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Abstract Most of the existing SHM damage detection methodologies are based on
the changes in the system parameters estimated by the linear model fitted to the
structure. However, real-life structures exhibit nonlinearity even in their healthy
state due to complex joints, interfaces, etc. Nonlinear identification and damage
identification are very challenging inverse engineering problems. In this paper, a
nonlinear system identification methodology using empirical Slow-Flow Model has
been presented. A dynamical system described by slowly varying amplitudes and
phases is obtained through performing partition between slow and flow dynamics of
the system using the well known complexification-averaging technique. By using
the theoretical link between the measured instantaneous parameters through Hilbert
transform and slow-flow equations of a system, the system parameters are identified
using the classical least square procedure. A numerical simulation study has been
conducted on a beam with breathing crack to demonstrate the effectiveness of the
proposed algorithm.
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1 Introduction

Damage sometimes manifests itself as the introduction of nonlinearity into a linear
system. The damage that introduces nonlinearity into structures includes
post-buckled structures (duffing nonlinearity), fatigue or breathing cracks (bilinear
stiffness effect), and rattling joints (impacting systems with discontinuities).
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Damage detection can be significantly enhanced if one accounts for nonlinear
characteristics of the structure during extraction of damage sensitive feature [1–4].

A complete list of nonlinear identification techniques developed is very
exhaustive and hence to give a reasonable flavor of the range of techniques
developed a few of them, with a reasonable success, are mentioned here. The
comprehensive list of techniques includes time-series models [5], reverse path
spectral methods [6], describing function [7], Volterra and Wiener series [8],
adaptive Volterra filter [9], meta-heuristic algorithms [10], time–frequency analysis
[11, 12] and so on.

In this paper, a nonlinear system identification method based on correspondence
between the analytical and empirical slow-flow equation of the dynamics of the
systems is presented. This nonlinear system identification technique using empirical
slow-flow model requires only input–output measurement and need not know about
the type of nonlinearities present in the system. A numerical simulation study has
been carried out on a beam with breathing crack and investigations carried out in
this paper clearly indicate that the empirical slow-flow method is an effective
scheme for nonlinear parameter estimation even with noisy measurements.

2 Nonlinear System Identification Using Empirical
Slow-Flow Model

The slow-flow-based system identification technique (SFMI) is based on multiscale
dynamic partitions and the direct analysis of the measured time history response
without any knowledge about the system [13]. It partitions the system response in
terms of slow and fast components. Generally, a time history response of a structure
is composed of a number of well-separated dominant frequency components called
fast frequencies of the response and slow dynamic components that are represented
by the slowly varying modulations of the fast-frequency components.

The slow-flow model of a nonlinear system provides a good approximation to
the original dynamic system and also it governs the long-term behavior of the
response. The reduced slow-flow model is easier to analyze than the traditional
equations of motion and its parameters such as slowly varying amplitudes and
phases provide clear-cut information about the characteristics of the system than the
original time history response. This is usually performed by Complexification-
Averaging (Cx-A) technique [14].

On the other hand, Hilbert transform to the actual time history response can be
applied in order to obtain the instantaneous parameters such as instantaneous
amplitude and instantaneous phase/instantaneous frequency. These can be easily
related to the slow-flow model parameters obtained analytically through
complexification-averaging technique from which the system parameters can be
obtained.
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3 Complexification-Averaging (Cx-A) Technique

The actual time history response is decomposed into slow and fast dynamics
components using the Complexification-Averaging (Cx-A) technique

The Complexification-Averaging Method (CX-A) basically involves the fol-
lowing four steps:

(i) complexification of the equations of motion
(ii) partition of the dynamics into slow and fast component
(iii) averaging of the fast-varying terms and
(iv) extraction of the slow-flow variables from the averaged system.

In order to demonstrate the method, a nonlinear single degree of a system
exhibiting a polynomial form of nonlinearity up to fourth order is considered.

€xþ c _xþ k1xþ k2x
2 þ k3x

3 þ k4x
4 ¼ 0

with xð0Þ ¼ X; _xð0Þ ¼ 0;m ¼ 1
ð1Þ

For complexification, complex change of variable WðtÞ ¼ _xðtÞþ jxxðtÞ is carried
out

x ¼ W�W0

2jx
; _x ¼ W�W0

2
; €xðtÞ ¼ _W� jx

W�W0

2
ð2Þ

where superscript 0 indicates complex conjugate.
The equation of motion (Eq. 1) in terms of complex variable (Eq. 2) can be

written as

_W� jx
WþW0

2
þ c

WþW0

2
þ k1

W�W0

2jx
þ k2

W�W0

2jx

� �2

þ k3
W�W0

2jx

� �3

þ k4
W�W0

2jx

� �4

¼ 0

ð3Þ

The second step of the partitioning of the dynamics W(t) = u(t)ejxt into slow,
u(t), and fast, ejxt, components having a single frequency with modulated ampli-
tude and phase is performed.

By averaging out the fast-frequency component, ejxt, Eq. (3) is transformed into
Eq. (5) with the help of Eq. (4) by eliminating higher order terms (square-, cubic-,
and fourth-order terms)

_W ¼ _ue
jxt þujxejxt ð4Þ
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_uþ jx
u
2
þ c

u
2
� jk1u

2x
þ k2

2x2 uj ju

� 3jk3
8x3 uj j2u� k4

4x4 uj j3u ¼ 0
ð5Þ

On carrying out the third step of CX-A, the equation of motion represents an
approximation to the actual dynamics. After averaging, the corresponding envelope
and phase variables will be extracted by rewriting the variable u(t) in polar form,
u(t) = a(t)ejb(t) as

_aþ ja _bþ jxa
2

þ ca
2
� jk1a

2x
þ k2a2

2x2

� 3jk3a3

8x3 � k4a4

4x4 ¼ 0

ð6Þ

The real and the imaginary parts of Eq. (6) are

_aþ ca
2

þ k2a2

2x2 �
k4a4

4x4 ¼ 0 ð7aÞ

_bþ x
2
� k1
2x

� 3k3a2

8x3 ¼ 0 ð7bÞ

The boundary conditions can be determined by

u tð Þ ¼ a tð Þejb tð Þ ð8Þ

WðtÞ ¼ uðtÞejxt ¼ _xðtÞþ jxxðtÞ ð9Þ

Hence b(t) = p/2 and a(0) = Xx
On solving the real and the imaginary part (Eq. 7), the slow-flow parameters can

be obtained as

aðtÞ ¼ Xxe½�
ct
2�

k2 t
2

2x2
þ k4 t

4

4x4
� ð10aÞ

bðtÞ ¼ 3k3X2

8xc
ð1� e�ctÞ � x

2
� k1
2x

� �
tþ p

2
ð10bÞ

Therefore, Eqs. (10a) and (10b) are the approximate and simplified slow-flow
equations of the considered dynamical system. The system response predicted by
the Cx-A method can be written in general form as
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xðtÞ ¼ aðtÞ
x

sinðxtþ bðtÞÞ ð11Þ

which shows that the total phase variable is h = xtþ bðtÞ;
The slow-flow model of the system after performing Cx-A is given by

xðtÞ ¼ aðtÞ
x

sinðxtþ bðtÞÞ

where aðtÞ ¼ Xxe �ct
2�

k2 t
2

2x2
þ k4 t

4

4x4

� �
and bðtÞ ¼ 3k3X2

8xc
ð1� e�ctÞ � x

2
� k1
2x

� �
tþ p

2

ð12Þ

It is recommended to use the sub- and super-harmonics instead of frequency ‘x’
during partitioning for systems exhibiting strong nonlinearities to improve the
predictive capacity of the Cx-A model.

4 Numerical Study—Breathing Crack Problem

A cantilever beam with a breathing crack is considered as an example as shown in
Fig. 1. The breathing crack introduces bilinear stiffness effect corresponding to the
opening and closing state. The equation of motion (bilinear oscillator) of the beam
with a breathing crack can be written as

Fig. 1 Cantilever beam with
breathing crack
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m€xðtÞþ c _xðtÞþ g½xðtÞ� ¼ f ðtÞ; gðxÞ ¼ akx x� 0
kx x\0

�
ð13Þ

where g(x) is the restoring force and m, k, c, and f are the mass, stiffness, damping,
and force respectively. The stiffness ratio a is defined as the ratio of squares of the
cracked frequency to uncracked frequency. It lies in the range 0 � a � 1. The
bilinear frequency xB of the undamped free vibration of bilinear oscillator [15] is
given by

xB ¼ 2x0x1

ðx0 þx1Þ ¼
2

ffiffiffi
a

p
ð1þ ffiffiffi

a
p Þx0 ð14Þ

where x0 and x1 are the natural frequencies of the uncracked and cracked beam,
respectively, k and k′ (k0 ¼ ak) are the stiffness of the uncracked and cracked states
of the beam.

In the present work, the bilinear nature of the beam with a breathing crack is
approximated by an amplitude dependent polynomial model of order 4 using the
Weierstrass Approximation theorem [16]. Then a slow-flow model is established
for the approximated polynomial system through Cx-A technique and its slowly
varying parameters are determined.

The Weierstrass approximation theorem states that: “If f(x) is a continuous
real-valued function on [a, b] and if any e > 0 is given, then there exists a poly-
nomial P(x) on [a, b] such that |f(x)-P(x)| < e for all x e [a, b]. Since the restoring
force g(x) is a continuous function of displacement x, it can be well approximated
by a polynomial.”

The restoring force of the fourth-order-approximated polynomial-type nonlinear
system is given by

m€xðtÞþ c _xðtÞþ g_½xðtÞ� ¼ f ðtÞwithbg½xðtÞ�
¼ g0 þ c1kxþ c2kx

2 þ c3kx
3 þ c4kx

4
ð15Þ

where g0 indicates the constant term and can be neglected when no static force is
applied to the structure and k indicates the uncracked stiffness and c1kx represents
the linear component and the additional higher order terms indicate the nonlinear
components of the approximated polynomial nonlinear system. The coefficients, c1,
c2, c3, c4 are evaluated by minimizing the error function E between the actual and
approximated polynomial nonlinear system using the above-mentioned Weierstrass
approximation theorem in the domain [–X, X] as

Eðc1; c2; c3; c4Þ ¼
ZX
�X

g½xðtÞ� � ĝ½xðtÞ�g2dx; ð16Þ
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@E
@ci

¼ 0; for i ¼ 1; 2; 3; 4 ð17Þ

By applying the above equation, the coefficients are obtained [17, 18] as

c1 ¼ ð1þ aÞ
2

; c2 ¼ � 105ð1�aÞ
128X

; c3 ¼ 0; c4 ¼ 105ð1�aÞ
256X3 ð18Þ

The actual system equation of motion is given by

€yðtÞþ 23:5619 _yðtÞþ 3:5e4 ð0:75Þ|fflffl{zfflffl}
a

yðtÞ ¼ 0; y0¼ 0:25; _y0 ¼ 0 ð19Þ

where a is the stiffness ratio varying between 0 and 1 such that a = 1 for x(t) < 0
and a < 1 for x(t) � 0. Further, the system can be idealized as a system with
polynomial terms having coefficients up to fourth order depending on the value of
the stiffness ratio, as discussed earlier.

€yðtÞþ 23:5619 _yðtÞþ 3:5e04c1yðtÞþ 3:5e04c2y2ðtÞ
þ 3:5e04c3y3ðtÞþ 3:5e04c4y4ðtÞ ¼ 0

ð20Þ

The value of X is chosen as 2e-4 for this problem.
The system parameters considered are m = 1, c = 23.5619 Ns/m, k = 3.5e4. The

time history responses are measured using Runge–Kutta integration scheme. The
natural frequency of the system is found to be 30 Hz. The nonlinear system
response will exhibit sub- and super-harmonics of excitation frequency into addi-
tion to the fundamental harmonic.

The displacement time history response obtained using Runge–Kutta
(RK) integration scheme and the corresponding power spectrum (PSD) of the actual
system are shown in Fig. 2. The white Gaussian noise in the form of signal to noise
ratio (SNR = 50) is added to the time history response before processing. It can be
observed from Fig. 2b that the spectrum exhibits peaks at the excitation frequency
and at second and fourth-order super-harmonic resonances. This clearly indicates
the presence of nonlinearity in the structure.

Hilbert Transform (HT) on the displacement time history response can be
applied to obtain the instantaneous amplitude and instantaneous frequency. The
Hilbert transform of response x(t) can be defined as

�xðtÞ ¼ HTðxðtÞÞ ¼ 1
p
PV

Z1
�1

xðsÞ
t � s

ds ð22Þ

where PV indicates the principal Cauchy value. The corresponding analytical signal
z(t) is then given by
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zðtÞ ¼ xðtÞþ i�xðtÞ ¼ AðtÞeihðtÞ ð23Þ

AðtÞ ¼ ½xðtÞ�2 þ ½�xðtÞ�2
	 
h i1=2

ð24aÞ

xðtÞ ¼ dhðtÞ
dt

; hðtÞ ¼ tan�1 �xðtÞ
xðtÞ ð24bÞ

where A(t) is instantaneous amplitude, hðtÞ is the phase angle and xðtÞ is the
instantaneous frequency.

The instantaneous parameters (i.e., instantaneous amplitude and instantaneous
frequency) obtained using HT of time history response is shown in Fig. 3a, b
respectively. Once the instantaneous parameters are obtained through the Hilbert
transform, it can be easily related to the slow-flow equations of the system.

Through Slow-Flow Model Identification, the instantaneous phase given in
Eq. (10b) after eliminating k3 (i.e. c3 = 0) becomes
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Fig. 2 a Displacement time
history response; b power
spectrum of breathing crack
problem
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bðtÞ ¼ � x
2
� k1
2x

� �
tþ p

2
ð25Þ

The slow-flow instantaneous phase equation (Eq. 25) obtained through
complexification-averaging and the Hilbert transform (Eq. 24) are compared. As
the system frequency and mass are known a priori, the time-dependent linear
stiffness coefficient k1 can be estimated. A single value of k1 is then estimated using
the least square procedure. The final single value of k1 is then related to stiffness
ratio a and then the value is determined.

Further, the instantaneous amplitudes given in Eqs. (10a) and (24a) are com-
pared and the system damping parameter is estimated using the least square
procedure.

The identified system parameters are shown in Table 1. It can be verified from
Table 1 that the parameters obtained using slow-flow model compare well with the
actual parameters even with measurement noise. The extension of the slow-flow
model formulations to multi-degree of freedom is rather straightforward and
Hilbert–Huang Transform (HHT) is used instead of HT for instantaneous parameter
extraction. The advantage of the slow-flow model technique is that it is applicable
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Fig. 3 HT of response
a instantaneous amplitude
b instantaneous frequency
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for both linear and nonlinear systems which might include systems with smooth and
non-smooth nonlinearities

5 Conclusion

In this paper, the physics-based interpretation of instantaneous parameters derived
using Hilbert transform and the slow-flow equation of the dynamics of the system is
demonstrated. Based on the correspondence between the HT approach and
slow-flow model, a nonlinear system identification strategy using the empirical
slow-flow model in the time domain is presented. The analysis is based on input–
output response measurements of the system and is applicable for both smooth and
non-smooth nonlinear systems. The Hilbert transform approach gives sharper fre-
quency and time resolutions compared to other time–frequency decomposition and
helps in accurate estimation of instantaneous parameters for strongly nonlinear
systems.

The extension of the approach to multi-degree of freedom is rather straightfor-
ward and Hilbert–Huang transform needs to perform on the time history response
instead of Hilbert transform.

Numerical investigations have been carried out to verify the presented empirical
slow-flow model for nonlinear parameter estimation by solving a beam with a
single-edged breathing crack problem. Numerical studies presented in this paper
clearly indicate that the proposed identification strategy using slow-flow model can
identify nonlinear coefficients accurately even with noisy measurements.
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