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Chapter 19
Recent Advances and Industrial  
Applications of Microbial Xylanases: 
A Review

Sunny Dhiman and Gunjan Mukherjee

Abstract Xylanase being a hydrolytic enzyme catalyses the hydrolytic breakdown 
of 1,4-β-D-xylosidic linkages in xylan which is an important constituent of hemicel-
lulose. Xylanases are hemicellulases required for depolymerization of xylans which 
are the second most bountiful polysaccharide occurring in nature after cellulose 
having plant origin. A broad range of organisms have been reported to produce xyla-
nases that include several fungi, bacteria, protozoans, crustaceans, marine algae, 
insects, snails, gastropods, arthropods, several seeds and plants. Filamentous fungi 
have been documented to be the useful producers of xylanase because of ease of 
cultivation, extracellular secretion of enzymes, higher yield and industrial aspect. 
Fungal xylanases from Aspergillus species and Trichoderma species have been 
widely studied and characterized and are commercially utilized in bakery and food 
processing industries. Microbial xylanases have been reported to be single-chain 
glycoproteins having molecular masses usually 8–145 kDa and exhibit maximum 
activity in temperature range 40–60 °C. Thermostable xylanases are ideally suited 
for use in industrial applications because of numerous advantages over thermolabile 
xylanase such as ability to work in broad temperature range, better substrate utiliza-
tion and ability to tolerate high temperature in processes as well as better shelf life. 
Xylanases have widespread utilization in diverse industries such as food industry, 
textile industry and in pulp and paper industry. Xylanases have emerged to be 
extremely beneficial in terms of enhancing the production of numerous fruitful 
products. Over the years the advancements in molecular tools and techniques have 
enabled the better understanding of regulatory mechanisms heading xylanase pro-
duction, underlying mechanism of action of xylanases as well as more precise 
knowledge of xylanase gene. Such advancements have paved the way for better 
utilization of enzymes in a much broader sense in commercial sector. Xylanases 
have tremendous industrial applications in commercial sector either on their own or 
by associating with different enzymes in numerous processes like processing of 
pulp and fibres; saccharification of agricultural, industrial and municipal wastes; 
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flour improvement for bakery products; pretreatment of forage crops and lignocel-
lulosic biomass; as well as an alternate to treating the textile-cellulosic waste with 
sulphuric acid.

Keywords Xylanase · Xylan · Hemicellulases · Saccharification · Glycoproteins · 
Immobilization

19.1  Introduction

Xylanase (E.C 3.2.1.8) is an enzyme belonging to glucanase family and has a quite 
an expanding group of enzymes which can hydrolyse the 1,4-β-D-xylosidic link-
ages in xylan. Being a complex molecule, the depolymerization of xylan necessi-
tates a cooperative action of different enzymes for its thorough disintegration. 
β-1,4-Endoxylanase, β-xylosidase, α-L-arabinofuranosidase, α-glucoronidase, ace-
tyl xylan esterase and phenolic acid esterase occupy a significant place amongst the 
xylanases that have been reported extensively. According to Sharma and Kumar 
(2013), xylanase is a significant industrial enzyme that causes the random disinte-
gration of xylan by its endo-1,4-xylanase activity and produces xylose, xylooligo-
saccharides and xylobiose. Amongst these xylanases, endo-1,4- xylanases 
(1,4-β-D-xylan xylanohydrolase, E.C.3.2.1.8) catalyse xylan depolymerization by 
randomly hydrolysing xylan backbone. Whistler and Masek (1955) reported xyla-
nase for the first time. According to Bastawde (1992), the importance of xylanases 
is discovered over 100 years ago by Hoppe-Seyler. Xylanases were primarily termed 
pentosanases and were recognized by International Union of Biochemistry and 
Molecular Biology (IUBMB) for the first time in 1961. The systematic name of 
xylanases is endo-β-1,4-xylanase, but more widely accepted and universally used 
synonyms of the enzyme include xylanase, endo-1,4-β-D-xylanase, endoxylanase, 
β-1,4-D-xylan xylanohydrolase, β-xylanase and β-1,4-xylanase, respectively. A 
number of key factors govern the yield of xylanases in fermentation that include 
accessibility of substrate, rate and extent of disentangling of the xylooligosaccha-
rides, etc. Omar et al. (2008) reported that xylanase holds significant importance 
due to its proficiency of degrading the plant cell wall constituents. Xylanase has 
attained paramount industrial importance credited to their multidimensional and 
multifunctional role in fermentation processes and numerous other industries.

19.2  Substrates for Xylanase

Hemicelluloses are the major substrates for xylanases. The word hemicelluloses 
points to polysaccharides occurring in plant cell wall that are confederated with cel-
lulose and glucans. Hemicelluloses are the second most bountiful constituents in 
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cell wall of plants behind cellulose (Nakamura 2003). Hemicelluloses consist of 
complex of polymeric carbohydrates that include xylan, glucomannan, xyloglucan, 
galactoglucomannan and arabinogalactan (Shallom and Shoham 2003). 
Classification of such polymeric carbohydrates relies upon the type of sugar entities 
present in their structure. Xylan is a major hemicellulose composed of xylose units 
interlinked through β-1,4-glycosidic linkage. Xylan has been reported to be the sec-
ond most abundant polysaccharide behind cellulose that is loaded with a huge 
potential of being converted into a majority of products having paramount impor-
tance. Saha (2003) reported that xylan holds for nearly one third of entire replenish-
able organic carbon present on our planet. Xylan has a complex structure and 
heterogenic nature. Thus on account of this, xylanase plays a prodigious role in the 
combination of hydrolytic enzymes obligatory for the thorough disintegration of 
xylan (Takahashi et al. 2013). Xylan is a heterogenic polysaccharide comprising of 
xylose units interlinked through β-1,4-glycosidic bonds. Whistler and Richards 
(1970) reported that xylan major chain is built up of β-xylopyranose units. Xylan 
predominantly occurs in the secondary cell wall, and it constitutes the most part of 
the polymeric fraction of plant cell wall in association with lignin and cellulose. 
Xylan provides integrity to the cell wall by virtue of its association between lignin 
and cellulose through covalent and noncovalent bonds (Motta et al. 2013).

19.2.1  Structural Framework and Distribution of Xylan

Xylan being a convoluted heteropolysaccharide has an eminently branched struc-
ture that differs remarkably amidst distinctive plant species. On the grounds of com-
mon substituents occurring on the xylan backbone, xylans have been categorized 
into linear homoxylan, arabinoxylan, glucuronoxylan and glucuronoarabinoxylan. 
However as a matter of fact, there occurs microheterogeneity in each category of the 
xylan in relevance to the extent and characteristic of branching. The occurrence of 
side chains in the substituted forms of xylan determines several aspects that include 
physical configuration, degree of solubility, mode of the enzyme action, etc. (Motta 
et al. 2013). On account of its intricate structure and heterogenic nature, the thor-
ough depolymerization of xylan necessitates a cooperative action of several enzymes 
(Subramaniyan and Prema 2002). Xylan has been reported to be distributed in a vast 
variety of tissues and cells and occurs in the major fraction of plant species. Singh 
et al. (2003) reported that xylan is known to exist up to significant levels in hard-
woods of angiosperms (15–30%) and softwoods of gymnosperms (7–10%) and also 
in annual plants (<30%). Wood xylan predominantly occurs as O-acetyl-4-O-
methylglucuronoxylan in hardwoods and in softwoods as arabino-4-O- 
methylglucuronoxylan. However xylans occurring in grasses and annual plants are 
generally arabinoxylans (Kulkarni et al. 1999). Xylan has a similarity to other poly-
saccharides having plant origin with respect to vast polydiversity and 
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polymolecularity (Sunna and Antranikian 1997). The extent of polymerization in 
xylans also has significant variability, for instance, hardwood xylans generally con-
sist of 150–200 β-xylopyranose units, whereas softwood xylans generally consist of 
70–130 β-xylopyranose units (Kulkarni et al. 1999). D-Xylans hold for 20–35% of 
entire dry weight in hardwood and annual plants and predominantly exist as the 
most prevalent non-cellulosic polysaccharides (Velkova et al. 2007).

19.2.2  Enzymatic Disintegration of Xylan

On account of its complex structure and heterogenic nature, thorough disintegration 
of plant xylan necessitates the cooperative involvement of a multienzyme hydrolytic 
complex having broad spectrum of activities and diverse approaches of action. The 
main enzymes participating in multienzyme hydrolysis of xylan include β-xylosidase, 
endoxylanase, acetyl xylan esterase, arabinofuranosidase, glucuronidase, galactosi-
dase and feruloyl esterase. These enzymes act in a collegial fashion to depolymerize 
xylan into its monomeric units (Belancic et al. 1995). Endoxylanases hold foremost 
place amongst all xylanases on account of their direct participation in the cleavage 
of glycosidic bonds as well as in liberating short xylooligosaccharides (Verma and 
Satyanarayana 2012).

Xylanase randomly hydrolyses xylans into xylooligosaccharides, whereas 
β-xylosidase dislodges xylose units from the non-reducing ends of xylooligosac-
charides. Despite this, thorough disintegration needs the activity of acetyl esterase 
to dislodge the acetyl substituents from the D-xylose backbone (β-1,4-linked) of 
xylan (Coughlan and Hazlewood 1993).

19.3  Xylanase Sources

Xylanase sources range from microorganisms like bacteria, fungi, protozoans, 
 actinomycetes, crustaceans, marine algae, insects, snails, gastropods, arthropods, 
several seeds and plants that tears the glycosidic linkages in xylans thus resulting in 
hemi acetyls and glycans (Motta et al. 2013). Certain invertebrate organisms such as 
earthworms also possess a broad spectrum of fibrolytic microbes in their gut. Thus 
it is quite possible that a few amongst these organisms might be the producers of 
novel endoxylanases (Park et  al. 2007). Rumen is one of the most fascinating 
sources of xylanases wherein the effective hydrolysis of plant polysaccharides com-
mences. Filamentous fungi have been documented to be the useful xylanase produc-
ers because of ease of cultivation, extracellular secretion of enzymes, higher yield 
and industrial aspect. Fungal xylanases from Aspergillus species and Trichoderma 
species have been widely and thoroughly studied and characterized and are com-
mercially utilized in bakery and food processing industries. Certain microorganisms 
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such as Aspergillus and Penicillium have been documented to efficiently synthesize 
xylanases in the presence of cheaper hemicellulosic substrates such as rice bran, 
bagasse corn stalk, corn cob, wheat bran and rice straw. White rot fungus is exten-
sively utilized in manufacturing pharmaceutical products, in food industries and in 
the manufacturing of cosmetics (Qinnhe et al. 2004). White rot basidiomycetes con-
ducts its depolymerization action on lignocellulosic materials through the enzy-
matic action of several xylanase enzymes. Several bacterial strains including 
Bacillus sp. have also been reported to be the efficient producers of thermostable 
xylanases having good stability at varying range of temperature, pH, presence of 
metal ions, etc. (Battan et al. 2007).

19.3.1  Fungal Xylanases

Fungal xylanases from genera Aspergillus, Trichoderma, Pichia and Fusarium spe-
cies have been considered as the efficient and producers of novel xylanases (Absul 
et al. 2005). Other efficient fungal species producing xylanases include Streptomyces 
(Kansoh et  al. 2001) Aspergillus kawachii (Ito et  al. 2000) and Cunninghamella 
subvermispora (Ferraz et al. 2004). Haq et al. (2002) documented Aspergillus niger 
as the most potent xylanase producer.

19.3.2  Bacterial Xylanases

Bacterial species producing high activity xylanases at alkaline pH and higher tem-
perature are Bacillus sp. (Subramaniyan et al. 2001). Main bacterial genera that are 
efficient producers of novel xylanases are Bacillus halodurans (Ebrahimi 2010), 
Saccharopolyspora pathunthaniensis (Verma and Satyanarayana 2012), Thermotoga 
sp. (Yoon et al. 2004), Bacillus circulans D1(Bocchini et al. 2005), Pseudomonas 
sp. XPB-6 (Sharma and Chand 2012), Stenotrophomonas maltophilia (Raj et  al. 
2013) and Bacillus genus (Kaur et al. 2015). Certain filamentous bacterial strains 
documented to be the efficient producers of endoxylanases, xylanase and polygalac-
turonase are Streptomyces sp., S. roseiscleroticus and S. cuspidosporus (Maheswari 
and Chandra 2000).

19.3.3  Thermophilic Xylanases

A good proportion of xylanase-producing thermophilic and hyperthermophilic 
microorganisms have been reported and successfully explored from a vast variety of 
sources including thermal springs, self-heating decaying organic debris, hot pools 
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and terrestrial and marine solfataric fields (Sunna and Bergquist 2003). Family 10 
xylanases have been successfully explored from a diverse range of thermophilic and 
hyperthermophilic organisms, including Thermoascus aurantiacus (Khasin et  al. 
1993) and Nonomuraea flexuosa (Hakulinen et  al. 2003). Xylanases from 
Dictyoglomus thermophilum and Nonomuraea flexuosa have been reported amongst 
the most stable xylanases and possess temperature optima of 80  °C and 85  °C, 
respectively. Certain hyperthermophilic archaea have also been reported to be the 
efficient producers of novel xylanases, e.g. Pyrodictium abyssi (Andrade et  al. 
1999), Thermofilum strains (Andrade et al. 1999), Pyrococcus furiosus (Cady et al. 
2001), Thermococcus zilligii (Cady et  al. 2001), Sulfolobus solfataricus (Cannio 
et al. 2004) and T. leycettanus (Wang et al. 2016) (Tables 19.1, 19.2, and 19.3).

Table 19.1 List of xylanase-producing microorganisms

Microorganisms References

Fungi
Trichoderma harzianum Sanghvi et al. (2010)
Aspergillus niger Subbulakshmi and Priya (2014)
Trichoderma reesei SAF3 Kar et al. (2006)
Marasmius sp. Ratanachomsri et al. (2006)
Aspergillus terreus UL 4209 Chidi et al. (2008)
Fusarium solani F7 Gupta et al. (2009)
Aspergillus awamori Teixeira et al. (2010)
Penicillium citrinum Ghoshal et al. (2011)
Aspergillus usamii Zhou et al. (2011)
Trichoderma sp. Norazlina et al. (2013)
Cladosporium sp. Patel and Prajapati (2014)
Penicillium crustosum Mushimiyimana and Padmavathi (2015)
Aspergillus sp. Thomas et al. (2016)
Aspergillus nidulans Gabriela et al. (2016)
Rhizopus oryzae SN5 Pandey et al. (2016)
Aureobasidium pullulans NRRL 
Y-2311-1

Yegin (2016)

Bacteria
Sclerotinia sclerotiorum S2 Ellouze et al. (2008)
Bacillus cereus Roy and Habib (2009)
Bacillus pumilus Monisha et al. (2009)
Bacillus sp. YJ6 Yin et al. (2010)
Bacillus sp. Azeri et al. (2010) and Bahri et al. (2011)
Streptomyces sp. P12–137 Coman and Bahrim (2011)
Pseudomonas sp. XPB-6 Sharma and Chand (2012)
Colletotrichum graminicola Zimbardi et al. (2013)
Bacillus genus Kaur et al. (2015)
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19.4  Classification of Xylanases

Xylanases can be categorized into two separate groups: (1) one possessing low 
molecular mass (<30 kDa) and basic pI and (2) another one possessing high molec-
ular mass (>30 kDa) and acidic pI (Wong et al. 1998). Also on the basis of primary 
sequence homology, xylanases have been categorized into two distinct families 
(family F or 10 and family G or 11). Xylanase under family F has lower pI values as 
compared to family G. Earlier in a study, family 10 xylanases have been reported to 
be more complex and diverse having high molecular mass (>30 kDa) (Ducros et al. 
2000). In contrast family 11 xylanases are much simpler, have consistency in their 
structure, have greater specificity for xylan and possess low molecular mass 
(>20 kDa) in comparison to family 10 xylanases. Woodward (1984) reported that 
three distinct types of xylanases are known for their involvement in xylan 
degradation.

19.4.1  Endo-1,4-β-xylanase (1,4-β-D-Xylan Xylanohydrolase)

Endo-1,4-β-xylanase (1,4-β-D-xylan xylanohydrolase; EC 3.2.1.8) disunites the 
glycosidic linkages in the xylan backbone thus leading to reduced substrate polym-
erization. Xylan is not degraded randomly. As a matter of fact, the xylan hydrolysis 
relies upon the attributes of the substrate molecule, i.e. upon the chain length, pres-
ence of substituents and extent of branching (Li et al. 2000). Xylanase categorizes 
themselves into two distinct types on the grounds of type of end products of the 

Table 19.2 Thermophilic organisms for family 10 xylanase

S. No. Name of the organism Temperature Reference

1. Clostridium thermocellum 70 °C Herbers et al. (1995)
2. Rhodothermus marinus 65 °C Karlsson et al. (2004)
3. Thermotoga sp. 105 °C Shi et al. (2013)
4. Thermoascus aurantiacus RCKK 45 °C Jain et al. (2014)
5. Geobacillus stearothermophilus KIBGE-IB29 60 °C Bibi et al. (2014)
6. Caldicellulosiruptor sp. 75 °C Meng et al. (2015)

Table 19.3 Thermophilic organisms for family 11 xylanase

S. No. Name of the organism Temperature Reference

1. Dictyoglomus thermophilum 70 °C McCarthy et al. (2000)
2. Paecilomyces variotii 60 °C Kumar et al. (2000)
3. Thermomyces lanuginosus 60 °C Singh et al. (2003)
4. Chaetomium thermophilum 70 °C Ahmed et al. (2012)
5. Anoxybacillus flavithermus TWXYL3 65 °C Ellis and Magnuson (2012)
6. Humicola insolens Y1 50 °C Shi et al. (2015)
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reaction: (a) non-debranching or non-arabinose liberating and (b) branching or 
arabinose liberating.

 (a) Non-debranching endoxylanases: Non-debranching or non-arabinose liberating 
endoxylanases are those endoxylanases that can be compartmentalized into two 
distinct variants, one giving off xylose and xylobiose as the end products and 
the other one giving off xylooligosaccharides as the end product.

 (b) Branching endoxylanases: Branching or arabinose liberating endoxylanases 
can be compartmentalized into two discrete groups: group 1 that possess the 
capability to hydrolyse branching points hereby giving off xylooligosaccha-
rides and arabinose as the end products and group 2 that cleaves off the xylan 
and branching points thereby giving off principally xylobiose, xylose and arabi-
nose, respectively.

19.4.2  Exo-1, 4-β-xylanase (β-1,4-D-Xylan Xylohydrolase)

These enzymes discharge the single xylose units from the non-reducing end of the 
xylan chain.

19.4.3  β-D-Xylosidase (1,4-β-D-Xylan Xylohydrolase)

β-D-Xylosidases (1,4-β-D-xylan xylohydrolase; EC 3.2.1.37) are exoglycosidase 
that actively depolymerizes short xylooligosaccharides to give off xylose. β-D- 
Xylosidases can be classified on the grounds of their relative fondness towards xylo-
biose and larger xylooligosaccharides, respectively. Octavio et al. (2006) documented 
that a huge fraction of bacteria and fungi efficiently produce such xylanases. They 
may show their existence in the culture broth surrounding the cell, in alliance with 
the cell, or they may also exist in both. β-D-Xylosidases play a significant role in 
lowering the end product inhibition of endoxylanases which is a rate-limiting factor 
in xylan depolymerization (Andrade et al. 2004).

19.5  Mechanism of Xylanase Action

Numerous stereotypes have been put forward to elucidate the action mechanism of 
xylanases. Subramaniyan and Prema (2002) reported that xylanase action eventu-
ally results in the hydrolysis of xylan that may cause retention or inversion of the 
anomeric centre of the reducing sugar monomer of the xylan thus giving an intima-
tion of one or two chemical transition states being involved. Transfer of glycosyl 
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eventually causes nucleophilic substitution at the saturated carbon of the anomeric 
centre and commences with either retention or inversion of the anomeric configura-
tion. A great majority of hydrolytic enzymes like xylanases and cellulases that are 
well recognized for hydrolysing polysaccharides eventually result in the hydrolysis 
of their corresponding substrates with the retention of the C1 anomeric configura-
tion. Double displacement mechanism has been reported to be directly indulged in 
the anomeric retention of product (Clarke et al. 1993).

19.6  Xylanase Production

The main driving force behind search for novel xylanases is the broader range of its 
tremendous industrial applications. Both solid-state fermentation (SSF) system and 
submerged fermentation (SMF) system can be successfully utilized. Xylanase pro-
duction can be efficiently carried out using solid-state cultivation systems and sub-
merged cultures methods. Submerged fermentation (SMF) technique has been the 
method of choice by most of researchers because of easier regulation of various 
process parameters such as pH, temperature of medium, degree of aeration as well 
as several environmental factors indispensable for the optimal growth of microor-
ganisms. However as a matter of fact, solid-state fermentation has procured signifi-
cant attention and acceptance from the researchers worldwide over the years and 
has been successfully and widely utilized for xylanase synthesis (Haltrich et  al. 
1996). This is credited to numerous economic and engineering advantages. 
Submerged fermentation (SMF) system has been preferred over solid-state fermen-
tation (SSF) system for products involving large-scale production because the yield 
of enzyme is higher (about 90%) and also more cost-effective as compared to solid- 
state fermentation (Gouda 2000). SMF has the advantage over solid-state fermenta-
tion system in extracting a large fraction of purified enzymes. Wheat bran came out 
to be the best carbon source in the studies conducted on xylanase production by 
Stenotrophomonas maltophilia after using commercial xylans and different agro- 
industrial residues (Raj et al. 2013). Bacillus arseniciselenatis DSM-15340 resulted 
in a thermoalkalophilic cellulose-free xylanase in significant level, while it was 
grown in solid-state conditions by utilizing economically accessible agro-residual 
substrate wheat bran. Thus it could be efficiently utilized for production of xylanase 
on large scale by utilizing such agro-residual substrates (Kamble and Anandrao 
2012). SSF conditions are exclusively favourable for the fungal growth since these 
organisms possess the ability to grow at rather low water activities in contrast to 
most of the bacteria and yeast that do not grow and proliferate efficiently in such 
culture environment. Mushimiyimana et  al. (2015) reported that xylanolytic 
enzymes are efficiently produced by fungi under submerged conditions. Microbes 
such as Trichoderma, Aspergillus, Phanerochaete, Streptomyces, Clostridia, 
Ruminococcus, Chytridiomycetes, Bacillus and Fibrobacteres are loaded with huge 
potential to efficiently produce xylanase enzymes (Qinnhe et al. 2004).
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19.7  Characterization and Purification

Xylanases from distinct sources vary significantly in their temperature and pH 
optima for the maximal activity. Concentrated and pure enzymes exhibit enhanced 
activity and reduced risk of inhibitory substances thus putting forward themselves 
as ideal materials having tremendous potential for use in industrial applications. 
Standard column chromatography, size exclusion chromatography and ion exchange 
chromatography are principally utilized techniques for purification of xylanases. 
Dean et al. (1991) reported that low molecular weight of xylanases has rendered 
their successful segregation from other proteins utilizing ultra filtration technique. 
Widjaja et  al. (2009) purified cellulase-free xylanase from Aspergillus niger and 
Trichoderma reesei using ion exchange chromatography. The effective utilization of 
xylanase for the treatment of pulp fibres demands cellulase free xylanase. Goulart 
et  al. (2005) successfully produced cellulase- free xylanase by utilizing Rhizopus 
stolonifer cultured on wheat bran. This cellulase-free xylanase exhibited optimum 
activity at pH 6.0 and temperature 45 °C, respectively. For maximal xylanase activ-
ity, pH 5.5 and temperature 60 °C were documented as most appropriate conditions 
by Huang and Penner (1991). Coelho and Carmona (2003) documented that xyla-
nases are significantly thermostable within the pH range 4.5–10.5. Camacho and 
Aguilar (2003) documented a molecular weight of 22  kDa for xylanase from 
Aspergillus sp. Sardar et al. (2000) reported a molecular weight of 24 kDa for puri-
fied xylanase upon SDS-PAGE. Yasinok et al. (2010) reported the 186-fold purifica-
tion of xylanase from Bacillus pumilus SB-M13A by hydrophobic interaction.

19.8  Xylanase Immobilization

Pioneer immobilization reaction was executed for introduction of reactive groups 
onto inert glass surface so as to increase the accessible surface area for immobiliza-
tion. Therefore activation of glass beads was undertaken. Free xylanase exhibited 
optimum activity at pH 5.0 and 35 °C temperature. Crude enzyme was immobilized 
onto glass beads by physical adsorption binding. Immobilized enzyme can be reused 
two to three times under assay conditions. The free and immobilized xylanase activ-
ity was assayed at different pH of buffer (0.1 M) ranging from 4.0 to 8.0 and at vari-
ous temperatures (35–65  °C) to determine the optimum activity under reaction 
conditions. The immobilized xylanase was tested for its reusability using 1 g of 
immobilized support repeatedly up to four times and percent relative activity deter-
mined (Kumar et al. 2014).
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19.9  Industrial Aspects and Applications of Xylanases

Xylans and xylanases have witnessed significant rise in their biotechnological val-
ues and have shown remarkable rise in their use. The end products of xylan degrada-
tion, furfural and xylitol have gained remarkable utility in industrial applications 
(Parajo et al. 1998). The industrial utilization of xylanase commenced in the 1980s. 
Initially xylanases were used in animal feed preparation. In the successive years, 
they were significantly utilized in the food, textile and paper industries, respectively. 
Xylanases are predominantly employed in food industry to quicken the baking pro-
cess of cookies, crackers, cakes as well as various other foods since they depolymer-
ize the polysaccharides in the dough into corresponding monomeric units.

19.9.1  Bioprocessing of Fibres

Modern research centres on substituting the hazardous chemicals with the commer-
cial enzymes that can precisely act upon the non-cellulosic and hemicellulosic 
impurities are still sustaining the quality as well as upholding the production yields 
of textile industries (Dhiman et al. 2008). Treatment with enzyme can apparently 
strengthen the water soaking characteristics of fibres by eradicating the complex 
impurities present in the primary cell wall. (Saha 2000) reported that utilization of 
pure and thermostable xylanase for pretreatment of low quality jute fibers for selec-
tively removing xylan is entrancing. Plant fibres such as linen can be effectively 
processed by utlizing the xylanolytic enzyme complex. This method has an advan-
tage that the step involving usage of strong bleaching step is bypassed as lignin 
won’t face oxidation which would have darkened the fibres (Csiszar et al. 2001). 
Xylanase precisely acts upon the hemicellulosic impurities and effectively eradi-
cates them. Such enzymatic treatment do not create any harm to the fibre in terms of 
loss in fibre strength (Dhiman et al. 2008).

19.9.2  Biobleaching of Pulp and Paper

Treatment of the paper pulp with xylanase effectively hydrolyses the hemicellulosic 
chain amidst cellulose and lignin thereby eliminating the loosely held lignin from 
the desired cellulose. Xylanases have turned out to be a valuable as well as cost- 
effective asset for mills to have an edge over a vast number of bleaching benefits 
(Bajpai 2012). In this context, it lessens the discharge of organochlorine pollutants, 
for instance, dioxin, ultimately resulting in chlorineless bleaching without posing 
any detrimental harm to the paper’s strength (Li and Hardin 1998). The major utili-
zation of xylanases in commercial sector is in cellulose pulp bleaching. The usage 
of enzymes commenced in this context ever since peroxidases were employed for 
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degrading the lignin (Sandrim et  al. 2005). Dhillon and Khanna (2000) reported 
chemical process is preferred over enzymatic hydrolysis method for paper produc-
tion in several countries, including Brazil. The routinely used method is popularly 
called as the kraft process. The paper production process involves chemical pulping 
as the pioneer step which is characterized by the breakdown of fibres and removal 
of majority of lignin fraction (Hong et al. 1989). Pulp bleaching can be represented 
as a purification process which involves the attributes such as destruction as well as 
the alteration or solubilization of the coloured organic matters, lignin and other 
inadmissible leftovers on the fibres (Madlala et al. 2001). The efficacy as well as 
efficiency of microbial xylanase in context of bleaching process has been well stud-
ied for Streptomyces galbus (Kansoh and Nagieb (2004), Bacillus pumilus (Duarte 
et al. 2003), etc. The optimum pH of bacterial xylanases in common is somewhat 
uplifted compared to optimum pH of fungal xylanases (Khasin et al. 1993), which 
is a desirable asset in majority of paper and pulp industries.

19.9.3  Significant Role in Improving the Animal Feed

Xylanase is well recognized to play a significant role in uplifting the quality of ani-
mal feed. Xylanase treatment lessens the viscosity of the fodder thereby rendering 
the fodder readily digestible by the animal gut. It significantly elevates propagation 
of the pancreatic enzymes into the food thereby boosting the overall absorption of 
the nutrients. Gilbert and Hazlewood (1993) documented utility of xylanase in 
enhancing the digestibility of ruminant feeds and also in speeding up the compost-
ing process. Xylanases have been well documented for their utilization in animal 
feed in association with cellulases, amylases, galactosidases, glucanases, lipases, 
pectinases, proteases and phytases. Twomey et  al. (2003) reported that these 
enzymes depolymerize arabinoxylans present in the constituents of the feed thereby 
rendering the raw material less viscous. Young fowl and swine synthesize endoge-
nous enzymes in comparatively lesser amount as compared to adults, so that food 
supplements loaded with exogenous enzymes should uplift their performance as 
livestock. Furthermore, such diet has been found to cut down the undesirable left-
overs in the excreta (nitrogen, zinc, copper and phosphorus), an effect that might 
play a productive role in scaling down of the environmental contamination (Polizeli 
et al. 2005). Addition of xylanase to feed comprising of low viscosity foods like 
maize and sorghum may enhance the digestion and absorption of nutrients in the 
foremost part of the digestive tract eventually resulting in an improved use of energy 
(Van Paridon et al. 1992).
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19.9.4  Pharmaceutical and Chemical Applications of Xylanase

The end product of xylan hydrolysis, xylitol a polyalcohol, is as an artificial sweet-
ener that is significantly used in candies, chewing gums and several other food items 
(Parajo et  al. 1998). Xylanases are sometimes added as a cocktail (mixture) of 
enzymes comprising of proteases, hemicellulases and various other enzymes as a 
dietary supplement or as a measure to cure weak digestion. Xylitol being a noncar-
cinogenic sweetener is highly suited for individuals suffering with diabetes and 
obesity. Xylitol is also recommended in cases such as lipid metabolism disorder and 
respiratory infections, for the prevention of osteoporosis as well as for persons suf-
fering with kidney and parental lesions. A vast variety of commercially available 
products such as candies, chewing gums and several other food products are known 
to have xylitol as the artificial sweetener. The advancements in xylitol production 
technology have facilitated a way for its utilization in a broad sense in the food, 
odontological and pharmaceutical (Nigam and Singh 1995). The production of eco-
friendly biological fuels like bioethanol is witnessing a significant hike as the other 
available energy sources are depleting continuously. Moreover most of the fuels 
currently in use generate high levels of toxic aerosols and other polutants that pose 
several health hazards. The products of xylan hydrolysis can be efficiently trans-
formed into important biological fuels such as ethanol (Sun and Cheng 2002).

19.9.5  Applications in Recycling of Waste Paper

Xylanases have also proved their utility in recycling of waste paper. The recycling 
is principally accomplished via two-staged processes, i.e. pulping and beating. 
Stage one essentially consists of the sundering of fibre or fibre dissemination. The 
entire exercise is called as hydrating process. The foremost step in enzymatic treat-
ment primarily consists of prefatory soaking of paper followed by enzyme incuba-
tion. However stage two essentially consists of mechanical shearing of pulp, 
subsequent heating of pulp with a purpose of disaggregation of fibres and deactivat-
ing the enzyme. Xylanase treatment accounts for dislodging numerous reducing 
sugars from waste paper pulp. The release of reducing sugars is directly correlated 
to temperature probably on grounds that elevated temperature hydrolyses the major-
ity of xylans held amidst the pulp fibres. Enzymatic treatment eventually promotes 
the swelling of pulp fibres, which aids in further processing of the pulp material as 
well as significantly upgrades its physical properties (Kenealy and Jeffries 2003).
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19.9.6  Applications of Xylanases in Food, Bread and Drinks 
Production

The industrial applications of xylanases have witnessed a significant rise in last few 
decades credited to their potent efficacy in bread making process (Butt et al. 2008). 
The usage of starch- as well as non-starch-hydrolysing enzymes is a common prac-
tice in bread making industry for uplifting the quality and texture of bread (Javier 
et al. 2007). Like other hemicellulases, xylanases act in a similar manner thereby 
depolymerizing the hemicellulose existent in wheat flour thus assisting in uniform 
circulation of water thereby rendering the dough more softer as well as easy to 
knead. Xylanases assist in delaying the crumbing process during bread baking pro-
cess thereby letting the dough to grow (Polizeli et al. 2005). Xylanase utilization in 
baking industry has significantly aided in a significant rise in bread volumes, better 
absorption of water as well as enhanced resistance to fermentation (Camacho and 
Aguilar 2003). Butt et al. (2008) reported that xylanases effectively transform the 
hemicelluloses that are water insoluble into a soluble form that actively binds to the 
water in dough thereby reducing the firmness in dough, enhances the volume and 
generates finer crumbs with increased uniformity. Various enzymes like xylanases, 
cellulases and proteases enhance the firmness of the gluten network thereby uplift-
ing the worthiness of bakery products (Gray and Bemiller 2003). Xylanases are 
highly commended for use in biscuit industry with a purpose to make cream crack-
ers lighter as well as to uplift the texture, uniformity and palatability of the wafers. 
The major desirable aspects of xylanases in food industry are endurance and ability 
to show optimum activity in acidic pH range. The advancements in molecular tools 
and techniques have paved the way for more and more uses of xylanases. Xylanases 
play a significant role in beer production process. They effectively depolymerize 
arabinoxylans to lower xylooligosaccharides thereby rendering the beer less viscous 
thus eliminating its muddy appearance to significant levels (Dervilly et al. 2002).

19.9.7  Other Important Applications of Xylanases

Xylanases along with other hydrolases can be efficiently employed for the synthesis 
of important biofuels like ethanol by utilizing lignocellulosic biomass (Ahring et al. 
1999). Xylanase in association with pectinase, amylase and carboxymethylcellulase 
can be efficiently utilized for clarification of juices. Xylanases may also be employed 
to enhance the extraction of coffee, plant oils and starches. Xylanases may also be 
successfully capitalized for boosting the nutritional aspects of agricultural silage 
and grain feed (Malathi and Devegowda 2001). Xylanases also have significant use 
in rye baking wherein the addition of xylanase prompts the dough to become more 
soft and sloppy (Harbak and Thygesen 2002).
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19.10  Future Prospects

The industrial importance of xylanase is well established. Amongst different hydro-
lytic enzymes, xylanase has attained widespread commercial importance credited to 
its enormous potential applications in food, in feed and in pharmaceutical indus-
tries. The surplus availability of hemicellulosic biomass especially xylan becomes a 
major factor in xylanase production by various microorganisms. Fungal xylanases 
from Aspergillus species and Trichoderma species have been widely studied and 
characterized and are commercially utilized in bakery and food processing indus-
tries. Xylanase production economics is governed by several key factors that include 
accessibility of substrate and rate and extent of disentangling of the xylooligosac-
charides besides several other decisive factors including inoculum size, pH, tem-
perature, inducers, medium additives, aeration, activators and inhibitors. Submerged 
fermentation (SMF) system is the most promising technique used worldwide for 
xylanase production. This is credited to ease of control over various key process 
parameters, to the higher yield of enzyme (about 90%) and because of being cost- 
effective as compared to solid-state fermentation. The present review focuses on the 
various microbial sources for novel xylanase production, the range of available sub-
strates that can be successfully utilized to meet the industrial demands of xylanases 
and the widespread industrial applications of microbial xylanases.

The prospects of xylan hydrolysis by xylanase from fungal species such as 
Aspergillus and Trichoderma and bacterial species like Bacillus sp. look quite prom-
ising. Thus future studies to increase the xylan hydrolysis rate as well as to assure 
enhanced process control for increased yield of xylanase would be envisaged.

In conclusion, xylanase is an industrially important enzyme that is loaded with 
huge potentials for use in commercial sector in various processes such as processing 
of pulp and fibres; saccharification of agricultural, industrial and municipal wastes; 
flour improvement for bakery products; manufacturing of several food products; 
and enhanced bleaching of cellulose pulps that is mainly used in food and pharma-
ceutical industry. Since the range of applications of this enzyme is very broad, so 
there is always a scope for novel xylanase with better and improved characteristics, 
which may be utilized for various industrial applications.
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