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Chapter 1
Values of C. elegans in Toxicological Study

Abstract  The model animal of nematode Caenorhabditis elegans has become an 
important in vivo alternative assay system for toxicological study of different envi-
ronmental toxicants or stresses. We here introduced the several important values of 
C. elegans in the toxicological study for environmental toxicants or stresses. 
Meanwhile, we also discussed the limitations of nematodes for the toxicological 
study of environmental toxicants or stresses.
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1.1  �Introduction

So far, the model animal of nematode Caenorhabditis elegans has gradually become 
an important in vivo alternative assay system for both the toxicity assessment and the 
toxicological study of different environmental toxicants or stresses [1–3]. C. elegans 
is a free-living nematode mainly found in the liquid phase of soils. C. elegans is one 
of the most thoroughly studied model animals and has the typical properties of 
model organisms, such as well-defined anatomy, short life cycle, short lifespan, 
small size, perfect reproductive capacity, availability of many useful genetic sources, 
and ease in handling [4]. Moreover, the nematodes can be easily cultivated in a labo-
ratory and reproduced in thousands of individuals, which allow the offer of an 
advantage assay system suitable for asking the in vivo underlying mechanisms for 
the observed toxicity of environmental toxicants or stresses. C. elegans has the eco-
logical significance due to its important roles in the nutrient cycling in the soil. 
Especially, C. elegans has been proven to be very sensitive to the adverse effects at 
different aspects induced by different environmental toxicants or stresses [1–3].

In this chapter, we discussed the several important values of C. elegans in the 
toxicological study for environmental toxicants or stresses. The mainly introduced 
values are:

	1.	 Raise of a series of useful sublethal endpoints for toxicity assessment of environ-
mental toxicants

	2.	 High-throughput screen and identification of chemicals
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	3.	 Toxicity assessment of environmental toxicants under susceptible genetic 
backgrounds

	4.	 Toxicity assessment of environmental toxicants at environmentally relevant 
concentrations

	5.	 Understanding the in vivo physicochemical, cellular, and physiological mecha-
nisms of toxicity induced by environmental toxicants

	6.	 Elucidation of toxicological mechanisms of environmental toxicants in certain 
targeted organs

	7.	 Elucidation of underlying molecular mechanisms of toxicity induced by envi-
ronmental toxicants

	8.	 Distribution and translocation of environmental toxicants
	9.	 Confirmation of chemical with low-toxicity or non-toxicity property

Moreover, we further discussed the limitations of nematodes for the toxicologi-
cal study of environmental toxicants or stresses.

1.2  �Raise of a Series of Useful Sublethal Endpoints 
for Toxicity Assessment of Environmental Toxicants

In nematodes, besides the endpoint of lethality, many important sublethal endpoints 
associated with development, reproduction, neuronal development and function, 
intestinal development and function, epidermal development, innate immune 
response, lifespan, metabolism, oxidative stress, and transgenic strains reflecting 
stress response or oxidative stress have been further employed and raised [5–9]. 
Among these raised sublethal endpoints, the endpoints associated with the develop-
ment and the reproduction are widely used ones involved in the evaluation of possi-
ble toxicity of environmental toxicants or stresses on the growth and the development 
of nematodes [6–9]. Additionally, the endpoints associated with the oxidative stress 
and the transgenic strains reflecting stress response or oxidative stress are also 
widely used endpoints to reflect the possible toxicity of environmental toxicants or 
stresses on nematodes [10–15]. Especially, the raised some useful transgenic strains 
reflecting stress response or oxidative stress can help us directly detect the potential 
toxicity induction of environmental toxicants or stresses on nematodes based on the 
noticeable induction of fluorescent signals [13–15]. The endpoints associated with 
the lifespan and innate immune response are important to detect the potential long-
term effects of certain environmental toxicants or stresses on nematodes [16–18]. 
More importantly, some useful endpoints associated with the possible damage on the 
functions of primary targeted organs, such as the intestine and the epidermal, of 
certain environmental toxicants have been raised in nematodes [19–21]. The useful 
endpoints associated with the possible damage on the functions of secondary tar-
geted organs, such as the reproductive organs and the neurons, have also been raised 
in nematodes [8, 9, 22]. These useful sublethal endpoints will largely open some new 
windows for us in understanding the underlying toxicological mechanisms of envi-
ronmental toxicants and environmental stresses in organisms.

1  Values of C. elegans in Toxicological Study



3

1.3  �High-Throughput Screen and Identification of Chemicals

Due to the important properties of small size and easy cultivation in the laboratory 
of nematodes, this model animal is very valuable for high-throughput screen and 
identification of chemicals. Using C. elegans as an in vivo assay system, one of the 
values in the high-throughput screen is the high-throughput toxicity assessment of 
environmental toxicants or chemicals. For example, C. elegans was used in the 
high-throughput evaluation of possible toxicity of 20 engineered nanomaterials 
(ENMs) at 4 concentrations using body length, locomotion speed, and lifespan as 
the toxicity assessment endpoints [23]. Using C. elegans as an in vivo assay system, 
another important value in the high-throughput screen is to identify the susceptible 
or resistant genetic loci affecting the toxicity formation of certain environmental 
toxicants. For example, C. elegans was used in the high-throughput identification of 
genetic loci affecting the toxicity and the translocation of graphene oxide (GO), an 
important carbon-based ENMs, based on the screen of 20 strains with mutations of 
genes required for stress response or oxidative stress [24]. Seven genes were identi-
fied, and their mutations altered both the translocation and toxicity of GO in nema-
todes [24]. Mutations of the hsp-16.48, gas-1, sod-2, sod-3, or aak-2 resulted in 
greater GO translocation into the body and toxic effects on both primary and sec-
ondary targeted organs; however, mutations of the isp-1 or clk-1 caused signifi-
cantly decreased GO translocation into the body and toxicity on both primary and 
secondary targeted organs [24].

1.4  �Toxicity Assessment of Environmental Toxicants 
Under Susceptible Genetic Backgrounds

Due to the role of classic model animal, so far, there are many useful genetic mutants 
that are available for researchers in the related fields. Meanwhile, it is easy to per-
form RNAi knockdown of any interested gene in the nematodes. These research 
backgrounds provide a solid foundation to systematically perform the toxicity 
assessment of environmental toxicants under susceptible genetic backgrounds. With 
the TiO2-nanoparticles (TiO2-NPs) as an example, sod-2, sod-3, mtl-2, and hsp-
16.48 mutants were susceptible for TiO2-NP toxicity on reproduction and locomo-
tion behavior; sod-2, sod-3, and mtl-2 mutants were susceptible for TiO2-NP toxicity 
on survival and intestinal development; and mtl-2 mutant was susceptible for 
TiO2-NP toxicity on development [25]. Mutations of these genes, together with sen-
sitive endpoints, will have the potential in assessing the possible TiO2-NP toxicity at 
the concentration of 0.0001 μg/L [25].

1.4  Toxicity Assessment of Environmental Toxicants Under Susceptible Genetic…
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1.5  �Toxicity Assessment of Environmental Toxicants 
at Environmentally Relevant Concentrations

Considering the sensitivity property of C. elegans to environmental toxicants or 
stresses, C. elegans has been gradually used in the toxicity assessment of environ-
mental toxicants at environmentally relevant concentrations [26–30]. In nematodes, 
at least acute exposure, prolonged exposure, chronic exposure, one-generation 
exposure, and transgenerational exposure have been raised as the useful exposure 
routes for toxicity assessment of environmental toxicants. Among these exposure 
routes, at least the prolonged exposure and the chronic exposure have the potential 
in assessing the possible toxicity of certain environmental toxicants at environmen-
tally relevant concentrations. Further with TiO2-NPs as an example, it has been 
shown that TiO2-NPs at the concentration of 0.01 μg/L could cause the significant 
reduction in brood size, decrease in locomotion behavior, and induction of intestinal 
autofluorescence in nematodes after prolonged exposure from L1-larvae to adult 
day-1 [25]. Moreover, after chronic exposure from adult day-1 to adult day-8, TiO2-
NPs (4 and 10  nm) at concentrations more than 0.01  μg/L could significantly 
decrease the locomotion behavior in nematodes [30].

1.6  �Understanding the In Vivo Physicochemical, Cellular, 
and Physiological Mechanisms of Toxicity Induced 
by Environmental Toxicants

As a model animal, C. elegans provide an important in vivo assay system to system-
atically examine the potential roles of different physicochemical properties of cer-
tain environmental toxicants, such as the ENMs, in the toxicity formation in 
organisms. In nematodes, the important contribution of physicochemical properties, 
such as size, surface charge, shape, surface groups, and impurity, in the toxicity 
formation of ENMs have been examined [5, 12, 17, 27–29, 31–35]. Moreover, the 
underlying chemical mechanism for the oxidative stress induced by ENMs has also 
been elucidated in nematodes [36].

Besides this, several aspects of cellular mechanisms of toxicity formation of cer-
tain environmental toxicants, such as ENMs, have been examined in nematodes. 
These raised cellular mechanisms of toxicity formation of environmental toxicants 
include release of metal ion, oxidative stress, intestinal permeability, defecation 
behavior, bioavailability to targeted organs, acceleration in aging process, innate 
immune response, mitochondrial damage and DNA damage, developmental fate, 
and deficit in cellular endocytosis in intestinal cells [5, 10, 16–19, 37–46]. Moreover, 
several aspects of physiological mechanisms of toxicity formation of certain envi-
ronmental toxicants, such as ENMs, have also been determined. These raised physi-
ological mechanisms of toxicity formation of environmental toxicant include 
environmental factors, exposure, physiological state of nematodes, developmental 
stages, and hormesis of nematodes [5, 26, 31, 34–36, 47, 48].
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1.7  �Elucidation of Toxicological Mechanisms 
of Environmental Toxicants in Certain Targeted Organs

With ENMs as the example, the ENMs such as the GO could be distributed and 
translocated into both the primary targeted organs, such as the intestine, and the 
secondary targeted organs, such as the reproductive organs of gonad and sperma-
theca and the neurons, in nematodes [18, 42]. Using series of tissue-specific RNAi 
knockdown tools, we can perform the RNAi knockdown of certain genes in certain 
tissues in nematodes. Meanwhile, there are different tissue-specific promoters avail-
able in nematodes, which can help us to express certain genes in certain tissues. With 
the aid of these techniques, we can systematically elucidate the possible toxicologi-
cal mechanisms of environmental toxicants in certain targeted organs in nematodes.

1.8  �Elucidation of Underlying Molecular Mechanisms 
of Toxicity Induced by Environmental Toxicants

In nematodes, their many basic physiological processes, stress responses, signal 
transduction pathways, and epigenetic marks are conserved compared with those in 
mammals and humans. Additionally, the completion of C. elegans genome has 
approximately 45% of the genes with the human homologues, including numerous 
disease-related genes. So far, some important signaling pathways, such as insulin, 
p38 MAPK, Wnt, ERK, and oxidative stress-related signaling, have been identified 
to be involved in the regulation of response of nematodes to environmental toxi-
cants, such as carbon-based ENMs, in nematodes [13, 15, 24, 49–51]. Moreover, 
some important microRNAs and long noncoding RNAs have also been identified to 
be involved in the regulation of response of nematodes to carbon-based ENMs in 
nematodes [16, 52–56].

1.9  �Distribution and Translocation of Environmental 
Toxicants

Distribution and translocation of environmental toxicants is one of the crucial cel-
lular contributors for the toxicity induction of certain environmental toxicants. The 
property of transparent body of nematodes allows us directly visualize the distribu-
tion and the translocation of certain environmental toxicants, such as some ENMs. 
Some powerful techniques have already been employed to determine the distribu-
tion and the translocation of ENMs, and the distribution and the translocation pat-
terns of some important ENMs have been well described in nematodes with the aid 
of these powerful techniques [57–64]. Moreover, using these techniques, the behav-
ior and the regulation of distribution and translocation of different ENMs in the 
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primary or the secondary targeted organs, as well as the patterns of transgenera-
tional translocation of ENMs, have been systematically investigated in nematodes 
[7, 13, 18–20, 24, 28, 29, 35, 42, 43, 60]. C. elegans is also helpful for the elucida-
tion of dynamic cellular, molecular, and chemical metabolisms of environmental 
toxicants, such as the ENMs, in the body of nematodes [18, 21, 24, 29, 60, 65, 66].

1.10  �Confirmation of Chemical with Low-Toxicity  
or Non-toxicity Property

Due to the sensitivity of C. elegans to environmental toxicants, C. elegans not only 
acts as a wonderful in vivo assay model for assessing ecotoxicological effects of 
certain environmental toxicants but also serves as a useful assay model for the con-
firmation of low-toxicity or relative non-toxicity property of environmental chemi-
cals. With ENMs as the example, the relative non-toxicity property of some 
important ENMs, such as graphite, graphene quantum dots (GQDs), carboxyl-
functionalized graphene (G-COOH), Gd@C82(OH)22, and fluorescent nanodiamond 
(FND), has been confirmed in nematodes [7, 21, 64, 67].

1.11  �Limitations of C. elegans in the Toxicological Study

Although C. elegans has many important values in both the toxicity assessment and 
the toxicological study of environmental toxicants or stresses, the limitations of nem-
atodes in the toxicological study still exist. One of the important limitations is that the 
nematodes do not have some important organs, such as the heart, liver, lung, and 
kidney, which exist in the mammals, since the nematodes do not have the related 
developmental process of mesoderm during the development. Another important lim-
itation is that the genome for human or mammals may be more complex information 
and structure than that of nematodes. Therefore, some important molecular signaling 
pathways may be not able to be detected in the in vivo assay system of C. elegans.
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