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Foreword

The extremophiles are those microorganisms thriving under extreme conditions 
where no other living being will have any chance to survive. The Eurasian zone 
examples of extreme habitats are those presenting high temperatures, such as hot 
springs, or those with high salt concentrations, such as salines and hypersaline 
lakes. The study of extremophiles brings great interest from both the physiological 
or environmental and industrial perspectives. For instance, they represent key organ-
isms to understand the limits of life on Earth and the potential existence of life 
somewhere else, and the study of their biological characteristics forcing them to 
thrive under extreme conditions is a basic milestone to understand the origin of life 
and its development through a variety of environments so that microbes have been 
able to spread all over our planet. At present, it is known that microorganisms pres-
ent a huge diversity, and among them the extremophiles are of particular interest 
because the extreme conditions where they inhabit create relatively restricted envi-
ronments which, a priori, should facilitate the analysis of complex cellular interac-
tions within those ecosystems. Besides, the extreme nature of those interactions and 
the physiological capabilities developed in the extremophiles are attracting the 
attention of industrial applications. This is easy to understand because the biotech-
nological industry is looking for unique products and applications and the use of 
highly durable and stable biocatalysts so that higher production efficiencies and 
lower costs can be achieved.

Large numbers of publications from American researchers and from extreme 
environments in America are reported. However, one should not forget the contribu-
tions from Eurasian systems and investigators. This book promotes that research 
being carried out by scientists on the topics of ecosystems, diversity, and applica-
tions of extremophiles in Eurasia. Thus, this highly significant work adds to the 
worldwide advancement in the field and sums up to earlier contributions on the 
discovery of novel extremophiles, their ecology, and biotechnological applications 
made by numerous highly relevant scientists from the Eurasian continent.

Institute of Natural Resources  
and Agrobiology, Spanish Council  
for Research, IRNAS-CSIC 

Juan M. Gonzalez
jmgrau@irnase.csic.es

Sevilla, Spain
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1Insights into the Thermophile Diversity 
in Hot Springs of Pakistan

Arshia Amin, Iftikhar Ahmed, Nauman Khalid, Yao Zhang, 
Min Xiao, and Wen-Jun Li

Abstract
The hot springs are populated by mesophilic, thermotolerant, and hyperthermo-
philic bacteria. These populations are diverse, and some of them show 
 combinations of other extreme conditions, for example, acidic, alkaline, high 
pressure, and high concentrations of salts and heavy metals. Anaerobes inhabit-
ing hot springs are considered to be the closest living descendants of the earliest 
living forms on earth, and their study offers understandings about the origin and 
evolution of life. In this chapter, thermal spring bacterial diversity from Pakistani 
ecology is reviewed. The bacterial populations in Pakistani hydrothermal vent 
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environments showed a great genetic diversity, and most members of these popu-
lations appeared to be uncultivated and unidentified organisms. Analysis sug-
gested that some microorganisms of novel phylotypes predicted by molecular 
phylogenetic analysis were likely present in thermal spring environments. 
Libraries were predominantly composed of rare phylotypes that appeared to be 
unclassified, and the number and type of phylotypes observed were correlated 
with biogeography as well as biogeochemistry. These findings broaden our opin-
ion of the genetic diversity of bacteria in hot water spring environments. The 
global-scale bacterial diversity of other hot water spring environments, on the 
other hand, may be beyond present proficiencies for authentic study.

Keywords
Thermophiles · Thermal springs · Bacterial diversity · Taxonomy · Biogeography 
· Biogeochemistry · Unculturable methods

1.1  Introduction

Temperature as an environmental factor compels all living microorganisms. In con-
trast to the upper temperature boundaries, the lower temperature boundaries for 
growth among microorganisms are not well defined (Russell et al. 1990). Thermophiles 
are the microorganisms that “love” heat. A word of caution is necessary regarding the 
use of the term “thermophilic.” The term means different temperature ranges for dif-
ferent groups of microorganisms. For example, Candida thermophile is described as 
a thermophilic yeast with a maximum growth temperature of 51  °C.  The optimal 
growth temperature for this microorganism is 30–35 °C (Shin et al. 2001). Among 
bacteria, this would be a thermotolerant species. The record for the widest tempera-
ture span for growth is held by Methanothermobacter thermautotrophicus that able to 
grow from 22 to 75 °C (Gerday and Glansdorff 2007).

Strain 121, a Fe(III)-reducing archaea isolated from a hydrothermal vent along the 
Juan de Fuca Ridge, is reported to have a doubling time of 24 h at 121 °C and remains 
viable after exposure to temperatures as high as 130 °C (Kashefi and Lovley 2003). 
The most heat-resistant spore is held by Moorella thermoacetica strain JW/DB-4. 
Under autotrophic conditions at 60 °C, this bacterium forms spores with a decimal 
reduction time of 2 h at 121 °C. A subpopulation of spores apparently requires 1 h at 
100 °C to become fully activated before germinating (Byrer et al. 2000).

W.-J. Li (*) 
State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant 
Resources, School of Life Sciences, Sun Yat-Sen University,  
Guangzhou, People’s Republic of China 

Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of 
Ecology and Geography, Chinese Academy of Sciences, Ürűmqi, People’s Republic of China
e-mail: liwenjun3@mail.sysu.edu.cn
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Thermus aquaticus, an aerobic, thermophilic bacterium, was isolated from 
Yellowstone National Park, Wyoming, in the late 1960s (Brock and Freeze 1969), and 
the microorganism’s Taq DNA polymerase has become an essential component of 
molecular biology. Brock (1997) stated that among different types of research meth-
ods, the one done by individual scientist usually returns late. Thermus aquaticus, an 
anaerobic bacterium was isolated from Yellowstone National Park, Wyoming, in the 
late 1960s by Thomas Brock (Brock and Freeze 1969). That lead to the discovery of 
Taq polymerase which become a breakthrough in molecular biology. Cosmopolitan 
microorganisms from thermal environments include Methanothermobacter thermau-
totrophicus, Thermoanaerobacter thermohydrosulfuricus, Thermoanaerobacterium 
thermosaccharolyticum, and Geobacillus stearothermophilus.

The interaction correlation between biogeography and biogeochemistry in ther-
mal environments is also worthy. As an example, three combinations can be defined 
by Engle et al. (1995):

Relaxed biogeography and biogeochemistry: For example, Thermoanaerobacterium 
thermosaccharolyticum and Thermobrachium celere have a relaxed biogeography 
and biogeochemistry. They have been isolated from a variety of environments from 
several locations including thermobiotic, mesobiotic, slightly alkaline, and acidic 
environments.

Relaxed biogeography and restricted biogeochemistry: For example, Clostridium 
paradoxum and Clostridium thermoalcaliphilum are isolated from sewage sludge 
on four different continents, but only from sewage sludge.

Restricted biogeography and relaxed biogeochemistry: That is, Anaerobranca 
horikoshii has only been isolated from a specific area behind the old faithful ranger 
station in Yellowstone National Park, but from several pools in that area, represent-
ing a spectrum of pH values from acidic (pH 5) to alkaline (pH 8.5). Although rela-
tively easy to isolate, strains of A. horikoshii have not been obtained from other 
areas of Yellowstone National Park or other countries, nor has its sequence been 
found in environmental 16S rRNA gene libraries.

Strazzulli et al. (2017) studied that spots of volcanic activity exist all over the 
Earth’s surface and under the sea. They offer a variety of different environments for 
extremophilic microorganisms. Hot springs are always full of hyperthermophiles, 
the majority of which belong to the domain of archaea. Combination of extreme 
temperature with other physicochemical parameters, i.e., acidic, alkaline, high pres-
sure, and high concentrations of salts and heavy metals, also selects specific classes 
of bacteria and discourages remaining classes for which these conditions are not 
favorable (Cowan et al. 2015). Archaea which resides in hot springs are claimed to 
be the closest living descendants of the primitive living forms on earth and are con-
sidered as models to study origin and evolution of life (Olsen et al. 1994).

1.2  History

It is well established that a number of archaeal and bacterial species live under 
extreme environmental conditions, which include pressure, high temperature, UV 
light, ionizing radiation, very low levels of nutrients, and low or high levels of pH 
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(Gerday and Glansdorff 2007). Cavicchioli (2002) suggested the possibility that 
while considering these extremophiles as models, we can get insights into the life-
style at celestial habitat.

It would be highly significant to establish identification between ancient and 
primitive organisms. It has been observed that cladistically ancient organisms are 
located near the root of universal rRNA-based trees, but they do not own primitive 
molecular genetic apparatus, nor they are more basic in their metabolic abilities 
than their aerobic equivalents (Islas et al. 2003). Pre-RNA worlds are the foundation 
of primitive living systems, in which life may have been based on polymers using 
backbones other than ribose phosphate and possibly the bases different from gua-
nine, adenine, uracil, and cytosine (Levy and Miller 1998), followed by a stage in 
which life was based on RNA both as the genetic material and as catalysts (Joyce 
2002). Only very few facts support hyperthermophilic origin of life. Firstly, the 
deepest, branches of rRNA-based molecular phylogenies are full of hyperthermo-
philes (Pace 1991, 1997). Secondly, immediately after earth formation, the surface 
of the earth was extremely hot and planet remained molten for some time after its 
formation. About 4.6 × 109 years ago, life on earth and only hyperthermophilic life 
were possible (Wiegel 1998). The biphasic temperature-growth curves of many 
thermophiles growing at elevated temperatures and the existence of cryptic thermo-
philes are considered as additional arguments for the start of life in the range of 
60–90 °C and that hyperthermophiles as well as mesophiles and psychrophiles are 
adaptations to changed environments.

While some antagonists say that the earth’s surface speedily lost temperature to 
provide mesophilic origin of life (Wilde et al. 2001). Chemical decomposition of 
recognized biochemical compounds, i.e., amino acids, nucleobases, RNA, and ther-
molabile molecules, has half-lives for decomposition at temperatures between 250 
and 350 °C at the most a few minutes (Miller and Bada 1988). Another theory that 
supports mesophilic origin of life came from Gulen et al. (2016). Petrov et al. (2015) 
believe that the property of ribosome that shields it in high temperature, e.g., RNA 
foldings, evolved slowly during evolution. Hyperthermophilic microbial lifestyles 
are the product of secondary adaptations that developed during early stages of cell 
evolution, but we do not have an information on the composition of the terrestrial 
atmosphere during the period of the origin of life or on the temperature, ocean pH 
values, and other general and local environmental conditions that were important 
for the emergence of living systems (Lazcano and Bada 2003). Delaye et al. (2005) 
believe that the origin of the mutant sequences ancestral to those found in all exist-
ing species and the divergence of the bacteria, archaea, and eukarya were not syn-
chronous events, i.e., the separation of the primary domains took place later, perhaps 
even much later, and then the appearance of the genetic components of their least 
common ancestors. The cenancestor is thus one of the last evolutionary outcomes of 
a series of ancestral events, including lateral gene transfer, gene losses, and paralo-
gous duplications that took place before the separation of bacteria, archaea, and 
eukarya. Dworkin et al. (2002) and Forterre et al. (2002) believes that if hyperther-
mophile is not truly primordial, then heat-loving lifestyles may be remainders of a 
secondary adaptation that evolved after the origin of life and before or soon after the 
separation of the major lineages. Forterre et  al. (2002) believe in adaptation of 
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bacteria to extreme environments by lateral transfer of reverse gyrase and other 
thermo- adaptive traits from heat-loving archaea. Dworkin et al. (2002) believe that 
outcompetition of older mesophiles by hyperthermophiles originally adapted to 
stress-inducing conditions other than high temperatures.

Wilson (1992) created the term biodiversity and wrote The Diversity of Life. At 
that time, there were 4800 species described in the “kingdom” Monera. Currently 
more than 30,000 whole genomes have been submitted from all three domains of 
life bacteria, archaea, and eukarya and are available in the Joint Genome Institute’s 
Integrated Microbial Genomes database (Hug et  al. 2016). Recently, Hug et  al. 
(2016) gave new tree of life (Fig. 1.1) in which 92 phyla which are representing total 
bacterial eukaryotic and archaeal diversity and includes 92 phyla belonging to bac-
teria, 26 of archaea five of the eukaryotes. Genome-resolved metagenomics and 
single-cell genomics of hundreds of genomes revealed that all members have com-
paratively small genomes and most of them have restricted metabolic capacities or 
are symbionts. Therefore, all cells either lack thorough citric acid cycles or respira-
tory chains, and furthermost few have limited or no ability to synthesize nucleotides 
and amino acids. It is presumed that these reduced metabolisms resulted from either 
super phylum-wide damages or inherited characteristics. If its result of inherited 
characteristics, then symbiotic lifestyles were secondary adoptions from once more 
complex organisms appeared.

1.3  Thermal Environments and Biodiversity

What makes thermal environment a popular model to test biogeographical hypoth-
eses is its island-like nature. Using similar strains of the thermophilic archaeon 
Sulfolobus originating from hot springs in Yellowstone National Park and Italy, 
Zillig et al. (1980) formulated the hypothesis that “geographical barriers between 
habitats of the same type do not exist for microorganisms.” This hypothesis also 
corresponds to the oft-quoted hypothesis that “everything is everywhere and the 
environment selects” (Beijerinck 1913). However, Whitaker et al. (2003) attribute 
genetic divergence detected by multilocus sequence analysis of strains of Sulfolobus 
solfataricus from five sites to geographic isolation.

Recent reports on bacterial diversity of hot water springs revealed that it is dif-
ficult to propose the reasons for the presence of specific bacterial species in a ther-
mal spring because these ecosystems are always deviate when influenced by an 
outside influence, for example, Hu et  al. (2017) reported that in acidic thermal 
springs in New Zealand temperature (range 30–80 °C) was the only significant vari-
able associated with community turnover. Near 40 °C, chemolithoautotrophs were 
dominant, whereas, at temperatures >65 °C, the microbial community was domi-
nated approximately solely by sulfur-oxidizing archaea. At mesophilic tempera-
tures, the community structure was diverse, encompassing both archaea and bacteria 
but dominated mainly by chemolithotrophic sulfur and hydrogen oxidizers. In 
another report, Jiang and Takacs-Vesbach (2017) revealed that despite similar pH of 
all studied sites of Yellow Stone National Park, bacterial diversity varied a lot. 

1 Insights into the Thermophile Diversity in Hot Springs of Pakistan
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Lowest-temperature site predominant phyla were Chloroflexi, Bacteroidetes, 
Proteobacteria, and Firmicutes. Metagenome study revealed that all genes related 
to energy production were present, i.e., transcription, carbohydrate transport, genes 
related to sulfate reduction, dissimilatory nitrogen reduction, and H2S. In another 
study, Merkel et al. (2017) on Kamchatka Peninsula hot springs revealed dominance 
of sulfur-oxidizing bacteria of genus Sulfurihydrogenibium which were followed by 
the second most dominant anaerobic bacteria of genus Caldimicrobium. At 

Fig. 1.1 Figure adopted from Hug et al. (2016) is showing tree of life. All major lineages are 
highlighted with genome-wide depiction, but mostly are phylum-level branches. Major lineages 
are allocated random colors and named, with the published and described names, in italics. 
Uncultured lineages are highlighted with red dots and are nonitalic. Brackets around Tenericutes 
and Thermodesulfobacteria show that these are subbranches of Firmicutes and Deltaproteobacteria, 
respectively. Phylum like Proteobacteria which is not monophyletic (Alphaproteobacteria, 
Betaproteobacteria, Deltaproteobacteria, Gammaproteobacteria) is shown separately. The candi-
date phyla radiation (CPR) is assigned a single color because all are uncultured and unclassified 
and are still in the process of description at lower taxonomic levels. Further analysis by ribosomal 
proteins as well as by primitive genetic code showed that there is vast difference in composition of 
three domains, i.e., thermophilic, mesophilic, and halophilic domains (®Macmillan Publishers 
Limited, 2017)

A. Amin et al.
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high- temperature sites, archaea of the genus Vulcanisaeta were abundant, and at 
acidic springs Nanoarchaeota and uncultured Thermoplasmataceae A10 were also 
present.

1.4  General Features and Geography of Pakistan Hot Water 
Springs

The Main Mantle Thrust and the Main Karakoram Thrust (MKT) in Chilas and 
Hunza areas of Northern Pakistan are host to many hydrothermal activity with 
numerous thermal springs distributed between latitude 30°–37° N and longitude 
73°–77° E (Bakht 2000). One of the ways to address the woes of energy crisis effec-
tively in the developing world is through the use of geothermal energy resources 
(Gondal et al. 2017). There are seven hot springs in Murtazaabad which lie along 
the Main Karakoram Thrust in Northern Areas of Pakistan with the surface tempera-
ture range of 47–92  °C. All the thermal waters of Pakistan are formulated from 
NaHCO3. Tattapani and Tato thermal springs along the Main Mantle Thrust have a 
surface temperature from 48 to 92 °C. These are also NaHCO3 type. Geothermal 
springs of Chagai are related to the youngest volcano (Koh-I-Sultan) of Pakistan. 
The northern areas having geothermal fields at Tattapani, Tato, and Murtazaabad are 
located between the latitudes 35°20′ N–36°30′ N and longitudes 74°E–76°E with 
sheer topography and U-shaped valleys, which are drained by the rivers Indus, 
Gilgit, and Hunza, while the rivers Shigar, Shyok, Ishkuman, and Yasin form the 
major branches to these rivers.

Other important mountain ranges of the area are the Kailas, Rakaposhi, and 
Masherbrum. Rainfall in these areas is light, and the geotectonic development of the 
northern areas of Pakistan occurs during late Cretaceous to Cenozoic era. The cre-
ation involved three tectonic elements, i.e., the Indo-Pakistan shield and its northern 
sedimentary cover (Indian Mass), the rocks deposited on the southern part of the 
Eurasian Mass, and the Kohistan island arc sequence (Ahmad et al. 2015).

Amin et al. (2017b) reported bacterial diversity and ecological interactions with 
physicochemical parameters in 9 hot water springs scattered along Himalayan geo-
thermal region where temperature ranges from 60 to 95 °C and pH from 6.2 to 9.4, 
and in mineralogy from HCO3

− (Tato field), sulfates (Tattapani) to mixed type 
(Fig. 1.2) (Murtazaabad).

Among various hot water springs present in Pakistan (Table  1.1), Chang et  al. 
(2013) have reported on the chemical composition of Manghopir thermal spring for 
the year 2008. In our published report by Amin et al. (2017b), we revealed that among 
the studied sites (Table 1.1) were Tato field thermal springs that were bicarbonated in 
nature and had higher bicarbonates (525–610 mg L−1) than sulfates (410–460 mg L−1) 
and the Tattapani hot springs that were sulfate type considering bicarbonate level 
(133–159  mg  L−1) was significantly lower than sulfates (545–684  mg  L−1). The 
Murtazaabad thermal springs were mixed type with high level of both sulfates and 
bicarbonates (710–940  mg  L−1). The levels of sulfates and bicarbonates in the 
Murtazaabad springs were also significantly higher than the other two sites.

1 Insights into the Thermophile Diversity in Hot Springs of Pakistan
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1.5  Bacterial Diversity in Hot Water Springs of Pakistan

In order to scratch the surface in revealing a new vista, we designed a study to dis-
cover unique and undiscovered microbiota of hot water springs present in Pakistan 
by second-generation pyrosequencing and compared the gap between cultured and 
uncultured microbiota by assessing the relationships between microbial community 
compositions and environmental conditions (e.g., water geochemistry). Two new 
species of bacteria were characterized by polyphasic taxonomic approach for vali-
dation at species level Nocardioides pakistanensis sp. nov. and Streptomyces caldi-
fontis sp. nov. (Amin et al. 2016, 2017a).

According to unculturable method, at 97% OTU (operational taxonomic unit) 
level, 5535 quality reads were distributed into 972 microbial genera and 53 phyla. 
OTUs of the phyla Proteobacteria and Chloroflexi were found to be dominantly 
present in all the sampling sites. Distinct phyla which seemed to outcompete were 
Proteobacteria, Chloroflexi, Thermotoga, Bacteriodetes, Deinococcus-Thermus, 
Nitrospirae, and Acidobacteria, and other well-reported thermal spring phyla were 
UT06, OP11, BRC1, OD1, OP8, OP1, OP3, OP9, OMAN, and NKB19. 
Environmental properties like pH, temperature, and sulfur influenced the commu-
nity structure at most that was depicted by the presence of sulfur- and nitrate- 
reducing bacteria, but the influence of other factors on microbial community 

Fig. 1.2 Geographical locations of thermal springs of Pakistan

A. Amin et al.
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assemblage like anaerobic stress in deep water; methane, ammonia and presence of 
planktonic material were supported by the presence of Chloroflexi and haloanaero-
bia. Dominance of Chloroflexus and low number of order Aquificales were also 
studied by Skirnisdottir et al. (2000) at upper temperature of 88–90 °C that matched 
our results. High-temperature and low-oxygen site of Tattapani spring (TP-H3-c) 
had the largest OTUs for sulfur bacteria. Deltaproteobacteria purple sulfur bacteria 
were most dominant in sulfur-rich (Tattapani hot water spring) TP-H3 sites. The 
presence of Cyanobacteria at (Tato field hot water spring) TF-H2-a and (Tato field 
hot water spring) TF-H2-b affected number and diversity of purple sulfur bacteria 
even at high temperature. The highest numbers of OTUs for purple sulfur bacteria, 
that is, 217, were present in (Tattapani hot water spring samples) TP-H3-c which 
was a sulfur-rich site, and the second highest number was observed in (Tato field hot 
water spring) TF-H2 where sulfur level was much lower, but phylum Cyanobacteria 
population was present to support their growth. Another unique phylum UT06 was 
present with rich diversity in (Tattapani hot water spring) TP-H3 and (Murtazaabad 
hot water spring) MA-H4 and low in Tato field samples. Its diversity and number 
were evenly high in all samples of MA-H4, but in TP-H3 its distribution was not 
even. Similar physiochemical properties of hot water springs located at far distances 
and varying geographical locations were responsible for linked microbial commu-
nity. The presence of closely related microbial species in neighboring hot water 
springs indicated that movement of water and soil was also responsible for design-
ing microbial community structure in adjacent environments. These geothermal 
sites should be considered to explore natural biogeochemical cycles and role of 
specific microorganisms in energizing these cycles to exploit these potentials in the 
near future. In these hot water springs, enhanced conditions of high temperature, 
alkaline pH, and methanogenesis all met automatically, and genes for methanogen-
esis were switched in methanogens. Study suggested that methanotrophy in these 
thermal sites was not restricted to only one type of methanotroph, but members of 
type I methanotroph, aerobic methanotroph, Betaproteobacteria methanotroph, and 
type II methanotroph all collectively were responsible for methane cycle in thermal 
systems (Amin et al. 2017b).

1.6  Survival Mechanisms at Thermophilic Environment

Survival of thermophilic bacteria (Fig. 1.3), at high temperatures, is because of vari-
ous adaptations in physiological systems and genetics as stress response to stabilize 
homeostasis (Wang et  al. 2015). Few examples are production of DNA-binding 
proteins, activation of heat shock proteins, activation of reactive oxygen species, 
and efficient repair damage (Ranawat and Rawat 2017).

Other mechanisms involve amino acid substitutions (Arnórsdóttir et al. 2009), 
hydrophobic cores (Bezsudnova et al. 2012), interactions among subunits (Pang and 
Allemann 2007), and inactivation of spores by high hydrostatic pressure (Sarker 
et al. 2015) and by adjusting membrane fluidity after adjusting membrane fatty acid 
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composition (Yoon et al. 2015) and also by maintaining membrane fluidity using 
various thermosensors, e.g., DesK (Cybulski et al. 2015).

Another worth-mentioning fact of thermophilic proteins is substantial rise in the 
proportion of alpha helices and beta strands, with a decline in irregular region; with 
moderately thermophilic proteins, alpha helical increase is dominant, whereas in 
extremely thermophilic ones, beta strand rise is more extensive (Chakravorty et al. 
2017; Szilágyi and Závodszky 2000).

Another distinguishing factor among extreme thermophilic proteins and moder-
ately thermotolerant proteins is amino acid composition. In moderately thermo-
philic proteins, lysine content is less than arginine content, but in extremely 
thermophilic proteins, lysine residues are more in number because of their require-
ment of stronger electrostatic interactions and lysine is a charged residue. Amino 
acid residues which are not high temperature tolerant, i.e., methionine and aspara-
gine, are less in extreme thermophilic proteins (Mrabet et al. 1992). However, the 
important phenomena, i.e., lysine succinylation and lysine propionylation which are 
important for protein function, are not different in extremely thermophilic and mod-
erately thermophilic proteins. These are common protein functions which are not 
dependent on temperature tolerance (Okanishi et al. 2017).

Fig. 1.3 Survival mechanisms related to transcriptome, genome, proteome, and other adaptive 
features of bacteria for survival at high temperatures
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High temperature is also related to strong association between ions. The despairs 
for the ion pair decreases with an increase in temperatures. In thermostable proteins, 
internal water molecules (bridging water molecules) are present which ensures that 
ions are not fully desolated at high temperature. Hence it was established that salt 
bridges are very important in the design of thermostable proteins (Bikkina et al. 
2017). Upregulation of proteins which are responsible for protection against heat 
stress, i.e., heat shock proteins (HSPs), is common in all thermophiles (Mizobata 
et al. 2000), i.e., upregulation of HSP60, HSP20, groEL-growES, hrcA-grpE-dnaJ, 
and dnaK-sHSP in Thermotoga maritima and sHSPs in Sulfolobus solfataricus dur-
ing temperature rise (Shockley et al. 2003; Johnson et al. 2006). Other chaperon 
proteins which are upregulated in thermophilic strains Thermoanaerobacter teng-
congensis and Thermotoga maritime in response to heat stress include GroEL, 
GroES, DnaK, and GrpE (Chen et al. 2012a, b; Wang et al. 2012).

1.7  Types of Thermal Environments

Various types of thermal environments exist including terrestrial, solar-heated, 
marine, subsurface, anthropogenic, temporary, and mesobiotic environments; a 
brief overview of these environments was reviewed below.

1.7.1  Terrestrial Thermal Environments

The northern areas of Pakistan have a large number of hot springs in the Gilgit, 
Hunza, and Yasin valleys. The Tattapani hot springs are located on Karakoram 
Highway at the right bank of Indus River. These springs are located at the altitude 
of 1200 m. There are two hot springs in Murtazaabad, located in the Hunza valley, 
downward near the bank of the Khunjerab River: Murtazaabad Zairen and 
Murtazaabad Balai hot springs. Murtazaabad Balai hot spring is located somewhat 
upper as compared to the Murtazaabad Zairen hot spring. Other hot springs are 
located 3.0 km earlier from Darkot Pass in Yasin valley upper to the Rawat base 
camp. It is situated at the height of about 4650 m from the sea level. Two hot springs 
are oozing out here, which seem to have the same origin (Ahmad et al. 2013). Shuja 
(1986) and Bakht (2000) have also found numerous hot springs along the Main 
Mantle Thrust and Main Karakoram Thrust in Chilas and Hunza areas, respectively. 
The geothermal system here is the result of the collision of the Indian and Eurasian 
plates. Hot springs are scattered and their temperature ranges up to 91 °C. Three 
parts of Pakistan, i.e., Kashmir, Khyber Pakhtunkhwa, and Baluchistan, are the 
potential zones where geothermal resources are located. Major tectonic elements 
during the Cenozoic and Mesozoic era have shaped the geological structures that 
are observed in Pakistan today. These structural elements are indicators for delineat-
ing and developing the potential geothermal resources of the country. Worldwide 
these environments are found at geysers, solfataras (mud or paint pots), and mud or 
paint pots in volcanically active regions throughout the world, including Iceland, 
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Western North America, New Zealand, Japan, Eastern Russia, and the rest of the 
so-called Pacific Ring of Fire; major examples include Yellowstone National Park at 
North America which is being studied dating back to 1897 (Reysenbach and Shock 
2002). Neutral to alkaline areas richer in chloride salts or carbonate were observed 
in areas of terrestrial environments (Zhao et al. 2005).

1.7.2  Solar-Heated Environments

Solar-heated environments may occur anywhere on earth receiving solar energy 
inputs. Such environments are likely inhabited by mesophilic, thermotolerant, and 
thermophilic microorganisms because solar energy can heat some soils to 60 °C and 
shallow waters to 50 °C at certain times of the day or year, as pointed out by Brock 
(2012). Thermal environments on the earth’s surface also experience evaporation, 
and thus many environments have elevated salinity and, therefore, halophilic inhab-
itants. For example, Thermohalobacter berrensis, a thermophilic and halophilic 
bacterium, was isolated from a solar slattern in France (Cayol et al. 2000). Halo- 
alkali- thermophiles and halophilic (up to 25% NaCl 4.5 M sodium ion as NaCl/
Na2CO3), thermophilic (up to 75 °C), and alkaliphilic (up to pH 10.5) triple extremo-
philes, coined, have been isolated from dry salts from salt flats in Nevada and from 
sediments of athalassohaline lakes in Wadi El Natrun, Egypt (Mesbah and Wiegel 
2005).

1.7.3  Marine Environments

Marine thermal environments may occur at Beaches: Hot Water Beach (Whitianga, 
New Zealand), Pozzuoli (Italy), Savusavu (Fiji Island) (Burgess 2009). Under 8 m 
of water: Vents off the coast of Mílos Island, Greece (Sievert et al. 2000). Under 
2500 m: Abysmal of water, deep-sea hydrothermal vents first discovered in 1977 
near the Galápagos Islands (Corliss et al. 1979).

Organisms inhabiting such environments face multiple challenges, i.e., venting 
water can exceed 300 °C, but in deep-sea vents, it cools quickly upon mixing with 
cold, deep-sea water; habitat types range from those preferred by hyperthermo-
philes to temperatures habitable by psychrophiles (Kelley et al. 2002), i.e., black 
smoker chimneys, associated with volcanic psychrophiles activity; and plate spread-
ing zones generally are fueled by high concentrations of sulfides (Kelley et  al. 
2002). Serpentinite-hosted systems, like the Lost City hydrothermal field, are 
enriched in hydrogen and methane as energy sources (Kelley et  al. 2005). 
Thermococcus barophilus, obtained from the snake pit region of the Mid-Atlantic 
Ridge, requires elevated pressure for growth at or above 95 °C (Marteinsson et al. 
1999). Pyrococcus strain ES4 shows an extension of Tmax under increased pressure 
(Pledger et al. 1994; Summit et al. 1998).

Jolivet et al. (2003, 2004) reported that at hydrothermal vents, the level of natural 
radioactivity can be 100 times greater than that at the earth’s surface because of 
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increased occurrence of elements such as Pb, Po, and Rn. For example, archaea 
Thermococcus gammatolerans was isolated from a hydrothermal site in Guaymas 
Basin, Thermococcus marinus from the snake pit hydrothermal site on the Mid- 
Atlantic Ridge, and Thermococcus radiotolerans from a hydrothermal site in the 
Guaymas Basin. Additionally, all organisms existing in marine environments also 
have some tolerance for moderate (around 3%) salinity.

1.7.4  Subsurface Environment

Subsurface thermal environments include petroleum reservoirs and geothermally 
heated lakes and aquifers. Activity in subsurface environments varies with the avail-
ability of nutrients, water, energy, depth, surrounding matrix, and source materials. 
Lethal temperatures may not occur until as much as 10,000 m below the surface 
(Pedersen 2000) with few exceptions, e.g., Uzon Caldera; temperatures well above 
100 °C can occur at depths of only a few meters (Burgess 2009). A depth record for 
culturable life has been established at 5278 m (Szewzyk et al. 1994). Elevated tem-
peratures found within petroleum reservoirs can be up to 130  °C (Grassia et  al. 
1996). The geochemical conditions in reservoirs are variable because of age, source 
material, and surrounding geology and prokaryote communities (Orphan et  al. 
2003). Takahata et al. (2000) have proposed that microorganisms in these environ-
ments may face oligotrophic conditions. Subsurface geothermal aquifers such as the 
well- known and expensive Great Artesian Basin of Australia are non-volcanically 
heated but experience temperatures up to nearly 103 °C.

1.7.5  Anthropogenic Environments

Anthropogenic habitats include household and water heaters and industrial process 
environments and thermal effluent from power plants (Brock 2012). One of the 
earliest well-known anaerobic thermophiles, Thermoanaerobacter (basonym 
Clostridium) thermohydrosulfuricus, was isolated from an Austrian sugar factory 
(Lee et al. 1993). Other thermophiles have been isolated from thermally polluted 
effluent from a carpet factory (Carreto et al. 1996), the smoldering slag heap of a 
uranium mine (Fuchs et al. 1996), and mushroom compost (Korn-Wendisch et al. 
1995). Strains of Thermus aquaticus have been isolated from various anthropogenic 
thermal environments including hot tap water and greenhouse soil (Brock and 
Freeze 1969).

1.7.6  Temporary Environments and Mesobiotic Environments

Thermophiles can be isolated from various environments, such as animal droppings, 
manure piles, and compost, temporarily heated by biodegradation of organic mate-
rial, sun-heated soils, and sediments at the edges of lakes and puddles which can 
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have temperatures up to 50 °C but are frequently around 35–45 °C, whereas most of 
the thermophiles isolated from these environments are Firmicutes. One example is 
the archaeon Methanothermobacter thermautotrophicus. This species can be easily 
isolated from sun-heated black sediments of lakes and mesobiotic sewage plants, 
but it also has been isolated from sun-heated wood stumps in Georgia, United States 
(Luo et al. 2013), and mesobiotic environments such as cold stream sediments in 
Germany (Wiegel et al. 1981) or sediments of Lake Mendota, Wisconsin, for which 
temperatures have never reached 16 °C. In contrast, thermophiles, living in steady 
thermal environments such as thermal spring and sediments even if substrate con-
centration is low, do not have that selection pressure for very rapid growth as long 
as their residence time in the pool is longer than their doubling time (Fig. 1.4).

1.8  Diversity of Thermophiles

1.8.1  Cultural Diversity

Most of the microorganisms from nearly all environments inhabit are presently 
uncultured (Hugenholtz 2002). Considering the extreme conditions in which most 
thermophiles thrive, some require special handling or novel approaches for their 
enrichment, culturing, and isolation (Mesbah and Wiegel 2005). During our study 
on thermal springs of Pakistan, based on the 16S rRNA gene sequence similarities, 
we observed that 248 isolated strains belonged to 37 genera and 3 major phyla 
which were Proteobacteria, Firmicutes, and Actinobacteria. Of the potentially 
novel species of Actinobacteria and Bacteria, two were also characterized by poly-
phasic taxonomy. These strains were characterized as novel species of the genera 
Nocardioides and Streptomyces (Amin et al. 2016, 2017a).

Until now many species of thermophilic anaerobic bacteria have been isolated 
and described, and few anaerobic bacteria isolated and described include 
Thermoanaerobacter tengcongensis sp. nov. (Xue et al. 2001), Chlorobium tepid-
ium sp. nov. (Wahlund et al. 1991), Pyrobaculum igneiluti sp. nov. (Lee et al. 2017), 
and Desulfuribacillus stibiiarsenatis sp. nov. (Abin and Hollibaugh 2017) (others 
are mentioned in Table 1.2). Their habitats include geothermal areas (Wiegel and 
Ljungdahl 1981) (Jessen and Orlygsson 2012) and deep-sea vents (Slobodkin et al. 
1999). Low-oxygen concentrations are usually present in the habitats of anaerobes; 
hence most known thermophilic species are obligate or facultative anaerobes 
(Amend and Shock 2001).

1.8.2  Phylogenetic and Genetic Diversity

Amplification of 16S rRNA genes directly from environmental DNA has shown 
intense variation in amount of diversity among prokaryotes and novel lineages of 
thermophilic bacteria and archaea (Kimura et al. 2005; Burgess 2009; Burgess et al. 
2007). Sequences from deep-sea hydrothermal vents led to the identification of 
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novel lineages among archaea and bacteria (Reysenbach et al. 2000), but this is not 
an absolute fact because some thermal environment communities may contain only 
a few phylogenetic types; e.g., Reysenbach and Shock (2002) identified only three 
major phylogenetic groups out of 35 clones analyzed during a study on Yellowstone 
National Park. During a study on Pakistan hot water springs by unculturable tech-
nique, major phyla observed were Proteobacteria, Chloroflexi, Thermotoga, 
Bacteriodetes, Deinococcus-Thermus, Nitrospirae, and Acidobacteria, and other 
well-reported thermal spring phyla which are still unclassified were UT06, OP11, 
BRC1, OD1, OP8, OP1, OP3, OP9, OMAN, and NKB19 (Fig. 1.5). Presence of 
40.1% unclassified OTUs clearly suggest the presence of many undiscovered and 
unexplored unique microbiota within these sites (Amin et al. 2017b).

Fig. 1.4 Diversity of bacteria and Actinobacteria in hot water springs of Pakistan. Percentage in 
brackets is showing the 16S rRNA gene sequence similarity
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While limited cultivation-based study of the geothermal springs in this region 
has been reported (Javed et al. 2012), a cultivation-independent study which pro-
vides a more comprehensive assessment of microbial diversity was still lacking 
before our studies. Great plate count anomaly illustrates that less than 1% of exist-
ing microorganisms are culturable. Under such conditions, culture- independent 
approaches facilitate the exploration of microbial diversity from diverse habitats 
(Hou et al. 2013). In Pakistan thermal springs, higher species richness and abun-
dance in sediments of Tattapani than in sediments of Tato field and Murtazaabad 
were reported to be due to moderate temperature, high silicates, and high sulfate 
contents of Tattapani springs. Lau et al. (2009) and Yim et al. (2006) also reported 
the influence of temperature (<70  °C) for the presence of Cyanobacteria and 
Chloroflexi in hot springs.

Thermophilic and hyperthermophilic bacteria had been predominantly isolated 
from streamers with temperature above 75 °C and mainly comprised of the phyla 
Aquificae, Deinococcus-Thermus, Thermodesulfobacteria, and Thermotogae and 

Table 1.2 Few of the new species of thermophilic and mesophilic, aerobic and anaerobic bacteria 
isolated from hot water springs and identified by polyphasic taxonomic approach from 2016 till 
date

Isolated strains Temperature References
Lampropedia cohaerens sp. nov. 45 Tripathi et al. (2016) 
Bacillus licheniformis RBS 5 sp. nov. 65 Salem et al. (2016)
Caldimicrobium thiodismutans sp. nov. 75 Kojima et al. (2016)
Inmirania thermothiophila gen. nov. 35–68 Slobodkina et al. (2016)
Tepidibacillus decaturensis sp. nov. 20–60 Dong et al. (2016)
Chelatococcus thermostellatus sp. nov. 50 Ibrahim et al. (2016)
Deferrisoma palaeochoriense sp. nov. 30–70 Pérez-Rodríguez et al. 

(2016)
Streptomyces sp. Al-Dhabi-1 sp. nov. 55 Al-Dhabi et al. (2016)
Thermostilla marina gen. nov., sp. nov. 30–68 Slobodkina et al. (2016)
Brevibacillus gelatini sp. nov. 45 Inan et al. (2016)
Cyanobacterial strains 26–58 Bravakos et al. (2016)
Athalassotoga saccharophila gen. nov., sp. nov. 30–60 Itoh et al. (2016)
Mesoaciditogales ord. nov.
Mesoaciditogaceae fam. nov.
Brevibacillus borstelensis cifa_chp40 37–50 Tripathy et al. (2016b)
Brevibacillus sediminis sp. nov. 50–55 Xian et al. (2016)
Sulfuritortus calidifontis gen. nov., sp. nov. 15–48 Kojima et al. (2017)
Nocardioides pakistanensis sp. nov. 20–40 Amin et al. (2016)
Caldimicrobium thiodismutans sp. nov. 40–77 Kojima et al. (2016)
Streptomyces caldifontis sp. nov. 18–40 Amin et al. (2017a)
Pyrobaculum igneiluti sp. nov. 90 Lee et al. (2017)
Desulfuribacillus stibiiarsenatis sp. nov. 37 Abin and Hollibaugh 

(2017)
Tibeticola sediminis gen. nov., sp. nov. 37–45 Khan et al. (2017)
Balneicella halophila gen. nov., sp. nov. 20–50 Fadhlaoui et al. (2016)
Thermoanaerobacterium butyriciformans sp. nov. 50–55 López et al. (2017)
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some members of the phyla Proteobacteria and Firmicutes (Miller et  al. 2009; 
Wang et al. 2013). Murtazaabad hot springs with relatively higher temperature (90–
95 °C) favored the growth of thermophilic bacterial phylum Thermotogae. These 
domains were also detected in higher proportion in sites of Tata field and Tattapani, 
where average temperature is above 85 °C. However, OTUs of phyla Aquificae and 
Deinococcus-Thermus were more dominant in sites ranging in temperature from 70 
to 85 °C. At sites with low silica and high temperature, OTUs belonging to phylum 
Chloroflexi were dominant. Kambura et  al. (2016) believed that the existence of 
phyla Actinobacteria and Firmicutes was an adaptation in low-nutrient conditions 
of the hot springs.

1.8.3  Metabolic Diversity

Among all types of microbial metabolism from thermal environments, chemolithotro-
phy either autotrophy or heterotrophy is a foundation of hyperthermophilic communi-
ties in sunless and too hot environments which are not suitable for photoautotrophic 
production. Few chemolithoautotrophs, e.g., bacteria of the order Aquificales, are con-
sidered as primary producers in these ecosystems (Blank et al. 2002). Among bacteria 
are anaerobic Firmicutes such as the facultative chemolithoautotrophs Moorella 

Fig. 1.5 Pie chart showing distribution of bacterial phyla and Actinobacteria in hot water springs 
of Pakistan by pyrosequencing approach of 16S rRNA gene. Values in brackets are showing an 
average number of OTUs (operational taxonomic units). Unclassified OTUs belong to UT06, 
Caldithrix_p, BRC1, OP8, OP11, MATCR, OMAN, Bacteria_uc, NKB19, JX105615_p, WS1, 
and O
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thermoacetica that undergoes homoacetogenic fermentations from carbohydrates and 
the anaerobe Ammonifex degensii, capable of forming ammonium from nitrate via 
chemolithoautotrophic growth (Huber et al. 1996), Fe(III)-reducing Thermolithobacter 
ferrireducens, and Thermolithobacter carboxydivorans, a hydrogenic CO utilizer 
(Wiegel et al. 2003). Photoheterotrophic Chloroflexus aggregans, Chloroflexus auran-
tiacus, Heliobacterium modesticaldum, and Roseiflexus castenholzii (Hanada et al. 
2002). In some examples, in situ geochemistry of thermal environments may be shap-
ing the dominant metabolisms or perhaps is shaped by the dominant metabolisms 
(Orphan et al. 2003). Many thermal environments are enriched in elements that are 
toxic to humans, such as arsenic and selenium, and some microorganisms in these 
habitats use toxic, redox-active elements to gain energy, via either oxidation or reduc-
tion (Donahoe-Christiansen et al. 2004).

During a study by Amin et al. (2017b), Pakistan thermal springs were explored 
for bacterial diversity and it was reported that among Murtazaabad hot water spring, 
sulfur-reducing bacteria was extensively present in deep waters and Physiological 
functions revealed that in sulpur rich grothermal springs with anoxic waters, meth-
ane is produced by consortium of methanotophs and sulfur reducing bacteria 
(Tripathy et al. 2016a, b; Delgado-Serrano et al. 2014). Type I and II methanotrophs 
and SRB were major constituents among phylum Proteobacteria and likely involved 
in the mineral recycling under the low-oxygen conditions of hot springs, which in 
turn helped in energy production. In acidic hot springs, this metabolism of energy 
recycling was reported to be initiated by methane-oxidizing phylum Verrucomicrobia 
(Islam et al. 2008; Sharp et al. 2012).

Few strains which are dependent on varied metabolic classes isolated from the 
studied thermal springs included phylum Clostridia, which is obligatorily depen-
dent on methanogens or on the presence of an external electron acceptor; thermo-
philic anaerobic, Mn(IV)- and Fe(III)-reducing Carboxydocella species 
Carboxydocella_uc and Carboxydocella manganica; and CO-assimilating chemo-
lithoautotroph which survived under aerobic conditions by using CO dehydroge-
nases under anaerobic conditions. Genus Ammoniphilus were present in the three 
sites of Tattapani which were obligatory oxalotrophic and haloalkalitolerant bacte-
ria and required a high concentration of ammonium ions and pH of 6.8–9.5. 
Unclassified species belonging to genera Anaerosporobacter and Nitratireductor 
were also detected which were in accordance to the study made by Stackebrandt 
(2014) who also reported oxidation of NO2 to nitrate by Nitrospira at high tempera-
ture and subsequent reduction of nitrate to nitrous oxide or complete oxidation to N2 
by members of the order Thermales, Aquificales, and Bacillales (Nakagawa and 
Fukui 2002).

1.8.4  Ecological Diversity

The thermophilic prokaryotes have introduced us to novel modes of life because of 
biological interactions in geothermally heated environments. The discovery of 
deep-sea hydrothermal vent communities demonstrated that life can exist at 
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temperatures 100 °C as well as at 2 °C on the basis of associated microbial vent 
community (Corliss et al. 1979). Novel symbioses between eukaryotes and prokary-
otes have been identified at deep-sea vents, such as the association between the tube 
worm Riftia pachyptila and chemosynthetic, sulfur-oxidizing bacteria (Cavanaugh 
et  al. 1981) or the thermotolerant Pompeii worm, which utilizes eurythermal 
enzymes of a community of prokaryotes living on its back (Chevaldonné et  al. 
2000). Fledgling field of microecology is rapidly expanding, and thermal environ-
ments are exemplary systems for it (Magurran 2013). In hot water springs, the 
diversity of microorganisms within mats of Cyanobacteria has been examined, and 
the importance of a prokaryote species is determined based on its role in their envi-
ronments (Ward et al. 1998) and the effect of temperature on structuring community 
of prokaryotes through genetic parameters and the distribution of different meta-
bolic types (Norris et al. 2002). FISH is also a helpful method that enables us to 
examine the structural distribution of microorganism of known phylogenetic affili-
ations (Nübel et al. 2002). Lipids present within the membranes of prokaryotes can 
be diagnostic for various types of microorganisms and have provided insight into 
the distribution of microorganisms among different environments. For example, 
analysis of glycerol dialkyl glycerol tetraethers (GDGTs) from selected hot springs 
in Nevada exposed the presence of the archaeal lipid crenarchaeol, which was 
believed to be present in low-temperature and marine environments. The second 
evidence came from the presence of DGGE band sequences of 16S rRNA genes 
from these springs which were related to thermophilic Crenarchaeota and con-
firmed that the presence of crenarchaeol is not exclusive to the cold-adapted, marine 
branch of the Crenarchaeota (Pearson et al. 2004).

1.9  Conclusion

In Pakistan to date, not a single study has been reported for bacterial diversity of hot 
water springs except studies by our group. Various other studies in which selective 
bacteria were isolated from hot water springs of Pakistan include isolation of strain 
Ralstonia sp. MRL-TL from hot water spring to check its ability to degrade poly(ε-
caprolactone) (PCL) (Shah et al. 2015), Analysis of power generation from geother-
mal resources (Ahsan Mustaqeem et al. 2015), Euthermal hot water spring Mango Pir 
was studied for physicochemical and biological studies and Cyanophyta, Zooplankton, 
Bacillarophyta and Nematoda were isolated (Jahangir et al. 2001), freshwater spring 
was studied from Kohat, Pakistan, and the quality assessments of the drinking water 
were carried out by determining total coliform bacteria, total plate count, total fecal 
coliform and E. coli (Ahmad et al. 2013). Another study from Pakistan strain AK9 
was isolated from hot water spring of Tattapani Azad Kashmir, Pakistan; cellulase 
enzyme was extracted and purified which reserved its activity from 50 to 70 °C and 
3–7pH. They reported that B. amyloliquefaciens AK9 can be used in bioconversion of 
lignocellulosic biomass to fermentable sugar (Irfan et al. 2017).

Further we suggest that in the future we should focus to unravel all ignored geo-
chemically important sites specially to fill gap of limited culturing techniques and 
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substrates so far known to study these non-cultured bacteria. The taxonomic results 
obtained will provide information for exploration in this regime and thus to discover 
new whole area for further research in the subject of “extremophiles” which will 
lead to studies on controlled experiments which would help identify which factors 
influence species distribution at most. For example, Kumar et al. (2015), Boucher 
et al. (2011), and Porter et al. (2017) reported that core genomes of Rhizobium legu-
minosarum and Vibrio cholerae have high similarity, but the accessory genome is 
much varied (Porter et al. 2017). Specific classes of bacteria can be studied along 
with their biogeochemical cycles, i.e., methane cycle-related microorganisms, 
anaerobes, nitrogen cycle-related bacteria, sulfate-reducing bacteria, and archaea. 
Novel enzymes can be extracted from novel genomes by metagenomic studies and 
whole-genome analysis. Pasternak et al. (2013) stated that that impact of bacterial 
diversity and their abundance on nature can be explained only by using full-genome 
proteomic comparisons.

We have tried to highlight that microbial community composition varies with 
change in biogeography, biogeochemistry, temperature, pH, physicochemical 
parameters, and many other factors. Globally our results highlight the Pakistan ther-
mal springs, in part the effects of changes in bacterial population in specific set of 
conditions, and particularly observed the microbial community differences, novel 
microbiota, and the need to further investigate them to cover all metabolic and 
genome-wide aspects. It will help researchers to extend this research for narrowing 
down habitat in genomic interconnected populations, discrete, particular bacterial 
lineages can be found in contrasting soil types, in case if genomic interconnections 
will be low, variations in the core and accessory genomes could be found to solve 
distribution of distinct biogeographical patterns.
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Abstract
Hot springs indicate where hot water is emitted from the Earth; they are situated 
in many parts of the world, and most of them are known for their medical impor-
tance. Extensive research has been conducted to understand their chemical com-
position and microbial diversity. This chapter focuses on some important Indian 
hot springs, their locations, components, and importance. Much emphasis is 
placed on understanding their microbial diversity, including culture dependent, 
as well as independent methods. This chapter also sheds light on various Indian 
hot spring’s uniqueness, novel strains that have been reported, and information 
regarding the genome sequence for strains that have been isolated from Indian 
hot springs. The bioactive molecules, such as enzymes and antibiotics obtained 
from hot springs, are also listed here.

Keywords
Indian hot springs · Culture-dependent study · Culture-independent study · Novel 
strains

2.1  Introduction

Hot springs are places where warm or hot groundwater comes out from the Earth. 
Their water contains a lot of dissolved solids and minerals and everything that is 
necessary for the creation of life. It is believed that life on Earth evolved in such an 
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environment (Corliss et al. 1981; Bisht et al. 2011). Even archaea, the third domain 
of life, was discovered in hot springs (Barns et al. 1994). The hot water rising from 
hot springs is either heated by geothermal heat (i.e., heat from the Earth’s interior) 
or by coming in contact with magma (i.e., the hot water is generated by the heat 
produced from the Earth’s mantle). Generally, the temperature of rocks within the 
Earth increases with depth. The rate of temperature increase with depth is known as 
the geothermal gradient. When water percolates deeply enough into the crust, it will 
be heated as it comes into contact with hot stones. When the percolating fluid 
reaches a sufficiently high temperature, the pressure that is generated forces the 
fluid through the pores and fissures back to the surface of the Earth. In active volca-
nic zones, water is heated when comes into contact with magma. The high tempera-
ture gradient near magma may cause water to be heated sufficiently that it boils, 
creating pressure and pushing it to the Earth’s surface (Mehta and Satyanarayana 
2013).

Hot springs are found in many parts of the world (Fig.  2.1) such as China 
(Hedlund et al. 2012), India (Verma et al. 2015), Japan (Nishiyama et al. 2013), the 
Philippines (Huang et al. 2013), Indonesia (Aditiawati et al. 2009), Iceland, Russia 
(Reigstad et  al. 2010), etc. Since ancient times, hot springs have been used for 
medicinal purposes. There has been a long history of Japanese people bathing in hot 

Fig. 2.1 Some hot springs around the globe
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springs for sanitation (Liang et al. 2015). In India, people bathe in hot springs to 
treat skin diseases and stomach and rheumatic disorders. It is also believed that 
women taking a bath in hot springs during festival periods will be cured of infertility 
(Bisht et al. 2011). Many reports have shown that the water of hot springs may have 
therapeutic effects for treating a number of diseases (e.g., cardiovascular disease, 
atopic dermatitis, ankylosing spondylitis, asthma, inflammatory arthritis, rheumatic 
disease, and rhinosinusitis) (Liang et al. 2015). Apart from their therapeutic value, 
hot springs can also act as a model system for studying extraterrestrial life (Sharma 
et al. 2013).

The microbial diversity study of hot springs increased rapidly after Thomas 
Brock’s discovery of Thermus aquaticus in the thermal vents of Yellowstone 
National Park (Brock 1997). Researchers started exploring similar environments in 
different parts of the world, such as North America (Costa et al. 2009), China, the 
Philippines (Yang et al. 2015), Japan (Masaki et al. 2016), India (Kumar et al. 2004), 
Russia (Merkel et al. 2017), and other countries. In terms of microbial diversity, 
temperature is one of the most important factors that govern species abundance and 
distribution. High temperature exerts pressure on microbial species, which leads to 
the selection of specific flora. The microbes that grow at high temperatures have 
bioactive molecules that are commercially important because of their thermostabil-
ity and thermoactivity. The best example is Taq DNA polymerase obtained from 
Thermus aquaticus (Sen and Maiti 2014; Chien et al. 1976). Although there is a 
large body of literature available about microbial diversity studies in hot springs, 
only a few studies focused on Indian hot springs and their microbial diversity analy-
sis. In this chapter, we discuss several major Indian hot springs, their physicochemi-
cal properties, and their microbial diversity  analysis and bioactive 
molecules reported.

In India, there are approximately 400 geothermal springs (Zimik et  al. 2017) 
found either solitary or in groups (Verma et al. 2015; Mangrola et al. 2015a). The 
temperature of Indian hot springs ranges from 30 to 100 °C; the majority of the hot 
springs are not volcanic in origin (Pandey and Negi, 1995). In India, geothermal 
studies of hot springs started in 1864 with a study by Schlagintweit (1865). This 
author documented 99 hot springs throughout the country. Oldham (1888) pub-
lished an inventory of 300 thermal springs in India (Bisht et al. 2011). The microbial 
diversity analysis of hot springs in India was first noted in the nineteenth century. 
Drouet (1938) described 12 thermal species obtained from Yale, North India. 
Gonzalves (1947) studied the algal flora of the hot springs of Vajreshwari near 
Bombay. Thomas and Gonzalves (1965a, b, c, d, e) studied the algal flora of the 
Akloli, Ganeshpuri, Palli, Sav, Aravali, Tooral, Rajewadi, Unai, Lasundra, and 
Unapdeo hot springs.

Hot springs in India (Fig.  2.2) are located in various provinces, namely, 
Himalayan geothermal province, Naga Lushai geothermal province, Andaman- 
Nicobar Islands province, West Coast geothermal province, Cambay Graben geo-
thermal province, Aravalli province, Son-Narmada-Tapti geothermal province, 
Godavari geothermal province, Mahanadi geothermal province, and South Indian 
Cratonic province (Sharma 2010).
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2.2  Some Important Indian Hot Springs and Their 
Physicochemical Parameters

2.2.1  Jammu and Kashmir

In Jammu and Kashmir, geothermal are found in three main areas, the Chenab 
Valley/Himalayan foothills, the Kashmir Valley, and Ladakh (Craig et  al. 2013; 
Thussu 2002). The thermal discharge from Chenab Valley/Himalayan foothills and 
in the Kashmir Valley ranges from 40 to 65 °C, while in Ladakh the thermal dis-
charge has been recorded up to 130 °C (Craig et al. 2013).

Fig. 2.2 The red highlighted provinces are some of the important hot springs of India
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In Chenab Valley, there are 12 hot springs located at Kurah, Tattapani, Mahogala, 
Gul, Chinkah, Sidhu, Kiar, Yurdu, Sweed, Atholi, Tatwain, and Galhar with thermal 
discharge ranges from 28 to 65 °C. The least thermal discharge has been recorded 
at Sweed while the highest at Sidhu (Table 2.1). The thermal discharge in these 
places has neutral to alkaline pH with one exception at Kiar which has slight acidic 
pH (Table 2.1). The highest total dissolved solids have been recorded at Gul while 
the least at Yurdu (Table 2.1). The thermal discharge at Tattapani has high content of 
dissolved minerals particularly phosphorus. Tattapani hot spring is of special impor-
tance due to its medicinal qualities, particularly for treating skin diseases and bone 
and joint ailments (Craig et al. 2013; Thussu 2002). The thermal discharge from 
Chenab Valley also harbors many elements which are listed in Table 2.1.

Ladakh is the most remote region of Jammu and Kashmir. The most famous hot 
springs in this region are located at Puga, Chumathang, and Panamik (Fig. 2.3). The 

Table 2.1 Physicochemical properties of Jammu and Kashmir hot springs

Hot springs
Temperature 
(°C) pH

Total dissolved 
solids

Some important elements 
detected Reference

Kurah 53 7.6 475 Ca, Mg, Na, K, F, B, SiO2, 
HCO3, Cl, and SO4

Craig et al. 
(2013)

Tattapani 45 7.5 500 Ca, Mg, Na, K, F, B, SiO2, 
HCO3, Cl, and SO4

Mahogala 42 7.6 275 Ca, Mg, Na, K, F, SiO2, 
HCO3, Cl, and SO4

Gul 40 7.25 2557 Ca, Mg, Na, K, F, B, and 
SiO2, HCO3, Cl, and SO4

Chinkah 51 7.1 860 Ca, Mg, Na, K, F, B, SiO2, 
HCO3 and Cl

Sidhu 65 7.3 1578 Ca, Mg, Na, K, F, SiO2, 
HCO3, Cl, and SO4

Kiar 56 6.8 256 Ca, Mg, Na, K, F, B, SiO2, 
HCO3, Cl, and SO4

Yurdu 46 7 208 Ca, Mg, Na, K, F, B, SiO2, 
HCO3, Cl, and SO4

Sweed 28 7.2 219 Ca, Mg, Na, K, F, B, SiO2, 
HCO3, and Cl

Atholi 55 8 290 Ca, Mg, Na, K, F, B, SiO2, 
HCO3, Cl, and SO4

Tatwain 40 7.1 538 Ca, Na, K, F, B, SiO2, HCO3, 
Cl, and SO4

Galhar 60 6.95 235 Ca, Mg, Na, K, F, B, SiO2, 
HCO3, Cl, and SO4

Puga 84 8.9 2278 Ca, Mg, Na, K, F, B, SiO2, 
HCO3, Cl, and SO4

Chamuthang 83 8.8 Not determined Ca, Mg, Na, K, F, B, SiO2, 
HCO3, Cl, and SO4

Nubra 
(Panamik)

76 7.7 570 Ca, Mg, Na, K, F, B, SiO2, 
HCO3, Cl, and SO4
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surface temperature of the thermal springs at Panamik ranges from 65 to 76 °C. The 
hot sulfurous springs at Panamik are particularly famous because during the days of 
the caravan trade between India and Central Asia along the Silk Route, men bound 
for Yarkand (now in China’s Xinjian province) took their last bath here as they pre-
pared for the treacherous and grueling journey across the Saser Muztagh range 
(Craig et al. 2013).

The Puga and Chumathang geothermal areas are located in the Indus Valley in 
eastern Ladakh region of the North-West Himalaya. Puga exhibits vigorous activity 
in the form of hot springs, mud pools, and sulfur and borax deposits, while at 
Chumathang thermal activity is in the form of hot springs (Craig et al. 2013; Thussu 
2002). The thermal discharges at Puga range from 30 to 84  °C, while those at 
Chumathang range from 85 to 87 °C. Both these areas have alkaline pH (Table 2.1) 
with sodium bicarbonate-chloride water type. The Chumathang thermal discharge 
has similar chemical composition as that of Puga thermal discharge, but Chumathang 
thermal discharge has slightly higher sulfate level (Craig et al. 2013; Thussu 2002). 
Oxygen and hydrogen isotope studies indicate that the Chumathang thermal waters, 
like the Puga waters, are predominantly of meteoric origin (Craig et al. 2013; Thussu 
2002).

2.2.2  Himachal Pradesh

The hot springs of Himachal Pradesh are among the hottest springs in India (Dwivedi 
et al. 2012). There are many hot springs in Himachal Pradesh; some of them are 
listed below:

 (a) Beas Valley: Geothermal system extends for about 45 km between Bashist in 
the North and Takoli in the South. It consists of eight hot springs, and the tem-
perature of these springs ranges from 30 to 57 °C (Sharma 2010).

 (b) Parvati Valley: 40 km area of the Parvati Valley contains six thermal springs, 
and the temperature of these hot springs ranges from 21 to 150 °C. The impor-
tant springs in this region are Mannikaran (temperature ranges from 86 to 
94 °C), Khirganga (with temperature 150 °C), Kasol (with temperature 100 °C), 
and Awas (with temperature 58 °C). The most intensively studied hot springs in 
Himachal Pradesh is Mannikaran (Fig. 2.4). The geothermal field of this hot 

Fig. 2.3 Hot springs (a) Puga, (b) Chumathang, and (c) Panamik
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spring lies in the Parvati Valley and extends in a linear zone of 1.5 km, where, 
sporadically, thermal springs emerge as spouts with temperatures reaches up to 
96 °C (Chandrasekharam et al. 2005). Besides sulfur, the water contains a high 
dose of uranium and radioactive minerals (Bisht et al. 2011). The temperature 
of the thermal discharge from Mannikaran bore wells is about 86  °C to the 
maximum temperature recorded 101 °C.

 (c) Satluj and Spiti Valley: The temperature of Satluj and Spiti Valley springs ranges 
from 23 to 73  °C and includes Tapri, Chuza-Sumdo (temperature of the hot 
spring ranges from 23 to 59 °C), Tattapani (temperature of the hot spring ranges 
from 32 to 61  °C; it is a hot sulfur spring located on the banks of the River 
Satluj), Garam Kund, and Vasisht (Pandey and Negi 1995; Bisht et al. 2011).

2.2.3  Uttarakhand

The hot springs of Uttarakhand are situated at Yamunotri, Surya Kund (near 
Rudraprayag), Tapt Kund (on the bank of the river Alaknanda), Bhagirathi Valley in 
Uttarkashi District (Gangnani, Bhukki, Songarh), Darma Valley in Pithoragarh 
District, and Madhya Maheshwar Valley (Bisht et al. 2011).

2.2.4  Jharkhand

The hot springs in Jharkhand contain high concentrations of fluoride; water flowing 
in shallow streams reaches a temperature as high as 70 °C. In some hot springs, lay-
ers of reddish precipitate (due to Fe3+) form on the sides. Beneath the reddish layer, 
the soil is darker containing iron in the reduced form. Some of the important hot 
springs are Surajkund (Fig. 2.5), Belkapi, Tattapani, Lugaratha, Siddhpur, Pindarkund, 
Dwari, Nunbil, Siddhapur Tataloi, Panchvati, Rameswar Kund, Shringirishi, Rishi 
Kund, Sita Kund, Lakshmi Kund, Janmakund, Bhimbandh, Jhurka, Rajgir, and 
Tapovan with a temperature ranging from 45 to 88 °C (Jain et al. 2014).

Fig. 2.4 Manikaran 
Gurudwara hot spring

2 Hot Springs of India: Occurrence and Microbial Diversity

https://en.wikipedia.org/wiki/Satluj


36

2.2.5  West Bengal

The hot springs in West Bengal include Bakreshwar, Tantloi, Kendughata, 
Bholeghata, and Tantni. The most extensively studied hot spring is Bakreshwar 
(Fig.  2.6). The water of this hot spring is alkaline being charged with Ca++ and 
HCO3

− with profuse gaseous activity and temperature ranging from 35 to 66.5 °C 
(Jana 1973; Bisht et al. 2011).

2.2.6  Odisha

Hot springs in Odisha are located at Atri, Badaberena, Taptapani, Tarobalo, 
Deulajhari, Athmallik, Magarmuhan, Bankhol, and Boden (Sahoo et  al. 2015; 
Panday and Das 2010). The thermal water discharging from these springs ranges 
from 28 to 69 °C having moderate acidic to alkaline pH (5.05–8.93) with variation 
in the chemical characteristics (Table 2.2). Most of the Odisha hot springs are sulfur 
springs and famous for their medicinal properties (Bisht et al. 2011). The thermal 
discharge from Attri, Magarmuhan, Bankhol, Taptapani, and Boden is from a single 

Fig. 2.5 Surajkund hot 
spring, Jharkhand

Fig. 2.6 Bakreshwar hot 
spring, West Bengal
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spot, whereas Tarabalo, Deulajhari, and Badaberena discharge is from multiple 
spots (Zimik et al. 2017). The highest temperature (69 °C) has been observed in 
Deulajhari while the least in Boden (29 °C) (Zimik et al. 2017). The thermal dis-
charge at Deulajhari originates below Shivalinga which attaches a distinct religious 
attribute. The most important and unique thing about this hot spring is that two 
ponds are attached with water flowing into each other and one pond is having hot 
water whereas the other is cold (Singh and Subudhi 2016; Bisht et al. 2011). The 
water of the Deulajhari hot springs is believed to contain medicinal properties that 
can heal a number of diseases (Bisht et al. 2011). The active hot springs in this place 
are Agnikunda, Taptakunda, Himakunda, Amrutakunda, and Labakusakunda (Bisht 
et al. 2011).

Athamallik hot springs are located in Angul district. This hot spring has a series 
of outlets within a radius of 70 m. The water temperature at the main outlet was 
56 °C and in the surrounding areas ranged from 43 to 50 °C with pH of 7.4 (Panday 
and Das 2010). Thermal discharge from Taptapani has mild acidic to neutral pH 
with 41  °C temperature. The hot springs at Atri and Badaberena are located in 
Khurda district having a temperature ranging from 36 to 57 °C (Zimik et al. 2017). 
Tarabalo hot spring is situated close to Atri hot spring, which has thermal water 
discharge (55–58 °C) similar to that of Atri (Badhai et al. 2015; Zimik et al. 2017). 
The dominant ions discharging from Attri, Tarabalo, and Deulajhari are sodium and 
chloride, whereas other locations have bicarbonate. Among these thermal springs, 
higher sulfate concentration has been observed at Attri, Tarabalo, and Deulajhari. In 
addition to major ions, lithium concentrations were found in some hot springs 
(Zimik et al. 2017).

Table 2.2 Physicochemical properties of Odisha hot springs

Hot springs
Temperature 
(°C) pH

Dissolved 
solids (mg/L)

Some important 
elements detected References

Attri 56–57 7.42–
8.93

499–534 Cl, SO4, Ca, Na, 
F, and K

Zimik et al. (2017)

Tarabalo 55–58 7.96–
8.89

214–381 Cl, SO4, Ca, Na, 
F, and K

Zimik et al. (2017)

Deulajhari 56–69 6.68–
8.36

563–595 Cl, SO4, Ca, Na, 
F, and K

Zimik et al. (2017); 
Singh and Subudhi 
(2016)

Magarmuhan 36–37 6.37–
6.67

18.8–20.9 Cl, SO4, Na, and 
Ca

Zimik et al. (2017)

Bankhol 42–45 5.05–
6.74

16.9–17.6 Cl, SO4, Na, and 
Ca

Zimik et al. (2017)

Badaberena 36–40 8.64–
8.8

165–186 Cl, SO4, Ca, Na, 
F and K

Zimik et al. (2017)

Taptapani 41 6.84–
7.71

188–194 Cl, SO4, Ca, Na, 
F, and K

Zimik et al. (2017)

Boden 28–29 6.73–
6.96

201–246 Cl, SO4, Ca, and 
Na

Zimik et al. (2017)

Athamallik 56 7.4 780.4 Cl, SO4, Ca, Na, 
F, and K

Badhai et al. (2015)
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2.2.7  Madhya Pradesh

The Indian state of Madhya Pradesh has several hot springs located at Dhuni Pani 
(Amarkantak), Tattapani (Surguja district), Salbardi region (Betul district), 
Chavalpani (Pachmarhi), and Anhoni (Chhindwara-Hoshangabad) having thermal 
discharge ranging from 30 to 98 °C (Bisht et al. 2011; Saxena et al. 2017). Recently, 
hot springs of Anhoni and Tattapani have been extensively explored. The thermal 
discharge at Anhoni has a temperature range of 43.5–55 °C, while those at Tattapani 
has thermal discharge range of 61.5–98 °C. These two springs have neutral to alka-
line pH (Table 2.3). The total dissolved solids were high in Tattapani when com-
pared to Anhoni (Table 2.3). These two hot springs also harbor many elements like 
lithium, lead, mercury, and many more (Table 2.3).

2.2.8  Gujarat

The hot springs at Gujarat are Tulsishyam (Fig.  2.7a) (Junagarh District), Tuwa 
(Fig.  2.7b) (Panchmahal District), Lasundra (Kheda District), and Unani (Surat 
District) (Ghelani et al. 2015). Tulsishyam hot spring is arranged under the deep 
sedimentary basin of tertiary age. The water temperature and pH of this spring range 

Table 2.3 Physicochemical properties of Madhya Pradesh hot springs

Hot springs
Temperature 
(°C) pH

Total dissolved 
solids (ppm) Elements detected Reference

Anhoni 43.5–55 7.5–
7.8

590–690 Li, B, Mg, Al, Si, K, Ca, V, 
Cr, Mn, Fe, Co, Ni, Cu, Zn, 
Se, Sr, Mo, Cd, Cs, Ba, La, 
Ce, Pb, S, and Hg

Saxena et al. 
(2017)

Tattapani 61.5–98 7–7.8 700–880 Li, B, Mg, Al, Si, K, Ca, V, 
Cr, Mn, Fe, Co, Ni, Cu, Zn, 
Se, Sr, Mo, Cd, Cs, Ba, La, 
Ce, Pb, S, and Hg

Fig. 2.7 Hot springs of Gujarat: (a) Tulsishyam, (b) Tuwa

M. P. Narsing Rao et al.
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from 58 to 67 °C and 6.8 to 7.7, respectively. The water is clear with no visible 
turbidity with typical odor of hydrogen sulfide (Ghelani et al. 2015).

Lasundra hot spring is a sulfuric hot water spring. The temperature of the hot 
spring ranges from 42 to 52 °C. The base of the reservoir contains stones and algal 
growth along with soil sediments (Mangrola et al. 2015a).

Tuwa hot spring is one of the unexplored hot water springs bearing the tempera-
ture of 54–65 °C. The water is alkaline with high salt and mineral content. The bot-
tom of the reservoir has hard rocks and photosynthetic microbes thrive in the water 
column (Mangrola et al. 2015b).

2.2.9  Maharashtra

The hot springs in Maharashtra are located at Vajreshwari (Fig. 2.8a), Ganeshpuri 
(Fig.  2.8b), Sativali (Fig.  2.8c), Unhavare (Fig.  2.8d), Akloli Kund, Nimboli, 
Banganga, Pimplas, Shahapur, Unhere, Unhala, and Unkeshwar.

Vajreshwari hot spring, which is 75 km away from Mumbai, was named after 
Goddess Vajreshwari. There are around 21 hot water springs in a 5-kilometer radius 
of the temple, and the temperature of these hot springs ranges from 43 to 49 °C. In 
some hot springs, the water appears blackish due to accumulation of minerals (Bisht 
et al. 2011).

The hot springs at Akloli (near Thane District) are located on the left bank of 
Tansi River. There are ten hot springs. A concrete enclosure has been constructed at 
each hot spring location. The temperature of these hot springs varies from 45 to 
48 °C with sporadic gaseous activity (Sarolkar 2005).

Fig. 2.8 Hot springs of Maharashtra: (a) Vajreshwari, (b) Ganeshpuri, (c) Sativali, and (d) 
Unhavare
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Ganeshpuri is located in the Bhiwandi taluka of Thane District and is about 2 km 
away from Vajreshwari. Ganeshpuri hot springs discharge through a concrete enclo-
sure into tanks, and the temperature of the water is about 52 °C with flows out at 
15 lpm (Sarolkar 2005).

There are six hot springs located on the banks of Vandri stream flowing near 
Sativli. The main hot spring is located on the south bank, and small sprouts are 
located on the north bank of the stream. The main spring shows profuse gas emis-
sion (Sarolkar 2005).

Unkeshwar is  located at Nanded District, the temperature of water ranges 
between 50 and 60 °C with the pH 7.3. The main Unkeshwar hot spring is within the 
Unkeshwar temple in the form of kund. The water has a sulfurous smell with feeble 
gaseous activity and discharge through the jointed Deccan basalts. The chemical 
stress like availability of high phosphorus and sulfur concentrations and slightly 
higher organic content enriches the microbial diversity of this hot spring (Mehetre 
et al. 2016).

2.2.10  Karnataka, Andhra Pradesh, and Telangana

The hot spring located at Karnataka is called Bendru Theertha (Fig. 2.9a), is a sulfur 
spring, which is 13 km away from Mangalore (Bisht et al. 2011). The water is mod-
erately alkaline and categorized as Na-HCO3 major ion facies. The low concentra-
tion of trace elements and minerals indicates that meteoric water is the main source 
of these thermal fluids. The water consists of high total dissolved solid residues 
which may be due to rock-water interaction in elevated temperature (Ramanathan 
and Chandrasekharan 1997; Gurumurthy and Neelagund 2010).

Gundala, a village in Bhadrachalam Mandal in Khammam District of Telangana 
state, and Mahanandi temple, (Fig.  2.9b) situated in Kurnool District, Andhra 

Fig. 2.9 (a) Bendru Theertha hot spring, (b) Hot spring of Mahanandi temple
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Pradesh, consist of hot springs. The hot spring in Gundala located on the bed of the 
river and pit dug will produce hot water, while Mahanandi is famous for its hot 
water pool (Bisht et al. 2011).

2.2.11  Tamil Nadu, Kerala, and Andaman and Nicobar

In Tamil Nadu, Godavari Valley contains nearly about 30 hot springs mainly in 
Mannargudi Thiruthuraipoondi area and along the coastal tract of Aranthangi. In 
Kerala, hot springs are located in Varkala, while in Andaman and Nicobar various 
hot water springs are present with a temperature range of more than 200 °C located 
near active volcanoes (Bisht et al. 2011).

2.3  Culture-Dependent Microbial Diversity Analysis and 
Bioactive Molecules from Indian Hot Springs

The pioneer work of Robert Koch and Louis Pasteur in culture-dependent method 
has played a crucial role in the field of microbiology for isolating microbes. The 
culture-dependent method has several advantages such as exploration of microbes 
for potential biotechnological applications and discovery of novel isolates for future 
studies (Kumar et al. 2014; Piterina and Pembroke 2010).

Microorganisms capable of growing at high temperature were first noticed by 
Miquel (1888). Microbial inhabitant studies of the hot springs by culture-dependent 
method started with the isolation of thermophilic bacteria from Yellowstone National 
Park by Marsh and Larsen (1953). Since then, all around the globe, many research-
ers put their effort to study the microbial diversity based on culture-dependent 
method. In India, many studies have been carried out to study microbial diversity of 
the various hot springs.

Culture-dependent microbial diversity study of Himachal Pradesh hot springs 
(using water samples), namely, Tattapani (District Mandi), Manikaran, and Vashist 
(District Kullu), has been evaluated. A total of 101 microbial strains have been iso-
lated; among them only two were fungi and the remaining were bacteria. All the 
isolates can grow at or above 50 °C. Gram staining results showed that only four 
isolates were Gram-negative. Most of the bacterial shapes were rods and the rest 
were either coccus or coccobacillus. These isolates have the ability to produce amy-
lase, cellulase, and xylanase (Sharma et al. 2013). Microbial diversity of two hot 
springs, Soldhar and Ringigad (located in the Garhwal region of Uttaranchal 
Himalaya), has been carried out. Serially diluted soil samples have been placed on 
tryptone-yeast extract agar, potato dextrose agar, actinomycetes isolation agar, thio-
sulfate agar, sulfate-reducing medium, sulfur medium, and Pikovskaya medium. 
The highest aerobic bacterial colony-forming unit (CFU) has been observed on acti-
nomycetes isolation agar for Soldhar hot spring (50 CFU × 104 g−1), while the high-
est bacterial CFU has been observed on tryptone-yeast extract agar in case of 
Ringigad hot spring (49  CFU  ×  104  g−1). A temperature of 50  °C has been 
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considered as optimum for the isolation of microorganisms for both hot springs, and 
up to 80 °C bacterial growth has been observed. Media such as thiosulfate agar, 
sulfate- reducing medium, and sulfur medium were devoid of any bacterial growth, 
indicating the absence of sulfur-metabolizing populations. However, a zone of 
clearance was observed on Pikovskaya medium, indicating the presence of 
phosphate- solubilizing populations. The highest anaerobic CFU has been observed 
in Soldhar hot spring when compared to Ringigad hot spring. The majority of the 
bacteria isolated were Bacillus and most of them have endospores; this property 
may be the reason that these bacteria could withstand high temperature. Apart from 
bacteria, yeasts were also obtained; however, only a few can grow at high tempera-
ture (60 °C). The different bacterial isolation pattern has been observed in these two 
hot springs. The water holding capacity of the Soldhar soil was almost three times 
that of Ringigad hot spring. The Soldhar hot spring sample contained high amounts 
of Cu, Fe, and Mn, while the Ringigad hot spring sample was devoid of Cu but had 
high phosphate (Kumar et al. 2004).

Odisha harbors many hot springs, and their culture-dependent microbial diver-
sity studies have been evaluated. The microbial diversity of three hot springs of 
Odisha, namely, Atri, Taptapani, and Tarobalo, has been studied by conventional 
culture-dependent approach using water samples (temperature and pH of the 
water ranged from 48 to 58 °C and 7–8). A total of 48 isolates have been obtained 
belonging to the family Bacillaceae, Paenibacillaceae, Planococcaceae, 
Pseudomonadaceae, and Enterobacteriaceae. The majority of the bacterial iso-
lates were affiliated to the genus Bacillus. The optimum temperature for growth 
for these isolates varied from 37  °C to 50  °C.  Though the genus Bacillus was 
predominant in all three hot springs, but these sites did not have much overlap or 
similarity. The genus Kurthia has been isolated in Atri, but not in Taptapani and 
Tarobalo. Klebsiella has been isolated in Taptapani, but not in Atri and Tarobalo. 
Brevibacillus has been isolated in Atri and Tarobalo, but not in Taptapani (Sen and 
Maiti 2014). These data suggest that, though these hot springs are situated in the 
same state, their microbial diversity didn’t have much overlap.

The microbial diversity of Maharashtra hot springs (Vajreshwari and Ganeshpuri) 
has been evaluated using water samples. The temperature of the water in these 
springs ranged from 40 to 65  °C. A total of 73 bacteria strains encompassing 8 
Actinobacteria and 65 Eubacteria have been isolated using actinomycetes isolation 
agar and soybean casein digest agar. A total of 46 and 27 bacteria were isolated from 
Vajreshwari and Ganeshpuri, respectively. Vajreshwari hot spring had 19 cocci and 
11 rod-shaped Gram-positive bacteria and 7 rods and 5 coccobacilli-shaped Gram- 
negative bacteria. Ganeshpuri hot spring had 8 cocci and 13 rod-shaped Gram- 
positive bacteria and 8 rods and 4 coccobacilli Gram-negative bacteria; remaining 
were Actinobacteria. The isolated strains showed good antimicrobial activity 
against both Gram-positive and Gram-negative bacteria (Pednekar et  al. 2011). 
Unkeshwar (Nanded District) hot spring’s microbial diversity has been evaluated 
using water samples. Microbes were isolated using nutrient agar, tryptone-yeast 
extract agar, tryptone-yeast glucose agar, Vogel-Johnson agar, glucose sodium azide 
glycerol agar, thiosulfate agar, J agar, brain heart infusion agar, Gram-negative agar, 
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and Bacillus agar plates. Among various media used, nutrient agar (95 CFU) had 
luxuriant bacteria growth followed by tryptone-yeast glucose agar (90 CFU), brain 
heart infusion agar (88 CFU), tryptone-yeast extract agar (70 CFU), J agar (68 CFU), 
Bacillus agar (62 CFU), thiosulfate agar (54 CFU), Gram-negative agar (51 CFU), 
Vogel-Johnson agar (23 CFU), and glucose sodium azide glycerol agar (13 CFU). A 
total of ten pure colonies have been obtained and identified. Out of the ten identified 
isolates, seven isolates belong to class Firmicutes and three belong to class 
Gammaproteobacteria. Six isolates were Gram-positive, three were Gram-negative, 
and one isolate was Gram-variable. Out of the six Gram-positive isolates, five were 
spore formers. These isolates produce various bioactive molecules such as casein-
ase, urease, amylase, oxidase, gelatinase, and lipase (Pathak and Rathod 2014).

Besides having high microbial diversity and being a potential source for stable 
bioactive molecules, Indian hot springs serve as an important niche for novel strains. 
Many novel species and even novel genera (Table 2.4) have been reported.

Manikaran hot water spring (Himachal Pradesh) served as a potential source for 
novel strains. Novel species, namely, Thermus parvatiensis (Dwivedi et al. 2015), 
Lampropedia cohaerens (Tripathi et  al. 2016b), and Fictibacillus halophilus 
(Sharma et al. 2016), have been recently reported. Thermus parvatiensis, a Gram- 
negative, yellow-pigmented bacterium, has been isolated from the water sample, 
which exhibits protease activity up to 70  °C. This novel species reported for its 
growth at temperature ranging from 60 to 80 °C with optimum growth at 70 °C 
(Dwivedi et al. 2015). Novel species Fictibacillus halophilus (Gram-positive) and 
Lampropedia cohaerens (Gram-negative) have been isolated from microbial mats 
of Manikaran hot water spring (Sharma et  al. 2016; Tripathi et  al. 2016b). 
Fictibacillus halophilus reported for its growth at high salt concentration (up to 
12%) and had a temperature range for growth from 28 to 45  °C with optimum 
growth at 37 °C (Sharma et al. 2016). Lampropedia cohaerens had the ability to 
form biofilm and grow up to 55 °C (Tripathi et al. 2016b).

Novel species, namely, Comamonas thiooxidans (Narayan et  al. 2010), 
Gulbenkiania indica (Jyoti et al. 2010), Chelatococcus sambhunathii (Panday and 
Das 2010), and Pannonibacter indica (Bandyopadhyay et al. 2013), were isolated 
from Athamallik (Orissa); sulfur spring sediment. Novel species Comamonas thio-
oxidans had the ability to oxidize thiosulfate under mixotrophic growth condition 
(Narayan et al. 2010), and Pannonibacter indicus exhibited remarkable arsenic tol-
erance (Bandyopadhyay et al. 2013). Warm spring located in Assam forest served as 
potential reservoir for novel strains. Six novel candidates, namely, Aquimonas 
voraii (Saha et al. 2005a), Paenibacillus assamensis (Saha et al. 2005b), Aeromonas 
sharmana (Saha and Chakrabarti 2006a), Flavobacterium indicum (Saha and 
Chakrabarti 2006b), Emticicia oligotrophica (Saha and Chakrabarti 2006c), and 
Fontibacillus aquaticus (Saha et al. 2010), have been reported.

Apart from Himachal Pradesh, Orissa, and Assam hot springs, novel species 
were also reported from different places such as Meghalaya (Jakrem hot spring, 
Caldimonas meghalayensis, Rakshak et al. 2013), Bhubaneswar (Atri hot spring, 
Thiomonas bhubaneswarensis, Panda et al. 2009), and Jharkhand (Suryakund hot 
spring, Anoxybacillus suryakundensis, Deep et al. 2013; Tepidiphilus thermophilus, 
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Poddar et al. 2014). This indicates that novel species are widely distributed in Indian 
hot springs. Not only novel species, Indian hot springs were also reported for having 
novel genera such as Calidifontibacter reported from Karnataka (Puttur hot spring, 
Ruckmani et al. 2011) and Aquimonas and Fontibacillus reported from Assam (Saha 
et al. 2005a, 2010). From the above, it can be said that Indian hot springs serve as a 
potential source for novel microorganisms.

2.4  Whole-Genome Sequence of Bacterial Strains Isolated 
from Indian Hot Springs

Since the first two complete bacterial genome sequences were published, the sci-
ence of bacteria has dramatically changed. Using third-generation DNA sequenc-
ing, it is now possible to completely sequence a bacterial genome in a few hours. 
Sequencing of bacterial genome sequences is now a standard procedure, and the 
information obtained has provided a major impact on our understanding of the bac-
terial world (Land et al. 2015). Whole-genome sequence of bacteria isolated from 
Indian hot springs (Table 2.5) has been determined for their insight into the meta-
bolic capabilities and functions (Dwivedi et al. 2012; Mahato et al. 2014; Sharma 
et al. 2014). Whole-genome analyses of four bacteria, namely, Thermus sp. strain 
RL (Dwivedi et  al. 2012), Deinococcus sp. strain RL (Mahato et  al. 2014), 
Cellulosimicrobium sp. strain MM (Sharma et al. 2014), and Lampropedia cohae-
rens strain CT6T sp. nov. (Tripathi et al. 2016a), isolated from Manikaran hot spring 
(Himachal Pradesh) have been carried out. Protease-producing Thermus sp. strain 
RL represented a genome size of 20,36,600  bp with 68.77% G+C content. The 
genome annotation of this strain has predicted 1986 protein-coding genes and 710 
hypothetical proteins (Dwivedi et al. 2012). Deinococcus sp. strain RL genome has 
been sequenced for comparative genome analysis with closely related radioresistant 
members. The total length of the genome has been estimated to be 2,792,068 bp, 
with 69.4% G+C content (Mahato et al. 2014).

The genome of strain CT6T, which is the type strain for Lampropedia cohaerens, 
has been sequenced in order to supplement the phenotypic taxonomical observa-
tions with genetic data and obtain genomic insights into heavy metal resistance and 
metabolic potential of gene complements of this microbial mat dweller. Strain CT6T 
represented a genome size of 3,158,922 bp with 41 contigs, 63.5% G+C content, 
and 282,3 coding sequences. Strain CT6T contained genes responsible for imparting 
resistance to arsenic, copper, cobalt, zinc, cadmium, and magnesium, providing sur-
vival advantages at a thermal location (Tripathi et al. 2016a). The genome sequence 
of Cellulosimicrobium sp. strain MM has been carried to understand the mechanism 
for its growth at high arsenic-rich environment. The draft genome (3.85  Mb) of 
Cellulosimicrobium sp. strain MM consists of 3718 coding sequence with 74.4% 
G+C content. Cellulosimicrobium sp. strain MM also encodes for mannanase 
endo-β-1, 3glucanases, endo-β-1,4-xylanases, and chitinases (Sharma et al. 2014). 
Brevibacillus borstelensis cifa_chp40 isolated from Attri hot spring (Bhubaneswar) 
has been reported to degrade low-density polythene and produces essential enzymes 
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like protease, lipase, esterase, and amidase. To understand the insight into the meta-
bolic capabilities, function, and evolution of this important bacterium, genome 
sequencing has been carried out. The total genome length of Brevibacillus borstel-
ensis cifa_chp40 was 5,196,578 bp assembled into 38 scaffolds with 51.90% G+C 
content (Tripathy et al. 2016). An obligate mixotrophic bacterium, Thiomonas bhu-
baneswarensis S10Tsp. nov., isolated from Atri hot spring (Bhubaneswar) has been 
investigated to elucidate the pathway(s) and mechanism of electron transport during 
thiosulfate oxidation. The total genome size of this strain was 3.2 Mb with a G+C 
content of 65.0%. Whole-genome sequence analysis revealed the presence of com-
plete sox (sulfur oxidation) gene cluster (soxCDYZAXB) including the sulfur oxy-
genase reductase (SOR), sulfide quinone reductase (SQR), sulfide dehydrogenase 
(flavocytochrome c (fcc)), thiosulfate dehydrogenase (Tsd), sulfite dehydrogenase 
(SorAB), and intracellular sulfur oxidation protein (DsrE/DsrF). In addition, genes 
encoding respiratory electron transport chain components, viz., complex I (NADH 
dehydrogenase), complex II (succinate dehydrogenase), and complex III 
(ubiquinone- cytochrome c reductase), and various types of terminal oxidases (cyto-
chrome c and quinol oxidase) have been identified in the genome (Narayan et al. 
2016a). The genome sequence of bacteria isolated from Orissa (Badhai et al. 2016a, 
b; Narayan et  al. 2016b; Bandyopadhyay et  al. 2017), Jharkhand (Poddar et  al. 
2016; Deep et al. 2016), Chhattisgarh (Mittal et al. 2017), and Assam (Barbier et al. 
2012) has also been carried out, and their details are mentioned in Table 2.5.

2.5  Culture-Independent Microbial Diversity analysis of 
Indian Hot Springs

Though culture-dependent method was used for studying the microbial diversity, 
however, this method has several disadvantages. In culture-dependent method, most 
of the microorganisms remain hidden or difficult to grow because essential nutrients 
for growth or optimal environmental conditions such as temperature, pH, and essen-
tial mixtures of gases may not be present. Aerobic and anaerobic organisms cannot 
be cultured together; hence, majority of them remain unknown, thereby limiting 
information at the genomic and phenotypic level (Kumar et al. 2014; Piterina and 
Pembroke 2010).

In the past few years, the application of culture-independent genomics or metage-
nomics approaches coupled with high-throughput DNA sequencing has proved a 
promising tool to investigate the population diversity, gene content, function, and 
ecological significance of microbial communities living in diverse hot spring envi-
ronments (Badhai et al. 2015). Thus, with the advances in these methods, all the 
hidden facts about the microbial ecology have been revealed.

The bacterial and archaeal diversity of Manikaran hot spring has been studied 
through metagenomic analysis using the water samples. Gram-positive, endospore- 
forming Firmicutes has dominated the hot spring, followed by Aquificae and the 
Deinococcus-Thermus group. Bacillus megaterium, Bacillus sporothermodurans, 
Hydrogenobacter sp. GV4-1, Thermus thermophiles, and Thermus brockianus were 
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the main bacterial species. In archaea, phylum Crenarchaeota has dominated with 
Pyrobaculum aerophilum and Pyrobaculum calidifontis. Further, several bacterial 
and archaeal sequences remained taxonomically unresolved, indicating potentially 
novel microorganisms in this geothermal ecosystem (Bhatia et al. 2015).

Metagenomic analysis of water sample from Lasundra hot spring (Gujarat) has 
been carried out. The majority of the sequences were of bacterial origin (99.21%) 
followed by eukaryotes (0.43%) and archaea (0.11%). A total of 33 prokaryotic 
phyla, including 29 bacterial and 4 archaeal phyla along with 20 eukaryotic phyla, 
have been detected. Firmicutes (95.5%) was the most abundant prokaryotic phyla 
followed by Proteobacteria (2.0%), Actinobacteria (0.8%), Bacteroidetes (0.1%), 
Cyanobacteria (0.1%), and Euryarchaeota (0.09%). At the family level, Bacillaceae 
dominated (90.1%) followed by Paenibacillaceae (1.3%), Clostridiaceae (0.8%), 
Listeriaceae (0.5%), and Staphylococcaceae (0.5%). The most leading genera were 
Bacillus (86.7%), Geobacillus (2.4%), Paenibacillus (1.0%), Clostridium (0.7%), 
and Listeria (0.5%). The stress-associated genes such as oxidative stress, periplas-
mic stress, osmotic stress, heat shock, cold shock, acid stress, and detoxification 
account for 3.0% (Mangrola et al. 2015b). The presence of photosynthetic bacteria, 
heterotrophs, and autotrophs in the hot spring metagenome suggested the nutritive 
interaction among the microorganisms. Metagenomic analysis of this hot spring 
showed the presence of a total of 183,408 predicted protein-coding regions, of 
which 33.3% features have no significant similarities to the protein database. A total 
of 104,110 features have been assigned to functional categories with the COG 
approach, of which 45.4% was metabolism connected and 19.6% falls in poorly 
characterized group, indicating the possibilities of having a novel gene (Mangrola 
et al. 2015b).

Community analysis of Tuwa hot spring, using the shotgun sequencing approach, 
presented that 99.1% of sequences belong to bacteria, 0.3% to eukaryotes, 0.2% to 
virus, and 0.05% to archaea, while 0.4% belong to unclassified and 0.07% to 
unidentified sequences. A total of 22 bacterial phyla include 90 families and 201 
species with Firmicutes (97.0%) as dominant bacterial phylum. Proteobacteria and 
Actinobacteria account for 1.3% and 0.4%, respectively. 4.0% of genes were 
assigned for stress responses, and 3% of genes were fit into the metabolism of aro-
matic compounds (Mangrola et al. 2015a).

Metagenome sequences from Tulsishyam hot spring suggest the dominance of 
bacteria (98.2%), followed by eukaryotes (1.5%). About 0.3% of metagenomes 
were unidentified suggesting the wealth of uncultivable bacteria. A total of 16 bacte-
rial phyla, 97 families, and 287 species have been predicted. Firmicutes (65.38%) 
has been the abundant phylum followed by Proteobacteria (21.21%). The dominat-
ing family was Peptostreptococcaceae (37.33%) followed by Clostridiaceae 
(23.36%) and Enterobacteriaceae (16.37%). The dominant species were Clostridium 
bifermentans and Clostridium lituseburense (Ghelani et al. 2015).

The microbial community of Jakrem hot spring (Meghalaya) has been evaluated 
through 16S rRNA sequence analysis targeting V3 region. The bacterial community 
that dominated was Firmicutes (61.60%), followed by Chloroflexi (21.37%) and 
Cyanobacteria (12.96%). The unclassified bacteria accounts for 1.2%. Prominent 
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families reported were Clostridiaceae (60.92%), Chloroflexaceae (21.26%), and 
Pseudanabaenaceae (12.77%) (Panda et al. 2015).

The microbial diversity of hot springs of Odisha, Atri, and Taptapani has been 
studied by 16S rRNA deep sequencing analysis, targeting V3 region using the sedi-
ment samples. Atri and Taptapani metagenomes were classified into 50 and 51 bac-
terial phyla, respectively. Proteobacteria (45.17%) dominated the Taptapani sample 
followed by Bacteroidetes (23.43%) and Cyanobacteria (10.48%), while Chloroflexi 
(52.39%), Nitrospirae (10.93%), and Proteobacteria (9.98%) dominated the Atri 
sample. A large number of sequences remained taxonomically unresolved in both 
hot springs, indicating the presence of potentially novel microbes (Sahoo et  al. 
2015).

Comparative microbial community analysis of the four hot springs, Athamallik 
(located in the district of Angul), Taptapani (located in the district of Ganjam), 
Tarabalo (located in the district of Nayagarh), and Atri (located in the district of 
Khorda), has been carried out which showed that 56.2% of the total sequence reads 
in each metagenomic data sets were taxonomically classified, while 43.8% were of 
unknown taxa. The majority of the sequence reads were classified as bacteria 
(54.5%) followed by archaea (1.7%) and eukarya (<0.1%). A total of 30, 30, 32, and 
36 phyla have been identified in the samples of Athamallik, Taptapani, Tarabalo, 
and Atri, respectively. Within the bacterial domain, only 66.5% of the assigned 
sequences were classified at the phylum level, and there was high abundance of the 
phyla Chloroflexi and Proteobacteria with little variation. Acetothermia was abun-
dant in Tarabalo, whereas Verrucomicrobia, Ignavibacteriae, and Cyanobacteria 
were abundant in Taptapani. Within the Archaea domain about 79% of the assigned 
sequences were classified at the phylum level. In all samples, the phylum 
Euryarchaeota was found to be the most abundant followed by phylum 
Crenarchaeota (with exception of Taptapani). A high taxonomic diversity has been 
observed in these samples; however, there were only little variations in the overall 
functional profiles of the microbial communities. Genes involved in the metabolism 
of carbohydrates and carbon fixation were the most abundant functional class of 
genes present in these hot springs. The distribution of genes involved in carbon fixa-
tion predicted the presence of all the six known autotrophic pathways in the metage-
nomes (Badhai et al. 2015). 16S rRNA gene sequence analysis of Tantloi hot spring 
microbial community revealed a significant bacterial diversity represented by at 
least ten taxonomic divisions of bacteria with the majority belonging to the division 
Deinococcus-Thermus; there were representatives of the divisions Proteobacteria, 
Firmicutes, Nitrospira, Chloroflexi, Aquificae, Cyanobacteria, Thermotogae, and 
Verrucomicrobia. A significant metabolic diversity was represented by at least ten 
taxonomic divisions of bacteria with a clear predominance of Thermus in Tantloi 
hot spring. Approximately 80% of the sequences obtained in this study represented 
novel phylotypes that had less than 97% similarity with known sequences (Jain 
et al. 2014).

Metagenome sequencing of Unkeshwar hot springs revealed 41 phyla (including 
bacteria and archaea) with 719 different species. The dominant phyla were 
Actinobacteria (56%), Verrucomicrobia (24%), Bacteroides (13%), 
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Deinococcus- Thermus (3%), and Firmicutes (2%) and viruses (2%). At the phylum 
level, dominant bacterial phyla were Actinobacteria, Bacteroides, Deinococcus-
Thermus, Firmicutes, and Planctomycetes. Bacterial genera like Rhodococcus, 
Microbacterium, Propionibacterium, Flavobacterium, Deinococcus, Caulobacter, 
Brevundimonas, Methylobacterium, Paracoccus, Roseomonas, Novosphingobium, 
Sphingomonas, Achromobacter, Acidovorax, and Aquabacterium were dominant 
(Mehetre et al. 2016).

2.6  Conclusion

India is endowed with more than 400 hot water springs. Since ancient times, it is 
believed that these hot springs have medical importance. The culture-dependent 
studies showed that Indian hot springs are diverse with respect to their content and 
microbial diversity. The microbes isolated from these have special qualities and 
have thermostable bioactive molecules. Indian hot springs have been reported to 
have many novel strains, and culture-independent studies suggest that a large num-
ber of sequences remained taxonomically unresolved, indicating the presence of 
potential novel microbes. Although a lot of literature are available on Indian hot 
springs, still many of them remain unexplored. In this regard, researches have to put 
their step forward of studying these hot springs and discovering useful things which 
will be beneficial for mankind.
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3Diversity of Thermophiles in Terrestrial 
Hot Springs of Yunnan and Tibet, China
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Abstract
The Yunnan-Tibetan geothermal zone (YTGZ), located in western and south-
western China, harbors hundreds of hot springs with a wide range of tempera-
tures and pH. These hot springs provide large and diverse niche for thermophilic 
microorganisms. In this chapter, we will discuss culture-dependent and culture-
independent studies that have been conducted to understand Yunnan- Tibetan hot 
spring microbial diversity. Several novel taxa isolated and their uniqueness are 
listed. This chapter also sheds light on various physicochemical factors that 
structure the microbial diversity. The bioactive molecules and functional genes 
reported from these hot springs are also listed here.

Keywords
Terrestrial hot springs · Thermophiles · Yunnan · Tibet · Culture-dependent and 
culture-independent analysis · Novel taxa

3.1  Introduction

Terrestrial hot springs, a type of extreme environments, existed on Earth for billions 
of years (Gold 1992). The physical and chemical characteristics of the hot springs 
make it a unique habitat which is quite different from the surrounding environments 
(Bisht et  al. 2011). Hot springs are once perceived to be sterile environment 
(Chaudhuri et al. 2017), but the pioneer work of Thomas Brock’s in discovering 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0329-6_3&domain=pdf
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Thermus aquaticus from thermal vents of Yellowstone National Park (Brock 1997) 
has completely changed our understanding of hot spring microbial diversity. Hot 
springs harbor unique microbial diversity that could be the source of commercially 
important products (Satyanarayana et  al. 2005). Understanding how living 
communities survive and structured in hot spring conditions is important because 
hot springs are similar to the postulated early chemical environment on Earth (Li 
et al. 2015) and thus hot springs become a model ecosystems for research on the 
origin and evolution of life (Farmer 1998; Whitaker et al. 2003). Culture-dependent 
microbial analysis of hot springs reveals the presence of many new taxonomic and 
functional lineages (Xue et al. 2001; Huang et al. 2010). Although culture-dependent 
analysis is regarded as an effective method to understand the microbial diversity, 
these are not sufficient to explore the microbial diversity as it does not reveal a clear 
picture of the community diversity due to lack of cultivation of microorganisms in 
laboratory conditions (Kikani et al. 2017). Recent advances in culture-independent 
microbial diversity analysis have showed a remarkable progress in understanding 
community diversity. The application of culture-independent analysis has proved to 
be a promising tool to investigate detailed insight of hot spring microbial habitats in 
terms of diversity, adaptation, functions, and ecological significance (Badhai et al. 
2015).

Geothermal Professional Committee of China Energy Research Society in 
1986 has identified nearly 3398 hot springs distributed across China. The most 
concentrated regions of thermal springs are located in Yunnan and Tibet (Liao 
2018). Extensive studies have been carried out in understanding microbial diver-
sity of Yunnan and Tibet hot springs (Liu et al. 2016; Wang et al. 2014; Hou et al. 
2013). In this chapter, we discuss several major hot springs of Yunnan and Tibet, 
their physicochemical properties, and their microbial diversity and bioactive 
molecules.

3.2  Terrestrial Hot Springs in Yunnan-Tibetan Geothermal 
Zone (YTGZ)

The YTGZ (Fig. 3.1) located between the Indian Plate and Eurasian Plate is well 
known for its volcanic activity and geothermal features (Wang et  al. 2013). The 
northeastern edge of the YTGZ belongs to Himalayan Geothermal Belt (HGB) 
which resulted from the collision of the Indian Plate with the Eurasian Plate. HGB 
is more than 50 km wide and extends for 3000 km, distributed throughout India, 
Tibet, Yunnan, Myanmar, and Thailand, associated with at least 600 geothermal 
systems (Hochstein and Regenauer-Lieb 1998). The total amount of thermal springs 
in YTGB accounts for half of the total number of thermal springs in China with 
wide ranges of temperature and pH (Wang et al. 2013; Wu et al. 2015). Some of the 
important Yunnan and Tibet hot springs and their physicochemical parameters are 
listed in Table 3.1.

W.-D. Xian et al.
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A total number of thermal springs in Tibet are 645, in which Nagqu Prefecture 
accounts for highest hot springs (187), followed by Qamdo Prefecture (126), 
Xigaze (117), Ngari Prefecture (88), Nyingchi Prefecture (49), Shangnan 
Prefecture (44), and Lhasa City (34). Tibet has 48 boiling springs (having tem-
perature greater than 86 °C), 179 hot springs (having temperature less than 86 °C), 
294 warm springs (having temperature less than 45  °C), and 127 tepid springs 
(having temperature less than 35 °C) (Liao 2018). Most of boiling springs found 
in Tibet discharge sodium chloride type of water which is boron rich. Some boil-
ing springs discharge Cl–HCO3–Na-type water or HCO3–Cl–Na-type water due to 
blending of different degrees of cold water. Thermal springs in Tibet have high 
salinity (Liao 2018).

Yunnan Province is the largest province in terms of number of thermal springs 
in China with unbelievable physical and chemical features. More than 862 hot 
springs have been reported in Yunnan Province; among these springs, 20 are boil-
ing springs, 314 are hot springs, 208 are warm springs, and 321 are tepid springs. 
All these high- temperature boiling springs have high fluorine and low boron con-
tent. In lower- temperature hot springs and warm springs, especially tepid springs, 
their water chemistry type is basically HCO3–Ca or HCO3–Mg type. TDS value of 
Yunnan springs is very low, except the Rehai geothermal field of Tengchong (Liao 
2018).

Fig. 3.1 The red highlighted portion shows some of the important Yunnan and Tibet hot springs

3 Diversity of Thermophiles in Terrestrial Hot Springs of Yunnan and Tibet, China
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3.3  Culture-Dependent Microbial Diversity Analysis

A large number of cultivation-dependent studies have been performed in Yunnan 
and Tibet hot springs (Hedlund et al. 2015; Xian et al. 2016; Khan et al. 2017a, b). 
Several new taxa (Table 3.2) and their bioactive potential have been reported from 
Yunnan and Tibet hot springs (Duan et al. 2014; Xian et al. 2016; Khan et al. 2017a, 
b; Chen et al. 2012).

3.3.1  Physicochemical Factors Structuring Microbial Diversity

The seasonal dynamics of both the physicochemical conditions and the microbial 
communities inhabiting hot springs in Tengchong County, Yunnan Province, China, 
have been evaluated. The seasonal variation, especially the rainy season changed the 
physicochemical conditions and microbial communities. Monsoon samples showed 
increased concentrations of potassium, total organic carbon, ammonium, calcium, 
sodium, and total nitrogen with decreased ferrous iron relative to the dry season. 
High mesophilic community has been observed after monsoon which may be 
flushed into springs due to enhanced rain influx (Briggs et al. 2014).

Wang and co-workers have evaluated temporal changes of sediment and water 
microbial community in Tengchong hot springs, Yunnan Province, China. The 
authors suggest that the microbial communities were not transported into hot springs 
from the surroundings by increased surface runoff, but rather their occurrence or 
even dominance was due to large temporal variations of physicochemical conditions 
such as pH, temperature, and dissolved organic carbon. Water and sediment 
communities responded differently to temporal physicochemical changes. Water 
communities were found stable, while sediment communities were more responsive 
to temporal geochemical changes. Greater temporal variations were observed in 
individual taxa than at the whole community structure level (Wang et al. 2014).

3.3.2  Proteobacteria, Firmicutes, and Aquificae

Culture-dependent analysis showed that Proteobacteria, Firmicutes, and Aquificae 
were the prominent groups residing in the hot springs in India (Kumar et al. 2004; 
Sen and Maiti 2014; Pathak and Rathod 2014). Culture-dependent analysis of the 
samples from Yunnan and Tibetan hot springs also showed the presence of 
Proteobacteria, Firmicutes, and Aquificae groups.

Several novel genera such as Caldalkalibacillus (Caldalkalibacillus thermarum 
as type species) (Xue et al. 2015), Crenobacter (Crenobacter luteus as type species) 
(Dong et  al. 2015), Crenalkalicoccus (Crenalkalicoccus roseus as type species) 
(Ming et al. 2016), Caldovatus (Caldovatus sediminis as type species) (Habib et al. 
2017a), and Tibeticola (Tibeticola sediminis as type species) (Khan et al. 2017b) 
have been reported from Yunnan and Tibet hot springs. Genera, namely, 
Caldalkalibacillus, Crenobacter, Crenalkalicoccus, and Caldovatus have been 

3 Diversity of Thermophiles in Terrestrial Hot Springs of Yunnan and Tibet, China
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reported from Tengchong (Yunnan province) hot springs, while Tibeticola has been 
reported from Tibet hot spring. The optimum temperature for growth of these novel 
genera varies; Caldalkalibacillus thermarum and Crenalkalicoccus roseus have 
been reported for optimum growth at 60  °C. Crenobacter luteus had optimum 
growth at 40–50 °C; Caldovatus sediminis and Tibeticola sediminis had optimum 
growth at 45 °C. Crenobacter luteus, Crenalkalicoccus roseus, Caldovatus sedimi-
nis, and Tibeticola sediminis were reported for their growth from slightly acidic to 
alkaline pH with optimum pH at 8.0–9.0, 8.0, 6.5–7.0, and 7.0, respectively (Xue 
et al. 2015; Dong et al. 2015; Ming et al. 2016; Habib et al. 2017a, b). Further, sev-
eral novel aerobic species, namely, Laceyella sediminis (Chen et  al. 2012), 
Brevibacillus sediminis (Xian et  al. 2016), Altererythrobacter lauratis, and 
Altererythrobacter palmitatis (Yuan et  al. 2017), and obligate anaerobes such as 
Thermoanaerobacter tengcongensis (Xue et al. 2001), and Thermoanaerobacterium 
calidifontis (Shang et al. 2013) have also been reported. In-depth analysis of novel 
species, Thermoanaerobacterium calidifontis, showed the ability to produce etha-
nol and ability to convert thiosulfate to elemental sulfur and reduce sulfite to hydro-
gen sulfide (Shang et  al. 2013). Thermoanaerobacter tengcongensis reported to 
reduce thiosulfate and sulfur to hydrogen sulfide (Xue et al. 2001). Further, com-
plete sequence of Thermoanaerobacter tengcongensis has been carried out which 
suggests Thermoanaerobacter tengcongensis has a genome size of 2,689,445 bp. 
The genome encodes 2588 predicted coding sequences. Among them, 1764 (68.2%) 
were similar to documented proteins, and the rest, 824 coding sequences (31.8%), 
were functionally unknown (Bao et al. 2002).

Many culture-independent analyses of microbial diversity in hot springs of 
Tengchong, Yunnan Province, were carried out suggesting Aquificales populations 
as the abundant group (Hou et al. 2013; Song et al. 2013a), but attempts to isolate 
Aquificales from Tengchong hot springs have never been made. Hedlund and his 
co-workers made an attempt to isolate diverse members of the Aquificales from 
geothermal springs in Tengchong, China. The authors have isolated five strains of 
Aquificales from diverse springs (temperature 45.2–83.3  °C and pH  2.6–9.1). 
Phylogenetic analysis showed that four of the strains belong to the genera 
Hydrogenobacter, Hydrogenobaculum, and Sulfurihydrogenibium, including some 
strains distinct enough to likely justify as new species of Hydrogenobacter and 
Hydrogenobaculum. They also suggested that one strain was distinct enough to rep-
resent as new genus in the Hydrogenothermaceae family. All strains were capable 
of aerobic respiration under microaerophilic conditions; however, they had variable 
capacity for chemolithotrophic oxidation of hydrogen and sulfur compounds and 
nitrate reduction (Hedlund et al. 2015).

Efforts to isolate acidophilic bacteria from Yunnan Province hot springs have 
been made. It was noticed that acidophilic mesophiles in these regions were more 
diverse, and several ferrous iron and sulfur-oxidizing genera such as Acidiphilum 
(Liu et  al. 2007), Acidothiobacillus, Alicyclobacillus, Leptospirillum, and 
Sulfobacillus (Jiang et al. 2009) were present.

3 Diversity of Thermophiles in Terrestrial Hot Springs of Yunnan and Tibet, China
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3.3.3  Deinococcus-Thermus

The genus Thermus has been regarded as models to investigate the mechanism of 
thermostability of thermophiles (Saiki et al. 1972). The diversity of Thermus has 
been evaluated in 15 hot springs of Rehai geothermal area, Tengchong, China. The 
isolation was carried out using Thermus and YIM14 medium. A total of 57 Thermus 
strains have been recovered. Strains from YIM14 medium were physiologically 
more diverse than strains from Thermus medium (Guo et al. 2003).

Several novel species, namely, Thermus rehai (Lin et al. 2002), Thermus calidi-
terrae (Ming et al. 2014), Thermus amyloliquefaciens (Yu et al. 2015), and Thermus 
caldifontis (Khan et al. 2017a), have been reported from Yunnan and Tibetan hot 
springs. All the above-described species reported for the growth till 70 °C (Lin et al. 
2002; Ming et al. 2014; Yu et al. 2015; Khan et al. 2017a).

Thermus spp. isolated from Yunnan and Tibetan hot springs have been reported 
as a potential source for bioactive molecules. The novel species Thermus amyloliq-
uefaciens was reported for its ability to liquify starch (Yu et al. 2015).

Gong and co-worker evaluated the diversity of thermostable alkaline phosphatase- 
producing bacteria in Tengchong (Yunnan province) hot springs. Sixty strains 
belonging to three genera have been isolated. Among them, one strain designated 
RHY12-2 had highest phosphatase activity. The 16S rRNA gene sequence of the 
strain RHY12-2 showed the strain was a member of the genus Thermus (highest 
similarity with Thermus scotoductus 96.3%) and probably new species. The enzyme 
had a single peptide with a molecular mass of about 52 kDa with highly specific 
activity and thermal resistance. The optimum enzyme activity is observed at 
pH 8.0–10.0 and temperature 70–80 °C (Gong et al. 2005). Thermus play a signifi-
cant role in the cesium assembly. The bacterium Thermus sp. TibetanG7, isolated 
from hot springs in Tibet, China, has been examined for the ability to accumulate 
cesium from solutions. The accumulation of cesium by this microorganism was 
rapid with 40%–50% accumulation within the first 5 min (Wang et al. 2007).

The genus Meiothermus which was reclassified from the genus Thermus (Nobre 
et al. 1996) is the most common genus isolated from hot spring (Chan et al. 2015). 
Tengchong hot springs (Yunnan, China) served as potential source for harboring 
novel species of the genus Meiothermus. Several novel species such as Meiothermus 
rosaceus (Chen et  al. 2002), Meiothermus roseus (Ming et  al. 2015), and 
Meiothermus luteus (Habib et al. 2017b) have been reported.

3.3.4  Actinobacteria

Actinobacteria have been widely concerned due to their ability of producing various 
kinds of antibiotics and bioactive molecules (Liu et al. 2016). Actinobacteria resid-
ing in hot springs exhibits unique metabolic activity. (Xu et al. 1998). Recently, our 
group has evaluated actinobacterial diversity in ten hot springs distributed over 
three geothermal fields, namely, Hehua, Rehai, and Ruidian. A total of 58 thermo-
philic actinobacterial strains have been isolated, and the 16S rRNA gene sequence 
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result showed that these strains shared high similarities with actinobacterial genera, 
namely, Actinomadura, Micromonospora, Microbispora, Micrococcus, 
Nocardiopsis, Nonomuraea, Promicromonospora, Pseudonocardia, Streptomyces, 
and Verrucosispora. Some of the strains had low sequence similarity which sug-
gested that these hot springs harbor many novel strains. The isolated strains showed 
good antimicrobial activity. Fifty-three strains exhibited antimicrobial activities 
against Acinetobacter baumannii. Eighteen and three strains showed inhibitory 
activities against Micrococcus luteus and Staphylococcus aureus, respectively. 
Further, 22 strains were positive for PCR amplification of at least 1 of the 3 biosyn-
thetic gene clusters (PKS-I, PKS-II, and NRPS) (Liu et al. 2016).

Many novel strains have been reported from Yunnan province. During our inves-
tigation on thermophilic actinobacterial diversity from hot springs, strain YIM 
78087 has been isolated from a sediment sample collected from the Hehua hot 
spring in Yunnan Province, southwest China. The strain can grow up to 50 °C tem-
perature and tolerate NaCl up to 9% (w/v). The strain was reported for its growth in 
acidic as well as basic conditions (pH 4.0–10.0). The 16S rRNA gene sequence 
result showed that strain YIM 78087 belonged to the genus Streptomyces and was 
closely related to Streptomyces fimbriatus DSM 40942 (97.18%), Streptomyces 
marinus DSM 41968 (97.05%), and Streptomyces qinglanensis DSM 42035 
(97.1%). When the taxonomic position of strain YIM 78087 was evaluated, it repre-
sented as a novel species of genus Streptomyces, for which the name Streptomyces 
calidiresistens has been proposed (Duan et al. 2014). Similarly, strain Y-14046 iso-
lated from a hot spring in Eryuan, Yunnan, China, has been described as new species 
(Streptomyces thermogriseus) of the genus Streptomyces (Xu et al. 1998).

3.3.5  Thermophilic Archaea

Compared with bacteria, studies on cultivation of archaea in Yunnan and Tibetan hot 
springs were rather limited. Xiang and co-workers isolated and characterized novel 
species Sulfolobus tengchongensis RT8-4 from acidic hot spring located in 
Tengchong, Yunnan Province, China (Xiang et al. 2003). Sulfolobus tengchongensis 
RT8-4 had long and curved peritrichous flagella with aerobic growth either a 
lithotrophic or heterotrophic mode. It grew fastest at 85–90 °C and was capable of 
slow growth at 95 °C. Growth has been observed at various pH values ranging from 
1.7 to 6.5 with optimum growth at pH 3.5 (Xiang et al. 2003).

A facultatively aerobic novel species, Acidianus tengchongensis, has been iso-
lated from a Tengchong acidothermal spring. The optimal pH and temperature for 
growth reported were 2.5 and 70 °C, respectively. Acidianus tengchongensis cells 
were non-motile, and under anaerobic conditions Acidianus tengchongensis reduces 
elemental sulfur with molecular hydrogen, producing hydrogen sulfide. Under aero-
bic conditions, it oxidizes elemental sulfur and produces sulfuric acid. No growth 
reported when cultivated in iron medium, indicating that ferrous iron not be used as 
an energy source (He et al. 2004).
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The diversity of Sulfolobus in acidic hot springs of Tengchong of Yunnan, China, 
has been evaluated by Jian and co-workers. Eleven thermoacidophilic strains from 
six acidic hot springs have been isolated. The 16S rRNA gene sequence result 
showed that these strains belong to the genus Sulfolobus but are distinct enough to 
designate as new species (Jian et al. 2010).

Many studies have been carried out to use acidothermophilic archaeal species 
isolated Yunnan hot springs for bioleaching. Zou and co-workers have isolated 
thermoacidophilic archaea (Sulfolobus acidocaldarius) from hot sulfur spring in the 
Yunnan Province and conducted bioleaching activity in both laboratory batch 
bioreactors and leaching columns on low-grade chalcopyrite ore. They reported that 
bioreactor experiments showed 97% rate of copper bioleaching (in 12 days). In the 
case of column leaching, tests of a two-phase leaching have been conducted. In the 
first phase, Thiobacillus ferrooxidans has been used, followed by a 140-day 
thermoacidophilic archaeal leaching in the second phase. The average leaching rate 
of copper achieved by thermoacidophilic archaea has found to be 195 mg/(L·d), 
while for the control experiments (for the Thiobacillus ferrooxidans), it was 78 mg/
(L·d), indicating thermoacidophilic archaea possesses a more powerful oxidizing 
ability than Thiobacillus ferrooxidans (Zou et al. 2006). Two novel acidothermophilic 
archaeal species Metallosphaera tengchongensis (Peng et  al. 2015) and 
Metallosphaera cuprina (Liu et al. 2011a) reported for oxidizing metal sulfide ores, 
showing their potential in bioleaching. These two species were isolated from muddy 
water samples collected at the edge of the hot springs of Tengchong, Yunnan 
Province, China. Metallosphaera tengchongensis and Metallosphaera cuprina were 
aerobic and facultatively chemolithoautotrophic with growth at temperature ranging 
from 55 to 75 °C (Peng et al. 2015; Liu et al. 2011a). For better understanding of 
bioleaching potential, complete genome sequence of Metallosphaera cuprina has 
been carried out. The genome in total carried 2029 open reading frames (ORFs). 
Genome annotation and metabolic reconstruction supported the idea that 
Metallosphaera cuprina lived a facultative life. Metallosphaera cuprina strain fixed 
CO2 via the 3-hydroxypropionate/4-hydroxybutyrate cycle, and this strain 
assimilated carbohydrates via the nonphosphorylated Entner-Doudoroff pathway. It 
had a complete tricarboxylic acid (TCA) cycle and an incomplete phosphate pentose 
pathway. Oxidation of RISCs by the heterodisulfide reductase complex, sulfide/
quinone oxidoreductase, thiosulfate/quinone oxidoreductase, tetrathionate 
hydrolase, and sulfite/acceptor oxidoreductase in Metallosphaera cuprina has been 
proposed (Liu et al. 2011b).

3.3.6  Thermophilic Virus

Viruses are the most abundant biological entities in every ecosystem, even in hot 
springs (Lopez-Lopez et al. 2013). They are probably the only predators in these 
communities and may be involved in the control of host mortality (Lopez-Lopez 
et al. 2013). In this section, we provided insights into the latest study being carried 
out to understand viruses in Yunnan and Tibetan hot springs.
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Thermus bacteriophage named TSP4 has been isolated from Tengchong hot 
springs, China. TSP4 belonged to the Siphoviridae family and had a hexagonal head 
of 73 nm in diameter, an extremely long and flexible tail of 785 nm in length and 
10 nm in width (Lin et al. 2010). The first reported Meiothermus phage, MMP17 
(Meiothermus Myoviridae phage 17), has been isolated from hot spring in Eryuan 
County, Yunnan. MMP17 was a typical myovirus with an icosahedral head (42 nm 
in diameter) and a tail of 120 nm in length and 17 nm in width. Its DNA was about 
33.5–39.5 kb in size. MMP17 was very stable at 55–60 °C and pH 6–7. An average 
of 15 phages were released from each infected cell (Lin et al. 2011). A virus, denoted 
STSV1 infecting the hyperthermophilic archaeon Sulfolobus tengchongensis, has 
been isolated from acidic hot springs located in Tengchong, China. The virus STSV1 
was spindle (230 by 107 nm) with a tail of variable length (68 nm on average) at one 
end. STSV1 shape was similar to the members of the family Fuselloviridae but 
much larger than known fuselloviruses. After infecting its host, STSV1 multiplied 
rapidly to high titers (>1010 PFU/ml). Replication of the virus retards host growth, 
but does not lyse host cells. STSV1 do not integrate into the host chromosome and 
existed in a carrier state. The STSV1 DNA modifies in an unusual fashion, 
presumably by virally encoded modification systems. STSV1 harbors a double- 
stranded DNA genome of 75,294 bp, which shares no significant sequence similarity 
to those of fuselloviruses. The viral genome contains a total of 74 open reading 
frames (ORFs), among which 14 have a putative function. Five ORFs that encode 
viral structural proteins, including a putative coat protein of high abundance, have 
been noticed. The products of the other nine ORFs have been mentioned to be 
involved in polysaccharide biosynthesis, nucleotide metabolism, and DNA 
modification (Xiang et al. 2005).

3.4  Culture-Independent Microbial Diversity Analysis

Culture-dependent method revealed immense limitation for addressing microbial 
diversities. Majority of microbes in various environments, including hot springs, are 
still not isolated using traditional cultivation methods (Streit and Schmitz 2004). 
Hence, culture-dependent microbial analysis does not give clear idea about the 
microbial diversity residing in a particular environment. In the past few years, the 
application of culture-independent analysis has proved to be a promising tool to 
investigate the population diversity, gene content, function, and ecological 
significance of microbial communities living in diverse hot spring environments 
(Hou et al. 2013; Badhai et al. 2015). Several culture-independent analyses have 
been carried out in Yunnan and Tibet hot springs (Song et al. 2009, 2010, 2013a, b; 
Hou et al. 2013).

A comprehensive cultivation-independent census of microbial communities in 
37 samples collected from Rehai and Ruidian geothermal fields, located in 
Tengchong County, Yunnan Province, has been evaluated using 16S rRNA gene 
pyrosequencing to understand microbial diversity. The temperature and pH of the 
samples sites ranged from 55.1 to 93.6  °C and 2.5 to 9.4, respectively. Richness 

3 Diversity of Thermophiles in Terrestrial Hot Springs of Yunnan and Tibet, China



72

found low in all samples, with 21–123 species-level operational taxonomic units 
(OTUs). The bacterial phylum Aquificae and archaeal phylum Crenarchaeota 
dominated in Rehai samples, yet the dominant taxa within these phyla depended on 
temperature, pH, and geochemistry. Rehai springs with low pH (2.5–2.6), high 
temperature (85.1–89.1  °C), and high sulfur contents favored Sulfolobales, whereas 
lower temperature (55.1–64.5    °C) with low pH (2.6–4.8) favored the Aquificae 
(genus Hydrogenobaculum). Rehai springs with neutral-alkaline pH (7.2–9.4) and 
high temperature (80 °C) with high concentrations of silica and salt ions (Na, K, and 
Cl) favored the Aquificae (genus Hydrogenobacter). Ruidian water samples harbored 
a single Aquificae (genus Hydrogenobacter), whereas microbial communities in 
Ruidian sediment samples were more diverse at the phylum level and distinctly 
different from those in Rehai and Ruidian water samples, with high abundance of 
uncultivated lineages, close relatives of the ammonia-oxidizing archaeon 
“Candidatus Nitrosocaldus yellowstonii,” and candidate division O1aA90 and OP1. 
These differences between Ruidian sediments and Rehai samples were likely caused 
by temperature, pH, and sediment mineralogy (Hou et al. 2013).

Diversity of Crenarchaeota has been investigated in eight terrestrial hot springs 
(pH 2.8–7.7; temperature 44–96 °C) located in Tengchong, China, using 16S rRNA 
gene phylogenetic analysis. A total of 826 crenarchaeotal clones were sequenced, and 
a total of 47 OTUs were identified. About 93% of the OTUs were identical to those 
retrieved from hot springs and other thermal environments. The result suggests that 
temperature predominates over pH in affecting crenarchaeotal diversity in Tengchong 
hot springs. Crenarchaeotal diversity in moderate-temperature (59–77 °C) hot springs 
was the highest, indicating that the moderately hot-temperature springs may provide 
optimal conditions for speciation of Crenarchaeota (Song et al. 2010).

Investigation on the community diversity and composition in Yunnan and Tibetan 
hot springs using a barcoded 16S rRNA gene-pyrosequencing approach has been 
carried out. 16 hot spring samples from five thermal fields, namely, Tengchong, 
Longling, and Eryuan in Yunnan Province and Gulu and Qucai in Tibet, have been 
collected. Hot spring samples had a range of temperature (47–96 °C) and pH (3.2–
8.6) conditions. Proteobacteria, Aquificae, Firmicutes, Deinococcus-Thermus, and 
Bacteroidetes comprised the large portion of the bacterial communities in acidic hot 
springs (in Yunnan). Nonacidic hot springs (both Yunnan and Tibet) harbor more 
and variable bacterial phyla than acidic springs; the major phyla of Tibetan hot 
springs were similar to the Yunnan nonacidic samples but showed different relative 
abundances. For example, Bacteroidetes in Tibetan nonacidic hot springs shows 
higher abundance than Yunnan. Desulfurococcales and unclassified Crenarchaeota 
were the dominated groups in archaeal populations from most of the nonacidic hot 
springs, whereas the archaeal community structure in acidic hot springs was simpler 
and dominated by Sulfolobales and Thermoplasmata. The phylogenetic analyses 
showed that Aquificae and Crenarchaeota were predominant in the investigated 
springs and possessed many phylogenetic lineages that have never been detected in 
other hot springs in the world (Song et al. 2013a).

Culture-independent approach that combines CARD-FISH, qPCR, and 16S rRNA 
gene clone library has been carried out to investigate the abundance, community 
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structure, and diversity of microbes along a steep thermal gradient in the Tengchong 
geothermal field named Shuirebaozhaqu. The authors observed a remarkable change 
in bacterial and archaeal abundance with temperature changes. Under low-tempera-
ture conditions (52.3–74.6 °C), the microbial community that dominated was bacte-
ria. The community was dominated by five phyla, namely, Proteobacteria, Firmicutes, 
Nitrospirae, Thermotogae, and Cyanobacteria. The greatest diversity was observed 
in the phylum Proteobacteria, with 11 genera belonging to the classes 
Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Archaea 
dominant at 74.6 °C and 90.8 °C, the number of cells was lowest, but the archaea 
accounted more than 90% of the total number of cells. Additionally, the microbial 
communities at high temperatures (74.6–90.8 °C) were substantially simpler than 
those at the low-temperature sites. Only a few bacterial genera, namely, Caldisericum, 
Thermotoga, and Thermoanaerobacter, and archaeal genera Vulcanisaeta and 
Hyperthermus dominated at high temperature. Some bacteria were observed at both 
low temperature and high temperature but with different abundance. Genera such as 
Hippea, Syntrophus, and Geobacter were more adapted to hyperthermal environ-
ments, whereas genera such as Methylobacterium, Novosphingobium, Achromobacter, 
Desulfomonile, Rubrivivax, Haemophilus, Sorangium, and Thauera were only 
detected at low temperatures (Li et al. 2015).

Microbial community composition and diversity in hot springs of the Tibetan 
Plateau across a wide range of temperatures have been evaluated. Thirteen hot 
spring samples from Nima, Gulu, Naqu, Guozu, and Qucai in Naqu County have 
been collected and evaluated its microbial diversity using the 16S rRNA gene- 
pyrosequencing approach. The temperature of these springs ranged from 22.1 to 
75 °C. The results suggested that bacteria (42 bacterial phyla) in Tibetan hot springs 
were more abundant and far more diverse than archaea (5 archaeal phyla). The 
dominant bacterial phyla systematically varied with temperature. Moderate 
temperatures (75–66 °C) favored Aquificae, whereas low temperatures (60–22.1 °C) 
favored Deinococcus-Thermus, Cyanobacteria, and Chloroflexi. The relative 
abundance of Aquificae was correlated positively with temperature, but the 
abundances of Deinococcus-Thermus, Cyanobacteria, and Chloroflexi were 
negatively correlated with temperature. Cyanobacteria and Chloroflexi were 
abundant in Tibetan hot springs, and their abundances were positively correlated at 
low temperatures (55–43  °C) but negatively correlated at moderate temperatures 
(75–55 °C). Most archaeal sequences were related to Crenarchaeota with only a 
few related to Euryarchaeota and Thaumarchaeota (Wang et al. 2013).

The first culture-independent report specifically to actinobacterial diversity in 
three hot springs located in Tengchong (Frog Mouth hot spring) in China, Kamchatka 
(Robb Flag hot spring) in Russia, and Nevada boiling spring in the USA has been 
carried out using denaturing gradient gel electrophoresis (DGGE), restriction 
fragment length polymorphism (RFLP), and actinobacterial 16S rRNA gene 
phylogenetic analysis. The authors noticed very diverse actinobacterial populations, 
and most of the retrieved actinobacterial 16S rRNA gene sequences were affiliated 
with uncultured Actinobacteria. The actinobacterial clone sequences retrieved were 
affiliated to Actinomycetales, Rubrobacterales, uncultured Candidatus Microthrix, 
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and unclassified Actinobacteria. The actinobacterial diversity was noticed at high 
temperature. Unexpected high actinobacterial diversity was observed in Tengchong 
hot spring where temperature was 81  °C suggesting these Actinobacteria might 
have an extraordinary capability to adapt to hot spring environments. In this study, 
authors for the first time were able to retrieve sequences affiliated to Frankineae and 
uncultured Candidatus Microthrix in hot spring with temperature as high as 81 °C 
(Song et al. 2009).

During the global metagenomic survey in geothermal springs, our group found a 
new bacterial candidate phylum, Candidatus Kryptonia with two genera Candidatus 
Chrysopegis kryptomonas and Candidatus Kryptobacter tengchongensis from Yunnan 
hot springs. This lineage had remained hidden as a taxonomic blind spot because of 
mismatches in the primers commonly used for ribosomal gene surveys. The discovery 
of a new candidate phylum from the Yunnan hot springs emphasizes that extraordinary 
microbial novelty is still waiting for the discovery (Eloe-Fadrosh et al. 2016).

3.5  Function Genes and Ecology

Microbial diversity in the hot springs plays a major role in controlling the cycling of 
organic and inorganic compounds, thereby directly affecting characteristics of 
environments (Huang et al. 2010; Wu et al. 2015). Various studies have been carried 
out to understand microbial diversity controlling the cycling of organic and inorganic 
compounds in Yunnan and Tibetan hot springs (Wu et al. 2015; Song et al. 2013b).

3.5.1  Ammonia-Oxidizing Microorganisms

Ammonium is considered as the major source of inorganic nitrogen in most geo-
thermal springs (Zhang et al. 2008). The abundance of ammonia-oxidizing microor-
ganisms (AOM) and effect of environmental variables in 13 hot springs located in 
Yunnan Province, China, have been studied. Ammonia-oxidizing archaeal (AOA) 
abundance ranged 0.02–1.32%, whereas no ammonia-oxidizing bacteria were 
detected. AOA abundance was significantly correlated with concentrations of NH3, 
NO2−, NO3−, pH, and temperature, but not related to salinity and concentrations of 
Fe2+ and salinity (Huang et al. 2010). Studies in Tengchong hot springs showed that 
the amoA gene of aerobic ammonia-oxidizing archaea can be transcribed at tem-
peratures higher than 74 °C and up to 94 °C, suggesting that archaeal nitrification 
can potentially occur at near boiling temperatures (Jiang et al. 2010).

3.5.2  Archaeal accA Gene Genes

Archaea carrying the accA gene, encoding the alpha subunit of the acetyl CoA car-
boxylase, autotrophically fix CO2 using the 3-hydroxypropionate/4- hydroxybutyrate 
pathway (Berg et  al. 2007; Song et  al. 2013b). The abundance and diversity of 

W.-D. Xian et al.



75

archaeal accA gene in Yunnan hot springs have been studied using DNA- and RNA-
based phylogenetic analyses and quantitative polymerase chain reaction. The results 
showed that archaeal accA genes were present and expressed in the investigated 
Yunnan hot springs with a wide range of temperatures (66–96 °C) and pH (4.3–9.0). 
The majority of the amplified archaeal accA gene sequences were affiliated with the 
ThAOA/HWCG III [thermophilic ammonia-oxidizing archaea (AOA)/hot water 
crenarchaeotic group III]. The archaeal accA gene abundance was very close to that 
of AOA amoA gene, encoding the alpha subunit of ammonia monooxygenase. These 
data suggest that AOA in terrestrial hot springs might acquire energy from ammonia 
oxidation coupled with CO2 fixation using the 3-hydroxypropionate/4-hydroxybu-
tyrate (Song et al. 2013b).

3.5.3  Arsenite-Oxidizing Microorganisms

Arsenic is widely distributed in nature and can exist in four oxidation states, As(III), 
As(0), As(III), and As(V). Arsenic oxyanions could be used for energy generation 
of prokaryotes, either by oxidizing arsenite or by respiring arsenate (Oremland and 
Stolz 2003). There are certain microbes like arsenite-oxidizing microorganisms 
containing arsenite oxidase that catalyzes the transformation of arsenite [As(III)] to 
arsenate [As(V)] (Lett et al. 2012). aioA gene is a molecular biomarker for studying 
the distribution and activity of arsenite-oxidizing bacteria in various environments.

The abundance and diversity of arsenite-oxidizing bacteria in the geothermal 
features of Tengchong County of Yunnan Province, Dachaidan County of Qinghai 
Province, and Tibet have been investigated. The results showed that the aioA gene 
abundance increased as temperature decreased, whereas its diversity at the OTU 
level (97% cutoff) increased with increase in temperature. This suggests that 
temperature played an important role in affecting aioA gene distribution and thus 
arsenic speciation. The aioA gene population (at OTU level) differed among the 
studied regions, indicating geographic isolation may be an important factor 
controlling aioA gene distribution in hot springs (Wu et al. 2015).

3.6  Conclusion and Future Perspectives

The investigations have demonstrated that huge diverse and novel thermophilic bac-
terial and archaeal communities with bioactive potentials thrive in Yunnan and Tibet 
hot springs. Most of the microbial communities are still unclassified or unknown, 
which awaits further exploration. Environmental factors play an important role in 
structuring microbial communities, and hence these factors should be considered in 
future analysis. Only few reports have been described in studying thermophilic 
virus in Yunnan and Tibet hot springs. Hence, attempts to identify the distribution 
pattern and host-virus interaction in these hot springs have to be conducted.
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Abstract
The geology of the Lesser Caucasus is complex, owing to accretion of terrains 
through plate-tectonic processes and to ongoing tectonic activity and volcanism. 
Numerous geothermal springs of different geotectonic origins and with different 
physicochemical properties are found on the territory of the Lesser Caucasus. 
Despite intensive microbiological studies on terrestrial geothermal springs in 
various regions of the globe, very little is known about microbial diversity of 
similar ecosystems in the Lesser Caucasus. Recently the phylogenetic diversity 
of the prokaryotic community thriving in some geothermal springs located on the 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0329-6_4&domain=pdf
mailto:hpanosyan@ysu.am


82

territory of Armenia, Georgia, and Nagorno-Karabakh has been explored 
following both cultivation-based and culture-independent approaches. Despite 
previous efforts, a comprehensive census of the microbial communities in the 
Lesser Caucasus hot springs is still lacking. This chapter contains a review of the 
results of microbial diversity analyses of 11 geothermal springs of the Lesser 
Caucasus with special emphasis to its distribution, ecological significance, and 
biotechnological potential.

Keywords
Lesser Caucasus · Geothermal springs · Microbial diversity · Thermophiles · 
Culture-dependent and culture-independent techniques

4.1  Introduction

Natural geothermal springs, including terrestrial hot springs, are widely distributed 
in various regions of our planet and are primarily associated with tectonically active 
zones in areas where the Earth’s crust is relatively thin. These habitats have attracted 
broad interest since they are analogs for primitive Earth (Stan-Lotter and Fendrihan 
2012). Geothermal springs offer a new source of fascinating microorganisms with 
unique properties well adapted to these extreme environments (Hreggvidsson et al. 
2012; Deepika and Satyanarayana 2013). The adaptation to these harsh habitats 
makes thermophiles and their thermostable proteins suitable for various industrial 
and biotechnological applications (Raddadi et al. 2015; DeCastro et al. 2016).

The scientific interest in the microbial diversity of these exotic niches has 
increased during the last decades. With time, the tools used for microbial exploration 
have improved. Initially, studies were incepted with culture-based approaches. In 
recent time, culture-independent techniques (16S rRNA gene-based clone library 
analysis, denaturing gradient gel electrophoresis (DGGE), pyrosequencing, 
metagenomics, and metatranscriptomics) are mostly being used (Bhaya et al. 2007; 
Liu et al. 2011; López-López et al. 2013; DeCastro et al. 2016). This has shifted the 
cultivation-based narrow view into a more detailed and holistic insight of hot spring 
microbial habitats in terms of diversity, adaptation, functions, and ecological 
significance. Using a combination of several approaches of traditional microbiology 
with state-of-the-art molecular biology techniques has substantially increased our 
understanding of the structural and functional diversity of the microbial communities. 
Such approaches has been extensively used to study microbiota of the geothermal 
springs located in Iceland (Krebs et al. 2014), Azores (Sahm et al. 2013), the United 
States (Meyer-Dombard et  al. 2005; Bowen De León et  al. 2013), Bulgaria 
(Stefanova et al. 2015), Russia (Kublanov et al. 2009), China (Hedlund et al., 2012; 
Hou et al. 2013), India (Singh and Subudhi 2016; Saxena et al. 2017; Poddar and 
Das 2017), Malaysia (Chan et al. 2015), Argentina (Urbieta et al. 2015), Turkay 
(Cihan et al. 2011), Italy (Maugeri et al. 2009), Thailand (Portillo et al. 2009), New 
Zeland (Hetzer et al. 2007), Tunisia (Sayeh et al. 2010), Marocco (Aanniz et al. 
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2015) Romania (Coman et al. 2013), Spain (López-López et al. 2015) and other 
parts of world.

Thermal springs located in the Lesser Caucasus still represent a challenge for 
exploring biodiversity and searching of undescribed biotechnological resource. The 
geology of the region where Armenia, Georgia, and Nagorno-Karabakh are situated 
is complex, owing to accretion of terrains through plate-tectonic processes and to 
ongoing tectonic activity and volcanism (Henneberger et al. 2000; Badalyan 2000). 
Numerous geothermal springs with different geochemical properties are found on 
the territory of Lesser Caucasus. Despite a wide distribution of hot springs 
throughout Lesser Caucasus with hints of intrinsic scientific interest, limited 
attention has been paid toward microbiological analysis of these hot springs. With 
the best of information available, it was noted that data of microbial communities of 
several hot springs distributed on the territory of Armenia and Nagorno-Karabakh 
were published to date (Panosyan 2010; Hedlund et  al. 2013; Panosyan and 
Birkeland 2014; Panosyan 2017; Panosyan et  al. 2017). Despite these previous 
efforts, a comprehensive census of the microbial communities in Lesser Caucasus 
hot springs is still lacking.

The primary objective of this chapter is to review the findings of microbiological 
studies of several geothermal springs in the Lesser Caucasus and to summarize 
investigations on relationships between thermophilic microbial communities and 
geochemical conditions of their habitats. The results of this study expand the current 
understanding of the microbiology of hot springs in Lesser Caucasus and provide a 
basis for comparison with other geothermal systems around the world.

4.2  Geographical Distribution and Physiochemical Profiling 
of Geothermal Springs

The Caucasus Mountains include the Greater Caucasus in the north and Lesser 
Caucasus in the south (Stokes 2011). The Lesser Caucasus Mountains are formed 
predominantly of the Paleogene rocks with a smaller portion of the Jurassic and 
Cretaceous rocks. The formation of the Caucasus began from the Late Triassic to 
the Late Jurassic during the Cimmerian orogeny at the active margin of the Tethys 
Ocean while the uplift of the Greater Caucasus is dated to the Miocene during the 
Alpine orogeny. The Caucasus Mountains formed largely as the result of a tectonic 
plate collision between the Arabian plate moving northwards with respect to the 
Eurasian plate. This collision caused the uplift and the Cenozoic volcanic activity in 
the Lesser Caucasus Mountains. This region is regularly subjected to strong 
earthquakes from this activity (Reilinger et al. 1997). While the Greater Caucasus 
Mountains have a mainly folded sedimentary structure, the Lesser Caucasus 
Mountains are largely of volcanic origin (Philip et al. 1989). The geology of the 
region is complex, owing to accretion of exotic terranes through plate-tectonic 
processes and to ongoing tectonic activity and volcanism which have taken place 
more or less continuously since Lower Pliocene or Upper Miocene time.
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The distribution of natural geothermal springs, including terrestrial hot springs 
(with water temperature higher than 21.1 °C), in various regions of our planet are 
primarily associated with tectonically active zones in areas where the Earth’s crust 
is relatively thin. On the territory of the Lesser Caucasus, where traces of recently 
active volcanic processes are still noticeable, many geothermal springs with different 
geotectonic origins and physicochemical properties are found (Mkrtchyan 1969, 
Kapanadze et al. 2010).

Although no high-temperature geothermal resources have been identified in 
Armenia, numerous low-temperature resource areas (cooler than 100  °C) are 
present. Geothermal springs distributed on the territory of Armenia have been 
catalogued and described, and hundreds of shallow wells have been drilled to 
investigate mineral water sources throughout the country (Mkrtchyan 1969).

Three main heat flow zones (northeastern, central, and southwestern) have been 
distinguished on the basis of heat flow and temperature gradients (Fig. 4.1). The 
central zone (Zone II), which coincides closely with the belt of Quaternary 

Fig. 4.1 Contour of heat flow with deduced heat flow zones in Armenia. (From Henneberger et al. 
2000)
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volcanoes, has highest heat flow (75 to more than 90  mW/m2) and elevated 
temperature gradients (generally greater than 50 °C/km). The Zone I is considered 
to have no significant potential for geothermal resources. In Zone III there are scat-
tered occurrences of thermal water, despite the overall low heat flow in this region 
(Karakhanian et al. 1997; Henneberger et al. 2000).

Nagorno-Karabakh is located in the southeastern part of the Lesser Caucasus. It 
is typically mountainous, embracing the eastern part of the Karabakh Plateau with 
the Artsakh valley, forming the great part of the Kura-Araks lowland. The Artsakh 
plateau like all Armenian plateaus is characterized by seismic activity. Volcanic 
rocks that appeared in ancient times are gaining ground: limestone and other sedi-
mentary rocks from the Jurassic and Cretaceous period. Numerous geothermal 
springs at high elevations with different physicochemical properties are found also 
on the territory of Nagorno-Karabakh.

Georgia is located in the central and western parts of the Trans-Caucasus and lies 
between the Euro-Asiatic and Afro-Arabian plates. Apart from the Precambrian and 
Paleozoic formations that cover a smaller area, Mesozoic and Cenozoic rock assem-
blages mainly make up the geological structure of Georgia (Moores and Fairbridge 
1998). Three major tectonic units can be distinguished according to the geologic 
development of Georgia: (1) the Greater Caucasus fold system, which represents a 
marginal sea in the geological past, (2) the Trans-Caucasus intermountain area 
which marks the northern part of the Trans-Caucasus island arc, and (3) the Lesser 
Caucasus fold system, the southern part of the ancient Trans-Caucasus island arc. 
The amount of thermal flow for the main parts of Georgia can be listed as follows:

 1. The south flank of Caucasus Mountains, 100 mWm2

 2. Plate of Georgia:
 (a) For the west zone 40 mWm2

 (b) For the east zone 30mWm2

 3. Adjara-Trialeti folded system:
 (a) Central part 90 mWm2
 (b) East zone 50 mWm2

 4. Artvin-Bolnisi platform 60 mWm (Achmadova 1991)

The maximum heat flow is observed for the central zone of folded part of Georgia 
and the minimum for the plate, while the Adjara-Trialeti folded system is 
characterized by the middle range (Bunterbart et al. 2009).

Physical conditions, especially temperature, are regarded as a key factor for cor-
relating microbial abundance and diversity of a spring (Everroad et al. 2012). Hot 
springs in the Lesser Caucasus could be grouped into three categories based on 
intrinsic temperature: warm springs (20–37  °C), moderately hot or mesothermal 
springs (37–50 °C), and hot springs (>50 °C). Using a cutoff temperature of 20 °C 
to distinguish thermal from nonthermal waters, several thermal areas are known to 
exist in Armenia (Mkrtchyan 1969). Hot springs at Uyts have the lowest temperature 
(25.8  °C). The highest temperature has been recorded for hot springs at Jermuk 
(>53 °C) and Karvachar (70 °C) (Fig. 4.2). The studies of some higher-temperature 
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geothermal springs (for instance, Jermuk spring, located in the Karabakh Upland 
along Armenia’s eastern border) using various geophysical surveys indicated that 
temperature at deeper levels (from 600 to 1000 m) can reach up to 99 °C (Karakhanian 
et al. 1997; Henneberger et al. 2000).

Geothermal springs found on the territory of Nagorno-Karabakh are also mainly 
classified as springs with moderate temperature. Two of Nagorno-Karabakh 
geothermal springs located in Karvachar (≥70 °C) and Zuar (42 °C) are characterized 
with higher water temperature (Fig. 4.2).

Up to 250 natural thermal springs and artificial wells are known in Georgia with 
water temperature ranging between 30–108 °C (Fig. 4.3) (Kapanadze et al. 2010). 
The lowest water temperature geothermal springs (30–35 °C) are distributed all over 
the territory of Georgia but are mainly found in Borjomi, Tsikhisjvari, Tskaltubo, and 
Saberio areas, while the highest water temperatures (78–108 °C) have been recorded 
for the waters from the artificial wells and boreholes in West Georgia, such as the 
Zugdidi-Tsaishi, Kvaloni, and Kindgi regions (Tsertsvadze et al. 1998).

All studied Armenian and Nagorno-Karabakhian hot springs are neutral, moder-
ately alkaline, or alkaline in nature. Most of the spring samples have neutral pH 
(7–7.5), but hot springs at Tatev, Ajhurik, and Uyts have pH lower than 7. The hot 

Fig. 4.2 Map of the locations of microbiologically explored terrestrial geothermal springs in the 
Lesser Caucasus. Closeup photographs of some geothermal springs. (1) Samtredia (2) Tbilisi 
sulfur spring (3) Akhurik (4) Hankavan (5) Bjni (6) Arzakan (7) Jermuk (8) Tatev (9) Uyts (10) 
Karvachar (11) Zuar. The source of the map is http://www.geocurrents.info/place/russia-ukraine-
and-caucasus/where-is-the-caucasus

H. Panosyan et al.
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springs in Georgia range from alkaline to acidic, but most of them are close to neu-
tral or weak alkaline. The highly acidic hot spring in Georgia with pH 2.2 is located 
in Vani region, village Tsikhesulori, while the alkaline springs are found in Tbilisi 
area with pH 9.7 (Tsertsvadze et al. 1998).

Compared to physical analysis, limited attention has been paid to chemical pro-
filing of hot spring water or sediment samples. Hot spring water usually has high 
concentrations of various elements owing to mineralization of dissolved solid 
elements from the adjacent areas. The composition of hot water is mainly determined 
by chemical interactions with reservoir rocks and rock-forming minerals along the 
ascent path, which may cause the spring water to be acidic or alkaline. All of the 
Armenian and Nagorno-Karabakhian thermal waters studied have mixed-cation 
mixed-anion compositions. Total dissolved solids contents tend to be less than about 
0.5 mg/l but are occasionally higher. As is typically the case, the hotter and more 
saline samples tend to have higher ratios of (Na + K)/(Ca + Mg) and relatively high 
ratios of chloride to bicarbonate (Cl/HCO3) or sulfate to bicarbonate (SO4/HCO3). 
The cooler waters tend to be higher in Ca + Mg and bicarbonate (Mkrtchyan 1969; 
Henneberger et al. 2000). For a few springs’ major and minor elements, anions were 
analyzed by ionic coupled plasma optical emission spectrometry (ICP-OES; Thermo 
Iris), by mass spectrometry (ICP-MS; Thermo Element 2), and by ion chromatography 
(IC; Metrohm). Analyses of major and minor elements in the water sampled from 
the Arzakan geothermal spring revealed the following composition (in ppm): Na, 
1183; Ca, 153; K, 108; Si, 47; Mg, 29; B, 15; Sr, 2.3; As, 1.6; Li, 1.3; Mn, 0.12; Fe, 
0.72; Ba, 0.09; Cl, 297; and SO4

2, 200. Nitrate was not detected (<2 ppm). For trace 
elements, the following concentrations were obtained (in ppb): Cr, 0.28; Co, 0.49; 
Cu, 0.82; and Zn, 6.73 (Panosyan and Birkeland 2014). The Georgian hot springs 
are characterized by diverse chemical composition, with mineralization ranging 

Fig. 4.3 Distribution of thermal waters in Georgia (Kapanadze et al. 2010)

4 Microbial Diversity of Terrestrial Geothermal Springs in Lesser Caucasus
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from 0.2  mg/L (Borjomi region) to 11.3  mg/L (Aspindza region). Similar to 
Armenian and Nagorno-Karabakhian region, the Georgian thermal waters also have 
mixed-cation and mixed-anion ratios mainly composed of hydrocarbonate, chloride, 
sulfate, sodium, potassium, magnesium, and calcium ions (Tsertsvadze et al. 1998). 
All studied springs are rich in heavy metals. Some of the springs contain gasses 
such as hydrogen sulfide, methane, nitrogen, and carbon dioxide (Mkrtchyan 1969; 
Tsertsvadze et al. 1998; Melikadze et al. 2010).

Most of the studies were focused on the hot springs at higher altitude and with 
high temperature. A majority of the hot springs found in the Lesser Caucasus are 
anthropogenically influenced and often used by tourists and local people for bath. 
Some of the geothermal springs are used for balneology (Mkrtchyan 1969; 
Melikadze et al. 2010).

The geographical locations, physicochemical profiling, and brief characteristic 
of main geothermal springs distributed on the territory of the Lesser Caucasus are 
summarized in Table 4.1.

4.3  Microbiological Analysis

Only a small fraction of the microorganisms found in a natural habitat can be culti-
vated under laboratory conditions and subsequently isolated. The knowledge of 
environmental microbial diversity has been largely aided by the development of 
culture-independent molecular phylogenetic techniques (Amann et  al. 1995; 
DeLong and Pace 2001; Amann and Ludwig 2000; Zhou 2003; Bhaya et al. 2007; 
Liu et al. 2011; López-López et al. 2013; DeCastro et al. 2016). Using a combination 
of several approaches of traditional microbiology with state-of-the-art molecular 
biology techniques has substantially increased our understanding of the structural 
and functional diversity of microbial communities. Both culture-based and not 
culture-independent approaches have been used for addressing microbial diversity 
associated with geothermal springs. It has been reported that hot springs are 
inhabited by a variety of microbes belonging to the Bacteria and Archaea domains 
that tolerate environmental extremes and could have some yet undescribed 
biotechnological potential (Antranikian and Egorova 2007). Here we have 
summarized data of the phylogenetic diversity of the prokaryotic communities 
thriving in some of the geothermal springs in the Lesser Caucasus based on 
molecular- and culture-based methods (Tables 4.2 and 4.3).

4.3.1  Cultivation-Independent Studies

Up to date, two Armenian, two Georgian, and two thermal springs from Nagorno- 
Karabakh region have been analyzed using cultivation-independent approaches. 
Studies based on sequence analysis of 16S rRNA gene clone libraries from the 
mixed water and sediment sampled from the Arzakan (Armenia) geothermal spring 
have been done recently (Panosyan and Birkeland 2014). It was the first 

H. Panosyan et al.
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microbiological investigation on any hot spring in the Lesser Caucasus. The study 
indicated a predominance of Alphaproteobacteria (8%), Betaproteobacteria (22%), 
Gammaproteobacteria (13%), Epsilonproteobacteria (9%), Firmicutes (9%), 
Bacteroidetes (48%), and Cyanobacteria (35%). In addition, DGGE was employed 
to reveal the microbial profile of sediments of this hot spring. The authors reported 
an abundance of bacterial populations related to Proteobacteria (affiliated with the 
Beta-, Epsilon-, and Gammaproteobacteria), Bacteroidetes, and Cyanobacteria 
based on the DGGE profile, which was in good agreement with the clone library 
results. The sequence of dominating DGGE bands showed affiliation to Rhodoferax 
sp., a phototrophic, purple non-sulfur betaproteobacterium and to Sulfurimonas sp., 
a hydrogen-oxidizing chemolithoautotrophic bacterium isolated from a rearing tank 
with dissolved hydrogen (Panosyan and Birkeland 2014; Panosyan et al. 2017).

Samples from the Arzakan spring were screened also with advanced metage-
nomic approaches. Amplification of small-subunit rRNA genes using “universal” 
primers followed by pyrosequencing (pyrotags) on 454 GS FLX platform also 
revealed highly diverse microbial communities in Arzakan mat samples (Hedlund 
et al. 2013).The spring in Arzakan was colonized by a photosynthetic mat domi-
nated by Cyanobacteria, in addition to Proteobacteria, Bacteroidetes, Chloroflexi, 
Spirochaeta, and a diversity of other Bacteria. It was shown that in Arzakan spring, 
relatively few (16%) of the total pyrotags could be assigned to known genera, under-
scoring the novelty of these ecosystem and the need for continued efforts to culti-
vate and describe microorganisms in geothermal systems.

The phylogenetic analysis of Bacteria identified the dominant phylotypes as mem-
bers of Proteobacteria. The phylogeny for Proteobacteria revealed considerable diver-
sity. While it is not possible to predict their metabolism from environmental sequences 
alone, the closest phylogenetic affiliations were to aerobic and anaerobic heterotrophs 
and methanotrophs (within the Proteobacteria lineage). It was established that the pri-
mary production of the Arzakan geothermal system supports by a complex microbial 
community composed of chemolithotrophs (hydrogen- and sulfide-oxidizing 
Epsilonproteobacteria and methanotrophic Gammaproteobacteria) and phototrophs 
(Cyanobacteria and purple non-sulfur anoxygenic phototrophic Betaproteobacteria). 
The most abundant Cyanobacteria OTUs were confidently assigned to the genera 
Spirulina, Stanieria, Leptolyngbya, and Rivularia/Caldithrix.

To study bacterial diversity of the hot spring in Jermuk (Armenia), 454 GS FLX 
pyrosequencing of V4–V8 variable regions of the small-subunit rRNA was applied. 
As reported, the most abundant phyla represented in the pyrotag dataset from 
Jermuk were the Proteobacteria, Bacteroidetes, and Synergistetes (Hedlund et al. 
2013). Several abundant Proteobacteria OTUs were related to obligate or facultative 
chemolithoautotrophs capable of using sulfur compounds, Fe2+, and/or H2 as elec-
tron donors, including the genera Thiobacillus, Sulfuricurvum, Sideroxydans, and 
Hydrogenophaga, suggesting the importance of chemolithotrophy in primary pro-
ductivity (Kampfer et  al. 2005; Kellermann and Griebler 2009; Kodama and 
Watanabe 2004; Liu et al. 2012). The gross morphology of the mat was consistent 
with iron precipitation at the spring source as ferrous iron supplied from the subsur-
face is oxidized as the spring water becomes oxygenated. The Bacteroidetes were 

4 Microbial Diversity of Terrestrial Geothermal Springs in Lesser Caucasus

https://en.wikipedia.org/wiki/Purple_non-sulfur_bacteria


100

diverse, and many OTUs could not be assigned to known genera. An exception was 
an abundant OTU assigned to the genus Lutibacter, which contains chemoorgano-
trophs most commonly found in marine environments (Lee et  al. 2006). Other 
Bacteroidetes and the Synergistetes in Jermuk are likely involved in heterotrophic 
processing of mat exudates and biomass.

DGGE analysis of the partial bacterial 16S rRNA gene PCR amplicons also was 
used to profile bacterial populations inhabiting the sediment and water fractions in 
the Jermuk geothermal spring. The sequence analysis of DGGE bands showed affil-
iation with Epsilonproteobacteria, Bacteroidetes, Spirochaetes, Ignavibacteriae, 
and Firmicutes. The sequences obtained from bands were related to anaerobic or 
facultatively anaerobic organotrophic or H2-utilizing and thiosulfate-/sulfur- 
reducing bacteria. Heterotrophic microorganisms detected in the DGGE profile 
clustered among fermentative microorganisms, which are actively involved in 
C-cycle (Panosyan 2017).

Culture-independent technique with an emphasis on members of the Archaea 
was used to determine the composition and structure of microbial communities 
inhabiting microbial mats in the source pools of two geothermal springs, Arzakan 
and Jermuk. Based on an analysis of near full-length small-subunit rRNA genes 
amplified using Archaea-specific primers, it was shown that these springs are 
inhabited by a diversity of methanogens, including Methanomicrobiales and 
Methanosarcinales and relatives of Methanomassiliicoccus luminyensis, close 
relatives of the ammonia-oxidizing archaeon (AOA) “Candidatus Nitrososphaera 
gargensis,” and the yet-uncultivated Miscellaneous Crenarchaeotal Group and Deep 
Hydrothermal Vent Crenarchaeota group 1 (Fig. 4.4) (Hedlund et al. 2013). Archaeal 
sequences were present at low abundance in both pyrotag datasets, with six 
archaeal pyrotags in three OTUs in Arzakan and nine pyrotags in six OTUs in 
Jermuk. The Methanosarcinales were represented in both pyrotag datasets, with 
Methanomethylovorans detected in Jermuk, and Methanosaeta and a sequence that 
could not be classified below the order level were detected in Arzakan. Close 
relatives of Methanospirillum hungatei, in the order Methanomicrobiales, were 
inferred to be abundant in both springs. In addition, two phylotypes in Arzakan 
were related to the genus Methanoregula, also in the Methanomicrobiales. 
Members of both genera use H2/CO2 and/or format as methanogenic substrates; 
however, their presence in the geothermal systems was somewhat surprising since 
they are not reported to grow above 37 °C. The other order of methanogens present 
in both springs was Methanosarcinales, represented by Methanosaeta and 
Methanomethylovorans. Methanosaeta was abundant in Jermuk and includes obli-
gate acetoclastic species known to grow up to 60 °C (Liu and Whitman 2008).

Recently, Illumina HiSeq2500 paired-end sequencing of metagenomic DNA also 
was used to analyze water/sediment samples of the Jermuk hot spring. Taxonomic 
analyses of the metagenomic rRNA sequences revealed a prevalence of Proteobacteria 
Firmicutes and Bacteroidetes. However, many of the largest contigs represented 
uncharacterized or poorly characterized groups such as candidate division WS6 and 
candidate phylum Ignavibacteria. The archaeal community, constituting a minor 
fraction (~1%) of the community, was dominated by Euryarchaeota, followed by 
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Crenarchaeota, unclassified groups, and a minor fraction of Thaumarchaeota. The 
functional composition based on metagenomics sequence information indicated a 
dominance of heterotrophic types of metabolism (Poghosyan 2015).

For investigation of the bacterial composition of sediment and water samples 
from the Zuar geothermal spring (Nagorno-Karabakh), only a bacterial clone library 

Fig. 4.4 Maximum-likelihood phylogeny depicting relationships between near-complete archaeal 
16S rRNA genes recovered from Arzakan (red) and Jermuk (blue) and closely related sequences, 
including well-studied microbial isolates. Percent values for each OTU represent the percent 
abundance of the OTU in the clone library. Bootstrap support is indicated at major nodes for 
maximum-likelihood (ML; 100 replicates), parsimony (P; 1000 replicates), and distance (neighbor- 
joining, NJ; 1000 replicates) methods. Taxonomic designations for major phylogenetic groups are 
shown at the right (Hedlund et al. 2013)
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based on 16S rRNA genes was constructed. It was shown that clones obtained from 
the Zuar geothermal spring originated from phyla Proteobacteria (42.3%), 
Firmicutes (19.2%), Bacteroidetes (15.4%), Cyanobacteria (3.8%), Tenericutes 
(3.8%), and yet-unclassified phylotypes (15.4% for Zuarr) (Saghatelyan et al. 2014).

According to the recent report of sequence analysis of clones obtained from bac-
terial 16S rRNA gene libraries, the presence of Proteobacteria (48.6%), 
Cyanobacteria (29.7%), Bacteroidetes (5.4%), Chloroflexi (5.4%), Verrucomicrobia 
(2.7%), and Planctomycetes (2.7%) in sediment and water samples in Karvachar 
(Nagorno-Karabakh) hot spring (Fig. 4.5) was indicated (Saghatelyan and Panosyan 
2015). The dominating bacterial group was the phylum Proteobacteria. A few phy-
lotypes belonging to the phylum Bacteroidetes were obtained. One of the dominat-
ing groups was Cyanobacteria, representatives of which dominate especially on top 
layer of microbial mats and are the most important primary producers in hot spring 
ecosystems (Roeselers et al. 2007).

Representatives of phylum Firmicutes were not detected in the clone library, 
while DGGE profiling of the same samples indicated presence of Firmicutes (genus 
Geobacillus) as a one of the major components in bacterial community of Karvachar 
geothermal spring (Panosyan 2017). This has been confirmed later by metagenome 
analysis of the Karvachar hot spring samples.

Based on recent data (unpublished data) obtained from the whole-genome shot-
gun sequencing of sediment samples of Karvachar, using an Illumina HiSeq 2500 
platform, 580 bacterial sequences were aligned to reference genes (NCBI RefSeq), 
belonging to the following bacterial taxonomical groups: Actinobacteria;  
Alpha-, Beta-, Delta-, Epsilon-, and Gammaproteobacteria; Bacteroidetes/
Chlorobi; Firmicutes; Chlamydiae; Cyanobacteria/Melainabacteria; Fusobacteria; 
and Synergistia. Among these groups, Proteobacteria (Alpha-, Beta-, and 
Gammaproteobacteria) and Firmicutes were the major components in the total bac-
terial sequence reads (Fig. 4.5). The sequences affiliated with Gammaproteobacteria 
were predominant (48.96% of Proteobacteria, 235 out of 480), and most of them 
were closely (98–100%) related to cultured Gammaproteobacteria. Representative 
of the groups of Porphyrobacter, Paracoccus, and Oceanibaculum was predomi-
nate Alphaproteobacteria found in study samples. The majority of sequences 
derived from spring were closely related (95–99% identity) to Porphyrobacter 
cryptus, a slightly thermophilic, aerobic, bacteriochlorophyll a-containing species 
isolated from a hot spring at Alcafache in Central Portugal (Rainey et al. 2003).

Betaproteobacterial-related sequences were the third major group of obtained 
bacterial sequences (20.6% of Proteobacteria, 99 out of 480). The majority of the 
obtained sequences showed 92–100% similarity to Caldimonas taiwanensis, an aer-
obic amylase-producing heterotrophic bacterium isolated from a hot spring located 
in Taiwan (Chen et al. 2005) and 94–99% of similarity to representatives of genus 
Tepidimonas, particularly to the species T. taiwanensis, T. thermophilus, and T. fon-
ticaldi, isolated from hot springs in Taiwan and India (Chen et al. 2013; Poddar et al. 
2014). Forty sequences (6.9%, 40 out of 580) were affiliated with Firmicutes. Around 
10.3% (60 out of 580) of the total bacterial clone sequences were affiliated with some 
minor groups, such as Actinobacteria, Bacteroidetes/Chlorobi, Chlamydia, 
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Cyanobacteria/Melainabacteria, Fusobacteria, and Synergistia. Most of these 
sequences were closely (98–99%) related to clones retrieved from water environ-
ments and different habitats (Anil Kumar et al. 2010; Yoon et al. 2009). Phototrophic 
bacteria belonging to genera Neosynechococcus, Pseudanabaena, and Fischerella 
represented the three most abundant and metabolically active primary producers of 
the analyzed community. Most Cyanobacteria detected were related to others previ-
ously reported in thermophilic environments (Portillo et al. 2009). Representatives of 
genus Rhodobacter (purple non-sulfur anoxygenic phototrophs) and other photo-
trophic microbes were found to share these environments with the cyanobacteria.

The sequence reads from the Samtredia geothermal spring (Georgia) water sam-
ple, obtained from the whole-genome shotgun sequencing on Illumina HiSeq 2500 
platform, showed high similarity (>90%) to 938 bacterial and 15 archaeal reference 
sequences (Fig. 4.6). The majority of bacterial sequence reads were affiliated 
with the Firmicutes (33%) and Gammaproteobacteria (32%), followed by 
Actinobacteria (15.5%), Betaproteobacteria (9.1%), Alphaproteobacteria (2.9%), 
Chlamydia (1.6%), and Bacteroidetes (1.5%). Other groups of Prokaryotes 
(Aquificae, Deinococcus-Thermus, Deltaproteobacteria, Epsilonproteobacteria, 
Acidithiobacillia, Planctomycetes, Cyanobacteria/Melainabacteria group) com-
prised a minority, less than 1% of the communities. Archaeal sequence reads were 
affiliated with Crenarchaeota (1.4%) and Euryarchaeota (0.2%) (unpublished data).

The most dominant phylum, Firmicutes, was represented by genera Streptococcus, 
Enterococcus, Clostridioides, Bacillus, and Listeria. The majority of these bacteria 
can be recovered from a wide range of habitats. Firmicutes representatives consid-
ered as inhabitants of thermal waters include genera such as Geobacillus, 
Thermoanaerobacter, Desulfotomaculum, and Desulfovirgula have been revealed 
in the Samtredia hot spring. Similarly to other above described thermal waters, 
Proteobacteria were largely represented in the sequence reads. Four hundred and 
twenty two sequences (45%, 422 out of 938) were affiliated with Proteobacteria, 

Fig. 4.5 Phylum level grouping of bacterial sequence read obtained from Karvachar geothermal 
spring
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belonging to following subgroups: Alpha-, Beta-, Gamma-, and Deltaproteobacteria. 
The sequences affiliated with Gammaproteobacteria were predominant (72.5% of 
Proteobacteria, 306 out of 422). The dominant groups were Escherichia, 
Acinetobacter, Pseudomonas, Salmonella, and Legionella. Surprisingly most gam-
maproteobacterial sequences were Escherichia-related sequences. These microbes 
are not autochthons for hot springs and could be considered as contaminants.

Betaproteobacterial-related sequences were the second major group of obtained 
proteobacterial sequences (20.6% of Proteobacteria, 87 out of 422). The genera of 
Caldimonas and Tepidiphilus, representing the hot spring microbiota, were one of 
the minor groups of Betaproteobacteria found in the study samples. 
Alphaproteobacterial-related sequences comprised 6.6% of Proteobacteria and 
were represented mainly by nonindigenous bacteria. Actinobacteria accounted for a 
significant portion of bacteria, composing 15.8% (148 out of 938) of total bacterial 
populations dominated by Mycobacteria, while the Deinococcus-Thermus group 
was mainly represented by thermophilic bacteria belonging to the genus Thermus. 
Aquificales accounted for 0.8% of the reads, affiliated to facultatively anaerobic, 
hydrogen- or sulfur-/thiosulfate-oxidizing, thermophilic bacteria belonging to genus 
Sulfurihydrogenibium. Less than 5% of the total bacterial sequences were aligned 
with some other minor groups, such as Acidithiobacillia, Bacteroidetes/Chlorobi, 
Chlamydia, Cyanobacteria/Melainabacteria, and Planctomycetes. Most of these 
sequences were closely related to clones retrieved from water and soil environments.

The microbial diversity of the Tbilisi sulfur spring (Georgia) was analyzed using 
whole-genome shotgun sequencing using Illumina MiSeq platform (unpublished 
data). The sequences obtained from metagenomic DNA showed high similarity 
(>90%) to 1090 RefSeq database reference sequences, revealing 240 species. The 
thermal water was dominated by Gammaproteobacteria (46.4% of total reads) 
followed by Firmicutes (20.6%), Betaproteobacteria (16.4%), Actinobacteria 
(6.1%), Alphaproteobacteria (5.7%), Chlamydiae (1.7%), and Bacteroidetes (1.5%). 

Fig. 4.6 Phylum level grouping of sequences obtained from Samtredia geothermal spring water 
sample
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Deinococcus-Thermus, delta/epsilon subdivisions, Acidithiobacillus Cyanobacteria/
Melainabacteria group, and Synergistia comprised a minority of the prokaryotic 
populations accounting for less than 1% of total reads for each group (Fig. 4.7). 
Archaeal sequence reads were also in minority, belonging to the Euryarchaeota and 
comprising 0.2% of total reads.

Gammaproteobacteria were represented by 35 bacterial genera, dominated by 
Escherichia (30%), Pseudomonas (24%), Xanthomonas (11%), Legionella (5%), 
Salmonella (3.5%), and Acinetobacter (2.8%). Some of these bacteria are found in 
diverse habitats and may also cause diseases in humans. Interestingly, Pseudomonas, 
Legionella, and Acinetobacter were reported in a variety of geothermal springs (Lin 
et  al. 2007; Petursdottir et  al. 2009; Saxena et  al. 2017). The sulfur spring also 
harbored Silanimonas lenta (3,5%), belonging to moderately thermophilic 
alkaliphilic bacteria isolated from a hot spring in Korea (Lee et al. 2005), purple 
sulfur bacteria Ectothiorhodospira, and thermophilic bacterium Thermomonas 
hydrothermalis isolated from a hot spring in Central Portugal (Alves et al. 2003).

The second most abundant group of bacteria was Firmicutes, including represen-
tatives belonging to the Bacillus and related genera such Geobacillus and 
Tepidibacillus.

Betaproteobacteria were dominated by Neisseria (29%), presumably allochtho-
nous bacteria. The other two most prevalent betabacteria inhabiting the studied 
spring were amylase-producing Caldimonas taiwanensis (22%) and alkaline-prote-
ase-producing Tepidimonas taiwanensis (14%), thermophilic bacteria reported in 
geothermal springs in Taiwan (Chen et al. 2005; Chen et al. 2006) and, as described 
above, have been found in the Karvachar hot spring as well.

Actinobacteria were represented by 12 genera dominated by Streptomyces and 
Mycobacteria that may inhabit thermal spring environments. Streptomyces spp. are 
known to produce various enzymes and biological active compounds, including 
antimicrobials, and can be readily isolated from geothermal environments (Al-Dhabi 

Fig. 4.7 Phylum level grouping of sequences obtained from Tbilisi sulfur spring water sample
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et al. 2016). Mycobacteria, with potential to cause diseases in humans, have been 
also found and isolated from the sulfur hot springs (Lee et al. 2015).

Alphaproteobacteria of the sulfur spring comprised 18 genera dominated by 
Mesorhizobium (23% of total Alphaproteobacteria reads) and Thalassobius (16%) 
species. Though these bacteria were not described in the hot springs, they have been 
found in diverse environments such as marine waters and soils (Arahal et al. 2005; 
Yuan et al. 2016), indicating possibility of their presence in thermal waters as well.

The Bacteroidetes/Chlorobi group was represented by 12 genera with 25% and 
12% of sequence reads aligned to Bacteroides and Pedobacter reference genes, 
respectively. Bacteroides spp. have not been described in geothermal waters and can 
be considered as a contaminant, while the presence of Pedobacter has been reported 
in an alkaline hot spring in Thermopolis (Buckingham et al. 2013).

The delta/epsilon subdivision comprised a minority of the sulfur spring micro-
bial population represented only with five genera, including the sulfur-reducing 
microaerophilic bacterium Sulfurospirillum that could be considered as natural 
inhabitant of this geothermal spring. The Deinococcus-Thermus group was also 
in minority, represented by Meiothermus taiwanensis, aerobic, thermophilic, 
non- sporulating, filamentous bacteria reported in a hot spring in Taiwan (Chen 
et al. 2002).

The sulfur spring was inhabited by two methanogenic Euryarchaeota species, 
Methanolacinia paynteri and Methanosarcina mazei. The optimum growth 
conditions for Methanolacinia paynteri are pH 6.6–7.2, temperature 40 °C, and the 
sulfide may serve as the sulfur source (Zellner et al. 1989), thus presence of this 
archaeon in the sulfur spring is not surprising. Methanosarcina spp. can survive in 
a variety of habitats, including extreme environments and may use different 
metabolic pathways to produce methane (Assis das Graças et al. 2013).

In addition to whole metagenomic DNA sequencing, the microbial diversity of 
the sulfur spring was also analyzed using a PCR/DGGE approach. The majority of 
DGGE bands were affiliated with Betaproteobacteria involved in sulfur cycle, such 
as species belonging to the genera Sulfurisoma, Thiobacillus, and oxalotrophic bac-
terium Oxalicibacterium faecigallinarum.

The study has also revealed the presence of the methanogen Methanosaeta har-
undinacea, belonging to Euryarchaeota, confirming that the methanogenic 
Euryarchaeota dominate archaeal populations of the sulfur spring.

4.3.2  Cultivation-Dependent Studies

Cultivable approaches have been used for analysis of microbial diversity associated 
with hot springs. Several studies have been performed on the description of novel 
genera, species and strains, characterization of different bio-resources, and whole- 
genome analysis of a few isolates from geothermal springs in the Lesser Caucasus. 
Many thermostable enzymes, including lipase, protease, amylase, DNA polymerase, 
aspartase, aminoacylase, glucose isomerase and inulinase, producers of EPS, pro-
tein and vitamins, enrichments of nitrite-oxidizing bacteria (NOB), and 
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methylotrophic, acetoclastic, and hydrogenotrophic methanogens with potential 
biotechnological applications have been reported by several authors (Table 4.3).

Overall, all isolates of bacteria and Archaea from the Lesser Caucasus belong to 
more than 40 distinct species of 21 different genera, namely, Bacillus, Geobacillus, 
Anoxybacillus, Paenibacillus, Brevibacillus, Aeribacillus, Ureibacillus, 
Thermoactinomyces, Sporosarcina, Thermus, Rhodobacter, Thiospirillum, Thiocapsa, 
Rhodopseudomonas, Methylocaldum, Desulfomicrobium, Desulfovibrio, Treponema, 
Arcobacter, Nitrospira, and Methanoculleus. The members of phylum Firmicutes 
were most dominant among the identified bacteria isolated from all thermal springs. 
Culture-dependent studies indicate that Bacillus and related genera were ubiquitous 
and predominant in harsh environments of high temperatures. Representatives of the 
genera Geobacillus and Anoxybacillus are the most highly distributed obligate ther-
mophiles in the Lesser Caucasus hot springs. All isolates from the hot springs that 
belonged to the genus Bacillus were thermotolerant microorganisms among which B. 
licheniformis appeared as the dominating species. All studied springs demonstrated 
significantly lower content of species belonging to genera Brevibacillus, Ureibacillus, 
Paenibacillus, Thermoactinomyces, and Sporosarcina.

Bacteria belonging to the genera Bacillus and Thermus were mostly reported as 
aerobic, heterotrophic thermophiles and found in thermal systems with neutral to 
alkaline pH (Spanevello and Patel 2004). Although Thermus spp. may be 
predominant heterotrophs in many hot springs (Hjorleifsdottir et  al. 2001), they 
were isolated only from the Karvachar hot spring.

Several strains representing potentially novel species were reported from the 
Akhurik, Jermuk, and Karvachar geothermal springs. Two novel strains belonging 
to genera Anoxybacillus and Treponema were reported from the hot spring at 
Jermuk. A novel species belonging to genus Anoxybacillus and a new strain belong-
ing to Thermus scotoductus were reported from the Karvachar spring (Saghatelyan 
et al. 2015; Hovhannisyan et al. 2017). 16S rRNA gene sequences of a methanotro-
phic isolate from Akhurik geothermal spring showed that it was a new gammapro-
teobacterial methanotroph, forming a separate clade in the Methylococcaceae 
family. It fell into a cluster with thermotolerant and mesophilic methanotrophs, 
comprising the genera Methylocaldum-Methylococcus- Methyloparacoccus-
Methylogaea. The genes pmoA, mxaF, cbbL, and nifH were detected, but no mmoX 
gene was found. The strain probably represents a novel methanotrophic genus 
(Islam et al. 2015).

Whole-genome analysis of the hot spring isolates was a major thrust area of 
investigation. Whole-genome shotgun sequencing of novel species isolated from 
hot springs at Jermuk (Treponema thermophilum sp. nov) and Karvachar 
(Anoxybacillus sp. strain K103) was performed (Poghosyan 2015; Hovhannisyan 
et al. 2017). Similarly, the whole-genome sequence of Thermus scotoductus K1 was 
reported following its isolation from the Karvachar spring (Saghatelyan et al. 2015).

Attention was also paid to the bioprospecting of geothermal spring’s microbes 
with an intention of using these resources for commercial applications. In total, 135 
thermophilic and thermotolerant bacilli strains were isolated under aerobic 
conditions at 55–65 °C and identified based on 16S rRNA gene sequence analysis 
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as representatives of genera Bacillus, Geobacillus, Anoxybacillus, Paenibacillus, 
Brevibacillus, Aeribacillus, Ureibacillus, Thermoactinomyces, and Sporosarcina. 
These thermophilic bacilli were tested for hydrolytic enzyme production capacities, 
and biotechnologically valuable enzyme producers were selected (Panosyan 2017). 
The majority of the studies focused on hydrolytic enzymes like lipase 
(Vardanyan et al. 2015; Shahinyan et al. 2017), amylase (Hovhannisyan et al. 2016), 
and protease (Panosyan 2017).

Some phototrophic bacteria isolated from Armenian hot springs were good pro-
ducers of enzymes such as aspartase, aminoacylase, glucose isomerase, and inulin-
ase, as well as sources of protein, carbohydrates, and vitamins (Paronyan 2003). 
Two isolates belonging to the genus Geobacillus are able to produce heteropoly-
meric EPSs with high molecular weight (Panosyan et al. 2014).

Prospective microbes from hot springs offer a major advantage of preserving 
those strains for future studies and exploring them in due course for potential 
biotechnological applications in medical, industrial, and agricultural processes.

4.4  Correlation Between Geophysiology and Microbiology 
of the Hot Springs in the Lesser Caucasus

Understanding the microbial community structure in hot springs with different ecol-
ogies is important to elucidate community functions and their importance for the 
maintenance of hot spring ecosystems.

In general, microbial diversity was inversely correlated with temperature, and 
temperature has been shown to be a key factor in controlling the microbial diversity 
in hot springs (Wang et al. 2013). Thermophilic or hyperthermophilic Bacteria are 
commonly present in high-temperature hot springs (>75  °C) (Hou et  al. 2013). 
When temperature is suitable for photosynthesis (<75 °C), moderately thermophilic 
and mesophilic phototrophic Bacteria are important members in terrestrial thermal 
springs, such as Cyanobacteria, Chloroflexi, and phototrophic representatives of 
Proteobacteria (Cox et al. 2011). In addition to Bacteria, members of the archaeal 
phyla Crenarchaeota, Euryarchaeota, and Thaumarchaeota are also commonly 
detected in geothermal systems (Ochsenreiter et al. 2003; Zhang et al. 2008).

The comparison of microbial species abundance and diversity in the Lesser 
Caucasus hot springs with those available internationally displays similar patterns. 
It was shown earlier that there is a negative correlation between spring temperature 
and diversity of microbes (Wang et al. 2013; Poddar and Das 2017).

Prokaryotic diversity was found to be low at high-temperature springs in contrast 
to low-temperature springs. Temperature has also been shown to drive phylum 
diversity in hot springs. Most of the studied hot springs in the Lesser Caucasus have 
a temperature below 50  °C and harbor bacterial species pertaining to phyla 
Firmicutes, Proteobacteria, Bacteroidetes, and Cyanobacteria, although with 
varying abundance between springs. Springs with higher temperatures also 
contained thermophiles belonging to Actinobacteria, Deinococcus-Thermus, and 
Aquificae. Representatives of the phylum Firmicutes were most versatile in the 
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investigated hot springs and could populate hot springs with a wide range of 
temperatures. These observations are in accordance with many global studies 
indicating that thermophilic bacteria belonging to phyla Aquificae, Deinococcus- 
Thermus, and Firmicutes were abundant in the hot springs with high temperatures, 
whereas mesophilic bacterial members of Cyanobacteria, Chloroflexi, and 
Proteobacteria mostly occupy mesothermal hot springs (Wang et  al. 2013). 
Cyanobacteria are the most commonly reported microbial group in these types of 
environments and are considered to be the major primary producers in these habitats 
(Castenholtz 1973). It was shown earlier that moderate-temperature geothermal 
systems cool enough to permit phototrophy at the source with neutral or alkaline pH 
are often colonized by visible microbial growth that forms laminated mats or 
streamers dominated by phototrophic bacteria (Klatt et al. 2011). Relatively low- 
temperature (>75 °C) and neutral pH in all studied springs can support growth of 
phototrophic bacteria due to obvious light effect in the outlet of the spring.

A comparison of the optimum growth temperature of the closest cultivated rela-
tives of the microorganisms detected in the clone libraries, DGGE profiles, or pyro-
tags suggested that most of the microorganisms, including microorganisms 
representing some of the most dominant groups, are likely able to grow at reservoir 
temperature and, therefore, should not be regarded as contaminants. The bacterial 
metagenomic DNA sequences also affiliated with taxa that are not described in the 
literature as being associated with geothermal environments. This can be explained 
by the presence of contamination from surrounding soils. Although most of the 
retrieved sequences were most similar to environmental sequences representing 
uncultured bacteria from various habitats, some of them were phylogenetically 
associated with environmental clones obtained from similar habitats.

Archaea appeared to be a minority in the prokaryotic community. High- 
temperature environments were previously generally believed to be the realm of 
Archaea (Li et al. 2015; Urbieta et al. 2015; Chan et al. 2017). However, recent 
studies applying molecular methods have revealed that bacteria rather are the 
predominant prokaryotic communities in such environments (Badhai et al. 2015; 
López-López et  al. 2015). The factors that allow bacteria to dominate in high- 
temperature habitats are not well understood.

All reported Lesser Caucasus springs have circumneutral pH and, therefore, har-
bor a microbial community different from acidic hot springs environments (Purcell 
et al. 2007; Poddar and Das 2017). Acidic springs have been reported to contain 
chemolithotrophic acidophiles belonging to genera Acidithiobacillus, Sulfobacillus, 
Hydrogenobaculum, Acidobacteria, Acidimicrobium, etc. that participate in Fe and 
sulfur oxidation in those environments (Burgess et al. 2012; Urbieta et al. 2015; 
Skirnisdottir et al. 2000). Acidophiles were hardly detected in Lesser Caucasian hot 
springs. Bacterial species isolated from the studied hot springs exhibited optimal 
growth at neutral pH and could not grow at low pH conditions. It was shown by 
many investigators that Firmicutes and Proteobacteria are the phyla consistently 
present in circumneutral hot springs. Results obtained from Lesser Caucasus geo-
thermal springs also are in line with observations of microbial assemblages distrib-
uted in hot springs with pH ≥ 7 globally (Nakagawa and Fukui 2002; Wang et al. 
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2013). In general, Archaea are not dominant in circumneutral hot springs, which is 
in agreement with several recent reports with similar pH ranges (Wang et al. 2013; 
Merkel et al. 2017).

Environmental conditions and the nutritional status in a natural habitat may drive 
the development of a particular microbial group or population. The set of abiotic 
factors allow natural selection of a few species that can dominate and multiply in the 
ecologically relevant niche. Limited carbon and nitrogen sources and high 
temperature of the springs located in the Lesser Caucasus allowed also the 
development of a unique population dominated by a large number of bacilli 
including Geobacillus and Anoxybacillus spp.

Besides temperature and pH, the limiting factor for microbial diversity and 
biomass could be a combination of abiotic factors including dissolved gasses 
(H2, CO2, H2S, CH4) and high mineralization. The geothermal systems of the 
Lesser Caucasus are known to contain high concentrations of minerals, and 
thus, the mineralization may also have a strong influence on the community 
composition. Recent studies have also highlighted that other factors, such as 
biogeography and geological history, can be important in determining the  
thermophilic diversity of geothermal springs (Whitaker et  al. 2003; Takacs-
Vesbach et al. 2008).

4.5  Conclusion

Investigations of the geothermal springs’ microbiome are important for under-
standing the microbe-mediated biogeochemical cycles and ecosystem functioning 
as well as exploring the biotechnological potency of thermophilic isolates. This is 
the first comprehensive census of the microbial communities thriving in 11 geo-
thermal springs of the Lesser Caucasus. Firmicutes, Proteobacteria, Bacteroidetes, 
and Cyanobacteria were the signature phyla in all 11 hot springs that along with 
the presence of site-specific taxa contributed to the uniqueness of each spring. 
Archaea appeared to be a minority in the prokaryotic community composing less 
than 1% of all microbial population. Overall, microbial diversity and richness 
were negatively affected by increasing temperature. Other influential factors 
shaping the microbiota of the studied Lesser Caucasus circumneutral geothermal 
springs appear to be pH and mineralization. Biogeography and geological history 
should not be ignored in microbial ecology studies, as all abiotic factors collec-
tively contribute to the dynamics of the microbial populations. Many new thermo-
philic microbes mainly belonging to the Bacillus and related genera have been 
isolated, identified, and evaluated taking into account their biotechnological 
potency.

The present work, therefore, extends the previous sphere of information 
 regarding the thermophilic bacterial diversity of thermal springs in the Lesser 
Caucasus.
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Abstract
A large number of thermophilic representatives of the Geobacillus and 
Anoxybacillus genera have been isolated from geographically distant and 
physicochemically different environments, including high-, moderate-, and low- 
temperature habitats. However, terrestrial hot springs are the main habitats for 
Geobacillus and Anoxybacillus species. The members of these genera possess a 
variety of thermo-adaptive features that enable them to thrive at elevated tem-
peratures. Due to their ability to withstand harsh environmental conditions, geo-
bacilli and anoxybacilli are a valuable source for provision of thermostable 
enzymes, such as amylases, lipases, proteases, etc., and other components. 
Thermostable enzymes obtained from thermophilic bacilli have found a plethora 
of commercial applications due to their sturdiness and toughness in withstanding 
the heat generated in various biotechnological and industrial processes. This 
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chapter contains a review of studies of geobacilli and anoxybacilli from  terrestrial 
geothermal springs worldwide with special emphasis on their distribution 
and diversity, ecological significance, adaptive mechanisms, enzymes, and 
biotechnological potential.

Keywords
Terrestrial geothermal springs · Geobacillus · Anoxybacillus · Thermostability · 
Thermostable enzymes · Extremophiles

5.1  Introduction

Terrestrial hot springs are manifestations of geological activity and represent aquatic 
microcosms that are formed by the emergence of geothermally heated groundwater 
from the Earth’s crust (Mehta and Satyanarayana 2013b). Terrestrial hydrothermal 
springs represent extreme environments and have been found worldwide, like those 
in Yellowstone National Park, which harbor the closest relatives to the original 
organisms that lived on our planet. Finding these features on Mars (or any other 
planet) could have big implications for the question of extraterrestrial life (Van 
Kranendonk et al. 2017). Hence, the microbiota thriving in geothermal hot springs 
have been the subject of extensive research. Among the diversity of microbes har-
boring the hot springs in different parts of the world, members of the Geobacillus 
and Anoxybacillus genera were frequently isolated and extensively studied during 
the last decades. The members of Geobacillus and Anoxybacillus genera are ther-
mophilic bacilli, which have adapted to grow optimally at temperatures ranging 
from 35 to 75 °C (Bergey et al. 2009). The ability of these microorganisms to grow 
at high temperatures has made them suitable objects for studying and understanding 
the thermostability mechanisms for the microbial adaptations to harsh conditions.

Thermophilic bacilli constitute valuable sources for various biotechnological 
products (Antranikian 2007; Satyanarayana et  al. 2012). The members of the 
Geobacillus and Anoxybacillus genera have shown tremendous potential in biotech-
nology because of their ability to produce unique thermostable enzymes and pro-
teins with high industrial and economical values (Antranikian 2007; Gurumurthy 
and Neelagund 2012). The recent interest in biotechnology, coupled with the 
discovery of novel thermophilic bacilli, has prompted studies on the utilization of 
thermophiles and their enzymes, such as amylase (Gurumurthy and Neelagund 2010, 
2012, Rekadwad 2015, Acer et al. 2016), lipase (Balan et al. 2012; Mahadevan and 
Neelagund 2014; Ozdemir et al. 2015; Ay et al. 2011), protease (Hawumba et al. 
2002; Zhu et al. 2007; Nakamichi et al. 2010), xylanase (Sunna et al. 1997; Kacagan 
et al. 2008; Ellis and Magnuson 2012; Inan et al. 2013), and cellulase (Ibrahim and 
El-diwany 2007; Padilha et al. 2015).

Enzymes from these microorganisms are in great demand as they are not usually 
denatured at high temperatures but are rather more active. These enzymes are also 
more resistant to chemical reagents and extreme pH values in comparison with their 
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mesophilic homologues (Synowiecki 2010; Pinzon-Martinez et al. 2010). Moreover, 
their thermostability is associated with higher biochemical reaction rates, lower vis-
cosity, and less risk of contamination (Turner et al. 2007). All these factors have 
stimulated a renewed interest in the exploration of extracellular enzymatic activities 
of thermostable organisms.

The objective of this chapter is to review the findings of the diversity, thermosta-
bility mechanisms, and biotechnological applications of microbes belonging to gen-
era Geobacillus and Anoxybacillus from different terrestrial geothermal springs 
worldwide.

5.2  Taxonomy and Species Diversity

The genera Geobacillus and Anoxybacillus of the phylum Firmicutes comprise a 
group of Gram-positive, endospore-forming, rod-shaped, chemoorganotrophic ther-
mophilic bacteria, including obligate aerobes, denitrifiers, and facultative anaerobes 
that can grow over a temperature range of 35–75 °C. Their catabolic versatility, 
particularly in the degradation of starch, xylene, cellulose, and lipids, and rapid 
growth rates have raised their profile as organisms with high potential for industrial 
and biotechnological applications.

5.2.1  The Genus Geobacillus

The members of the genus Geobacillus were originally classified in the genus 
Bacillus, as thermophilic variants of Bacillus spp. For many years Bacillus stearo-
thermophilus (Donk 1920) was the only obligate thermophilic species of the genus 
Bacillus with a validly published name. After 1980, additional thermophilic species 
were proposed based on phenotypic analyses of novel isolates. Subsequent 16S 
rRNA gene sequencing indicated that B. stearothermophilus, Bacillus kaustophilus, 
and Bacillus thermoglucosidasius formed a phylogenetic lineage that was distinct 
from other Bacillus spp. (Ash et al. 1991). The continued development of genetic 
tools to facilitate both fundamental investigations and metabolic engineering and 
accumulating evidence for clustering of many of the thermophiles in a separate 
subgroup (group 5) supported by 16S rRNA analysis led to their reclassification as 
a separate genus (Nazina et al. 2001). Nazina et al. (2001) proposed that the six 
species of that lineage, namely, Bacillus stearothermophilus, B. kaustophilus, B. 
thermoglucosidasius, B. thermocatenulatus, B. thermoleovorans, and B. thermode-
nitrificans, should be placed in a new genus, Geobacillus, with G. stearothermophi-
lus as the type species and along with two novel species, G. subterraneus and 
G. uzenensis. B. pallidus (Scholz et al. 1987), Saccharococcus caldoxylosilyticus 
(Ahmad et al. 2000), and B. vulcani (Caccamo et al. 2000) were also transferred to 
the genus Geobacillus (Fortina et al. 2001; Banat et al. 2004; Nazina et al. 2004). 
Subsequently, six additional species, G. toebii (Sung et  al. 2002), G. gargensis 
(Nazina et al. 2004), G. debilis (Banat et al. 2004), G. lituanicus (Kuisiene et al. 
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2004), G. tepidamans (Coorevits et al. 2012), and G. jurassicus (Nazina et al. 2005), 
have been described. Currently the genus Geobacillus includes 20 species and 4 
subspecies (Bergey et al. 2009). Miñana-Galbis et al. (2010) proposed the further 
transfer of Geobacillus pallidus to the new genus Aeribacillus.

The evolutionary tree showing the phylogenetic relationships of Geobacillus 
species is presented in Fig. 5.1.

The majority of geobacilli strains grow in the temperature range 35–75 °C, with 
the optimum at 55–65 °C. Vegetative cells are rod-shaped and occur either singly or 
in short chains and are motile by means of peritrichous flagella, or they are nonmo-
tile. The cell-wall structure is Gram-positive, but the Gram-stain reaction may vary. 
Endospores are ellipsoidal or cylindrical and located terminally or subterminally in 

Geobacillus kaustophilus |X60618.1|
Geobacillus thermoleovorans |Z26923.1|
Geobacillus vulcani |AJ293805.1|

Geobacillus lituanicus |AY044055.1|
Geobacillus jurassicus |FN428697.1|

Geobacillus uzenensis |AF276304.1|
Geobacillus stearothermophilus |FN428694.1|

Geobacillus icigianus |KF631430.1|
Geobacillus gargensis |FR749979.1|

Geobacillus thermocatenulatus |AY608935.1|
Geobacillus subterraneus subsp. aromaticivorans |HE613733.2|
Geobacillus subterraneus |AF276306.1|
Geobacillus subterraneus subsp. subterraneus |AF276306.1|
Geobacillus thermodenitrificans subsp. calidus |EU477773.2|
Geobacillus thermodenitrificans |FN538993.2|
Geobacillus thermodenitrificans subsp. thermodenitrificans |FN538993.2|

Geobacillus caldoxylolyticus |AF067651.1|
Geobacillus thermantarcticus |FR749957.1|

Geobacillus thermoglucosidasius |FN428685.1|
Geobacillus galactosidasius |AM408559.1|

Geobacillus toebii |FN428690.2|
Geobacillus pallidus |Z26930.1|

Geobacillus tepidamans |FN428691.1|
Geobacillus debilis |FN428699.1|

96

72

59

71

94

67

75

93

97

96

95

100

63

87

0.0050

Fig. 5.1 Evolutionary relationships of species of the genus Geobacillus. The evolutionary history 
was inferred using the neighbor-joining method. The optimal tree with the sum of branch length = 
0.17390653 is shown. The percentage of replicate trees in which the associated taxa clustered 
together in the bootstrap test (1000 replicates) is shown next to the branches. Significant bootstrap-
ping values (>59%) are shown on the nodes. The analysis involved 24 16S rRNA nucleotide 
sequences of the type strains of Geobacillus species, obtained from NCBI GenBank (accession 
numbers shown between bars). All positions containing gaps and missing data were eliminated. 
There were a total of 1218 positions in the final dataset. Evolutionary analyses were conducted in 
MEGA7
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slightly swollen or non-swollen sporangia. Colony morphology and size are vari-
able; pigments may be produced on certain media. They are aerobic or facultatively 
anaerobic anaerobic. Oxygen is the terminal electron acceptor, replaceable in some 
species by nitrate. They are neutrophilic. Growth occurs at pH 6.0–8.5, with optimal 
growth at pH 6.2–7.5. Growth factors, vitamins, NaCl, and KCl are not required by 
most species. Most species can utilize n-alkanes as carbon and energy sources. Most 
species produce acid but not gas from fructose, glucose, maltose, mannose, and 
sucrose. Catalase and oxidase reaction varies. Most species produce extracellular 
thermostable hydrolytic enzymes that have high potential of use in industry. The 
major cellular fatty acids are C15:0 iso, C16:0 iso, and C17:0 iso, which make up 
more than 60% of the total. The main menaquinone type is MK-7. The lowest level 
of 16S rRNA gene sequence similarity between all Geobacillus species is around 
93%, which indicates that at least some species need to be reclassified at the genus 
level (Bergey et al. 2009). The average genome size for Geobacillus spp. ranges 
from 3.5 to 3.9 Mbp. The smallest genome was found in G. kaustophilus and the 
largest in G. thermoglucosidasius. This might reflect the additional coding require-
ments associated with anaerobic growth, additional CRISPR regions, as well as 
genes of unassigned function found between transposable elements in the genome 
of G. thermoglucosidasius. Despite the small genome, it was shown that the highest 
number of IS/transposable elements was present in the G. kaustophilus (Hussein 
et al. 2015).

Geobacillus species are widely distributed in nature, and being catabolically 
diverse, they are readily isolated from active communities growing in compost, hot 
springs, and deep geothermal sites, including oil wells and deep sediments. However, 
it has long been known that Geobacillus spp. can be isolated from a wide range of 
moderate- and low-temperature environments including temperate soils and have 
also been isolated from low-temperature environments such as the Bolivian Andes, 
deep seawater, and even the Mariana Trench (Hussein et al. 2015).

5.2.2  The Genus Anoxybacillus

Genus Anoxybacillus has only been described recently by Pikuta et al. (2000, 2003). 
Since then, the number of Anoxybacillus species has rapidly increased and now 
contains 22 validly described species and 2 subspecies. The following species of the 
genus have been reported up to date: Anoxybacillus pushchinoensis, A. flavithermus 
(Pikuta et al. 2000), A. gonensis (Belduz et al. 2003), A. contaminans (De Clerck 
et al. 2004), A. voinovskiensis (Yumoto et al. 2004), A. kestanbolensis, A. ayderensis 
(Dulger et al. 2004), A. kamchatkensis (Kevbrin et al. 2005), A. amylolyticus (Poli 
et al. 2006), A. rupiensis (Derekova et al. 2007), A. bogrovensis (Atanassova et al. 
2008), A. kamchatkensis subsp. asaccharedens (Gul-Guven et  al. 2008), A. ther-
marum (Poli et al. 2009), A. eryuanensis, A. tengchongensis (Zhang et al. 2011), A. 
salavatliensis (Cihan et al. 2011), A. mongoliensis (Namsaraev et al. 2010), A. fla-
vithermus subsp. flavithermus, A. flavithermus subsp. yunnanensis (Dai et al. 2011), 
A. caldiproteolyticus (Coorevits et al. 2012), A. tepidamans (Coorevits et al. 2012), 
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A. kaynarcensis (Inan et al.  2013), A. vitaminiphilus (Zhang et al. 2013), A. calidus 
(Cihan et al. 2014), and A. geothermalis (Filippidou et al. 2016). A. kaynarcensis 
and A. kamchatkensis subsp. asaccharedens are still not included in the validation 
list.

Most of the species belonging to genus Anoxybacillus were found to be a homo-
geneous phylogenetic group of thermophilic bacilli with high 16S rRNA gene 
sequence similarity values. A tree showing the phylogenetic relationships of species 
of the genus Anoxybacillus is shown in Fig. 5.2.

As it can be deduced from the genus name (“anoxybacillus” means small rod 
living without oxygen), the members of the genus Anoxybacillus are aerotolerant 

Anoxybacillus eryuanensis |GQ153549.1|
Anoxybacillus mongoliensis |EF654664.1|
Anoxybacillus flavithermus subsp. yunnanensis |HM016869.1|

Anoxybacillus pushchinoensis |AJ010478.1|
Anoxybacillus tengchongensis |FJ438370.1|

Anoxybacillus kestanbolinensis |AY248711.1|
Anoxybacillus flavothermus |Z26932.1|
Anoxybacillus flavothermus subsp. flavothermus |Z26932.1|

Anoxybacillus bogrovensis |AM409184.1|
Anoxybacillus kaynarcensis |EU926955.1|
Anoxybacillus ayderensis |AF001963.1|

Anoxybacillus gonensis |AY122325.1|
Anoxybacillus thermarum |AM402982.1|

Anoxybacillus kamchatkensis |AF510985.1|
Anoxybacillus salavatliensis |EU326496.2|

Anoxybacillus amylolyticus |AJ618979.1|
Anoxybacillus voinovskiensis |AB110008.1|

Anoxybacillus contaminans |AJ551330.1|
Anoxybacillus calidus |FJ430012.2|
Anoxybacillus vitaminiphilus |FJ474084.1|

Anoxybacillus caldoproteolyticus |FN428698.1|
Anoxybacillus tepidamans |FN428691.1|

Anoxybacillus geothermalis |KJ722458.1|
Anoxybacillus rupiensis |AJ879076.1|99
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Fig. 5.2 Evolutionary relationships of species of the genus Anoxybacillus. The evolutionary his-
tory was inferred using the neighbor-joining method. The optimal tree with the sum of branch 
length = 0.18764567 is shown. The percentage of replicate trees in which the associated taxa 
clustered together in the bootstrap test (1000 replicates) is shown next to the branches. Significant 
bootstrapping values (>60%) are shown on the nodes. The analysis involved 24 16S rDNA nucleo-
tide sequences of the type strains of Anoxybacillus species, obtained from NCBI GenBank. All 
positions containing gaps and missing data were eliminated. There were a total of 1031 positions 
in the final dataset. Evolutionary analyses were conducted in MEGA7
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anaerobes or facultative anaerobes (Pikuta et al. 2000). A. pushchinoensis, the type 
strain of this genus, was first described as obligate anaerobe (Pikuta et al. 2000) but 
was later described as an aerotolerant anaerobe (Pikuta et al. 2003).

The majority of Anoxybacillus species are moderate thermophiles (grow in the 
temperature range 30–75 °C, with the optimum at 50–62 °C). Vegetative cells are 
rod-shaped or straight or slightly curved, sometimes with angular division and 
Y-shaped cells, often in pairs or short chains, with rounded ends. The cells are 
motile or nonmotile. Endospores are round, oval, or cylindrical and have a terminal 
location. Colony morphology and size are variable. Most of the species produce 
cellular carotenoid like pigments, which yields yellow colonies. They are catalase- 
variable. Many members of the genus are alkaliphilic, but most of the species can 
grow at neutral pH. Only A. amylolyticus grows optimally at slightly acidic condi-
tions (pH 5.6). Anoxybacillus species are chemoorganotrophic, with a fermentative 
or aerobic respiration metabolism. They can use oxygen or nitrate as electron accep-
tors, and in the absence of electron acceptors, they perform fermentation by the 
Embden-Meyerhof-Parnas pathway.

Many species produce a variety of thermostable enzymes, such as amylase (Poli 
et al. 2006; Baltas et al. 2016), glucosidase (Cihan et al. 2011), esterase (Shahinyan 
et al. 2017; Chis et al. 2013), proteinase (Matpan Bekler et al. 2015; Nakamichi 
et al. 2010), and xylanase (Inan et al. 2013; Ellis and Magnuso 2012; Kacagan et al. 
2008).

Most species of the genus have been isolated from hot springs. They have been 
found also in geothermal soils, manure, hydrothermal vents, etc. (Bergey et  al. 
2009).

5.3  Distribution of Geobacillus and Anoxybacillus 
in Terrestrial Hot Springs

Since Thomas Brock made the remarkable discovery in 1966 that microorganisms 
were growing in the boiling hot springs of Yellowstone National Park, the search for 
thermophiles in terrestrial hot springs has increased. Terrestrial hot springs are cre-
ated by the emergence of geothermally heated groundwater from the Earth’s crust 
(Mehta and Satyanarayana 2013a, b). Thermophilic microbes have been discovered 
in geothermal springs all over the world, including areas in Asia, America, 
Kamchatka, Iceland, New Zealand, Italy, China, etc.

Thermophilic representatives of the Geobacillus and Anoxybacillus genera have 
been recovered from a variety of environments, including high-, moderate-, and 
low-temperature environments. However, terrestrial hot springs are the main habi-
tats for Geobacillus and Anoxybacillus species (Fig. 5.3). An overview of the vari-
ous Geobacillus and Anoxybacillus species isolated from terrestrial hot springs is 
given in Tables 5.1 and 5.2.
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5.4  Adaptations of Growth at High Temperatures

Thermophilic bacilli, growing at high temperatures, have developed different mech-
anisms to survive in these extreme environments. Understanding the adaptations 
that enable thermophilic organisms to survive at extreme temperatures is a chal-
lenge that has interested researchers since 1897, and a vast amount of literature 
exists regarding this issue (England et al. 2003). The main mechanistic determinants 
of thermoadaptation in bacilli are adaptation of membrane phospholipid composi-
tion, synthesis of heat shock proteins (HSPs), and enzyme adaptation to give molec-
ular stability as well as structural flexibility. The high GC content in the genome of 
the thermophiles also contributes to their thermoadaptation (Chakravorty and Petra 
2013).

5.4.1  Adaptation of Membrane Phospholipid Composition 
at High Temperatures

It has been shown that the lipids isolated from a psychrophilic (Psychrobacter sp.), 
mesophilic (Escherichia coli), and thermophilic (G. stearothermophilus) bacteria 
are different depending on the bacterial growth temperature. With increasing growth 
temperature, bacteria reduce the number of unsaturated bonds or increase the degree 
of branching in their lipid acyl chains (van de Vossenberg et al. 1995). Thus, the 
lipid of the cytoplasmic membrane of Psychrobacter sp. (optimal growth tempera-
ture 21–29 °C) is mainly represented by monounsaturated (93%) and short-chain 
lipids. The monounsaturated and short-chain lipids compose 32% of the cytoplas-
mic membrane lipids in E. coli (optimal growth temperature 37–42 °C), whereas the 

Fig. 5.3 Geographical distribution of sites from where Geobacillus and Anoxybacillus species 
have been isolated. Green and purple circles represent Geobacillus and Anoxybacillus isolates, 
respectively. Each circle denotes a published report that describes one or several strains

A. Margaryan et al.
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cytoplasmic membrane lipids of G. stearothermophilus (optimal growth tempera-
ture 60–70 °C) are composed of saturated and branched acyl chains (80% of total 
lipids) (van de Vossenberg et al. 1995).

The thermophilic bacilli differ from mesophilic ones also in the fatty acid and 
polar headgroup compositions of their phospholipids. Hence, the major cellular 
fatty acid components of Geobacillus species following incubation at 55 °C are iso- 
C15:0 (20–40%, mean 29%), iso-C16:0 (6–39%, mean 25%), and iso-C17:0 (7–37%, 
mean 19.5%), which account for 60–80% of the total (Nazina et al. 2001). The high 
levels of is-C15:0 and iso-C17:0 are also found in Anoxybacillus species (Dulger et al. 
2004). It has been shown that the major fatty acid patterns in G. toebii, G. subter-
raneus subsp. aromaticivorans, G. icigianus, A. bogrovensis, and A. suryakundensis 
are iso-C15:0>iso-C17:0>anteiso-C17:0 (Atanassova et al. 2008; Poli et al. 2012; Deep 
et al. 2016; Cihan et al. 2014; Bryanskaya et al. 2015). The membrane fatty acid 
patterns in Bacillus species are mainly represented by iso-C15:0 and anteiso-C15:0 in 
contrast with Geobacillus and Anoxybacillus species growing at higher tempera-
tures (>50 °C) (Table 5.3). The acyl chains such as iso-C17:0 have higher melting 
point than other acyl chains, which explains its synthesis at maximum growth tem-
peratures, whereas iso-C15:0 is predominating at minimum growth temperature.

Llarch et  al. (1997) showed that any potential distinctions between the rather 
variable fatty acid profiles of Geobacillus species and Bacillus species are largely 
lost when strains of each group are incubated at the same temperature, clearly 
underpinning their role in thermoadaptation.

More detailed studies of the effect of temperature on the membrane composition 
of G. stearothermophilus showed that ratio of phosphatidylglycerol (PG) and car-
diolipin (CL), which comprise about 90% of the membrane phospholipids, is 
changed at different growth temperatures. The PG content increases at the expense 
of the CL content at the high temperatures. The acyl-chain composition of all the 
membrane lipids also changes; the longer, saturated-linear, and iso-fatty acids with 
relatively high melting points increase in abundance, and anteiso-fatty acids and 
unsaturated components with lower melting points decrease (Tolner et al. 1997). 
Nicolaus et al. (1995), reclassifying some of the Bacillus species, showed that the 
strains tentatively identified as Bacillus showed increased phosphoglycolipid con-
tents with increased growth temperature, at the expense of phosphoaminolipid and 
phospholipids. As a result, the organism is able to maintain nearly constant mem-
brane fluidity across its whole growth temperature range; this has been termed 
homeoviscous adaptation (a homeostatic process that regulates the viscosity of 
membrane lipids). An alternative theory, homeophasic adaptation (adaptation of the 
cell membrane lipid composition), considers that maintenance of the liquid- 
crystalline phase is more important than an absolute value of membrane fluidity in 
bacteria (Tolner et al. 1997).

5 Geobacillus and Anoxybacillus spp. from Terrestrial Geothermal Springs…
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5.4.2  Heat Shock Proteins

Although a wide variety of survival strategies are deployed when cells are exposed 
to environmental challenges such as heat stress, synthesis of the effector proteins 
generally referred to as heat shock proteins (HSPs) is increased. HSPs are diverse in 
structure and function and are usually classified based on their subunit molecular 
weights. Classes that occur in microorganisms and in the majority of thermophiles 
include Hsp100, Hsp90, Hsp70, Hsp60, and the small HspS (Trent 1996). Most of 
these proteins function as molecular chaperones, catalyzing the refolding of dena-
tured proteins, assisting the folding of newly synthesized proteins, as well as assist-
ing in protein translocation across membranes and assembly/disassembly of protein 
complexes (Chang et al. 2008).

Table 5.3 The major cellular fatty acid composition of Geobacillus and Anoxybacillus species

 Species

Temperature growth 
range (optimum) in 
°C

Major cellular fatty 
acids (>10%) References

G. gargensis 45–70 (60–65) Iso-C15:0>iso- 
C16:0>iso-C17:0

Nazina et al. 
(2004)

G. icigianus 50–75 (60–65) Iso-C15:0>iso- 
C17:0>anteiso-C17:0

Bryanskaya 
et al. (2015)

G. subterraneus subsp. 
aromaticivorans

30–65 (60) Iso-C15:0>iso- 
C17:0>anteiso-C17:0

Poli et al. 
(2012)

G. stearothermophilus 37–65 (ND) Iso-C15:0>iso- 
C17:0>anteiso-C17:0

Nazina et al. 
(2001)

G. thermoglucosidasius 37–68 (ND) Iso-C17:0>iso- 
C15:0>anteiso- 
C17:0>iso-C16:0

G. uzenensis 45–65 (55–60) Iso-C17:0>iso- 
C15:0>anteiso- 
C17:0>iso-C16:0

G. toebii 45–70 (60) Iso-C15:0>iso-C17:0 Cihan et al. 
(2014)

A. kaynarcensis 35–70 (60) Iso-C15:0>iso-C17:0 Inan et al. 
(2013)

A. bogrovensis 40–69 (65) Iso-C15:0>iso- 
C17:0>anteiso-C17:0

Atanassova 
et al. (2008)

A. suryakundensis 40–60 (55) Iso-C16:0>iso- 
C15:0>anteiso- 
C17:0>iso-C17:0

Deep et al. 
(2016)

A. pushchinensis 37–66 (62) Iso-C15:0> C16:0> C18:0 Pikuta et al. 
(2000)

A. rupiensis 35–67 (55) Iso-C15:0>iso-C17:0 Cihan et al. 
(2014)A. flavithermus 30–72 (60) Iso-C15:0>iso-C17:0>C16:0

A. kamchatkensis 38–67 (60) C16:0>iso- 
C16:0>anteiso-C17:0

A. calidus 35–70 (55) Iso-C15:0>iso- 
C17:0>iso-C16:0
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The 70-kDa heat shock proteins (Hsp70s) are highly conserved and are ATP 
dependent. Together with J-domain ATPase-activating proteins or nucleotide 
exchange factors, Hsp70s bind and release their substrates in ATP-driven cycles 
(Chang et  al. 2008; Goh et  al. 2014). Hsp70s chaperone family proteins, DnaK 
(GkDnaK) from G. kaustophilus (Chang et al. 2008), G. thermoleovorans (Graham 
et al. 2005), G. thermoglucosidasius (Brumm et al. 2015), Geobacillus sp. (Shih 
and Pan 2011), and Anoxybacillus sp. (Goh et al. 2014), have been identified and 
characterized.

Besides Hsp70s, the low-molecular-weight Hsp20 and Hsp33 proteins from G. 
thermoglucosidasius strain C56-YS93 have been described (Brumm et al. 2015). 
Proteome analysis of G. thermoleovorans strain T80 revealed the presence of sigma 
factors, such as σA, which initiates transcription of the heat shock operons con-
trolled by the HRCA-CIRCE complex. This operon encodes some of the proteins 
involved in heat shock response, such as GroEL (Hsp60), GroES (Hsp10), and 
peptidyl- prolyl cis-trans isomerase (Graham et al. 2005).

The heat shock protein Hsp70 (DnaK) in Anoxybacillus works not only in the 
presence of ATP but also in cooperation with Hsp40 (DnaJ, J-protein). The genes 
encoding Hsp70 and Hsp40 proteins are located near each other. Other proteins 
related to temperature adaptations such as GroEL (Hsp60) and its co-chaperonin 
GroES (Hsp10), a few small Hsp20 molecular chaperones, Hsp33, and ClpC 
(Hsp100) and its related Clp-protease were identified in the genomes of many spe-
cies of Anoxybacillus (Goh et al. 2014).

5.4.3  Protein and Enzyme Adaptation

Thermophilic bacilli, under constant threat of temperature-induced damage, main-
tain the stability and functionality of their proteins and enzymes by changing the 
ratio of charged to uncharged amino acids, increased ionic interactions and hydro-
gen bonding, metal coordination and the compactness of their proteins, and the 
preference of certain amino acids (Scandurra et al. 1998).

Lobry and Chessel (2003) reported that larger amounts of Ala, Gly, Ser, Asp, and 
Glu and smaller amounts of Cys in the transmembrane proteins of thermophiles 
have significant roles for their protein thermostability. Change in amino acids from 
Lys to Arg, Ser to Ala, Gly to Ala, Ser to Thr, and Val to Ile has been observed in 
comparison with mesophilic versus thermophilic organisms (Scandurra et al. 1998; 
Wang et al. 2015). For example, in G. stearothermophilus, it was reported that Gly 
is preferred over Ile and Ala over Tyr (Trivedi et al. 2006). Schneider et al. (2002) 
studied sequence differences between predicted transmembrane helices in the 
genomes of thermophilic and mesophilic membrane proteins. They observed a 
striking depletion of Cys residues in thermophiles and an increase in Gly, Ser, and 
Ala pair motifs, suggesting a preference for the packing of small residues. The inte-
gral membrane proteins of thermophiles have lower amounts of Glu, Lys, and Asp 
residues, as a mode of adaptation to increased temperature (Lobry and Chessel 
2003).
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Pertaining to secondary and three-dimensional structure, thermostable proteins 
have high levels of α-helical and β-sheet content (Chakravorty and Patra 2013). The 
thermostable lipases from Geobacillus and Anoxybacillus contain terminal α-helices 
and a central β-sheet (Arpigny and Jaeger 1999; Shahinyan et al. 2017) possibly 
contributing to its thermostability.

Sawle and Ghosh (2011) suggested that entropic stabilization may be largely 
responsible for the high melting temperature in hyperstable proteins and hints at 
residual structure or compactness of the denatured state in thermophiles. They 
showed that the gain in enthalpy upon folding is lower in thermophiles than in 
mesophiles, whereas the loss in entropy upon folding is higher in mesophiles than 
in thermophiles. The thermostable proteins have a slow unfolding rate, which helps 
to retain their near-native structures (Sawle and Ghosh 2011).

The thermostability of some enzymes is due to the presence of an extra repeat 
N-terminal domain (NTD) in the enzyme. For example, a novel thermostable SOD 
from G. thermodenitrificans NG80-2 exhibits maximum activity at 70 °C and high 
thermostability over a broad range of temperatures (20–80  °C). Unlike other 
reported SODs, this enzyme contains an extra repeat-containing NTD of 244 resi-
dues adjacent to the conserved functional SODA domain. It has been showed that 
the deletion of the NTD dramatically decreased its optimum active temperature 
(OAT) to 30 °C and also impaired its thermostability. Conversely, appending the 
NTD to a mesophilic counterpart from B. subtilis led to a moderately thermophilic 
enzyme (OAT changed from 30 to 55 °C) with improved heat resistance. The NTD 
also contributes to the stress resistance of host proteins without altering their metal 
ion specificity or oligomerization form except for a slight effect on their pH profile 
(Wang et al. 2014).

Metals such as zinc and calcium are often found in enzymes where they can 
stabilize a loop structure or hold secondary structures. The zinc ions, involved in the 
Zn-binding domain of thermoalkalophilic lipases from G. thermocatenulatus stabi-
lized the structural arrangements of around 70 amino acids and the concerted move-
ment of two lids, the 6- and 7-helices, during enzyme activation (Carrasco-Lopez 
et  al. 2009). Ca ions restrict the conformational flexibility of certain helices and 
loops and bring about the stabilization of His residues through hydrogen bonding 
and thus lead to lipase thermostability (Sharma et al. 2013). Alpha-amylases and 
proteases isolated from various Geobacillus and Anoxybacillus spp. have been 
shown to contain Ca ions, which is enhancing the stability and activity of the 
enzymes at high temperatures (Eijsink et al. 2011; Chai et al. 2016).

5.4.4  Other Mechanisms for Thermostability

Large-scale genomic comparisons between thermophiles and mesophiles have 
shown that the genomes of thermophilic organisms have a higher guanine and cyto-
sine (GC) content than mesophiles (Takami et al. 2004; Wang et al. 2015). It was 
hypothesized that a high GC content contributes to the thermostability of the 
genome and correlated with the optimum growth temperature of bacteria (Musto 
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et al. 2005; Musto et al. 2006). Additionally, tRNAs and rRNAs, the translational 
machinery of some thermophilic organisms, were reported to have high GC con-
tents as well (Higgs and Ran 2008; Satapathy et al. 2010).

It has been observed that higher tRNA diversity usually occurs in thermophiles 
in comparison with non-thermophiles. Among psychrophiles, the total number of 
tRNA was found to be more than twofold higher than in the non-psychrophiles. The 
fact that growth temperature correlates with diversity and total amount of cellular 
tRNA (Satapathy et  al. 2010) extends the list of molecular features undergoing 
adaptation due to growth temperature and supports the view that growth tempera-
ture acts as a strong selecting factor at the molecular level during evolution.

Small RNA (sRNA) has been shown to play important gene regulatory roles in 
the prokaryotes and can be involved in the adaptation at high temperatures. The 
sRNAs from Geobacillus thermoleovorans CCB_US3_UF5 strain, growing at 
60–70 °C, were reverse transcribed to cDNA and sequenced. Sequencing data iden-
tified 83 putative sRNAs classified as antisense, intergenic region, untranslated 
region, or noncoding. Out of this total, 44 sRNA candidates were specific to growth 
at elevated temperature, suggesting that regulatory sRNA may play an important 
role in high-temperature adaptation in thermophilic bacteria (Tan and Alam 2010).

5.5  Biotechnological Potential of Geobacillus 
and Anoxybacillus Species

Members of the genera Geobacillus and Anoxybacillus can be used both in whole- 
cell applications and in biofuel and chemical production through engineered cells. 
One of the main advantages of using bacteria from these taxa is faster rate of growth, 
decreased contamination, and easier maintenance (Bertoldo and Antranikian 2002; 
Antranikian 2007). Geobacillus and Anoxybacillus species can be used as cell fac-
tories for multiple products, from gold nanoparticles using Geobacillus sp. strain 
ID17 (using NADH-dependent enzymes which convert Au3+ to elemental gold) 
(Correa-Llantén et al. 2013) to provision of thermostable enzymes (Zahoor et al. 
2016; Sharma et al. 2013).

The members of these genera have a strong potential for application in bioreme-
diation, especially with regard to degradation of aromatic compounds and removal 
of heavy metals. For example, 50 mg/L dried cells of Geobacillus thermantarcticus 
remove Cd2+, Cu2+, Co2+, and Mn2+ up to 85.4%, 46.3%, 43.6%, and 65.1%, respec-
tively, whereas Anoxybacillus amylolyticus removes 74.1%, 39.8%, 35.1%, and 
36.6%, respectively, and Anoxybacillus amylolyticus removes the mentioned metal 
ions up to 74.1%, 39.8%, 35.1%, and 36.6%, respectively (Özdemir et al. 2013).

The ability of Geobacillus strains to metabolize aromatic compounds has been 
described by Feitkenhauer et al. (2003). They studied the kinetics of phenol degra-
dation in continuous culture at 65 °C using G. thermoleovorans. Al-Jailawi et al. 
(2016) suggested that A. rupiensis strain Ir3 could be used as alternative to hydrode-
nitrogenation (HDN) for nitroaromatic compounds elimination (biotreatment) of 
crude oil and its derivatives. The quantitative analysis (HPLC) indicated that this 
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bacterium showed as much as 99.62% consumption of carbazole, 99.4% of 
ρ-nitrophenol, 97.73% of nitrobenzene, and 98.89% of naphthalene (Al-Jailawi 
et al. 2016).

Geobacillus and Anoxybacillus species demonstrate great versatility for adapta-
tion and catalytic metabolism in a wide variety of environmental niches and are 
valuable sources of various thermostable enzymes. Thermophilic bacilli are of spe-
cial interest as a source of novel thermostable enzymes and possess properties suit-
able for biotechnological and commercial use. There is, indeed, a considerable 
demand for a new generation of stable enzymes that are able to withstand severe 
conditions in industrial processes by replacing or supplementing traditional chemi-
cal processes. Their ability to conduct various reactions to higher process rates 
because of increase in substrate diffusion coefficient and reduced viscosity at higher 
temperatures makes them a preferred choice over mesophilic sources (Niehaus et al. 
1999; Sharma et al. 2013).

Geobacillus and Anoxybacillus isolated from different hot springs show high 
potential as biocatalysts suitable for industrial biotechnology applications. The abil-
ity of these bacteria to produce a variety of extracellular enzymes, such as amylases, 
lipases, xylanases, proteases, esterases, and ureases, has ranked them among the 
most important enzyme producers (Bruins et al. 2001; Satyanarayana et al. 2012).

5.5.1  Amylases

Amylases are among the most important industrial enzymes and are of significance 
for their specific use in the starch conversion processes, having approximately 25% 
of the world enzyme market (Reddy et al. 2003). Amylolytic enzymes act on starch 
and related oligo- and polysaccharides, catalyzing the hydrolysis of internal α-1,4- 
glycosidic linkages in starch into low-molecular-weight products, such as glucose, 
maltose, and maltotriose units (Antranikian 2007).

A number of studies on starch-hydrolyzing enzymes based on the DNA sequence, 
structural analysis, and catalytic mechanism have led to the concept of one enzyme 
family: the alpha amylase. The amylolytic and related enzymes have been classified 
as glycoside hydrolases. They have been categorized as exoenzyme, endoenzyme, 
de-branching, and cyclodextrin-producing enzymes. The application of these 
enzymes has been established in a number of industrial processes such as food, 
fermentation, textiles, and paper industries (Antranikian 2007).

Amylolytic enzymes have been produced by a wide range of microorganisms. 
Heat-adapted amylases derived from the genus Geobacillus and Anoxybacillus have 
a big potential for commercial applications. α-Amylases from the members of gen-
era Geobacillus and Anoxybacillus from the terrestrial hot springs are characterized 
by a high thermophilicity and stability (reacting between 30 and 120 °C) and activ-
ity within a wide range of pH values (from 5.5 to 13) (Table 5.4).

The α-amylases from thermophilic bacilli were purified and characterized with 
42–97 kDa molecular weight (Table 5.4). Gurumurthy and Neelagund (2012) com-
pleted the molecular characterization of an extremely thermostable α-amylase 
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produced by a Geobacillus sp. for industrial applications. This α-amylase is consid-
ered as a novel enzyme due to its optimum activity at a very high temperature (90 
°C) and at an alkaline condition (pH 8.0).

5.5.2  Lipases/Esterases

One of the important groups of biotechnologically relevant enzymes are lipases (EC 
3.1.1.3 – triacylglycerol hydrolases), which have found large applications in food, 
diary, detergent, and pharmaceutical industries (Sharma et  al. 2013; Gudiukaite 
et al. 2017). Lipases catalyze the hydrolysis of ester bonds of triacylglycerol at the 
interface between an insoluble substrate and water. In nonaqueous media these reac-
tions are reversed due to a hydrophobic domain (lid), covering the active site of the 
lipase. The three-dimensional structures of lipases have a structural similarity with 
the α-/β-hydrolase family which contain terminal α-helices and a central β-sheet 
including the active Ser placed in a loop termed the catalytic elbow. Most α-/β- -
hydrolases contain a consensus sequence, Gly-X-Ser-X-Gly, around the active site 
serine, with a catalytic triad (Ser-Asp-His) (Ollis et al. 1992; Arpigny and Jaeger 
1999; Gudiukaite et al. 2014).

Lipase-coding genes and activities have been reported in a wide range of micro-
organisms. However, lipases derived from thermophiles have privileges compared 
to the mesophilic lipases due to their unique attributes (Lotti and Alberghina 2007). 
Among the huge diversity of thermophilic bacteria, mainly bacilli have been 
reported as active thermostable lipase producers (Leow et  al. 2004; Antranikian 
2007; Sharma et al. 2013, Yang et al. 2013). A number of thermophilic bacilli spe-
cies belonging to the genera Geobacillus and Anoxybacillus have been isolated from 
different geothermal springs and reported as thermostable lipase producers 
(Table 5.5).

The purified lipase from Anoxybacillus sp. isolated from the hot springs in 
Tăşnad (Romania) and Seferihisar Karakoc (Turkey) has a molecular weight of 
25–26 kDa characterized by extremely high thermostability (25–90 °C) with opti-
mum activity at 60–65 °C (Ay et al. 2011; Chis et al. 2013). Additional lipolytic 
enzymes from thermophilic bacilli were purified and characterized and possess 
molecular weights between 25 and 47 kDa (Ay et al. 2011; Balan et al. 2012; Chis 
et al. 2013; Mahadevan and Neelagund 2014).

The lipases purified from G. thermodenitrificans and Geobacillus sp. are charac-
terized with 30–45 kDa molecular weight and act at the temperatures from 60 to 
85 °C (Balan et al. 2012; Mahadevan and Neelagund 2014).

The lipases are stable at a wide range of pH values (5.0–11.0). The lipases from 
geobacilli mostly act at neutral pH, while the lipases from anoxybacilli are slightly 
alkaliphilic (Table 5.4).

5 Geobacillus and Anoxybacillus spp. from Terrestrial Geothermal Springs…
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5.5.3  Proteases

Proteases are cleaving proteins into short peptides or free amino acids and are 
mainly divided into two major groups depending on their site of action: exopepti-
dases and endopeptidases (Sookkheo et al. 2002). Exopeptidases cleave the peptide 
bond proximal to the amino or carboxy termini of the substrate, whereas endopep-
tidases cleave the peptide bonds distant from the termini of the substrate. They can 
also be further divided into four groups based on the functional group present at the 
active site. These are serine, aspartic, cysteine, and metalloproteases (Rao et  al. 
1998).

Protease enzymes constitute one of the most important groups of industrial 
enzymes which are extensively used in the food, pharmaceutical, protein hydroly-
sis, detergent, cheese-making, brewing, photographic, baking, meat, and leather 
industries and inclusions in animal and human food as digestive aids (Seifzadeh 
et al. 2008; Synowiecki 2010).

There is a good correlation between growth temperature of the organism and the 
stability of its extracellular proteases. Thermophilic bacteria from hot springs are 
often good sources of thermostable proteases. Geobacillus and Anoxybacillus 
strains producing thermostable proteases are listed in Table 5.6.

The studied thermostable proteases of geobacilli and anoxybacilli isolated from 
the hot springs mostly exhibited optimum activity at a slightly alkaline pH (7–8) 
and are stable at the wide range of pH values (6–10). The thermostable alkaline 
proteases have been found to be the most appropriate enzyme in detergent industry, 
as the enzymes used in detergent formulations should have high activity and stabil-
ity over a broad range of pH and temperature (Rao et al. 1998; Seifzadeh et al. 2008; 
Matpan Bekler et al. 2015).

5.5.4  Xylanases

Xylanase (EC 3.2.1.8) degrades the linear polysaccharide β-1,4-xylan into xylose, 
thus breaking down hemicellulose, one of the major components of plant cell walls. 
Biodegradation of xylan requires action of several enzymes, among which xylanase 
plays a key role. In the nature, the xylanase degrades the plant matter into usable 
nutrients and plays a major role in microbial thriving on plant sources. Microbial 
xylanases have large application in industry including the food, feed, fuel, textile, 
detergents, paper, and pulp industries and, also, in waste treatment (Kumar et al. 
2013).

A number of thermophilic bacilli isolated from different terrestrial hot springs in 
Bulgaria (Derekova et  al. 2008), Turkey (Kacagan et  al. 2008; Inan et  al. 2011, 
2013), Japan (Sunna et al. 1997), India (Sharma et al. 2007), Pakistan (Zahoor et al. 
2016), and the USA (Ellis and Magnuson 2012) were described as active xylanase 
producers. The purified and characterized xylanases of the species of Geobacillus 
and Anoxybacillus from the hot springs are listed in Table 5.7.

A. Margaryan et al.
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Thermophilic and alkaline active xylanases from Anoxybacillus species drive 
higher interest than other ones. The use of alkaline active xylanases allows direct 
enzymatic treatment of the alkaline pulp and avoids the cost of incurring and time- 
consuming steps of pH readjustment. Due to better solubility of xylan under alka-
line conditions, alkaline active xylanase may also find other potential applications 
in addition to pulp bleaching (Inan et al. 2011, 2013).

5.5.5  Cellulases

Cellulose is the most abundant organic compound on Earth and has been exten-
sively used as a substrate for the production of single-cell proteins, biofuels, and 
various other chemicals through microbial enzymatic degradation. The conversion 
of cellulosic biomass to fermentable sugars requires different types of cellulases, 
namely, β-1,4 endoglucanase (EC 3.4.1.4), β-1,4 exoglucanase (EC 3.2.1.91), and 
β-1,4 glucosidase (EC 3.2.1.21) (Sharma et al. 2015). Cellulose-degrading enzymes 
have various applications in starch processing, grain alcohol fermentation, deink-
ing, drainage improvement, malting, and brewing. Thermostable cellulase is exten-
sively used in the bio-stoning of denim fabrics and production of environment-friendly 
washing powders. In wine production cellulases are applied to obtain better fruit 
skin degradation, improved color extraction, easier must clarification, and better 
extraction (Kuhad et al. 2011).

Extracellular cellulases-producing anoxybacilli and geobacilli were mainly iso-
lated from hot springs in Turkey (Cihan et al. 2014) and India (Sharma et al. 2015; 
Priya et  al. 2016). The cellulases produced by G. kaustophilus PW11, G. toebii 
PW12, G. thermoleovorans PW13, G. toebii PS4, and G. thermodenitrificans IP_
WH1strains isolated from Tattapani hot spring (India) were thermostable and exhib-
ited activity even at 100  °C. Among the metal ions tested, Mn2+, Co2+, and Fe2+ 
significantly enhanced the cellulase activity, while Hg2+ (1 mM) strongly inhibited 
enzyme activity (Sharma et al. 2015; Priya et al. 2016). The activity of cellulase 
produced from G. thermodenitrificans IP_WH1 was higher (0.94 IU/ml at 60 °C) 
(Priya et al. 2016) than the activity of other thermophilic cellulases reported in the 
literature, such as Bacillus sp. with 0.14–0.37 IU/ml (Padilha et  al. 2015) and 
Bacillus sp. SMIA-2 with 0.29 IU/ml (Ladeira et al. 2015) at 50 °C and pH 7.0.

Anoxybacillus gonensis isolated from Agri Diyadin hot spring (Turkey) produces 
a cellulase with approximately 40 kDa molecular weight, with highest activity at 
50 °C and with an unusual broad optimum pH range (3–10) (Genc et al. 2015).

Cellulase-producing bacteria, such as A. flavithermus EHP1, G. stearothermoph-
ilus EHP2, and G. thermodenitrificans EHP3, have been isolated from Egyptian hot 
spring. The crude A. flavithermus EHP1 enzyme was produced at the end of the 
stationary phase and exhibited highest activity at 75 °C and pH 7.5 (Ibrahim and 
El-diwany 2007).

5 Geobacillus and Anoxybacillus spp. from Terrestrial Geothermal Springs…



154

5.5.6  Exopolysaccharides

Exopolysaccharides (EPSs) are high-molecular-weight polymers composed of 
sugar residues. Bacteria produce diverse and multifunctional polysaccharides 
including intracellular, structural, and extracellular polysaccharides (exopolysac-
charides). EPSs generally consist of polymers of monosaccharides and some non-
carbohydrate substituents (such as acetate, pyruvate, succinate, and phosphate). 
EPSs play an important role for microbial cells, as they can form a protective layer 
for the cell against harsh external environments, serve as carbon and energy sources 
during starvation, mediate cell-cell interactions, facilitate the adherence of the cell 
to surface, and induce microbial aggregation or biofilm formation (Nwodo et  al. 
2012). Nichols et al. (2005), Junge et al. (2004), and Tourney and Ngwenya (2014) 
suggest also functions which include cryoprotection for growth at low temperatures, 
high-salinity tolerance with reference to sea ice microbial communities, and heavy 
metal precipitation on the cell surface.

The various properties of microbial EPS have found large application in the 
industry. EPS like xanthan and gellan are already utilized in the food industry as 
gelling agents and thickeners for salad dressings, desserts, sauces, syrups, and ice 
cream (Kornmann et al. 2003). New areas for the application of microbial polysac-
charides include improving the efficiency of liquid herbicides and insecticides; sta-
bilization of emulsified pharmaceutical and cosmetic creams (Moonmangmee et al. 
2002; Sutherland 1999), as thickeners and stabilizers in shampoos, toothpaste, and 
makeup; and solidifier of microbiological and plant tissue culture media. In recent 
years there has been an increasing interest in their biological activities, like antitu-
mor, antiviral, immunostimulatory (Arena et al. 2006; Weiner et al. 1995), and anti- 
inflammatory effects (De Stefano et al. 2007).

EPSs from thermophilic bacteria offer numerous applications in various fields of 
industry, as the thermophiles provide more suitable processes for polymer produc-
tion with decreased viscosity at high temperature. Extremophiles offer a great diver-
sity in chemical and physical properties of their EPS compared to anywhere else in 
the biosphere (Guezennec 2002). Additionally, EPSs synthesized by thermophilic 
bacteria are likely to keep their structural properties at high temperature, which is a 
desired feature of the polymer solution (Radchenkova et al. 2013).

EPSs from geobacilli and anoxybacilli isolated from different geothermal springs 
are promising for their use in the industry. One gram of EPS from Anoxybacillus sp. 
R4-33 isolated from a hot spring in China absorbed 1.9783 mg Zn(II) and 1.4095 mg 
Cd(II) at pH 6.0 (Zhao et al. 2014). This EPS was a heteropolysaccharide, com-
posed of D-mannose and D-glucose as its principal monosaccharide components in 
the relative proportions 1:0.45 (Table 5.8). Production of thermostable EPS was also 
reported for G. tepidamans (Kambourova et  al. 2009), G. thermodenitrificans 
(Panosyan 2017, Panosyan et  al. 2014), G. toebii, and A. kestanbolensis 
(Radchenkova et al. 2013; Panosyan 2017).
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5.6  Conclusion

Isolation and study of thermophilic bacilli from terrestrial geothermal springs are 
important for understanding of the diversity of thermophilic microbes and exploring 
their biotechnological potency. Many new thermophilic microbes belonging to the 
genera Anoxybacillus and Geobacillus have been isolated from different terrestrial 
geothermal springs worldwide, identified, and evaluated taking into account their 
biotechnological potency. Anoxybacillus is a relatively new genus compared to the 
well-studied Geobacillus. Most of the reported data has revealed that the members 
of both genera produce interesting enzymes that are thermostable and tolerant to 
alkaline conditions. Some of the studied enzymes were discovered through partner-
ships with industry. The interest in heat-adapted industrial enzymes is expected to 
increase. The present work, therefore, extends the previous sphere of information 
regarding the thermophilic bacilli diversity of terrestrial geothermal springs world-
wide and their biotechnological applications and potency.

Table 5.8 Thermostable EPS from Geobacillus and Anoxybacillus species and their 
characteristics

Microorganism
Isolation 
source

Carbon 
Source

EPS 
yield 
(mg 
l−1)

EPS molecular weight 
(kDa), chemical 
composition (relative 
ratio) References

G. toebii Rupi hot 
spring, 
Bulgaria

Sucrose 50 ND Radchenkova 
et al. (2013)

G. tepidamans 
V264

Velingrad 
hot spring, 
Bulgaria

Maltose 111.4 1000, Glc/Gal/Fuc/
Fru (1/0.07/0.04/0.02)

Kambourova 
et al. (2009) 
and 
Coorevits 
et al. (2011)

G. 
thermodenitrificans 
ArzA-6

Arzakan 
geothermal 
spring, 
Armenia

Fructose/
glucose

76 500, Man/Gal/Ara/
Fru/Glc 
(1/0.13/0.1/0.06/0.05)

Panosyan 
(2017) and 
Panosyan 
et al. (2014)G. toebii ArzA-8 80 600, Man/Gal/Glc/

Ara (1/0.5/0.2/0.05)
A. kestanbolensis 
415

Mizinka 
hot spring, 
Bulgaria

Sucrose 25.3 ND Radchenkova 
et al. (2013)

Anoxybacillus sp. 
R4-33

Radioactive 
radon hot 
spring, 
China

Glucose 1083 EPSII, 1000, Man/
Glc (1/0.45)

Zhao et al. 
(2014)

ND not determined
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Abstract
Currently no more than 1% of the total microbial species that exists in nature is 
known, the deal of known microorganisms in extremophilic niches being even 
much less. Thermophiles are a type of extremophiles which study is related to 
clarifying a number of fundamental issues such as origin of life and molecular 
mechanisms of thermostability, revealing the vast potential of their enzymes for 
biotechnological use. Microbial biodiversity in Eurasian hot springs is still badly 
known, and molecular analyses revealed a presence of significant part of 
unknown groups comparable with those of well-studied Yellowstone and Iceland 
springs. Intensive studies on ecology, physiology, and molecular biology of 
extremophiles provide valuable insight into the life processes at each level, as 
well as the potential for numerous industrial applications. Thermophilic mole-
cules suggest many advantages in their exploration as biocatalysts; however 
known enzymes still are not able to satisfy evolving new needs and requirements 
of biotechnological processes, among which their stability under industrial con-
ditions is of particular importance. Nowadays, different approaches are used to 
find the desired enzyme activities including direct screening in big microbial 
collections, metagenome screening, and shotgun sequencing, the last two based 
on analysis of the coding regions of the known enzymes. Direct screening con-
firms unambiguously the real existence and several functional characteristics of 
an enzyme activity. Metagenome is accepted as a huge reservoir of taxonomic 
and functional genes and therefore is seeing as a feasible possibility to introduce 
more and diverse enzymes with better performance meeting the global demand 
for new catalysts. The discovery of new microbial species as well as the 
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 sequencing of new genomes and metagenomes allows access to new enzymes 
with new application capabilities.

Keywords
Thermophiles · Biodiversity · Thermophilic enzymes · Metagenomic identifica-
tion of enzymes

6.1  Introduction

Microorganisms are an integral part of the history of life on Earth, and the diversity 
of microbial world has been created for billions of years of evolution. Because they 
are the oldest form of life, prokaryotic microorganisms have been the subject of 
twice longer evolution resulted into a vast variety of organisms with the widest 
range of known metabolic pathways (Stetter 2001).

It is generally accepted that the degree of microbial diversity is not adequately 
characterized and that there is a huge gap between the knowledge of this diversity 
and its actual importance for environmental processes and economic development 
(Vibha and Neelam 2012). Perception of the low degree of their knowledge was 
developed with development of research approaches, and a real danger from the loss 
of species, sometimes even before being identified, is increasingly clear with expan-
sion of man’s influence on natural ecosystems. Culturable microorganisms (those 
microorganisms for which cultivation parameters in the laboratory were estab-
lished) are no more than 1% of the total microbial diversity that exists in nature 
(Stewart 2012). So far, about 10,000 microbial species have been recognized (Mora 
et al. 2011). Despite the common belief that prokaryotes are characterized by the 
highest taxonomic diversity (Oren 2009), this number is considerably smaller than 
the number of species described for eukaryotes (e.g., insects only are 300,000 spe-
cies). Even if we assume that microbial species are only one million, and that a 
thousand new species are described per year, it will take 1000 years to reach a com-
plete knowledge of the diversity of the microbial world. That is why scientists 
assume that we are still far from the actual knowledge of microbial diversity; more-
over according to common belief, the presumed species are much more than a mil-
lion and that the new microorganisms described are a little less than 1000 (Amann 
2000). The number of major phyla has increased from 12 identifiable lineages in 
1987, to 30 in 2014, or over 50 including candidate phyla. The total real number has 
been estimated to exceed 1000 bacterial phyla (Yarza et al. 2014).

Particularly large is the share of unknown microorganisms in the extreme niches 
as the more extremophilic is the niche the more difficult is to reproduce growth 
conditions in the laboratory. Extremophiles not only endure but are also function-
ally active in some of the harshest living conditions found on Earth. The term 
“extreme” was introduced by MacElroy (1974). “Extreme” is a relative term to 
mean conditions too raw for human existence like temperature from −12 °C to> 
100 °C, pH from 0 to 13, hydrostatic pressure up to 1400 atmospheres, and salt 
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concentration equal to that of saturated solutions (Satyanarayana et al. 2005). In the 
last decades, extremophiles have been found in such inhospitable niches as the 
active volcanoes, the bottom of the world’s ocean, the salt marshes. Unlike most 
organisms, extremophiles develop optimally when one or more of the environmen-
tal parameters have extreme values   such as high or low temperature, high or low pH, 
high salinity, high pressure, reduced water content and nutrients, and high radiation 
(Rothschild and Mancinelli 2001). Examples of typical extremophilic species are 
shown in Fig. 6.1. Intensive studies on ecology, physiology, and molecular biology 
of extremophiles provide valuable insight into the life processes at each level, as 
well as the potential for numerous industrial applications. These studies reveal the 
physiological differences of the inhabitants of the extreme niches in comparison 
with the inhabitants of the other niches, as well as the unusual molecular and regula-
tory mechanisms of life in them. Demonstration of the scientific interest to extremo-
philic microorganisms, their unusual properties, and the enormous possibilities for 
exploiting their biosynthetic capacity are 2-year International Congresses on 
Extremophiles last one performed in 2016 in Kyoto, Japan (11th), next one (12th) – 
in 2018 in Naples, Italy. In addition to the International Congresses on Extremophiles, 
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Fig. 6.1 Examples of the some common genera of extremophiles in the specific type of niches
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International Meetings on Thermophiles are also organized every 2 years, in 2017 
being in Mpumalanga, South Africa.

Thermophiles have been the subject of an increased scientific interest for last 
several decades. They are a type of extremophiles, growing at relatively high tem-
peratures, between 45 °C and 122 °C (Takai et al. 2008). Their research is related to 
clarifying a number of fundamental issues such as origin of life and molecular 
mechanisms of thermostability, revealing the vast potential of their enzymes for 
biotechnological use.

6.2  Origin of Thermophilic Microorganisms in Time 
and Space

The question of life origin is directly related with thermophiles. Despite the consid-
erable interest of scientists in this issue, there is still no single opinion on whether 
life originated on Earth or was transferred from another planet. The second hypoth-
esis for independent evolution of macromolecules on Earth is still officially 
accepted, and most scientists accept common ancestor of life, probiont, although 
the theory of panspermia (the emergence of a probiont on one planet and then trans-
fer to others) more easily explains one-time appearance of life. Evidence of a single 
occurrence are as follows: the almost universal genetic code; the general principles 
of metabolic processes; and the existence of orthologous proteins in the three king-
doms – bacteria, archaea, and eukaryotes.

With regard to the temperature at which the probiont has developed, both “hot” 
and “cold” versions exist, arguing about its thermophilic or mesophilic nature. 
According to the hot theory shared by the majority of scientists, the last common 
ancestor of the three domains was a hyperthermophilic organism that only had the 
ability to survive under the harsh conditions of ancient Earth like no free oxygen, 10 
times higher atmospheric pressure than today, absence of ozone layer. Akanuma 
et al. (2013) have estimated that the probiont probably was a (hyper)thermophile 
that lived at 75 °C or higher temperature. In favor of the hypothesis that thermo-
philes are direct descendants of the common ancestor is the fact that members of the 
lowest and shortest branches of life (genera Thermotoga, Thermodesulfobacterium, 
Aquifex, Hydrogenobacter) have the highest growth temperatures (Stetter 1994). 
Thermophilic genera are also positioned in the basal archaeal branch in the tree of 
life (Pyrolobus, Pyrodictium, Methanopyrus). These slowly evolving microorgan-
isms, as could be assumed by their 16S rRNA, are the most primitive, still existing 
microorganisms and therefore closest to the common ancestor. These microorgan-
isms are predominantly anaerobic chemotrophs, which need water, mineral ele-
ments, and heat for growth, i.e., from conditions typical for ancient Earth. Microbial 
fossils of 4.2 billion years detected in the rocks suggest morphological similarity 
with today’s prokaryotes, including thermophiles (O’Neil et al. 2008). According to 
the less supported cold version, the thermophiles have adapted to survive at high 
temperatures as a result of a secondary adaptation developed after the origin of life 
(Islas et  al. 2003). The supporters of this theory assume that on the basis of 
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geochemical and fossil remains, as well as biochemical features of macromolecules, 
it can be concluded that the mesophilic microorganisms have existed long before 
thermophilic. Brochier and Philippe (2002) reanalyzed bacterial phylogeny based 
on rRNA gene and assumed that the mesophilic order Planctomycetales is closest to 
the life tree root.

6.3  Mechanisms for High-Temperature Life

It is still unclear the upper limit for growth of microorganisms and all specific fac-
tors that determine this limit, but it is commonly accepted that these are the factors 
that dictate the stability of the macromolecules in the cell. Development of omics 
technologies (genomics, transcriptomics, proteomics, and phenomics) promoted 
understanding of the mechanisms of temperature adaptation (Fondi et al. 2016).

The increased stability of the DNA helix at high temperatures is associated with 
the presence of a powerful reparative system, super-coiling, increased G + C con-
tent, presence of polyamines and histones, and increased salt content in the micro-
environment (Daniel and Cowan 2000). High-frequency recombination allows 
recovery of a viable genome even from highly damaged cells by combining ele-
ments from several different chromosomes. Thermal resistance is determined by 
features in the organization of the genome, such as positive superspiralization and 
accelerated genetic repair of single-stranded DNA damage. Among protein genes in 
hyperthermophiles, the reverse gyrase associated with positive superspiralization of 
DNA is the only specific for hyperthermophiles and absent in mesophiles (Forterre 
2002). In most cases, the adaptation to thermophilicity is associated with significant 
modifications of genomes involving the use of codons with increased G + C content 
which affects the stability of the double helix (Lynn et al. 2002). A characteristic 
feature of the thermophilic RNAs is that they are unusually short and have a ten-
dency to reduce single-stranded regions, which is important for their stability. 
Pyrococcus furiosus cells growing at 100 °C contain three times more dimethyl and 
trimethyl guanosine than those growing at 70 °C (Imanaka 2011), suggesting that 
the modified nucleosides contribute to stabilizing the mRNA.

The increased G + C content in DNA in some thermophiles results in enhancing 
of amino acids encoded by codons rich in G + C like alanine, arginine, and proline. 
The amount of histidine, asparagine, glutamine, cysteine, methionine, and threo-
nine, which are thermolabile amino acids, is also reduced. The theoretical models 
indeed show that the proportion of some amino acids and protein stability are pro-
portional over a wide temperature range (Vendittis et al. 2008). A statistical analysis 
comparing the amino acid composition of mesophilic and thermophilic proteins 
revealed a tendency for glycine replacement with alanine, thereby reducing the con-
formational flexibility of the molecule (Taylor and Vaisman 2010). Two different 
evolutionary strategies probably have developed in prokaryotes, depending on the 
evolutionary history of the organism – whether the thermophilic character appeared 
early in the evolutionary process or it was obtained later during the adaptation to 
thermal niches. Proteins from organisms evolved at high temperatures are 
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significantly more compact and more hydrophobic than their mesophilic analogs. 
Genomic analyses indicate smaller encoding genes are typical for thermophilic 
genomes (Islas et al. 2003). Organisms that have colonized hot habitats relatively 
late have evolved by the key mechanism of replacing amino acids with those that 
allow the formation of hydrogen bonds and electrostatic interactions within the sub-
unit or between individual protein subunits, such a way influencing positively the 
interaction with chaperones (Jollivet et al. 2012). Thermophilic proteins are smaller 
and more rigid than mesophilic. The more rigid structure of the thermophilic 
enzymes is also responsible for their lower enzymatic activity than the mesophilic 
ones (Daniel and Cowan 2000). It is commonly accepted that the influence of tem-
perature on enzyme activity constitutes of two effects – increased temperature gives 
increased activity and at the same time results in a loss of activity as a result of 
enzyme denaturation (the classical model). According to the model of Daniel and 
collaborators, the active site is more flexible than the whole protein, and loss of its 
activity occurs before denaturation (Bergquist et al. 2014). An important mecha-
nism of thermostability is the presence of heat shock proteins (HSP) (Sharma et al. 
2009). The higher the temperature of the habitat, the greater variety of constitutive 
HSP families is found.

Particular feature of thermophilic membranes is a large amount of saturated fatty 
acids with unbranched chains into lipid composition. Their high melting tempera-
ture makes the membrane more resistant to the temperature. In some cases, specific 
adaptations increase membrane thermostability like glycerol-ether lipids in thermo-
philic archaea and hyperthermophilic bacterium Thermotoga maritima (Koga and 
Morii 2005).

Specific low-molecular organisms, called solutes, which do not affect cell metab-
olism even in molar concentrations are found in thermophile cells under tempera-
ture or osmotic shock (Borges et al. 2010). They are sugars, polyols, amino acids, 
and derivatives thereof such as mannosylglycerate, mannosyl glyceramide, diami-
noinositol phosphate, mannosyl diaminoinositol phosphate, etc. The mechanism of 
their action is connected with their participation in water retention by creating com-
mon structures with water molecules.

6.4  Ecology and Phylogeny of Thermophilic 
Microorganisms

Natural biotopes of thermophiles are volcanic and geothermal niches, mainly 
located on ground surface or underwater tectonic fractures, where earth plates col-
lide or move away from one another. Deepwater wells are subdivided into so-called 
black and white smokers. The black smoker fluid is acidic, rich in metal ions and 
reduced substances (CH4 and H2S) and has temperature of 300–400  °C.  White 
smoker fluid is relatively cooler (250–300 °C), white color is connected with a lack 
of metal compounds in it, and the fluid is relatively slower.

Microorganisms can also be found in underground hot habitats, mainly in the 
fields of hardened sediments and rock cracks. The oil fields resulting from the 
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transformation of organic matter into hydrocarbons are located 1.5–4 km below the 
ground or seabed, at a pressure between 15 and 40  MPa and temperatures of 
60–130  °C.  Almost all underground habitats are characterized by anoxic 
conditions.

High-temperature continental springs are located in active volcanic zones 2–5 km 
below the surface where the magma chamber serves as a heat source. High- 
temperature springs are usually in the form of fumarole. The high-temperature 
springs are acidic as H2S is oxidized to sulfuric acid on the surface, thus decreasing 
pH to 2–2.5. Solfatara (fumaroles that emit sulfur) fields are located in Iceland, 
Yellowstone National Park (USA), New Zealand, Kamchatka, Japan, and Italy. 
High-temperature springs include geysers whose water has a neutral or slightly 
alkaline pH. Globally, there are about 1000 geysers, half of which are in Yellowstone 
(USA). Low-temperature continental springs are located outside the active volcanic 
zones in geographically more stable regions in which extinguished or deep lava 
flows and dead magma chambers serve as sources of heat. The water temperature at 
a depth of 500–3000 m is up to 150 °C, temperature and flow of spring water are 
constant, and water in these springs is neutral to alkaline. Continental hot springs 
are highly distributed on the territory of Europe, like Italy and Portugal, and Asia, 
like Japan, China, and Armenia. Many continental hot springs are concentrated on 
the territory of Balkan Peninsula. There are about 140 natural habitats with water 
temperature 40–103  °C and a pH of 6.0–9.5 only on the territory of Bulgaria 
(Fig. 6.2). Diverse properties of water derived from their different geotectonic ori-
gin are a prerequisite for a considerable diversity of microorganisms living there.

Thermophilic bacteria refer to more than 50 genera distributed in 14 phyla rep-
resenting almost half of the validly recognized phyla (Boone et  al. 2001; 
Hreggvidsson and Kristjanssоn 2003; http://www.bacterio.net/-classifphyla.html). 
Phyla Aquificae, Thermotogae, Thermodesulfobacteria, Thermomicrobia, and 
Deinococcus-Thermus are presented only by thermophiles. Other phyla contain 
both thermophilic and mesophilic bacteria. Highest Topt have the bacteria from the 
families Thermotogaсеаe и Aquificae, above 85 °C, which together with a number 
of thermophilic archaea are referred as hyperthermophiles. The most common pH 
range for growth of thermophilic bacteria is between 5 and 9. Biodiversity in 

Fig. 6.2 Bulgarian hot springs: A, Geyser, Sapareva Banya has the highest temperature in conti-
nental Europe – 103 °C at the point of drilling; B, Rupi Basin
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Eurasian hot springs is still badly known, and molecular analyses revealed a pres-
ence of significant part of unknown groups comparable with those of well-studied 
Yellowstone and Iceland springs (Table  6.1). Study on diversity of thermophilic 
bacteria inhabiting a hot spring located in Rupi Basin (RB), Southwest Bulgaria, 
revealed a high phylogenetic richness in it (genotypic diversity is 0.37). One third 
of the sequence types showed less than 97% similarity to the closest neighbor and 
referred as new sequences. Four of them were distantly related to validly described 
bacteria (showed ≤90% similarity) suggesting new taxons on at least genus level 
(Tomova et al. 2010). Similarly, most of the sequences retrieved from Arzakan hot 
spring, Armenia, were most closely related to uncultivated microorganisms and 
shared less than 96% similarity with their closest matches in GenBank, indicating 
that this spring harbors a unique community of novel microbial species or genera 
(Panosyan and Birkeland 2014). As can be seen from Table 6.1, Proteobacteria and 
Aquificales are usually among the dominant phyla, and at the same type, different 
specific groups were observed in dependence of geographic location and spring 
temperature. Intensive investigations on bacterial diversity in environmental sam-
ples using 16S rRNA gene suggest that most the high taxa will be discovered by the 
end of the current decade (Yarza et al. 2014).

Culturable thermophilic archaea refer to two among the three archaeal phyla, 
Proteoarchaeota (predominantly Crenarchaeota) and Euryarchaeota. Crenarchaeota 
consists entirely of thermophiles, represented by a single recognized class 
(Thermoprotei) and one “Candidatus Nitrosocaldus yellowstonii” (de la Torre 
et al. 2008). Culture-independent molecular phylogenetic analyses revealed high 
Archaea diversity in Eurasian terrestrial hot springs. Investigation of the structure 
of the microbial community in a hot spring Varvara, Bulgaria (Fig. 6.3) showed 
high proportion of OTUs representing uncultivated archaeal phylogroups, the 
abundance of novel phylotype sequences (almost a quarter of the sequenced 16S 
rDNAs), the presence of high proportions of Crenarchaeota phylotypes unrelated 
to cultivated organisms (four OTUs formed a new archaeal subgroup without close 
described sequences or culturable relatives), and the presence of a sequence only 
distantly related to “Korarchaeota” phylum. “Korarchaeota” sequences showed 
90% similarity to the closest neighbor forming unique branch in this phylum 
(Ivanova et al. 2011).

Analysis of near full-length archaeal rRNA genes retrieved from Arzakan and 
Jermuk hot springs, Armenia, showed that both springs are inhabited by a diversity 
of methanogens, including Methanomicrobiales, Methanosarcinales, relatives of 
Methanomassiliicoccus luminyensis, close relatives of the ammonia-oxidizing 
archaeon (AOA) “Candidatus Nitrososphaera gargensis,” and the yet-uncultivated 
miscellaneous Crenarchaeotal group and Deep Hydrothermal Vent Crenarchaeota 
group 1 (Hedlund et al. 2013).
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Fig. 6.3 Phylogeny of the archaeal phylotypes identified in Varvara hot spring. A neighbor- joining 
phylogenetic tree was constructed from: archaeal 16S rRNA sequences from Varvara hot spring; 
sequences of their closest relatives and sequences of culturable and characterized archaea (Ivanova 
et al. 2011)
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6.5  Discovery of Novel Thermophilic Enzymes 
with Biotechnological Potential

Still most of the industrial enzymes used are derived from mesophilic organisms 
whose exploitation is limited by their low stability at high temperatures and salinity 
and extreme pH values. Nowadays about 20 enzymes are produced in large indus-
trial scale (Li et al. 2012). Despite the fact that to date more than 3000 different 
biocatalysts have been identified (Kumar et al. 2011), mainly by culturable bacteria, 
they are still far from being able to respond to the ever-evolving new needs and 
requirements, among which their stability under industrial conditions is of particu-
lar importance. Reaching to the desired activity depends of the technical capability 
to explore the huge microbial diversity (Boehmwald et al. 2016). The largest enzyme 
companies like Diversa, Genencor International Inc., and Novozymes invest in 
search for new extremozymes (Gomes and Steiner 2004).

One of the main stimuli for intensive studies on thermophilic microorganisms is 
the potential biotechnological application of their enzymes. Thermophiles are char-
acterized by high growth rates, which accelerate the fermentation process several 
times compared to those using mesophilic producers; the risk of microbial contami-
nation in the biotechnological processes is significantly lower; diffusion rate and 
mass turnover, respectively, are higher; solubility of poorly soluble components in 
particular polymeric substrates is improved. The rigidity of thermophilic molecules 
determines their ability to be active and stable under the extreme conditions in 
which their producers live, allowing their use in industrial conditions at extreme 
temperatures, pH, salinity, organic solvents, and detergents. Particularly important 
in commercial preparations is longer process of “aging” the enzyme, which allows 
long storage at room temperature. Nowadays, different approaches are used to find 
the desired enzyme activities including direct screening in big microbial collections, 
metagenome screening, and shotgun sequencing, the last two based on analysis of 
the coding regions of the known enzymes (Boehmwald et al. 2016). The discovery 
of new microbial species and the sequencing of new genomes and metagenomes 
allow access to new enzymes with new application capabilities. As a result of the 
development of genome technology, new extremozymes offering new biocatalytic 
processes in biotechnology and pharmaceutical industries, green technologies, cos-
metics, and food additives will be found in near future. Particular hopes are placed 
on archaeal thermophilic enzymes, whose potential is still practically unused.

6.5.1  Direct Screening in Microbial Collections

Still the best approach to discover new enzymes is growing of a microbial culture. 
Most of the papers are devoted to the biocatalytic activity of recombinant strains, 
despite of their disadvantages like genetic instability and interference with other 
biosynthetic pathways (Mühling et al. 2013). Direct screening for a desired activity 
has several advantages in comparison with other approaches. It confirms unambigu-
ously its real existence and functional characteristics like substrate specificity, pH 
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and temperature optima, and stability. Despite that classical screening is time and 
labor consuming, still many new enzymes or enzymes with improved properties 
have been reported exploring this approach in different biotechnologically impor-
tant enzyme groups like glycosyl hydrolases, proteases, and lipases.

Thermostability of glycosyl hydrolases is particularly valuable due to the insolu-
bility of carbohydrates at temperatures below 50–60 °C. Among glycosyl hydro-
lases probably the need in effective degradation of the huge plant biomass composed 
mainly by cellulose and hemicellulose is sharpest and still scarcely explored. The 
effective transformation of lignocellulosic biomass to cheap fermentable sugars 
could be used for different purposes like further conversion into ethanol or produc-
tion of dietary fibers. Most studied cellulases and xylanases are optimally active at 
mesophilic temperatures (40–60 °C) and neutral or low acidic рН (Kulkarni 2003). 
Main disadvantages in use of thermophilic cellulases and xylanases are their low 
yield and low specific activity (Karmakar and Ray 2011). The lack of effective bio-
catalysts suitable for use in harsh industrial environments determines the growing 
scientific interest toward high-yield synthesis of enzymes that function at tempera-
tures approaching and exceeding 80 °C that could overcome the need in the prelimi-
nary treatment of these substrates. Last reports concern predominantly anaerobic 
thermophiles as their higher growth temperature suggest more thermophilic 
enzymes like Caldicellulosiruptor saccharolyticus (VanFossen et al. 2011) and C. 
bescii (Su et al. 2012). The half-life of inactivation of xylanase from Dictyoglomus 
thermophilum in 80 °C and 500 MPa was over 30 h (Li et al. 2015).

So far, more than 40 proteases, active at temperatures between 50 and 95 °C, 
have been isolated and described, the most thermophilic produced by Archaea 
(Białkowska et al. 2016). Although the most intensive search for thermostable pro-
teases was two to three decades ago, still interesting enzymes have been described 
in the last several years. Several workers have reported protease activity from ther-
mophilic Bacillus species, subtilisin-like protease from Bacillus sp. MLA64 having 
the highest temperature optimum of 95 °C and t1/2 25 min at 110 °C (Lagzian and 
Asoodeh 2012), and alkaline serine protease from Geobacillus stearothermophilus 
B-1172 has t1/2 60  min at 100  °C (Iqbal et  al. 2015). The enzyme from 
Coprothermobacter proteolyticus expressed in E. coli has a temperature optimum of 
85 °C (Toplak et al. 2013).

The natural substrates of the lipases are practically insoluble in water at room 
temperature, which determines the interest in thermostable enzymes. Although 
prevalent mesophilic lipases are still available in commercially available prepara-
tions, the instability of well-characterized mesophilic enzymes in extreme condi-
tions provokes the industrial demand for thermostable lipases (Tirawongsaroj et al. 
2008). Over the years unrelenting interest toward thermostable lipases is observed 
especially to the group of thermophilic bacilli. Lipolytic enzymes from recently 
isolated thermophilic aerobes Geobacillus sp. EPT9, Thermus thermophilus HB27, 
and Acidicaldus USBA-GBX-499 have a temperature optimum 55–65 °C (Fuciños 
et al. 2014; Lopez- Lopez et al. 2014; Zhu et al. 2015). Usually thermophilic anaer-
obic lipases suggest higher temperature optimum of 70–78 °C (Cai et al. 2011; Tao 
et al. 2013); however the lipases from Geobacillus stearothermophilus MC 7 and 
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Thermus scotoductus SA-01 showed a temperature optimum of 80 °C (Kambourova 
et al. 2003; du Plessis et al. 2010).

Although several novel enzymes were described in last years by direct functional 
discovery of the enzyme, the practical disadvantages of this approach determined 
the development of high-throughput screening (HTS) by which simultaneous detec-
tion of the desired activity in thousand samples became possible. However as many 
factors could influence enzyme activity in the crude cell extract, this approach has a 
limited application (Boehmwald et al. 2016). This approach was used for screening 
of coenzyme preference change of thermophilic 6-phosphogluconate dehydroge-
nase (Huang et al. 2016) and for screening and characterization of xylose-utilizing, 
ethanol-tolerant thermophilic bacteria for bioethanol production (Qi et al. 2011).

6.5.2  Metagenomic Approach for Discovering of Novel Enzymes

Metagenomics as a cultivation-independent approach provides the opportunity to 
study and explore the uncultivated fraction of the microorganisms in nature. The 
method is based on a direct extraction of total DNA from environmental habitats, 
subsequent sequencing, assembly, and analyzing using computational tools (Sharon 
and Banfield 2013) or digesting and cloning into suitable vectors, expression, and 
functional screening. Metagenome is accepted as a huge reservoir of taxonomic and 
functional genes coming from a vast number of genomes in an environmental sam-
ple and therefore is seen as a feasible possibility to introduce more and diverse 
enzymes with better performance meeting the global demand for new catalysts. The 
accessibility and wide usage of metagenomic sequencing in recent years resulted in 
generating of lots of sequencing reads and available data and contribute its develop-
ing as a powerful tool for screening and discovery of novel enzymes (Lämmle et al. 
2007). Enzyme discovery could be based on searching for enzyme homology with 
known enzymes by sequence comparison; amplification of genes by using of spe-
cific primers designed according to conserved regions in the gene; and metage-
nomic libraries built and screened using DNA cloned directly from environmental 
metagenomes and functional metagenomics (Lopez-Lopez et al. 2014; Lam et al. 
2015). Genomic sequencing technology and functional genomics have been suc-
cessful in amassing large amount of genomic data on extremophiles, including 
information about genes at the DNA sequence level (Lee et al. 2008). The rapid 
development of sequencing techniques after the introduction of next-generation 
DNA sequencing technologies (NGS) has emerged and substantially influenced the 
progress of the genomic era. Nowadays NGS allows large-scale analysis of micro-
bial communities including comparative community metagenomics, metatranscrip-
tomics, and metaproteomics (Lämmle et al. 2007).

There are lots of studies addressed to understanding the taxonomical composi-
tion of different high-temperature environments. In parallel the functional- and 
sequence-based metagenomic approaches (Fig. 6.4) along with metatranscriptomics 
and metaproteomics provide information for community functional activity 
(DeCastro et al. 2016).
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Most hope in discovery of truly new enzymes is assigned on the searching for 
open reading framework (ORF) in metagenomes from hot environments; however 
in this case, the information for the possible enzyme activity, specificity, and proper-
ties could be ambiguous (Chan et al. 2015). If ORF of the novel enzymes differs 
significantly from known enzymes, it could be difficult to reveal their real biotech-
nological impact. According to Galperin and Koonin (2010), about 30–40% of 
genes in newly sequenced genomes remained unknown. Proteomic studies on 
extremophiles can provide information about the number of proteins induced under 
specific conditions (Burg et  al. 2011). Therefore, improving screening methods 
using proteomic technique is essential for identifying novel proteins in extremo-
philes. Additionally to functional screening, the novel enzymes could be searched 
by shotgun sequencing and the search for the target enzyme in metagenomic librar-
ies. In this case the novel enzyme searching is based on the sequence homology 
with known enzymes.

Several hot spring metagenomic studies based on sequence similarity search 
reported for significant amount of sequences with unknown function assumed as 
potential novel bio-products (Mangrola et al. 2015; Mehetre et al. 2016). Solid 
and constantly developing new and diverse bioinformational tools supported a 
correct annotation against number of databases as the KEGG orthology database 
(Kanehisa et al. 2016), SEED annotation system (Overbeek et al. 2014), and Pfam 
database (Finn et al. 2016). A disadvantage of sequence-based enzyme screening 

Fig. 6.4 Strategies used for screening metagenomes in search of new thermozymes. (According 
to DeCastro et al. 2016)
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is the impossibility to discover completely new enzymes as the methods rely on 
sequence homology to already described enzymes. Directed evolution and protein 
engineering are often further required to enhance the desired enzyme perfor-
mance. However the insertion of synthetic genes as an alternative to amplification 
of native sequences provides several advantages as codon optimization (Te’o et al. 
2000), vector engineering, gene design, and ORF engineering (Gustafsson et al. 
2012). The tools of modern synthetic biology are increasingly applied in the 
research and industrial scale.

One functional metagenomic approach for novel enzyme screening is direct 
cloning of DNA extracted from the environment including several steps: metage-
nomic DNA extraction, purification and cloning into expression vector, transforma-
tion into suitable host, and expression and further observation for functional 
activities (Lämmle et al. 2007). Construction of cosmid- or fosmid-based metage-
nomic libraries containing high-molecular DNA inserts is a laborious, time- 
consuming, and expensive process, despite the fact that several biotechnologically 
perspective enzymes were identified by functional metagenomics (Carvalho 2017). 
The method suffers from several disadvantages as codon usage bias and improper 
protein folding, not or poorly supported by the host machinery posttranslational 
modifications (Lämmle et al. 2007). The gap between the expression level and pro-
duced clones from metagenomic libraries imposes the implementation of different 
strategies to overcome the disadvantages. Additionally, the problem with protein 
expression level could arise if an appropriate host and expression system have not 
been developed. It is known that in E. coli-based expression, systems up to 40% of 
the genes are successfully expressed and active (Gabor et al. 2004). For thermo-
philic enzyme expression, other hosts like bacilli and Sulfolobus are often explored. 
Bidirectional plasmid vector was used for direct expression cloning and screening 
for different enzyme activities from compost (Lämmle et al. 2007). The functional 
screening detected the following activities: protease, phosphatase, and lipolytic 
activities. The provided data about the active enzyme frequency among the clones 
proved the usage of duo-orientated vector as advantageous for direct metagenomic 
gene cloning and expression. Providing enzyme in sufficient amounts at reasonable 
costs depends also of the clone number that should be tested and the available equip-
ment. Metagenomics gives insides on the theoretical functional capacity of the 
microbial community, but further understanding of proteins activities and their bio-
logical role is essential. Naturally proteomic studies have developed as a new func-
tional genomics tool for novel extremophilic enzymes discovery (Yun et al. 2016).

The processes of transcription and translation of the heterologous sequences into 
functional proteins are still poorly understood. The number of factors is recognized 
to affect these processes as codon usage, toxicity of the expressed proteins and for-
eign DNA, posttranslational modification of the protein and secretion, transcrip-
tional signals (promoters) recognition, mRNA stability, ribosomal binding, and 
translation initiation. These limitations can be overcome by integrated approach 
comprising all varying factors (Fig. 6.5).

There are lots of published reports describing different enzymes derived from hot 
spring metagenomic libraries. The carbon, sulfur, and nitrogen metabolic diversity 
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of the community from Malaysian hot spring were revealed by shot gun metage-
nome sequencing (Chan et al. 2015). The cloned and overexpressed thermostable 
Fe-superoxide dismutase from hot spring metagenomic library in E. coli had broad 
pH range from 4.0 to 11.0 and activity at 80 °C and retained 50% activity after heat 
treatment at 95 °C for 2 h (He et al. 2007).

Bidirectional plasmid vector was used for direct expression cloning and screen-
ing for different enzyme activities from compost (Lämmle et al. 2007). The func-
tional screening detected the following activities: protease, phosphatase, and 
lipolytic activities. The provided data about the active enzyme frequency among the 
clones proved the usage of duo-orientated vector as advantageous for direct metage-
nomic gene cloning and expression.

Recently, novel genes coding lipolytic and proteolytic enzymes were identified 
by mining a thermal spring volcanic metagenome from Kamchatka peninsula 
(Wemheuer et  al. 2013). Three new lipolytic and one proteolytic enzymes were 
detected in small-insert metagenomic libraries, successfully cloned, overexpressed 
in E. coli, and characterized by multiple displacement amplification for library con-
struction. The described lipolytic enzymes showed maximal activities at 85  °C, 
90 °C, and 65 °C, respectively, with no significant effect of EDTA, KCl, or NaCl on 
enzyme activity. Cloned highly thermostable xylanase from Thermotoga thermarum 
with optimal activity at 95  °C retained almost 100% activity after incubation at 
85 °C for 2 h at pH 7.0 (Shi et al. 2013).

Another approach for introduction of improved enzyme features as thermal sta-
bility is protein rational design engineering including disulfide bond insertion, opti-
mization of protein surface charge, and the free energy of unfolding (Yang et al. 
2015). Several bioinformatic tools are used to compare sequences of mesophilic and 
thermophilic homologous enzymes in order to understand the genetic bases of high- 
temperature stability. Understanding the adaptive evolutionary response under ele-
vating temperatures is an important prerequisite for thermal stability enhance and 
enzyme rational design achievement (Sammond et  al. 2016). An example for 
improved expression of proofreading DNA polymerase (taqIIRM) from Thermus 
aquaticus using a synthetic gene “one amino acid–one codon” method was described 
to be more applicable for industrial production compared to the recombinant wild 
gene (Zylicz-Stachula et al. 2014).
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Fig. 6.5 Recombinant enzyme expression is influenced by numerous factors. (According to 
Gustafsson et al. 2012)
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Abstract
Microorganisms which inhabit extremely acidic environments are increasingly 
attracting the attention of researchers because of their peculiar physiology. These 
extremophiles play a huge role in geochemical processes in mining sites and envi-
ronmental pollution by heavy metals. They also have important applications in 
biotechnology of metals. The study of biodiversity and relevant biogeochemical 
processes is of great interest for improving metal leaching technologies and devel-
oping countermeasures for the formation of acid mine drainage (AMD). Due to 
the insufficient data of ecology of chemolithotrophic bacteria inhabit natural and 
technogenic biotopes of sulfide ores in Armenia, studies of biodiversity and dis-
semination of these bacteria in the copper, copper- molybdenum, gold-bearing, 
and polymetallic ore deposits of Armenia were performed. Using enrichment 
media and isolation techniques, new and original strains of sulfur- and/or iron-
oxidizing bacteria (SIOB) were isolated and studied. Based on physiological and 
biochemical peculiarities as well as molecular biological studies, the isolated 
strains were identify as Acidithiobacillus ferrooxidans, Leptospirillum ferrooxi-
dans, L. ferriphilum, and Sulfobacillus thermosulfidooxidans subsp. asporogenes. 
In this paper we have made an attempt to summarize the data obtained concerning 
dissemination of moderate thermophilic and thermotolerant SIOB and their bio-
logical properties as well as abilities to oxidize the most abundant minerals, pyrite 
and chalcopyrite. Their role in geochemical processes occurring in mining sites as 
well as bioleaching of the most abundant minerals pyrite, chalcopyrite, and refrac-
tory gold-bearing ores were evaluated.
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7.1  Introduction

Microorganisms which inhabit extremely acidic environments (pH <3) are increas-
ingly attracting the attention of researchers because of their peculiar physiology. 
These extremophiles play a huge role in geochemical processes in mining sites and 
environmental pollution by heavy metals. They also have important applications in 
biotechnology of metals. The study of biodiversity and relevant biogeochemical 
processes is of great interest for improving metal leaching technologies and devel-
oping countermeasures for the formation of acid mine drainage (AMD).

Due to the insufficient data of ecology of chemolithotrophic bacteria inhabit 
natural and technogenic biotopes of sulfide ores in Armenia, studies of biodiversity 
and dissemination of these bacteria in the copper, copper-molybdenum, gold- 
bearing, and polymetallic ore deposits of Armenia were performed.

By using enrichment media and isolation techniques, it has been shown that nat-
ural and technogenic sulfide ores are mainly represented by the following genera of 
iron-oxidizing bacteria: Acidithiobacillus, Leptospirillum, and Sulfobacillus.

In this paper we have made an attempt to summarize the data obtained concern-
ing dissemination of moderate thermophilic and thermotolerant sulfur- and/or iron- 
oxidizing bacteria and their biological properties as well as abilities to oxidize 
sulfide ores and minerals.

7.2  Extremely Acidic Environments

Extremely acidic environments may be formed by naturally occurring geochemical 
processes in sulfide ores. However, the majority of extremely acidic sites worldwide 
is connected with human activity, particularly metal mining. Many commercially 
important metals occur in forms of sulfides (copper, zinc, etc.). Mining increases the 
surface area of sulfide ores exposed to air and water and, thus, increases metal 
sulfide oxidation and acid generation processes. Pyrite (FeS2) is the most abundant 
sulfide mineral. Exposure of pyrite surfaces to oxygen and water results in the 
formation of sulfuric acid:

 FeS O H O Fe SO H2 2 2
2

4
23 5 2 2+ + ® + ++ - +.  (7.1)

Investigations have established that ferric iron is more effective oxidant for sulfide 
minerals than oxygen (indirect oxidation). Depending on the type of mineral, two 
different ways of indirect oxidation (by Fe (III)) of minerals are distinguished 
(Schippers et al. 1996, 1999; Schippers and Sand 1999; Sand et al. 1995). Metal 
sulfides, valence bonds of which are obtained exclusively from metal orbitals, are 
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oxidized with Fe (III) and cannot be subjected to proton attack (FeS2, MoS2, and 
WS2). The dissolution of these minerals according to the work of Steudel (Steudel 
1996) proceeds through the formation of thiosulphate:

 FeS Fe H O S O Fe H2
3

2 2 3
2 26 3 7 6+ + ® + ++ - + +  (7.2)

In acidic solutions containing Fe (III), thiosulfate via a variety of polythionates is 
finally oxidized to sulfate (Sand et al. 1995):

 S O Fe H O SO Fe H2 3
2 3

2 4
2 28 5 2 8 10- + - + ++ + ® + +  (7.3)

Other sulfides, in the formation of the valence bonds of which the orbitals of metals 
and sulfur participate, are soluble in acid and are attacked by both protons and Fe 
(III) ions (ZnS, CdS, NiS, CoS, CuS, and CuS2). Dissolution of these sulfides 
proceeds by a different mechanism – through the formation of polysulfides.

 MS Fe H M H S Fen+ + ® + ++ + + +3 2
2

20 5.  (7.4)

 0 5 0 1252
3

8
2. .H S Fe S Fe Hn + ® + ++ + +  (7.5)

Consequently oxidation of pyrite and other sulfide minerals occurs by series of 
intermediate reduced inorganic sulfur compounds (RISCs) (Schippers et al. 1996; 
Schippers and Sand 1999). RISCs and ferrous iron are potential energy sources for 
some acidophilic chemolithotrophic prokaryotes, SIOB (Eq. 7.6):

 Fe O H Fe H O
At

2
2

3
20 5+ + ++ + ® +.

. ferrooxidans

 (7.6)

 0 125 1 5 28 2 2 4
2. .

. , .

S O H O SO H
At At

+ + ® +- +
thiooxidans caldus

 (7.7)

In general metal sulfide oxidation reactions are energy producing or highly exother-
mic reactions. The generation of elevated temperatures in bioleaching environments 
depends on climate, ambient temperature, mineralogy, etc. Besides extremely acidic 
environments are characterized by high concentrations of heavy metals originated 
from the oxidation of sulfide minerals.

7.3  Biodiversity of Microorganisms

Despite the extreme acidity, heat, and high concentration of various metals, 
extremely acidic environments are populated by a wide range of microorganisms. 
Molecular biological methods such as fluorescent in situ hybridization (FISH), 
CARD-FISH, polymerase chain reaction (PCR) combined with cloning, and 
denaturing gradient gel electrophoresis (DGGE), widely used in recent years to 
study biodiversity of microorganisms, allow to detect potentially all microorganisms 
involved in geochemical processes in natural and technogenic biotopes of sulfide 
ores (Hedrich and Johnson 2013; Schippers 2007; Johnson and Hallberg 2003; 
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Johnson et al. 2009; Zhang et al. 2010), while the cultivation method can detect only 
culturable constituents of microbial communities.

According to a number of researchers, natural bioleaching niches are character-
ized by a wide variety of microorganisms. More than 33 species of bacteria belong-
ing to 14 genera and three domains were detected in these niches (Baker and 
Banfield 2003; Bond et al. 2000; Edwards et al. 1999; Johnson 1998; Johnson and 
Hallberg 2003; Rawlings 2002; Rawlings and Johnson 2007; Sand et  al. 2007). 
More frequent microorganisms detected by cultivation and molecular biological 
techniques in mine dumps or heaps belong to bacteria. Moreover, they represent not 
only different genera or families but even phyla. Metal leaching bacteria belong to 
phyla Proteobacteria (Acidithiobacillus, Acidiphilium, Acidiferrobacter, 
Acidisphaera), Nitrospirae (Leptospirillum), Firmicutes (Alicyclobacillus, 
Sulfobacillus), and Actinobacteria (Ferrimicrobium, Acidimicrobium). All phyla 
have both mesophilic and moderate thermophilic forms (Coram and Rawlings 2002; 
Norris et al. 2000).

Acidithiobacillus ferrooxidans is the first and the most well-studied representa-
tive of Proteobacteria. This microorganism exhibits a wide range of metabolic activ-
ities and can oxidize RISCs, iron, and sulfide minerals (Kelly and Wood 2000). 
Some strains may also oxidize molecular hydrogen (H2) and acetic acid.

The Firmicutes is represented by moderate thermophilic gram-positive spore- 
forming bacteria of the genus Sulfobacillus. All species are mixotrophs: the growth 
on Fe (II), So, and RISCs is possible only in the presence of yeast extract (Golovacheva 
and Karavaiko 1978; Norris and Kelly 1978; Norris et  al. 1996; Melamud et  al. 
2003; Johnson et al. 2008). Some species grow on So under anaerobic conditions 
using Fe (III) as the final acceptor of electrons (Bridge and Johnson 1998).

Phylum Nitrospirae includes bacteria that oxidize only Fe (II). The representa-
tives of the genus Leptospirillum are gram-negative motile vibrios or spirilla. 
Leptospirilla are strict aerobes, obligate chemolithotrophs, and grow only by the 
oxidation of Fe2+. Leptospirillum includes both mesophilic, thermoresistant, and 
thermophilic forms (Battaglia et al. 1994; Golovacheva et al. 1992; Hippe 2000; 
Markosyan 1972; Sand et al. 1992).

Acidimicrobium ferrooxidans and Ferrimicrobium ferrooxidans representing 
phylum Actinobacteria are gram-positive rod-shaped, aerobic, thermoresistant, or 
moderately thermophilic bacteria that grow autotrophically by the oxidation of Fe 
(II) and heterotrophically using the yeast extract (Clark and Norris 1996).

The Archaea are mainly thermophiles. Archaea mainly belong to the class of 
Sulfolobales that represent extreme thermophilic sulfur and iron oxidizers 
(Acidianus, Sulfolobus, Metallosphaera, Sulfurococcus). Class Thermoplasmatales 
are presented in two species: Ferroplasma acidiphilum (Golyshina et al. 2000) and 
Ferroplasma acidarmanus (Edwards et  al. 2000). Eukarya detected in these 
environments include algae, fungi, yeasts, and protozoa.

The exceptional diversity of ecogeographical conditions of Armenia and the 
richness of nonferrous metals represent a great and valuable potential for the 
investigation of biodiversity of acidophilic CB in mining sites, as well as for the 
isolation of new highly efficient strains and their communities.
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The studies showed that in the ore deposits of Armenia during their exploitation, 
powerful oxidation zones and acidic mine drainage were formed leading to 
dissolution of heavy metals and contamination of aquatic ecosystems, soil, and 
other econiches.

Dissemination of acidophilic CB in sulfide ores of different mineralization (cop-
per, copper-molybdenum, gold-bearing, and polymetallic ore) in Armenia has been 
studied using enrichment media and isolation techniques. It has been revealed that 
natural and technogenic biotopes of sulfide ores are represented by the following 
genera of IOB: Acidithiobacillus, Leptospirillum, and Sulfobacillus that can operate 
in the temperature range of 10–50 °C. It is noteworthy that the microflora of copper 
and copper-molybdenum ore deposits are mainly represented by At. ferrooxidans 
and S. thermosulfidooxidans, whereas in polymetallic ores rich in pyrite, 
Leptospirillum spp. bacteria dominate, which can be explained by their physiological 
properties, in particular, high resistance to low pH values and high concentrations of 
Fe3 + (Rawlings 1995; Rawlings et al. 1999; Dew et al. 1997; Olson et al. 2003). The 
fact that the activity of At. ferrooxidans and S. thermosulfidooxidans is mainly 
associated with copper deposits is also confirmed by other researchers (Pizarro et al. 
1996; Dopson and Lindstrom 2004). Besides, Acidithiobacillus spp. bacteria 
dominate in the population of the majority of ore and acid drainage water samples. 
Sulfobacillus spp. bacteria were mainly found in ore dumps in quantity of 2–3 
orders lower in comparison with Acidithiobacillus and Leptospirillum spp. bacteria. 
About half of IOB in ore dump samples of polymetallic ore deposits were 
Leptospirillum spp. bacteria. This indicates their important role in the bioleaching 
processes taking place in sulfide ore deposits. The obligatory constituent part of 
stable communities of IOB is sulfur-oxidizing bacteria and acidophilic heterotrophs 
(Vardanyan et al. 2015a, b). As a result of ecological studies carried out, new and 
efficient original strains of acidophilic chemolithotrophic bacteria belonging to 
genera Acidithiobacillus as well as Leptospirillum and Sulfobacillus have been 
isolated from sulfide ores of different mineralization (copper, copper-molybdenum 
polymetallic, gold-bearing ores) in Armenia. The main characteristics of the isolated 
bacteria are given below (Table 7.1).

7.4  Moderate Thermophilic Bacteria

Recently particular attention of researchers was attracted to moderately thermo-
philic and thermotolerant microorganisms as promising for improving the efficiency 
of bioleaching of complex concentrates and biooxidation of refractory gold-bearing 
ores and concentrates.

Moderate thermophiles include representatives of the genus Sulfobacillus, which 
are able to exist at elevated temperatures and low pH values and also oxidize 
elemental sulfur, ferrous iron, and sulfide minerals, actively participating in the 
cycle of chemical elements in nature and metal biotechnology (Pivovarova and 
Golovacheva 1985; Karavaiko et al. 1988).
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The second genus of moderately thermophilic gram-positive, iron-oxidizing bac-
teria at present contains a single species Acidimicrobium ferrooxidans (Clark and 
Norris 1996). It was found in a commercial copper leaching dump but has not been 
extensively studied so far.

It was found that sulfobacilli, together with representatives of the genus 
Alicyclobacillus, form a single phylogenetic group and represent an independent 
branch within the subdivision of gram-positive bacteria, which separated from the 
bacilli at relatively early stages of evolution (Fig. 7.1) (Karavaiko et al. 1990; Turova 
et al. 1995).

The general origin of the genera Sulfobacillus and Alicyclobacillus is indicated 
by the presence of differential phenotypic characters. Thus, representatives of both 
species are obligate acidophiles. Cells of sulfobacilli contain specific lipids, which 
contain ω-cyclohexanoic acids, which are a distinctive feature of the genus 
Alicyclobacillus (Tsaplina et al. 1994; Turova et al. 1995). However, bacteria of the 
genus Alicyclobacillus are less acidophilic and unable to oxidize inorganic substrates 
(Wisotzkey et al. 1992) (Table 7.2).

Table 7.1 Characteristics of CB isolated from sulfide ores of different mineralization in Armenia

Isolated bacterial strains
Source of 
energy Source of isolation

Temp., 
°C

Cell 
morphology

S. thermosulfidooxidans subsp. 
asporogenes str. 41

Fe2+, So, 
FeS2

Armanis 
polymetallic ore

30–55 Rods

S. thermosulfidooxidans subsp. 
asporogenes str. 69

Fe2+, So, 
FeS2

Drmbon 
concentrate (gold 
ore)

37–55 Rods

S. thermosulfidooxidans str. 86 Fe2+, So, 
FeS2

Tandzut (Polymet) 
ore

37–60 Rods

L. ferrooxidans str. ZC Fe2+, FeS2 Zinc concentrate 
bioleaching pulp

37 Curved rods, 
spirilla

Leptospirillum sp. str. 64 Fe2+, FeS2 Akhtala (copper) 
ore

37 Curved rods, 
spirilla

Leptospirillum sp. str. 72 Fe2+, FeS2 Alaverdi (copper) 
ore

Curved rods, 
spirilla

L. ferrooxidans str. Teg Fe2+, So, 
FeS2

Teghout (Cu-Mo) 
ore

37 Curved rods

Acidithiobacillus tandzuti str. 5 So Tandzut (Polymet) 
ore

37 Straight rods

Acidithiobacillus sp. str. 13Zn Fe2+, So, 
FeS2

Zinc concentrate 30–35 Straight rods

Acidithiobacillus ferrooxidans 
str.18

Fe2+, So, 
FeS2

Tandzut (Polymet) 
ore dump

30 Straight rods

At. ferrooxidans str. 61 Fe2+, So, 
FeS2

Tandzut (Polymet) 
ore

30 Straight rods

At. ferrooxidans str. Dr Fe2+, FeS2 Drmbon (copper) 
ore

37 Straight rods

At. ferrooxidans str. Tz Fe2+, So, 
FeS2

Tandzut (Polymet) 
ore

30 Straight rods
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At present, this genus is represented by five species of moderately thermophilic 
and mesophilic bacteria: S. thermosulfidooxidans VKM V-1269  =  DSM 9293 
(Golovacheva and Karavaiko 1978), BC1 (Norris et al. 1996), S. acidophilus (NAL 
and ALV) (Norris et al. 1996), S. disulfidooxidans SD −11 (Dufresne et al. 1996), S. 
sibiricus N1 (VKM V-2280) (Melamud et al. 2003), and S. benefaciens (Johnson 
et al. 2008).

A gram-positive thermoacidophilic non-spore-forming bacterium S. thermosul-
fidooxidans subsp. asporogenes str. 41 has been isolated from acid mine drainage 
water of Armanis polymetallic ore deposit in Armenia (Vartanyan et al. 1988). By 
its physiological properties, the bacterium is similar to type strain S. thermosulfido-
oxidans VKM V-1269 (Table 7.2). The G + C content in DNA is 45.5 mol %. The 
strain shows high level of DNA-DNA hybridization (81%) with S. thermosulfido-
oxidans VKM V-1269. The bacterium differs from the type strain by a smaller size 

Sulfobacillus sp. YTH1 (AF 031645)
Sulfobacillus sp. YTH2 (AF 031646)
“S. thermosulfidooxidans”(Z21979)

Strain K1 (AF 137502)
S. disufidooxidans(U34974)
Alb. cycloheptanicus (X51928)
Alb. acidoterrestris (X60743)
Alb. acidocaldarius (X62177)
Alicyclobacillus sp. KHA-31 (AB004581)
Alicyclobacillus sp. MIH-2 (AB004580)
Alicyclobacillus sp. UZ-1 (AB004579)
Bacillus tusciae (Z26933)
Daphnia endosymbiotic bacterium (U34688)

S. acidophilus NAL (AF 050169)
S. acidophilus ALV (M80290)
Clone A70 (X72853)
Clone cOS77 (U34688)

Strain 41 (AF 137503)
S. thermosulfidooxidans 1269 (AF 137501)

S. thermosulfidooxidans BCI (U75648)

S. thermosulfidooxidans DSM 9293(X91080)
Sulfobacillus sp. C-MT1 (X75270)

Bacillus subtilis (K00637)
Bacillus schlegelii (Z26934)

0.05

100

99

100

100

100

97

100

100

100 100

100

99

Fig. 7.1 Phylogenetic tree of genera Sulfobacillus and Alicyclobacillus. The scale corresponds to 
5 nucleotide replacement for every 100 nucleotides. The figures show the statistical reliability of 
the order of branching, determined using the “bootstrap” analysis of 100 alternative trees; values 
less than 95% are not indicated (Karavaiko et al. 2000)
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of genome (3.0 × 109Da vs. 3.7 × 109Da) and by the fact that it does not form spores. 
Therefore, the bacterium was considered as a new subspecies of S. thermosulfido-
oxidans  – S. thermosulfidooxidans subsp. asporogenes str. 41 (Vartanyan et  al. 
1988).

Previously, bioleaching of metals and acid mine drainage (AMD) production are 
more often found associated with bacteria from genus Acidithiobacillus (former 
Thiobacillus): At. ferrooxidans and At. thiooxidans. Later, studies have shown that 
Leptospirillum is dominating microorganisms in bioleaching niches at temperatures 
higher than 30 °C and lower pH (<1.0) (Coram and Rawlings 2002; Rawlings 1995). 
Thus, at present, different strains of Leptospirillum have been isolated from natural 
and technological systems, which represent a great interest both in fundamental and 
practical aspects due to their unique capability of obtaining energy for their activity 
only from oxidation of Fe (II) (Coram and Rawlings 2002; Okibe et  al. 2003; 
Rawlings 1995; Sand et al. 1992; Vardanyan and Akopyan 2003; Zhang et al. 2010).

The first representative of the genus Leptospirillum – L .ferrooxidans – was iso-
lated and described in Armenia (Markosyan 1972). Subsequently, leptospirilla were 
found in uranium deposits, heaps of coal, acidic mine waters of copper deposits 
(Norris 1983, Harrison and Norris 1985; Johnson 1995; Sand et al. 1992), as well as 
laboratory systems for continuous leaching of pyrite and cobalt-iron pyrite (Battaglia 
et  al. 1994; Helle and Onken 1988). The isolated strains of leptospirilla were 
assigned to L. ferrooxidans or Leptospirillum-like bacteria (Goebel and Stackebrandt 
1994). Later studies revealed significant differences between individual strains, 
indicating the heterogeneity of the genus Leptospirillum (Harrison 1986; Hallmann 
et  al. 1993). However, only recently molecular genetic studies particularly 
differences in G + C content in DNA carried out served as the basis for separating 
isolated strains of leptospirilla into two groups, I and II (Bond et al. 2000) (Table 7.3).

The genus Leptospirillum was included in the phylum Nitrospirae as a phyloge-
netically separate cluster and has been divided into three groups – I, II, and III – on 
the basis of 16S rRNA gene phylogeny (Bond et al. 2000) (Fig. 7.2).

L. ferrooxidans is the representative of group I, and L. ferriphilum is the repre-
sentative of group II. Representatives of group III were identified in the biofilm 
analyzed by community genomics. L. ferrodiazotrophum was proposed for a 
nitrogen-fixing representative of the group III rRNA sequence cluster of strains 
(Tyson et al. 2005). No cultured representatives of group III have been described up 
to now (Bond et al. 2000; Tyson et al. 2005).

In zones of spontaneous heating of sulfide ore dumps, moderately thermophilic 
leptospirilla were found which were described by the content of G + C in DNA and 
by the degree of homology of DNA (26.7%) as a new species of Leptospirillum 
thermoferrooxidans sp. nov. (Karavaiko et  al. 1980; Karavaiko and Golovacheva 
1986; Golovacheva et al. 1992). However, L. thermoferrooxidans was not preserved, 
and data on 16SrRNA are absent, which makes it impossible to compare this 
bacterium with the abovementioned groups of leptospirilla.
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7.4.1  Morphology and Ultrastructure

In the logarithmic phase of growth on media with So, Fe2+, and sulfide minerals, 
moderately thermophilic sulfobacilli are rods with rounded ends and 0.5–1.0 x 1.0–
6.0 μm in size. They occur as single cells, pairs, or in the form of short chains. Cells 
are nonmotile, devoid of flagella. Microcapsules are found around the cell. With the 
growth of the bacterium on pyrite, there is a tendency to form pseudococci and fila-
mentous forms (Golovacheva 1979; Vartanyan et al. 1988). Reproduction occurs by 
binary division (Fig. 7.3d).

In the central part of the cell of str. 41, well-defined electron-transparent zones of 
a nucleoid with DNA strands 2 nm thick were found (Fig. 7.3b, d). In the cytoplasm, 
a significant number of small electronically dense granules – polyribosome – were 
observed. Large polyphosphate granules were found at the poles of the cells. On 
ultrathin sections it is seen that sulfobacilli have a one-component cell wall typical 
of gram-positive bacteria. Outside, it is covered with an electronically transparent 
S-layer, connected with the murein layer underneath it. The electronically dense 
murein layer closely adjoins the outer layer of the cytoplasmic membrane, due to 
which the latter looks asymmetric and the outer layer appears thickened. S-layer in 
S. thermosulfidooxidans, together with the polysaccharide substance of the capsule 
lying outside, forms a complex glycocalyx that plays an important role in the 

Table 7.3 Genetic characteristics of leptospirilla, isolated from different sources (Coram and 
Rawlings 2002)

Strains Groups Subgroups Habitat References
G+C, 
%

Growth at 
45 °C

P3 a I 1.1 Coal mine, North 
Wales (UK)

Sand et al. 
(1992)

51.9 −

DSM 
2705

I 1.1 Copper mine deposit, 
Armenia

Markosyan 
(1972)

51.7 −

ATCC 
49879

I 1.1 Romania Sand et al. 
(1992)

51.7 −

Sy I 1.2 Sygun Cu mine North 
Wales, UK

Johnson 
(1995)

48.8 −

Parys I 1.2 Parys Mountain, 
Anglesey Cu mine, 
Wales

Johnson 
(1995)

51.5 −

BCT2 I 1.2 Birch Coppice 
Warwickshire, UK

Johnson 
(1995)

51.0 −

Chil-L f2 I 1.2 Cu mine, Chile Johnson 51.2 −
Warwick II Warwick, UK Norris 

(1983)
54.9 −

ATCC 
49880

II Romania Sand et al. 
(1992)

57.8 +

ATCC 
49881

II Peru Sand et al. 
(1992)

56.6 +

BU-1 II Gramatikovo, 
South-East Bulgaria

Harrison 
(1986)

55.4 −
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interactions of microorganisms with the environment (Severina et  al. 1995; 
Senyushkin et al. 1997; Karavaiko et al. 2006).

In comparison with the bacilli, the S-layer of S. thermosulfidooxidans is charac-
terized by a higher content of hydrophobic amino acids. Another important feature 
of the S-layer of S. thermosulfidooxidans is the predominance of acidic amino 
acids.

It is known that the most adhesive part is the carbohydrate part of the layer. In 
carbohydrates of S-layer, S. thermosulfidooxidans VKM B-1269 dominates 
mannose. Glucosamine was also detected (Severina et al. 1995).

Intracytoplasmic membrane structures are very diverse. Along with simple loop- 
shaped invagination, complex four-contour and tubular-vesicular membrane struc-
tures are observed (Pivovarova and Golovacheva 1985). The functions of 
intracytoplasmic membrane structures have not been fully studied. It is assumed 
that they are the “depots” of whole membrane blocks and lipids, which are used by 
bacteria for rapid growth and when restoring the surface parts of the cytoplasmic 
membrane. According to another hypothesis, invert membranes regulate the trans-
port of certain substances, in particular hydrophobic So, into the cell. According to 

0.05

Snottite clone SC07

Slime clone BA29

ATCC49879

P3a

DSM2705

Parys

Chil-Lf2

CF12

SY

BCT2

ATCC49881

Fairview

OS7

OS4

Lf30-A

LA

DSM2391 (Bu-1)

Warwick

Clone OS17

1.1

1.2

Group III (?rrn)

Group I (3 rrn)

L. ferrooxidans

Group II (2 rrn)

L. ferriphilum

Nitrospira moscoviensis

Fig. 7.2 Dendrogram of leptospirilla, composed on the basis of the analysis of nucleotide 
sequence of 16S rRNA.  Branches showing values above 75% in the “bootstrap” analysis are 
indicated by black circles, the rest (50–75%) – hollow circles. Two subgroups of hybridization of 
leptospirilla (1.1 and 1.2) are distinguished by large brackets, which contain three copies of the rrn 
gene (group I) (Coram and Rawlings 2002)
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the third hypothesis, these structures play a role in the cell cycle and participate in 
the formation of septa during cell division (Suzina et al. 1999).

All representatives of sulfobacilli are capable of forming endospores (Golovacheva 
1976; Golovacheva and Karavayko 1978; Kovalenko and Malakhova 1983; Karavaiko 
et al. 2006). Moreover, spore formation is especially intense when growing on cop-
per-zinc-pyrite ores and sulfide minerals such as pyrite, chalcopyrite, arsenopyrite, 
and antimonite. Less intensively, it proceeds with the growth of bacteria on sulfur 
and ferrous iron. In the latter case, bacteria practically do not manage to form spores 

Fig. 7.3 The structure of the cell wall and the various types of mesosomes in S. thermosulfidooxi-
dans subsp. asporogenes str. 41
V vascular structures, CM cytoplasmic membrane, M mesosomes
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due to the rapid depletion of the energy substrate (Golovacheva and Karavayko 
1978). For a type strain of S. thermosulfidooxidans VKM B-1269, spherical spores 
are characteristic, and for S. thermosulfidooxidans subsp. thermotolerans  – oval, 
slightly inflating sporangium (Kovalenko and Malakhova 1983). The location of 
spores in sporangia is terminal or subterminal (Golovacheva 1979). The spores of S. 
thermosulfidooxidans have a structure similar to that of thermophilic and mesophilic 
bacilli. It is a protoplast, enclosed in a powerful cortex, which has multilayer covers 
and an exosporium (Golovacheva 1979).

Electron microscopic observations in dynamics, as well as the special staining 
procedure, did not reveal spores in S. thermosulfidooxidans subsp. asporogenes str. 
41, isolated from Armanis polymetallic ore deposits in Armenia (Vartanyan et al. 
1988). Investigations indicated that the genome size in str. 41 was 3.0 × 108 Da, 
which is 20% less than the genome of S. thermosulfidooxidans VKM B-1269 
(3.7 × 109 Da). It is assumed that as a result of the deletion part of the genome of the 
isolated bacteria, responsible for sporulation has been lost.

Representatives of the genus Leptospirillum are characterized by well-defined 
polymorphism. The 4-day cultures are vibrios with diameters of 0.9–1.1 μm and 
length of 0.3–0.6 μm. Spiral-shaped cells with a number of turns up to 4 (Fig. 7.4) 
(Pivovaarova et al. 1981; Golovacheva et al. 1992; Sand et al. 1992; Vardanyan and 
Akopyan 2003) dominate in a 1–2  week culture. Under adverse conditions, in 
particular at pH 1.5, the cells are transformed into pseudococci with a diameter of 
400–800 nm. They are also characterized by the formation of cocci at the terminal 
ends of the spirilla (Pivovaarova et  al. 1981). They have one polar flagellum 
18–22 nm in diameter. L. ferrooxidans is multiplied by cell division. In general, 
there is uniform division, but uneven cell division is also possible by separating one 
of the spiral turns (Pivovaarova et al. 1981).

Outside, the cells of the leptospirilla are covered with a mucous layer 100–
450 nm thick, which, due to a unique chemical structure, forms complexes with Fe3+ 
ions. It has been established that on the third day of cultivation, the L. ferrooxidans 
cell is surrounded by an iron cover, which gradually thickens and leads to the 
cessation of cell development (Pivovaarova et al. 1981; Golovacheva et al. 1992) 
(Fig. 7.5).

Fig. 7.4 General view of 
Leptospirillum sp. str. 72. 
(a) Light microscopy, (b) 
electron microscopy
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The cell wall of L. ferrooxidans has a typical structure for gram-negative cells. 
The outer layer is represented by a cell membrane consisting of 2 electronically 
dense layers 0.6–1.0 and 0.35–0.6  nm thick and an electron-transparent layer 
between them 0.7–0.8 nm thick. A rigid murein layer is found only in its individual 
parts, which, in the opinion of the authors, may be due to the insufficient course of 
the fixation process. Between the cell wall and plasma membrane, there is a small 
electron-dense layer 0.8–1.55 nm thick (Pivovaarova et al. 1981).

Intracytoplasmic structures were not found in leptospirilla. In the central part of 
the cell, there is an electronically transparent layer with DNA strands. In the cyto-
plasm there are polyribosomes in large numbers. The accumulation of hydroxybu-
tyrate, inherent for the Spirilaceae family, was not detected.

7.4.2  Physiology

On the basis of phenotypic properties, sulfobacilli are divided into two groups: 
moderate thermophiles (str. 1269, 41, BC1, N1, NAL, ALV) and mesophiles (strains 
K1 and SD-11). Representatives of the first group oxidize Fe2 +, S0, and sulfide 
minerals in the presence of 0.2 g/l of yeast extract or other organic substances in the 
medium. Strains of the second group oxidize inorganic substrates partially and grow 
at higher concentrations of organic substances (1.0–2.5 g/l) (Bogdanova et al. 2006; 
Kovalenko and Malakhova 1983; Dufresne et al. 1996). The latter group of bacteria 
is characterized by larger cell sizes.

In autotrophic conditions, sulfobacilli can grow due to inorganic sources of 
energy, such as tetrathionate (S4O6

2−), thiosulfate (S2O3
2−), and elemental sulfur 

(So). At the atmospheric concentration of carbon dioxide, the autotrophic growth of 
sulfobacilli is weak and ceases after several passages. The specific growth rate is in 
the range of 0.018–0.026 hr./1 (Krasilnikova et al. 1998). The autotrophic growth of 
bacteria on Fe2+ is also limited, but the addition of tetrathionate or thiosulphate to 
the medium leads to an increase in their growth rate.
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(3), and 86 (4) at different 
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One aspect of the metabolic diversity of sulfobacilli is associated with their abil-
ity to grow anaerobically. Studies of recent years have shown that IOB are rather 
facultative anaerobes than strict aerobes. When growing in conditions of limited 
amounts of oxygen, five strains belonging to the species S. thermosulfidooxidans 
(strain TH1), S. acidophilus (ALV, YTF1), and Acidimicrobium ferrooxidans (TH3) 
showed the ability to reduce Fe3+ (Bridge and Johnson 1998). It was found that in 
some strains the reduction of Fe3+ is associated with mixotrophic or heterotrophic 
growth, when glycerol acts as electron donor. And in S. acidophilus ALV and 
THWX and S. thermosulfidooxidans TH1, the reduction of Fe3+ was accompanied 
by oxidation of tetrathionate:

 S O H O Fe H SO H4 6
2

2
3

2 4
210 14 4 12 14- + + ++ + ® + +  

Of special interest is the fact that the S. acidophilus str. YTF1 is capable of reducing 
the minerals containing Fe3+ (iron hydroxide, jarosite, goethite) when growing 
under limited aeration using glycerol as a source of carbon and energy:

 
Fe III Fe Fe( ) ® ®+ +

solid phase soluble
3 2  

This ability of moderately thermophilic bacteria can have wide practical application 
for the removal of jarosite from other minerals accumulating in the reactors of 
bacterial leaching of metals, providing further efficient oxidation of ores (Bridge 
and Johnson 1998).

From dumps and water flows of Armanis and Akhtala polymetallic ores and 
Shamlug copper ore, three strains of acidophilic moderately thermophilic SIOB 
were isolated: str. 41, str. 69, and str. 86. The studies showed that the optimal growth 
temperature for strains 41 and 69 is 50  °C and for str. 86 is 55  °C.  The lower 
temperature limit is 30 °C. Oxidation of Fe2 + with isolated strains was observed up 
to 60 °C (Fig. 7.4). Optimal pH values for the growth of bacteria on Fe2+ lie in the 
range of 1.6–1.8. At pH values above 2.5, a sharp decrease in the Fe2+ oxidation 
activity is observed. The growth of bacteria on medium with elemental sulfur occurs 
in the pH range 2.0–4.5; the optimal pH values are 2.3–2.5.

The optimum growth temperature for L. ferrooxidans is 28  °C (Markosyan 
1972). However, in Leptospirillum-like bacteria, according to a number of authors, 
it varied from 28 to 35  °C (Norris 1983; Harrison and Norris 1985; Sand et  al. 
1992). For strains L6 and L8, the optimum growth temperature is reported to be 
37  °C (Battaglia et  al. 1994). Some strains can grow at the temperature up to 
45 °C. Thus, the optimum temperature of leptospirilla is much higher than that of 
thiobacilli. This is evidenced by recently obtained data that the rate of growth and 
generation time in leptospirilla is more sensitive to temperature changes than in 
thiobacilli (Sand et al. 1992). Consequently, the temperature in natural biotopes can 
serve as a limiting factor for propagation of leptospirilla.

Leptospirilla are obligate acidophiles. The optimal pH for the growth of L. fer-
rooxidans VKM B-1339 was pH 2.5 (Markosyan 1972), whereas for strains isolated 
later, it was much lower. According to Battaglia and coworkers, the maximum 
growth rate for str. L8 has been observed at pH 1.8, and in str. L6 – pH 1.3 (Battaglia 
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et al. 1994). It is noteworthy that at pH 1.3, the growth in At. ferrooxidans is strongly 
inhibited (Merrettig et al. 1989; Sand et al. 1992; Battaglia et al. 1994). Thus, lep-
tospirilla are more resistant to low pH values than thiobacilli.

For the strains 64 and 72 isolated from Alaverdi and Akhtala sulfide ores 
(Armenia), the optimum temperature was 37 °C. It is worth mentioning that iron- 
oxidizing activity in strain 64 remained at a high level at 40 °C and sharply reduced 
in strain 72. Both strains did not oxidize Fe2+ at 45 °C. The pH optimum for the 
growth of strains 72 and 64 was 2.0; the pH value of 1.4 was the lowest limit of 
bacterial growth. Bacterial growth and ferrous iron oxidation were inhibited by 
yeast extract (Vardanyan and Akopyan 2003; Vardanyan et al. 2013).

7.4.3  Oxidation of Iron and RISCs

Comparable activities of enzymes involved in RISCs oxidation, such as 
sulfite:cytochrome c oxidoreductase, thiosulfate dehydrogenase, rhodanese 
(thiosulfate-cyanide sulfurtransferase), sulfite:ferric ion oxidoreductase, as well as 
iron oxidase of isolated strains of Sulfobacillus spp., Leptospirillum spp., and 
Acidithiobacillus spp. bacteria isolated in Armenia, were studied.

As shown in Table 7.4, the activities of iron oxidase of S. thermosulfidooxidans 
str. 69 and str. 13Zn were comparable to that of At. ferrooxidans str. 61. High activity 
of iron oxidase was detected in Leptospirillum spp. bacteria. The activities of iron 
oxidase of Leptospirillum sp. str. ZC and str. Teg at 37 °C were 3.5–3.6 and 1.7–1.8 
times higher than appropriate activities of S. thermosulfidooxidans str. 69 and At. 
ferrooxidans str. 61.

Although the studied strains were grown in the medium containing Fe2+ as the 
only energy source, sulfite:cytochrome c oxidoreductase and thiosulfate 
dehydrogenase activities were detected in cell-free extract of S. thermosulfidooxidans 
str. 69 and str. 13Zn and At. ferrooxidans str. 61. However, these strains almost 
showed no significant differences of sulfite:cytochrome c oxidoreductase activity 
(Vardanyan et al. 2015a, b).

It is worth to mention that sulfite oxidase and thiosulfate dehydrogenase were 
detected in cell-free extracts of Leptospirillum sp. str. ZC and str. Teg. According to 
literature data, isolated S. thermosulfidooxidans str. 69 showed significantly higher 
sulfite- and thiosulfate-oxidizing activities compared with Sulfobacillus thermosul-
fidooxidans VKM V-1269 (Krasil’nikova et  al. 1998) and Sulfobacillus sibiricus 
strain N1 and strain SSO (Krasil’nikova et al. 2004). At the same time, there are no 
data on iron oxidase activity of the abovementioned bacteria. Sulfite:Fe (III) oxido-
reductase activity has been previously described for At. ferrooxidans (Sugio et al. 
1987). According to literature data, S. sibiricus also possesses sulfite:Fe (III) oxido-
reductase activity. On the contrary S. thermosulfidooxidans VKM V-1269 doesn’t 
show sulfite:Fe (III) oxidoreductase and sulfur:Fe (III) oxidoreductase activities.

The presence of sulfite:Fe (III) oxidoreductase in cells of S. thermosulfidooxi-
dans str. 69 participating in oxidation of RISCs using Fe (III) as an electron acceptor 
will allow them like Sulfobacillus sibiricus to survive in condition of limited oxygen 
that occurs in bioleaching processes at high temperatures.
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7.4.4  Carbon Metabolism

Moderately thermophilic bacteria of the genus Sulfobacillus are characterized by a 
flexible metabolism, which enables them to grow in autotrophic, mixotrophic, and 
heterotrophic conditions (Karavaiko et  al. 1988). Nevertheless, stable growth of 
sulfobacilli is possible only in mixotrophic conditions, when elemental sulfur, 
reduced sulfur compounds, ferrous iron, and sulfide minerals are used as an energy 
source and some organic compounds and carbon dioxide serve as a source of car-
bon. In this connection, in order to elucidate the possible reasons for the absence of 
stable growth of these organisms under auto- and heterotrophic conditions, the 
enzyme systems of representatives of the genus Sulfobacillus responsible for growth 
in autotrophic conditions and ways of using organic compounds were studied.

Metabolism of carbon is studied in the most detail in S. thermosulfidooxidans 
VKM B-1269, S. thermosulfidooxidans subsp. asporogenes str. 41, and S. acidophi-
lus (Zakharchuk et al. 1994; Karavaiko et al. 2001; Tsaplina et al. 2000; Norris et al. 
1996).

7.4.4.1  Fixation of CO2

The studies carried out have shown that the moderately thermophilic bacteria S. 
thermosulfidooxidans are able to assimilate 14CO2 due to the oxidation of Fe2+ and, 
consequently, to grow autotrophically. Fixation of carbon dioxide in representatives 
of the genus Sulfobacillus occurs through the Calvin cycle (Wood and Kelly 1984; 
Krasilnikova et al. 1998; Zakharchuk et al. 2003). Activity of the key enzyme of 
Calvin cycle – ribulose bisphosphate carboxylase (RuBPCase) – was found in S. 
thermosulfidooxidans str. 41 and str. 1269 and S. acidophilus in all growth condi-
tions. Comparative analyses showed a higher level of RuBPCase in cell-free extracts 
of S. thermosulfidooxidans subsp. asporogenes str. 41 (Table  7.5.). Probably the 
Calvin cycle for str. 41 is the main way of fixing CO2. Activities of the RuBPCase 
in str. 41 and the other strains of sulfobacilli grown under mixotrophic conditions 
with glucose and Fe2+ were considerably lower and depended on the concentration 
of organic substances (Tsaplina et  al. 2000; Krasilnikova et  al. 1998; Wood and 
Kelly 1984; Zakharchuk et  al. 2003). Unlike other representatives, activity of 
RuBPCase was not detected in heterotrophically growing cells of S. thermosulfido-
oxidans sp. thermotolerans str. K1 (Karavaiko et al. 2002).

It was established that fixation of CO2 in S. thermosulfidooxidans subsp. asporo-
genes str. 41under all growth conditions could also be performed by the carboxyl-
ation of pyruvate and phosphoenolpyruvate (PEP). The activity of PEP- carboxylase 
increases significantly when organic compounds are added into the nutrient medium 
(mixotrophic conditions) (Table 7.6). Cells growing under heterotrophic conditions 
have the lowest activity of all carboxylases. The reactions of carboxylation of pyru-
vate and PEP resulting in the regeneration of oxaloacetate seem to be one of the 
mechanisms for providing the Krebs cycle with precursor amino acids.

In autotrophic and mixotrophic conditions, str. K1 and str. 1269 and S. sibiricus 
N1 were found to fix carbon dioxide with the help of PEP-carboxyltransferase 
(Krasilnikova et  al. 1998; Karavaiko et  al. 2002; Zakharchuk et  al. 2003). The 
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activity of PEP-carboxykinase and PEP-carboxytransphosphorylase in str. 41 was 
not detected (Tsaplina et al. 2000) (Table 7.6).

Transition to mixotrophic conditions led to a decrease in the level of pyruvate 
carboxylase in the cells of strain K1, and in a heterotrophically growing culture, it 
was not detected at all (Karavaiko et al. 2002). Regardless of the growth conditions, 
the K1 strain also exhibited PEP-carboxylase activity, whereas the PEP- 
carboxykinase was detected only when growing in autotrophic conditions 
(Table 7.5).

Nevertheless, sulfobacilli, like other moderate thermophilic bacteria, are not 
capable of sustainable autotrophic growth (Wood and Kelly 1984; Dopson and 
Lindstrom 1999). It is considered that the reason for this is an ineffective mecha-
nism for CO2 fixation (Clark and Norris 1996). For this reason, sulfobacilli are often 
found in natural environments closely related to other thermoacidophilic bacteria, 
particularly Acidimicrobium ferrooxidans, which have a highly efficient CO2 fixa-
tion mechanism and can supply them with the required amount of organic carbon 
(Clark and Norris 1996; Johnson 1998).

Table 7.5 Comparative activities of Ribulose-bisphosphate carboxylase/oxygenase (RuBPCase) 
of strains S. thermosulfidooxidans at different growth conditions

Bacterial strains
Growth conditions

Autotrophic Mixotrophic Heterotrophic References
S. thermosulfidooxidans 
subsp.

38.2 15.3 1.2 Tsaplina et al. 
(2000)

asporogenes str.41
S. thermosulfidooxidans 
VKM V-1269

10.4 - 1.1 Krasil’nikova et al. 
(2001)

S. thermosulfidooxidans 
subsp. “thermotolerans” 
str. K1

4.3 2.1 N/A Karavaiko et al. 
(2001)

S. sibiricus str. N1 12.8 7.0 4.8 Zakharchuk et al. 
(2003)

N/A-non available

Table 7.6 Activities of carboxylase S. thermosulfidooxidans str. 41 and str. K1 and S. sibiricus N1 
at different growth conditions (Zakharchuk et al. 2003; Karavaiko et al. 2002; Tsaplina et al. 2000)

Growth conditions

Enzymes
Autotrophic Mixotrophic Heterotrophic
K1 41 N1 K1 41 N1 K1 41 N1

Ribulose-bisphosphate 
carboxylase/oxygenase 
(RuBPCase)

4,3 44.6 12.8 2,1 18.0 7.0 Nd 1.5 4.8

Pyruvate carboxylase 1.4 0.51 0.5 0.46 0.26 9.8 Nd 0.2 1.1
Phosphoenolpyruvate (PEP) 
carboxylase

3.5 8.7 1.8 1.52 20.7 0.6 1.34 0.2 2.2

PEP-carboxykinase 0.6 0 4.1 Nd 0 Nd Nd 0 Nd
PEP-carboxyltransferase 3.1 0 0.4 0.92 0 0.7 Nd 0 Nd
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7.4.4.2  Tricarboxylic Acid Cycle
Tricarboxylic acid cycle enzymes: The cells of S. thermosulfidooxidans subsp. 
asporogenes str. 41 like S. thermosulfidooxidans VKM B-1269 are not capable of 
sustainable organotrophic growth on yeast extract or other organic substances. It is 
assumed that the cause is an ineffective mechanism for destruction of organic 
compounds. It has been revealed that there is no glyoxylate pathway in the S. 
thermosulfidooxidans VKM B-1269, and the tricarboxylic acid cycle in sulfobacilli 
is open at the level of α-ketoglutarate dehydrogenase and does not work completely 
(Krasilnikova et  al. 2001; Zakharchuk et  al. 1994, 2003; Tsaplina et  al. 2000; 
Karavaiko et al. 2001). Studies have shown that the enzyme α-ketoglutarate dehy-
drogenase was not found in S. thermosulfidooxidans str. 41 (Table 7.7).

Therefore, it should be assumed that the final oxidation of organic substances in 
S. thermosulfidooxidans str. 41 occured via separate rations of TAC, as the full TAC 
cannot act due to the absence of α-ketoglutarate dehydrogenase. In the cells of 
sulfobacilli, one of the enzymes of the glyoxylate cycle – malate synthase – was 
also detected. However, the second enzyme, isocitrate dehydrogenase, is not 
detected independently of growth conditions (Zakharchuk et  al. 1994; Tsaplina 
et al. 2000; Karavaiko et al. 2002).

Cells of str. 41 also showed the activity of one of the two enzymes of the glyoxyl-
ate cycle, malate synthase, whereas the second enzyme – isocitrate lyase – under no 
growth conditions was detected (Tsaplina et al. 2000).

Thus, comparing the obtained data with literature data, we can conclude that the 
TAC in str. 41, as S. thermosulfidooxidans VKM B-1269 and S. sibiricus, is not 
closed and is presented with individual reactions whose role is not only the final 
breakdown of organic compounds but also synthesis of organic compounds.

Summarizing the abovementioned, it can be concluded that the strains of sulfo-
bacilli are characterized by a flexible metabolism that ensures their survival under 
extreme conditions, often characterized not only by the lack of organic substances 
but also by CO2 and O2.

Table 7.7 Activity of enzymes (nmol/min mg protein) of TAC and glyoxylate cycle in S. thermo-
sulfidooxidans subsp. “asporogenes” str.41 under different growth conditions (Tsaplina et al. 2000)

Enzymes
Growth conditions
Autotrophic Heterotrophic Mixotrophic

Citrate synthase 13.6 8.7 19.8
Aconitase 146.8 17.6 18.8
Isocitrate dehydrogenase 24.4 2.2 17.6
α-Ketoglutarate dehydrogenase 0 0 0
Succinate dehydrogenase 46.7 64.0 56.1
Fumarase 30.0 105.0 58.2
Malate dehydrogenase 28.9 71.0 50.0
Isocitrate lyase 0 0 0
Malate synthase 6.4 9.6 5.2
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7.4.5  Oxidation of Sulfide Minerals

It has been reported that S. thermosulfidooxidans VKM-V1269 oxidizes both sepa-
rate sulfide minerals and their concentrates. According to the rate of oxidation of 
pyrite and other sulfide minerals, S. thermosulfidooxidans can 1.5 to 2.0 times and 
more exceed At. ferrooxidans. Moreover, this advantage of sulfobacilli is main-
tained even at 30–35 °C, which is not optimal for S. thermosulfidooxidans (Karavaiko 
et al. 1980, 1988).

S. thermosulfidooxidans is of particular interest for the leaching of gold-arsenic, 
copper-zinc, and other concentrates (Karavaiko et al. 1988). For the processing of 
refractory gold-bearing pyrite-arsenopyrite concentrates, the tank biooxidation 
technology is widely used. This technology is based on the oxidation of sulfide 
minerals by bacteria. As a result gold enclosed passes into the solution and becomes 
available for subsequent cyanidation. Tank bacterial leaching is usually carried out 
under mesophilic conditions using At. ferrooxidans or the association of At. thiooxi-
dans and L. ferrooxidans. Studies have shown that moderately thermophilic bacteria 
S. thermosulfidooxidans are also capable of oxidizing a gravitational gold- containing 
pyrite-arsenopyrite concentrate under conditions of tank leaching at 50 °C. However, 
the bacterium exhibits high activity only at pulp densities not exceeding 8%. In 
order to leach this concentrate with moderately thermophilic bacteria at high pulp 
densities (20%), a variable temperature regime was used. According to this scheme, 
at the initial stage, the concentrate was oxidized at 30 °C by the association of At. 
ferrooxidans and S. thermosulfidooxidans and then at 42 °C with S. thermosulfido-
oxidans. The scheme used made it possible to increase the rate of arsenopyrite oxi-
dation. The advantage of the proposed technology, according to the authors, is due 
to the nature of the interaction of mesophilic and moderately thermophilic bacteria. 
These interactions first of all are in the fact that at the initial stage of oxidation, the 
growth factors are synthesized by mesophilic bacteria, which are afterward used by 
S. thermosulfidooxidans (Norris et al. 1980; Karavaiko et al. 1980). In addition, it is 
assumed that exometabolites produced by At. ferrooxidans form chelates with arse-
nic, thereby reducing its toxicity. Thus, when using this scheme in the pulp, more 
favorable conditions for the growth of S. thermosulfidooxidans are created (Melamud 
et al. 1999).

In terms of practical application, it is important to identify the synthrophic rela-
tions that arise between S. thermosulfidooxidans and its accompanying bacteria – 
the thermotolerant form of L. ferrooxidans. S. thermosulfidooxidans in association 
with L. ferrooxidans exhibited equally good growth on medium containing copper- 
zinc- pyrite ore both in the presence of yeast extract and in its absence at 
35–45 °C. According to the authors, the relationship between S. thermosulfidooxidans 
and L. ferrooxidans is of syntrophic nature, since both organisms have exhibited a 
higher growth rate and geochemical activity (Karavaiko et al. 1980).

Studies have shown that when S. thermosulfidooxidans MTFe-1 is cocultivated 
with At. caldus KU, the extent of iron leaching from arsenopyrite has reached 
99.9%, compared to 36% observed with pure culture of S. thermosulfidooxidans. It 
is noteworthy that when using mixed cultures, no accumulation of elemental sulfur 
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was observed, and the amount of Fe2+ was significantly lower. The role of At. caldus 
in the oxidation of arsenopyrite was estimated from the mechanism of its oxidation:

 FeAsS + + ® + + ++ + +7 4 8 53
2 3 4

2Fe H O H AsO Fe S Ho  

Proceeding from this equation, a hypothesis has been proposed, according to which 
At. caldus increases the rate of leaching of arsenopyrite by removing the sulfur 
accumulated on its surface, thereby making the mineral more accessible for further 
bacterial or chemical oxidation. The second possible mechanism for the effect of At. 
caldus on the leaching rate of arsenopyrite is associated with the release of growth 
factors. Earlier, in some representatives of acidophiles, the release of organic 
substances into the environment was observed (Borchewski 1967). From this point 
of view, the role of At. caldus in the association is to supply S. thermosulfidooxidans 
organic substances. In this case, the relationship between bacteria is symbiotic. It is 
assumed that with the growth of S. thermosulfidooxidans, the concentration of 
organic substances decreases, which, accumulating in the cytoplasm of 
chemolithotrophic acidophils, can cause inhibition of the growth (Alexander et al. 
1987).

The third possible mechanism for the action of At. caldus on the leaching of 
arsenopyrite is the release of surfactants, which contributes to the dissolution of 
elemental sulfur. This mechanism underlies the action of the yeast extract as a 
wetting agent, leading to a dispersion of sulfur in the medium (Dopson and 
Lindstrom 1999).

The phenomenon of mutualism (mutual nutrition) was also observed in S. ther-
mosulfidooxidans when co-grown with Acidimicrobium ferrooxidans (Clark and 
Norris 1996).

7.4.5.1  Oxidation of Pyrite
Studies of peculiarities of pyrite oxidation by S. thermosulfidooxidans str. 86 and 
str. 69 in pure and mixed cultures with Leptospirillum spp. bacteria showed that the 
strains were most active under mixotrophic conditions in the presence of 0.02% 
yeast extract (Table 7.8) (Vardanyan 1998).

The iron bioleaching rate under autotrophic conditions was significantly lower. 
The effectiveness of moderately thermophilic bacteria in the oxidation of pyrite 
without the addition of organic substances significantly increases when they are 
cocultivated with Leptospirillum spp. bacteria. It is worth mentioning that 
Leptospirillum spp. bacteria have shown relatively high efficiency in oxidation of 
pyrite (Table 7.8).

The activity of FeS2 oxidation by tested bacteria and their associations correlates 
with the increase in biomass, which was estimated by the increase of protein and 
decrease of pH of the medium. Especially in case of the use of these associations, 
pH of the medium decreased to 1.1 and 0.95. It should be noted that at such 
extremely low pH values, the bacteria continued to actively grow and oxidize pyrite, 
which is proved by the presence of small amounts of Fe2+ (0.056 g/l) in the medium. 
Iron leached into the medium was exclusively in form of ferric iron (Fe (III)). 
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Proceeding from the foregoing, it is assumed that an increase in the rate of pyrite 
oxidation in the presence of leptospirilla is due to the rapid regeneration of the ferric 
iron, which is a strong oxidant of pyrite (Vardanyan 1998). Similar data were 
obtained by Golovacheva who showed that in communities with thermotolerant 
form of L. ferrooxidans, S. thermosulfidooxidans can grow well at the temperature 
of 35–45 °C both in the absence and in the presence of a yeast extract in a medium 
containing copper-zinc-pyrite ore or pyrite, chalcopyrite, and arsenopyrite as a 
source of energy (Karavaiko et al. 1980).

The association of moderately thermophilic SIOB with thermotolerant 
Leptospirillum sp. bacteria is able to conduct the process of pyrite oxidation without 
the addition of organic substances at a rate of about two–three times greater, 
compared to the mixotrophically growing sulfobacilli. Application of this association 
allows to enhance pyrite leaching up to 92.7%. The advantage of this association is 
also the possibility of carrying out bacterial leaching at relatively high temperatures 
and low pH values.

7.4.5.2  Oxidation of Chalcopyrite
Chalcopyrite (CuFeS2) is the most difficult substrate to be oxidized by chemoli-
thotrophic bacteria (Fu et  al. 2008). The dynamics of oxidation of CuFeS2 with 
thermotolerant and moderately thermophilic SIOB and their associations is shown 
in Fig. 7.6. According to data presented, the greatest activity in chalcopyrite oxida-
tion was shown by S. thermosulfidooxidans str. 86, growing under mixotrophic con-
ditions in the presence of 0.02% yeast extract. Weak oxidation of CuFeS2 was 
observed in S. thermosulfidooxidans str. 86 under autotrophic conditions, as well as 
Leptospirillum sp. str. 64 and At. tandzuti str. 5. It has been shown that the activity 

Table 7.8 Oxidation of pyrite by pure and mixed cultures S. thermosulfidooxidans and 
Leptospirillum spp. bacteria (FeS2 - 2 %, initial pH 2.0, T 37 °C, duration – 17 days) (Vardanyan 
1998)

Bacteria used
Yeast extract Leached, g/l

Protein, g/l Final pHFe3+ Fe2+

Leptospirillum spp. str. 64 − 8120 756 0.06 1.25

S. thermosulfidooxidans str.86 − 1484 1232 0.02 1.4

S. thermosulfidooxidans + 2492 840 0.025 1.33
str. 86a

S. thermosulfidooxidans − 11360 56 0.07 1.15
 str. 86+ str. 64
Leptospirillum spp. str. 72 − 9912 56 0.04 1.1

S. thermosulfidooxidans − 2082 1260 0.01 1.25
 str. 69
S. thermosulfidooxidans + 3324 280 0.06 1.15
str. 69a

 S. thermosulfidooxidans str. 69+ str. 72 − 12960 56 0.1 0.95
aS. thermosulfidooxidans str. 86 and str. 69 were cultivated in mixotrophic condition
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of str. 86 under autotrophic conditions increases when it is co-grown with a sulfur- 
oxidizing At. tandzuti str. 5. By the amount of leached iron, this association 
significantly exceeds the mixotrophically grown culture of S. thermosulfidooxidans 
str. 86 (Fig. 7.6).

Thus, the association of moderately thermophilic S. thermosulfidooxidans str. 86 
and Leptospirillum sp. bacteria is several times more active than their monoculture 
in the oxidation of pyrite (Vardanyan and Vardanyan 2016). The use of a 
thermotolerant sulfur-oxidizing bacterium with moderately thermophilic bacteria 
makes it possible to oxidize pyrite and chalcopyrite without the addition of organic 
substances with the intensity observed in the growth of moderate thermophiles 
under mixotrophic conditions in the presence of a yeast extract (Vardanyan 1998, 
2003).

7.4.5.3  Bioleaching of Refractory Gold-Bearing Ore
Biohydrometallurgical gold extraction is mainly used for the processing of arseno-
pyrite-pyrite concentrates with finely ingrained gold (Rawlings 1995). The ores of 
such type are the most appropriate objects for bioleaching, as the presence of pyrite, 
which has a higher electrode potential, enhances the rapid biooxidation of arseno-
pyrite and the almost complete exposure of gold for subsequent extraction by cyani-
dation. However, gold in some deposits, in particular, the Tandzut deposit (Armenia), 
is bound to pyrite, and the degree of its recovery by traditional cyanidation does not 
exceed 35%. The integrated biohydrometallurgical method is efficient for the pro-
cessing of such ores. Тaking into consideration that pyrite is the most sparingly 
oxidizable mineral, including bacterial oxidation, consequently, gold-bearing pyrite 
ores belong to a refractory type.

The main goal of our investigations was to study the biooxidation of gold-bear-
ing pyrite ore of the Tandzut deposit (Armenia) at elevated temperatures using a 
moderate thermophilic bacterium from the genus Sulfobacillus and thermotolerant 
bacteria of the genus Leptospirillum (Vardanyan 1998; Vardanyan and Akopyan 
2003). This ore displayed high contents of iron and sulfur and lacked arsenic. It also 
contained small amounts of copper, lead, molybdenum, and antimony and gold at a 
concentration of 1.0–2.0 g/t.

It was demonstrated that Leptospirillum sp. str. 64 at its optimal growth tempera-
ture oxidized pyrite 1.1–1.9-fold more actively than S. thermosulfidooxidans str. 86. 
Thus, Leptospirillum sp. str. 64 over 22-day cultivation leached approximately 
64.1% of iron versus 34.1% by S. thermosulfidooxidans str. 86 (Table 7.9). In the 
case of S. thermosulfidooxidans subsp. asporogenes strain 86, the pyrite of Tandzut 
ore was oxidized at a constant low rate, whereas in the experiments with 
Leptospirillum sp. str. 64, a long lag phase (8 days) was observed followed by the 
active propagation of these bacteria and pyrite oxidation at a rate increasing the 
corresponding rate displayed by sulfobacilli (Fig. 7.7).

The use of Leptospirillum sp. str. 64 in association with S. thermosulfidooxidans 
str. 86 stimulated the bacterial growth and increased the rate of pyrite oxidation; 
consequently, the degree of its oxidation reached 98.4%. It is assumed that the 
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cocultivation led to syntrophic relationships between these bacteria. Presumably, S. 
thermosulfidooxidans str. 86 cells supplied Leptospirillum spp. bacteria with ferrous 
iron and, in turn, satisfied their demand in organic substances at the expense of 
exometabolites of leptospirilla (Vardanyan and Naghdalyan 2009). An increase in 
the ambient redox potential resulting from active iron oxidation by Leptospirillum 
cells and domination of Fe3+ over Fe2+ ions in the medium also enhanced the pyrite 
oxidation.

The use of thermophilic bacteria can exclude the need in cooling the reaction 
mass, which heats as a result of the exothermal oxidation reactions of sulfides, in 
particular, pyrite, to the temperatures exceeding the upper limit for mesophilic 
bacterial growth. The importance of involving leptospirilla in the leaching of pyrite 
ore is determined by their high adhesion to pyrite, high affinity for bivalent iron 
ions (KM = 0.25 mM versus 1.3 mM for Acidithiobacillus ferrooxidans), and low 
sensitivity to inhibition by trivalent iron (Ki = 42.8 mM versus 30 mM for At. fer-
rooxidans) (Norris and Kelly 1978; Norris et al. 1988). Laboratory studies have 
demonstrated that the bacteria Leptospirillum spp. are no less important in the 
bioleaching of iron-bearing ores and concentrates than At. ferrooxidans (Sand et al. 
1992).

Molecular biological studies of the microbial population have demonstrated that 
Leptospirillum spp. are dominating bacteria in the oxidation of arsenopyrite 
concentrates in continuous reactors operating at 40 °C and pH 1.6 (Rawlings 1995; 
Rawlings et  al. 1999). Our studies confirm that the association of moderate 
thermophilic sulfobacilli and thermotolerant Leptospirillum spp. can be successfully 
used for the bioprocessing of Tandzut and other refractory gold-bearing pyrite ores 
and concentrates.
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Fig. 7.6 Bioleaching of iron (a) and copper (b) during oxidation of chalcopyrite by SIOB: 1– S. 
thermosulfidooxidans str. 86, 2– str. 86*, 3 – str. 86 + Leptospirillum sp. str. 64, 4 – str. 86 + 
Acidithiobacillus sp. str. 5 (Vardanyan 2003)
*- S .thermosulfidooxidans str. 86 was cultivated under mixotrophic conditions
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Table 7.9 Bioleaching of pyrite containing gold-bearing ore from Tandzut deposit (Armenia) by 
SIOB and their association (PD –5%, initial pH 2.0, T  – 37 and 50  °С, duration  – 22  days) 
(Vardanyan and Naghdalyan 2009)

Culture used
Leached Fe,

рН initial/final Eh, mVg/l %
S. thermosulfidooxidans str. 86 3.5 34.1 2.0/1.2 680/710
Leptospirillum sp. str. 64 6.58 64.2 2.0/1.1 680/775
S. thermosulfidooxidans str. 86 + 
Leptospirillum sp. str. 64

10.1 98.5 2.0/1.25 680/815
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Fig. 7.7 Iron extraction 
dynamics during 
bioleaching of Tandzut ore 
by moderate thermophilic 
sulfur- and iron-oxidizing 
bacteria and their 
associations: 1– str. 86, 
2 – str. 64, 3 – str. 86 + str. 
64 (PD–5%, рН 2.0, T–37, 
and 50 °C for S. 
thermosulfidooxidans str. 
86) (Vardanyan and 
Naghdalyan 2009)

7.5  Conclusion

Despite the extreme acidity and high concentration of various metals, sulfide ores of 
Armenia are characterized by a large variety of CB. Acidophilic IOB are widely 
represented, which can function in the temperature range of 10–50 °C. It is notewor-
thy that the microflora of copper, copper-molybdenum, and gold- polymetallic 
deposits are mainly represented by At. ferrooxidans and S. thermosulfidooxidans, 
whereas in the ores rich in pyrite (predominantly polymetallic deposits), 
Leptospirillum spp. bacteria dominate, which can be explained by their physiologi-
cal characteristics, in particular, high resistance to low pH values and high concen-
trations of Fe3 +. As a result of studies carried out, new and efficient original strains 
of thermoacidophilic CB belonging to the genera Sulfobacillus and Leptospirillum 
have been isolated from sulfide ores of different mineralization.

It has been shown that the activities of iron oxidase in Leptospirillum spp. bacteria 
isolated in Armenia are considerably higher than appropriate activities of S. thermosul-
fidooxidans str. 69 and At. ferrooxidans. Although the studied strains of S. thermosul-
fidooxidans were grown in the medium containing Fe2+ as the only energy source, high 
level of sulfite:cytochrome c oxidoreductase and thiosulfate dehydrogenase activities 
involved in RISCs oxidation was detected in cells. The presence of sulfite:Fe (III) 
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oxidoreductase in the cells of S. thermosulfidooxidans str. 69 participating in oxidation 
of RISCs using Fe (III) as an electron acceptor will allow them to survive under condi-
tion of limited oxygen that occurs in bioleaching processes at high temperatures.

Comparative analyses showed a higher level of RuBPCase in S. thermosulfido-
oxidans subsp. asporogenes str. 41 under all growth conditions. It is assumed that 
the Calvin cycle for str. 41 is the main way of fixing CO2. It was established that 
fixation of CO2 in S. thermosulfidooxidans subsp. asporogenes str. 41 under all 
growth conditions could also be performed by the carboxylation of pyruvate and 
phosphoenolpyruvate (PEP).

The cells of S. thermosulfidooxidans subsp. asporogenes str. 41 like S. thermosul-
fidooxidans VKM B-1269 are not capable of sustainable organotrophic growth on 
yeast extract or other organic substances. It is assumed that the cause is an ineffective 
mechanism for destruction of organic compounds. It has been revealed that there is 
no glyoxylate pathway in the str. 41 and the tricarboxylic acid cycle is open at the 
level of α-ketoglutarate dehydrogenase and does not work completely. Summarizing 
the obtained data, we can conclude that the TAC in S. thermosulfidooxidans subsp. 
asporogenes str. 41, as S. thermosulfidooxidans VKM B-1269 and S. sibiricus, is not 
closed and is presented with individual reactions whose role is not only the final 
breakdown of organic compounds but also the synthesis of organic compounds.

Summarizing the abovementioned, it can be concluded that the strains of sulfo-
bacilli are characterized by a flexible metabolism that enables them to grow under 
autotrophic, mixotrophic, and heterotrophic conditions and ensures their survival 
under extreme conditions, often characterized not only by the lack of organic sub-
stances but also by CO2 and O2.

Thus, the association of moderately thermophilic S. thermosulfidooxidans str. 86 
and Leptospirillum sp. bacteria is several times more active than their monoculture 
in the oxidation of pyrite. The use of thermotolerant iron- or sulfur-oxidizing 
bacteria with moderately thermophilic sulfobacilli makes it possible to oxidize 
pyrite and chalcopyrite, respectively, without the addition of organic substances 
with the intensity observed in the growth of moderate thermophiles under 
mixotrophic conditions in the presence of a yeast extract. It is assumed that the 
cocultivation has led to syntrophic relationships between these bacteria. Our studies 
confirm that the association of moderate thermophilic sulfobacilli and thermotolerant 
Leptospirillum spp. bacteria can be successfully used for the bioprocessing of 
Tandzut and other refractory gold-bearing pyrite ores and concentrates.
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8Thermophilic and Halophilic 
Microorganisms Isolated from Extreme 
Environments of Turkey, with Potential 
Biotechnological Applications

Kemal Guven, Fatma Matpan Bekler, 
and Reyhan Gul Guven

Abstract
Turkey has a great number of different ecological areas, owning over 200 hot 
water resources and various hypersaline environments with a broad microbial 
diversity and opportunities for newly isolated microorganisms from extreme 
environments for many industrial applications. A variety of thermophilic and 
halophilic microorganisms in different regions of Turkey have been isolated and 
identified. The thermophilic bacterial members studied were Anoxybacillus, 
Geobacillus, Bacillus, Brevibacillus, and Aeribacillus belonging to the 
Bacillaceae family and the other thermophiles such as Thermus and 
Thermomonas, whereas the isolated halophilic microorganisms were mainly 
found to be members of the archaeal family Halobacteriaceae or grouped into 
bacterial phylum Bacteroidetes. In summary, the present study reviews on (1) 
isolating and identifying thermophiles and halophiles single or as community 
from various extreme habitats in Turkey based on conventional (morphological, 
physiological and biochemical tests) and/or molecular methods, (2) screening 
these extremophiles for industrially important enzymes, (3) studying other novel 
products and their use in other areas of biotechnology, and finally (4) discussing 
about the development strategies and the future perspectives on poorly studied 
extremophilic microorganisms in the country to fulfill future biotechnological 
and industrial demands.
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8.1  Introduction

Microbes in nature have served one of the largest and useful sources of many bio-
products including enzymes, polymers such as exopolysaccharides and polyhy-
droxyalkanoate, osmolytes, etc. Recently, biotechnology has increased its efforts to 
search for new organisms of practical use. Many microbial taxa need to be discov-
ered and isolated from various extreme environmental samples all over the world. 
Extremophiles can survive in a variety of extreme conditions, which are classified 
as halophiles, thermophiles, psychrophiles, alkalophiles, acidophiles, barophiles, 
metalophiles and others depending on their adaptations to unusual environmental 
conditions.

Turkey has lots of different ecological areas, which possesses a broad microbial 
diversity. Turkey is a peninsular country surrounded by seas and also well known 
for its geothermal activity, and there are so many thermal springs all over the coun-
try. Therefore, there should be a great deal of opportunities for newly isolated 
microorganisms from extreme environments, including thermophilic and halophilic 
ones with numerous biotechnological applications. Because a search of extremo-
philes in the country is very recent, this potential has not been fully exploited.

It has been already easy to detect novel and rare microorganisms due to the 
improved classification methods based on the integrated use of phenotypic and 
genotypic data, also thanks to the molecular techniques developed most recently to 
expand the search for new bioproducts by exploring the diversity of microorgan-
isms. Microbial diversity and novel molecular techniques, like genomics and 
metagenomics, are being utilised to discover new microbial enzymes and other bio-
products whose properties can be modified/improved by varying strategies, as well 
as using different bioinformatics tools. Microbial bioproducts with potential for 
biotechnological applications are obtained from a variety of bacterial groups includ-
ing extremophiles, as well as mesophiles. Recent advances in modern biotechnol-
ogy have led to great development in new bioproducts, through bioproduct 
applications; mainly enzymes are already well established. The application of novel 
biotechnology research in environmentally friendly bioprocesses is also rapidly 
expanding.

For many decades, the Bacillaceae family members have been good sources in 
biotechnological processes concerning whole cells or enzymes. In Turkey, the iso-
lated and identified thermophilic members of the Bacillaceae family include 
Anoxybacillus, Geobacillus, Bacillus, Brevibacillus, Aeribacillus, etc. Moreover, 
isolated halophilic microorganisms were mainly found to be members of both bac-
teria and archaea.

K. Guven et al.
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In this chapter, an attempt has been made to review on the diversity of microor-
ganisms isolated and identified in extreme environments of Turkey, which are hot 
water resources and hypersaline salterns, salt lakes or salt mines, as well as on the 
potential biotechnological applications of their industrially important enzymes and 
other novel products.

8.2  Thermal Springs Studied in Turkey

It is well known that hot water resource and geothermal region are the main thermo-
philic regions. Hot water resources are located in different parts of the world, due to 
volcanic activities. Turkey possesses many geothermal sources with varying typical 
temperatures and pH values. Figure 8.1 shows the map of all thermal water resources 
and those studied and documented within this review. The hot springs in Turkey, 
where the temperatures vary from 36 to 80 °C, are mostly rich in calcium and mag-
nesium ions. It is well known that these springs are used for curing so many neuro-
logical, gynaecological, rheumatismal and dermatological diseases, as well as for 
digestive disorders and physical exhaustion (http://turkeyculture.org/). Although we 
are going to review on the studies carried out so far on the thermophilic microorgan-
isms within this chapter, it should be mentioned that these environments have not 
yet been intensively studied in terms of microbiological diversity.

8.3  Thermophilic Microorganisms Isolated and Identified 
in Turkey

Microbial growth requires temperature as a vital parameter, and different tempera-
ture ranges are preferred by microorganisms to survive. Thus, microorganisms are 
grouped as psychrophiles, mesophiles, thermophiles and hyperthermophiles.

The family Bacillaceae currently consists of 62 genera and known as one of the 
largest bacterial families. The majority of Bacillaceae produce endospores and are 
Gram-positive, either rod-shaped (bacilli) or spherical (cocci), bacteria. Bacillus, 
Anoxybacillus, Geobacillus, Brevibacillus, etc. are classified into Bacillaceae, 
within the phylum Firmicutes, class Bacilli and order Bacillales (Mandic Mulec 
et al. 2016). The presence of thermophilic bacteria in the Anoxybacillus, Bacillus, 
Geobacillus, Brevibacillus, Thermus and Aeribacillus genera in thermal areas has 
been reported in Turkey (Belduz et al. 2003; Gul Guven et al. 2008; Inan et al. 2012; 
Poli et  al. 2012; Bozoglu et  al. 2013; Kacagan et  al. 2015; Baltaci et  al. 2016; 
Yildirim et al. 2017).

8.3.1  Anoxybacillus

Among bacilli members, unlike Brevibacillus and Bacillus, Anoxybacillus is a 
rather new genus that was recently proposed, known as aerotolerant anaerobes or 

8 Thermophilic and Halophilic Microorganisms Isolated from Extreme…
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facultative anaerobes. The genus name Anoxybacillus means small rod living in the 
absence of oxygen (Pikuta et al. 2000). The members of the genus Anoxybacillus 
are Gram-positive, endospore-forming, rod-shaped (bacilli) bacteria, sizing 0.4–
1.5 × 2.5–9.0 μm. Most Anoxybacillus species are moderately thermophilic having 
an optimal growth from 50 to 65 °C. Anoxybacillus cells are known to be alkalitol-
erant thermophile, which are suitable for most industrial applications. Since the first 
report of Anoxybacillus, this genus has been shown to serve as a possible choice in 
various applications involving lignocellulosic and starch biomasses, enzyme tech-
nology, waste treatment and also bioenergy manufacturing (Goh et al. 2013; Cihan 
and Yildiz 2016). As shown in Table 8.1, several important Anoxybacillus members 
have been identified, and their potential use in biotechnology has been evaluated in 
Turkey. In this section, the review of relevant literature will be presented in the 
chronological order.

Belduz et  al. (2003) studied seven xylanolytic, thermophilic bacterial strains 
from mud and water samples from two major hot springs, namely, Gonen and 
Diyadin, located in the Turkish provinces of Balikesir and Agri, respectively. Among 
these strains, following morphological, biochemical and genetic analysis, 
Anoxybacillus gonensis was found to be a novel sporulating, rod-shaped, thermo-
philic bacterium (with an optimum temperature of 55–60 °C), growing on various 
carbon sources, such as xylose, glucose, starch and mannitol. It was also found to 
produce a high level of xylose isomerase.

Two moderately thermophilic (optimum temperature for growth, 50–55  °C) 
Anoxybacillus species were also isolated from Kestanbol and Ayder hot springs in 
Canakkale and Rize provinces, respectively, by Dulger et  al. (2004). They were 
identified as A. ayderensis and A. kestanbolensis which were sporulating, Gram-
positive, rod-shaped bacteria, growing on a variety of carbon sources including 
maltose, D-sucrose, D-glucose, D-mannose, D-mannitol, D-raffinose, D-fructose, 
D-xylose and L-arabinose.

In addition, Gul Guven et al. (2008) isolated a novel thermophilic Gram-positive 
strain KG8(T) from Taslidere hot spring in Batman. This strain was motile, spore-
forming, aerobe, rod-shaped and occurring in pairs or filamentous. The growth 
range was between 35–65 °C (optimum temperature of 55 °C) and at pH 5.5–9.5 
(optimum pH of 7.5). Because the strain KG8 was incapable to utilise most carbo-
hydrates, this new subspecies was named as A. kamchatkensis subsp. asacchare-
dens. 16S rRNA gene sequence similarity, chemotaxonomic data and the results of 
biochemical and physiological tests, DNA–DNA hybridisation allowed phenotypic 
and genotypic differentiation of strain KG8 supporting the affiliation to the genus 
Anoxybacillus. This subspecies was found to be a good source of the enzyme amy-
lase capable of utilising starch.

In a microbial diversity study, Adiguzel et al. (2009) identified 15 Gram-positive 
thermophilic bacteria isolated from Pamukcu (Balikesir), Sorgun (Yozgat), Ilica and 
Akdag (Erzurum) hot springs by using various methods including phenotypic, che-
motaxonomic, 16S rRNA sequencing and rep-PCR genomic fingerprint profilings. 
They suggested that these profilings can be used as a reliable technique to identify 
thermophilic bacteria in the genera of Bacillus, Anoxybacillus and Geobacillus spp. 

8 Thermophilic and Halophilic Microorganisms Isolated from Extreme…
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The results demonstrated that thermophilic bacterial strains collected from the hot 
springs were classified into three main clusters, one of which consisted three 
Anoxybacillus strains.

Cihan et al. (2011a) identified a moderate thermophilic bacilli, spore-forming, 
Gram stain-positive, facultative anaerobic, motile and α-glucosidase-producing 
novel Anoxybacillus species named A. salavatliensis, obtained from a high-temper-
ature well-pipeline sediment in Salavatli town of Aydin, Turkey. In this study, the 
rep-PCR (BOX-PCR, (GTG)5-PCR) and ITS fingerprinting analyses were carried 
out between phylogenetically related species clustering of strain A343T with its 
closely related Anoxybacillus species, as well as performing sodium dodecyl sul-
phate-polyacrylamide gel electrophoresis (SDS–PAGE) total protein profiles of rel-
evant species. Growth of A. salavatliensis was observed at a range of 37–69  °C 
(optimum temperature of 60 °C) at a range of pH 5.5–9.5 (with optimum of 8.0–9.0) 
and able to grow on a variety of carbon sources. The biochemical tests showed the 
biotechnological potential of this bacterium concerning its enzymes, e.g. starch and 
gelatin utilisation; catalase, oxidase and amylase activities; and reduction of nitrate.

Nine of xylanolytic thermophilic microorganisms isolated from some hot springs 
located in the west of Turkey were found to belong to the genus Anoxybacillus on 
the basis of phenotypic characteristics and 16S rRNA gene sequence analysis (Inan 
et al. 2011a). Among these strains, a novel moderately thermophilic bacilli, endo-
spore-forming, Gram-positive, motile, alkalitolerant strain D1021T was described 
by Inan et al. (2013) from Kaynarca hot spring (water temperature, 60–100 °C) in 
Izmir Province of Turkey. The growth characteristics observed were temperature 
range of 35–70 °C (optimum 60 °C) and pH range of 6.0–10.0 (optimum pH of 7.0). 
The strain utilised a variety of carbon sources such as glucose, ribose, xylose, arabi-
nose, maltose, melibiose and sucrose. They identified the strain as a new species and 
named A. kaynarcensis on the basis of phenotypic characteristics, phylogenetic and 
DNA–DNA hybridisation data, as well as rpoB gene analysis. In addition to 16S 
rRNA gene, the rpoB gene was shown to be successfully used as a genotyping 
approach to phylogenetic studies within Anoxybacillus (Inan et  al. 2011b). The 
analysis of rpoB gene that is for the RNA polymerase beta subunit has been previ-
ously suggested in taxonomic studies of bacteria as an alternative of the 16S rRNA 
gene, containing conserved and variable regions (Da Mota et al. 2004). 

Cihan (2013) has also studied 115 endospore-forming bacilli isolated from geo-
thermal areas in Turkey by analysing 16S rDNA sequence analyses, as well as by 
ARDRA, ITS-PCR and rep-PCR.  The isolates used in this study were collected 
from water, sediment, soil, stone and tree branch samples within ten hot springs and 
nine well pipelines of high temperatures, located in Aegean Region and Middle 
Anatolian Region. Among these strains, most widely distributed thermophiles 
belonged to the genus Anoxybacillus with 53 isolates. The isolated strains were 
grouped into eight phylogenetic lineages within the type strains of A. flavithermus, 
A. salavatliensis, A. kamchatkensis and A. kamchatkensis subsp. asaccharedens. In 
this study, the author also underlines the importance of Anoxybacillus isolates which 
produce biotechnologically valuable enzymes, the ability of carbohydrate 
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degradation mainly amylolytic, glucosidic and proteolytic activities that made them 
superior in comparison to the remaining bacilli in the extreme habitats.

A novel amylase-producing thermophilic bacterial strain KP1 from the hot 
spring of Diyadin in Agri, Turkey, was isolated by Matpan Bekler and Guven (2014). 
The strain KP1 belonged to the genus Anoxybacillus on the basis of phylogenetic 
analysis by the sequence similarity of 16S rRNA gene by biochemical and physio-
logical tests. Moreover, a thermophilic, starch-hydrolysing bacterium identified as 
A. calidus was isolated from soil near a thermal power plant near Kizildere (the 
water temperature of this geothermal region is between 195 and 212  °C) within 
Denizli province in Aegean Region of Turkey by Cihan et  al. (2014). They also 
analysed the strain further by using the results of rep-PCR and ITS fingerprinting 
differentiating from related species of the genus Anoxybacillus. This novel species 
is facultatively anaerobic, rod-shaped, Gram-positive staining, motile and endo-
spore-forming bacterium, which grows at a temperature range between 35 and 
70 °C (with optimum 55 °C), at pH range of 6.5–9.0 (with optimum 8.0–8.5).

In another study, Acer et al. (2015) isolated α-amylase-producing thermophilic 
bacteria from the mud of Dargecit hot spring (water temperature and pH as 58 °C 
and 6.9, respectively) in Mardin Province of Turkey. The isolated strain AH1 was 
found to be a member of Anoxybacillus genus by characterising with the morpho-
logical, biochemical and physiological tests, in addition to the genetic analysis by 
16S rRNA sequences. The analysis of 16S rRNA gene sequence showed that the 
most sequence similarity of the strain AH1 (DSM 23210T) was to A. flavithermus 
subsp. flavithermus DSM 2641T by 98.23%. The strain was Gram-positive, aerobe 
and spore-forming rod, which had an optimum growth temperature and pH values 
of 60 °C and 7.0–7.5, respectively. However, it was found to grow in a wide pH 
range (5.5–10.0), indicating that Anoxybacillus AH1 cells were alkaliphilic or 
alkalitolerant.

Belduz et al. (2015) have recently completed the study on genome sequences of 
thermophilic A. ayderensis AB04T (=NCCB 100050T = NCIMB 13972T) which was 
isolated and described previously from the hot spring of Ayder in Rize Province of 
Turkey. The strain genome was 2,832,347 bp long and found to contain 2895 pre-
dicted genes as well as 103 RNA genes including 88 tRNAs, 14 rRNAs and 1 
tmRNA. A. gonensis type strain G2T (=NCCB 100040T = NCIMB 13,933T) isolated 
from Gonen hot springs in Turkey and identified previously was also studied by Lim 
et al. (2015) for its annotated and complete genome sequencing. It was presented 
that the total length of the genome was 2,803,668 bp, with 41.7% G + C content. 
Moreover, the genome comprised of 2934 protein-coding sequences, 62 pseudo-
genes, 2769 CDS, 78 tRNAs and 24 rRNAs.

An aerobic, motile, rod-shaped and Gram-positive thermophilic strain KB4 was 
isolated by Matpan Bekler (2016) from Kusburnu hot spring (the temperature and 
pH of the water 70 °C and 7.5) in Agri Province of Turkey. The strain growth was 
obtained at temperature of 55–60 °C, at pH 9.0–10.0 and at 3% (w/v) NaCl. The 
sequence analysis of 16S rRNA gene indicated that the KB4 strain was closely 
related to A. pushchinoensis K1(T) with a sequence similarity of 98.78%.
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Most recently, Baltaci et al. (2016) have studied on the identification thermo-
philic bacteria from the water and sludge samples of different hot springs, including 
Sulusaray (50 °C, pH 7.2), Sicak Cermik (53 °C, pH 6.6), Bostanci (51 °C, pH 7.2), 
Bademli Bahce (58 °C, pH 6.6) and Diyadin (70 °C, pH 6.8). The identification was 
carried out by chemotaxonomic data from FAMEs, the biochemical, physiological 
and morphological tests and molecular methods (16S rRNA sequencing and GTG5-
PCR). The strains were resembled mainly to three genera, namely, Anoxybacillus, 
Bacillus and Aeribacillus, according to 16S rRNA sequencing results. However, a 
strain designated as O20 exhibited 97% similarity to A. kaynarcensis, while the 
other (O9) was resembled to Anoxybacillus gonensis with a similarity rate of 99%.

8.3.2  Geobacillus

Considering many bacilli genus, similar to Anoxybacillus, Geobacillus is also a 
relatively new genus that was recently proposed by Nazina et al. (2001), of which 
members are thermophilic, endospore-forming and aerobic, grow at a temperature 
range between 35 and 78 °C and are also widespread in many geographical areas 
(Poli et al. 2011; Cihan et al. 2011b).

There have been some reports on members of Geobacillus genus isolated from 
hot springs within Turkey and on their industrially important enzymes and new 
products (Table 8.2). The first report was carried out by Canakci et al. 2007 a decade 
ago. They isolated 16 Gram-positive rods from water and mud samples of Dikili–
Bergama Kaynarca hot spring in province of Izmir and Camkoy Camur, Omerbeyli 
and Alangullu hot springs in the province of Aydin. The water temperatures of the 
hot springs studied varied between 70 and 130  °C.  Based on 16S rRNA gene 
sequence analysis, all of 16 isolates resembled Geobacillus species by ≥97%, and 
most of them were found to produce xylanase and arabinofuranosidase enzymes.

Adiguzel et al. (2009) also studied as many as 15 thermophilic bacilli isolated 
from several different hot springs in Turkey and then characterised and identified by 
using molecular methods such as (GTG) 5-PCR cluster analysis. G. pallidus sub-
cluster was comprised of the strains G19A, P112, P66 and P161 with similarity 
ratios of ≥82%, ≥80% and ≥ 81%, respectively. Second cluster included four strains 
of G. toebii and G. stearothermophilus (M66A, Ah22, G5A and G7 and a reference 
strain of G. thermodenitrificans), with lower similarity ratio (≥76%).

In a very comprehensive study, Coleri et  al. (2009) isolated 451 thermophilic 
bacilli from 42 different hot springs and high-temperature power plants of different 
locations in the provinces of Ankara, Denizli, Aydin, Manisa, Nevsehir and Izmir 
belonging to different geographical regions of Turkey. The water temperatures of 
these geothermal waters were in the range 60–90 °C and pH of 6.0–9.0. Sixty-seven 
isolates showed a high amylase activity. All isolates were Gram-positive, rod-
shaped, endospore-forming, motile, catalase-positive bacteria. Four thermophilic 
bacilli strains, F84b, A333, F84a and E134, producing α-glucosidase at significant 
levels were chosen for further experiments. The 16S rRNA gene sequence analysis 
showed that all isolates chosen belonged to the genus Geobacillus. Geobacillus spp. 
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F84a, A333 and F84b strains were determined as extracellular enzyme producers. 
Moreover, seven thermophilic Geobacillus strains were isolated from the hot springs 
named Hisaralan and Gonen in Turkey by Caglayan and Bilgin (2011) to study 
novel DNA polymerases. They cloned and sequenced the complete coding sequences 
of the polA genes (2637 bp) of these Geobacillus species, encoding DNA poly-
merase I with a molecular weight of 99 kDa.

Cihan et al. (2011b) also isolated a thermophilic, endospore-forming, faculta-
tively anaerobic, rod-shaped and motile bacterial strain F84b(T) from well-pipeline 
sediment sample with a high temperature in Kizilcahamam, Turkey. The growth was 
observed at temperatures between 45 and 69 °C (optimum 60 °C) and pH ranging 
of 7.0–8.5 (optimum 8.0). Strain F84b(T) was found to produce α-glucosidase, grow-
ing on various carbon sources. The G + C content of genomic DNA was 49.6 mol 
%. The 16S rRNA gene sequence analysis of the strain F84b(T) displayed a high 
relatedness to G. subterraneus (99.3%) and to G. thermodenitrificans (99.8%) with 
DNA hybridisation values of 29.1% and 74.3%, respectively. In this study, rep-PCR 
and the intergenic 16S–23S rRNA gene fingerprinting profiles as well as the physi-
ological and biochemical methods helped to differentiate strain F84b(T) from G. 
thermodenitrificans. For this reason, F84b(T) strain is assigned as a new subspecies 
and named G. thermodenitrificans subsp. calidus (=NCIMB 14582(T)  =  DSM 
22629(T)).

In a more recent study, a new thermophilic rod-shaped, endospore-forming, 
Gram-positive, alkaliphilic and motile Geobacillus strain was isolated from the mud 
of Guclukonak hot spring in Sirnak city in the southeast region of Turkey (Poli et al. 
2012). The temperature and pH of the muddy water of the hot spring were 60 °C and 
6.9, respectively. Growth of the isolate was observed at the temperature range of 
30–65 °C (with optimum of 60 °C) and at pH range between 5.5 and 10.0 (optimum 
pH of 9.0). The strain was able to utilise starch and gelatine, the ONPG activity, 
positive for lipase, phosphatase, catalase and urease. 16S rRNA gene sequence stud-
ies in comparison to other members showed that the isolate belonged to the genus 
Geobacillus. The genomic DNA G + C content of the strain was 52.0%. The DNA–
DNA hybridisation results showed that the representative strain Ge1T closely related 
to G. subterraneus, G. thermodenitrificans, G. thermocatenulatus, G. vulcani and 
G. thermoleovorans were 69.3%, 57%, 37%, 27% and 26%, respectively. 
Chemotaxonomic analyses of FAME and other conventional tests allowed pheno-
typic and genotypic differentiation of this strain to be assigned as a novel subspecies 
named as G. subterraneus subsp. aromaticivorans Ge1T (DSM 23066 T  =  CIP 
110341T), due to utilising typical hydrocarbons such as n-decane and squalene. 
RAPD–PCR using both OPR2 and GTG5 primers is also used for comparison, and 
the fingerprint profiles of the strain were clearly different from those produced by 
its closest relatives as well as G. subterraneus.
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8.3.3  Bacillus, Brevibacillus, Aeribacillus and the Other 
Thermophiles

Literature review showed that there have been a few other species belonging to 
Bacillus, Brevibacillus, Aeribacillus and Thermus genus isolated from the thermal 
waters in different areas of Turkey and studied for their biotechnological potential 
(Table 8.3). Among these, Brevibacillus is reclassified from Bacillus brevis (first 
described in 1900) more recently as the type species (Brevibacillus brevis) of a new 
genus (Shida et al. 1996; Inan et al. 2012, 2016).

Members of Bacillus genus are well known to be widespread all over the world 
in various extreme and geographical areas including hot springs of Turkey. Adiguzel 
et al. (2009) studied several hot springs in different provinces of Turkey isolating 15 
thermophilic bacteria and observed three clusters containing Anoxybacillus, 
Geobacillus and Bacillus strains by classification using 16S rRNA sequences and 
rep-PCR profiling techniques and showed that P151, P100, P79 and P130 strains 
were resembled to strains of B. licheniformis and B. pumilus.

A thermostable metalloprotease-producing bacterial strain KG5 was isolated 
from the mud of Kos hot spring in Bingol. The strain KG5 which was facultative 
anaerobic, motile, rod-shaped and Gram-positive and possessing central and oval 
endospores, grown optimally at 40 °C, was found to be a strain of B. cereus defined 
by phenotypic characterisation and by gene sequence analysis of 16S rRNA (Gul 
Guven 2007; Ahmetoglu et al. 2015). In another study carried out in a hot spring 
named Taslidere (water temperature of 78 °C) in Batman located in the southeast of 
Turkey, a thermotolerant rod-shaped bacterial strain was isolated and deposited as 
DSM 18503. The growth temperature range of this thermo-alkalitolerant strain KG9 
was determined as 30–55 °C and pH of 5.0–10.5. The isolate was found to be a 
member of the species B. licheniformis identified by the analysis of morphological, 
biochemical and physiological characteristics, as well as by 16S rRNA gene 
sequence similarities. It was revealed that the 16S rRNA gene sequence of the strain 
KG9 was 99.9% similar to that of B. licheniformis strain DSM 13 (Gul Guven 2007; 
Matpan Bekler et al. 2015a). Matpan Bekler et al. (2015b) also studied on the isola-
tion, identification and enzyme production of the strain B. licheniformis DV3, which 
were isolated from the water of Davut hot spring in Diyadin township of Agri 
Province (water temperature 78 °C, pH 7.7), in northeastern Turkey. The strain B. 
licheniformis DV3 was identified by biochemical, morphological tests and 16S 
rRNA sequence analysis.

Additionally, Adiguzel et al. (2011) revealed a population of B. licheniformis and 
Aeribacillus pallidus in Pasinler hot spring, Erzurum Province in Turkey, carrying 
out a study using the analyses of 16S rRNA gene sequences, FAME and BOX PCR 
fingerprint profiles. Nine different bacterial strains selected based on biochemical, 
physiological and morphological tests were classified into two phenotypic groups; 
the first group represented by four strains was identified as B. licheniformis, while 
the second group represented by five strains was identified as A. pallidus. In a simi-
lar study, more than ten strains were isolated from different geothermal areas of 
Turkey, five of which were found to belong to A. pallidus, six strains were close to 
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B. pumilus and two strains resembled to B. licheniformis (all at a similarity ratio of 
99%). However, three isolates were very close to B. thermoamylovorans (≥99%), 
and two belonged to Anoxybacillus genus. In addition, one of the isolates belonged 
to Thermomonas hydrothermalis (with 99% similarity). These isolated thermophilic 
bacteria were also evaluated for their capability to produce enzymes such as prote-
ase, lipase, cellulase and amylase (Baltaci et al. 2016).

Inan et al. (2012) isolated two moderately thermophilic, Gram-positive, endo-
spore-forming, rod-shaped, motile bacteria, designated as PDF25T and PDF30 from 
water and mud samples of Karakoc hot spring (the water temperature is around 
60–70 °C) in Izmir Province. Cells grow at a temperature range of 35–65 °C (opti-
mum of 55 °C) and pH 6.0–0 (optimum pH of 7.0), hydrolysing casein, starch, gela-
tin and ONPG (o-nitrophenyl-beta-D-galactoside). The strain PDF25T was identified 
as Brevibacillus aydinogluensis characterised by gene sequence analysis of 16S 
rRNA.  It was demonstrated that both strains were the members of the genus 
Brevibacillus; the strain PDF25T had a high sequence similarity to Brevibacillus 
thermoruber DSM 7064  T (98.5%). DNA–DNA hybridisation results displayed 
58% relatedness between the strain PDF25T and B. thermoruber DSM 7064T. The 
G + C content of genomic DNA was 56.09 mol %. Based on phenotypic and genetic 
characterisation (particularly by the analysis of the sequence of hypervariable (HV) 
region), the strain PDF25T distinguished as a novel species of the genus Brevibacillus. 
Furthermore, Inan et  al. (2016) isolated two moderately thermophilic, Gram-
positive, endospore-forming, motile, rod-shaped bacteria from Camkoy hot spring 
Aydin Province, Turkey. The strain designated as PDF4T had a DNA G + C content 
of 51.7 mol %, and DNA–DNA hybridisation of strain PDF4T and type strains of the 
closely related species displayed less than 60% relatedness. For the type strain 
PDF4T (=NCCB 100559T = DSM 100115T), the species name of Brevibacillus gela-
tini sp. nov. was proposed.

In a recent study, Kacagan et al. (2015) have isolated a Gram-negative, aerobic 
rods, nonmotile, catalase, urease and oxidase-positive bacterium (strain MT1T) 
from Buharkent hot water in Aydin city of Turkey (water temperature and pH were 
88 °C and 6.5, respectively). The strain hydrolysed starch and gelatin, as well as 
possessing a variety of enzyme activities including β-glucosaminidase, valine, leu-
cine, and cysteine aminopeptidases, lipase (C14), α-galactosidase, α-glucosidase, 
acid and alkaline phosphatases, which need to be exploited for possible uses in 
biotechnology. The isolated strain was found to grow at temperature range of 
45–80 °C (with optimum of 65 °C) and at pH 5.5–10.5 (with optimum of 7.5). The 
comparison of16S rRNA gene sequence similarity values between strainMT1T and 
other Thermus species revealed highest similarity of 96.92% to T. islandicus PRI 
383T, followed by T. arciformis TH92T (96.48%) and T. composti K-39T (95.73%). 
The G + C content of strain MT1T genomic DNA was 69.6 mol %. On the basis of 
various methodologies using a polyphasic approach, strain MT1T was suggested as 
a novel species named as Thermus anatoliensis. The type strain is MT1T (=NCCB 
100425 T = LMG 26880T).
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8.4  Biotechnological Importance of Thermophiles Isolated 
in Turkey

8.4.1  Possible Applications Related to Enzyme Industry

Thermozymes have been widely used in many industrial applications as they are 
well known to possess thermal tolerance and stability to harsh industrial processes 
at very high temperatures (Demirjian et al. 2001). Microbes and their enzymes are 
used in a wide range of biotechnological applications such as detergent, fine chemi-
cals, pharmaceutical, bioremediation, food, leather, paper and textile industry. The 
most important enzymes for industry are lipases, carboxylesterases, cellulases, xyl-
anases, pectinases, amylases, galactosidases and proteases. Thermophilic bacilli are 
the natural source of most thermostable enzymes. As can be seen in Tables 8.1 and 
8.3, a number of thermozymes from thermophilic bacilli isolated in Turkey are as 
follows: those belonging to Bacillus species such as amylase (Arikan et al. 2003; 
Ozdemir et al. 2011; Matpan Bekler et al. 2015b), chitinase (Sandalli et al. 2008), 
metalloprotease (Matpan Bekler et  al. 2015b; Ahmetoglu et  al. 2015) and 
β-galactosidase (Matpan Bekler et al. 2015a) and to the Anoxybacillus species such 
as α-amylase (Matpan Bekler and Guven 2014; Acer et al. 2015, 2016), xylanase 
(Kacagan et al. 2008; Inan et al. 2013), glucosidase (Cihan et al. 2011a), glucose 
isomerase (Karaoglu et al. 2013), ribulokinase (Tokgoz et al. 2014), esterase (Colak 
et al. 2005; Faiz et al. 2007; Ay et al. 2011), lipase (Bakir and Metin 2015 and 2017), 
aldolase (Ertunga et al. 2007), CTP synthase (Sandalli et al. 2014), β-galactosidase 
(Matpan Bekler et al. 2017) and protease (Matpan Bekler et al. 2015c) which have 
been well characterised. There have been also several studies on the novel enzymes 
of thermophile Geobacillus sp. isolated from Turkey (see Table 8.2), including xyla-
nase (Canakci et al. 2012; Cakmak and Saglam Ertunga 2017), arabinofuranosidase 
(Canakci et al. 2007), α-glucosidase (Cihan et al. 2009, 2011b), and DNA poly-
merase I (Caglayan and Bilgin 2011, 2012). Kocabiyik and Erdem (2002) also stud-
ied on alkaline proteases produced by various thermoacidophilic archaeal and 
bacterial strains growing optimally around pH 2.0–5.0, which were originally iso-
lated from acidic hot springs in various hydrothermal sites in Turkey. Here, we sum-
marise on various thermostable enzymes and their characterisation in studied 
thermophiles that are isolated in hot springs or geothermal areas in Turkey (Tables 
8.1, 8.2 and 8.3).

It is very clear that Anoxybacillus species are most studied microorganism in hot 
springs of Turkey, in terms of both identification and their thermostable enzymes. 
For example, Colak et al. (2005) reported on A. gonensis G2 secreting an esterase 
responsible for the degradation of poly-3-hydroxybutyrate (P3HB). The optimum 
enzyme parameters were pH 7.5 and 60 °C. The enzyme activity was enhanced by 
Ca2+ indicating to be a cofactor which is a characteristic for lipases/esterases. The 
esterase activity is inhibited by the metal chelating agent ethylenediaminetetraacetic 
acid (EDTA), supporting its metalloenzyme characteristic. A similar study was car-
ried out by Faiz et al. (2007) on a thermostable esterase in a novel thermophile, A. 
gonensis A4, capable to degrade tributyrin. The extracellular enzyme had a 
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molecular weight of 62 kDa. The optimum pH and temperature values for the ester-
ase of strain A4 were 5.5 and 60–80 °C, respectively. They also showed that the 
enzyme esterase had serine residue in active site and –SH groups were found to be 
essential for enzyme activity. In addition, a gene encoding a thermostable carboxy-
lesterase from Anoxybacillus sp., PDF1, was cloned in Escherichia coli BL21. The 
molecular mass of purified recombinant protein was about 26 kDa as determined by 
SDS–PAGE. The enzyme showed activity under a wide pH (pH 5.0–10.0) and tem-
perature range (25–90 °C) with optimum temperature and pH values of 60 °C and 
8.0, respectively. The inhibition tests on carboxylesterase of Anoxybacillus sp. 
PDF1 revealed that it possesses a serine residue in active site and –SH groups in 
specific sites, required for its activity (Ay et al. 2011). Lipases and esterases are well 
known to catalyse many reactions such as esterification, interesterification, alco-
holysis or acidolysis, used for fat and oil industry, in the synthesis of flavour esters 
for food industry, for the synthesis of fine chemicals in the pharmaceutical 
industry.

Bakir and Metin (2015) isolated 201 thermophilic bacteria from a hot spring in 
Alangullu/Aydin (50  °C). Among these, 22 isolates exhibited lipase activity. 
However, the strain HBB 134 having a maximum 16S rRNA sequence similarity 
(99%) with Anoxybacillus flavithermus was found to be the best lipase-producing 
isolate, which was the first report for a lipase production in the genus Anoxybacillus. 
In another study, the authors isolated another thermophilic lipase-producing bacte-
rium, namely, Anoxybacillus sp. HBB16, showing 16S rDNA sequence similarity of 
96% with A. flavithermus. The maximum activity of the alkaline lipase occurred at 
55 °C and pH 9.5 (Bakir and Metin 2017). Lipases (triacylglycerol acylhydrolase; 
EC 3.1.1.3) are biotechnologically important enzymes which catalyse the hydroly-
sis of mono-, di- and triacylglycerides to glycerol and free fatty acids at an oil–water 
interface.

Another thermostable enzyme, which has a biotechnological importance, is amy-
lase, used in many other industrial areas, such as in removing food and starch stains 
in dry cleaning, in the textile, starch and food industry, and in the purification of 
apple and pear juice, in the detergent and pharmaceutical industries. Matpan Bekler 
and Guven (2014) carried out a study on a novel α-amylase produced by a newly 
isolated thermophilic bacterial strain, namely, Anoxybacillus KP1 from the Diyadin 
hot spring (water temperature 50  °C, pH  7.4) in Agri Province, in northeastern 
Turkey. Maximal activity of the α-amylase was observed at the pH and temperature 
of 8.0 (pH range at 6.0–10.0) and 60 °C, respectively. The α-amylase production 
increased in the presence of 2% (w/v) soluble starch, some nitrogen sources and 
Mn2+. The enzyme was calcium-independent, considerably stable at a range of pH 
and temperature, which may be advantageous in industrial applications for food 
processing and traditional brewing, where the temperatures could denature the 
enzymes after fermentation. Moreover, an extracellular α-amylase production by a 
novel thermophilic Anoxybacillus sp. AH1 from Dargecit hot springs in Turkey was 
investigated in the presence of many different media containing a variety of carbon 
and nitrogen sources. It was also found that α-amylase from Anoxybacillus sp. AH1 
was thermostable and Ca2+ dependent (Acer et al. 2015). In a more recent study, 
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Acer et al. (2016) purified this α-amylase from Anoxybacillus sp. AH1 and deter-
mined the molecular mass as 85 kDa. The enzyme had the optimum temperature 
and pH values of 60  °C and 7.0, respectively. The enzyme activity was seen to 
increase by various detergents, Mg2+ and Ca2+, but there was a significant inhibition 
by metal ion chelators 1,10-phenanthroline and EDTA. In addition, the activity of 
α-amylase was enhanced by dithiothreitol (DTT) and β-mercaptoethanol, but it was 
inhibited by p-chloromercuribenzoic acid (PCMB), indicating the presence of one 
essential cysteine residue at least in the enzyme active site. The strain AH1 α-amylase 
inhibition by phenylmethylsulfonyl fluoride (PMSF) also indicated the importance 
of the seryl hydroxyl group in the catalysis of this enzyme.

A thermophilic Anoxybacillus ayderensis AB04T that was isolated from the 
Ayder hot spring was found to possess a number of glycoside hydrolases (GHs) 
which are of importance for carbohydrate-related industries. The GHs of A. ayderen-
sis AB04T were compared to those of other sequenced Anoxybacillus spp. genomes, 
where 14 GH enzyme genes encoded in the genome that belong to GH families 1, 
10, 13, 31, 32, 51, 52 and 67 were detected. It was predicted that nine GH enzymes 
were active on α-chain polysaccharides (pullulanase, α-amylase, α-glucosidase, 
CDase and oligo-1,6-glucosidase), while the other five GH enzymes act specificity 
on β-linked polysaccharides (i.e., xylan and cellulose). Those uniquely present were 
endo-1,4-β-xylanase (NCB I locus ID: KIP 21668) and α-glucuronidase (KIP 
21917). Despite the GHs, other A. ayderensis AB04T enzyme genes coding for 
industrially important enzymes were esterase, aldolase and xylose isomerase. 
Particularly, xylose isomerase (EC 5.3.1.5) catalyses the isomerisation of glucose to 
fructose and of xylose to xylulose, which is important in the industry of high-fruc-
tose corn syrup production. Two esterases (KIP 19922 and KIP 21735) were 
detected in the strain AB04T genome, which had 96.0% and 96.3% amino acid 
sequence similarity with the esterase from A. gonensis G2T and Anoxybacillus sp. 
PDF-1, respectively. Moreover, A. ayderensis AB04T contains two aldolases, KIP 
21451 and KIP 21450 (Belduz et al. 2015).

Complete genome sequencing of Anoxybacillus gonensis type strain G2T 
(=NCCB 100040T = NCIMB 13,933T) isolated previously from Gonen hot springs 
showed that this strain consisted various carbohydrases, such as pullulanase 
(AKS39285) and α-amylase (NCBI locus ID: AKS37565), which are valuable for 
starch hydrolysis in industry, cyclodextrinase (AKS37561) used in cyclodextrin-
related research and also xylose isomerase (AKS39170) and β-xylosidase 
(AKS39172) which are good candidates for second-generation biofuel production. 
They also reported on some other novel enzymes of A. gonensis G2T and their 
potential use in biotechnology, such as β-galactosidase (AKS39183), α-galactosidase 
(AKS39187), oligo-1,6-glucosidase (AKS37459) and α-glucosidase (AKS37566). 
This strain was found to produce many other well-studied enzymes with biotechno-
logical importance, including fructose-1,6-bisphosphate aldolase and carboxyles-
terase (Lim et  al. 2015). Moreover, in the thermophile A. gonensis G2T, a new 
glucose isomerase (GI) was described by Karaoglu et al. (2013), which is particu-
larly suitable for the production of high-fructose corn syrup in the food industry. 
The gene encoding this enzyme was cloned and expressed in E. coli. The purified 
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recombinant enzyme, with a molecular weight of approximately 50 kD determined 
by SDS–PAGE and MALDI–TOF analysis, had an optimal activity at 85 °C and 
pH 6.5. In a study carried out by Sandalli et al. (2014), a novel CTP synthase gene 
of A. gonensis G2 was cloned, expressed and characterised. The thermophilic 
cytidine-5′-triphosphate synthase (EC 6.4.3.2) gene (pyrG) was 1590  bp long 
encoding a protein with 530 amino acids, possessing a molecular weight of 
59.5 kDa. The CTP synthase amino acid sequence showed a similarity of 90%–94% 
with Bacillus sp.

A ribulokinase from Anoxybacillus kestanbolensis AC26Sari isolated from the 
hot spring mud (Camkoy in Canakkale province, Turkey) was studied, cloned and 
expressed in E. coli BL21 (Tokgoz et  al. 2014). The ribulokinase of the strain 
AC26Sari was found to have 99% DNA and 99% amino acid identity with ribuloki-
nase of A. flavithermus WK1, while 90% DNA and 96% amino acid identity with 
Geobacillus thermodenitrificans NG80–2 ribulokinase. The purified enzyme had a 
molecular mass about 61 kD, as determined by SDS–PAGE, and was found to be 
active at a wide temperature (50–75 °C) and pH (pH 5.0–10.0) range, with optimum 
temperature of 60 °C and an optimum pH of 9.0. The activity of purified enzyme 
was strongly inhibited by Zn2+ but enhanced by Mg2+, though the ribulokinase from 
A. kestanbolensis AC26Sari did not require any other metallic cations for its activ-
ity. This was the first report to characterise a thermophilic ribulokinase of thermo-
philic bacteria. L-ribulokinase is unusual among kinases because it is known to 
phosphorylate all four 2- ketopentoses (L- or D-xylulose and L- or D-ribulose).

Xylanases are well known to be important in biotechnology increasing the nutri-
tional quality of animal feed and in the textile fibre recovery and used for industrial 
wastes in pulp and paper industry, as well as in the clarification of fruit juices, wine, 
etc. A thermophilic, xylanolytic bacterium isolated from the Diyadin hot springs 
was identified as Anoxybacillus pushchinoensis strain A8 by sequence similarity of 
16S rRNA gene and DNA–DNA hybridisation studies. The extracellular xylanase 
had a molecular mass of approximately 83 kDa. The maximal activity obtained for 
the enzyme was pH 6.5 (stable over a broad pH range of 6.5–11 for 24 h) and 55 °C 
(stable at temperature between 50 and 60 °C up to 24 h). The enzyme was found to 
be an exo-acting xylanase (Kacagan et al. 2008). In another study, Inan et al. 2013 
found that Anoxybacillus kaynarcensis produced xylanase activity, and the zymo-
gram analysis of SDS–PAGE revealed apparent molecular weights between 100 and 
150 kDA, with the optimum temperature and pH values of 65  °C and 7.0–9.0, 
respectively.

Proteases, particularly thermostable ones, have been used for a long time for 
many industrial applications. In search of proteases, Matpan Bekler et al. (2015c) 
studied a novel extracellular alkaline protease (EC 3.4.21–24, 99) in thermophilic 
Anoxybacillus sp. KP1 strain. The purified enzyme had a molecular weight of 
106 kDa using SDS–PAGE, which was stable at pH 9.0 and at 50–60 °C for 1 h. 
Some chemicals such as Triton X-100, Tween 80, Ca2+ and Cu2+ increased the activ-
ity of the enzyme, while EDTA and PMSF inhibited proteolytic activity, suggesting 
that the enzyme was a serine alkaline protease. They also stated that the detergent 
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stability (residual activity between 73% and 82%) was an important feature for their 
industrial applications, such as detergent industry.

The genus Geobacillus has also drawn attention due to their potential use in bio-
technology. Canakci et al. (2007) investigated on thermophilic xylanase and arabi-
nofuranosidase activities in the isolated 16 Gram-positive bacilli which belonged to 
the genus Geobacillus from Dikili–Bergama Kaynarca hot spring (Izmir Province) 
and Camkoy Camur, Omerbeyli and Alangullu hot springs in Aydin Province in 
Turkey. They reported that seven of the isolates had both arabinofuranosidase and 
xylanase activities, while four of them had only xylanase and the other five isolates 
had none of both activities. The xylanase of isolates 3.3, 7.1 and 9.1 had the highest 
optimum temperature of 80 °C, while the isolates AO4, AO17, 7.2, 9.1 and 9.2 had 
the highest optimum pH of 8. The optimum temperature for arabinofuranosidase 
activity for isolates 7.2, AO4, AC15 and 12 was 75 °C, whereas only isolate AC15 
had the lowest pH of 5.5.

A xylanase-encoding gene from Geobacillus sp. 7.1, isolated from the hot spring 
of Dikili–Bergama Kaynarca, was cloned and sequenced, followed by overexpres-
sion in E. coli and purification. Extracellular xylanase having a molecular weight of 
47 kDa had the optimum pH and temperature values of 8.0 and 75 °C, respectively. 
The xylanase had the most sequence similarity (93%) with the enzyme from G. 
thermodenitrificans NG80–2. It was found that the enzyme carried a catalytic 
domain which belonged to the glycoside hydrolase family 10 (GH10), exhibiting an 
excellent pH stability. The enzyme did not have cellulase activity, whereas degraded 
xylan in an endo-fashion (Canakci et al. 2012). In addition, Cakmak and Saglam 
Ertunga (2017) have recently studied on cloning, expression, immobilisation and 
characterisation of an endo-xylanase and its industrial applications in Geobacillus 
sp. TF16 collected from the Germencik Omerbeyli hot spring in Aydin. The molecu-
lar weight of the recombinant enzyme was found to be a single band of 39.8 kDa on 
SDS–PAGE. The immobilised enzyme compared to free enzyme showed an increase 
in optimum temperature from 55 to 65 °C. The optimum temperature for the free 
enzyme was pH 8.5, whereas immobilised enzyme displayed a higher activity in the 
pH range 6.0–8.5. The endo-xylanase was shown to have importance for use in 
biotechnology as it was capable of releasing the reducing sugar from juice and poul-
try feed and oven spring in bakery.

A study was performed on the purification and characterisation of novel DNA 
polymerases of Geobacillus kaue strain NB isolated from Gonen and Hisaralan hot 
springs in Turkey. It was shown that the optimum values for the enzymatic activity 
of G. kaue polI was 70 °C and pH 7.5–8.5. In addition, polyamines stimulated the 
polymerisation activity of the enzyme. Three-dimensional structure of polI showed 
that all functionally important regions were conserved in the polymerase active site 
computed using homology modelling (Caglayan and Bilgin 2011).

The thermophilic chitinases that degrade chitin, the most abundant renewable 
natural resource after cellulose, have a wide range of biotechnological applications. 
A chitinase gene (chiB65) in Bacillus licheniformis A1 obtained from Diyadin hot 
spring was cloned and expressed in E. coli and then sequenced. The purified recom-
binant protein was analysed on SDS–PAGE using the fluorogenic substrate 
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4-methylumbelliferyl β-D-N,N′-diacetylchitobioside, having a molecular weight of 
approximately 71 kD. The optimum values for the enzyme were pH 6.0 and tem-
perature of 65 °C, though it was stable at a pH range of 5.0–9.0 for 4 h at 65 °C and 
24 h at room temperature (Sandalli et al. 2008).

Thermophilic amylases are well known to be used for hydrolysis of starch to 
produce glucose and related chemicals in industry. From this point of view, an alka-
line, thermostable α-amylase-producing Bacillus sp. ANT-6 was identified by 
Arikan et al. (2003). The enzyme had an optimum activity at 80 °C and pH 10.5. 
The relative molecular mass of the enzyme was found as 94.5 kDa. A Bacillus sub-
tilis strain isolated from soil samples in Diyarbakir, Turkey, was also studied for its 
thermostable α-amylase. The effects of many parameters such as incubation time, 
different culture media, carbon and nitrogen sources and various starches, flours, 
detergents and other chemicals on the production of α-amylase were studied. The 
purified enzyme was found to be Ca-dependent, having the optimum pH and tem-
perature of 6.0 and 60 °C, respectively (Ozdemir et al. 2011).

Ahmetoglu et al. (2015) studied on a novel extracellular protease produced by 
Bacillus sp. KG5 isolated from Kos hot spring (Bingol, Turkey). The molecular 
weight of purified enzyme was approximately 48 kDa by both native and SDS–
PAGE and was not a serine–protease as PMSF did not have an inhibitory effect on 
protease activity. The enzyme showed maximum activity at pH of 7.0–7.5. It was 
also determined that the protease was thermostable, particularly fully stable in the 
Ca2+ presence at 50 °C even after 120 min. It is clear that thermostability of prote-
ases is a critical feature required for industrial applications such as leather process-
ing and detergent. Proteases are also used in many applications such as 
bioremediation, biotransformation and biosynthesis, brewing, food, meat, dairy 
industries and diagnostics. In a newly isolated thermophilic Bacillus licheniformis 
DV3, extracellular thermostable α-amylase and protease were studied. The opti-
mum temperature and pH values for both extracellular enzymes were 70 °C and 7.0 
for the α-amylase, respectively, while it was 10.0 and 50 °C for the protease, respec-
tively. The α-amylase activity was enhanced in the presence of Mn2+, inhibition was 
obtained in the presence of Ca2+ indicating to be a member of calcium–independent 
amylases. The protease activity increased in the presence of Ca2+ and Zn2+, whereas 
the activity was decreased by EDTA and PMSF, indicating that the enzyme was a 
metallo- and serine protease (Matpan Bekler et al. 2015b).

A thermostable β-galactosidase from a thermo- and alkalitolerant KG9 strain 
belonging to Bacillus licheniformis isolated from Taslidere hot spring in Batman 
(Turkey) was cloned, expressed in E. coli and characterised. Due to genomic 
sequence similarity of B. licheniformis strain KG9 to that of B. licheniformis strain 
DSM 13 (99.9% identity), PCR primers based on four putative β-galactosidase 
genes in the genome of strain DSM 13 were employed for the isolation of the cor-
responding β-galactosidase genes from KG9 strain. The molecular masses of 
β-galactosidases I, II, III and IV were calculated as 30, 79, 74 and 79 kDa, respec-
tively, using sequencing data. Similarly, the number of identified β-galactosidase 
genes in strain KG9 was four, and three genes were expressed in E. coli as intracel-
lular and active. Among these three, the authors purified and characterised the 
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recombinant β-galactosidase III, having the optimal pH and temperature of 6.0 and 
60 °C, respectively. The purified enzyme analysed on SDS–PAGE displayed one 
single band with a molecular weight of ~75 kDa (Matpan Bekler et al. 2015a). It has 
been also claimed that the characteristic such as thermostability makes this recom-
binant β-galactosidase favourable in the application of β-galactosidase in dairy and 
food processes involving hydrolysis of lactose in order to enhance the digestibility 
of milk or to improve the functional characteristics of milk products, etc.

8.4.2  Applications Related to Environmental Biotechnology

The use of thermophiles and their bioproducts in environmental biotechnology is 
well known such as biohydrogen production, bioconversion of lignocellulose to 
hydrogen, conversion of glycerol to lactate, conversion of D-xylose into ethanol, 
biodegradation of dyes or petroleum hydrocarbons, recovery of heavy metals, etc. 
The thermophiles and their products are resistant to harsh conditions in industrial 
applications by supplementing or replacing traditional chemical processes (Mehta 
et al. 2016).

The H2-producing bacteria, closely affiliated to genus Thermoanaerobacterium 
determined by PCR–DGGE profiling, were isolated from hot spring of Hisaralan in 
Balikesir Province, Turkey. H2 bioproduction was accompanied by production of 
acetate, butyrate, ethanol and lactate. It was found that H2 production was maximum 
at the temperature range from 49.6 to 54.8 °C (Karadag et al. 2016).

The dyes are commonly used in different industrial fields such as textile, food, 
cosmetics and paper; on the other hand, they cause health and environmental prob-
lems. The enzyme called laccase (oxidoreductase) has ability to oxidise the com-
pounds associated with both phenolic and nonphenolic lignin and to deoxidise the 
pollutants resistant to biodegradation, for example, used in the removal of textile 
dyes, phenols and detoxification of wastes. In a study carried out by Yanmis et al. 
(2016), an extracellular laccase from Anoxybacillus gonensis P39 (Gen Bank 
No:FJ808725) isolated from Ilica hot spring, Erzurum Province, was purified with 
a molecular weight of 40 kDa on SDS–PAGE and with optimum pH and tempera-
ture values of 5.0 and 60 °C. Bozoglu et al. (2013) also studied on the purification 
and characterisation of a laccase (with molecular mass 93 and 110 kDa) and its 
possible use in removal of textile dyes, from a new thermophilic strain of 
Brevibacillus sp. (Z1) isolated from Diyadin hot springs in Agri Province of Turkey. 
The evaluation of laccase in both studies for possible use in bioremediation process 
of some textile dyes showed that the laccase reduced the amount of several dyes 
such as the Reactive Black 5, Fuchsine, Allura Red and Acid Red 37  in 
wastewater.

Lim et al. (2015) found that the Anoxybacillus gonensis G2T consisted arsenate 
reductase (AKS38388) and three mercury (AKS37713, AKS38377, AKS38379) 
genes in its genome, showing that the G2T strain may be used in heavy metal biore-
mediation. The analysis of A. ayderensis AB04T genome showed the presence of at 
least six heavy metal resistance genes, four of which were mercury resistance (mer) 
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operons (KIP 20706 and KIP 20408) and mercuric reductases, catalysing the reduc-
tion of Hg2+ to Hg 0 (KIP 19952 and KIP 20409). Other two genes were arsenate 
reductase (KIP 20402) and arsenic efflux pump protein (KIP 20401). Beris et al. 
(2011) also reported on an aluminium tolerance gene (G2alt) and the effects of 
environmental conditions on its biological functioning in the thermophilic G2T 
strain. The G2alt gene was 666 bp long and encoded a protein of 221 amino acids. 
The amino acid sequence of the protein with ATPase activity was highly similar to 
proteins which are responsible for aluminium resistance.

There has been an emphasis given to the utilisation of microorganisms, so as 
thermophiles for their great metal ion absorption ability from aqueous solutions. 
Duran et al. (2009) used A. gonensis which was immobilised on Diaion HP-2MG as 
a new biosorption system for the enrichment of various metals prior to the atomic 
absorption spectrometric analysis. More recently, a thermophilic haloalkalitolerant 
bacterial strain named KG9 was newly isolated and identified as a close member of 
Bacillus licheniformis which was also evaluated for possible use in environmental 
technology by Alkan et al. (2015) as a new biosorbent for preconcentrating Cd(II), 
Ni(II) and Cu(II) prior to flame atomic absorption spectrometric (FAAS) analysis. 
The strain (KG9) immobilised on Amberlite XAD-4 was used for the measurement 
of toxic metal ions in real samples such as the Tigris river and drinking water and in 
mushrooms. The optimum parameters such as eluent type and volume, amount of 
adsorbent, pH, sample solution volume, sample solution flow rate and matrix inter-
ference effect on the metal ion retention were investigated for the analyte quantita-
tive recovery.

8.5  Hypersaline Environments of Turkey

Turkey, especially Central Anatolia, is rich for hypersaline environments. Tuz Lake 
which is the largest salt lake in central Turkey occupies a depression in the dry cen-
tral plateau of Turkey, located in 105 km northeast of Konya city and 120 km south 
of Ankara. The lake stays shallow (1–2 m) and has a total surface area of 1665 km2, 
with a length of 90 km and a width of 35 km within a closed basin. The water salt 
concentration reaches up to 33%. In summer, when the lake dries out, a 30-cm layer 
of salt forms due to the evaporation. The lake and the salterns provide a main source 
of solar salt: 73% of the salt consumption of Turkey, meaning that the lake produces 
more than 200 million tons of salt (Birbir and Sesal 2003; Mutlu et  al. 2008). 
Moreover, Camalti Saltern is the biggest artificial marine solar saltern in Turkey. It 
is a multipond system consisting of 182 ponds covering 58 km2 and located about 
38°35ʹN and 26°57ʹE on the east cost of the Aegean Sea. Sea salt extraction has been 
carried out in the area since 1863 (Mutlu and Guven 2015).
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8.6  Halophilic Microorganisms Isolated from Extreme 
Environments of Turkey and Their Possible Use 
in Biotechnology

8.6.1  Halophilic Archaea and Bacteria from Hypersaline 
Environments of Turkey

A distinct class of extremophiles is halophiles which means that salt is required for 
them to survive. Halophilic microorganisms are found in various hypersaline envi-
ronments including crystalliser ponds, saline sand and soils, marine environments, 
solar lakes and hypersaline lakes. Microorganisms adapted to life at very high salt 
concentrations are widely spread, both within the archaeal and the bacterial domain 
which are well known to comprise a well-defined, aerobic or facultatively anaerobic 
microorganisms (Ozcan et al. 2007; Mutlu and Guven 2015). There have been sev-
eral studies recently on extremely halophilic communities in various hypersaline 
environments such as salterns, salt lakes or salt mines in Turkey, for the aim of 
identification and/or possible biotechnological uses (Table 8.4).

Salt lakes and the solar salt contain huge numbers of prokaryotes, mainly 
extremely halophilic Archaea of the family Halobacteriaceae (Birbir et al. 2007). 
Typical characteristics of the family Halobacteriaceae members are having differ-
ent shades of red as colony colour, various morphological types from rods, cocci, to 
extremely pleomorphic, and growing at 25% NaCl concentration (Grant et al. 2001). 
Moreover, all isolates are known to comprise ether-bound membrane lipids as well 
as being resistant to antibiotics that target the bacterial peptidoglycan (Ozcan et al. 
2007). Both metabolic diversity and biotechnological potential have been found in 
halophilic and halotolerant microorganisms (Tatar et al. 2016).

Birbir and Sesal (2003) studied on extremely halophilic microorganism commu-
nities in Sereflikochisar Salt Lake in central Turkey. A research on microbial diver-
sity was carried out in this area due to being a main source of solar salt for food and 
hide and also due to the economic importance. In total, 82 extremely halophilic 
aerobic strains from six salt and three brine samples were detected, indicating a 
diverse bacterial community, 32 of which were randomly selected strains. Most 
cells of the strains stained Gram-negative and motile. Optimum growth was observed 
at 40 °C, at a pH of 7.5 and in the presence of 25% (w/v) NaCl. The results of mor-
phological, biochemical and physiological characteristics of the isolates and antibi-
otic sensitivities were used to distinguish Archaebacteria and Eubacteria in the 
lake. It was also demonstrated that the lake accommodated a fairly wide diversity of 
halophilic species producing industrial enzymes such as cellulases, β-galactosidases, 
lipases and gelatinases.

Extremely halophilic archaea are well known to survive in the hypersaline condi-
tions such as salt mines or salt lakes. In a hypersaline environment, namely, the 
Ayvalik saltern, seven extremely halophilic archaea were isolated by Elevi et  al. 
(2004). The characterisation of halophilic strains was based on the conventional 
methods, including polar lipid composition, exoenzyme production, protein pro-
files, plasmid size and number. The Ayvalik saltern is also a very important resource 
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in the country, and the produced salt is widely used in a variety of industrial pro-
cesses such as food preservation and curing of hides (cheese, pickles, tomato, paste, 
fish, etc.), as well as in leather industries in Turkey. It also provides a good habitat 
for halophilic microorganisms. All studied isolates needed at least 15% (w/v) NaCl 
concentration in the medium to grow. The optimum growth for seven red halophilic 
Archaea strains were salt concentrations ranging 20–25% (w/v) NaCl at 39 °C. The 
isolates characterised belonged to the archaeal family Halobacteriaceae. The red 
colour (based on α-bacterioruberin derivatives) observed due to the extremely halo-
philic characteristic of the cultures was evidence for the presence of Archaea spe-
cies. Due to the lipid compositions, triglycosyl diether as glycolipid of four isolates 
(strains R1–R4) assigned them to the genus Haloarcula, while strains R5–R7 con-
taining sulphated diglycosyl diether instead resembled to Halorubrum 
saccharovorum.

A study was also conducted on the microbial diversity in the hypersaline Tuz 
Lake and its salterns, Kaldirim and Kayacik, located in Central Anatolia, Turkey. 
This study presented the results on diversity of extremely halophilic Archaea. 
Twenty-seven different strains belonged to the family Halobacteriaceae, which are 
known to be aerobic and possess red or pink pigments, and were characterised based 
on colony pigmentation, phenotypic characteristics, polar lipid compositions and 
antibiotic sensitivities. Moreover, gene sequence analysis of 16S rRNA of the iso-
lates was performed, and the phylogenetic analysis revealed that the isolated strains 
are mostly assigned to the genera Halorubrum, Halobacterium and Haloarcula. In 
particular, the most dominant genus in Lake samples was Haloarcula, while 
Halorubrum members were detected in Tuz Lake and the saltern samples of 
Kaldirim, and the species of Halobacterium were obtained from Tuz Lake and the 
Kayacik saltern. All archaeal strains possessed hydrolytic enzymes (cellulases, 
amylases, proteases and others), used in food, detergent and leather industries 
(Birbir et al. 2007).

Ozcan et al. (2007) reported on the diversity of archaeal strains isolated from 
water and soil samples of six hypersaline locations in the provinces of Ankara (salt 
lake, 45.667% salinity), Denizli (Aci Lake, 0.265% salinity), Konya (Bolluk Lake, 
48.452% salinity), Kayseri (Tuzla Lake), Kirsehir (Seyfe Lake) and Burdur (Salda 
Lake, 1.114% salinity). By analyses of morphological and biochemical properties, 
sensitivity to different antibiotics, plasmids and total lipid composition as well as 
comparisons of 16S rRNA gene sequences (1388 bp), thirty-three strains were char-
acterised, which all belonged to the family Halobacteriaceae. All isolates were 
found to be Gram-negative, catalase- and oxidase-positive and possessing pink to 
red colony colour. By phylogenetic analyses, these isolates were clustered into nine 
genera, namely, Halomicrobium (one isolate), Halalkalicoccus (one isolate), 
Haloterrigena (three isolates), Haloferax (three isolates), Natrialba (four isolates), 
Natronococcus (four isolates), Haloarcula (four isolates), Natrinema (five isolates) 
and Halorubrum (eight isolates).

The prokaryotic diversity in a hypersaline Tuz Lake, Turkey, was also demon-
strated by Mutlu et al. (2008). The authors studied microbiota in this lake by using 
the methodology of FISH, denaturing gradient gel electrophoresis of PCR-amplified 
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16S rRNA genes, and by comparisons of the clone library 16S rRNA gene sequences. 
Interestingly, the number of Archaea members in the community was three times 
more than those of Bacteria detected by FISH. The archaeal members were domi-
nantly clustered into the square Haloarchaea of the Walsby group, while bacterial 
members dominantly grouped into Bacteroidetes, such as Salinibacter ruber-related 
phylotypes. It is well known that Bacteroidetes species are widespread in various 
hypersaline environments. The comparison between 16S rRNA sequences from the 
Tuz Lake bacterial strains and those from other hypersaline environments showed a 
‘halophilic branch’ within the Bacteroidetes phylum that clustered together.

Moreover, a natural reserve in Sasali, Izmir, in the Aegean Region was studied 
for the isolation and identification of halophiles from several pond soil samples with 
salt contents in the range 30–50% and pH in the range of 6.5–7.5. The isolated 
strains designated as AAD6T, AAD4, AAD17 and AAD21 were Gram-negative, 
exopolysaccharide-producing and moderately halophilic bacteria which grew at an 
optimum of 10% (w/v) NaCl. The G + C compositions of the genomic DNAs of 
AAD21 AAD17, AAD4 and AAD6T were 62.6, 62.8, 63.3 and 63.0 mol %, respec-
tively. Sequence comparisons of 16S rRNA gene between the strain AAD6T and 
most related species indicated that the strain AAD6T was close to Halomonas salina 
F8-11T (99.4% similarity) and Halomonas halophila CCM 3662T (99.4%), and the 
mean values of DNA–DNA hybridisation between the representative strain AAD6T 
and the most related species mentioned above were calculated as 40.8 and 39.6%, 
respectively. On the basis of the phenotypic, phylogenetic and genomic properties 
presented above, the strain AAD6T represents a novel species of the genus 
Halomonas and thus named Halomonas smyrnensis (=DSM 21644T = JCM 15723T). 
H. smyrnensis was rod-shaped and formed circular and slightly irregular colonies 
with cream-yellowish colour and was also different from all closely related species 
of the genus Halomonas in terms of hydrolysing starch and casein. This novel spe-
cies also produced a higher yield of exopolysaccharide named levan which was 
previously described as repeating unit comprised of beta (2,6)-D-fructofuranosyl 
residues (Poli et al. 2009, 2013). Moreover, whole genome sequencing of H. smyrn-
ensis AAD6T was succeeded by Sogutcu et al. 2012.

Orhan and Gulluce (2015) have recently mentioned about the importance of 
halophilic and halotolerant microorganisms in salt-affected soils, which may pos-
sess basic enzyme activities that can enhance nutrient cycling and fertility in soil. 
This study was carried out in salt-affected soil of Erzurum Province in the East 
Anatolian Region of Turkey. Forty-five bacterial strains were isolated and character-
ised by phenotypic and phylogenetic techniques. The strains isolated from salt-
affected soils belonged to 16 different genera, as follows: Bacillus (19 strains), 
Staphylococcus (3 strains), Halobacillus (4 strains), Zhihengliuella (2 strains), 
Oceanobacillus (2 strains), Halomonas (1 strain), Nesterenkonia (2 strains), 
Promicromonospora (2 strains), Jeotgalibacillus (2 strains), Planococcus (2 strains), 
Virgibacillus (1 strain), Terribacillus (1 strain), Thalassobacillus (1 strain), 
Marinibacillus (1 strain), Gracilibacillus (1 strain) and Microbacterium (1 strain). 
They claimed that the characterised strains in salt-affected soils had high salt 
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tolerance and significant enzyme activities which may be used for improvement of 
agricultural soils.

Another recent study to identify the bacterial diversity of Camalti marine solar 
saltern has been carried out by Mutlu and Guven 2015. The total salt concentrations 
and the pH values of samples collected from this area were measured between 6% 
and 32% and pH 6.5 and 7.5, respectively. The bacterial communities of Camalti 
Saltern were characterised by molecular techniques that included the analysis of 
PCR-amplified fragments of 16S rRNA gene by the denaturing gradient gel electro-
phoresis. They identified a total of 42 isolates at the genus/species level, and 17 of 
them belonged to the Bacteria domain. All of bacterial strains were phylogeneti-
cally related to Halomonas, Halobacillus and Virgibacillus genus. 16S rRNA 
sequence analysis of the clones by ARDRA method showed that most (85%) of the 
bacterial clones were the members of Salinibacter genus within the Bacteroidetes.

A novel halophilic actinobacterium was isolated from Tuz Lake soil sample in 
Konya by Tatar et al. (2016). The isolate designated as BN506T was associated with 
members of the genus Streptomonospora based on morphological and chemotaxo-
nomic properties. Moreover, analysis of 16S rRNA gene sequence and DNA–DNA 
relatedness showed that strain BN506T was a member of a new species of the 
Streptomonospora genus, named as Streptomonospora tuzyakensis (= DSM 
45930T = KCTC 29210T). The 16S rRNA gene sequence similarities between strain 
BN506T and related species showed close relation to S. halophila YIM 91355T 
(98.1%) and S. arabica S186T (97.9%), with also DNA relatedness values of 
41.0 ± 3.5% and 25.2 ± 3.6%, respectively. The genomic DNA G + C content was 
detected as 71.1 mol %. The isolate was aerobic, Gram-positive, nonmotile actino-
mycete. The aerial mycelium of the species was white and found to grow at 4–20% 
NaCl (w/v) and between temperatures of 28 and 37 °C (optimally 37 °C in 10% 
(w/v) NaCl) and between a pH range of 6.0–12.0.

A global transcriptome analysis has been recently conducted by Kurt Kizildogan 
et al. (2017) in an extremely halophilic archaeon, Halolamina sp. YKT1, isolated 
from a sample in Yozgat salt mine, in order to explore the molecular mechanisms 
leading to the high salt tolerance. It was found that the salt tolerance of the YKT1 
strain involves the up-regulation of genes related with osmoprotectant solutes, 
membrane transporters, oxidative stress proteins, CRISPR–Cas systems and iron 
metabolism. This comprehensive transcriptome analysis however showed that the 
genes that encode the proteins involved in translation, transcription, DNA replica-
tion and DNA repair were downregulated.

8.6.2  Biotechnological Applications of Halophilic 
Microorganisms Isolated in Turkey

There are promising studies on halophilic bacteria and archaea, as they have ability 
for producing biochemicals, which possess a significant potential use in industrial 
and environmental technology (Oren 2010). Furthermore, halophilic bacteria have 
ability to produce biopolymers that are used in industrial and medical technology 
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(Table 8.4). For instance, levan is an extracellular biopolymer produced by a mod-
erately halophilic bacterium Halomonas species (Poli et al. 2009, 2013; Ates et al. 
2013). Moreover, exopolysaccharide-producing halophile, namely, Halomonas sp. 
AAD6 (DQ131909), was isolated from Camalti Saltern Area in Turkey. The strain 
cultivated on agro-industrial waste produced exopolysaccharides which had a 
potential use as an alternative and easily biodegradable polyelectrolytes, compared 
to synthetic ones that are commonly in use and contain toxic and carcinogenic 
monomers (Sam et al. 2011). The activated sludge culture supplemented with a salt 
tolerant, Halobacter halobium, was utilised for saline wastewater treatment in order 
to alleviate salt inactivation effects in a biodisc contactor (Kargi and Dincer 1998).

A moderate halophile identified as Halomonas sp. AAD12 from salt sediments 
in Camalti Saltern Area in Turkey was isolated by Ozturk et al. (2015), pointing out 
that it was a promising candidate as a hydroxyectoine producer. Halomonas sp. 
AAD12 was found to adapt stress conditions by changing its osmolyte accumula-
tion ratio and the fluidity of membrane to prevent the effects of stress. A number of 
moderate halophiles are known to change the accumulated concentrations of the 
osmoprotectants ectoine, hydroxyectoine and proline to protect its cytoplasm dur-
ing stress exposure, such as oxygen limitation, temperature and salinity. These mol-
ecules are desired for a variety of uses in biotechnology, for protection of enzymes 
against different stress factors such as freeze-thawing, freeze-drying and heating 
and also as a protection for the healthy cell desiccation during chemotherapy and for 
medical use as a molecular chaperon for Alzheimer’s disease, as well as for preser-
vation of cardiac death donors (DCD) livers.

An application field of halophilic bacteria has been the use for biodegradation of 
dyes. For example, a report was carried out about the use of halophilic bacterium 
isolated from water and soil samples of a solar sea saltern (Camalti, Turkey) in 
environmental technology, especially in textile industry for the decolourisation of 
some of azo–metal complex dyes. Among these, only one bacterium identified by 
16S rRNA gene sequence analysis as Halobacillus sp. C-22 (99% sequence similar-
ity) was determined as resistant against two dyes, which are Lanaset Brown B and 
Lanaset Navy R.  Following exposure to Lanaset Brown B, the bacterium deco-
lourised the dye at a high absorbance ratio (96.12%) after 78th h, while Lanaset 
Navy R was significantly decolourised in 10 min by 46.67% and 60.66% at the third 
hour (Demirci et al. 2011).

Another application field was the use of archaeal isolates in environmental tech-
nology for degradation of polyaromatic hydrocarbons (PAHs). Erdogmus et  al. 
(2013) isolated some archaeal strains from the Camalti Saltern (Turkey) and identi-
fied them by 16S rRNA gene sequences as Halobacterium salinarum, Halobacterium 
piscisalsi, Halorubrum ezzemoulense, Haloarcula hispanica, Haloarcula sp., 
Haloferax sp. and Halorubrum sp., which were found to degrade PAHs (namely, 
naphthalene, p-hydroxybenzoic acid, pyrene and phenanthrene) to use for the car-
bon and energy sources. Recently, halophilic microorganisms have been also used 
for biological treatment of highly saline wastewaters containing aromatic hydrocar-
bons. Acikgoz and Ozcan (2016) isolated a total of 103 halophilic Archaea from 
different parts of Turkey to study phenol biodegradation. The aromatic compound 
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phenol is known to be toxic produced after various industrial activities. The maxi-
mum phenol degradation capacity was obtained with the strain A235, among all 
strains studied on liquid and solid media with 20% (w/v) NaCl and phenol as the 
only carbon source.

The novel industrially important enzymes isolated and characterised from halo-
philes, which are stable in harsh conditions such as thermal, salt, alkaline and 
organic solvent stability, may well present advantages in different industrial pro-
cesses (Souza 2010; Kumar et al. 2012). Although a review on halophilic proteins 
and their applications have been already reviewed by Calimlioglu and Arga (2016) 
in general, there are not enough studies on halophilic enzymes from microorgan-
isms isolated from saltern areas in Turkey. As an example, extremely halophilic 
microorganism communities comprising of Archaebacteria and Eubacteria isolated 
in Sereflikochisar Salt Lake located in central Turkey were studied by Birbir and 
Sesal (2003). It was also demonstrated that a fairly wide diversity of halophilic spe-
cies were found to produce industrial enzymes such as lipases, gelatinases, cellu-
lases and β-galactosidases.

Another study was carried out on a thermostable amylase produced by moder-
ately halophilic microorganism, namely, Halomonas sp. strain AAD21, isolated 
from the Camalti Saltern located in Izmir Province. On the basis of morphological 
and biochemical characteristics and 16S rRNA gene sequence analysis, the strain 
was assigned to the genus Halomonas. The strain was found to grow at wide salt 
concentration range of 3–20% (w/v) NaCl, with optimum of 10%. The optimum 
temperature and pH of the α-amylase were determined as 50 °C and 7.0, respec-
tively. The α-amylase from Halomonas sp. AAD21 was found to be thermostable, 
as 70% of original enzyme activity was retained during 120 min of incubation at 
90 °C, which claimed to be a good candidate for use in severe process conditions of 
starch hydrolysis or detergent industry (Uzyol et al. 2012).

Ozcan et al. (2009) screened as many as 118 halophilic archaeal strains in search 
of lipolytic activity, five of which were selected and further characterised to deter-
mine the effects of salt, temperature and pH at various ranges on the optimum ester-
ase and lipase activities. The highest hydrolytic production was determined for the 
strains grown at a special medium containing 25% NaCl and 1% arabic gum. The 
maximum activity of esterase was observed at temperature 60–65 °C, pH 8–8.5 and 
at 3–4.5 M NaCl, while the highest activity of lipase was determined at tempera-
tures between 45 and 65 °C, pH of 8.0, and NaCl range of 3.5–4 M, indicating the 
presence of the temperature-tolerant and salt-dependent archaeal lipolytic enzymes. 
The results also showed that the strains had a higher esterase activity compared to 
lipase activity.

A most recent study has been published on new bacterial sources of halophilic 
lipases. It has been highlighted on the Turkish and Spanish hypersaline biotopes to 
be a suitable source of halophilic microorganisms producing lipolytic enzymes, 
which are from two different points in salterns of Parque Natural de las Lagunas de 
La Mata y Torrevieja (Spain) and from Pamukkale (Turkey). Three strains growing 
at NaCl concentration greater than 15% were capable to synthesise lipolytic 
enzymes, though one of them identified as Halomonas sp. LM1C was demonstrated 
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to have high enzyme production levels. Subsequently this strain was used, and the 
highest lipase production was obtained at pH 6.9 and 21.6 °C. The optimum values 
for the enzyme-biocatalysed hydrolysis were determined as neutral pH and 
29 °C. The extracellular lipase displayed a high salt tolerance, which claimed to 
pose the economic advantages in industrial applications (Gutiérrez-Arnillas et al. 
2016).

8.7  Future Perspective

Industrial biotechnology is a key technology for future economic development. 
Thus, for developing countries such as Turkey, there is a need to expand the research 
in biotechnology field. Since Turkey owns different ecological areas, i.e. surrounded 
by seas, salt lakes and many hot springs with a broad microbial diversity including 
extremophiles, there are a great deal of opportunities for newly isolated microorgan-
isms from extreme environments for their use in biotechnological applications. 
From this point of view, it seems that the search of extremophiles in the country is 
very recent, and this potential needs to be fully exploited.

There is a limited data on archaea isolated from extreme environments in Turkey, 
which need to be considered in many investigations. Particularly, their roles as 
source of enzymes from extremophile archaea (thermostable DNA polymerases, 
amylase, galactosidases and pullulanases) have a wide range of potential uses and 
also known to be very stable in organic solvents, providing an advantage in use for 
environmentally friendly processes. For instance, acidophilic archaea give a prom-
ise in mineral processing for the extraction of several metals such as gold and cop-
per, as Turkey is known to possess gold and copper mines.

Recent advances in molecular genetic tools for extreme microorganisms lead to 
their use for metabolic engineering for the production of chemicals and fuels. The 
advantages and drawbacks of using extremophiles as industrial hosts need to be 
discussed further with perspectives on future developments in this emerging tech-
nology (Loder et al. 2017). Today, in most countries, there is a trend towards cheap, 
renewable and readily available biomass in the production of various chemicals 
utilising extremophiles and their enzymes. It is a fact that Turkey is one of the top 
agriculture-producing countries in the world. As a result, there are potential and 
existing applications of both thermophiles and thermostable enzymes on conversion 
of raw materials containing carbohydrate into the desired products in industrial bio-
technology. Moreover, the studies on thermophiles have extended to energy bio-
technology such as biofuel, biohydrogen and ethanol production. Microorganisms 
isolated can be explored for the production of next-generation biofuels by the use of 
the carbohydrate fraction in lignocellulosic material (Turner et al. 2007).

It has been already suggested that at higher temperatures the ethanol production 
would make the process design easy, and the engineered progeny of 
Thermoanaerobacter mathranii, Thermoanaerobacterium saccharolyticum and 
Geobacillus thermoglucosidasius now forms the platform for new biotechnology 
companies (Taylor et al. 2009; Olson et al. 2015).
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On the other hand, the potentials of halophiles and their bioproducts have been 
extensively reviewed (Ventosa et al. 1998; Madern et al. 2000; Oren 2010; DasSarma 
and DasSarma 2017), as well as genetic tools for manipulation of moderately halo-
philic bacteria with promising applications in biotechnology (Vargas and Nieto 
2004). Halophilic enzymes are important candidates for use in biotransformation 
reactions in harsh industrial environments such as cosmetic, agrochemical, textile, 
detergent, paper, fuel, energy and pharmaceutical industries, which all require the 
organic solvent addition, very high temperatures, high salt concentration, low water 
level, high pH levels, etc. Despite some studies which have been already performed 
on halophilic microorganisms in different regions of Turkey, halophiles still need a 
special interest in terms of isolation and characterisation of new species producing 
desirable biocatalysts and biomolecules to fulfill future biotechnological and indus-
trial demands. Most recently, biosynthesis of nanoparticles using extreme microor-
ganisms has emerged as rapidly developing research area in green nanotechnology 
in the world as forming an alternative for conventional chemical and physical meth-
ods, which should also be taken into consideration.
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9.1  Introduction

Our planet is called The Blue Planet because about 70% of its surface is covered 
with seawater/water. Each liter of the seawater contains approximately 35 g of dif-
ferent salts, and sodium chloride (NaCl) is the major salt in most seawaters. This 
amount of salt in seawater has not been a limitation for microorganisms to live in 
such habitats (Libes 2011). An extensive diversity of microorganisms is found in 
seawaters, and this diversity is similar to the freshwaters. Salt concentration of sev-
eral places in the world is higher than seawaters. The increase in salt concentrations 
reduces the number of present organisms, where only halophilic or halotolerant 
ones can survive in such hypersaline environment. These halophilic and halotoler-
ant microorganisms can be found in all three domains of life: Archaea, Bacteria, and 
Eukarya. Survival of macroorganisms seems to be impossible in salt concentrations 
more than 20%. Hypersaline environments are widespread in all parts of the world. 
Natural salt lakes, hypersaline soils, salt wetlands, salt travertines, underground 
deposits of rock salt or salt mines, artificial salt lakes (e.g., solar salterns for NaCl 
production from seawater), coastal lagoons, and even salted food products are 
examples of hypersaline environments (Oren 2002). Generally hypersaline environ-
ments are divided in two major groups based on their origins: thalassohaline and 
athalassohaline environments. Thalassohaline environments have originated from 
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seawater and include marine salterns, some saline soils, and some lakes like Great 
Salt Lake. Athalassohaline environments, however, are not originated from the sea; 
and they can be found in all continents where they include saline soil and lakes 
along soda lakes (Ventosa and Arahal 2009). A distinct majority of halophilic micro-
organisms have called these saline environments “home,” and their survival depends 
on different salts of these highly saline environments, especially NaCl (Ma et al. 
2010). Like any other saline environments, salt lakes and other salt bodies of water 
are classified into thalassohaline and athalassohaline. Thalassohaline lakes have 
resulted from the evaporation of seawater, and usually their ionic composition is 
similar to seawater, and therefore, NaCl is the dominant and most abundant salt in 
these lakes. The pH of these lakes is usually around 7–8; thus, several halophilic 
microorganisms prefer to live in thalassohaline lakes. The Great Salt Lake in Utah, 
USA, is an example of thalassohaline lakes. Although this lake is not connected 
with the sea, it has originated from the evaporation of a salt lake from ice age, 
Bonneville, and as the water is similar to seawater, it has been classified as a thalas-
sohaline lake. The salinity of Great Salt Lake is about 30 and 12% in the north and 
south arms, respectively (Oren 2011). The Dead Sea is the most famous example of 
athalassohaline body of water in the world. Total salt concentration of the Dead Sea 
is about 35% but sodium is not the dominant ion of this environment, where the 
concentration of divalent ions magnesium and calcium is much higher (Bardavid 
et al. 2007). The main anions of the Dead Sea are bromide and chloride, and the pH 
of this athalassohaline environment is about 6. The predominant microbial strains 
that live in the Dead Sea are magnesium-tolerant ones which acquired low amount 
of sodium (Buchalo et al. 1998). Some of athalassohaline environments are alkaline 
with pH about 9.7–10. Examples of such environments are Mono Lake in California 
and Lake Magadi in Kenya (Javor 1989). Near the bottom of the Red Sea, the 
Mediterranean Sea, and the Gulf of Mexico, hypersaline brines have been found, 
and some microbial communities are found in depth of 1.5–3.5 km under the water 
surface (Hallsworth et al. 2007). Great diversity of microorganisms exists that can 
grow in salt concentrations up to saturation amount of NaCl (>300 g/l), and because 
of their pigments, they could be detected with naked eyes. The most common halo-
philic strains that could be found in all salt-saturated brines are unicellular alga 
Dunaliella salina, the square archaeon Haloquadratum walsbyi, and the red bacte-
rium Salinibacter ruber (Oren 2002). Almost all of archaeal strains from the phy-
lum Euryarchaeota have the optimal growth in presence of salt concentrations 
above 15%, and surprisingly many of them don’t have the ability to live in salt 
concentrations below 10% (Savage et al. 2008). On the other hand, halophilic bac-
teria are characterized. They belong to several phyla including the Cyanobacteria, 
the Gammaproteobacteria, the Firmicutes, and the Bacteroidetes (Makhdoumi- 
Kakhki et  al. 2012a, b, c, d). Also, several eukaryotic microorganisms and even 
macroorganisms are found in hypersaline environments. Artemia, the brine shrimp, 
is the most frequent macroorganism in hypersaline environments with the ability to 
live in salt concentrations more than 15%. In case of eukaryotic halophilic microor-
ganisms, Dunaliella, the green algae, is the most important and well-studied one. 
Survival of several heterotrophic microorganisms in hypersaline environments 
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depends on this autotrophic alga. Furthermore, its red β-carotene pigments increase 
its importance in biotechnology (de Lourdes Moreno et al. 2012). In general, halo-
philes have several applications in industry and biotechnology including food 
industry, medicine, depleting heavy metals and toxins, petroleum industry, deter-
gents, and textile industry. Furthermore, these microorganisms have the great ability 
to produce novel bioactive molecules (Yin et al. 2015). In this chapter we describe 
different saline environments of Iran and discuss the studies about halophilic micro-
organism’s diversity in these environments. Furthermore, we focus on studies which 
exhibited the biotechnological potential and/or application of these native halophilic 
and halotolerant microorganisms.

9.2  Hypersaline Lakes and Wetlands of Iran

Iran is a country with continental climates. Large parts of this country, especially in 
central and southern parts, consist of deserts. One of the most important features of 
Iranian deserts is that they are salty. The presence of salt in different places of Iran 
varied in amount from low percentages to saturated concentrations. Also, different 
types of saline environments including saline and hypersaline soils, wetlands, and 
permanent or seasonal lakes exist in Iran (Breckle 2002). These saline environments 
have two aspects of importance for mankind life. An old aspect is that these deserts 
are a great reservoir of food and raw materials for agriculture, industry, and medi-
cine. As we know these places are rich of important compounds, like sodium chlo-
ride, sodium sulfate, calcite, and selenite and important elements, like magnesium, 
manganese, lithium, boron, and tungsten (Shadrin and Oren 2015; Nissenbaum 
1993). Saline lakes and wetlands are found everywhere in Iran, and most of them 
are seasonal lakes and only have water in winter and spring, and with increasing 
sunlight, they become dry. Usually, these environments have no water from May to 
October, and during this time, their salinity reaches to its maximum amount. Based 
on their geographical position, surface of these seasonal lakes is covered with mil-
limeters to centimeters of salt. The most frequent salt in all Iranian lake is NaCl, but 
in Meighan wetland, sodium sulfate is the predominant one (Ghadimi and Ghomi 
2013). In recent years, several studies have been done on isolated microorganisms 
from different hypersaline lakes of Iran, and they were categorized in two groups: 
first, the ecologic and taxonomic studies, and second, the studies on biotechnologi-
cal applications of native microorganisms. With its great variation of ecologic 
regions, Iran is a hotspot for biodiversity studies, and unfortunately, a high number 
of its native species are exposed to human threats. Studies on the biodiversity of 
Iranian microorganism have started from two decades ago; thus most of these stud-
ies are new, and several of them are about isolation, identification, and taxonomic 
investigations of new strains from hypersaline lakes and drawing a biologic map for 
these regions. Among these studies, there are good investigations from Gomishan 
wetland, Urmia Lake, and seasonal lakes like Aran-Bidgol and Incheh Borun. Up to 
now more than 50 new eukaryotic (mold and yeast) and prokaryotic (archaea and 
bacteria) strains in taxonomic level of species, genus, and family were isolated and 
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characterized from hypersaline environments of Iran including two new families of 
bacteria and yeasts (Soortiaceae and Fereydouniaceae) (Amoozegar et  al. 2017; 
Nasr et  al. 2014), five genera of archaea (Amoozegar et  al. 2012; Makhdoumi- 
Kakhki et al. 2012a, c; Mehrshad et al. 2015, 2016), six genera of bacteria (Zarparvar 
et al. 2014; Amoozegar et al. 2014a, c, e; Shahinpei et al. 2014a; Munoz et al. 2016), 
two new genera from actinomycetes (Nikou et  al. 2015b, 2017), five species of 
molds (Arzanlou et al. 2016; Crous et al. 2014; Hyde et al. 2016), eight species of 
archaea (Amoozegar et al. 2013b, 2014c, d, 2015; Corral et al. 2015, 2016; Rasooli 
et al. 2017a, b; Naghoni et al. 2017a, b), 22 new species of bacteria (Amoozegar 
et al. 2008, 2009a, b, 2013a, 2014b, f, 2016a, b, c; Bagheri et al. 2012, 2013a, b; 
Didari et al. 2012, 2013; Makhdoumi-Kakhki et al. 2012b, Mehrshad et al. 2013, 
Sanchez-Porro et al. 2009, 2010; Shahinpei et al. 2014a, b), and two new species of 
actinomycetes (Nikou et al. 2014, 2015a). As shown in Table 9.1, Aran-Bidgol salt 
lake was the origin of most of these novel taxa. In the following sections we intro-
duce saline environments of Iran separately and discuss the studies on the biodiver-
sity and biotechnological applications of their isolated microorganisms. Finally, in 
Table 9.2, we summarize the biotechnological applications of halophilic microor-
ganisms isolated from different saline environments of Iran. Study of enzymes from 
these microorganisms was the major biotechnological approach in almost all 
regions.

9.2.1  Urmia Lake

9.2.1.1  Geographical Characteristic of Urmia Lake
Urmia Lake with ancient name of Chichast is the largest permanent, inland, hyper-
saline lake of Iran which is located in northwest of this country (Fig. 9.1). The most 
important water suppliers of Urmia Lake are Zarineh River, Simineh River, Talkhe 
River, and Aji Chai River. The main ions of the lakes are cations like sodium, mag-
nesium, potassium, calcium, and lithium and anions including chloride, sulfate, and 
bicarbonate (Eimanifar and Mohebbi 2007). This ecosystem was registered in the 
Ramsar Convention on Wetlands as a wetland of international importance; also 
Urmia Lake has been selected as 1 of the 59 biosphere reserves by UNESCO (Asem 
et  al. 2014, 2016). In previous years the amount of the lake’s water reached to 
14 × 109 m2, and its average depth was about 6 m, but now the amount of its water 
is about 3 × 109 m2 with an average depth of ˃1 m; therefore its water is approxi-
mately salt saturated. The shrimp, Artemia, is the sole macroorganism found on the 
lake (Shadkam et al. 2016).

9.2.1.2  Microbiology and Biodiversity of Microorganisms in Urmia 
Lake

In recent years several studies had been carried out on microbial life of Urmia Lake. 
In a study on the biodiversity of microorganisms of the lake, Barin et al. (2015) 
reported that the increase in salinity levels was not the main reason behind microbial 
biomass declination in the nearby saline soils. It was also shown that microbial 
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stress indices such as cis to trans and saturated to unsaturated conversion of cell 
membrane fatty acids increased with salinity. Furthermore, microbial communities 
were altered due to high saline conditions, where they found more fungi and Gram- 
negative bacteria compared to bacteria and Gram-positive ones, respectively (Barin 
et al. 2015). In 2014, a study on the biodiversity of cultivable microorganisms of 
Urmia Lake reported that the number of cultivable microorganisms in water and soil 
of the lake were 6 × 104 and 5 × 106 cell/ml, respectively. The cultivable bacteria of 
the lake belong to the following phyla: Firmicutes, Proteobacteria, and 
Actinobacteria with percentages of 78.6%, 21.4%, and 1.8%, respectively (Kashi 
et  al. 2014). Another report was about archaeal diversity of Urmia Lake. In this 
study 14 cultivable archaeal genera were reported from this lake, and the genera 
Halorubrum and Haloarcula with percentages of 48 and 14.5%, respectively, were 
the most frequent ones; On the other hand, culture-independent studies showed that 
the genus Halonotius with a percentage of 44% was the predominant archaea of the 
lake (Farahani et al. 2014). Halosiccatus urmianus and Halovarious luteus are two 
new halophilic archaea which were recently isolated from this lake (Mehrshad et al. 
2015; Mehrshad et al. 2016). Also, four new fungal species from eukaryotic world 
were isolated from this lake. These new species are Aspergillus iranicus, Aspergillus 

Fig. 9.1 The Urmia Lake in the northwest of Iran. The color of the lake is red in some regions (up 
left), and some salt crystals can be observed in this lake (up right). Red brines are found beneath 
salt layers of the lake (bottom left). The salt cressets are present beside the lake (bottom right)
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urmiensis, Emericellopsis persica, and Neocamarosporium chichastianum 
(Arzanlou et al. 2016; Crous et al. 2014; Hyde et al. 2016).

9.2.1.3  Biotechnological Studies on Urmia Lake’s Microorganisms
In recent years several studies have been focused on biotechnological applications 
of isolated microorganisms from Urmia Lake (Table 9.2). A study on hydrolytic 
enzymes of bacterial strains isolated from the lake reported that Gram-positive bac-
teria have more ability to produce hydrolytic enzymes than Gram-negative bacteria. 
The percentages of hydrolytic enzymes  produced were in order from highest to 
lowest inulinase, DNase, xylanase, lipase, amylase, pullulanase, protease, cellulase, 
and pectinase. The genus Halobacillus from Gram-positive and the genus 
Halomonas from Gram-negative  bacteria had the highest percentages number in 
enzyme-producing strains. The genus Halobacillus produced cellulase, protease, 
amylase, pectinase, and inulinase, and the genus Halomonas produced inulinase, 
pullulanase, and xylanase. The genus Thallasobacillus produced amylase, DNase, 
and inulinase, and the genus Marinobacter did not produce any hydrolytic enzyme 
(Babavalian et al. 2014). Recently, a laccase enzyme which is alkaline-chloride tol-
erant was purified from a Bacillus strain from Urmia Lake. Laccases are multicop-
per oxidases of different aromatic or inorganic substrates. These enzymes have 
various biotechnological applications like azo dye decolorization in textile industry. 
This purified laccase had a molecular weight of 180 kDa and was active in presence 
of NaCl with 800 mM concentration, and that’s why this laccase is unique among 
bacterial laccases. This was the first case of a halotolerant bacterial laccase to be 
reported, which had been isolated from hypersaline environments (Siroosi et  al. 
2016). The productive ability of halotolerant bacterial strains on antineoplastic 
enzymes like L-asparaginase and L-glutaminase was assayed. These enzymes were 
used for patients with acute lymphoblastic leukemia. A moderate halophile bacte-
rium from the genus Bacillus had the highest production of L-asparaginase while 
the strain belonging to the genus Salicola had the highest production of L-glutaminase 
(Shirazian et al. 2016). In regard of bioaccumulation of arsenic, a novel halophilic 
archeon from Urmia Lake, Haloarcula sp. IRU1, exhibited an efficiency of 60.89%. 
This feature was obtained at 40  °C, pH  8, and 90  mg/L NaAsO2 (Taran 2011). 
Marinobacter sp. TBZ23 isolated from Urmia Lake had the potential to biodegrade 
para-amino acetanilide in the presence of 14% NaCl (Heris et al. 2014a). Also, it 
was reported that Halomonas sp. TBZ9 from this permanent lake is capable of 
reducing Fe III (Heris et al. 2014b). The tolerance capacity of extremely halophilic 
archaeon, Haloferax radiotolerans, isolated from this lake against the effects of 
ultraviolet light (UV) and 60Co r-rays had been investigated. It was shown that, in 
comparison with a radioresistant strain of Escherichia coli, E. coli B/r, Haloferax 
radiotolerans was more resistant when exposed to DNA-damaging agents. This 
study was the first report of radio resistance ability in archaeal strains (Asgarani 
et al. 2006). Several reports were about pigments of halophilic microorganisms of 
Urmia Lake. In one study, it was exhibited that the main pigment of the halophilic 
archaeon, Haloarcula sp. IRU1, from Urmia Lake is bacterioruberin (Asgarani 
et al., 2014). The other study was focused on the carotenoid production by a novel 
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halophilic bacterial strain Marinobacter sp. TBZ112. The results exhibited that the 
carotenoid produced by this strain is monodemetyl spirilloxanthin (Hamidi et al. 
2012). Also, halophilic archaeon, Halorubrum sp. TBZ126, isolated from the lake 
showed high production of different carotenoids including bacterioruberin, lyco-
pene, and β-carotene (Naziri et  al. 2014; Hamidi et  al. 2014). Some Dunaliella 
strains were isolated from Urmia Lake. The ability of these strains to produce carot-
enoid in presence of salt and irradiance stress was investigated (Heidari et al. 2000). 
Moreover, it was exhibited that Dunaliella tertiolecta DCCBC26 from Urmia Lake 
has the ability to produce β-carotene (Fazeli et al. 2006).

9.2.2  Aran-Bidgol Salt Lake

9.2.2.1  Geographical Characteristic of Aran-Bidgol Salt Lake
Aran-Bidgol hypersaline lake, also known as Qom salt lake or Namak Lake, is the 
largest seasonal playa of Iran which is salt saturated in all seasons. The lake looks 
like a triangle between Tehran, Qom, and Semnan provinces (Fig. 9.2). It has a sur-
face area of about 2.4 × 103 km2. Water only covers 40 km2 of its surface during 
spring, and its depth is between 45 cm and 1 m. The surface of the Aran-Bidgol 
Lake is covered by salt, and the depth of this salt layer varies between 5 and 55 m. 
Colorful salt layers can be seen in this lake. The colors seen in salt layers are cyan 
blue, brown, white, green, pink, and gray or black from up to down (Fig. 9.2). The 
array of colors in laminated layers resembles the typical layers of the marine salters 
of Salin-de-Giraud (Oren 2011). This inland lake is a thalassohaline lake, and rain-
falls and seasonal rivers are the most important water suppliers of it. Colorful brines 
of the lake with biologic colors of green, orange, red, black, and brown on hexago-
nal salt layers create a unique picturesque of the lake, from September to November.

9.2.2.2  Microbiology and Biodiversity of Microorganisms in Aran- 
Bidgol Salt Lake

In 2012, a study on biodiversity of Aran-Bidgol Lake exhibited that the number of 
prokaryotic population of the lake is about 3–4 × 107 cells/ml, which is higher than 
those of the microbial populations of the seas; thus it was revealed that this lake is 
an active and efficient ecosystem. According to FISH analysis, the proportion of 
bacteria to archaea in this ecosystem was 1:2–1:3, which was unexpected due to 
the high salinity of the lake. Culture-independent studies revealed that Halorubrum 
and Salinibacter were the most frequent genera of the domains Archaea and 
Bacteria, respectively. The study exhibited that Aran-Bidgol Lake is an active and 
complete ecosystem which contains autotrophs like Cyanobacteria and purple sul-
fur bacteria of the genus Halorhodospira and all kinds of heterotrophs. In general, 
the classes of Bacterioidetes and Halobacteria from bacterial and archaeal domains 
are the predominant ones in this lake (Makhdoumi-Kakhki et al. 2012d). As shown 
in Table 9.1, up to now 16 new bacterial species or genera were isolated and identi-
fied from this lake including moderately halophilic bacteria, Aliicoccus persicus 
(Amoozegar et  al. 2014e), Aquibacillus halophilus (Amoozegar et  al. 2014a), 

9 Hypersaline Environments of Iran: Prokaryotic Biodiversity and Their Potentials…



276

Oceanobacillus halophilus (Amoozegar et  al. 2016b), Alteribacillus bidgolensis 
(Didari et al. 2012), Bacillus iranensis (Bagheri et al. 2012), Oceanobacillus limi 
(Amoozegar et  al. 2014b), Oceanobacillus longus (Amoozegar et  al. 2016a), 
Bacillus persicus (Didari et  al. 2013), Bacillus halosaccharovorans (Mehrshad 
et  al. 2013), Bacillus salsus (Amoozegar et  al. 2013a), Lentibacillus persicus 
(Sanchez-Porro et  al. 2010), Ornithinibacillus halophilus (Bagheri et  al. 2013b), 
and Marinobacter persicus (Bagheri et al. 2013a) along extremely halophilic bacte-
ria, Salinibacter luteus and Salinibacter iranicus (Makhdoumi-Kakhki et al. 2012b) 

Fig. 9.2 Aran-Bidgol salt lake with colorful brines and salts of it (top and bottom left). This salt 
lake with its great area is an important reservoir of salt (bottom right). Array of colors in salt layers 
of Aran-Bidgol salt lake is similar to laminated layers of the marine salters of Salin-de-Giraud 
(Oren 2011)
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which recently have been renamed as Salinivenus lutea and Salinivenus iranica 
(Munoz et  al. 2016) and also Limimonas halophila (Amoozegar et  al. 2013c). 
Furthermore, nine new taxa from archaea were isolated and identified from this 
lake, all of them belong to the  class Halobacteria including Halorubrum halo-
durans (Corral et al. 2016), Halorubrum persicum (Corral et al. 2015), Halovivax 
certinus (Amoozegar et al. 2015), Halorientalis persicus (Amoozegar et al. 2014c), 
Halovivax limisalsi (Amoozegar et  al. 2014d), Halopenitus malekzadehii 
(Amoozegar et al. 2013b), Halovenus aranensis (Makhdoumi-Kakhki et al. 2012a), 
Halopenitus persicus (Amoozegar et  al. 2012), and Haloarchaebious iranensis 
(Makhdoumi-Kakhki et al. 2012c).

9.2.2.3  Biotechnological Studies on Aran-Bidgol Salt Lake’s 
Microorganisms

There are several studies about biotechnological applications of microorganisms 
from Aran- Bidgol salt lake (Table  9.2). In 2013, Babavalian et  al. reported the 
hydrolytic activity of the enzymes produced by halophilic bacterial strains of the 
lake. In this study, the hydrolytic enzyme activity of 83 moderately halophilic bacte-
rial strains from Aran-Bidgol Lake was examined. The results showed that the most 
frequent enzymes in Gram-positive strains were DNases, inulinases, pullulanases, 
and cellulases while Gram-negative bacteria had a great ability to produce lipases. 
In this study seven strains exhibited a mixed activity of six different enzymes which 
revealed a high potential of the lake ecosystem in biotechnological applications. 
Furthermore, two bacterial genera Salicola and Salinicoccus showed the highest 
production for lipase and cellulase, respectively (Babavalian et  al. 2013). The 
hydrolytic enzymes from archaeal strains of this lake were also investigated 
(Makhdoumi-Kakhki et al. 2011). Pectinase activity was not found in any of the 293 
strains of the study, but DNase, amylase, lipase, inulinase, pullulanase, protease, 
cellulase, chitinase, and xylanase activity was observed, and several strains showed 
more than one enzyme activity. Halorubrum, Haloarcula, and Natrinema had the 
most enzyme activity while Halovivax and Natronomonas did not have any hydro-
lytic activity at all. These enzymes had been produced as response to stress or 
extreme conditions, and most of the strains are polyextremophiles. The presence of 
distinct enzymes in halophilic bacteria and archaea is highly valuable in industry 
and economy (Makhdoumi-Kakhki et  al. 2011). In 2014, an amylopullulanase 
enzyme had been purified from the halophilic archaeon, Halorubrum, isolated from 
Aran-Bidgol salt lake. It was the first time that the presence of this enzyme had been 
reported in halophilic microorganisms. Maximum activity of this enzyme was at 
3–4 M salt, pH 7, and 40 °C. The molecular weight of it was 140 kDa and had activ-
ity in presence of nonpolar organic solvent, which is really valuable for industrial 
processes (Siroosi et al. 2014). One of the most important microorganisms isolated 
from Aran-Bidgol salt lake was Nesterenkonia sp. strain F, which exhibited notable 
functions in biotechnology. In 2011 the draft genome of this strain was obtained 
(Sarikhan et al. 2011). Three amylase enzymes from this strain have been purified 
with molecular weight of 57, 100 and 110 kDa. They had their maximum activity at 
pH 6.5–7.5 and 40 °C. Besides, they were active at 0–4 M concentration of salt and 
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tolerated polar and nonpolar organic solvents. One of these amylases had the ability 
to hydrolyze starch which made it very important in biotechnology (Shafiei et al. 
2010, 2011, 2012). Furthermore, Amiri et al. (2016) reported that Nesterenkonia sp. 
strain F had the ability to produce acetone, butanol, and ethanol (ABE) under aero-
bic conditions. This was the first report of ABE production from a wild microorgan-
ism that does not belong to class Clostridia. Also, this study was the first report of 
butanol production from a halophilic bacterium under aerobic conditions. Through 
fermentation with 50  g/l initial glucose concentration, 66  mg/l of butanol and 
291 mg/l of ethanol were produced by this strain (Amiri et al. 2016). Also, it was 
reported that the halophilic bacterium Nesterenkonia sp. strain MF2 from this salt 
lake had the ability to live in up to 600 mM of chromate. Further studies showed that 
under aerobic conditions this isolate reduced 0.2 mM soluble Cr (VI) into nontoxic 
insoluble Cr (III) after 24 h. In the presence of different amounts of salt, this chro-
mate reduction ability had remained (Amoozegar et al. 2007). An enzyme with tel-
lurite and nitrate reduction ability was purified from Salinicoccus iranensis strain 
QW6 isolated from Aran-Bidgol salt lake. This enzyme had three subunits with 
molecular weights of 135, 63, and 57 kDa. The optimum activity of tellurite removal 
was observed at pH 7.5 and 5% of NaCl (Alavi et al. 2014).

9.2.3  Howz Soltan Salt Lake

Howz Soltan salt lake is a small (24 km2) seasonal salt lake which is located in the 
border of Dasht-e Kavir in Qom province, Iran (Fig. 9.3). The lake is also known as 
Saveh Lake and Shahi Lake. Howz Soltan salt lake consists of two separate hollow. 
The western hollow is Howz Soltan and the eastern hollows is Howz Morreh 
(Fig. 9.4) which are connected through a small stream. During winter and spring, 
water fills Howz Morreh first, and then the excessive amount pours into Howz 
Soltan. Major water suppliers of this salt lake are rainfalls and some rivers like 
Shoor River and Ghare Chay River. This salt flat is located 710 m higher than sea 

Fig. 9.3 Howz Soltan salt lake. Some regions of the lake are dry (left) while other regions have 
water (right) in waterfall seasons
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level with an annual rainfall of 100–120 mm. The surface of the lake is covered by 
hexagonal salt layers, but in cold and rainy seasons, a thin layer of water coats it. 
The frequent ions of the lake are Cl−, Na+, SO4

2-, K+, Mg2+, Ca2+, and CO3
2- as 

sodium chloride, sodium sulfate, potassium chloride, and magnesium chloride are 
the main salt of the lake. The pH of the lake varies among 6.5 to 8.2 so it is neutral 
to moderate alkaline. The amount of water salinity in Howz Soltan is 25 to 28% and 
in dry seasons reaches to saturation (Babavalian et al. 2014; Rohban et al. 2009).

In recent years some studies have been carried out on the biodiversity of micro-
organisms in Howz Soltan salt lake. As a result, three new endospore-forming 
Gram-positive bacterial strains were isolated from this lake. These novel species 
were Bacillus persepolensis (Amoozegar et  al. 2009b), Piscibacillus halophilus 
(Amoozegar et al. 2009a) and Thalassobacillus cyri (Sanchez-Porro et al. 2009). 
Furthermore, two halophilic microalgae from the genus Dunaliella including D. 
parva and D. viridis were isolated from this lake (Sedghi et al. 2016). A strain of 
Dunaliella salina was also isolated from Howz Soltan, and it had the ability to pro-
duce carotenoids and protein in the presence of different pH and salt concentrations 
(Tavallaie et  al. 2015). Furthermore,  the archaeon Halobacterium salinarum has 
been reported in Howz Soltan salt lake (Hassanshahian and Mohamadian 2011).

As shown in Table 9.2, some studies have been carried out on biotechnological 
applications of microorganisms from Howz Soltan salt lake. In 2009, a report about 
hydrolytic enzyme activity of halophilic bacteria from this lake was published. In this 
study 231 bacterial strains were assayed for production of 10 hydrolytic enzymes. 
Lipase activity was the most encountered enzymatic activity in these strains. Amylase, 
protease, inulinase, xylanase, cellulase, pullulanase, DNase, and pectinase activity 
were also reported from these strains. Gram-positive strains produced more efficient 

Fig. 9.4 Howz Morreh salt lake. This lake has water in almost all seasons (up left and bottom 
right), and colorful plants could be found nearby (up right and bottom left)
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enzymes, whereas the genus Salicola from Gram- negative bacteria had the ability to 
produce more efficient lipases. The genera Gracilibacillus, Virgibacillus, 
Thalassobacillus, and Halobacillus were more capable of producing hydrolytic 
enzymes than others (Rohban et al. 2009). Additionally, it was reported that 18 halo-
thermophilic strains were isolated from Howz Soltan lake where three of them exhib-
ited amylase activity (Fahimeh et al. 2013). In other study, it was reported that the 
bacterial strain Salinicoccus sp. from the lake had the capability to biodegrade glypho-
sate herbicide (Sharifi et  al. 2015). Furthermore, bioconversion of ferulic acid to 
vanilic acid by resting cells of Halomonas salina HSL5 isolated from Howz Soltan 
has been reported. The results showed that it can act as a biocatalyst for biological 
production of vanilic acid (Ashengroph and Nahvi 2014).

9.2.4  Maharloo, Tashk, and Bakhtegan Lakes

Three hypersaline seasonal lakes are located in Fars province, near the historical 
city of Shiraz, in the south of Iran. These lakes are Maharloo Lake, Tashk Lake, and 
Bakhtegan Lake. Maharloo Lake (Fig. 9.5) is a seasonal lake which only has water 

Fig. 9.5 Maharloo Lake. The pink color of the lake gives it a unique and beautiful picturesque 
(top right). Not only the water (up left and bottom right) but also the plants near the lake (bottom 
left) have this pink color
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in winter and spring, and the depth of its water reaches to 3 m. In summers it is 
completely dry and converts from a lake to a salt marsh. The pink color of its water 
is a result of residing unicellular microalgae like Dunaliella and halophilic archaeal 
strains. Its area is about 600 km2 with the width of 15 km2, and Soltan Abad River 
and Khoshk River are the main water suppliers. Na+, Cl−, SO4

2+, K+, Mg2+, and Ca2+ 
are the most frequent ions of Maharloo Lake. Tashk and Bakhtegan lakes are twin 
seasonal salt lakes. Tashk Lake is located in the north, and Bakhtegan Lake (Fig. 9.6) 
is located in the south, and a stream connects them to each other. During summer 

Fig. 9.6 Bakhtegan Lake. This lake is located near the historical city of Shiraz, in Fars province 
of Iran. During winter and spring, this lake has water (bottom left and middle) while the surface of 
it is covered by a layer of salt during summers (up left). Different shapes of salts can be observed 
in the lake (up right and bottom right)
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Bakhtegan is a saturated salt marsh while its surface is covered with water in winter 
and spring. Sodium chloride and sodium sulfate are the main salts of the Bakhtegan 
Lake (Sajedipour et al. 2017). Kor River is the main water supplier of Tashk Lake 
which directly feeds it. Later, the extra water enters into Bakhtegan Lake (Eskandari 
et al. 2016).

Some biotechnological studies were carried out on microorganisms from 
Maharloo Lake (Table 9.2). In one of these studies, it was reported that two halo-
philic isolates from the lake produced bioactive compounds. These strains belonged 
to the species Bacillus licheniformis and Bacillus subtilis. It was discovered that the 
mentioned bioactive molecules have a glycoprotein structure and Staphylococcus 
aureus, Aspergillus niger, and Mucor sp. were sensitive, whereas Pseudomonas 
aeruginosa, Escherichia coli, and Bacillus cereus were resistant to these bioactive 
molecules. This study revealed the potential of halophilic bacteria from Maharloo 
Lake for developing new drugs (Hashemi et al. 2014). A novel extracellular prote-
ase with a molecular weight of 21 KDa was purified from a Salinivibrio sp. strain 
MS-7 isolated from the lake. This serine metalloprotease had optimal activity at 
50 °C, pH 8.0, and 0.5 M NaCl (Shahbazi and Karbalaei-Heidari, 2012). Furthermore, 
two studies revealed that the bacterial strains from the genus Pseudomonas isolated 
from this lake have the ability to biodegrade polycyclic aromatic hydrocarbons 
(PAHs) in the  presence of 6% NaCl (Kafilzadeh et  al. 2007b; Kafilzadeh and 
Behzadi 2015). Also, a screening survey was carried out on bacterial strains isolated 
from Maharloo Lake. In this report, 16 isolates showed proteolytic activity, and all 
of them had optimal growth in 7–15% NaCl. Gram-positive bacteria showed higher 
proteolytic activity, and Bacillus sp. BCCS041 was the best proteolytic strain 
(Ghasemi et al. 2011). Several studies were focused on microalga strains isolated 
from this lake which belong to the genus Dunaliella. Most of these studies are about 
growth and β-carotene production of D. salina in the presence of different factors 
and harsh situations like copper toxicity, osmotic shock, manganese, iron and sulfur 
starvation, phytohormones, and ammonium nitrate nutrition (Zarei et  al. 2016; 
Nikookar et al. 2004, 2005, 2013; Montazeri-Najafabady et al. 2016; Shaker et al. 
2017; Mousavi et al. 2016). The ability of biodiesel formation by Dunaliella strain 
isolated from Maharloo Lake was also investigated (Rasoul-Amini et al. 2014).

Bakhtegan Lake was also a subject of microbiological studies. In a study on the 
microbial diversity of Bakhtegan Lake, it was reported that four archaeal genera 
from the orders Halobacteriales and Haloferacales were found in this lake, includ-
ing Halobacterium, Haloarcula, Halococcus, and Haloferax. Among these, 
Halobacterium and Haloferax had the highest and lowest frequency, respectively. 
Also, it was reported that four genera of bacteria were found in this lake including 
Pseudomonas, Flavobacterium, Micrococcus, and Bacillus (Kafilzadeh et  al. 
2007c). A Gram-negative halophilic strain, Salinivibrio proteolyticus was isolated 
from this lake which is highly capable of producing halothermotolerant alkaliphilic 
protease (Amoozegar et al. 2008). Two proteases with molecular weights of 31 and 
≥ 43 kDa were purified from this strain. These proteases were resistant to organic 
solvents and temperature while having activity in a wide spectrum of pH, tempera-
ture, and salt. They were active even in 4 M concentration of salt. The enzymes had 
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their maximum activity at temperature of 55 and 65 °C; hence, this makes them very 
important in biotechnological approaches. One of these enzymes has been cloned in 
Escherichia coli (Karbalaei-Heidari et al. 2007, 2008).

Another study showed the biodegradation of polycyclic aromatic hydrocarbons 
(PAHs) by bacteria isolated from Tashk Lake. In this report Pseudomonas sp. was 
the sole bacterium that degraded PAH optimally in the presence of 6% of NaCl 
(Kafilzadeh et al. 2007a).

9.2.5  Gavkhooni Wetland

Gavkhooni (Fig. 9.7), with area of 470 km2, is an international wetland which is 
located in the central region of Iran in Isfahan province. This salty wetland with 
a salinity of 30% is the terminal basin of the Zayandehrod River. The depth of it 
reaches to 1 m in springs while it is often dry during summer. Gavkhooni wetland 
was registered as an international wetland by Ramsar Convention in 1957 (Taghavi 
et al. 2013).

In a study on microbial isolation from Gavkhooni wetland, 161 isolates showed 
the ability to accumulate lipid inclusions in their intracellular space. All of strains 
were moderately halophilic or halotolerant. One of them, a Gram-negative strain 

Fig. 9.7 Gavkhooni wetland in the central region of Iran. This wetland is almost salt saturated in 
all seasons
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Oceanimonas sp. GK1, produced the highest amount of this inclusion in almost all 
examined culture conditions. Further studies clarified that inclusions were poly-
beta- hydroxybutyrate (PHB). It was reported that in the presence of 5% sucrose and 
0.5% peptone, this strain accumulated PHB at 35 °C, pH 8.0, and 5% NaCl with 
a  efficiency of 75% (Ramezani et  al. 2015). Whole-genome sequencing of 
Oceanimonas sp. GK1 revealed that the genome of this strain consisted of a single 
circular chromosome with 3,514,537 base pair length and also two plasmids with 
8462 and 4245 base pair length (Yeganeh et al. 2012). Further analysis revealed that 
some virulence genes like ZOT, RTX toxin, thermostable hemolysin, lateral fla-
gella, and type IV pili are present in its genome. These genes have a role in infection 
caused by other pathogenic bacteria and also in adhesion and biofilm formation 
(Yeganeh et al. 2015). Also, it had been exhibited that this halotolerant strain has 
high ability to biodegrade xenobiotic compounds such as phenol. This strain uses 
phenol as its carbon source via the ortho-cleavage pathway in the citrate cycle. 
Besides, further studies showed that this strain had strong adaptation to harsh envi-
ronments and that  genes encoding carbohydrate active enzymes are rare in its 
genome (Azarbaijani et al. 2016).

Isolation of Dunaliella tertiolecta sp. ABRIINW-G3, a new strain of Dunaliella 
tertiolecta from this wetland had also been reported (Hosseinzadeh Gharajeh et al. 
2012). The cesium bio-absorption had been reported from halophilic and halotoler-
ant bacterial strain isolated from soil samples near Gavkhooni wetland. It was 
shown that halotolerant strains had higher ability for bio-absorbing cesium than the 
halophilic strains, with averages of 33.1 and 15.6 mg/gdw, respectively (Bakhshi 
et al. 2007). On the other hand, it was reported that the halophilic bacterium Bacillus 
firmus MN8, isolated from this wetland, had the ability of reducing mercury. Also, 
it was shown that this strain had merA gene and its mercuric reductase had the opti-
mum activity at pH and temperature of 7.5 and 35 °C, respectively, while its activity 
in 1.5 M concentration of NaCl was 50%. This strain was assumed as a excellent 
choice for bioremediation of mercury-contaminated environments (Noroozi et al. 
2017).

9.2.6  Meighan Wetland

Meighan wetland or Meighan desert wetland is a seasonal hypersaline wetland with 
an area of 1.2 × 103 km2, which is located in Markazi province of Iran near Arak 
city, 1700 m above sea level. The depth of its water reaches to 1.5 m in some sea-
sons. This environment is the largest reservoir of sodium sulfate in Iran. The climate 
of the wetland is warm and dry, like the Mediterranean climate. The annual amount 
of rainfalls in this region is about 300 mm. The highest and lowest reported tem-
perature of Meighan wetland are 44 and − 33 °C, and like other saline environments 
of Iran, the ions Na+, Cl−, and SO4

+2 are abundant in this wetland.
Metagenomic analysis and culture dependent studies had been carried out on 

the  microbial diversity of Meighan wetland recently (Naghoni et  al. 2017a, b). 
Based on these results, 48 archaeal and 57 bacterial strains were isolated from this 
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wetland, and dominant archaeal and bacterial strain distribution was similar in 
culture- dependent and culture-independent studies.

Recently two new halophilic actinomycetes were isolated from Meighan wet-
land. These new genera are Salininema proteolyticum and Salinifilum proteinilyti-
cum (Nikou et al. 2015b, 2017). Also, two new halophile archaea, Natrinema soli 
and Natronoarchaeum persicum, were isolated from this wetland (Naghoni et al. 
2017a, b; Rasooli et al. 2017a, b). Furthermore, in a recent study, ten chemolithoau-
totrophic, haloalkaliphilic sulfur-oxidizing strains belonging to the genus 
Thioalkalivibrio were isolated from this wetland (Makzum et al. 2017).

9.2.7  Incheh Borun and Gomishan Wetlands

The north of Iran, with 700 km length, is divided in two different regions with two 
different ecosystems. One region in south of Caspian Sea is covered by rainforests 
with high humidity while the other part in southeast of Caspian Sea is dry with spo-
radic saline lands. These saline environments include ecosystems like brackish to 
hypersaline wetlands with neutral to alkaline pH and multiple mud volcanoes. There 
are few biological studies from these regions, and microbiological studies have been 
carried out only on two ecosystems of this region: moderate alkaline brackish 
Gomishan wetland and hypersaline Incheh Borun wetland (Nouri et al. 2008).

9.2.7.1  Incheh Borun Wetland
Incheh Borun wetland (Fig. 9.8) is a hypersaline wetland in north of Iran, near the 
border with Turkmenistan Republic. This thalassohaline wetland has a salinity of 
about 23–28%, and its pH varies between 2.8 and 6.8. Eastern part of the wetland is 
affected by wastewater of a iodine extraction factory, and therefore its pH is lower 
than other parts of the wetland. Cl−, Na+, Ca2+, Mg2+, and K+ are the most frequent 
ions of Incheh Borun wetland (Zarparvar et al. 2016).

Biodiversity studies about prokaryotic life of this wetland showed that the number 
of cultivable microorganisms is 2.1 × 106 cells/ml. Those from the bacterial domain 
belonged to the phyla Firmicutes, Proteobacteria, and Actinobacteria. Forty percent 
of the bacteria were halophilic and the remaining 60% were halotolerant. The most 
frequent halophilic strains belonged to the genera Marinobacter and Halomonas and 
most halotolerant belonged to the genera Bacillus, Dietza, Oceanobacillus, and 
Kocuria (Zarparvar et al. 2016). In the archaeal domain, the genera Haloarcula and 
Halostagnicola had the highest and lowest abundancy, respectively. The frequency 
order of archaeal genera of the wetland were Haloarcula, Halorubrum, Haloferax, 
Halobellus, Halogeometricum, Halobacterium, Halolaminia, Halorhabdius, and 
Halostagnicola (Rasooli et al. 2016). Up to now three new bacterial taxa at the level 
of genus or species have been isolated from Incheh Borun wetland. These novel taxa 
are Alloactinosynnema iranicum (Nikou et al. 2014), Salinithrix halophila (Zarparvar 
et al. 2014), and Nocardia halotolerans (Nikou et al. 2015a). All of them belong to 
the phylum Actinobacteria. Isolation and purification of a protease enzyme had been 
reported from Salicola sp., which was isolated from Incheh Borun wetland. This 
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keratinolytic protease had the capability of producing 86 μg/ml keratin from 1  g 
pretreated feather (Khoshnevis et al. 2014). The purification of laccase enzyme from 
Chromohalobacter sp. from Incheh Borun wetland was also reported. The purified 
laccase had a molecular weight of about 60  kDa and showed optimal activity at 
3 M NaCl, pH 8.0, and 45 °C (Rezaei et al. 2014).

9.2.7.2  Gomishan Wetland
Gomishan wetland is located two meters lower than sea level and has the area of 
about 1.7 × 103 km2. This wetland consists of salt marshes with few amount of water 
and is connected to the Caspian Sea, so its hydrological features are directly influ-
enced by the sea. Typically, the depth of this wetland is 1 m and reaches to 2.5 m 
near the sea. In 2001, this wetland was registered in the List of Wetlands of 
International Importance as declared in the Ramsar Convention (Saba et al. 2016). 
The salinity and pH of Gomishan brackish alkaline wetland are between 2 to 4% 
and 7.2 to 9.3, respectively. The ions of the wetland in order from higher to lower 
are Cl−, Na+, SO4

2-, Mg2+, Ca2+, HCO3
−, and K+ (Shahinpei et al. 2013).

Microbial studies of Gomishan wetland showed that 23% of the isolated pro-
karyotes are polyextremophiles and haloalkaliphiles (Shahinpei et al. 2013). These 
strains belong to the following genera: Idiomarina, Halomonas, Halobacillus, and 
Bacillus, and the following phyla, Actinobacteria, Bacteroidetes, Firmicutes, and 

Fig. 9.8 Incheh Borun wetland. This wetland has two different picturesques during the summer 
(up) and the winter (bottom right and middle). Salt crusts are visible beside the wetland (bottom 
left)
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Proteobacteria. Firmicutes and Gram-positive endospore-forming strains were the 
predominant ones, followed by reperesentatives of, the phylum Proteobacteria and 
the class Gammaproteobacteria. The genera Altererythrobacter, Caenispirillum, 
Erythrobacter, Martelella, Nesiotobacter, Stappia, and Thalassospira from the 
Alphaproteobacteria and the genus Achromobacter from the Betaproteobacteria 
were also detected in this wetland. More than 50% of isolated strains had lipase 
activity while DNase activity was very rare in these strains. These results varied 
from other studies of enzyme activity in other saline and hypersaline environments 
of Iran (Shahinpei et al. 2013). Up to now, three diatom species belonging to the 
family Bacillariophyceae were isolated from Gomishan wetland. These new strains 
are Fallacia pygmaea, Halamphora coffeiformis, and Navicula veneta (Saba et al. 
2016). Also, five new bacterial taxa at the genus or species level have been described 
from this wetland, including the  haloalkaliphilic microorganisms Salinispirillum 
marinum (Shahinpei et  al. 2014a), Aliidiomarina iranensis (Amoozegar et  al. 
2016c), and Aliidiomarina sedimenti (Shahinpei et al. 2017) and the halophilic spe-
cies, Cyclobacterium halophilum (Shahinpei et al. 2014b) and Pseudomonas sale-
gens (Amoozegar et al. 2014f).

9.2.8  Badab-Soort Travertine Spring

Badab-Soort (Fig. 9.9) is a travertine-maker spring which is located in Mazandaran 
province in the north of Iran. As a result of calcium carbonate accumulation on this 
spring, Badab-Soort travertine had been created. It has two different spring heads 
which varied in characteristics and colors and sediments. As shown in Fig.  9.9, 
Badab-Soort with its natural unique features is a suitable environment to microbio-
logical studies. In this region the relationship between microorganisms and their 
surroundings is really notable, because several microorganisms are responsible for 
calcium carbonate precipitation in travertines. Five strains were isolated from 
Badab-Soort travertine which were capable of calcium carbonate precipitation. One 
of these strains had the highest (45.6 mg/ml) amount of calcium carbonate precipi-
tation (Khansha et al. 2016). Soortia roseihalophila, a Gram-negative bacterium, 
has been isolated from Badab-Soort travertine spring and belongs to the novel fam-
ily Soortiaceae (Amoozegar et al. 2017).

9.2.9  Lut Desert

Lut Desert is located in south east of Iran and has a very hot and dry climate. This 
desert with an area of 2 × 105 km2 is the 25th largest desert of the world. In 2005, 
NASA estimated that the temperature of the Gandom Beryan region of Lut Desert 
is about 70.7 °C, and this was the hottest registered temperature on terrestrial areas 
of the Earth (Aghanabati 2017). Despite the typical hot and dry climate, a perma-
nent saline river exists in this desert, called Shoor River, and has a length of 
2 × 102 km where it stretches from north to south of the Lut Desert. It is the sole 
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permanent river of the whole region. The pH of the river is neutral, and sodium 
chloride, sodium sulfate, and potassium chloride are frequent in this river. The aver-
age salt concentration in this region is about 15%; thus it is a good habitat for halo-
philic microorganisms (Yazdi et al. 2014). Some extreme halophilic archaeal strains 
have been isolated from Shoor River recently. These isolated strains belong to the 
genera Haloterigena, Natrialba, and Natrinema. These strains tolerated gamma 
radiations between 2 and 6 kGy, and Natrialba sp. strain MS17 had the highest level 
of tolerance, with 6 kGy (Shirsalimian et al. 2017). Furthermore, the halotolerant 
actinobacterium Kocuria polaris strain A10, isolated from Gandom Beryan area of 
Lut Desert, exhibited resistance toward gamma radiation up to 4 kGy and remained 
viable after desiccation for 28 days (Shirsalimian et al. 2016).

9.2.10  Other Saline Environments of Iran

In addition to the mentioned environments, several saline environments like Hamun 
Lake, Lipar Lake, Bezangan Lake, Eshtehard wetland, Jazmorian wetland, Kafter 
wetland, Shahdad wetland, Namakdan Lake, Sirjan River, and Behesht-e Masoumeh 

Fig. 9.9 Badab-Soort travertine. Old (up left and bottom right) and new (up right and bottom left) 
spring and travertine of Badab-Soort
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wetland (Fig. 9.10) exist in Iran. Some sporadic studies have been carried out on 
microbial life of these environments. For example, in a study two species of 
Dunaliella, identified from Sirjan River and their response to salinity, were exam-
ined and compared (Nezhad and Mansouri 2016). Also, in another study a halo-
philic archaeal strain, Pars Q2, isolated from Namakdan Lake in Qeshm Island 
showed the ability to produce a biosurfactant when crude oil was its sole carbon 
source. Furthermore, this strain was able to use molasses and glycerol as its carbon 
and energy source (Jadidi et al. 2014). Besides, two halophilic exopolysaccharide- 
producing strains were

isolated from Eshtehard wetland (Fig. 9.11) in Alborz province. These two bac-
teria were used as decreasing agent against drought and saline stress in order to 
increase the wheat crops. 16S rRNA analysis showed that these strains are close to 
Bacillus subtilis sub sp. inaquosorum and Marinobacter lipolyticus sp. The inocula-
tion of these bacterial strains into soil resulted in dried and fresher roots with higher 
shoot weight. Furthermore, this inoculation increased germination rate and percent 

Fig. 9.10 Behesht-e Masoumeh wetland. This wetland is located in the central region of Iran, 
near the city of Qom. Colorful algae and plants are abundant in and around the wetland (up right 
and bottom). Oil could be found in this wetland (up left)
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of wheat germination (Talebi et al. 2013). In another study the phylogenetic diver-
sity of cultivable bacteria of Bezangan Lake in northeast of Iran was examined. The 
study showed the isolation of 51 Gram-positive and 15 Gram-negative strains. 
Furthermore, 30 different isolates were selected for further studies. These strains 
belonged to several phyla including Beta- and Gammaproteobacteria, Bacteroidetes, 
and Firmicutes. The Gram-negative strains belonged to the genera Luteibacter, 
Xanthomonas, Varivorax, Collimonas, and Flavobacterium while the Gram-positive 
belonged to the genera Bacillus, Fictibacillus, Staphylococcus, and Paenibacillus. 
Pseudomonas was the predominant genus. It was shown that the hydrolytic enzymes 
were the same in both Gram-negative and Gram-positive bacteria (Shahnavaz and 
Ghasemzadeh 2015).

9.3  Conclusion

Iran is a country of distinct and variable climates. North of Iran is very humid with 
frequent floods while the south of Iran is dry, and the main areas of southwest of this 
country are covered by deserts. Salt lakes and other saline environments are 
found  frequently in Iran, and in previous sections, we describe some important 

Fig. 9.11 Eshtehard salt marsh. During dry seasons the wetland seems completely white (up left 
and bottom right), and white brines could be observed around the wetland (up right). Salt crusts are 
visible on the surface of the marsh (bottom left)
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ones. Some of them have been widely studied where some have been less studied. 
Besides, some are currently under investigation. Among hypersaline environments 
of Iran, Aran-Bidgol salt lake and Urmia Lake are the most significant ones. Thus, 
there have been more studies on their microbial diversity. Considering the distinct 
spectrum of biodiversity in them, there have been many studies focused on the bio-
technological applications of the residing microorganisms. Individual studies on 
other hypersaline environments have shown that there are lots of opportunities to 
examine the biodiversity of them. With unique and distinctive characteristics of 
these environments, it won’t be unexpected to isolate microorganisms with better 
and more important biotechnological abilities.
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Abstract
Abundant and diverse halophilic and halotolerant microbes exist in the lakes of 
Qinghai Province, China. However, it is poorly known about their roles in 
the biogeochemical cycling of carbon, nitrogen, and sulfur elements and how 
their ecological functions respond to environmental conditions. The purpose of 
this chapter is to summarize the diversity/community composition and ecologi-
cal implications of halophilic and halotolerant microbes and their responses to 
environmental conditions in the Qinghai lakes. Halophilic and halotolerant 
microbes in the Qinghai lakes are important mines for exploring new taxonomic 
units, and they are extensively involved in ecological functions related to bio-
geochemical cycling of carbon, nitrogen, and sulfur elements. The halophilic 
and halotolerant microbes in global saline and hypersaline lakes may contribute 
higher fraction to global carbon flux than expected. So reappraisals are to be 
conducted on microbial roles in biogeochemistry. In addition, biomarkers 
(ancient DNA or lipids) derived from halophilic and halotolerant microbial 
functional groups can be employed to reconstruct the paleoenvironmental con-
ditions of the lakes.
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10.1  Distribution of Saline and Hypersaline Lakes in Qinghai 
Province, China

Qinghai Province is located in the northern Qinghai-Tibetan Plateau, the third pole 
of the world. It possesses hundreds of lakes with a total of 12,856 km2 of surface 
area (~ 380 lakes each with an area of >1 km2) and a total of 2.247 × 1011 m3 of water 
(Zheng et  al. 2002). Most (about 85% of the total lake surface area in Qinghai 
Province) of the Qinghai lakes are saline (salinity < 35 g/L) and hypersaline (salin-
ity > 35g/L) with neutral or slightly alkaline pH (Zheng et al. 2002). These saline 
and hypersaline lakes are inhabited by abundant and diverse microbes (Dong et al. 
2006; Jiang et al. 2007; Jiang et al. 2006; Wu et al. 2006; Yang et al. 2016a; Yang 
et al. 2016b), which could be classified into halophilic and halotolerant classes on 
the basis of their salt requirement and/or tolerance (Oren 2008).

The community composition and diversity of halotolerant and halophilic 
microbes in the Qinghai lakes were ever extensively investigated with the use of 
cultivation-dependent and cultivation-independent technologies. In this chapter, 
summaries will be given on the major findings of microbial diversity, function, and 
potential ecological significance in the saline and hypersaline lakes in Qinghai 
Province.

10.2  Microbial Diversity in Saline and Hypersaline Lakes 
of Qinghai Province, China

During the past decade, cultivation-dependent and cultivation-independent micro-
bial works were extensively performed in seven lakes of Qinghai Province 
(Table 10.1). Salinity of the studied lakes ranged from 0.8% to salt saturation, and 
pH was neutral to slightly alkaline (Table 10.1). Below summaries of the microbial 
research work with the use of cultivation and molecular techniques will follow.

10.2.1  Cultivation-Based Bacterial Diversity

The surface sediments from seven Qinghai lakes were employed in enrichment and 
isolation experiments with eight types of culture media (Table 10.2). A total of 646 
strains were obtained, and they were affiliated with 4 bacterial phyla, 7 classes, 18 
orders, 39 families, 89 genera, and 210 species. The four phyla were Firmicutes, 
Proteobacteria, Actinobacteria, and Bacteroidetes, each accounting for 43.2%, 
30.9%, 18.3%, and 7.6% of the obtained strains, respectively. The Firmicutes and 
Proteobacteria were dominant phyla among the retrieved bacterial strains. The dom-
inant genera consisted of Halomonas, Bacillus, Halobacillus, Kocuria, Planococcus, 
Nesterenkonia, Dietzia, Salegentibacter, and Marinobacter, and they accounted for 
about 60% of the obtained strains (Fig.  10.1). In addition, some genera (e.g., 
Salinimicrobium, Halolactibacillus, Fontibacter, Mameliella, Trichococcus, 
Terribacillus, Stappia) each consisted of only one species (strain). At the 98% 
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cutoff (Stackebrandt 2006), 79 of the obtained strains could be classified as poten-
tial new species affiliated with 44 potential new taxonomic units. So far the validly 
characterized microbes only occupy about 1–10% of the global population of pro-
karyotes (Schleifer 2004). Thus it is reasonable to sepculate that the Qinghai lakes 
are inhabited by abundant new taxonomic units considering that the high ratio (12%, 
79 out of 646) of culturable bacteria belonged to potential new taxa.

The diversity and composition (dominant and unique taxa) of the culturable bac-
terial population varied among the saline/hypersaline lakes of Qinghai Province 
(Fig. 10.2). For example, in the freshwater EHL, 47 strains were obtained (accounted 
for 7.3% of the total retrieved isolates), and they were dominated by Paenibacillus, 
Bacillus, Pseudomonas, and Dietzia. None of the EHL isolates were related to 

Table 10.2 Media recipes employed for the cultivation work in the Qinghai lake samples

Media type # Recipe (/L) Ref
Media supplemented 
with saccharides as 
carbon substrates

1 NaCl, 0.2g; glucose, 0.5g; tryptone, 0.01g; 10mL 
of (Na2SO4•10H2O 0.02g; MgSO4•7H2O, 0.02g; 
KBr 0.02, K2HPO4 0.01g; KH2PO4, 0.01g; CaCl2, 
0.02g; NaHCO3, 0.02g; KNO3, 0.01g; H2O, 
100mL)

This 
study

2 NaCl, 0.2g; yeast extract, 0.5g; tryptone, 0.01g; 
10mL of (Na2SO4•10H2O, 0.02g; MgSO4•7H2O, 
0.02g; KBr, 0.02, K2HPO4, 0.01g; KH2PO4, 0.01g; 
CaCl2, 0.02g; NaHCO3, 0.02g; KNO3, 0.01g; H2O, 
100mL);

This 
study

Media made on the basis 
of the physiochemical 
properties of the studied 
lakes

3 Na2SO4•10H2O, 0.01g; K2HPO4, 0.01g; CaCO3, 
0.002g; KCl, 0.02g, FeSO4, 0.002g; NaCl, 0. 2g; 
KNO3, 0.02g; MgSO4•7H2O, 0.005g; NaF, 0.001g; 
KBr, 0.1g; H3BO3, 0.002g; peptone, 0.1g

This 
study

4 NaHCO3, 0.005g; MgCl2, 0.05g; CaCl2, 0.01g; 
ZnSO4•7H2O, 0.001g; FeCl3•6H2O, 0.003g; MnCl2, 
0.001g; CaCl2, 0.002g; Na2SO4•10H2O, 0.01g; KBr 
0.1; MgCl2, 0.005g; yeast extract, 1g; casein acids 
hydrolysate, 0.75g

This 
study

Published media for 
halophilic bacteria

5 KNO3, 2g; MgSO4•7H2O, 0.05g; K2HPO4, 2g; 
CaCl2, 1g; FeSO4, 10mg; glucose, 10g; casein acids 
hydrolysate, 0.3g

Tang 
et al. 
(2007)

6 NaC1, 2g; KCl, 3g; K2HPO4, 1g; KNO3, 1g; 
MgCl2, 5g; MnCl2•4H2O, 0.02g; ZnSO4, 0.07g; 
FeSO4•7H2O, 0.02g; glycerol, 5g; fucose, 5g; 
asparagine, 0.5g; vitamin B1, 0.2mg; inositol, 
0.5mg; vitamin C, 0.2mg

Guan 
et al. 
(2013)

7 1/10 of ASW medium (SO4, 4g, KCl, 0.68g; KBr, 
0.1g; H3BO3, 0.025g; MgCl2, 5.4g; CaCl2•2H2O, 
1.5g; SrCl2•6H2O, 0.024g; NaHCO3, 0.2g; 
Na2HPO4, 0.04g; NH4Cl2, 0.5g; NaF, 0.002g, 
peptone, 5.0g; yeast extract, 1.0g; pH 8.0)

Tarhriz 
et al. 
(2013)

8 NaCl, 28.13g; KCl, 0.77g; CaCl2•2H2O, 1.60g; 
MgCl2•6H2O, 4.80 g; NaHCO3, 0.11g; 
MgSO4•7H2O, 3.50g

This 
study
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Halomonas, 92, 14%

Bacillus, 91, 14%

Halobacillus, 57, 9%

Kocuria, 30, 5%

Planococcus, 29, 4%

Nesterenkonia, 18, 3%

Dietzia, 17, 3%

Salegentibacter, 17, 3%

Marinobacter, 15, 2%

Roseovarius, 13, 2%

Jeotgalibacillus, 12, 2%

Micrococcus, 11, 2%

Paenibacillus, 11, 2%

Pseudomonas, 11, 2%

Aurantimonas, 10, 2%

Oceanobacillus, 10, 2%

Citricoccus, 9, 1%

Psychroflexus, 9, 1%

Alkalibacterium, 8, 1%

Gracilibacillus, 8, 1%

Planomicrobium, 7, 1%

Staphylococcus, 7, 1%

Virgibacillus, 7, 1%

Belliella, 6, 1%

Cyclobacterium, 6, 1%

Defluviimonas, 6, 1%

Demequina, 6, 1%

Algoriphagus, 5, 1%
Cellulomonas, 5, 1%
Rheinheimera, 5, 1%

Salinicoccus, 5, 1%
Isoptericola, 4, 1%

Marinococcus, 4, 1%
Paracoccus, 4, 1%

Rhodococcus, 4, 1%
Thalassobacillus, 4, 1%

Thalassospira, 4, 1%
Exiguobacterium, 3, 0%

Loktanella, 3, 0%
Micromonospora, 3, 0%

Paraliobacillus, 3, 0%

Pelagibacterium, 3, 0%

Primorskyibacter, 3, 0%

Pseudodonghicola, 3, 0%

Salinihabitans, 3, 0% Shewanella, 3, 0%

Others, 52, 8%

Halomonas Bacillus

Halobacillus Kocuria

Planococcus Nesterenkonia

Dietzia Salegentibacter

Marinobacter Roseovarius

Jeotgalibacillus Micrococcus

Paenibacillus Pseudomonas

Aurantimonas Oceanobacillus

Citricoccus Psychroflexus

Alkalibacterium Gracilibacillus

Planomicrobium Staphylococcus

Virgibacillus Belliella

Cyclobacterium Defluviimonas

Demequina Algoriphagus

Cellulomonas Rheinheimera

Salinicoccus Isoptericola

Marinococcus Paracoccus

Rhodococcus Thalassobacillus

Thalassospira Exiguobacterium

Loktanella Micromonospora

Paraliobacillus Pelagibacterium

Primorskyibacter Pseudodonghicola

Salinihabitans Shewanella

Others

Fig. 10.1 Genus affiliation of the obtained isolates in the sediments of saline and hypersaline 
lakes in Qinghai Province
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Loktanella Exiguobacterium Pseudodonghicola
Salinihabitans Primorskyibacter Paraliobacillus
Micromonospora Shewanella Thalassobacillus
Thalassospira Paracoccus Isoptericola
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Halobacillus Bacillus Halomonas

Fig. 10.2 Genus-level diversity of culturable bacteria among the saline and hypersaline lakes in 
Qinghai Province
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halophilic taxa, such as Halomonas, Halobacillus, and Salinicoccus. In contrast, a 
total of 106 strains were retrieved from the saline QHL (salinity 1.4%) and TSL 
(salinity 2.6%), accounting for 16.4% of the total obtained strains, with Bacillus, 
Aurantimonas, Halomonas, and Micrococcus being dominant. In the TSL 155 
strains were obtained (accounting for 23.9% of the  total obtained strains) with 
Halomonas, Kocuria, Bacillus, and Dietzia being dominant. A total of 282 strains 
(accounting for 43.7% of total) were obtained from the mid-salinity hypersaline 
GHL2 and XCDL with dominance of Halobacillus, Bacillus, Halomonas, 
Planococcus, Nesterenkonia, Roseovarius, and Salegentibacter. For the salt CKL, a 
total of 56 strains (8.7% of total) were obtained with the dominance of Bacillus, 
Halobacillus, Halomonas, and Virgibacillus (Fig. 10.2). So it can be seen that halo-
philic species (e.g., Halomonas, Halobacillus) became dominant in the culturable 
bacterial population with increasing salinity of the studied lakes. The higher number 
and diversity of obtained isolates in the GHL and TSL suggested that bacteria in 
hypersaline lakes with mid-salinity might be of higher culturability.

10.2.2  Cultivation-Independent Bacterial and Archaeal Diversity

The bacterial and archaeal diversity of the waters and surface sediments of the 
lakes were ever reported elsewhere (Jiang et al. 2009a; Jiang et al. 2007, 2008, 
2010b, 2016a, b; Liu et al. 2017; Wu et al. 2006). Generally speaking, the diver-
sity and community composition of bacteria and archaea differed between waters 
and sediments of the lakes in Qinghai Province (Fig. 10.3), which may be ascribed 
to the different physicochemical properties between waters and sediments (Yang 
et al. 2016a). Bacteria in the Qinghai lakes were dominated by the Proteobacteria 
(including α-, β-, γ-, and δ-subgroups), which accounted for 21–61% of total 
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bacterial sequencing reads of each sample for both waters and sediments 
(Fig. 10.4). Such dominance of Proteobacteria was consistent with the abovemen-
tioned cultivation data. The aquatic archaeal communities mainly consisted of 
marine benthic groups (MBGs, such as MBG-B, MBG-C, and MBG-D)/
Bathyarchaeota and Euryarchaeota (mainly halophilic archaea) in the Qinghai 
lakes (Jiang et al. 2009a). The Euryarchaeota and Woesearchaeota were dominant 
in the sedimental archaeal communities of the Qinghai saline/hypersaline lakes, 
and the Euryarchaeota mainly consisted of halophilic archaea (i.e., Halobacteria) 
(Fig. 10.5).

It is notable that the Thaumarchaeota are present in all the examined saline/
hypersaline lakes. All known species affiliated with Thaumarchaeota are capable 
of aerobically oxidizing ammonia to nitrite, the first and rate-limiting step in 
nitrification (Pester et al. 2011; Stieglmeier et al. 2014). So the widespread dis-
tribution of Thaumarchaeota in the studied Qinghai lakes suggested that ammo-
nia-oxidizing archaea could exist under a full range of salinity (from freshwater 
to salt saturation) (Hu et al. 2010; Jiang et al. 2009b) and they might play impor-
tant roles in nitrification in saline/hypersaline environments. However, the eco-
logical function of Thaumarchaeota in the Qinghai lakes still awaits further 
investigation.

In addition, the aquatic and sedimentary archaeal communities were domi-
nated by deep-sea archaeal groups (e.g., marine benthic groups B, C, and D) in 
Qinghai lake (Jiang et al. 2008). These marine benthic groups of archaea were 

Fig. 10.4 Bray-Curtis dissimilarity-based principal coordinate analysis among the bacterial com-
munities among of the studied samples

10 Halotolerant and Halophilic Microbes and Their Environmental Implications…



306

0%

20%

40%

60%

80%

100%

R
el

at
iv

e 
ab

un
da

nc
e

Others
Bathyarchaeota
Thaumarchaeota
Woesearchaeota
Euryarchaeota

Fig. 10.5 Phylum-level affiliation of the archaeal 16S rRNA sequencing reads from the sediments 
of the saline and hypersaline lakes in Qinghai Province

extensively observed in deep ocean environments where methane hydrate and/or 
high content of methane was present and was thus thought to be involved in meth-
ane cycling (Inagaki et al. 2006). The dominance of deep-sea archaeal groups in 
Qinghai lake suggested that such microbial groups were not limited to ocean envi-
ronments  (Jiang et al. 2008). However, their metabolic functions are still to be 
surveyed (Fig. 10.6).

The microbial communities in the Qinghai lakes were very sensitive to salinity, 
and the community composition varied with salinity. For example, in low-salinity 
environment, bacterial and archaeal communities were dominated by halotolerant 
bacteria and Crenarchaeota, respectively, while, halophilic archaea (i.e., Halobacteria) 
were dominant in high-salinity environments (Crenarchaeota completely disap-
peared when salinity was larger than 28%) (Jiang et al. 2007, 2009a). Salinity was 
more important than geographical distance in shaping microbial distribution among 
the Qinghai lakes of different salinity (Yang et al. 2016b).

Generally microbes in natural environments do not exist individually but live in 
the form of community. They have to interact with each other either through syn-
ergy/symbiosis or competition and thus form a complex microbial network, which 
could also be influenced by environmental factors. To reveal the coexistence of 
microbial communities, phylogenetic molecular ecological networks (pMEN) of 
the Qinghai saline/hypersaline lakes were constructed according to the methods 
described previously (Zhou et al. 2011). The pMEN results showed that the micro-
bial network size and connectivity varied among the saline/hypersaline lakes of 
different salinity. The connectivity composition of the pMEN nodes was signifi-
cantly distinct (Bray-Curtis dissimilarity >0.65) among the Qinghai lakes of differ-
ent salinity. The number of the pMEN nodes and connectivity decreased with the 
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increasing salinity of the Qinghai lakes (Fig. 10.7), suggestive of the decrease of the 
functional individuals within the microbial communities and of the interactions 
(synergy or competition) among individuals with increasing salinity of the lakes. 
This may be due to the fact that microbes require more energy to cope with osmotic 
pressure (Oren 2011). So it is reasonable to observe the salinity influence on the 
pMEN structure complexity of the microbial communities.

Fig. 10.6 Nonmetric dimensional scaling (NMDS) ordination according to Bray-Curtis dissimi-
larities among the archaeal communities of the studied lake samples

Fig. 10.7 Variation of network size and connectivity with salinity. Note: network size indicates 
the number of node OTUs; network connectivity indicates the number of connections between one 
node and other nodes in a network
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10.3  Response of Microbial Functional Groups 
to Environmental Variables and Ecological Importance

In saline and hypersaline lakes, microbes require to pay energy to maintain the 
osmotic pressure of their cells, and thus their functional activities are commonly 
restricted by salinity (Oren 2011). Our previous studies showed that most of the 
known microbial functional groups (e.g., carbon fixation, organic matter decompo-
sition, ammonia oxidation, and sulfur oxidation and reduction) were widely distrib-
uted in the Qinghai lakes with a wide range of salinity and their diversity, population 
composition, and ecological functions were significantly influenced by salinity and/
or other environmental variables (Table 10.3). For example, as the important pri-
mary producers (carbon fixation) in various aquatic ecosystems (e.g., salinity and 
hypersaline lakes), Cyanobacteria and eukaryotic algae were widespread in waters 
and surface sediments of the Qinghai saline and hypersaline lakes, and their popula-
tion composition varied with salinity (Liu et al. 2016b; Yang et al. 2018). It is nota-
ble that geographic distance presented a predominant role in affecting the benthic 
algal distribution in comparison to aquatic alga among the Qinghai lakes, which 
could be ascribed to the fact that benthic alga are difficult (relative to their aquatic 
counterparts) to travel among lakes (Yang et al. 2018).

In order to assess the microbial carbon fixation rates in the waters and sediments 
of the Qinghai lakes, in situ incorporation of inorganic carbon experiments was 
performed with the use of radiolabeled bicarbonate (NaH14CO3) according to the 
method described elsewhere (Boyd et al. 2014). The results showed that the photo-
synthetic carbon-fixing rates were 7.9–104.1  μg C L−1  h−1 and 2.2–262.3  μg C 
g−1 h−1 for the waters and surface sediments of the Qinghai lakes, respectively. The 
log-transformed photosynthesis carbon-fixing rates showed significant (R2 = 0.651 
and 0.772 for water and sediment, respectively) linear negative correlation with 
salinity (Fig. 10.8). This suggested that salinity was a predominant factor influenc-
ing photosynthetic carbon fixation in the Qinghai lakes. Annual carbon fixed in the 
Qinghai lakes was computed from the obtained carbon fixation rate (using the aver-
age values of 53.3 μg C L−1 h−1 and 73.5 μg C g−1 h−1 for water and surface sedi-
ments, respectively) assuming that carbon fixation could take place with similar or 
higher rate to/than the measured season (middle September) in 9 months (210 days, 
ice-free season) per year and 10 h (with sunlight) per day. A total of 12,856 km2 
surface area and a total of 2.247 × 1011 m3 lake water (Zheng et al. 2002) were 
employed for the calculation of total fixed carbon. The resulting total amount of 
fixed carbon could reach up to 0.233 Pg (1015 gram) in the Qinghai lakes, which is 
amazingly huge considering the small ratio of surface and water volume of the 
Qinghai lakes to that of the ocean (Moran et al. 2016). This suggested that global 
saline and hypersaline lakes may contribute higher carbon fixation than expected, 
which however awaits further investigation (Table 10.4).

In addition, the populations and functions of microbes related to organic carbon 
degradation also varied with lake salinity. For example, microbial communities in 
charge of organic carbon degradation were different at different salinity: in fresh-
water lakes, the genera of Acinetobacter, Pseudomonas, Sphingomonas, and 
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Tolumonas were the major contributors, in contrast with genera of Marinobacterium, 
Marinobacter, Nitrincola, Vibrio, and Halomonas in saline lakes (unpublished 
data). In response to increasing salinity, microbial species within one genus showed 
decreasing capability of carbon degradation and decreasing number of organic car-
bon types for cell growth or energy (Liu et al. 2017); microbial species within one 

Table 10.3 Summary of microbial studies related to functional groups involved in biogeochem-
istry of C, N, and S elements

Microbial 
functional groups

Methods 
employed

Diversity and/or composition of microbial 
populations and their response to 
environmental variables Refs

Cyanobacteria 
and algae

Illumina 
sequencing

Aquatic algal community composition and 
the relative abundance ratio of 
Cyanobacteria to algae varied with 
salinity
The benthic algal community 
compositions showed significant 
correlation with many environmental (e.g., 
dissolved inorganic and organic carbon, 
illumination intensity, total nitrogen and 
phosphorus, turbidity, and water 
temperature) and spatial factors

Liu et al. 
(2016b) and 
Yang et al. 
(2018)

AAPB Cloning Population composition varied with 
salinity; the pufM gene diversity showed 
significant correlation with salinity, N and P 
availability, TOC and/or DOC, and HCO3

- /
CO3

- ions; the ratio between particle-
attached and free-living AAPB was 
positively correlated with increasing salinity

Jiang et al. 
(2010a). 
Jiang et al. 
(2009c), and 
Liu et al. 
(2017)

COX Cloning Population composition varied with 
salinity; the composition structure showed 
significant correlation with salinity, pH, 
and major ions

Yang et al. 
(2013b)

Organic matter 
decomposition

Cultivation, 
cloning and 
Illumina 
sequencing

The diversity and carbon utilization of 
cultivable bacteria were affected be 
salinity

Liu et al. 
(2017) and 
Liu et al. 
(2016a)

AOB and AOA Cloning The diversity and ratio of AOA to AOB 
were affected by salinity

Hu et al. 
(2010) and 
Jiang et al. 
(2009b)

n-DAMO/
anammox

Cloning Nitrite-dependent anaerobic methane- 
oxidizing (n-DAMO) bacteria and anaerobic 
ammonia oxidizing (anammox) can coexist 
in lakes with salinity up to 84 g/L

Yang et al. 
(2012)

SOX Cloning Population composition varied with 
salinity

Yang et al. 
(2013a)

SRB Cloning The diversity of SRB was affected by 
salinity; SRB were involved in dolomite 
formation

Deng et al. 
(2010); Yang 
et al. (2013)c
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genus but from different lakes showed negative correlation between the number of 
their carbon sources and organic carbon degradation ability and the salinity of 
lakes where they were from (Liu et al. 2017).

10.4  Implications for Paleoenvironments in Qinghai 
Province

The content of organic matter in lake sedimentary records can reflect the varia-
tions in climate and environment in ancient time (Yang et al. 2015). A 6-m-long 
sediment core was collected from Qinghai Lake, which could cover the sedimen-
tary records during the past 18,000 years (Fig.  10.9). The total organic carbon 
(TOC) content was highest (>3.5%) in the section at the 1.65–4.20 m depth, low-
est (<3%) below the 4.20  m depth, and moderate (3–3.5%) above the 1.65  m 
depth. Bacterial community composition varied in response to TOC content in the 
sediment core: in the sediments with highest TOC content, the relative of 
Euryarchaeota reads was higher than other samples, while OP9 was more abun-
dant in the sediment with moderate TOC content than other samples. In contrast, 
Firmicutes and Proteobacteria were more abundant in the sediments with lowest 
TOC content than other samples (Fig. 10.10). Such microbial community varia-
tion along with geochemical conditions (i.e., TOC content) resulted from micro-
bial adaptation to environmental evolution, which has certain implications for 
sedimentary environment.

In addition, some functional microbes (e.g., algae, ammonia-oxidizing archaea) 
require light, oxygen, and/or other specific environmental variables (e.g., salinity, 
nutrition level) for their metabolic activities. Their abundance, diversity, and com-
munity composition sensitively respond to variation in environmental conditions 
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(e.g., temperature, salinity, nutrition level). Metabolic activities of such functional 
microbes will end once they are buried in dark and anaerobic sediments. However, 
their DNA and/or lipids (e.g., glycerol dialkyl glycerol tetraethers, commonly 
abbreviated as GDGTs, core membrane lipids from bacteria and archaea) could be 
preserved for some period of time and therefore can be employed to reconstruct 
paleoenvironmental conditions such as temperature (Wang et  al. 2015; Wu et  al. 
2013), nutrition level (Yang et  al. 2015), ancient water level (Wang et  al. 2014, 
2015), and water salinity (Wang et al. 2013) of ancient lakes.

Fig. 10.9 Profiles of TOC content and conductivity of the sediment core collected from Qinghai 
Lake. Note: the stars indicate the subsamples for DNA work. The subsamples were coded as fol-
lows for the example of QHLS205_4606: QHLS, Qinghai lake sediment; 205, the depth of the 
sample in the unit of centimeters (cm); 4606, the age of the subsample dated with 14C isotope

H. Jiang et al.
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10.5  Closing Remarks and Future Perspectives

The results summarized in this chapter suggest that the Qinghai saline and hypersa-
line lakes are inhabited by abundant and diverse halophilic and halotolerant micro-
organisms, among which a large portion belong to potential new taxonomic units 
and thus await further explorations for new taxa or metabolic functions. These 
microbes of different ecological functions are enigmatically involved in the biogeo-
chemical cycling of carbon, nitrogen and sulfur elements and are of great ecological 
importance. State-of-the-art molecular techniques (e.g., single-cell genomics, 
metagenomics, metatranscriptomics, stable isotope probing, proteomics) should be 
integrated with traditional cultivation studies and stoichiometric biogeochemistry in 
future microbial studies, which could help understand  the biogeochemistry in 
saline/hypersaline lakes.

Acknowledgments This research was supported by grants from the National Natural Science 
Foundation of China (Grant Nos. 41422208, 41521001, 41672331, 41672337, and 41602346), the 
111 Program (State Administration of Foreign Experts Affairs & the Ministry of Education of 
China, grant B18049), the Fundamental Research Funds for National University (China University 
of Geosciences—Wuhan), and State Key Laboratory of Biogeology and Environmental Geology.

References

Boyd ES, Hamilton TL, Havig JR, Skidmore ML, Shock EL (2014) Chemolithotrophic primary 
production in a subglacial ecosystem. Appl Environ Microbiol 80:6146–6153

Deng S, Dong H, Lv G, Jiang H, Yu B, Bishop ME (2010) Microbial dolomite precipitation using 
sulfate reducing and halophilic bacteria: results from Qinghai Lake, Tibetan Plateau, NW 
China. Chem Geol 278:151–159

Dong H, Zhang G, Jiang H, Yu B, Chapman L, Lucas C, Fields M (2006) Microbial diversity in 
sediments of saline Qinghai Lake, China: linking geochemical controls to microbial ecology. 
Microb Ecol 51:65–82

Guan T, Teng Y, Che Z, Zhang L, Zhang X, Xing Y, Liu P, Zhang L (2013) Comparison of isolation 
media for Actinobacteria from LopNur salt lake. Biotechnology 23:56–60 (in Chinese with 
English abstract)

Hu A, Yao T, Jiao N, Liu Y, Yang ZAO, Liu X (2010) Community structures of ammonia-oxidising 
archaea and bacteria in high-altitude lakes on the Tibetan Plateau. Freshwat Biol 55:2375–2390

Inagaki F, Nunoura T, Nakagawa S, Teske A, Lever M, Lauer A, Suzuki M, Takai K, Delwiche 
M, Colwell FS, Nealson KH, Horikoshi K, D’Hondt S, Jorgensen BB (2006) Biogeographical 
distribution and diversity of microbes in methane hydrate-bearing deep marine sediments on 
the Pacific Ocean margin. Proc Natl Acad Sci U S A 103:2815–2820

Jiang H, Deng S, Huang Q, Dong H, Yu B (2010a) Response of aerobic anoxygenic phototrophic 
bacterial diversity to environment conditions in saline lakes and Daotang River on the Tibetan 
Plateau, NW China. Geomicrobiol J 27:400–408

Jiang H, Dong H, Deng S, Yu B, Huang Q, Wu Q (2009a) Response of archaeal community 
structure to environmental changes in lakes on the Tibetan Plateau, northwestern China. 
Geomicrobiol J 26:289–297

Jiang H, Dong H, Yu B, Liu X, Li Y, Ji S, Zhang CL (2007) Microbial response to salinity change 
in Lake Chaka, a hypersaline lake on Tibetan plateau. Environ Microbiol 9:2603–2621

H. Jiang et al.



315

Jiang H, Dong H, Yu B, Lv G, Deng S, Berzins N, Dai M (2009b) Diversity and abundance of 
ammonia-oxidizing archaea and bacteria in Qinghai Lake, northwestern China. Geomicrobiol 
J 26:199–211

Jiang H, Dong H, Yu B, Lv G, Deng S, Wu Y, Dai M, Jiao N (2009c) Abundance and diver-
sity of aerobic anoxygenic phototrophic bacteria in saline lakes on the Tibetan plateau. FEMS 
Microbiol Ecol 67:268–278

Jiang H, Dong H, Yu B, Ye Q, Shen J, Rowe H, Zhang C (2008) Dominance of putative marine 
benthic Archaea in Qinghai Lake, northwestern China. Environ Microbiol 10:2355–2367

Jiang H, Dong H, Zhang G, Yu B, Chapman LR, Fields MW (2006) Microbial diversity in water 
and sediment of Lake Chaka, an athalassohaline lake in northwestern China. Appl Environ 
Microbiol 72:3832–3845

Jiang H, Huang Q, Deng S, Dong H, Yu B (2010b) Planktonic actinobacterial diversity along a 
salinity gradient of a river and five lakes on the Tibetan Plateau. Extremophiles 14:367–376

Liu W, Jiang H, Yang J, Wu G (2017) Gammaproteobacterial diversity and carbon utilization in 
response to salinity in the lakes on the Qinghai-Tibetan Plateau. Geomicrobiol J. https://doi.org
/10.1080/01490451.01492017.01378951

Liu W, Yang J, Wu G, Zhang G, Jiang H (2016a) Diversity of cultivable bacteria based on different 
carbon sources in the sediments of lakes in northern Qing-Tibetan Plateau. Journal Salt Lake 
Research 24:92–102 (in Chinese but with English abstract)

Liu X, Hou W, Dong H, Wang S, Jiang H, Wu G, Yang J, Li G (2016b) Distribution and diversity 
of Cyanobacteria and eukaryotic algae in Qinghai–Tibetan lakes. Geomicrobiol J 33:860–869

Moran MA, Kujawinski EB, Stubbins A, Fatland R, Aluwihare LI, Buchan A, Crump BC, 
Dorrestein PC, Dyhrman ST, Hess NJ, Howe B, Longnecker K, Medeiros PM, Niggemann 
J, Obernosterer I, Repeta DJ, Waldbauer JR (2016) Deciphering Ocean carbon in a changing 
world. Proc Natl Acad Sci U S A 113:3143–3151

Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. 
Saline Systems 4:2–2

Oren A (2011) Thermodynamic limits to microbial life at high salt concentrations. Environ 
Microbiol 13:1908–1923

Pester M, Schleper C, Wagner M (2011) The Thaumarchaeota: an emerging view of their phylog-
eny and ecophysiology. Curr Opin Microbiol 14:300–306

Schleifer KH (2004) Microbial diversity: facts, problems and prospects. Syst Appl Microbiol 
27:3–9

Stackebrandt E (2006) Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 
6:152–155

Stieglmeier M, Alves RJ, Schleper C (2014) The phylum Thaumarchaeota., in: Rosenberg 
E, DeLong EF, Lory S, Stackebrandt E, Thompson F (Eds.), The Prokaryotes. Springer, 
pp. 347–362

Tang S, Jiang Y, Zhi X, Lou K, Li W, Xu L (2007) Isolation methods for halophilic and halotolerant 
actinomycetes. Microbiology China:390–392

Tarhriz V, Thiel V, Nematzadeh G, Hejazi MA, Imhoff JF, Hejazi MS (2013) Tabrizicola aquatica 
gen. nov. sp. nov., a novel alphaproteobacterium isolated from Qurugöl Lake nearby Tabriz 
city, Iran. Antonie Van Leeuwenhoek 104:1205–1215

Wang H, Dong H, Zhang CL, Jiang H, Liu Z, Zhao M, Liu W (2015) Deglacial and Holocene 
archaeal lipid-inferred paleohydrology and paleotemperature history of Lake Qinghai, north-
eastern Qinghai–Tibetan Plateau. Quat Res 83:116–126

Wang H, Dong H, Zhang CL, Jiang H, Zhao M, Liu Z, Lai Z, Liu W (2014) Water depth affecting 
thaumarchaeol production in Lake Qinghai, northeastern Qinghai-tibetan plateau: implications 
for paleo lake levels and paleoclimate. Chem Geol 368:76–84

Wang H, Liu W, Zhang CL, Jiang H, Dong H, Lu H, Wang J (2013) Assessing the ratio of archaeol 
to caldarchaeol as a salinity proxy in highland lakes on the northeastern Qinghai–Tibetan 
Plateau. Org Geochem 54:69–77

10 Halotolerant and Halophilic Microbes and Their Environmental Implications…

https://doi.org/10.1080/01490451.01492017.01378951
https://doi.org/10.1080/01490451.01492017.01378951


316

Wu QL, Zwart G, Schauer M, Agterveld MPK, Bahn MW (2006) Bacterioplankton community 
composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan 
Plateau, China. Appl Environ Microbiol 72:5478–5485

Wu X, Dong H, Zhang CL, Liu X, Hou W, Zhang J, Jiang H (2013) Evaluation of glycerol dialkyl 
glycerol tetraether proxies for reconstruction of the paleo-environment on the Qinghai-Tibetan 
Plateau. Org Geochem 61:45–56

Yang J, Jiang H, Dong H, Hou W, Li G, Wu G (2015) Sedimentary archaeal amoA gene abundance 
reflects historic nutrient level and salinity fluctuations in Qinghai Lake, Tibetan Plateau. Sci 
Rep 5:18071

Yang J, Jiang H, Dong H, Wu G, Hou W, Zhao W, Sun Y, Lai Z (2013a) Abundance and diversity 
of sulfur-oxidizing bacteria along a salinity gradient in four Qinghai-Tibetan lakes, China. 
Geomicrobiol J 30:851–860

Yang J, Jiang H, Dong H, Wu G, Hou W, Zhao W, Sun Y, Lai Z (2013b) Diversity of carbon 
monoxide-oxidizing bacteria in five lakes on the Qinghai-Tibet Plateau, China. Geomicrobiol 
J 30:758–767

Yang J, Jiang H, Liu W, Wang B (2018) Benthic algal community structures and their response to 
geographic distance and environmental variables in the Qinghai-Tibetan lakes with different 
salinity. Front Microbiol 9:578

Yang J, Jiang H, Sun Y, Wu G, Hou W, Lai Z, Dong H (2013c) Abundance and diversity of sulfate- 
reducing bacteria in Qinghai-Tibetan lakes. Journal of Salt Lake Research 21:7–13 (In Chinese 
but with English abstract)

Yang J, Jiang H, Wu G, Hou W, Sun Y, Lai Z, Dong H (2012) Co-occurrence of nitrite- dependent 
anaerobic methane oxidizing and anaerobic ammonia oxidizing bacteria in two Qinghai- 
Tibetan saline lakes. Frontiers of Earth Science 6:383–391

Yang J, Jiang H, Wu G, Liu W, Zhang G (2016a) Distinct factors shape aquatic and sedimentary 
microbial community structures in the lakes of Western China. Front Microbiol 7:1782

Yang J, Ma L, Jiang H, Wu G, Dong H (2016b) Salinity shapes microbial diversity and community 
structure in surface sediments of the Qinghai-Tibetan Lakes. Sci Rep, in press

Zheng X, Zhang M, Xu X, Li B (2002) Salt lakes in China. Beijing Science Press, Beijing
Zhou J, Deng Y, Luo F, He Z, Yang Y (2011) Phylogenetic molecular ecological network of soil 

microbial communities in response to elevated CO2. MBio 2:e00122–e00111

H. Jiang et al.



317© Springer Nature Singapore Pte Ltd. 2018
D. Egamberdieva et al. (eds.), Extremophiles in Eurasian Ecosystems: Ecology, 
Diversity, and Applications, Microorganisms for Sustainability 8, 
https://doi.org/10.1007/978-981-13-0329-6_11

D. Egamberdieva (*) 
Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany 

Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan 

K. Davranov 
Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan 

S. Wirth 
Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany

11Soil Salinity and Microbes: Diversity, 
Ecology, and Biotechnological Potential

Dilfuza Egamberdieva, Kakhramon Davranov, 
and Stephan Wirth

Abstract
Soil salinity is a severe problem worldwide to crop production and ecosystems 
because it disturbed soil biological processes and microbial functioning. The 
adverse effects of salt stress on soil microbial activity and populations have been 
studied extensively. The understanding of the adaptive properties of soil microbes 
makes it possible to use them in restoring abandoned salt-affected lands. Salt- 
tolerant microorganisms are essential components in carbon, nitrogen, and phos-
phorus cycling. There is evidence that these microbes play an important role in 
soil biochemical processes and nutrient cycle, improving plant stress tolerance 
and nutrient acquisition through their ability to fix atmospheric nitrogen, solubi-
lize phosphate or by enhancing decomposition of plant residues. These stress 
tolerant microbes have a great biotechnological potential to improve productivity 
and plant health on saline soils, or under arid conditions.
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11.1  Introduction

Climate change has resulted in the reduction of available land resources used for 
agricultural production, thus leading to pose a potential threat to global food secu-
rity (El-Beltagy and Madkour 2012; Mahalingam 2015). Among abiotic factors, soil 
salinity is increasing annually, and more than 50% of lands devoted to agriculture 
are salinated (Jadhav et al. 2010; FAO 2010).

According to previous reports, 77 million hectares of land used for crop cultiva-
tion were affected by salinity (Brady and Well 2008). Salinization is common in 
arid and semiarid areas where rainfall is low and salt contents increase in top soil 
(Egamberdieva et al. 2008; Bui 2013). Furthermore, inappropriate application of 
chemical fertilizers, irrigation of agricultural lands, and use of saline groundwater 
have resulted in secondary salinization (de Wit et al. 2011). There are two types of 
salinity, primary and secondary salinization. Primary salinity results from the 
excessive weathering of rocks, intrusion of salt water from the sea along the coast, 
or improper drainage. Secondary salinity results from the activities of humans, 
which include excess use of saline water for irrigation of agricultural lands or inap-
propriate application of chemical fertilizers (Lakhdar et al. 2009). For example, the 
Aral Sea, once the fourth largest inland body of water in the world, has been 
steadily decreasing in size, because of cotton production accompanied by intense 
irrigation of arable fields (Egamberdiyeva et al. 2007). The dry seabed exposed to 
weathering further increased soil salinization and desertification around the region 
(Ragab and Prudhomme 2002). The area of saline irrigated lands in Uzbekistan 
amounted to 2399,7 th/ha, including low-saline lands, 1317,7 th/ha; medium-saline 
lands, 665,2 th/ha; and strong-saline lands, 416,5 th/ha. Saline soils with high 
availability of soluble salts affect plant growth at various growth stages leading to 
yield loss and also impact ion compositions at maturity. Higher soil salinity 
 hampers the growth of several crop plants mainly because of reduction in the 
osmotic potential of the soil solution and specific ion effects leading to nutritional 
imbalance (Ahmad 2010). The exposure of plants to salt stress brings alterations in 
several major physiological plant processes like photosynthesis, protein synthesis, 
respiration, water uptake, as well as energy and lipid metabolisms (Abd_Allah 
et al. 2017).

Soil salinity not only inhibits plant growth, or disturbs physiological properties, 
but also affects the microbiome which plays an important role for soil productivity 
(Hashem et al. 2015), especially the maintenance of food webs and nutrient turn-
over. Soil microbial diversity is largely determined by the plant rhizosphere which 
is considered as hot spot for microbial colonization and proliferation due to nutrient 
rich exudates (Renella et al. 2006). Investigating the microbial population, physiol-
ogy, ecology, and functions in arid saline environments is important in developing 
understanding that new agricultural technologies will have upon plant-microbe 
interactions, nutrient transformations, and plant succession. Several abiotic factors 
including pH, soil nutrients, and moisture have been proposed as main factors limit-
ing microbial activity and abundance (Lauber et  al. 2009; Egamberdieva et  al. 
2010a, 2011). The soil microbial community is the most active in upper soil layers 
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and therefore strongly affected by the accumulation of soluble salts (Kapur et al. 
2010). Thus, negative effects of salinity on soil microbial activity, including micro-
bial respiration or enzyme activities, were reported in many studies (Yuan et  al. 
2007; Setia et al. 2010). There are several studies reporting negative correlations 
between soil microorganisms and salt content of soils (Mavi et al. 2012; Luo et al. 
2017). The reduction of the diversity of microbiota in salt-affected soils was reported 
previously, e.g., by Lijuan et al. (2017) who observed Planctomycetes, Bacteroidetes, 
Proteobacteria, Actinobacteria, Chloroflexi, Gemmatimonadetes, and Acidobacteria 
as dominant groups in salt-affected soils of Gansu Province, China. The understand-
ing of the adaptive properties of soil microbes makes it possible to use them in 
restoring abandoned salinated lands.

The soil microbes have adaptive abilities to survive in harsh environmental con-
ditions, including drought, salinity, and extreme temperatures (Turan et al. 2014; 
Egamberdieva et al. 2016, 2017c). They produce several specific metabolites which 
help microbes to withstand abiotic stresses (Sorty et al. 2016). Furthermore, many 
studies have reported that salt-tolerant bacteria enhance plant growth, physiologi-
cal properties, and crop yield (Singh and Jha 2016; Cho et al. 2015; Ahmad et al. 
2015). The mode of action of PGPR that have beneficial effects on plant growth 
and physiological processes includes nitrogen fixation, modulation of antioxidant 
enzymes, antimicrobial properties, and production of osmotic compounds, cell 
wall degrading enzymes, ACC deaminase, hydrogen cyanide, or siderophores solu-
bilizing minerals (Asaf et  al. 2017; Hashem et  al. 2016; Egamberdieva 2009; 
Egamberdieva et al. 2017a; Shahzad et al. 2016). In this review, we discuss the 
diversity, ecology, physiology, and biotechnological potential of microbes from 
saline environments.

11.2  Soil Microbes and Microbial Diversity

11.2.1  Microbial Populations

A huge multitude of different microorganism is commonly found in the soil includ-
ing bacteria, fungi, actinomycetes, protozoa, and algae (Egamberdieva 2012; 
Mendes et al. 2013). The most common type of soil microbes is bacteria that have 
great effect on many processes such as organic matter oxidation, hydrolysis, and 
degradation, and these in turn determine the natural cycles of carbon, nitrogen, 
phosphorus, and other elements (Renella et al. 2006; Gougoulias et al. 2014). In 
addition, they help the roots take up nutrients, recycle nutrient elements into the 
ecosystems from atmosphere or mineral reserves, break down detritus, release min-
eral elements in soluble forms, and protect the roots from pathogens (Egamberdieva 
et al. 2010b; Forchetti et al. 2010). Extreme conditions may reduce the activity of 
some microorganisms but will stimulate that of others, and in many extreme envi-
ronments, microorganisms are the crucial contributors to nutrient cycling. Research 
has shown that by measuring the size and activity of soil microbial communities, we 
can assess soil degradation and the effects of management designed to reverse the 
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degradation. The salt-tolerant microorganisms are important components of carbon, 
nitrogen, and phosphorus cycling. In an earlier report, Belimov et  al. (1995) 
described such soil microorganisms as oligonitrophilic, ammonifying, nitrifying, 
and denitrifying bacteria that play an important role in the transformation of mineral 
nutrients.

The extreme environment is also characterized by low N concentration, which is 
an essential element to all forms of life. Nitrogen fixation is carried out only by 
prokaryotes which may be symbiotic or free living, and oligonitrophilic bacteria 
have the ability to fix N2. In nitrogen-poor soils under extreme environmental condi-
tions, they are widely distributed compared to other soil. In salt-affected soils, the 
nitrogen fixation capability of bacteria is suppressed due to high pH (Butale et al. 
2010; Kouas et al. 2010).

Arid calcareous soils of Uzbekistan are characterized by very low nitrogen 
content, where oligonitrophilic bacteria are dominant. The highest density of 
oligonitrophilic bacteria was observed under alfalfa and cotton during summer 
and the lowest in winter (Fig.  11.1). The salt-affected soils of Uzbekistan are 
nitrogen deficient soils, and thus the abundance of oligonitrophilic bacterial 
strains are higher than other microbial populations. Bacterial density was the 
lowest in winter and increased gradually through spring and autumn. The differ-
ences of microbial populations varied with soil depth with higher amounts in the 
0–10 and 10–20 cm soil depth than at the 20–30 cm depth regardless of plant 
type. Moradi et al. (2011) studied free-living diazotrophs and total bacterial pop-
ulations in saline soils and observed a negative effect of salinity on total bacterial 
population. In their study, the free-living diazotrophic and total heterotrophic 
bacterial populations were significantly higher in non-salinated soil compared to 
salt-affected soil. Among the soil microbes, Corynebacterium and Enterobacter 
genera were moderate halophiles, and Bacillus and Agrobacterium genera were 
extreme halophiles.

The nitrogen mineralization and immobilization by microbes are one of the key 
components of the soil nitrogen cycle. The organic nitrogenous compounds are 
decomposed by microbial enzymes to form ammonia (NH3), and thus the amount of 
plant available N in soils is increased through those processes (Luo et al. 2017). 
Ammonifying bacterial populations were predominant groups in soil attached to 
plant roots compared to soil without plant cultivation. Marked effects were found to 
have taken place on the ammonifying bacteria populations under tomato and wheat 
grown in saline arid soils (Fig. 11.2). Luo et al. (2017) observed a decreased popula-
tion of ammonifying bacteria, nitrifying bacteria, and denitrifying bacteria under 
saline alkaline soil of China. The differential effects of plant species on soil micro-
bial communities were related to root exudates which contain different nutrients 
(Marschner et al. 2004; Bertin et al. 2003). The highest density of ammonifying 
bacteria in soil under various crops was observed during spring and summer which 
indicate the importance of plantation of salt-affected soils. A year which was char-
acterized with hot summer and less precipitation affected soil microbial population 
negatively (Wallenstein et al. 2010).
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In nitrification process, NH3 or NH4 + is oxidized to nitrite (NO2
−) and then to 

nitrate (NO3
−). NO3

− is readily taken up by plants, and because of its negative 
charge, it moves freely through the soil. Nitrification can also prevent nitrogen 
losses in soils where NH3 volatilization is a major factor (Bock et al. 1986). The 
oxidation of NH3 and NH4

+ to NO2
− is carried out in most soils by species of 

Nitrosomonas, while the oxidation of NO2
− to NO3 − is carried out by Nitrobacter 

(Bock et al. 1986). Luo et al. (2017) reported a decrease of nitrifying bacteria in 
salt-affected rhizosphere soil of cotton. A significant inhibition of soil microbial 
population was also found by Yuan et al. (2007).

Fig. 11.1 The number (CFU) of oligonitrophilic bacteria under cotton, alfalfa, maize, tomato, 
wheat, and fallow. The samples were taken in spring, summer, autumn, and winter (0–30 cm soil 
depth)
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11.2.2  Microbial Diversity

External abiotic factors, such as soil type, soil temperature and moisture, or salinity, 
induce effects on soil microbial communities and diversity (Mishra et  al. 2012). 
Canfora et al. (2014) studied microbial diversity of a natural saline soil located in 
Sicily and found diverse bacterial phyla. Dominant phyla were Acidobacteria, 
Actinobacteria, Bacteroidetes, BRC1, Chlorobi, Chloroflexi, Cyanobacteria, 
Deferribacteres, Firmicutes, Gemmatimonadates, Nitrospira, Planctomycetes, 
Proteobacteria, Spirochaetes, Tenericutes, Verrucomicrobia, and WS3. In another 
study, Yang et al. (2016) found in low-saline soil higher percentages of Proteobacteria, 
Acidobacteria, Chloroflexi, and Gemmatimonadetes and lower percentages of 

Fig. 11.2 The number (CFU) of ammonifying bacteria under cotton, alfalfa, maize, tomato, 
wheat, and fallow. The samples were taken in spring, summer, autumn, and winter (0–30 cm soil 
depth)
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Firmicutes and Verrucomicrobia, whereas high saline soil contained mostly 
Loktanella and Kordiimonas.

Research on salt-affected soils in India showed a presence of Pseudomonas spe-
cies belonging to P. aeruginosa, P. pseudoalcaligenes, P. alcaligenes, P. fluorescens, 
P. putida, P. stutzeri, P. mendocina, P. mallei, and P. diminuta (Rangarajan et al. 
2002). In salinated soil of Uzbekistan, several salt-tolerant Pseudomonas strains 
were identified as Pseudomonas putida, P. extremorientalis, P. chlororaphis, and P. 
aurantiaca. The isolates tolerated up to 5% of NaCl (Egamberdieva and Kucharova 
2009). In these salinated Uzbekistan soil, other species were found including 
Mycobacterium phlei and Mycoplana bullata (Egamberdiyeva and Höflich 2003); 
however, a majority of salt-tolerant bacteria belong to the genus Bacillus which is 
well adapted in arid saline soils because of their capability to produce endospores 
(Egamberdiyeva and Höflich 2003). Among them B. laevolacticus, B. amylolique-
faciens, B. polymyxa, B. subtilis, and B cereus were isolated from cotton, tomato, 
and wheat grown (Egamberdiyeva 2005). Panosyan et al. (2018) reported about the 
bacterial community composition in saline-alkaline soil located in Ararat Plain 
(Armenia) and described the dominance of Firmicutes populations. The salt- tolerant 
bacterial diversity showed that 41.2% belong to Halobacillus, 23.5% to Piscibacillus, 
23.5% to Bacillus, and 11.8% to Virgibacillus. Other researchers have isolated a 
number of microbial strains from Sesbania cannabina grown in saline environments 
of Rudong County, China, and they are belonging to the genera Ensifer, 
Agrobacterium, Neorhizobium, and Rhizobium. Among them Ensifer meliloti and 
Neorhizobium huautlense were the dominant species (Li et al. 2016b). Moreover, 
Mishra et al. (2012) observed diverse bacterial genera in Bhitarkanika mangrove 
soil including Azotobacter, Bacillus, Desulfotomaculum, Desulfovibrio, 
Desulfomonas, Klebsiella, Methylococcus, Micrococcus, and Pseudomonas.

In other studies, the most predominant phylum in saline soils of India was 
Proteobacteria, which included Ectothiorhodospiraceae, Azospira, 
Stenotrophomonas, Thiobacillus, Levilinea, Desulfobacteraceae, Thioalkalivibrio, 
and Rhodocylales (Sah et al. 2014). Li et al. (2016a) studied the bacterial communi-
ties in salt-alkali soils under mulberry and soybean. They found dominant taxo-
nomic groups to be Proteobacteria, Acidobacteria, Actinobacteria, Chloroflexi, 
Bacteroidetes, Planctomycetes, and Gemmatimonadetes.

11.3  Beneficial Microbes

Salt-affected soils are a source for diverse microorganisms that adapted in extreme 
environmental conditions (Sorty et al. 2016; Egamberdieva et al. 2017b). The plant 
species grown in salt-affected soils are also associated with a microbial community 
which competes for nutrient and niches in the rhizosphere (Hashem et  al. 2015, 
2017). The plant development is sensitive to salt stress and results in an inhibition 
of the root system growth, nutrient absorption, and physiological processes (Hashem 
et al. 2016; Parray et al. 2016). In addition, the amount of reactive oxygen species 
(ROS) which lead to oxidative stress in plants (Ahmad et al. 2015) is increased.
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The use of beneficial microbes to control plant diseases and to stimulate plant 
growth has been considered to be a viable alternative and environmentally friendly 
method (Egamberdieva et  al. 2011). The bacteria that exert beneficial effects on 
plant growth and physiology are known as plant growth-promoting rhizobacteria 
(PGPR) and have been reported widely and are used for many crops (Lugtenberg 
and Kamilova 2009). There is some evidence that soil microbes have the potential 
to help alleviate abiotic stresses and improve plant growth and physiological prop-
erties under extreme environmental conditions (Table 11.1). Thus, the mechanisms 
utilized by plant growth-promoting bacteria have been reported by several authors 
(Cho et al. 2015; Nadeem et al. 2014). Application of bacterial inoculants such as 
Azotobacter, Azospirillum, Bacillus, and Pseudomonas has improved growth, nutri-
ent uptake, and yield of cotton under various climatic conditions (Anjum et al. 2007; 
Park et al. 2011; Egamberdieva et al. 2013; Bharti et al. 2016). For example, Li-Hua 
et  al. (2016) observed an increase of plant biomass, contents of proline, organic 
acids, amino acids, soluble sugars, as well as of enzyme activities such as peroxi-
dase and superoxide dismutase as well as of root vigor in case of Suaeda salsa L. 
after inoculation with Trichoderma harzianum. Also microbial inoculant also 
increased population of fungi, bacteria, and actinomycetes under saline soil condi-
tion of China. The strains of Bacillus subtilis isolated from India showed phosphate 
solubilizing ability and improved seed yield and content of essential oil of fennel 
(Foeniculum vulgare Mill.). In addition, they improved the uptake of soil nutrients 
such as C, N, P, and K by plants, under saline soil condition of India (Mishra et al. 
2016). In other study halotolerant Enterobacter cloacae strain (HSNJ4) stimulated 
seed germination, plant growth, nutrient uptake, and chlorophyll content of canola 
under salt stress condition (Li et al. 2017). Moreover, a modulation of physiological 
properties of plants by bacterial inoculation was observed, e.g., the concentration of 
proline, indole-3-acetic acid (IAA), and antioxidant enzyme activity were increased. 
Rajput et al. (2013) found that salt-tolerant Planococcus rifietoensis strain stimu-
lated growth and yield of wheat under salinity stress. The strain was able to tolerate 
up to 65 g/L NaCl salinity in the medium and produce IAA, enzymes, and compat-
ible solutes. The strain Curtobacterium flaccumfaciens E108 isolated from Hordeum 
secalinum increased plant biomass and development in barley under salt stress con-
dition (Cardinale et al. 2015). The plant growth, physiological properties, and sym-
biotic performance of host chickpea with rhizobia under saline soil were improved 
by salt-tolerant B. subtilis NUU4 (Egamberdieva et al. 2017b) (Fig. 11.3).

Soil salinity inhibited root and shoot growth and nutrient acquisition of cotton, 
whereas bacterial inoculation helped plants to withstand salt stress (Egamberdiyeva 
and Höflich 2004). The cotton plants treated with bacterial inoculants P. alcaligenes 
PsA15, P. denitrificans PsD6, and A. simplex 50 significantly increased root dry 
weight. The concentrations of N, P, and K in root and shoot tissues (13–42%) were 
increased by bacterial inoculants compared to untreated plants under salinated soil 
of Syrdarya province. In another study, the plant growth of wheat grown under 
saline soil was increased by IAA produced by bacteria of Pseudomonas putida, P. 
extremorientalis, P. chlororaphis, and P. aurantiaca (Egamberdieva and Kucharova 
2009). An increased plant biomass of wheat was also reported by inoculation of 
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other bacterial strains such as Bacillus subtilis and Arthrobacter sp. by Upadhyay 
et al. (2012).

Hidri et  al. (2016) reported an increased plant growth of Sulla carnosa by 
Pseudomonas sp. that was able to produce IAA under salt stress. In another study, 
Bacillus amyloliquefaciens produced ABA and stimulated plant growth of rice 
under saline conditions (Shahzad et  al. 2016). Similar results were observed by 
ABA produced by Bacillus aryabhattai which increased plant growth, nutrient 
acquisition, nodule formation, and drought stress tolerance in soybean (Park et al. 
2017). The salt-tolerant Bacillus amyloliquefaciens H-2-5 isolated from Korean soil 
stimulated the growth of Chinese cabbage, radish, tomato, and mustard plants under 
salt stress (Kim et al. 2017). The strain was able to produce gibberellins and abscisic 
acid and showed phosphate-solubilizing activity. In earlier studies salt-tolerant 
strains of Serratia plymuthica RR-2-5-10, Stenotrophomonas rhizophila e-p10, 
Pseudomonas fluorescens SPB2145, P. extremorientalis TSAU20, and P. fluores-
cens PCL1751 reduced cucumber root rot caused by Fusarium solani and stimu-
lated cucumber growth and fruit yield on saline soil in greenhouse conditions 
(Egamberdieva et  al. 2011). Egamberdiyeva and Höflich (2004) reported an 
increased plant biomass and N, P, and K uptake of pea by P. denitrificans PsD6, M. 
bullata MpB46, und A. tumescent under saline soil conditions  in Uzbekistan. In 
other study Mycobacterium phlei MbP18 and Mycoplana bullata MpB46 isolated 
from salinated soil were found to significantly increase root and shoot growth of 

Fig. 11.3 The effect of salt-tolerant Bacillus subtilis NUU4 with the combination of 
Mesorhizobium ciceri IC53 on chickpea growth

D. Egamberdieva et al.
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winter wheat in a nutrient-poor soil (Egamberdiyeva and Höflich 2003). The  
salt- tolerant strain Enterobacter sp. NIASMVII increased plant biomass of wheat 
by producing IAA (Sorty et  al. 2016). Plant-associated microbes use several 
 mechanisms to improve stress tolerance including synthesis of osmoprotectants, 
exopolysaccharides, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, and 
phytohormones and modulation of antioxidant enzymes (Berg et al. 2013; Mishra 
et  al. 2016). For example, Arthrobacter koreensis associated with the halophyte 
shrub Prosopis strombulifera produced ABA, IAA, GA3, and jasmonic acid (Piccoli 
et  al. 2011). Pseudomonas spp. and Ochrobactrum spp. strains produced IAA 
(Mishra et al. 2017). The symbiotic rhizobia that increased plant growth and devel-
opment under stress have been found to produce auxins, cytokinins, and abscisic 
acids (Hayat et al. 2008). Moreover, the bacterial strains which colonize the plant 
root system were able to control cotton root disease. As reported earlier, salinated 
soils induce plant vulnerability to pathogens. However, the potential rhizosphere- 
colonizing bacteria Pseudomonas spp., Pseudomonas putida, P. chlororaphis, 
Pseudomonas mendocina, and Pantoea agglomerans isolated from cotton grown in 
salinated soil of Syrdarya province showed biocontrol potential. They were able to 
control root rot of cotton caused by F. oxysporum and reduced disease incidence by 
19%, whereas control plants infested with F. oxysporum showed up to 50% disease 
incidence (Jabborova and Egamberdieva 2012). The bacterial inoculants 
Pseudomonas alcaligenes PsA15, P. chlororaphis TSAU13, and P. extremorientalis 
TSAU20 reduced significantly (P < 0.05) disease (up to 20%) over the R. solani- 
infected plants grown in saline soil. In general, mechanisms by which bacteria can 
promote plant growth and protect plants from phytopathogens include mobilization 
of nutrients (Lugtenberg and Kamilova 2009); production of phytohormones such 
as indole acetic acid (IAA), gibberellins (Cho et al. 2015), and hydrogen cyanide 
(HCN) (Compant et  al. 2005); and synthesis of the enzymes such as 1-amino 
cyclopropane- 1-carboxylate (ACC) deaminase (Glick et al. 2007).

11.4  Conclusion

In conclusion, salinity and drought negatively affect bacterial diversity. However, 
several microorganisms were able to survive under high salt concentrations and 
could contribute to recover fertility under  hostile soil conditions. Soil microbes 
including free-living or rhizosphere-associated as well as endophytes adapted to salt 
and drought stress are diverse and positively affect soil biological activity and plant 
physiological processes under extreme environmental conditions. They play an 
essential role in nutrient cycles and nutrient acquisition, through their ability to fix 
atmospheric nitrogen, solubilize phosphate, or enhance decomposition of plant resi-
dues and furthermore improve plant stress tolerance. These stress-tolerant microbes 
have a great biotechnological potential to improve soil productivity and plant health 
of saline soils under arid conditions.

11 Soil Salinity and Microbes: Diversity, Ecology, and Biotechnological Potential
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Abstract
Microbes belonging to the phylum Actinobacteria are prolific sources of antibi-
otics, bioactive compounds, and industrially relevant enzymes. There are tre-
mendous diversity and novelty of Actinobacteria; the applications of halophilic 
Actinobacteria toward the industrially and medically important metabolites and 
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enzymes are gaining increasing attention by the scientific community. A large 
number of novel compounds and enzymes from halophilic actinomycetes have 
been isolated and characterized from various geographic regions around the 
world. In this chapter, we focus on the occurrence, characterization, and the 
specific metabolites concerning different industrial applications of the relevant 
biomolecules/bioactive compounds for agriculturally, pharmaceutically, and 
biotechnologically application are discussed. Halophilic actinomycetes may 
also serve as useful models for the production of essential metabolites and 
enzymes with respect to stress response.

Keywords
Halophilic actinomycetes · Occurrence · Metabolites · Enzymes · Applications

12.1  Introduction

Microbial biota is powerful; it can be found everywhere over a wide range of 
extreme conditions chemically or physically (salinity, temperature, pH, pressure, 
and nutrient conditions). Therefore, researchers have been interested in the mesmer-
izing organisms identified as extremophiles due to their ability to live in extreme 
environments. For each extreme environmental condition studied, there are a variety 
of organisms determined that not only can grow in these extreme conditions but that 
also often require those conditions for existence. Hypersaline environments are 
those which contain salt concentration in excess approximately 3.5% total dissolved 
salts, and they expressed typical examples of extreme microbial life, they are widely 
handing out on our planet due to their high salinity, and they are mainly shown by 
saline lakes and saline soils (Oren 2002; Ventosa 2006).

Halophilic microorganisms are the organism that survives in saturated salt envi-
ronments; they are salt-loving organisms due to their capacity adapting themselves 
to balance the osmotic pressure of the environment (Enache and Kamekura 2010; 
Caton et al. 2009; Elshahed et al. 2004). Over the last decades, scientists have been 
intrigued to spend more efforts to characterize microorganisms from hypersaline 
environments due to the number of species exponentially growing included on dif-
ferent phylogenetic branches. Therefore, the world of the halophilic microorgan-
isms is divided into two main physiological groups of halophiles in hypersaline area 
that defines various categories of halophilic microorganisms based on the salt con-
centration wherein they show optimal growth: extreme halophiles, which can grow 
optimally in media with 15–30% (2.5–5.2 M) NaCl, and moderate halophiles, 
which is growing optimally in media with 3–15% (0.5–2.5 M) NaCl (Kushner and 
Kamekura 1988).

Among the halophilic microorganisms, it is well known that Actinobacteria mem-
bers were raised to the taxonomic rank of a phylum which is one of the primitive lin-
eages in the prokaryotes (Ventura et al. 2007; Koch 2003); they are supposed to have 
derivative since 2.7 billion years ago (Battistuzzi and Hedges 2009). Actinobacteria 
are heterogeneous Gram-positive or Gram-variable, aerobic or anaerobic, motile or 
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nonmotile, and spore or non-spore-forming microorganisms with a high G+C content 
>55 mol% (Garrity and Holt 2001; Ludwig and Klenk 2001; Baranasic et al. 2013).

Thus, Actinobacteria are an ecologically friendly group and considered as valu-
able resources for the development of novel biotechnological cycles and industrial 
applications. They are play a vital role in several biological processes such as phar-
maceutically important bioactive compounds (antibiotics, anti-inflammatory com-
pounds, antitumor agents, and enzyme inhibitors) and industrially such as proteases 
and amylases, biosurfactant production, biopolymers in oil recovery, poly-beta 
hydroxyalkanoate as biodegradable plastic, exopolysaccharide , plant growth pro-
motion and bioremediation of contaminated hypersaline brines etc (Kanekar et al. 
2012; Chen et al. 2015; Palaniyandi et al. 2013). On the other hand, Actinobacteria 
isolated from the extreme biosphere will be a rich source of novel natural products 
(Bull 2011; Berdy 2005; Olano et al. 2009). This chapter explores the halophilic 
Actinobacteria from different aspects. The focus will be on the exploitation of halo-
philic bacteria and its environmental importance, biotechnological applications, and 
biological survivability under salt stress conditions.

12.2  Where and How We Can Identify and Characterize 
Halophilic Actinobacteria

12.2.1  What Is Actinobacteria

Actinomycetes are the most valuable microorganisms for the production and synthesis 
of economically important therapeutic compounds and antibiotics. Actinomycete order 
is a group of unicellular organisms with fungal morphology such as special spores or 
conidia, which are considered as higher and filamentous bacteria. Gram-positive bac-
teria fall into two major phylogenetic divisions, “low GC” and “high GC.” Gram-
positive bacteria that belong to phylum Actinobacteria are divided into 6 classes, 
namely, Actinobacteria, Acidimicrobiia, Coriobacteriia, Nitriliruptoria, Rubrobacteria, 
and Thermoleophilia; 16 orders which are Actinomycetales, Actinopolysporales, 
Bifidobacteriales, Catenulisporales, Corynebacteriales, Frankiales, Glycomycetales, 
Jiangellales, Kineosporiales, Micrococcales, Micromonosporales, Propionibacteriales, 
Pseudonocardiales, Streptomycetales, Streptosporangiales, and Incertae sedis; sub-
class, Actinobacteridae; and order, Actinomycetales; they belong to 10 suborders, 30 
families, and over 160 genera (Goodfellow et al. 2012). It has a high guanine-plus-
cytosine (G+C) ratio of the DNA (>55mol%) (Baranasic et al. 2013).

12.2.2  Distribution of Actinobacteria in Nature

Actinomycetes adapted to high salt concentrations are found in quite a significant 
number of most ecological systems salt-loving microorganisms live in saline soils, 
lake sediments, aquatic habitat, salt lakes, brines, marine environment, alkaline 
habitats, plants and hypersaline regions are the main sources for novel halophilic 
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actinomycetes due to their salt tolerance (Jones and Grant 1999; Duckworth et al. 
1998; Sprusansky et al. 2005; George et al. 2012; Raja et al. 2010; Diraviyam et al. 
2011). In fact, they were able to tolerate for extensive periods of time under high salt 
environment. Two hundred seventeen marine actinomycetes from sea surface micro-
layer were isolated by Hakvåg et al. (2008). Moreover, Ghanem et al. (2000) and 
Salah et al. (2014) isolated halophytic actinomycetes from the marine sediments. In 
another study, 274 strains of actinomycetes were isolated by Tian et al. (2004), and 
1755 actinomycete strains were isolated by Petrolini et al. (1995) from the plant’s 
tissue. Al-Zarban et  al. (2002b) isolated halophilic actinomycetes with optimum 
growth at 10% NaCl from marsh soil.

To explore halophilic microorgnisms world, many studies of microbial life at high 
salt concentrations reported from saltern ponds worldwide, Great Salt Lake, the 
Dead Sea (Al-Zarban et al. 2002b), saline lakes in Inner Mongolia (Pagaling et al. 
2009), African soda lakes, deep-sea brines (Van der Wielen et al. 2005), Xinjiang salt 
lakes; Chinese salt mines; salterns in Goa India, Turkey, Spain, and Israel; South 
Siberian hypersaline lakes, thane Papke (Storrs, CT) in Spain and Algeria, hypersa-
line lake in Argentina and many others.

12.3  How We Can Make Morphological Observation 
of Actinomycetes

The preliminary differentiation could be done by morphological observation of the 
growth of actinomycetes referring to sporophore morphology when cultures became 
matured with spore mass, substrate mycelium and Pigments are convenient bio-
markers types of halophiles. It is considered a stable and clearly defined feature for 
actinomycete classification (Williams et  al. 1993). Therefore, based on different 
spore chain morphologies, it can be divided into seven main groups: rectus flexibilis 
(RF), retinaculum-apertum (RA), spira (S), monoverticillus (MV), monoverticillus-
spira (MV-S), biverticillus (BIV), and biverticillus-spira (BIV-S) (Pridham and 
Lyons Jr 1961), whereas the spores could be divided into distinct ornamentation – 
smooth, spiny, rugose, knobby, hairy, warty, tuberculate, or verrucose (Vobis et al. 
1997). In addition, every group was further classified into six “series” according to 
the color of spore mass: gray (light gray to mouse gray to brown gray to gray 
brown), white, olive buff (buff to tan to olive buff), yellow, blue (blue to blue green 
to green), and red (pink to red to lavender to lavender gray).

12.3.1  Identification of Actinobacteria

For actinomycete isolation, there are different cultivation methods such as integra-
tion of specific antibiotics, and chemicals were used in the composition of the culti-
vation medium to avoid the growth of fungi and bacteria (Amann et al. 1995). Some 
of the isolation media are not available commercially and must be prepared in the 
laboratory using colloidal chitin, soil extract, and plant extracts. In addition, humic 
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acid and special vitamin agar medium carried out specific substrates for the isolation 
of actinomycetes. Therefore, certain interest must be paid in the identification of the 
rare halophilic actinomycetes. The molecular technique protocols for the amplifica-
tion of specific genes such as 16S rRNA and rec A can be used in actinomycete 
classification and characterization; the phylogenetic relationship inference among 
microorganisms in order to characterize actinomycetes has been commonly accepted 
as a polyphasic taxonomic approach (Tian et al. 2007; Claridge and Campbell 2004).

The polymerase chain reaction (PCR)-based methods for the detection and iden-
tification of microbes are widely used (Tang and Persing 1999). The 16S rRNA gene 
sequence about 1550 base pairs (bp) long is composed of both variable and con-
served regions. In particular, actinomycetes classified based on 16S rRNA gene to 
many species were recovered and characterized from hypersaline regions since 
2000–2015 (Table 12.1).

Table 12.1 Halophilic and halotolerant actinomycetes isolated from hypersaline habitats since 
2002–2015

Name of actinomycete isolate Habitat
NaCl 
(%) References

Nocardiopsis halotolerans Salt soil, in desert area at 
Al-Khiran, southern Kuwait

0–15 Al-Zarban et al. 
(2002a)

Saccharomonospora 
halophila

Kuwait salt marsh soil 10 Al-Zarban et al. 
(2002a)

Saccharomonospora 
paurometabolica

Soil of Xinjiang Province, China 5–20 Li et al. (2003a)

Streptomonospora alba Soil of Xinjiang Province, China 5–25 Li et al. (2003c)
Prauserella halophila, 
Prauserella alba

Soil of Xinjiang Province, China 0–25 Li et al. (2003b)

Nesterenkonia halotolerans, 
Nesterenkonia xinjiangensis

Soil of Xinjiang Province, China 0–25 Li et al. (2004a)

Nocardiopsis salina Soil of Xinjiang Province, China 3–15 Li et al. (2004b)
Actinopolyspora sp. Soil of Kuwait – Abbas (2006)
Microbispora sp.
Amycolatopsis sp.
Kocuria aegyptia Desert soil, Egypt 1–5 Li et al. (2006c)
Nocardiopsis gilva Soil of Xinjiang Province, Western 

China
5–18 Li et al. (2006b)

N. rhodophaea
N. rosea
N. chromatogenes
N. baichengensis
Nocardiopsis valliformis Soil from alkaline lake near 

Buerjin (Xinjiang, China)
Yang et al. 
(2008)

Nesterenkonia halophila Soil of Xinjiang Province, China 10 Li et al. (2008)
Streptomonospora halophila Soil from Xinjiang Province, 

China
10 Cai et al. (2008)

Amycolatopsis marina Sediment sample, South China Sea 0.5–
12

Bian et al. 
(2009)

(continued)
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Table 12.1 (continued)

Name of actinomycete isolate Habitat
NaCl 
(%) References

Marinactinospora 
thermotolerans

Sediment sample, the northern 
South China Sea

0–5 Tian et al. 
(2009)

Saccharomonospora 
saliphila

Muddy soil, Gulbarga, Karnataka 
Province, India

10 Syed et al. 
(2008)

Haloglycomyces albus Soil from Xinjiang Province, 
Western China

8–12 Guan et al. 
(2009)

Kocuria halotolerans Soil of Ganjiahu Suosuo Forest, 
Xinjiang, China

0–10 Tang et al. 
(2009a)

Spinactinospora 
alkalitolerans

Marine sediment, The Yellow Sea, 
China

3–8 Chang et al. 
(2011)

Streptomyces 
pharmamarensis

Marine sediment sample, 
Mediterranean Sea (Italy)

1–9 Carro et al. 
(2012)

Actinomadura sediminis Sediments of Dugong Creek, Little 
Andaman, India

0–7 He et al. (2012)

Glycomyces halotolerans Xinjiang Province, north-west 
China

4–5 Guan et al. 
(2011b)

Streptomyces oceani Deep-sea sediment, South China 
Sea

2.5–
12.5

Tian et al. 
(2012)

Gulosibacter chungangensis Marine sediment near Oh Island, 
Republic of Korea

0–5 Park et al. 
(2012)

Actinopolyspora lacussalsi Xinjiang Province, north-west 
China

12 Guan et al. 
(2013)

Actinopolyspora mzabensis Soil samples, Ghardaïa, southern 
Algeria

– Meklat et al. 
(2013)

Amycolatopsis 
cihanbeyliensis

Cihanbeyli Salt Mine, the Central 
Anatolia Region of Turkey

0–10 Tatar et al. 
(2013)

Glycomyces fuscus, 
Glycomyces albus

Xinjiang Province, North-west 
China

Han et al. (2014)

Amycolatopsis flava sp. Sediment sample collected from 
the Dead Sea

1–30 Wei et al. (2015)

Prauserella isguenensis sp. Soil samples from the arid region 
of Ahbas at Béni-Isguen (Mzab), 
located in the Algerian Sahara

– Saker et al. 
(2015)

Streptimonospora salina sp. Soil sample of the salt lake in 
Western China

– Cui et al. (2001)

Streptomyces sodiphilus sp. Mud sample of Chaka Salt Lake, 
Qinghai, China

– Li et al. (2005)

Haloactinospora alba Salt lake in Xinjiang Province, 
north-west China

– Tang et al. 
(2008)

Saccharopolyspora lacisalsi Soil of Lop Nur Salt Lake in 
Xinjiang, China

10 Guan et al. 
(2011a)

Saccharopolyspora
qijiaojingensis

Salt lake in Xinjiang Province, 
north-west China

6–22 Tang et al. 
(2009b)

Actinomycete 
Haloactinobacterium album

Salt lake in Xinjiang Province, 
north-west China

1–15 Tang et al. 
(2010c)

(continued)
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12.4  Industrially Important Enzyme Production by Halophilic 
Actinomycetes

12.4.1  Amylase Enzyme

The enzymatic hydrolysis α-amylases (E.C. 3.2.1.1, 1, 4-α-D-glucan glucanohydro-
lase) are one of the most vital industrial enzymes with a broad range of applications 
due to numerous advantages such as specificity of the reaction and stability of the final 
products (Kikani et al. 2010). At the moment, due to the growing demand for these 
enzymes in various industries, production of commercial amylase enzymes has been 
explored extensively, and these enzymes became about 30 % of the world’s enzyme 
production (Elleuche et al. 2014; Raddadi et al. 2015; Chandrasekaran 1997).

α-Amylase enzymes stimulate the hydrolysis of internal a-1,4-O-glycosidic bonds 
in polysaccharides with the retention of a α-anomeric configuration in the products 
and are used broadly in numerous fields of biotechnology as well as pharmaceutical 
industry due to their cost-effective production techniques (Kadziola et  al. 1998; 
Tonkova 2006; Machius et al. 1995; Pandey and Singh 2012). The α-amylase family 
can be basically divided into two main groups: the starch-hydrolyzing enzymes and 
the starch-transglycosylating enzymes.

Novel halophilic α-amylases have taken more interest due to their capability to 
remain stable in the presence of high salt concentrations, thermal, alkaline and 
organic solvent so as to be used in laundry detergent, food, fermentation (fuel alco-
hol production), textile, paper, and other industrial processes that require presence 
of high salt concentrations (Raja et al. 2010; Karan et al. 2012; Dalmaso et al. 2015; 
Chakraborty et al. 2012; Ratnakar 2013).

Name of actinomycete isolate Habitat
NaCl 
(%) References

Amycolatopsis halophila Salt lake in Xinjiang Province, 
north-west China

– Tang et al. 
(2010a)

Georgenia halophila Salt lake in Xinjiang Province, 
north-west China

– Tang et al. 
(2010b)

Myceligenerans halotolerans 
sp.

Salt lake in Xinjiang Province, 
north-west China

– Wang et al. 
(2011)

Nocardioides aquaticus sp., 
Friedmanniella lacustris sp.

Waters samples of the hypersaline 
Ekho Lake located at Vestfold 
Hills, East Antarctica

– Lawson et al. 
(2000)

Nesterenkonia 
lacusekhoensis

Hypersaline Ekho Lake (Vestfold 
Hills, East Antarctica)

– Collins et al. 
(2002)

Actinopolyspora egyptensis sp. Salty Lake Qaroun, Egypt – Hozzein and 
Goodfellow 
(2011)

Salinisphaera halophila The brine of a salt well in Yunnan 
Province, China

14–19 Zhang et al. 
(2012a)

Table 12.1 (continued)
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Peptone and maltose were noted as best nitrogen and carbon sources for maxi-
mum yield of amylase production. To prove the presence of amylolytic activity of 
bacteria could be screened by culturing them on starch agar medium. After incuba-
tion time, iodine solution added to the plates and the halo zone of clearance around 
the bacterial colony is a sign of starch hydrolysis (Sanchez-Porro et al. 2003; Cojoc 
et  al. 2009; Rohban et  al. 2009; Kumar and Khare 2012; Kumar et  al. 2012b; 
Jayachandra et al. 2012; Neagu et al. 2014a). Many moderately and extremely halo-
philic actinomycetes isolated from different hyperfine environmental have been 
reported to produce strong amylolytic activity since to 2000–2013 (Table 12.2).

Table 12.2 Halophilic actinomycetes isolated from different hyperfine environments have been 
reported to produce strong amylolytic activity since 2002–2013

Name of actinomycete isolate Habitat References
Actinopolymorpha alba sp. Hami Salt Lake, Xinjiang, 

China
Cao et al. (2009b)

Micromonospora sp. Pudimadaka coast of Bay of 
Bengal, India

Haritha et al. (2010)
Streptomyces sp.
Actinomycete sp. Sediment samples of 

Machilipatnam
Ellaiah et al. (2002)

Actinomycete sp. Kakinada coast, near Bay of 
Bengal, India

Ellaiah et al. (2004)

Actinomycete sp. Tamil Nadu coast of the Bay 
of Bengal, India

Ramesh et al. (2006)

Streptomyces alboniger Kodiyakarai coastal sediments, 
Bay of Bengal, India

Manivasagan et al. (2010)

Saccharopolyspora sp. Sediment samples of west 
coast of India

Chakraborty et al. 
(2011)

Saccharopolyspora, Streptomyces, 
Actinopolyspora, Streptoverticillium, 
Microtetraspora, Actinokineospora, 
Nocardiopsis, Dactylosporangium

- Meena et al. (2013)

Actinomycete sp. Hypersaline soils in 
man-made solar salterns of 
Nellore district, India

Shameer and Babu 
(2013)

Halomonas meridiana – Coronado et al. (2000)
Halothermothrix orenii – Tan et al. (2008)
Streptomyces sp. – Chakraborty et al. (2009)
Chromohalobacter sp. – Prakash et al. (2009)
Streptomyces erumpens Brick kiln soil nearby 

Bhubaneswar, India
Kar and Ray (2008)

Micrococcus sp. Deep-sea sediments of the 
Southern Okinawa, China

Dang et al. (2009)

Nesterenkonia sp. – Dang et al. (2009)
Streptomyces aureofaciens Shrimp pond, opposite to 

Vellar estuary
Poornima et al. (2008)

(continued)
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12.4.2  Cellulose Enzyme

Cellulolytic enzymes (cellulases) are a group of glycosyl hydrolases classified 
into different families depending on their sequence homologies. Cellulase 
enzyme controls the enzymatic hydrolysis process which comprises three classes 
of soluble extracellular enzymes 1,4-β-endoglucanase ((E.C.3.2.1.4) (C x )), 
1,4-β-exoglucanase (E.C.3.2.1.91), and β-D-glucoside glucohydrolase or cello-
biase (E.C.3.2.1.21) (Aygan and Arıkan 2008; Wang et al. 2009; Karnchanatat 
et al. 2008; Bhat 2000; Yan and Wu 2013).

Cellulose enzymes are used for many purposes and known as industrially signifi-
cant enzymes such as in the manufacturing of paper, textile fabric, agriculture, food 
additives, laundry industries, and chemical industries (Zhang et al. 2012b; Shokri 
and Adibkia 2013; Větrovský et al. 2014; Dorez et al. 2014). These enzymes are 
essential in hydrolyzing crystalline cellulose because of their processivity. In addi-
tion, hemicelluloses have a broad range of applications due to the biodegradability 
and nontoxicity which enable them to be used as dietary fiber (Dhingra et al. 2012; 
Dorez et al. 2014) and as a good coating over food stuff for their stabilization.

The capacity to degrade cellulose is found in many fungi, bacteria, and actino-
mycetes. Halophilic and halotolerant cellulases derived from Actinobacteria have 
been characterized and were reported in Table  12.3. Carboxymethyl cellulose 
(CMC) solid medium with 0.1% Congo red solution was used to screening the 
cellulose-producing bacteria. The clear halo zone around the colony is a sign of 
cellulolytic activity (Aunpad and Panbangred 2003; Rohban et al. 2009; Chen and 
Liu 2013).

Table 12.2 (continued)

Name of actinomycete isolate Habitat References
Nocardiopsis sp. Deep-sea sediment of Prydz 

Bay, Antarctic
Zhang and Zeng (2008)

Streptomyces sp. Sediments of Goa, Alibag Chakraborty et al. (2009)
Saccharopolyspora sp. Sediments, West Coast, India Chakraborty et al. 

(2011)
Streptomyces sp. Mushroom compost Singh et al. (2012)
Streptomyces sp. Sediments, West Coast of India Chakraborty et al. (2012)
Streptomyces sp. Coral reef sediments, Manoli 

Island in the Gulf of Mannar 
Biosphere Reserve, India

Sivakumar et al. (2012)

Streptomyces sp. Antarctic vegetation samples 
from Progress Lake (East 
Antarctica)

Cotârleţ (2013)

Streptomyces rochei Marine sediments, southeast 
coast of the Bay of Bengal, 
India

Acharyabhatta et al. 
(2013)

Streptomyces gulbargensis – Syed et al. (2009)
Nocardiopsis sp. – Liu et al. (2011)
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12.4.3  Lipase Enzyme

Lipase enzymes are part of the family of hydrolases enzymes that act on the carbox-
ylic ester bonds of triglycerides to diglycerides, monoglycerides, fatty acids, and glyc-
erol; the reverse reaction in nonaqueous systems (Teo et al. 2003). Lipases are widely 
distributed throughout the microorganism. (1). Bacterial lipolytic enzymes are effec-
tive biocatalysts due to their broad substrate specificity and high chemo-, regio-, and 
stereoselectivity (de Lourdes Moreno et al. 2013; Houde et al. 2004; Jaeger and Eggert 
2002; Park et al. 2009; Rodriguez et al. 2008; Snellman and Colwell 2004).

Thus, these enzymes are at present used in various fields of production of drugs 
in pharmaceutical, in the leather industries for the removal of subcutaneous fat, in 
the paper industry for the removal of impurities from raw cotton, and in dairy indus-
try for the hydrolysis of milk fat and as detergent additives (Gomes and Steiner 
2004; Sharma and Kanwar 2012; Hasan et  al. 2006; Jaeger and Holliger 2010; 
Schmid et al. 2001; Schreck and Grunden 2014). However, industrial applications 
of lipases are not stable during the processes and loss of activity in the presence of 
the organic solvents. In this sense, the lipases enzyme isolated from extreme micro-
organisms represent an excellent alternative to the industrial processes (Pikuta et al. 
2007). Therefore, isolation of salt-stable lipases from halophilic microorganism has 
been a growing attention these days (de Guzmán 2015). The availability of such 
enzymes would facilitate industrial processes, which need stability at high salt con-
centration and low water activity (Table 12.4).

12.4.4  Protease Enzyme

Proteases represent one of the most influential groups of enzymes and currently 
became the majority of worldwide enzyme sales due to the various applications in 
industry and biotechnological fields (Gohel and Singh 2012). Halophilic proteases 
have been commonly used in industry due to the stability and properties especially in 
laundry, detergents, and baking; brewing, cheese industry, leather industry, manufac-
turing of soy products, and tanning industry are the most common application of 
these enzymes (Li and Li 2009; Perez et al. 2012; Chand and Mishra 2003). In recent 
times, proteases enzymes in pharmaceutical industry and bioremediation process 
have attracted more attention. There has been considerable research on the halophilic 

Table 12.3 Halophilic actinomycetes isolated from different hyperfine environments have been 
reported to produce cellulases enzyme

No Name of actinomycete isolate Habitat References
1 Streptomyces sp. BRC1 and 

Streptomyces sp. BRC2
Garden soil, Gujarat 
Vidyapith, Sadra, India

Chellapandi and Jani 
(2008)

2 Streptomyces sp. NIOT-VKKMA02 Bay of Bengal Meena et al. (2013)
3 Streptomyces sp. NIOT-VKKMA26
4 Saccharopolyspora sp. 

NIOT-VKKMA22
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proteases; many reports have been published on screening, production, and purifica-
tion of proteases from microorganisms (Neagu et al. 2014b) (Sivaprakasam et al. 
2011). Extracellular hydrolytic enzymes of bacteria could be screened by culturing 
them on a solid culture medium containing skim milk. After the suitable incubation 
time, clear halo zone around the colony is taken as evidence of proteolytic activity 
(Rohban et al. 2009). Recentily, there are a number of studies have been conducted 
to halophilic actinomycetes for the production of protease enzymes 2003–2014 
(Table 12.5).

12.5  Role of Halophilic Actinomycetes as Potential Producer 
of Bioactive Compounds

12.5.1  Antibacterial

The antibacterial is an agent with various mechanisms that kill the bacteria or reduce 
the growth. Hence, they have drawn significant attention due to the urgent need to 
find novel antibacterial owing to the increase of bacterial resistance. The potential 

Table 12.4 Halophilic actinomycetes isolated from different hyperfine environments have been 
reported to produce lipase enzyme

No Name of actinomycete isolate Habitat References
1 Natronococcus sp. strain TC6 – Boutaiba et al. (2006)
2 Streptomyces sp. NIOT-VKKMA02 Bay of Bengal Meena et al. (2013)
3 Streptomyces sp. NIOT-VKKMA26
4 Saccharopolyspora sp. NIOT-VKKMA22

Table 12.5 Halophilic actinomycetes producing protease enzymes since 2003–2014

No Name of actinomycete isolate References
1 Pseudoalteromonas ruthenica Sanchez-Porro et al. (2003)
2 Actinomycete sp. MA1-1 Hayakawa et al. (2007a)
3 Streptomyces sp. LK3 Karthik et al. (2014)
4 Pseudoalteromonas ruthenica sp. Chand and Mishra (2003)
5 Chromohalobacter sp. TVSP101 Vidyasagar et al. (2007)
6 Nesterenkonia sp. Bakhtiar et al. (2005)
7 Streptomyces clavuligerus Mit-1 Thumar and Singh (2007)
8 Nocardiopsis prasina HA-4 Ningthoujam et al. (2009)
9 Nocardiopsis alba OK-5 Gohel and Singh (2012)
10 Actinopolyspora sp. VITSDK2 Suthindhiran et al. (2014)
11 Actinopolyspora sp. VITSDK2 Suthindhiran et al. (2014)
12 Brachystreptospora xinjiangensis OM-6 Gohel and Singh (2012)
13 Streptomyces fungicidicus MML1614 Ramesh et al. (2009)
14 Nocardiopsis sp. SD5 Saha et al. (2013)
15 Streptomyces sp. CW1 Kurzbaum et al. (2010)
16 Micromonospora sp. Malviya et al. (2014)
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for antimicrobial resistance is one of the important considerations for physicians. 
Therefore, the discovery of novel antibiotics which have a powerful effect against 
resistant pathogenic bacteria is a major aspect of antibiotics research today. There 
are several studies focused on the isolation of new actinomycetes from different 
habitats in the context of the search for new sources (Sujatha et al. 2005). In general, 
the antibacterial activity of halophilic actinomycetes from marine environments is 
widely studied. On the other hand, the utilization of halophilic Actinobacteria as a 
source for the discovery of unique antibiotics is still at an early stage (DasSarma 
et al. 2010) (Table 12.6).

There are many examples of potential sources of secondary metabolites that 
can be used as a novel antibacterial compound isolated from halophilic actinomy-
cete with potential use in the development of new pharmaceutical agents such as 
arenimycin and abyssomicin (Asolkar et al. 2010; Riedlinger et al. 2004). These 
compounds were classified as a new antibiotic based on the novel structure and 
the mode of action of this new compound and based on the inhibition of para-
aminobenzoic acid biosynthesis resulting in the prohibition of the folic acid bio-
synthesis pathway (Abedin and Taha 2008; El Gamal 2010). There are many 
examples of halophilic actinomycetes that showed antibacterial activity since 
2003–2014 (Table 12.6).

Table 12.6 Halophilic actinomycetes isolated from different hyperfine environments have been 
reported to produce unique antibiotics

Actinomycete isolate Habitat Pathogenic bacteria Reference
Streptomyces 
viridiviolaceus

Lake Bardawil, 
Egypt

C. michiganese, 
Staphylococcus spp. E. 
coli, Edwardsiella tarda, 
and P. solanacearum

Rabeh et al. 
(2007)

Actinomycete sp. Salt Lake Hami in 
Xinjiang, China

Bacillus subtilis Cao et al. 
(2009a)

Actinomycete sp. Salt lakes of Bay of 
Bengal, India

P. aeruginosa, B. subtilis, 
S. epidermidis, E. coli, 
and C. albicans

Ramesh and 
Mathivanan 
(2009)

Actinomycete sp. Batim and 
Ribandar, Goa, 
India

Kamat and 
Kerkar (2011)

Saccharopolyspora Salt pans, 
Arakkonam, Tamil 
Nadu, India

K. pneumoniae, S. aureus, 
B. subtilis, and E. coli

Suthindhiran 
and 
Kannabiran 
(2009a)

Streptomyces sp. Ennore saltern, 
Tamil Nadu

P. aeruginosa, E. coli, A. 
flavus, and A. fumigatus

Lakshmipathy 
et al. (2010)

Streptoverticillium album Kodiakarai, 
Vedaranyam, 
Nagapattinam, 
Tamil Nadu

K. pneumoniae, S. aureus, 
and E. coli

Gayathri et al. 
(2011)

(continued)
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Table 12.6 (continued)

Actinomycete isolate Habitat Pathogenic bacteria Reference
Streptomyces Soil from salt pan 

regions of 
Cuddalore and 
Parangipettai 
(Porto-Novo)

E. coli, K. pneumoniae, P. 
aeruginosa, S. aureus, 
Vibrio cholerae, S. typhi, 
and S. dysenteriae

Dhanasekaran 
et al. (2005)Saccharomonospora

Streptomyces sp. 
VITSVK9

Marakkanam and 
Puducherry coast 
of the Bay of 
Bengal, India

B. subtilis, E. coli, K. 
pneumoniae, A. niger, A. 
fumigatus, and C. albicans

Saurav and 
Kannabiran 
(2010)

Nocardiopsis JAJ16 Salt pan soil B. subtilis, S. aureus, S. 
typhi, K. pneumoniae, 
Enterobacter sp., and P. 
aeruginosa

Streptomyces strain 
(JAJ06)

Salt pan soil 
collected at 
Tuticorin, India

S. aureus, B. subtilis, 
MRSA, Enterobacter sp., 
K. pneumoniae, P. 
aeruginosa, S. typhi, C. 
albicans

Arul Jose et al. 
(2011)

Actinomyces Inland solar 
salterns at Sambhar 
Salt Lake

S. aureus, B. subtilis, S. 
typhi, K. pneumoniae, and 
P. vulgaris

Jose and 
Jebakumar 
(2014)

Streptomyces spp. 
BD21-2

Shallow water-
sediment sample 
collected from 
Kailua Beach, 
Oahu, Hawaii

Against Gram-positive 
and Gram-negative 
bacteria

Schumacher 
et al. (2003)

Streptomyces sp. B6921 Coastal site of 
Mauritius (Indian 
Ocean)

B. subtilis, S. aureus, E. 
coli, and S. 
viridochromogenes

Maskey et al. 
(2003a)

Micromonosporaceae Bismarck and 
Solomon Sea off 
the coast of Papua 
New Guinea

MDR Gram-positive 
bacteria

Magarvey et al. 
(2004)

Streptomyces B8005 Sediment of 
Laguna de 
Terminos at the 
Gulf of Mexico

E. coli, S. 
viridochromogenes, S. 
aureus, C. albicans, C. 
vulgaris, and Mucor 
miehei

Kock et al. 
(2005)

Streptomyces nodosus 
NPS007994

California, along 
the Pacific Coast of 
the United States

Drug-sensitive and 
drug-resistant Gram-
positive reaction bacteria

Manam et al. 
(2005)

Streptomyces Merv8102 Platinum Coast on 
the Mediterranean 
Sea, north of Egypt

Gram-positive and 
Gram-negative bacteria

El-Gendy et al. 
(2008)

Streptomyces sp. Seaside in Bigeum 
Island, southwest 
coast of South Korea

B. subtilis, S. aureus, E. 
coli, S. typhi, A. niger, C. 
albicans, and S. cerevisiae

Parthasarathi 
et al. (2010)

(continued)
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Table 12.6 (continued)

Actinomycete isolate Habitat Pathogenic bacteria Reference
Actinopolyspora AH1 Alibag coast, 

Maharashtra, India
B. subtilis, S. aureus, S. 
epidermidis

Kokare et al. 
(2004)

Streptomyces sp. Water samples of 
the Asen fjord in 
the Trondheim 
fjord and 
Steinvikholmen, 
Norway

Gram-negative and 
Gram-positive bacteria

Hakvåg et al. 
(2008)

Streptomyces Mangrove 
sediments in 
Zhangzhou, Fujian, 
China

E. coli, S. aureus, B. 
subtilis, C. albicans, and 
R. solani

Jiang et al. 
(2008)Saccharomonospora

Micromonospora
Actinomadura
Nocardiopsis
Streptoverticillium album Salt pans, 

Kodiakarai, 
Vedaranyam, 
Nagapattinam, 
Tamil Nadu, India

S. aureus, K. pneumoniae, 
and E. coli

Gayathri et al. 
(2011)

Nocardiopsis JAJ16 Salt pan soil Enterobacter sp., B. 
subtilis, P. aeruginosa, S. 
aureus, MRSA, K. 
pneumoniae, S. typhi, C. 
albicans

Jose et al. 
(2010)

Verrucosispora 
AB-18-032

Japanese Sea MDR bacteria and 
vancomycin-resistant S. 
aureus

Bister et al. 
(2004)

Streptomyces B4842 Laguna de 
Terminos, Gulf of 
Mexico

S. aureus, B. subtilis, E. 
coli, C. albicans

Kock et al. 
(2005)

Streptomyces chinaensis 
AUBN1/7

Bay of Bengal, 
India

S. aureus, B. subtilis, B. 
pumilus, E. coli, P. 
aeruginosa, P. vulgaris

Gorajana et al. 
(2007)

Streptomyces CNQ-418 
marinopyrroles

La Jolla, California MRSA Hughes et al. 
(2008)

Marinispora San Diego, South 
California

MRSA and vancomycin-
resistant E. faecium

McArthur et al. 
(2008)

Nocardiopsis sp. 
VITSVK 5

Puducherry coast, 
South India

E. coli, B. cereus, E. 
faecalis, K. pneumoniae, 
S. aureus, P. aeruginosa, 
Aspergillus species

Vimal et al. 
(2009)

Streptomyces Anyer West Coast, 
Java

S. aureus, B. subtilis, E. 
coli, P. aeruginosa, C. 
albicans

Sunaryanto 
et al. (2010)

Streptomyces, 
Micromonospora, 
Actinopolyspora, 
Saccharopolyspora

Puducherry coast, 
South India

K. pneumoniae, B. 
subtilis, S. aureus, E. coli

Suthindhiran 
and 
Kannabiran 
(2009b)

(continued)
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Table 12.6 (continued)

Actinomycete isolate Habitat Pathogenic bacteria Reference
Streptomyces, 
Rhodococcus

Pudimadaka coast, 
Andhra Pradesh, 
India

S. aureus, P. aeruginosa, 
B. subtilis, B. cereus, E. 
coli, P. vulgaris

Sivakumar 
et al. (2007)

Amycolatopsis alba Visakhapatnam 
coast, Bay of 
Bengal, India

A. formicans, B. subtilis, 
B. pumilus, S. aureus, E. 
coli

Dasari et al. 
(2012)

Streptomyces 
coeruleorubidus

Visakhapatnam 
coast, Bay of 
Bengal, India

B. subtilis, S. aureus, B. 
cereus, E. coli, P. vulgaris, 
and P. aeruginosa

Kumar et al. 
(2012a)

Streptomyces, 
Actinopolyspora, and 
Nocardia

Dhanushkodi, 
Rathnapuram 
district, India

P. aeruginosa, S. aureus, 
S. typhi, V. cholerae

Devi et al. 
(2006)

Streptomyces rochei Visakhapatnam 
coast, Bay of 
Bengal, India

S. aureus, M. luteus, E. 
coli, A. hydrophylla, P. 
aeruginosa, P. fluorescens, 
V. alginolyticus, C. 
albicans, C. tropicana

Reddy et al. 
(2011)

Streptomyces GA 22 Konkan Coast, 
Maharashtra, India

S. aureus, P. vulgaris, B. 
subtilis, and E. coli

Gulve and 
Deshmukh 
(2012)

Streptomyces alboniger Vellar estuary, 
South India

S. flexineri, B. subtilis, P. 
vulgaris, K. pneumoniae, 
V. cholerae, and S. aureus

(Sahu et al. 
(2006))S. vastus

S. moderatus
S. violaceus
S. aureofaciens

Sundarbans, India S. aureus, A. 
protophormiae, B. subtilis, 
L. lactis, B. pumilus, K. 
pneumoniae, M. 
smegmatis, M. luteus, P. 
aeruginosa, S. 
marcescens, P. mirabilis, 
and E. coli

Mitra et al. 
(2008)

Streptomyces sp. RM42, 
Streptomyces sp. RM17

Calicut mangrove, 
Kerala, India

C. albicans, S. aureus, E. 
coli, S. typhi, and C. 
neoformans

Remya and 
Vijayakumar 
(2008)

Streptomyces DPTD-5 Vellar estuary, 
South India

C. tropicalis, S. aureus, E. 
coli, C. albicans, S. 
cerevisiae, Pseudomonas 
sp., and Bacillus sp.

Dhanasekaran 
et al. (2009)

Actinomyces Karanjal region, 
Sundarbans, India

Plesiomonas, Hafnia spp., 
S. boydii, S. flexneri, S. 
sonnei, S. dysenteriae, V. 
cholerae, S. typhi, E. coli

Arifuzzaman 
et al. (2010)Nocardia

Streptomyces
Micromonospora

(continued)
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12.5.2  Antifungal

There are several fungicides used to control plant disease in agriculture, but the 
number of antifungal agents available in the market for controlling the fungal dis-
ease is still insufficient in comparison to antibacterial agents (Ambavane et  al. 
2014). A high demand of these chemical fungicide agents has generated a lot of 
environmental and health issues due to their toxicity; therefore, recently, the health-
conscious society all over the world has made significant steps for farmers toward 
sustainable agriculture to detoxify the land by switching over to organic farming 
dispensing chemical fertilizers, pesticides, fungicides, and herbicides (Ambavane 
et  al. 2014; Chavada et  al. 2010). Therefore, the introduction of the microbial 
agents to control the plant diseases by eco-friendly fungicides referred as “biologi-
cal control” is required. Thus, many types of research are conducted to the isola-
tion of novel antifungals that are potentially effective against pathogenic fungi 
(Manivasagan et al. 2014).

Halophilic actinomycetes are a useful biological resource for the discovery of 
novel antifungal compound against pathogenic fungi to restrain the real risk to 
the future of mankind and environment. Nowadays, few studies recorded the 
isolation and characterization of antifungal agents from halophilic actinomycetes 

Table 12.6 (continued)

Actinomycete isolate Habitat Pathogenic bacteria Reference
Actinomycetes PJS and 
BJS

Manakudi 
mangrove estuary, 
Arabian Sea, India

MRSA, Enterobacter sp., 
S. typhi, B. subtilis, K. 
pneumoniae, P. vulgaris, 
and P. aeruginosa

Jose et al. 
(2010)

S. neyagawaensis, S. 
spheroides, A. 
aureocirculatus, S. 
albulus, S. antibioticus, 
S. mirabilis, S. umbrosus

Muthupet 
mangrove 
ecosystem, 
Southeast India

Pseudomonas sp., E. coli, 
Klebsiella sp., and 
Bacillus sp.

Sathiyaseelan 
and Stella 
(2011)

Streptomyces sp. A107 Andaman and 
Nicobar Islands, 
India

S. typhi, S. aureus, K. 
pneumoniae, and B. subtilis

Baskaran et al. 
(2011)

Streptomyces sp. Visakhapatnam, 
India

E. coli, S. aureus, Bacillus 
subtilis, B. cereus, P. 
aeruginosa, P. vulgaris, S. 
cerevisiae, C. albicans

Rao et al. 
(2012)

Pseudonocardia VUK-10 Nizampatnam, 
Andhra Pradesh, 
India

S. aureus, Streptococcus 
mutans, B. subtilis, E. 
coli, E. faecalis, P. 
aeruginosa, C. albicans

Mangamuri 
et al. (2012)

Streptomyces, Nocardia Sharavathi estuary, 
Honnavar, 
Karnataka, India

B. subtilis, S. aureus, S. 
typhi, E. coli, P. vulgaris, 
and P. aeruginosa

Shobha and 
Vinutha (2014)
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Table 12.7 A number of halophilic actinomycetes showed antifungal activity since 2004–2016

Name of actinomycete isolate Habitat Pathogenic fungi Reference
Streptomyces species Ennore saltern, Tamil 

Nadu, India
A. flavus and A. 
fumigatus

Gao et al. 
(2012)

Streptomyces spp. VITSVK9 Salt pans, Marakkanam 
and Puducherry coast 
Bay of Bengal, India

A. niger, A. 
fumigatus, and C. 
albicans

Saurav et al. 
(2013)

Nocardiopsis species JAJ16 Salt pan soil A. flavus and F. 
oxysporum

Jose et al., 
(2010)

Actinopolyspora species 
AH1

Alibag coast, 
Maharashtra, India

A. niger, A. 
fumigatus, A. flavus, 
Trichoderma, and 
Penicillium species

Kokare et al. 
(2004)

Micromonosporaceae Bismarck and the 
Solomon Sea, New 
Guinea

C. neoformans and C. 
albicans

Magarvey 
et al. (2004)

Streptomyces B8005 Laguna de Terminos, 
Gulf of Mexico

C. albicans, C. 
vulgaris, and Mucor 
miehei

Kock et al. 
(2005)

Streptomyces B4842 Laguna de Terminos, 
Gulf of Mexico

C. albicans

Streptomyces, 
Micromonospora, Nocardia, 
Streptoverticillium, 
Saccharopolyspora

Andaman Coast, Bay 
of Bengal India

C. albicans Peela et al. 
(2005)

Streptomyces sp. BT-624 Andaman Coast, Bay 
of Bengal India

C. albicans

Nocardiopsis sp. VITSVK Puducherry coast, 
South India

Aspergillus species Vimal et al. 
(2009)

Streptomyces Anyer, West Coast, 
Java

C. albicans and A. 
niger

Sunaryanto 
et al. (2010)

Streptomyces hygroscopicus 
BDUS 49

Bigeum Island, Korea A. niger, C. albicans, 
and Saccharomyces 
cerevisiae

Parthasarathi 
et al. (2012)

Streptomyces, 
Actinopolyspora, Nocardia

Dhanushkodi, 
Rathnapuram district, 
India

Aspergillus sp. Devi et al. 
(2006)

Streptomyces Asen fjord and 
Steinvikholmen islet, 
Norway

C. albicans Hakvåg et al. 
(2008)

(continued)

especially Streptomyces; they produce many viable antifungal compounds such 
as azalomycin F4a 2-ethylpentyl ester, bonactin, chandrananimycin, daryamides, 
and N-(2-hydroxyphenyl)-2-phenazinamine (NHP) (Subramani and Aalbersberg 
2012; Maskey et al. 2003b; Gao et al. 2012). There are many examples of halophilic 
actinomycetes that showed antifungal activity since 2004–2016 (Table 12.7).
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12.5.3  Antiviral and Antitherapeutic

Although diseases compose a significant threat to the life of humans, until now, 
more than 30,000 viral or bacterial diseases have been discovered, and less than 
30% of these diseases can be treated. New antiviral and therapeutic compound are 
urgently needed for pharmacological markets (Wright and Sutherland 2007). 
Natural products represent a major role in discovering new/novel medicine for the 
treatment of human diseases (Demain and Zhang 2005; Zhang 2005). Nevertheless, 
to date, antiviral and therapeutic compounds that have been isolated from natural 
products are still limited and few studies in this field in comparison to antibacterial 
and anti-fungi agents (Raveh et al. 2013).

In this regard, numerous investigations of bioactive compounds produced by 
microorganism especially halophilic actinomycetes from saline environments have 
been developed for controlling the human infections in the last few years (Lam 
2006). Therefore, the promising antiviral and therapeutic compounds available 
commercially in markets are over 40 compounds (Yasuhara-Bell and Lu 2010; 
Abdel-Mageed et al. 2010). Among them are a few examples of some novel second-
ary metabolites during the period from 2003 to 2013 (Table 12.8)

12.6  Conclusions and Future Perspectives

Studies on halophilic actinomycetes are very limited, and the actinomycetes have 
been mentioned incidentally, on the microbial community in harsh conditions such 
as high salt. Further, only a little information is available on the halophilic actinomy-
cetes with regard to their occurrence, distribution, commercially important enzymes 

Table 12.7 (continued)

Name of actinomycete isolate Habitat Pathogenic fungi Reference
Streptomyces rochei Visakhapatnam coast, 

Bay of Bengal, India
V. alginolyticus, C. 
albicans, and C. 
tropicana

Reddy et al. 
(2011)

Streptomyces roseolilacinus Pichavaram, India C. albicans Sivakumar 
et al. (2007)

Streptomyces, 
Micromonospora, 
Saccharomonospora, 
Actinomadura, Nocardiopsis

Zhangzhou, Fujian, 
China

C. albicans and R. 
solani

Xiao et al. 
(2008)

Streptomyces sp. Visakhapatnam, India C. albicans, A. niger, 
and A. flavus

Rao et al. 
(2012)

Pseudonocardia VUK-10 Nizampatnam, Andhra 
Pradesh, India

C. albicans, F. 
oxysporum, and A. 
niger

Mangamuri 
et al. (2016)
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Table 12.8 A number of novel/new metabolites produced by halophilic actinomycetes during the 
period 2003–2013

Name of actinomycete 
isolate Compound Function Reference
Streptomyces 
nitrosporeus

Benzastatin C Antiviral Abdel-Mageed et al. 
(2010)

Streptomyces 
kaviengensis

Antimycin A Antiviral Raveh et al. (2013)

Streptomyces sp. Chinikomycins Anticancer Li et al. (2005)
Thermoactinomyces sp. Mechercharmycins Anticancer Kanoh et al. (2005)
Salinispora tropica Salinosporamide A Anticancer Prudhomme et al. 

(2008)
Salinispora arenicola Saliniketal Anticancer Jensen et al. (2007)
Saccharomonospora sp. Lodopyridone Anticancer Malet-Cascon et al. 

(2003)
Streptomyces sp. 1,8-Dihydroxy-2-ethyl-3-

methylanthraquinone
Antitumor Huang et al. (2006)

Streptomyces sp. Caboxamycin Anticancer Hohmann et al. 
(2009)

Streptomyces sp. Daryamides Anticancer Asolkar et al. 
(2006)

Actinomadura sp. ZHD-0501 Anticancer Han et al. (2005)
Streptomyces chinaensis 1-Hydroxy-1-norresistomycin Anticancer Gorajana et al. 

(2005)
Streptomyces sp. 3,6-Disubstituted indoles Anticancer Subramani and 

Aalbersberg (2012)
Streptomyces sp. Caprolactones Anticancer Stritzke et al. (2004)
Marinispora Marinomycins A-D Anticancer Kwon et al. (2006)
Salinispora arenicola Arenicolides Antitumor Williams et al. 

(2007)
Streptomyces sp. Aureolic acid Antitumor Lu et al. (2012)
Streptomyces 
aureoverticillatus

Aureoverticillactam Antitumor Mitchell et al. 
(2004)

Streptomyces sp. Elaiomycins B and C Antitumor Subramani and 
Aalbersberg (2012)

Streptomyces sp. Glyciapyrroles Antitumor Macherla et al. 
(2005)

Streptomyces lavendulae Mitomycin C Antitumor Berdy (2005)
Streptomyces sp. Staurosporine Antitumor Wu et al. (2006)
Streptomyces sp. Piericidins Antitumor Hayakawa et al. 

(2007b)
Verrucosispora sp. Proximicins Antitumor Fiedler et al. (2008)
Streptomyces sp. Streptokordin Antitumor Jeong et al. (2006)
Streptoverticillium 
luteoverticillatum

Butenolides Antitumor Li et al. (2006a)
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with various industrial applications of the relevant biomolecules/bioactive com-
pounds for agriculturally, pharmaceutically, and biotechnologically application. It 
will be very interesting to study the mechanism of the stability properties of halo-
philic enzymes, which may lead to being significant novel biotechnological applica-
tions. In 2012, industrial enzymes consisted a global market of $4.5 billion, and this 
value increased to $4.8 billion in 2013. In addition, according to the BCC research, 
the enzyme market is expected to reach $7.1 billion by 2018. In respect to the grow-
ing demands for enzymes, identification of halophilic enzymes as adaptable agents 
against industrially harsh conditions seems to be an alternative approach. In addition 
to halophilic enzymes, stabilizing agents derived from halophiles have attracted 
extraordinary attention to several aspects of biotechnology. In conclusion, halophilic 
actinomycetes will be novel and useful host for the production of enzymes, chemi-
cals, antibiotics, and biofuels in bulk with low cost.
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Abstract
Desert is the driest and largest terrestrial biomes constituting about 35% of 
Earth’s surface. Apart from being the most arid zone, this environment is 
subjected to different stresses including geochemical and physical stresses. 
Despite the limitations, diverse and unique groups of microorganisms are able to 
sustain life in this dryland. It is exemplified by the fact that more than 60 novel 
bacterial taxa have been isolated over the past decade from deserts located in 
Asian countries. This chapter reviewed the microbial diversity in the deserts 
located in Asia with special emphasis on its distribution, adaptation, and 
biotechnological importance.
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13.1  Introduction

Desert, by definition, is a barren area of land where little precipitation occurs. This 
region is often characterized by extreme physicochemical conditions such as 
extreme desiccation, high salinity, intense radiation, and oligotrophic nutrient 
availability, thereby making condition inimical for life. In fact, it is due to these 
reasons that US National Aeronautics and Space Administration (NASA) considered 
the environment of Atacama Desert to be closest to the Martian environment that is 
available on Earth and adopted the Viking mission in 1975 (Opfell and Zebel 1967; 
Bull et al. 2016). Despite the failure for detection of life during earlier microbiological 
work from the Viking mission, an important finding in the form of consumption of 
organic material was detected, thereby confirming the presence of oxidants in 
Atacama Desert soils (Bull et al. 2016). In other words, desert environments were 
beyond the threshold of life and can be considered as a source for extremophiles 
(Stetter 1999). Likewise, if we consider the several hypotheses for the origin of life, 
it is valid to assume that life begins under extraordinary circumstances and under 
unusual environments, and deserts provide the right environment for search of 
extremophilic microorganisms.

Extremophiles are adapted to grow optimally at or near the extreme ranges of 
temperature, pH, pressure, and/or salinity (Cavicchioli 2002; Bull 2011). Relatively 
little is known about the genetic diversity underlying the functional processes of 
microorganisms under extreme environment especially deserts. Understanding 
the extremophiles, therefore, will provide a link between the microbial community 
structure and their function in nature (Stevenson et  al. 2015). Taking into 
consideration the implacable role these organisms play in biogeochemical processes 
of extreme environments, they are even considered as “ecosystem engineers” (Jones 
et al. 1994).

Studies on extremophiles have helped us in the development of many applications 
in the field of biotechnology. In fact, the impact of biotechnology on our lives is 
inescapable (Coker 2016). It is because every category of these microbes has unique 
characteristics that can be harnessed for use in biotechnological industries (Tango 
and Islam 2002). For instance, they are an effective and environmentally friendly 
means for bioremediation of hydrocarbon contaminants in oil fields (Al-Mailem 
et al. 2010a). Several biopolymers including biosurfactants, exopolysaccharides, and 
bioplastics have been developed from halophilic microorganisms (Tango and Islam 
2002). Extremozymes have been found to be a more efficient and cost- effective 
means to replace currently used mesophilic enzymes in industries (Coker 2016).

In this chapter, we will be discussing the distribution, adaptation, and biotechno-
logical importance of a specific group of microorganisms sustaining life under 
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salinity stress (halophilic) and temperature stress (thermophilic). This group of 
microorganisms survives desiccation and resumes life on subsequent wetting 
thereby playing a major role in the control of dryland systems (Pointing and Belnap 
2012).

13.2  Deserts in Asia

Being one of the most extensive terrestrial biomes, the number of deserts distributed 
on the Earth’s surface is extensive. Identified on the basis of their size, the world’s 
two largest deserts are the Antarctic desert (~14 million sq. km) and Arctic desert 
(13 million sq. km), both cold or polar deserts. The largest among the hot deserts is 
the Sahara desert in Africa which extends over an area of 9.4 million sq. km. On the 
basis of aridity level, Atacama Desert located in part of Chile and Peru is considered 
to be one of the most arid (or hyper-arid) dry lands (McKay et al. 2003; Navarro- 
Gonzalez et al. 2003; Drees et al. 2006; López et al. 2016).

The deserts in Asian countries are confined to small sizes. The largest of these 
deserts is the Arabian Desert which covers an area of 2.3  million sq. km. and 
extending over the countries of Iraq, Jordan, Kuwait, Oman, Qatar, Saudi Arabia, 
United Arab Emirates, and Yemen (Fig. 13.1). The largest among the cold deserts, 
and the second largest one in size, is the Gobi Desert located in part of Mongolia 
and China. A list of the major deserts in the Asian countries (area greater than or 
equal to 50,000 sq. km.) is listed in Table 13.1. Many of the other deserts are of 
smaller size and therefore not included in the list (for more details about the des-
erts in the world, see: https://en.wikipedia.org/wiki/List_of_deserts).

Fig. 13.1 Distribution of major deserts in Asian continent
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13.3  Desert and Microbes

Microbial colonization in deserts is largely defined by its ability to adapt to environ-
mental stresses such as low moisture availability, low or high temperatures, and 
ultraviolet (UV) irradiation. Moisture in deserts is maintained by limited precipita-
tion in the form of rainfall and fog-derived moisture (Warren-Rhodes et al. 2006; 
Azúa-Bustos et al. 2011). However the availability of water is largely influenced by 
the composition of biological soil crusts and the presence of diaphanous rocks 
which determined the level of precipitation and evaporation (Cockell and Stokes 
2004; Rajeev et al. 2013; Hagemann et al. 2015). Unlike moisture, temperature is at 
its extreme end in desert environments. While temperature in hot deserts may 
exceed 60 °C, it may drop to less than −20 °C in cold deserts (Warren-Rhodes et al. 
2007; Tracy et al. 2010). Another important factor characterizing desert is the inci-
dent solar radiation of the spectrum below 400 nm wavelength. Two major spectra, 
viz., ultraviolet A (315–400 nm) and ultraviolet B (280–315 nm), can penetrate the 
atmosphere and reach the Earth’s surface. Quantity of these radiations reaching 
Earth’s surface is however small but enough to cause detrimental effect on biomol-
ecules and thereby life in general (Jeffrey et al. 1996; Gao and Garcia-Pichel 2011).

In view of the different extremes contributing dryland ecosystems, sustainability 
of microbial life under arid environments is limited to stable soil structures such as 
the biological soil crusts and stony desert pavements (Warren-Rhodes et al. 2007; 
Pointing and Belnap 2012). Biological soil crusts are considered as ecosystem 
engineers due to their pivotal role in soil stabilization (Belnap et al. 2003), carbon 
fixation, and nitrogen recycling (Elbert et al. 2012). These delicate structures are the 
dominant functional vegetation units and thus function to serve as the food source 
for other organisms inhabiting the desert ecosystems (Grube et al. 2009). Physical 

Table 13.1 List of desertsa by area distributed in Asian countries

Rank Name Type
Area (sq. 
km) Location

1 Arabian Desert Subtropical 2,330,000 Western Asia
2 Gobi Desert Cold 1,000,000 Central Asia
3 Syrian Desert Subtropical 520,000 Western Asia
4 Karakum Desert Cold 350,000 Turkmenistan
5 Kyzylkum Desert Cold 300,000 Central Asia
6 Taklamakan Desert Cold 270,000 China
7 Thar Desert Subtropical 200,000 South Asia
8 Dasht-e Margo Subtropical 150,000 Afghanistan
9 Registan Desert Subtropical 146,000 Afghanistan
10 Ordos Desert (Kubuqi + Maowusu 

Deserts)
– 90,650 China

11 Dasht-e Kavir Subtropical 77,000 Iran
12 Dasht-e Lut Subtropical 52,000 Iran
13 Lop Desert – 50,000 China

Source: Wikipedia
aArea > 50,000 sq. km
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disturbances and alteration in temperature or precipitation can however cause 
irreparable damage to this delicate structure (Belnap and Gillette 1998; Belnap et al. 
2004; Kidron et al. 2008, 2012; Kuske et al. 2012). The stony desert pavements, on 
the other hand, are composed of surface soils covered by gravels and bedrock debris 
(Friedmann and Galun 1974; Golubic et al. 1981). This habitat is primarily occupied 
by the photoautotrophic cyanobacterial communities, mainly of the genus 
Chroococcidiopsis, often in association with other filamentous cyanobacterial and 
heterotrophic taxa (Grilli Caiola et al. 1993; Billi et al. 2000; Pointing et al. 2007). 
Frequently, their distribution is limited by the level of aridity. It has been found that 
the abundance of hypolithic Cyanobacteria drops from 28 to <0.1% over a gradient 
of low to high arid core of Atacama Desert, while the molecular diversity declines 
threefold as compared to the less arid region (Warren-Rhodes et  al. 2006). The 
major microorganisms surviving the extreme conditions of deserts are, therefore, 
the ones that can sustain desiccation, tolerate extreme temperature, and develop 
mechanisms for resisting ultraviolet radiation (Potts 1994; Billi et al. 2000).

Recent discoveries have uncovered certain mechanisms on how these microor-
ganisms adapt the hyper-arid conditions. In the simplest mode, these organisms gain 
protection from solar radiation and also receive increase moisture by inhabiting 
diaphanous rocks and minerals, e.g., quartz, granite, gypsum, halite, and sandstone 
(Friedmann et al. 1967; Cockell and Stokes 2004; Cockell et al. 2005). Some micro-
organisms, however, produce certain types of secondary metabolites under radiation 
stress which act as ultraviolet “sunscreen” (Gao and Garcia-Pichel 2011). These 
compounds include scytonemin, mycosporines, and naphthalene-based melanins 
(Soule et  al. 2007; Gao and Garcia-Pichel 2011). This protective mechanism 
remains functional even during long periods of dormancy that are typically endured 
by poikilohydric life forms (Garcia-Pichel et al. 1992; Böhm et al. 1995; Geng et al. 
2008; Balskus and Walsh 2010; Gonzalez et al. 2010). Formation of biofilms during 
water stress is another means for enduring desiccation tolerance in desert’s microbes 
(Flemming et  al. 2016). Biofilms are formed by microbial communities that are 
embedded in a self-produced matrix of extracellular polymeric substances. The 
presence of these extracellular polymeric substances, which is a direct effect of salt 
stress (Liu and Buskey 2000; Abdullahi et al. 2006), provides several advantages, 
including water absorption and retention, soil adhesion, reduced evaporation, and 
nutrient capture (Foster 1981; Lynch and Bragg 1985; Grilli Caiola et  al. 1993; 
Mazor et al. 1996; Philippis and Vincenzini 1998; de los Rios et al. 2004; Warren-
Rhodes et al. 2007). Interestingly, in an interdune sabkha (salt flats) in the Rub’al 
Khali (the Empty Quarter), United Arab Emirates, an unusual inverted saline micro-
bial mat community was observed (McKay et al. 2016). In this microbial mat (endo-
evaporite mat), the salinity gradient is inverted as compared to most salt flat 
communities with the salt crust at the uppermost layer, followed by a thin layer of 
halophilic bacteria and layers of green photosynthetic organisms, thereby protecting 
the photosynthetically based microbial ecosystem from the arid environment.
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13.4  Microbial Community Assemblage in Asian Deserts

Studies of viable microbiota in deserts have been assumed earlier to be either low or 
very low, partly by the limitation of culturing techniques and partly by the several 
geographical and environmental constraints (Cary et al. 2010). However numerous 
developments especially in the application of molecular methods have advanced the 
analysis of arid or hyper-arid environments. For instance, many of the recent 
inferences on microbial diversity of Asian deserts have been from the analysis of 
biological soil crusts using high-throughput sequencing technology. Analyses of 
biological desert crusts which are relatively common in arid deserts have indicated 
the presence of halotolerant, thermotolerant, and UV-resistant Cyanobacteria 
(Cyanothece, Chroococcidiopsis, Dactylococcopsis, Euhalothece, 
Haloleptolyngbya, and Halomicronema) (Abed et al. 2015). These cyanobacterial 
strains are tactically important for desert’s life in that they form flatbed on the soil 
crusts by binding the sand through the formation of extracellular polymeric 
substances (Friedmann 1980; Wong et al. 2010). While this group maintained the 
structural platform for other microbial cultures to sustain life on the extremes, 
energy sources are primarily provided by another class of Cyanobacteria affiliated 
to heterocytous type such as Nostoc, Scytonema, Brasilonema, and Petalonema 
(Abed et al. 2010). Microbial diversity can therefore be discussed on the basis of the 
different geographical pattern of desert.

13.4.1  Cyanobacterial Mats

Abed et al. (2015) investigated the bacterial diversity of hypersaline cyanobacterial 
mats from Wadi Muqshin, located inland near the Empty Quarter desert (Rub’al 
Khali) – the central portion of the Arabian Desert by pyrosequencing analysis. Apart 
from Cyanobacteria, many of the OTUs identified were affiliated to the phyla 
Proteobacteria, Bacteroidetes, Clostridia, and Chloroflexi. While Proteobacteria 
(especially members of the class Alpha-, Gamma-, and Deltaproteobacteria) made 
up for 13–32% of the total sequences, the phylum Bacteroidetes constituted 9–22% 
of the total OTUs. Unlike the above phyla, much of the Chloroflexi sequences 
belonged to uncultured families including uncultured Anaerolineaceae, uncultured 
Caldilineaceae, and Candidatus Chlorothrix, indicating the presence of untapped 
microbial diversity. A lower proportion of Verrucomicrobia, Acidobacteria, 
Actinobacteria, Chlorobi, Firmicutes, and Deferribacteres were also detected. In 
cyanobacterial mats of the Arabian Gulf coast of Saudi Arabia, oil-degrading 
bacteria belonging to Beta-, Gamma-, and Deltaproteobacteria, Cytophaga- 
Flavobacterium- Bacteroides group, and Spirochetes were detected (Abed et  al. 
2006).

Two different groups had simultaneously analyzed the ecological factors influ-
encing the distribution of Cyanobacteria along environmental gradients in hot and 
cold deserts of western China (Pointing et al. 2007; Warren-Rhodes et al. 2007). 
Their research findings indicated that moisture is an important determinant for 
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bacterial diversity in arid environments, while other factors including substrate 
availability, temperature, or rainfall are of lesser importance. In Thar Desert (India), 
the structure of community composition was found to be more homogeneous in 
non-sandy, crusted, and vegetated soils than in sandy, non-crusted, and barren soils 
indicating that incidence and colonization of desert soils by Cyanobacteria are 
dependent on agro-ecological conditions (Bhatnagar et al. 2008). The finding of Li 
and co-workers (2013) however indicated that the selection and growth of bacterial 
communities were dependent on the salinity conditions of the desert crusts. In their 
study, they found that cyanobacteria of the order Oscillatoriales predominate in low 
saline crusts, while other phototrophs such as diatoms were the main microbial 
group responsible for photosynthesis in high saline crusts. In addition, the higher 
salt content in crusts stimulates the growth of Deinococcus-Thermus, Bacteroidetes, 
and some members of the subdivision of Proteobacteria.

13.4.2  Desert Sands

Culture-dependent methods of isolation in hypersaline environments in Kuwait led 
to the discovery of the bacterial genera Halomonas, Chromohalobacter, 
Marinobacter, Exiguobacterium, Stenotrophomonas, Pseudomonas, Salinivibrio, 
and Bacillus and the haloarcheal genera Haloferax and Halobacterium (Al-Mailem 
et al. 2014). However a different microbial composition was detected by the culture- 
independent methods which include the genera Ochrobactrum, Stenotrophomonas, 
Rhodococcus, Halomicrobium (all bacterial phylotypes), Halorussus, 
Halomicrobium, and Haloorientalis (archaeal phylotypes) (Al-Mailem et al. 2014). 
In a similar study by Dashti et  al. (2015), the isolation of Agrobacterium, 
Sphingomonas, and Pseudomonas from oily desert soil was reported, while 
Nesiobacter, Nitratireductor, Acinetobacter, Alcanivorax, Arthrobacter, 
Marinobacter, Pseudoalteromonas, Vibrio, Diatzia, Mycobacterium, and 
Microbacterium were isolated from the Arabian/Persian Gulf water body.

In a very recent study, our group has also tried to explore the microbial reserves 
of desert samples from Riyadh (Saudi Arabia). The culture-based isolation technique 
involved a series of different permutation and combination of culturing methods; 
thereby maximizing the chance for isolation of novel undiscovered bacteria (Yang 
et al. unpublished data). During our assessment, a wide variety of bacterial strains 
were isolated, many of which were earlier thought to be present in smaller proportion. 
These microbes are represented in a phylogenetic dendrogram (Fig. 13.2) generated 
with neighbor-joining algorithm (Saitou and Nei 1987). Majority of these strains 
were affiliated to the phylum Actinobacteria, followed by the phylum Proteobacteria.

A separate study on an interdune sabkha in the Rub’al Khali (the Empty 
Quarter), United Arab Emirates, indicated high abundance of Bacteroidetes and 
Proteobacteria in the top and middle layers of endoevaporite mat, while higher 
proportions of Proteobacteria and Cyanobacteria in the bottom and sediment lay-
ers of the mat were found (McKay et al. 2016). Another finding based on pyrose-
quencing analysis of surface sand samples from Taklamakan and Gobi deserts 
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Fig. 13.2 Neighbor-joining phylogenetic dendrogram indicating the affiliation of bacterial strains 
isolated from a desert sample in Riyadh, Saudi Arabia
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indicated the presence of large bacterial diversity in harsh desert environments, 
with C/N ratio playing a possible role in determining bacterial richness (An et al. 
2013). The 4088 OTUs determined during the study were grouped into 102 fami-
lies belonging to 15 phyla, the most abundant being the phyla Firmicutes (genera 
Bacillus and Planomicrobium), Proteobacteria (genera Pseudomonas, 
Acinetobacter, Massilia, Lysobacter, Herbaspirillum, Devosia, Paracoccus, 
Sphingomonas, Novosphingobium, and Comamonas), Bacteroidetes (genera 
Effluvibacter, Adhaeribacter, Flavisolibacter, Pedobacter, Pontibacter, and 
Salinimicrobium), and Actinobacteria (Arthrobacter, Nocardioides, Blastococcus, 
and Marmoricola).

13.4.3  Desert Halophyte

In addition to the microbial community within desert crusts, halophytes and their 
associated microbes are equally important in structuring the desert ecology. In a 
recent study, Zhao et al. (2016) characterized 219 nodule isolates from an endangered 
evergreen legume, Ammopiptanthus mongolicus, which is widely distributed in 
deserts of Northwest China. These isolates represented nine genospecies of the 
genera Ensifer, Neorhizobium, Agrobacterium, Pararhizobium, and Rhizobium 
which are known as nitrogen-fixing microorganisms. Analysis of the culturable 
bacterial community associated with roots of the perennial grass Lasiurus sindicus 
of Thar Desert indicated the presence of Gram-negative diazotrophs such as 
Azospirillum and Rhizobium (Chowdhury et  al. 2007). Apart from the Gram- 
negative diazotrophs, the presence of Gram-positive bacteria such as Staphylococcus, 
Bacillus, Micrococcus, and Microbacterium and Gram-negative bacteria such as 
Agrobacterium, Inquilinus, Ralstonia, Variovorax, Bordetella, Pseudomonas, and 
Stenotrophomonas was also reported.

Due to the rise in global temperature and glacial recession in higher altitudes, 
vascular plants have been observed to be migrated upward (Chen et al. 2011). This 
effect has however been determined to the presence of endophytic microbial 
communities of the order Sphingomonadales and Sphigobacteriales in the roots of 
the vascular plants (Angel et  al. 2016). These endophytic microorganisms along 
with some early colonizers, especially Cyanobacteria, help in maturing the nascent 
soil into soil crusts that are capable of supporting plant growth (Schmidt et al. 2008).

Despite being harsh ecosystems with temperature, salinity, and radiation stresses, 
it is clear from the above findings that the microbial resources in desert environments 
are unique and diverse. A clearer picture of the potential of these extremophiles is 
provided when these cultures are available in pure forms. Recent efforts have 
resulted in the isolation of many novel strains of bacteria from deserts. A list of 
these bacterial strains isolated from deserts located in Asian countries is provided in 
Table 13.2.
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Table 13.2 List of novel microorganisms isolated from desert samples located in Asian 
countries

Sl. 
no. Organism

Taxa 
level

Source 
location Characteristics References

1 Actinoalloteichus 
spitiensis

Novel 
species

Indian 
Himalayas

– Singla et al. 
(2005)

2 Actinophytocola 
gilvus

Novel 
species

Tengger Desert – Sun et al. 
(2014)

3 Aeromicrobium 
halotolerans

Novel 
species

Turpan desert Halotolerant Yan et al. 
(2016)

4 Agrococcus 
lahaulensis

Novel 
species

Indian 
Himalayas

Halotolerant Mayilraj 
et al. 
(2006a)

5 Alcaligenes 
endophyticusa

Novel 
species

Takeermohuer 
desert

Halotolerant Lu et al. 
(2017)

6 Altererythrobacter 
soli

Novel 
species

Tengger Desert Alkalitolerant Zhao et al. 
(2017) 

7 Altererythrobacter 
xinjiangensis

Novel 
species

Xinjiang Alkalitolerant Xue et al. 
(2012)

8 Arthrobacter deserti Novel 
species

Turpan desert Halotolerant Hu et al. 
(2016)

9 Arthrobacter liuii Novel 
species

Xinjiang – Yu et al. 
(2015)

10 Bacillus deserti Novel 
species

Xinjiang – Zhang et al. 
(2011)

11 Bacillus gobiensis Novel 
species

Gobi Desert – Liu et al. 
(2016)

12 Caenispirillum 
deserti

Novel 
species

Kutch Alkalitolerant, 
halotolerant

Divyasree 
et al. (2015)

13 Cesiribacter roseus Novel 
species

Xinjiang Alkalitolerant, 
halotolerant

Liu et al. 
(2012)

14 Corynebacterium 
deserti

Novel 
species

Western China – Zhou et al. 
(2012)

15 Deinococcus 
gobiensis

Novel 
species

Gobi Desert γ- and UV radiation 
resistant

Yuan et al. 
(2009)

16 Deinococcus 
xinjiangensis

Novel 
species

Xinjiang UV radiation resistant Peng et al. 
(2009a)

17 Delftia deserti Novel 
species

Turpan desert – Li et al. 
(2015)

18 Desertibacter roseus Novel 
genus

Taklamakan 
Desert

γ radiation resistant, 
alkalitolerant

Liu et al. 
(2011a)

19 Dietzia kunjamensis Novel 
species

Indian 
Himalayas

Alkalitolerant Mayilraj 
et al. 
(2006b)

20 Dyadobacter 
alkalitolerans

Novel 
species

Xinjiang Alkalitolerant Tang et al. 
(2009)

(continued)
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Table 13.2 (continued)

Sl. 
no. Organism

Taxa 
level

Source 
location Characteristics References

21 Falsirhodobacter 
deserti

Novel 
species

Xinjiang Halotolerant Wang et al. 
(2015)

22 Gemmatimonas 
phototrophica

Novel 
species

Gobi Desert Facultative 
photoheterotrophic

Zeng et al. 
(2015)

23 Hymenobacter 
deserti

Novel 
species

Xinjiang Alkalitolerant Zhang et al. 
(2009)

24 Hymenobacter 
xinjiangensis

Novel 
species

Xinjiang γ-radiation resistant Zhang et al. 
(2007)

25. Jiangella gansuensis Novel 
genus

Gansu – Song et al. 
(2005)

26 Kineococcus 
xinjiangensis

Novel 
species

Xinjiang – Liu et al. 
(2009b)

27 Kocuria 
himachalensis

Novel 
species

Indian 
Himalayas

– Mayilraj 
et al. 
(2006c)

28 Kribbella deserti Novel 
species

Hangjin 
Banner

– Sun et al. 
(2017)

29 Kurtzmanomyces 
shapotouensis

Novel 
species

Tengger Desert – Zhang et al. 
(2013a) 

30 Lysobacter 
xinjiangensis

Novel 
species

Xinjiang Alkalitolerant Liu et al. 
(2011b)

31 Mesorhizobium 
gobiensea

Novel 
species

Xinjiang – Han et al. 
(2008)

32 Mesorhizobium 
tarimensea

Novel 
species

Xinjiang – Han et al. 
(2008)

33 Microbacterium 
radiodurans

Novel 
species

Gobi Desert UV radiation 
resistant, 
alkalitolerant, 
halotolerant

Zhang et al. 
(2010)

34 Microvirga 
pakistanensis

Novel 
species

Cholistan – Amin et al. 
(2016)

35 Mycetocola 
manganoxydans

Novel 
species

Taklamakan 
Desert

Alkalitolerant Luo et al. 
(2012)

36 Natronobacillus 
azotifigens

Novel 
genus

Libyan Desert Obligate alkaliphile, 
halophilic

Sorokin 
et al. (2008)

37 Nesterenkonia 
populia

Novel 
species

Taklamakan 
Desert

Alkaliphilic, 
moderately halophilic

Liu et al. 
(2015a)

38 Nesterenkonia 
rhizosphaerae

Novel 
species

Fukang Alkaliphilic, 
halotolerant

Wang et al. 
(2014)

39 Nocardioides deserti Novel 
species

Taklamakan 
Desert

Alkalitolerant, 
halotolerant

Tuo et al. 
(2015)

40 Ornithinicoccus 
halotolerans

Novel 
species

Xinjiang Alkaliphilic, 
halotolerant

Zhang et al. 
(2016)

(continued)
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Table 13.2 (continued)

Sl. 
no. Organism

Taxa 
level

Source 
location Characteristics References

41 Ornithinimicrobium 
kibberense

Novel 
species

Indian 
Himalayas

Halotolerant Mayilraj 
et al. 
(2006d)

42 Paenibacillus 
gansuensis

Novel 
species

Gansu – Lim et al. 
(2006)

43 Paenibacillus 
harenae

Novel 
species

Gansu – Jeon et al. 
(2009)

44 Paenibacillus 
tarimensis

Novel 
species

Xinjiang – Wang et al. 
(2008)

45 Pedobacter 
xinjiangensis

Novel 
species

Xinjiang – Tang et al. 
(2010)

46. Pelagibacterium 
lixinzhangensis

Novel 
species

Xinjiang Alkalitolerant, 
moderately halophilic

Yang and 
Sun (2016)

47. Planobacterium 
taklimakanense

Novel 
genus

Taklamakan 
Desert

Alkalitolerant Peng et al. 
(2009b)

48. Planococcus 
stackebrandtii

Novel 
species

Indian 
Himalayas

Alkalitolerant, 
halotolerant

Mayilraj 
et al. (2005)

49. Pontibacter 
akesuensis

Novel 
species

Akesu Alkalitolerant Zhou et al. 
(2007)

50. Pontibacter deserti Novel 
species

Kutch – Subhash 
et al. (2014)

51. Pontibacter 
diazotrophicus

Novel 
species

Taklamakan 
Desert

Diazotroph, 
halotolerant

Xu et al. 
(2014)

52. Pontibacter korlensis Novel 
species

Xinjiang Alkalitolerant, 
halotolerant

Zhang et al. 
(2008)

53. Pontibacter ruber Novel 
species

Kutch – Subhash 
et al. (2014)

54. Pontibacter soli Novel 
species

Xinjiang Alkalitolerant Dai et al. 
(2014)

55. Pontibacter yuliensis Novel 
species

Taklamakan 
Desert

Halotolerant Cao et al. 
(2014)

56. Prauserella 
endophyticaa

Novel 
species

Taklamakan 
Desert

Alkalitolerant, 
halotolerant

Liu et al. 
(2015b)

57. Prauserella 
shujinwangii

Novel 
species

Xinjiang Halotolerant Liu et al. 
(2014)

58. Pseudomonas 
duriflava

Novel 
species

Taklamakan 
Desert

– Liu et al. 
(2008)

59. Pseudomonas 
xinjiangensis

Novel 
species

Xinjiang Alkalitolerant, 
halotolerant

Liu et al. 
(2009c)

60. Rhizobium 
tianshanensea

Novel 
species

Xinjiang – Chen et al. 
(1995)

61. Rhizobium 
yanglingensea

Novel 
species

Northwest 
China

– Tan et al. 
(2001)

62. Rhodococcus 
kroppenstedtii

Novel 
species

Indian 
Himalayas

Halotolerant Mayilraj 
et al. 
(2006e)

(continued)
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13.5  Environmental Significance

Biological soil crusts play a crucial role in ecological succession in arid regions. 
Gases, nutrients and water are held in the uppermost few centimeters of intact crust 
soil, whereby most of the biological activity that is found in desert soils occurs in 
this top layer. This layer may yet prove to be the largest carbon sinks in desert areas.

Oil contamination is a major phenomenon being observed in oil-rich desert coun-
tries. Salinity and temperature are important key environmental parameters that 
influence the degradation process of petroleum compounds. On one hand, presence 
of hydrocarbonoclastic microflora in hypersaline areas indicates effective potential 
for oil mineralization therein (Al-Mailem et al. 2014), while on the other hand, con-
sumption of crude oil by these halophilic microorganisms highlights the self-clean-
ing potential of hypersaline area from oil contamination (Al-Mailem et al. 2010a, b, 
2012; Dashti et al. 2015). Many of these bacteria are positive for nitrogenase activity, 
consume crude oil, and therefore provide a cost-effective, environmentally friendly 
bioremediation of hydrocarbon contaminants (Dashti et al. 2015).

Table 13.2 (continued)

Sl. 
no. Organism

Taxa 
level

Source 
location Characteristics References

63. Saccharibacillus 
deserti

Novel 
species

Kubuqi Desert – Sun et al. 
(2016) 

64. Saccharibacillus 
kuerlensis

Novel 
species

Xinjiang – Yang et al. 
(2009)

65. Shinella curvata Novel 
species

Kuwait – Subhash and 
Lee (2016a)

66. Skermanella rosea Novel 
species

Kuwait – Subhash and 
Lee (2016b)

67. Skermanella rubra Novel 
species

Xinjiang Halotolerant Zhang et al. 
(2015)

68. Skermanella 
xinjiangensis

Novel 
species

Xinjiang – An et al. 
(2009)

69. Sphingobacterium 
deserti

Novel 
species

Western 
Desert, China

Moderately 
alkaliphilic

Teng et al. 
(2015)

70. Sphingobacterium 
gobiense

Novel 
species

Gobi Desert Alkalitolerant Zhao et al. 
(2014)

71. Sphingomonas 
xinjiangensis

Novel 
species

Xinjiang – An et al. 
(2011)

72. Spirosoma soli Novel 
species

Kubuqi Desert – Yang et al. 
(2016)

73. Streptomyces 
fukangensis

Novel 
species

Xinjiang Moderately 
alkaliphilic, 
halotolerant

Zhang et al. 
(2013b)

74. Tenggerimyces 
mesophilus

Novel 
genus

Tengger Desert Alkalitolerant Sun et al. 
(2015)

75. Yuhushiella deserti Novel 
genus

Xinjiang 
desert

Alkaliphilic, 
halotolerant

Mao et al. 
(2011)

aIsolated as endophyte from desert’s halophyte
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Another new perspective for utilization of desert microorganisms is restoration 
of plant growth under salt stress (Nabti et  al. 2015). While majority of the seed 
germination step to maturity in plant life including phytohormone synthesis and 
regulation, normal root and shoot development, nutrient uptake, etc. is abolished by 
high salinity (François et  al. 1986), diazotrophs and associated microorganisms 
benefit plant growth by restoration of essential activities. Some halotolerant plant 
growth-promoting bacteria are able to colonize plants and produce various 
antimicrobial metabolites against pathogenic fungi and bacteria (Nabti et al. 2015).

13.6  Environmental Impacts on Microbial Diversity

Biological soil crusts are very important to ensure proper structuring and function-
ing of desert ecosystems (Belnap 2003; Belnap and Eldridge 2001; Eldridge and 
Greene 1994). As species distribution in arid desert ecosystem has direct correlation 
with the environmental factors, it is necessary to preserve the soil crusts (Ding et al. 
2013; El-Ghani 1998; Fierer et al. 2010). However increase global warming and 
intensified human activities have pose serious problems on structure of crusts 
(Belnap and Eldridge 2001), thereby causing severe negative impacts on the 
movements of nutrients and transfer of energy between soil and diazotrophs or 
atmosphere (Pointing and Belnap 2012). Disturbance of soil crust and desert 
pavement enhances desertification and increases evapotranspiration resulting in 
sand drift or desert aerosol which can be a mean for major intercontinental trajecto-
ries for desert dust (Pease et al. 1998; Al-Awadhi 2005). Desert dust not only affects 
the microbial diversity but also the health of desert animals.

It may also be noted that different environmental constraints select the highly 
adapted and tolerant genotypes among the microbial community. In an experiment 
conducted by Aded and co-workers to check the variability on distribution of 
cyanobacterial mats across different tidal zones, it was determined that frequent 
alteration of air exposure and inundation promoted the growth of contiguous 
pinnacle mats on well-drained elevations in middle tidal zones and severe dryness 
in the higher tidal zones (Abed et al. 2008). These Cyanobacteria lie dormant during 
most of the year but photosynthesize immediately when seasonal rains fall (Downing 
et al. 2015; Richer et al. 2015). These cyanobacteria produce a variety of toxins 
(Cox et al. 2009; Metcalf et al. 2012, 2015), which persist in the environment even 
after removal of the crust itself (Richer et al. 2012). The potential large reservoir of 
cyanobacterial toxins may over the year give rise to exposure to particulate matter 
in desert dust thereby resulting in loss of soil structure and also posing risks to 
human and animal life (Richer et al. 2015).

Another factor influencing the variability in soil bacterial community abundance 
and diversity in deserts is crude oil contamination, which is most commonly 
observed in various oil fields (Al-Mailem et al. 2014; Gerdes et al. 2005). Under oil 
contamination stress, the overall abundance of soil bacteria, archaea, and fungi 
decreased to 10%, 40%, and 80% of those in the pristine soil, respectively (Liang 
et al. 2009). Along with it, the level of several functional genes in the families pgI, 
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rbcL, nifH, and nor and those encoding cellulase, laccase, chitinase, urease, and key 
enzymes in metabolizing organic compounds was significantly decreased with oil 
contamination (Liang et al. 2011; Yang et al. 2014), resulting in an overall bacterial 
community shift (Khamehchiyan et al. 2007; Liu et al. 2009a; Liao et al. 2015).

13.7  Conclusion

Cumulative analyses of the microbial diversity in Asian deserts give a clear indica-
tion that microbial resources in deserts are unique and diverse. They are largely 
untapped for industrial applications, apart from the fact that hydrocarbonoclastic 
microorganisms can be applied for phytoremediation of oil contaminants. Since 
most aspects of living systems are based on the variability and complexity of organ-
isms that constitute the biodiversity of a given geographical region, it is necessary 
that special measures are taken for biodiversity conservation especially of arid lands 
for continuous and sustainable life of all living communities.
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14Trichoderma from Extreme 
Environments: Physiology, Diversity, 
and Antagonistic Activity

Laith Khalil Tawfeeq Al-Ani

Abstract
The fungus Trichoderma is spreading throughout different climate zones. 
Therefore, this enhances the chance to get some isolates having the ability to 
confront poor conditions. Several extreme conditions affect Trichoderma. In this 
chapter I focus on important parameters that have large effects on growth, bioac-
tivity, and antagonism as biological control agents. On the basis of these effects, 
some parameters are appropriate for every strain of Trichoderma: main factors 
such as temperature, pH, nutrient substrate, and water potential, and minor fac-
tors such as light and humidity. The temperature parameter is the first main factor 
that is suggested here to be responsible for alteration in Trichoderma life phases 
and bioactivity. Trichoderma has shown a high tolerance for temperature (range 
0–50 °C). Most Trichoderma spp. showed high efficacy at moderate tempera-
tures. Trichoderma spp. can tolerate pH from 2.0 to 13, but more Trichoderma 
tend toward acidic media. Nutrient substrate, water potential, light, and humidity 
were effective factors related to one or two activities of Trichoderma. However, 
parameters are very important in determining the efficacy of Trichoderma for use 
in controlling plant pathogens. Therefore, we can consider four points to con-
front these weaknesses of some Trichoderma-derived biopesticides and biofertil-
izers to control plant pathogens.
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14.1  Introduction

Trichoderma can spread throughout a wide range of ecological niches. It is ubiqui-
tous in soil and the rhizosphere. The environment for this genus is very attractive 
because of its ability to attack and compete within different habitats. Trichoderma 
spp. have unique properties that help them grow at high densities in any habitat 
(Chet et al. 1997). The efficacy of Trichoderma activity is depending on an asexual 
cycle. Indeed, in a habitat under optimal conditions, Trichoderma spp. produce 
enzymes, secondary metabolites, and proteins to compete and that are useful for 
getting nutrients to grow and disperse through the asexual cycle. Hjeljord et  al. 
(2000) suggested that the growth and antagonism of Trichoderma against plant 
pathogens are decreasing because of poor nutrient levels. The enzymes and second-
ary metabolites of Trichoderma are used in different fields of study. Mastouri et al. 
(2010, 2012) showed that Trichoderma has a high ability to improve the resistance 
of plants against abiotic and biotic stresses. Therefore, many bioproducts (e.g., 
biopesticides and biofertilizers) with Trichoderma formulations are used to control 
plant pathogens and to enhance plant growth, as well as, Trichoderma is having the 
ability to enhance for the tolerance the hard condition such as Salinity, extreme 
temperature, and water stress (Balestrini et al. 2017). In addition, Trichoderma pro-
duces several enzymes with high activity that are helpful in biotechnology and 
remove waste from the environment. Conidial suspension are used to control plant 
pathogens and other activity by Trichoderma. Carreras-Villaseñor et  al. (2012) 
mention of the role of conidia in an “asexual cycle”; it has different beneficial func-
tions including in the biocontrol of plant pathogens and in the industry. Such as 
textile, medical/pharmaceutical, and animal feed by utilizing the compounds and 
enzymes that produced of Trichoderma.

Interestingly, Trichoderma suspensions are used in different industries, such as 
agriculture. A conidial suspension of T. harzianum (1 × 10−7 spores/ml) can control 
Sclerotinia sclerotiorum (Zhang et al. 2016). A high density (10−10) of T. harzianum 
and T. viride have efficacy to control Meloidogyne javanica on tomato (Al-Hazmi 
and TariqJaveed 2016). The growth of peas improved after seeds were treated with 
106 spores from two Trichoderma strains (T4 and N47) (Naseby et al. 2000). Conidia 
of Trichoderma are used in various activities because they spread quickly and ger-
minate easily. Extreme environments are, however, certainly affecting the efficacy 
of Trichoderma in biocontrol of the life cycle of plant pathogens. In general, conidia 
are available in normal environments but not under difficult conditions. Trichoderma 
spp. are sensitive to changes in the environment (Carreras-Villaseñor et al. 2012).

This sensitivity is leading to change in attributes such as stop in the growth of 
hyphae for Trichoderma as the status of adaptation to confront the hard environ-
ment. These hyphae start the differentiation to specific structure by thickening the 
wall and create the resting spores as a tool for survival. Molecular mechanisms are 
responsible for adaptation and response to diverse cues from the environment 
(Bahn et  al. 2007). Extreme conditions induce the fungus to produce resting or 
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dormant spores such as thick-walled chlamydospores. However, some species of 
Trichoderma produce microsclerotia (Jackson et al. 2017). Difficult conditions and 
biological rhythms have a role in inducing the formation of chlamydospores and in 
the sexual cycle. Chlamydospores of Trichoderma are beneficial not only for sur-
vival and dispersal but also for export as a biological control agent (BCA), as 
mentioned by Mishra et al. (2012). Indeed, changes from useful gene expression to 
other expressions produce certain proteins and enzymes as a way to protect the 
survival of the fungal thallus . Interactions and sensing between fungi and the envi-
ronment happen at the molecular level in response to environmental cues (Bahn 
et  al. 2007). Some interesting factors affect the physiological activities of 
Trichoderma. These factors place high stress on the success of Trichoderma in 
confronting plant pathogens. Also, Trichoderma is a very interesting agent in dif-
ferent fields and is used within industry and production as a biopesticide and bio-
fertilizer. Conditions of an extreme environment—major factors such as pH, 
temperature, nutrient substrate, and water potential, and some minor factors such 
as light and humidity—affect the success of Trichoderma products. Some param-
eters such as pH, Carbon content, and carbon : nitrogen (C:N) ratio were affected 
Trichoderma including the growth, sporulation, and the time of spore production 
(Agosin et al. 1997).

On the other hand, three points are important to discuss here in order to explain 
the effect of extreme environments on Trichoderma used as a BCA. For example, 
Trichoderma biopesticides and biofertilizers may be not beneficial for use in fields. 
Many farmers think Trichoderma products have low efficacy in controlling plant 
pathogens and enhancing plant growth. Also, many researchers think isolates or 
strains of Trichoderma are not suitable for use as antagonists or to improve plant 
growth in fields. Therefore, we must determine the parameters of extreme environ-
ments to provide some information that may be of benefit in improving Trichoderma-
derived bioproducts. However, extreme environments include many factors that 
affect physiological activities and diversity, and that antagonize Trichoderma. This 
chapter shows the relation between extreme environmental conditions and the life 
cycle of Trichoderma.

14.2  Growth of Trichoderma

Determining optimal and extreme conditions is very helpful in determining the abil-
ity of Trichoderma to grow in different habitats. Trichoderma species can grow 
within a specific temperature range. Its growth comprises germination of spores and 
mycelia, and sporulation, which allow the fungus to spread. This study is useful for 
understanding the utilization of Trichoderma in many actions as mentioned previ-
ously such as biopesticides, biofertilizer, and industry. Therefore, it must invoke the 
role of extreme conditions affecting the very interesting part of a life cycle for 
Trichoderma, as following.
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14.2.1  Germination

Fungal growth begins with conidia (spore) germination and mycelial growth. In 
general, the best and fastest growth of conidia and mycelial mass occurs under 
optimal circumstances. These conditions are limited to a particular range, which is 
different among Trichoderma species. Conidia and hyphae are exposed to different 
conditions including water availability, temperature, and pH.  These factors are 
important for determining the rate and density of growth, rate of hyphal extension, 
and tube length; water availability and temperature are most important and most 
effective (Hjeljord and Tronsmo 2003). Danielson and Davey (1973) mention the 
large role of temperature and pH in the growth of seven species of Trichoderma, 
such as T. pseudokoningii and T. saturnisporum; they showed no growth at low 
and medium temperatures, and growth was very effective in extremely acidic or 
 alkaline conditions. Gervais et al. (1988) suggested that the main factor affecting 
germination of Trichoderma was water potential. And Jackson et al. (1991) men-
tioned pH, temperature, and water potential as three factors affecting germination 
of Trichoderma. The duration of radiation did not affect conidial germination or 
growth of Trichoderma (Wibowo 1999). However, Hjeljord and Tronsmo (2003) 
indicated that the nutrient substrate is an effective factor in the germination of 
Trichoderma conidia; therefore, some of the conidia population fails to initiate 
germination on nutrient-poor substrates and in dilute inocula. According to the 
temperature factor, two levels of the conidia germination for Trichoderma such as 
low tolerance range and high tolerance range are noticed. Germination can occur 
within two temperature ranges: a low-tolerance range (<20 °C) and a high-tolerance 
range (≥20 °C).

T. harzianum, T. longibrachiatum, and T. viride grow in the low-tolerance range 
at 12–20  °C (they cannot grow at high temperatures) and at water potential 
between −0.7 and −2.8 MPa (Magan 1988). Some strains of Trichoderma are, how-
ever, able to tolerate the extreme environments. Cold-tolerant Trichoderma strains 
such as T. aureoviride, T. harzianum, and T. viride isolated from a forest at Asotthalom 
in southern Hungary grew at a low temperature (5 °C) (Antal et al. 2000).

T. viride grew at 5 °C but did not grow at 40 °C; it grew at pH ranging between 
4.6 and 6.8; and the water potential decreased over the range of −0.7 to −14.0 MPa, 
but germination or growth occurred at −14.0 MPa (Jackson et al. 1991). Conidial 
germination and growth of T. harzianum occur within a pH range of 5–9; conidial 
germination prefers a temperature between 20 and 30 °C and was inhibited at 10 °C 
and 40 °C; mycelia grew within a temperature range of 10–30 °C, but their growth 
was inhibited at 40 °C (Wibowo 1999). T. koningii can grow at high temperatures 
(5–29  °C), in soil containing 10–80% moisture (water holding capacity), and a 
pH  5.8 (Wakelin et  al. 1999). T. koningii growth increased after the ammonium 
(NH+4-N) was added, which affected the acidity, but was suppressed when nitrate 
(NO3

−) was added (Wakelin et al. 1999). Upon initiation of germination, the conidia 
of Trichoderma are more sensitive to desiccation after only 2 h when incubated on 
a nutrient-rich substrate at 23 °C (Hjeljord and Tronsmo 2003).
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The thermophilic strain of T. reesei (RL-P31) grows quickly at 37 °C but does 
not grow at 28 °C (Sharma 1992). T. harzianum, T. viride, and T. koningii grew at 
temperatures between 9 and 35 °C and at pH within the range of 4–12, but the best 
growth occurred at 24 °C and pH 5.5 (Ghildiyal and Pandy 2008). Some Trichoderma 
species—T. harzianum, T. viride, T. asperellum, T. koningii, T. atroviride, T. longi-
brachiatum, and T. virens—were able to grow at temperatures of 25–30 °C and at 
pH values between 5.5 and 7.5 (Singh et al. 2014). Two strains of Trichoderma—T. 
viride (Td50) and T. pseudokoningii (Td85)—grow between 25 °C and 30 °C (and 
grow very slowly at 15 °C) and favor a pH from 4.5 to 5.5 (Petrisor et al. 2016). T. 
asperelloides IBLF 908 is able to grow at 12–37 °C, but maximum growth occurred 
at 27  °C (Domingues et  al. 2016). T. asperellum can grow at 50  °C (Montoya-
Gonzalez et al. 2016). Indeed, T. polysporum strains from Norway (a polar region) 
grew at temperatures between 0 °C and 28 °C, with higher growth at 20 °C (Kamo 
et al. 2016). T. harzianum, T. viride, T. asperellum, and T. hamatum showed favor-
able growth at pH ranging from 4.6 to 7.6, but the species grew best at different 
temperatures: T. harzianum and T. viride grew at temperatures between 25 °C and 
40 °C, and T. asperellum and T. hamatum preferred 25–35 °C (Zehra et al. 2017). 
Isolates of T. harzianum, T. viride, and T. koningii could tolerate high reductions in 
temperature and grew under conditions between 4 and 42 °C and at a pH of 3–13 
(Sharma et al. 2013). Finally, the spores and mycelia of T. harzianum strain T22 
could germinate at 25 °C and at a water potential between −0.03 and −0.50 MPa 
(Innocenti et al. 2015). On the other hand, the concentration of salt in the habitation 
of Trichoderma is affecting the germination. Zehra et al. (2017) found that 1000 μM 
NaCl (salt) affects Trichoderma species, including T. harzianum, T. viride, T. asper-
ellum, and T. hamatum.

14.2.2  Sporulation

Many different environmental factors affect sporulation of Trichoderma spp.: 
Nutrient substrate, temperature, humidity, light, and pH are very important factors 
in this context (Galun and Gressel 1966; Wibowo 1999; Berrocal-Tito et al. 1999; 
Jayaswal et al. 2003; Casas-Flores et al. 2004). The sporulation of T. harzianum was 
enhanced when receiving 24 h of light and at temperatures between 10 and 30 °C, 
but it did not produce conidia at 40 °C. In addition, acidity increases sporulation but 
alkaloids greatly affect it (Wibowo 1999). Blue light (400–480 nm) induces syn-
chronous sporulation (Casas-Flores et al. 2004).

T. stromaticum can sporulate at temperatures from 20 to 25  °C and at 100% 
humidity, but it cannot sporulate at 75% humidity (Sanogo et al. 2002). T. viride 
produces maximum conidia at pH of 4.5–5.5 and a temperature of 20–37 °C, but 
this production is inhibited at temperatures below 20 °C, and is very poor with car-
bon sources (rhamnose, sorbitol, and pyruvic acid) (Jayaswal et al. 2003). T. harzia-
num was produced at 30  °C in a medium containing 30  g/L glucose and a 
carbon-to-nitrogen ratio of 24 (Said 2007). T. hamatum and T. asperellum preferred 
temperatures between 25 and 35 °C for sporulation, but T. harzianum and T. viride 
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preferred 25–40  °C; the best sporulation for these four species of Trichoderma 
occurred in the pH range of 4.6–7.6 (Zehra et al. 2017). It is striking that Trichoderma 
can sporulate in extreme environments. Sharma et al. (2013) note that sporulation 
was induced at 0 °C in three isolates of Trichoderma—T. harzianum, T. viride, and 
T. koningii.

14.3  Bioactivity of Trichoderma

This genus has a high ability to attack and kill other fungi. This bioactivity is a part 
of the Trichoderma life cycle; production changes in accordance with alterations in 
the environment.

14.3.1  Production of Enzymes

Trichoderma secretes several important enzymes that are used for survival and to 
compete with and attack other organisms. Trichoderma can produce enzymes within 
appropriate temperature and pH conditions, and on appropriate nutrient substrates. 
Water potential and pH affect the production of enzymes by Trichoderma species 
(Kredics et al. 2004). Different conditions discriminate between isolates and species 
of Trichoderma.

At high temperatures, T. reesei strain RL-P37, cultivated at 37 °C in medium 
containing lactose, hypersecreted the xylanase enzyme (Suh et al. 1988). T. viride 
SL-1 produced cellulase at temperatures ranging from 30 to 50 °C (Tao et al. 1997). 
Temperature can change the cellulase enzyme in the subsequent stages. The activity 
of cellulase from T. reesei was not affected until the temperature reached 37 °C; 
enzyme activity decreases at temperatures from 37 to 50 °C, an no activity occurred 
at temperatures above 70 °C (Andreaus et al. 1999). T. harzianum 1073D3 produced 
the xylanase enzyme, with high activity at 60 °C and pH 5 in medium containing 
1% xylan (Isil and Nilufer 2005). T. lignorum (Tode) Harz produced cellulolytic 
enzymes on banana waste at an optimal temperature of 45 °C and at a pH of 5.6–5.8 
(Baig 2005). Trichoderma sp. produced cellulase at an optimal temperature (45 °C) 
and pH (6.5), on a nutrient substrate with an appropriate carbon-to-nitrogen ratio, 
such as cellulase (municipal solid waste residue), peptone, and yeast extract 
(Gautam et al. 2011). Cellulase was produced by T. reesei strain HY07 cultivated on 
a nutrient substrate (1.5% ammonium sulfate) at 30 °C (Guoweia et al. 2011). T. 
harzianum and T. viride produced the active enzyme chitosanase at pH 5.0; T. kon-
ingii and T. polysporum produced this enzyme at pH 5.5, and a temperature between 
40 and 50 °C did not affect chitosanase activity (Da Silva et al. 2012). The highest 
production of glucose through secretion of the cellulase enzyme by T. reesei 
occurred at 30 °C and pH 4.5 (Silas et al. 2017). T. asperellum was producing the 
cell wall-degrading enzymes (CWDEs) and be high activity at 36°C (Qiu et  al. 
2017).
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At moderate temperatures, Trichoderma strains such as T. aureoviride T122, T. 
harzianum T66 and T334, and T. viride T114 and T228 produce different extracel-
lular enzymes, including of β-glucosidase, cellobiohydrolase, and β-xylosidase; at 
25 °C, this production is related to two factors: water potential and pH (Kredics 
et al. 2004). Some isolates of Trichoderma produce enzymes at low temperatures 
(extreme environments). T. aureoviride, T. harzianum, and T. viride were cold-resis-
tance strains and produced high levels of various extracellular enzymes that are 
active highly at 5 °C: chitinases, proteases, and β-glucosidases (Antal et al. 2000).

14.3.2  Production of Secondary Metabolites

Trichoderma produces secondary metabolites (volatile and nonvolatile compounds) 
within particular environments. Extreme environments already affect the capacity 
of Trichoderma to produce these compounds. Temperature and pH affect the effi-
cacy of Trichoderma. A new isolate of T. harzianum, SQR-T037, was highly effica-
cious in producing volatile and nonvolatile compounds at 30 °C and pH 6, but very 
few compounds were produced under extreme conditions (Raza et  al. 2013). 
Tronsmo and Dennis (1978) mention the high ability of some Trichoderma isolates 
to produce nonvolatile antibiotics at low temperatures; others, however, produce at 
high temperatures. Mukherjee and Raghu (1997) suggested that the fungitoxic 
metabolites are produced with higher concentrations of Trichoderma at higher tem-
peratures. Also, six new peptaibol compounds, asperelines A–F (1–6), were pro-
duced by T. asperellum isolated from Penguin Island in the Antarctic (Ren et al. 
2009). Four isolates of Trichoderma—T. parareesei T26, T. koningii TR102, and T. 
harzianum Tveg1 and TL5—produced 30 possible antifungal compounds at 
28–30 °C under 12 h of darkness and 12 h of light (Al-Ani 2017).

14.4  Diversity of Trichoderma

The genus Trichoderma is widely diverse worldwide. The varying diversity of 
Trichoderma is dependent on climate and soil traits. Trichoderma spp. are predomi-
nant in all climate zones and are free-living organisms that grow in soil, root, and 
foliar environments (Harman et al. 2004). The four main climate zones globally are 
tropical, subtropical, temperate, and polar. Extreme environments are found in all 
climate zones that comprise characteristics such as lack of water potential (drought), 
high or low temperatures, high elevation, and extremely high pH. Lupo et al. (2002) 
classified the genus Trichoderma as mesophilic organisms. Kredics et  al. (2003) 
mention that most Trichoderma isolates are mesophiles.

T. harzianum, T. virens, T. spirale, T. koningii, T. atroviride, T. asperellum, T. 
reesei, T. viride, T. hamatum, and T. ghanense were isolated from Taiwan and 
Western Indonesia in Southeast Asia (the tropical zone) (Kubicek et al. 2003). T. 
koningii growth is restricted in eastern North America and Europe, but other  species, 
such as T. koningiopsis, T. caribbaeum var. aequatoriale, T. ovalisporum,  
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T. ovalisporum, and T. stilbohypoxyli, grow in tropical areas (Samuels et al. 2006). 
Many isolates of Trichoderma species—T. harzianum, T. hamatum, T. asperelloi-
des, and T. spirale—were detected in the rhizosphere in the coffee-growing region 
in the highlands of Ethiopia and are more endemic in tropical regions such as Africa 
(Mulaw et al. 2010). T. reesei and T. parareesei are widespread throughout the pan-
tropical region (Druzhinina et al. 2010). many strains of Trichoderma were identi-
fied in the neotropical region of Mexico, including T. asperellum, T. brevicompactum, 
T. harzianum, T. koningiopsis, T. longibrachiatum, T. pleuroticola, T. reesei, T. spi-
rale, and T. virens (Torres-De la Cruz et al. 2015). Most species of Trichoderma, 
such as T. harzianum, T. reesei, and T. parareesei, show diverse isolates from Pulau 
Penang, Malaysia (Al-Ani 2017) (Fig. 14.1).

Three strains of Trichoderma—one strain of T. harzianum and two of T. asperel-
lum—were isolated from a subtropical desert (Montoya-Gonzalez et al. 2016). T. 
asperellum, T. virens, T. harzianum, T. sinensis, T. citrinoviride, T. longibrachiatum, 
T. koningii, T. atroviride, T. viride, T. velutinum, and T. cerinum were isolated from 
subtropical and temperate zones in northern, southern, and eastern China; almost 
half of those species were T. harzianum (Zhang et al. 2005). T. viride and T. harzia-
num were found on Mount Moosilauke in New Hampshire in the United States 
(temperate zone), where they grew under cold temperatures in winter and moderate 
temperatures in summer, ranging from −10 to 25 °C. Several isolates of T. harzia-
num (21 strains), T. rossicum (13 strains), T. cerinum (4 strains), T. hamatum (2 
strains), and T. atroviride and T. koningii (1 strain each) were identified in southeast 
Austria (Wuczkowski et al. 2003). T. harzianum, T. koningii, T. longibrachiatum, 
T. viride, and T. citrinoviride were collected from decaying wood in Poland 
(Błaszczyk et  al. 2011). Many species of Trichoderma were isolated from three 
mountains in different regions of Poland, including T. atroviride, T. citrinoviride, 
T. cremeum, T. gamsii, T. harzianum, T. koningii, T. koningiopsis, T. longibrachiatum, 
T. longipile, Trichoderma sp. (Hypocrea parapilulifera), T. viride, and T. viridescens; 
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Fig. 14.1 Percentages of several species of Trichoderma (T. harzianum, T. reesei, T. parareesei, 
T. brevicompactum, T. koningii, T. atroviride, T. erinaceum, and T. capillare)
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one species, T. viride, comprised 53% of the isolates (Błaszczyk et  al. 2016).  
T. orientale, T. spirale, T. tomentosum, T. albolutescens, and T. asperelloides were 
found to be the first recorded Trichoderma species in Korea (Jang et al. 2017).

Six strains of T. polysporum were isolated from arctic wetlands in Norway (polar 
zone) (Yamazaki et al. 2011). T. asperellum was isolated from sediment on Penguin 
Island in the Antarctic (Ren et al. 2009). The pH factor is affecting the diversity of 
Trichoderma in some time. Trichoderma did not grow, or grew only little, at pH 
below 2.0 or above 6.0 (Kredics et al. 2003). For example, soil pH might be affected 
on the distribution of T. harzianum under pH 6.2 and over pH 7.9 (Eastburn and 
Butler 1988).  In addition, the distribution of T. koningii was related with a soil 
pH (Muniappan and Muthukumar 2014).

14.5  Trichoderma as an Antagonistic BCA

Trichoderma is used widely as a BCA against many plant pathogens. The 
Trichoderma fungus is important worldwide as an alternative to chemical pesti-
cides. Trichoderma spp. are used as BCAs (biopesticides) and are safe for the eco-
system. For successful biocontrol of plant pathogens, the isolate, strain, or species 
must be selected appropriately based on the ecology in the location of use. Therefore, 
environmental conditions are an influential factor in the antagonism of Trichoderma 
through use as a biopesticide. pH, temperature, and water potential affect it’s bio-
control status against plant pathogens. Mukherjee and Raghu (1997) mention that 
temperature is the critical factor that influences BCAs. In addition, Kredics et al. 
(2004) presented the importance of water potential and pH in antagonism.

In low-temperature environments, Trichoderma increasingly suppressed plant 
pathogens such as Gaeumannomyces graminis var. tritici; the suppression for this 
pathogen can be highly in acidic soils through the addition of ammonium sulfate at 
15 °C (Simon et al. 1988). Three cold strains of such as T. aureoviride, T. viride, and 
T. harzianum used as BCAs were actively antagonistic and showed high interactions 
that produced appressoria at different temperatures (5 °C, 10 °C, and 20 °C) (Antal 
et al. 2000). By producing the antibiotics, an arctic strain of T. polysporum could 
control Pythium iwayamai, which causes snow rot (Kamo et al. 2016).

In moderate temperatures, Trichoderma spp. were antagonistic against the patho-
gen Sclerotium rolfsii in dual cultures at temperatures ranging from 25 to 30 °C, but 
Trichoderma spp. do not suppress S. rolfsii at temperatures above 30 °C (Mukherjee 
and Raghu 1997). Water potential and pH affected the mycoparasitism of some spe-
cies of Trichoderma (T. harzianum, T. viride, and T. aureoviride) at 25 °C (Kredics 
et al. 2004). At 25 °C, the ability of T. harzianum to antagonize Verticillium dahliae 
was reduced in high-salinity soils (Regragui and Lahlou 2005). T. harzianum strain 
T22 was very antagonistic against Fusarium oxysporum f. sp. lactucae strain 
365.07; T. harzianum caused this Fusarium to wilt at 25 °C and at high extremes of 
water potential (−0.03 and −0.50 MPa) (Innocenti et al. 2015). T. harzianum LU698 
has more influence on Sclerotinia sclerotiorum and reduced the viability of sclero-
tia under water potential values of −0.1 and −0.3 MPa, but T. asperellum LU697 
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was affected at water potentials of −0.01 and −1.5 MPa and at 25 °C (Jones et al. 
2016). Al-Ani (2017) isolated 32 different strains of Trichoderma from regions in 
northern and in the middle of Malaysia and found that more of these isolates were 
highly antagonistic against F. oxysporum f. sp. cubense Tropical Race 4 that was 
isolated from the same region.

In high-temperature regions, strains of T. harzianum, T. viride, T. hamatum, T. 
pseudokoningii, T. koningii, and T. longibrachiatum could control Macrophomina 
phaseolina and showed maximal inhibition at 35  °C, but T. pseudokoningii was 
inhibitory at a temperature of 40 °C (Malathi and Doraisamy 2003). T. harzianum 
Th2 inhibited the growth of F. oxysporum f. sp. ciceri to a minimal level (10–12%) 
in sandy clay at 35 °C and water potential of −0.3 MPa (Inam-Ul-Haq et al. 2009). 
In addition, 14 Trichoderma species isolated from soils in a desert in Algeria were 
very antagonistic against three plant pathogens. T. harzianum 8.4, T. asperellum 
12-2, and T. asperellum BP60 were isolated from sandy soils in a desert but only the 
T. asperellum BP60 isolate was active at temperatures below 50  °C (Montoya-
Gonzalez et al. 2016). This isolate was able to control Setophoma terrestris, which 
causes pink root rot on green onions, under extreme temperatures and produced 
siderophores and chitinases (Montoya-Gonzalez et al. 2016). Trichoderma isolates 
had highly antagonistic activity against F. oxysporum f. sp. cubense Tropical Race 4 
at temperatures ranging from 28 to 32 °C (Al-Ani et al. 2013; Al-Ani 2017; Al-Ani 
and Albaayit 2018).

14.6  Conclusion

Trichoderma has an amazing ability to survival in extreme environments, but this 
survival depends on the species and environmental factors. Indeed, temperature has 
more of an impact on Trichoderma than other factors such as pH, water potential, 
and nutrient substrate. The optimal temperature for all physiological actions of 
Trichoderma (e.g., germination of conidia and hyphae, sporulation, production of 
active enzymes, and antagonism) lies within the temperate range. Temperatures in 
the range of 0–50  °C can be considered the main extreme factor affecting 
Trichoderma . The second most important factor that affects Trichoderma is 
pH. Species of the Trichoderma genus can grow at high or low pH values (2.0–13), 
but the level of growth differs from one species to another. The Trichoderma popu-
lation is increasing in acidic soils that contain the ammonium sulfate.

The third factor affecting Trichoderma growth is the nutrient substrate, which 
can be efficacious but is not as important as temperature and pH. The nutrient sub-
strate is important for inducing the growth and antagonism of Trichoderma. The 
fourth factor with an effect on Trichoderma growth and activity is water potential. 
This factor is also important in determining the diversity and distribution of 
Trichoderma in soil. The lack of water, and pH, have potential effects on the growth 
and mycoparasitic action of Trichoderma. Light and humidity are important factors 
in the sporulation and dispersal of Trichoderma, as well as, Highland is affecting the 
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diversity of Trichoderma. These major and minor factors are the main parameters 
for estimating the effects of Trichoderma strains against plant pathogens.

Four points can be considered to clarify how to confront the decrease in effi-
ciency of Trichoderma products used against plant pathogens and to enhance plant 
growth in fields. First, the appropriate parameters must be determined before being 
used. Second, Trichoderma must be isolated from the same climate zone or an area 
nearest the plant pathogens. Isolates of Trichoderma from the same area as the plant 
pathogens or plants will have higher efficacy when used. This may guarantee suc-
cess in the biocontrol of plant pathogens, enhancement of plant growth, and use in 
other activities. Third, the genome of Trichoderma is responsible for controlling the 
cells upon confrontation of difficult conditions that affect germination, dispersal, 
and survival. Therefore, mutations in Trichoderma can improve the traits necessary 
to tolerate poor conditions. The fourth and final point is the importance of 
Trichoderma to resist unfavorable conditions in order to be beneficial in controlling 
phytopathogens; this helps the plants by enhancing their capability to resist the 
stress of a difficult environment. The high tolerance of Trichoderma strains to 
extreme environments is useful when applying it to the different crops and in help-
ing growth and improving and increasing production within several climate zones.
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15.1  Introduction

EPS-producing microorganisms have been isolated from different natural sources of 
both aquatic and terrestrial environments, like freshwater, marine water, wastewa-
ter, soils, biofilms and also extreme niches such as hot springs, cold environments, 
hypersaline and halophilic environments, salt lakes and salterns (Maugeri et  al. 
2002; Nichols et al. 2005a; Mata et al. 2006; Poli et al. 2007; Satpute et al. 2010; 
Poli et al. 2010; Andersson et al. 2011; Nicolaus et al. 2016).

Extreme environments, generally characterized by atypical temperatures, pH, 
pressure, salinity, toxicity and radiation levels, are inhabited by various microorgan-
isms specifically adapted to these particular conditions.

These extreme environments have been identified as an important source of 
 bacteria, archaea, algae and fungi with interesting applications, and the organisms, 
living there, have developed different strategies to cope with adverse living 
 conditions, and the production of EPSs is a frequent survival strategy (Nicolaus 
et al. 2004; Nichols et al. 2005a). For example, bacteria living in extreme marine 
environments such as those found in the cold waters of polar regions, in ocean 
trenches or in deep- sea hydrothermal vents often use EPSs as an efficient protective 
barrier (Nichols et al. 2005a).
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The protection conferred by EPSs in these hostile environments is achieved by 
the formation of biofilms to withstand high pressure and/or temperature or by 
decreasing the freezing point of water in the vicinity of the bacteria (Nichols et al. 
2005a). Similar strategies are used by thermophilic bacteria found in terrestrial hab-
itats (Lin et al. 2011).

Polysaccharides produced by microbes can be generally classified by their bio-
logical functions into intracellular storage polysaccharides (glycogen), capsular 
polysaccharides which are closely linked to the cell surface (e.g. K30 O-Antigen) 
and extracellular bacterial polysaccharides (e.g. xanthan, sphingan, alginate, cel-
lulose, etc.) that are important for biofilm formation and pathogenicity. This article 
will focus on the latter, also termed EPS, which are secreted to the surrounding 
environment and therefore can be efficiently harvested from cell-free culture 
supernatant in a continuous and cost-effective manufacturing process (Schmid 
et al. 2015).

The capability to synthesize exopolysaccharides has been observed for microor-
ganisms belonging to both Archaea and Bacteria domains and in all kind of extremo-
philic microorganisms, by means of thermophiles, halophiles, psychrophiles, 
acidophiles, anaerobes and so on (Poli et al. 2007; VanFossen et al. 2008; Michel 
et al. 2009; Radchenkova et al. 2013; Casillo et al. 2017; Poli et al. 2017).

Due to their many interesting physicochemical and rheological properties, these 
biopolymers possess novel functionality that is generally superior to petrochemical- 
derived polymers in aspects that embrace biodegradability and environmental and 
human compatibility. Consequently, biopolymers of extremophiles are widely used 
in foods, cosmetics, pharmaceutical products, textiles, detergents, adhesives, oil 
recovery from wells, brewing and waste treatment processes (Poli et al. 2009).

15.2  Ecological and Physiological Roles

The EPS production process resulted to be a physiological mechanism for some 
microbial genera, such as Xanthomonas, Leuconostoc, Pseudomonas and 
Alcaligenes, which synthesized xanthan, dextran, gellan and curdlan (Finore et al. 
2014), but also a response to biotic and abiotic stress factors (Donot et al. 2012).

These biomolecules carried out an ecological role, allowing the bacteria to pro-
liferate in stressful environmental conditions; by means of high or low values of 
temperature, high salt concentration and extreme of pHs; and in the presence of 
more stress factors simultaneously (Nicolaus et al. 2010; Finore et al. 2015; Poli 
et al. 2017).

Microorganisms synthesized and released out of the cell polymers for their sur-
vival. Therefore, the role of energy reservoir and defensive agent has been attributed 
to the EPS; in addition their production can influence the cell functioning, the 
osmotic regulation and the symbiosis and sustain the microorganism in all vital 
function, from the adaptation to the cell reproduction (Steinbüchel 2001; Vijayendra 
and Shamala 2014).
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The EPS production process necessitated a conspicuous energy expenditure for 
the microorganism, up to 70% of carbon investment. Evidently, the advantage com-
ing from the EPS production was much more higher with respect to their survival 
(Wolfaardt et al. 1999).

Hot niches hosted a wide variety of prokaryotic microorganisms. They 
 represented an interesting source of many bioactive compounds, including exo-
polysaccharides. Thermophilic microorganisms proliferated in a wide range of 
temperature, from 122  °C of hyperthermophile Methanopyrus species (Takai  
et al. 2008) up to 50–60 °C of thermotolerant microorganisms. Thermophiles pro-
ducing EPS have been isolated from both Bacteria (Aeribacillus, Bacillus, 
Brevibacillus, Geobacillus, Thermotoga and Thermus) and Archaea (Sulfolobus 
and Thermococcus) domains (Kambourova et  al. 2016). The exopolymers 
 surrounded the microbial cells by contributing to their survival: (a) the roles of 
protection against predators, (b) the energy and carbon source reservoir and (c) the 
regular nutrient uptake even in environments wherein they would tend to be dis-
persed. In particular, marine thermophiles, isolated from deep-sea hydrothermal 
vents, showed ability to grow in the presence of metal ions and toxic substances; 
this capability was derived from the presence of exopolysaccharides bound with 
high-affinity cations and trace metals (Loaëc et al. 1997).

Cold environments are distributed all over the world and are characterized by a 
low nutritive substance diffusion; psychrophiles and psychrotrophs are microbes 
that thrive in these places, and need or tolerate low temperature values, respectively. 
Their capability to proliferate in freezing niches is related to different cellular mech-
anisms, from membrane lipid compositions to the cold-stable RNA conformation 
up to exopolysaccharide synthesis (Poli et al. 2017). The high amount of polyhy-
droxyl groups of EPS decreased both the freezing point of water and the ice nucle-
ation temperature (De Maayer et al. 2014). The EPSs assumed a gelatinous aspect 
in nature, playing a cryoprotection role, because they modified the immediate sur-
rounding environment of the cell (McLean 1918; Ewert and Deming 2013).

Abundant amount of exopolysaccharides have been found both in Antarctic and 
Arctic marine bacteria and in all cold environment (Poli et al. 2017). These poly-
mers altered the chemical parameters around the microbial organisms, contributing 
to the adhesion of cells to surfaces with water and nutrient sequester, improving 
their uptake. In addition, the EPS can preserve the extracellular enzymes against 
the freezing temperatures, avoiding their denaturation (D’Amico et al. 2006). The 
EPSs protected the cells from viral attacks and influence the osmosis (Deming and 
Young 2017).

The obligately marine and psychrophilic γ-proteobacterium, Colwellia psychr-
erythraea strain 34H, is reported as an EPS-producing bacterium. The production of 
EPS did not change over growth-permissive temperatures of ~10 to −4 °C, but from 
−8 to −14 °C when samples froze, EPS production rose dramatically. Moreover, in 
salinity tests at 10‰–100‰ (and −1 and 5 °C), EPS production also increased at 
the freshest salinity tested, and the strain 34H recovered best from deep-freezing to 
−80 °C if first supplemented with a preparation of its own EPS, rather than other 
cryoprotectants like glycerol. These results suggested that the EPS represented a 
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survival strategy of microorganisms in a harsh environment and an interesting com-
pound with potentially properties for biotechnological application (Marx et  al. 
2009). In a following paper, the detailed molecular primary and secondary struc-
tures of capsular polysaccharide from C. psychrerythraea 34H cells were reported. 
The polysaccharide consisted of a tetrasaccharidic repeating unit containing two 
amino sugars and two uronic acids bearing threonine as substituent. The structural 
features of this EPS resemble those present in antifreeze proteins and glycoproteins. 
These results suggested a possible correlation between the capsule structure and the 
ability of C. psychrerythraea to colonize subfreezing marine environments and, 
more, confirmed the potential properties of this polymer (Carillo et al. 2015).

In literature  have been reported many examples of halophilic microorgan-
isms able to synthesize exopolysaccharides and this property has been linked to a 
specific regulation role in the presence of salts. The polymers around the microbial 
cell attenuated the physical stress due to the salinity. Many halophilic microorgan-
isms possessed exopolysaccharides around the cell, for protecting membrane integ-
rity (DasSarma and DasSarma 2001; Poli et al. 2010; Qurashi and Sabri 2012; Oren 
2013). Halophilic Archaea producing EPS are Haloarcula, Halococcus, Haloferax 
and Natronococcus (Nicolaus et al. 2010). Also halophilic Bacteria are good pro-
ducers of EPSs, for example, Halomonas maura produced mauran, an exopolysac-
charide deeply investigated and with a wide commercial use (Arias et al. 2003).

15.3  Microbial Exopolysaccharides’ Isolation, Purification 
and Structure Definition

Exopolysaccharides are produced as exocellular polymers that generally account 
for about 40% to 95% of the extracellular polymeric substances (Flemming and 
Wingender 2001). Exopolysaccharides can be dispersed in the biofilm matrix sur-
rounding the cell, or they can be found as a discrete layer enveloping the cell: usu-
ally the polysaccharides belonging to the cell envelope of the bacteria are also 
referred to as capsular polysaccharides (CPSs) and lipopolysaccharides (LPSs), the 
latter being present only in Gram-negative bacteria. In general, the term EPS indi-
cates the extracellular polysaccharide molecules that are not tightly bound to the 
cell surface but sloughed off to form slime, although the release of polysaccharides 
from the cell surface is not an absolute criterion to distinguish EPSs from the other 
carbohydrate capsular components (Roberts 1996).

Isolation of EPSs is a challenging task since these polymers are found embedded 
in a complex matrix also containing proteins and other biomolecules, i.e. the biofilm 
matrix. Therefore, the quantitative recovery of an EPS is very difficult to achieve 
because usually a fraction can remain bound to the cell and because the sample can 
be contaminated from intracellular materials released during isolation procedures 
after cell disruption. There is no single isolation and purification protocol generally 
efficient for EPS recovery; indeed the isolation procedure can change depending on 
the microbial source of EPSs.
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Isolation of water-soluble EPSs is usually implemented by cold ethanol precipi-
tation, although also other solvents can be used, for example, acetone, isopropyl 
alcohol or methanol. The protocols to be adopted strongly depends on the bacterial 
growth method: indeed, in the case of static mode (seeding on agar plates), a previ-
ous step of cell’s fixing or removal is required in order to avoid EPS contamination 
from endocellular molecules; then washing with an alkali solution and centrifuga-
tion will afford a crude EPS sample (Bales et al. 2013). Another strategy is repre-
sented by washing with NaCl solution and adding a bacteriostatic agent in order to 
preserve cell integrity; after cell removal by centrifugation, addition of solvent will 
precipitate the EPS for further purification. If a liquid culture has been implemented, 
the solvent precipitation has to be forerun by centrifugation to remove intact cells 
(Fig. 15.1) (Di Donato et al. 2016).

Dialysis is the classical method of EPSs’ purification, although in order to 
remove contaminants, for example, LPSs, other methods can be used including 
chromatography; dissolution in 0.01 M EDTA followed by extraction with chloro-
form/methanol (Bligh and Dyer treatment); suspension in 0.05  M Tris HCl and 
addition of sodium deoxycholate followed by acidification with acetic acid (20%) 
and centrifugation to remove LPSs; dissolution in water or 0.01 M EDTA in the 
presence of Triton X-114, followed by addition of NaCl 2% w/v and cold ethanol to 
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Fig. 15.1 General scheme of water-soluble EPSs’ isolation and purification. (Partially adapted 
from Di Donato et al. (2016))
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precipitate the purified EPS (Du et al. 2017); or finally trichloroacetic acid (TCA) 
addition to remove nucleic acids followed by ethanol precipitation and then gel fil-
tration chromatography for EPS final purification (Bales et al. 2013).

In the case of water-insoluble EPSs, for example, cellulose, isolation is carried 
out in harsh conditions, such as treatment with acetic acid and nitric acid at 95 °C or 
with NaOH at 80 °C, followed by washing with distilled water and neutralization 
acetic acid, thus achieving a purified polysaccharide (Rangaswamy et al. 2015).

The complete structural definition of the EPSs is carried out by means of chemi-
cal, analytical and spectral techniques. First of all, the gross chemical composition 
of a purified EPS is assessed by determination of the total carbohydrate content 
(DuBois et al. 1956), of the total protein content (Bradford 1976), of the nucleic 
acids and of the uronic acids (Spanò et al. 2013). The monosaccharide composition 
and the determination of linkage positions are carried out by hydrolysis of the poly-
mer followed by liquid or gas chromatography. The hydrolysis is usually carried out 
by treatment in trifluoroacetic acid (TFA) at 110–120 °C followed by analysis of the 
resulting mixture by means of TLC or of high-performance anion-exchange chro-
matography with pulsed amperometric detection (HPAE-PAD). The hydrolysed 
polymer can also be subjected to derivatization (by per-acetylation or silylation 
treatments), and in these cases, the identification of monomer sugars is carried out 
by means of gas chromatography (GC) analysis. The determination of linkage posi-
tions of sugars in the EPS is accomplished by methylation analysis (MA), i.e. treat-
ment with methyl iodide followed by acidic hydrolysis, reduction and acetylation/
silylation: the so-obtained volatile alditol acetates or methylsilanes are then identi-
fied by GC-MS. The chemical analysis is completed by determination of functional 
and substituting groups that is commonly implemented by means of Fourier- 
transform infrared spectroscopy (FTIR) or nuclear magnetic resonance (NMR) 
(Mishra and Jha 2013). The spectral NMR and FTIR techniques are useful to con-
firm the chemical composition of the EPSs (determination of the number and the 
type of monomer sugar residues identified by chemical degradation), but they also 
allow to gain other fundamental information like the anomeric configurations of the 
monosaccharides and their sequence in the polymer backbone.

NMR spectroscopy is a useful tool for the determination of EPSs’ backbone 
composition and conformation; indeed thanks to 1D and 2D 1H- and 13C-NMR tech-
niques, coupled with the use of relevant databases such as Carb-Bank, SUGABASE 
or CASPER, it is possible to estimate the number of sugar residues present in an 
EPS and their mode of linking. In particular, the 2D heteronuclear techniques like 
HSQC, HMQC or HMBC are useful for the determination of the anomeric configu-
ration of monomer sugars, the homonuclear TOCSY or DQF-COSY is useful for 
the identification of the single monosaccharides, and finally NOESY and HMBC 
techniques allow the determination of glycosidic linkages sequence along the poly-
saccharide backbone (Duus et al. 2000). FTIR is also a valuable tool in the structural 
definition of EPSs since it allows to recognize the presence of the peculiar func-
tional groups characterizing either monosaccharides or probable substituents in the 
polymer backbone (Wiercigroch et al. 2017). Molecular weight’s determination is 
another important issue to be addressed for a complete structural characterization of 
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an EPS. Several classical techniques are available for such a study, for example, 
light scattering, analytical ultracentrifugation, viscosity determination and size- 
exclusion chromatography (SEC). More recently some innovative techniques like 
high-performance size-exclusion chromatography (HPSEC) coupled with refractive 
index (RI) detection or multi-angle laser light scatter (MALLS) detection have 
gained increasing attention. Such techniques require smaller quantities of samples, 
compared to the other methods, and enable faster analyses: in particular RI is a use-
ful tool for the determination of molecular weight distribution, while MALLS 
detector allows to evaluate the absolute molecular weight with higher accuracy 
(Gómez-Ordóñez et al. 2012).

15.4  Examples of Polysaccharide-Producing Extremophilic 
Microorganisms

The demand of biomolecules is growing quickly because of their advantageous 
application in a wide variety of market segments (e.g. biotechnology, biomedicine, 
cosmetics, pharmaceutical industry, food processing, etc.).

Polysaccharides represent one of the more interesting classes of biomolecules 
for biotechnological application, due to their wide range of functional properties 
which make them able to form gels, films and membranes. In particular, carbohy-
drate polymers from natural sources have the significant advantage to be biocom-
patible, biodegradable, bioadhesive and nontoxic.

Moreover, the research of polysaccharides from microbial origin is very interest-
ing, in particular those produced by extremophilic microorganisms. Extremophiles 
are able to thrive in a wide variety of harsh habitats because of their capability to 
counterbalance extreme physical or chemical parameters by means of different 
strategies. One of these mechanisms is the synthesis of special biomolecules with 
unique proprieties. Extreme biomolecules have the important advantage of resisting 
and be effective even in the harsh environmental conditions in which the extremo-
philic microorganisms live (such as extreme temperature, pH, salt concentration and 
hydrostatic pressure). These parameters are very close to those of biotechnological 
processes; therefore this kind of biomolecules can be considered an important 
source of special compounds for industrial application. In addition, the unique prop-
erties of these substances make them possible to carry biotechnological processes at 
high temperatures or high saline concentrations; thus the risk of contamination is 
reduced to a minimum (Raddadi et al. 2015).

In this paragraph we report the different polysaccharides isolated from extremo-
philic microorganisms from Eurasia of which the chemical characterization has 
been completely or partially performed.

Thermophilic bacteria are the largest group of polysaccharides extracted from 
extremophilic microorganisms. In Table 15.1 are reported some examples.

Concerning psychrophiles, most of polysaccharide-producing microorganisms 
have been isolated from Antarctic regions. In literature, there is actually only one 
example of polysaccharide isolated from psychrophilic bacteria from Eurasia. Ko 
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et  al. (2000) isolated an extracellular polysaccharide (molecular mass over 
2 × 106 Da) from the marine isolate Hahella chejuensis (Ko et al. 2000). The mono-
saccharidic composition of the carbohydrate polymer was partially characterized 
and consisted of galactose, glucose, xylose and ribose.

The isolation of polysaccharides from halophilic bacteria is reported for only six 
strains, from which six carbohydrate polymers have been chemically characterized 
in total. The examples of polysaccharides from Halophiles, together with the one 
isolated from the psychrophile Hahella chejuensis, are reported in Table 15.2.

The last group is represented by microorganisms belonging to the Archaea 
domain. In literature eight polysaccharide-producing Archaea have been chemically 
characterized (Table 15.3). It is interesting to notice that glucose and mannose are 
almost always present, often as main monosaccharides.

The research on polysaccharides from Eurasian extremophilic microorganisms 
has mainly developed over the last 20 years. In fact, analysing all the tables, it is 
possible to notice that most of the studies are dated after 2000. The growing interest 
in this topic has essentially two reasons: first, it is important to deeply investigate 
the physiological mechanisms at the basis of the polysaccharide production, in 
order to better understand the ecological role of these biomolecules in extremo-
philes; in addition, the unique proprieties of extremophilic carbohydrate polymers 
make them highly attractive to biotechnological industry. These subjects will be 
deeply investigated and discussed in the following paragraphs.

15.5  Application and Biological Activities

In an extreme environment, the synthesis of exopolysaccharides (EPSs) is in 
response to adaption to prohibitive conditions. Therefore, these biomolecules pro-
duced by extremophiles showed unique features for adapting to extreme conditions. 
EPS-producing microorganisms, in particular those from extreme habitats, have 
become the natural source of polysaccharides of growing interest for their bioactivi-
ties and physicochemical properties; therefore they represent very promising com-
pounds for biotechnological applications. Herein, we report the most representative 
examples of EPSs isolated from extremophiles having great potential in application 
in numerous industrial sectors such as tissue engineering, drug delivery and cos-
metic (Table 15.4).

15.5.1  Halophiles

Among halophiles microorganisms, Halomonas represents the most common 
 genera producing EPSs. Mauran is a highly polyanionic sulphated exopolysaccha-
ride produced by a moderately halophilic bacterium Halomonas maura. For its 
unique physicochemical properties, mauran has been successfully employed in the 
nanoparticle synthesis and application for sustained drug delivery, cancer chemo-
therapy and bioimaging and for its antioxidant defence mechanism along with 

15 Exopolysaccharide-Producing Microorganisms from Extreme Areas: Chemistry…
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haemocompatibility under in  vitro conditions using L929 (mouse fibroblast cell 
line) and mice liver homogenate (Bouchotroch et  al. 2001; Arias et  al. 2003; 
Raveendran et al. 2013a, b). Other halophilic EPS producers belonging to the genus 
Halomonas are H. eurihalina, H. ventosae and H. anticariensis. Nineteen strains 
belonging to H. eurihalina were studied for their ability to produce EPS in two dif-
ferent culture media. Results showed that the chemical composition of the polysac-
charides was affected by the strain and by the culture medium. All EPS exhibited an 
unusually high sulphate content. Moreover, the EPS from strain H96 contained sig-
nificant amounts of uronic acid. EPS from strain H96, cultivated in defined NH 
medium (minimal medium), showed an interesting rheological feature reaching a 
viscosity value of 30,000 cP at pH 3.0. This gelificant ability, probably due to its 
high uronic acid content, is attractive for industrial application, for example, in bio-
detoxification and water treatment (Béjar et al. 1998).

H. ventosae strains Al12T and Al16 produced polymers showing a molecular 
mass of about 50  kDa, and their main components were glucose, mannose and 
galactose. Moreover, they exhibited emulsifying activity on several hydrophobic 
substrates. H. anticariensis strains FP35T and FP36 also excreted polymers having 
a molecular mass of about 20 and 46 kDa, respectively, and were composed mainly 
of glucose, mannose and galacturonic acid. All EPSs produced solutions of low 
viscosity and pseudoplastic features. Furthermore, they also exhibited a high affin-
ity for binding cations and incorporated considerable quantities of sulphates, just as 
do those produced by H. maura and H. eurihalina, which is very uncommon in 
bacterial polysaccharides, but represents an advantageous feature for biotechnologi-
cal application. Both bacteria formed biofilms both in polystyrene wells and boro-
silicate test tubes. In particular, H. ventosae strain Al16 gave the best results in 
biofilm formation assays, possibly due to the high emulsifying activity of its poly-
saccharide (Mata et al. 2006).

Halomonas smyrnensis strain AAD6T, isolated from soil samples taken from 
Çamaltı Saltern area in Turkey, was found to produce high levels of levan (Poli et al. 
2009, 2013). This EPS did not affect cellular viability and proliferation in two dif-
ferent cellular systems tested, osteoblasts and murine macrophages, demonstrating 
its high biocompatibility. Besides, it displayed a protective effect against the toxic 
activity of avarol implying its additional use as an anti-cytotoxic agent. The poten-
tial applications of levan as an industrial gum, a blood plasma extender, a sweetener, 
an emulsifier, a formulation aid, a stabilizer, a thickener, a surface-finishing agent, 
an encapsulating agent and a carrier for flavour and fragrances are known (Shih 
et al. 2005; Beine et al. 2008). Then, Halomonas sp. AAD6 represented an alterna-
tive cheap source of levan polymer when grown on defined media hypothesizing its 
larger employment in industrial application being a non-pathogenic microorganism 
(Sam et al. 2011; Sezer et al. 2011).

A species of halophilic, EPS-producing bacterium belonging to the 
Alphaproteobacteria, is the type strain (A3T) of Salipiger mucosus, isolated on the 
Mediterranean seaboard. The EPS produced by S. mucosus was able to emulsify 
high percentages of pure hydrocarbons (tetradecane, octane, kerosene, xylene and 
crude oil) more than other chemical surfactants used in comparison. This ability 
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could be ascribed to the presence of acetyl groups which render the EPS somewhat 
hydrophobic. Furthermore, the EPS was also able to bind cations and to incorporate 
high quantities of sulphates, which represent a very unusual feature in bacterial 
polysaccharides (Llamas et al. 2010).

15.5.2  Thermophiles

EPS producers were also found among thermophiles isolated from different thermo-
philic habitats. Remarkable antiviral and immunomodulatory activities against her-
pes simplex virus type 2 (HSV-2) were showed by EPSs produced by Bacillus 
licheniformis strain B3-15, Geobacillus thermodenitrificans strain B3-72 and B. 
licheniformis strain T14, three thermophilic and thermotolerant bacilli isolated from 
Aeolian Islands shallow vents. All EPSs were not cytotoxic towards peripheral 
blood mononuclear cells (PBMC) at the concentration of 300 μg·mL−1. They were 
able to interfere HSV-2 replication in PBMC. This ability, expressed as logarithm, 
was higher for EPS2-B3-15 (0.82) compared with EPS2-B3-72 (0.49) and EPS1-T14 
(0.63). Further investigations showed a correlation between the antiviral effect of 
EPSs and the immune response involved in the controlling viral replication. Indeed, 
EPS treatment caused high production of Th1 cytokines (IFN-γ, IFN-α, TNF-α, 
IL-12 and IL-18) by PBMC, which means the inhibition of viral replication by 
induction of antiviral state in neighbouring cells (i.e. IFNs) or the destruction of 
virus-infected cells (i.e. TNF-α and IL-18). EPS2-B3-15 exhibited the best antiviral 
potential compared with the other EPSs assayed (Nicolaus et  al. 2000; Maugeri 
et al. 2002; Arena et al. 2006; Spanò et al. 2013; Gugliandolo et al. 2015; Marino- 
Merlo et al. 2017).

The extracellular polysaccharide TA-1 secreted by the thermophilic bacteria 
Thermus aquaticus YT-1 also showed immunomodulatory activity by stimulation of 
macrophage cells to produce the cytokines TNF-α and IL-6, which increases the 
immune response. The presence of D-galactofuranose residues in the EPS TA-1 
could be probably responsible for observed immunoregulatory activity through 
Toll-like receptor 2 within macrophages, the first line of host defence against bacte-
rial infection (Lin et al. 2011).

Geobacillus tepidamans V264, a thermophilic bacteria isolated from Velingrad 
hot spring, Bulgaria, secreted an extracellular polysaccharide exhibiting an anti- 
cytotoxic activity evaluated by means of brine shrimp test, towards avarol, a natural 
toxic sesquiterpene hydroquinone isolated from Dysidea avara sponge (Tommonaro 
et  al. 2015). The biopolymer increased the value of LD50 of avarol, more than 
12-fold, from 0.18 μg mL−1 up to 2.24 μg mL−1. The activity exerted by EPS could 
be related to the adhesion of toxic compounds to the surface of the polysaccharide. 
Hence, this EPS could be used in pharmacy as anti-cytotoxic drugs (Kambourova 
et al. 2009).

From southwest of Bulgaria, in Rupi Basin hot springs, the strain Aeribacillus 
pallidus 418 producing an exopolysaccharide was isolated. The EPS exhibited 
good emulsifying properties, which could be improved using mixtures with 
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other biopolymers. In particular, the mixture of EPS from A. pallidus 418 with 
xanthan showed the best synergy in terms of stability of emulsion. Both these 
properties (good emulsifying properties and the enhanced synergistic activity) 
of EPS represented valuable features for its industrial exploration (Radchenkova 
et al. 2013, 2014).

In the same region of Bulgaria, from a hot spring close to the village Gradeshnitsa, 
Blagoevgrad region, a thermophilic microorganism, which belonged to the phylum 
Firmicutes and closely related with other strains from the species Brevibacillus 
thermoruber, B. thermoruber strain 423, was isolated. Its colonies exhibited high 
mucoidity, and it was a high-level exopolysaccharide (EPS)-producing thermophile. 
Chemical studies showed that the EPS was a heteropolymer composed of glucose as 
prevailing monomer unit. At first, it was purified in two fractions, as a flow through 
column (EPS-FT) and peak of salt elution (EPS-P), and next assayed for its biocom-
patibility with the monkey kidney fibroblast cell line Cos-7, considering that bio-
compatibility is one of key factors for medical applications. Results showed a no 
pathogenicity of the pure EPS fractions on cellular line used together with their high 
biocompatibility, and then this study suggested their potential use in biomedical 
applications, such as scaffolds or matrices in tissue engineering, drug delivery and 
wound dressing (Nwodo et al. 2012; Yasar Yildiz et al. 2014).

From deep-sea hydrothermal vent located in the Gulf of California, two EPS- 
producing bacteria have been isolated, Vibrio diabolicus and Alteromonas infernus. 
The EPS GY785 produced by A. infernus was a branched, sulphated polysaccharide 
and showed a high molecular weight (up to 106 Da), while EPS HE800 produced by 
V. diabolicus was a linear glycosaminoglycan and showed a molecular mass of 
about 8  ×  105 Da. Both EPSs exhibited very interesting biological activity after 
depolymerization and, next, sulphation of the hydroxyl groups present on the low 
molecular weight (LMW) EPSs. The over-sulphated EPSs, named HE800 DROS 
and GY785 DROS, interacted with C1q protein of the complement pathway system 
by activation of normal human serum (NHS) incubated with various amounts of 
GY785 DR or HE800 DR, to restore the haemolytic activity of serum deficient in 
complement protein C1q. However, EPS HE800 already showed very interesting 
biological properties in regard to bone and skin regeneration (Raguénès et al. 1997a, 
b; Zanchetta et al. 2003a, b; Courtois et al. 2014; Poli et al. 2017).

15.5.3  Psychrophiles

Cold-adapted microorganisms (psychrophiles and psychrotolerant) are widespread 
in terrestrial environments and marine ecosystem. Despite the large number of psy-
chrophilic microorganisms reported in literature, few of them are described as EPS- 
producing microorganisms. Psychrophilic γ-proteobacterium Pseudomonas sp. ID1 
is a cold-adapted bacterium isolated from a marine sediment sample collected from 
South Shetland Islands (Antarctica). This microorganism produced an EPS mainly 
composed of glucose, galactose and fucose and had a molecular mass higher than 
2 × 106 Da. This biopolymer exhibited emulsifying activity against different food 
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and cosmetic oils much higher than commercial gums (xanthan gum and Arabic 
gum), cryoprotective activity, pseudoplastic flow behaviour, low thixotropy and 
yield stress. All these properties of EPS of Pseudomonas sp. ID1 suggested its sig-
nificant cryoprotection role for the strain and make it a promising alternative to 
commercial polysaccharides as emulsifier and cryoprotectant agent for food, phar-
maceutical and cosmetic industries (Carrión et al. 2015).

Psychrotolerant bacterium Pseudoalteromonas sp. SM9913 secreted large quan-
tities of EPSs. The yield of EPS increased as the temperature decreased in the tested 
range, indicating that the EPS production of strain SM9913 had cold adaptation. 
Under optimal growth conditions (15 °C, 52 h), the yield of EPS reached 5.25 g l21 
(dry weight), which was higher than that reported for the EPSs produced by other 
psychrotolerant microorganisms (Nichols et al. 2005b). Structural analysis of EPS 
SM9913 showed that it consisted mainly of glucose, with arabinose, xylose and a 
minor peak for mannose. This biopolymer enhanced the thermostability of protease 
MCP-01 (the main protease secreted by strain SM9913) at 40 °C, by preventing its 
autolysis. In the presence of EPS (1% w/v), the protease activity of MCP-01 showed 
no evident change after 150 min incubation. In contrast, the protease activity in the 
absence of EPS was quickly lost, with 90% of the activity lost after 135 min incuba-
tion at 40 °C. In addition, the flocculation experiment showed that the EPS could 
make colloidal and suspended particles in solution conglomerate, suggesting that 
the EPS was a very good flocculating agent and had a good adsorptive effect. 
Therefore, it might play an important role for strain SM9913 in enriching nutrient 
particles in the deep-sea environment (Qin et al. 2007; Li et al. 2008).

15.5.4  Archaea

The most valuable example of biotechnologically interesting EPS produced by an 
Archaea is that reported by Squillaci et al. (2016). In that paper the isolation and the 
chemical characterization of the EPS secreted by Haloterrigena turkmenica together 
with its applicative properties are discussed. The microorganism produced the EPS 
mainly in the middle exponential growth phase and reached the maximal production 
(20.68  mg EPS per 100  ml of culture medium) in the stationary phase. Results 
obtained by means of anion-exchange chromatography and SEC-TDA Viscotek 
indicated that the EPS was composed of two main fractions of 801.7 and 206.0 kDa. 
It was a sulphated heteropolysaccharide containing glucose, galactose, glucos-
amine, galactosamine and glucuronic acid. EPS exhibited interesting emulsifying 
activity towards n-hexane while was capable of producing stable emulsions with 
vegetable oils. EPSs supplied with emulsifying ability could be employed in the 
food industry as emulsifier and stabilizer agents (Duboc and Mollet 2001). Moreover, 
EPS displayed also a moderate antioxidant activity evaluated by means of DPPH, 
FRAP and TAC assays. In DPPH assay, at a concentration of 10 mg/ml, the radical 
scavenging activity of the EPS was 68.2% ± 1.1 with IC50 value of 6.03 mg/ml, 
whereas hyaluronic acid (standard used) did not show scavenging capacity. In TAC 
and FRAP assays also, the EPS showed the ability to react with both Mo6+ and Fe3+ 
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ions showing a linear dose-dependent antioxidant activity. All these features make 
the EPS produced by H. turkmenica a possible candidate for wide applications in 
several industrial sectors (Squillaci et al. 2016).

15.6  Biosynthesis of EPSs and Genetic Strategy for Their 
Hyperproduction

Bacteria exopolysaccharides are synthesized via different biosynthesis pathways, 
and the genes responsible for the synthesis are often clustered within the genome. 
The knowledges related to EPS biosynthetic processes and the genetic regulation 
are essential to produce tailor-made biopolymers. Intracellular synthesis of homo- 
and heteropolysaccharides is a complex process that proceeds via intracellular 
assembly of sugar nucleotide precursors. In EPS biosynthesis, different enzymes 
and regulatory molecules are involved in several metabolic pathways. It begins with 
the entry of the sugars in the cell, which are catabolized by periplasmic oxidation or 
intracellular phosphorylation: sugars that do not take part in the central metabolic 
pathways act as a raw material for EPS manufacture (Freitas et al. 2011). The intra-
cellular EPS-synthetic machinery requires charged and energy-rich precursor 
monosaccharides: these letters are in the form of nucleotide diphosphate/mono-
phosphate sugars (NDP-/NMP-sugar). This is a crucial step of biosynthesis: sugars 
often are in the form of sugar-1P and rarely in the form of sugar-2P or sugar- 6P and 
serve as activated primary residues (Madhuri and Prabhakar 2014). Some interme-
diates like fructose-6P or glucose-1P, in majority of cases, lead to synthesis of uri-
dine diphosphate-N-acetyl glucosamine (UDP-GlcNAc), uridine 
diphosphate-N-acetyl galactosamine (UDP- GalNAc) and dTDP-rhamnose, precur-
sor molecules for EPS synthesis (Boels et al. 2001). In subsequent step, phospho-
glucomutase enzyme catalyses the conversion of sugar-6P to sugar-1P, and 
UDP-glucose pyrophosphorylase and dTDP-glucose pyrophosphorylase catalyse 
the conversion of sugar-1P to UDP-glucose and dTDP-glucose. The conversion of 
UDP-GlcNAc to UDP-GalNAc in Lactobacillus rhamnosus has been found to be 
catalysed by UDP-N-acetylglucosamine 4-epimerase (Boels et al. 2001). At present 
four general mechanisms are known in bacteria: (a) the Wzx-/Wzy-dependent path-
way, (b) the ATP-binding cassette (ABC) transporter-dependent pathway, (c) the 
synthase-dependent pathway and (d) the extracellular synthesis by the use of a sin-
gle sucrase protein. In the first three biosynthesis pathways, the precursor mole-
cules, which are necessary for the stepwise elongation of the polymer strands, are 
realized inside the cell, while for the extracellular production, the polymer strand is 
elongated by direct addition of monosaccharides obtained by cleavage of di- or tri-
saccharides (Fig. 15.2).

(a) In the Wzx-/Wzy-dependent pathway the repeating units, linked to an unde-
caprenol diphosphate anchor (C55) at level of the inner membrane, are assembled 
by different glycosyltransferases (GTs) and translocated across the cytoplasmic 
membrane by a Wzx protein (flippase protein). The Wzy polymerase and the poly-
saccharide co-polymerase (PCP) protein are responsible for polymerization 
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process. The polysaccharide export (OPX) protein families and the PCP carry the 
transport across the membranes. (b) In the ABC transporter-dependent pathway, the 
EPS chain is assembled on a lipid carrier situated in the inner leaflet of the inner 
membrane before the transportation across the inner membrane by an ABC trans-
porter. The EPS is then exported through the periplasm and across the outer mem-
brane by the OPX and the PCP families of proteins. (c) In the synthase-dependent 
pathway, a complete polymer chain is polymerized and secreted across the inner 
membrane by inner-membrane synthase proteins. The activity of the polysaccharide 
synthase is post-translationally regulated by an inner-membrane c-di-GMP recep-
tor. The EPS is then exported across the outer membrane by TRP-containing protein 
and an integral outer-membrane beta-barrel.

In the first mechanism, the repeating units, which are linked to an undecaprenol 
diphosphate anchor (C55) at level of the inner membrane, are assembled by differ-
ent glycosyltransferases (GTs) and translocated across the cytoplasmic membrane 
by a Wzx protein, also known as flippase. Then, at level of the periplasmic space, 
the repeating units are polymerized by the Wzy protein before they will be exported 
to the cell surface (Islam and Lam 2014). Subsequently, the transport of polymers 
from the periplasm to the cell surface is due to the polysaccharide co-polymerase 
(PCP) and the outer-membrane polysaccharide export (OPX; formerly OMA) pro-
tein families (Cuthbertson et al. 2009; Morona et al. 2009). EPSs assembled by the 
Wzx/Wzy pathway are heteropolymers (e.g. xanthan) and possess different sugar 
patterns, up to four or five types of sugars in their chemical structure. All strains 
using this pathway carry the genes for the flippase (Wzx) and the polymerase (Wzy) 
within their extracellular polysaccharide operons.

In the synthase-dependent pathway, complete polymer strands are secreted 
across the membranes and the cell wall: this pathway is independent of a flippase for 
the translocation of the repeating units. Both polymerization and translocation pro-
cesses are performed by a single synthase protein. In the case of alginate and cel-
lulose, for example, the synthase protein is a single subunit of an envelope-spanning 
multiprotein complex (Rehm 2010; Whitney and Howell 2013). This pathway is 
often utilized for the synthesis of homopolymers: this is the case of curdlan 

Fig. 15.2 Schematic representation of EPS biosynthesis pathways
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biosynthesis, for example, in which only β-(1–3)-linked glucose is present or in the 
case of bacterial cellulose, consisting only of β-(1–4)-linked glucose units.

In the extracellular synthesis pathway, the biosynthesis of polymers, such as dex-
tran or levan, occurs via GTs, which are secreted and covalently linked to the cell 
surface. In this case the responsible enzymes involved in the process transfer the 
activated precursor monosaccharides from substrate to growing polysaccharide that 
assembles in a final structure by the formation of linkage pattern and degree of 
branching. The Wzx-/Wzy-dependent pathway is responsible for the biosynthesis of 
diutan, gellan, welan, xanthan and colanic acid also known as the M antigen (an 
EPS with no commercial application but is of high interest due to pathogenicity in 
enterobacteria studies). Alginate, cellulose, curdlan and hyaluronic acid are exam-
ples of EPSs in which the synthase-dependent mechanism is responsible for their 
synthesis; dextran, levan and mutan are the common examples that require dextran 
sucrase and levan sucrase as enzymes and sucrose as a substrate, respectively (extra-
cellular pathway) (Boels et al. 2001).

Bacterial polysaccharides have interesting and unique properties for industrial 
applications and are used as emulsifiers, viscosifiers, stabilizers or gelling agents. 
Due to these valuable properties, several studies were performed to genetically 
engineer the producing organisms in order to improve the yield of production or to 
generate new polysaccharide variants. Putative targets for engineering are the 
molecular weight, addition of substituents, composition and sequence of sugar com-
ponents. Recently, intensive research focused on mechanisms underlying EPS bio-
synthesis pathways, genome sequencing, protein structure analysis and new 
bioinformatics tools aid to understand the principles of EPS formation. Engineering 
strategies can be subdivided into different categories. One is an increased volumet-
ric productivity: these studies were mostly aiming at increasing sugar nucleotide 
precursors to enhance the carbon flux towards the final polymer, and the genes of 
precursor biosynthesis were overexpressed (Schmid et al. 2015). Overexpression of 
genes involved in the EPS assembly such as GTs, Wzx and Wzy, both as single 
genes and whole cluster, resulted in enhanced yields and precursor conversion rates, 
while in other cases, it had a negative effect presumably due to distorting the multi-
domain protein complex involved in polymerization and secretion (van Kranenburg 
et  al. 1999). Another approach is to increase the EPS productivity by increasing 
transcription of the operons, which encode the EPS biosynthesis proteins. Single-
gene knockouts were also described to enhance yield and alter EPS chemical struc-
ture, as shown in Azotobacter vinelandii (Gaytán et al. 2012). However, the strategy 
to enhance productivity based on genetic engineering might be interesting for EPS 
with reduced viscosifying properties, for example, due to lower molecular weight. 
The optimization of manufacturing process parameters might be more promising 
than engineering EPS biosynthesis for many established industrial EPS producers. 
The highest titres of highly viscous EPS such as xanthan are around 30–50 g/L and 
represent the current maximum amount, which is manageable by existing biopro-
cess units (Hublik 2012).

Another strategy of engineering EPS biosynthesis is to alter the molecular struc-
ture and therefore the chemical characteristics and behaviour of the final 
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biopolymer. These modifications can be based on deleting substituents or mono-
meric sugars from the side chain or binding new substituents: in these cases a change 
of the ratio of decoration, such as the degree of acetylation and pyruvylation, 
occurred (Donati and Paoletti 2009). The degree of acetylation and pyruvylation has 
opposite effects on viscosity. A high degree of pyruvylation resulted in higher vis-
cosity, whereas the presence of more acetyl groups decreased viscosity of EPS. This 
finding is a general rule for polysaccharides and can be used in tailoring the EPS 
viscosity.

Other engineering approaches with respect to the production of xanthan variants 
included the length of the side chain. A truncated tetramer xanthan version, obtained 
by deletion of the terminal mannose via inactivation of the glycosyltransferase (GT 
GumI), resulted in a much lower viscosity. The further removal of the glucuronic 
acid from the side chain by inactivation of GT GumK resulted in enhanced viscosity 
compared to the wild type (Schmid et al. 2015). The molecular weight of xanthan 
was synthetically adjusted by controlling the expression level of the Wzy poly-
merase Gum E (Galván et al. 2013), while for alginate a similar effect was observed 
by an overexpression of alginate polymerase alg8/alg44 in Azotobacter vinelandii 
producing a high molecular weight alginate type (Díaz-Barrera et al. 2012).

In some EPS, overexpression or mutation of genes involved in the polymeriza-
tion/degradation process (e.g. synthase, Wzy, PCP/lyases, glucosidases) represented 
another possibility to change the rheological properties of the polymers (Rehm 
2010; Galván et al. 2013).

As concerning the haloarchaeal EPSs, although the chemical structures have 
been solved, little is known about their biosynthesis. The EPS from Haloferax medi-
terranei ATCC 33500 was identified to be a heteropolysaccharide containing man-
nose as the major component. The repeating unit of EPS in H. mediterranei contains 
one mannosyl and two N-acetyl-glucosaminuronyl moieties, and one N-acetyl- 
glucosaminuronyl group is modified by a sulfonic group. Based on the complete 
genome sequence of H. mediterranei, a gene cluster involved in EPS biosynthesis 
in H. mediterranei was identified. Deletion of the gene cluster eliminated EPS syn-
thesis. The mutant strain deficient of EPS biosynthesis showed a remarkable 
decrease in viscosity and foaming propensity of culture broth and increase in con-
tent of dissolved oxygen and enhanced the production of polyhydroxyalkanoate 
(Zhao et al. 2013). Lü et al. (2017) purified an acidic exopolysaccharide from an 
extremely halophilic archaeon Haloarcula hispanica ATCC 33960, which mainly 
composed of mannose and galactose with a small amount of glucose in a molar ratio 
of 55.9:43.2:0.9. The authors reported the identification of two glycosyltransferase 
genes (HAH_1662 and HAH_1667), responsible for the synthesis of EPS. Deletion 
of either HAH_1662 or HAH_1667 led to loss of the EPS production. In addition, 
the mutants of Haloarcula hispanica displayed a different cell surface morphology, 
retarded growth in low salty environment, an increased adhesion and swimming 
ability, suggesting that its biosynthesis might act as an adaptable mechanism to 
protect the cells against harsh environments.

In conclusion, as emerged from this overview, the genes involved in the different 
biosynthesis pathways encode various types of GTs, polymerizing and branching 
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enzymes, but also enzymes responsible for addition of substituents or modifications 
of sugar chain. However, several steps are currently understood, and sometimes the 
differences between the pathways become less defined. Genome or plasmids con-
tain the genes encoding these enzymes in most of the EPS-producing bacteria 
(Rehm 2010). The clustering of several GTs and polymerizing as well as secreting 
enzymes facilitate the identification of EPS operons. Even if many gene clusters 
involved in the EPS biosynthesis have been known for several years, the function 
and mode of action of most of the genes and proteins are not completely clarified.

Moreover, the identification of novel EPS clusters by next-generation sequenc-
ing approaches will enhance our understanding of EPS synthesis pathway variation 
and modification. By using different tools, such as bioinformatics, structural infor-
mation of proteins and EPSs, it will enable the implementation of synthetic biology 
approaches for tailoring microbial EPS. The insights in Wzx and Wzy topology and 
mechanism might open up the opportunity for incorporation of desired sugars or 
sugar derivatives resulting in modified EPS structures with hitherto unknown mate-
rial properties (Rehm 2015). Recently, an innovative bi-enzymatic process was 
reported, stating that from sucrose, the production of short-chain fructooligosac-
charides and oligolevans was obtained. This system was based on an immobilized 
levansucrase and an endo-inulinase, resulting in a highly efficient synthesis system 
with a yield of more than 65% and a productivity of 96 g/L/h (Tian et al. 2014). The 
utilization and combination of several carbohydrate-modifying enzymes create the 
potential for industrial production of different low molecular weight oligo- or poly-
saccharides with applications as food additives (prebiotics) or in medicine.

15.7  Conclusion and Future Perspectives

Microbial EPSs are ubiquitous in the extreme environments where they are crucial 
for microbial survival. Most of the functions attributed to EPSs are related to a pro-
tective role, which are dependent on the ecological niches in which the producer 
microorganisms live. They could support the microbial communities to tolerate 
extremes of temperature, salt concentration and nutrient supply, building an inter-
face between the bacterial cell and its surrounding environment. Several EPSs pro-
duced by microorganisms from extreme habitats show biotechnological promise. 
By examining their structure and chemical/physical characteristics, it is possible to 
gain insight into their commercial application; they are employed in several fields 
ranging from food-processing to pharmaceutical industries, through to the bioreme-
diation ability of polluted areas. Considering that most of extreme ecosystems and, 
therefore, the respective microbial communities are still unexplored, it is reasonable 
to hypothesize that the isolation of new microorganisms, together with their biomol-
ecules, in particular exopolysaccharides, will provide interesting perspectives for 
new industrial processes in several fields.
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16Why Settle for Mediocre, When 
Extremophiles Exist?

Shivanshi Vashist and Rohit Sharma

Abstract
The ever-increasing uses of microorganisms and enzymes in the food, medical, 
pharmaceutical, detergent, leather, and textile industries has triggered a great 
amount of research in “extreme” enzymology. In areas of research that are based 
on solving environmental problems, by methods such as bioremediation, consid-
erable attention has been paid to enzymes/microorganisms that can survive in 
extreme environments. Such entities include thermostable and organic solvent- 
tolerating microorganisms/enzymes. The study of enzymes (such as amylases, 
proteases, lipases, and nitrilases) that can tolerate high organic solvent concen-
trations has revolutionized the way science and industry work together and 
evolve. Organic solvent-rich environments provide an edge with respect to 
enzyme behavior and applications as compared with aqueous environments. 
These behavioral attributes in organic solvent-rich environments include thermal 
stability, a positive shift in the thermodynamic equilibrium, simple removal of 
solvent from the system, and enhanced enantio-recognition and stereo-stability. 
Non-aqueous biocatalysis is a key area of research that has led us in various 
directions through the exploration of the stated properties of such enzymes. The 
applications of non-aqueous biocatalysis include the biocatalytic synthesis of 
cardiovascular drugs and anti-inflammatory agents, the resolution of racemic 
acids and alcohols, and fatty acid ester synthesis.
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This chapter narrates the journey of these extremists—these solvent-tolerant 
microorganisms/enzymes—from the initial need for their identification to their 
multifarious applications in solving environmental, industrial, and biotechno-
logical issues.

Keywords
Organic solvent tolerance · Biocatalysis · Organic synthesis · Bioremediation

16.1  Introduction

This chapter outlines the present and forecasted applications of extreme environment- 
tolerating microorganisms and their enzymes in the field of biotechnology, particu-
larly in the production and processing of chemicals in textiles, biocatalytic synthesis, 
and agriculture. Microbial biotechnology can offer environmental benefits, process 
efficiency, product quality, and economic benefits in the production of high value 
commercials, along with bio-eco-friendly waste management. Microbial biotech-
nology/engineering assists in the invention/discovery of sustainable technologies 
that offer a number of process and market benefits.

The sustainable production of existing and novel products is a major advantage 
of microbial biotechnology, and this technology also offers reduced dependence on 
nonrenewable fuels and other resources, improving the economics of production. 
Since the 1970s, biotechnology, particularly enzymology, has substantially affected 
healthcare and pharmaceuticals; food and agriculture; environmental protection; 
and the production of various materials and chemicals. “White biotechnology” was 
primarily dependent on aqueous enzymology until enzymes that could withstand 
organic and biphasic environments were explored. Organic solvent-rich environ-
ments, which are lethal for most organisms/enzymes, enhance hydrolytic activity in 
a few useful extremophiles. The study of enzymes that can tolerate high organic 
solvent concentrations has revolutionized the way science and industry work 
together and evolve. Organic solvent-rich environments provide an edge with 
respect to enzyme behavior and applications as compared with aqueous environ-
ments. These behavioral attributes in organic solvent-rich environments include 
thermal stability, a positive shift in thermodynamic equilibrium, simple removal of 
solvent from the system, and enhanced enantio-recognition and stereo-stability. 
Non-aqueous biocatalysis is a key area of research that has led us in various direc-
tions through the exploration of the stated properties of such enzymes. The applica-
tions of non-aqueous biocatalysis include the biocatalytic synthesis of cardiovascular 
drugs and anti-inflammatory agents, the resolution of racemic acids and alcohols, 
and fatty acid ester synthesis (Martinkova et al. 2017).

Interest in exploring the benign applications of enzymes was promoted by the 
successful production of nicotinic acid (Lonza, Guangzhou, China) and (R)-(−)-
mandelic acid (Mitsubishi Rayon, Tokyo, Japan; BASF, Ludwigshafen, Germany) 
and this has motivated multiple studies in the field to take the findings from the labo-
ratory to scaled-up products/processes in the market.
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16.2  Adequate Process Design

Traditionally, primary screening for microorganism/s producing extreme 
environment- tolerating enzyme/s was done in a selective enrichment medium. But 
it takes more than screening to take the product/enzyme to the market. In modern 
chemistry, a primary established mainstream discipline, various non-organic cata-
lysts are used, but the industry is now embracing green catalysis (also known as 
biotransformation). This is the biochemical conversion/alteration of a substance by 
the use of biocatalysts, with a compound being transformed into a relevant form via 
the action of biological agents. The biological agents can be plants, plant products, 
microorganisms, or microbial products.

With an effect on the global economy, enzymes such as nitrilases now have 
proven prominence in the field of green chemistry, with an advantageous ratio of 
waste produced and product obtained (Gong et al. 2012). The major requirement 
is to develop/discover shorter/smarter/faster alternatives to the conventional 
methods to produce relevant products. Therefore, research is now directed toward 
green energy.

16.3  Biological Conversion of Hazardous Compounds

The hazardous nature of compounds in the environment such as nitriles and cyanide 
has led to the exploration of nitrile-hydrolyzing enzymes by industries and by enzy-
mologists, who are investigating biotransformation and the widespread applications 
of biologically transformed hazardous product/s. Various studies have reported the 
increased research in the area (e.g., Ludmila and Křen 2010; Gong et  al. 2012). 
There are multiple approaches for the conversion of an undesirable product into a 
desirable one. With chemical (acid-catalyzed or base-catalyzed) hydrolysis posing 
environmental and economic threats, biological processes have gained importance 
and present a better solution.

16.4  Industrial Tenability

The term ‘industrial tenability’ relates to the achievement of sustainability with 
regard to production, processing, and economic landmarks. Bioprocessing and bio-
technology engineering, as a fourth discipline, along with genetic engineering, pro-
tein engineering, and metabolic engineering, is required for the commercial 
production of biotechnology products and their delivery. The industrial chemical 
method of production and commercialization relies excessively on nonrenewable 
energy and resources and on environmentally damaging production processes that 
can be unsafe. These processes produce toxic products and waste and products that 
are not readily recyclable and degradable after their useful life. Further, the indus-
trial chemical method involves excessive regional concentration of production so 
that the social benefits of production are limited.
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16.5  Advantages of Organic Solvents Over Aqueous Media 
for Biotransformation

Apart from their action in eliminating microbial contamination, which is an under-
rated advantage, the organic solvent-tolerating enzymes that assist in efficient bio-
transformation present a number of other advantages. These advantages, compared 
with processes in aqueous media, include better solubility of the substrate and/or 
product, the shifting of thermodynamic equilibrium toward the synthesis of the 
product, simpler removal of solvent (most organic solvents have lower boiling 
points than that of water), and a reduction in the water-dependent side of the reac-
tion (hydrolysis of acid anhydrates). Furthermore, the organic solvents offer better 
enzyme thermal stability, since aqueous media inactivate enzymes at higher 
temperatures.

A new study has presented ionic liquids as an alternative to organic solvents, 
with these liquids overcoming the problem of the volatile nature of organic solvents. 
These designer solvents are environmentally friendly and have a defined set of prop-
erties. The properties and aspects of ionic liquids in catalytic organic transformation 
are well discussed by Vekariya (2017).

As well as the class of ionic liquids, there is another important and promising sol-
vent class: Bronsted acidic ionic liquids (BAILS). This newly studied, versatile, and 
fast-evolving category is employed in various essential organic reactions, such as 
hydrogenation and dehydrogenation, oxidation, transesterification, esterification, and 
alkylation. The great potential of BAILs in various reactions has led to what has been 
called a new era in acid-catalyzed transformation (Vafaeezadeh and Alinezhad 2016).

With particular focus on biomass conversion processes, alkyl phenols have also 
managed to enter the organic solvent race (Jérôme et al. 2017). β-Sitosterol, cho-
lesterol, and campesterol are some of the steroids that can be converted into indus-
trially important compounds by Mycobacterium sp. (de Carvalho 2017). The 
introduction of an organic phase, in contrast to water, limits the possible slow 
solubility of steroids. The employment of an organic solvent instead of aqueous 
media in the biocatalysis of β-sitosterol, 4 androstadiene-3, 17 (AD), and 1,4 
androstadiene-3, 17 (ADD) leads to better chances of exploring potentially useful 
enzymes (de Carvalho 2017).

Better yields, such as that seen in the increased production of ethyl lactate through 
enzyme esterification in green solvents, have involved the use of heterologous Rhizopus 
oryzae and Candida rugosa, which retain high activity in organic solvents such as 
chloroform (Koutinasa et al. 2018). Another cost-effective method was the immobiliza-
tion of a lipase from C. rugosa; its reusable stability was confirmed, and its esterifica-
tion activity was retained for up to 60% of its maximum activity after five reuse cycles 
in solvents such as cyclohexane (Vmax = 26.4 mMol/min) (Lidija et al. 2017).

Reports on organic solvents suggest that the appropriate optimization of the type 
of enzyme, e.g., lipase, and the use of an appropriate reaction medium lead to an 
enantiomerically pure product (Sikora et  al. 2017). Lipo amino acids were 
 synthesized using enzymes from Pseudomonas stutzeri (lipase) and Bacillus subtilis 
(protease) and the selectivity and synthesis were dependent upon the reaction 
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conditions (Bernal et al. 2018). Low-cost mass cultivation of organic solvent-toler-
ant enzymes in Pseudomonas sp. BCNU 106 in toluene supplemented with glycerol 
can be employed in biotransformation and biodegradation (Choi et al. 2017).

16.6  Applications of Organic Solvent-Tolerant Enzymes

Basic chemicals or commodity chemicals include the products of industries that are 
generally involved in processing applications (e.g., pulp and paper, oil refining, 
metal recovery), as well as the raw materials used for producing other basic chemi-
cals, specialty chemicals, and consumer products, including manufactured goods.

Specialty chemicals are derived from basic chemicals, but are more technologi-
cally advanced and are used in lower volumes than the basic chemicals. Examples 
of specialty chemicals include adhesives and sealants, catalysts, coatings, and plas-
tic additives. Specialty chemicals command higher profit margins and their demand 
is less cyclic than that of basic chemicals. Specialty chemicals have a higher value- 
added component because they are not easily duplicated by other producers or are 
protected from competition by patents. Consumer-care products, including soaps, 
detergents, bleaches, laundry aids, hair care products, skin care products, and fra-
grances, are one of the oldest segments of the chemical industry. Other products 
include pharmaceuticals, products for crop protection, and products of modern 
biotechnology.

C. cylindracea lipase, a thermostable lipase with potential for use in the oleo- 
chemical industry for soap production, has been studied and reported on. Processes 
such as hydrolysis and glycolysis are catalyzed by this enzyme. Similarly, lipases 
from bacteria such as Pseudomonas thermomyces sp. have been used in detergent 
making (Choudhary and Bhunia 2015).

Other microorganisms, especially fungi such as Aspergillus niger, C. antarctica, 
C. rugosa, C. viscosum, Mucor miehei, P. fluorescens, P. cepacia, P. lypolyticum, 
and Thermomyces lanuginosus have been well studied in the production of bio-
diesel (Choudhary and Bhunia 2015). A novel organo solvent-tolerant esterase, 
from Monascus purpureus strain M7, retained 99%–110% relative activity (mini-
mum 20%) in hydrophilic organic solvents such as methanol and ethanol (Kang 
et al. 2017). As well as bacteria and fungi, microalgae are potential candidates for 
use in molecular- to industrial-scale biocatalysis (Miazek et al. 2017). In the past 
decade there has been an exponential increase in microbiologists’ interest in study-
ing the potential of microalgae for biocatalysis; this can be ascertained by the huge 
number of reports in the field, covering diverse microalgae (Bayat et al. 2015; Hunt 
et al. 2010). The target product range is wide, ranging from lipids to pigments. The 
microalgae studied tolerate high concentrations of organic solvents such as ethylene 
glycol, benzene, xylene, acetaldehyde, chloroform, waste organic solvents, and ionic 
liquids. The microalgae studied include Chlorella minutissima, Chlamydomonas 
reinhardtii, Chlorella sorokiniana, Euglena gracilis, Botryococcus braunii, and 
Dunaliella tertiolecta; the growth of these was promoted by methanol (Miazek et al. 
2017). Active aggregates of an organic solvent-tolerant lipase from Marinobacter 
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sp. EMB5 have also been reported (Hemamalini and Khare 2016); this lipase from 
this halophilic bacteria is stable for long incubation periods in organic solvents. 
These studies are usually linked with studies of the bioremediation of undesired 
and/or toxic material.

The applications of the extreme microorganisms noted above, and their enzymes 
and products, are well established, as evidenced by diverse reports from all over the 
globe (Fernandes et al. 2003; Li et al. 1998). There are also reports and discussions 
on the mechanisms underlying the causes/effects of the microorganisms’ actions. 
Manefield et al. (2017) discuss mechanisms such as efflux pumps in bacterial resis-
tance to antimicrobial compounds, in terms of organic solvent-tolerance. Other 
mechanisms of microorganisms’ resistance to antimicrobial compounds include 
biofilm formation, motility, and the formation of endospores.

Pan-genome studies of P. putida, a microbe generally recognized as organic 
solvent- tolerant, have revealed 30% of genes belong to Pseudomonas. A highly 
organic solvent-tolerant Pseudomonas strain, dot-t1e, has also been identified 
(Molina-Santiago and Udaondo 2017). With biofilm formation as one of the “favor-
ite” mechanisms of organic solvent-tolerant microorganisms, biomass quantifica-
tion of P. taiwanensis VLB120∆C biofilm was done in the presence of n-butanol; 
this study showed a robust organism capable of tolerating and adapting to increased 
concentrations of reactants and products that can be toxic to microorganisms (Halan 
2017). In another study, an ethylene glycol-tolerant lignolytic ascomycete strain, 
Pseudo Cochliobolus verruculosa NFCCI3818, was investigated for its utility in 
waste management (Nikama et al. 2017).

In biotechnology, biocatalysis and metabolic engineering are the two fast- evolving 
fields that have the potential to replace and drive transformation in the conventional 
chemical industry (Martinkova et al. 2017). Genetic engineering and molecular biol-
ogy techniques have been used to obtain many modified enzymes with enhanced 
properties compared with their natural counterparts. Some well established biotech-
nology products include bioethanol, L-glutamic acid (MSG), citric acid, L-lysine, 
lactic acid, food-processing enzymes, vitamin C, gluconic acid, antibiotics, feed 
enzymes, xanthan, L-threonine, L-dihydroxyphenylalanine, 6- aminopenicillanic 
acid, nicotinamide, D-p-hydroxyphenylglycine, vitamin F, 7-aminocephalosporanic 
acid, aspartame, L-methionine, dextran, vitamin B12, and provitamin D2.

16.7  Enzymatic Processes

Enzymes are being increasingly used in the chemical industry as catalysts for 
numerous reactions. The global microbial identification market alone is estimated 
to reach 1194 million $US by 2019 (de Carvalho 2017). Millions of years of evolu-
tion have provided enzymes with an unparalleled capacity for facilitating life reac-
tions in ways that are sustainable. Compared with conventional chemical catalysis, 
enzyme catalysis is highly specific and it functions under temperatures, pressures, 
and pH conditions that are compatible with life. Unlike many processes in conven-
tional synthetic chemistry, enzymes require nontoxic and noncorrosive conditions.
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About 75% of enzyme use by value is accounted for by the detergent, food, and 
starch-processing industries. These industries mostly use hydrolytic enzymes such 
as proteases, amylases, lipases, and cellulases. Specialty enzymes account for 
around 10% of the enzyme market and they are finding numerous analytical uses, as 
well as increasing uses in the development of new drugs and medical diagnostics. 
Modern biotechnology has contributed to more than 60% of commercialized prod-
ucts and/or enzymes such as Novozymes’ Cellic®, Shire’s Velaglucerasealfa 
VPRIVTM, and Taliglucerasealfa ElelysoTM (Li et al. 2012).

Some industrial enzymes and their various substrates include proteases-proteins, 
carbohydrases-carbohydrates, lipases-fats and oils, amylases-polysaccharides, 
cellulases- cellulose, pectinases-pectin, and nitrilases-nitriles. The reactions include 
proteolysis, hydrolysis of carbohydrates to sugars, hydrolysis of fats to fatty acids 
and glycerol, hydrolysis of pectin, hydrolysis of cellulose, hydrolysis of starch to 
sugars, and hydrolysis of hazardous nitriles to high-value commercial products 
(Martinkova et al. 2017).

The industries that primarily require/explore such enzymes include the deter-
gent, food, pharmaceutical, synthetic food, feed, pulp and paper, sugar, and textile 
industries. Analytical applications include the development of enzymes for the pro-
duction, degradation, and biotransformation of chemicals, foods and feeds, agricul-
tural produce, and textiles. For example, isomalto-oligosaccharides, produced using 
glucosyl transferases, are used to suppress tooth decay and prevent baked goods 
from becoming stale; cellulases, which synergistically break down cellulose, are 
used because of their potential for providing fuel, food, and other chemicals from 
widely available cellulose. Enzymes such as amylases and proteases are added to 
animal feed to improve digestibility by supplementing the animals’ own enzymes. 
The addition of enzymes such as beta-glucanases and arabino-xylanase to feed cere-
als breaks down non-starch polysaccharide anti-nutritional factors, aiding the diges-
tion and absorption of nutrients.

16.8  Pharmaceuticals: Exploring Biotransformation

Pharmaceutics, chiral intermediates, enantiomers, and precursors are some of the 
terms used by the pharmaceutical industry today to describe their products. Many 
pharmaceutical companies adopt chemical methods for the synthesis of chiral inter-
mediate, enantiomer, and precursor compounds such as α-hydroxy acids, α-hydroxyl 
amides, α- and β-amino acids, and mono/di acids. These chemical methods, apart 
from being environmentally unfriendly, raise global issues when employed on a 
large scale. They also lead to reduced overall product yields because of the forma-
tion of nonspecific and unwanted by-products. The process is expensive owing to 
the addition of chemical substances for enhancing enantiomeric selectivity; in con-
trast, enantiomeric selectivity is naturally provided by some microorganisms. Some 
shrewder manufacturers in the field employ smart microorganisms that show 
“extremophilicity” in more than one aspect, be it organo-solvent tolerance, thermo-
philicity, halophilicity, or alkalophilicity.
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These microorganisms present the most desirable trait in the industry; that is, 
enantio-selectivity and/or enantio-retentivity. These traits reduce the downstream 
processing cost, bringing down the overall cost of the process by selecting and/or 
retaining the wanted enantiomer. These factors help the industry not only in regard 
to reducing costs, but also in regard to overcoming the regulatory pressures that 
every pharmaceutical company faces today. Justifying the regulatory pressure, the 
final product must contain the active pharmacological enantiomer of the desired 
compound and not the racemic mixture. The complex key intermediates can be 
synthesized in an environmentally friendly, cost-effective manner; as noted 
 previously, such synthesis has been exemplified by the successful production of 
nicotinic acid (Lonza) and (R)-(−)-mandelic acid (Mitsubishi Rayon; BASF). 
This success has motivated multiple studies in the field to take the laboratory 
 findings to a scaled-up product/process in the market on a large scale (Yamada 
and Kobayashi 2014).

This section presents some microorganisms recently used in studies across the 
globe; the enzymes from these organisms include lipases, nitrilases, nitrile hydro-
lases, amidases, and laccases. Different Aspergillus spp. secrete lipases that show 
multiple characteristics of extremophilicity, including thermostability, organic 
 solvent tolerance, enantio-selectivity, and pH stability (Contesini et al. 2016).

Of note, Li et al. (2017) have reported the use of structure-guided saturation 
mutagenesis to produce high-quality mutant libraries. Also, other authors have 
discussed examples of stereoselectivity in enzymes overcoming the distinct tradi-
tional limitations of the processes (Maksimova et al. 2017; Mazmouza et al. 
2018). The asymmetrical synthesis of chiral intermediates has now reached a 
point of resolution as a result of these studies. Gurung et al. (2013) have reported 
that lipases from Candida rugosa synthesize lovastatin, a drug that lowers 
serum cholesterol level. Lipase from Serratia marcescens has been reported to 
asymmetrically hydrolyse trans-3-phenylglycidic acid ester, the key intermediate 
in the synthesis of diltiazem hydrochloride (Matsumae et al. 1993; Singh and 
Banerjee 2005).

Sun et al. (2018) have described reductases, oxidases, hydrolases, lyases, isom-
erases, and transaminases in relation to expression of enzyme activity, specificity, 
thermostability, and solvent-tolerance. For example, reduction of 4-oxo-4-[3-
(trifluoromethyl)-5,6-dihydro-[1,2,4] triazolo [4,3-a] pyrazin-7(8H)-yl]-1-(2,4,5-
trifluorophenyl)butan-2-one (OTPP) by Pseudomonas pseudoalcaligenes XW-40 
(Wei et al. 2016). The challenging nature of the enzymatic synthesis of complex 
natural compounds, such as by smart single-step conversion followed by cascade 
reactions, has been highlighted in a study by Classen and Pietruszka (2017). Another 
class of enzymes, the nitrilases, have proven to be valuable for their potential use in 
the biotransformation of various hazardous nitrile compounds to useful intermedi-
ates and corresponding carboxylic acid, for example, acrylonitrile to acrylic acid, 
etc. (Sharma and Vashist 2017). One of the most inspiring success stories in this 
regard is the biosynthesis of acrylamide using nitrilase on a commercial scale. Some 
nitrilases have also been successfully applied to practical production in food indus-
tries, chemical manufacturing, pharmaceutical processes, wastewater treatment, 
and textile industries.
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From the production of (R)-mandelic acid from (R,S)-mandelonitrile through 
Aspergillus niger reported by Vesela et al. (2015) and the production of (R)-mandelic 
acid through Burkholderia cenocepacia reported by Ni et  al. (2013) and Wang 
et al. (2015a), there is evidence that establishes nitrilases as promising biocatalysts. 
Other examples include the production of (R)-o-chloromandelic acid from 
(R,S)-o-chloro-mandelonitrile, using Burkholderia cenocepacia (nitrilase mutant 
I113M/Y199G) (Wang et  al. 2015b), the production of (R)-phenylglycine from 
(R,S)-2-amino-2-phenylacetonitrile, using Sphingomonas wittichii (Qiu et  al. 
2014a, b), and the production of β-alanine from 3-aminopropionitrile, using 
Bradyrhizobium japonicum (Han et al. 2015). Further examples include the produc-
tion of 1-cyanocyclohexylacetic acid, (s)-2-cyano-2-methylpentanoic acid, and imi-
nodiacetic acid from 1-cyanocyclohexylacetonitrile (Xue et  al. 2015), 
2-methyl-2-propylmalononitrile (Yoshida et al. 2013), and iminodiacetonitrile (Cai 
et  al. 2014; Liu et  al. 2013), respectively, using the microorganisms Acidovorax 
facilis (nitrilase mutant F168V), Rhodococcus rhodochrous, Arthrobacter aures-
cens, and Acidovorax facilis (nitrilase mutant F168V/L201N/S192F).

Apart from these examples, glucose isomerases have been employed in the phar-
maceutical industry to convert aldoses and ketoses from Streptomyces rubiginosus, 
and their crystal structures have been elucidated by Eun Bae et  al. (2017). With 
potential applications in l-ribose production, Tseng et al. (2017) studied the over-
production and characterization of a recombinant l-ribose isomerase from 
Actinotalea fermentans ATCC 43279.

Martínez et al. (2017) showed that oxidoreductases were potential candidates for 
use in biotransformation, reporting reactions such as 1 naphthol, 2,5- hydroxyvitamin 
D3 drug metabolism catalyzed by peroxygenases, copper oxidases, and laccases, 
hence elucidating the characteristics of peroxidases from fungi, including 
Basidiomycetes, along with their limitations. Truppo (2017), in a study that showed 
a dramatic increase in protein engineering, reported excellent multiple contact of 
enzymes with substrates, with increased selectivity.

The development of biocatalysts that, in comparison with chemical catalysts, are 
faster, less expensive, and more versatile in their selection and preference for sub-
strates, that can catalyze an increased range of reactions, and that have higher tem-
perature stability and improved solvent compatibility is promising for the 
sustainability of various products/processes in the market today.

16.9  Agricultural Chemicals

Agricultural chemicals, mainly fertilizers and pesticides, are used in massive 
amounts worldwide to sustain the productivity of land. Because of their widespread 
use, agrochemicals are an important source of pollution, pose health risks, and con-
sume large amounts of resources in their production. Enzymology can present use-
ful products that can replace conventional agrochemicals and the methods used to 
degrade agrochemicals (Malik et al. 2017). In addition, biotechnology can provide 
animal feed with enhanced nutritional and storage characteristics, to improve the 
sustainability of animal production.
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16.10  Fiber, Textiles, Pulp, and Paper Processing  
and Other Applications

Through biotechnology and improved silviculture, trees and other bioresources 
used in papermaking can be specifically tailored to match the properties required in 
cellulose fibers for different product applications, thus showing potential to increase 
the paper yield and product quality. Producing optimal fibers for papermaking 
through genetic engineering is an important long-term objective that requires a bet-
ter understanding than we have at present of fiber biosynthesis in plants. Furthermore, 
the use of engineered microorganisms and enzymes can displace many of the envi-
ronmentally adverse practices used in pulp processing. Some of these developments 
are discussed next.

In kraft pulping, bleaching of the pulp remains one of the most expensive opera-
tions and is a prime target for cost reduction. Because of the polluting potential of 
chlorine bleach, pulp mills are mostly changing to bleaching methods that do not 
require elemental chlorine. The use of low-molecular weight xylanase from 
Trichoderma viride VKF3 has recently been reported for the bio-bleaching of news-
paper pulp (Nathan et al. 2017). Oxidative enzymes such as laccase provide other 
promising options for reducing costs in pulp mills. Other processing improvements 
have been achieved by using lipases to control pitch deposits; cellulases to improve 
rates of pulp dewatering; and pectinases for digesting pectins. Ongoing develop-
ments will provide engineered enzymes that are better suited to the needs of pulp 
processing and cost less than the enzymes used at present. In future, it may be pos-
sible to manufacture unique paper products by developing enzymes that can be used 
to control the properties of the pulp fibers and, therefore, the end product.

The production of paper consumes huge amounts of water. Extensive research is 
underway for the treatment of wastewater from paper mills, the aim being total 
recycling. Pulp and paper mills in Canada are aiming for total effluent reuse after 
secondary and tertiary biotreatment. Wastewater recycling potentially saves on the 
expense of treating any freshwater entering the mill and greatly reduces the environ-
mental impact of effluent disposal.

In the processing of textiles, cellulose pulp is usually bleached with hydrogen 
peroxide, which must be removed before the fibers are colored. The traditional 
method for the removal of hydrogen peroxide relied on extensive washing in hot 
water and the use of inorganic salts. The enzymatic process saves water and energy 
and the effluent is ecologically harmless. Of note, Aspergillus oryzae lipase is capa-
ble of modifying polyethylene terephthalate fabrics, improving their hydrophilicity 
and anti-static capacity, while the immobilization of porcine-pancreas lipase on 
zirconia-coated alkylamine glass beads by glutaraldehyde coupling improved wash-
ing properties in cotton cloth. Fungi such as M. miehei has been reported for esteri-
fication in the presence of pentane (Bloomer et al. 1992). Other fungi, such as C. 
rugosa, Penicillium roqueforti, and Humicola lanuginosa have the ability to grow in 
medium supplemented with organic solvents such as cyclohexane and hexane. 
These fungi have industrial applications in the field of organic synthesis as well as 
in the textile industry (Mehta et al. 2017).
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Enzyme options in the textile industry range from lipases to amylases. Lipases, 
together with alpha amylase, are used for the desizing of denim and other cotton 
fabrics on a commercial scale. Nippon Paper Industries (Tokyo, Japan) developed a 
pitch control method that used a fungal lipase from C. rugosa to hydrolyse up to 
90% of wood triglycerides. Rhizomucor meihei lipase is used as a biocatalyst in 
personal care products such as skin and sun-tan creams and bath oils. C. antarctica 
lipase B-synthesized amphiphilic compounds are important in the cosmetic industry 
as they have a range of beneficial properties for the skin. The lipase component 
increases detergency and prevents scaling. Recently, lipase from Rhizopus nigricans 
showed maximum lipolytic activity, as well as bio-emulsification activity,  indicating 
high bio-surfactant production in kerosene A lipase obtained from C. cylindracea 
considerably reduced pitch problems and talc consumption of triglyceride in 
groundwood pulp. C. antarctica lipase A was also used in pitch control in the paper 
industry (Mehta et al. 2017).

Bacillus subtilis is one of the most widely used bacteria for the production of 
industrial enzymes. Bacillus spp., especially B. subtilis and B. licheniformis, are the 
sources of most extracellular proteases (Kamal et al. 2016). These enzymes sourced 
from B. subtilis (6381.75 U/mg), B. altitudinis (MCCB0014) (7407.5 U/mg), B. 
circulans MTCC 7906 (3147.33  U/mL), and B. alcalophilus ATCC 21522 
(18,000 U/mg) were reported to exhibit high activity (Kamal et al. 2016).

Enzymes such as alcalase and savinase from B. licheniformis and other Bacillus 
spp. are also used in the detergent industry and the textile industry. Enzymatic deg-
radation using alkaline proteases with keratinolytic activity (keratinases) is an 
attractive method for hydrolysis of proteins and keratins and also helps to reduce the 
biological oxygen demand (BOD) for aquatic macro and micro flora. Bacillus spp. 
are extensively reported as the bacterial source of keratinases for the degradation of 
feathers (Kamal et al. 2016). A novel Chryseobacterium sp. was screened for cold-
active protease production in the presence of a high concentration of NaCl, and its 
tolerance to several organic solvents, surfactants, and detergents was reported. 
Classical optimization for enhanced protease production, of 18 U/mg to 26 U/mg, 
was studied and reported (Mageswari et al. 2017). A protease from B. licheniformis 
K-3 showed remarkable tolerance to detergents such as cetrimonium bromide, 
sodium dodecyl sulfate, and Tween-20, suggesting its industrial applications for the 
de-gelatinization of X-ray films and the dehairing of animal hide (Singh and Bajaj 
2017). Studies also suggest the application of a thermostable and pH-stable protease 
from B. licheniformis K-3, using agroindustrial/forestry residues as an inexpensive 
substrate for cost-effective enzyme production. A serine protease from a newly iso-
lated Bacillus sp. was reported to show efficient silk-degumming, sericin-degrad-
ing, and color-bleaching activities (Suwannaphana et al. 2017).

Cellulose, hemicellulose, pectin (carbohydrate), and lignin (noncarbohydrate) 
polymers are the main substrates of lignocellulose-degrading enzymes. These poly-
mers are present in large amounts in the primary cell walls and dietary fibers of 
major fruits and vegetables. During the processing of fruits and vegetables to the 
corresponding final food products, lignocellulosic substrates are hydrolyzed by dif-
ferent lignocellulolytic enzymes (Toushik et al. 2017).
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The biological treatment of textile wastewater varies widely, ranging from bacte-
rial, fungal culture (Armillaria sp. F022), yeast to any consortia. Reports of the use 
of enzymes in textile wastewater treatment started in 1970 with the isolation of three 
microbial strains, viz. B. subtilis, Aeromonas hydrophila, and B. cereus. A wide 
range of aerobic and anaerobic bacteria, such as Pseudomonas sp., B. subtilis, 
Geobacillus sp., Escherichia coli, Rhabdobacter sp., Enterococcus sp., 
Staphylococcus sp., Corneybacterium sp., Lactobacillus sp., Xenophilus sp., 
Clostridium sp., Acinetobacter sp., Micrococcus sp., Dermacoccus sp., Rhizobium 
sp., Proteus sp., Morganella sp., Aeromonas sp., Alcaligenes sp., Klebsiellla sp., 
Shewanella sp., and Alishewanella sp., have been extensively reported to show 
good, nonspecific biodegradation of azo dyes. Pseudomonas sp. is widely used in 
decolorization studies because of its capacity to degrade a variety of azo dyes (Red 
HE7B, Reactive Blue 172, Reactive Red 22, Reactive Red 2, and orange I and II). 
Pseudomonas sp. has shown its potential for the degradation of commercial azo 
dyes used in textile wastewaters (Sarkar et al. 2017). The use of microbial enzymes 
in the degradation of synthetic azo dyes in the textile industry is a sustainable meth-
odology that can be employed by industry on a large scale. An alkali-tolerant EG 
gene of B. subtilis Y106 was homologously overexpressed to obtain a suitable 
enzyme for pulp modification (Wang et al. 2017). For eliminating textile waste from 
the environment, the co-plantation of Typha angustifolia and Paspalum scrobicula-
tum has shown enhanced removal of dye such as Congo red from textile effluent 
(Chandanshive et al. 2017).

Enzymes have been strongly accepted as a green alternative for use in many 
textile processes. These biocatalysts are not consumed and immobilization has been 
adopted as the most promising tool for their efficient recovery and reuse. Smart 
polymers and nanoparticle materials have been used for textile applications (Madhu 
and Chakraborty 2017).

In regard to efficient process techniques, the immobilization of lignin-modifying 
enzymes (LMEs), including lignin peroxidase, manganese peroxidase, and white- 
rot fungi laccase, has also been studied. The successful use of immobilized LMEs 
in the decolorization and/or detoxification of industrial dyes and dye-based indus-
trial wastewater effluents has also been reported (Bilal et al. 2017).

16.11  Environmental Biotransformation and Bioremediation

Historically, the treatment of municipal wastewater by the activated sludge method 
has represented a major use of microorganisms in environmental care and bioreme-
diation applications. The use of microbial extremozymes has made its mark in the 
field of environmental biotransformation and biodegradation, with a long history of 
applications. From the mid-1990s to 2017, many applications and reports have sug-
gested the use of microorganisms in bioremediation and degradation—from envi-
ronmentally friendly biotransformation in the pharmaceutical industry to the 
employment of microbial enzymes such as lipases in biosensors for the detection of 
specific pollutant levels; these applications have shown high efficiency, with wide 
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diversity in the field, including the removal of nitrates and phosphates from waste-
waters. A very interesting study at the laboratory-scale batch level used B. cereus 
AKG1 and AKG2 to treat wastewater, investigating BOD, chemical oxygen demand, 
and total organic carbon (Nikama et al. 2017). Hyper phenol-tolerant microorgan-
isms from oil refineries and oil exploration sites were investigated for their potential 
to biotransform phenol by Sarkar et al. (2017). Biodegradation and detoxification of 
dyes is also possible through consotia of Providencia rettgeri strain HSL1 and 
Pseudomonas sp. SUK1 (Lade et al. 2015). Pseudo Cochliobolus verrucosus NFCC 
3818, an ethyl glycol-tolerant lignolytic Ascomycete strain, has shown capacity for 
the detoxification and degradation of azo dyes.

Enhanced solvent tolerance of a psychrophilic phthalate esterase in an arctic 
bacterium, Sphingomonas glacialis PAMC 26605, was seen after the cloning and 
characterization of this esterase (Hong et al. 2017). For soil bioremediation, bacte-
rial associations with plants have been observed for Azotobacter and Lepidium sati-
vum, with tolerance for heavy metals being observed (Sobariu et al. 2017).

16.12  Conclusion

Economic and biotechnological benefits with respect to cost, productivity, reduction 
of environmental hazards, and sustainability are the well reported and evident 
advantages of enzymology. In the production of critical and chiral molecules, 
microbial enzymes have unrivalled precision, owing to their enantio-, regio-, and 
substrate selectivity, and this selectivity has supported the use of nitrile-hydrolyzing 
enzymes in industry today (Xue et al. 2015). Industrial-friendly enzyme-producing 
organisms, including bacteria, filamentous fungi, yeasts, and plants have been well 
studied for their possible use in the commercial production of carboxylic acids and 
amides on an industrial scale. Key properties of such organisms, such as enantio- 
selectivity and enantio-retentivity, come with supporting traits such as thermostabil-
ity, halostability, pH stability, and organic solvent tolerance. These characteristics 
occur in various microbial enzymes that assist in the production of specific mole-
cules at lower cost and better yield than what is seen with conventional methods. 
The use of these enzymes has reduced hazardous impacts on the environment. It is 
time for us to focus on the commercial-scale production of such enzymes and their 
products in order to increase the overall bioeconomy.
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Abstract
The quest for increasing agricultural production for the burgeoning human popu-
lation had been effective with the use of nitrogen-based fertilizers. However, its 
prolong use and occurrence of acid rain resulted in dropping the soil pH below 
5.0, whose environmental conditions considerably decreased the beneficial 
effects of soil neutrophilic bacteria while increasing the abundance of pathogenic 
fungi. Furthermore, the use of pesticide and synthetic fertilizers had adverse 
effect on human health and environment. An alternative method will therefore 
rely on minor groups of bacteria that can sustain its growth under extreme condi-
tion. And particularly for designing products to be applied in acidic soil, acido-
philic and/or acidotolerant Actinobacteria having antifungal and/or plant 
growth-promoting activities had tremendous potential for developments as novel 
biocontrol and/or biofertilizer products. As Actinobacteria can survive under 
many adverse environment conditions by forming spores, they can be promising 
bio-agents for sustainable agricultural production. Actinobacteria may help in 
the degradation of organic matter into humus and release of nitrogen, carbon, and 
ammonia, in turn supplying the nutrients to agricultural crops in acidic soil. 
Release of ammonia due to decomposition of chitin by chitinase-producing 
Actinobacteria may raise the pH of soils, paving a way for other neutrophilic 
plant growth-promoting bacteria.
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17.1  Introduction

The ever-increasing world population necessitates the production levels of agricul-
ture to raise by 60% in 2030–2050 relative to its production in 2005–2007 in order 
to meet the demands of the population that is expected to increase from 7 to 9 billion 
in 2050 (Schröder 2014). Most of this population growth is projected to occur 
within the developing countries, especially in Africa and Asia. However, the world’s 
average agricultural production has not kept up since 2000 to meet the demand of 
the increasing population, and demand has outstripped its production (FAO 2000). 
In order to feed the burgeoning human population, there is an imperative need for 
70–100% increase in global agricultural productivity by 2050 (Godfray et al. 2010).

Furthermore, with the increase in population and a need for more urbanization 
and industrialization, the loss of agricultural lands is predicted to increase rapidly in 
the coming decades. This means that increasing food demand must be met using 
ever-decreasing area of arable lands (Godfray et al. 2010). As agricultural produc-
tion intensified with increase in human populations over the past few decades, pro-
ducers became more and more dependent on agrochemicals for crop protection. 
However, the massive use of chemical pesticides and fertilizers causes the develop-
ment of resistant pathogens and poses serious risks to the environment and human 
health (de Weger et al. 1995; Leach and Mumford 2008). Extensive use of ammonia- 
based fertilizers and environmental factors like acid rain cause pH of soil to drop 
below 5.0 which contributes to significant decline in neutrophilic bacterial popula-
tion and abundance of pathogenic fungi comparatively. So, for better plant growth 
to maintain the productivity levels and to curb the plant diseases caused by fungi, 
there is a dire/pressing need for exploration of acidophilic/acidotolerant bacteria for 
application as efficient biocontrol and biofertilizing agents (Ventura 2000; Haney 
et al. 2000; Tamreihao et al. 2016b).

Actinobacteria are major components of the bacterial populations present in the 
soil. They are aerobic, Gram-positive and grow as branching filaments consisting of 
vegetative mycelia and aerial hyphae that play important ecological roles in soil 
nutrient cycling (Franco-Correa et al. 2010; de Jesus Sousa and Olivares 2016). The 
most extensively studied Actinobacteria belong to genera Streptomyces. 
Actinobacteria especially Streptomyces have been reported to produce several 
important bioactive secondary metabolites that can be used as biocontrol and biofer-
tilizing agents for application in agriculture (Goodfellow and Williams 1983; 
Nimaichand et al. 2013; Tamreihao et al. 2016a). Actinobacteria can promote plant 
growth directly or indirectly. The main mechanisms by which they directly contrib-
ute to the plant growth are production of phytohormones such as indole-3-acetic 
acid (IAA), cytokinins, and gibberellins; enhancement of plant nutrition by 
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solubilization of minerals such as inorganic phosphate; and production of sidero-
phores that chelate iron and 1-aminocyclopropane-1-carboxylic acid deaminase 
(Bhattacharyya and Jha 2012). Actinobacteria indirectly promote the plant by bio-
control of phytopathogens through the production of antibiotics and volatile com-
pounds, synthesis of fungal cell wall-degrading extracellular enzymes, induction of 
systemic resistance, and competition for nutrients and niches within the rhizosphere 
(Bhattacharyya and Jha 2012; Podile and Kishore 2006).

In the last decade, intensive research has been focused on minor groups of 
Actinobacteria, including those that are difficult to isolate and cultivate and those 
that grow under extreme conditions. However, majority of the soil Actinobacteria 
grow in neutral and slightly alkaline conditions; thus isolation has been mostly 
based on neutrophilic strain (Franco-Correa et al. 2010). Until the investigations of 
Corke and Chase (1964) and Khan and Williams (1975), all beneficial Actinobacteria 
were believed to be neutrophilic. Acidophilic bacteria grow in the pH range 3.5–6.5, 
with optimum growth between pH  4.5 and 5.5 (Khan and Williams 1975). 
Acidophilic Actinobacteria can be assigned to two groups, namely, a moderately 
acidophilic group which grow from pH 4.5 to 7.5, with an optimal pH of around 6.0, 
and a group of obligately acidophilic Actinobacteria which grow from pH 3.5 to 
6.5, with an optimal pH of around 4.5 (Bull 2011; Xu et al. 2006; Guo et al. 2015). 
The most frequently encountered acidophilic/acidotolerant Actinobacteria belong 
to the genus Streptomyces (Hagedorn 1976; Guo et al. 2015; Poomthongdee et al. 
2015). Unlike Streptomyces, members of the genus Streptacidiphilus are strictly 
acidophilic (Cho et al. 2008; Golinska et al. 2013; Huang et al. 2004; Kim et al. 
2003; Wang et al. 2006).

17.2  General Mechanisms for Acid Tolerance in Bacteria

In order to survive in potentially stressful environmental conditions such as acids, 
antibiotics, heat, etc., bacteria possess different effective mechanisms to cope and 
survive. And among these, an acidic condition is the most common condition 
encountered by several bacteria (Winfield and Groisman 2003; Liu et al. 2015). The 
pH levels inside the stomach of mammals can drop drastically to a relative value of 
2.0. However, bacteria such as Escherichia coli, Salmonella enteric, and Shigella 
flexneri remain unaffected and show capability to withstand and survive in extreme 
acidic conditions (Kanjee and Houry 2013; Spector and Kenyon 2012).

There are several mechanisms used by acidophilic and/or acidotolerant bacteria 
for resistance or tolerance against acidic environments. The general acid-resistant 
mechanisms used by acidophilic/acidotolerant bacteria include the use of H+ anti-
port systems such as H+-ATPase activity, acid end-product efflux, decreased proton 
permeability to maintain a low intracellular concentration of protons, and synthesis 
of alkali products to neutralize acid generated during extracellular metabolism (Liu 
et  al. 2015). Bacteria such as Pseudomonas aeruginosa (Williams and Camara 
2009) and Streptococcus mutans (Li et al. 2001) form dense biofilms to protect cells 
against extracellular acid shock (Liu et al. 2015).
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17.3  Biocontrol Tools Against Fungal Pathogens

17.3.1  Antibiotic Production

Actinobacteria especially members of the genus Streptomyces are famous for their 
ability to produce several important secondary metabolites having antimicrobial 
and plant growth-promoting traits for application in medicine and agriculture 
(Goodfellow and Williams 1983; Nimaichand et al. 2013; Barka et al. 2015; Viaene 
et al. 2016; Tamreihao et al. 2016b). Approximately 60% of agricultural antibiotics 
are derived from the genus Streptomyces (Ilic et al. 2007). Acidophilic and/acidotol-
erant bacteria have been reported to exhibit higher ratio of antifungal activity over 
neutrophilic Actinobacteria (Khan and Williams 1975; Zakalyukina and Zenova 
2007; Guo et  al. 2015; Poomthongdee et  al. 2015). And among Actinobacteria, 
strains classified within the genus Streptomyces showed the higher rate and broader 
spectrum of antagonistic activities (Guo et al. 2015; Poomthongdee et al. 2015).

Acidophilic Actinobacteria isolated from acidic soil exhibited antifungal activity 
against Fusarium sp., Curvularia sp., and Colletotrichum gloeosporioides (Niyasom 
et  al. 2015). Similarly, acidophilic Streptomyces spp. isolated from acidic soils 
inhibited the growth of Fusarium sp. and F. oxysporum (Zakalyukina and Zenova 
2007; Guo et  al. 2015). Majority of 212 Actinobacteria obtained using acidified 
media (pH 5.5) showed antagonistic activity against rice fungal pathogens such as 
F. moniliforme, Helminthosporium oryzae, and Rhizoctonia solani (Poomthongdee 
et  al. 2015). Similarly, acidotolerant Streptomyces sp. MBRL 10 inhibited the 
growth of rice fungal pathogens such as R. solani, R. oryzae-sativae, H. oryzae, 
Pyricularia oryzae, F. oxysporum, and Curvularia oryzae (Tamreihao et al. 2016b). 
The volatile compound(s) produced by the strain also exhibited antifungal activity. 
The metabolites present in the culture filtrate also exhibited significant inhibition 
zone (Tamreihao et al. 2016b). Boukaew et al. (2013) reported that the volatile com-
pound; 3,7-dimethylocta-1,6-dien-3-ol (L-linalool), produced by Streptomyces 
philanthi inhibited the growth of rice pathogenic fungi R. solani, P. grisea, H. ory-
zae, and F. fujikuroi. It could effectively suppress the growth of R. solani and reduce 
the incidence and/or severity of leaf blight in rice plant.

The crude extract from acidophilic Streptomyces sp. inhibited mycelial growth of 
22 species of fungi (Lyu et al. 2017). The crude extract also effectively inhibited 
spore germination of Botrytis cinerea and Rhizopus stolonifer. The two antibiotics 
reveromycins A and B extracted from Streptomyces sp. effectively suppressed myce-
lial growth of Botrytis cinerea, Mucor hiemalis, Rhizopus stoloniferand Sclerotinia 
sclerotiorum, and spore germination of B. cinerea, M. hiemalis, and R. stolonifer 
under acidic pH conditions. The suppressive efficacies of the antibiotics were greatly 
affected by ambient pH. The antifungal activity of reveromycins A and B was higher 
at pH 4.5 and 5.5, whereas the activity decreased at pH 7.0, implying that application 
of Streptomyces sp. in acidic soil may achieve higher antifungal efficacy in the sup-
pression of pathogenic fungi. Treatment of strawberries with the crude extract and 
reveromycin A significantly suppressed the strawberry fruit rot caused by B. cinerea, 
M. hiemalis, R. stolonifer, and S. sclerotiorum (Lyu et al. 2017). A list of antibiotics 
produced by acidophilic Actinobacteria is provided in Table 17.1.
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17.3.2  Fungal Cell Wall-Degrading Enzyme Production

Actinobacteria are of enormous importance since they possess a capacity to pro-
duce and secrete a variety of extracellular hydrolytic enzymes. Actinobacteria help 
in the decomposition of organic matter into humus and release of nitrogen, carbon, 
and ammonia, in turn supplying the nutrients to agricultural crops. Streptomyces 
spp. play an important role in degrading complex organics such as cellulose, lignin, 
and chitin (Crawford et  al. 1983; Prasad et  al. 2013; Brzezinska et  al. 2013). 
Acidophilic Actinobacteria are probably active in decomposition processes in 

Table 17.1 Antibiotic and plant growth-promoting compounds produced by acidophilic and/
acidotolerant Actinobacteria

Actinobacteria genus 
and strain

Antibiotics/
compound produced Bioactivity References

Streptomyces sp. 3–10 Reveromycin A Antifungal Lyu et al. (2017)
Streptomyces sp. 3–10 Reveromycin B Antifungal Lyu et al. (2017)
Streptomyces sp. 
FXJ1.532

Macrolide Antifungal Guo et al. (2015) and 
Kim et al. (2011)

Streptomyces sp. 
FXJi.408

Polyene macrolide Antifungal Guo et al. (2015) and 
Bhat and Narayanan 
(1996)

Streptomyces sp. 
FXJ1.535

Angucycline-type 
compound

Antifungal Guo et al. (2015) and 
Zhang et al. (2012)

Streptomyces sp. 
GTVL2G15

Actinomycin-like 
compound

Antifungal Guo et al. (2015) and 
Xiong et al. (2012)

Streptomyces sp. 
FXJ1.275

Peptide compound Antifungal Guo et al. (2015) and Seo 
et al. (2012)

Saccharothrix sp. 
FXJ1.021

Anthracycline- 
related compound

Antifungal Guo et al. (2015) and 
Kim et al. (2000)

Actinomadura sp. 
FXJ1.344

Angucycline-type 
compound

Antifungal Guo et al. (2015) and 
Xiong et al. (2012)

Amycolatopsis sp. 
FXJ1.406

Peptide compound Antifungal Guo et al. (2015) and Seo 
et al. (2012)

Streptomyces sp. 
MBRL 10

Volatile compound Antifungal Tamreihao et al. (2016b)

Streptomyces sp. 
FXJ1.172

Thienodolin 
analogue

Plant growth 
regulator

Guo et al. (2015) and 
Kanbe et al. (1993)

Streptomyces sp. 
MBRL 10

IAA, siderophore Plant growth 
promotion (PGP)

Tamreihao et al. (2016b)

Streptomyces sp. Siderophore PGP Poomthongdee et al. 
(2015)

Streptomyces sp. 
FXJ1.066

Siderophore PGP Guo et al. (2015)

Streptomyces sp. 
FXJ23y

Siderophore PGP Guo et al. (2015)

Lentzea jiangxiensis 
FXJ1.034

Siderophore PGP Guo et al. (2015)

Streptosporangium sp. 
FXJ1.1111

Siderophore PGP Guo et al. (2015)
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acidic soils, and their exoenzymes, chitinases, and diastases are adapted to function 
at a lower pH than those from neutrophilic Actinobacteria (Williams and Flowers 
1978; Williams and Robinson 1981).

Acidophilic/acidotolerant Actinobacteria especially Streptomyces sp. have been 
reported to play significant role in the degradation of chitin in acidic soil and litter 
where fungi are major colonizers, and release of ammonia by the deacetylation and 
deamination of N-acetylglucosamine residues increases the pH of the soil (Williams 
and Robinson 1981). This paves way for other neutrophilic PGPB to populate and 
compete with the pathogens (Tamreihao et al. 2016b).

Acidotolerant Streptomyces sp. showing antagonistic activity against important 
rice fungal pathogens in plate assay could produce fungal cell wall-degrading 
enzymes such as chitinase, β-1,3-glucanase, lipase, and protease (Tamreihao et al. 
2016b). Similarly, Streptomyces sp. producing cell wall-degrading enzymes such as 
chitinase, β-1,3-glucanase, lipase, and protease inhibited the mycelial growth of R. 
solani, Colletotrichum gloeosporioides, Alternaria brassicae, and Phytophthora 
capsici (Srividya et al. 2012). A higher proportion of the acidophilic/acidotolerant 
Actinobacteria exhibited chitinolytic activity over neutrophilic Actinobacteria. And 
among the acidic actinobacterial isolates, Streptomyces spp. showed higher percent-
age of chitinolytic activity (Guo et al. 2015). Many plant pathogenic fungi such as 
Botrytis cinerea and Sclerotinia sclerotiorum secrete oxalic acid to facilitate their 
infection and colonization of plant tissues (Choquer et  al. 2007; Williams et  al. 
2011). Oxalic acid can acidify the surrounding environment. Application of 
chitinase- producing acidophilic/acidotolerant bioactive actinobacterial strains can 
be a source of new effective agents for controlling fungal plant diseases for sustain-
able agricultural product alternative to synthetic chemicals in acidic soils.

17.4  Biofertilizing Tools for Growth Promotion

Actinobacteria directly stimulate the growth of plants by production of phytohor-
mones such as IAA, cytokinins, and gibberellins. IAA is a phytohormone essential 
for the growth and development of plants including cell plasticity, tissue elongation, 
embryogenesis, tip dominance and emergence of lateral roots (Teale et al. 2006). 
Acidotolerant Streptomyces sp. could produce 25 μg/ml of IAA in the presence of 
2 mg/ml of tryptophan. Streptomyces spp. have been reported to produce IAA in the 
range of 11–144 μg/ml when the production medium was supplemented with 2 mg/
ml of tryptophan (Khamna et al. 2010). IAA producing Streptomyces spp. promoted 
seed germination and plant growth in maize and cowpea (Khamna et al. 2010). IAA 
produced by Streptomyces hygroscopicus stimulated root elongation and induced 
the formation of adventitious roots in kidney beans (Lin and Xu 2013).

Despite the abundance of phosphorus in the soil (often as high as 400–1200 mg/
kg of soil), only 0.1% of the total phosphates exists in a soluble form available for 
uptake by plants. Most of the soil phosphorus is in insoluble form and, therefore, not 
available to support plant growth. The insoluble phosphorus is present as inorganic 
minerals such as apatite or as one of several organic forms including inositol 
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phosphate (soil phytate), phosphomonoesters, and phosphotriesters (Khan et  al. 
2007; Zhou et al. 1992). In addition, phosphate fertilizers applied in agricultural 
fields are quickly immobilized in the soil or quickly washed away by rain waters, 
polluting rivers and ground waters (Hamdali et  al. 2008a), and only 10–30% of 
applied phosphate fertilizer is taken up by plants in the year of application 
(Mclaughlin et al. 1988). The major mechanisms used by bacteria for solubilization 
of inorganic phosphate include the synthesis of low molecular weight organic acids 
such as gluconic acid, citric acid, succinic acid and oxalic acid (Rodriguez et al. 
2004; Rajput et al. 2013). Acidophilic/acidotolerant Streptomyces spp. have been 
reported to solubilize inorganic phosphate (Poomthongdee et al. 2015; Tamreihao 
et al. 2016b). Hamdali et al. (2008a) reported that rock phosphate (RP) solubilizing 
Streptomyces griseus, Streptomyces cavourensis, and Micromonospora aurantiaca 
could stimulate the growth of wheat plants in soil supplemented with RP. Growth 
promotion was correlated with significant increase in nitrogen and phosphorus con-
tents of the plant tissues (Hamdali et al. 2008b). Phosphate-solubilizing Streptomyces 
corchorusii enhance seed germination, growth promotion, and grain yield produc-
tion of rice plants under pot and field conditions (Tamreihao et al. 2016a).

Production of siderophore, a compound that can chelate iron and make the bound 
iron available to the plants (Burd et al. 1998; Dimpka et al. 2008), by acidophilic/
acidotolerant Actinobacteria especially Streptomyces has been reported 
(Poomthongdee et al. 2015; Tamreihao et al. 2016b). Genome sequence of acido-
philic Streptacidiphilus oryzae contains genes related to siderophore production 
(Kim et  al. 2015). Siderophore-producing Actinobacteria have been reported to 
enhance plant growth in cowpea (Dimpka et al. 2008), chickpea (Misk and Franco 
2011), and wheat (Sadeghi et al. 2012). Siderophore-producing Streptomyces spp. 
have been reported to exhibit biocontrol activities against plant pathogens (Dimpka 
et al. 2008; Sadeghi et al. 2012).

Treatment of rice seeds with acidotolerant Streptomyces sp. having plant growth- 
promoting traits such as IAA, siderophore production and phosphate solubilization 
could enhance seed germination and growth of rice seedlings under gnotobiotic 
conditions. The strain also enhanced the growth of rice plants under greenhouse 
conditions (Tamreihao et al. 2016a, b).

17.5  Conclusions and Future Perspectives

The greatest challenge for agricultural crop production in the current century is to 
meet the increasing world population and to reduce the use of synthetic chemical as 
the latter pose serious risk to human health and environment. The use of plant 
growth-promoting bacteria (PGPB) to enhance agricultural crop production has 
emerged as sustainable and alternative tools to meet this challenge. As the soil pH 
drop below 5.0 due to massive and prolonged use of synthetic nitrogenous fertilizers 
and environmental factor such as acid rain, intensive search for a group of PGPB 
that can survive under extreme conditions (i.e., alkaline and acidic conditions) has 
become a prime importance for sustainable production of agricultural crops 
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(Goodfellow and O’Donnell 1989; Lazzarini et al. 2000; Zakalyukina and Zenova 
2007; Tamreihao et al. 2016b). Since many Actinobacteria show resistance to many 
extreme environmental conditions due to formation of spores (Chater 1993), they 
can be explored and used for development of promising plant growth-promoting 
agents for sustainable production of agricultural crops in acidic soils.

There is scanty report on acidophilic and/or acidotolerant Actinobacteria for 
their potential as biocontrol and plant growth-promoting activities. There is an 
urgent need for further exploration of acidophilic/acidotolerant Actinobacteria 
especially Streptomyces, having biocontrol and biofertilizer potential for applica-
tion in an environment, where the pH of the soil drop below 5.0 due to excessive use 
of nitrogenous fertilizers, acid rain and acid mine drainage for sustainable develop-
ment of agricultural crops. Acidophilic and/or acidotolerant Actinobacteria can find 
great utilization in industrial bioprocess such as lactic acid fermentation during 
industrial production. It can also find application in phytoremediation of environ-
mental pollutants where soil can be contaminated with polycyclic aromatic hydro-
carbons due to acid mine drainage (Liu et al. 2015).

As acidophilic and/or acidotolerant Actinobacteria especially Streptomyces can 
survive and propagate in acidic environment, they can enhance soil productivity and 
soil health, prevent plant diseases, and ultimately increase the production of agricul-
tural crops. Release of ammonia by the deacetylation and deamination of 
N-acetylglucosamine residues by chitinase-producing Streptomyces may raise the 
pH of the soil, paving the way for the other neutrophilic PGPB to colonize and 
compete with the pathogens.
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