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16.1 Background of Fibrin
Biomaterials
16.1.1 Background with Biology

Fibrin is a fibrillar biopolymer that is naturally
formed during blood clotting. Hemostasis is a
primary role of fibrin, but fibrin also functions
as a provisional matrix during wound healing.
Fibrin possess the properties suitable for its use
in regenerative medicine; fibrin is capable of con-
veying matrix proteins such as fibronectin and
growth factors (Makogonenko et al. 2002;
Rybarczyk et al. 2003; Mosesson 2005; Laurens
et al. 2006a, b; Wolberg 2007; Janmey et al.
2009). Given these features, fibrin has been
widely studied in biomedical research for its abil-
ity to repair hard and soft tissues (Hubbell 2003;
Falanga et al. 2007; Ahmed et al. 2008; Breen
et al. 2009a, b; Davis et al. 2011; Oh et al. 2014).

The biological functions of fibrin involve its
structure. A number of variables can influence the
structure of fibrin, including the local pH, ionic
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strength, and the concentrations of calcium and
thrombin (Mosesson 2005; Wolberg 2007). The
thrombin concentration present at the time of
gelation has important influences on fibrin clot
structure. The low thrombin concentrations pro-
duce fibrin clots that are turbid and composed of
thick, loosely-woven fibrin strands. Higher
concentrations of thrombin produce fibrin clots
that are composed of relatively thinner, more
tightly-packed fibrin strands (Collet et al. 2000;
Wolberg 2007). Thrombin exposes the cryptic
fibronectin-binding sites in fibrinogen and that
fibronectin mostly bound to polymerized fibrin
but rarely bound to fibrinogen (Makogonenko
et al. 2002) and modulates the fibronectin-binding
capacity of fibrin and that this modulation of
thrombin contributes to integrin phosphorylation
of the cells (Oh et al. 2012). The structure of the
fibrin biomaterials affects their biological
functions. Thus, it should be optimized for spe-
cific applications in tissue engineering and regen-
erative medicine.

16.1.2 Biodegradation of Fibrin:
Fibrinolysis

The biodegradation process of fibrin material is
known as the fibrinolysis or fibrinolytic system,
which is mediated by plasmin (Baron and
Kneissel 2013; Park et al. 2017). Briefly, fibrin
degradation can be catalyzed by cell-surface-
associated plasmin, which formed after binding
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soluble plasminogen and plasminogen activators
(tissue-type plasminogen activator; t-pA and
urokinase-type plasminogen activator; u-pA). In
particular, the lysine-binding domains of plas-
minogen play an important role in the binding of
plasminogen to fibrin for the fibrin degradation.
In the inhibition of the fibrinolytic system, the
plasminogen activator inhibitor-1 (PAI-1) or a2-
antiplasmin (a2Ap) neutralize the plasminogen
activators and block the interactions between
binding domain of plasminogen and fibrin
structures. Therefore, the biochemical
interactions with plasminogen, fibrin, and plas-
minogen activators are contributed for controls
of fibrin degradation process (Baron and Kneissel
2013; Park et al. 2017).

16.2 Tissue Engineering
Applications Using Fibrin
Biomaterials

At present, various  pre-clinical/clinical
approaches have been actively developed for
regeneration of damaged tissues and wound
healings using fibrin-based  biomaterials
(Table 16.1). In particular, fibrin can be dimen-
sionally modified (two—/three-dimensional
scaffolds) or its phasic characteristics (injectable
or implantable matrices) can be fabricated to pro-
mote biological interactions in optimal tissue
regeneration for wound healing and functioning
restorations. According to target tissue defects or
physiological environments, several therapeutic
techniques have been implemented to improve
mechanical, physical, chemical, or biological
properties (Lee and Kurisawa 2013; Li et al.
2015).

16.2.1 Skin Tissue Engineering

Skin is the largest organ in the human body and
consists of approximately 10% of the whole body
weight. It is a crucial barrier between the internal
and external with three distinct layers: the epider-
mis, the dermis, and the hypodermis
(or subcutaneous tissue) (Chaudhari et al. 2016;
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Huang and Fu 2010; MacNeil 2008). The epider-
mis is the outermost layer to form a highly effec-
tive barrier against infectious pathogens from the
external environments and maintain appropriate
or optimal hydration (Huang and Fu 2010).
Although capillary structures are formed under
epidermis layer, 95% keratinocyte cells were
contained in the epidermis without the vascula-
ture networks. The dermis layer is between the
epidermis and the hypodermis with connective
tissues which are composed of fibroblasts,
macrophages, and adipocytes (Priya et al. 2008).
It has the primarily role to generate appropriate
stress-strain mechanical responses by matrix
components like collagen, elastin, and
extrafibrillar matrix (MacNeil 2008). The hypo-
dermis is the lowermost layer and below the der-
mis of vertebrate skin and has similar cell types to
the dermis; fibroblasts, adipose cells, and
macrophages. Compared to the dermis, the hypo-
dermis mainly consists of loose connective tissue
and subcutaneous fat with large blood vessels and
nerves which cannot be found in epidermis and
dermis tissues. Therefore, healthy skin tissue has
various cell types such as keratinocytes,
fibroblasts, or mesenchymal stem cells to regen-
erate complex tissue constructs and restore their
functions (MacNeil 2008).

Fibrin has been utilized to induce skin tissue
regeneration as vehicles for bioactive molecules
to promote wound healing, delivery carriers for
multiple cells like keratinocytes, fibroblast-like
cells, and mesenchymal stem cells, or sealants
for skin graft fixation to stop the bleeding
(Bensaid et al. 2003; Jimenez and Jimenez
2004; Wechselberger et al. 2002).

16.2.2 Cardiac/Vascular Tissue
Engineering

The cardiovascular system is the hemodynamic
tissue complex with complicated responsiveness.
The major components of the system are heart
valves, cardiac muscles and the blood
vasculatures, which are significantly challenging
to regenerate or heal within the limited golden
time. The cardiovascular tissues should have
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Table 16.1 Tissue engineering applications using fibrin biomaterials

Target tissues Summary

Skin tissue Rapid wound closure and improvement for
engineering elastic tissue regeneration

Cardiac/vascular | Injectable fibrin matrices to decrease infarct size,
tissue increase blood flow to ischemic myocardium,
engineering and improve cardiac function

Musculoskeletal | Biomimetic micro-architectures of the natural
tissue nanostructured features of bone and cartilage
engineering using the fibrin matrices having osteogenic or

chondrogenic factors

Nervous tissue
engineering

Central and peripheral nervous system

matrices or chemically-modified fibrin.

flexible responsiveness against various mechani-
cal stimulations such as pressure, blood shear
stress, molecular permeability in dynamic fluid-
ics, and immunological responses (Gebara et al.
1997; Pober and Tellides 2012). In particular,
severed ischemic cardiac tissue damages or
injuries are irreversible or limitedly viable to
restore vital functions (Hasan et al. 2015).

Grassl et al. developed and demonstrated the
mechanically-modified fibrin-based tubular
constructs as vascular grafts (Grassl et al.
2003). By controlling and balancing between
fibrinolysis and cell-produced collagen matrix
formation, the modified fibrin can be improved
in mechanical strength like ultimate tensile
strength or tensile modulus (Grassl et al. 2003).
Moreover, cardiomyocytes can be encapsulated
using the fibrin material and the strategy
influenced cell alignments like cardiac muscle
bundles for functioning restoration (Black et al.
2009). In particular, 3-D fibrin architectures
could guide cardiac cell alignments and
maintained synchronous beating in the in-vitro
environment (Huang et al. 2007)

16.2.3 Musculoskeletal Tissue
Engineering

The musculoskeletal complex is the major system
to support organs and tissues as well as allow the

regenerations using various concentrated fibrin
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appropriate movements with structural stabilities.
The system has the bone skeleton and fibrous
connective tissues. The mineralized tissue or
bone in the system plays a critical role to protect
the vital organs, provide locomotion of body, and
produce blood cells. Moreover, fibrous connec-
tive tissues like ligaments, muscles, cartilage, or
tendons can contribute the fundamental mobility
after integration with bone (ligament, tendon, or
cartilage) or muscles (tendon) (Stevens 2008).

In bone constructs, there are two major
patterns to generate mechanical responses by
remodeling tissues like compact (cortical bone)
and trabecular patterns (cancellous bone) (Clarke
2008; Stevens 2008). In particular, the bone
remodeling process can be contributed by signifi-
cant cell activations of osteoblasts for regenera-
tion and osteoclasts for destruction (Stevens
2008) However, if the physiological balance for
bone remodeling is lost by diseases or greater
defects than osteogenic wound healing, various
osteoconductive or osteoinductive materials
could be critically considered to promote bone
regeneration as well as bone substitutes (Noori
et al. 2017; Stevens 2008).

Fibrin matrices fundamentally have numerous
proteins and growth factors so, they have widely
utilized in bone tissue engineering in various pre-
clinical and clinical scenarios. They can biologi-
cally contribute the upregulation of osteoblast
expressions and significantly promote bone tissue
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regeneration (Ben-Ari et al. 2009; Schek et al.
2004; Stevens 2008). Although fibrin has these
great biological or biochemical properties, it is
challenging to improve and modify rapid biode-
gradability and poor mechanical properties for
skeletal structure neogenesis. Therefore, fibrin-
incorporated bioactive composite materials have
been developed using inorganic materials to have
similar compositions to bone minerals with
mechanical strength and enhance osteogenesis
or organic materials to enable 3-D fabrications
for favorable architectures with biodegradability
and characterize biochemical/biological
properties (Stevens 2008).

Of fibrous connective tissues in the musculo-
skeletal system, the cartilage is major structural
component of ears, nose, or joint areas with
higher stiffness and less flexibility than other
fibrous tissues (Lee et al. 2012; Neovius and
Kratz 2003; Passaretti et al. 2001; Peretti et al.
2006). In particular, articular cartilage has no
vascular structures or nerves so, nutrition can be
diffused to chondrocytes and the articular carti-
lage can particularly be too slowly remolded to
have tissue regeneration or repair (Zhang et al.
2009). It is placed on the surface of joints to
provide protection and movements of skeletal
structures under compressive forces. Because
mechanical responses of articular cartilage
structures are significantly considered in fric-
tional, compressive, or shear loading
environments, cartilage can be demonstrated as
resilient and viscoelastic tissue constructs at the
skeletal joints (Zhang et al. 2009).

For the cartilage tissue engineering, fibrin
material is widely studied and applied for various
preclinical studies with clinical implications like
chondrocyte-fibrin constructs or injectable fibrin
gel containing cells to promote cartilage
formations (Eyrich et al. 2007; Horak et al.
2014; Makris et al. 2015; Vinatier et al. 2009).
However, environmental specificity of the carti-
lage construct under biomechanical stimulations
can be a challenge for the cartilage regeneration
using 3-D fibrin scaffold so, chondrocyte-
associated fibrin sealant or fibrin glue have been
popularly utilized.
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16.2.4 Nerve Tissue Engineering

Nerve tissue categorizes two major parts like
central nervous system (CNS) and peripheral ner-
vous system (PNS) to regulate body functions. It
mainly consists of nerve cells (neurons) to trans-
mit impulses and glial cells (neuroglia) to provide
nutrients and oxygen to neurons. The CNS has
sophisticated dynamic networks with physico-
chemical communications to exchange sensed
information. PNS consists of sensory and motor
axons surrounded my myelin sheaths which
Schwann cells produced (Johnson et al. 2010,
2013; Schmidt and Leach 2003; Subramanian
et al. 2009). In various traumatic injuries or dis-
eased destructions, CNS and PNS have different
capacity of regeneration; CNS axons cannot be
regenerated but peripheral nerves can be healed
by extending new axonal sprouts (Schmidt and
Leach 2003).

To guide the directional orientations with new
nerve tissue regeneration, various biomaterials
have been developed and utilized as the nerve
conduits in preclinical and clinical situations
(Sakiyama-Elbert and Hubbell 2000; Tsai et al.
2006). In particular, fibrin matrices have been
used to fill hollow nerve conduits across the
nerve defect regions to promote axonal regenera-
tion and growth (Tsai et al. 2006). Moreover,
fibrin scaffolds have been limitedly used for spi-
nal cord regeneration or neural fiber formations at
the early stage (Johnson et al. 2010).

16.3 Technical Applications
for Tissue Regeneration
in Fibrin Biomaterials

For the strategic applications for tissue engineer-
ing using fibrin matrices, various fabrication and
modification techniques have been developed and
applied for preclinical and clinical scenarios
(Table 16.2). In particular, target tissues or
injured defect dimensions should be significant
considerations to manufacture fibrin products for
the appropriate medical or surgical treatments.
Commonly, fibrin gel has been widely considered
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Table 16.2 Technical applications of fibrin for tissue regeneration

Target strategies

Injectable scaffold for
tissue regeneration:
Delivery system

Modified fibrin matrix
for tissue engineering

3D printing technique

Current clinical
application

Summary

Cell or biologic (drug) delivery systems for
tissue regeneration

Chemical modification of fibrin materials to
improve mechanical properties and optimize
predictable cell/tissue responses

3D bioprinting strategy with the fibrin gel
material to manufacture customized
architectures for tissue engineering and
regenerative medicine

FDA-approved, clinical applicable products:
Plasma-rich fibrin, fibrin sealant, or fibrin

257

References

Breen et al. (2009a, b), Lee and Mooney
(2001), Sacchi et al. (2014), Spicer and
Mikos (2010), Tajdaran et al. (2015),
Whelan et al. (2014), Yuan Ye et al. (2011)
Breen et al. (2009a, b), Hall et al. (2004),
Hall and Hubbell (2004), Hall (2007), Lee
and Mooney (2001), Park et al. (2017)

Gu et al. (2016), Lee et al. (2010), Lorber
et al. (2014), Pati et al. (2015), Rimann et al.
(2015), Xu et al. (2006)

Albala and Lawson (2006), Andree et al.
(2008), Buchta et al. (2005), Janmey et al.

glue

as a sealant or a bioadhesive for hemostasis or
wound closure (Mehdizadeh and Yang 2013)
because the fibrin shows the minimal inflamma-
tion, foreign body reaction, or rapid degradation
(Schmidt and Leach 2003).

As target cell or favorable biologic delivery
systems, the injectable fibrin gel has been
investigated as a carrier: such as cardiomyoblast
delivery (Camci-Unal et al. 2014), bone marrow
cells (Tajdaran et al. 2015), or bioactive factors
(Bensaid et al. 2003; Breen et al. 2009a, b;
Tajdaran et al. 2015). Injectable fibrin has been
popularly investigated for bone tissue engineering
applications because it is not seriously considered
for any defect shapes or dimensions and simple
invasive implant procedure. To improve the
effectiveness and efficacy, it is required to mix
the fibrin and biological components like bioac-
tive molecules, cells (or stem cells), or other
biomaterials (Li et al. 2015). Moreover, fibrin
microbeads are recently studied to deliver a single
cell into 3-D engineered micro-environments
(or scaffolds) or directly into the injured defect
sites for cartilage, cardiac muscle, skin or others
(Spicer and Mikos 2010; Tajdaran et al. 2015;
Whelan et al. 2014; Yuan Ye et al. 2011). It can
be advantageous to more predictably control the
quantities of cells or biologics with high
efficacies. Fibrin-based micro-bead delivery
systems can also encapsulate various stem cells
to promote bone regeneration (Liu et al. 2017).

(2009), Molly et al. (2006), Saltz et al.
(1991); Santoro et al. (2007); Simonpieri
et al. (2012)

Although the fibrin has various advantages for
tissue regeneration like great cell-material
interactions, rapid biodegradability could be the
limitation to induce appropriate tissue formation
with sufficient time (Hubbell 2003; Mano et al.
2007). Therefore, the fibrin material has been
modified with chemical agents to control degrad-
ability or enhance crosslinking for improvements
of biological and mechanical properties (Park
et al. 2017; Tallawi et al. 2015). In particular,
various cell types can affect fibrin degradation
rate because different biologics can be produced
by biological interactions between cells and fibrin
matrices (Brown and Barker 2014). Recently,
Park et al. investigated that the cementoblast and
osteoblast generated significantly different
matrix metalloproteinases (MMPs) in in-vitro
and modified fibrins for slow biodegradation
critically contributed to promote
cementogenesis and insert/integrate fibrous con-
nective tissues within the mineralized tissues in
in-vivo (Park et al. 2017).

For the 3-D scaffolds with geometric or archi-
tectural specificities, 3-D additive manufacturing
or 3-D printing techniques have been currently
highlighted and rapidly developed for biomedical
applications (Gu et al. 2016; Lorber et al. 2014;
Pati et al. 2015; Rimann et al. 2015; Xu et al.
2006). Of various polymeric materials for 3-D
printing systems, the fibrin material is limitedly
utilized as the bioink which is the hydrogel
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material with biological components like cells or
biologics for soft tissue engineering (Gu et al.
2016). Xu et al. demonstrated that the 3-D print-
ing fabrication manufactured the fibrin constructs
for neural tissue-guiding scaffolds (Xu et al.
2006) and Lee et al. presented the modified fibrin
material with murine neural stem cells was used
for build the 3-D architectures for nerve tissue
formations (Lee et al. 2010).

16.4 Future Perspectives for Fibrin
Biomaterials in Tissue
Engineering and Regenerative
Medicine

Fibrin has showed the high potential in function-
ing as an injectable materials, property-controlled
materials with cell-material interactions, and 3-D
printed scaffolds for tissue engineering and regen-
erative medicine. However, there are still numer-
ous limitations like the poor mechanical
properties for skeletal tissue regeneration, poten-
tial disease transmission by unpredictable
biological affinities, or deformability of fibrin
hydrogels. Many efforts have been contributed
to improve the mechanical strength to extend
applications with wide spectra and investigate
synthetic biopolymeric material composite to
characterize as biological or bioactive materials
like polyglycolic acid and poly(lactic-co-
glycolic acid).
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