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10.1 Tissue-Derived Natural
Scaffold: Decellularized Matrix

In the scope of tissue engineering and regenera-
tive medicine, investigations of functional
biomaterials and development of in vivo-like
systems are essential to maximize the efficacy of
tissue regeneration. Various extracellular matrix
(ECM)-derived components and synthetic
biomaterials have been utilized to construct
tissue-mimicking scaffolds and provide tissue-
like microenvironments for improved
functionalities of cells (Hubbell 1995; O’brien
2011; Place et al. 2009). However, the complex
structural interactions and biomolecular composi-
tion of native tissues cannot currently be
reconstituted with combinations of available sim-
ple fabrication techniques.

To prepare functional scaffolds for successful
tissue regeneration, decellularization of organs has
been increasingly studied in the last few decades,
using different types of xenogenic, allogenic, and
autologous tissues (Gilbert et al. 2006). During
decellularization through stepwise processes of
physical, chemical, and enzymatic methods, most
cells within the organ are removed, while the tissue-
specific structures and functional biomolecules of
the tissue ECM are retained, providing a tissue-

specific microenvironment (Fig. 10.1) (Gilbert
et al. 2006; Guyette et al. 2014). With the excellent
biocompatibility of organ-derived natural materials,
various types of cells such as primary cells and stem
cells can be reseeded onto the decellularized matrix
to fabricate tissue-engineered artificial organs,
which show greatly enhanced cellular engraftment
and tissue regeneration with improved
functionalities compared to conventional scaffolds
(Fig. 10.1) (Badylak et al. 2011). The biochemical
microenvironment, based on the retained ECMs,
glycoproteins, proteoglycans, and tissue-specific
functional molecules and mechanical properties
similar to those of native tissues, significantly
enhanced the regenerative efficacy of the matrix
and showed potential in therapeutic replacement of
damaged tissues (Badylak et al. 2011; Ott et al.
2008; Reing et al. 2010). Importantly, removal of
native cells could minimize immune rejection and
immune-related issues, which facilitates the use of
these biomaterials in regenerative medicine and fur-
ther clinical applications (Gilbert et al. 2006).

10.2 Decellularized Matrix
as a Functional Bioscaffold
for Tissue Engineering

10.2.1 Blood Vessel

Replacement of diseased blood vessels is a com-
mon surgical treatment for treating coronary
artery and peripheral vascular diseases
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(e.g. atherosclerosis) (Chlupac et al. 2009).
Although autologous vessels are a major candi-
date for bypass graft transplantation, proper
vessels might not always be available and
harvesting autologous vessels entails substantial
surgical costs and complex procedures and causes
secondary morbidity (Wilson et al. 1995). There-
fore, artificial blood vessels comprised of natural
or synthetic polymers have been developed over
the last few decades (L’Heureux et al. 2006,
2007). However, these scaffolds usually fail to
maintain functional vessels for long-term patency
owing to restenosis and thrombosis after trans-
plantation, especially for artificial vessels with
diameters below 6 mm (Wilson et al. 1995).

Since the early 1990s, acellular tissue-
engineered blood vessels have been highlighted
as natural scaffolds for vessel replacement
(Wilson et al. 1995; Kaushal et al. 2001; Cho
et al. 2005a, 2006). ECM components in
decellularized vessels, such as collagen, elastin,
and glycosaminoglycan (GAG), can promote
repopulation of endothelial cells and smooth mus-
cle cells, resulting in functional vessel construc-
tion and host integration without thrombosis
(Kaushal et al. 2001). Decellularized vessels can
be acquired from various arteries and veins,
including carotid arteries (Cho et al. 2005b),
iliac arteries (Kaushal et al. 2001), umbilical
arteries (Gui et al. 2009), saphenous veins

Fig. 10.1 Tissue-engineering strategy using the
recellularization of various cell types into decellularized
tissue matrices prepared with diverse chemical and enzy-
matic methodologies. Decellularized matrices from vari-
ous tissues (e.g. blood vessel, intestine, bladder, skin,

trachea, bone, tendon, and skeletal muscle) can be utilized
as functional bioscaffolds for tissue regeneration.
Solubilized decellularized matrices can be used as
injectable hydrogels for cell transplantation
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(Schaner et al. 2004), inferior vena cava (Cho
et al. 2005a; Bertanha et al. 2014a; Lee et al.
2014), and jugular veins (Lee et al. 2014).
Decellularization of the native vessel includes
diverse ionic (e.g. sodium dodecyl sulfate
[SDS], deoxycholate) (Gui et al. 2009; Schaner
et al. 2004) or non-ionic (e.g. Triton X-100)
detergents (Kaushal et al. 2001), and enzymatic
(e.g. trypsin, RNase, DNase) treatments (Wilson
et al. 1995; Kaushal et al. 2001). Among them,
the Triton X-100-based mild chemical procedure
has been generally adopted to remove cellular
components and retain similar structural integrity,
mechanical properties, and ECM components of
the native vessel (Samouillan et al. 1999).

For successful fabrication of tissue-engineered
blood vessels, rapid endothelialization and host
integration with the endothelium and smooth
muscle layers are essential for reducing the possi-
bility of restenosis and subsequent graft failure.
Diverse cell types have been seeded onto the
matrix to potentiate functionality and long-term
patency of the artificial decellularized vessels.
Stem cells, having the potential to differentiate
into endothelial cells, have been considered an
ideal candidate to construct the endothelium,
which is important for physiological functions
involved in inhibiting inflammation, thrombosis,
and restenosis after transplantation (Kaushal et al.
2001). For example, endothelial progenitor cells
(EPCs) were isolated from peripheral blood and
seeded inside the lumen of the decellularized
vessel for preconditioning of the graft. The con-
fluent monolayer of EPCs on the decellularized
vessel graft greatly extended in vivo patency with
physiological functionalities (Kaushal et al. 2001;
Quint et al. 2011). Smooth muscle cells (SMCs)
play major roles in the medial layer of the vessel
as supporting cells in the mechanical and physio-
logical functions of native blood vessels (Dora
2001). Thus, several studies coseeded SMCs
with ECs and showed significantly enhanced
in vivo maturation and contractile functionality
of the engineered vessel graft (Yazdani et al.
2009; Neff et al. 2011). In addition, bone
marrow-derived cells (Cho et al. 2005a) and mes-
enchymal stem cells (MSCs) (Zhao et al. 2010;
Bertanha et al. 2014b) were differentiated into

EC-like cells or SMC-like cells and used in recon-
struction of endothelium and vessel grafts,
resulting in improved long-term patency.

10.2.2 Small Intestine

Decellularized small intestinal submucosa (SIS)
is one of the most widely studied decellularized
ECM scaffolds. SIS is a thin layer of intestinal
tissue that supports the mucosa and joins it to the
muscularis propria layer. With the high content of
collagens and structural integrity of the
decellularized SIS, it has been mostly used as a
transplantable natural scaffold for clinical
applications (Hodde 2002; Badylak 1993).
Indeed, SIS has been used in treating patients
requiring blood vessel replacement, bladder
reconstruction, dural repair, tendon and ligament
substitute, and chronic wound healing (Huynh
et al. 1999; Franklin et al. 2002; Badylak et al.
1989, 1999, 2002; Prevel et al. 1995; Cheng and
Kropp 2000; Cobb et al. 1999). Other popular
clinical usages of SIS scaffolds include recon-
struction of urinary bladder (Misseri et al. 2005;
Caione et al. 2006), urethra (Jones et al. 2005),
diaphragm (Oelschlager et al. 2003), and integu-
ment (MacLeod et al. 2004; Zhang et al. 2003). In
earlier studies, the whole small intestine tissue
section was examined for implantable biomaterial
usage. However, having all the layers in the small
intestine appeared to be too enzymatically active
for clinical uses, especially in wound treatments.
Subsequent studies involved examination of the
various layers of the small intestine, and it was
concluded that the layer consisting solely of the
submucosa was the most suitable for implantation
usage (Brown-Etris et al. 2002). The submucosal
layer appears to be the best option in terms of
biofunctionality for transplantation because of its
high content of fibroblast growth factor (FGF),
transforming growth factor-beta (TGF-β), and
collagens (Badylak et al. 1989; Badylak 2004).
Not only do the factors induce rapid regeneration
of the submucosal layer, but the fibrous collagen
network in the layer also gives mechanical
strength to the whole intestine.
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There are various methods to produce
completely decellularized intestine, that include
physical, chemical, and enzymatic methods (Luo
et al. 2011; Syed et al. 2014; Oliveira et al. 2013),
but generally, decellularized SIS does not need
complex decellularization steps to remove all cel-
lular and nuclear materials because it already
contains relatively few, if any, connective tissue
cells. In most cases, mechanical force has been
used to delaminate the layers of the small intes-
tine, and the extent of the force used is enough to
separate the SIS layer from the small intestine
with minimal disruption to the three-dimensional
(3D) ECM structures. Despite the relative lack of
cellular materials to start with, additional chemi-
cal methods including treatments with Triton
X-100, peracetic acid, and deoxycholate have
been used in many studies to ensure that there
are no immune responses upon transplanta-
tion (Wu et al. 2011; Totonelli et al. 2012).

For cell therapeutic purposes, stem cells have
been used as a cell source for SIS transplantation,
since stem cells can differentiate and contribute to
the regeneration of the intestinal epithelium. It has
been reported that adult stem cells such as human
MSCs, including bone-marrow derived cells, can
repair the damaged intestinal epithelium (Patil
et al. 2013). Other studies for reconstruction of
urethral tissue involve the isolation of human
MSCs from voided urine that can differentiate
into multiple bladder cell lineages (Wu et al.
2011). Urine-derived stem cells and smooth mus-
cle cells could be seeded onto SIS scaffolds to
mimic urethral tissues for transplantation.

10.2.3 Bladder

The urinary bladder is a hollow muscular sac
where urine is contained until it is evacuated
from the body by the parasympathetic nervous
system. Spinal cord injury can affect the activity
of the urinary bladder and cause bladder dysfunc-
tion, eventually leading to urinary tract infections,
which significantly affects the quality of life of
the patient. The conventional treatment for
repairing a damaged urinary bladder involves
partial or complete replacement of the bladder

with gastrointestinal segments (Kropp et al.
2004). Upon transplantation, several issues can
arise, such as metabolic disturbances, increased
mucus production, and malignant tissue forma-
tion (Soergel et al. 2004). Owing to these
problems, more attempts have been made to
approach urinary bladder treatment from a tissue
engineering perspective. Synthetic materials such
as polyvinyl sponge (Kudish 1957) or collagen
matrices (Monsour et al. 1987) had been used in
experimental and clinical settings, but they usu-
ally failed to generate functional bladders due to
their lack of biocompatibility and insufficient
layer formation of bladder tissues. Since
decellularization is an efficient method to produce
bioscaffolds for regeneration of diverse organs,
an acellular bladder matrix has also been consid-
ered for the repair and regeneration of urinary
bladder. Bladder augmentation using
decellularized matrix has been proposed to
improve the function of neurogenic bladder
(Obara et al. 2006; Urakami et al. 2007).

The decellularization protocols for the bladder
included sodium deoxycholate (Obara et al. 2006;
Urakami et al. 2007), Triton X-100 with ammo-
nium hydroxide (Consolo et al. 2016), sodium
azide (Sievert et al. 2006), SDS (Youssif et al.
2005), and RNase/DNase treatments (Reddy et al.
2000). Most studies also involved physical lami-
nation and removal of the muscular and serosal
layers prior to the chemical and enzymatic
procedures to facilitate the later steps (Youssif
et al. 2005; Davis et al. 2011). The studies that
optimized the protocol to remove almost all the
cellular contents while preserving the ECM struc-
tural architecture and growth factors combined
lamination of the layers and SDS solution treat-
ment (Youssif et al. 2005; Rosario et al. 2008).
This method enhanced the reseeding and prolifer-
ation of urothelial and bladder stromal cells.

When the decellularized bladder matrix is used
without reseeding, it augments the bladder to
induce the formation of the urothelial layer
(Brown et al. 2002). In other studies that used a
seeded matrix of the bladder, urothelial cells are
used for the patients needing bladder augmenta-
tion (Yoo et al. 1998). For the treatment of
patients with bladder cancer, alternative cell
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sources such as stem cells are a candidate because
the patient’s own stem cells can be used to gener-
ate more specialized bladder tissue. The stem
cells for recellularization of the bladder matrix
include bone marrow-derived mesenchymal
stem cells (BMMSCs) (Chung et al. 2005), bone
marrow-derived endothelial progenitor cells
(Chen et al. 2011), adipose-derived stem cells
(ADSCs) (Zhu et al. 2010), or amniotic fluid-
derived stem cells (De Coppi et al. 2007). It has
been shown that the decellularized bladder matrix
can provide the cells with an environment suit-
able to promote cell migration, growth, and dif-
ferentiation. Therefore, decellularization methods
hold a great deal of promise for bladder repair.

10.2.4 Skin

Skin is the largest organ in vertebrates, playing
roles as a mechanical barrier against pathogens
and excessive water loss, as well as an insulator
for temperature moderation. Despite the large
advancements in regenerative medicine, treating
skin disorders and injuries with fully functional
skin tissues has faced substantial limitations.
Although autologous dermis transplantation is a
popular therapeutic for skin regeneration, devel-
opment of bioscaffolds that can be applied imme-
diately after severe injuries such as burns is
essential to reduce lethality and minimize issues
regarding shortages of skin replacement, espe-
cially for skin reconstruction of large-scale, full-
thickness injuries. Earlier studies developed skin
scaffolds from natural polymers and synthetic
biodegradable polymers (Eaglstein and Falanga
1997). However, synthetic materials appeared to
have poor biocompatibility and low mechanical
strength to resist wound contraction (Ono et al.
1999). Moreover, large scale skin defects arising
from surgery, acute trauma, chronic wounds, can-
cer, or vascular disease require skin transplanta-
tion, which cannot be accomplished solely with
conventional synthetic scaffolds (Ruszczak
2003). Thus, a bioengineered acellular dermal
matrix has been the next desirable candidate for
skin substitutes.

Recent studies have presented several methods
for producing natural matrices derived from
decellularized skin tissue (Chen et al. 2004;
Hoganson et al. 2010). They demonstrated suc-
cessful decellularization methods that exhibited
low antigenicity, excellent structural integrity,
and comparable functional performances to
native skin. For eliminating cells from dense
skin tissue, SDS (Wainwright 1995; Livesey
et al. 1995) and Triton X-100 treatments along
with other enzymes such as dispase (Takami et al.
1996) have been employed. The process of skin
decellularization usually requires more than just
one treatment and takes much longer than the
conventional decellularization protocols for
other organs due to high collagen density of skin
tissue.

Decellularized skin scaffolds are not only useful
in skin reconstruction, but also in reconstruction of
several other body parts including the esophagus
(Bozuk et al. 2006) and urinary tract (Kimuli et al.
2004). To further promote skin regeneration and
efficient structural reconstruction of thick skin tis-
sue by decellularized matrices, cell reseeding has
also been explored. There have been several stud-
ies that utilize ADSCs, a widely investigated stem
cell type in regenerative medicine, to enhance
wound healing using decellularized skin tissues
(Nie et al. 2009; Huang et al. 2012; Altman et al.
2008). The decellularized dermal matrix can act as
a functional biomaterial platform to promote
ADSC differentiation or as a delivery vehicle to
carry stem cells capable of secreting angiogenic
factors to the injured sites for accelerated wound
healing. Autologous BMMSCs (Zhao et al. 2012)
and keratinocyte-like cells differentiated from
ADSCs (Chavez-Munoz et al. 2013) have also
been used to reconstruct skin tissues using a
decellularized skin matrix.

10.2.5 Trachea

Trachea, a cartilaginous airway is one of the most
well-studied tissues in regards to engineering
concepts based on decellularization techniques.
Malignant tracheal injuries often require tissue
resection and artificial trachea implantation,
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especially when the removed length exceeds 30%
of the native trachea (Macchiarini et al. 2008).
Therefore, tubular scaffolds made of various bio-
compatible natural and synthetic polymers have
been utilized for the fabrication of tissue-
engineered tracheae and successful tracheal
replacement (Jungebluth et al. 2011; Grillo
2002). However, anatomical complications and
exposure to external pathogens usually induce
immune reaction, inflammation, and subsequent
restenosis, leading to failures in long-term
patency (Grillo 2002).

Therefore, a decellularized trachea has been
investigated as an attractive natural scaffold for
preparing a functional tissue construct and trachea
replacement. Detergent-based (e.g. sodium
deoxycholate, SDS, and Triton X-100) and enzy-
matic (e.g. DNase-I) decellularization methods
were adopted to remove cellular components
from native tracheal tissues (Macchiarini et al.
2008; Gray et al. 2012; Jungebluth et al. 2014).
Generally, decellularization of tracheal tissue is a
more time-consuming process compared to that
for other organs due to difficulties in eliminating
chondrocytes from the cartilaginous layer. How-
ever, repeated cycles of the process resulted in
depletion of DNA content after decellularization,
thus minimizing immune reactions.
Decellularized trachea matrix scaffolds success-
fully preserved trachea-specific 3D structures and
ECM components such as collagen, laminin, and
GAG, even after the decellularization process
(Partington et al. 2013). Moreover, the
decellularized trachea showed comparable
mechanical properties to a native trachea
(Jungebluth et al. 2014; Partington et al. 2013),
which is a crucial factor for long-term mainte-
nance and functionality after transplantation,
although several studies employed chemical fixa-
tion methods for mechanical strength enhance-
ment (Haag et al. 2012).

Decellularized trachea matrix was further
engineered with stem cells to improve the efficacy
of practical tracheal reconstruction. MSCs
differentiated into the chondrogenic lineage
(Gray et al. 2012; Go et al. 2010) were seeded
or coseeded with epithelial cells on the
decellularized matrix to facilitate trachea

reconstruction, suggesting the regenerative poten-
tial of the engineered matrix. Stem cells are
thought to participate directly in tissue regenera-
tion for physiological functions, simultaneously
withstanding the mechanical demands required
for tracheal functions. A clinical trial using a
tissue-engineered trachea was firstly attempted
in a patient with end-stage tracheal disease in
2008 by engineering the decellularized matrix
with autologous epithelial cells and
MSC-derived chondrocytes (Macchiarini et al.
2008). Since then, several clinical applications
have also been performed and successful regener-
ation of the trachea was confirmed in several
clinically relevant follow-up studies (Gonfiotti
et al. 2014; Jungebluth and Macchiarini 2014).
However, the need for additional stent insertions
and initial side effects including immune
reactions, inflammation, and partial stenosis also
occurred in many cases. Therefore, to be accepted
as a universal treatment for tracheal reconstruc-
tion, decellularized trachea matrix-based
approaches need to be further studied in terms
of improving host integration without restenosis
and satisfying mechanical properties for long-
term patency.

10.2.6 Bone

Unlike most tissues in the body, bone is a hard
connective tissue made up of different osteogenic
lineage cells such as osteoblasts, osteocytes, and
osteoclasts and is usually dense with a
honeycomb-like network. The hardness comes
from the inorganic components of bone including
calcium phosphate and calcium carbonate. The
mineralization by these inorganic materials gives
bone its strength and rigidity (Clarke 2008;
Kalfas 2001). One of the most common defects
in bone is a bone fracture that occurs when excess
force is applied or when osteoporosis lowers bone
density. As the bone regeneration process takes a
long time and the healing process is accompanied
by swelling and pain in daily activities, bone
substitutes or supports accelerating bone healing
are greatly in demand (Burge et al. 2007).
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The requirements for bone grafts include hav-
ing the mechanical strength, chemical composi-
tion, and structural architecture that mimic natural
bone. The bone graft must be strong and
osteoinductive to generate fully functioning
bone tissue. Lack of immunogenicity and bio-
compatibility are also key requirements for bone
grafts, like any other biological grafts. To this
end, inorganic materials such as hydroxyapatite
(Bucholz et al. 1987, 1989) and calcium phos-
phate (Jarcho 1981) have been widely used as
biomaterials that meet these criteria. Similar to
other organs and tissues, decellularization strat-
egy could be applied for generation of functional
bone grafts. Since bone tissue has physically dif-
ferent features from other organs in terms of
interconnectivity, permeability, and mechanical
properties, decellularized bone matrix can pro-
vide multifaceted mimicry of the native bone
tissue, which is rarely achieved by conventional
scaffold systems. Several decellularization
protocols using detergent containing Triton
X-100 (Woods and Gratzer 2005), trypsin
(Gerhardt et al. 2013), SDS (Grayson et al.
2008), or enzymes (Fröhlich et al. 2009) and
hydrostatic pressure (Hashimoto et al. 2011)
have been tested to decellularize bone tissue. In
some studies, demineralization using
hydrochloric acid (HCl) was used before
decellularization, but this process might cause a
reduction in active growth factors (e.g. bone mor-
phogenetic proteins) (Pietrzak et al. 2011).

Owing to the osteogenic potential of
decellularized bone matrix, several studies have
reported that decellularized bone matrix indeed
promotes proliferation and osteogenic differenti-
ation of the seeded stem cells (Hashimoto et al.
2011; Lee et al. 2016; Datta et al. 2005).
Decellularized bone scaffolds seeded with
BMMSCs have shown successful bone regenera-
tion after transplantation into defective calvarial
bone (Lee et al. 2016). Other studies have
involved culture of stem cells derived from adi-
pose, dental pulp, and umbilical cord blood on
decellularized bone ECM supplemented with
growth factors to induce osteogenic differentia-
tion for bone regeneration (Fröhlich et al. 2009;
Paduano et al. 2016, 2017; Liu et al. 2010). To

further expand the applicability and versatility of
decellularized bone graft, recent work solubilized
the matrix through enzymatic digestion to gener-
ate a hydrogel platform (Paduano et al. 2016;
Sawkins et al. 2013). Osteogenic cells from
calvaria or dental pulp were cultured on hydrogel
made from decellularized bone matrix, signifi-
cantly enhancing proliferation and odontogenic
differentiation. These studies employed gelation
of bone ECM, which demonstrated the
advantages of using a decellularized bone matrix
that could be formulated into various 3D
scaffolds and used as a functional biomaterial
for enhanced bone regeneration.

10.2.7 Tendon

Tendon is a tough, fibrous connective tissue that
connects muscle to bone, usually requiring a
high capacity for withstanding a large amount
of force or tension during movement and exer-
cise. In tendon tissue, collagen fibers allow
tendons to resist tensile stress while
proteoglycans give them the ability to resist
compression. Tendons need to have sufficient
elasticity to store energy for their function and
thus control finer movements of the muscle at the
same time. Since tendon tends to have a dense
and intricate network of collagen and
proteoglycans, repairing ruptured tendons is not
an easy task (Clayton and Court-Brown 2008).
There have been several candidates for tendon
grafts including synthetic polymers such as poly
(glycolic acid) (PGA), poly(lactic-co-glycolic
acid) (PLGA), and polytetrafluoroethylene
(PTFE) to provide biological functions as well
as mechanical properties (Ouyang et al. 2003;
Stoll et al. 2010); however, synthetic materials
have shown poor performance in regards to bio-
compatibility, quality of regeneration, and
mechanical durability (Chen et al. 2009).

The decellularization method for tendon repair
has been a focus of research because of the naturally
aligned, intricate construction of thick collagen and
tendon ECMs.With various sources in body, tendon
tissues from Achilles (Ko et al. 2016), neck
(Ko et al. 2016), tibia (Lee et al. 2013a), flexor
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(Youngstrom et al. 2013;Martinello et al. 2014), and
diaphragm (Deeken et al. 2011) tendon have been
decellularized through protocols involving freeze-
thaw cycles (Youngstrom et al. 2013; Deeken et al.
2011) and the use of mechanical forces (Ingram et al.
2007) along with the aid of chemical treatments such
as non-ionic detergent (e.g. Triton X-100), ionic
detergent (e.g. SDS), and zwitterionic detergent
(e.g. tributyl phosphate) (Ko et al. 2016; Deeken
et al. 2011; Alberti et al. 2015). Importantly, the
dense, aligned fibrous structures, mechanical
properties, and stiffness of native tendon tissue
could be preserved even after the decellularization,
which are all essential for improved and prolonged
tendon regeneration and function.

For recellularization of tendon scaffolds, stem
cells such as BMMSCs, ADSCs, and tendon-
derived stem cells that can differentiate into
tenocytes can be used (Martinello et al. 2014;
Ning et al. 2015; Yin et al. 2013). It was found
that the intrinsic alignment of tendon ECMs pre-
served in the decellularized tendon scaffold could
provide a sufficiently favorable microenviron-
ment for enhancing cell distribution, prolifera-
tion, and tenogenic differentiation of stem cells.
Other cell candidates also include mesenchymal
stromal cells, tenocytes, and fibroblasts
(Angelidis et al. 2010; Whitlock et al. 2013;
Burk et al. 2013). For improving engraftment
efficiency, supporting hydrogels can also be
used during cellular repopulation into the
decellularized tendon tissue (Martinello et al.
2014). In addition, bioreactors that can provide
cyclic mechanical stress after cell seeding onto
the decellularized tendons could contribute to
better cellular orientation and mechanically stron-
ger tendon regeneration (Angelidis et al. 2010).

10.2.8 Skeletal Muscle

Skeletal muscle is composed of bundles of mus-
cle fibers that together function to generate forces
to facilitate voluntary movement (Gans 1982).
Even when muscle is damaged, the muscle can

repair itself with the biochemical and biophysical
cues provided by the ECMs (Hill et al. 2003);
however, if the damage exceeds the self-healing
capacity, the repair process mediated by ECMs is
not efficient, and the lost muscle volume will be
replaced with fibrotic scar tissue. Cell transplan-
tation has been attempted to regenerate muscle
tissue and restore functions of injured muscle, but
cell therapy alone has shown rather marginal
regenerative effects on muscle.

With the insufficient therapeutic functional
restoration provided by cell transplantation, sev-
eral synthetic (e.g. poly-ε-caprolactone [PCL])
(Chen et al. 2013) or natural (e.g. fibrin (Layman
et al. 2010), gelatin (Layman et al. 2007), and
alginate (Ruvinov et al. 2010) biomaterials have
been used for treating muscular damage. How-
ever, due to immune rejection, low degradability
of polymers, bioinertness, and lacking imitation
of the natural ECMs, conventional biomaterials
were not suitable for the efficient muscle regener-
ation. The ideal scaffold for addressing muscle
damage should replace the native ECMs of
musculofascial tissue, which is not an easy task
to be accomplished with conventional methods.
Therefore, recent studies have focused on using
decellularized skeletal muscle tissue to guide
skeletal muscle regeneration at the defect site.
Decellularized muscle scaffolds are suitable for
muscle tissue engineering because they are
expected to provide proper biological and bio-
physical signals to guide differentiation and pro-
liferation of muscle progenitor cells and
myoblasts for skeletal muscle regeneration
(Stern et al. 2009).

Different approaches for muscle
decellularization have been explored using
combinations of different treatments. These
methods include detergent solutions containing
Triton X-100 (Stern et al. 2009; Gillies et al.
2010; Wang et al. 2013; Wolf et al. 2012), SDS
(Hurd et al. 2015; Perniconi et al. 2011; DeQuach
et al. 2010; Merritt et al. 2010a), or sodium
deoxycholate (Wolf et al. 2012), along with
other enzymatic treatments involving DNase
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(Gillies et al. 2010) and trypsin/ethylenediamine-
tetraacetic acid (EDTA) (Porzionato et al. 2015).
These methods for muscle tissue decellularization
successfully removed cellular components from
native muscle tissue, while retaining muscle
ECMs (e.g. collagens, fibronectin, and laminin),
growth factors, and GAG components with the
intact muscular architectures providing cell-to-
matrix interactions (Stern et al. 2009; Gillies
et al. 2010; Wang et al. 2013; Wolf et al. 2012).

Decellularized muscle scaffolds can be
engineered by culturing cells on the matrix to
improve regeneration efficiency. There are usu-
ally two types of platforms on which the cells
could be seeded. In earlier studies, most cells
were seeded onto the decellularized muscle
graft itself (Hurd et al. 2015; Perniconi et al.
2011). The cell candidates for muscle regenera-
tion using decellularized muscle matrix include
BMMSCs that can differentiate into muscle cells
and induce functional recovery after full-
thickness defects (Merritt et al. 2010b).
Myoblasts, skeletal muscle stem cells,
fibroblasts, and endothelial cells have also been
used with decellularized muscle matrix in mus-
cular remodeling (Wolf et al. 2012). However,
more recent studies have utilized the biochemi-
cal properties of ECM from the decellularized
matrix in the form of a hydrogel or surface coat-
ing instead of using the whole muscle scaffold;
this approach gives the materials more benefits
in terms of versatility and applicability
(DeQuach et al. 2010, 2012; Ungerleider et al.
2015). Even in their solubilized form, the natural
muscle-specific proteins, peptides, and
proteoglycans, including heparin sulfate and
decorin, could promote differentiation and mat-
uration of the skeletal myoblasts (DeQuach et al.
2010). There have been numerous studies on
injectable skeletal muscle matrix-based
hydrogels that can induce proliferation of
smooth muscle cells and skeletal myoblasts to
improve neovascularization in hindlimb ische-
mia models (DeQuach et al. 2012) and in volu-
metric muscle loss injury models with the
addition of MSCs (Merritt et al. 2010b).

10.3 Whole Organ Decellularization
for Functional Organ
Replacement

10.3.1 Heart

As one of the major causes of death, heart failure
is a fatal disorder, especially for the many patients
with end-stage heart disease. Whole heart trans-
plantation has been considered the only treatment
option, but donor shortages and immunological
issues have substantially limited the application
of this approach. Fabrication of functional heart
tissue involves complicated issues in terms of
mimicking complex structures with mechanical
demands, diverse cellular populations, and physi-
ological functions including heart beating.

In 2008, a perfusion-based whole organ
decellularization technique was first suggested
for the heart (Ott et al. 2008). For efficient
decellularization, various detergent solutions
containing SDS, Triton X-100, trypsin, and
sodium deoxycholate were tested, and SDS has
been proven to be an essential compound for
successful decellularization of native heart tissue,
though there were some differences in composi-
tion of the detergents and perfusion time among
the species tested (Fig. 10.2) (Ott et al. 2008; Lu
et al. 2013; Kitahara et al. 2016; Oberwallner
et al. 2014). When detergent is perfused through
the coronary artery, most cellular components,
lipids and soluble factors were removed after
several days of the decellularization process, but
structural ECMs, such as collagens, laminin, and
fibronectin, were preserved to provide the proper
microenvironment for heart tissue (Ott et al.
2008; Maher 2013). Recently, Kitahara et al.
reported a shorter method for preparing whole
decellularized porcine heart tissue that is suitable
for clinical applications, which would minimize
loss of biofunctional molecules in native cardiac
tissue and side effects induced by residual DNA
contents (Kitahara et al. 2016). More importantly,
the cardiac-specific 3D architecture that supports
persistent contractions and relaxations during cir-
culation was maintained without any distortion or
collapse. Although substantial advances have
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been made in whole heart decellularization since
the first success in rat heart tissue (Ott et al. 2008),
fabricating fully functional whole hearts using
decellularized matrix is still a challenging task.
To scale-up for human use, the process of remov-
ing cells while preserving the biochemical micro-
environment and mechanical/structural properties
of native cardiac tissue needs to be further
optimized. Moreover, functional cell
incorporation into the matrix needs to be achieved
for physiological functioning of the regenerated
heart tissue.

Recellularization using neonatal cardiac cells
and endothelial cells resulted in contracting and
functional cardiac tissues (Ott et al. 2008). Later,
induced pluripotent stem cell (iPSC)-derived car-
diovascular progenitor cells were also used in
repopulating the decellularized heart (Lu et al.
2013). The progenitor cells were distributed
throughout the whole decellularized heart via a
perfusion seeding method and efficiently
differentiated into cardiomyocytes, smooth mus-
cle cells, and endothelial cells within histologi-
cally relevant regions of the decellularized matrix,

resulting in spontaneous contractions of the
engineered heart tissue (Fig. 10.2). With the
potential to differentiate into myogenic lineages,
adult stem cells such as BMMSCs and cord
blood-derived mesenchymal stem cells
(CBMSCs) have also been exploited as promising
cell sources for reconstructing a functional heart
using a decellularized heart matrix (Kitahara et al.
2016; Oberwallner et al. 2014; Eitan et al. 2009;
Wang et al. 2010).

10.3.2 Liver

The liver is one of the largest organs with integral
functions in metabolism, detoxification, and bio-
synthesis of various proteins. The liver can be
damaged by various innate or acquired conditions
such as genetic abnormality, viral infection, and
alcoholic liver cirrhosis, but proper therapies to
treat patients with end-stage liver diseases have
not been developed as an alternative to orthotopic
liver transplantation (Lee and Cho 2012). How-
ever, substantial shortages of donor livers and

Decellularization

Donor

Recipient

Organ harvest

Transplantation

Bioengineered organ

Cell source

In vitro culture by
perfusion method

Recellularization

· Chemical
(Triton X-100, SDS)

· Pluripotent stem cells
· Adult stem cells
· Primary cells
· Stromal cells
· Endothelial cells

· Enzymatic
(DNase, Trypsin)

Fig. 10.2 Construction of transplantable bioengineered
organs via whole organ decellularization and subsequent
recellularization through perfusion-based cell seeding
methods. Whole organs (e.g. heart, liver, kidney, and

lung) from donors can be decellularized using detergents
and recellularized with various cell types to reconstitute
native organs with the native circulatory system
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immune reactions have limited the practical appli-
cation of liver transplantations to replace dam-
aged livers. Moreover, as the liver is one of the
most highly vascularized and largest organs in
our body, previous tissue-engineering scaffolds
could not generate the complex and
interconnected vascular pathways in liver tissue.
Perfusion-based decellularization techniques
using whole liver tissue have provided insight
into solving the hurdles of liver transplantation.
In 2010, a whole organ decellularization tech-
nique was used in the fabrication of an artificial
liver construct in a rat model (Uygun et al. 2010).
Perfusion of an SDS-based detergent solution
successfully removed cellular components while
retaining the hepatic sinusoidal structural ECM
components (e.g. collagen type IV and fibronec-
tin) and basement membranous ECM
components of the native liver (e.g. laminin-β1).
Along with liver tissue-derived ECM
components, the retained GAGs and
proteoglycans play important roles in improving
hepatic functions of the cultured cells, as well as
mechanical support of the matrix (Stuart and
Panitch 2008). Other decellularizing detergents
that have been used include Triton X-100, sodium
deoxycholate, and chelating agents such as
EDTA and ethylene glycol tetraacetic acid
(EGTA). Importantly, decellularized liver tissue
contains intact and interconnected vasculature
structures in the matrix even after the cell removal
process, which is crucial in reconstructing blood
circulation for oxygen transfer and nutrient sup-
ply for the cells in the whole matrix.

To develop a functional artificial liver con-
struct, various cell types composing native liver
tissues were seeded into the decellularized liver
matrix. Primary hepatocytes, stem cell-derived
hepatocyte-like cells, liver progenitor cells, and
hepatic satellite cells were seeded to endow the
inherent functionality of the liver such as protein
synthesis, urea metabolism, detoxification, and
enzymatic activity (Uygun et al. 2010; Soto-
Gutierrez et al. 2011; Mazza et al. 2015; Wang
et al. 2014). Endothelial cells were also coseeded
with hepatocytes to reconstruct physiologically
durable vasculature and reduce thrombosis
(Baptista et al. 2011). Establishing proper cell

seeding methods is another issue for artificial
liver construction because of the large volume of
tissue matrix and difficulties in evenly
distributing the seeded cells throughout whole
decellularized matrix (Baptista et al. 2011; Faulk
et al. 2015). Multiple cell perfusion via the portal
vein has shown efficient cellular engraftment of
over 90% of the infused cells compared to other
less efficient approaches including direct paren-
chymal injection or continuous perfusion method
(Uygun et al. 2010; Soto-Gutierrez et al. 2011).
For constructing a functional bioengineered liver
with a decellularized liver matrix, vasculature
modifications using antibodies have also been
utilized to improve re-endothelialization after
cell seeding (Ko et al. 2015). Recently, enzymati-
cally solubilized whole decellularized liver matrix
was used in preparing different formats of liver-
specific scaffolds for functionally improved hepa-
tocyte culture and transplantation, which has
broadened the utility of decellularized liver matri-
ces (Lee et al. 2013b).

10.3.3 Kidney

The kidney filters the blood to make urine for the
purpose of removing waste and nitrogen from the
body. Despite this important role of the kidney,
the number of patients who suffer from chronic
renal diseases increases every year with approxi-
mately 30 million patients in the United States
alone (Stats F 2017). In the case of end-stage
renal disease, chronic dialysis or kidney trans-
plantation is indispensable for survival of the
patients. Even with the accelerated development
of dialysis systems, kidney transplantation is
often the ultimate curative treatment for
end-stage patients. However, the number of kid-
ney donors is insufficient to meet the demand. It is
a devastating fact that after kidney transplanta-
tion, the recipients often suffer from acute rejec-
tion. Thus, tissue-engineering approaches for
functional artificial kidney construction appear
to be a necessary alternative to renal
transplantation.

In the early conception of tissue engineering a
kidney, an extracorporeal device using a
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hemofiltration cartridge was developed as an arti-
ficial renal tubule (Humes et al. 2002). Cells with
endocrine activity were grown along the inner
surface of the cartridge. However, it seemed that
a more functional bioscaffold is required for the
growth and functions of renal cells or precursor
cells in order to replace kidney functions in the
long term. Therefore, since 2009,
decellularization of the whole kidney has started
to be considered for artificial kidney reconstruc-
tion (Ross et al. 2009). The whole decellularized
kidney matrix can retain its naturally occurring
renal architectures and ECM structures for the
glomerulus and renal tubule including the abun-
dant growth factors and vasculature to promote
cell engraftment and renal regeneration (Ross
et al. 2009; Song et al. 2013; Caralt et al. 2015).

The first approach to kidney regeneration
using decellularization was reported in 2009, in
which the whole rat kidney was decellularized so
that pluripotent murine embryonic stem cells
could be repopulated in the scaffold (Ross et al.
2009). Later, decellularized kidneys from other
species have also been investigated for generation
of renal ECM scaffolds, including porcine (Song
et al. 2013; Batchelder et al. 2015; Sullivan et al.
2012), monkey (Nakayama et al. 2010), and
human (Song et al. 2013). To obtain
decellularized whole kidney scaffolds, several
treatments can be applied, including SDS (Caralt
et al. 2015; Batchelder et al. 2015; Nakayama
et al. 2010; McKee and Wingert 2016; Wang
et al. 2015), Triton X-100 (Caralt et al. 2015;
Nakayama et al. 2010; McKee and Wingert
2016; Wang et al. 2015), trypsin (Caralt et al.
2015), and DNase (Sullivan et al. 2012) or
combinations of these treatments. In general,
SDS and Triton X-100 are the mostly widely
adopted methods to remove cellular components
from renal tissue.

Functional renal regeneration requires
recellularization with various cells into the 3D
ECM architectures of the decellularized kidney
tissues. Conventionally, cells are seeded through
renal arterial perfusion so that they can be
distributed throughout the matrix by the native
circulatory system (Song et al. 2013; McKee
and Wingert 2016). Diverse cell candidates have

been tested to repopulate the kidney matrix, and
stem cells are regarded as an ideal cell source for
kidney regeneration in terms of immune tolerance
and differentiation capacity. Stem cells could dif-
ferentiate into cell types for renal regeneration
such as endothelial cells or renal progenitor cells
(Caralt et al. 2015; Bonandrini et al. 2014).
Embryonic stem cells (ESCs) have been used to
repopulate the decellularized kidney matrix since
they can differentiate into renal lineage cells. It
appeared that renal ECM scaffolds can suffi-
ciently induce renal differentiation of ESCs with-
out the addition of other factors (Ross et al. 2009).
It was also reported that the 3D ECM
architectures of the decellularized kidney matrix
influences not only cell morphology, adhesion,
migration, and proliferation, but also the differen-
tiation of the infused ESCs into the meso-
endodermal lineage and renal progenitors
(Bonandrini et al. 2014). Endothelial cells derived
from iPSCs were also utilized for constructing
functional renal tissue using decellularized kid-
ney matrix (Song et al. 2013; Caralt et al. 2015;
Du et al. 2016). The endothelial cells successfully
repopulated the vasculature in the kidney matrix
and formed tubules with metabolic activity.

10.3.4 Lung

The lung is one of the major organs of the body
involved with the respiratory system for gas
exchange. As the lung directly comes into contact
with the outside atmosphere containing various
toxic materials such as viruses, dust, and air
pollutants, it is prone to various diseases, includ-
ing pneumonia, lung cancer, asthma, and cystic
fibrosis (Schoene 1999). In severe cases, partial or
whole lung transplantation is the only clinical
option for patients, but the organ shortages and
immune rejection are issues with lung transplan-
tation like with other organs. Therefore,
biological scaffolds for lung reconstruction have
been identified as an alternative to lung grafts.
However, fabricating lung-specific structures
such as alveoli and pulmonary capillaries, which
are essential for gas exchange, has been a
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challenge in constructing functional lung grafts
for clinical applications.

Earlier studies of lung scaffolds dealt with a
whole organ perfusion method for
decellularization (Ott et al. 2010; Petersen et al.
2012). Decellularization using perfusion was pre-
ferred because the whole lung turns into a func-
tional scaffold with intact alveolar and vascular
networks and native ECM structures. In the whole
lung perfusion method, detergent solutions are
flowed into the organ via blood vessels so that
the detergents can successfully remove all cellular
components along the capillaries. Generally,
chemical solutions such as Triton X-100, sodium
deoxycholate, SDS, and 3-[(3-cholamidopropyl)
dimethylammonio]-1-propanesulfonate
(CHAPS) (Ott et al. 2010; Petersen et al. 2010,
2012; O’Neill et al. 2013) have been applied for
lung decellularization. In another study, the lung
was cut into smaller pieces for more efficient
decellularization, while preserving the ECM
components, microstructures, and mechanical
properties intrinsic to the lung (O’Neill et al.
2013). The decellularized lungs are usually then
reseeded with endothelial cells and pulmonary
epithelial cells prior to transplantation into the
recipient.

The cell sources for lung grafts include ESCs
(Longmire et al. 2012), BMMSCs, and ADSCs
(Mendez et al. 2014; Bonvillain et al. 2012) that
can differentiate into the cell types needed to
reconstitute lung tissues, which includes lung
progenitor cells and airway epithelial cells.
iPSCs, another type of pluripotent stem cells
reprogrammed from somatic cells, have also
been used to recellularize the decellularized lung
scaffolds (Gilpin et al. 2014; Ren et al. 2015).
Ren et al. reported that iPSCs reseeded onto a
decellularized lung scaffold differentiated into
endothelial and perivascular cells, which opened
up a new possibility to advance decellularization
techniques to vascularized organs with a larger
scale (Ren et al. 2015). Other cell sources for
recellularization include human umbilical vein
endothelial cells, fetal lung cells (Ott et al. 2010),
and lung epithelial cells (Petersen et al. 2010).

However, the issue of ensuring that specific cell
types settle at desired locations during
recellularization still remains, which is mainly
due to technical difficulties in cell seeding and
localization.
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