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Abstract. This paper presents our prototype wearable system for monitoring
emotion and fatigue of users. We develop a hardware part that can measure
Galvanic skin response and photoplethysmography at a sampling rate of
100 Hz. In addition, we build a classification module that can distinguish the
type of emotion and the level of fatigue of the user based on the measured
signals. It is demonstrated that the developed system can successfully be used
for emotion and fatigue monitoring.
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1 Introduction

With the advances in wearable devices such as smart bands, it has become possible to
constantly monitor users’ mental and physical states and provide feedbacks based on
the sensed states [1]. In particular, physiological channels such as heart rate, Galvanic
skin response (GSR), and skin temperature provide useful information regarding the
user’s state. Promising applications include health monitoring, stress management,
content recommendation, etc. For instance, if the level of fatigue detected by a smart
band is too high during driving, some rest or sleep can be suggested; if the user is found
to be depressed by a smart band, some joyful movies can be recommended to change
the user’s mood.

In this paper, we concentrate on developing a prototype wearable system for
emotion and fatigue monitoring. It measures the GSR and photoplethysmography
(PPG) signals of the user and perform recognition of the emotion type and level of
fatigue. We develop a hardware prototype equipped with the sensors. And, we design a
software-based recognition part that analyzes the signals and conducts classification
using neural networks.
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The remainder of the paper is organized as follows. Section 2 describes the hard-
ware prototype. In Sect. 3, the recognition system is explained including data collec-
tion, feature extraction, and classifier design. The experimental results are presented in
Sect. 4. Finally, conclusion is given in Sect. 5.

2 Hardware

We develop a prototype circuit board that can be integrated in a wearable device to
measure physiological responses of the user. In particular, a GSR sensor module and a
PPG sensor module are included. Besides, our prototype also equips a microcontroller
unit (MCU), a power supply module, a USB communication module, and a Bluetooth
communication module. A maximum sampling frequency of 1000 Hz is supported.

Figure 1 shows a user’s hand connected with the developed sensor board. In Fig. 2,
example GSR and PPG signals collected using the board are shown.

3 Recognition System

3.1 Data Collection

Ten subjects were employed for data collection. Each subject took part in eight sessions
held in different days. In each session, the experimental procedure is as follows. First,
the objective and procedure of the experiment were explained. Then, the GSR and PPG
sensors were placed at a hand of the subject sitting on a chair. The subject was
instructed to relax for five minutes, during which the GSR and PPG signals for the
resting state were recorded. After an additional rest period of three minutes, three music
videos were played to induce particular emotional states, i.e., joy, anger, and sadness,
respectively, during which the GSR and PPG signals were recorded. After the end of a
music video and before the start of another, a break for three minutes was given to
allow the subject’s emotional state to revert to a normal state. The subject wore an
earphone to listen to music, so that any environmental noise did not interrupt the

Fig. 1. Developed system attached to a hand.
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subject’s immersion to the stimuli and induction of emotional arousal. In the whole
experiment, a specific music video was shown only one time.

In each session, the subject was asked to rate the level of fatigue in the Likert scale
ranging from 1 (not tired at all) to 9 (extremely tired).

The physiological signals were recorded at a sampling frequency of 100 Hz.

3.2 Feature Extraction

First, the original signals were down-sampled to 10 Hz. Then, each signal was divided
into segments by using a window having a length of 60 s and moving 5 s at a time.
Each segment becomes a data point in classification.

For each segment, we extract seven features from GSR, and five features from PPG,
which have been known to be effective for physiological signal analysis [2–4]. It
should be noted that in literature, there are abundant types of features that can be
extracted from GSR and PPG, but due to the limit set by the hardware specification, we
had to choose the most effective features among them.

The seven GSR features are as follows:

• Average value of the signal
• Standard deviation value of the signal
• Average value of the derivative of the signal
• Standard deviation value of the derivative of the signal
• Average value of the signal after low-pass filtering with a cut-off frequency of

0.2 Hz
• Average value of the derivative of the signal after low-pass filtering with a cut-off

frequency of 0.2 Hz
• Number of peaks in the signal after low-pass filtering with a cut-off frequency of

0.2 Hz

The five PPG features are as follows:

• Average height of the peaks in the signal
• Standard deviation value of the height of the peaks in the signal
• Heart rate
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Fig. 2. Example GSR (left) and PPG (right).
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• Standard deviation value of the peak-to-peak intervals
• Average value of the squared heart rate variability

3.3 Classification

The emotion classification task is defined to recognize the given signal as one of the
four classes, i.e., neutralness, joy, anger, and sadness. The four classes of the fatigue
level classification task correspond to 1 and 2, 3 and 4, 5 and 6, and 7 and 8 in the
rating scale. Note that score 9 was never given by the subjects, therefore it was not
considered in the classification.

Two classification schemes are tested, namely, the subject-wise scheme and the
subject-dependent scheme. In the subject-wise scheme, a separate classifier is built for
each subject, where the first half of the signal is used for training and the remaining half
for testing. The average classification performance over all subjects is reported. In the
subject-dependent scheme, a classifier is constructed using the first half of the signals of
all subjects and tested using the remaining data of all subjects.

We use multilayer neural networks having one hidden layers as classifiers. We try
various numbers of hidden neurons to examine the performance with respect to the
neural network complexity. A sigmoid function is used as the activation function of
each hidden neuron. The neural networks are trained using the Levenberg-Marquardt
algorithm that is one of the fastest neural network training algorithms. The maximum
training epoch is set to 200.

4 Results

Figure 3 shows the classification performance for the subject-wise scheme. The
emotion classification accuracy reaches the best (61.9%) when 50 hidden neurons are
used, while the fatigue classification accuracy is the highest (88.2%) when the number
of hidden neurons is 40. It is observed that the performance becomes saturated once a
sufficient number of hidden neurons is used.
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Fig. 3. Performance of subject-wise classification for emotion and fatigue
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In Fig. 4, subject-dependent classification performance is depicted. It is observed
that the accuracy in this figure is lower than that in Fig. 3, which is due to the subject-
wise variation of the patterns appearing in the physiological signal. The best perfor-
mance is obtained when the number of hidden neurons is 50 for emotion (48.4%) and
50 for fatigue (71.2%).

5 Conclusion

In this paper, we have presented our prototype system for emotion and fatigue mon-
itoring. Through an experiment, it was shown that the hardware and software parts can
monitor the type of emotion and the level of fatigue with a satisfactory accuracy.

The results showed that user-dependent variation can be a source of performance
degradation. In the future, therefore, it will be desirable to focus on reducing the effect
of such user-dependent variation in order to make the system work robustly across
different users.
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