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9.1 Stem Cells

Stem cells are classified into totipotent, pluripo-
tent,multipotent, and unipotent stem cells based on
their differentiation potential (Revel 2009). Stem
cells can self-renew and differentiate into other cell
types, suggesting their use in various applications
such as cell therapy, tissue engineering, and regen-
erative medicine. Therefore, it is important to
develop methods to expand stem cells and induce
their differentiation by using biochemical and/or
biophysical stimulation to realize this potential.

9.1.1 Pluripotent Stem Cells

Pluripotent stem cells (PSCs) can proliferate per-
petually and can differentiate into cells that form
the three germ layers, namely, the endoderm,
mesoderm, and ectoderm. PSCs are a valuable
tool for stem cell therapy, in vitro drug screening,

and disease modeling. PSCs include embryonic
stem cells (ESCs), ESCs produced by somatic cell
nuclear transfer (SCNT-ESCs), and induced
PSCs (iPSCs). ESCs are derived from embryos
at the developmental stage, SCNT-ESCs are pro-
duced by transferring nuclei of somatic cells into
enucleated eggs, and iPSCs are artificially
generated by reprogramming adult cells. In
2006, Takahashi and Yamanaka achieved a semi-
nal breakthrough in stem cell production
(Takahashi and Yamanaka 2006). They found
that mouse embryonic fibroblasts (MEFs) can be
reprogrammed into iPSCs by exogenous tran-
scription of four factors, Oct4, Sox2, c-Myc, and
Klf4. iPSCs are very similar to ESCs but are
associated with less ethical concerns and show
enhanced patient specificity. For iPSCs, increas-
ing the reprogramming efficiency without the risk
from genetic manipulation should be overcome.

9.1.2 Multipotent Stem Cells

Multipotent stem cells such as mesenchymal stem
cells (MSCs) derived from the bone marrow,
adipose tissue, umbilical cord blood, nerve tissue,
dental pulp, hair follicle, or brain can also self-
renew and differentiate into different cell types
after biochemical and/or biophysical stimulation.
MSCs derived from mesodermal tissues differen-
tiate into mesodermal cells such as osteoblasts,
chondrocytes, or adipocytes. However, some
studies indicate that MSCs can also trans-
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differentiate into ectodermal or endodermal line-
age cells in vitro when cultured in an induction
medium containing some soluble factors
(Brzoska et al. 2005; Damien and Allan 2015;
Gao et al. 2014; Li et al. 2013). Some MSCs
express growth factors and chemokines that
induce cell proliferation and angiogenesis (Chen
et al. 2008; Doorn et al. 2011; Haynesworth et al.
1996) and exert anti-inflammatory and immuno-
modulatory effects (Aggarwal and Pittenger
2005; Iyer and Rojas 2008). MSCs have been
used for treating various disorders such as spinal
cord injury, bone fracture, autoimmune disorder,
rheumatoid arthritis, and hematopoietic defects.

9.2 Biochemical Stimulation

Biochemical components such as growth factors,
cytokines, enzymes, peptides, chemical reagents,
and small molecules are commonly added to cell
culture medium to regulate stem cell differentia-
tion. Moreover, biochemical components can be
immobilized or precoated on cell culture
substrates or scaffolds to induce the differentia-
tion of stem cells into different cell lineages.
Biochemical factors bind to receptors present on
stem cells or enter stem cells to activate different
cellular signaling pathways, thus modulating their
behavior. Here, we will explore some existing
methods for inducing stem cell differentiationwith
biochemical factors, as listed in Table 9.1.

9.2.1 Biochemical Differentiation
of Multipotent Stem Cells

Osteogenic differentiation can be induced using
soluble factors such as ascorbic acid,
β-glycerophosphate, bone morphogenetic
proteins (BMPs), dexamethasone, NEL-like mol-
ecule-1 (NELL-1), phenamil, or taurourso-
deoxycholic acid (TUDCA). BMP-2 stimulates
the expression of major osteogenic genes such
as those encoding osteopontin, osteocalcin, and
Runt-related transcription factor 2 (Sun et al.
2015). Although BMPs are suggested to be the
most potent osteoinductive proteins, they also

induce pro-adipogenesis (Hata et al. 2003; Jin
et al. 2006). NELL-1 induces highly specific oste-
ogenic differentiation of MSCs both in vitro and
in vivo (Zhang et al. 2010). TUDCA, an endoge-
nous hydrophilic bile acid, suppresses
adipogenesis and promotes angiogenesis and
osteogenesis by reducing ER stress, preventing
unfolded protein response dysfunction, and
stabilizing mitochondria (Cha et al. 2014; Cho
et al. 2015; Kim et al. 2017; Vang et al. 2014;
Yoon et al. 2016). Wnt protein, specifically
Wnt3a and Wnt4, is another factor that induces
osteogenic differentiation by activating
YAP/TAZ accumulation in MSCs (Byun et al.
2014; Park et al. 2015).

Transforming growth factor-β1 (TGF-β1),
TGF-β3, kartogenin (KGN), and matrilin-3 are
used to enhance chondrogenic differentiation.
TGF-β1-tethered photocrosslinkable hydrogel sys-
tem enhances sulfated glycosaminoglycan accu-
mulation in vitro and cartilage regeneration
in vivo (Choi et al. 2015). TGF-β3 is more effec-
tive for inducing the chondrogenesis of MSCs than
TGF-β1 and TGF-β2 (Barry et al. 2001; Estes et al.
2006). KGN, a new low-molecular-mass heterocy-
clic molecule, induced selective differentiation of
MSCs into chondrocytes and promoted cartilage
repair after its intra-articular injection into an ani-
mal model of osteoarthritis (Johnson et al. 2012).
KGN-conjugated chitosan nanoparticles and
microparticles also show potential as efficient
intra-articular drug delivery systems for treating
osteoarthritis (Kang et al. 2014). Matrilin-3, a
non-collagenous extracellular matrix (ECM) pro-
tein, enhances the chondrogenic differentiation of
adipose tissue-derived MSCs both in vitro and
in vivo (Muttigi et al. 2017).

Poly-L-lysine (PLL) is coated on cell culture
dishes to enhance cell adhesion through interac-
tion between positive charges on PLL and nega-
tive charges on cell membrane (De Kruijff and
Cullis 1980; Pachmann and Leibold 1976).
Immobilization of PLL on cell culture plates
increases the expansion and erythroid differentia-
tion of human hematopoietic stem cells (HSCs)
(Fig. 9.1) (Park et al. 2014). Moreover, PLL
induces neural differentiation of MSCs (Cai
et al. 2012).
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9.2.2 Biochemical Differentiation
of Pluripotent Stem Cells

Biochemical differentiation of PSCs in vitro is
traditionally achieved by inducing uncontrolled
spontaneous differentiation or directed differenti-
ation of these cells into specific cell lineages

(Ding et al. 2017). Spontaneous differentiation
produces a mixed population of cell lineages
from all three germ layers, and the differentiation
is uncontrollable. Directed differentiation of
PSCs by using soluble factors can be successfully
used to generate various cell types such as
cardiomyocytes, neural cells, pancreatic beta

Table 9.1 Biochemical factors that regulate cell behavior

Cell Cell behavior Biochemical factor Reference

Human MSC Chondrogenesis TGF-β3 Barry et al. (2001)
BMP-6 Estes et al. (2006)
KGN Johnson et al. (2012) and Kang et al.

(2014)
Matrilin-3 Muttigi et al. (2017)

Osteogenesis NELL-1 Zhang et al. (2010)
TUDCA Cha et al. (2014) and Kim et al. (2017)

Human/murine
MSC

Osteogenesis Wnt3a, Wnt4 Byun et al. (2014) and Park et al. (2015)

Human HSC Erythropoiesis PLL Park et al. (2014)
Neovascularization TUDCA Cho et al. (2015) and Yoon et al. (2016)

Murine MSC Adipogenesis BMP-2 Hata et al. (2003) and Jin et al. (2006)
Chondrogenesis TGF-β1 Choi et al. (2015)
Osteogenesis BMP-2 Sun et al. (2015)

Mouse neural
progenitor cell

Neurogenesis PLL Cai et al. (2012)

Human PSC Cardiomyogenesis CHIR99021, DMH1 Aguilar et al. (2015) and Fonoudi et al.
(2015)

Neurogenesis CHCHD2, Zhu et al. (2016)
Noggin, SB431542 Chambers et al. (2016)
LDN, CHIR99021 Chambers et al. (2009)

Astrogenesis Retionic acid, FGF8, FGF2,
EGF

Krencik et al. (2011)

Pancreatic
differentiation

Activin, Wnt, FGF-10, CYC,
retinoic acid, DAPT, Ex4,
IGF-1, HGF

D’Amour et al. (2006)

Act A, CHIR, KGF, retinoic
acid, SANT1, LDN, PdbU,
SANT1, Heparin,
Betacellullin, ALK5i, CMRL

Pagliuca et al. (2014)

GDF8, FGF7, retinoic acid,
GSK3βi, VitC, SANT, TPB,
LDN, ALK5i II, T3, GSi XX,
N-Cys, AXLi

Rezania et al. (2014)

MEF Reprogramming into
iPSC

Oct4, Sox2, c-Myc, Klf4
(OSMK)

Takahashi and Yamanaka (2006)

OSMK + E-cadherin Chen et al. (2010) and Redmer et al.
(2011)

ALK5 inhibitors in replace of
Sox2

Huangfu et al. (2008a, b), Ichida et al.
(2009), Lee et al. (2012), Lin et al.
(2009), Mikkelsen et al. (2008), Staerk
et al. (2011)
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cells, and hepatocytes. However, the efficiency of
and purity of cell types obtained through directed
differentiation are low.

Functional cardiomyocytes can be produced
by culturing EBs in a differentiation medium
containing non-essential amino acids such as L-
glutamine, β-mercaptoethanol, and 20% fetal
bovine serum (FBS), followed by microdissection
of beating areas (Zhang et al. 2009). Addition of
small-molecule Wnt signaling inhibitors or
activators, BMP inhibitors, or shRNA also
induces the differentiation of PSCs into
cardiomyocytes (Aguilar et al. 2015; Fonoudi
et al. 2015; Zhang et al. 2013).

Various protocols have been developed for the
neurogenic differentiation of PSCs.

Differentiation of PSCs to neuroectoderms can
be mediated with CHCHD2, a mitochondrial pro-
tein, that suppresses the TGF-β signaling pathway
(Zhu et al. 2016). Highly pure astrocyte-like cells
have been generated by adding retinoic acid,
sonic hedgehog, epidermal growth factor, basic
fibroblast growth factor (bFGF), ciliary
neurotrophic factor, and 10% FBS to cell culture
medium (Krencik et al. 2011). Neural cells can
also be generated from PSCs by adding small-
molecules to inhibit dual SMAD signaling and
activate Wnt signaling (Chambers et al. 2009,
2016). Numerous clinical trials have assessed
the potential of human iPSCs and ESCs to
undergo neurogenesis for treating spinal cord
injury and retinal diseases. However, generation

Fig. 9.1 Interaction between HSCs and PLL-coated sub-
strate stimulates downward enucleation. PLL substrate
enhances enucleation of HSC (a) through stimulation of

PI3K activity (b). Furthermore, PLL substrate localizes the
extruded nuclei downward (c), possibly due to the positive
charge of PLL substrate
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of mature neural cells from PSCs remains a
challenge.

Pancreatic hormone-expressing endocrine
cells can be successfully produced from human
ESCs by adding and/or removing growth factors
such as activin, Wnt, FGF-10, KAAD-
cyclopamine (CYC), all-trans retinoic acid,
γ-secretase inhibitor DAPT, exendin-4, insulin-
like growth factor 1, and hepatocyte growth factor
to and/or from cell culture medium over five-
stages protocol (D’Amour et al. 2006). ViaCyte
Inc. (San Diego, CA) is performing clinical trials
to assess the efficacy of hESC-derived pancreatic
endodermal cells for treating type I diabetes
(Agulnick et al. 2015; Kimbrel and Lanza
2015). Addition of activin A, FGF, retinoic acid,
BMP inhibitor (LDN), and some gene inhibitors
also induces the pancreatic differentiation of
PSCs (Pagliuca et al. 2014; Rezania et al. 2014).
However, the complexity of these multistep
protocols, cost of production, and scaling up
should be overcome before using these strategies
in clinical practice.

9.2.3 Biochemical Reprogramming
Into iPSCs

Takahashi and Yamanaka showed that MEFs
could be reprogrammed into iPSCs by inducing
forced expression of four transcription factors,
namely, OCT4, SOX2, c-MYC, and KLF4
(Yamanaka 4 factors), that are important for
ESC function (Takahashi and Yamanaka 2006).
This seminal development gave Yamanaka the
2012 Nobel Prize in Physiology or Medicine.
Since this pioneering discovery, many
researchers have developed various methods to
enhance reprogramming efficiency by using bio-
chemical factors. Overexpressed epithelial-
cadherin can replace OCT4 during cellular
reprogramming, thus enhancing reprogramming
efficiency (Chen et al. 2010; Redmer et al.
2011). Addition of high concentration of FBS
(>20%), ascorbic acid (vitamin C), histone
deacetylase inhibitors, DNA methyltransferase
inhibitor (5-azacytidine), or SB431542 (a TGF-β
signaling inhibitor) to cell culture medium also

enhances reprogramming efficiency (Esteban
et al. 2010; Kwon et al. 2016). ALK5 inhibitor,
LY364947 or E-616452, can be used to replace
Sox2 to reprogram MEFs into iPSCs (Huangfu
et al. 2008a, b; Ichida et al. 2009; Lee et al. 2012;
Lin et al. 2009; Mikkelsen et al. 2008; Staerk
et al. 2011), and CCAAT/enhancer-binding pro-
tein alpha (C/EBPα) can boost up the iPSC
reprogramming efficiency by upregulating Klf4
and increase several chromatin-modifying com-
plex proteins that activates pluripotency program
(Di Stefano et al. 2016).

9.3 Biophysical Stimulation

Many researchers have extensively investigated
the effects of various biophysical factors, includ-
ing matrix stiffness, nanotopography, three-
dimensionality, external stress and strain, electri-
cal stimulation, hydrostatic pressure, electromag-
netic field, ultrasound, and photostimulation, on
cell behavior, as listed in Table 9.2.

9.3.1 Stiffness

In 2006, Engler showed that substrate stiffness
regulated stem cell fates and was correlated with
in vivo ECM elasticity (Fig. 9.2) (Engler et al.
2006). Human MSCs preferred neurogenesis,
myogenesis, and osteogenesis on a soft gel
(0.1�1 kPa) mimicking the mechanical stiffness
of brain, on an intermediate gel (8�17 kPa) mim-
icking the mechanical stiffness of muscle, and on
very stiff gel (25�40 kPa) mimicking the
mechanical stiffness of bone, respectively.
Human adipose tissue-derived MSCs undergo
adipogenesis on a soft substrate (2 kPa) in the
absence of inductive soluble biochemical factors
(Young et al. 2013). Neural stem cells (NSCs)
expressed high levels of neurogenic biomarker
β-tubulin III on substrates having stiffness similar
to the brain tissue (Saha et al. 2008). Increase in
substrate stiffness increases the expression of type
A lamin, a mechanosensitive cellular molecule
(Swift et al. 2013). Skeletal muscle stem cells
rapidly lose their regenerative potential when
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Table 9.2 Biophysical factors that regulate cell behavior

Cell Cell Behavior Biophysical Factor Reference

Human MSC Differentiation
(soft: neurogenesis,
intermediate:
myogenesis, stiff:
osteogenesis)

Stiffness (soft: 0.1–1 kPa,
intermediate: 8–17 kPa,
stiff: 25–40 kPa)

Engler et al. (2006)

Human MSC Adipogenesis Stiffness (soft: 2 kPa) Young et al. (2013)
Rat NSC Neurogenesis Stiffness (~500 Pa) Saha et al. (2008)
Mouse cell/human MSC Soft: adipogenesis Stiffness (soft: 0.3 kPa,

stiff: 40 kPa)
Swift et al. (2013)

Stiff: osteogenesis
Mouse muscle stem cell Self-renewal Stiffness (soft: 12 kPa) Gilbert et al. (2010)
Human PSC Neurogenesis Stiffness (0.1–0.7 kPa) Keung et al. (2012)
MEF Reprogramming

into iPSC
Stiffness (soft: 0.1 kPa) Choi et al. (2016)

Human MSC Osteogenesis Nanotopography Dalby et al. (2007)
Mouse ESC Differentiation Nanotopography Lapinte et al. (2013)
Human MSC Multipotency Nanotopography McMurray et al. (2011)
Human iPSC Pluripotency Nanotopography Reimer et al. (2016)
Human MSC NPo: adipogenesis,

NPi: osteogenesis
Nanotopography Park et al. (2012)

Human PSC Osteogenesis Nanotopography Kingham et al. (2013)
Human iPSC Cardiogenesis Topography

(microgrooved surface)
Rao et al. (2013)

Human MSC Neurogenesis Topography (nanogratings
surface)

Yim et al. (2007)

MEF Reprogamming into
iPSC

Topography
(microgrooved surface)

Downing et al. (2013)

Human MSC Myogenesis Cyclic strain Gong and Niklason (2008)
Human MSC Osteogenesis Cyclic uniaxial tension Haudenschild et al. (2009)
Human MSC Chondrogenesis Dynamic compression Haudenschild et al. (2009)
Mouse skin fibroblast Reprogramming

into iPSC
Orbital shaking Sia et al. (2016)

Human PSC Vascular smooth
muscle cell

Tensile stress Wanjare et al. (2015)

Human MSC High tension:
osteogenesis

Intracellular tension McMurray et al. (2011)

Low tension:
adipogenesis

Human MSC Endothelial
differentiation

Shear stress Dan et al. (2015)

Human iPSC Cardiomyogenesis Electrical field Hirt et al. (2014)
Human NSC Cell migration Electrical field Feng et al. (2012)
Human NSC Neurogenesis Electrical field Pires et al. (2015) and

Thrivikraman et al. (2014)
Mouse fibroblast or human dermal
fibroblast

Reprogramming
into iPSC

Extremely low-frequency
electromagnetic field

Baek et al. (2014)

Human MSC Osteogenesis LIPUS Kang et al. (2013)
Human iPS Neurogenesis LIPUS Lv et al. (2013)
Human epidermal stem cell Proliferation, cell

migration
He-Ne laser (632.8 nm) Liao et al. (2014)

Mouse MSC Osteogenesis Visible blue light (405 nm) Kushibiki and Awazu
(2009)
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grown on stiff culture dishes but retain their self-
renewal and regenerative capacities when grown
on soft hydrogels (Gilbert et al. 2010). Substrates
with different stiffness induce the differentiation
of different stem cells in a similar manner. Opti-
mal substrate stiffness for the differentiation of
stem cells into specific lineages differs based on
stem cell source, substrate used, and differentia-
tion protocol used. PSCs also sense and respond
with the stiffness of microenvironments. Soft
microenvironments (0.1�0.7 kPa) promote early
neurogenic differentiation of human PSCs with-
out affecting their proliferation (Keung et al.
2012).

Generation of iPSCs is also affected by sub-
strate stiffness. Soft substrates enhance
reprogramming efficiency by increasing the
expression of MET and pluripotent markers
(Fig. 9.3) (Choi et al. 2016).

9.3.2 Topography

Stem cell adhesion, phenotype, and differentia-
tion are highly sensitive to substrate topography
(Dalby et al. 2014; Ding et al. 2017; Griffin et al.
2015; Park and Im 2015). The effect of surface
topography on stem cell phenotype depends on
the shape (pillars, pits, and gratings), dimension
(feature size, spacing, and height), arrangement,
and composition of a substrate (Dalby et al. 2007;
Lapointe et al. 2013; Murphy et al. 2014; Wang
et al. 2015). Presence of highly ordered nanoscale
pitted patterns in a substrate inhibits the adhesion
of cells to the substrate (Dalby et al. 2007).

Fig. 9.2 MSC differentiation is regulated by substrate
stiffness. Different solid tissues are made up of specific
range of elastic modulus (a). Through substrate
modifications to various matrices that mimic each solid
tissue, MSC differentiates to each lineages (b)

Fig. 9.3 Generation of iPSCs is affected by matrix stiff-
ness. As the substrate softens, MET change and stemness
increase, resulting enhanced reprogramming efficiency
into iPSCs
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Expression of human bone marrow-derived MSC
(BMSC) and adipose-derived MSC (ASC)
markers depends on the size of pits (McMurray
et al. 2011). High-density arrangement of smaller
topographical features promotes the proliferation
and pluripotency of human iPSCs (Reimer et al.
2016).

Substrates with 120-nm diameter pits and an
average 300-nm spacing (randomly offset by
50 nm) induce the osteogenesis of human
BMSCs (Dalby et al. 2007). Human ASCs
cultured on a polystyrene surface containing
nanopores (NPo; 200-nm diameter/400-nm
depth) undergo enhanced adipogenic differentia-
tion, while those cultured on a polystyrene sur-
face containing nanopillars (NPi; 200-nm
diameter/650-nm height) undergo osteogenic dif-
ferentiation (Fig. 9.4) (Park et al. 2012). Disor-
dered nanotopographies enhance the osteogenesis

of human ESCs (Kingham et al. 2013).
Fibronectin-coated microgrooves (4-μm width/
10-μm depth/10-μm spacing) improve the matu-
ration and function of human iPSC-derived
cardiomyocytes (Rao et al. 2013). Human MSCs
cultured on 350-nm PDMS nanogratings show
significantly upregulated expression of neuronal
markers β-tubulin III and microtubule-associated
protein 2 compared with human MSCs cultured
on microgratings and flat surface (Yim et al.
2007).

Substrate topography also affects the
reprogramming of MEFs into iPSCs (Downing
et al. 2013). Elongation of MEFs on parallel
microgrooved surfaces modulates epigenetic
states and improves reprogramming efficiency.

Nickel 
stamp

Flat Nanopillar Nanopore

Polystyrene
substrate

Flat Nanopore Nanopillar

Differentiation

Chondrogenic
differentiation

Adipogenic
differentiation

Osteogenic 
differentiation

Fig. 9.4 Behavior of ASCs cultured on NPo- and
NPi-containing substrates. Fabrication of each nano-
featured polystyrene substrates were established using
fabricated nickel stamp, and ASC differentiation trends

show each flat, NPo, and NPi surface enhances
chondrogenic, adipogenic, and osteogenic differentiation,
respectively

154 B. Choi et al.



9.3.3 External Stress and Strain

In addition to the intrinsic physical properties of
the stem cell microenvironment, such as substrate
stiffness, extrinsic mechanical stimuli such as
stress or strain are important for regulating the
differentiation of stem cells (Keung et al. 2010).

Cyclic strain inhibits the differentiation of
hESCs by upregulating the phosphorylation of
TGF-β1, activin A, Nodal, and SMAD2/3 and
promotes the myogenesis of BMSCs (Gong and
Niklason 2008). Cyclic uniaxial tension induces
the osteogenesis and dynamic compression
induces the chondrogenesis of human BMSCs
(Haudenschild et al. 2009). Dynamic culturing
with orbital shaking at 100 rpm significantly
improves the reprogramming efficiency of
iPSCs (Sia et al. 2016). In the presence of uniaxial
tensile strain, vascular smooth muscle cells
derived from human iPSCs and human ESCs
align perpendicular to the strain axis and show
increased ECM gene expression (Wanjare et al.
2015). Compressive and tensile forces induced by
fluid flow, cell–cell interaction, and cell–matrix
interaction regulate MSC behavior in vivo (Hao
et al. 2015; Liu and Lee 2014). Human BMSCs
with high intracellular tension differentiate into
osteoblasts, whereas those with low intracellular
tension or low actin–myosin interaction differen-
tiate into adipocytes (McMurray et al. 2011).
Shear stress stimulates the differentiation of
human MSCs obtained from different tissues
into endothelial-like cells (Dan et al. 2015).

9.3.4 Non-contact-Dependent
Factors: Electric Field,
Ultrasound,
and Photostimulation

In addition to cell–matrix interaction-dependent
factors such as substrate stiffness and topography,
non-contact-dependent factors such as electro-
magnetic field, low-intensity pulsed ultrasound
(LIPUS), and light of varying wavelengths affect
stem cell behavior.

Electrical stimulation is of interest for both
cardiac and neural differentiation because of its
importance in embryonic development. Pulsed
biphasic electrical field of 2 V/cm every 4 ms
promotes human iPSC-derived cardiomyocytes
to develop a phenotype similar to native
cardiomyocytes (Hirt et al. 2014). Human
ESC-derived NSCs migrate toward positive
charged regions in the presence of a small
direct-current electrical field (Feng et al. 2012).
Application of an electrical field to NSCs or
BMSCs grown on an electroconductive matrix
enhances their neurogenesis (Pires et al. 2015;
Thrivikraman et al. 2014). Extremely
low-frequency electromagnetic fields replace
SOX2, KLF4, and c-MYC during somatic cell
reprogramming of iPSCs (Baek et al. 2014).

Ultrasound frequencies also regulate stem cell
behavior. LIPUS enhances the osteogenic differ-
entiation of human ASCs and is used for bone
fracture healing and callus distraction (Claes and
Willie 2007; Kang et al. 2013). LIPUS stimula-
tion enhances the proliferation and neural differ-
entiation of human iPSC-derived neural crest
stem cells (Lv et al. 2013).

Photostimulation also modulates stem cell
behavior. Irradiation with helium–neon lasers
(632.8 nm), which are used clinically to promote
wound healing, induces the proliferation and
migration of human epidermal stem cells (Liao
et al. 2014). Irradiation with visible blue light
(405 nm) enhances the osteogenesis of and bone
formation by mouse MSCs (Kushibiki and
Awazu 2009).

9.4 Conclusion

Stem cells are a very promising cell source for the
cell therapy of various diseases because of their
self-renewal and differentiation capacities. For
successful application of stem cells and
biomaterials in tissue engineering and regenera-
tive medicine, stem cell behavior such as adhe-
sion, proliferation, survival, and differentiation in
response to biochemical and biophysical cues
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must be precisely regulated. Furthermore, results
of biochemical and biophysical stimulation stud-
ies involving three-dimensional
microenvironments will play an important role
in more accurately predicting the in vivo behavior
of stem cells.
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