cytometry (for apoptosis), 
2DE and MALDI-TOF-MS [31]. Fifty protein 
spots were detected by 2DE, which are signifi-
cantly differentially expressed protein spots after 
MVL treatment. Seven proteins were further 
identified by MALDI-TOF-MS In MVL-treated 
A549 cells, the two increased proteins were alde-
hyde dehydrogenase 1 family member A1 
(ALDH1A1) and β-actin, and five decreased pro-
teins include: heat shock protein 90  kDa beta 
member 1 (HSP90B1), heat shock 60 kDa pro-
tein 1 (HSPD1), plastin 3, tropomyosin 3 isoform 
2 (TPM3), and β-tubulin (Figs. 7.1, 7.2, and 7.3).

Based on PANTHER classification system, 
the identified 7 proteins can be classified into 3 
functional categories: protein folding (HSP90, 
HSP60), cell structure and motility (ACTB, 
PLS3, TUBB and TPM3), and other carbon 
metabolism (ALDH1A1). Successive interaction 
network analysis showed that four of the seven 
identified proteins proteins (HSP90, HSP60, 
β-tubulin, β-actin) are the direct interactors of 
14-3-3 zeta, suggesting that 14-3-3 zeta may play 
a vital role in mediating MVL-induced apoptosis 
in lung cancer cells. Furthermore, a systemic 
review validated the usage of the proteomic plat-
form in solid tumors, including lung cancer [32]. 
In recent years, proteomics studies in lung cancer 
have been emerging and reviewed elsewhere [33, 
34]. Single-cell proteomics comprises fluores-
cence flow cytometry/fluorescence-activated cell 
sorting (FFC/FACS), mass cytometry, microflu-
idic chip, and chemical cytometry and has drawn 
overall research focus lately. In fact, the usage of 
single-cell proteomics has just begun and pro-
voked research interests in lung cancer [35–40].

7.3  Single Cell Proteomic 
Methods

7.3.1  Flow Cytometry

For the last four decades, the flow cytometry 
usage has witnessed an evolution. Because 
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 conventional flow cytometry comprises promptly 
staining an antibody that targets a previously 
identified antigen, the identification of novel, 
post-translational modified proteins that might be 
involved in the pathobiology of diseases becomes 
challenging. Reportedly, multicolor FFC or 
FACS overcomes this problem [41]. In FFC, 
labeling of cellular proteins with fluorescent anti-
bodies facilitates simultaneous assessments of up 
to 15 molecular markers per cell. By using spec-

trally distinct fluorophores and highly specialized 
equipment, this number could be further boosted. 
Intracellular staining (ICS) [42], which requires 
blocking protein secretion and cell fixation, can 
be coupled with cytometry to investigate the rela-
tive levels of functional proteins such as cyto-
kines and phosphokinases.

One of the most prominent advantages of the 
cytometry methods (particularly FFC and FACS) 
is that large amounts of cells could be identified 

blood/body 
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lung tissue 

preparation of 
cell suspensions

fix, permeablize and 
labeling with Abs

flow cytometer
data aquisition
and analysis  

laser
stimulation detectors 
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signal 
processing 

Fig. 7.1 Flow cytometry for single cell analysis. Cells 
are labeled by antibodies, and then the cell suspension is 
entrained in the center of a narrow, rapidly flowing stream 
of liquid. An electrical charging ring is placed just at the 
point where the stream breaks into droplets. A charge is 
placed on the ring based immediately prior to fluores-
cence intensity being measured, and the opposite charge is 

trapped on the droplet as it breaks from the stream. The 
charged droplets then fall through an electrostatic deflec-
tion system that diverts droplets into containers based 
upon their charge. In some systems, the charge is applied 
directly to the stream, and the droplet breaking off retains 
charge of the same sign as the stream. The stream is then 
returned to neutral after the droplet breaks off
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Fig. 7.2 The workflow of a typical mass cytometry anal-
ysis. Cells are first stained with elemental isotope- 
conjugated antibodies. After nebulization, atomization, 
and ionization, clouds of ions originating from single cells 

are filtered by the quadrupole and sent for time-of-flight 
mass analysis. Finally, high-dimensional datasets are 
obtained and processed to extract underlying biological 
information
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at the same time, which enables practitioners to 
identify, sort and enumerate relatively rare cell 
types. The samples may be obtained from blood 
or tissues. The phenotyping and differentiation of 
a cell type is realized by FFC or FACS by its spe-
cific cellular markers. This is easily performed in 
hematological malignancies. Solid cancer cells 
are also distinguishable with cellular markers. 
Leelatian et al. characterized glioma, melanoma 
and small cell lung cancer cells with flow cytom-
etry and mass cytometry to track cell subset 
abundance following different enzyme combina-
tions and treatment times [43]. The results show 
that cell identity is well established by several 
key cellular markers, including CD45, CD3, 
CD4, CD8, CD19, CD64, HLA-DR, CD11c, 
CD56, CD44, GFAP, S100B, SOX2, nestin, 
vimentin, cytokeratin, and CD31. The authors 
also show that fluorescence cytometry and mass 
cytometry identifies comparable frequencies of 
cancer cell subsets, leukocytes, and endothelial 
cells in glioma and tonsil. These results provide a 
possible procedure for preparing viable single 
cell suspensions that preserve the cellular diver-
sity of human tissue microenvironments. Another 
important study by Lin et al. explored the possi-
ble utility of single cell phospho-specific flow 

cytometry (SCPFC) in the investigation of sig-
naling network interactions and dynamic changes 
of Tyrosine phospho-Stat1 (pStat1) in lung can-
cer cells [44]. The fluorescence intensity changes 
of pStat1 after IFN-γ stimulation were compati-
ble to results obtained by Western blot analysis.

In metastatic animal models, cancer cells from 
subcutaneous tumors, malignant ascites, and 
peritoneal tumors responded to IFN-γ. Moreover, 
the association between cisplatin resistance and 
molecular characteristics was identified using 
SCPFC in lung cancer cells collected from malig-
nant pleural effusions (MPE). MPE cancer cells 
with higher pStat1 changes after IFN-γ stimula-
tion were more resistant to cisplatin. In all, this 
study provides the possible application of SCPFC 
in functional characterization of lung cancer cells 
and drug sensitivity analysis. Other studies 
revealed the usage of FFC/FACS in prognosis 
and disease monitoring of leukemia [45, 46], but 
this has not been tested in lung cancer yet. FFC/
FACS has been used for isolation of circulating 
tumor cells (CTC) in solid organ tumors, which 
represents an important base for liquid biopsy 
[47]. FFC/FACS system could also be used in 
combination with other proteomic methods, 
being as the first step of target cell sorting in solid 

add aliquot of 
cells into the  
microwell 

cell lysis 
within the 
microwell  

microwell 

photoactive 
gel  

PAGE  
protein 
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with UV light  

In-gel 
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Fig. 7.3 Principles of single-cell western blotting. 
Firstly, cells are filled with the microwells. Then is chemi-
cal lysis of cells in each microwell. Then is polyacryl-
amide gel electrophoresis (PAGE) of each single-cell 
lysate. Optimization of PAGE depends on the molecular 
mass of targets, sample preparation, PAGE duration, PAG 

pore size and applied electric field strength. Then is the 
exposure of the gel to UV light to blot (immobilization) 
proteins to the gel matrix, which is also the immobiliza-
tion of cells, and then is in-gel immunoprobing of immo-
bilized proteins
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organ tumors. A study isolated endothelial cells 
(ECs) from normal or cancer tissues by FACS 
using CD146 as a marker. Tissues were cultured 
ex vivo and then digested with trypsin and sub-
jected to 2DE, matrix-assisted laser desorption/
ionization time-of-flight mass spectrometry 
(MALDI-TOF-MS) and MALDI-TOF-tandem 
mass spectrometry (MS/MS) [48]. Differentially 
expressed peptides were quantified, verified 
using immunohistochemistry (IHC), and ana-
lyzed with in vitro siRNA functioning studies.

7.3.2  Mass Cytometry

Mass cytometry (MS) uses antibodies that are 
tagged with mass labels, which substantially pro-
vides higher level of multiplexing rather than 
fluorophore labels. In mass cytometry rare earth 
metals replace the fluorophores and coupled 
plasma mass spectroscopy replaces optical signal 
detection of conventional flow cytometry. Mass 
cytometry is capable of analyzing more than 50 
cellular parameters in single cells, including 
markers for specific proteins, cell viability and 
DNA content [49]. Laser ablation electrospray 
ionization mass spectrometry (LAESI-MS) has 
also been used for metabolic analysis of small 
molecular metabolites [50].

Time-of-flight (TOF) mass spectrometry was 
developed for real time analysis of individual bio-
logical cells or other microparticles [51]. The 
instrument is based on inductively coupled 
plasma time-of-flight mass spectrometry and 
comprises a three-aperture plasma-vacuum inter-
face, a dc quadrupole turning optics for decou-
pling ions from neutral components, an rf 
quadrupole ion guide discriminating against low- 
mass dominant plasma ions, a point-to-parallel 
focusing dc quadrupole doublet, an orthogonal 
acceleration reflection analyzer, a discrete dynode 
fast ion detector, and an 8-bit 1 GHz digitizer. A 
high spectrum generation frequency of 76.8 kHz 
provides capability for collecting multiple spectra 
from each particle-induced transient ion cloud, 
typically of 200–300 micros duration. This tech-
nique is sufficient for elemental immunoassay 
with up to 60 distinct available elemental tags.

Application of mass cytometry in cancer was 
firstly utilized for elucidating single cell biology 
of hematopoietic malignancies. Bone marrow 
samples obtained from leukemia patients as well 
as healthy individuals are characterized at diag-
nosis and relapse, basing on cell surface markers. 
Recently, a multi-national research group pub-
lished the results of a clinical trial that use single 
cell mass cytometry to evaluate the treatment 
response to nilotinib, as well as sorting immune 
cells in CML [52]. Peripheral blood and bone 
marrow samples were collected from healthy 
individuals. As for CML patients, peripheral 
blood sample was collected before the first nilo-
tinib dose, and 3 h, seven days and 28 days after 
the start of treatment. Mass cytometry was per-
formed in mass cytometer devices using 
commercially- available kits. The results showed 
that single cell mass cytometry identifies the 
immunophenotype and signal transduction of 
cells, indicates the expressions and functioning 
status of proteins including phosphorylated Bcr- 
Abl, and detects hematologic remission in clini-
cal trial samples. Cancer cells and their functional 
status in leukemia have been characterized by 
investigating signaling aberrations within signal-
ing pathways, and shows the efficacy in identify-
ing cell types and predicting treatment responses 
and prognosis [53].

Recently, mass cytometry and flow cytometry 
are integrated in the monitoring and investigation 
of CML.  The complexity of the generated data 
requires advanced bioinformatics analyses, 
thereby complicating the introduction of mass 
cytometry in clinical settings for evaluating of 
prognosis and response to therapy [52, 54]. The 
combination of mass cytometry with highly mul-
tiplexed immunohistochemistry and laser abla-
tion enables the researcher to study cells in the 
relevant context of tissue architecture. In this 
analysis the crucial spatial information on cells 
and their interactions is preserved [55]. The tech-
nology will enable the analysis of archived, fixed 
and paraffin-embedded tissues in an unprece-
dented high dimensional space that could lead to 
new discoveries in health and disease. As 
 mentioned above, Leelatian et  al. showed that 
fluorescence cytometry and mass cytometry 
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identifies comparable frequencies of cancer cell 
subsets, leukocytes, and endothelial cells in gli-
oma and tonsil [43].

More recently, Rahman et  al. reported their 
use of single cell mass cytometry in identifying 
the cellular markers of lung cells within active 
smokers or lung cancer cells [56]. They per-
formed a CyTOF analysis on cell suspensions 
derived from matched blood, tumor lesion, and 
non-involved lung tissue from an active smoker 
undergoing surgical resection for early stage lung 
adenocarcinoma. The samples were stained with 
a 31-parameter antibody panel to allow a detailed 
characterization of the cellular heterogeneity of 
the samples. The data were visualized using 
viSNE, major immune subsets were identified 
based on canonical marker expression patterns, 
and single cell cerium levels were evaluated 
across each of these defined subsets. The results 
show that high levels of cerium were specifically 
associated with a phenotypically distinct subset 
of lung macrophages that were most prevalent in 
noninvolved lung tissue, whereas tumor associ-
ated macrophages showed relatively lower levels 
of cerium. These results demonstrate the first 
high-dimensional single cell characterization of 
environmental metal exposure associated with 
smoking, and offer a demonstration of the unique 
potential for applying mass cytometry to the field 
of environmental toxicology. Typical procedures 
of single cell mass cytometry are described in 
detail [56]. Many challenges remain however, 
especially in automated analysis, where the spe-
cial perimeter of single cells in a histological tis-
sue section needs to be accurately defined [57].

A novel imaging method, multiplexed ion 
beam imaging (MIBI), uses an ion beam to liber-
ate metal ion reporters, which are quantified by 
mass spectrometry [58]. MIBI is capable of ana-
lyzing up to 100 targets simultaneously over a 
five-log dynamic range in formalin-fixed, 
paraffin- embedded breast cancer tissue sections. 
MIBI can quantitate HER2 expression on breast 
carcinoma tissue with known HER2 status and 
those values correlate with pathologist- 
determined immunohistochemistry (IHC) scores. 
This method is also capable of analyzing periph-
eral blood mononuclear cells (PBMC) immobi-

lized on a poly-l-lysine-coated silicon wafer, 
which gains similar yield as mass cytometry does 
with PBMC suspensions [58]. MIBI analysis and 
immunofluorescence-based automated quantita-
tive analysis (AQUA) technology, an industry- 
accepted quantitation system, showed strong 
correlation in the same blind study [59]. These 
data show MIBI analysis can quantitate protein 
expression with greater sensitivity and objectiv-
ity compared to standard pathologist interpreta-
tion, demonstrating its potential as a technology 
capable of advancing cancer and patient diagnos-
tics. While requiring more specialized equip-
ment, this latter method may offer increased 
speed, sensitivity and resolution.

7.3.3  Microfluidics and Chip 
Technologies

Microfluidics and its laboratory-on-a-chip tech-
nologies are novel single-cell proteomic 
approaches that could analyze specimens includ-
ing blood, body fluids (eg. pleural effusions, asci-
tes, CSF), fine needle aspiration of tumors or 
cancer-cell-containing tissue fluids. To analyze 
single cells, the generic microfluidic system has 
three modules for (1) isolation of single cells and 
loading onto the microfluidic chip device, (2) 
capture of single cells in a controlled environ-
ment for in situ stimulation and/or cell lysis and, 
(3) subsequent qualitative and quantitative pro-
teomic analysis. With these methods, researches 
are also capable of measuring biophysical param-
eters of cells including motility, functions con-
textual to the microenvironment, and morphology. 
Furthermore, by using standard recombinant pro-
tein solutions or synthetic peptides, absolute 
single- cell protein copy numbers can be 
calculated.

Basing on the technique, the microfluidics and 
chip technologies could be classified into two 
categories, tools Using Cellular Staining Assays, 
or using surface-based immunoassays. The plat-
form of microfluidics has been incorporated 
valves, mixers, microchannels, and 
 microchambers onto the same microchip. 
Microfluid biochips have been developed for 
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detecting the microRNA profile in NSCLC serum 
samples [60]. Multicolor analysis of fluorescent 
antibody- labeled cytoplasmic proteins was real-
ized to assay for six parameters from single cells 
from several human brain tumor biopsies [61]. 
Microfluidic platform-microfluidic image cytom-
etry (MIC) is capable of quantitative, single-cell 
proteomic analysis of multiple signaling mole-
cules using only 1000–2800 cells. Using such 
techniques, Sun et al. showed simultaneous mea-
surement of four critical signaling proteins 
(EGFR, PTEN, phospho-Akt, and phospho-S6), 
which are associated with the phosphoinositide 
3-kinase/Akt/mammalian target of rapamycin 
(mTOR) signaling pathway in cancer cells [61]. 
These MIC measurements were validated by 
clinical immunohistochemistry and confirmed 
the striking intertumoral and intratumoral hetero-
geneity characteristic of glioblastoma.

To further interpret the multiparameter, single- 
cell MIC measurements, the authors adapted bio-
informatic methods including self-organizing 
maps that stratify patients into clusters that pre-
dict tumor progression and patient survival. 
These results indicate that the MIC platform rep-
resents a robust, enabling in vitro molecular diag-
nostic technology for systems pathology analysis 
and personalized medicine, especially when 
using together with bioinformatics analysis. 
Except for cancer cells, MIC may also be used in 
formalin-fixed, paraffin-embedded tissues. A 
sequential immunohistochemical staining proce-
dure permits a high level (~60 parameters) of 
multiplexing analysis at the single-cell level [62]. 
This provides an opportunity to develop single- 
cell tools for diagnostics and therapeutic targets. 
Khoo et  al. enriched and characterized putative 
CTCs from blood samples of patients with both 
advanced stage metastatic lung and breast can-
cers using a novel multiplexed spiral microfluidic 
chip [63]. This system detected putative CTCs 
under high sensitivity (100%; for Lung cancer 
samples: 10-1535 CTCs/ml) rapidly from clini-
cally relevant blood volumes. Blood samples 
were completely separated into plasma, CTCs 
and PBMCs components and each fraction were 
characterized with immuno-phenotyping (Pan- 
cytokeratin/CD45, CD44/CD24, EpCAM), fluo-

rescence in-situ hybridization (FISH) 
(EML4-ALK) or targeted somatic mutation anal-
ysis [63].

Tools using surface-based immunoassays are 
conceptually similar to ELISpot, but their results 
are significantly higher level of multiplexing, 
which allows functional assays of intracellular, 
membrane, and secreted proteins and protein- 
protein/cell-cell interactions. The technique of 
microengraved single-cell proteomics chips 
employs an array of nearly 105 microwells to iso-
late and culture single cells and quantized cell 
populations. A microengraved or antibody-coated 
substrate is used to cap the microwell array and to 
capture secreted proteins. The single-cell barcode 
chips (SCBCs) are versatile and information-rich 
tools in which single cells, or defined numbers of 
cells, are isolated within microchambers that 
each contain a manyelement antibody array [64, 
65]. A microfluidics set up with all-optical 
manipulation has been used to separate cells, lyse 
and measure proteins, including p53, on surfaces 
micro-printed with antibodies [64]. Microfluidics 
technology enables highly multiplexed assays 
suitable for the investigation of secreted proteins 
and rare cells. This provides an opportunity to 
develop single-cell tools for future bedside diag-
nostics. Other chip-based technologies, with sig-
nificant potential for the future, combine human 
tissue and organ engineering with microfluidic 
technologies, was extensively reviewed else-
where [66].

7.3.4  Chemical Cytometry

Chemical cytometry is a single-cell technique 
that can be used to detect and quantify proteins, 
nucleic acids and small molecule metabolites 
[67]. The single cell is lysed and its components 
are separated by liquid chromatography or capil-
lary electrophoresis before measurement of the 
cellular components by highly sensitive tech-
niques such as laser-induced fluorescence or 
mass spectrometry. The cellular components are 
chemically modified with a fluorophore before 
separation and analysis. This activity-based 
probe technique has successfully been used to 
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identify low abundance proteins on the cell sur-
face [68]. However, chemical cytometry is gener-
ally limited, as the capture and lysis of single 
cells is highly time-consuming, and the number 
of cells analyzed is often below one thousand in a 
data acquisition time of up to several hours. To 
address this, chemical cytometry is being merged 
with other platforms including microfluidics [69] 
and mass spectrometry [70]. Multiple proof-of- 
concept efforts have been published highlighting 
the potential of protein quantification and identi-
fication from samples of trypsin-digested cell 
lysates from single cells (corresponding to about 
0.1  ng of protein) [71]. Targeted single-cell 
microchemical analysis has been performed by 
mass spectrometry peptidomics of 
paraformaldehyde- fixed and immuno-labelled 
neurons [72]. Like mass spectectomy, chemical 
cytometry have been employed in multiple/single 
reaction monitoring (MRM/SRM) to detect and 
quantify proteins, with abundances of less than 
50 copies per cell. A latest review summarized 
the up-to-date use of chemical proteomic meth-
ods in protein modification (glycosylation, 
sialylation, phosphorylation), metabolism and 
epithelial-mesenchymal transition (EMT) of can-
cer stem cells [73].

7.3.5  Other Techniques

Single-cell Western blotting (scWestern or 
scWB) is based on Western blotting technique. 
Typically, scWB comprises the following five 
main stages: (a) gravity settling of cells into 
microwells; (b) chemical lysis of cells in each 
microwell; (c) polyacrylamide gel electrophore-
sis (PAGE) of each single-cell lysate; (d) expo-
sure of the gel to UV light to blot (immobilization) 
proteins to the gel matrix; and (e) in-gel immuno-
probing of immobilized proteins. One of the most 
significant advantages of scWB is that it over-
comes the antibody cross-reactivity because pro-
teins are first separated by molecular mass via 
electrophoresis before the antibody probing step, 
thereby enabling clear discrimination between 
on-target and off-target signals, including protein 
isoforms that lack selective antibodies [74, 75]. 

Previously, scWB was reported as exhibiting a 
linear dynamic range of 1.3~2.2 orders and detec-
tion thresholds of 27,000 molecules and may 
detect as much as 50% of proteins in the mam-
malian proteome [74, 75]. Although this tech-
nique is relevant when direct assessment of 
proteins in single cells is needed, with applica-
tions spanning from the fundamental biosciences 
to applied biomedicine, its analytical yields are 
limited by in-gel antibody probe concentration 
and combination [74, 75]. Furthermore, the non-
specific binding of non-targeted proteins hinders 
the identification and quantification of target pro-
teins [74, 75].

Single molecule array (SiMoA) detects pro-
teins with single molecule resolution and, thus, 
leads to absolute quantification. SiMoA uses a 
large number of antibody-coated beads to capture 
a few proteins, resulting in the capture of single 
molecules on the beads. Sandwich-type immuno-
assay with enzyme amplification is utilized for 
signal readout of single molecules. SiMoA has 
investigated serum and other biofluids to demon-
strate ultra-low detection limits and a large 
dynamic range compared to traditional ELISA 
[76]. Furthermore, the variation of a prostate- 
specific antigen across single prostate cancer 
cells has been examined with SiMoA to reveal 
the expression shifts with evaluated genetic drift. 
However, low multiplexing capacity, low 
throughput, and high cost for single-cell mea-
surement limit the application of SiMoA.

7.4  Practical Considerations

As has been discussed elsewhere with mass 
cytometry, it’s important to elaborately conceive 
the whole study plan, including the aims, the 
selection of the appropriate technique, with 
which kind of specimens, how to reduce the num-
ber of objective proteins, whether or how to per-
form successive functional studies or network 
studies [77].

In fact, proteomic techniques have becoming 
increasingly powerful and cheaper (as listed in 
Table  7.1), are qualified for cellular or surface 
proteins, and are able to deal with several sample 
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types, including blood, pleural effusions, bron-
choalveolar lavage fluid (BALF), cultured cell 
suspensions, fresh tissues (obtained by surgery or 
small biopsy) and formalin-fixed paraffin- 
embedded tissue [78–80]. So one important thing 
in technical selection is the availability of the 
devices and the technicians that operating them. 
Equally important in methodology is the combi-
nation of single cell proteomics with other-omics, 
such as genomics, transcriptomics, metabolo-

mics and miRNomics [81–83]. This may allow us 
to decipher the modifications and interactions of 
nucleic acids and proteins.

7.5  Summary and Conclusions

The application of proteomics has been realized 
in lung cancer for elucidating its mechanisms and 
developing novel targets and biomarkers. Soon 

Table 7.1 Indices of single-cell proteomics tools

Technique

Numbers and 
types of poteins 
assayed

Through- 
put

Detection 
limit

Statistical accuracy 
and signal 
quantification Notes and features

Flow cytometry
Fluorescence 
flow 
cytometry

Around 15 
proteins (mostly 
membrane 
proteins, a few 
cytoplasmic 
proteins)

104 
cells/s

500 
copies 
per cell

90% phenotyping 
accuracy; relative 
protein abundance

Standard for sorting and 
enumeration of cellular 
phenotypes. Secretion blocked 
and cells fixed for cytoplasmic 
proteins

Mass flow 
cytometry

103 
cells/s

>103 
copies 
per cell

Good cell counting 
statistics; relative 
protein abundance

Cells handled in bulk prior to 
analysis. Secretion blocked and 
cells fixed for cytoplasmic 
proteins

Microfluidics technologies
Image 
cytometry

3–4 membrane 
or intracellular 
proteins and cell 
size

103–104 
cells per 
chip

105 
fluoro- 
phores 
per um2

Good cell counting 
statistics; relative 
protein abundance

Cells are fixed and stained (in 
bulk) with fluorescent 
antibodies; protein assay and 
cell location spatially 
correlated

Cell array 1 intracellular 
protein

<103 
cells per 
chip

Good cell counting 
statistics; relative 
protein abundance

Single cells separated and 
imaged on chip; continuous 
monitoring of cell physiology

Micro-droplet 1 membrane or 
intracellular 
protein

102 
udrops 
s−1

Not 
defined

Good cell sampling 
statistics

Cells entrained in 
microdroplets; microdroplet 
composition control permits 
screening cells

Micro- 
engraving

3 secreted or 3 
membrane 
proteins

104–105 
cells per 
chip

Not 
available

Very good cell 
number statistics; 
relative protein 
abundance

Cells isolated in miocrowells; 
surface immunoassays; 
proteins colorimetrically 
detected; secretome kinetics 
from single cells; proteomeic 
and functional assays from 
same cell

Single cell 
barcode chips

About 20 
secreted, 
membrane, or 
cytoplasmic 
proteins, 
expandable

103–105 
cells per 
chip

102 
copies

Good cell counting 
statistics, absolute 
quantification, 10% 
measurement error 
per protein per cell

Cells isolated in 
microchambers, miniature 
antibody arrays yield spatial 
separation of specific protein 
assays; proteomeic and 
functional assays from same 
cell; single cells or defined 
small cell populations 
accessed.
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FFC/FACS, mass cytometry, microfluidic chip, 
and chemical cytometry, representative of single- 
cell proteomics, will be increasingly used in lung 
cancer. Perhaps, the data integration obtained 
from single-cell proteomics, metabolomics, or 
genetics could enhance our understanding of the 
core events of lung oncogenesis [81, 84], thereby 
facilitating the development of therapeutic tar-
gets and molecular targeted drugs, as well as 
novel biomarkers for prevention, early detection, 
prognosis, and response to therapy In the clinical 
practice, the method selection might be based on 
the objectives, costs, availability, and other char-
acteristics of these methods [85, 86]. The stabil-
ity and repeatability of single cell proteomics as 
well as systemic validation of disease-, severity-, 
duration-, and subtype-specific values should be 
seriously considered before clinical application 
[87–99]. Thus, single cell proteomics will pro-
vide an alternative for the discovery and develop-
ment of therapeutic targets and diagnostic 
biomarkers to understand molecular mechanism 
of lung carcinogenesis and the heterogeneity 
among lung cancer cells at protein levels.
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Abstract
Since the discovery of mouse hybridoma tech-
nology by Kohler and Milstein in 1975, sig-
nificant progress has been made in monoclonal 
antibody production. Advances in B cell 
immortalization and phage display technolo-
gies have generated a myriad of valuable 
monoclonal antibodies for diagnosis and treat-
ment. Technological breakthroughs in various 
fields of ‘omics have shed crucial insights into 
cellular heterogeneity of a biological system 
in which the functional individuality of a sin-
gle cell must be considered. Based on this 
important concept, remarkable discoveries in 
single-cell analysis have made in identifying 
and isolating functional B cells that produce 
beneficial therapeutic monoclonal antibodies. 
In this review, we will discuss three traditional 

methods of antibody discovery. Recent tech-
nological platforms for single-cell antibody 
discovery will be reviewed. We will discuss 
the application of the single-cell analysis in 
finding therapeutic antibodies for human 
immunodeficiency virus and emerging Zika 
arbovirus.

Keywords
Single cell · Monoclonal antibodies · 
Hybridoma · Flow cytometry · Infectious 
diseases

8.1  Introduction

The humoral adaptive immunity elicits a protec-
tive immunological response against a pathogen. 
Unlike the innate response, humoral immunity is 
dependent on the extensive diversity of antigen 
recognition repertoires of the receptors expressed 
on B cells. Governed by allelic exclusion, each B 
cell should express solely one heavy chain and 
one light chain allele of immunoglobulin, there-
fore should produce an antibody that binds to 
one specific antigen. Some of these antigen-spe-
cific B cells differentiate into plasma cells to 
produce potent monoclonal antibodies (mAbs) 
and some develop into memory B cells to be 
reactivated for subsequent pathogen exposure. 
Plasma cells are short-lived, whereas memory 
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B cells are rate and difficult to reactivate in cul-
ture. Major  technological advances have been 
attempted to harness the therapeutic power of 
adaptive immunity, specifically the effector 
function of mAbs. Since the discovery of mouse 
hybridoma technology by Kohler and Milstein in 
1975, where immortalized myeloma and spleen 
cells were fused to produce anti-sheep red blood 
cell antibodies [1], the field of antibody discov-
ery and application has evolved into a thriving 
industry comprised of basic research, diagnoses, 
and therapy. Global sale of monoclonal antibody 
products has increased dramatically from 
$39  billion in 2008 to $75  billion in 2013 [2]. 
Global sales revenue is expected to grow to 
$122.6 billion in 2019 [3]. The impetus for anti-
body development is the high specificity and 
affinity to an antigenic target that can either acti-
vate, inhibit, or block the target. Furthermore, 
the continued interest for antibody products is 
driven by the technological advancement of 
genomics, transcriptomics, proteomics, and 
metabolomics which identifies new targets of 
specific biological pathways that can be utilized 
to mitigate the disease process.

The Food and Drug Administration approved 
the first mouse mAb specific against CD3 (known 
as orthoclone OKT3; Ortho Biotech) for treat-
ment of acute rejection of cadaveric renal trans-
plantation. OKT3 was highly effective for acute 
renal-allograft rejection in a prospective random-
ized multicenter trial [4]. However, antibodies of 
mouse origin have not been successful due to 
human anti-mouse immune response in patients. 
To circumvent these challenges, a number of 
engineering approaches have been undertaken. 
For example, chimeric antibodies with mouse 
variable domain regions fused to human constant 
regions were tested [5, 6]. Another approach is 
antibody humanization in which by grafting 
mouse complementary determining regions 
(CDRs) that were evolved to bind to specific anti-
gen into human immunoglobulin (Ig) backbone 
[7]. Other approaches have been attempted 
including human hybridoma technology and 
humanized transgenic animals in which the 
mouse Ig repertoires are replaced with human Ig 
repertoires. These technological variations have 

helped expand the therapeutic mAb product mar-
ket in which 36 FDA-approved therapies consti-
tute nearly 40% of the biologics market and 
350 mAbs are currently in clinical trials [8–10].

Hybridoma technology and immortalization of 
antigen-specific B cells have been the traditional 
methods of mAb production. Sorting of desired B 
cell subset using fluorescence activated cell sort-
ing (FACS), recombinant phage display technolo-
gies, and application of humanized transgenic 
mice have remarkably advanced the field. Some of 
these methods only capture average measurement 
from bulk or whole cell population undermines the 
heterogeneity or the autonomy of individual cells 
[11, 12]. Recent developments in microfluidic 
chamber devices and microfabrication of nanow-
ells designed to identify antigen-specific single 
cell have revolutionized the process of antibody 
discovery. In this review, we will discuss the 
 traditional methods of monoclonal antibody pro-
duction, specifically immortalization of antigen-
specific human B cell by Epstein-Barr virus, 
hybridoma generation, and phage display. We will 
focus on current platforms for single-cell antibody 
discovery including fluorescence activated cell 
sorting, microfluidic devices, and single-cell anti-
body nanowells. Lastly, we will discuss the appli-
cation of the single-cell analysis in finding 
therapeutic antibodies for human immunodefi-
ciency virus and emerging Zika arbovirus.

8.2  Traditional Methods 
of Antibody Discovery

8.2.1  Hybridoma Technology 
and Immortalization 
of Antigen-Specific Human B 
Cells

As mentioned, the hybridoma technique was first 
introduced to make mouse mAbs [1]. The tech-
nique, which has been refined over the years, took 
sheep red blood cell (SRBC) as immunogen and 
immunized BALB/c mice. The splenocytes of 
immunized mice were collected and fused with 
myeloma cells (Sp-1) to produce hybridoma cells. 
Immortalized hybridoma cells were selected in the 
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presence of  hypoxanthine- aminopterin- thymidine 
(HAT) selection medium. Unfused cells lack the 
hypoxanthine-guanine phosphoribosyltransferase 
(HGPRT) gene which makes them sensitive to the 
HAT selection. The aminopterin blocks the de 
novo DNA nucleotide synthesis pathway, there-
fore cells must alternatively utilize the salvage 
pathway to replicate in the presence of hypoxan-
thine and thymidine. However, the myelomas defi-
cient in HGPRT are unable to replicate. As a result, 
only fused cells inherit a functional HGPRT gene 
from B cells can proliferate and produce antibod-
ies. Antibody- producing B cells are further cloned 
and expanded by limited dilution using 96- or 384-
well plates. The cloning is typically performed in 
multiple rounds to possibly obtain expanded 
clones from a single cell. Supernatants are screened 
by enzyme- linked immunosorbent assay (ELISA) 
to identify antigen specific B cell clones (Fig. 8.1). 
The process is efficient, but it can be time-consum-
ing and labor intensive. Additionally, the resultant 
antibodies are of mouse origin, thereby preventing 
direct therapeutic translation to humans. To avoid 
some of these obstacles, the Epstein-Barr virus 
(EBV) has also been utilized to help immortalize 
B cells. The transformation is achieved by the acti-
vation of EBV-encoded nuclear proteins (EBNA1, 
EBNA2, EBNA3A, EBNA3B, EBNA3C, 
EBNA-LP) and the latent membrane proteins 
(LMP1, LMP2A, LMP2B) in latently infected B 
cells. These proteins have multiple functions, but 
mainly induction of survival, proliferation, and 
inhibition of apoptosis by upregulating expression 
of the anti-apoptotic proteins [13]. The advantages 
of EBV-transformed B cells are the more rapid 
and efficient screening for antigen-specific B 
cells in comparison to the hybridoma method. 
Additionally, human B cells can be directly trans-
formed to obtain antibodies, therefore there is little 
concern for anti-human antibody reaction. While 
the EBV-transformed B cells produce immuno-
globulins, they yield lower quantities, which is 
sub-optimal for application purposes; these cells 
are notoriously difficult to clone and propagate 
[14]. The hybridoma technology and EBV trans-
formation have shown promise and are methods 
that research and industry have adapted and 
improved, leading to several approved monoclonal 

antibodies [15–17]. Furthermore, significant 
advances in antibody engineering have been made 
to avoid adverse effects like acute anaphylaxis in 
patients, when treated with hybridoma derived 
mAbs [18].

8.2.2  Phage Display

Phage display was first introduced in 1985 [19], 
and has proven an effective method for mAb 
production, in addition to quicker production 

Fig. 8.1 Schematic of monoclonal antibody production 
by hybridoma technology. Laboratory mice are immu-
nized with antigen of interest. Spleen cells are isolated 
and fused with immortalized myeloma cells such as SP1 
cell line. Transformed fused cells are selected under HAT 
media. Antigen-specific B cells are screened using protein 
analytic methods (ELISA, Western blotting, flow cytom-
etry). Once B cells of interest are identified, serial dilution 
will be performed to select for single cells which will be 
clonal expanded. Lastly, antigen-specific B cell clones 
will be cultured and antibodies will be purified
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time when compared to hybridoma technology. 
The phage display technology is dependent on 
libraries naïve, immune, semi-synthetic, or syn-
thetic of antibodies [20–22], which represent 
non- infected, cleared infection or immunized, 
random sequences paired with those naturally 
occurring, and purely generated sequences, 
respectively. Since a naïve library has antibodies 
which have not undergone a maturation process, 
many will have poor binding affinity [23], how-
ever high affinity mAbs have been generated [24, 
25]. In contrast, the immune library is taken from 
individuals that are immune to the disease, so the 
library is inherently biased for antibodies that are 
mature and specific to the disease in question [20, 
26]; hence, a higher frequency of high affinity 
antibodies can be obtained [20], but new immune 
libraries must be created for a specific infection 
or disease, resulting in a limited repertoire. Both 
semi-synthetic and synthetic libraries use syn-
thetic oligonucleotides to generate diversity 
within the library, however may generate 
sequences that negative selection may have 
removed [20, 27]. While semi-synthetic libraries 
use some natural sequences, both types of librar-
ies are devoid of a natural maturation process 
[22]. These libraries can be utilized to design 
phages which present antibodies or fragments of 
antibodies as part of their protein coat. Diversity 
is key to the success of a library, however frame- 
shift mutations and transformation efficiency or 
the ability for cells to take up extracellular DNA 
and encode it can be a major concern [20]. 
Original cloning methods presented a multitude 
of technical difficulties, which resulted in several 
other innovations, including PCR-based assem-
blies [28]. Furthermore, in an effort to increase 
diversity, molecular methods, such as mutagene-
sis and sequence evolution [29–33], have been 
utilized to help increase the diversity in libraries; 
this can be done at various intervals in the devel-
opment process.

After diverse libraries are created, the phages 
expressing various fragmented or entire antibod-
ies must be selected [34] via a process called 
“panning”. The antigen-antibody complex is put 
through a series of parameters –e.g. toxicity to 
host [35]– then the phages are eluted, often via 

ELISA, amplified, and sequenced [20, 36]. 
Panning can be performed against cells or 
nanoparticles (semi-automated), which ensures 
the reactivity/selectivity of the antibodies. 
However, both are labor intensive and the latter 
must be restricted to a lesser number of samples, 
to remain manageable [20, 37]. Nevertheless, 
semi-automated is a robust, reproducible, and 
efficient method of panning [38]. Panning can be 
enhanced via the use of next generation sequenc-
ing (NGS), which can help eliminate unwanted 
clones, identify frequent sequences, and the 
reveal the evolution of the phages; this helps to 
reduce the number of rounds of panning [39–41]. 
However, binding affinities are not taken into 
account in this process. These methods can be 
used to select desirable phages from diverse 
libraries, producing sequences that can be tested 
in a much shorter timeframe than hybridomas, 
but this method is still tedious and laborious [3].

8.3  New Platforms for Single- 
Cell Antibody Discovery

8.3.1  Fluorescence Activated Cell 
Sorting

Fluorescence activated cell sorting (FACS) is an 
engineering adaption of flow cytometry, in which, 
cells are obtained or “sorted” based on fluores-
cent markers. The markers are commonly 
fluorescent- labeled antibodies against cell- 
specific proteins/receptors. While flow cytometry 
has only developed since the 1960s, when the 
first Coulter counter was produced, it has become 
a standard for identification of cell subsets. The 
original Coulter counter was based on the prin-
ciple that the movement of a cell could be 
detected via changes in electrical signals as it 
passed through a microchannel. This has evolved 
over time, to the current flow cytometer which 
detects diffraction of signal through a series of 
detectors when a fluorescently labeled cell passes 
through a microchannel [42]. The number of 
detectors available for a flow cytometer (and 
therefore the number of different fluorescent 
wavelengths it can distinguish) varies widely, 
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with the high end being able to distinguish nearly 
20 signals. As shown in Fig. 8.2, as the cell passes 
through the microchannel, a laser excites the flu-
orescent molecule at its specific wavelength(s). 
The emitted signal passes through a series of 
bandpass filters (BP) and is able to be distin-
guished via the detectors. Sorting by FACS is ini-
tiated by applying a pulse of electricity to disrupt 
the droplet containing the cell, so that it is 
diverted into an appropriate receptacle. Sorting 
can be used restrict cell  populations to those 
desired for subsequent experiments. Sorting for 
single cell is becoming a popular tool. For exam-
ple, sorting of  individual antigen-specific B cells 
were used to isolate HIV-specific antibodies. The 
high-throughput feature of FACS expedites the 
downstream applications, such as sequencing 
VDJ heavy and VJ light chains of single cell and, 
in this case, via transfection of these amplified 
DNA sequences into human kidney epithelial 
(HEK293) cells, produced monoclonal  antibodies 
against an antigen [43]. This  technique is heavily 
translational and can be used for a variety of 
diseases.

8.3.2  Microfluidic Devices

Microfluidic devices, or chips, started being used 
in biological applications in the late 1990s, where 
it was often used as a new immunoassay. The 
design of these early chips allowed for controlled 
release of specific reagents, in conjunction with 
the ability to mix reagents directly on the chip. 
Pore sizes/lengths and electrolytic buffers control 
flow rates of each of the components [44, 45] 
(Fig. 8.3). For example, if two reagents need to 
be mixed on the chip at a disproportionate ratio, 
the pore size of the lesser component can be 
made smaller, physically limiting the amount that 
can be mixed at a time. This protocol is useful 
when performing whole cell ELISAs, especially 
when a cell population is limited. While with a 
conventional ELISA, a significantly larger num-
ber of cells and more reagents are necessary. As it 
is common to replicate samples in duplicate or 
triplicate, the amounts of reagents can become 
astronomically higher, making this device an 
optimal example of high content cell screening 
(HSC) [46]. With microfluidic devices, the 
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Fig. 8.2 Principles of fluorescence activated cell sorting 
(FACS). Fluorescence activated cell sorting (FACS) dia-
gram. Yellow, blue, and red circles represent fluorescently- 
labelled cells in the flow cytometer, where, upon exiting, 
they are excited by a laser. Diffraction of the beam is mea-

sured through a series of detectors. Forward scatter (FSC) 
and side scatter (SSC) represent the size and complexity 
of the cell, respectively. Here, F1-F3 are the detectors and 
the tubes indicate user-defined positive and negative 
selection criteria
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human error is removed; there is no pipetting 
error nor inconsistencies in plated densities, since 
these are significantly smaller sample sizes.

In the same fashion as the flow cytometer, this 
can be used to collect a pool of, or single, cells; it 
may also be used to detect the response or endog-
enous state of individual cells, e.g. cytokines pro-
duced. It should be noted that microfluidic 
devices encompass a wide range of processes and 
many different chips can be used. While the chip 
above is a basic schematic, many variations on 
this can be used based on the application. In fact, 
many laboratories design their own. For example, 
circulating tumor cells (CTCs) are rare, difficult 
to detect cells which are hypothesized to be the 
cause of metastatic cancers. A chip was designed 
for this which is composed simply of a series of 
posts coated with antibody against epithelial cell 
adhesion molecule (EpCAM), a common cancer 
marker. This antibody then captures any cancer 
cells which come into contact with them on the 
chip [47]. The CTC chip can be used to enumer-
ate and evaluate this specific cell type, enabling 
purification from whole blood in a single step. 
Notably, while this is a fairly simple design for a 
chip, there were still many calculations and 
experiments necessary to optimize how cells can 
be adhered on this chip. The most important fac-
tors here were layout of the posts (including 
diameter and distance apart), the flow rate, where 

too high a rate would result in loss of cells, and 
shear stress, in which the cells would be lysed 
rendering them useless. By using this same lay-
out, antibodies could be used for a myriad of cap-
ture chips. Once a device is optimized, a simple, 
streamlined process for isolation and/or charac-
terization of single cells has been achieved. This 
technique allows the user to save both time and 
money, as the volumes of reagents necessary are 
quite small. The malleability of this technique to 
a specific protocol makes it one of the most use-
ful devices, however the time and manpower nec-
essary to establish a single technique may not be 
practical for some labs.

8.3.3  Single-Cell Antibody 
Nanowells (SCAN)

The technology was developed by Christopher 
Love and colleagues at MIT. SCAN is a soft litho-
graphic technique that uses a dense array of 
nanowells (50 × 50 μm or 30 × 30 μm, holding a 
volume of 0.1–1 nl each) fabricated of polydimeth-
ylsiloxane (PDMS) to isolate individual cells for 
printing of corresponding molecules secreted by 
each cell. The array of nanowells is fabricated on 
standard 1″  ×  3″ glass slides containing 84,672 
wells for 50 μm size nanowells or 248,832 wells 
for 30 μm size. A capture slide coated, for exam-
ple, with immunoglobulins (Igs) can be hybridized 
by placement on the top of the nanochip to capture 
the antibodies being secreted by the corresponding 
individual live B cells that are seeded in the nanow-
ells (Fig. 8.4). Earlier works have shown that the 
nanowells with the rapid and high-throughput fea-
tures were able to identify antigen-specific anti-
bodies [48, 49]. With the capability that the single 
ex-vivo cell can be cultured and confined in each 
nanowell for an extended amount of time, it facili-
tates the recovery and clonal expansion of cells 
with specific engraved phenotype [50–52]. Using 
the arrays of nanowells with multiplexing capabil-
ity, the Love group was able to examine the iso-
types of the secreted antibodies, the specificity and 
relative affinity for HIV antigens, identify the 
reactive subset of B cells (memory and plasma B 
cells), and sequence/identify the genes encoding 
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Fig. 8.3 Illustration of microfluidic device for antibody 
selection. Basic schematic of a microfluidic device. “B” 
indicates a buffer, “S” a sample, “J” a junction, “W” is 
waste, and “D” is a detector. Here, two samples join at 
junction 1, they then continue through a coil to mix. After 
exiting the coil, the cells pass through a separation micro-
channel where cells are further diluted by the buffers (at 
junction 3). Here they form a single cell suspension for 
detection before proceeding to waste
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the heavy and light chains [53]. Using this method, 
the group isolated HIV-specific neutralizing anti-
bodies in colon biopsies [53]. This method is 
uniquely able to profile and isolate rare or low fre-
quency B cells. The recent study by Tsioris et al. 
identified four novel West Nile virus (WNV) neu-
tralizing antibodies in recently infected and post-
convalescent subjects [54]. The most interesting 
aspect of the study was that given a low frequency 
of WNV-specific B cells (mean <24 events per 
100,00 peripheral blood mononuclear cells), the 
group was able to identify some rare and potent 
neutralizing antibodies.

8.4  Application in Infectious 
Diseases

8.4.1  Human Immunodeficiency 
Virus (HIV)

According to UNAIDS/WHO, since the start of 
the HIV epidemic in the 1980s, worldwide 
78  million people have become infected with 
HIV and 36  million people have died from  
HIV and AIDS-related diseases. As of 2016,  
36.7 million people live with HIV. Combinations 
of highly active antiretroviral therapy (HAART) 
have been effective since their introduction 
in1996 and HIV-related mortality has been 

reduced since then, but remains above one mil-
lion per year (1.1  in 2015 compared to 2 mil-
lion in 2005), mainly due to insufficient access 
to screening and antiretroviral therapy in eco-
nomically challenged countries which are often 
the most affected by the infection [55]. A recent 
meta-analysis shows that HIV-infected patients 
without access to HAART have a 2-year sur-
vival probability of progression from AIDS to 
AIDS- related death at 48% and the 6-year sur-
vival probability is 18%, whereas this life 
expectancy is 87% for the 2- year survival prob-
ability and 61% for 10-years survival probabil-
ity for patients who received HAART [56]. An 
effective vaccine must achieve a production of 
protective antibodies against vaccine viral pro-
teins. Due to an extensive genetic diversity of 
HIV, a prophylactic vaccine must provide 
global protection against all strains [57, 58]. 
Currently there are three principal research 
directions on HIV treatment and vaccine devel-
opment using neutralizing antibodies: (1) acti-
vation of B cells by sequential immunogens for 
expression neutralizing antibodies, (2) develop-
ment of novel neutralizing antibodies due to 
passive administration, and (3) vector- mediated 
gene transfer using adeno-associated virus vec-
tors for delivery of HIV broadly  neutralizing 
antibodies (bNAbs) and antibody-like proteins 
[59–61].

Microscopy

Array of nanowells

Live cell Calcein CD19-Cy5 IgG1 M3R

Microengraving

Fig. 8.4 An application of SCAN to identify anti- 
muscarinic acetylcholine receptor type- 3 (M3R) produc-
ing B cells. Representative array of nanowells with 
microscopic micrographs showing a live cell in bright 

field, calcium dye for live cell marker, and CD19 for B 
cell marker. Micro-engraving microarrays show the secre-
tion of IgG1-isotypic anti-M3R antibody. Scale bar: 
50 μm
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Human hybridoma, EBV transformation, 
FACS sorting of HIV-specific B cells, and combi-
natorial display technologies have been utilized in 
screening for single B cells that produce potent 
bNAbs. The interest in single cell antibody clon-
ing has increased in the last few years due to 
advances in high-efficiency and throughput 
sequencing, which has reinvigorated studies on 
bNABs to obtain HIV-1 envelope-reactive anti-
bodies [58, 62–64]. Initially, cloning from single 
cells was introduced to examine the development 
and silencing of autoreactive B cells [65]. This 
method was performed for identification of single 
B cells expressing antibodies [62, 65, 66] or to 
screen cultured B cells for the production of neu-
tralizing activity [58, 67]. Single cells from HIV 
infected patients are isolated by FACS, then 
sequences of immunoglobulin genes isolated 
from each cell are cloned into a vector for protein 
expression. Obtained bNAbs are analyzed to 
understand their specificity, protective capacity, 
binding conformation, and reactivity breadth and 
potency. Usually, screening of monoclonal anti-
bodies is utilized to elicit a clonal assessment of 
specificities present in HIV infected patients [68].

Passive administration of bNABs is advised 
for prevention and therapy of HIV infection. 
Studies on humans have proven safe and effica-
cious administration of monoclonal antibodies, 
yielding a promising approach of total control of 
HIV infection due to direct engagement in host 
immunity [69]. These bNABs must have high 
potency for HIV treatment with a capacity to 
reduce HIV viral load and minimize or prevent 
the risk of viral reactivation [59]. Pre-exposure 
prophylactic treatment has been studied in experi-
ments with untreated non-human primate models 
infected with simian-human immunodeficiency 
virus (SHIV). Passive transfer or injection of 
HIV-1 bNABs protects host against viral infection 
[70–74]. A single bNABs infusion prevents virus 
acquisition with a single high dose [72, 75, 76] or 
repeated low doses SHIV infection; this  protection 
can be up to 23  weeks depending on antibody 
potency and half-life [74]. Furthermore, introduc-
tion of a mutation in the fragment cytallizable 
(Fc) domain extends the antibody half-life median 
protection [74].

8.4.2  Emerging Arboviruses: Zika

Zika virus (ZIKV) infections are an emerging 
health pandemic of significant medical impor-
tance. The current outbreak has garnered atten-
tion by exhibiting unique characteristics of 
devastating neurodevelopmental defects in new-
borns of infected pregnant women [77, 78]. Over 
the past year, doctors in Brazil have documented 
over 4000 cases of microcephaly in which infants 
are born with abnormally small heads [79]. 
Detection of ZIKV in fetal brain tissues and anti- 
ZIKV antibodies in these mothers and/or infants 
established a possible causal link between ZIKV 
infection and this birth defect [80]. Typical symp-
toms of ZIKV infection include joint pain, fever, 
and rash. In addition, there is emerging a poten-
tial link to the dramatic increase in the reported 
cases of Guillain-Barré syndrome, another rare 
disorder of the peripheral nervous system charac-
terized by muscle weakness and paralysis [81, 
82]; in severe cases, Zika patients require life 
support. The spread of ZIKV has reached an 
alarming rate, particularly in the state of Florida. 
The influx of international travelers or tourists 
from ZIKV-infected areas, together with the 
warm tropical climate of the state, promotes the 
survival of the ZIKV-carrying mosquitoes, thus 
accelerating the spread of the virus. Responding 
to the Zika outbreak has been more than chal-
lenging. Unlike other well-known flaviviruses 
like Dengue, West Nile, Yellow Fever, and 
Japanese encephalitis viruses, there are no treat-
ments or vaccinations, and diagnostic reagents 
are very limited. Although many investigations 
using immune-based therapies for arboviral 
infection have been pursued and have shown 
promise, there are no commercially available 
immune-based products for ZIKV. A better alter-
native would be to develop effective broadly neu-
tralizing antibodies (bNAbs) as passive protection 
against ZIKV infection and more importantly 
prevent maternal-fetal transmission, reducing the 
likelihood of developing microcephaly in the 
newborns (Table 8.1) [67, 83–87].

As an emerging disease, there is a limited 
number of ZIKV monoclonal antibodies that are 
currently still at the testing phase (Table  8.2) 
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Table 8.1 Characterization of HIV broadly neutralizing antibodies

Epitope
Broadly neutralizing 
antibody Breadth of neutralization with IC50<μg/mLa

CD4bs VRC01 91% of 190 isolates86

100% of 118 isolates representing major HIV-1 clades87

93% of 162 isolates representing major HIV clades67

89% of 178 isolates representing major HIV-1 clades88

VRC02 91% of 190 isolates, representing major HIV-1 clades86

VRC03 57% of 190 isolates, representing major HIV-1 clades86

VRC-PG04 or 
PGV04

76% of 178 isolates, representing major HIV-1 clades89

88% of 162 isolates representing major HIV clades67

IgG1b12 or b12 41% of 190 isolates, representing major HIV-1 clades86

V1-V2 loops, quaternary 
structure

PG9 79% of 162 isolates representing major HIV-1 clades88

ECD4-Ig 77% of 162 isolates representing major HIV clades67

V2-V3 loops, quaternary 
structure

PG16 73% of 162 isolates representing major HIV-1 clades88

PGT145 78% of 162 isolates representing major HIV clades67

PGT143 56% of 162 isolates representing major HIV clades67

gp120-gp41 quartenary interface PGT151 66% of 117 cross-clade isolates90

V3 loop PGT 131 40% of 162 isolates representing major HIV clades67

aBreadth of neutralization (percentage of viruses neutralized at IC50 > 1 μg/mL in a panel of 100–200 pseudoviruses. 
Data obtained from CATNAP, an online database hosted by the Los Alamos National Laboratory, USA (http://lanl.gov/
catnap)

Table 8.2 Neutralizing antibodies against Zika virus

Neutralizing 
antibody Viral unit Epitope Results
ZV-5484 Envelope subunit DIII Lateral ridge No cross-reactivity with DENV and/or 

JEV. Neutralization of 4 ZIKV strains in-vitro. 
Potency: 0.087-0.582 μg/mL

ZV-6784 Envelope subunit DIII Lateral ridge No cross-reactivity with DENV and/or 
JEV. Neutralization of 4 ZIKV strains in-vitro. 
Potency: 0.143-0.511 μl/mL

VH3-23/VK1-591 Envelope subunit DIII Lateral ridge Recognition and neutralization of DENV-1 and 
ZIKV Potency: 0.7–4.6 ng/mL

ZV-6484 Envelope subunit DIII C-C′ loop No cross-reactivity with DENV and/or 
JEV. Reduced Inhibitory activity in-vitro against 
African and American strains

zEDIII92 Premembrane- envelope EDIII Recognition and neutralization of ZIKV. No 
exacerbation of DENV infection

C1093 Envelope subunits DI, DII  
(near from fusion loop), DIII

Intradimer Recognition and neutralization of ZIKV in-vitro 
and in-vivo

ZA10G694 Envelope subunit DIII Fusion loop Recognition and neutralization of ZIKV in-vitro
ZV-284 Envelope subunit DIII ABDE sheet No cross-reactivity with DENV and/or 

JEV. Neutralization of 4 ZIKV strains in-vitro
ZV-1384 Envelope subunit DI-II Fusion loop Cross-reactivity with DENV-1, 2, 3, 4, WNV, 

and JEV. No inhibitory activity in-vitro

Potency is the measure by the IC50 (μg/mL) in a panel of 100–200 pseudoviruses DENV Dengue virus, JEV Japanese 
encephalitis virus
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[88–92]. Using EBV–immortalized memory B 
cells that were reactive to ZIKV NS1 or E pro-
teins, Stettler et  al. have identified 119 bNAbs 
capable of neutralizing ZIKV. The authors have 
shown that the most potent neutralizing antibod-
ies were ZIKV-specific and targeted EDIII or 
quaternary epitopes [93]. Using tradition 
hybridoma technology in the mouse, Zhao et al. 
isolated six mAbs that recognized ZIKV evel-
ope (E) protein after screening more than 2000 
hybridomas [88]. A recent study by Sapparapu 
et  al. demonstrated that EBV-transformed 
ZIKV-specific B cells exhibited potent neutral-

izing capacity. Epitope mapping using X-ray 
crystallography indicated that the most effective 
bNAb recognized a unique quaternary epitope 
on the E protein dimer–dimer interface. Further 
studies showed the therapeutic efficacy in preg-
nant and non-pregnant mice in which mAb 
treatment markedly reduced tissue pathology, 
placental and fetal infection, and mortality in 
mice [94]. Future studies using single cell selec-
tion as proposed in Fig. 8.5 will generate a com-
plete repertoire of ZIKVspecific antibodies, 
develop better bNAbs and reveal essential epit-
opes for future structure- based vaccine design.
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Fig. 8.5 Screening for ZIka virus neutralizing antibodies 
using SCAN.  Peripheral blood cells of Zika infected 
patients will be isolated. Purified single-cell suspension 
will be labeled with anti-CD20-FITC and Calcein violet-
 405 for live cell and plated onto fabricated nanowells. 
Labeled cells in the nanowells will be imaged for surface 
markers and locations on the chips. Capture slide coated 
with anti-human immunoglobulins will be hybridized. 
Detection antibody mixture containing IgG-AF-488, 

IgM-AF594, and ZIKV E-AF532 will be added. 
Micrograph of anti-ZIKV E-secreting B cells will be gen-
erated. Individual ZIKV E-secreting B cells will be picked 
and performed RT/nested PCR for heavy/light chain 
sequences. Both chains will be cloned into an expression 
vector and expressed in 293 T cell line. Secreted antibod-
ies will be purified and screened for binding and neutral-
izing activity against ZIKV. AF: Alexa Fluor
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8.5  Conclusion

Single-cell analysis is a powerful tool in examin-
ing a comprehensive repertoire of antigen- specific 
Abs from the most abundant to the least abundant 
B cells that are highly specific. Single- cell anti-
body discovery is critically important in selecting 
the few potent B cells with important capacity to 
produce the most competent therapeutic mAbs 
and broadly capable of neutralizing pathogens in 
infected individuals. Diseases in which vaccines 
are not readily available or effective, therapeutic 
mAbs can provide significant protection as pas-
sive immunity. The two quintessential examples 
are HIV and Zika as discussed. These technolo-
gies, while strong and important tools currently, 
have the potential to become widely utilized and 
even more powerful. They have the potential to be 
used in diagnostics and beyond that, these tech-
niques are currently being used to develop treat-
ments for other infectious diseases and cancer. In 
conjunction with shotgun mutagenesis and X-ray 
crystallography, antigenic epitopes can be mapped 
and the structural interactions between Abs and 
antigens can be examined. On a more fundamen-
tal level, single- cell analysis will be an essential 
player in creating immune therapeutics and even-
tually vaccines.
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Abstract
Single cell technology has enormously 
changed the landscape of biomedical science, 
including single cell omics, gene editing, sin-
gle cell imaging, single cell (embryo) manipu-
late, or non-invasive micro-test. Single cell 
technology also leads the research area of 
early embryo from basic research to reproduc-
tive medical application. We got the knowl-
edge of programming/reprogramming and the 
epigenetics dynamics in the cell lineage dif-
ferentiation. In the reproductive medicine, the 
genomic sequencing of embryo or polar body 
and the preimplantation genetic diagnosis rely 
on the single cell techniques. Those discover-
ies will improve the assisted reproductive 
technologies, human health, and livestock 
husbandry. In the future, the comprehensive 
atlas of cell state and lineage information can 
be generated for cellular systems by single- 
cell multi-omics approaches.

Keywords
Single cell · Early embryo · Genetics · 
Epigenetics · Environment

9.1  Introduction

For the last two decades, we have got enormous 
knowledge of early embryo development. For 
early embryo, it has the dynamic character of 
morphological and genetic/epigenetic changes in 
the temporal and spatial. New investigation is 
performed in the embryo with a single cell reso-
lution of morphology or “omics”. The cell fate 
programming is the key question for embryology 
or cell biology, of which the totipotent is lost in 
the 2-cell to 4-cell stage [1]. The microstructure 
of embryo cell is “seen” more and more clearly. 
We can also study the physiology of early 
embryo: the osmotic pressure, the mechanic, the 
metabolism and so on. At the same time, we can 
also use mitochondrial transfer, genome editing, 
and other techniques to manipulate the early 
embryo.

Scientists verified single cell transcriptome is 
feasible in 1990; the cDNA was amplified in 
exponential rate [2]. Now even recombinant rate 
in sperm could be measured by single cell analy-
sis [3]. Single cell genome sequencing including 
exome sequencing, or whole genome sequenc-
ing. Single cell transcriptome sequencing includ-
ing single cell digital gene expression, single cell 
polyA sequencing, single cell lncRNA sequenc-
ing. 2012, the Smart-seq tech was discovered and 
has the power of covering the whole transcrip-
tome almost without no gap [4].
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Epigenetics has got more and more attention 
than before. Now we have got the landscape of 
methylation, acetylation, RNA, and so on. Every 
modification has different functions and struc-
tures, and evolutionary meaning such as genome 
imprinting. Many gene functions in early embryo 
are defined by Knockout/Knock in or gene edit-
ing technology. We could get the whole RNA 
numbers and classification by the single cell tran-
scriptome. The embryo has fruitful RNAs since 
gamete formation.

To the preimplantation genetic diagnosis/
Screening, little cells are captured and the DNA 
is isolated for DNA library construction, then 
was sequenced by next generation sequencing 
technology. We know more and more chromo-
some structure and DNA modification of early 
embryo. The chromosome structure of early 
embryo is very different from body cell such as 
condensed chromatin, different modification, 
methylation pattern, RNA content and so on. 
2014 Sept. a preimplantation genetic diagnosis 
baby applied multiple annealing and looping- 
based amplification cycles (MALBAC) was born 
in Beijing, China which prevents the monogenic 
diseases [5]. Then in Mar. 2016, another 
MALBAC-based preimplantation genetic diag-
nosis baby was born in Wuxi, China [6].

The relationship between early embryo and 
the environmental factors, there is a “Barker’s 
hypothesis” or Developmental Origins of Health 
Disease theory. This theory was emerging at the 
1980s as Barker and colleagues [7]. It proposed 
that under nutrition during gestation was the 
early origin of adult cardiovascular or metabolic 
disorders due to fetal programming that perma-
nently shaped the body’s structure, function, and 
metabolism and contributed to adult disease [8] 
(Figs. 9.1, 9.2, and 9.3).

9.2  Single Cell Isolation 
Techniques

There are seven approaches of single cell isola-
tion currently: micro-manipulation, laser capture 
microdissection, serial dilution, Fluorescence- 
activated cell sorting, microfluidics, Optical 

tweezers, and manual picking. After the single 
cell isolated, the DNA/RNA could be amplified 
by PCR/RT-PCR.  Degenerate oligonucleotide- 
primed PCR or MALBAC are two methods 
avoiding amplifying bias. The PCR products 
could be used for next generation sequencing. 
Next generation sequencing gives the foundation 
of single cell sequencing. Microfluidic approach 
also prevalent in single cell research. It has the 
advantages as little sample amount required, 
high-throughput performance etc. The majorities 
techniques are droplet-based microfluidic, hydro-
dynamic trap, magnetic trap, acoustic trap, 
dielectrophoretic trap and optical trap. These 
techniques could be used for single cell isolation, 
cell culture, cell manipulation, cell mechanics 
and so on [9].

By MALBAC, scientists can detect single- 
nucleotide and copy-number variations on a 
single cell level. It was applied in the biopsy of 
preimplantation embryo or the polar body 
sequencing. MALBAC is a quasi-linear ampli-
fication which could reduce the bias associated 
with nonlinear amplification. Picograms of 
DNA fragments (~10 to 100 kb) from a single 
cell or few cells serve as templates [10]. In the 
last 5 years, MALBAC have made much prog-
ress in early embryo single-cell sequencing. 
For the single cell isolation techniques, fluo-
rescence activated cell sorting, Flow cytome-
try, laser microdissection, manual cell picking, 
random, seeding/dilution, and microfluidics/
lab-on-a-chip devices are mostly relevant tech-
nologies by the market surveys. At the same 
time, there are more than 20 parents in this 
field [11].

9.3  Single Cell Techniques 
for Early Embryo

Major epigenetic modifications such as are 
occurred during early development. 
Nucleocytoplasmic hybrids as transplanting a 
pronuclear into a recipient egg, the genotype did 
not consist with the phenotype in expectation as 
the methylation in the paternal or maternal 
genome is different, or partly because of the 
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Fig. 9.1 Single cell techniques and its application for the preimplantation embryo. ICSI intracytoplasmic sperm injec-
tion, PGD/PGS preimplantation genetic diagnosis/screening, PB genome polar body genome
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Fig. 9.2 Key development events in preimplantation 
embryos. ZGA zygotic genome activation, EGA embry-
onic genome activation, MGA mid-preimplantation gene 

activation, TCA Cycle tricarboxylic acid cycle, DNMTs 
DNA methyltransferases, Tets ten-eleven translocation 
enzymes
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nucleocytoplasmic interactions of the hybrid 
zygotes [12]. hMass cytometry could measure 
over 40 cellular parameters at single-cell resolu-
tion simultaneously. Now the cellular subsets 
could be discerned and analysis in a single exper-
iment [13]. New techniques will give novel 
insights. Single cell RNA sequencing signifi-
cantly improved transcriptome quantification of 
the preimplantation embryo at the individual 
transcript and also system levels. By bioinfor-
matics analysis, stage-specific modules in core 
gene networks are operating in the transitional 
stage. It enabled base-resolution scrutiny without 
confounding effects as cell population heteroge-
neity [14].

Single cell quantitative PCR (qPCR), mRNA 
in situ hybridization, and single cell RNA 
sequencing are three common methods to mea-
sure single cell gene expression. Single cell tran-
scriptomics is still in developing and have not yet 
reached the full potential [15]. The relation 
between transcriptome and genome could be 
detected by microfluidic single cell qPCR which 
could associate single nucleotide polymorphisms 
with gene expression phenotypes [16]. Carrier 
ChIP (CChIP) permit analysis few cells as 100 
cells compared with the normal ChIP as a 107 
cell. By this tech, the regulated gene such as 
“Yamanaka factor” could be detected in early 
embryo such as inner cell mass or trophectoderm 
cell lineages [17].

Using polyA-PCR amplification and microar-
ray technology, the gene expression profiles of 
the human oocyte, 4-cell and blastocyst were 
investigated. The transcript profiles are stage- 
specific and variable within each stage. The path-
way like cell cycle, nutrient metabolism, and 
apoptosis is variably expressed and could be 
applied as the marker of embryonic developmen-
tal competence. Global transcript profiles reflect 
the Heterogeneity of human embryo develop-
mental competence [18]. By Single-cell mass 
spectrometry, scientists discovered dozens of 
small molecules for cell fates determination in 
16-cell embryo [19]. Changing the metabolite 
concentration caused cell phenotype changes in 
cell movements at gastrulation or the tissue fates. 
There is a quantitative, single-cell based quanti-
tative chromosome transmission fidelity assay 
for measuring chromosome transmission fidelity 
in yeast or other multi-cellular organisms in 
recent years [20]. Single cell DNA methylation 
analysis reveals epigenetic chimerism in preim-
plantation embryos. It has the diagnostic and 
potential therapeutic values, especially for the 
epimutation-based imprinting syndromes [21].

To multi-omics techniques, if use antibodies 
for protein detection or enrichment will be lim-
ited by the affinity characteristics of the reagents. 
In contrast, sequencing technology can parallelly 
interpret more than one analyze. Pacific 
Biosciences and nanopore sequencers can detect 

Oocyte

Cas9 mRNA/sg RNAs
injection with sperm

Oocyte Mosaicism embryo

Mutant 
founders

Surrogate mother

Fertilized cell

Fertilized cell Uniform embryo

Cas9 mRNA/sgRNAs injection
Sperm

Fig. 9.3 Principle of gene editing on the early embryo. 
Gene editing could be carried out at fertilization stage or 
at zygote stage. Then it come to the mosaicism embryos or 

uniform embryos. The two type of embryos could be 
transferred to the surrogate and in gestation, then born the 
chimera founders or full mutant founders
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DNA modifications [22, 23]. Both the two tech-
nologies are capable of getting the information of 
RNA sequences and protein modifications [24], 
and other analytics like microRNAs, peptides, 
and other small molecules [25]. Genome-wide 
survey of accessible chromatin in the preimplan-
tation embryos using the assay for transposase- 
accessible chromatin using sequencing is 
available [26]. Gene activation of open chromatin 
could occur through different pathways from epi-
genetic modification reprogramming. Fully dis-
sect epigenomic reprogramming of 
preimplantation embryo is are warranted in the 
near future [26]. 5hmC is very important for early 
embryo methylation pattern and genomic 
imprinting establishment. 5hmC and 5hC are the 
major methylation unit of DNA methylation 
modification. In the mammalian zygote, 5hmC 
and Tet3 are the key roles for DNA methylation 
which 5hC converted to 5hmC.  If the nuclear 
acid base was protected by PGC7/Dppa3/Stella, 
then this mechanism could not take place [27].

The highly conserved noncoding elements in 
mammalian genomes show the principle that the 
initial epigenetic state in cells are defined by 
DNA sequence, lineage-specific gene expression 
and environmental cues give the subsequent 
alternation [28]. To highly conserved noncoding 
elements, it is with the feature of “bivalent 
domains,’ consisting of large regions of H3K27 
methylation and H3K4 methylation. Coincide 
with TF genes, Bivalent domains tend to 
expressed at low levels. The fundamental unit of 
chromatin structure in all eukaryotes is the 
nucleosome. Even Semiotics are used to study 
the epigenetic code. Semiotics system generally 
consisted by a sign, its meaning (production) and 
the code. Such as DNA methylation on imprint-
ing control region of certain imprinted genes is 
the sign, Gene expression or not is the meaning, 
and it belongs to epigenetics code which the 
adapter is the DNMTs or Tets. The genetic/epi-
genetics code meets fundamental requirements of 
a semiotic system [29]. This will give a paradigm 
shift for the epigenetic research.

Chromatin dynamics could give the full pic-
ture of the chromosome changing in a cell’s life. 
For early embryo or germ cell lineage, it reflected 

the tot potency status conversion. It has two steps: 
nascent primordial germ cells build a distinctive 
chromatin signature at E8.5, then several histone 
modifications were erased and histone variants 
were exchanged when primordial germ cells 
reside in the Gonads [30]. Methylation repro-
gramming is a conserved mechanism in mam-
mals. In cloned embryos, there are aberrant 
epigenetic reprogramming which contributes to 
the low efficiency of clones [31]. Somatic nuclei 
of cloned embryos undergo some genome-wide 
reprogramming events such as methylation and 
demethylation. 5mC was regarded as a minor 
constituent of mammalian genomes six decades 
ago. Nowadays the genome-wide chromatin 
maps studies showed that the transcriptional reg-
ulation roles and the role of epigenetic modifica-
tions across many cell types [32]. International 
Human Epigenome Consortium, has drawn a 
comprehensively map the entire human epig-
enome [33].

Increasing knowledge of the epigenetic regu-
lation of early embryo development would affect 
a wider biomedical area. Major epigenetic repro-
gramming and their intersections in the early 
embryo creates the plasticity followed the princi-
pal cell lineages differentiation. Lineage- 
determining transcription factors, such as Elf5, 
functioned in the trophoblast-specific transcrip-
tional circuit, or ‘gatekeeper’ genes by the epi-
genetic marking. Another similar gatekeeper 
function is the methylation of Stella, participated 
in the transition of embryo stem cells to epiblast 
stem cells [34].

Preformation and epigenesis are two modes, 
for the specification of germ cell fate during the 
embryo development [35]. The preformation is 
seen in Drosophila and so on, involving localiza-
tion of maternal determinants of the egg, or germ 
plasm. By contrast, the ‘Epigenesis’, which could 
be seen in mammals, either germ cells or somatic 
mesoderm are formation response to signaling 
molecules from adjacent tissues. This implies 
that cells recruited for the germline will undergo 
‘epigenetic reprogramming’ from a somatic to a 
potentially totipotent germline phenotype [36]. 
Apart from embryo research, tumor heterogene-
ity is another import application for the single 
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cell techniques. The phenotype, genetic and non- 
genetic factors difference between tumor and its 
niches are illuminated by the single cell tech-
niques in the last decades, which give many 
inspirations to early embryo research.

9.4  The Bioinformatics Tool 
for Single Cell Embryo 
Research

The bioinformatics approaches are essential to 
single cell analysis. Single cell analysis presents 
an obvious knowledge the cells not behavior in a 
homogeneous even in the same tissue. From 
experimental techniques to the data mining tech-
niques, there are many bioinformatics algorithms 
developed for single-cell analysis [37]. The 
omics technologies such as genomics, transcrip-
tomics, proteomics and metabolomics, and epig-
enomic produce more and more knowledge in 
this field, the enormous information would give 
us a solid understanding of the biological pro-
cesses involved in the reproductive system like 
oocyte, embryo, culture medium, Endometrium, 
Spermatozoa and testis, even placenta. Also, we 
can get a broader view of complex biological sys-
tems with a relatively low cost which could 
improve the success of assisted reproductive 
technology [38].

There are DBTMEE (http://dbtmee.hgc.jp) for 
early embryo bioinformatics research. DBTMEE 
combines gene expression profiles with various 
public resources, including RNA-seq data of 
embryonic stem cells and induced pluripotent 
stem cell (iPS), or the expression genes related to 
totipotent, pluripotent and differentiated cells 
while genetic and epigenetic characteristics tak-
ing into consideration [39]. There were dozens of 
bioinformatics tools. Such as Dr. seq2, a Quality 
Control and analysis pipeline tool, used for single 
cell transcriptome and epigenome data, including 
scATAC-seq and Drop-ChIP data [15]. Single 
cell omics datasets are with high-dimension and 
increasing complexity. It requires new computa-
tional tools and analytical strategies to mining the 
biological insights from these data. To under-
stand the relationships among the cell population 

is the basis, then it should generate testable 
hypotheses aiming to illuminate how the hetero-
geneous cell population would respond or adapt 
to cellular niche or environmental cues [40].

‘Omics’ and microarrays have already been 
used in the IVF/ICSI (in vitro fertilization/ 
Intracytoplasmic Sperm Injection) cycles. 
Specific challenges of microarray technology 
here is picogram levels of mRNA in a single cell/
embryo, and the high degree of expression plas-
ticity or high dynamic changes in early stage 
embryos [41]. The embryologist pays great atten-
tion to how to correlate gene/protein/metabolite 
to its regulatory function in early embryonic 
development. Ultimately, we could use non- 
invasive tests to get high-quality oocytes and 
embryos, leading to increased implantation rates 
and higher success in elective Single Embryo 
Transfer. By our knowledge, only a small fraction 
of the human genome encodes proteins, so biolo-
gist put many strengths on the function and evo-
lution of non-coding regulatory elements on a 
genome-wide scale [42]. It is better to leverage 
information from coevolution sequences to study 
protein-coding genes and their interactions. 
Phylogenetic profiling would mature as a power-
ful tool for gene function discovery [43].

9.5  The Epigenetics Mechanism 
in Early Embryo

Waddington explained cellular plasticity using 
epigenetics: Cells are residents on “landscape” of 
many potential states 60 years ago, they traveled 
to certain states during development and in dis-
ease. Waddington considered inheritance and 
development to be the same problem and change 
the paradigm by introducing the notion of epi-
genetics, which is defined as the unfolding of the 
genetic program for development [44]. How the 
H3.3 functions to support oogenesis and early 
development? Using a mosaic mouse model and 
imaging system. The mosaic mouse models 
express fluorescently tagged histones which H3.3 
modifications were inhibited, demonstrated that 
the histones involved cell-cell competition 
between both germ and embryonic cells. And the 
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imaging system showed male-derived genome 
characters and H3.3 could regulate de novo chro-
matin assembly in a residue-dependent manner 
[45]. The genetic mosaic model with the histone 
rescue assay is an edged tool for investigating 
chromatin dynamics during early embryo devel-
opment. It is generally stable for the epigenetic 
modifications of the genome in somatic cells of 
multicellular organisms. But to germ cells and 
early embryos, it changes dramatically on a 
genome-wide scale. Histone modification and 
small RNAs also contribute to the epigenetic 
inheritance and reprogramming.

Genetic diversity and ensure homologous 
chromosomes segregation are guarded by mei-
otic recombination. The sperm cells are the very 
experiment material for this topic. By sequencing 
99 sperm using MALBAC, recombination near 
transcription start sites is very low. And a 
decreased crossover frequency comes with an 
increase of autosomal aneuploidy in the whole 
sperm genome. To sperm autosomal chromo-
somes, the segregation errors are not randomly 
generated during spermatogenesis but with rela-
tively repressed crossover activity and high error 
rate [46]. In early embryogenesis, the protein 
G9a is an important regulator to inactivate Oct- 
3/4, the totipotent factors. Epigenetic changes 
could activate or suppress the gene expression or 
not even in differentiated cells [46]. Germ cells 
and early embryos seem to have an innate mecha-
nism for recognizing and demethylating Oct-3/4. 
Once it was methylation or undergoes inactiva-
tion post-implantation, irreversibly it was locked 
in a repressed state [47].

From oocyte to blastocyst stages, the preim-
plantation embryos, the major and essential 
objective is how the embryonic and extra- 
embryonic cell fates determined. By live-cell 
tracking, we know cell-fate decisions heteroge-
neous gene expression initiates at the 4-cell stage 
by heterogeneous gene expression. Oct4, Sox2 
and the targets like Sox21 are highly heteroge-
neous in the 4-cell embryo [1]. Heterogeneous 
expression of Sox21 and other totipotent factors 
are the mechanisms directing embryo cell fate. 
Several target genes of Oct4 and Sox2 are co- 
regulated in the subset genes at 4-cell stage; 

Sox21 is co-regulated with other transcription 
factors like Nanog and Esrr, supports this hypoth-
esis [1]. The morphological dynamics also have 
enormous value for classifying the embryo which 
is applied in time-lapse microscopy [48]. 
Transcriptional architecture in mammalian pre-
implantation development is a complex process. 
By single-cell RNA sequencing, we can see a 
single-nucleotide resolution of variants of 
mRNAs and paternal-specific single nucleotide 
polymorphisms. The majority of stage-specific 
gene network modules are notably preserved, but 
developmental specificity and timing are differ-
ent between human and mouse [49]. By single 
cell bioluminescence imaging, the circadian 
clock oscillation was measured in the mouse 
embryo from E10 to E19 [50]. This approach 
could use to preimplantation embryos.

Cell fate determination or cell reprogramming 
is always the holy grail in the biomedicine area. 
More and more data indicate that the cell fate is 
differentiated between the 2- to 4- cell stage and 
associate the differences with inner cell mass or 
trophectoderm differentiation, especially co- 
expression networks give us the evidence for 
molecular asymmetry [51]. Cell fate decisions 
mechanism are the biased expression of key tran-
scription factors in a guiding way rather in a 
determined way. A higher level of Cdx2 prone to 
form trophectoderm, a higher level of NANOG 
leads a cell to form epiblast, and a higher level of 
GATA6 expression will form PE [52]. Once 
expression differences generated, they are self- 
reinforcing. Development is flexible until a cer-
tain point and reflected changing circumstances 
[53]. Single-cell technology not only tells us the 
locate cells on this landscape but illuminates the 
molecular mechanisms how the landscape shaped 
itself [54]. This idea could trace to Robert 
Hooke’s observation in 1665, the founder of 
modern biology, who aimed to classify cells by 
form and function. In the last 400 years, biolo-
gists followed this idea and get many prominent 
discoveries in cells.

DNA Methylation is an essential epigenetic 
mechanism controlling transcription in mam-
mals. Which evolution clue could be traced to 
Neurospora crassa [55], a fungi species. DNA 
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Methylation plays a pivotal role in cell lineage 
differentiation, sex chromosome dosage compen-
sation, repression of retrotransposons, mainte-
nance of genome stability, coordinated expression 
of imprinted genes [55, 56]. The drastic repro-
gramming of histone modifications calls for its 
functions and the molecular mechanisms 
research. For histone modification, H3K27me3 
silenced multiple key regulators and the cellular 
memory. Pervasive H3K27me3 are usually found 
in regions depleted of transcription or DNA 
methylation [57]. Fertilized zygotes undergo dra-
matic epigenomic reprogramming. By highly 
sensitive ChIP-seq (STAR ChIP-seq), we would 
illuminate how histone modifications are inher-
ited and reprogrammed.

The external environment or developmental 
cues will have affections on cells. A large part of 
the affections is through epigenetic signals, 
which mean the establishment, maintenance, and 
the metastable transcriptional states [58]. From 
two evolutional models Schmidtea mediterranea 
and social insects, we found incredible epigenetic 
flexibility in tissue regenerating [59] and why 
one genome could display dramatic physiologi-
cal, morphological, and behavioral differences as 
the epigenetic casting [60]. Actually, embryonic 
stem cells are not uniform cell group but could be 
in a metastable state and shift pluripotency 
between inner cell mass- or epiblast-like states. 
The Stella expression level was used to determine 
the precise phenotypic state of different embry-
onic stem cell lines. Many genetic factors and 
epigenetic regulators affect its expression [61]. 
Chromatin modifiers, 24 histone demethylases 
and 41 histone methyltransferases, expression 
analysis showed that they co-expressed at the 
same histone residues. The “writer” and the 
“eraser” maintain a highly dynamic methylation 
state of the chromatin [62]. In this study, more 
than half of the chromatin modifiers expressed in 
either maternal or zygotic manner. Prdm14, 
Ezh1, Scmh1 and Tet1 take certain roles in 
embryo cell fate decisions.

TRIM28 is a core component of epigenetic 
modifier complex for specific genomic loci. It 
formed the repressive chromatin by recruiting 
chromatin-modification and remodeling factors 

[63]. It was required for maintaining genomic 
imprints and proper epigenetic environment dur-
ing oocyte-to-embryo transition. Loss of mater-
nal Trim28 results in pleiotropic, lethal phenotype 
[64]. There is dynamic epigenetic reprogram-
ming in human embryonic stem cell lines ex vivo. 
The embryonic stem cell is with the complexity 
of gene regulatory networks, by transcriptomics 
inferring. From naive to primed pluripotent state, 
the key gene sets show different expression pat-
terns, demonstrating distinct physiological prop-
erties. In primed status, Sox2 and Oct4 
destabilized and Klf4 levels drop [65]. BMP and 
LIF pathway is the major role in keeping the plu-
ripotent cell state. The heterogeneity arising from 
timing variability is amplified in response to fluc-
tuations in gene expression level, differentiation 
occurs in a proportion cells way rather than 
through changes in the cell states themselves 
[65].

X-chromosome inactivation and cell differen-
tiation are tightly linked [66]. Dosage compensa-
tion of X chromosome RNA in blastocyst 
including TE, inner cell mass, EPI was investi-
gated by single cell transcriptome, 1529 individ-
ual cells derived from 88 human preimplantation 
embryos [67]. Dosage compensation of X chro-
mosome is very common in animal development 
and XIST is pivotal for the mechanism. 
X-chromosome inactivation occurred by 
imprinted inactive as early as cleavage stage [68]. 
For the sperm development, the DNA methyla-
tion is also important to male health. 
Oligozoospermia or azoospermia is very com-
mon in male clinics. The methylation status of 
imprinted genes GTL2 and PEG3 are aberrant 
compared to control [69]. Imprint methylation 
errors in sperm are associated with the environ-
mental factors like polychlorinated biphenyl, or 
lifestyle like smoking, alcohol drinking. So 
improved particular biological or environmental 
factors would get a better epigenetics quality of 
sperm.

The DNase I-hypersensitive sites of preim-
plantation embryos reveal the chromatin regula-
tory landscape such as packaged sperm and egg 
genomes with key transcription factors [70]. It 
indicated paternal chromatin accessibility is 
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swiftly reprogrammed after fertilization. Allelic 
differences are established and maintained prior 
to the onset of parental allelic gene expression, an 
allelic difference of chromatin accessibility 
might be part of the mechanism contributing to 
allelic gene expression.

9.6  Single Cell Research on ES 
Cell

The cellular organelle could also be studied by 
single cell techniques. Such as the exosome are 
analyzed using antibody-modified glass slides 
[71]. Exosome properties have a closed relation 
to cell behaviors as cell-cell signaling, drug resis-
tance, tumorigenesis, metastasis, and many other 
biological processes. Correlating the exosomes 
to the cell source is not very easy, given the high 
diversity and homogeneity of biological samples. 
So, it is highly desirable to quantify the single 
cell exosome, finding the changes in exosome 
properties when cells are affected by stresses, 
environmental changes or stimuli [71]. The work 
of Yamanaka lab, which the iPS could be induced 
by four totipotent factors Oct3/4, Sox2, c-Myc, 
and Klf4, is a classic. It demonstrated fibroblast 
could be directly generated by pluripotent stem 
cells by regulated only a few factors [72]. Now 
after more than 10 years, the iPS area get more 
and more solid clinic trial knowledge for its 
application.

After Yamanaka’ s work, human iPS were cul-
tured by ectopic expression of Oct4, Sox2, Klf4 
and Myc, the four totipotent transcription factors, 
Oct4 and Sox2 are essential [73]. Human pluripo-
tent cell lines could be cultured from patients 
with certain diseases. This gives promise to the 
clinical success with human iPS cells, which shut 
down the potential harm of genetic modification. 
Demethylation in primordial germ cells is neces-
sary for erasure of imprints and then the new 
imprints could be established properly later. 
Plants do not erase imprints; instead, they estab-
lish the imprints by demethylating the maternal 
genome of endosperm after fertilization. 
Epigenetic regulation between the two primary 

lineages (embryonic, extraembryonic) is funda-
mentally different from animals and plants, as 
genome-wide demethylation in endosperm but 
not the embryo of plants [74, 75]. This difference 
is apparently being a conserved mechanism in 
plants and animals [76].

Mouse germ cell and embryo is the most 
intended investigated experimental materials for 
address the developmental questions. The activa-
tion of genome-wide DNA demethylation is 
associated with the activation of BER, suggesting 
that the present ssDNA breaks trigger extensive 
chromatin remodeling and histone exchange in 
primordial germ cells [51]. Germ cell fate speci-
fication as oocytes and spermatozoa is funda-
mental events in development and genetics. 
Prdm14 and Prdm1 seem to be critical for the 
Re-acquisition of potential pluripotency and 
Genome-wide epigenetic reprogramming. The 
Bmp4-Smad1 pathway participates in the initial 
activation of both Prdm1 and Prdm14 [77]. The 
relationship and methylation pattern of germ 
cells and the gonadal environment are becoming 
more and more clear. Many proteins involved in 
germline methylation, preferring imprinting con-
trol regions over other sequences. As the single 
cell techniques evolution, we will get the full pic-
ture of the epigenetic mechanisms that govern 
imprinting [42].

Stochastic and deterministic are the two mod-
els to explain the mechanism of reprogramming. 
iPS experiments are most consistent with the sto-
chastic model [78], nuclear transfer or cell fusion 
consistent with a deterministic process [79]. 
There is data agreed with the stochastic model 
gene activation early in the process but also the 
deterministic models which sequence of gene 
activation at later stages [80]. The single-cell 
transcriptome is used for gene expression during 
human preimplantation development and the der-
ivation of human embryonic stem cells from 
blastocysts. The transcriptomes of human EPI 
and the primary human embryonic stem cells 
showed dramatic global changes [81]. Single cell 
transcriptomes in model animals reveal the Hippo 
signaling participated in the embryo pattern for-
mation [82].
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9.7  Single Cell Techniques 
in Assisted Reproductive 
Technology

Now in IVF center, embryo evaluation is usually 
according to morphological metric- the unifor-
mity and mitosis dynamic of cells, the cell con-
nection, and the size/shape of the blastocyst [83]. 
At the same time, other single cell techniques 
like Raman microspectroscopy, metabolome, 
lipidome offer a reliable alternation for embryo 
grading. In reproductive medicine, the embryo 
manipulation like IVF or ICSI procedure or IVF 
culture would change the epigenetic status, also 
inflicted on transcriptional asymmetries such as 
genomic imprinting [84]. This will make a pro-
found affection on the epigenetics of the body in 
the later life, will sometimes cause diseases. The 
hypothesis was verified by model animals with 
defined genotypes under strictly experimental 
conditions or procedures [85]. Interestingly, ICSI 
has a differential impact on the gene expression 
of the paternal and maternal alleles of imprinted 
genes. DNA methylation changes are easily 
inherited to the next generation in plants and also 
there is more and more evidence found in model 
animals, although the phenotype only can pass to 
a few generations. There is also evidence that the 
trans-generational heredity of epi-mutation does 
not rely on chromatin, but might involve RNA or 
cytoplasmic factors [86, 87].

The sperm genome and epigenome is critical 
for healthy offspring. Histone-bound DNA of 
sperm is highly susceptible to environmental 
affection such as oxidation damage. When a 
zygote transited to an embryo, not only the 
genome of the gametes is integrated, but also the 
cytoplasm content like mRNAs are fuse together. 
In the spermatogenesis course, sperm loses the 
majority of cytosolic antioxidants. Sperm is very 
vulnerable to free radical which cause DNA dam-
age. DNA repair enzymes also be found in lower 
levels which give an explanation for the persis-
tence of DNA damage in sperm [88]. Various 
forms of assisted reproductive technologies 
stressed the gametes and early embryo in the 
course of fertilization or culture. These stresses 
would change the patterns of gene expression and 

perturb the epigenetic reprogramming of the 
early embryo. The long-term effect of the stresses 
is also being illustrated in the last decades such as 
“large offspring syndrome” [89], changes in pla-
cental structure and function [90, 91].

When haploid genome undergoes endodupli-
cation or if diploid pronuclear fails to develop, 
uniparental diploid may occur sometimes. In 
general, biparental diploid embryo appears 
higher for in vitro fertilization than intracytoplas-
mic sperm injection. Culture embryo up to blas-
tocyst is a screening since most haploid embryos 
stop reaching this stage. Comprehensive counsel-
ing is in need for patients with potential risks and 
preimplantation genetic diagnosis could be 
offered [92]. Gene editing on human embryo is 
controversy in the scientific realm. Chinese 
Scientist Huang Junjiu and Liu Jianqiao put the 
advance of gene editing to the human early 
embryo. The work of Liu Jianqiao and his col-
leagues corrected the point mutations in HBB and 
G6PD in human zygote [93]. Huang Junjiu and 
his colleagues using gene editing to correct the 
hemophilia β gene [94]. Fan Yong and his col-
leagues using CRISPR/Cas9 to edit the CCR5 
gene in early embryo aiming to cure the HIV 
infection [95]. CRISPR/Cas9 could be used to 
correct the mosaicism in preimplantation embryo 
[96]. Techniques evolution but the accuracy effi-
ciency and safety are the key principles we should 
observe strictly.

Epigenome sequencing the different layers of 
an individual cell is a difficult task. Single-cell 
multi-omics sequencing technology can analyze 
DNA methylation, chromatin state, copy number 
variation, ploidy simultaneously from an indi-
vidual cell. When it applies to trace preimplanta-
tion developmental transition, the first map of 
allele-specific chromatin state and DNA methyl-
ation in early embryos is draw. It provides new 
insights in epigenomic reprogramming [97].

Next generation sequencing succeeds in 
detecting mosaicism in trophectoderm biopsies. 
Mosaic embryos may categorize as aneuploidy, 
leading to potentially viable embryos but being 
discarded, or entirely normal, carrying the risk of 
aneuploid pregnancy. The false positives and 
negatives frequency appears to be low, but it will 
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require additional works to verify. Then we can 
get an improved understanding of the causes and 
consequences of mosaicism and enhanced clini-
cal outcome [98].

9.8  Conclusions

We are embracing an integrated single-cell era 
combined genomic, epigenomic, transcriptomic, 
and proteomic analysis etc. that will revolution-
ize the biomedicine realm [99]. Enabling single- 
cell genomic and transcriptomic approaches, 
which are also compatible with increasingly sen-
sitive mass spectrometry-based approaches 
Analyze many genes in parallel could be at the 
single-cell level over developmental time. This 
provides a more accurate view of cellular pheno-
types. The cellular level and are likely affected by 
the relative expression levels of many genes. The 
single-cell analysis offers intriguing new insights 
into the formation of the mammalian blastocyst. 
Cell signaling events appear to precede the segre-
gation of lineage-specific transcriptional pro-
grams in the cell fate decisions [100].

Single cell technology has revolutionized 
almost every area of biomedical sciences. For the 
Challenges and emerging directions of single cell 
analysis, there are in situ transcriptomic analysis, 
lineage tracing, live imaging transcriptome, sin-
gle cell multi-omics, modeling, functional vali-
dation, scRNA-seq with CRISPR/Cas9, etc. 
[101]. The advantage of single-cell analyses is 
obvious. It helps us understand the intercellular 
variability or heterogeneity. It contributes to 
defining cell types by the cellular character in the 
molecular level. Third, single-cell techniques 
could analyze rare cell events. Single cell analy-
sis already is largely used for the Day3 embryo or 
blastocyst biopsy in the IVF clinic. Finally, 
single- cell analyses will contribute to unraveling 
the somatic mutations [102].

The Interdisciplinary research will introduce 
many opportunities and also many challenges. 
The past decades witness so many milestones and 
there will be more progress in the next decades. 
The far-reaching implications of these discover-
ies are improvements in assisted reproductive 

technologies, human health, animal cloning, live-
stock husbandry and so on. In the future, refine 
single-cell multi-omics approaches to the point 
where comprehensive atlases of cell state and lin-
eage can be generated for cellular systems.
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Abstract
Hematological malignancies (HM) are a het-
erogeneous group of life-threatening hema-
tological diseases. The heterogeneity and 
clonal evolution of HM subpopulations are 
the main obstacles for precise diagnoses, 
risk stratification, and even targeted thera-
pies. Standard bulk-sample genomic exami-
nations average total mutations from 
multiple subpopulations and conceal the 
clonal diversity that may play a significant 
role in HM progression. Therefore, the 
development of novel methods that detect 
intra-tumor heterogeneity is critical for the 
discovery of novel potential therapeutic 

 targets. The recently developed single cell 
sequencing (SCS) technologies can analyse 
genetic polymorphisms at a single cell level. 
SCS requires the precise isolation of single 
cells and amplification of their genetic 
 material. It allows the analysis of genomic, 
transcriptomic, and epigenomic information 
in single cancer cells. SCS may also be  
able to monitor minimal residual disease 
(MRD) of HM by sequencing circulating 
tumor cells (CTCs) from peripheral blood. 
Functional heterogeneity and clonal evolu-
tion exist in acute leukemia, multiple 
myeloma (MM) and chronic myeloid leuke-
mia (CML)  subpopulations and have prog-
nostic value. In this thesis, we provide an 
overview of SCS technologies in HM and 
discuss the  heterogeneous genetic variation 
and clonal structure among subpopulations 
of HM.  Furthermore, we aimed to shed  
light on the clinical applications of SCS 
technologies, including the development of 
new targeted therapies for drug-resistant or 
recurrent HM.
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Abbreviations

ALL acute lymphoblastic leukemia
AML acute myeloid leukemia
CML chronic myeloid leukemia
CTCs circulating tumor cells
HM hematological malignancies
HSCs hematopoietic stem cells
LSCs leukemic stem cells
MM multiple myeloma
MPN myeloproliferative neoplasms
MRD minimal residual disease
RNA-Seq RNA sequencing
SCS single cell sequencing
TKI tyrosine kinase inhibition

10.1  Introduction

Hematological diseases are disorders that primar-
ily affect the blood, including malignant blood 
diseases, such as leukemia, lymphoma, MM; and 
non-malignant blood diseases, such as anemia, 
thrombocytopenia, and hereditary blood dis-
eases. Since HM are the major group of heteroge-
neous life-threatening malignant hematological 
diseases that need chemotherapy or even hemato-
poietic stem cell transplantation [40], this article 
mainly focuses on explaining the heterogeneity 
and clonal evolution of HM using the newly 
developed single cell technologies. Cells are the 
smallest unit of life, and each cell varies widely. 
A normal hematopoietic cell may develop into a 
potentially malignant cancer stem cell that ulti-
mately leads to HM. Recent studies have already 
demonstrated that cancer stem cells are not 
monoclonal population but are composed of dif-
ferent subpopulations of cells, which give rise to 
intra-tumor heterogeneity. Clonal diversity is a 
prominent trait of HM and is expected to play a 
significant part in relapse and resistance to ther-
apy. To date, however, our understanding of intra- 
tumor heterogeneity is limited by the universally 
used next generation sequencing, which averages 
the genetic information of complex cell subpopu-
lations. To address this dilemma, single cell 
approaches were developed and have been used 

to better understand HM biology, such as cancer 
evolution and diversity. Additionally, single cell 
methods can provide clues about the role of can-
cer stem cells in tumor progression.

Within an individual blood cancer, there co- 
exists multiple genetically heterogeneous sub-
clones that undergo multiple genetic mutations 
over time or treatment [4]. Such heterogeneity and 
clonal evolution pose a great challenge to disease 
diagnosis, risk stratification, prognosis, drug resis-
tance and targeted therapy. Although standard 
bulk-sample genomic studies have significantly 
contributed to the understanding of HM biology, 
they cannot completely delineate clonal diversity 
and evolution among heterogeneous HM tumor 
cells. Clonal evolution in HM can be attributed to 
the emergence of malignant clones during disease 
progression and therapy, resulting in drug resis-
tance or relapse. Generally, researchers use next 
generation sequencing to monitor mutant alleles 
and calculate clonality from HM diagnosis to 
relapse. Such techniques evaluate clonal frequen-
cies via allele frequencies in DNA sequencing 
information from bulk samples. However, they are 
inaccurate for all mutant loci in HM samples.

Due to extensive advances in the past few years, 
single-cell genomic techniques have enabled the 
identification of tumor heterogeneity and putative 
subclonal populations [47]. By precisely isolating 
single cells and amplifying their genetic material, 
SCS technologies allow the analysis of clonal 
diversity using single-cell genomic, transcriptomic 
and even epigenomic modalities, such as DNA 
methylation [23, 32]. SCS technologies have a 
broad impact on diverse medical fields, as they 
enabled the elucidation of molecular mechanisms 
involved in early embryonic development, carci-
nogenesis, tumor heterogeneity and clonal evolu-
tion, as well as CTCs and immunology [30, 46]. 
Moreover, SCS was picked as the technique in 
2013 by the Nature Publishing Group.

HM, which include various forms of leukemia, 
lymphoma, and myeloma, are mostly caused by a 
variety of gene mutations that induce clinically 
detectable abnormal gene expression [39]. HM 
are highly heterogeneous and display clonal evo-
lution after chemotherapy or disease relapse [9, 
11]. Since individual cells are the basic units of all 
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HM, it is critical to gain more knowledge on cel-
lular evolution and the genomic variability of 
blood tumor subtypes at a single-cell level. 
Indeed, functional heterogeneity with prognostic 
value has already been illustrated by recent stud-
ies that have applied SCS techniques to investi-
gate acute myeloid leukemia (AML), 
myelodysplastic syndromes (MDS), MM, CML 
and chronic lymphoid leukemia subpopulations 
[6, 34, 41]. Genomic information from single 
cells is presently technically available. Employing 
flow cytometry to immunophenotype single cells 
is currently a routine method for hematological 
diagnosis. Therefore, single-cell genomic profil-
ing has, in theory, clinical utility in the diagnosis 
of HM.  For example, a research group recently 
utilized RNA SCS (RNA sequencing, RNA-Seq) 
to interrogate 20 cells that were isolated from the 
bone marrow of an AML patient [47]. In this 
study, they analyzed single-cell transcriptomic 
profling of clinical patients. Using single-cell 
RNA-Seq and routine flow cytometry, they identi-
fied gene expression profile of putative blasts. The 
genetic data showed that single-cell genomic 
analyses might be helpful for individual cell clas-
sification, diagnosis, prognosis, and the ideal 
treatment modality for various kind of HM [47].

With the rapid development of SCS methods, 
we believe that single-cell genomics could pro-
vide a more rigorous way to determine the het-
erogeneity and phenotypic/genetic evolution of 
HM subpopulations. DNA SCS was used in one 
study to analyze single leukemia cells separated 
from three patients diagnosed with secondary 
AML that originated from MDS. Combined anal-
ysis of the genetic variants in bulk samples and 
single cells helped locate mutations within clonal 
hierarchies [16]. In another examination, 1479 
single cells were isolated from six acute lympho-
cytic leukemia (ALL) patients and then targeted 
sequenced. This study confirmed that various 
clonal heterogeneous subpopulations existed in 
ALL patients and might include potential clonal 
origins or evolution of leukemia cells [12].

Moreover, analysis of CTCs with RNA SCS 
methods might provide the same or even more 
sensitive genetic information on myeloma cells 
in bone marrow [24]. The result of this study 

 suggested that RNA SCS of CTCs could help 
classify and quantitatively assess MM stages and 
prognostic genes [24]. Recent advancements in 
SCS technologies allow for a more detailed 
understanding of the genomic architecture and 
clonal evolution of blood cancer cell subpopula-
tions. Thus, they might be able to improve tar-
geted therapies for complex subpopulations, 
which may lead to improvements in patient out-
comes. Future use of single cell analysis is likely 
to have a profound clinical potential.

SCS methods for the targeted sequencing of 
CTCs can also be used to noninvasively monitor 
of MRD and accurately identify of clonal hetero-
geneity among patients with HM, which will lead 
to significant advances in personalized manage-
ment [8]. As we all know, bone marrow puncture 
and biopsy are essential invasive procedures in 
HM diagnosis and MRD monitoring, which are 
associated with pain, inconvenience, and expense. 
Furthermore, flow cytometry and quantitative 
real-time PCR are routine diagnostic tools for all 
HM patients but are limited by the inability to 
identify clonal heterogeneity among single cells 
[29]. Thus, by sequencing CTCs at different time 
points during therapeutic process, hematologists 
might be able to trace the progress of mutations 
and quickly alter treatment strategies before drug 
resistance occurs [25]. In the near future, instead 
of bone marrow biopsy, targeted sequencing of 
single peripheral blood cells may provide reliable 
information on disease evolution and resistance 
to treatment.

10.2  SCS Techniques 
and Potential Advantages

10.2.1  Isolation of Single Cells

To use DNA or RNA SCS to analyze a single cell, 
we must first separate one single cell from the 
heterogeneous samples. To randomly isolate a 
single cell from a plentiful population, several 
methods can be employed: mouth pipetting, 
micromanipulation, flow-assisted cell sorting, 
laser-capture-microdissection, serial dilution and 
microfluidics [23].
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10.2.2  Single-Cell Genome/DNA 
Sequencing (DNA SCS/DNA- 
Seq) Methods

DNS SCS has revealed remarkable cellular hetero-
geneity inside HM and has identified significant 
clonal evolution. Before sequencing the genome 
of a single cell, DNA needs to be amplified by 
whole-genome-amplification. The most prevalent 
whole-genome-amplification approaches are mul-
tiple displacement amplification and  degenerative 
oligonucleotide PCR (DOP-PCR) [30]. Other 
DNA-Seq methods are multiple annealing and 
looping based amplification cycles (MALBAC) 
and single nucleus exome sequencing (SNES) 
[44]. Then the expanded DNA is utilized to create 
libraries for next generation sequence.

10.2.3  Single-Cell RNA Sequencing 
(RNA SCS/RNA-Seq) Methods

RNA SCS has shed new light on the role of tumor 
microenvironments in disease progression and 
drug resistance [49]. It can analyze the transcrip-
tome in a single cell and promote the study of 
clonal heterogeneity within temporally and spa-
tially complex cell populations. To sequence the 
single-cell transcriptome, RNA must first be 
amplified by whole-transcriptome amplification. 
Commonly used single-cell transcriptome 
sequencing methods include the following: 
Switching Mechanism At the end of the 5′ end of 
the RNA Transcript (SMART-Seq), SMART- 
Seq2, Cell Expression by Linear amplification 
and Sequencing (CEL-Seq), CEL-Seq2, Single- 
cell tagged reverse transcription sequencing 
(STRT-Seq), Gene expression cytometry (Cyto- 
Seq), Drop-seq, in-Drop [36]. Smart-Seq and 
Smart-Seq2 are currently the most commonly 
used techniques [23].

10.2.4  Single-Cell Epigenomic 
Sequencing Methods

There is evidence that genome and transcriptome 
sequencing does not provide complete informa-

tion on cells, and that cell properties are also 
determined by DNA methylation, histone modifi-
cation, non-coding RNA regulation, etc. At pres-
ent, single-cell reduced-represent bisulphite 
sequencing (scRRBS) and single cell bisulfite 
sequencing are the main single-cell DNA meth-
ylation sequencing techniques (scBS-Seq) [10].

10.2.5  Potential Applications 
and Advantages of SCS

Traditional methods for the examination of 
genetic information depend on measuring the 
bulk samples, which mix the DNA of thousands 
or millions of cells; however, these methods 
obscure intra-tumor heterogeneity. Unlike bulk- 
sample genotyping, SCS methods enhance the 
understanding of heterogeneous genetic changes 
and provide more accurate methods to reveal the 
clonal substructure in heterogeneous samples 
[16]. DNA/RNA SCS techniques are potent and 
novel tools for the elucidation of uncommon 
stem cell functions throughout HM progression 
and for explaining clonal diversity (Fig. 10.1).

During the HM diagnosis or relapse, blood 
tumor cells frequently undergo clonal evolution 
and acquire genetic mutations. Thus, non- invasive 
and precise monitoring of MRD could lead up to 
improved therapeutic choices and extend HM 
patients survival. Since CTCs in the blood are eas-
ily accessible, they are ideal for use in the non-inva-
sively monitoring of each patient’s molecular traits. 
Several methods have been developed for the eval-
uation of treatment reactions and non-invasive 
detection of MRD, including flow cytometry and 
quantitative real-time PCR methods, which con-
currently analyze millions or billions cells from 
HM subpopulations; thus, they generally ignore 
intra-tumor heterogeneity. On the other hand, SCS 
methods can be used to non-invasively observe het-
erogeneous genetic changes of single cells in het-
erogeneous samples (Fig.  10.1). The capacity to 
accurately detect CTCs and relevant genomic 
information could improve the prediction of clini-
cal outcomes [5]. Improvements in SCS technolo-
gies for CTCs detection in recent years have led to 
augmented sensitivity with diminished costs.
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One of the most recent studies has shown 
that SCS technologies could be directly applied 
for the non-invasive monitoring of myeloma 
cells in the peripheral blood. Subsequently, 
these researchers were able to verify mutations 
in primary myeloma derived from bone mar-
row [24]. Thus, peripheral blood can act as a 
tumor source when using SCS methods instead 
of BM biopsy and may provide reliable infor-
mation on disease heterogeneity, evolution and 
treatment.

10.3  The Applications of SCS 
for HM

HM, including both myeloid and lymphoid/plas-
macytoid cancers, such as MDS, CML, AML, 
lymphomas, chronic lymphoid leukemia and 
MM et al. are known to be highly heterogeneous 

and evolve over time [21, 26]. Within an individ-
ual HM, there co-exists multiple subclones that 
undergo genetic mutations to cause emergence, 
expansion, and extinction. This intra-tumor com-
plicates the clinical diagnosis and therapeutic 
treatment of HM.

The classical hematological malignant cell 
types are mostly defined by surface markers 
through flow cytometry. To date, SCS technolo-
gies have verified heterogeneity in many of the 
previously determined classical hematopoietic 
cell types [48]. Thus, traditional methods that 
define cell types by surface makers are 
 increasingly being challenged. By analyzing the 
genome, transcriptome and epigenome at the 
single cell level, SCS methods can be used to 
explain HM clonal diversity and evolution dur-
ing diagnosis and treatment. SCS may also be 
able to trace clonal origins of single cells and the 
locations of genetic mutations. Here, we will 

Bone marrow puncture

Mixed bone marrow blasts Isolated  single cells

Mixed genetic data of different cells Amplified single cell genetic information

Average genetic information
(Obscure intra-tumor heterogeneity)

Single cell genetic information (understand 
clonal diversity)

Fig. 10.1 Advantages of single-cell sequencing
Traditional bulk-sample examinations mix the DNA of 
thousands or millions of cells, but these procedures obscure 

intra-tumor heterogeneity, SCS methods can provide a 
non-invasive way to precisely dissect the genetic informa-
tion of heterogeneous subpopulations at a single cell level
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discuss the impact of SCS technologies on both 
basic research on and clinical applications for 
HM.  In this article, we summarized the most 
recent studies that have used SCS methods to 
observe the clonal diversity, especially in HM 
(Table 10.1).

10.3.1  SCS for AML

Serial mutations and/or epigenetic events in self- 
renewal hematopoietic stem cells (HSCs) can lead 
to the development of HM [20]. Although the 
clonal evolution of leukemia has been difficult to 
study, it has been shown that some relapsed pedi-
atric acute lymphoblastic leukemia (ALL) and 
AML cases were derived from a preleukemic HSC 

clone that acquired additional new mutations, 
thereby resulting in leukemic relapse [7, 51].

Improvements in SCS approaches have per-
mitted single cell genomic analysis, and these 
methods are instantly being used to observe 
clonal evolution and heterogeneity in leukemia. 
The RNA SCS methods allow us to identify pre-
leukemic HSCs that might precede the onset of 
leukemia. Exome sequencing techniques for sin-
gle cells have already been used to identify 
diverse mutations within preleukemic subclones 
in one study [17]. The study revealed cellular and 
genomic changes from HSCs to the dominant 
presenting leukemic clone. After the establish-
ment of malignant leukemic stem cells (LSCs), 
they underwent subsequent evolution, which 
resulted in the formation of diverse subclones 

Table 10.1 Table of single cell sequencing publications in hematology research

Disease/Cell 
type Method References Doi Description
HSC RNA-SCS [51] 10.1038/nature17997 Tracing HSCs formation at a single 

cell resolution
AML DNA-SCS [17] 10.1126/scitranslmed.3004315 Clonal evolution of pre leukemic 

HSCs precedes AML
AML DNA-SCS [16] 10.1371/journal.pgen.1004462 Clonal architecture of secondary 

AML as defined by SCS
AML DNA/RNA-SCS [47] 10.3892/ol.2017.5669 Single-cell genomic profiling of 

AML for clinical use
AML DNA –SCS [34] 10.1126/scitranslmed.aaa0763 Single-cell genotyping demonstrates 

complex clonal diversity in AML
AML RNA-SCS [27] 10.1038/nbt.3637 Analyzing tumor heterogeneity and 

driver genes in AML by SBCapSeq
ALL DNA-SCS [12] 10.1073/pnas.1420822111 Dissecting the clonal origins of 

childhood ALL by single-cell 
genomics

ALL RNA-SCS [8] 10.1016/j.ccell.2016.11.002 Characterization of rare, dormant 
therapy-resistant cells in ALL

ALL DNA-SCS [2] 10.1186/s13059-016-0971-7 SCS reveals karyotype 
heterogeneity in ALL

CML RNA-SCS [13] 10.1038/nm.4336 Single-cell transcriptomics uncovers 
distinct molecular signatures of 
CML LSCs

MPN DNA-SCS [15] 10.1016/j.cell.2012.02.028 Single-cell exome sequencing to 
detect clonal evolution of a 
JAK2-negative MPN

MM RNA-SCS [28] 10.1038/leu.2015.361 Single-cell analysis of targeted 
transcriptome predicts drug 
sensitivity of MM

MM RNA-SCS [24] 10.1126/scitranslmed.aac7037 Genetic interrogation of circulating 
MM cells at single-cell resolution
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with increasing malignancy and refractoriness to 
therapy (Fig. 10.2).

Meanwhile, LSCs are considered to originate 
from hematopoietic stem or progenitor cells. 
LSCs are capable of initiating and maintaining 
leukemia [37]. The existence of LSCs is associ-
ated with poor prognosis, treatment failure and 
leukemia relapse [50]. Leukemia can only be 
curved by the removal of LSCs. However, at 
present, separation of rare LSCs from the heter-
ogenous leukemic subpopulation is still the main 
challenge. In the heterogeneous process of leuke-
mia, averaged measurements of the total cell 
population may miss the LSC subpopulations 
among leukemic clones. AML is a clonal neo-
plastic disorder, and most patients die from dis-
ease relapse, which is associated with clonal 
evolution at a cytogenetic level [19]. Single-cell 
gene expression was implemented to investigate 

AML intra-tumor heterogeneity in an MLL-AF9 
mouse model. The hereditary information sup-
ported that the ‘stemness’ of LSCs was different 
from that of general stem cells [38] .

Cellular heterogeneity and clonal evolution are 
fundamental characteristics of HM.  Single- cell 
phenotypes are time and space dependent and 
involve multiple mutations and genetic changes. 
SCS methods can be used to analyze the genome, 
transcriptome and epigenome at a single cell reso-
lution, which could help identify mutated subpop-
ulations that might subsequently contribute to 
drug resistant and disease relapse. RNA- Seq was 
applied to investigate 20 cells that were isolated 
from the bone marrow of an AML patient. The 
result demonstrated that single-cell genomic pro-
filing might be useful for individual cell categori-
zation and might improve the accuracy of diagnosis 
and improve targeted therapies for AML [47].

HSCs

Pre-leukemia stem cells

LSCs

Leukemic blasts

Unrelated clone Malignant clone Drug-resistant clone Relapse related clone

Normal HSCs

Leukemia

Evolved to H
M

(Early mutations)

(Late mutations)

(Clonal Evolution)

Fig. 10.2 The potential clonal origin and clonal evolu-
tion among HM subpopulations
First, genetic mutations lead to establishment of the initial 
malignant leukemic stem cells (LSCs). Then, LSCs 

undergo multiple distinct mutations, resulting in the for-
mation of diverse subpopulations with increasing malig-
nancy and refractoriness to therapy
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Other works have further shown the prognos-
tic value of SCS methods in analyzing heteroge-
neity and clonal evolution in AML, MDS and 
CML [13, 19, 41]. Researchers have combined 
multiple displacement amplification and Sanger 
sequencing to assess genetic mutations of single 
cells in inv. (16) AML and have verified the co- 
occurrence of CAND1, PTPRT, and DOCK6 
mutations within the same AML clone [33]. 
These researchers suggested that the PTPRT 
mutation, which is potentially associated with 
increased proliferation during AML develop-
ment, occurred after CAND1 and DOCK6 muta-
tions [33]. Moreover, DNA SCS was applied to 
analyze single leukemic cells that were separated 
from three patients with secondary AML derived 
from MDS in one study [16]. The result showed 
the advantages of integrated analyses of genetic 
variants found in bulk samples and single cells. 
This might help locate mutations within clonal 
hierarchies and provide insight into the clonal 
hierarchy in heterogeneous samples.

A central challenge in curing leukemia is the 
elimination of leukemia cells or MRD involving 
heterogeneous subpopulations that are defined by 
different mutated genes. The determination of 
how these genes mutated and how the single cell 
evolved requires single-cell analysis. Recently, 
the sleeping beauty capture hybridization 
sequencing technique was developed, and it sim-
plified the transposon-based sequencing of muta-
tions in a myeloid leukemia mouse model [27]. 
By sequencing transposon insertions of single 
leukemia cells, sleeping beauty capture hybrid-
ization sequencing was able to identify leukemo-
genesis genes and possible cooperating cancer 
genes.

10.3.2  SCS for ALL

Recent studies that have employed SCS to 
observe single-cell genomics have permitted 
researchers to understand clonal diversity and 
the evolution of leukemia cell genome with 
higher resolution than before. Single-cell whole 
genome sequencing [42] and AneuFinder were 

 implemented to detect heterogeneity of the chro-
mosome karyotype in untreated mouse T-ALL/
lymphoma and human B-ALL samples, respec-
tively [2]. These methods revealed severe intra- 
tumor karyotype heterogeneity in the B-ALL 
samples from children and may become impor-
tant tools for therapy stratification and the predic-
tion of disease outcome [2].

In another study, targeted deep-exome 
sequencing of 1479 single cells from six patients 
was performed to dissect clonal origins among 
children ALL.  This study observed sequential 
deletions, single-nucleotide variants and IgH 
sequence rearrangements in pediatric ALL 
patients. The genetic information indicated that 
IgH rearrangements could occur prior to the 
acquisition of mutations and might continue to 
occur in even the most evolved clones. This study 
confirmed the temporal sequence of mutations in 
ALL development and offered a better under-
standing of the pathophysiological mechanism of 
pediatric ALL [12]. Thus, from the clonal evolu-
tion perspective, SCS technologies will likely 
help clinicians better understand the pathogene-
sis of diseases at a high-resolution and provide 
individualized treatments that are specifically 
optimized for their patients.

Despite efficient chemotherapy, many leuke-
mia patients still ultimately relapse. Therefore, 
the development of targeted strategies that obvi-
ate neoplasm cells in MRD is expected to 
improve the prognosis of ALL patients. To con-
siderably comprehend MRD biology in leuke-
mia, one study established some preclinical 
mouse models to mimic MRD and relapse in 
patients. Then, the study merged single cell and 
bulk sample information to discover distinctly 
expressed genes in ALL.  RNA-Seq results 
 illustrated that the leukemia- like cells from ALL 
patients were different during MRD. 
Furthermore, they identified a rare subclone of 
leukemia cells with characteristics of leukemia 
initiation, long-term dormancy and therapeutic 
tolerance [8]. In conclusion, we found that, like 
solid neoplasm, the heterogeneous cells of ALL 
can display properties of clonal evolution and 
therapeutic resistance.
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10.3.3  SCS for CML

By exploiting genetic mutations of particular 
cancer cell subpopulations, researchers can 
develop highly effective targeted regimen. For 
instance, tyrosine kinase inhibition (TKI) has 
shown potent efficacy for CML treatment [22]. 
Nonetheless, patients in the chronic phase of 
CML possessed rare CML LSCs that were selec-
tively tolerant to TKI therapy and frequently 
induced relapse following treatment cessation 
[13]. Moreover, approaches for analyzing BCR- 
ABL- positive LSCs throughout disease progres-
sion are not presently available.

In one study, Smart-seq2, a whole transcrip-
tome approach, was applied to detect the BCR- 
ABL gene in single cells isolated from the K562 
cell line. This study identified that the transcrip-
tome of CML LSCs that were tolerant to TKI was 
distinct from that of silent, normal HSCs. 
Furthermore, dysregulation of drug resistance 
specific mutations and relevant pathways was 
observed in this type of CML LSCs. These find-
ings may benefit the development of selectively 
targeted therapy for drug-resistant CML [13]. 
Single-cell genomic analysis further demon-
strated that TKI therapy induced heterogeneity 
and genetic changes in CML LSCs. Another 
study observed many genes from single-cell ana-
lyzes that may define LSC heterogeneity in CML 
patients at diagnosis and following TKI treat-
ment. The results illustrated differencess in the 
reactions to TKI therapy among different sub-
clones [45].

10.3.4  SCS for Myeloproliferative 
Neoplasms (MPN)

MPN are hematopoietic neoplasms that stem 
from hereditary mutations acquired in HSCs or 
their progenitors that result in abnormal differen-
tiation and an increase in the proliferation of ery-
throid, megakaryocytic, and granulocytic 
lineages. MPN patients frequently express the 
JAK2-V617F gene. One study employed a multi-
ple displacement amplification based high- 

throughput DNA SCS method to analyze tumor 
evolution in JAK2-V617F negative MPN patients. 
Based on the genomic information of 58 single 
cell exomes, the researchers demonstrated that 
essential thrombocythemia was, in all likelihood, 
of monoclonal genesis and discovered several 
specific genes that might play roles in essential 
thrombocythemia initiation and progression [15]. 
The study suggested that SCS methods 
 contributed to the characterization of the genetic 
architecture and clonal evolution of HM.

10.3.5  SCS for MM

MM is a type of plasma cell malignancy attrib-
uted to the clonal proliferation of myeloma cell 
subpopulations which exhibit significant com-
plex genetic heterogeneity in bone marrow [35]. 
Despite recent improvements in therapeutic 
strategies, including proteasome inhibitors and 
immunomodulators, MM, nevertheless, contin-
ues to be a predominantly incurable disease due 
to relapse. MM is characterized by considerable 
genetic variants among myeloma cell that play a 
significant role in the heterogeneity of myeloma 
evolution, clinical progression and drug resis-
tance. Not every patient is equally sensitive to 
therapy, and most patients develop treatment 
resistance during therapy. Intra-tumor heteroge-
neity and changes in dominant clones are cru-
cial causes of myeloma progression and 
resistance to treatments [18]. Recent SCS stud-
ies have shown that MM subpopulations are 
especially heterogeneous and may lead to 
relapse. In one study, Single Cell Analysis of 
Targeted Transcriptome was employed to detect 
the genomic information of single cells isolated 
from myeloma cell lines and untreated MM 
patients [28]. The adoption of Single Cell 
Analysis of Targeted Transcriptome could con-
tribute to the analysis of intra-tumor heteroge-
neity in the clinic and improve drug selection 
based on subclonal cellular reactions.

MM remains an incurable disease, with almost 
all patients ultimately reaching a treatment- 
refractory state. Constant clonal evolution and 
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genetic heterogeneity of MM are a likely expla-
nations for the emergence of drug resistance [3]. 
The monitoring of MM genomic evolution and 
its effect on therapy by serial bone marrow biopsy 
is invasive and painful. Using RNA SCS, Lohr 
et al. revealed that CTCs provided genetic infor-
mation at similar or increased sensitivity com-
pared to bone marrow MM cells [24]. Single 
CTCs RNA-Seq facilitates the categorization of 
MM and the quantitative evaluation of genes 
related to prognosis. By dissecting CTCs by SCS 
methods at different time points during diagnosis 
and treatment, hematologists can track clonal 
evolution and precisely alter therapeutic strate-
gies before drug tolerance occurs.

SCS plays an important role in the measure-
ment of intra-tumor heterogeneity, which is 
closely associated with HM genome mutation, 
evolution, and drug resistance. Furthermore, effi-
cacy of and cell responses to targeted drugs can 
be identified by SCS technologies [43]. Over all, 
studies performed by SCS technologies to detect 
LSCs, CTCs, or monitor MRD in HM subpopu-
lations shed light on precise therapies that can 
target complex heterogeneous subpopulations 
and improve patient outcomes (Fig. 10.3).

10.4  The Potential Therapeutic 
Value of Heterogeneity 
and Clonal Evolution in HM

The past decade has been a noteworthy period of 
advancement, particularly in HM therapy. ABL 
inhibitors (for example, imatinib) have illustrated 
therapeutic benefits, which is a significant aspect 
of precision medicine [14]. However, drug resis-
tance has still been observed in a number of 
patients who were expected to exhibit a better 
reaction. Moreover, targeted therapies have 
already achieved highly effective responses; 
however, they have only provided short-term 
relief, as genetic changes within multiple sub-
populations eventually lead to relapse.

Clonal heterogeneity is thought to underlie 
cancer plasticity. Certain genetic marks may lead 

to the accumulation of extra somatic mutations, 
and previous subclones may show drug resis-
tance or evolve to become dominant clones [22]. 
Traditional methods of sequencing bulk samples 
reveal mutations from the whole subpopulations 
together and mask the clonal heterogeneity, 
which may have significant functions in the pro-
gression of HM [31]. Thus, only single cell anal-
ysis can accurately identify subpopulations that 
may contribute to drug resistance and disease 
relapse. Understanding the heterogeneity and 
clonal evolution of HM are key elements and 
obstacles to improving targeted therapies in the 
context of precision medicine. Thus, SCS meth-
ods may provide reliable information with respect 
to disease heterogeneity, evolution, and treatment 
(Fig. 10.4).

10.5  Conclusion

Precision medicine involves personalizing treat-
ment based on a patient’s genetic information, 
which requires a better understanding of the pre-
cise diagnosis and treatment at a single cell level 
[1]. Researchers believe that heterogeneity and 
clonal evolution are prevalent in HM and inhibit 
precise diagnosis and treatment. Moreover, with 
the accumulation of multiple mutations, clonal 
evolution of HM subpopulations may lead to the 
emergence of more aggressive and resistant phe-
notypes, which are associated with adverse clini-
cal outcomes.

In this article, we summarized the most recent 
studies that have used SCS methods to observe 
the clonal diversity, especially in HM. In addition, 
we concluded that advances in SCS technologies 
may enable the dissection of genetic heterogene-
ity and the clonal evolution of HM at a single cell 
resolution during diagnosis, treatment, MRD 
monitoring, or even at disease relapse. The devel-
opment and application of SCS technologies can 
improve targeted treatment and personalized 
medicine by delineating the clonal substructure 
and by identifying molecular targets that are pres-
ent in the most malignant subpopulations.
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Due to rapid development, SCS methods will 
have numerous translational application in the 
clinic in the near future, particularly for early 
detection, prognostics, non-invasive monitoring, 
and guiding targeted therapy [31]. Following the 

transition of these tools into the clinic, we expect 
that SCS will have a large impact on reducing 
morbidity and improving the quality of life for 
HM patients.

HM

AML ALL CML MPN MM

Single cell isolation

SCS

LSCs CTCs MRD

Fig. 10.3 SCS techniques in HM diagnosis, relapse 
monitoring and drug-resistance detection
SCS techniques can detect rare leukemia subpopulations 
in the form of leukemic stem cells (LSCs), circulating 

tumor cells (CTCs) or minimal residual disease (MRD) 
that may contribute to HM formation, progression, relapse 
or drug-resistance at a single cell level
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Abstract
Cancer is a heterogenetic disease at both the 
level of clinical manifestation and the level of 
the genome. Single-cell sequencing provides 
an unprecedented means of characterizing the 
intra-tumor heterogeneity and detecting and 
analyzing the genomes of cancer cells. These 
data will help to reconstruct the understanding 
of the evolutionary lineage of cancer cells. In 
the future, single-cell technology is believed 
to be a useful tool in diagnostic and prognostic 
application in oncology. The application of 
single cell technology in clinics will make it 
possible to detect cancer non-invasively at 
early stages and to develop precision medi-
cine. In this chapter, we review the research 
and application status of the single cell tech-
nology in cancer.

Keywords
Single cell sequencing · Cancer · 
Heterogeneity · Circulation tumor cells

11.1  Introduction

The human body is estimated to have approxi-
mately 3.72 × 1013 cells [1]. A single cell is the 
smallest structural and functional unit of the 
body. Each cell varies, having a different origin 
and background. In addition, each single cell 
possesses distinct DNA, RNA, and protein con-
versions [2]. Scientists started to notice and study 
single cells due to the invention of the micro-
scope. The concept of cellular heterogeneity was 
proposed in 1957 and gradually gained accep-
tance [3]. Nicholas Navin, who was called the 
father of single-cell sequencing, proposed the 
pioneering theory that the complexity of intra- 
tumoral heterogeneity can be explained by the 
genome of a single tumor cell [4]. In the past, it 
was not an easy task to isolate a single cell, due to 
limitations to the existing techniques. It was only 
recently that single cellular biology and hetero-
geneity have been studied because of the exploi-
tation of genome-scale approaches and methods 
for obtaining intact single cells, such as laser- 
capture microdissection (LCM), flow cytometry 
using fluorescence-activated cell sorting (FACS), 
and micromanipulation. The human genome con-
tains at least 3.2 billion base pairs; thus, it was a 
huge challenge to profile the whole genome in a 
short time with an acceptable cost. However, the 
breakthrough of next-generation sequencing and 
RNA-sequencing make it possible to assess the 
human genome in a rapid and reliable way [5]. In 
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addition to the notable techniques mentioned 
above, whole genome amplification (WGA) is 
another milestone that makes single-cell sequenc-
ing a reality. WGA is a bridge between the isola-
tion of a single cell and sequencing.

Heterogeneity exists not only in different 
organisms but also in different organs or tissue 
within one organism. Furthermore, abundant 
studies have demonstrated that heterogeneity 
exists generally in the same organ and tissue from 
one organism [1]. This heterogeneity is extremely 
prominent in disease.

Cancer is one of the most complex and hetero-
geneous diseases, where genomic, transcrip-
tomic, and proteomic changes come up during 
tumorigenesis, mutation, stochastic variation, or 
environmental changes. Moreover, the polyclonal 
nature of cancer makes the genomic heterogene-
ity more complicated, resulting in significant het-
erogeneity among different cells within each 
tumor. However, the study of genomics, pro-
teomics, transcriptomics, and biomarkers analy-
sis in cancers is based on a mass of cells or tissue 
samples. Current experimental and clinical regi-
ments assume that all of the cells in tumors are 
homogeneous. Traditional research and cancer 
treatment has a limited ability to characterize the 
nature of the cancer because it ignores the hetero-
geneity of different cells. Therefore, diagnosis 
based on biopsy (bulk cells) could underestimate 
the extent to which there is heterogeneity within 
the tumor and could fail to identify all of the pos-
sible solutions [6]. This underestimation leads 
directly to improper clinical decision making. 
Consequently, overlooking the heterogeneity of 
the tumor is considered the reason for cancer 
treatment failure and relapse because a treatment 
that is effective for one type of tumor cell may be 
useless for another, driving further evolution and 
eventually leading to drug resistance [7].

In recent years, there has been a boom in the 
development of the single cell methods of study, 
such as the microfluidic-based single-cell sorting 
methods [8, 9], high-throughput multiplexed 
quantitative PCR (qPCR) [10–14], mass 
cytometry- based proteomic strategies [15, 16], 
single-cell transcriptome sequencing [17], single- 
cell whole genome sequencing, single-cell epig-

enomic sequencing [18], next generation 
sequencing, and computational methods for ana-
lyzing single cell data. This boom has led to an 
unprecedented revolution in the field of cancer 
research and opened the door to a vast number of 
possibilities [19–22]. For example, the newly 
developed single-cell sequencing techniques help 
us to understand the intra-tumoral heterogeneity 
and map different clones in tumors, as well as 
enhancing the capacity for analyzing tumor stem 
cells and circulating tumor cells that are rare but 
informative for cancer research [23].

11.2  Current Studies of Single- 
Cell Sequencing on Cancer 
Research

Genome instability is a hallmark of cancer. With 
the development of cancer, it is believed that the 
primal mutated cells experience clonal evolution. 
Meanwhile, cancer stem cells develop in a hierar-
chical way [24]. Knowledge of the evolution of 
cancer and the cancer genome in a spatial and 
temporal manner will have a significant impact 
on the understanding of cancer initiation, evolu-
tion, metastasis and relapse and will therefore 
lead to the development of patient-specific treat-
ment strategies [25]. See Fig. 11.1 for details.

11.2.1  Breast Cancer

Single-cell sequencing has been used in cancer 
study. The first report was single-cell sequencing 
in two triple-negative breast cancers. The study 
showed that one tumor was highly mono- 
genomic, but the other was heterogeneous and 
contained distinct subpopulations [26]. Studies 
on several breast cancer groups indicated that 
copy number variation, duplication or deletion of 
the chromosome may occur at an early stage dur-
ing tumorigenesis. However, point mutations 
evolve gradually in tumor development, which 
could drive clonal diversity [27–29]. In different 
breast cancer cell lines, single cell RNA sequenc-
ing indicated that RNA transcripts have high 
variability, which was also evident at the protein 
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level [30]. The protein differences could explain 
the increased metastatic capacity and resistance 
to chemotherapy. Whole transcriptome sequenc-
ing of a single MDA-MB-231 metastatic breast 
cancer cell showed that after 5 days of exposure 
to paclitaxel, the surviving cells expressed unique 
RNA variants that regulated cell adhesion, cell 
surface signaling, and microtubule organization 
[31]. This expression indicated that screening out 
the suspicious candidates by RNA sequencing 
could guide clinical drug application.

11.2.2  Ovarian Cancer

High grade serous ovarian cancer samples were 
used to study the cancer’s heterogeneity at the 
single cell level. The study demonstrated the het-
erogeneity in the ovarian tumor. Meanwhile, this 
study classified the tumor based on bulk cells or 
single cell RNA sequencing. The results indi-
cated that classifying the cancer by bulk cells or 
tumor molecular information could mask the 
gene expression pattern of the large groups of 
cells [32]. Malecki et  al. developed methods to 
isolate single cells from the peritoneal fluid, 
blood, lymph, and ovarian cancer biopsies for 
sequencing and in situ hybridization. This novel 
work-flow and single cell analysis opened a new 

route to profile the whole spectrum of cancer 
clones at the molecular level, one cell clone at a 
time [33].

11.2.3  Lung Cancer

Adenocarcinoma of the lung is the most histo-
logical subtype of lung cancer. Single cells 
extracted from the lung adenocarcinoma patient- 
derived xenografts are analyzed by RNA- 
sequencing. Sixty-four genes were identified to 
be associated with poor prognosis [34]. Four 
groups were classified based on these gene 
changes and were exposed to chemotherapy. The 
results suggested that the group with cell-cycle 
quiescent and high ion channel transport genes 
showed a high survival rate [35]. Another study 
with lung adenocarcinoma cell lines by RNA 
sequencing also showed that cells with a high 
diversity in gene expression may be the reason 
for the acquisition of drug resistance in cancer.

11.2.4  Hematopoietic Tumors

Whole-genome sequencing (WGS) was used in 
single cancer cells isolated from patients diag-
nosed with myelodysplastic syndrome. These 
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Fig. 11.1 The skeleton diagram of this chapter
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patients all progressed to secondary acute 
myeloid leukemia [36]. The sequencing success-
fully identified genomic complexity, which was 
not evident in the analysis of the whole tumor. 
Sequencing of the single nucleotide variants 
(SNVs) was used to draw the clonal structure and 
evolutionary history of the acute lymphoblastic 
leukemia by analyzing 1479 single cells from six 
children diagnosed with acute lymphoblastic leu-
kemia. Compared to other cancers, acute lym-
phoblastic leukemia was characterized by distinct 
clonal populations of cells where alterations in 
copy number preceded the occurrence of single 
nucleotide variants [37]. Studies on chromosom-
ally unstable B cell acute lymphoblastic leuke-
mia showed that single-cell sequencing could 
identify the subpopulations with copy number 
variants that were not detected in the whole tumor 
analysis [38]. The copy number variants were 
also observed when the tumor was engrafted into 
immunodeficient mice. These findings suggested 
that copy number variants in single cells may 
evolve in response to the microenvironment, such 
as in chemotherapy.

11.2.5  Renal Cell Cancer

Renal cell cancer accounts for more than 200,000 
new cases and over 100,000 deaths worldwide 
each year [6]. Clear cell renal cell carcinoma is 
the most common renal cell and is considered to 
be a disease with a low mutation rate and few 
mutations shared among patients. Whole-genome 
sequencing was applied on 20 single cells from 
one clear cell renal cell carcinoma patient to 
study the intra-tumoral heterogeneity. The results 
showed that there were no significant sub-clonal 
populations detected, but many rare mutations 
were found in a small number of cancer cells 
[39]. It is not easy to detect these mutations with 
bulk-cell sequencing. The study displayed the 
intra-tumor genetic landscape of clear cell renal 
cell carcinoma at a single cell level and suggested 
that clear cell renal cell carcinoma may be more 
complex at the genetic level than expected.

11.2.6  Glioblastoma

Glioblastoma is the most common brain and cen-
tral nervous system malignancy and has a poor 
prognosis. Glioblastoma is biologically aggres-
sive because of its rapid growth and high inva-
siveness. Glioblastoma is characterized by 
extensive cellular and molecular heterogeneity. 
Epidermal growth receptor factor (EGFR) is one 
of the genes which is thought to affect the devel-
opment and treatment of glioblastoma. Single- 
nucleus whole-genome sequencing studies 
demonstrated that the EGFR copy number was 
highly variable because of EGFR amplification 
[40]. Single cell RNA sequencing on 430 cells 
from five glioblastoma patients detected several 
oncogenic variants of EGFR at the single cell 
level [41]. Moreover, the study also showed high 
intra-tumoral cell heterogeneity in the molecular 
markers related to hypoxia and the immune 
response. In addition to EGFR and the genes 
mentioned above, this study also detected varia-
tion of several signaling molecules and cell sur-
face receptors, which may contribute to 
targeted-therapy resistance [41].

The evidence suggests that the study of molec-
ular heterogeneity at the individual cellular level 
may reveal the aggressive or drug-resistant sub- 
clones that are masked when analyzing large sec-
tions of the tumor. Meanwhile, study at single 
cell level provides a powerful approach, which 
may have significant impacts on the prediction of 
disease outcomes and provide important infor-
mation for effective chemotherapy.

11.2.7  Circulating Tumor Cells

Clinical therapeutic regimens based on primary 
tumors often end with failure because of metasta-
ses and drug resistance. Metastasis is highly 
related to death and is difficult to detect in the 
early stages of the disease. Circulating tumor 
cells (CTCs) are a population of tumor cells that 
could mediate metastasis. CTCs were first 
observed a cancer patient’s peripheral blood in 
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1869 [42]. To invade the blood vessels, the tumor 
cells first lose their epithelial features and cell 
polarity to become mesenchymal-like cells, 
which have increased invasiveness and resistance 
to apoptosis. This process is called epithelial to 
mesenchymal transition (EMT). The EMT cells 
also need to acquire the ability to be motile and 
the enzymatic activity to break the basement 
membrane and vascular wall. The EMT process 
has been studied for years but it is still not con-
clusive in terms of its involvement in metastases 
progress. Study on CTCs is an ideal approach for 
understanding this issue.

CTCs can be separated from white blood cells 
(WBCs) according to surface markers by using 
flow cytometry or micromanipulation to exclude 
contamination from WBCs. However, most 
CTCs undergo anoikis because most of them can-
not survive in the blood stream. The enrichment 
of CTCs is a key step in our ability to utilize the 
aforementioned techniques because there is only 
one CTC in 109 normal cells [43]. This situation 
is a critical problem because the remaining CTCs 
are insufficient to provide DNA or RNA for next 
generation sequencing. Given the progress in 
developing whole genome amplification and 
whole transcriptome library construction, 
sequencing-based analyses for CTCs can be 
scaled down to the single-cell level [42]. CTCs 
are supposed to carry stem-like cell characteris-
tics and genetic alteration has been observed in 
primary tumor. Therefore, the development of 
single-cell sequencing helps us to understand the 
clonal evolution and the role of CTCs in meta-
static cancer. Although studies have shown that 
there are common or similar mutational profiles 
in primary carcinomas, metastases, and CTCs, 
we cannot ignore the important molecular hetero-
geneity that has been observed by next- generation 
sequencing because of the potential utility of 
CTCs in treatment [44]. This finding is observed 
because the CTCs are bridges between the pri-
mary tumor and metastasis; therefore, mutations 
in CTCs can affect the disease outcomes. In lung 
and prostate cancer, the most mutated genes or 
copy number variants are concurrently observed 
in the primary tumor, CTCs and the metastatic 
site [26, 45–47]. This finding suggests that the 

study of CTCs may provide primary tumor infor-
mation for clinical decision making.

Single cell sequencing studies have demon-
strated that CTCs exhibit tremendous cell-to-cell 
heterogeneity within the patient [48–51]. For 
example, the mutational heterogeneity in the 
TP53, PDGF, PI3K and catalytic subunit alpha 
genes have been observed among individual 
CTCs from women with metastatic breast cancer 
[52, 53]. Meanwhile, the TP53 mutational rate 
was different among the CTCs in breast cancer 
patients. Certain CTCs shared an identical muta-
tion with the corresponding primary carcinoma, 
while other CTCs carry different mutations [54]. 
Although the mutations detected in CTCs could 
reflect the characteristics of the primary tumor, 
there are genomic changes that induce metasta-
sis, which may occur primarily in CTCs [55]. For 
example, immune escape pathways are up- 
regulated in the CTCs of colorectal cancer 
patients, thereby implying a mechanism for CTC 
survival in the blood stream [56]. Previous stud-
ies that were verified by targeted deep sequenc-
ing showed that most of the seemingly exclusive 
mutations in CTCs are present in the primary 
tumor at a relatively low frequency in the minor 
subclones [42]. This phenomenon indicates that 
the mutations of cancer genome are dynamic 
changes that occur during disease progression. 
The progression may be consistent pretty much 
across the disease. Therefore, the genomic signa-
tures of many individual CTCs from cancer 
patients may be more informative than traditional 
biopsies of the primary tumor for designing tar-
geted therapies and monitoring therapeutic 
response [44].

Considering the constantly evolving nature of 
cancer, researchers have realized that certain cel-
lular biomarkers also change dynamically, which 
reminds us to establish a reliable biomarker sys-
tem for cancer progression [27, 57]. Other stud-
ies have demonstrated that the selective pressures 
exerted during systemic treatment drive clonal 
evolution and can result in the subclonal expan-
sion of initially rare variants [58]. For example, 
EGFR T7900 mutation was increased in NSCLS 
patients after anti-EGFR treatment [59] and MET 
amplification was higher, as well, because of the 
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selection pressure during treatment [60]. 
Temporal heterogeneity is a notable issue which 
should be focused on; however, the application of 
longitudinal tumor sampling was previously 
impractical. Single-cell sequencing of CTCs is 
superior to biopsies because it is non-invasive 
and easily repeatable. Serial sequencing of CTCs 
provides us with a chance to monitor the tumor 
evolution at the longitudinal level.

Since the emergence of single-cell sequenc-
ing, less DNA or RNA is required for the tech-
niques that are now used for genetic analyses, 
providing an earlier and more convenient oppor-
tunity for clinicians and researchers to obtain 
fundamental information regarding the meta-
static process or for early tumor detection [4]. 
Furthermore, single-cell sequencing of CTCs 
may provide significant information to study 
whether tumor cells will evolve and become 
resistant to chemotherapy or targeted drugs [61]. 
However, the application of single CTC analysis 
in the clinic is currently far from developed 
because of the limitations in CTC detection and 
isolation. Rare platforms could be adapted to all 
types of cancer, and the situations among the dif-
ferent patients are highly diverse, making it dif-
ficult generally to evaluate the efficiency or 
accuracy of single CTC analysis in the clinic for 
now [42]. Although CTC research is still in its 
infancy, it is a promising field of study because of 
its scientific significance in elucidating cancer 
metastasis and clinical value in non-invasive can-
cer detection, prognosis, and diagnosis.

11.2.8  Cancer Stem Cell

Stem cells have the ability to perpetuate their lin-
eage and differentiate to oriented cells under spe-
cific stimulation. Stem cells can also interact with 
the environment to maintain a balance between 
quiescence, proliferation, and regeneration [62]. 
Normal stem cells have the capacity to self-renew 
and maintain their homeostasis, while the homeo-
stasis is disruptive in cancer stem cells. Except 
for homeostasis, cancer stem cells keep all aspect 
of stemness, such as the enhanced capacities for 
self-renewal, cloning, growing, metastasizing, 

homing, and proliferating, which sustains the 
progression of cancer [62]. Cancer stem cells are 
rare but they can recruit nutrients from their 
neighbor cells and escape from the immune sys-
tem. So far, the origin of cancer stem cells is far 
from clear, but this is probably due to the accu-
mulation of mutations over time. Current knowl-
edge indicates that the therapeutic elimination of 
all cancer stem cells is not only required but 
might also be sufficient to cure cancer.

Currently, the study of cancer stem cells has 
become a prime research subject because the 
character of the cancer stem cells has been associ-
ated with tumor progression, metastasis, relapse, 
and drug resistance. The breakthrough in cancer 
stem cells research is considered a means for the 
development of anti-cancer therapeutics. The rar-
ity, low immunogenicity, cellular heterogeneity, 
and small amount of available RNA in cancer 
stem cells has limited the understanding of tumor 
biology. However, the development of methods 
for the detection and isolation of stem cells, as 
well as single-cell sequencing, such as whole 
genome and RNA sequencing, provide a good 
opportunity to study the complex intra- tumoral 
heterogeneity at the single cell level [63]. Lawson 
et al. developed a workflow to enrich breast can-
cer stem cells from MCF7 and T47D cell lines. 
Single cell gene analysis was later applied to 
study the biomarkers related to differentiation, 
pluripotency, EMT, and proliferation. By compar-
ing the cellular subpopulations and different 
stages, these researchers further demonstrated 
that there were progression and transition between 
differentiation stages in breast cancer at single 
cell level. For example, T47D cells transitioned 
from a quiescent state to a more differentiated 
phenotype while MCF7 cells gradually differenti-
ated via a progenitor-like state [64]. The single 
cell analysis enabled us to better understand the 
sequential order of events during cancer stem cell 
differentiation at the transcriptional level.

Chronic myeloid leukemia (CML) is consid-
ered a less genetically complex disease. Tyrosine 
kinase inhibitors (TKI) are an effective drug for 
targeting the BCR-ABL gene and dramatically 
improving its outcome [65]. However, most 
patients relapse following treatment because 
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CML stem cells are resistant to TKI treatment, 
even those these cells are rare. Further study on 
CML stem cells will provide a more theoretical 
basis for clinical treatment. So far, the presence 
of the BCR-ABL fusion gene remains the only 
unequivocal marker of CML stem cells. Single 
cell analysis provides a feasible approach to ana-
lyze aberrant gene expression in normal, BCR- 
ABL positive and negative stem cells. Novel 
candidate gene expression, such as RXFP1, 
which is the receptor for the hormone relaxin, the 
small GTPase RAB31, SRSF2, and LGALS1, 
showed differences in expression among the 
above groups. Moreover, studies on BCR-ABL 
negative stem cells showed that TNF-alpha and 
TGF-alpha, which were correlated with poor 
treatment response in CML, were also dysregu-
lated in CML [66–68]. These findings indicated 
that cell-extrinsic factors disrupt normal stem/
progenitor cells in CML [69–71]. The authors 
also suggested the exploration of gene expression 
markers in BCR-ABL negative stem cells for 
developing clinical predictive biomarkers. This 
study suggested that single cell studies could 
unravel heterogeneity in clonal cancer stem cells, 
as well as in coexisting and frequently suppressed 
normal stem cells, thereby providing insights into 
the molecular mechanism of therapy resistance.

Single-cell sequencing studies of bladder can-
cer stem cells and non-stem cells, bladder epithe-
lial stem cells and non-stem cells showed that 
bladder cancer stem cells were relatively homo-
geneity. The data also suggests that bladder can-
cer stem cells may originate from mutated 
bladder epithelial stem cells or alternated bladder 
cancer non-stem cells. There were 21 key altered 
genes that were identified in bladder cancer stem 
cells, including six genes that were not previ-
ously described in bladder cancer (ETS1, 
GPRC5A, MKL1, PAWR, PITX2 and RGS9BP). 
Meanwhile, bladder cancer stem cells showed a 
higher frequency of nonsynonymous mutation 
compared to bladder cancer non-stem cells, 
which underscored the critical function of spe-
cific mutations on bladder cancer stem cells 
acquiring stemness [72].

11.3  Application of Single-Cell 
Sequencing on Cancer 
Diagnosis and Biomarker

Single-cell sequencing has spread various 
research fields, such as cancer, immunology, 
microbiology, and embryogenesis. The transfor-
mation of single-cell sequencing from the bench 
to bedside will dramatically benefit patients. 
Preimplantation diagnosis using single-cell 
sequencing at the assistant reproductive area is a 
very successful example. Precise diagnosis of 
embryos before implantation effectively decreases 
the birth defects. The same technique is also 
applied in non-invasive pre-natal diagnosis. 
Studies on cancer genomic, transcriptomic, and 
epigenomic changes have dramatically improved 
the understanding of tumorigenesis, metastases, 
and relapse. Traditional investigations were based 
on bulk cells or tissues, which masked the hetero-
geneity of the disease. Current clinical diagnosis 
and therapy is also based on bulk samples. 
However, precise diagnosis and personalized 
therapeutic regimens that aim to remit or even 
cure cancer should focus on this heterogeneity 
because the disease outcome is mostly decided by 
only certain subpopulations of cancel cells. In 
clinical treatment of cancer, the lack of adequate 
biomarkers for diagnosis and staging confound 
clinical decision-making and delay potentially 
effective therapies. Development of single-cell 
sequencing of the cancer cells will improve the 
discovery of effective biomarkers to re-staging 
the disease or evaluating the cancer’s prognosis. 
For example, single cell DNA cytophotometry 
has been used to analyze malignant melanoma at 
the clinical stage, and the mean nuclear area has 
been shown to be a prognostic factor [73]. Single-
cell sequencing of prostate cancer cells suggested 
that the loss of PTEN is associated with poor 
prognosis [74]. In early gastric cancer, clustered-
cell micrometastases of the lymph nodes have 
been used to predict poor survival compared with 
single-cell micrometastases [75].

In recent years, understanding of cancer at the 
molecular level has indicated that SNV, CNV, 
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aneuploidy, and genomic rearrangements 
 promote factors of cancer. However, current stud-
ies are mostly based on bulk cells, which mask 
the detection of cancer cell heterogeneity, cancer 
stem cells, and CTCs. Currently, new methods, 
such as fine-needle aspiration (FNA), FACS, and 
CellSearch, have been developed to obtain single 
cancer cells, cancer stem cells, or CTCs. 
Sequencing and identification of these single 
cells will provide precise information for diagno-
sis and clinical decision making. Meanwhile, 
single-cell sequencing could be used for early 
screening and therapy monitoring by extracting 
single cells from liquid biopsy. For example, 
early detection of CTCs and identification of pos-
sible key mutations may suggest the high risk of 
metastasis, while detection and sequencing of 
cancer stem cells may suggest the possibility of 
drug resistance and cancer recurrence.

Analysis of genomics, proteomic and tran-
scriptomic changes and clinical outcomes will 
also provide novel specific candidates molecular 
biomarkers to predict disease prognosis. Also, 

patients with a low risk of relapse or metastasis 
could avoid overtreatment following this 
analysis.

In addition, in many clinical cases, it is not 
possible to obtain bulk cells from, for instance, 
urine, prostate fluid, vaginal fluid, or small biop-
sies. Using single-cell sequencing, these impor-
tant cancer cells present in fluids, as well as 
certain solid tumor cells, could be identified and 
analyzed [76, 77]. See Fig. 11.2 for details.

11.4  Application of Single-Cell 
Sequencing on Cancer 
Treatment and Drug 
Development

A prime objective to understanding and dissecting 
the heterogeneous biology of tumors is to termi-
nate the disease using effective approaches. 
Clinical failure of cancer treatment often ends 
with drug resistance. Heterogeneous responses 
triggered by chemotherapy pressure at the cellular 

subclone 2 subclone 3subclone 1

drug 2 drug 3drug 1

Single cell isolation and sequencing

Fig. 11.2 Tumor cells 
are heterogeneous. 
Based on the single cell 
sequencing, tumor cells 
could be subdivided into 
different clones. Further 
study of tumor cell 
heterogeneity would 
help to characteristic 
each subclone and help 
to develop specific drugs 
improving the current 
knowledge on cancer, 
and ultimately improve 
tumor diagnosis and 
treatment
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level are one of the main reasons for drug resis-
tance. See Fig. 11.3 for details. The deep under-
standing regarding cellular heterogeneity will 
provide fundamental insights into the develop-
ment of drug resistance and clues for solution. 
Single-cell analysis at the DNA, RNA, and pro-
tein levels offers great promise to understanding 
cellular heterogeneity and tools for personalized 
treatment. Drug resistance can be classified as 
intrinsic and acquired resistance. Intrinsic resis-
tance is present prior to chemotherapy exposure, 
and the tumor fails to respond to initial treatment. 
Acquired resistance occurs only during or after 
the course of treatment [5, 78]. Intrinsic resistance 
is not related to chemotherapy, as the tumor is not 
responsive to initial treatment. Acquired resistant 
often occurs after the exposure to drugs [5]. One 
reason for drug resistance is the individual differ-
ences in absorption and metabolism [5, 79]. 
Another reason is due to heritable genetic and epi-
genetic alterations and phenotypic plasticity in the 
cancer cell. Acquired drug resistance usually 
occurs in a small population, such as cancer stem 
cells. Deep single-cell sequencing of these sub-
populations is not only able to provide a clue to 
understanding the mechanism of drug resistance 
but also offers a chance to benefit the patient 
through personalized chemotherapy.

It has been agreed that every tumor is unique 
from the others. Therefore, precision medicine as a 
new emerging therapeutic plan is considered to 
have the potential to improve cancer treatment. The 
primary principle of precision medicine in clinical 
oncology is to treat patients on the basis of their 
individual genetic mutations [80]. Single- cell 
sequencing may help to realize the dream of preci-
sion medicine in cancer pharmacology. Currently, 
single-cell RNA sequencing has been used in opti-
mizing the treatment strategy in metastatic renal 
cell carcinoma [81]. Single-cell targeted transcrip-
tome analysis has been performed to predict drug 
sensitivity in multiple myeloma [82].

11.4.1  Single-Cell Sequencing 
in the Future

Single-cell sequencing is a rapidly evolving 
approach to characterize an individual cell at the 
molecular level. With the help of computational 
methods, single-cell technologies have devel-
oped rapidly and have created a new avenue for 
investigating cancer heterogeneity at the cellular 
level systematically.

Single-cell sequencing directly promotes the 
development of next generation genomic medicine. 

Drug pressurePrimary tumor Metastasis

Drug pressurePrimary tumor Relapse

tumor cells drug

Blood vessel

Fig. 11.3 The 
development of drug 
resistant during 
chemotherapy for tumor

11 Application of Single Cell Sequencing in Cancer



144

This method’s high resolution and sensitivity can 
reveal the molecular basis of complex systems, 
such as aneuploidy, single-gene disorders, and 
chromosomal translocation. Well- developed sin-
gle-cell sequencing will help clinicians to detect 
early germline- or somatic- mutation- based dis-
eases and make a precise diagnosis, which has a 
decisive influence on the therapeutic regimen and 
outcomes. Sequencing of single cells will funda-
mentally improve current oncology. Specifically, 
the technique could enable physicians to detect rare 
tumor cells, monitor circulating tumor cells, mea-
sure intra- tumoral heterogeneity, and guide chemo-
therapy. Single-cell techniques will provide an 
unprecedented methodology for cancer research 
and help us to understand the process of tumor 
metastasis.

Currently, the clinical application of single- 
cell sequencing for diagnosis and guiding the 
treatment of cancer is a rising field, but it has 
shown its potential power in the future clinical 
settings. For example, this technique’s applica-
tion in genomic sequencing could provide a holo-
graphic view of individual disease, which 
improves the development of individualized 
treatment. It equips clinicians to identify rare 
clones and helps to explain how clonal diversity 
results in metastasis, and chemo- or radio- 
resistance in cancers. Moreover, its application in 
the CTC field has provided clues to understand-
ing the evolution of primary tumor to metastatic 
tumors in a genetic manner [83].

Using the microscope, traditional pathologists 
could screen thousands of cells and find abnor-
mity at the cytological level, but they cannot 
identify the genomic lesion, such as the copy 
number variation. Advances in whole genome 
amplification make it possible to acquire enough 
genetic material and next-generation sequencing 
enables us to detect genomic lesions at a specific 
locus in individual cancer cells. Genomic profil-
ing of single cells can eliminate noise and pro-
vide an absolute picture of the genome; this 
allows researchers to identify thousands of poten-
tial carcinogenesis-related genes, thereby provid-
ing the evidence to oncologist for effective 
treatment decisions. In future medicine, single- 
cell sequencing may be applied in early cancer 

detection, CTC monitoring during the treatment 
of metastatic patients, and identification of the 
genomic diversity of solid tumors. It was reported 
that epithelial cells number in the blood is useful 
for disease treatment [84, 85]. Compared to sim-
ple counting, copy number profiling of CTCs 
may provide a more powerful tool to identify 
genomic amplifications of oncogenes and dele-
tions of tumor suppressors. Such methods will 
also allow clinicians to monitor CTCs during 
adjuvant- or chemo-therapy and to determine 
whether the tumor is likely to relapse. The new 
achievements derived from single cell study will 
help to develop precision medicine and drug 
development. Although it is promising to apply 
the single-cell sequencing to the clinic, there are 
numerous challenges ahead for translating this 
application to a clinical setting.

At the present, single-cell sequencing technol-
ogy has strong prospects, but this method still 
needs to overcome the numerous limitations that 
currently exist, such as relatively low efficiency 
and high cost. Significant challenges are still 
posed by contamination [86], amplification bias 
(DNA and RNA) [87, 88], efficiency of sequenc-
ing [89], and algorithms sufficiently advanced to 
link the sequencing data [90]. In addition to the 
sequencing, single-cell data also faces a number 
of intrinsic challenges, including systematic 
noise and features of biological systems, as well 
as the assessment of sparse and complex of the 
data. A positive development is that in the past 
few years, this technology has been improved 
dramatically and will be further developed. With 
rapid technological progress, we believe that in 
the near future, improved single-cell sequencing 
technologies will overcome these challenges 
such that more precise sequencing data will be 
obtained by pathologists and clinicians for the 
development of therapeutic regimens.

In short, single-cell sequencing is a rapidly 
expanding field that surprises us with daily 
updates that refresh our understanding of funda-
mental cancer biology. This method exhibits 
strong potential for improving our understanding 
of the nature and complexity of cancer. Although 
facing great challenges, this technique is still 
worth promoting and developing because of its 
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great practical value. When future innovations 
are able to overcome the current challenges, 
oncologists will be able to obtain sufficient 
genomic information for diagnosis from limited 
clinical samples and make precise therapeutic 
regimens. Single cell sequencing will improve 
not only the development of diagnostics but also 
cancer therapy regimens. The advances will ulti-
mately elevate the survival of cancer patients.
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Emergence of Bias During 
the Synthesis and Amplification 
of cDNA for scRNA-seq

Qiankun Luo and Hui Zhang

Abstract
The advent of single-cell omics technology 
has promoted our understanding of the 
genomic, epigenomic, and transcriptomic het-
erogeneity in individual cells. Compared to 
traditional sequencing studies using bulk cells, 
single-cell transcriptome technology is natu-
rally more dynamic for in depth analysis of 
genomic variation resulting from cell division 
and is useful in unraveling the regulatory 
mechanisms of gene networks in many dis-
eases. However, there are still some limita-
tions of current single-cell RNA sequencing 
(scRNA-seq) protocols. Biases that arise dur-
ing the RNA reverse transcription and cDNA 
pre-amplification steps are the most common 
problems and play pivotal roles in limiting the 
quantitative accuracy of scRNA-seq. In this 
review, we will describe how these biases 
emerge and impact scRNA-seq protocols. 
Moreover, we will introduce several current 
and convenient modified scRNA-seq methods 

that allow for bias to be decreased and 
estimated.

Keywords
Amplification · Single-cell · Transcriptomic · 
Technical noise

12.1  Introduction

The molecular mechanisms involved in the nor-
mal development of organisms and in tumor evo-
lution have traditionally been studied using large 
populations of cells [1]. While transcriptome 
sequencing of RNAs extracted from bulk cells is 
informative for some questions, cell-to-cell sig-
nal variations are concealed. Some cell types, 
such as stem cells or circulating tumor cells, can-
not be studied in large populations, and individ-
ual cells may have independent or special roles. 
Studies of those cell types significantly benefit 
from the use of single cell RNA sequencing 
(scRNA-seq) technology. The development of 
next-generation gene sequencing and scRNA-seq 
technology provide to analyse transcriptional 
variations and intercellular heterogeneity at high 
resolution and to explore the interaction between 
intrinsic cellular activation and extrinsic stimuli, 
such as internal cell environments, drugs, or 
infections. scRNA-seq methods with different 
characteristics recently developed renew our 
understanding of transcriptomic diversity and 
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heterogeneity. scRNA-seq has been applied to 
study stem cell differentiation, early embryos, 
sensitivity to drugs, dynamic phenotypes, cell 
sub-population identification, or heterogeneity 
[2–12].

High-throughput scRNA-seq technologies, 
microfluidic systems, and droplet-based sequenc-
ing have enabled the throughput of scRNA-seq to 
allow for tens of thousands of cells to be assayed 
at a time [13–15]. The general processing strate-
gies include the single-cell isolation and lysis, 
reverse transcription of mRNA, cDNA pre- 
amplification, and sequencing library construc-
tion [16]. Despite of significant improvements in 
the throughput, sensitivity and scalability of 
scRNA-seq, there are still a large number of limi-
tations in the quantitative accuracy of scRNA-seq 
technology. The initial step of scRNA-seq is to 
isolate cells from tissues using trypsin or collage-
nase, which may potentially affect cell viability 
and transcripts [16], subsequently impacting the 
quality and efficiency of scRNA-seq protocols. 
The targeted cells are isolated from suspended 
cells using flow-activated cell sorting platforms, 
and captured through surface markers identified 
by fluorescent-labeled antibodies. However, the 
need for antibodies and large basal cell popula-
tions limits its application [17, 18]. Another 
potential limitation of scRNA-seq protocols is 
that the cell lysis procedure may damage the nat-
ural context and cellular environment of individ-
ual cells, resulting in the loss and impair of the 
spatial information on transcripts and the com-
plete detection of the biological information 
present in cells. Novel techniques developed in 
recent years, include the in situ sequencing and 
RNA-seq on single nuclei, maintain the spatial 
information, and avoid the harsh cell isolation 
procedures [19–21], although a number of the 
drawbacks still exist. The technical noise from 
reverse transcription and cDNA pre- amplification 
steps are currently the most important limitation 
for the quantitative accuracy of scRNA-seq [22]. 
Kolodziejczyk et al. have reviewed the estimates 
of technical variability by the application of 
spike-ins of an external RNA control consortium 

(ERCC) and unique molecular identifiers (UMIs). 
The computational method to process data has 
been improved to normalize and reduce the noise 
[16, 23]. Despite that modifications to improve 
the efficiency and decrease the technical noise 
have been made to the approaches, biases that 
occur during the synthesis and amplification of 
cDNA are still the key limitation of scRNA-seq 
protocols. In this review, we will discuss how 
these biases arise and the improvement in tech-
niques that facilitate their reduction.

12.2  Factors Affecting Bias

12.2.1  Synthesis of First Strand cDNA

Single-cell transcriptome analysis platforms gen-
erally require enough materials for hybridization 
to perform gene expression microarray or 
sequencing. For example, RNA cannot be 
sequenced directly if a minute amount of RNA 
can be captured from a single cell (10 pg), so the 
amplification of transcripts seems necessary for 
scRNA-seq. The poly(A) tailing induces large 
numbers of transcripts to be lost, resulting in the 
reverse transcription of only approximately 
10–20% of transcripts. These factors have a 
strong impact on the sensitivity of scRNA-seq 
and are the primary reasons for the emergence of 
bias [24]. Current scRNA-seq protocols face two 
challenges, i.e. the reverse transcription and 
cDNA amplification steps, during which the 
undesirable bias emerges.

The low amount of RNA molecules extracted 
from cells contains tRNA and rRNA, which 
accounts for a large proportion of cellular RNA 
and may have immediate impacts on the mRNA 
sequencing reads seriously [25]. The reverse 
transcription (RT) primers are used to exclude 
rRNA and tRNA.  Because mRNAs have a 
poly(A) tail, current methods synthesize the first 
strand cDNA and capture polyadenylated RNA 
using a ploy(dT) primer. The poly(A) tailing 
selection approach can isolate mRNAs and most 
lncRNAs effectively and conveniently within 
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single cells. This method is the most widely used 
in current scRNA-seq methods (Fig.  12.1). For 
instance, the Quartz-Seq and SC3-seq approaches 
both use oligo-dT24 as a reverse transcription 
(RT) primer to perform the first strand synthesis 
of cDNA [26, 27].

The current approaches heavily rely on poly-
adenylated mRNAs and only capture RNA with a 
poly(A) tail. This inevitably precludes RNA 
 species lacking poly(A) tails, including microR-
NAs, non-polyadenylated lncRNAs, and circular 
RNAs, as the primary factor for the apparent 
emergence of bias. There is only have a small 
fraction of polyadenylated RNA in prokaryotic 
cells, such as bacteria, and be hardly extracted 
with a poly T primer [28].To rectify such prob-
lem, another approach using 5′-monophosphate 
dependent exonuclease was proposed to exclude 

tRNAs and rRNAs [29]. The technique could 
deplete some relevant mRNAs and small RNA 
species, and introduce some noise to the tran-
scripts [30]. The novel SUPeR-seq protocol was 
proposed to substitute random primers with a 
fixed anchor sequence for an oligo(dT) primer 
and to achieve first strand cDNA synthesis [31]. 
This method can detect both polyadenylated and 
non-polyadenylated transcripts simultaneously in 
a single cell. After the digestion of the excess 
primers, a poly(A) tail is added to 3’end of the 
first strand cDNA, and then another anchor 
sequence is added to synthesize the second strand 
cDNA. However, SUPeR-seq cannot completely 
break down the rRNAs secondary structures 
present in the transcripts, with the rRNA contam-
ination about 15% of the overall cDNA.  The 
scRNA-seq method is able to detect whole target 
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Fig. 12.1 Two methods for the synthesis of double- 
stranded cDNA both rely on 3′ end poly(A) tailing to cap-
ture polyadenylated RNA. An oligo(dT) primer is used for 
reverse transcription, causing a strong poly(A)-RNA cov-
erage bias. The second cDNA strand synthesis involves 
either the homopolymer dependent method or the 
template- switching dependent method. (a) Exonucleaseis 
used to digest the RT primer. Poly(A) tails are added to 3′ 

ends of first strand cDNA molecules to synthesize the sec-
ond strand cDNA. (b) During the reverse transcription, 
the terminal transferase is used to add non-template cyto-
sine to the 3′ end of first strand cDNA as a primer for 
template-switching, then a poly(G) template is added as 
an adapter to perform the switching and synthesis of full- 
length cDNA (This figure was modified from [30])
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transcripts without missing transcripts or con-
tamination. Due to the low amount of RNA mol-
ecules present in single cells, polyadenylated 
RNA is even less abundant (approximately 
0.1 pg), substantial technical noise during RNA 
reverse transcription can produce strong biases 
on the synthesis of cDNA, which is amplified in 
the amplification process.

12.2.2  Synthesis of Second Strand 
cDNA

After the synthesis of first strand cDNA, the syn-
thesis of the second cDNA can be accomplished 
by two different methods (Fig. 12.1a), including 
the poly(A) tail and terminal deoxynucleotidyl 
transferase. The reverse transcription primer is 
digested by exonuclease I to reduce the byprod-
ucts from the previous step, and the terminal 
deoxynucleotidyl transferase is used to achieve 
coverage of the 3′ ends of the first strand cDNA 
with a poly(A) tag. The synthesis of second strand 
cDNA can be carried out using the Tang protocol 
or Quartz-Seq [26, 32]. The transcripts are also 
extracted from different cells to maintain the 
strand information by the integration of DNA bar-
codes, performed in STRT-seq by the application 
of a template-switching mechanism and upgraded 
by Smart-seq and Smart-seq2 [33]. The template-
switching oligos, containing 2–5 non- template 
cytosines, are added to the 3′ end of the first strand 
cDNA. The adapter sequence poly(G) template is 
then added to 5′ end of the RNA transcript. For 
example, the Moloney Murine Leukemia Virus 
with the template-switching activity is used to 
switch the template site located at the 5′ end of the 
RNA molecule and synthesize the second strand 
cDNA.  The template-switching oligo method 
ensures the efficient and accurate dissection of 
full-length cDNA by a single primer. Each full-
length cDNA consists of a natural 5′ poly(T) end 
transcribed from the 3’end of the RNA and an 
artificial poly(C) sequence [33] (Fig. 12.1b).

It is difficult to remove the reverse transcrip-
tion primer completely by exonuclease I which 
can degrade the unreacted primer after reverse 
transcription and cause undue deletion on sec-
tions from the 5′ end of transcripts. The addi-
tional artificial poly(A) tail on the 3′ end of the 
first strand cDNA, apart from the intrinsic 3′ end 
poly(A) tail of the input RNA, will impact the 
strand information of double-strand cDNA [30]. 
The improper length of the synthetic poly(A) tail 
could diminish the sequencing quality or the effi-
ciency of the second strand cDNA synthesis [31]. 
The 5’end of the polyadenylated mRNA is tagged 
with a poly(G) sequence using Moloney Murine 
Leukemia Virus or terminal transferase via the 
template-switching activity. The first strand 
should cover the 5′ end of mRNA transcripts as a 
strong 5′ end coverage bias of the transcripts 
emerges, if the full-length cDNA is captured [26, 
34]. Therefore, both the poly(A) tailing- 
dependent method and the template-switching 
mechanism in the second strand cDNA synthesis 
can produce the technical noise to impair the effi-
ciency or quality of scRNA-seq.

12.2.3  cDNA Amplification

12.2.3.1  Polymerase Chain Reaction- 
Based Amplification

The double-strand cDNA is purified and pre- 
amplified to construct the cDNA library prior to 
sequencing or microarray analysis after the 
reverse transcription. The large amounts of tran-
scripts are essential for current high-throughput 
technologies to perform whole transcript amplifi-
cation, generally performed by polymerase chain 
reaction (PCR) or in  vitro transcription (IVT). 
PCR is an exponential and non-linear method 
with a higher amplification efficiency than 
IVT. The PCR application for the synthesis of the 
second strand of cDNA depends upon the addi-
tion of a poly(A) tail to the 3′ end of first strand 
cDNA as a template-switching dependency 

Q. Luo and H. Zhang



153

method (Fig.  12.1). The length of synthetic 
poly(A) sequence is controlled to ensure the effi-
ciency and quality of PCR. Fan X. et al. added a 
mixture of dATP and ddATP with terminal 
deoxynucleotidyl transferase when adding the 
poly(A) tail to first strand cDNA and showed that 
it was helpful to guarantee the length of the 
poly(A) tail [31]. It is essential to initially pro-
cess several rounds of PCR using a poly(T) 
primer with a 5′-amine-terminated anchor 
sequence to avoid the primer portion of cDNA 
molecules binding to adaptors. Sasagawa et  al. 
suppressed PCR primer to enrich the short DNA 
fragments and decreased the byproduct, forming 
a ‘pan-like’ structure in those DNA fragments 
with complementary sequences [26]. Such 

method shortened the length of non-reacted prim-
ers by limiting the terminal transferase activity 
time to suppress the synthesis of byproducts. 
However, the use of terminal deoxynucleotidyl 
transferase for reverse transcription could result 
in the coverage bias of 5′ end of transcripts. The 
addition of a poly(A) tail at the 3′ end of the first 
strand of cDNA can impact the strand informa-
tion of double-stranded cDNA [35].

12.2.3.2  IVT-Based Amplification
The IVT is a linear amplification method that 
requires at least 400 pg of total RNA molecules 
as the initial input material and a physically 
labor-intensive process that requires three round 
of amplification to strongly limit the application 
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Fig. 12.2 T7 promoter was added to first-strand cDNA during reverse transcription. It facilitated the amplification of 
transcripts in vitro (This figure was modified from [30])
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of IVT for single-cell RNA amplification [36] 
(Fig. 12.2). IVT is currently integrated with CEL- 
Seq method to reach obtain sufficient amounts of 
RNA and complete the linear amplification [37]. 
Such strategy relies on the T7 promoter located at 
the 5′ end of the cDNA and has a higher accuracy 
and specificity with a relatively good clearance of 
non-specific byproducts, as compared to 
PCR. The IVT protocol for single cell transcrip-
tome analysis has a tedious program to require 3 
rounds of IVT procedures or 2 rounds of IVT 
with an additional PCR procedure, essential to 
compile samples for a single IVT [36]. The addi-
tional round of reverse transcription leads to a 
significantly increased 3′ end bias [16]. scRNA- 
seq has a great potential to obtain biological 
information for special samples, including 
embryo cells, tumor cells, neuronal cells and 
other rare cells. The synthesis and amplification 
of cDNA are the main challenges of scRNA-seq, 
since the bias emerges during these steps and 
greatly limits the sequencing efficiency and accu-
racy. The reverse transcription and pre- 
amplification become even more important and 
essential to sequence the low amount of RNA 
molecules obtained from single cells.

12.3  Modifications of Protocols

12.3.1  ERCC Reduces Technical Noise

Many protocols have been greatly improved in 
recent years to improve the efficiency and cover-
age of transcripts for scRNA-seq technology and 
to decrease the technical noise generated from 
the synthesis and amplification of cDNA.  For 
instance, SUPeR-seq utilizes a random primer 
with a fixed anchor sequence to synthesize cDNA 
and capture poly(A)- and poly(A) + RNA simul-
taneously in single cell [31]. Although the 
template- switching and IVT methods can theo-
retically cover the full-length and strand specific-
ity, the strand specificity can be lost due to the 

transcript amplification. The directional features 
of the strands are retained [30]. The methods 
have been modified to analyze large numbers of 
cells in parallel. Current protocols have incorpo-
rated traditional methods that, depending on 3′ or 
5′ ends of RNA, utilize a template-switching 
oligo, greatly increasing the number of input 
cells to thousands of single cells [9, 38]. The gen-
eration of technical noise is inevitable with the 
current scRNA-seq protocols, seriously impact-
ing the reliability of scRNA-seq technologies. 
The estimation of technical noise is a vital pre-
condition to assess biological variability using 
scRNA-seq technology. Some strategies were 
designed to compute and ameliorate technical 
noise, such as ERCC and UMIs.

The extrinsic spike-in RNA is a highly recom-
mended modification of scRNA-seq protocols to 
measure the technical noise in scRNA protocols 
and can theoretically identify any poly(A)-tailed 
RNAs lost from the single cell library. The Grün’s 
protocol used an artificial mixture of 92 synthetic 
species to quantify the technical noise [39]. This 
is the mostly commonly used ERCC with an 
accurately calibrated quantity of each single cell 
sample. The artificial spike-in RNAs are reverse 
transcribed using the same procedure as the natu-
ral cell transcripts. It is worth noting that the 
spike in RNAs is vulnerable to degradation in the 
reverse transcription procedure and that the 
amount of artificial RNA is multivariate by hun-
dreds of folds [36]. The technical noise can be 
captured through the dissection of the externally 
spiked in RNA species [40]. The gene expression 
of the transcripts can be estimated by calculating 
the spike-in RNA reads, and the number of mol-
ecule reads examined with spike-in transcripts 
are similar to the result detected by Poisson dis-
tribution (Fig.  12.2c) [24, 39]. ERCC spike-ins 
control RNAs can also be used in conjunction 
with UMIs to model the technical variability. The 
capture efficiency can be calculated through the 
proportion of the read number mapped to the 
known number of spike-ins. The number of RNA 
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molecules can be calculated with the same ratio 
mapping to the number of UMIs [23]. It is helpful 
to quantify the amplification bias and imporve 
the measured capture efficiency (Fig.  12.2d). 
There are still some limitations in the widespread 
use of ERCC as it depends upon the poly(A) tail, 
such as the 3′ end coverage bias in scRNA proto-
cols, to hardly estimate the expression of external 
RNA.  The amount of artificial spike-in RNAs 
should be strictly consistent with the total num-
ber of natural RNAs in single cells to ensure that 
the variation of the spike-ins is not obstructed by 
the degradation during manipulations [16]. 
Rhonda and Kendziorski showed that the high 
level of spike-in species added to transcripts take 
up a large fraction of sequencing reads, which 
notably increases the physical labor [40]. Another 
challenge is to normalize the data generated from 
scRNA-seq data, different from those from bulk 
RNA-seq. SCnorm was recently suggested for 
accurate and efficient normalization of scRNA- 
seq data [41]. The quantile regression is used in 
SCnorm to estimate the dependence of transcript 
expression on sequencing depth for every gene. 
On basis of the dependence and quantile regres-
sion, genes and scale factors can be grouped and 
data can be normalized using the adjustment for 
sequencing depth with or without spike-ins.

12.3.2  UMIs Simplify the Counting 
of Molecules

To remedy the PCR amplification bias during the 
cDNA synthesis, fragments were sequenced from 
the 3′ or 5′ end and the UMIs were developed and 
used to barcode single cells [39]. UMIs are DNA 
fragments that consist of four to ten random 
nucleotides. During the reverse transcription, 
each individual cDNA is tagged with a random 
sequence (Fig.  12.3). The cDNA library can be 
sequenced at a sufficient depth to ensure that the 
altered cDNA molecules can be observed [24]. 

The number of cDNA molecules can be directly 
calculated by counting the number of distinct 
UMIs. This approach has recently been widely 
used as an internal barcode to alleviate the techni-
cal noise. The number of molecules counted with 
UMIs fluctuated to a lesser degree than that with 
the conventional method when comparing the 
increasing number of input transcripts [24]. The 
UMIs can reduce the technical noise generated 
during reverse transcription and cDNA amplifica-
tion. It is important that the cDNA molecules are 
done under saturated sequencing conditions to 
ensure that each cDNA incorporated with barcode 

mRNAs

Reverse transcription, UMIs

PCR amplification

Sequencing

UMIs in the 5' end of transcripts

“Ghost” molecule

Lost transcripts

a

b

c

d

Fig. 12.3 UMIs application in sequencing. (a) UMIs 
(colored boxs) was added to 5′ end of cDNA, mRNA 
untagged will be lost in (b). Remove singleton barcodes to 
avoid errors caused by “ghost” molecules (This figure was 
modified from [24])
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molecule can be measured. Another caution is 
that a “ghost” molecule may arise due to sequenc-
ing errors when using UMIs [23] (Fig. 12.3). The 
amplification bias can be corrected by the inte-
grated UMIs even though there are still a number 
of risks in UMI methods. The methods that rely 
on UMIs for scRNA-seq can only be used for 
sequencing single tagged transcripts, such as 
sequencing only the 5′ or 3′ end of the transcript, 
making them unsuitable for studies of isoforms or 
allele-specific expression [34, 40].

12.4  Conclusions 
and Perspectives

With great improvement in throughput, quantita-
tion, and sensitivity, scRNA-seq become more 
important tools to explore new cell differentiation 
routes, cell to cell variability, whole tissue- 
analysis, identification of cell subgroups, and 
tumor heterogeneity. It is important to remember a 
large number of limitations to restrict the quantita-
tive accuracy of scRNA-seq protocols during the 
application, such as the destruction of spatial con-
text for single-cell isolation, cell viability, reverse 
transcription, cDNA pre-amplification, mRNA 
capture efficiency, technical noise, or normaliza-
tion of amplification bias. We believe that scRNA-
seq can be a new approach to identify and validate 
single cell biomarkers for the definition of cell 
subtypes, heterogeneity, and progenitors [42].

It is even more exciting if scRNA-seq can be 
applied for the discovery of therapeutic targets 
and provide the potential to develop and improve 
therapeutic strategy for patients. Recent preclini-
cal evidence demonstrated that scRNA-seq was 
used to define innate lymphoid cell precursor 
subsets, distinct cell development stages and 
pathways, and high expression of programmed 
death 1 and interleukin 25 receptor as the early 
checkpoint for immunotherapy [43]. It is also 
curious to compare and address the significance 
of biomarkers from the scRNA-seq and bulk cell 
RNA-seq. It will be more valuable if single cell 

biomarkers have the specificity of disease sever-
ity, duration, and responses to therapy, as 
expected from bulk cells [44–50].
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Abstract
RNA editing is the process which happened in 
the post-transcriptional stage that the genetic 
information contained in an RNA molecule 
will be changed. RNA editing has been found 
to be related with many cancers, so through 
identifying RNA editing sites, we can find 
useful information on the process of carcino-
genesis. In this review, we will discuss the 
main types of RNA editing and their role in 
cancers, as well as the current detection meth-
ods of RNA editing and the challenges we 
should overcome.

Keywords
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13.1  Introduction

RNA editing is the process which happened in 
the post-transcriptional stage that the genetic 
information contained in an RNA molecule will 
be changed through chemical changes in the base 
makeup. Although RNA editing is tissue depen-
dent, brain is the most edited tissue while heart 

and muscle was the least ones, it was likely to 
have important function in non-brain tissues and 
was found to be related with many cancers [1]. 
Through identifying RNA editing sites and types, 
we can find useful information on the process of 
carcinogenesis, thus improving the diagnosis and 
treatment in cancers. Here, we will introduce 
some applications of RNA editing in the diagno-
sis and treatment in some cancers including lung 
cancer, hepatocellular cancer (HCC), breast can-
cer, and so on. Especially, they all applied by next 
generation sequencing (NGS). However, using 
NGS to detect RNA editing still has many chal-
lenges need to be overcome. In this review, we 
will summarize the problems and give proper 
suggestions on how to avoid and solve them.

13.2  RNA Editing Types

13.2.1  A-to-I vs C-to-U

Adenosine to inosine (A-to-I) and cytidine to ura-
cil (C-to-U) are the main two types of RNA edit-
ing in mammals (Fig.  13.1) [2]. A-to-I RNA 
editing has the function on pre-mRNA splicing, 
translation and gene regulation [3], thus further 
affecting the stability and biogenesis of RNAs 
[4]. It has been reported to be discovered in 
intronic regions, exonic regions and 5’ and 3’ 
untranslated regions (UTRs). There are two types 
of A-to-I RNA editing, site-specific and 
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 promiscuous editing [5]. The former one occurred 
in short duplex regions will cause recoding of 
open reading frames that will alter the functions 
of the generated proteins. The latter one occurred 
in longer duplex such as Alus, in which nearly 
50% adenosines are targeted by adenosine deam-
inase acting on RNA (ADAR) family of enzymes 
(ADARs) [6] and its frequency is varied with 
ADAR expression levels [7]. There are totally 
three ADAR genes in humans including ADAR1, 
ADAR2 (or ADARB1) and ADAR3 (or 
ADARB2). Despite ADAR3, which has no edit-
ing ability, ADAR1 and ADAR2 are the most 
common editing enzymes and are important in 
alternative splicing regulation since they have 
been discovered to be associated with spliceo-
some subunits [8]. A-to-I editing also occurred in 
long non-coding RNA (lncRNA) when the repet-
itive elements such as Alus are present [9].

C-to-U editing is catalyzed by a family of cyti-
dine deaminases called APOBECs [10]. Currently, 
APOBECs include APOBEC-1, -2, -3A, -3B, 
-3C, -3D, -3E, -3F, -3G, -3H, -4 and activation-
induced cytidine deminase (AID) [11]. Among 
them, APOBEC1 is the best studied one. 

APOBEC1 mediated RNA editing can regulate 
the mRNA stability of many cancer-related genes 
through 3’ UTR and also contribute to the change 
of target microRNA (miRNAs) [12]. Different 
from APOBEC1, most RNA editing by 
APOBEC3A is site-specific and only targets the 
coding regions of genes which usually cause gene 
missense and nonsense alterations [13]. It also has 
been found its close relationship with cancer 
genome [14] such as BARD1, BRAC1, BRAC2, 
PTEN, SF3B1, TSC2, MSH2, KMT2A, MDM2, 
ATM and BRIP1 [15]. Moreover, APOBEC2 and 
APOBEC3B are also reported related with cancer. 
APOBEC2 has been discovered involved in RNA 
editing of phosphatase and tensin homolog 
(PTEN) and related with tumorigenesis [16]. 
APOBEC3B has been reported to be correlated 
with increased DNA damage and act as an enzy-
matic source of mutation in cancer [17].

13.2.2  mRNA vs Non-coding RNA

RNA editing has been found occurred in protein- 
coding regions of messenger RNA (mRNA) 

Fig. 13.1 Brief introduction of RNA editing types
RNA editing can occur in intronic regions, exonic regions 
and 5’ and 3’ untranslated regions of the genes. There are 
mainly two types of RNA editing in humans: A to I and C 
to U. A to I editing is abundant and is catalyzed by ADARs 

while C to U editing is rare and catalyzed by APOBECs. 
Other types of RNA editing such as ADATs is also existed 
in humans that still need to be further explored and 
studied

M. Qian et al.



161

which alters protein expression. RNA editing for 
mRNAs mainly includes two types, A-to-I and 
C-to-U [18]. The A-to-I type is the most abundant 
one [19] which occurs nearly 85% [20] and has 
been reported to be related with tumor malig-
nancy [21]. mRNA editing through ADAR has 
been related with many genes such as NEIL1, 
BLCAP, NARF and FLNA [22]. C-to-U type is 
rare and only a few sites have been discovered till 
now [23]. Since then, RNA editing are not only 
been found in mRNA, but also in non-coding 
RNA such as miRNA, ribosomal RNA (rRNA), 
lncRNA and transfer RNA (tRNA) which contain 
inverted Alu repeats [24, 25] which until now we 
still do not have a clear idea of it [26].

The function of miRNA that can mediate post- 
transcriptional regulation such as gene silencing 
has been reported to be related with RNA editing 
[27]. Many studies have discovered that nearly 
20% of the editing sites were located in 3’ UTR 
[9] which will change the translational efficiency 
and stability, thus affecting the function of genes 
[28]. For example, miR-376 has been widely 
studied for its editing role in targeting and matu-
ration [29]. However, in miRNA sequences, 
though nearly 10-20% are A-to-I editing [30], 
they are less found overrepresented. This impli-
cated that it may have some other mechanisms 
existed in this context despite the role of ADARs 
[9]. Additional nucleotides at the 5’ end may be 
another editing type that needs to be further and 
carefully studied [31].

LncRNAs are also the potential substrates for 
ADARs. Recent NGS approaches have showed 
that in human transcriptomes, lncRNAs such as 
Malat 1 and Jpx can be edited at several sites [9]. 
So are tRNA and rRNA. Different from mRNA, 
tRNA editing events are usually affected by ade-
nosine deaminases acting on tRNA enzyme fam-
ily (ADAT) [32]. However, we still know little 
about tRNA editing which still need to be further 
studied. rRNA plays a key role in translational 
regulation and the modification of it should also 
play a crucial role in it. rRNA editing has been 
found related with cancer which also should be 
deeper studied [33].

13.3  Current Detection Methods 
of RNA Editing

13.3.1  Detection Methods

The direct way to identify RNA editing sites is to 
compare both genomic and transcriptomic 
sequencing data from the same individual sample 
to separately call mismatches in both data and 
finally identify the RNA specific variant 
(Fig.  13.2) [34]. Since the prevalence of NGS, 
more than 2  million RNA editing sites in the 
human transcriptome have been identified [35]. 
Whole transcriptome deep sequencing (RNA- 
seq) has been regarded as the best tools to per-
form RNA-editing with the ability to 
simultaneously analyze the entire transcriptome 
[36]. Compared with whole exome sequencing or 
whole genome sequencing, some mutations 
edited at RNA level is more likely to be detected 
and focused through RNA-seq [37]. However, to 
identify RNA editing site more accurately, 
molecular features of RNA editing sites such as 
RNA folding changes or tissue-preferred distri-
bution should also be considered in the analysis 
of complex or functionally relevant data [9]. 
Furthermore, deep sequencing depth is recom-
mended to be performed in a larger extent of tran-
scriptome samples.

Furthermore, despite NGS tool, scientists 
have developed another method called inosine 
chemical erasing (ICE). ICE is designed to iden-
tify inosine sites on RNA molecules through 
reverse transcription, PCR amplification and 
direct sequencing without comparing the 
sequence with cellular gene expression or 
genomic DNA reference. Recently, this method 
was further improved by combing with NGS 
which make it able to identify novel editing sites 
more precisely [38].

13.3.2  Challenges

However, errors will occur during the whole 
sequencing process including library preparation, 
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sequencing and data analysis. For example, 
sequencing errors, mismapping errors, insuffi-
cient coverage of sequences, anomalous align-
ment of short-read sequences as well as single 
nucleotide polymorphisms (SNP) will affect the 
detection of RNA editing in humans [34, 39]. 
Moreover, false positives are also the problem 
that will affect the result of editome detection. 
They usually occur close to the start or end of 
reads while true positives do not show this posi-
tional bias [40]. They are often caused by techni-
cal artifacts such as reverse transcription errors or 
[41] caused by random hexamer used in the pro-
cess of library preparation [42].

There are several ways to avoid such problems 
and to identify RNA editing sites accurately. 
Firstly, it is suggested to set quality control filters 
when perform data analysis and to filter out mis-
matches in the first six base pairs of each sequenc-
ing reads and the mismatches in introns which 
locate closely to the intron-exon boundary since 
many reads in such region are always mismapped 
onto processed pseudogenes or the reads ends are 
mismapped into adjacent introns [43]. For exam-

ple, a software package, RES-Scanner, removes 
sites in homopolymer runs of five or more base 
pairs to avoid sequencing errors which has been 
validated its precision [44]. Another software 
package, REDItools, has also implemented a vari-
ety of filters to overcome the problem of sequenc-
ing biases [45]. However, currently most pipelines 
use ad hoc filtering methods to avoid this prob-
lem, they still cannot remove all false positive 
calls which still need to be further explored [46]. 
Secondly, it is recommended to further verify the 
correct alignment of mismatched reads through a 
highly sensitive aligner such as BLAT, a BLAST-
like alignment tool with a basically different algo-
rithm from most short- read aligners [47]. Through 
BLAT, it will realign all the reads which support 
RNA editing and then the reads are defined as 
qualifying reads [44]. Thirdly, to solve the posi-
tion bias problem, a new software package, 
JACUSA, which is based on the JAVA framework 
for accurate SNV assessment, is developed to 
detect the position-specific editing events in both 
RNA-DNA or RNA-RNA comparisons [40]. 
Finally, since the existence of copy number varia-

� set quality 
control filters

� verify the alignment reads
� BLAT

� Main database
DARNED – sequence based 
RADAR – annotation based
� New database
REDIportal      miR-EdiTar
RNA-eXpress   dbRES
miRME ExpEdit
PREPACT           GOBASESequencing Data analysis 

Library
preparation

Whole
transcriptome
sequencing

Deep
sequencing

depth

Quality control

Read mapping

Identification
of editing sites

Fig. 13.2 Detection flow of RNA editing
The direct detection flow to identify RNA editing sites is 
to compare both genomic and transcriptomic sequencing 
data from the same sample to separately call mismatches 
in both data and finally identify the RNA specific variant. 
RNA-seq and deep sequencing depth is recommended 
during the sequencing method choose. Data analysis steps 

include setting quality control filters, verification of reads 
mapping alignment and identification of editing sites. 
BLAT is recommended as a highly sensitive aligner tool 
while DARNED and RADAR are recommended as two 
main databases of RNA editing, as well as some new ones 
specific on the special fields
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tion, it is recommended to discard candidate edit-
ing sites with DNA read depths twice more than 
the peak or mean depth [44].

13.3.3  Database and Software 
of RNA Editing

DARNED and RADAR are the two main data-
bases of RNA editing. They both allow people to 
search and identify RNA editing sites in a spe-
cific genomic location or gene. DARNED is fea-
tured on sequence based searches and dbSNP 
identifiers while RADAR is featured on annota-
tion based searches including genic location, 
repetitive elements and editing conservation [48, 
49]. Recently, there are many new databases 
emerged. REDIportal is a new and comprehen-
sive database of A-to-I RNA editing in humans 
[50]. Samely, miR-EdiTar is also a databased 
focusing on A-to-I editing, but specific at miRNA 
binding sites. miRME is also specifically focus 
on miRNA editing sites using a progressive 
sequence alignment approach [51]. dbRES is a 
database contains known RNA editing sites 
curated from the literature and GenBank. RNA- 
eXpress and ExpEdit offer the function of anno-
tate RNA editing prediction for RNA-seq data. 
PREPACT and GOBASE offer the interface for 
RNA editing data of mitochondrion and 
chloroplast- encoded sequences [22]. All these 
databases are aiming at helping to search editing 
sites which may have biological and functional 
significances.

13.3.4  Future Direction

On one hand, in the experimental field, sing cell 
RNA editing can be a hotspot in the future. 
Recently, a study has successfully demonstrated 
genome-wide A-to-I RNA editing at single cell 
level which implicated that single cell RNA edit-
ing research will be a powerful future direction 
[52]. On the other hand, introducing machine 
learning into the analysis of RNA editing is the 
field needs to be further explored. RED-ML, a 
software tool based on machine learning, has 

been developed to detect RNA editing sites. It 
can allow people to input even a single BAM file 
which makes it very simple to use [53]. 
Establishing joint models with machine learning 
on RNA editing analysis will be a promising 
direction in the future research.

13.4  Application of RNA Editing 
in Cancer

RNA editing will lead to post-transcriptional 
modification and may vary over time and tumor 
stage which make it potentially been related with 
the process of carcinogenesis [54]. Over-editing 
may cause some important proteins to change or 
lose their functions in specific tissues while nor-
mal ones do not get edited, thus it has been 
proved to be related with many cancers such as 
hepatocellular carcinoma, prostate cancer, breast 
cancer, colorectal cancer and lung cancer [55–
59], especially in the occurrence of A-to-I editing 
[60]. For example, A-to-I RNA editing in colorec-
tal cancer will cause N136S amino acid change in 
RHQQ which will increase the enzyme activity 
of RhoQ GTPase, thus increasing cancer invasion 
potential and cancer recurrence [57]. Here we 
will discuss some studies of the roles of RNA 
editing in some cancers (Fig. 13.3).

13.4.1  Lung Cancer

From analyzing RNA editing results, more RNA 
editing sites were found in tumors than in normal 
adjacent tissues in lung cancer patients. Among 
them, most RNA editing which modulated splic-
ing, RNA structure and gene expression occurred 
in non-coding regions, especially in introns and 
UTRs. Editing in UTRs will result in differential 
gene expression because UTRs contain binding 
sites for regulatory proteins and microRNAs. 
Moreover, hyper-edited genes which may pro-
mote metastasis were also discovered though 
comparing RNA editome of tissue samples from 
both primary and metastatic lung cancer patients 
[61]. For example, ADAR1 has been reported to 
be significantly higher in lung adenocarcinoma 
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[54] and proved to have the effect in downstream 
RNA editing patterns. Overexpression of ADAR1 
will increase the editing frequencies of target 
transcripts such as miR-381 and NEIL1. 
Moreover, overexpression of ADAR1 will affect 
the patient prognosis in non-small-cell lung can-
cer [62]. APOBEC1 has also been detected in 
high levels in lung cancer patients. However, the 
question that whether the C-to-U editing arises 
during tumor formation or arises as the response 
to tumor has to be further studies [63].

13.4.2  Hepatocellular Carcinoma

Up regulated ADAR1 in HCC has been found to 
be related with the increased expression of down-

stream oncogenic proteins, postoperative recur-
rence and poor prognosis [64]. High expression of 
ADAR1 can edit and stabilize the mRNA of anti-
enzyme inhibitor 1 (AZIN1) which will cause 
S367G amino acid substitution. S367G RNA edit-
ing site of AZIN1 is related with conformational 
change of the protein and the protein affinity with 
antizyme which will further prevent the ubiquitin-
independent degradation of ornithine decarboxyl-
ase and cyclin D1, finally result in the cell 
proliferation. So, it is suggested that higher level 
of AZIN1 editing may be a potential marker in 
cancer diagnosis and impact cancer therapies 
[55]. Moreover, edited AZIN1 has recently been 
found to be related with the high drug resistance 
of an IGF-1R inhibitor, BMS536924 and IC50 
value of many chemotherapy agents such as topo-

Fig. 13.3 Application of RNA editing in cancer
RNA editing will lead to post- transcriptional modification 
and may vary over time and tumor stage which make it 
potentially been related with the process of carcinogene-
sis. Overexpression of ADARs or APOBECs will increase 
the editing frequencies of target transcripts in tumors and 

over- editing may cause some important proteins to change 
or lose their functions. Thus, RNA editing may regulate 
the sensitivity of tumor cells to the drugs and affect the 
prognosis and cancer recurrence which we should further 
studied to explore its role in cancer diagnosis and 
treatment
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tecan, paclitaxel and irinotecan [65]. These results 
suggest that RNA editing may regulate the sensi-
tivity of tumor cells to the drugs. ADAR2 can also 
elevate in HCC and mediate pre-miR-214 RNA 
editing that will cause the decrease of mature 
miR-214 and increase its downstream target 
Rab15 which is an important member of RAS 
oncogene family [65]. Moreover, APOBEC trans-
gene expression in the liver was also reported to 
be the driver of HCC [66].

13.4.3  Melanoma

In melanoma, an aggressive skin cancer, ADAR1 
has been found to have the ability to inhibit tumor 
growth and metastasis. ADAR1 mediated RNA 
editing could decrease the mature number of pri- 
miR- 455 and increase the levels of its target, the 
tumor suppressor, cytoplasmic polyadenylation 
element-binding protein 1 (CPEB1) in cancer 
progression [67] (Fig. 13.4).

13.4.4  Prostate Cancer

Prostate cancer antigen 3 (PCA3) is an antisense 
intronic long noncoding RNA which is the most 
specific prostate cancer biomarker. PCA3 can 
control PRUNE2 levels through RNA editing via 
ADARs in prostate cancer. However, PCA3 and 
PRUNE2 have opposite effects on tumor growth. 
PCA3 may play a dominant-negative role in 
prostate cancer while PRUN32 may act as a sup-
pressor role [68].

13.4.5  Breast Cancer

APOBEC1, which belongs to APOBEC cytidine 
deaminase and can convert cytosine to uracil dur-
ing RNA editing, has recently been reported to be 
related with many cancers through NGS [69]. For 
example, the high level of APOBEC mutation 
was related with high level of HER2E subtype in 
breast cancer, which suggested that it was signifi-

Fig. 13.4 ADAR1 mediated RNA editing in HCC
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cantly linked with cancer development [70]. 
Moreover, reduced RNA editing of GABRA3 has 
been reported to have the ability to promote 
tumor progression, invasion and metastatic 
potential [71].

13.4.6  Glioblastoma

As the A-to-I editing of glutamate receptor sub-
unit B is good to glioblastoma, A-to-I editing of 
miR-376a in glioblastoma has also been reported 
to have the ability to suppress the migration and 
invasiveness of glioblastoma [60]. It is edited by 
ADAR2, but the editing is reduced in glioblas-
toma. So, the number of non-edited miR-376a 
will increase which will finally suppress RAP2A, 
an important member of RAS family [72]. 
Moreover, ADAR2 mediated onco-miRNAs such 
as pri-miR-21 and pri-miR-221/222 can also con-
tribute to the reduced number of mature miRNA 
level [73]. However, reduced RNA editing of 
AMPA receptor component GluR2 will increase 
the potential of tumor cell proliferation and can-
cer invasion [74]. All these findings indicated that 
RNA editing may contribute to cancer progres-
sion whether it was up-regulated or down- 
regulated. There is an urgent need to identify and 
development of biology-specific biomarkers to 
dynamically monitor the outcome of RNA edit-
ing in the in vitro and in vivo systems [75–79].

13.5  Conclusion

Nowadays, transcriptomics studies mainly focus 
on three aspects, the RNA species (mRNA and 
non-coding RNA), the RNA structure (start sites, 
splicing patterns and post-transcriptional pro-
cess) and the expression levels of RNA. Among 
them, the RNA structure research tool, RNA edit-
ing, remains the least popular one which we still 
have more to explore on the role of it in cancer 
research [28]. RNA editing enzymes such as 
ADARs and APOBECs are all promising targets 
in cancer therapeutic strategy. Here we listed sev-
eral examples of RNA editing studies in some 
cancers. However, their pathways are differen-

tially regulated in cancers which should be fur-
ther clearly studied. The best tool to study RNA 
editing is NGS. Here, we also discussed the chal-
lenges and the possible ways to overcome them. 
We are sure to believe that RNA editing per-
formed by NGS has the ability in studying tran-
scriptomes, even at single cell level. It will be 
sure to help a lot in cancer diagnosis and treat-
ment in the near future.
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Is Pooled CRISPR-Screening 
the Dawn of a New Era 
for Functional Genomics

Jufang Yao and Hui-Li Dai

Abstract
Functional genomics aims to develop an in- 
depth understanding of how specific gene dys-
functions are related to diseases. A common 
method for investigating the genome and its 
complex functions is via perturbation of the 
interactions between the DNA, RNA and their 
protein respective protein derivatives. 
Commonly, arrayed and pooled genetic 
screens are utilized to achieve this and in 
recent years have been fundamental in achiev-
ing the current level of understanding for gene 
dysfunctions. However, they are limited in 
specific aspects which scientists have 
attempted to address. Clustered regularly pal-
indromic repeats (CRISPR)-based methods 
for genetic screens have in recent years 
become more prevalent but crucially shared 
similar properties to previous methods and 
failing to provide a distinct advantage over 
previous methods. CROP-seq, Perturb-seq, 
and CRISPR-seq have combined CRISPR and 
single-cell RNA-sequencing (scRNA-seq) and 
is the newest addition to the geneticist’s arse-
nal, providing scientists with methods to edit 
DNA with improved speed, accuracy, and effi-

ciency which could usher us into a new era of 
study methods for functional genomics. We 
briefly overview the CRISPR-Cas9 systems, 
the evolution of genetic screening in recent 
years, and evaluate and discuss the signifi-
cance of CROP-seq, Perturb-seq, and 
CRISPR-seq.

Keywords
CRISPR · Genomics · Gene editing · 
Screening · Single cell

14.1  Introduction

Various tools are available to investigate and 
explore complex biological processes such as the 
cellular circuit involved in immune cell genera-
tion and diversification. Throughout recent years 
genetic screening, is often utilized to analyse 
mammalian gene functions in a systematic way. 
Studies covering phenotypes and genotypes of 
humans have extensively been carried out, yet 
little is understood regarding the complex mecha-
nisms linking phenotypic expression to specific 
genotypes. The lack of results is associated with 
a variety of reasons such as unreliable readouts, 
costs, excessive workload and lack of optimal 
analysing methods.

The clustered regularly palindromic repeats 
(CRISPR)-Cas9 systems are more efficient in 
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comparison to older methods, such as zinc finger 
and transcription activator-like effector (TALEN) 
due to its efficiency in assembling new test pro-
tein samples which has been a major contributor 
in its establishment as a key method in function 
genomics [1]. The specificity of the system is 
dependent on the marker sgRNA resulting in a 
dependence on the innate properties of the tested 
sgRNA. Thus, the results are potentially unreli-
able as sgRNAs either express high specificity to 
a target site but also provide hundreds of off- 
target sites. A major challenge is to identify the 
optimal sgRNAs required for a study which will 
target the specific target sites required resulting 
in high expression activity while simultaneously 
ignoring unwanted off-target effects. In addition, 
multiple Cas9 endonucleases alterations are irre-
versible at off-targets and can cause harmful del-
eterious effects, highlighting the importance of 
high specificity with low off-targets. Some scien-
tists argue that even a single off-target effect 
could potentially be excessively detrimental as it 
can permanently alter the genome.

Four recently published studies [2–5] merges 
two methods, CRISPR-Cas9 and single-cell 
sequencing, by utilizing individual cells as plat-
forms for perturbations which addresses various 
limitations that currently exist in screening 
approaches. This chapter aims to provide a 
framework on how these methods handle draw-
backs frequently associated with CRISPR-Cas9 
and what implications this means for future ther-
apeutic applications.

14.2  CRISPR-Cas9 Structure 
and Function

Classification is dependent on the Cas protein 
with three main categories, type I-Cas3, type 
II-Cas9, and type III-Cas10. The CRISPR-Cas9 
system is commonly referred to type II, derived 
from Streptococcus pyogenes, and was first 
implemented in mammalian cells by various 

groups [6]. Cas9 is a large multifunctional pro-
tein and is vital in the defence against viral patho-
gens. In contrast to TALENs and ZFNs, 
CRISPR-Cas9 does not require the modification 
of individual target sites to be specifically engi-
neered. The system, consisting of a CRISPR 
RNA, Cas9, and a single guide RNA (sgRNA) 
has two key features, the nucleotide sequence 
present at 5′ end which through using the funda-
mentals of Watson-Crick base pairing enables the 
targeting of DNA sites and a double strand struc-
ture which binds to Cas9 at the 3′ end5. Thus, 
CRISPR-Cas9 system only requires a modifica-
tion in the guide RNA sequence, resulting in a 
much more efficient and optimal process as it can 
cleave specific targets, resulting in DNA double- 
strand breaking (DSB), which can then be 
repaired via non-homologous end joining (NHEJ) 
and homology-directed recombination, prevent-
ing cell death. The protospacer adjacent motif 
(PAM) is a sequence motif beside the target 
sequence and is crucial for initial DNA binding, 
absence of PAM results in the inability to identify 
targeting sequences by the Cas9 [7, 8]. In addi-
tion, catalytically dead Cas9 (dCas9) has a versa-
tile use, as it is acts as a DNA-binding platform 
that can be reprogrammed for applications such 
as transcriptional activation (CRISPRa) [9] or 
transcriptional repression (CRISPRi) [10]. High 
throughput screening followed by chromatin 
immunoprecipitation (ChIP-seq) was carried out 
by multiple groups to determine the binding 
specificity of dCas9  in the whole genome [11, 
12], as nuclease activity is not present in dCas9 
regulators. The results showed that the highest 
intensity binding was experienced at the targeted 
site, however varying amounts of less-intense 
bindings were noted at off-targeted sites, possi-
bly due to the off-target sites having motifs simi-
lar to PAM proximal target sequences. The 
ChIP-seq results highlighted the binding of 
dCas9 to targeted genomic sites with transient 
binding to other regions that express a similar 
PAM sequence.
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14.3  History of Genetic Screening 
and Integration of Single- 
Cell with CRISPR-Cas9

RNA interference (RNAi) genetic screening was 
initially used by the cleavage of complementary 
mRNAs by an exogenous RNA. This process was 
triggered by activating an endogenous pathway 
via the introduction of a 21-nucleotide double 
stranded RNA sequence resulting in protein acti-
vation of the Argonaut family ultimately result-
ing in the degradation of the cleaved 
mRNA. Throughout the years effective knockout 
methods have been developed and optimized and 
the technique has been considerably successful 
[13]. However, RNAi results were difficult to 
interpret due to the high possibility of off-target 
effects which, although widely accepted could 
result in faulty conclusions as they relied on a 
single RNA sequence to act as a surrogate for a 
specific gene [14–16]. Thus, multiple trials were 
mandatory using different sequences which tar-
geted the specific gene and the same phenotype 
as previous trials. This issue, remains even in 
CRISPR-Cas9 screening resulting in a time con-
suming and costly process [17, 18].

CRISPR is frequently utilized simultaneously 
with a genetic screen to identify abnormal mam-
malian gene functions to alter. These screens, are 
separated into two categories; arrayed, where the 
perturbations are delivered to each individual cell 
and then observed and noted individually or, 
pooled, where the perturbations are delivered to 
the whole cell group allowing screening of large 
amounts of parallel perturbations in a single sam-
ple population. Arrayed preparations offer 
detailed high-resolution phenotype imaging 
including protein and transcriptional-based mea-
surements. Limitations of arrayed platforms 
include the requirement of access to robolytics, 
its high costs, and that it’s significantly more 
labour intensive. Additionally, it also requires a 
large sample pool of cells to analyse, limiting the 
cell types to cells that can propogate in vitro. 
Pooled readouts often measure a larger variety of 
parameters such as biomarker expression and 
drug resistances while benefiting from better 
scaling and efficiency, however due to the has 

poor content readouts and are unable to achieve 
high quality phenotype readout. In many cases 
further specifications are required after the initial 
screen to develop reliable results, which are then 
required to be re-validated due to the frequency 
of false positive results. Identifying and pinpoint-
ing the specific molecular mechanisms that result 
in desirable phenotypes can be difficult and time- 
consuming. Single-cell analyses are optimal 
when analysing individual cells at a molecular 
resolution which bulk sequencing measurements 
were unable to achieve. However, due to the time 
consuming and expensive process many scien-
tists opted for other methods due to efficiency.

The creation of pooled libraries with large 
amounts of perturbations allowed a new avenue 
for genetic screening resulting in cheaper and 
more results produced which addressed two 
major limitations of RNAi and CRISPR-Cas9 
screening at the expense of depth. CRISPR-Cas9 
screening were first suggested by two reports [19, 
20] and investigated biological pathways which 
were already well established from previous 
investigations using RNAi. Wang et al. created a 
library with approximately 7000 human genes 
with each gene consisting with a multitude of 
sgRNAs. Their aim was to identify specific parts 
of an altered repair pathway that causes death in 
KBM7 cell lines by using the purine analogue 
6-thioguanine. The results highlighted the effi-
cacy of CRISPR methods where the predicted 
sgRNAs targeted expected genes. Shalem et al. 
approach was to investigate the vemurafenib 
resistance using a genome-wide library. Multiple 
genes were identified to contribute to vemu-
rafenib resistance such as NF1, MED12, NF2, or 
others [21, 22]. Crucially this investigation dem-
onstrated reduced false-positive rates using 
CRISPR methods instead of shRNA screens as 
an increased fraction of perturbations were iden-
tified to target the same gene. Further studies 
integrated the use of dCas9 via CRISPRa or 
CRISPRi instead of inactivating genes through 
indels and DSBs which can either examine 
spliced isoforms through endogenous transcript 
level modulation by generating knockdowns or 
creating phenotypes identical to RNAi studies 
resulting in more detailed data if required to 
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 identify the extents of phenotypic effects in con-
trast to just complete loss of function.

14.4  Integration of Single-Cell 
and CRISPR

CROP-seq, PERTURB-seq, and CRISP-seq [2–
5] can simultaneously read the perturbation and 
phenotype of investigated cells. Thus, it can be 
used to derive large amounts of parallel genetic 
perturbations from a single sample via single cell 
RNA sequencing (scRNA-seq) readouts. 
Crucially, the entire transcriptome is recorded in 
comparison to just measuring cell survival result-
ing in accurate estimates of initial points to anal-
yse interaction between function and gene in 
cells. These methods addressed the fundamental 
issue of how expression of sgRNA via the U6 
promotor of an RNA polymerase III is unable to 
be read via the scRNA-seq methods as a required 
poly (A) tail does not exist on sgRNA. The pro-
posed method was to generate vectors that are 
carriers for Pol III:sgRNA and a Pol II-driven 
marker that is selectable or fluorescent where a 
specific sgRNA sequence is included in the 3′ 
UTR.  CROP-seq utilizes a unique solution in 
comparison to PERTURB-seq and CRISP-seq 
which are reliant on pre-generated libraries using 
arrayed cloning which links specific sgRNAs to 
its respective expressed guide barcode (GBC) 
that was perturbed in the transcript. CROP-seq 
places the Pol III:sgRNA cassette into a reporter 
transcript and deposited in the lentiviral vector 
which undergoes duplication in the viral integra-
tion phase. This solution is important for CROP- 
seq compatibility with established sgRNA 
libraries for future use in pooled CRISPR screens. 
Additionally, perturbations in complex cell popu-
lations and cells which were unable to be cul-
tured could be used in a reporter-free screen and 
identification of many perturbations were possi-
ble within each cell. Full transcriptome sequenc-
ing in CRISP-seq crucially produces an assay 
that does not rely on biomarkers and can record a 
spectrum of phenotypes. The assay is potentially 
applicable in both CRISPRi and CRISPRa and 
highlights the flexibility of the CRISPR-CAS9 

system. Adamson et al. and Dixit et al. both dem-
onstrated the scalability of using CRISPRi by tar-
geting libraries which contained approximately 
18,900 genes and over 200,000 individual cells 
respectively. These methods could play a pivotal 
role in the understanding of complex mecha-
nisms not only limited to the genome but also 
drug toxicology. Currently, the mechanisms of 
drug resistances, toxicity and side-effects are not 
fully understood and these methods could pro-
vide an important alternative to the methods we 
are currently performing. One potential applica-
tion is the use of CRISP-seq in the probing of 
regulatory circuits within host genes that are 
responsible for drug responses which could high-
light the interactions between drugs and genes 
[23].

A few important obstacles remain to be 
addressed, although a number of discussions 
have occurred [24–30]. Although Perturb-seq 
could be increased to a genome-scale the costs 
would steeply increase. Further optimization and 
maturation of this method is required to reduce 
the costs for individual cells and to remove un- 
relevant genes that are abundant. Additionally, 
the generation of intrinsically noisy data in these 
methods is another obstacle, while efforts have 
been made to circumvent this, such as decou-
pling UPR branches, predicting potential inter-
actions between gene expression its effects, etc. 
it will need to be addressed prior to larger scal-
ing. As cell-autonomous processes are the only 
informative phenotype that these methods can 
study due to inherent limitations, other processes 
such as stem cell differentiation would still rely 
on other methods such as bulk arrayed screens. 
Finally, a reliable way to identify successful per-
turbations in target sites is required due to the 
inability for these methods to identify the action 
of sgRNAs.

14.5  Conclusion and Future 
Perspective

CROP-seq, PERTURB-seq, and CRISP-seq are 
promising new methods to unravel the mysteries 
within the genome. However, these methods are 
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in their infancy and further optimisation and 
research are required to understand its full poten-
tial and to achieve optimal results. Mutations and 
gene changes are pivotal in developing resis-
tances to drugs and thus crucial to understand. In 
tandem with these techniques, pooled screening 
can be useful to investigate the regulatory mecha-
nisms for cell responses to stimulus, identifying 
host factors that are responsible for viral and bac-
terial protection, and could contribute further to 
our understanding in molecular mechanisms such 
as side-effects of drugs and toxicology. 
Limitations including the restriction of pheno-
type selection to cell-autonomous processes, the 
challenge of verifying and confirming disrup-
tions in gene function, and high costs are points 
that need to be addressed and solved however it is 
undeniable that CROP-seq, PERTURB-seq, and 
CRISP-seq are simple but exciting methods that 
could change the landscape of functional 
genomics.
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Abstract
Single cell sequencing is important to detect 
the gene heterogeneity between cells, as the 
part of single-cell systems biology which com-
bines computational science, mathematical 
modelling and high-throughput technologies 
with biological function and organization in 
the cell. We initially arise the question how to 
integrate the outcomes of single-cell systems 
biology with clinical phenotype, interpret 
alterations of single-cell gene sequencing and 
function in patient response to therapies, and 
understand the significance of single-cell sys-
tems biology in the discovery and development 
of new molecular diagnostics and therapeutics. 
The present review furthermore focuses the 
significance of singe cell systems biology in 
respiratory diseases and calls the special atten-
tion from scientists who are working on single 
cell systems biology to improve the diagnosis 
and therapy for patients with lung diseases.

Keywords
Single cell · Lung · Cancer · COPD · 
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15.1  Introduction

Respiratory diseases currently attract the spe-
cial attention more than any time, due to the 
increasing incidence, morbidity, and mortality 
of the disease. Of those, lung cancer becomes 
the leading cause of mortality in multiple can-
cers and the number of new diagnostic lung 
cancer is still increasing [1–3]. The high inci-
dence of lung cancer is associated with a large 
number of risk factors, including viral infec-
tion, smoking, or chronic lung diseases [1, 3]. 
The potential transits from smoking into 
chronic lung diseases or from chronic lung dis-
eases into lung cancer are considered as one of 
important pathogeneses in the development of 
lung cancer, evidenced by the epidemiological 
findings that about 90% patients with chronic 
obstructive pulmonary diseases (COPD) and/or 
lung cancer had the long-term history of smok-
ing and about 80% of patients with lung cancer 
were accompanied with COPD [4]. Of those, 
genetic backgrounds and heterogeneity are the 
most important factors to be considered and 
explored, since the small population of smok-
ers or patients with COPD developed into lung 
cancer.
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Single cell RNA and DNA sequencing 
becomes a critical tool to detect the gene 
heterogeneity between cells, as the part of single-
cell systems biology which combines 
computational science, mathematical modelling 
and high- throughput technologies with biological 
function and organization in the cell [5]. We 
initially arise the question how to integrate the 
outcomes of single-cell systems biology with 
clinical phenotype, interpret alterations of single-
cell gene sequencing and function in patient 
response to therapies, and understand the 
significance of single- cell systems biology in the 
discovery and development of new molecular 
diagnostics and therapeutics [5]. The present 
review furthermore focuses the significance of 
singe cell systems biology in respiratory diseases 
and calls the special attention from scientists who 
are working on single cell systems biology to 
improve the diagnosis and therapy for patients 
with lung diseases.

15.2  Deep Understanding 
of Single Cell Systems 
Biology

Single cell systems biology is an emerging and 
exploratory science to understand the single cell 
from multi-directional aspects, including gene 
expression and sequencing, signal functioning, 
metabolism, proteomic profiling, imaging, and 
computational model. Single cell systems biol-
ogy provides a full picture of the single cell phe-
notypes and multi-dimensional, multi-layer, 
multi-crossing and stereoscopic single-cell biol-
ogy to deeply understand pathophysiological 
roles of each cell in the initiation and progression 
of the disease [5]. It may be difficult for clini-
cians to define and differ the concepts of single 
cell sequencing, biology, systems biology, and 
biomedicine and clarify the values of single cell 
systems biology in clinical practice.

One of the important elements in single cell 
systems biology is to figure out the “single-cell 
dynamic phenotypes”, which was defined as 
time-dependent observable characteristics of sin-
gle cells, e.g., morphology, biological properties, 

bio-behaviors, genetic changes, and productions 
[6]. The alterations of single-cell dynamic pheno-
types in the disease may contribute to disease 
pathological categories, progression, constraints, 
and mutations. The single cell dynamic pheno-
types can be measured and monitored in multiple 
aspects according to cell function and morphol-
ogy. Lawson et al. investigated the genotypes for 
individual cells in situ after a detailed character-
ization of the phenotype by establishing the scale 
of pool-generated strain libraries [7]. Using 
single- molecule fluorescence time-lapse imag-
ing, it is possible to monitor the roles of regula-
tory or coding sequences in the temporal 
expression, location, or function of a gene prod-
uct, and in intracellular dynamics of a labeled 
reporter. Single-molecule imaging in single cells 
can trace intra-single-cell molecule expression, 
signal interactions, and locations. Liu et  al. 
described a new approach to image dynamics of 
synaptic vesicle transport polarity and transcrip-
tion factor hops between clustered binding sites 
in spatially restricted subnuclear regions [8]. It 
will be more important than those observations to 
understand molecular mechanisms by which sin-
gle cell dynamic phenotypes are initiated, 
formed, and influenced by various 
microenvironments.

Changes of single cell genome and sequences 
are also one of critical dynamic phenotypes, and 
vary with cell microenvironments, e.g. the forma-
tion of gene heterogeneity and mutations. Single 
cell dynamic phenotypes can be the characters of 
organ dysfunction in the disease and have the 
specificity of organ and diseases. We speculate 
that single epithelial dynamic phenotypes vary 
among trachea, bronchia, small airways, and ter-
minal airways, alter after the stimulations of dif-
ferent pathogens (e.g. antigen, bacteria, virus, or 
toxins), and are controlled by various patholo-
gies. We demonstrated that epithelial proteomic 
profiles can be changed in different conditions 
and vary with organ-, tissue-, type-, and function- 
specific patterns [9]. Although the similarities 
and differences of epithelial proteomics between 
different cells, locations, and diseases were dis-
cussed, the difference between cells in the same 
location and disease should be further investi-
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gated. It will be more important if the single epi-
thelial systems biology can be integrated with 
clinical questions, e.g., disease severity, duration, 
stage, subtypes, and response to therapy.

Figure 15.1 emphasizes the importance of 
single cell systems biology in clinical practice by 
establishing the theory of single cell systems 
biology and evaluate methods applicable for clin-
ical needs and creating the new platforms to mea-
sure biological functions and morphology for 
single cell research and development. We evalu-
ated a number of methods to isolate single cells 
and tried to find the applicability and efficiency 
of single cell isolation more suitable for clinical 
measurement [10–12]. There are a number of 
major obstacles to be overcome, e.g. the com-
plexity of single cell isolation and purification 
processes, high cost of materials per sample, 
identification of targeted cells, and the repeatabil-
ity of single cell analyses. Multi-directional anal-
yses of single cell systems biology mainly contain 
four aspects: (1) single cell gene mutation, 
sequencing, and molecular category, (2) single 

cell molecular imaging, image omics, image 
informatics, and image database, (3) single cell 
sensitivity and response to drug efficacy and 
resistance, and (4) single cell proteomics, analy-
sis and network of peptide and protein profiles. 
We specially emphasize the association of single 
cell systems biology with disease severity, dura-
tion, stage, subtypes, and response to therapy, 
and believe that single cell systems biology will 
bring more values in the application for Chronic 
lung injury, inflammation, allergy, fibrosis, dis-
eases, and secondary multiple organ dysfunction 
(Fig. 15.1).

15.3  Comprehensive Pulmonary 
Single Cell Gene Expression 
and Sequencing

Single-cell gene expression and sequencing 
become more recognized parameters to describe 
intercellular heterogeneity, phenotypes, genealo-
gies, somatic mosaicism, microbes, and disease 

Single cell
Establish the theory
of single cell
systems biology and
evaluate methods
applicable

Establish the
platform to measure
biological functions
and morphology for
single cell research
and development

Lasa
microdissection

Cytoflowmetric
sorting

Microfluidic
isolation

Manual single
cell selection Single cell proteomics

Peptide and protein
analysis and network

Single cell sensitivity
and response to drug
efficacy and resistance

Single cell molecular
imaging, image omics,
image informatics,
image database

Single cell gene
mutation, sequencing,
molecular category

Disease severity, duration, stage,
subtypes, and response to therapy

Integrated with
Chronic lung injury,
inflammation, allergy, fibrosis,
diseases, and secondary
multiple organ dysfunction

Fig. 15.1 The importance of single cell systems biology 
in clinical practice. The first step is to establish the theory 
of single cell systems biology and the platform to measure 
biological functions and morphology for single cell 
research and development. It is important to establish 
methods of single cell preparations applicable for clinical 

needs using different technologies. Isolated single cells 
can be used to measure single cell genomes, proteomics, 
image omics, and cell sensitivity to drugs. Values of single 
cell systems biology should be integrated with clinical 
phenotypes to investigate molecular mechanisms of lung 
diseases
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development, including single-cell DNA genome 
sequencing, DNA methylome sequencing, and 
RNA sequencing [13]. Of those, single-cell RNA 
sequencing (scRNA-seq) demonstrates transcrip-
tomic cell-to-cell variation, new cell types, devel-
opmental processes, transcriptional stochasticity, 
transcriptome plasticity, and genome evolution 
[10]. Treutlein et  al. primarily investigated the 
developmental and cellular hierarchy of the distal 
mouse lung epithelium using microfluidic 
scRNA-seq and classified cells into distinct 
groups using an unbiased genome-wide approach 
[17]. This is one of the pioneering studies to 
define the pulmonary epithelial differentiation 
and hierarchy by the principal component 
 analysis of single cell transcriptomes and find 
five different cell populations and four different 
gene families. By comparing with epithelial cell 
known marker genes within the different clusters 
and correlating with previously reported epithe-
lial cell type markers, Treutlein et al. suggested 
the intermediate population transitioning between 
the two alveolar lineages or a population of bipo-
tential alveolar progenitors [17], although there is 
a need to be furthermore confirmed and validated 
in a large size of clinical samples.

Lung cancer heterogeneity is recently pro-
posed as the critical clue to design and select the 
strategy of individualized therapies and re-define 
molecular category of tumor pathology for preci-
sion medicine therapies [18]. scRNA-seq is used 
for the detection of tumor heterogeneity Kim 
et  al. applied scRNA-seq to measure the intra- 
tumoral genetic heterogeneity, single-cell hetero-
geneity of expressed single-nucleotide variants, 
and cell subgroups of lung adenocarcinoma in 
the model of patient-derived xenograft, which 
was established with harvested and seeded tumor 
cells from surgically resected patient tumor tis-
sue [14]. This is one of the early outstanding 
studies on the commonest pathological subtype 
of non-small cell lung cancer. While, the major 
concern is whether the gene sequencing of lung 
cancer cells may be changed during the modeling 
where patient cancer cells grew within the animal 
system and during the cell culture of harvested 
cells from patient-derived xenograft. Dynamic 
gene heterogeneity is developing with inherent or 

environmental changes and involved in the evolu-
tionary framework of tumor development with 
large-scale genomic alterations. The role of 
clonal heterogeneity in tumor evolution to drive 
tumor evolution and metastasis can be influenced 
by the immune microenvironment where the cell 
lives [15]. In clinical situations, the heterogeneity 
of cancer cell microenvironments between 
patients, primary and metastasis, locations, as 
well as therapies can also influence single-cell 
dynamic phenotypes of gene expression and 
sequencing. Targeted or non-targeted drugs per 
se can alter the microenvironment directly or 
indirectly to achieve pharmacological effects, 
leading to the occurrence of somatic gene muta-
tions and changes of cell susceptibility to therapy. 
This is one of potential mechanisms by which the 
drug resistance develops during therapies.

In addition, scRNA-seq plays an important 
role in the detection of drug-associated mutations 
and specificity of targeted genes as well as drug- 
sensitive or drug-resistant heterogeneity between 
cells treated with targeting drugs. By comparing 
alterations of single-cell gene expression and 
sequencing, we can measure molecular mecha-
nisms, drug efficacy and toxicity of identified 
core/driver genes and networks, to interpret the 
correlation of scRNA-seq findings with cell 
response, interaction, and phenotype. Suzuki 
et  al. measured the transcriptome profiles and 
features of each cell responds to a molecularly 
targeted drug and the difference between parental 
cells and cells acquired drug resistance in lung 
adenocarcinoma-derived cell lines, by construct-
ing and screening single-cell RNA-Seq libraries 
[19]. After then, the fusion gene transcript of 
major driver genes for carcinogenesis was further 
explored to identify a subclone of cells acquired 
resistance to vandetanib.

15.4  Single Cell Measurements 
in Lung Injury

Single cell analyses are applied for the heteroge-
neity between cells within the cancer tissue or in 
blood cancers, which contain multiple subclones 
or distinct clonal expansions, different from 
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known or detected categories [21]. Single cell 
analysis-detected intra- or inter-clonal heteroge-
neity not only occurs in cancer cells, but also in 
other diseases. Thus, Chu et  al. called special 
attentions of clinicians and clinical researchers to 
the clinical application of single cell analysis 
[21]. For example, the process of epithelial cell 
repair and regeneration plays important roles in 
the development and recovery of acute and 
chronic lung injury by acting as the primary 
acceptor of the initial pathogens stimuli, while as 
the secondary activator to initiate the inflamma-
tory reactions in/from other cells by producing 
the mediators and modulators [22–24]. Vaughan 
et  al. applied single cell sequencing to define 
CC10− β4+ cells and rare Krt5-CreERT2-labeled 
cells, a subset of previously uncharacterized, rare 
lineage-negative epithelial stem/progenitor cells 
present within normal distal lung and found the 
enrichment of Myc, Klf4, pluripotency- associated 
transcription factors in the this population [24]. 
Of those, ΔNp63+ CC10− β4+ cells most closely 
related to the Krt5-traced cells also expressed 
cilia-associated genes and were activated through 
Notch signaling pathway, implying that distinct 
stem/progenitor cell pools may repopulate 
injured tissue and the outcomes of regeneration.

The airway remodeling, inflammation, alveo-
lar destruction, and fibrosis are considered as one 
of critical characters of pulmonary fibrosis, 
which is one of chronic lung diseases with high 
mortality and morbidity. Xu et al. defined the dis-
tinct epithelial cell types harvested from animals 
with idiopathic pulmonary fibrosis by the differ-
ence of gene expression by scRNA-seq analysis 
and tracked the process of airway epithelial cell 
metaplasia and new differentiation/evolution dur-
ing the repair of chronic lung injury [25]. Lung 
inflammation (e.g. leukocyte infiltration and 
over-production of inflammatory mediators), bar-
rier dysfunction (e.g. edema, exclusion), and tis-
sue injury (e.g. alveolar wall damage and repair) 
are the pathological features of acute and chronic 
lung injury. The epithelial repair is a consistent 
process in lung injury to heal the epithelial wound 
and recover the tissue damage, during which the 
epithelial cells can immigrate to the terminal and 
injured location as chemo-attracted, produce 

inflammatory mediators as activated, increase the 
number of cells as proliferated, and differentiate 
new types of epithelial cells as needed. Xu’s 
study demonstrated scRNA-seq can be a critical 
tool to identify epithelial cell types and associ-
ated biological processes involved in the patho-
genesis of pulmonary fibrosis [26]. It is no doubt 
that a number of subtype-specific and disease- 
specific biomarkers of epithelial cells can be 
identified by seRNAseq analyses, while it is a 
practical challenge to measure single epithelial 
cell profiles of patients with chronic lung dis-
eases due to the limit of clinical biopsies and eth-
ics as well as technical obstacles.

15.5  Pulmonary Single-Cell 
Multi-dimensions

In addition to scRNA-seq, a large number of cell 
function and morphology should be further 
explored at the single-cell level. For example, the 
surface damage of the cancer single-cell detected 
using the atomic force microscopy was used to 
show the drug toxicity [27]. It seems that the 
single- cell measurement can be used to clarify 
the individual cell response to drugs as a new 
angle of the efficacy and toxicity, although there 
is a question what the different responses of the 
cell are when it is a single, bulk solution, or inter-
cellular communication within the tissue. In 
order to overcome the limit and inconsistent data 
of genotoxic properties, the alkaline single-cell 
microgel-electrophoresis also named comet 
assay has been used to measure the DNA- 
damaging ability of drugs decades ago [28]. The 
ethoxyresorufin-O-deethylase (EROD) activity 
of cytochrome P450 (CYP)1A1 was measured 
using the microspectrofluorometric technique in 
single living cell [29].

With an increasing of lung single cell mea-
surements, a number of databases are established 
according to the categories of function and mor-
phology. Du et  al. developed a new web-based 
bioinformatics resource, named Lung Gene 
Expression iN Single-cell which is abbreviated 
as LungGENS [30], to investigate single-cell 
gene expression in the normal fetal mouse devel-
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oping lung. This is an initial lung-specific single 
cell scRNA-seq database and one of a few organ- 
specific single cell databases opening for deep 
minding of lung single-cell gene expressions by 
searching a gene symbol, name, or lung cell type. 
It is no doubt that LungGENS will be an impor-
tant tool to explore lung single cell function and 
differentiation and define lung cell types, gene 
signatures, gene-encoded proteins, and transcrip-
tion factors. On basis of LungGENS, Du et  al. 
furthermore developed Lung Gene Expression 
Analysis (LGEA) web portal as “an extended 
version of the LungGENS”, to investigate and 
discover lung cell types and the dynamic changes 
in gene expression during lung development and 
function from the special aspect of scRNA-seq 
[31]. By integrating LungGENS and developed 
analytic pipeline ‘SINCERA’ [32], LGEA con-
tains more comprehensive genomic and tran-
scriptomic data from multiple platforms 
generated from RNA-seq from single cells, puri-
fied cell populations and whole tissue. It will be 
more powerful if lung single cell genomics, pro-
teomics, metabolomics, and imaging can be inte-
grated with the clinical phenotypes from the 
same individual patients.

15.6  Pulmonary Single Cell Gene 
Editing

There is an increasing evidence that the single- 
cell gene editing can be a powerful tool to define 
the perturbation and phenotype of a cell, of which 
the clustered regularly interspaced short palin-
dromic repeats (CRISPR)/CRISPR associated 
(Cas9) screen by integrating scRNA-seq with 
CROP-seq, CRISP-seq, Perturb-seq, with 
CRISPR/Cas9 can be one of the outstanding 
examples for gene editing. Although there are 
still a number of restrictions of CRISPR for clini-
cal practice, CRISPR is considered as the power-
ful solution to open gene editing’s “Gordian 
knot” [34]. The integration of those “seq” can 
measure the large-scale perturbations and pheno-
types of a cell, as a single-cell CRISPR screen. 
Pooled CRISPR screening switches off multiple 
genes by introducing the Cas9 nuclease and sin-

gle guide RNAs into cells, to define function- and 
target-oriented genes in the biological process, 
sensitivity and resistance against drugs, and 
screening of therapeutic strategies [16, 35].

There is a growing number of CRISPR-based 
studies on lung diseases to validate the value of 
identified targets and cancer cell sensitivity to 
drugs. Guernet et  al. recently developed animal 
models of drug resistance in non-small cell lung 
cancer to epidermal growth factor receptor inhib-
itors by barcoding a specific sgRNA and a donor 
single-stranded DNA oligonucleotide with dif-
ferent genetic aberrations [36]. The high complex 
CRISPR-barcoding system per se is important 
and powerful to precisely target single specific 
cancer cells and identify even rare pre-existing 
resistant subclones. Such model can be applied 
for targeting drug screening and mechanism- 
based studies. Park et al. knocked down Gene 33 
coding an adaptor protein with multiple cellular 
functions using CRISPR/cas9 and measured sin-
gle lung epithelial cell RNA seq chronically 
exposed to a sublethal dose of hexavalent chro-
mium [37]. This particular study demonstrated 
CRISPR-delated Gene 33 cells had the low 
capacity of proliferation and increased migration, 
and revealed a number of different genes between 
Gene 33-positive and negative cells. However, 
scRNA-seq and single cell biomedicine should 
be more important to describe the heterogeneity 
between cells, while single cell with gene editing 
will provide even more information on target- 
driven mechanism and heterogeneity.

15.7  How Far Single Cell Systems 
Biology Is from Clinical 
and Translational Medicine

It is expected that single cell systems biology 
should have more positive impact to the under-
standing of disease pathogenesis, early diagnosis, 
responses to therapy, and prognosis of patients 
with chronic lung diseases, although a large num-
ber of challenges are to be faced in future treat-
ment regimens. Ellsworth et  al. recently 
overviewed the latest development of methodolo-
gies and recent technological advances associ-
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ated with single cell systems biology, and 
highlighted the knowledge of molecular hetero-
geneity at the genomic and transcriptomic levels 
of lung cancer clonal evolution and metastasis 
[20]. For example, gene editing by CRISPR-Cas9 
using Non-homologous end joining repair and 
Homology directed repair can be a potential to 
repair the DNA damage and treat gene-dependent 
diseases [38], although there are a number of 
obstacles to be broken through.

Tang and Shrager proposed a new concept 
named “personalized molecular surgical ther-
apy” that CRISPR/Cas-mediated genome editing 
can a new alternative to treat EGFR-mutant lung 
cancer [39]. The strategy of molecular surgery is 
designed on basis of the situation of target gene 
mutation, which is dependent upon the primary 
and secondary mutation, frequency, specificity, 
and length. “Molecular surgery” is proposed to 
edit target gene mutations in lung cancer cells 
using CRISPR/Cas9 through the design of 
single- guide RNA aiming the mutant sequences 
of target genes. Single cell CRISPR screening 
was proposed as one of the most powerful tools 
to evaluate the cell sensitivity and resistance to 
drugs [16], and single stem cell CRISPR can be 
a new alternative of therapies for genetic dis-
eases [40].

In conclusion, pulmonary single cell systems 
biology is a new concept to understand the single 
cell from multi-directional aspects, including 
gene expression and sequencing, signal function-
ing, metabolism, proteomic profiling, imaging, 
and computational model of lung cells and lung 
diseases. Of those emerging area, the pulmonary 
single-cell dynamic phenotype is an important 
form to present time-dependent characteristics of 
pulmonary single cells, e.g., morphology, bio-
logical properties, bio-behaviors, genetic 
changes, and productions. Pulmonary scRNA- 
seq and target gene editing can be used for iden-
tification and validation of lung disease-specific 
biomarkers at a system-level. It is possible that 
“molecular surgery” by gene editing can be an 
alternative of future therapies for lung diseases, 
although lung diseases are more complex than 
mono-gene mutation.
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Abstract
Clinical application of stem cells (SCs) pro-
gresses significantly in the treatment of a large 
number of diseases, e.g. leukemia, respiratory 
diseases, kidney disease, cerebral palsy, 
autism, or autoimmune diseases. Of those, the 
population, biological phenotypes, and func-
tions of individual SCs are mainly concerned, 
due to the lack of cell separation and purifica-
tion processes. The single-cell technology, 
including microfluidic technology and single- 
cell genome amplification technology, is 
widely used to study SCs and gains some rec-
ognitions. The present review will address the 
importance of single-cell technologies in the 
recognition and heterogeneity of SCs and 
highlight the significance of current single- 
cell approaches in the understanding of SC 

phenotypes. We also discuss the values of 
single-cell studies to overcome the bottleneck 
in explore of biological mechanisms and 
reveal the therapeutic potentials of SCs in dis-
eases, especially tumor-related diseases, as 
new diagnostic and therapeutic strategies

Keywords
Single-cell technology · Stem cell · Tumor · 
Heterogeneity · Microfluidics

16.1  Introduction

Stem cells (SCs) is a heterogeneous cell popula-
tion with the capacity of self-renewal and differ-
entiation and is suggested as an efficient 
alternative to treat a large number of diseases, 
especially human induced pluripotent stem cells 
(iPSC) [1–4]. SCs possess phenotypic and func-
tional heterogeneity which are critical in the 
decision of SCs populations and are hardly iden-
tified, due to limitations of the separation and 
purification. There is growing evidence that the 
mechanisms of self-renewal and differentiation 
in stem-cell-dysfunction-associated diseases are 
explored at the single-cell level [2].

The single-cell technology rapidly develops to 
understand biology mechanisms and originations 
of SC population. For example, the microfluidic 
technology and single-cell genome amplification 
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are used to understand SC differentiation. The 
single-cell genome and transcriptome sequenc-
ing provides a valuable and practical insight into 
SCs-dominated gene screening and disease ther-
apy. The present review will overview the appli-
cation of single-cell technologies, discuss the 
challenges and opportunities in the application of 
single SCs, and highlight the significance of cur-
rent single-cell approaches for SCs clinical appli-
cation. We furthermore discuss the potentials to 
target the essential SCs for understanding of 
repair mechanisms in diseases, and the improve-
ment and development of new therapies.

16.2  Needs of Single-Cell 
Technology

The single-cell technology becomes more impor-
tant to explore SCs heterogeneity and ability to 
differentiate into other cells [5]. The degree of 
SCs diversity and heterogeneity is dependent 
upon the propensity of SCs, especially at single 
cell level, different from the community of seem-
ingly “identical” cells. The bulk cell technology 
can hardly not capture dynamics or phenotypes 
of individual cells or cellular communities during 
the differentiation. Therefore, there is a great 
need of single-cell technology to distinguish and 
capture SCs origins and differentiations. Dynamic 
development of single-cell approaches will pro-
vide more opportunities to define SC evolution 
and remodeling.

16.3  Single-Cell Technology 
in Neural Stem Cells

One of vital challenges in single-cell gene expres-
sion surveys is to identify rare cell populations 
and lineage relationships, due to the need of more 
efficient technologies for cell capture and mRNA 
sequencing [6, 7]. Pollen et  al. sampled single 
cells and analyzed the expression of stimulated 
genes in 301 cells from the developing human 
brain, to show the complexity of the human brain 
at single cell level [8]. In the “microfluidic” tech-
nology device, the individual cells were captured, 

flown into nano-scale chambers, and underwent 
efficient and accurate chemical transformation 
necessary for DNA sequencing. This particular 
study identified novel molecular features in 
diverse cell types in several brain disorders and 
the dysfunction of the brain cortex, such as 
autism and schizophrenia [8]. By integrating the 
single-cell RNA-seq technology with immuno-
histochemistry, Nowakowski et  al. categorized 
single cells from developing cortex as astrocytes, 
radial glia, intermediate progenitor cells, and 
immature excitatory and inhibitory neurons and 
found that AXL receptor tyrosine kinase was 
highly enriched in the neural stem cells of devel-
oping fetal cerebral cortex and the retinal pro-
genitor cells as the part of molecular mechanisms 
of Zika virus-associated fetal abnormalities and 
microcephaly [9]. The potential of neurotic SCs 
in differentiation and remodeling is summarized 
in Fig. 16.1.

Neural SCs are able to differentiate and renew 
itself to play the major role in repair and mainte-
nance of the structure and function of the nerve 
systems. It is a challenge to study molecular 
properties of neural SCs, due to the relative 
unavailability, dynamic differentiation, and com-
plex cellular environment of adult neural SCs. 
Luo et al. discovered a vital gene from ependy-
mal CD133+/GFAP-dormant cells in the neural 
proliferating zone of adult mice brain using 
single- cell transcriptome and weighted gene co- 
expression network analysis [10]. According to 
molecular properties of CD133+/GFAP- E cells, a 
subset of dormant neural SCs was identified and 
isolated from regions of the brain like the lateral 
fourth ventricle without the neurogenic activity, 
as the source of CD133+ ependymal neural SCs 
transformed into neural or glial cells by the stim-
ulation of vascular endothelial growth factor/
basic fibroblast growth factor [10]. One of impor-
tant findings from this particular study is that the 
quiescent ependymal neural SCs normally 
existed in the ventricular areas could be activated 
and differentiated during injury. The single cell 
RNA sequencing (scRNAseq) can be a sensitive 
and accurate technique to analyze the expression 
of single cell microRNAs or RNA genome, 

W. Zhuge et al.



189

 multiple transcription, and the corresponding 
resulting protein, to identify the new genes.

Nestin-rich tendon stem/progenitor cells were 
found in tendon-derived cells using single-cell 
gene analysis, showing the expression and func-
tion of nestin in repair and differentiation of ten-
don SCs after injury. Yin et  al. isolated the 
single-cell transcript genes and analyzed their 
expression, to understand the function and 
expression of nestin during injury repair and dif-
ferentiation [11]. This particular study isolated 
major tendon cells and subpopulation of nestin+ 

tendon stem/progenitor cells and demonstrated 
that the expression of nestin gene was necessary 
for differentiation and involvement of nestin+ ten-
don stem/progenitor cells in tissue repair 
(Fig. 16.1). Of those, TGF-β was proposed as a 
signal activating molecule to recruit nestin+ ten-
don stem/progenitor cells during tissue injury for 
repairing, remodeling, and regeneration of ten-
don. Such exploratory investigation offers new 
understanding the biological significance of ten-
dons, as an alternative of new therapies.

Astsocytes

Radial glia

Intermediate 
progenitor cells

IPC

Neurons

Expression
AXL receptor 
tyrosine kinase

Developing cortexNeural retina

Expression

Retinal progenitor cells

Zika virus

Fourth ventricle

CD133+/GFAP- E cells

Neurons

Glial cells

VEGF/bFGF

Neural stem cells

Tendon tissue

Nestin+ tendon stem
/progenitor cells

Fig. 16.1 The single-cell technology is applied for 
molecular properties of neural Stem cells (SCs). Neural 
single cells are harvested from developing cortex and are 
also differentiated into the cortex (e.g. radial glia, neu-
rons, intermediate progenitor cells, or astrocytes) and neu-
ral retina (e.g. retinal progenitor cells). AXL receptor 
tyrosine kinase is highly enriched in the neural stem cells 
of developing fetal cerebral cortex and the retinal progeni-
tor cells which are associated with Zika virus. CD133+/

GFAP- E cells is identified and isolated from regions of 
the brain like the lateral fourth ventricle and can be trans-
formed into neural or glial cells by the stimulation of vas-
cular endothelial growth factor (VEGF)/basic fibroblast 
growth factor (bFGF). With single-cell technology to 
characterize the gene expression profiles of nestin+ ten-
don stem/progenitor cells from tendon tissue, nestin plays 
the crucial roles in progenitor cell fate decisions and phe-
notype maintenance
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16.4  Interaction 
and Development 
of Intestinal SCs

The tissue microenvironment contains a large num-
ber of vital extrinsic factors and signals govern SCs 
self-renewing and differentiation properties. Gracz 
et  al. established an in  vitro model to study the 
interactions between intestinal stem cells and sur-
rounding cells and found that the direct contact 
between the intestinal SCs and PCs and contact-
produced stemness are vital and necessary factors, 
reflected by the single cell gene expression with 
micro raft array [12]. The scRNA-seq technology 
allows us to observe dynamic changes of the gene 
expression over the course of enteroid develop-
ment, which can be integrated with morphological 
differences in early asteroids. The development of 

stem cell niche or organoid can be detected using 
micro raft array. Before differentiating into matured 
cells, stem cells undergo the phase of transit- 
amplifying progenitors with the capacity of unidi-
rectional differentiation to the cells with absorption 
or secretory function (Fig.  16.2), although the 
mechanism about the process of multilineage prim-
ing remains unclear. Kim et al. distinguish two dis-
crete populations of Lgr5+ intestinal SCs using 
microfluidic quantitative real time polymerase 
chain reaction, single-mRNA in situ hybridization, 
bDNA amplification, and single- cell gene expres-
sion [13]. Lgr5+ cells may have potential progeni-
tors’ characteristics, to differ from and identify the 
priming of multi-lineage genes. Single cell tech-
nology is expected to explore SC biology and 
understand the genesis of the disease, cancers, and 
other disorders (Fig. 16.2).

Intestinal SCs
Interac�on Surrounding cells

(such as paneth cell)

Lgr5+ intestinal SCs
iden�fy Priming of 

multilineage genes

Dental SCs
TP53, SP1 Target in periodontal 

and bone regeneration

Cardiac SCs
Lin- c-kit+

Prolifera�on, 
differen�a�on

Treat myocardial 
infarctionRevasculariza�on

Fig. 16.2 The transcription factors TP53 and SP1 play an 
important role in the progress in periodontal and bone 
regeneration of dental stem cells (SCs), and may act as a 
promising potential target for the clinical applications of 
bioengineering in periodontal and bone regeneration. The 

injection of designated gene tagged Lin- c-kit+ cells can 
treat myocardium infarction. The molecular mechanisms 
of multilineage gene priming is associated with the inter-
action between intestinal SCs and the surrounding cells
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16.5  Single-Cell Technology 
in Cardiac SCs

C-kit is a stem cell factor receptor in multipotent 
adult cardiac SCs and the majority of the c-kit- 
positive cardiac SCs more than 90% are CD45+ 
CD31+ c-kit+ cells which have no SCs capacity, 
whiles the rest is the Lin−CD45− c-kit+ cardiac cells 
with the properties of adult multipotent cardiac 
SCs, accounting for less than 10%. Vicinanza et al. 
separated Lin− CD45− c-kit+ cardiac cells from the 
heterogeneous c-kit-expressing cardiac cell popu-
lation, via Lin and CD45-positive or -negative sort-
ing, to distinguish between cardiac SCs and other 
c-kit+ cells [14]. The injection of designated gene 
tagged Lin− c-kit+ cells into the infarcted myocar-

dium could induce the significant regeneration of 
new arterioles and capillaries, but not CD45+ 
CD31+ c-kit+ cardiac cells [14]. A few of cardiac 
SCs with positive/negative markers appear in the 
regenerative area. Single cell biomedicine can pro-
vide more information and understanding of tissue 
SCs sources and identities for the application of 
SCs (Fig. 16.3).

16.6  Single-Cell Technology 
in Dental Stem Cells

The transcription factors TP53 and SP1 play the 
important roles in the progress in periodontal and 
bone regeneration of dental SCs. In the overex-

BCSCs[16]

BESCs BCNSCs

Cancer SCs
genetic basis 
and origination

mutations of 
ARID1A, GPRC5A
and MLL2[17-18]

Acquire capacity 
of initiating and 
propagating new
tumors

BCSCs

stem-like 
metastatic cells[19]

Primary 
tumor

Dissemination

COPD[22]

Lung cancer

COPD[23]

AECOPD

specific 
immunomodulatory
mediatorsCause

R. serpentina

renal
toxicity

kidney cell 
experiment[27]

CTCs analyses[28]

Primary  tumor

kidney transplantation[29]

inflammation 
factors

correlation

lung adenocarcinoma[30]

Mucin-1

glucocorticoids

Discover and 
define biomarkers 
of SCs[21,24-26,31-35]

Slough off

Fig. 16.3 The single-cell technology shows a powerful 
screening function to achieve the separation and identifi-
cation stem cells (SCs) and biomarkers. BCSCs bladder 
cancer stem cells, BCNSCs bladder cancer non-stem cells, 
BESCs bladder epithelial stem cells, ARID1A AT-rich 

interaction domain 1A, GPRC5A G protein-coupled 
receptor class C group 5 member A, MLL2 myeloid/lym-
phoid or mixed-lineage leukemia 2, CTC circulating 
tumor cells, COPD chronic pulmonary obstructive dis-
ease, and AECOPD acute exacerbation of COPD
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pression of SP1 and TP53, SP1 could change cell 
proliferation and influence TP53 osteogenic dif-
ferentiation of SCs in the dental follicle and pulp 
[15]. Of those, TP53 and SP1 could decide the 
expression of osteogenic marker genes, biologi-
cal processes, and cell proliferation of SCs from 
human exfoliated deciduous teeth (Fig. 16.3). It 
lead to the new potential that targeted SCs act as 
a promising potential target for the clinical appli-
cations of bioengineering in periodontal and 
bone regeneration.

16.7  Single-Cell Technology 
in Tumor Stem Cells

Cancer SCs are considered as the significant 
source for tumor-formation, metastasis and drug- 
resistance, although the understanding of cancer 
SC genetic basis remains limited. By Using 
single- cell sequencing, Yang et  al. found the 
homogeneity and heterogeneity of human blad-
der cancer SCs originated from bladder epithelial 
SCs or bladder cancer non-SCs [16]. Bladder 
cancer SCs have 21 main altered genes, of which 
ETS1, PITX2, PAWR, GPRC5A, MKL1 and 
RGS9BP are non-mention mutated genes in BC 
were identified in BCSCs. Of those genes, muta-
tions of ARID1A, GPRC5A and MLL2 contrib-
ute to the self-renewal capability of bladder 
cancer SCs.

The metastases may arise from unique tumor 
cells with the capacity of initiating and propagat-
ing new tumors [17, 18]. Cancer SCs can be the 
major source of metastasis initiation and progres-
sion, as metastasis-initiating cells. There is one of 
the greatest challenges to discover and define 
tissue-specific, cell-specific, and disease-specific 
biomarkers of SCs, especially cancer SCs [19–
33]. Biomarkers of initiating cells not only 
include 116 genes, but also biological behaviors, 
e.g. stemness, dormancy, cell cycle and prolifera-
tion gene, epithelial-to-mesenchymal transition, 
and mammary lineage specification, using micro-
fluidics technology and single-cell multiplex 
gene sequencing analysis [34]. The metastatic 
cells from high-burden tissues resemble primary 
tumor cells, whereas low-burden tissues have 

tumor-initiating capacity, which are regulated by 
the activation of MYC gene and down-regulated 
by cyclin dependent kinase inhibitors [34]. The 
heterogeneity of those cancer SCs in the carcino-
genesis and metastasis can be furthermore 
explored using single cell technologies, e.g. 
scRNA-seq (Fig. 16.3).

16.8  Conclusion

Single cell biomedicine is an emerging science of 
stem cells to understand the biological behaviors, 
e.g. engraftment, survival, migration, and differ-
entiation, and heterogeneity of stem cells. Single 
cell technology becomes one of the powerful 
tools to explore the specific hematopoietic lin-
eage of stem cells and potential applications, 
although there are a number of challenges to be 
faced [35]. The new application of single-cell 
methods can be an unexpected additional strate-
gies to answer several longstanding questions of 
SC biology, as listed in Table 16.1. The strength 
and weakness of the single-cell technology as 
listed in Table 16.2 should be fully considered. 

Table 16.1 Application of single-cell approaches in 
stem cells

Application Significance
Neural stem 
cells

1. The penetration in biological 
mechanism of brain disorders
2. Locate the vulnerable parts of 
ZIKV infection
3. Activation signal in dormant neural

Tendon stem 
cells

Therapy of tendon injury.

Intestinal 
stem cells

1. Multilineage gene priming of stem 
cells
2. Interaction between cells and stem 
cells

Cardiac stem 
cells

Separation and identification true 
cardiac stem cells

Dental stem 
cells

Bone regeneration-associated impact 
factors

Cancer stem 
cells,
  bladder 

cancer
1. Explore of genetic basis and 
origination

  breast 
cancer

2. Prophylaxis and treatment 
metastatic disease
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Single-cell technology provides new potentials to 
analyze the biological functions of SCs and the 
therapeutic roles of SCs in diseases. The single- 
cell technology overcomes the bottleneck to 
explore biological mechanisms of SC sand 
enriches our understanding on stem cell biology, 
therapy in diseases, and pathogenesis of cancer 
reoccurrence, metastasis, or drug resistance.
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