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Abstract
Legumes are one of the richest sources of proteins, minerals, and fibers for ani-
mals and human being. They also have a great role in maintaining soil fertility 
through biological nitrogen fixation (BNF). Legumes help in solubilizing insol-
uble phosphorus (P) in soil, improving the soil physical environment, and 
increasing soil microbial activity and also have smothering effect on weed. Due 
to these positive roles in improving soil health and excellent adaptability to mar-
ginal environment, legumes are now considered as one of the important compo-
nents of a cropping system. To reduce poverty, hunger, malnutrition, and 

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-0253-4_16&domain=pdf
https://doi.org/10.1007/978-981-13-0253-4_16


512

environmental degradation, legume crop can be a substitute for cereal crop in 
marginal lands. Rediscoveries in genetics and genomics now open up new oppor-
tunities for improving productivity and quality in grain legume research. The 
carryover of nitrogen (N) derived from legume grain either in crop senescence or 
in intercropping system for succeeding crop is important. The necessitate of the 
interdisciplinary study on grain legumes to address their important role on soil 
health. Thus, the maximum beneficial effect in modern agriculture as the optimi-
zation of fertilizer N use is an  essential not only to maintain and restore soil 
organic carbon (SOC) but also to minimize the nitrate pollution from agricultural 
source.
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Abbreviations

AM Arbuscular mycorrhizal fungi
BNF Biological nitrogen fixation
CED Chronic energy deficiency
ISFM Integrated soil fertility management practices
PEM Protein energy malnutrition
PGPR Plant growth-promoting rhizobacteria
SMB Soil microbial biomass
SOC Soil organic carbon

16.1  Introduction

Among the cultivated crops of the world, grain legume occupies an important posi-
tion. The pods (matured, ripen, or unripen) of the grain legumes (family, Fabaceae) 
are used as human food as well as animal feed. In terms of production, grain legumes 
rank third after cereal and oilseed, but its importance is more in terms of agriculture 
and the environment due to the supplement of protein to human and livestock and 
the ability to fix atmospheric nitrogen (N) (Mantri et al. 2013). With the expanding 
world’s population, from the current 7.5 billion to 11 billion by the end of the 
twenty-first century, about 70% more food will be needed (UN 2017; Alexandratas 
2009). The cultivation of grain legume will play an important role in the food secu-
rity of this growing world population. Among the grain legumes, the main sources 
of dietary protein for vegetarians come from chickpea (Cicer arietinum), common 
bean (Phaseolus vulgaris), grass pea (Lathyrus sativus), lentil (Lens culinaris), 
mung bean (Vigna radiata), urad bean (Vigna mungo), pea (Pisum sativum), pigeon 
pea (Cajanus cajan), and soybean (Glycine max). Though rich in protein and known 
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as poor man’s meat, some grain legumes like soybean and groundnut are also good 
sources of vegetable oil (Bellaloui et al. 2013; Meena and Yadav 2015). The ability 
to fix N biologically makes the legume crop an important candidate for cropping 
sequence to maintain the N fertility in agricultural soil and thus to improve soil 
physical condition and sustain the environmental balance (Courty et  al. 2015). 
Cultivation of legume can significantly mitigate the agricultural contribution to cli-
mate change by reducing the energy use, emission of greenhouse gasses, and main-
taining positive soil carbon balance. The presence of high soluble and insoluble 
fiber, oligosaccharide, and phenolics and essential nutrients such as vitamins, anti-
oxidants, and bioactive compounds in food legume can provide several health ben-
efits to human and the livestock (Shimelis and Rakshit 2005; Meena et al. 2015a).

Legumes are cultivated in diverse climates ranging from semiarid to subtropical 
and temperate region. Being shorter in crop duration, any changes in climatic 
parameters lead to drastic reduction of legume yield (Fang et al. 2010). They are 
more sensitive to various abiotic and biotic stresses than cereals and have higher 
cultivation risk and lower yield over competing cereal crops. Environmental factors 
such as water stress, temperature stress, salinity, high CO2 concentration, and heavy 
metal pollution affect its growth, yield, and the quality of the produce (Wani et al. 
2007; Varma and Meena 2016). Farmers also use their marginal lands to grow grain 
legume leading to reduced productivity. In a modeling approach, Cooper et  al. 
(2009) predicted that 3 °C rise in temperature will reduce current average peanut 
production in Zimbabwe by 33% and pigeon pea in Kenya by 19%, due to shorter 
growing period and early maturity. Legume crops are slow grower at early stages of 
growth and susceptible to weed competition due to low soil N uptake at this period, 
which can reduce the yields by 25–40% (Pandey et  al. 1998). To cope with the 
changing climate, legume breeding for stress resistance is very essential. Several 
grain legume genotypes have been identified with the ability to decrease the stoma-
tal conductance with the soil drying – making them a perfect candidate to grow 
under water-limited situation (Zaman- Allah et al. 2011; Devi et al. 2009). Therefore, 
it is the need of the hour to give emphasis on enhancement of the grain legume pro-
duction through agronomic and molecular breeding approach. Compared to natural 
ecosystem, soil health in an agroecosystem has to face many challenges owing to 
rapid disturbances from various agricultural operations during cultivation. Therefore, 
a holistic approach is needed to maintain the soil physical, chemical, and biological 
characteristics of an agroecosystem. Reduced soil disturbances in terms of tillage 
practices and keeping an organic soil cover are proved helpful in this regard (Meena 
et al. 2015b). This can be achieved by introducing a legume crop in an agroecosys-
tem since they can grow under reduced tillage and be used as an organic cover.

Legumes can be grown in marginal land with less availability of macro- and 
micronutrient. Due to the presence of nitrogen-fixing ability, legumes can support 
their own growth and development at even soil with less fertility. With the process 
of growth, they accumulate good amount of biomass through photosynthetic carbon 
(C) fixation. These biomass finally enrich the soil with C by net exudation. Thus, the 

16 Grain Legumes: Impact on Soil Health and Agroecosystem



514

legume can maintain the SOC component. Once the soil is enriched with C, it 
improves the soil physicochemical properties. For succeeding crop, legumes can 
thus improve the soil quality through their biomass incorporation – this is the basic 
hypothesis of this chapter. In this chapter we discussed about the impact of legume 
cultivation on soil health (in terms of both biological and chemical health) and the 
role of legume crop in agroecosystem – with reference to modern agriculture.

16.2  Role of Grain Legumes in Food Security

With the superior grain composition and multi-nutritional benefits, grain legumes 
may help to reduce the malnutrition and to meet the dietary demands of the increas-
ing global population. Food security is achieved when all people have access to 
enough food to live a healthy and active life. In most of the cases, malnutrition is 
caused by undernutrition diet with inadequate protein and calories. Protein energy 
malnutrition (PEM) and chronic energy deficiency (CED) are two most common 
nutrient deficiency diseases in India. Legumes are rich sources of plant protein and 
play a significant role in food security of the society. Malnutrition can be overcome 
by production of enough legumes which is cheap compared to animal protein, and 
poor ones can easily purchase it for their dietary protein need. The agricultural pro-
duction has to increase by 70% by 2050 to deal with an estimated increase of 40% 
in the world’s population (Burinsma 2009). To cope with the increasing food 
demand, it is necessary to adopt sustainable and improve technologies for ensured 
developments in food productivity and thereby food security (Gruhn et al. 2000; 
Landers 2007; Ashoka et al. 2017). Along with the human dietary need, legumes are 
also essential for intensive animal and milk production, where grain crops are used 
as a major feed source and forage legumes are needed to maintain animal health as 
medicine (Wattiaux and Howard 2001). These make legumes as an integral compo-
nent of the modern agriculture.

Food legumes are the best sources of dietary proteins more particularly in devel-
oping countries and provide 20–40% of dietary protein requirements (Kudapa et al. 
2013). They are the rich sources of carbohydrates, vitamins, and minerals (Wang 
et al. 2011). Essential nutrients (macro and micro), vitamins, dietary minerals, good 
quality dietary fibers, antioxidants, and other bioactive compounds are the impor-
tant sources of grain legumes (Prakash and Gupta 2011; Wang et al. 2011). But, 
compared to cereal crops, the yield of grain legumes is substantially low due to its 
shorter life cycle and requirement of higher photosynthate to convert to protein. 
They have numerous health benefits such as lowering and preventing some forms of 
cardiovascular diseases, obesity, certain cancer, and diabetes mellitus (Goni and 
Valentin-Gamazo 2003) due to their high soluble and insoluble fiber, oligosaccha-
ride, and phenolic contents. In many countries, grain legumes serve as a vital part of 
the daily diet and thus deliver a larger share of plant protein in human diet. Legume 
accounts for 27% of world primary crop production and contributes 33% nutritional 
protein needs of human diet (Vance et al. 2000). Legume seeds are rich in protein, 
containing 20–30% protein with high level of lysine (Duranti and Gius 1997), one 
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of the essential amino acids which cannot be synthesized by mammals. Because of 
this higher protein content and increasing price of animal protein, the cultivation of 
legume in modern agriculture is highly essential. Large variation exists in the pro-
tein content of food legumes in different studies and across different region and 
ranges from 26% to 57% in soybean (Iqbal et al. 2006), 21% to 29% in common 
bean (Costa et al. 2006), 16% to 32% in pea (Costa et al. 2006), 22% to 36% in faba 
bean (Vicia faba) (Iqbal et al. 2006), 19% to 32% in lentil (Costa et al. 2006), 16% 
to 28% in chickpea (Iqbal et al. 2006), 16% to 31% in cowpea (Duranti 2006), 21% 
to 31% in mung bean (Duranti 2006; Dhakal et al. 2015), and 16% to 24% in pigeon 
pea (Duranti 2006). Genotypes from the same crop species, environmental condi-
tions, and crop husbandry practices adopted during cultivation play an important 
role in protein content of grain legume. Major storage proteins present in grain 
legumes are globulins (70%) and albumins (20%), whereas prolamins and glutelins 
are some minor proteins (Duranti 2006). Legumin and vicilin are the major protein 
fractions of globulin and albumin. All food legumes contain more vicilin, and the 
relative proportion of legumin and vicilin varies with genotype.

In addition to the digestible proteins, many essential amino acids such as lysine, 
leucine, valine, isoleucine, and phenylalanine (Javaid et al. 2004) are also found in 
grain legumes. Among the grain legumes, soybean and peanut contain an excellent 
source of vegetable oils and contribute more than 35% to global processed vegeta-
ble oil production. The higher vitamins and mineral contents along with the antioxi-
dant property increase market demand of the vegetable oil. The carbohydrate 
content in grain legumes ranges from 30% in soybean to 63% in chickpea. Legume 
starch has a higher proportion of amylopectin than amylose. However, the amylose 
content of legume starches tends to be slightly higher than that of cereal starches 
(Arab et al. 2010). Grain legumes are also the vital sources of minerals such as P, 
potassium (K), calcium (Ca), magnesium (Mg), and zinc (Zn). Some essential fatty 
acids such as omega fatty acids (omega-3 and omega-6) are not synthesized in the 
human body, so they must be obtained through nutrition or as supplements. 
Replacing animal products in the diet with plant products such as soybean provide 
benefits in cardiovascular health (Sirtori et al. 2009) through lowered cholesterol 
(Harland and Haffner 2008). Consumption of both soybean and lupin was found to 
decrease cholesterol in animals and humans, and it also helped in managing diabe-
tes (Bertoglio et al. 2011).

16.3  Necessity of Grain Legumes in Modern Agriculture

Cultivation of crop and raising of livestock for food, fiber, biofuel, medicine, and 
other day-to-day needs of human life are agriculture. Crops provide the major part 
of human nutrition, fodder, and the most important requirement, medicine. Thus, 
agriculture is essential for survival, food, growth, health, productivity, and develop-
ment of world economic system (Ram and Meena 2014). Legume-based farming 
brings the sustainability to the farming system. Legumes deserve a prominent role 
in the present cropping systems of both developed and developing agriculture 
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(Dhakal et al. 2016). Along with the human dietary need, legumes are also essential 
for intensive animal and milk production, where grain crops are used as a major 
feed source and forage legumes are needed to maintain animal health as medicine 
(Wattiaux and Howard 2001). The primary goal of incorporation of legumes in 
cropping system is to enhance the soil fertility (Meena et al. 2015b) and provide 
fodder for the animals and for the direct consumption as food by human. The lipids 
from grain legume also have the possibility to use as biodiesel (Jensen et al. 2012), 
one of the renewable sources of energy for clean environment.

The BNF ability of the grain legume makes them suitable to include in the crop-
ping system as N is the most limiting nutrient for crops. It reduces the N demand 
and thereby decreases the production cost and environmental pollution since nitrog-
enous fertilizers are one of the prime causes of agricultural pollution. Moreover, the 
ability of the legumes to convert the unavailable form of phosphorus (P) to available 
form through releasing some organic acids by the roots also brings P sufficiency in 
a cropping system (Jensens 1996). In developing countries, with a crop livestock 
production, the nutrient deficiency is a common phenomenon in the cattle as they 
are mostly fed with cereal crop residues where the N content is below the threshold 
level. For an efficient digestion, about 1.0–1.2% of N content in livestock feed is 
necessary to support optimum growth of the microbes in the cattle rumen (Van 
Soest 1994). The N-rich legume residue can help to remediate the nutrient defi-
ciency problem in livestock.

Besides the positive effects on soil fertility, grain legumes also reduce incidence 
of pests, diseases, and weeds. Therefore, with the developed agronomic practices 
like reduced tillage and organic farming, the production of grain legume is escalat-
ing (Meena et al. 2016). Crop rotation has a great influence on the yield perfor-
mance of the crops in a cropping sequence, and helps to imorove the agro-economic 
and soil environmental sustainability (Reckling et al. 2014) (Fig. 16.1). For exam-
ple, about 15–25% increase of cereal yield is reported by Kirkegaard et al. (2008), 
when grown in rotation with grain legume and thereby can reduce the need of agro-
chemicals. Hence, this is necessary to move toward the organic farming to achieve 
sustainability in agriculture (Verma et al. 2015a, b). Incorporation of legume crop 
and intercrop system is a good way of organic agriculture as diseases and pest 
attacks are disturbed without the application of chemicals. Another important issue 
of crop production in present day is escalating the costs of fertilizers. The cost of 
composite fertilizer is reported to increase by 113% between 2000 and 2007 (Huang 
2007). Legumes have the ability to transfer fixed nitrogen to the coexisting crops; 
when legumes are grown with other crops, the weed competitions become less. For 
example, when they are cultivated with cereal, weeds are found in less number as 
cereals are a good competitor of weeds. The availability of P, K, Ca, and Mg is 
higher in`the intercropping systems than the monocultures (Vandermeer 1992; Li 
et al. 2007). In conservation agriculture, legumes are also used in rotation as a cover 
crop. When legumes are grown as intercrop, it not only increases the total produc-
tivity of the system but also plays an important role in efficient use of resources 
(Ghosh et al. 2007; Veronica et al. 2005; Varma et al. 2017). Results of legumes in 
intercropping systems are shown in Table 16.1.
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The reduced requirement of tillage in legume cultivation has positive influence in 
farm economic performance along with increased C sequestration due to the reduced 
disturbances in soil (Reckling et al. 2014). The decreased need of fertilizer applica-
tion and agrochemicals helps in lowering the greenhouse gas emission and potential 
global warming. The emissions of greenhouse gasses and N deposition to terrestrial 

N Fixation
Addition of Biomass, slugged off root cap cell

Rhizodeposition

Low molecular weight compound

· Amino acids
· Organic acids
· Sugars
· Phenolics

Microbial 
growth
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· Improves soil structure
· Maintains soil pH
· Phosphate soubilization

Improves soil health

Increases soil organic carbon

Soil Carbon Storage (Both labile 
and recalcitrant soil carbon)

Fig. 16.1 Impact of legume on soil health
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ecosystems are responsible for eutrophication and soil acidification (Clark et  al. 
2013). Agricultural emissions of both N and P compounds are a significant source 
of freshwater nutrients and are detrimental to biodiversity in aquatic ecosystems 
through eutrophication (Nemecek et al. 2008). The gaseous emissions of N com-
pounds are dominated by ammonia, of which more than 93% comes from agricul-
ture. According to findings of Pappa et al. 2011, the emission of nitrous oxide and 
leaching of nitrate from arable soils are high after the cultivation of grain legume 
and during the early stages of crop growth. But with the application of proper strat-
egy, for example, using catch and cover crops (e.g., cereal-legume intercropping), it 
can be reduced substantially (Justus and Kopke 1995; Ram and Meena 2014). In 
temperate climate, when grain legumes are grown during summer with a fallow 
winter period, it also leads to nitrate leaching which can be minimized by growing 
cover crops. Thus, by recycling the nutrients on and between the farms, the cultiva-
tion of grain legume can potentially reduce the loss of nutrients and able to fulfill the 
basic requirements of modern agriculture in terms of resource utilization and effect 
on the environment and biodiversity.

Besides using as food and fodder, legumes can also be used in liquid form for 
producing milks, yogurt, and food formula for infant (Garcia et al. 1998). Legume 
can be milled to flour to make various chips and snacks. Other uses of legumes are 
production of biodegradable plastics (Paetau et al. 1994), oils, gums, dyes, and inks 
(Morris 1997).

Table 16.1 Various intercropping systems with legume in India

Intercropping system Location References
Sorghum intercropped with
Green gram Rajasthan Laddha and Totawat (1997)
Soybean Bhopal Ghosh et al. (2005)
Pigeon pea Hyderabad Tobita et al. (1994)
Cowpea New Delhi
Black gram New Delhi
Groundnut Junagarh, Gujarat Ghosh (2004)
Maize intercropped with
Groundnut Junagarh, Gujarat Ghosh (2004)
Black gram Nainital Singh (2000)
Soybean West Bengal Mandal et al. (2014)
Pearl millet intercropped with
Pigeon pea Hyderabad Ghosh et al. (2008)
Groundnut intercropped with
Pigeon pea Hyderabad Ghosh et al. (2008)
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16.4  Impact of Legume on Soil Biological Properties

The specially developed nodule structures of grain legumes support the atmospheric 
N fixation process with the help of the enzyme nitrogenase. In addition to the nitro-
gen storage in proteins, some legumes also have an extra layer of store of glycopro-
tein in their leaf cells (in between palisade and spongy mesophyll) (Klauer and 
Francesch 1997). After screening of the legume species for the presence of this 
paravenial layer, Lansing and Franceschi (2000) found that 39 legume species bear 
this potentially important structure of protein.

P is another essential element for plant growth to supply adequate energy within 
the cell. In the cell, the vacuole can store a substantial amount of phosphorus to 
provide the required energy transfer during later growth stages. In the soil solution, 
this important nutrient element usually makes complexes with calcium, iron, and 
aluminum and makes it unavailable for plant uptake, though the soil may have large 
amount of phosphorus (Sinclair and Vadez 2002; Meena et al. 2017a). In this regard, 
the cultivation of grain legume can improve the situation by following ways:

 1. The release of available P is highly dependent on soil characteristics (Jones et al. 
2003) such as pH. The organic acids (such as malate, citrate, oxalate, tartrate, 
and acetate) released by the roots of grain legume (Shen et al. 2002; Nwoke et al. 
2008; Nuruzzaman et al. 2006) decrease the soil pH in the rhizosphere which 
helps in conversion of unavailable P to available form.

 2. Grain legumes also release enzyme phosphatase into the soil which helps in 
breakdown of organic materials containing P (Gilbert et al. 1999; Helal 1990).

Soil biological properties such as soil microbial biomass (SMB) are generally used 
as an early indicator of changes in soil physicochemical properties because of soil 
management in agricultural ecosystems (Brookes 1995; Trasar-Cepeda et al. 1998; 
Suman et al. 2006) (Fig. 16.2). During the process of BNF, hydrogen gas is pro-
duced which in turn encourages the bacterial growth in the legume rhizosphere 
leading to higher microbial biomass C in the soil. The soil microbial C (Cmic) and N 
(Nmic) contribute 1–7% of total soil C (Corg) and up to 5% of total soil N (Ntot), 
respectively (McGill et  al. 1986; Sørensen 1987; Anderson and Domsch 1989; 
Insam et al. 1989; Sparling 1992), which is among the most labile C and N pools in 
soils (Jenkinson and Ladd 1981). Consequently, size and activity of the SMB can 
influence nutrient availability and yield of the agroecosystems. The nodule-rhizo-
sphere interaction of the leguminous plants results in enhanced microbial activity in 
the soils of legume crops. Alvey et  al. (2003) reported that the introduction of 
legume crop rotations had a significant influence on the microbial community struc-
ture and increased microbial diversity. Similar results have been achieved in inter-
cropping experiments in which bacterial biomass and activity varied from those in 
monocropping systems (Latati et al. 2014; Li et al. 2009; Qiang et al. 2004; Song 
et al. 2006; Tang et al. 2014; Wang et al. 2007). The ability of the leguminous rhi-
zospheric fauna to capture atmospheric N and enhanced root exudation results in 
higher C:N ratio, and it has been found by Liang et al. (2014) that legume species, 
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even with small variations in C:N ratio and lignin and cellulose contents, triggered 
ample divergence in soil microbial properties (Meena et al. 2014). The production 
and exudation of lectins by legumes have shown to be capable of influencing the 
mobility of plant growth-promoting rhizobacteria (PGPR) and improving root colo-
nization and the phyto-beneficial activity of these PGPR (Schelud’ko et al. 2009). 
Legumes are known for their tripartite symbiosis (mycorrhiza-legume-Rhizobium) 
(Hay- man 1986) and have been shown to be responsible for colonization of specific 
arbuscular mycorrhizal (AM) fungi, mainly due to their special nutritional require-
ments associated with their root nodule activity (Scheublin et  al. 2004; 
Vandenkoornhuyse et  al. 2002; Meena et  al. 2017b). The dual symbiosis of AM 
fungi and Rhizobium bacteria on legume plants enhances plant growth and yield 
under several environmental conditions. It is due to the higher dependency of the 
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Symbiotic relationship between legume root 
and rhizobia enrich soil nitrogen by the 
process of nitrogen fixation and lower the 
inorganic N requirement and N2O emission

Litter deposition and root 
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rhizospheric microbial 
diversity, activity, increase 
organic and inorganic P and N

Organic acid released in root 
exudates and by phosphate 
solubilizing microbes (PSM) 
helps in P mobilization

Improve soil structure,  restore 
organic matter, contribute to CO2

sequestration with the aid of 
increase microbial and plant 
biomass 

Fig. 16.2 Impact of legume on soil biological property
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legume plants on mycorrhiza to achieve their maximum growth. The hyphae of the 
mycorrhiza have the ability to access a greater volume of soil and can absorb and 
transport fairly large amounts of low-diffusing nutrients like P to their host plant 
and help in nodule formation (Zahran 1999). Though the AM fungi don’t possess 
specificity in symbiotic relationship, they differ in their ability to enhance nutrient 
uptake by the host plant. Therefore, the combination of different AM fungal strains 
or species is important since the compatibility of such interactions may be relevant 
to N fixation and to nutrient and water uptake by the legume plants (Vinicius Ide 
2013). Legumes also appear to promote AM colonization in low-input systems. 
Previous studies largely showed that AM results in an increased flow of nutrients, 
plant productivity, and ecosystem sustainability (Gianinazzi and Wipf 2010). 
Legumes are also used extensively as a cover crops to reduce soil N loss and erosion 
in agricultural fields. Short-term management (e.g., 1 year) of legumes has shown 
the influence on microbial population of the cultivated soils. However, all soil prop-
erties and processes are not sensitive to short-term management with legume cover 
crops (Liang et al. 2014; Meena et al. 2014), while soil enzyme activities, microbial 
biomass, and respiration are sensitive toward the  termination strategies of cover 
crops.

16.5  Soil Processes

The residual N supply obtained from introduction of legumes in crop rotation 
through symbiotically fixed N depends on climate, crop management practices, 
and the species of the legume grown (Heichel and Barnes 1984; Meena et  al. 
2015a, b, c, d). A cropping system with leguminous crops and sufficient N fertilizer 
also enhances SOC concentration (Varvel 1994). A study on Mucuna with maize 
resulted in a decline in runoff and erosion, an upsurge in soil organic matter con-
tent and in the production of maize grains, and an improvement of soil water 
regime (Blanchart et al. 2006). In a legume-nonlegume crop sequence, the amount 
of N returned to the soil for nonlegume succeeding crop depends on the following 
factors:

 1. The quantity of legume residue returned to the soil
 2. The content of the symbiotically fixed N in the residues
 3. The availability of the legume residue N to the subsequent crop (Heichel 1987)

Drinkwater et  al. (1998) documented a significant increase in C and N retention 
under legume-based cropping systems and suggested the contribution of narrow 
C:N organic residues combined with the relatively higher temporal diversity on the 
same. It was also reported that crop rotations, which include legumes, are able to 
maintain higher organic matter levels than continuous cropping systems with non-
leguminous row crops (Campbell et al. 1991; Campbell and Zentner 1993; Stevenson 
1982). Inclusion of legumes into crop rotations is justified by their natural capability 
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to exploit atmospheric N, and this additional source of N is likely to avoid interspe-
cific struggle between crops and legumes for N acquirement (Carof 2006; 
Hauggaard-Nielsen et al. 2008) and to make ample N contents available for the fol-
lowing crop through increased soil N content after destruction of the legume cover 
crop.

The N-rich legume residue also encourages the activities of earthworm in the 
soil, and thus, it improves the soil porosity promoting higher water and air move-
ment (Meena et al. 2015). For example, growing legume has a positive effect on soil 
structure due to its continuous network of residual root channels and macropores 
which leads to improve soil water-holding capacity (Jensen et al. 2012). The higher 
protein content in the legume facilitates the decomposition of crop residue by 
encouraging the microbial growth in the soil (Dhakal et al. 2016) and their conver-
sion into soil building organic matter because most of the crop residues are rich in 
C. Improvements in both soil humus and organic C content are reported after legume 
cultivation as they supply biomass and organic C and N in the soil (Lemke et al. 
2007). Additionally, the reduced tillage used during cultivation of legume crops 
helps in buildup of organic C (Alpmann et  al. 2013). The quantity of organic C 
buildup depends on the soil, climatic condition, and species of grain legume. Higher 
organic carbon sequestration has been documented in a mixture of grasses and 
legumes than the monocultivation of the same (Lopez-Bellido et al. 2009; Yadav 
et al. 2017).

Through the process of BNF, the grain legume can save some 150–200 kg ha−1 
of N per year compared to other cereal or rapeseed crops (Peyraud et al. 2009). 
When inoculated with proper strains of Rhizobium bacteria, legume can supply 
up to 90% of their own N. Shortly after the germination of the seed, the bacteria 
penetrate the root to form the nodule where the N present in the soil air is bound 
and supply it to the aboveground plant during photosynthesis. The bacteria pro-
duce ammonia with the help of hydrogen acquired from the plant carbohydrate 
synthesized during photosynthesis. Though variable results were obtained 
regarding the savings of N fertilizer from different sites, Bues et al. (2013) had 
reported that an average of 21  kg ha−1 of nitrogen fertilizers can be saved in 
3–6  years of rotations with grain legume. Some of the N fixed by legume is 
recycled – mostly during decomposition of aboveground and belowground crop 
residues (Meena et al. 2015). N cycling is mediated by soil organisms, and the 
rate and the pattern of nitrogen released from crop residues are regulated by soil 
microbial activity, residue quality (rhizodeposition), and soil environment. For 
example, in alkaline soil, legume can help in maintenance of plant soil microbial 
activity by reducing soil pH where the organic acid released from legume facili-
tates the process. The highest maize yield was reported by Ghosh and Singh 
(1994), while growing after cowpea (fodder) compared to the maize grown after 
maize (fodder). This enhancement in yield is primarily because of enrichment of 
soil N by leguminous cowpea (Tables 16.2 and 16.3).
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16.6  Greenhouse Gas Emission

The enhanced N2O emissions from agricultural and natural ecosystems are believed 
to be caused by increasing soil N availability due to increased use of fertilizer, BNF, 
and N deposition (IPCC 2013). The potentiality of N2O emission from arable soil 
under agriculture is drastically reduced due to legume cultivation through the sav-
ings in fertilizers (N and P) as the estimated CO2 emission from fertilizer production 

Table 16.2 Grain yield of maize crop and total nitrogen content in soil as influenced by preceding 
summer crops and nitrogen applied to maize crop (Adopted from Ghosh and Singh 1994; Bues 
et al. 2013)

Treatment Grain yield (kg ha−1)
Total N (%)
After summer crop After maize harvest

Summer crop
Black gram 3920 0.069 0.068
Green gram 4208 0.071 0.069
Cowpea (fodder) 4404 0.075 0.070
Cowpea (grain) 3594 0.071 0.070
Maize (fodder) 3477 0.065 0.066
Fallow 3946 0.068 0.068
LSD(0.05) 506 0.0008

N to maize (kg ha−1)
0 2790 – 0.063
30 3775 – 0.066
60 4451 – 0.067
90 4684 – 0.070
LSD(0.05) 279 – 0.0008

Table 16.3 Yield potentiality of legumes

Grain legume Yield (kg/ha) References
Soybean (Glycine max) 1000 Masuda and Goldsmith (2009)
Pea (Pisum sativum) 182 Cousin (1997)
Pigeon pea (Cajanus cajan) 657 Singh (2013)
Lentil (Lens culinaris) 667 Singh (2013)
Rice bean (Vigna umbellata) 907–1089 Khadka and Acharya (2009)
Cowpea (Vigna unguiculata) 300 Ehlers and Hall (1997)
Faba bean (Vicia faba) 5112–5737 Song et al. (2006)
Common bean (Phaseolus vulgaris) 729 El-Al et al. (2011)
Groundnut (Arachis hypogaea) 310 Ramana et al. (2002)
Chickpea (Cicer arietinum) 792 Singh (2013)
Mung bean (Vigna radiata) 346 Singh (2013)
Black gram (Vigna mungo) 733–900 agritech.tnau.ac.in
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is about 300 Tg per year (Jensen et al. 2012). N2O production in soil occurs mainly 
by two microbial processes:

 (i) Nitrification in aerobic conditions
 (ii) Denitrification in anaerobic conditions

Both the incidence and intensity of these processes are strongly affected by soil 
mineral N and the availability of soluble C, water and oxygen contents, temperature, 
pH, and soil texture (Conen et al. 2000; Gu et al. 2013; Smith et al. 1998). In agri-
cultural fields, cover crops are frequently used as catch crops to mitigate nitrate 
leaching and erosion during the autumn and winter fallow periods (Thorup- 
Kristensen et al. 2003). When legume cover crops are used either alone or in mix-
ture, they provide an additional N green manure effect for the subsequent crop 
(Tribouillois et al. 2015; Dhakal et al. 2016) and are responsible for the modifica-
tion of mineral N availability in the soil, either reducing it during plant growth or 
increasing it after incorporation into the soil. They can also affect soil water content 
through increased transpiration compared to bare soil. Studying alternative crop 
emissions, Jeuffroy et al. (2013) observed that legume crops emit about five to seven 
times less GHG per unit area compared to other crops. Results of N2O fluxes from 
different crops demonstrated that pea emitted 69 kg N2Oha−1, far less emissions 
than winter wheat (368 kg N2Oha−1) and rape (534.3 kg N2Oha−1). The company of 
legumes in the cereal-based crop rotation instead reduces the amount of synthetic N 
required by the following cereal crop and consequently decreases the N2O emis-
sions associated with synthetic N fertilizers (Jensen and Hauggaard-Nielsen 2003; 
De AntoniMigliorati et  al. 2015). Tillage is another factor associated with N2O 
emission from agricultural fields. There is a general tendency to observe higher 
emissions under conventional tillage (Plaza-Bonilla et al. 2014; Yadav et al. 2017) 
which can be minimized with the inclusion of legume as legume needs very low 
tillage compared to the conventional tillage used for cereal crops and is reported to 
increase carbon sequestration in the soil.

16.7  Crop-Legume Intercropping

Intercropping is a mixed cropping system of cultivating two or more crops in the 
same space at the same time (Andrews and Kassam 1976; Sanchez 1976) in a defi-
nite row arrangement. Four different types of intercropping, namely, mixed inter-
cropping, row intercropping, strip intercropping, and relay intercropping, are in use. 
Due to higher density of crops under intercropping, particularly with the inclusion 
of legumes, microbial diversity of the soil increases which brings stability to the 
agroecosystem (Ram and Meena 2014). Crop-legume intercropping plays an impor-
tant role in improving soil fertility, water and radiation use efficiency, weed, pest 
and disease control, and profit maximization for farmers. Success stories of pulse as 
an intercrop have already been documented by many researchers. For example, 
intercropping soybean with corn gives higher economic return with more crude 
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protein compared to the pure stand. Rhizobia and legume are found in a symbiotic 
association, where both of them are benefited. Rhizobia receive food and shelter 
from the legume, and in return legume gets fixed N ammonia and is utilized in bio-
synthesis of amino acid and nucleotides. Crop plant when grown with legume in 
nutrient poor soil better yield is achieved compared to the plant grown alone. Cereal 
legume intercropping has higher capacity to restore soil mineral N through its abil-
ity to biologically fix atmospheric nitrogen (Fujita et al. 1992; Giller 2001; Meena 
et al. 2017b). Intercropping falls under organic farming, as here disease and pest are 
controlled biologically, while soil fertility is maintained organically. The use of bio-
char as organic amendment in intercropping was found to enhance legume N fixa-
tion and increased yield compared to single crop and facilitate N transfer from 
legume to coexisting crops (Ling Liu et al. 2017).

According to some researchers, legume plants are weak suppressors of weed as 
they grow slow at early development or lose leaves in the ripening stage (Hauggaard- 
Nielsen 2001; Jensen et al. 2005). But when cereal crops and legumes are grown 
together, the weed suppression ability increases. Disease risk minimization is 
another benefit obtained from crop-legume intercropping. Common bacterial blight 
and fungal rust can be controlled by intercropping (Boudreau and Mundt 1992; 
Fininsa 1996) with legume. Viral diseases such as cassava mosaic disease of cassava 
plant and whitefly attack can be reduced by intercropping cassava with green gram.

Cultivating crop repeatedly in the same piece of land reduces soil fertility, and 
the addition of chemical fertilizer is not the solution as it increases the price of the 
produce along with its effects on the ecosystem. In this situation, crop rotation is 
one of the adaptation options through which the soil fertility can be maintained. 
Intercropping cereals with legume is a main component of integrated soil fertility 
management practices (ISFM) (Sanginga and Woomer 2009; Mucheru-Muna et al. 
2010; Meena et al. 2015b). Cereal legume intercropping is being practiced in agri-
culture for last decades. In this regard, right choice of both cereal and gain legume 
crop is very important; otherwise profit may shift to loss as maximum utilization of 
soil nutrient will be hampered. For example, combination of two crops having dif-
ferent ripening period reduces crop yield rather than increases yield. So cereal 
legume intercropping does not automatically improve crop yield, but the correct 
combination of crop is important. In rotation cropping system, legumes are mainly 
used as green manure. Though some other crops can also be grown as green manure, 
but due to N-fixing ability (Table 16.4), the legume crops are preferred the most. 
Green manuring in maize field with Sesbania rostrata + 30 kg N ha−1 gives same 
yield as application of 90 kg N ha−1, indicating 60 kg of N is saved through green 
manuring (Tiwari et al. 2004). Sometimes, legume green manure crop can supply 
entire N need for the next crop. Legume litters contain K, P, and other nutrients 
which are recycled to the soil. In intercropping system, N is transferred to the coex-
isting crop. Intercropping of peanut with rice crop which transfers N from peanut to 
rice is prominent especially in N-poor soil (Chu et al. 2004; Meena et al. 2015). In 
maize and cowpea, when intercropping has been done at low N level, the N content 
of intercropped maize was found to be higher than sole maize crop, which shows the 
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transfer of fixed N from cowpea to maize (Francis 1986). Thus, with intercropping, 
food quality can be enhanced by increasing protein content of cereal and other 
crops, and the food security can be fulfilled to some extent. Intercropping in upland 
rice with soybean at the ratio of 4:2 was found beneficial to increased productivity 
along with soil fertility improvement (Hazarika et al. 2006). The cereal crops such 
as rice, wheat, and maize are cultivated extensively, these crops alone cannot con-
tribute to all nutritional needs of the animals. Therefore, the diversification of crops 
by growing various valuable crops is necessary, which will provide all the dietary 
requirements of the human population including other animals. Thus, crop diversi-
fication with legume has advantage of N nutrition to the plant, along with breakage 
effect on disease cycle and pest (Voisin et al. 2014).

Legume can reduce disease and pest attack, increase production of coexisting 
crop with higher protein availability, and thus help in food security. In rotation, 
legume brings diversification in the cropping sequence which affects the associated 
diversity of wild flora, fauna, and soil microbes (Collette et al. 2011; Meena et al. 
2014) with the potentiality of a dynamic and more sustainable agriculture (Peoples 
et al. 2009). By providing nectar and pollen, the mass flowering of grain and forage 
legumes contributes in the maintenance of wild and domesticated bees (Kopke and 
Nemeck 2010). Though there are controversial reports on the effects of legume on 
honey bees’ population where it is argued that because of the regular disturbances 
in soil, use of biocides, and dense covering on the soil, the crop fields are not the 
foraging place for honey bees (Power and Stout 2011; Jeanneret et al. 2006). The 
diversification of cereal-dominated cropping systems with legumes enables pesti-
cide savings, especially of specific fungicides in rotations (Von Richthofen et al. 
2006; Kirkegaard et al. 2008).

Table 16.4 Nitrogen-fixing ability of legumes

Grain legume N-fixing ability (kg ha−1) Reference
Soybean (Glycine max) 71–108
Pea (Pisum sativum) 90–128 Jensen (1996)
Pigeon pea (Cajanus cajan) 120–170 Adu-Gyamfi et al. (1997)
Lentil (Lens culinaris) 8–14 Cowell et al. (1989)
Rice bean (Vigna umbellata) 13–30
Cowpea (Vigna unguiculata) 14–35 Okereke and Ayama (1992)
Faba bean (Vicia faba) 23–79 Danso et al. (1987)
Common bean (Phaseolus 
vulgaris)

20–60 Silva et al. (1993)

Groundnut (Arachis hypogaea) 150–200 Toomsan et al. (1995)
Chickpea (Cicer arietinum) 64–103 Fatima et al. (2008)
Mung bean (Vigna radiata) 19–54 Hayat et al. (2008)
Black gram (Vigna mungo) 16–79 Hayat et al. (2008)
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16.8  Soil Erosion and Legume

The physical removal of soil by agents which provide the kinetic energy to move 
soil from one location to another is called soil erosion. Topsoil is the layer of soil 
where plants grow as it has the highest fertility than the other soil layers due to the 
presence of organic matter content, soil microorganism, and mineral nutrients. The 
primary causes of soil erosion are wind, water, grazing animals, and anthropogenic 
activity. Natural soil erosion is a slow process, and it is not a major problem as natu-
ral soil-forming processes can replenish it. Soil erosion is becoming a matter of 
concern as it is accelerated by anthropogenic activity. The use of land in different 
purposes indicates soil loss, so revegetation can help to reduce soil loss. Legumes 
are known to use as cover crop to control soil erosion. For example, legume shrubs 
(Colutea arborescens, Dorycnium pentaphyllum, and Medicago strasseri) grown as 
cover crops were found to reduce runoff and soil loss (Garcia-Estringana et  al. 
2013). Hedgerow with leguminous species is planted for erosion control which also 
adds N to the soil. Bhatt and Bujarbaruah (2006) reported that on an average, prun-
ing of the leguminous hedgerow species can add 20–80, 3–14, and 8–38 kg of N, P, 
and potassium (K) per hectare per year, respectively.

Organic matters are the integral component of topsoil and function as a main 
indicator of soil quality and fertility (Franzluebbers 2002; Verma et al. 2017). It has 
direct impact on plant growth and productivity. Cover crops are planted for soil ero-
sion control, soil fertility, and quality management as subsequent cropping in the 
same land reduces the soil quality by removing soil organic matter. In convention-
ally tilled legume-based rotation, use of cover crop was found to be effective to miti-
gate SOC and soil organic nitrogen (SON) losses, increasing N use efficiency of the 
crop system while maintaining optimum productivity (Daniel Plaza-Bonilla et al. 
2016). Soil erosion can be significantly reduced by crop and soil management prac-
tices, such as minimal tillage, contour ridging, mulching, fertilizer, intercropping, 
narrow plant spacing, and planting cover crop of grasses or legume (Howeler 1987 
and 1994; Ruppenthal et al. 1997; Yadav et al. 2017). Annual legumes when grown 
as cover crop have the advantage of providing adequate cover within short duration 
of 6 weeks from planting and can be effectively used to control soil erosion faster.

16.9  Agronomic Use Efficiency

In natural ecosystem, plant follows ecological succession, and better adapted plant 
replaces the pre-existing one. But in managed ecosystem (like the agricultural land), 
cultivation of crops can be done according to the necessity of human being. For a 
sustainable production of crop, the management of soil is very important (Meena 
et al. 2015c). Soil fertility is generally maintained by application of chemical fertil-
izers. NPK are the main nutrients applied in field during crop cultivation. Testing of 
soil is essential before application of fertilizer to find out which element is less in 
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soil for crop production. It was found that in most intensive crop production sys-
tems, 50–75% of N applied to field is not used by crops and N is lost by leaching 
into the soil causing environmental pollution, such as surface and groundwater pol-
lution (Hodge 2000; Asghari and Cavagnaro 2011). Contaminated water with nitrate 
is not potable, and at higher concentration, it can cause serious health problems 
(Umar and Iqbal 2007). Well-grown grain legumes are self-sufficient in their N 
requirement and even can contribute to N economy of the entire cropping system by 
adding fixed N to the soil pool, using little or none from the soil reserves of N 
(Walley et al. 2007). Studies are in progress on whether increasing water use effi-
ciency (WUE) and nutrient use efficiency (NUE) in food legumes is possible 
through agronomic means. Grain yield per unit of water use, evapotranspiration, or 
growing-season rainfall is termed as crop WUE of plant. Increasing WUE is associ-
ated with increasing grain yield and water use after flowering (Loss et  al. 1997; 
Siddique et al. 2001). For example, late planting reduces the WUE with decreasing 
grain yield. Early planting is preferred to give better yield and higher 
WUE.  Exceptions are there in field pea, where too early plantation leads to the 
development of black spot disease (Siddique et al. 1998). Use of herbicides or man-
ual weeding increases the water use efficiency and crop yield by increasing NUE 
and the economic yield per unit of nutrient applied (Verma et al. 2017). NUE is 
declining gradually with time, and the nutrients lost from the agricultural system 
have detrimental effects on adjacent ecosystems (Cloern et al. 2007). Therefore, it 
is necessary to increase fertilizer use efficiency and apply minimum fertilizer as 
possible. During the process of domestication and breeding, the genetic diversity of 
some important crops has been reduced (Warschefsky et al. 2014). Genes from the 
crop with higher nutrient utilization ability can be used in genetic engineering for 
improving NUE of other crops. Performing organic farming can minimize the det-
rimental effects on environment and reduce the environmental risk. Legume can be 
utilized for better NUE. For example, legumes such as lupin have the capacity to 
utilize P from partially available sources than other crop species (Braum and Helmke 
1995). Depending on the environmental conditions, the legume can add maximum 
possible N to the system leading to high crop yield. For example, legumes are 
reported to be sensitive to stress and stop fixing N on exposure to drought (Sinclair 
et al. 1987).

Low-Input Sustainable Agriculture (LISA) was replaced by Sustainable 
Agriculture Research and Education (SARE) program through an act passed in the 
US Congress during 1985. The main focus of this program was to maintain high 
land productivity to using the techniques that minimize the use of pesticides, fertil-
izers, and off-farm purchases through appropriate rotations; biological weed, pest, 
and disease control; integration of livestock with crops; and minimum tillage sys-
tems. Lower-input in sustainable systems do not mean practicing of only organic 
system; rather, it requires a farmer to understand more about the biological effects 
of a crop or management systems and how to use this information cheaply and 
effectively in farm programs (Meena et  al. 2015b), e.g., integrated pest 
management.
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For the healthy growth of food legumes, formation of adequate nodule is neces-
sary (Dhakal et al. 2016) even in cool and dry conditions where rhizobia are not 
available in soil. Under that situation, the inoculation of rhizobia is essential. 
Cultivated legumes are mostly slow grower at early stage and prone to weed com-
petition. Pandey et al. (1998) reported that weed can reduce the legume yields by 
25–40%. Weed control in legume crop can minimize the loss of grain yield. 
Herbicides are becoming noneffective due to the development of herbicide-resistant 
weed variety. Manual weeding is also becoming increasingly expensive due to 
shortage of labor. Paolini et  al. (2003) and McDonald et  al. (2007) found an 
increased weed infestation with the increasing density and competitive ability of 
lentil, which enhances the cost for weed suppression relative to mechanical and 
chemical pest control mechanism.

16.10  Future Perspectives

Among the diverse species of legumes, only very few have received the attention of 
the researchers. Therefore, this is necessary to explore the other legume species 
(both wild and cultivated) for their multiple benefits. The explored valuable quali-
ties of grain legumes should cross into the germplasm to produce higher nutritious 
food for human and livestock. To obtain it, research objective aiming on this area is 
required. Research emphasis focusing on the use of legume and their rhizobia for 
value-added future exploitation including the opportunities such as use as a source 
of pharmaceutical drugs against various diseases is very much essential. In this 
regard, to practically realize the benefits of rhizobia to its fullest, in-depth studies on 
the rhizobial manipulation are a must involving the agricultural biotechnologist 
(Meena et al. 2017b). There is also an urgent need to assess the overall socioeco-
nomic and environmental significances which may arise from the widespread adap-
tation of legume-based agriculture so that it helps the farmers in decision-making. 
With the escalating rate of climate change, this is also important to breed legume 
cultivars for various abiotic stress resistances.

16.11  Conclusion

This chapter gives an overview of different aspects of legume growth, productivity, 
and their impact on soil health. Legumes are an important ingredient of human diet 
especially for the large vegetarian population of the world. In the era of green revo-
lution with major focus on staple foods like rice, wheat, and potato, cultivation of 
legumes was relegated to the marginal land with least of inputs. This, coupled with 
the increasing population, resulted in reducing per capita availability of legumes to 
the common people. Cutting-edge technologies on legume culture need to be devel-
oped in order to face the challenges of climate change. Genomics, transgenics, 
molecular breeding, quality improvement, and biotic and abiotic stress management 
of different legume crops need more attention. Legumes can be considered as smart 
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food for high nutritional value having low water footprint, low carbon footprint, and 
ability to sustain soil health. Agribusiness opportunities of legume crops are an 
emerging area which can help the small landholders of countries like India. These 
crops can be a good source of study for soil N dynamics and soil N2O production 
and emission. The leguminous intercrop can increase soil available N for the subse-
quent crop. Legume as intercrop may reduce the N loss and can improve soil N 
availability for the subsequent crop. Legumes grown in an ecosystem can also be a 
good source of carbon sink in the form of biomass and in soil as well. Well-designed 
studies on legume crops and their impacts on soil C dynamics and carbon storage 
are needed for climate resilient agriculture.
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