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Abstract. The eXtended isogeometric analysis (X-IGA) combined with Parti-
cle swarm optimization (PSO) is used for crack identification in two-
dimensional linear elastic problems based on inverse problem. The application
of fracture mechanics test under mode II loading is performed. The X-IGA
possesses the advantages of the combination between eXtended Finite Element
Method (X-FEM) and the Isogeometric Analysis (IGA). The objective function
minimizes the gap between the calculated and measured displacements. Con-
vergence studies at various positions of crack on the plate are calculated and the
results shows that the proposed technique can detect damage with minimum
accuracy 95% for the position and maximum accuracy 98%.

Keywords: XIGA � Inverse problem
PSO and crack identification and plate 2D

1 Introduction

A nondestructive testing (NDT) of damage identification for Structural Health Moni-
toring (SHM) is important in industrial applications. The main purpose to use X-IGA is
easy for any application by keeping the same discretization and we can put any crack
for any position without remeshing as in case Finite Element Method (FEM). In
previous studies, fracture mechanic tests of shells and plates structures were focused on
in-plane tensile loading as described by Moës et al. [1]. A crack in thin shells was
simulated using Finite Element Method (FEM) and Continuous Re-meshing (CR), and
the direction of crack propagation was simulated from the fracture analysis of thin
plates as presented by Potyondy et al. [2]. Many fracture mechanics problems are
solved using XFEM for thick plates by Dolbow et al. [3]. The plane fracture mechanics
problems was analyzed by Benson et al. [4] using XIGA technique. The dynamic of
fracture in Kirchhoff plate and shell using XFEM technique was used by Rouzegar and
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Mirzaei [5]. Chatzi et al. [6] presented several improvements using XFEM–GA
algorithm for detecting and locating different types of flaw of any shape. The experi-
mental validation is used for detecting the location of crack in plate. A numerical model
of cracked plate using X-IGA technique by introducing the different loads and
boundary conditions was presented by Bhardwaj et al. [7].

The fracture mechanics simulation in bi-layered FGMs using XIGA technique was
presented by Bhardwaj et al. [8]. A nondestructive testing (NDT) technique using
XFEM coupled with Genetic Algorithms (GAs) was proposed by Rabinovich et al. [9].
In this application, it was shown that cracks in flat membranes could efficiently be
detected using dynamic and static tests. Tran Vinh et al. [10] presented a new and
effective formulation. The objective was to combine XIGA technique and Higher-order
Shear Deformation Theory (HSDT) to study the free vibration of cracked plates.

Habib et al. [11] used the X-IGA technique for modeling the crack in orthotropic
plate. The orthotropic cracked tip enrichments was used to reproduce the singular fields
near a crack tip, and fracture mechanics properties of the models were defined by the
mixed mode stress intensity factors (SIFs) obtained by means of the interaction integral
(M-integral). The double notch crack identification in carbon fiber reinforced polymer
(CFRP) using reduced model based on Proper Orthogonal Decomposition (POD)
coupled with Radial Basis Function (RBF) and combined with Genetic Algorithm
(GA) and Cuckoo Search (CS) algorithm, was presented by Samir et al. [12]. The
problem of delamination was detected using Virtual crack closure technique (VCCT)
using modal flexibility based on dynamic analysis was presented by Khatir et al. [13].
Benaissa et al. [14] presented an application for crack identification plate with different
type of structure using POD coupled with RBF using Particle Swarm Optimization
(PSO) as inverse problem. In the previous research, Waisman et al. [15] used the
XFEM combined with GA application for detecting the flaws in elastostatics.
The XFEM enrichment functions were chosen to model strong and weak discontinu-
ities arising from straight cracks and circular holes. Using these applications, the hole
and crack was detected using XFEM with higher accuracy.

This paper is organized as follows: The implementation of X-IGA for crack
location in the plate is described in Sect. 2. Then in Sect. 3, Particle Swarm Opti-
mization (PSO) combine with X-IGA for crack identification is presented. Subse-
quently, several numerical simulations are illustrated in Sect. 4 in order to demonstrate
the robustness and efficacy of proposal application for Crack identification using PSO.
Finally, concluding remarks are presented in Sect. 5.

2 Motivation and X-IGA Approach in Forward Problem

To analyze the problems in mechanical structures, XFEM with IGA, known also as
extended isogeometric analysis (X-IGA), is proposed. The XFEM technique is an
effective tool to analyze the statics and dynamics problems in the structures whereas
IGA is efficient for analyzing the complex geometries. The control points influenced by
geometric discontinuities using XIGA technique are locally enriched to capture sin-
gularities produced in the solution. Also, crack face and crack tip are enriched by
Heaviside functions and crack tip functions, respectively.
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2.1 A Brief of B-Spline/NURBS Functions

A knot vector N ¼ n1 n2; . . .; nnþ pþ 1

� �
is a non-decreasing sequence of parameter

values ni, i = 1, …, n +p.
Where:

ni 2 R called ith knot lies in the parametric space,
p: is the order of the B-spline,
n: is number of the basis functions.

Ni;0 nð Þ ¼ 1 if ni � n\niþ 1

0 Otherwise

�
ð1Þ

For p � 1,

Ni;p nð Þ ¼ n� ni
niþ p � ni

Ni;p�1 nð Þþ niþ pþ 1 � n

niþ pþ 1 � niþ 1
Niþ 1;p�1 nð Þ ð2Þ

For some curved geometries such as circles, cylinders and spheres, the
Non-Uniform Rational B-Splines (NURBS) functions are used. Being different from
B-spline, each control point of NURBS has additional value called an individual weight
wi [16]. The NURBS functions can be presented as following:

Ri n; gð Þ ¼ NiwiPm�n
i Ni n; gð Þwi

ð3Þ

2.2 XIGA Implementation

To capture the local discontinuous and singular fields in fracture mechanics, the
enriched functions are added according to ideas from XFEM as follows:

uh xð Þ ¼
X

IεS
RI nð ÞqstdI þ

X
JεSenr

Renr
J nð ÞqenrJ ð4Þ

In which, the NURBS basis functions are utilized instead of the Lagrange polynomials
to create eXtended IsoGeometric Analysis (XIGA) [10, 17, 18]. The functions Renr

J are
the enrichment functions associated with node J located in enriched domain Senr that is
split up into two parts including: the first set Sc for Heaviside enriched control points
and the second present a set Sf for crack tip enriched control points as presented in
Fig. 1. The discontinuous displacement field depend the enrichment function as pre-
sented in the following function:

Renr
J ðnÞ ¼ RJðnÞ HðxÞ � H xJð Þð Þ; J ε Sc ð5Þ

Where, H(x) is the Heaviside function.
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The singularity field near crack tip is modified by the branching functions as
follows [19]:

Renr
J ðnÞ ¼ RJðnÞ

X4

L¼1
ðGLðr; hÞ � GLðrJ ; hJÞÞ

� �
; J ε S f ð6Þ

Where:

GL r; hð Þ ¼ r
3
2½sin h

2 cos
h
2 sin

3h
2 cos

3h
2 �

r
1
2½sin h

2 cos
h
2 sin

h
2 sin h cos h2 cos h�

(
ð7Þ

Where r and Ɵ are represented in the local coordinates of the crack tip.

The evaluation of crack tip enriched control points based on the parametric coor-
dinate of the crack tip are evaluated and the NURBS basis functions corresponding to
these parametric coordinates are calculated. The non-zero NURBS values are specified
at the crack tip enriched control points. The enriched domain according the crack tip
changes with the variation in NURBS order. Heaviside enriched control points are
evaluated using the same procedure for the crack tip.

For the test of mode II, closed form displacements are given by:

ux r; hð Þ ¼ KII

2l

ffiffiffiffiffiffi
r
2p

r
sin

h
2

kþ 1þ 2 cos2
h
2

� 	
ð8Þ

uy r; hð Þ ¼ KII

2l

ffiffiffiffiffiffi
r
2p

r
cos

h
2

kþ 1þ 2 sin
h
2

� 	
ð9Þ

Control point of set 
Sc

Control point of set 
St

Fig. 1. The nodal sets Sc, Sf for a quadratic NURBS mesh.
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where KII = r√pa is the mode II stress intensity factor, and the mode II stress field is
given by:

rxx r; hð Þ ¼ KIIffiffiffiffiffiffiffiffi
2pr

p sin
h
2

2þ cos
h
2
cos

3h
2

� 	
ð10Þ

ryy r; hð Þ ¼ KIIffiffiffiffiffiffiffiffi
2pr

p sin
h
2
cos

h
2
cos

3h
2

ð11Þ

rxy r; hð Þ ¼ KIIffiffiffiffiffiffiffiffi
2pr

p cos
h
2

1� sin
h
2
sin

h
2

� 	
ð12Þ

3 Particle Swarm Optimization (PSO)

In this section, we used PSO coupled with XIGA plate for crack identification based on
II mode testing as inverse problem. In PSO, each candidate solution is called a “par-
ticle” and represents a point in a D-dimensional space, if D is the number of parameters
to be optimized according to the problem. Accordingly, the position of the ith particle
may be described by the vector xi as:

xi ¼ xi1;xi2;xi3;xi4;...;xiD

 � ð13Þ

The population of N candidate solutions constitutes the swarm:

X ¼ x1;x2;x3;...;x4
� � ð14Þ

To search the best optimal solution according the problem, the particles define
trajectories of the updated position iteratively based on the following equation:

xi tþ 1ð Þ ¼ xi tð Þþ vi tþ 1ð Þ ð15Þ

Where:

t and t + 1 presents two successive iterations of the algorithm and vi is the vector
collecting the velocity.

The velocity vectors govern the way particles move across the search space and are
made of the contribution of three terms:

1. Defining the inertia from drastically changing direction, by keeping track of the
older flow direction.

2. The cognitive component accounts for the tendency of particles to return to their
own previously found best positions.

3. The social component identifies the propensity of a particle to move towards the
best position of the whole swarm.
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The velocity of the ith particle is defined as:

vi tþ 1ð Þ ¼ vi tð Þþ c1 pi � xi tð Þð ÞR1 þ c2 g� xi tð Þð ÞR2 ð16Þ

Where:

pi: is personal best of the particle (the coordinates of the best solution),
g: is the global best (the overall best solution obtained by the swarm),
c1 and c2 are The acceleration constants 0 � c1, c2 � 4.

The constants R1 and R2 are two diagonal matrices of random numbers generated
from a uniform distribution in [0,1], so that both the social and the cognitive com-
ponents have a stochastic influence on the velocity update rule in Eq. (16). The tra-
jectories drawn by the particles randomly in nature, as they derive from the contribution
of systematic attraction towards the personal and global best solutions and stochastic
weighting of these two acceleration terms. In addition, the fixed PSO parameters are
given for the following simulations; that is, the population size N = 20, generation
number Gn = 20, inertia weight w = 0.5, and two constants c1 = c2 = 2.

In SHM, it is impossible to know the crack position and measure it’s length directly
because in the majority of cases it is embedded. Therefore, we rely on directly mea-
surable data to reach the crack information. In this study, we used the boundary
displacement. Our problem is formulated as inverse problem, where the PSO is
responsible for generating multiple cracks and compare their corresponding boundary
displacement to the Unique one of the crack that we want to identify (measured
displacement).

Since the proposed method relays on the nodal displacement, all boundary nodes
are considered as sensor point. We consider data from sensors by obtaining the dis-
placement results from the nodes chosen as sensors point. Figure 2 depicts an example
of the controlled plate using 10 strain sensors. The sensitivity of displacement used
according the position of the strain gauges in the nodes 1–5 and 307–311 in two
directions X and Y.

a Crack Length 

P: position

Fig. 2. Mesh of 18 � 18 cubic NURBS elements.
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The main purpose of using PSO in this paper is to identify a crack in a plate by an
inverse problem using as input the displacements around X and Y to compare the
displacement between measured and predicted by PSO. The objective function is
presented in the following equation:

P ¼ Abs

Measured displacements
Disp x1ð Þ

..

.

Disp x10ð Þ
� � �

Disp y1ð Þ
..
.

Disp y10ð Þ

2
66666666664

3
77777777775

2
6666666666664

3
7777777777775
�

Predicted displacement
Disp x1ð Þ

..

.

Disp x10ð Þ
� � �

Disp y1ð Þ
..
.

Disp y10ð Þ

2
66666666664

3
77777777775

2
6666666666664

3
7777777777775

2
6666666666664

3
7777777777775

ð17Þ

Where: P is the difference in displacements between measured and predicted by PSO:

Objfunc ¼
Xn

1
P n ¼ 20 Line numberð Þ ð18Þ

If the measured displacements ¼ predicted displacement

Objfunc ¼ 0 ð19Þ

4 Numerical Results

We used different scenarios for crack identification varying the position of the crack
and its length, in a square specimen under mode II fracture test. PSO was used for
solving the inverse crack identification problem in the scenarios listed below. For each
case, the optimization process was run 4 times and the computation was stopped when
the number of iterations of 20 was reached.

4.1 Cracked Plate - Scenario 1

In this case, the crack is positioned at the center at the left edge at P = 0.5 m, and its
length is considerably long at value of a = 0.5 m, which is half the width of the
specimen. The deformed shape is presented in Fig. 3. Figure 4(a) and (b) show,
respectively, the convergence of crack position and length and the convergence of the
fitness value. Results shows that the crack was accurately identified after 20 iterations
with position 0.493 m and length 0.514 m.

4.2 Cracked Plate - Scenario 2

For this scenario, the position of crack is the same as the first scenario P = 0.5 m and
with a smaller crack length a = 0.25 m as shown in Fig. 5. The crack identification
results are presented in Fig. 6(a) and (b), in which is shown that the estimation is
accurate.
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Numerical deformed shape Test 1

XIGA

Fig. 3. The deformed shape based on cracked plate - scenario 1

(a) Crack position scenario 1  

(b) Convergence of scenario 1  

Fig. 4. Crack identification using PSO - scenario 1
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4.3 Cracked Plate - Scenario 3

In this case the crack is of medium size of a = 0.33 m, and position in a lower position
at P = 0.33 m. The deformed shape after mode II loading is presented in Fig. 7. The
crack length and position identification is presented in Fig. 8, in which it is shown that
the crack is identified correctly with little less accuracy than the central crack.

Fig. 5. The deformed shape based on cracked plate of scenario 2

(a) Crack position of scenario 2  

(b) Convergence of scenario 2 

Fig. 6. Crack identification using PSO based, cracked plate - scenario 2.
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4.4 Cracked Plate - Scenario 4

In this last case the crack is at the lowest position at P = 0.25 m and the smallest size
with a = 0.20 m, as presented in Fig. 9. The identified results are depicted in Fig. 10,
where it can be seen that the algorithm is able to identify the crack with considerable
accuracy.

Fig. 7. The deformed shape based on cracked plate of scenario 3

(a) Crack position of scenario 3  

(b) Convergence of scenario 3 

Fig. 8. Crack identification using PSO - scenario 3.
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Generally, the proposed approach XIGA-PSO based on displacement of 10 sensor
points, is able to predict the crack parameters accurately, in the considered scenarios of
fracture mechanics test. Only 20 PSO iterations is enough to reach estimation minimum
accuracy of 90% iteration. The worst and best accuracy of crack length are presented
respectively, as 95% for scenario 1 and 98.6 for scenario 4. The best accuracy of

Fig. 9. The deformed shape based on cracked plate of scenario 4.

(a) Crack position scenario 4 

(a) Convergence scenario 4 

Fig. 10. Crack identification using PSO based on scenario 4.
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position is presented in scenario 2 with 98.9% accuracy and of worst accuracy is
presented in scenario 1 with 97.74%.

5 Conclusion

New application has been proposed for two-dimensional extended isogeometric finite
element analysis for solid and structural mechanics. In this paper, a non-destructive
method for the estimation of both the location and the length of a crack in plate under
mode II fracture mechanics test was considered. The PSO is coupled with XIGA based
on inverse problem using displacement of mode II loading using 10 strain sensors. The
objective function compares the calculated and the predicted displacements. The results
show that the estimation of the crack position and length was accurate.
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